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Preface

The 20th International Colloquium on Structural Information and Communi-
cation Complexity (SIROCCO 2013) took place in Ischia, Italy, for three days
starting July 1, 2013.

SIROCCO is devoted to the study of communication and knowledge in dis-
tributed systems from both qualitative and quantitative viewpoints. Special
emphasis is given to innovative approaches and fundamental understanding in
addition to efforts to optimize current designs. The typical areas include dis-
tributed computing, communication networks, game theory, parallel computing,
social networks, mobile computing (including autonomous robots), peer-to-peer
systems, communication complexity, fault-tolerant graph theories, and random-
ized/ probabilistic issues in networks.

This year, 67 papers were submitted in response to the call for papers, and
each paper was evaluated by at least three reviewers. The Program Committee
selected 28 papers for presentation at the colloquium and publication in this
volume after in-depth discussions. The SIROCCO Prize for Innovation in Dis-
tributed Computing was awarded this year to Andrzej Pelc from the University
of Quebec for his contributions to the understanding of distributed computing. A
laudatio summarizing his many and important innovative achievements appears
in these proceedings.

We further congratulate the recipients of the 2013 SIROCCO Best Student
Paper award. This year, two papers were selected to share the award. Specif-
ically, the 2013 SIROCCO Best Student Paper Award was given to Lakshmi
Anantharamu for her paper “Broadcasting in Ad Hoc Multiple Access Channels”
(with Bogdan Chlebus) and Sebastian Kniesburges and Andreas Koutsopoulos
for their paper “A Deterministic Worst-Case Message Complexity Optimal So-
lution for Resource Discovery” (with Christian Scheideler).

The collaboration of the Program Committee members and the external re-
viewers enabled completion of the process of reviewing the papers and discussing
them in less than four weeks. We thank them all for their devoted service to the
SIROCCO community. We thank the authors of all the submitted papers; with-
out them we could not have prepared a program of such quality. We thank
Gennaro Cordasco for his assistance as publicity chair, and Yang Chen for serv-
ing as the submission chair. We also thank the keynote and invited speakers
Andrea Richa, Cyril Gavoille, and Fabian Kuhn. The preparation of this event
was guided by the SIROCCO Steering Committee, headed by Shay Kutten.



VIII Preface

We are indebted to Luisa Gargano and Ugo Vaccaro for their assistance with
local arrangements during the colloqium. We gratefully acknowledge the financial
support of the Dipartimento di Informatica from Università di Salerno.

July 2013 Thomas Moscibroda
Adele A. Rescigno
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Laudatio

2013 SIROCCO Prize for Innovation in Distributed

Computing awarded to Andrzej Pelc

David Peleg
on behalf of the award committee

It is a pleasure to award the 2013 SIROCCO prize for innovation in distributed
computing to Andrzej Pelc. The award is given for his significant contribution to
communication paradigms for information dissemination. Let us briefly review
this as well as some other major contributions and achievements of Andrzej,
with a focus on those related to his many SIROCCO papers. (Notably, Andrzej
coauthored 13 SIROCCO papers during the past two decades).

Much of Andrzej’s research concentrated on algorithmic aspects of distributed
computation and communication networks. In particular, he has contributed
extensively to the study of communication paradigms designed to disseminate
information in communication networks, such as broadcasting (i.e., sending a
message from one source to every node in the network), gossiping (i.e., broad-
casting from every node in parallel), multicasting and related paradigms. His
work focused on developing algorithmic techniques for performing these tasks
efficiently, by complexity measures such as time and (number and size of) mes-
sages, in different network architectures and under different assumptions, and
while attempting to ensure a variety of desirable properties, most notably fault-
tolerance. In addition, he studied the effects of having only partial knowledge
of the network topology on the performance of broadcast algorithms in message
passing networks and more recently in radio networks of different types (such as
arbitrary topology, geometric graphs or unit disk graphs). Moreover, he recently
published an authoritative book on these topics. Related to this line of work are
Andrzej’s SIROCCO papers [1–3], for example.

Another central theme of Andrzej’s research involved the question of over-
coming communication failures. He addressed this question in many different
settings and under different assumptions on the nature of possible failures, such
as random (dependent or independent) failures in nodes, links or transmissions,
benign or malicious (Byzantine) faults, and globally or locally bounded faults.
His studies served to broaden our knowledge and systematically organize the
arsenal of tools available to us in this area. Related to this line of work are
Andrzejs SIROCCO papers [4–6].

Andrzej was involved in studying fault-resilience in other contexts as well.
Let me mention one area related to fault-tolerance where he made significant
contributions, namely, the problem of system-level fault diagnosis in multipro-
cessor systems. This problem concerns a process where processors in the system
can test each other for failures. It is assumed that fault-free testers correctly
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identify the fault status of tested processors, while faulty testers can give arbi-
trary test results. The goal is to develop algorithms for identifying correctly the
status of all processors, assuming that the number of faults does not exceed a
given upper bound. Andrzej’s work explored static and adaptive solutions at-
tempting to minimize the number of tests or the probability of error for various
system topologies and under different failure models. Related to this line of work
is Andrzej’s SIROCCO paper [7].

Recently, Andrzej started studying algorithmic problems in systems of au-
tonomous mobile agents or robots, which involve identical memoryless units
residing in the nodes of a network or a terrain. Most notable is his work on the
task of network exploration, which requires a mobile agent with small memory
to explore an unknown network, i.e., traverse all its nodes and edges (possi-
bly returning to the starting node), with no a priori knowledge of the network
topology. The feasibility of this task, and the efficiency of exploration algorithms,
depend on the model assumptions and on the class of allowed graph topologies.
Andrzej studied this problem in different settings on trees and general graphs,
paying attention mostly to the issues of memory requirements and resilience to
failures. A second central problem studied extensively by Andrzej in this area is
the rendezvous problem in networks, where two mobile agents, located in nodes
of an unknown network, have to meet at some common location. Other problems
he studied include the tasks of gathering the agents in one place and of searching
for a “black hole” (namely, a destructive node) in the network. Related to this
line of work are Andrzej’s SIROCCO papers [8–11].

In summary, Andrzej’s impressive technical achievements, his numerous in-
fluential contributions to efficient and failure-resistant algorithms in communi-
cation networks, and his leadership role in the research community in the field,
make him a most highly deserving candidate for the prize.
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Meeting in Networks

(Abstract of Award Lecture)

Andrzej Pelc

Université du Québec en Outaouais

Canada

Abstract. Two or more mobile entities, called agents or robots, start-
ing at distinct initial positions, have to meet. This task is known in the
literature as rendezvous and has many applications, both in everyday
life and in computer science. Among many alternative assumptions that
have been used to study the rendezvous problem, two most significantly
influence the methodology appropriate for its solution. The first of these
assumptions concerns the environment in which the mobile entities nav-
igate: it can be either a terrain in the plane, or a network modeled as
an undirected graph. The second assumption concerns the way in which
the entities move: it can be either deterministic or randomized. In this
talk we survey recent results on deterministic rendezvous in networks.



Adversarial Models for Wireless Communication

(Abstract of Keynote Lecture)

Andrea Richa

Arizona State University, U.S.A.

Abstract. In this talk, we present some recent work on adversarial mod-
eling of wireless communication. We use an adaptive adversary to model
the hard to predict physical interference, as well as other disruption
in communication caused by temporary obstacles, mobility, background
noise, co-existing networks, jammers, etc.

In particular, we focus on adversarial models for jamming. We present
simple, local-control medium access control (MAC) protocols for wireless
networks that are provably robust against adaptive adversarial jamming.
Our protocols are orthogonal to physical layer protocols that rely on a
broad spectrum, and can be used in conjunction with those or in net-
works where a broad spectrum is not available (e.g., sensor networks).
We present a summary of our work in this area, going from single-hop
wireless networks to multihop wireless networks modeled under SINR
(signal-to-noise ratio model), and from more standard adaptive adver-
sarial models for the jammer(s) to a more realistic adversarial model
where, in addition to knowing the protocol and its entire history, the
jammer also has some knowledge about the action of the nodes at the
current time step. Our protocols are energy efficient, and require only
very limited amount of knowledge about the jammer and the network.
We also present simulation results that further validate our theoretical
bounds.

We also address other recent work by the theoretical community on
applications of adversarial modeling in wireless computing that focus on
different paradigms (e.g., broadcasting, etc.).

The work on adversarial modeling of wireless jamming is joint work with Christian

Scheideler (U. of Paderborn, Germany), Stefan Schmid (TU Berlin Telekom Labs),

Jin Zhang (Google), Adrian Ogierman (U. of Paderborn) and Baruch Awerbuch (John

Hopkins University).



Labeling Schemes with Forbidden-Sets

(Abstract of Invited Talk)

Cyril Gavoille

Université of Bordeaux, France

Abstract. The goal of labeling schemes is to understand how much
information must be attached to the nodes of a network (formalized as
labels) to solve a graph problem assuming the answer can be determined
solely on the basis of the labels of the nodes invoked in the query. In
this talk, I give a short survey on an extension of labeling schemes that
can answer graph problems where some of the nodes may be turn off (or
forbidden).



Distributed Computation in Directed

and Dynamic Networks
(Abstract of Invited Talk)

Fabian Kuhn University of Freiburg, Germany

Abstract. We consider simple distributed data aggregation and infor-
mation dissemination problems such as computing the minimum or the
sum of a bunch of values or broadcasting multiple messages to all nodes in
a network. In standard, undirected networks, these tasks are well studied
and can be solved by simple distributed algorithms in time proportional
to the diameter of the network. In my talk, I will discuss the complexity
of such fundamental problems in networks with unidirectional links and
in networks with dynamic topology. We will see that in absence of stable,
bidirectional links, also the most basic distributed computation and in-
formation dissemination tasks become challenging, leading to a number
of fascinating new research questions.
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Distributed Community Detection

in Dynamic Graphs�

(Extended Abstract)

Andrea Clementi1, Miriam Di Ianni1, Giorgio Gambosi1, Emanuele Natale1,
and Riccardo Silvestri2

1 Università Tor Vergata di Roma
{clementi,diianni,gambosi}@mat.uniroma2.it, emanatale@gmail.com

2 Sapienza Università di Roma
silvestri@di.uniroma1.it

Abstract. Inspired by the increasing interest in self-organizing social
opportunistic networks, we investigate the problem of distributed detec-
tion of unknown communities in dynamic random graphs. As a formal
framework, we consider the dynamic version of the well-studied Planted
Bisection Model dyn-G(n, p, q) where the node set [n] of the network
is partitioned into two unknown communities and, at every time step,
each possible edge (u, v) is active with probability p if both nodes be-
long to the same community, while it is active with probability q (with
q << p) otherwise. We also consider a time-Markovian generalization of
this model.

We propose a distributed protocol based on the popular Label Prop-
agation Algorithm and prove that, when the ratio p/q is larger than nb

(for an arbitrarily small constant b > 0), the protocol finds the right
“planted” partition in O(log n) time even when the snapshots of the dy-
namic graph are sparse and disconnected (i.e. in the case p = Θ(1/n)).

Keywords: Distributed Computing, Dynamic Graphs, Social Oppor-
tunistic Networks.

1 Introduction

Community detection in complex networks has recently attracted wide atten-
tion in several research areas such as social networks, communication networks,
biological systems [14]. Understanding the community structure of a complex
network is a challenging crucial issue in several applications (good surveys on
this topic can be found in [2,12,20]). A modern application scenario (the one
this paper is inspired from) is that of Opportunistic Networks where recent
studies show that social-aware protocols provides efficient solutions for basic
communication tasks [5].

� Partially supported by Italian MIUR under the PRIN 2010-11 Project ARS
TechnoMedia.

T. Moscibroda and A.A. Rescigno (Eds.): SIROCCO 2013, LNCS 8179, pp. 1–12, 2013.
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The static Planted Bisection Model [3,4,13] (or Stochastic Blockmodel, as it
is known in the statistics community [15]) is a popular framework to formalize
the problem of detecting communities in random graphs.

The (Static) Planted Bisection Model: Centralized Algorithms. The
(static) Planted Bisection Model is defined as a static random graph G(n, p, q)
(with p, q ∈ (0, 1) such that q << p) where the node subset [n] = {1, 2, . . . , n}
is partitioned into two equal-sized unknown communities V1 and V2 and each
possible edge (u, v) is included with probability p if u and v both belong to the
same community while it is included with probability q otherwise1. The goal
here is to identify the unknown partition.

In [13] and, successively, in [10,19], some efficient centralized algorithms have
been presented for the above problem. Such algorithms are based on centralized,
expensive procedures such as simulated annealing and spectral-graph computa-
tions: all of them require the full knowledge of the graph adjacency matrix and,
moreover, they work on static graphs only.

Community Detection in Opportunistic Networks. Recent studies in op-
portunistic networks focus on the impact of the agent social behavior on
some basic communication tasks such as routing and broadcasting [5]. Recently,
this issue has been investigated in an emerging class of opportunistic networks
called Intermittently-Connected Mobile Networks (ICMNs) [23]: such networks
are characterized by wireless links, representing opportunities for exchanging
data, that sporadically appear among network nodes (usually mobile radio de-
vices). So-called social-aware communication protocols rely on the reasonable
intuition that, since mobile devices are carried by people who tend to form com-
munities, members (i.e. nodes) of the same community are used to communicate
with each other much more often than nodes from different communities. Ex-
periments on real-data sets have widely shown that identifying communities can
strongly help in improving the protocol performances [5]. It thus follows that
community detection in ICMNs is a crucial issue.

As observed above, several centralized community-detection methods have
been proposed in the literature that may result useful for offline data analysis
of mobile traces. However, it is a common belief that next-future technologies
will yield a dramatic growth of self-organizing ICMNs where the network proto-
cols work without relying on any centralized server. In this new communication
paradigm, it is required that community detection is performed in a fully dis-
tributed way. To this aim, in this paper we consider an algorithmic solution to
community detection in ICMNs that relies on the epidemic mechanism known
as Label Propagation Algorithms [18,21].

The Dynamic Planted Bisection Model. In order to capture the high dy-
namicity of ICMNs, we consider the natural dynamic version of the G(n, p, q)
model. A dynamic graph is a probabilistic process that describes a graph whose
topology changes with time: so it can be represented by a sequence G = {Gt =

1 Observe that when p = q the random graph model is the well-known Erdös-Rényi
model.
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([n], Et) : t ∈ N} of graphs with the same set V = [n] of nodes, where Gt is the
snapshot of the dynamic graph at time step t.

The dynamic version of the Planted BisectionModel, denoted as dyn-G(n, p, q),
consists of a dynamic graph where n is the number of nodes while p = p(n) and
q = q(n) are the edge-probability functions. At every time step t, each edge (u, v)
is included in Et with probability p if both u and v belong to the same commu-
nity Vi (i = 1, 2) while it is included with probability q otherwise (this model can
also be seen as a non-homogeneous version of the dynamic Erdös–Rényi graph
model [5]). So, the dynamic state (on/off) of an edge over the time is a random
variable having Bernoully distribution with parameter p or q, respectively. Of
course, relevant simplifications have been assumed in this model. However, in [6],
experimental validations have shown that some real ICMNs exhibit some crucial
connectivity properties (such as hop-diameter) which are well-approximated by
sparse dynamic Erdös–Rényi graphs.

A strong simplifying assumption in the dynamic Erdös–Rényi graph model is
time independence: the graph topology at time t is fully independent from the
topology at time t − 1. Edge Markovian Evolving Graphs (in short edge-MEG)
were first introduced in [7] as a generalization of the dynamic Erdös–Rényi graph
model that captures the strong dependence between the existence of an edge at
a given time step and its existence at the previous time step. An edge-MEG is
a dynamic random graph G(n, p↑, p↓, E0) = {Gt = ([n], Et) : t ∈ N} defined
as follows. Starting from an initial random edge set E0, at every time step,
every edge changes its state (existing or not) according to a two-state Markovian
process with probabilities p↑ and p↓. If an edge exists at time t, then, at time
t + 1, it disappears with probability p↓. If instead the edge does not exist at
time t, then it will come up at time t+ 1 with probability p↑. We observe that
the setting p↓ = 1 − p↑ yields a sequence of independent Erdös–Rényi random
graphs, i.e., dynamic Erdös–Rényi graphs, with edge probability p = p↑. Edge-
MEGs have been adopted as concrete models for several real dynamic networks
such as faulty networks [8], peer-to-peer systems [22], mobile ad-hoc networks
[22]. Furthermore, Edge-MEGs have been considered by Whitbeck et al [23] as
a concrete model for analyzing the performance of epidemic routing on sparse
ICMNs. In this paper, we consider the Edge-MEG as a mathematical model
for ICMNs. The dynamic Planted Bisection Model can be easily generalized
in order to include edge-MEGs: here, we have two edge-probability parameter
pairs (p↑, p↓) and (q↑, q↓) between two nodes u and v depending on whether they
both belong to the same community or not. So, if both u and v belongs to the
same community then the edge (u, v) is governed by the 2-state Markov chain
with parameters (p↑, p↓) otherwise the edge is governed by the 2-state Markov
chain with parameter (q↑, q↓). We assume that q↑ << p↑ and, according to the
parameter tuning performed in [23], it turns out that the best fitting to real
scenarios is achieved by setting p↓, (and q↓) as absolute constants.

The algorithmic goal in the dyn-G(n, p, q) model is to design a fully-distributed
protocol that computes a good (node) labeling for the dynamic graph G: we say
that a function Z : V → {1, 2} is a good labeling for G if Z labels each community
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with a different label: ∀i, k ∈ {1, 2} ∀u ∈ Vi ∀v ∈ Vk : Z(u) = Z(v) ↔ i = k.
Nodes are entities that share a global clock and know (a good approximation
of) the number n of nodes but it is not required they have distinct IDs. Initially,
each node does not know anything about communities while, at every time step,
it can exchange information with its current neighbors.

In [16], some greedy protocols are tested on specific sets of real mobility-trace
datas. By running such protocols, every node constructs and updates its own
community-list according to the length and the rate of the contacts observed so
far by itself and by the nodes it meets. So, the protocol exploits the intuition
that communities are formed by nodes that use to meet each other often and
for a long time. However, no analytical result is given for such heuristics that,
moreover, require nodes to often update and transmit relatively large lists of
node-IDs.

Label Propagation Algorithms. A well-studied community-detection strat-
egy is the one known as Label Propagation Algorithms (LPA) [21]. This strategy
is based on a simple epidemic mechanism which can be efficiently implemented
in a fully-distributed fashion since it requires easy local computations: it is thus
very suitable for opportunistic networks such as ICMNs. In its basic version,
some distinct labels are initially assigned to a subset of nodes; at every step,
each node updates its label (if any) by choosing the label which most of its (cur-
rent) neighbors have (the majority label); if there are multiple majority labels,
one label is randomly chosen. Several versions of LPA-based protocols have been
tested on a wide range of social networks [11,18,21]: such works experimentally
show that LPA-based protocols work quite efficiently and are effective in provid-
ing almost good labeling. Based on extensive simulations, [21] empirically shows
that the average convergence time of the (synchronous) LPA-based protocols is
bounded by some logarithmic function on n. Clearly, the goal of the protocol is
to converge to a good labeling for dyn-G(n, p, q). Despite the simplicity of LPA-
based protocols, very few analytical results are known on their performance over
relevant classes of graphs. As observed in [17], it seems hard to derive, from
empirical results, any fundamental conclusions about LPA behavior, even on
specific families of graphs. Recently, [11] provided a semi-synchronous version of
the LPA-based protocol and formally prove that it guarantees finite convergence
time on any static graph. In [17], an LPA-based protocol has been analyzed on
the Planted Partition Model for highly-dense topologies. In particular, their anal-
ysis considers the static model G(n, p, q) with p = Ω(1/n1/4−ε) and q = O(p2).
In this restricted static case, it is shown that the protocol converges in con-
stant expected time and conjectured a logarithmic bound for sparse topologies.
In general, providing analytical bounds on the convergence time of LPA-based
protocols over relevant classes of networks is an important open question that
has been proposed in several papers arising from different areas [11,17,21].

Our Algorithmic Contribution. We provide an efficient distributed LPA-
based protocol on the dynamic Planted Bisection Model dyn-G(n, p, q) with ar-
bitrary p > 0 and q = O(p/nb) where b > 0 is any arbitrarily small constant.
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Our protocol yields with high probability2 (in short w.h.p.) a good labeling in

O
(
max{logn, logn

pn }
)
time. The bound is tight for any p = O(1/n) while it is

only a logarithmic factor larger than the optimum for the rest of the parameter
range (i.e. for more dense topologies). For the first time, we thus formally prove a
logarithmic bound on the convergence time of an LPA-based protocol on a class
of sparse and disconnected dynamic random graphs (i.e. for p = Θ(1/n)). The lo-
cal labeling rule adopted by the protocol is simple and requires no node IDs: the
only exchanged informations are the labels. Our protocol can be easily adapted
in order to construct a good labeling in the presence of a larger number of equal-
sized communities (provided that this number is an absolute constant) and, more
importantly, it also works for the Edge-MEG model G(n, p↑, p↓, q↑, q↓, E0) in the
parameter range q↑ = O(p↑/n

b), where b is any positive constant. In the lat-

ter model, the completion time is w.h.p. bounded by O
(
M ·max

{
logn, logn

p↑n

})
where M is a bound on the mixing time of the two 2-state Markov chains gov-
erning the edges of the dynamic graph. It is known that (see for example [7])

M = O

(
max

{
1

p↑ + p↓
,

1

q↑ + q↓
, logn

})

Observe that, when p↓ and q↓ are some arbitrary positive constants and p↑ =
Ω(1/n) (this case includes the “realistic” range derived in [23]), then M =
O(log n) and the bound on the completion time becomes O(log2 n). This bound
is only a logarithmic factor larger than the optimal labeling time in the case of
sparse topologies, i.e., when p↑ = Θ(1/n). We run our protocol over hundreds of
random instances according to the dyn-G(n, p, q) model with n varying from 103

to 106. Besides a good validation of our asymptotical analysis, the experiments
show further positive features of the protocol. Our protocol is indeed tolerant to
non-homogeneous edge-probability functions. In particular, the protocol almost-
always returns a good labeling in Bernoullian graphs where the edge probability
is not uniform, i.e., for each pair (u, v) of nodes in the same community, the
parameter pu,v is suitably chosen in order to yield irregular sparse graphs. A
detailed description of the experimental results together with all technical proofs
can be found in the full version of the paper [9]

2 The Protocol and Its Analysis

In this extended abstract, we consider the dynamic graph dyn-G(n, p, q) under
the following restrictions: the parameter p is known by every node; there are only
2 communities V1 and V2, each of size n/2 (n is an even number); the labeling
process starts with (exactly) two source nodes, s1 ∈ V1 that is labeled by z1 and
s2 ∈ V2 that is labeled by z2 with z1 �= z2. The parameters p and q belong to
the following ranges

1

n
� p � d log n

n
and q = O

( p

nb

)
, for some constants d > 0 and b > 0. (1)

2 As usual, we say an event holds with high probability if it holds with probability at
least 1− 1

nΘ(1) .
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Such restricions make the description easier, thus allowing us to focus on the
main ideas of our protocol and of its analysis. In the full version [9], we show
how to obtain the general result stated in the Introduction.

The protocol relies on the simple and natural properties of LPA. Starting from
two source nodes (one in each community), each one having a different label, the
protocol performs a label spreading by adopting a simple labeling/broadcasting
rule (for instance, every node gets the label it sees most frequently in its neigh-
bors). Since links between nodes of the same community are much more frequent
than the other ones, we can argue that the good-labeling will be faster than the
bad-labeling (in each community, the good labeling is the one from the source of
the community while the bad labeling is the one coming from the other source).

However, providing a rigorous analysis of the above process requires to cope
with some non-trivial probabilistic issues that have not been considered in the
analysis of information spreading in dynamic graphs made in previous papers
[1,7,8]. Let us consider any local labeling rule that depends on the label config-
uration of the (dynamic) neighborhood of the node only. At a given time step,
there is a subset Ic ⊆ [n] of labeled nodes and we need to evaluate the probabil-
ities Pg (Pb) that a non-labeled node gets a good (bad) label in the next step.
After an initial phase, there is a non-negligible probability that some nodes will
get the bad label. Then, such nodes will start a spreading of the bad label-
ing at the same rate of the good one. Observe also that good-labeled nodes may
(wrongly) change their state as well, so, differently from a standard single-source
broadcast, the epidemic process is not monotone with respect to good-labeling.

It turns out that the probabilities Pg and Pb strongly depend on the label-
balance between the sizes of the subsets of well-labeled nodes and of the badly-
labeled ones in the two communities. Keeping a tight balance between such values
during all the process is the main technical goal of the protocol. In arbitrary label
configurations over sparse graph snapshots, getting “high-probability” bounds
on the rate of new (well/badly) labeled nodes is a non-trivial issue: indeed,
it is not hard to show that, given any two nodes v, w ∈ [n] \ Ic, the events
“v will be (well/badly-)labeled” and “w will be (well/badly-)labeled” are not
independent. As we will see, such issues are already present in this “restricted”
case. A first important step of our approach is to describe the combination
between the labeling process and the dynamic graph as a finite-state Markovian
process. Then, we perform a step-by-step analysis, focusing on the probability
that the Markovian Process visits a sequence of states having “good-balance”
properties.

Our protocol applies local rules depending on the current node’s neighborhood
and on the current time step only. The protocol execution over the dynamic
graph can be represented by the following Markovian Process : for any time

step t, we denote as
(
k
(t)
1 , k

(t)
2 , h

(t)
1 , h

(t)
2 ;Et

)
the state reached by the Markovian

Process where k
(t)
i denotes the number of nodes in the i-th community labeled by

label zi at time step t and h
(t)
i denotes the number of nodes in the i-th community

labeled by label zj at time step t, for i, j = 1, 2 and j �= i. In particular, the
Markovian Process works as follows
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. . . →
(
k
(t)
1 , k

(t)
2 , h

(t)
1 , h

(t)
2 ;Et

)
dyn-G(n, p, q)−→

(
k
(t)
1 , k

(t)
2 , h

(t)
1 , h

(t)
2 ;Et+1

)
protocol−→

protocol−→
(
k
(t+1)
1 , k

(t+1)
2 , h

(t+1)
1 , h

(t+1)
2 ;Et+1

)
dyn-G(n, p, q)−→ . . .

The main advantage of this description is the following: observe the process in
any fixed state and consider the set of nodes U still having no label. Then it is not
hard to verify that, in the next time step, the events {“node v gets a good/bad
label”, v ∈ U}, are mutually independent. This will allow us to prove strong-
concentration bounds on the label-balance discussed above for a sufficiently-long
sequence of states visited by the Markovian Process, thus getting a large fraction
of well-labeled nodes in each community within a short time; this corresponds
to a first protocol stage called fast spreading of the good labels.

Unfortunately, this independence property does not hold among labeled nodes
of the same community, let’s see why in the next simple scenario. Assume that
the rule is the majority one, consider two nodes u and v having the same label
z at time t, and assume the event E = “node u will keep label z at time t+ 1”
holds. Then the event “(u, v) ∈ Et | E” is more likely and, thus, according to the
majority rule, the event “v gets label z | E” is more likely as well. This clearly
shows a key-depencence in the label spreading.

In order to overcome this issue, our protocol allows every node to change
its first label-updating rule only after a spreading stage of suitable length (we
will see later this stage is in fact formed by 3 consecutive phases): we can thus
analyze the spreading of the good labeling (only) on the current set of unlabeled
nodes (where stochastic independence holds) and prove that the process reaches
a state with a large number of well-labeled nodes. After this spreading stage,
labeled nodes (have to) start to update their labels according to some simple rule
that will be discussed later. In the full version [9], we prove this saturation phase
has logarithmic convergence time by providing a simple and efficient method to
cope with the above discussed stochastic dependence.

2.1 A Restricted Setting: Formal Description

The protocol works in 5 consecutive temporal phases: the goal of this phase parti-
tion is to control the rate of new labeled nodes as function of the expected values

reached by the random variables (r.v.s) k
(t)
i , h

(t)
i (at the end of each phase). In-

deed, when such expected values reach some specific thresholds, the protocol
and/or its analysis must change accordingly in order to keep the label configura-
tion well-balanced in the two communities during all the process and to manage
the stochastic depencence described above.

At any time step t, we denote, for each node v ∈ Vi, the number of zi-labeled
neighbors of v as Nv

i (t), for i = 1, 2. Given a node v ∈ V , the set of its neighbors
at time t will be denoted as Γt(v). For the sake of brevity, whenever possible we
will omit the parameter t in the above variables and, in the proofs, we will only
analyze the labeling in V1, the analysis for V2 being the same.
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Stage I: Spreading
Phase 1: Source Labeling. The phase runs for τ1 = c1 logn time steps, where
c1 > 0 is an explicit constant that will be fixed later. In this phase, only the
neighbors of the sources will decide their label. The goal is to reach a state such
that w.h.p. ki = Θ(log n) and hi = 0 (i = 1, 2). For any non-source node v, the
labeling rule is the following.

– Let i ∈ {1, 2}; v gets label zi if there is a time step t ≤ τ1 such that si ∈ Γt(v)
and, for j �= i and for all t such that 1 � t � τ1, it holds that sj /∈ Γt(v);

– In all other cases, v remains unlabeled.

At the end of this phase, it is possibile to prove that a node gets the good label
with probability Θ(pτ1) and, w.h.p., no node will get the bad label. From this
fact, we can prove the following

Theorem 1. Let d1 > 0 be any (sufficiently large) constant. Then, a constant
c1 > 0 can be fixed so that, at time step τ1 = c1 logn the Markovian Process
w.h.p. reaches a state such that

k
(τ1)
1 , k

(τ1)
2 ∈
[
d1
16
pn logn, 4d1pn logn

]
and h

(τ1)
1 , h

(τ1)
2 = 0 (2)

Phase 2: Fast Labeling I. This phase of the Protocol aims to get an exponential
rate of the good-labeling inside every community in order to reach, in τ2 =
O(log n) steps, a state such that the number of well-labeled nodes is bounded
by some root of n and the number of badly-labeled ones is still 0. Differently
from Phase 1, unlabeled nodes can get a label at every time step according to
the following rule: for τ1 < t ≤ τ1 + τ2, at time step t of Phase 2 every unlabeled
node v

– gets label z1 at time t+ 1 iff Nv
1 (t) > 0 and Nv

2 (t) = 0,
– gets label z2 at time t+ 1 iff Nv

2 (t) > 0 and Nv
1 (t) = 0,

– remains unlabeled at time t+ 1 otherwise.

In the next theorem, we assume that, at time step τ1 (i.e. at the end of Phase
1), the Markovian Process reaches a state satisfying Cond. (2). In particular, we
assume that kτ1i � d1

16pn logn. Thanks to Theorem 1, this event holds w.h.p. In
what follows, we will make use of the following function

F (n, k) = 2max

{√
log n

k
,
polylogn

n1−a

}

At the end of Phase 2, we can prove the Process w.h.p. satisfies the following
properties.

Theorem 2. For any η > 0, constants a and φ can be fixed so that, at the final
step of Phase 2

τ2 =
1

log
(
1 +

(np
2

)) log

(
na

φ log3 n

)
+ log−1

[(
1 +

np

2

)(
1− F (n, k

(τ1)
1 )

)]
log

(
log3 n

k
(τ1)
1

)

+ τ1,
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it holds w.h.p. that

for i = 1, 2, na � k
(τ2)
i � na logη n, and h

(τ2)
i = 0. (3)

Phase 3: Fast Labeling II. In this phase nodes apply the same rule of Phase
2 but we need to separate the analysis from the previous one since, when the
“well-labeled” subset gets size larger than some root of n, we cannot anymore
exploit the fact that the bad labeling is w.h.p. not started yet (i.e. h = 0).
However, we will show that when the well-labeled sets get size Θ(n/polylogn),
the bad-labeled sets have still size bounded by some root of n. We assume that,
at the end of Phase 2, the Markovian Process reaches a state satysfying Cond.
(3) of Theorem 2.

Theorem 3. For any constant η > 0, constants a1 < 1 and γ > 0 can be fixed
so that at the final time step of Phase 3

τ3 =
1

log
(
1 +
(
np
2

)) log( n1−a

γ log3 n

)
+ τ2

for i = 1, 2, it holds w.h.p. that

n

log3 n
� k(τ3)i � n

log3−η n
and h

(τ3)
i � na1 (4)

Theorems 2 and 3 guarantee a very tight range for the r.v. k1 and k2 at the final
step of Phase 2 and 3, respectively. This tight balance is crucial for removing
the hypothesis on the existence of the two leaders (see [9]).

Stage II: Saturation
Phase 4: Controlled Saturation. At the end of Phase 3, the Markovian Process
w.h.p. reaches a state that satisfies the properties stated in Theorem 3. The goal
of Phase 4 is to obtain a (large) constant fraction α (say, α = 3/4) of the nodes
of each community that get the good label and, at the same time, to ensure
that the number of bad-labeled nodes is still bounded by some root of n. We
cannot guarantee this goal by applying the same labeling rule of the previous
phase: the number of bad-labeled nodes would increase too fast. The protocol
thus performs a much “weaker” labeling rule that is enough for the good labeling
while keeping the final number of bad-labeled nodes bounded by some root of n.
The fourth phase consists of three consecutive identical time-windows during
which every (labeled or not) node v ∈ V applies the following simple rule:

Time Window of Phase 4.
For any t ∈ [1, T4 = c4 logn], v looks at the labels of its neighbors at time t and:

– If v sees only one label (say, z) for all the window time steps, then v gets
label z;

– In all the other cases (either v sees more labels or v does not see any label),
v either keeps its label (if any) or it remains unlabeled.
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Remark. Observe that, departing from the previous phases, we now need to ana-
lyze the label-spreading of the above rule over nodes having previously-assigned
labels. This rises the stochastic dependence described earlier in this section. In
order to solve this issue, we first observe that if the graph has random oriented
edges, then the r.v.s describing the label of every node become mutually in-
dependent. In order to make our graph oriented, the nodes thus run a simple
procedure at the very beginning of every step. This procedure simulates a virtual
dyn-G(n, p, q) where the edges inside each community V are generated according
to a directed Gn/2,p̃ model, where p̃ = 1 −

√
1− p. Moreover, the procedure

makes the resulting probability of the edges between communities still bounded
by O(q): it thus preserves the polynomial gap between p and q. The detailed
description of the procedure and its properties are available in [9]

The Protocol-Window of Phase 4 is repeated 3 times for a specific setting of
the constant c4 that will be determined in (the proof of) Theorem 4. Thanks to
Theorem 3, we can assume that the Markovian Process w.h.p. terminates Phase
3 reaching a state that satisfies Eq. (4) and show the following

Theorem 4. Let α be any constant such that 0 < α < 1. Then, constants c4
and a1 < 1 can be fixed so that, at time step τ4 = τ3 + 3T4, the Markovian
Process w.h.p reaches a state such that, for i = 1, 2,

kτ4i � αn , and hτ4i � na1 polylogn. (5)

Phase 5: Majority Rule. Theorem 4 states that, at the end of Phase 4, the Marko-
vian Process w.h.p. reaches a state where a (large) constant fraction of the nodes
(say, 3/4) in both communities is well-labeled while only O(na1polylogn) nodes
are bad-labeled. We now show that a further final phase, where nodes apply a
simple majority rule, yields the good labeling, w.h.p.. Remind that every node
also applies the “orienting-edge” Procedure discussed in the previous phase. Ev-
ery node v ∈ V applies the following labeling rule:

– For every t ∈ [1, T5 = c5 logn], every node v observes the labels of its
neighbors at time t and, for every label zi (i = 1, 2), v computes the number
f ti of its neighbors labeled with zi.

– Then, node v gets label z1 if
∑

t∈[1,...,τ5]
f t1 >
∑

t∈[1,...,τ5]
f t2, otherwise v gets

label z2 (break ties arbitrarily).

Let us assume the Markovian Process starts Phase 5 from a state satisfying Eq.
(5) (say with constant α = 3/4).

Theorem 5. A constant c5 > 0 can be fixed so that, at time τ5 = τ4 + c5 logn,
every node of each community is well-labeled, w.h.p.

2.2 Overall Completion Time of the Protocol and Its Optimality

When p and q satisfy Cond. (1), we have shown that every phase has length
O(log n): the Protocol has thus an overall completion time O(log n). In the full
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version of the paper [9], we will show that for p = o(1/n) the length of each phase

must be stretched to Θ
(

logn
pn

)
. It is easy to verify that, if p = O(1/n), starting

from the initial random snapshot, there is a non-negligible probability that some
node will be isolated for τ(n) time steps where τ(n) is any increasing function

such that τ = o
(

logn
pn

)
: this implies that, in the above range, our protocol has

optimal completion time.

3 Conclusions

This paper introduces a framework that allows an analytical study of the dis-
tributed community-detection problem in dynamic graphs. Then, it shows an
efficient algorithmic solution in two classes of such graphs that model some fea-
tures of opportunistic networks such as ICMNs. We believe that the problem de-
serves to be studied in other classes of dynamic graphs that may capture further
relevant features of social opportunistic networks such as geometric constraints.
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cient protocol simulation over large random graphs.
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Abstract. In this paper, we study the T -interval-connected dynamic
graphs from the point of view of the time necessary and sufficient for
their exploration by a mobile entity (agent). A dynamic graph (more
precisely, an evolving graph) is T -interval-connected (T ≥ 1) if, for every
window of T consecutive time steps, there exists a connected spanning
subgraph that is stable (always present) during this period. This property
of connection stability over time was introduced by Kuhn, Lynch and
Oshman [6] (STOC 2010). We focus on the case when the underlying
graph is a ring of size n, and we show that the worst-case time complexity
for the exploration problem is 2n − T − Θ(1) time units if the agent
knows the dynamics of the graph, and n+ n

max{1,T−1} (δ−1)±Θ(δ) time
units otherwise, where δ is the maximum time between two successive
appearances of an edge.

Keywords: Exploration, Dynamic graphs, Mobile agent, T-interval-
connectivity.

1 Introduction

Partly due to the very important increase of the number of communicating ob-
jects that we observe today, the distributed computing systems are becoming
more and more dynamic. The computational models for static networks are
clearly not sufficient anymore to capture the behavior of these new communi-
cation networks. In fact, even the computational models that take into account
a certain degree of fault tolerance become insufficient for some very dynamic
networks. Indeed, the classical models of fault tolerance either assume that the
frequency of fault occurrences is small, which gives enough time to the algorithm
to adapt to the changes, or that the system stabilizes after a certain amount of
time (as in the self-stabilizing systems for example). Therefore, in the last decade
or so, many more or less equivalent models have been developed that take into
account the extreme dynamism of some communication networks. An interested
reader will find in [1] a very complete overview of the different models and studies
of dynamic graphs (see also [7]).
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One of the first developed models, and also one of the most standard, is
the model of evolving graphs [3]. To simplify, given a static graph G, called
the underlying graph, an evolving graph based on G is a (possibly infinite)
sequence of spanning but not necessarily connected subgraphs of G (see Section 2
for precise definitions). This model is particularly well adapted for modeling
dynamic synchronous networks.

In all its generality, the model of evolving graphs allows to consider an ex-
tremely varied set of dynamic networks. Therefore, to obtain interesting results,
it is often required to make assumptions that reduce the possibilities of dynamic
graphs generated by the model. One example is the assumption of connectivity
over time, which states that there is a journey (path over time) from any vertex
to any other vertex. Another example is the assumption of constant connectiv-
ity, for which the graph must be connected at all times. This latter assumption,
which is very usual, has been recently generalized in a paper by Kuhn, Lynch and
Oshman [6] by the notion of T -interval-connectivity. Roughly speaking, given an
integer T ≥ 1, a dynamic graph is T -interval-connected if, for any window of
T consecutive time steps, there exists a connected spanning subgraph which is
stable throughout the period. (The notion of constant connectivity is thus equiv-
alent to the notion of 1-interval-connectivity). This new notion, which captures
the connection stability over time, allows the finding of interesting results: the
T -interval-connectivity allows to reduce by a factor of about Θ(T ) the number
of messages that is necessary and sufficient to perform a complete exchange of
information between all the vertices [2,6] (gossip problem).

In this paper, we carry on the study of these T -interval-connected dynamic
graphs by considering the problem of exploration. A mobile entity (called agent),
moving from node to node along the edges of a dynamic graph, must tra-
verse/visit each of its vertices at least once (the traversal of an edge takes one
time unit). This fundamental problem in distributed computing by mobile agents
has been widely studied in static graphs since the seminal paper by Claude
Shannon [8]. As far as highly dynamic graphs are concerned, only the case of
periodically-varying graphs has been studied [4,5]. We focus here on the (worst-
case) time complexity of this problem, namely the number of time units used by
the agent to solve the problem in the T -interval-connected dynamic graphs. The
problem of exploration, in addition to its theoretical interests, can be applied
for instance to the network maintenance, where a mobile agent has to control
the proper functioning of each vertex of the graph.

We consider the problem in two scenarios. In the first one, the agent knows
entirely and exactly the dynamic graph it has to explore. This situation cor-
responds to predictable dynamic networks such as transportation networks for
example. In the second scenario, the agent does not know the dynamics of the
graph, that is the times of appearance and disappearance of the edges. This case
typically corresponds to networks whose changes are related to frequent and
unpredictable failures. In this second scenario, Kuhn, Lynch and Oshman [6]
noted that the exploration problem is impossible to solve under the single as-
sumption of 1-interval-connectivity. In fact, it is quite easy to convince oneself
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that by adding the assumption that each edge of the underlying graph must
appear infinitely often, the exploration problem becomes possible, but the time
complexity remains unbounded. In this article, and only for the second scenario,
we therefore add the assumption of δ-recurrence, for some integer δ ≥ 1: each
edge of the underlying graph appears at least once every δ time units.

It turns out that the problem of exploration is much more complex in dynamic
graphs than in static graphs. Indeed, let us consider for example the first sce-
nario (known dynamic graph). The worst-case exploration time of n-node static
graphs is clearly in Θ(n) (worst case 2n − 3). On the other hand, the worst-
case exploration time of n-node (1-interval-connected) dynamic graphs remains
largely unknown. No lower bound better than the static bound is known, while
the best known upper bound is quadratic, and directly follows from the fact that
the temporal diameter of these graphs is bounded by n. Therefore, we focus here
on the study of T -interval-connected dynamic graphs whose underlying graph is
a ring. Note that, in this particular case, the T -interval-connectivity property,
for T ≥ 1, implies that at most one edge can be absent at a given time.

Our results. We determine in this paper the exact time complexity of the ex-
ploration problem for the n-node T -interval-connected dynamic graphs based on
the ring, when the agent knows the dynamics of the graph. This is essentially
2n−T − 1 time units (see Section 3 for details). When the agent does not know
the dynamics of the graph, we add the assumption of δ-recurrence, and we show
that the complexity increases to n + n

max{1,T−1} (δ − 1) ± Θ(δ) time units (see

Section 4 for details).

2 Model and Definitions

This section gives the precise definitions of the concepts and models informally
mentioned in the introduction. Some definitions are similar or even identical to
the definitions given in [6].

Definition 1 (Dynamic graph). A dynamic graph is a pair G = (V, E), where
V is a static set of n vertices, and E is a function which maps to every integer
i ≥ 0 a set E(i) of undirected edges on V .

Definition 2 (Underlying graph). Given a dynamic graph G = (V, E), the
static graph G = (V,

⋃∞
i=0 E(i)) is called the underlying graph of G. Conversely,

the dynamic graph G is said to be based on the static graph G.

In this article, we consider the dynamic graphs based on the n-node ring,
denoted Cn.

Definition 3 (T -interval-connectivity). A dynamic graph G = (V, E) is T -
interval-connected, for an integer T ≥ 1, if for every integer i ≥ 0, the static
graph G[i,i+T [ = (V,

⋂i+T−1
j=i E(j)) is connected.



16 D. Ilcinkas and A.M. Wade

Definition 4 (δ-recurrence). A dynamic graph is δ-recurrent if every edge of
the underlying graph is present at least once every δ time steps.

A mobile entity, called agent, operates on these dynamic graphs. The agent
can traverse at most one edge per time unit. It may also stay at the current node
(typically to wait for an incident edge to appear). We say that an agent explores
the dynamic graph if and only if it visits all the nodes.

3 The Agent Knows the Dynamics of the Graph

In this section, we assume that the agent perfectly knows the dynamic graph to
be explored.

3.1 Upper Bound

The following theorem shows that the worst-case exploration time is actually
small, bounded by 2n, when the underlying graph is a ring. Furthermore, it
shows that the agent can benefit from the T -interval-connectivity to spare an
additive term T . Note that our upper bound is constructive.

Before proceeding with the formal theorem and its proof, let us informally
describe the key ingredients of the proof of the most general case.

We consider two algorithms, being the algorithms always going in the clock-
wise, resp. counter-clockwise, direction, traversing edges as soon as the dynamic
graph allows it. At the beginning of the process, the agents try to traverse dis-
tinct edges and thus, at each time step, at least one of them progresses. During
this phase, the average speed of the two agents is thus 1/2 (edge traversals per
time unit). However, when the agents are about to meet each other (thus after
time at most n), their progression can be stopped by the absence of a unique
edge e.

If this edge e is absent for at least n−1 time steps, then any agent has enough
time to change its direction and to explore all the nodes of the graph in the other
direction, hence completing exploration within 2n steps.

If the edge e does not stay absent long enough and reappears at time t, we
modify the two algorithms as follows. The agent previously progressing in the
clockwise, resp. counter-clockwise, direction, starts now by exploring the ring
in the opposite direction, before going back in the usual direction the latest
possible so that it reaches the edge e at time at most t. At time t, the two
modified algorithms cross each other, and then continue their progression in
their usual direction until one of them terminates the exploration. Note that,
after time t, we have again the property that, at each time step, at least one
agent progresses.

Globally, except during the period when e is absent, the average speed of the
two agents is 1/2. Besides, the modification of the algorithms allows each of
the agent to explore an additional part of the ring. Unfortunately, these parts
of the ring are traversed twice instead of once. Nevertheless, intuitively, the
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speed of both the modified agents is 1 during the period when e is absent. This
compensates the loss induced by traversing twice some parts of the ring. Overall,
the average speed is thus globally of at least 1/2, which implies that at least one
of the two modified agents performs exploration within time 2n.

When the dynamic graph is T -interval connected, all edges must be present
during T − 1 steps between the removal of two different edges. This fact is used
to gain an additive term of T − 1 on the exploration time, yielding to a time of
roughly 2n−T . A much more precise analysis of the modified algorithms allows
us to obtain the exact claimed bounds.

Theorem 1. For every integers n ≥ 3 and T ≥ 1, and for every T -interval-
connected dynamic graph based on Cn, there exists an agent (algorithm) exploring
this dynamic graph in time at most⎧⎪⎨

⎪⎩
2n− 3 if T = 1

2n− T − 1 if 2 ≤ T < (n+ 1)/2⌊ 3(n−1)
2

⌋
if T ≥ (n+ 1)/2

Proof. Fix n ≥ 3 and an arbitrary dynamic graph based on the ring Cn. Let
v0, v1, · · · , vn−1 be the vertices of Cn in clockwise order. Assume that the agent
starts exploration from v0 at time 0. In order to prove this theorem, we will
describe various algorithms, and we will show that at least one of them will
allow the agent to perform exploration within the claimed time bound. Let T
be this bound.

First assume that at most one edge e is absent during the time interval [0, T ).
Then, an agent going to the closest extremity of e and then changing direction
will explore all nodes of the ring in time at most 3(n − 1)/2 ≤ T . So let us
assume from now on that at least two different edges are absent at least once
each during the time interval [0, T ).

Before proceeding with the rest of the proof, we introduce the following nota-
tions. Given a time interval I and two algorithms A and B, let dIA be the number
of edge traversals performed by agent A during the time interval I, let αIA, resp.
αIA,B, be the number of time steps in I for which agent A, resp. both agents A
and B, do(es) not move. Note that it never helps to wait at a node when all
its incident edges are present. Hence, without loss of generality, an agent always
stays at a node because of the absence of an incident edge. Finally, let βI be the
number of time steps in I for which no edges are absent.

Let us now consider two simple algorithms. L, respectively R, is the algorithm
always going in the clockwise, resp. counter-clockwise, direction, traversing edges
as soon as the dynamic graph allows it. Now consider the sum of the number
of edges traversed by each of the two algorithms until some time t. Since only
one edge can be absent at a given time, this sum increases by at least one (and
obviously by at most two) at each time step, until this sum is larger or equal
to n − 1. So let e be the unique unexplored edge when this sum reaches n − 1.
If the sum jumps directly from n − 2 to n, then fix e to be any of the last two
unexplored edges. In both cases, let t1 be the first time one of the two agents
reaches one extremity of e. We consider two cases.
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Case 1. The edge e is absent during the whole interval [t1, t1 + n− 1).
In this case, the first agent to reach an extremity of e, at time t1, goes
back in the opposite direction and explores the ring in n− 1 further steps.
This gives an exploration time of at most t1+n−1. Let I1 = [0, t1). We have

t1 =

{
dI1L + αI1L (1)

dI1R + αI1R (2)
and, since L and R are always trying to traverse distinct edges during I1 and
at most one edge may be removed at any time, we also have
αI1L + αI1R + βI1 ≤ t1 (3)

Besides, we have dI1L + dI1R ≤ n− 1 (4)
and since there are at least two removed different edges during the whole
interval [0, t1 + n− 1), we have
βI1 ≥ T − 1 (5)
(1)+(2)+(3)+(4)+(5) → t1 + n− 1 ≤ 2n− T − 1.

For T = 1, this bound is one unit larger than the claimed bound. If the
inequality (4) is in fact strict, then the correct bound is obtained. Otherwise,
it means that at time t1 − 1, both agents were free to move. This implies
that either βI1 ≥ 1 or that the inequality (3) is strict. In both cases, this
also gives the correct bound.

Case 2. The edge e is not absent during the whole interval [t1, t1 + n− 1).
Then let t2 be the smallest time t ≥ t1 such that the edge e is present at
time t. We define two new algorithms, one of which will explore the dynamic
graph within T .
Let L′ be the algorithm that is equal to L until some time t, at which L′

goes back in the other direction forever. More precisely, L′ is the algorithm
for which t is the largest possible value such that L′ arrives at the extremity
of e at time at most t2. Similarly, let R′ be the algorithm that is equal to
R until some time t, at which R′ goes back in the other direction forever.
More precisely, R′ is the algorithm for which t is the largest possible value
such that R′ arrives at the extremity of e at time at most t2. Let Texp be
the exploration time of the first between L′ and G′ exploring the dynamic
graph.

In order to analyze the algorithms L′ and R′, we introduce two other algo-
rithms. Let L′′, respectively R′′ be the algorithm defined as L′, resp. R′, but
turning back exactly one time unit later than L′, resp. R′.

Let I1 = [0, t1), I2 = [t1, t2), I1,2 = [0, t2), I3 = [t2, Texp), and I = [0, Texp).
On I1, we have
t1 ≥ αI1L′′ + α

I1
R′′ − αI1L′′,R′′ + βI1 (1)

t1 ≥ αI1L + αI1R + αI1L′′,R′′ + βI1 (2)
As in the first case, we have

t1 =

{
dI1L + αI1L (3)

dI1R + αI1R (4)

(1)+(2)+(3)+(4) → αI1L′′ + α
I1
R′′ + 2βI1 ≤ dI1L + dI1R (5)

On I1,2, we have
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t1+t2 =

{
d
I1,2
L′′ + α

I1,2
L′′ (6)

d
I1,2
R′′ + α

I1,2
R′′ (7)

Note that, by definition of L′′ and R′′

d
I1,2
L′′ ≤ dI1,2L′ + 1 (8)

d
I1,2
R′′ ≤ dI1,2R′ + 1 (9)

(6)+(7)+(8)+(9) → 2(t1 + t2) ≤ dI1,2L′ + d
I1,2
R′ + α

I1,2
L′ + α

I1,2
R′ + 2 (10)

Note that on I2 L
′′ and R′′ are not blocked because the edge e is absent

during this interval. Hence

α
I1,2
L′′ = αI1L′′ (11)

α
I1,2
R′′ = αI1R′′ (12)

(5)+(10)+(11)+(12)→ 2(t1 + t2) + 2βI1 ≤ dI1L + dI1R + d
I1,2
L + d

I1,2
R + 2 (13)

On I3, we have
Texp − (t1 + t2) ≥ αI3L′ + α

I3
R′ + βI3 (14)

and
Texp − (t1 + t2) = d

I3
L′ + α

I3
L′ (15)

Texp − (t1 + t2) = d
I3
R′ + α

I3
R′ (16)

(14)+(15)+(16) → Texp − (t1 + t2) + β
I3 ≤ dI3L′ + d

I3
R′ (17)

(17)+ 1
2 (13) → Texp + βI1 + βI3 ≤ 1

2 (d
I1
L + dI1R + d

I1,2
L′ + d

I1,2
R′ ) + dI3L′ + d

I3
R′ +1

(18)
Note that βI1 + βI3 = βI

Let x, resp. y, be the number of edges traversed by L′, resp. R′, before turn-
ing back. Then

d
I1,2
R′ = 2x+ dI1L (19)

d
I1,2
L′ = 2y + dI1R (20)

dI3R′ = d
I1
L − x (21)

dI3L′ = d
I1
R − x (22)

dI1L + dI1R ≤ n− 1 (23)
and since there are at least two removed different edges during the interval
βI ≥ T − 1 (24)
Finally, we get the sought result
(18)+(19)+(20)+(21)+(22)+(23)+(24)→ Texp ≤ 2n− T − 1.
One can again argue similarly as in the first case to gain one time unit in
the case T = 1, which concludes the proof. �

3.2 Lower Bound

We now prove that the precise bound given in Section 3.1 is actually the exact
worst-case time complexity of the exploration problem.

Theorem 2. For every integers n ≥ 3 and T ≥ 1, there exists a T -interval-
connected dynamic graph based on Cn such that any agent (algorithm) needs at
least



20 D. Ilcinkas and A.M. Wade

⎧⎪⎨
⎪⎩
2n− 3 if T = 1

2n− T − 1 if 2 ≤ T < (n+ 1)/2⌊ 3(n−1)
2

⌋
if T ≥ (n+ 1)/2

time units to explore it.

Proof. For any integers n ≥ 3, and 2 ≤ T ≤ �(n+ 1)/2�, we define a T -interval-
connected dynamic graph Gn,T based on Cn. Let v0, v1, · · · , vn−1 be the vertices
of Cn in clockwise order. Assume that the exploration starts from v0 at time 0.
In Gn,T , the edge {v0, v1}, respectively {vT−1, vT }, is absent in the time interval
[0, n− 2T + 1), respectively [n− T, 2n). Note that this dynamic graph is indeed
T -interval-connected.

Consider any agent (algorithm). We will now prove that the time it uses to
explore Gn,T is at least 2n− T − 1. Since the agent must explore all vertices, it
must in particular explore both vT−1 and vT . We consider two cases.

Case 1. vT−1 is explored before vT .
To visit vT−1 without going through vT , the agent must traverse the edge
{v0, v1}. By construction, this edge is absent until time n−2T+1. Moreover,
the length of the path between v0 and vT−1 without going through vT is T−1.
Thus the agent needs at least n − T time units to reach vT−1 for the first
time. Since the edge {vT−1, vT } is absent in the time interval [n−T, 2n), the
fastest way of reaching vT is to traverse the whole ring through v0, inducing
n − 1 additional time units. So in this first case, the agent needs at least
2n− T − 1 time units to explore Gn,T .

Case 2. vT is explored before vT−1.
To visit vT without going through vT−1, the agent must use the path v0,
vn−1, up to vT , which is of length n − T . When at node vT , and since the
edge {vT−1, vT } is absent in the time interval [n − T, 2n), the fastest way
of reaching vT−1 is to traverse the whole ring through v0, inducing n − 1
additional time units. Thus also in the second case, the agent needs at least
2n− T − 1 time units to explore Gn,T .

This proves the theorem for values of T in [2, �(n + 1)/2�]. In fact, this also
proves the theorem for T = 1 because Gn,2 is obviously also 1-interval-connected,
and the claimed bound is the same for T = 1 and T = 2. Besides, note that
only one edge is ever removed in Gn,�(n+1)/2	. This dynamic graph is therefore
1-interval-connected for any T , and thus the theorem is also proved for values
of T larger than (n+ 1)/2. �

4 The Agent Does Not Know the Dynamics of the Graph

In this section, we assume that the agent does not know the dynamics of the
graph, i.e., it does not know the times of appearance and disappearance of the
edges. As explained in the introduction, we assume here the δ-recurrence prop-
erty, for a given δ ≥ 1, in order for the problem to be solvable in bounded
time.
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4.1 Upper Bound

We first prove that there exists a very simple algorithm that is able to explore
all the δ-recurrent T -interval-connected dynamic graphs based on the ring. This
algorithm consists in moving as much and as soon as possible in a fixed arbitrary
direction, see Algorithm 1.

Algorithm 1. Stubborn-Traversal(dir)

Input: a direction dir

for each time step do
if the edge in the dir direction is present then

traverse it
else

wait
end if

end for

Theorem 3. For every integers n ≥ 3, T ≥ 1 and δ ≥ 1, and for any di-
rection dir, Algorithm Stubborn-Traversal(dir) explores any δ-recurrent
T -interval-connected dynamic graph based on Cn in time at most

n− 1 +

⌈
n− 1

max{1, T − 1}

⌉
(δ − 1).

Proof. Fix an arbitrary direction dir and let us analyze the algorithmStubborn-

Traversal(dir). Note first that it will complete exploration after traversing ex-
actly n − 1 edges. To bound its exploration time, it thus remains to bound the
number of time steps when the agent cannot move.

Since the dynamic graph is δ-recurrent, an edge cannot be absent for more
than δ − 1 consecutive time steps. Furthermore, since the dynamic graph is
T -interval-connected, two time steps in which two different edges are absent
must be separated by at least T − 1 time steps in which all edges are present.
Therefore, the agent can traverse at least max{1, T − 1} edges between two
consecutive blocks at different nodes. To summarize, the agent can be blocked

at most
⌈

n−1
max{1,T−1}

⌉
times during at most δ − 1 time steps.

Putting everything together, the agent will perform edge traversals for n− 1

time steps and will wait for at most
⌈

n−1
max{1,T−1}

⌉
(δ− 1) time steps, which gives

the claimed bound. �

4.2 Lower Bound

It turns out that the simple and natural Algorithm 1, described and analyzed in
Section 4.1, is almost optimal, up to an additive term proportional to δ.
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Theorem 4. For every integers n ≥ 3, T ≥ 1, and δ ≥ 1, and for every agent
(algorithm), there exists a δ-recurrent T -interval-connected dynamic graph based
on Cn such that this agent needs at least

n− 1 +

⌊
n− 3

max{1, T − 1}

⌋
(δ − 1)

time units to explore it.
This result holds even if the agent knows n, T and δ.

Proof. Let n ≥ 3, T ≥ 1, and δ ≥ 1. Fix an arbitrary agent (algorithm) A.
We construct as follows the δ-recurrent T -interval-connected dynamic graph
Gn,T,δ(A) based on Cn that this agent will fail to explore in less than the claimed
bound.

Let v0, v1, · · · , vn−1 be the vertices of Cn in clockwise order. Assume that the
agent starts exploration from v0 at time 0. For any integer 1 ≤ i ≤ n − 1, if
the node vi is explored by going from v0 in the counter-clockwise direction, then
node vi is denoted vi−n. Finally, let T̃ = max{1, T − 1}.

In the dynamic graph Gn,T,δ(A), only the edges {vT̃+1, vT̃+2}, {v2T̃+1, v2T̃+2},
and so on, and {v0, v−1}, {v−T̃ , v−T̃−1}, {v−2T̃ , v−2T̃−1}, and so on, may be
absent. The actual times of appearance and disappearance of these edges depend
on the algorithm A. For any integer i ≥ 0, each time the agent arrives at node
v−iT̃ in the counter-clockwise direction, the edge {v−iT̃ , v−iT̃−1} is removed until
either the δ-recurrence forces the edge to reappear or the agent leaves the node
v−iT̃ to go on v−iT̃+1. Similarly, for any integer i ≥ 1, each time the agent arrives
at node viT̃+1 in the clockwise direction, the edge {viT̃+1, viT̃+2} is removed
until either the δ-recurrence forces the edge to reappear or the agent leaves the
node viT̃+1 to go on viT̃ . Note that between two time steps with two different
absent edges, there are at least T − 1 time steps for which no edges are absent.
The dynamic graph is therefore T -interval-connected. It is also δ-recurrent by
construction.

By definition of the dynamics of the graph, the agent needs to wait δ− 1 time
units to go from v−iT̃ to v−iT̃−1, for i ≥ 0, or to go from viT̃+1 to viT̃+2, for i ≥ 1.

To explore all the vertices, the agent needs to perform at least
⌊

n−3
max{1,T−1}

⌋
such

traversals. The waiting time of the agent is thus at least
⌊

n−3
max{1,T−1}

⌋
(δ − 1).

Since the agent needs also at least n− 1 time units to traverse enough edges so
that all vertices are explored, we obtain the claimed bound. �

5 Conclusion

We studied in this paper the problem of exploration of the T -interval-connected
dynamic graphs based on the ring in two scenarios, when the agent is specific
to the dynamic graph, and when the agent does not know the dynamics of the
graph. The next objective is obviously to extend these results to larger families
of underlying graphs. Unfortunately, this problem is much more difficult than it
seems: proving that any dynamic graph based on a tree of cycles (a cactus) can
be explored in time O(n) is already a challenging open problem.
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A Characterization of Dynamic Networks

Where Consensus Is Solvable

Étienne Coulouma� and Emmanuel Godard

LIF, Université Aix-Marseille and CNRS

Abstract. We consider the Consensus problem in arbitrary dynamic
networks. A dynamic network is a communication network whose topol-
ogy evolves from round to round. We make no assumptions on the
possible topologies. We give the first complete necessary and sufficient
condition for dynamic networks where it is possible to solve Consensus.

We show that we can complement the necessary condition for solvabil-
ity of Consensus given, in the context of omission faults, in [GP11] in the
context of dynamic networks. We prove that this condition is actually
sufficient by presenting a new Consensus algorithm. This algorithm is
based upon reconstructing a partial, but significant, view of the actual
communications that occurred during the execution.

1 Introduction

Designing algorithms for static networks is an area that has been studied with
numerous approach (distributed / centralized, online / offline, ...). This is one
of the main themes of distributed computing. Designing algorithms for dynamic
networks, where the network structure can be modified during the computation
is less understood. Numerous research projects exist about systems where the
origin of the dynamicity is from faults (consequences being deleting or adding
nodes or edges to the network). Indeed, fault-tolerance is probably one of the
main endeavors in distributed computing. However, faults are in general of lim-
ited scope, in limited number and, above all, are considered as anomalies with
respect to the normal and correct behavior of the system. So, here we consider
systems that are never stable, where the number of changes is not bounded
and changes are continuously occurring, where these changes are not considered
anomalies but are an integral part of the system at hand. Such highly dynamic
systems do exist, and they are actually quite common, and they are becoming
pervasive.

We consider communication networks in which the topology can evolve from
round to round. A specific link can dynamically disappear and then appear
again after an unpredictable number of rounds, and it can continue to alternate
between being present and absent in an unpredictable way. This model is more
general than other models, such as component failure models, whose evolutions,
once they appear somewhere, are located there permanently. Interestingly, we
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will show, using the notion of communication events, that this model is also
closely related to a failure model that was introduced in [SW89], and was called
the mobile faults or dynamic faults model. This synchronous presentation of the
communications has also been shown to be good for layered analysis [MR02].

An important property of the systems we are studying here is that the set
of possible simultaneous communication is the same for each round. In some
sense, the system has no “memory” of the previous evolutions. Real systems
often exhibit such memory-less behaviour. Moreover, we do not restrict ourselves
to network with complete connectivity as it is usually done. In this paper we
consider the most general case of such systems, i.e. systems in which the set of
possible simultaneous communications is arbitrary. This allows the modelling of
any system in which communication can happen intermittently, in any arbitrary
pattern, including systems in which the communications are not symmetric.

We investigate the Consensus problem in these networks. While it has long
been known that solvability of the Broadcast problem implies solvability of the
Consensus problem, we show here the precise relationship between those two.
In [GP11], an impossibility proof for Consensus was presented in the context of
omission faults. In this paper, we show that the necessary condition for solvability
of Consensus of [GP11] is actually sufficient by presenting a new Consensus
algorithm. Theorem 4.7 is the first complete characterization of solvability of
Consensus in dynamic networks with arbitrary set of possible topologies.

The Consensus and Broadcast Problems. The Consensus problem is a
very well studied problem in the area of Distributed Algorithms. It is defined as
follows. Each node of the network starts with an initial value, and all nodes of the
network have to agree on a common value, which is one of the initial values. Many
versions of the problem concern the design of algorithms for systems that are
unreliable. Two of the most widely studied patterns of information propagation
in communication networks are broadcasting and gossiping. A broadcast is the
distribution of an initial value from one node of a network to every other node
of the network. A gossip is a simultaneous broadcast from every node of the
network. The Broadcast problem that we study in this paper is to find a node
from which a broadcast can be successfully completed.

Our Contribution. In this paper, we investigate dynamic networks where
the topology evolves arbitrarily from round to round and nodes do not know
their neighbours at a given instant [KLO10]. The topology of the network at a
given instant is called a communication event. We give a necessary and sufficient
condition about the dynamic networks with given set of possible communication
events for which Consensus is solvable. In [GP11], the necessary condition was
given in the context of omissions faults. Here we show that the technique extends
to dynamic behaviours as communication events capture the right notion of
communication common to both models and we prove the reciprocal. Having
the full characterization is important from a theoretical point of view, but this
is also very interesting as both sides illustrate the problem at hand. Furthermore,
we give a more constructive presentation of our tools, especially the relation β
(to be defined later), see Definition 5.1.
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A node from which it is possible to broadcast if the system is restricted to a
given communication event is called a source for the communication event. We
define an equivalence relation β on the communication events that is based on the
collective local observations of the events by the sources. The characterization is
as follows: it is possible to solve Consensus if and only if for all C equivalence class
of β, there is a node that can broadcast when only events from C can occur. It is
very simple to characterize Broadcastability (see Theorem 4.3), so we get very
simple and efficient conditions about solving Consensus on dynamic networks or
systems with omissions faults.

Related Work. Our model of intermittent communications can be considered
as a very general model of communication networks. In this paper, it corresponds
to dynamic networks where the sending primitive is a broadcast to neighbours
as introduced in [KLO10]. In [KLO10, KMO11], the network has a T−interval
connectivity which is a stronger requirement than in our study since it implies
that all nodes are sources for every communication event; it means that Consen-
sus is obviously solvable and therefore a variant of Consensus, the Coordinated
Consensus is studied in [KMO11]. A survey of dynamic networks with general
behaviour has been done in [CFQS12].

The Consensus problem has been widely studied in the context of shared
memory systems and message passing systems in which any node can commu-
nicate with any other node. Surprisingly, there have been few studies in the
context of communication networks, where the communication graph is not a
complete graph. In one of the first such studies [SW07] (after [SW89]), the Con-
sensus and related Agreement problems are investigated for networks in which
there are at most f omissions during any given round. It is proved that it is
impossible to solve Consensus if f is at least the minimum degree of the graph.
A Consensus algorithm is presented for the case where f is strictly smaller than
the connectivity of the network. In [FG11, GP11], these results are generalized,
showing that exact limits for Consensus can be derived from exact limits for
Broadcast. In particular when the number of omissions is bounded (in any way)
the Consensus problem is exactly the Broadcast problem. In [SWK09], Schmid
et al investigate Consensus for communication networks with locally bounded
number of faulty links. Following this work, in [BRS12], some necessary condi-
tions and some sufficient conditions are given for solving Consensus in dynamic
networks with unidirectional links.

In [CBS09], Charron-Bost and Schiper present a model that can describe be-
nign faults. This model is called the “Heard-Of” model. It is a round-based model
for an omission-prone environment in which the set of possible communication
events is not necessarily the same for each round.

2 Definitions and Notations for Dynamic Networks

We model a communication network by a digraph G = (V,E) which does not
have to be symmetric. We always assume that nodes have unique identities. This
digraph G will be fixed throughout this paper. This is the underlying graph.
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2.1 Dynamic Networks

In this section, we introduce our model and the associated notation. Communi-
cation in our model is reliable, and is performed in rounds, but with changing
topology from round to round. Communication with a given topology is de-
scribed by a spanning subgraph G of G. Intuitively, if an arc is missing in G,
then, the (unidirectionnal) link has disappeared. The precise semantics are de-
fined more formally in Section 2.3.

We define the set Σ = {(V,E′) | E′ ⊆ E}. This set represents all possible
simultaneous communications given the underlying graph G. For ease of notation,
we will always identify a spanning subgraph in Σ with its set of arcs.

Definition 2.1. An element of Σ is called a communication event (or event
for short). A communication scenario ( or scenario for short) is an infinite
sequence of communication events. A dynamic network with support G is a set
of communication events.

A natural way to describe communications is to consider Σ to be an alphabet,
with communication events as letters of the alphabet, and scenarios as infinite
words. We will use standard concatenation notation when describing sequences.
If σ and σ′ are two sequences, with σ a finite sequence, then σσ′ is the sequence
that starts with the ordered sequence of events σ followed by the ordered se-
quence of events σ′. Given an event H , and k ∈ N, Hk is the finite sequence
constituted of k consecutive H . We denote ε the empty sequence.

We describe a dynamic network with G ⊆ Σ. Given G we denote by ρ(G) the
set of infinite sequences of elements of G. The set of finite sequences is denoted
by ρf (G). These sequences describe exactly all the possible evolutions for the
dynamic network.

2.2 Examples of Dynamic Networks

We present examples for systems with two processes but they can be easily
extended to any arbitrary graph. The set Σ = {◦�•, ◦←•, ◦→•, ◦ •} is the set
of directed graphs with two nodes ◦ and •. Note that these schemes can also be
interpeted as systems with intermittent omission faults.

Example 2.2. The dynamic network {◦�•} corresponds to a static system. The
dynamic network O1 = {◦�•, ◦←•, ◦→•} is well understood and corresponds to
the situation in which there is at least one unidirectional link in each round.

Example 2.3. The dynamic network H = {◦←•, ◦→•} describes a system in
which at most one message can be successfully received in any round, since the
networks is possibly alternating around a unidirectional link.

2.3 Execution of a Distributed Algorithm

Given a dynamic network G, we define what is an execution of a given algorithm
A with a given initial configuration ι. Every process can execute the following
communication primitives [KLO10]:
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– send(msg) to send the same message msg to all out-neighbours,
– recv() to get the messages from all in-neighbours.

An execution, or run, of algorithm A subject to scenario σ ∈ ρ(G) is the
following. Consider process u and one of its out-neighbours v in G. During round
r ∈ N, a message msg is sent from u to all its neighbours according to the
instructions in algorithm A. The node v will receive the corresponding message
msg only if H , the r-th element of σ, is such that (u, v) ∈ H . All messages sent
in a round can only be received in the same round. After sending and receiving
messages, all processes update their states according to A and the messages they
received. Given all nodes have unique identities, when a message is received, it is
known from which neighbour it is received. A configuration corresponds to the
set of local states at the end of a given round.

Given w ∈ ρf (G), and an initial configuration ι, let sxι (w) denote the state
of process x at the end of the |w|-th round of algorithm A subject to scenario
w, with initial configuration ι. The initial state of x is therefore ι(x) = sxι (ε).
When ι is clear from the context, we might omit it and note simply sx(w). An
execution of A subject to scenario σ ∈ ρ(G) is the (possibly infinite) sequence
of such message exchanges and corresponding configurations.

Definition 2.4. An algorithm A solves a problem P in G if, for any scenario
σ ∈ ρ(G), for any initial configuation ι, there exists a finite prefix w of σ such
that the state sxι (w) of each process x ∈ V satisfies the specifications of P for
initial configuration ι. In such a case, P is said to be solvable on G.

3 The Problems

3.1 The Binary Consensus Problem

A set of synchronous processes wishes to agree about a binary value. This prob-
lem was first identified and formalized by Pease, Shostak and Lamport [PSL80].
Given a set of processes, a consensus protocol must satisfy the following prop-
erties for any combination of initial values [Lyn96]:
Termination : every process decides some value;
Validity : if all processes have the same initial value v, then every process

decides v;
Agreement : if a process decides v, then every process decides v.

Consensus with these termination and decision requirements is more precisely
referred to as Uniform Consensus (see [Ray02] for a discussion). Given a network
environment, the natural questions are: is Consensus solvable, and if it is solvable,
what is the minimum number of rounds to solve it? In this paper, we describe
exactly for which dynamic networks G Consensus is solvable on G.

3.2 The Broadcast Problem

The Broadcast problem for u ∈ V on scheme G is to find a distributed algorithm
A such that any value stored in u is successfully transmitted to all nodes of G
in all scenarios of ρ(G).
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By extension, we say that Broadcast is solvable onG, if the Broadcast problem
for some u ∈ V is solvable on G. If Broadcast is solvable on G, we also say G is
broadcastable. The next proposition is from folklore but leads to very interesting
questions. If a node u can broadcast in any execution then, it can be used to solve
Consensus since the initial value of u can always be used as a correct decision
value for all nodes.

Proposition 3.1. Let G be a dynamic network. If G is broadcastable, then
Consensus is solvable on G.

However the converse proposition is not necessarily true. Example 2.3 is a
case where it is not possible to broadcast (because if you want to broadcast
from ◦, then ◦←• can occur as the only event, and symmetrically if you want to
broadcast from • then ◦→• can occur) but where Consensus is solvable. Indeed,
the following is a Consensus algorithm. Each node sends its initial value. If
a value is received, then this value is decided. Otherwise, the initial value is
decided. From this remark, it shall be noted that, in general dynamic networks,
the Consensus and Broadcast problems are not equivalent.

4 Broadcastability

4.1 Characterizations of Broadcastability with Arbitrary Dynamic
Networks

We start with a basic definition and lemma.

Definition 4.1. Given a dynamic network G, consider a digraph G in G and
a node u ∈ V . A node v ∈ V is reachable from u in G if there is a directed path
from u to v in G. Node u is a source for G if every v ∈ V is reachable from u
in G. The set of sources of G is denoted S(G).
Definition 4.2. Consider the dynamic network G = {G1, . . . , Gq}. It is said to
be source-incompatible if

⋂
1≤i≤q

S(Gi) = ∅.

If one event has no source then the dynamic network is source-incompatible.

Theorem 4.3 ([GP11]). Let G be a dynamic network. Then G is broadcastable
if and only if G is not source-incompatible.

4.2 Towards a Converse Reduction

We considerG a given dynamic network. We define now a precise relations about
indistinguishability. Given an equivalence relation γ on G, we denote [G]γ the
equivalence class of G ∈ G. Such a set is called a γ-class.

Let G be a digraph. Given a subset X of vertices, we denote InX(G) =
{(v, u) ∈ G | u ∈ X}.
Definition 4.4. Given three digraphs G,H,K ∈ G,we define the following re-
lation denoted by GαKH if InS(K)(G) = InS(K)(H). The relation α∗ is the
transitive closure of αK relations for any K ∈ G.
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The relation αK describes how some communication events are indistinguish-
able to all the nodes of S(K). The relation α∗ is the transitive closure of such
indistinguishability.

Definition 4.5. We denote β the coarsest equivalence relation included in α∗

such that for all graphs G,H
(Closure Property) GβH =⇒ ∃H0, . . . , Hq and K1, . . . ,Kq such that

(i) G = H0, H = Hq,
(ii) ∀i ≥ 1, HiβG,KiβG,
(iii) ∀i ≥ 1, Hi−1αKiHi.

The relation β is well defined as the equality relation satisfies such a closure
property. And for any two relations R1 and R2 that satisfy the property, we have
that the transitive closure of R1 ∪R2 that satisfies the Closure property. It can
be constructed incrementally, see section 5.1. The relation β is expressing, as
will be shown later, the maximal indistinguishability for events from G. A key
point is that, in β, indistinguishability is within the equivalence classes, contrary
to α∗ where property (ii) of the closure property is not satisfied.

Example 4.6. In O1 from Example 2.2, there is only one equivalence class. Let’s
see why. First, the sets of sources to consider are: S(◦←•) = {•}; S(◦→•) = {◦};
S(◦�•) = {◦, •}. We have In{◦}(◦←•) = In{◦}(◦�•). Hence ◦←• α◦→• ◦�•.
Similarly, ◦→• α◦←• ◦�•. Therefore, there is only one α∗−class and all commu-
nication events are β-equivalent.

In Example 2.3, α∗, therefore β, has two singleton equivalence classes. Every
node can compute immediately which communication event happened.

Finally, we can now state the main theorem.

Theorem 4.7. Let G be a dynamic network. Consensus is solvable on G if and
only if all β-classes of G are broadcastable.

Note that this result can also be extended to dynamic networks where the
nodes can sense the presence or the absence of the links by changing the definition
of α to also take into account the outgoing arcs.

4.3 Proof of Necessary Condition

The proof of the necessary condition uses a bivalency approach that is similar
to the adjacency and continuity techniques of [SW07]. We show that even re-
stricting the graphs on which the properties apply, it is still possible to derive
the impossibility of Consensus. In some sense, we describe the minimal set of
subgraphs to which these properties need to apply. This proof can be found in
the updated version of [GP11, section 5].

5 An Algorithm for Solving Consensus

5.1 Notations and First Properties

We show here that when the β-classes are broadcastable, then the following
algorithm solves Consensus. The algorithm is presented as a full information
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protocol. Every node receives the value of the states of the neighbours, append
this to its local state and then re-transmits its entire state to all neighbours. This
generates messages of exponential size. As it is long known, see eg [FHMV95,
chap 6, Section 6.6.2], it is possible to encode everything in messages of polyno-
mial size. However we keep the full information protocol presentation for simplic-
ity, as we are here mainly interested in the computability aspect of the problem.

The specific part of a full information protocol is to describe the halting
criterion and the computation of the decided value. The algorithm uses the
following technique. The number of rounds is known a priori by a (huge) upper
bound on the number of necessary rounds. To each β-class C, we associate sC ,
one of the common sources for this class. To get the decided value, we will
compute (select) a common β-class C on all node and use the initial value of
sC as decision value. Hence, the crucial part is to compute the β-classes of the
events that occurred during the computation and select the first one that occurs
sufficiently often (to be formally precised later). The reader should be aware
that it is not always possible to compute (even with some delay) the β-classes of
all the previous events. However, as will be shown, it is possible to do it for the
α∗−classes. From these α∗−classes, we will construct a refinement in such a way
that some relevant β-classes can actually be computed and in such a way that
it is possible to select the same β-class on each node. We define the following
equivalence relations βi by refinement, starting with β0 = α∗.

Definition 5.1. Let i ≥ 0, let G,H ∈ G. We say that Gβi+1H if GβiH and
∃G0, . . . , Gs ∈ [G]βi , and ∃K1, . . . ,Ks ∈ [G]βi such that
– G0 = G,Gs = H,
– ∀j,Gj−1αKjGj .

Because they are defined by refining the previous relation, a βi+1−class is
always included in some βi−class. Looking at the structure that is induced from
the set inclusion relation we get a sub-lattice of the boolean lattice where the
α∗−classes are at the top and the β-classes are at the bottom. We present now the
following lemmas to explain the structure of this “lattice of indistinguishability”.
This will be used to compute which received initial value should be decided.
These relations are also an equivalent way to define the β relation.

Lemma 5.2. There exists p such that βp = β.

Proof. The number of possible refinements is finite (the number of events is
indeed finite). Therefore there is p ∈ N such that βp = βp+1. By construction
the relation βp satisfies the Closure Property of Def. 4.5 and is maximal. Hence
it is exactly the relation β. �

Given two set of arcs F and G, we define the partial order relation � by
F � G if F ⊆ G and for all (v, u) ∈ F , for all (w, u) ∈ G, we have (w, u) ∈ F .

Given a set F of arcs, we define Comp(F ) = {G ∈ G | F � G}. If F is a
set of radius 1 balls, this can be interpreted as the set of events that are “com-
patible” with F . And now given two digraphs G and K, we set CompK(G) =
Comp(InS(K)(G)). It is the set of events that are “compatible” with event G,
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when this event is seen from the sources of K. Or equivalently, it is the set of
events that are indistinguishable from G for the set of sources of K.

Lemma 5.3. For all events G,K ∈ G, CompK(G) ⊆ [G]α∗ .

Proof. Consider H ∈ CompK(G) = Comp(InS(K)(G)). We have InS(K)(G) �
InS(K)(H), so ∀u ∈ S(K), Inu(H) = Inu(G) by definition. This yields exactly
GαKH . �

Lemma 5.4. Let G,K ∈ G, i ∈ N such that GβiK. Then CompK(G) ⊆
[G]βi+1 .

Proof. Consider again H ∈ Comp(InS(K)(G)). As in the proof above, we have
exactly GαKH . Since GβiK, by definition of βi+1, we get Gβi+1H . �

From Lemma 5.2, we get in particular

Proposition 5.5. Let G,K ∈ G, i ∈ N such that GβK. Then CompK(G) ⊆
[G]β.

5.2 A Generic Consensus Algorithm

The idea of the algorithm is the following. From the execution, starting from
α∗ = β0, we will select some βi−classes recursively. When a βi−class Ci has
been selected by the algorithm, we select a βi+1−class Ci+1 that is included in
Ci. The selection is based on the number of occurrences of events belonging to the
classes. By waiting long enough, it is possible to compute the βi−class of some
of the events. The Consensus Algorithm with some integer parameters is the
Algorithm 1. The selection function SelectClass is described in Algorithm 2.
We introduce the following notation. If Var is a variable of the algorithm then
Var

u
r is the value of this variable at node u and round r. Given a full information

history Hist value and a round r, it is possible to retrieve from Hist a set of arcs
(ie messages) that where transmitted in round r. We denote View[r] = {(v′, v) |
in Hist, at round r, v received a non null message from v′}.

We can now present the selection function SelectClass. The integer r is
the value of the current round. Some integers k0, . . . , kp are chosen (the correct
values will be given later). By convention, the minimum of the empty set is +∞.
The idea is to select recursively a βi−class by choosing always the class refined
from the selected βi−1−class to be the first to appear (as computed ) ki times.

5.3 Proof of Correctness of the Algorithm

We denote by D = 2× |G| × |V |. We now show that with kp = |V | the number
of vertices and ki = |G| × ki+1 + D, and rmax = |G| × k0 + D, we have the
Agreement Condition.

Consider a run with the sequence of events G1G2 · · ·Grmax . Note that View

[j] does not always give exactly the event that occurred at round j but we have
this important lemma.
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Algorithm 1. ConsensusAlgorithm(rmax, k0, . . . , kp)

Input: val ∈ {0, 1};
rmax, k0, . . . , kp ∈ N

1 Hist:= {val};
2 for r = 1 to rmax do
3 send (∗,Hist) (* broadcast to out-neighbours *);
4 Hist := Hist.{recv()};
5 for j = 1 to r do
6 compute View [j] from Hist;
7 for i = 0 to p do
8 (* Compute βi−classes if possible *);
9 if exists C a βi−class such that Comp(View[j]) ⊆ C then

10 Class [i][j] := C;
11 else
12 Class [i][j] := ⊥;

13 foreach node v do
14 compute Val [v] from the initial value of v in Hist, if it is in Hist

15 Decide: Val [sSelectClass(Class,k0···kp)];

Algorithm 2. Selection function SelectClass

Input: classes Class;
k0, · · · , kp ∈ N;

1 Selected[−1] = G;
2 for i = 0 to p do
3 foreach βi−class C ⊂ Selected[i− 1] do
4 Reach[C] := min{j ≤ r such that #{j′ ≤ j | Class[i][j′] = C } ≥ ki};
5 Selected[i] := the βi−class C with minimal Reach[C]

Output: Selected[p]

Lemma 5.6. Let j ∈ N. For all u ∈ V , ∃r0, ∀r, j < r < r0,Classur [i][j] = ⊥ and
∀r ≥ r0 Class

u
r [i][j] = [Gj ]βi .

Proof. Using the full information protocol, we have obviously View
u
r [j] � Gj for

all j ≤ r. So Gj ∈ Comp(Viewu
r [j]) and when the test at line 9 of the algorithm

is satisfied, then Comp(Viewu
r [j]) ⊆ Class

u
r [i][j] and the lemma follows. �

In the following lemma, we prove thatD is a kind of delay for the computations
of βi+1−classes from the βi−classes.

Lemma 5.7. Consider a βi−class C. Let r ∈ N, and let k = #{� ≤ r | G� ∈ C}.
Consider τ1 . . . , τk ∈ N the subsequence of indices (τj < τj+1 for all 1 ≤ j < k)
such that Gτj ∈ C for all 1 ≤ j ≤ k. For all u ∈ V , for all 1 ≤ j ≤ k − D,
Class

u
r [i+ 1][τj ] �= ⊥.
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Proof. We call C-round a round where an event in C occurs. From the pigeonhole
principle, there exists an eventK ∈ C that occurs at least 2×|V | times in the last
D C-rounds. Therefore, in the first |V | occurrences of these occurrences of K, all
information about the k − D first C-rounds was exchanged between sources of
K. So Comp(Viewv

r [j]) � CompK(Gj) for any source v of K. Therefore all these
sources are able to compute locally at least the βi+1−classes of these first r−D
C-rounds from Lemma 5.4. Then the remaining |V | occurrences of K broadcast
these computed values (more exactly the Hist sets to compute these values) to
every other node u. �

The same technique shows that everybody can compute the α∗− classes of
the first r −D rounds.

Proposition 5.8. There exists C0 a α∗−class such that for all u, Selected[0] =
C0.

Proof. From Lemma 5.3, we have that every node can compute the α∗− class
of the first k0 × |G| round. Again, by pigeonhole principle Selected

u[0] will be
defined for all node u. As the computed α∗−classes correspond to the actual
ones by Lemma 5.6, they are the same, Selectedu[0] will be the same class for
every node. �

We will extend this result to all i.

Proposition 5.9. For i ≤ p, there exists Ci a βi−class such that for all u,
Selected[i] = Ci.

Proof. The proof is done by induction. The case i = 0 is the proposition 5.8
above.

Suppose the assertion is true for i. Now we consider the class Ci. From the
selection criterion, there is a round r where this class has occurred ki times.
Consider r′ the round where Ci has occurred only ki −D times.

From Lemma 5.7, we have that every node can compute the βi+1−class of the
first ki+1× |G| Ci−round. Again, by pigeonhole principle Selectedu[i+1] will be
defined for all node u. As the computed βi+1−classes are the same, it will be the
same selected class for every node. The assertion for i+ 1 has been proved. �

Proposition 5.10. Algorithm 1 with constant rmax and k1, . . . , kp as defined
solves the Consensus problem on the dynamic network G.

Proof. Given the full information protocol is a for loop, Termination is obvious.
From the selection criterion and Prop. 5.9, Cp = Selected

u[p] is well defined
for all node u at time rmax and Cp appears at least kp = |V | times. Therefore
node sCp have been able to broadcast its initial value to every node. Hence the
decision value is defined and identical on every node. The Agreement Condition
is satisfied. Since the decided value is always the initial value of some node, the
Integrity Condition is also obviously satisfied by the algorithm. �
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The reader should note that it is possible to change the full information pro-
tocol from a for to a while loop by halting when SelectClass outputs a value.
Finally, we underline that the ki bounds are not optimal but were chosen to give
a simple proof. It is an open question to get optimal bounds or more generally,
to get an optimal Consensus algorithm.

References

[BRS12] Biely, M., Robinson, P., Schmid, U.: Agreement in directed dynamic net-
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Abstract. Given a network infrastructure (e.g., data-center or on-chip-
network) and a distribution on the source-destination requests, the ex-
pected path (route) length is an important measure for the performance,
efficiency and power consumption of the network. In this work we initiate
a study on self-adjusting networks: networks that use local-distributed
mechanisms to adjust the position of the nodes (e.g., virtual machines)
in the network to best fit the route requests distribution. Finding the
optimal placement of nodes is defined as the minimum expected path
length (MEPL) problem. This is a generalization of the minimum linear
arrangement (MLA) problem where the network infrastructure is a line
and the computation is done centrally. In contrast to previous work, we
study the distributed version and give efficient and simple approxima-
tion algorithms for interesting and practically relevant special cases of
the problem. In particular, we consider grid networks in which the distri-
bution of requests is a symmetric product distribution. In this setting, we
show that a simple greedy policy of position switching between neigh-
boring nodes to locally minimize an objective function, achieves good
approximation ratios. We are able to prove this result using the useful
notions of expected rank of the distribution and the expected distance
to the center of the graph.

1 Introduction

In the last decade we have witnessed two new major and related phenomena
in distributed computing. The first is the emerge of huge data centers and
warehouse-scale computers. The second phenomenon is the decentralization and
parallelism of workload in single multi-core computers. In both cases (but on dif-
ferent scale) the system is a network of computing primitives that share global
computational goals. In data centers networks, as well as in modern multipro-
cessor computers, multiple processes run in parallel to execute common tasks so,
in many cases, these processes need to communicate with each other to work on
their shared tasks.

Reducing energy waste, and in particular the power consumption of comput-
ing is one of the major challenges of the 21st century. Both data centers and
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single computers are no exception, and constantly increasing their energy and
power usage. For example, the total cost of power consumption of data centers
in the USA alone is estimated to be 50 billion dollars [1]. Moreover, the energy
consumed by data centers is estimated to double every five years [2]. The focus
of this work is to improve upon the energy that is consumed by routing in such
systems. It is estimated that in data centers the energy consumed by routing is
about 20%-30% of the total energy [3]. Routing in network-on-chip (NoC) con-
sumes even up to 50% of the total energy [4]. These numbers pose our community
both an opportunity and a challenge. The opportunity is to gain significant en-
ergy savings for these systems; the challenge is to design and implement clever
and simple algorithms that can improve routing efficiency.

Another common property of these systems is that they all operate in a fixed
network infrastructure. This means that we cannot change the structure of the
network by, for example, rewiring links. But instead, what we can do, is to
move the locations of processes (e.g., virtual machines) between the different
computers (or CPUs). In this paper, we formulate the problem of saving energy
on a fixed infrastructure network using migration of processes. The basic idea
is that the energy cost of routing in a network is proportional to the length of
the routes which suggests the following: If we can make the routes lengths (or
the expected route length) shorter, then we can save energy. We devise local and
distributed algorithms that (re-)place processes in the network to reduce the
expected path length. This can be achieved, for example, by Software Defined
Networking (SDN) [5] – the concept, which provides, among others, much better
control over the network functionality. In SDN, a software management platform
may support an abstraction for moving a selected process from one physical
machine to another. Recently, this approach became practical, when Google
announced [6] the implementation of OpenFlow [7] in its own backbone.

The problem of minimizing the total energy consumed by routing is dependent
on two major properties of the system: (i) the infrastructure (topology) of the
communication network and (ii) the statistical pattern of route requests between
sources and destinations. We first show that even in a very simple pattern such
as every node has an activity level and the probability to send or receive a
message is proportional to its level, the problem is NP-complete on general
network topologies. Secondly, even when the network is “simpler” or regular,
like a grid network, the problem can still be hard if the request distribution is
“complex” in some sense. With this in mind we turn to analyze approximation
algorithms for the setting where both the topology and the requests have nice
properties. Our routing and activity distributions are partially justified from
real data [8,9]. We concentrate on local and distributed algorithms, namely,
processes can be exchanged (i.e., relocated) only between nearby nodes without
any centralized coordination.

1.1 Overview of Our Results

First, we formulate the discussed problem as the minimum expected path length
(MEPL) problem, that is, given a network infrastructure and a distribution of
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requests, minimizing route costs by finding an optimal placement for processes
in the network. When the network is a line, MEPL is identical to the minimum
linear arrangement (MLA) [10] which is known to be NP-complete. In this work
we consider d-dimensional grid networks, d ≥ 1, and requests that comes inde-
pendently from a symmetric product distribution where the frequency of a route
request (u, v) is a multiplication of the activity levels of both u and v. In contrast
to previous works, our goal is to design simple distributed algorithms for these
more realistic settings.

We first show that MEPL is NP-complete if (i): we only assume that the
network is a 2-dimensional grid, and (ii): we only assume that the requests
come from a symmetric product distribution. But, somewhat surprisingly, if both
conditions hold, we are able to present a simple, local, distributed algorithm that
achieves good approximation to the optimal solution for the MEPL problem. Our
algorithm is self-adjustable in the sense that nodes switch processes based on the
continuously observed sequence of route requests each node is involved in. This
approach was inspired and bears some similarity to self-adjusting data structures
like splay trees [11]. In particular we are able to show (informal):

Theorem. For a d-dimensional grid network and a symmetric product distri-
bution of requests there is a simple distributed algorithm, which defines a local
switching policy between a process and its neighbors that achieves a constant
approximation to the minimum expected path length (MEPL) problem.

Interestingly, we prove this theorem using a measure called expected rank
which is related to the uncertainty of a random variable in a similar manner as
entropy is.

We then turn to more complex distributions of requests and discuss requests
that are clustered into disjoint groups. While for this setting few extremely
unstable bad local minima can exist we present promising simulation results. In
particular we show that for the 2-dimensional grid that starting from a random
and thus almost worst case initial state of processes locations in the network our
local algorithms converge to an almost optimal local minimum.

Organization: In Section 2 we discuss related work and somewhat similar ap-
proaches. Section 3 introduces the formal problem and definitions. The hardness
of MEPL is proved in Section 4 and then in Section 5 we prove our main result, a
constant factor approximation in d-dimensional meshes with product route dis-
tributions. In Section 6 we discuss a more complex setting: clustered requests;
and we end the paper with a short conclusion in Section 7.

2 Related Work

Energy saving along with green computing is an active topic of research in the
recent years. In a recent paper [12] Lis et al. study memory architectures of
microprocessors. The authors suggest that processes will migrate to a location
that is closer to the data instead of what is common in today architectures, i.e.,
coping the data to be closer to the process. The logic behind this idea is that
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programs are much smaller than their data. We take this idea one step further
by reducing the communication distance between two processes. Improving the
energy efficiency of routing in networks was also considered. Batista et al. [13]
used traffic engineering on grids to self-adjust to routing requests. In [3] and [14]
different authors considered data centers and tried to save energy by turning
off routers and links when demand in the network is low. Other self-adjusting
routing schemes were considered, e.g., in scale-free networks, to overcome conges-
tion [15,16]. In [17], authors studied virtual machines migration in tree topology
with the goal of minimizing servers’ load, while in [18], the problem of mapping
processes to physical servers, in order to minimize congestion, was presented. In
the current work, we optimize another important metric – average routing path
length, which minimizes the number of lookups and transmissions performed by
routers.

The most related areas of research to our study are graph arrangement, em-
bedding and labeling problems [19,20]. The basic question there is to embed a
guest graph G into a host graph H in order to minimize some objective function
like the bandwidth or the cutwidth; we relate our study to this settings in the
model section. In particular, some VLSI design problems were considered on a
two dimensional grids.[21,22]. There are two significant differences here: first, we
consider distributions on the route requests which restrict our guest graphs and
second, and more importantly, we are interested in distributed, self-adjusting
algorithms to solve the problem and not a centralized solution. In [23], the au-
thors dealt with a problem that is similar to a special case of MEPL, where all
nodes have the same activity level (uniform requests distribution), moreover, the
proposed solution is centralized and not distributed.

As described in the introduction the self-adjusting nature of our solution was
inspired by self-adjusting data structures like splay trees [11] which adjust their
structure according to requests made to the data structure in such a way that the
amortized cost matches the cost of the optimal (static) solution. Recently, Avin
et al. in [24], extended the idea of splay trees to splay networks, i.e., self-adjusting
trees that adapt themselves according to the pattern of routing requests to min-
imize the length of routing paths. Such a solution can be successfully used in
overlay p2p networks.

The local greedy switch strategy we use is related to physics and natural
dynamics which indirectly try to minimize energy. Using this analogy for opti-
mization purposes has a long history. E.g., simulated annealing [25] can be seen
as simulating physics while cooling the temperature, i.e., the local moves selected
shift over time more and more bias from mostly random behavior to greedy en-
ergy minimization. Here we only look at greedy steps. In a networking context
similar approaches were used for load balancing via diffusive paradigms [26] and
for routing via gradient mechanisms [27].

Another very related research is about self-stabilizing graphs [28,29]. The goal
there is also to maintain some objective using local edge exchanges, mostly in
an overlay network. In a similar manner we would like to extend the current
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work to solve MEPL on overlay and peer-to-peer networks, using edge rewiring
as well.

3 Model and Problem Definition

We model the communication network by an undirected, unweighted and con-
nected host graph H . Given a graph, its vertex set is denoted V (H) and its edge
set by E(H). We denote the number of nodes with n = |V (H)| and the number
of edges with m = |E(H)|. Let dH(·) be the distance function between nodes in
H , i.e., for two nodes u, v ∈ H we define dH(u, v) to be the number of edges of
a shortest path between u and v in H .

We assume that the network serves route requests drawn independently from
an arbitrary distribution P and messages are routed along the shortest paths
in H . Alternately, we represent the distribution P as a weighted directed guest
graph G where |V (G)| = n. For a directed edge (u, v) ∈ E(G) let the weight
of the edge p(u, v) denote the probability of a route request for a message from
node u to v.

Given a network infrastructure host graph H and a distribution on the route
requests represented by a guest graph G, a placement (or labeling [19]) function
is a bijective1 function ϕ : V (G) → V (H) which determines the locations of
nodes of G (processes) in the network H (hosts). Given G,H and a placement
function ϕ the expected path length of route requests is defined as:

EPL(G,H,ϕ) =
∑

(u,v)∈E(G)

p(u, v) · dH(ϕ(u), ϕ(v))

When H and G are clear from the context we may write just EPL(ϕ). Note a
special case of this definition, when P is the uniform distribution: this gives the
average path length in the network which is often used in the literature instead of
the diameter, for example to show that a network is a small world network [30].

For H and P we would like to find an optimal placement of the nodes in the
network to minimize the expected path length. Formally:

Definition 1 (Minimum Expected Path Length problem). Given a host
graph H and a probability distribution represented by a guest graph G, find a
placement function that minimize the expected path length:

MEPL = min
ϕ

EPL(G,H,ϕ)

As mentioned earlier, this problem is motivated by the network serving point-
to-point routing requests that are independently sampled from a distribution P .
If we assume that the cost for a request u, v is d(ϕ(u), ϕ(v)) then the MEPL prob-
lem tries to minimize the expected cost of a route. Note that this is also equiv-
alent to minimizing the expected number of lookups performed by routers, and

1 In this work we consider the classic case where every host machine can run at most
one process (e.g., one virtual machine).
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minimizing the expected total number of transmissions - all important metrics
in terms of energy saving and efficiency. More formally, if we denote by E(u, v)
energy spent by the network on serving request (u, v), then E(u, v) = (Elookup +
Etrans)d(ϕ(u), ϕ(v)), where Elookup and Etrans is the energy required by a router
for a lookup and transmission operations respectively, and d(ϕ(u), ϕ(v)) is the
number of routers on the path (u, v) in H . By assuming that Elookup+Etrans = 1
unit of energy, we obtain: E(u, v) = d(ϕ(u), ϕ(v)) and thus, the expectation of
the total spent energy E is:

E[E ] =
∑

(u,v)∈E(G)

p(u, v) · E(u, v) =
∑

(u,v)∈E(G)

p(u, v) · dH(ϕ(u), ϕ(v)) = EPL(G,H,ϕ).

In this work, we mostly consider local and distributed switching rules to find
a good placement: rules where a process is only allowed to switch places with
processes that are in its neighborhood (i.e., close to it). The goal is that after
a sequence of local switches the network will reach its minimum expected path
length and solve the MEPL problem. On the one hand, our results from Section 4
will show that this is not possible (efficiently) in a general setting even with global
knowledge and non-local switches. Throughout the paper we thus consider at
times simpler forms of networks and requests distributions, i.e., grid networks
and the symmetric product distributions :

Definition 2 (d-dimensional grid networks). A mesh network of size n =
kd with nodes embedded on all locations [k]d where [k] is the set of integers
1, 2, . . . , k. Each node is connected to all the nodes at �1-distance one from it,
i.e., each node has at most two neighbors in each of the d dimensions.

Definition 3 (symmetric product distribution). In symmetric product dis-
tribution, each node of G (i.e., process) has a level of activity and the more two
nodes u and v are active the more likely that the route {u, v} gets requested. More
precisely, we scale the activity levels of the nodes such that they form a distribu-
tion with an activity level p(u) for each node u and assume that the request dis-
tribution is induced by the product of the activity levels, i.e., p(u, v) = p(u)·p(v).

In order to allow EPL optimization by means of the local switching rules, we
make the following assumptions. First, in case of a symmetric product distribution
of requests, a node (process) u can measure the activity level of any other node v
by simply calculating the ratio between the frequency of the requests (u, v) and
sum of the frequencies of all the other requests (u,w), where w ∈ V . Second,
in order to be able to make EPL calculation locally, a node needs to know
the locations of all other nodes in H . Thus, we assume the existence of some
central directory service, similar to a DNS service, that keeps track of nodes’
locations (addresses). Note that if the requests distribution is not symmetric
product, activity levels cannot be measured locally, and, in this case, additional
centralized directory may be used to track nodes’ activity.
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4 Hardness of MEPL

In this section we show that solving the general MEPL problem is hard. In-
deed, we prove two results that demonstrate how the hardness of the problem
can come from either an involved network topology G or the structure of the
routing request distribution P . This serves also as an additional motivation why
in the rest of the paper we turn to graphs and distributions with more realistic
structure.

For both our examples it suffices to use probability distributions that only
have one non-zero probability value. In our first statement, we show that even
if we restrict ourselves to symmetric product distributions, the MEPL problem
is hard on general networks:

Lemma 1. Given a host graph H and a symmetric product distribution of re-
quests P, it is NP-complete to decide whether the MEPL is smaller than a given
value.

Proof. We describe a reduction from the k-CLIQUE problem. In the k-CLIQUE
problem, one is given a graph H ′ and has to decide whether H ′ contains a k-
clique, that is, whether H ′ contains a complete graph on k nodes as a subgraph.
This is one of Karp’s 21 NP-complete problems [31]. For the reduction we take
the graph H ′ as the network’s host graph H . As a request distribution we use
a symmetric product probability distribution that puts 1/k2 probability weight
on each of the pairs V ′ × V ′ formed by a subset of the nodes of size k and zero
probability on any other pair. If H contains a k-clique, then the unique optimal
solution to MEPL with value k(k − 1)/k2 = 1 − 1/k will be obtained if all k
nodes are placed in this clique. If H does not contain a k-clique the there will
be at least one request pair u, v ∈ V ′ × V ′ that is at least two far apart and the
total cost will be at least 1− 1/k + 1/k2. Thus, deciding whether the MEPL is
smaller than 1−1/k+1/k2 is equivalent to deciding whether H ′ has a k-CLIQUE
and thus, NP-hard. Lastly, it is easy to see that deciding whether the MEPL
is smaller than a given value problem can be easily achieved in NP by guessing
and then verifying a solution with smaller value.

This lemma shows that solving the MEPL problem for general network topolo-
gies is hard. Next, we show that even if we restrict the graph to be nice, e.g.,
2-dimensional grid, a lack of structure in the probability distribution can make
the MEPL problem hard, too:

Lemma 2. Given a probability distribution of requests P, it is NP-complete to
decide whether the MEPL is smaller than a given value on a 2-dimensional grid
network.

Proof. We describe a reduction from the problem of embedding a tree in a 2-
dimensional grid which was shown to be NP-hard by Bhatt and Cosmadakis [21].
More precisely it is NP-hard to decide whether a given tree T (with maximum
degree 4) is a subgraph of the grid. Given an instance of this problem in form
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of a tree T we construct a hard MEPL instance as follows: We take the two-
dimensional grid [k]2 as a topology where k equals the number of nodes in T . As
a request distribution we take a subset of k nodes to correspond to nodes in T
and put a probability mass of 1/(k−1) on each pair of nodes that corresponds to
two neighbors in the tree T ; all other k2−(k−1) node pairs have a probability of
zero. The MELP for such an instance is 1 if and only if the tree can be embedded
in the grid. If this is not the case then at least one request pair will be separated
by a path of length at least two increasing the average to at least 1 + 1/(k− 1).
Thus deciding whether the MEPL is smaller than 1 + 1/(k − 1) is equivalent to
deciding whether T can be embedded into the 2-dimensional grid. This proves
solving the MEPL problem on the 2-dimensional grid NP-hard.

Contrasting these two hardness results, the next sections will show that if one
assumes a grid graph and a symmetric product distribution, nice algorithmic
results can be obtained.

5 Distributed MEPL with Symmetric Product
Distributions

For general request distribution it is hard to find a good or optimal solution even
when one is not restricted to local and distributed switching rules. With this in
mind, we first restrict ourselves to a simpler model of requests, namely, sym-
metric product distributions (Definition 3). Second, we assume d-dimensional
grid topologies, and in particular the line and a 2-dimensional grid. We assume
that a process learns the distribution from requests it is involved in and thus,
it can decide whether the switching (exchanging positions) with a neighbor will
increase or decrease the objective function, the expected path length of the net-
work. The main result of this section is that under the above settings, a good
approximation to the objective function can be found using only simple (greedy)
local switching rules. To prove this result, we need the following definitions.

5.1 Expected Distance to Center and Expected Rank

To find a good placement for nodes (processes) which gives a good approximation
to the MEPL, we define the expected center and the expected distance to it.

Definition 4 (center and expected distance to the center). Consider a
symmetric product distribution P (with its corresponding guest graph G) and a
host graph H. Then, for a placement ϕ, the expected center of H is a node c∗,
s.t.:

c∗(G,H,ϕ) = argmin
x∈V (H)

∑
u∈V (G)

p(u)d(ϕ(u), x).

The expected distance to the center for ϕ, c∗(ϕ) is:

C(G,H,ϕ) = min
x∈V (H)

∑
u∈V (G)

p(u)d(ϕ(u), x),
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or equally:

C(G,H,ϕ) =
∑

u∈V (G)

p(u)d(ϕ(u), c∗).

When H and P are clear from the context (recall that P defines the guest
graphG), both C and c∗ can be written simply as C(ϕ) and c∗(ϕ). The minimum
expected distance to the center is defined then as Cmin = minϕC(ϕ). The next
lemma describes the relation between C and EPL.

Lemma 3. Consider a symmetric product distribution P and a host graph H.
For any given placement ϕ, 2C(ϕ) ≥ EPL(ϕ) ≥ C(ϕ).

Proof. To see the upper bound, we suppose that instead of routing between two
nodes directly, we route every request via the center c∗. Routing a request in
this way results in sampling two requests and summing up their distances to the
center. In expectation, this is exactly 2C. Formally:

EPL(ϕ) =
∑

(u,v)∈E(G)

p(u)p(v) · d(ϕ(u), ϕ(v))

≤
∑

(u,v)∈E(G)

p(u)p(v)(d(ϕ(u), c∗) + d(c∗, ϕ(v)))

=
∑

u∈V (G)

p(u)d(ϕ(u), c∗) +
∑

v∈V (G)

p(v)d(c∗, ϕ(v)) = 2C(ϕ)

The fact that C is a lower bound, we show as follows:

EPL(ϕ) =
∑

(u,v)∈E(G)

p(u)p(v) · d(ϕ(u), ϕ(v))

=
∑

u∈V (G)

p(u)
∑

v∈V (G)

p(v)d(ϕ(u), ϕ(v))

≥
∑

u∈V (G)

p(u)
∑

v∈V (G)

p(v)d(c∗, ϕ(v))

=
∑

v∈V (G)

p(v)d(c∗, ϕ(v)) = C(ϕ)

Corollary 1. MEPL ≥ Cmin

This follows since for the optimal placement ϕ∗: MEPL = EPL(ϕ∗) ≥ C(ϕ∗) ≥
Cmin.

An important ingredient in bounding the performance of our local rules will be
the following measure of expected rank. This quantity is an interesting measure
on the concentration and uncertainty of a distribution.
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Definition 5 (Rank of nodes and the Expected rank). The rank of a node
is the position of the node in the ordered list of nodes’ probabilities (breaking ties
arbitrarily). The node with the highest probability has rank 0. The rank of the
node u ∈ V is denoted as r(u). The expected rank of a probability distribution on
the nodes of graph G is: E [R] =

∑
u∈V (G) p(u)r(u).

We next describe the local switching rules by which our distributed algorithm
works.

5.2 (Greedy) Local Switching Strategies

For two nodes u, v ∈ V (G) and a placement ϕ, we say that u is a neighbor of v if
and only if (ϕ(u)ϕ(v)) ∈ E(H). A switching of u and v is taken to be understood
as a new placement ϕ′ where for each w ∈ V (G), w �= u, v ϕ′(w) = ϕ(w) and
ϕ′(u) = ϕ(v) and ϕ′(v) = ϕ(u), i.e., u and v switch places on H .

We propose the following greedy strategy. A node switches with a neighbor
if, according to the (observed) marginal distribution on the requests involving
itself and its neighbor, switching positions improves the objective value. In this
work, we consider two simple optimization rules:

1. M-rule: Node will switch locations with its neighbor if the switch will min-
imize the objective function: the expected path-length between all pairs of
nodes. This criterion is exactly the MEPL objective.

2. C-rule: Node will switch location with its neighbors if the switch will min-
imize the expected path-length between the center node and all the other
nodes. This objective does not give us a solution for the MEPL problem, but
it will be used as an upper bound for it.

If nodes switch only when this decreases the expected path-length (or some
other criterion), then it is clear that this, strictly monotone, potential can not
drop indefinitely (or too often) and thus, a (quick) convergence is guaranteed. A
placement ϕ is said to be local minimum (or local optimum) if and only if no
node in G can switch according to the rule they operate (i.e., M-rule or C-rule).
When using the C-rule, we can prove the following about the local minimum
placement.

Lemma 4. Any local minimum placement ϕ with respect to the C-rule, is cen-
ter monotone: If there is a path of possible switchings from ϕ(u) to ϕ(v) that
is distance-decreasing with respect to c∗, i.e., a path for which every step goes
strictly closer to c∗, then p(u) ≤ p(v).

Proof. Assume for sake of contradiction that ϕ is a local minimum, that p(u) >
p(v) and that there is a distance-decreasing path P of possible switchings from
ϕ(u) and to ϕ(v). By induction there has to be two nodes u′ and v′ such that
ϕ(u′) and ϕ(v′) are neighbors on the path P with p(u′) > p(v′) but v′ is closer
to c∗ than u′. By assumption it is possible to switch u′ and v′ and it is easy to
see that this is an improvement with regards to the C-rule. This contradicts the
assumption that ϕ is a local minimum.
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Note that according to the C-rule, two neighbors switch locations only if the
switch decreases C: the expected distance to the center. The improvement of the
switch can be found locally, since the center location can be computed locally
at each node via the expected position of its requests (which are identical to all
nodes because of the product distribution). Therefore, the C-rule will greedily
minimize, for each node, the distance to the expected position of its requests.

In order to implement our local and distributed switching strategies, there
is a need for a protocol, in which at each step (synchronous or asynchronous)
a node will choose a neighbor to negotiate the switching. Additionally, all the
nodes should know the locations and activity levels of all the other nodes. As
already discussed in Section 3, the location information can be provided using
a centralized directory service, and the activity level, in case of a symmetric
product distribution, can be obtained locally by just counting the number of
requests to and from specific peer. Detailed description of such protocol is out of
the scope of the current work which deals with the performance analysis of the
local and distributed switching strategies compared to a global optimal nodes
placement.

Throughout the rest of this paperwe assume that the system convergesagainst a
local minimum and analyze the performance of such a solution in this stable state.
On the other hand, we do NOT assume anything about the starting position OR
the specific order of the dynamics (node switches). Thus, inmany cases, an initially
random starting position converges (e.g., using random improving switches) to a
(near) optimal solution; we make no such assumptions and assume a worst case
sequence of improvements and a worst-case initialization.

5.3 The Line - Linear Placement

First, we study a greedy local switch strategy on a 1-dimensional grid - the
line. We assume that the C-rule switching strategy is sequentially applied (in
arbitrary order) on an arbitrary initial state and continuously adjust the network
by switching neighbors. The strategy will converge against a local optimum
from which no switch of two neighboring nodes improves the objective value
in expectation. We are interested in quantifying how far such a locally optimal
solution can be from the global optimum. The following theorem gives an answer
for this question.

Theorem 1. Let H be the line and P a symmetric product distribution, then
any locally optimal solution achieved by the C-rule (or M-rule) is at most a factor
of four larger than the global optimum of MEPL.

We prove this theorem for the C-rule but this could be done similarly to the
M-rule. Assume H and P as in the theorem. We first give an upper bound on
the expected path length achieved by the C-rule in terms of the expected rank
of the distribution (Definition 5).

Lemma 5. For any locally optimal solution ϕ achieved by the C-rule: C(ϕ) ≤
E[R], and EPL(ϕ) ≤ 2E[R].
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Proof. Let d(ϕ(v), c∗) be the distance of ϕ(v) from c∗. We want to bound it in
terms of r(v), the rank of v. From Lemma 4 we get that all nodes between ϕ(v)
and c∗ on the line have higher probability than v and thus d(ϕ(v), c∗) ≤ r(v). So:
C(ϕ) =

∑
v∈V (G) p(v)d(ϕ(v), c

∗) ≤
∑

v∈V (G) p(v)r(v) = E[R]. From Lemma 3,

EPL(ϕ) ≤ 2C(ϕ) ≤ 2E[R].

We now prove a lower bound for MEPL on the line and any symmetric product
distribution of requests.

Lemma 6. MEPL ≥ Cmin ≥ 1
2E[R].

Proof. Let ϕ∗ be the placement such that Cmin = C(ϕ∗). Note that by definition,
ϕ∗ minimizes the expected path length to the center. Given the center c∗(ϕ∗) and
an arbitrary node v with a distance d(ϕ∗(v), c∗) from c∗, we want to find an upper
bound on the rank of v by bounding how many nodes can have a higher activity
level than v. Clearly, all such nodes will be at most at the distance d(ϕ∗(v), c∗)
from the center, since otherwise, ϕ∗ will not be optimal. Since in a line there at
most two nodes at distance i from the center d(ϕ∗(v), c∗) ≥ r(v)/2 we obtain as
desired: Cmin =

∑
v∈V p(v)d(ϕ∗(v), c∗) ≥

∑
v p(v)r(v)/2 = E[R/2].

p(u)c*

d(ϕ(v), c∗) ≤ r(v)

d(ϕ(v), c∗) ≥ r(v)/2

Fig. 1. Illustration of rank properties used in Lemmas 5 and 6

To conclude the proof of Theorem 1, we combine Lemmas 3, 5 and 6 to get
that for a local minimum ϕ: 2E[R] ≥ EPL(ϕ) ≥MEPL ≥ 1

2E[R]. Thus, the ratio
between the worst case local solution and the optimal solution is at most 4.

5.4 The d-Dimensional Grid

In this section, we extend the ideas from the line to grid networks. Our results
apply readily to grids of arbitrary dimension but, for sake of simplicity, we stick
to two dimensions here. We first show that using the same greedy approach as
in the line, namely switching neighboring nodes using the M-rule, leads to a
drastically worse ratio between local and global minima.

Lemma 7. On the d-dimensional grid, there is a local minimum with regards to
the M-rule and the C-rule that is a factor of Ω(n1/d−1/d2

) worse than the global
minimum.

Note that the last lemma implies a Ω(n1/4) worst-case ratio for the 2-
dimensional grid. Surprisingly, we can avoid this, locally stable but highly sub-
optimal solution, by allowing only slightly longer switches. The rule we propose
is that a node can also switch with any of the neighbors in �1-distance three
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that differs two in one axis and one in the other (similar to the chess knight
moves) and the switching is according to the C-rule. In this case we can prove
the following.

Theorem 2. Let H be the 2-dimensional grid and P a symmetric product dis-
tribution, then any locally optimal solution achieved by the C-rule (and allowing
”chess knight move” switches) is at most a factor of 4.62 larger than the global
optimum of MEPL.

The proof of this theorem is similar in spirit to the 1-dimensional grid, where
we provide bounds on C for the optimal and locally optimal placements. First,
we show that we get a fat set from this strategy and also prove a stronger rank-
property of any locally optimal solution; namely, nodes that are far away from
the center have to have a (quadratically) high rank.

S1

S2

S3

S4

S5

x1

x2x3

x4

x5

x6

x7

z6 z5

z4

z3

z2

z1

a

b

a + b/2

b
+

a
/
2 v

c∗

Fig. 2. A local minimum when optimizing the distance to the expected position of
a routing request (black node c∗). The red nodes mark the positions that dominate
the green node v, that is, that have a path consisting of possible switchings each goes
strictly closer to the black node. In a local minimum these nodes have to have a larger
probability than the green node making the rank of the green node at least as large as
the number of red nodes.

Lemma 8. For any local minimum of the C-rule C(ϕ) ≤ 4√
6
E[
√
R], where R is

the rank of a given distribution (see Definition 5).

Proof. Consider a node v in general relative position to the center c∗ (see Fig-
ure 2). We want to estimate how many nodes have a larger probability (higher
rank) than the node v. To achieve this estimation, we analyze the area of the



Self-adjusting Grid Networks to Minimize Expected Path Length 49

largest polygon, such that every node inside and on the edges of the polygon be-
longs to some distance-decreasing path from v to c∗. According to Lemma 4, we
get the guarantee that for any local minimum, with respect to the C-rule, any
node u in the polygon has p(v) ≤ p(u). Figure 2 provides an example for this:
The node x1 is closer to the center than v and switching between x1 and v is pos-
sible. This implies that p(v) ≤ p(x1). Furthermore, if we look at the distance-
decreasing paths v, x1, x2, . . . , x7 and v, z1, z2, . . . , x7 we obtain from Lemma 4
that p(v) ≤ p(x1) ≤ p(x2) ≤ . . . ≤ p(x7) and that p(v) ≤ p(z1) ≤ . . . ≤ p(x7).
These paths can furthermore be extended to any node in the polygon. All these
nodes have such higher activity levels then p(v). To get a bound on the rank of v,
i.e., on the number of nodes that have a larger activity level, we count the num-
ber of nodes that are inside the polygon. This number generally involves many
floors and ceilings. We avoid these by first calculating the number of nodes A(x)
bounded by a right triangle shape that starts at a point and whose (axis parallel)
legs have length x and x/2. We denote this number by A(x) and in the following
give a formula and an estimate for it that holds for any positive real x:

A(x) :=

�x/2�∑
i=0

(�x�+ 1− 2i) ≥
{

x2

4 + 1 if x ≥ 1,

1 if x < 1.

Now we are ready to calculate Stotal. We denote the number of nodes in the
middle rectangle as S1, the number of nodes in the upper triangle as S2 and so
on according to Figure 2.

S1 = (a− 1)(b− 1) S2 = A(a− 1) S3 = A(b + a/2)

S4 = A(a+ b/2) S5 = A(b− 1)

So, we obtain that Stotal = S1+S2 +S3+S4 +S5− 3, where −3 is needed since
the node v should not be calculated (but was counted twice) and c∗ should be
calculated once (but was counted twice). By adding up the expressions we obtain
for a, b ≥ 2: Stotal = S1+S2+S3+S4+S5−3 ≥ 6

16 (a+b)
2. Easy to verify that the

inequality Stotal ≥ 6
16 (a+ b)

2 holds also in the case where a, or b, or both equal
to 1. Since the rank of v is at least Stotal, we get r(v) ≥ 6

16 (d(v, c
∗))2, and thus:

d(v, c∗) ≤ 4√
6

√
r(v). Hence: C =

∑
v∈V p(v)d(v, c∗) ≤

∑
v∈V p(v) 4√

6

√
r(v) =

4√
6
E[
√
R].

Next we show a lower bound for the cost of the optimum placement obtaining
a similar expression in terms of the (expected) rank.

Lemma 9. MEPL ≥ Cmin ≥ 1√
2
E[
√
R].

Proof. Let ϕ∗ be the placement such that Cmin = C(ϕ∗). Note that by definition
ϕ∗ minimize the expected path to the center. Given the center c∗(ϕ∗) and an
arbitrary node v with a distance d(v, c∗) from c∗, we again find an upper bound
on the rank of v by showing how many nodes can have a larger activity level
than v. Again, all such nodes will be at most at the distance d(v, c∗) from
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the center, since otherwise the solution will not be a global optimum. There
are exactly 4 nodes at distance 1 from c∗, 8 nodes at the distance 2 and in
general 4i nodes at distance i. This lead to the to the following bound: r(v) ≤∑d(v,c∗)

i=1 4i = 2(d(v, c∗))2. So, we obtain d(v, c∗) ≥
√
r(v)/2, and thus: C =∑

v∈V p(v)d(v, c∗) ≥
∑

v p(v)
√

r(v)/2 = E[
√
R/2]

Now we are ready to prove the result of Theorem 2. From Lemmas 3 and 9 we
get that the minimum expected path length is at least E[

√
R/2]. From Lemma 8

we obtain that C(ϕ) ≤ E[ 4√
6

√
R], and thus by Lemma 3 the expected path

length of a local minimum can not be larger than 2E[ 4√
6

√
R]. Therefore the

ratio between the optimal solution and any local minimum with regards to the

C-rule is at most 2 4
√
2√
6
≈ 4.62.

All proofs above can be extended to the d-dimensional grid. The lower bound
guarantees in this context that any solution on the d-dimensional grid has a cost
of at least Ω(E[R1/d]), where R is the rank of a sampled node. Similarly for
any constant d we get a O(E[R1/d]) upper bound from the fact that a fat body
is dominated by any node. The constant factor in the upper bound decreases
like 2−d since using the chess knight improvement switches along any dimension
costs a factor of 2. By using longer improvement directions of length k instead
of 3 the factor of two can be brought down to 1− 1

k−2 . Thus, e.g., using length
d improvement switches on the d-dimensional grid results in a constant factor
approximation for any dimension d.

6 Clustered Requests

We have demonstrated that self-adjusting networks and their local switching rules
work well on grid networks with symmetric product distributions. We now briefly
discuss some interesting preliminary results on a more general type of request dis-
tributions: clustered requests. For this we consider situations where processes can
be clustered into groups such that communication takes place only or predomi-
nantly between processes belonging to the same group. This locality is inspired
by practice and we believe that such a structure in the requests is quite common.

Ideally, a self-adjusting network “detects” such clusters and arranges processes
such that groups will reside in separate parts of the network infrastructure. Such
an arrangement facilitates short routes since requests between group members
get routed quickly without leaving the group. Such a well clustered placement
of nodes can be a drastic improvement of the expected path length compared
to a non-optimized placement. In particular, any placement that is oblivious to
the clustering, e.g., a random placement, will have a bad performance – leaving
plenty of room for improvement. We believe that the simple switching strategies
presented in this paper perform very well in many such settings.

Our investigations and simulations on d-dimensional torus topologies have led
to several interesting preliminary results in this direction: On the negative side
we were able to construct local minima in many topologies that have a poor
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performance compared to the global optimum. This shows that it is not possible
to give the same type of strong approximation guarantee, independent of the
initialization. In simulations, we observed that for d = 1, i.e., on a ring topol-
ogy, even random initializations lead to bad local minima. The reason for this is
that connectivities in the ring are too restricted to allow the resolution of dis-
tributed clusters without disturbing other, already fixed, clusters. Fortunately,
this changes drastically for higher dimensions. For d > 1 local minima become
extremely unstable and sensitive to small perturbations. They can only occur if
one starts in a carefully constructed worst-case initialization. This observation
is supported by our simulations which produce very promising results. Figure 3
shows an example for the improvement in a 2-dimensional torus. Overall, the
greedy switching algorithm successfully detects clusters and groups them to-
gether. However, there are still some clusters that are not connected. In Figure 3
(a) we can see the initial random placement of the clustered nodes. Nodes with
a black bold frame are the centers of their clusters (as was defined earlier, a
center is a node that has the minimal expected distance to all other nodes in
the cluster). In Figure 3 (b) we see the placement of the nodes achieved by the
greedy M-rule switching strategy. Although it looks that the nodes are highly
grouped, we can see that the shapes of the clusters are not optimal (an optimal
placement should look like a circle around the center of the cluster). Some clus-
ters are stretched (e.g., brown cluster) and some are even not connected (e.g,
orange cluster).

When every node on the torus belongs to an active cluster, we can frequently run
into situation in which two nodes will not switch even if it is improvement for one
of the clusters. This suboptimal local solution can be improved if we allow some
nodes on a torus to be inactive. In the following two figures we see the results of
such simulation where 50% on the nodes are inactive. In Figure 3 (c) we can see
the initial random placement of the clustered nodes, (the inactive nodes are white

(a) (b) (c) (d)

Fig. 3. (a) Torus with 900 nodes, 16 clusters and no nodes in the inactive cluster. Nodes
are placed at random positions. (b) Final placement after applying the local greedy
strategy in a round robin fashion. Clusters are grouped together, but their shapes are
not optimal for a given cluster. (c) Torus with 900 nodes, 8 active clusters and half
of the nodes in the inactive cluster. V0 has n/2 nodes. Nodes are placed at random
positions. (d) Final placement after applying the local greedy strategy. Clusters are
grouped together and almost optimally shaped around their center.
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colored). In Figure 3 (d) we see the placement of a local minimum of EPL achieved
by the same greedy switching strategy. But nowwe can observemuch nicer concen-
tration of the nodes around their centers. These figures lead to many interesting
future research questions about the topic. Animated version of the figures can be
found here: http://www.bgu.ac.il/ avin/pmwiki/pmwiki.php?n=Main.Self-
AdjustingNetworks .

7 Conclusions and Future Work

In this preliminary work, we formally defined the MEPL problem which has
practical significance in saving energy of fixed infrastructure network. We showed
that in general cases, the problem is hard to compute, but under some realistic
assumptions on network infrastructure and traffic patterns, we propose efficient
local and distributed algorithms that achieve almost optimal solution. Our algo-
rithms are based on migration of processes, which allows network optimization
without changing the underlying infrastructure. This idea integrates well with
an SDN concept which will probably include process migration functionality in
its management platform.

In future work, we plan to extend our results to other topologies that are used
in data centers networks, e.g., fat trees [32]. We also aim to investigate other
types of requests distributions that are based on real data.
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Abstract. We consider the k-Server problem under the advice model
of computation when the underlying metric space is sparse. On one side,
we introduce Θ(1)-competitive algorithms for a wide range of sparse
graphs, which require advice of (almost) linear size. Namely, we show
that for graphs of size N and treewidth α, there is an online algorithm
which receives O(n(logα+log logN))1 bits of advice and optimally serves
a sequence of length n. With a different argument, we show that if a
graph admits a system of μ collective tree (q, r)- spanners, then there
is a (q+ r)-competitive algorithm which receives O(n(log μ+ log logN))
bits of advice. Among other results, this gives a 3-competitive algorithm
for planar graphs, provided with O(n log logN) bits of advice. On the
other side, we show that an advice of size Ω(n) is required to obtain
a 1-competitive algorithm for sequences of size n even for the 2-server
problem on a path metric of size N ≥ 5. Through another lower bound
argument, we show that at least n

2
(logα−1.22) bits of advice is required

to obtain an optimal solution for metric spaces of treewidth α, where
4 ≤ α < 2k.

1 Introduction

Online algorithms have been extensively studied in the last few decades. In the
standard setting, the input to an online algorithm is a sequence of requests,
which should be answered sequentially. To answer each request, the algorithm
has to take an irreversible decision without looking at the incoming requests.
For minimization problems, such a decision involves a cost and the goal is to
minimize the total cost.

The standard method for analysis of online algorithms is the competitive anal-
ysis, which compares an online algorithm with an optimal offline algorithm, OPT .
The competitive ratio of an online algorithm2 ALG is defined as the maximum
ratio between the cost of ALG for serving a sequence and the cost of OPT for
serving the same sequence, within an additive constant factor.

Although the competitive analysis is accepted as the main tool for analysis
of online algorithms, its limitations have been known since its introduction: In-
puts adversarially produced to draw out the worst performance of a particular

1 We use log x to denote log2(x).
2 In this paper we only consider deterministic algorithms.
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algorithm are not commonplace in real life applications. Therefore, in essence
competitive analysis mostly measures the benefit of knowing the future, and
not the true difficulty of instances. From the perspective of an online algorithm,
the algorithm is overcharged for its complete lack of knowledge about the fu-
ture. Advice complexity quantifies this gap in information that gives OPT an
unassailable advantage over any online strategy.

Under the advice model for online algorithms [14,6], the input sequence σ =
〈r1 . . . rn〉 is accompanied by b bits of advice recorded on an advice tape B. For
answering the request ri, the algorithm takes an irreversible decision which is a
function of r1, . . . , ri and the advice provided on B. The advice complexity of
an online problem is the minimum number of bits which is required to optimally
solve any instance of the problem. In the context of the communication complex-
ity, it is desirable to provide an advice of small size, while achieving high quality
solutions. For example, it is easy to see that for the ski-rental problem [19] a
single bit of advice is sufficient to achieve an optimal solution.

We are interested in the advice complexity of the k-Server problem, as well
as the relationship between the size of advice and the competitive ratio of online
algorithms. To this end, we study the problem for a wide variety of sparse graphs.

1.1 Preliminaries

An instance of the k-Server problem includes a metric space M , k mobile
servers, and a request sequence σ. The metric space can be modelled as an
undirected, weighted graph of size N > k. (We interchangeably use terms ‘metric
space’ and ‘graph’.) Each request in the input sequence σ denotes a vertex ofM ,
and an online algorithm should move one of the servers to the requested vertex
to serve the request. The cost of the algorithm is defined as the total distance
moved by all k servers over σ.

For any graph G = (V,E), a tree decomposition of G with width α is a pair
({Xi‖i ∈ I} , T ) where {Xi‖i ∈ I} is a family of subsets of V (bags), and T is a
tree whose nodes are the subsets Xi such that

–
⋃

i∈I Xi = V and max
i∈I

|Xi| = α+1.

– for all edges (v, w) ∈ E, there exists an i ∈ I with v ∈ Xi and w ∈ Xi.
– for all i, j, k ∈ I: if Xj is on the path from Xi to Xk in T , then Xi∩Xk ⊆ Xj .

The treewidth of a graph G is the minimum width among all tree decompo-
sitions of G. Informally speaking, the tree decomposition is a mapping a graph
to a tree so that the vertices associated to each node (bag) of the tree are close
to each other, and the treewidth measures how close the graph is to such tree.

We say that a graph G = (V,E) admits a system of μ collective tree (q, r)-
spanners if there is a set T (G) of at most μ spanning trees of G such that for
any two vertices x, y of G, there exists a spanning tree T ∈ T (G) such that
dT (x, y) ≤ q × dG(x, y) + r.

For the ease of notation, we assume k denotes the number of servers, N , the
size of metric space (graph), n, the length of input sequence, and α, the treewidth
of the metric space.
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1.2 Existing Results

The advice model for the analysis of the online algorithm was first proposed in
[14]. Under that model, each request is accompanied by an advice of fixed length.
A slight variation of the model was proposed in [7,6], which assumes that the
online algorithm has access to an advice tape. At any time step, the algorithm
may refer to the tape and read any number of advice bits. The advice-on-tape
model has an advantage that enables algorithms to use sublinear advice. This
model has been used to analyze the advice complexity of many online problems,
which includes paging [7,18,21], disjoint path allocation [7], job shop schedul-
ing [7,21], k-server [6], knapsack [8], bipartite graph coloring [4], online coloring
of paths [16], set cover [20,5], maximum clique [5], and graph exploration [11].
In this paper, we adopt this definition of the advice model.

For the k-Server problem on general metrics, there is an algorithm which
achieves a competitive ratio of kO(1/b) for b ≤ k, when provided with bn bits of
advice [14]. This ratio was later improved to 2��log k�/(b− 2)� in [6], and then
to ��log k�/(b− 2)� in [23]. Comparing these results with the lower bound k for
the competitive ratio of any online algorithm [22], one can see how an advice of
linear size can dramatically improve the competitive ratio.

The k-Server problem has been studied under specific metric spaces which
include trees [10], metric spaces with k + 2 points [1], Manhattan space [2], the
Euclidean space [2], and the cross polytope space [3]. For trees, it is known that
the competitive ratio of any online algorithm is at least k, while there are online
algorithms which achieve this ratio [10]. Under the advice model, the k-Server
problem has been studied when the metric space is the Euclidean plane, and an
algorithm with constant competitive ratio is presented, which receives n bits of
advice for sequences of length n [6]. In [23], tree metric spaces are considered and
a 1-competitive algorithm is introduced which receives 2n+ 2�log(p+ 2)�n bits
of advice, where p is the caterpillar dimension of the tree. There are trees for
which p is as large as �logN�. Thus, the 1-competitive algorithm of [23] needs
Θ(n log logN) bits of advice.

1.3 Contribution

We introduce an online algorithm which optimally serves any input sequence on
a metric of treewidth α, when provided O(n(logα + log logN)) bits of advice.
We provide another algorithm that achieves a competitive ratio of at most q+ r,
when the metric space admits a system of μ collective tree (q, r)-spanners. The
algorithm receives O(n(log μ+log logN)) bits of advice. This yields competitive
algorithms for a large family of graphs, e.g., a 3-competitive algorithm for planar
graphs which reads O(n(log logN)) bits of advice.

Our the other side, we show that a sublinear advice does not suffice to provide
close-to-optimal solution, even if we restrict the problem to 2-server problem on
paths of size N ≥ 5. Precisely, we show that Ω(n) bits of advice are required to
obtain a c-competitive algorithm for any value of c ≤ 5/4− ε (ε is an arbitrary
small constant). Since there is a 1-competitive algorithm which receives O(n)
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bits of advice for paths [23], we conclude that Θ(n) bits of advice are necessary
and sufficient to obtain a 1-competitive algorithm for these metrics. Through
another lower bound argument, we show that any online algorithm requires an
advice of size at least n

2 (logα−1.22) bits to be optimal on a metric of treewidth
α, where 4 ≤ α < 2k.

For graphs with constant treewidth, the advice size our algorithm (the first
algorithm) is almost linear. Considering that an advice of linear size is required
for 1-competitive algorithms (our first lower bound), the algorithm has an advice
of nearly optimal size. For graphs with treewidth α ∈ Ω(lgN), the advice size
is O(n logα), which is asymptotically tight when 4 ≤ α < 2k, because at least
n
2 (logα − 1.22) bits are required to be optimal in this case (our second lower
bound).

Due to space restrictions, many proofs have been removed. They will appear
in the long version of the paper.

2 Upper Bounds

2.1 Graphs with Small Treewidth

We introduce an algorithm called Graph-Path-Cover, denoted by GPC, to show
that O(n(logα + log logN)) bits of advice are sufficient to optimally serve a
sequence of length n on any metric space of treewidth α. We start with the
following essential lemma.

Lemma 1. Let T be a tree decomposition of a graph G. Also, let x and y be two
nodes of G and P = (x = p0, p1, . . . pl−1, y = pl) be the shortest path between x
and y. Let X and Y be two bags in T which respectively contain x and y. Any
bag on the unique path between X and Y in T contains at least one node pi
(0 ≤ i ≤ l) from P .

Similar to the Path-Cover algorithm introduced for trees in [23], GPC moves its
servers on the same trajectories as OPT moves its. Suppose that OPT uses a
server si to serve the requests

[
xai,1 , . . . , xai,ni

]
(i ≤ k and ni ≤ n). So, si is

moved on the unique path from its initial position to xai,1 , and then from xai,1

to xai,2 , and so on. Algorithm Path-Cover tends to move si on the same path as
OPT .

For any node v in G, GPC treats one of the bags which contains v as the
representative bag of v. Moreover, it assumes an ordering of the the nodes in
each bag. Each node in G is addressed via its representative bag, and its index
among the nodes of that bag. A server si, located at a vertex v of G, is addressed
via a bag which contains v (not necessarily the representative bag of v) and the
index of v in that bag. Note that while there may be a unique way to address a
node, there might be several different ways to address a server.

Assume that for serving a request y, OPT moves a server si from a node x to
y in G. Let X and Y be respectively the representative bags of x and y, and Z
be the least common ancestor of X and Y in T . By Lemma 1, the shortest path
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between x and y passes at least one node z in Z, and that node can be indicated
by �log h� + �logα� bits of advice (h denotes the height of the tree associated
with the tree decomposition), with �log h� bits indicating Z and �logα� bits
indicating the index of the said node z in Z. After serving x, GPC moves si to z,
provided that the address of z is given as part of the advice for x. For serving
y, GPC moves si to y, provided that the address of si (address of z) is given as
part of the advice for y. In what follows, we elaborate this formally.

Before serving any request, GPC moves each server si from its initial position
x0 to a node z0 on the shortest path between x0 and the first node xai,1 served by
si in OPT ’s scheme. GPC selects z0 in a way that it will be among the vertices in
the least common ancestor of the representative bags of x0 and xai,1 in the tree
decomposition (by Lemma 1 such a z0 exists). To move all servers as described,
GPC reads (�log h� + �logα�) × k bits of advice. After these initial moves, GPC
moves servers on the same trajectories of OPT as argued earlier. Assume that
x, y and w denote three requests which are consecutively served by si in OPT ’s
scheme. The advice for serving x contains �log h�+ �logα� bits which represents
a node z1, which lies on the shortest path between x and y and is situated inside
the least common ancestor of the respective bags in T . GPC moves si to z1 after
serving x. The first part of advice for y contains �log h�+ �logα� bits indicating
the node z1 from which si is moved to serve y. The second part of advice for y
indicates a node z2 on the shortest path between y and w in the least common
ancestor of their bags in T . This way, 2(�log h� + �logα�) bits of advice per
request are sufficient to move servers on the same trajectories as OPT .

The above argument implies that an advice of size 2(�log h�+ �logα�)× n+
(�log h�+ �logα�)× k is sufficient to achieve an optimal algorithm. The value of
h (the height of the tree decomposition) can be as large as N , however we can
apply the following lemma to obtain height-restricted tree decompositions.

Lemma 2. [9,15] Given a tree decomposition with treewidth α for a graph G
with N vertices, one can obtain a tree decomposition of G with height O(logN)
and width at most 3α+ 2.

If we apply GPC on a height-restricted tree decomposition, we get the following
theorem.

Theorem 1. For any metric space of size N and treewidth α, there is an online
algorithm which optimally serves any input sequence of size n, provided with
O(n(logα+ log logN)) bits of advice.

2.2 Graphs with Small Number of Collective Tree Spanners

In this section we introduce an algorithm which receives an advice of almost
linear size and achieves constant competitive ratio for a large family of graphs.

Theorem 2. If a metric space of size N admits a system of μ collective tree
(q, r)-spanners, then there is a deterministic online algorithm which on receiving
O(n (logμ+ log logN)) bits of advice, achieves a competitive ratio of at most
q + r on any sequence of length n.
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Proof. When there is only one tree T in the collection (i.e., μ = 1), we can
apply the PathCover algorithm of [23] on T to obtain the desired result. To be
precise, for the optimal algorithm OPT , we denote the path taken by it to serve
a sequence of requests with the server si to be PG =

[
xai,1 , xai,2 , . . . , xai,ni

]
.

PathCover algorithm moves si on the path PT =
[
xai,1 , . . . , xai,2 , . . . , xai,ni

]
in

T . Since T is a spanner of G, the total length of PT does not exceed that of
PG by more than a factor of q + r for each edge in PG, and consequently the
cost of the algorithm is at most q + r times that of OPT ’s. Thus, the algorithm
is (q + r)-competitive. After serving a request x with server si, PathCover can
move si to the least common ancestor of x and y, where y is the next request at
which OPT uses si. This requires �log h� bits of advice per request (h being the
height of the tree). Instead, the algorithm can use the caterpillar decomposition
of T and move servers on the same set of paths while using only O(log logN)
bits of advice. The main idea is the same, whether we use a rooted tree or the
caterpillar decomposition. Here for the ease of explanation, we will only argue
for the rooted tree, but the statement of the theorem holds when the caterpillar
decomposition is used.

We introduce an algorithm that mimics OPT ’s moves for each server by picking
suitable trees from the collection to move the server through. The advice for
each request indicates which tree from the collection would best approximate
the edges traversed by the server in OPT ’s scheme to reach the next node at
which it is used. To this end, we look at the tree spanners as rooted trees. If
OPT moves a server si on the path PG =

[
xai,1 , xai,2 , . . . , xi,ni

]
, then for each

edge (xai,j , xai,j+1 ) on this path, our algorithm moves si on the shortest path
of (one of) the tree spanners which best approximates the distance between the
vertices xai,j and xai,j+1 . As explained below, the selection of suitable spanners
at every step can be ensured by providing 2 �logμ� bits of advice with each
request.

Let us denote the initial location of the k servers by z1, . . . , zk, and let
z′1, . . . , z

′
k respectively denote the first requested nodes served by them. Before

serving any request, for any server si, the algorithm reads �logμ�+ �log h� bits
of advice to detect the tree Tp(1 ≤ p ≤ μ) that preserves the distance between zi
and z′i in G, and moves si to the least common ancestor of zi and z

′
i. Moreover,

the algorithm labels si with index p. These labels are used to move the correct
servers on the trees in order to cover the same paths as OPT . Let w and y be two
vertices which are served respectively before and after x with the same server in
OPT ’s scheme. To serve the request to x the algorithm works as follows:

– Find the spanner Tp which best approximates the length of the shortest
path between w and x in G. This can be done if provided with �logμ� bits
of advice with x.

– Read �log h� bits of advice to locate a server s labeled as p on the path
between node x and the root of Tp. Move s to serve x. In case of caterpillar
decomposition, the algorithm reads roughly log logN bits.
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– After serving x, find the spanner Tq which best approximates the length of
the shortest path between x and y in G. This can be done if provided with
�logμ� bits of advice with x.

– Find the least common ancestor of x and y in Tq. This can be done by adding
�log h� bits of advice for x, where h is the height of Tq. In case of caterpillar
decomposition, this would require roughly log logN bits.

– Move s to the least common ancestor of x and y and label it as q.

Thus, since OPT moves the server si on the path PG = [xai,1 , xai,2 , . . . , xai,ni
],

our algorithm moves si from xai,j to xai,j+1 for each j (1 ≤ j ≤ ni − 1), on
the path in the tree which approximates the distance between these two vertices
within a multiplicative factor of q + r. The labels on the servers ensure that
the algorithm moves the ‘correct’ servers on the trees. i.e, the ones which were
intended to be used. Consequently, the cost of an algorithm for each server is
increased by a multiplicative factor, at most q + r. Therefore, the total cost of
the algorithm is at most (q + r) × OPT . The size of advice for each request
is 2�logμ� + O(log logN), assuming that the caterpillar decomposition is used.
Adding to that an additional k(logμ+O(log logN)) bits for the initial movement
of servers completes the proof. ��

In recent years, there has been wide interest in providing collective tree span-
ners for various families of graphs. The algorithms which create these spanners
run in polynomial time. It is known that any planar graph of size N has a sys-
tem of O(logN) collective (3,0)-spanners [17]; every AT-free graph (including
interval, permutation, trapezoid, and co-comparability graphs) admits a system
of two (1,2)-spanners [12]; every chordal graph admits a system of at most logN
collective (1,2)-spanners [13]; and every Unit Disk Graphs admits a system of at
most 2 log1.5N + 2 collective (3,12)-spanners [24].

Corollary 1. For metric spaces of size N and sequences of length n,
O(n log logN) bits of advice are sufficient to obtain I) a 3-competitive algo-
rithm for planar graphs II) a 3-competitive algorithm for AT-free graph (in-
cluding interval, permutation, trapezoid, and co-comparability graphs) III) a
3-competitive algorithm for chordal graphs IV) a 15-competitive algorithm for
Unit Disk Graphs.

3 Lower Bounds

3.1 2-server Problem on Path Metric Spaces

In this section, we show that an advice of sublinear size does not suffice to achieve
close-to-optimal solutions, even for the 2-server problem on a path metric space
of size N ≥ 5. Without loss of generality, we only consider online algorithms
which are lazy in the sense that they move only one server at the time of serving
a request. It is not hard to see that any online algorithm can be converted to
a lazy algorithm without an increase in its cost. Hence, a lower bound for the
performance of lazy algorithms applies to all online algorithms. In the reminder
of this section, the term online algorithm means a lazy algorithm.
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Consider a path of sizeN ≥ 5 which is horizontally aligned and the vertices are
indexed from 1 to N . Assume that the servers are initially positioned at vertices 2
and 4. We build a set of instances of the problem, so that each instance is formed
by m = n/7 rounds of requests. Each round is defined by requests to vertices
(3, 1|5, 3, 2, 4, 2, 4), where the second request of a round is either to vertex 1 or
vertex 5. Each round ends with consecutive requests to vertices 2 and 4. So, it is
reasonable to move servers to these vertices for serving the last requests of each
round. This intuition is formalized in the following lemma.

Lemma 3. Consider an algorithm A that serves an instance of the problem as
defined above. There is another algorithm A′ with a cost which is not more than
that of A, for which the servers are positioned at vertices 2 and 4 before starting
to serve each round.

According to the above lemma, to provide a lower bound on the performance
of online algorithms, we can consider only those algorithms which keep servers at
positions 2 and 4 before each round. For any input sequence, we say a roundRt has
type 0 if the round is formed by requests to vertices (3, 1, 3, 2, 4, 2, 4) and has type 1
otherwise, i.e., when it is formed by requests to vertices (3, 5, 3, 2, 4, 2, 4). The first
request of a round is to vertex 3. Assume the second request is to vertex 5, i.e., the
round has type 1. An algorithm can move the left vertex sl positioned at 2 to serve
the first request (to vertex 3) and the right server sr positioned at 4 to serve the
second request (to vertex 5). For serving other requests of the round, the algorithm
canmove the servers to their initial positions, and pay a total cost of 4 for the round
(see Figure 1(a)). Note that this is the minimum cost that an algorithm can pay for
a round. This is because there are four requests to distinct vertices and the last
two are request to the initial positions of the servers (i.e., vertices 2 and 4). Next,
assume that the algorithm moves the right vertex sr to serve the first request (to
vertex 3). The algorithm has to serve the second request (to vertex 5) also with sr.
The third request (to vertex 3) can be served by any of the servers. Regardless, the
cost of the algorithmwill not be less than 6 for the round (see Figure 1(b)). With a
symmetric argument, in case the second request is to vertex 1 (i.e., the round has
type 0), if an algorithm moves the right server to serve the first request it can pay
a total cost of 4, and if it moves the left server for the first request, it pays a cost of
at least 6 for the round.

In other words, an algorithm should ‘guess’ the type of a round at the time of
serving the first request of the round. In case it makes a right guess, it can pay
a total cost of 4 for that round, and if it makes a wrong guess, it pays a cost of
at least 6. This relates the problem to the Binary String Guessing Problem.

Definition 1 ([14,5]). The Binary String Guessing Problem with known his-
tory (2-SGKH) is the following online problem. The input is a bitstring of size
n, and the bits are revealed one by one. For each bit bt, the online algorithm A
must guess if it is a 0 or a 1. After the algorithm has made a guess, the value
of bt is revealed to the algorithm.

Lemma 4 ([5]). On an input of length m, any deterministic algorithm for 2-
SGKH that is guaranteed to guess correctly on more than αm bits, for 1/2 ≤
α < 1, needs to read at least (1 + (1− α) log(1− α) + α logα)m bits of advice.
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(a) In case of a right guess for the
type of a round, the algorithm can
pay a cost of 4.

(b) In case of a wrong guess for the
type of a round, the algorithm pays
a cost of at least 6.

Fig. 1. The cost of an algorithm for a round of type 1, i.e., request to vertices
(3, 5, 3, 2, 4, 2, 4). The servers are initially located at 2 and 4.

We reduce the 2-SGKH problem to the 2-server problem on paths.

Lemma 5. If there is a 2-server algorithm with cost at most γn (γ ≥ 4/7) for an
instance of length n (as defined earlier), then there is a 2-SKGH algorithm which
guesses at least 6−7γ

2 m bits correctly for any input bit string of size m = n/7.

Proof. Let B denote a bit string of length m = n/7, which is the input for the
2-SKGH problem. Consider the instance of the 2-server problem in which the
types of rounds are defined by B. Precisely, the tth round has type 0 if the tth
bit of B is 0, and has type 1 otherwise. We run the 2-server algorithm on such an
instance. At the time of serving the first request of the tth round, the 2-server
algorithm guesses the type of round t by moving the left or right server. In
particular, it guesses the type of the round to be 0 if it moves the right server for
the first request, and 1, otherwise. Define a 2-SGKH algorithm which performs
according to the 2-server algorithm, i.e., it guesses the tth bit of B as being 0
(resp. 1) if the 2-server algorithm guesses the tth round as having type 0 (resp.
1). As mentioned earlier, the 2-server algorithm pays a cost of 4 for the round
for each right guess, and pays cost of at least 6 for each wrong guess. So, the
cost of the algorithm is at least 4βm+ 6(1− β)m = (6− 2β)m, in which βm is
the number of correct guesses (β ≤ 1). Consequently, if an algorithm has cost
at most equal to this value, it correctly guesses the types of at least βm rounds,
i.e., it correctly guesses at least βm bits of a bit string of length m. Defining γ
as (6− 2β)/7 completes the proof. ��

Lemmas 4 and 5 give the following theorem.

Theorem 3. On input of length n, any deterministic algorithm for the 2-server
problem which has a competitive ratio smaller than τ (1 < τ < 5/4), needs to
read at least (1 + (2τ − 2) log(2τ − 2) + (3 − 2τ) log(3 − 2τ))n/7 bits of advice,
even if the metric space is restricted to being a path of size N ≥ 5.

Proof. There is an offline 2-server algorithm which pays a cost of 4 for each
round and consequently pays a total cost of 4m = 4n/7. Hence, in order to
have a competitive ratio of τ , the cost of an algorithm should be at most 4τn/7.
According to Lemma 5, this requires the existence of a 2-SKGH algorithm which
correctly guesses at least (3 − 2τ)m bits of a bit string of length m. By Lemma



64 S. Gupta, S. Kamali, and A. López-Ortiz

4, this needs reading at least (1+(1−(3−2τ)) log(1−(3−2τ))+(3−2τ) log(3−
2τ))m = (1+ (2τ − 2) log(2τ − 2)+ (3− 2τ) log(3− 2τ))n/7 bits of advice. Note
that 3− 2τ is in the range required by the lemma when 1 < τ < 5/4. ��

3.2 Metrics with Small Treewidth

We show that there are instances of the k-Server problem in a metric space with
treewidth α, for which any online algorithm requires at least n

2 (logα−1.22) bits
of advice to perform optimally. Our construction is based on the one described
in [6], where a lower bound for a general metric space is provided.

We introduce units graphs and module graphs as follows. A γ-unit graph is
a bipartite graph G = (U ∪W,E) where U = {u1, . . . , uγ} contains γ vertices,
and W contains 2γ − 1 vertices each representing a proper subset of U . There
is an edge between two vertices u ∈ U and w ∈ W iff u /∈ Set(w), where
Set(w) denotes the set associated with a vertex w ∈W . Let Bi ⊆W denote the
set of vertices of W whose associate sets have size i. i.e., for w ∈ Bi we have
|Set(w)| = i. A valid request sequence is defined as 〈x0, x1, . . . , xγ−1〉 so that for
each i, xi ∈ Bi and Set(xi) ⊆ Set(xi+1). In other words, a valid sequence starts
with a request to the vertex associated with the empty set, and with each step
one element is added to get a larger set defining the next request. With this
definition, one can associate every input sequence I with a unique permutation
π of set {1, 2, . . . , γ}.

A γ-module graph G includes two γ-unit graphs G1 = (U1 ∪ W1, E1) and
G2 = (U2 ∪W2, E2). In such a graph, those vertices in W1 which represent sets
of size i are connected to the (i+1)th vertex of U2; the vertices ofW2 and U1 are
connected in the same manner. Consider an instance of the k-Server problem
defined on a k-module graph, where initially all servers are located at the vertices
of U1. A valid sequence for the module graph is defined by repetition of rounds of
requests. Each round starts with a valid sequence for G1 denoted by π1, followed
by k requests to distinct vertices of U2, a valid sequence for G2, and k requests to
distinct vertices of U1. It can be verified that there is a unique optimal solution
for serving any valid sequence on G, and consequently a separate advice string
is required for each sequence [6]. Since there are (k!)(n/(2k)) valid sequences of
length n, at least (n/(2k)) log(k!) ≥ n(log k− log e)/2 bits of advice are required
to separate all valid sequences.

Lemma 6. Any γ-module graph has a tree decomposition of width 2γ.

In what follows, we consider metric spaces with treewidth α such that 4 ≤
α ≤ 2k. Assume that α is an even integer and we have k = mα/2 for some
positive integer m. Consider a metric space Gb defined by a set of γ-modules
where γ = α/2. There are k/γ = m such modules in Gb. LetM

1, . . . ,Mm denote
these modules, and let Gi

1 = (U i
1 ∪W i

1 , E1), G
i
2 = (U i

2 ∪W i
2 , E2) denote the unit

graphs involved in the construction of M i (i ≤ m). For each module M i, select
exactly one vertex from U i

1, and connect all of the selected vertices to a common
source. This makes Gb a connected graph.
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Since there are m modules and in the ith module U i
1 contains γ vertices,

there are m× γ = k vertices in all of the U i
1s. Assume that the k servers are ini-

tially placed at separate nodes in the U i
1s. A valid sequence for Gb is defined by

a sequence of rounds of requests in which each round has the following structure:

f(π1
1 , . . . , π

m
1 ), (b11, . . . , b

m
1 ), . . . , (b1γ , . . . , b

m
γ ), f(π1

2 , . . . , π
m
2 ), (a11, . . . , a

m
1 ), . . . , (a1γ , . . . , a

m
γ )

Here, f is a function that combines the requests from m permutations. Let
(π1, . . . , πm) denotem permutations such that πi contains γ requests 〈ri1, . . . , riγ〉
which defines a permutation in the module M i. Thus, f gives a sequence of
length m × γ starting with m requests to rj1s, followed by m requests to rj2s,
and so on. For each j, (1 ≤ j ≤ γ) we have fixed orderings on the vertices such
that (a1j , . . . , a

m
j ) ∈ (U1

1 , . . . , U
m
1 ) and (b1j , . . . , b

m
j ) ∈ (U1

2 , . . . , U
m
2 ). With this

definition, when a valid sequence of Gb is projected to the requests arising in a
module M , the resulting subsequence is a valid sequence for M .

Lemma 7. There is a unique optimal solution to serve a valid sequence on the
metric space Gb. Also, each valid sequence requires a distinct advice string in
order to be served optimally.

To find a lower bound for the length of the advice string, we count the number
of distinct valid sequences for the metric space Gb. In each round, there are
(γ!)2 valid sequences for each γ-module. Since there are m such modules, there
are (γ!)2m possibilities for each round. A valid sequence of length n involves
n/(4γm) rounds; hence there are (γ!)n/(2γ) valid sequences of length n. Each of
these sequences need a distinct advice string. Hence, at least log((γ!)n/(2γ)) ≥
(n/2) log(γ/e) = (n/2) log(α/(2e)) bits of advice are required to serve a valid
sequence optimally. This proves the following theorem.

Theorem 4. Consider the k-Server problem on a metric space of treewidth α,
such that 4 ≤ α < 2k. At least n

2 (logα − 1.22) bits of advice are required to
optimally serve an input sequence of length n.

Concluding Remarks

For path metric spaces, we showed any 1-competitive algorithm requires an ad-
vice of size Ω(n). This bound is tight as there is an optimal algorithm which
receives O(n) bits of advice [23]. The same lower bound applies for trees, how-
ever, the best algorithm for tree receives an advice of O(n lg lgN). We conjecture
that the lower bound argument can be improved for trees to match it with the
upper bound.
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Connected Surveillance Game�
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Stéphane Pérennes1, and Ronan Soares1,3

1 COATI, INRIA, I3S(CNRS/UNS), Sophia Antipolis, France
2 ACRO, Laboratoire d’Informatique Fondamentale de Marseille, France

3 ParGO Research Group, UFC, Fortaleza, Brazil

Abstract. The surveillance game [Fomin et al., 2012] models the prob-
lem of web-page prefetching as a pursuit evasion game played on a graph.
This two-player game is played turn-by-turn. The first player, called the
observer, can mark a fixed amount of vertices at each turn. The sec-
ond one controls a surfer that stands at vertices of the graph and can
slide along edges. The surfer starts at some initially marked vertex of
the graph, her objective is to reach an unmarked node The surveillance
number sn(G) of a graph G is the minimum amount of nodes that the
observer has to mark at each turn ensuring it wins against any surfer
in G. Fomin et al. also defined the connected surveillance game where
the marked nodes must always induce a connected subgraph. They ask
if there is a constant c > 0 such that csn(G)

sn(G)
≤ c for any graph G. It has

been shown that there are graphs G for which csn(G) = sn(G) + 1. In
this paper, we investigate this question.

We present a family of graphs G such that csn(G) > sn(G)+1. More-
over, we prove that csn(G) ≤ sn(G)

√
n for any n-node graph G. While

the gap between these bounds remains huge, it seems difficult to reduce
it. We then define the online surveillance game where the observer has
no a priori knowledge of the graph topology and discovers it little-by-
little. Unfortunately, we show that no algorithm for solving the online
surveillance game has competitive ratio better than Ω(Δ).

Keywords: Surveillance game, Cops and robber games, Cost of connec-
tivity, Online strategy, Competitive ratio, Prefetching.

1 Introduction

In this paper, we study two variants of the surveillance game introduced in [1].
This two-player game involves one Player moving a mobile agent, called surfer,
along the edges of a graph, while a second Player, called observer, marks the
vertices of the graph. The surfer wins if it manages to reach an unmarked vertex.
The observer wins otherwise.

Surveillance Game. More formally, let G = (V,E) be an undirected simple
n-node graph, v0 ∈ V , and k ∈ N∗. Initially, the surfer stands at v0 which is
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marked and all other nodes are not marked. Then, turn-by-turn, the observer
first marks k unmarked vertices and then the surfer may move to a neighbor
of her current position. Once a node has been marked, it remains marked.The
surfer wins if, at some step, she reaches an unmarked vertex; and the observer
wins otherwise. Note that the game lasts at most �nk � turns. When the game is
played on a directed graph, the surfer has to follow arcs when it moves [1]. A
k-strategy for the observer from v0, or simply a k-strategy from v0, is a function
σ : V ×2V → 2V that assigns the set σ(v,M) ⊆ V of vertices, |σ(v,M)| ≤ k, that
the observer should mark in the configuration (v,M), where M ⊆ V , v0 ∈ M ,
is the set of already marked vertices and v ∈ M is the current position of the
surfer. We emphasis that σ depends implicitly on the graph G, i.e., it is based
on the full knowledge of G. A k-strategy from v0 is winning if it allows the
observer to win whatever be the sequence of moves of the surfer starting in v0.
The surveillance number of a graph G with initial node v0, denoted by sn(G, v0),
is the smallest k such that there exists a winning k-strategy starting from v0.

Let us define some notations used in the paper. Let Δ be the maximum degree
of the nodes in G and, for any v ∈ V , let N(v) be the set of neighbors of v. More
generally, the neighborhood N(F ) of a set F ⊆ V is the subset of vertices of V
which have a neighbor in F . Moreover, we define the closed neighborhood of a
set F as N [F ] = N(F ) ∪ F .

As an example, let us consider the following basic strategy: let σB be the
strategy defined by σB(v,M) = N(v) \M for any M ⊆ V , v0 ∈ M , and v ∈
M . Intuitively, the basic strategy σB asks the observer to mark all unmarked
neighbors of the current position of the surfer. It is straightforward, and it was
already shown in [1], that σB is a winning strategy for any v0 ∈ V and it easily
implies that sn(G, v0) ≤ max{|N(v0)|, Δ− 1}.

Web-Page Prefetching, Connected and Online Variants. The surveil-
lance game has been introduced because it models the web-page prefetching
problem. This problem can be stated as follows. A web-surfer is following the
hyperlinks in the digraph of the web. The web-browser aims at downloading
the web-pages before the web-surfer accesses it. The number of web-pages that
the browser may download before the web-surfer accesses another web-page is
limited due to bandwidth constraints. Therefore, designing efficient strategies
for the surveillance game would allow to preserve bandwidth while, at the same
time, avoiding the waiting time for the download of the web-page the web-surfer
wants to access.

By nature of the web-page prefetching problem, in particular because of the
huge size of the web digraph, it is not realistic to assume that a strategy may
mark any node of the network, even nodes that are “far” from the current po-
sition of the surfer. For this reason, [1] defines the connected variant of the
surveillance game. A strategy σ is said connected if σ(v,M) ∪M induces a con-
nected subgraph of G for any M , v0 ∈M ⊆ V (G). Note that the basic strategy
σB is connected. The connected surveillance number of a graph G with initial
node v0, denoted by csn(G, v0), is the smallest k such that there exists a winning
connected k-strategy starting from v0. By definition, csn(G, v0) ≥ sn(G, v0) for
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any graph G and v0 ∈ V (G). In [1], it is shown that there are graphs G and
v0 ∈ V (G) such that csn(G, v0) = sn(G, v0) + 1. Only the trivial upper bound
csn(G, v0) ≤ Δ sn(G, v0) is known and a natural question is how big the gap be-
tween csn(G, v0) and sn(G, v0) may be [1]. This paper provides a partial answer
to this question.

Still the connected surveillance game seems unrealistic since the web-browser
cannot be asked to have the full knowledge of the web digraph. For this reason,
we define the online surveillance game. In this game, the observer discovers the
considered graph while marking its nodes. That is, initially, the observer only
knows the starting node v0 and its neighbors. After the observer has marked
the subset M of nodes, it knows M and the vertices that have a neighbor in
M and the next set of vertices to be marked depends only on this knowledge,
i.e., the nodes at distance at least two from M are unknown. In other words, an
online strategy is based on the current position of the surfer, the set of already
marked nodes and knowing only the subgraph H of the marked nodes and their
neighbors (a more formal definition is postponed to Section 3). By definition, the
next nodes marked by such a strategy must be known, i.e., adjacent to an already
marked vertex. Therefore, an online strategy is connected. We are interested in
the competitive ratio of winning online strategies. The competitive ratio ρ(S) of
a winning online strategy S is defined as ρ(S) = maxG,v0∈V (G)

S(G,v0)
sn(G,v0)

, where

S(G, v0) denotes the maximum number of vertices marked by S in G at each
turn, when the surfer starts in v0. Note that, because any online winning strategy
S is connected, csn(G, v0) ≤ ρ(S) sn(G, v0) for any graph G and v0 ∈ V (G).

1.1 Related Work

The surveillance game has mainly been studied in the computational complex-
ity point of view. It is shown that the problem of computing the surveillance
number is NP-hard in split graphs [1]. Moreover, deciding whether the surveil-
lance number is at most 2 is NP-hard in chordal graphs and deciding whether
the surveillance number is at most 4 is PSPACE-complete. Polynomial-time al-
gorithms that compute the surveillance number in trees and interval graphs
are designed in [1]. All previous results also hold for the connected surveil-
lance number. Finally, it is shown that, for any graph G and v0 ∈ V (G),

max� |N [S]|−1
|S| � ≤ sn(G, v0) ≤ csn(G, v0) where the maximum is taken over every

subset S ⊆ V (G) inducing a connected subgraph with v0 ∈ S. Moreover, both
previous inequalities turn into an equality in case of trees. [1] asks for an example
where the inequalities are strict.

In the literature, there are mainly three types of prefetching: server based hints
prefetching [2–4], local prefetching [5] and proxy based prefetching [6]. In local
prefetching, the client has no aid from the server when deciding which documents
to prefetch. In the server based hints prefetching, the server can aid the client
to decide which pages to prefetch. Lastly, in the proxy based prefetching, a
proxy that connects its clients with the server decides which pages to prefetch.
Moreover, some studies consider that the prefetching mechanism has perfect



Connected Surveillance Game 71

knowledge of the web-surfer’s behaviour [7, 8]. In these studies, the objective
is to minimize the waiting time of the web-surfer with a given bandwidth, by
designing good prediction strategies for which pages to prefetch. In the context
of prefetching web-pages, the surveillance game is a model to study a local
prefetching scheme to guarantee that a websurfer never has to wait a web-page
to be downloaded, whilst minimizing the bandwidth necessary to achieve this.

1.2 Our Results

In this paper, we study both the connected and online variants of the surveillance
game. First, we try to evaluate the gap between non-connected and connected
surveillance number of graphs. We give a new upper bound, independent from the
maximum degree, for the ratio csn / sn. More precisely, we show that, for any n-
node graphG and any v0 ∈ V (G), csn(G, v0) ≤ sn(G, v0)

√
n. Then, we describe a

family of graphsG such that csn(G, v0) = sn(G, v0)+2. Note that, contrary to the
simple example that shows that connected and not connected surveillance number
may differ by one, a larger difference seems much more difficult to obtain.

As mentioned above, the online variant of the surveillance game is a more
constraint version of the connected game. We prove that any online strategy has
competitive ratio at least Ω(Δ). More formally, we describe a familly of trees
with constant surveillance number such that, for any online winning strategy,
there is a step when the strategy has to mark at least Δ

4 vertices.Unfortunately,
this shows that the best (up to constant ratio) online strategy is the basic one.

2 Cost of Connectedness

In this section, we investigate the cost of the connectivity constraint. We first
prove the first non-trivial upper bound for the ratio csn / sn. More precisely,
we show that for any n-node graph G, csn(G, v0) ≤ sn(G, v0)

√
n. Then, we

improve the lower bound of [1]. That is, we show a family of graphs where
csn(G, v0) > sn(G, v0) + 1. Finally, we disprove a conjecture in [1].

2.1 Upper Bound

In this section, we give the first non-trivial upper bound (independent from the
degree) of the cost of the connectivity in the surveillance game.

Theorem 1. Let G be any connected n-node graph and v0 ∈ V (G), then

csn(G, v0) ≤ sn(G, v0)
√
n.

Proof. sn(G, v0) = 1 if and only if G is a path with v0 as an end. In this case,
csn(G, v0) = sn(G, v0) and the result holds.

Let us assume that k = sn(G, v0) > 1. We describe a connected strategy σ
marking at most k

√
n nodes per turn. Let M0 = {v0} and let M t be the set of

vertices marked after t ≥ 1 turns. Assume moreover thatM t induces a connected
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graph of G containing v0. Finally, let vt be the vertex occupied by the surfer after
turn t. The set σ(vt,M

t) of nodes marked by the observer at step t+1 is defined
as follows. If |V (G) \M t| ≤ k

√
n, then let σ(vt,M

t) = V (G) \M t. Otherwise,
let H ⊆ V (G)\M t such that |H | = k√n, H ∪M t induces a connected subgraph
and |H∩N(vt)| is maximum. Then, σ(vt,M

t) = H , i.e., the strategy marks k
√
n

new nodes in a connected way and, moreover, mark as many unmarked nodes as
possible among the neighbors of vt. In particular, if |N(vt) \M t| ≤ k

√
n, then

all neighbors of vt are marked after turn t+ 1.
By definition, σ is connected and marks at most k

√
n nodes per turn. We

need to show σ is winning.
For purpose of contradiction, let us assume that the surfer wins against σ by

following the path P = (v0, . . . , vt, vt+1). At its t + 1th turn, the surfer moves
from a marked vertex vt to an unmarked vertex vt+1.

Therefore, n > tk
√
n, otherwise the observer marking k

√
n nodes at each

turn would have already marked every vertex on the graph by the end of turn
t. Moreover, by definition of sigma, |N(vt) \M t| > k

√
n

Since, sn(G, v0) = k, let S be any k-winning (non necessarily connected)
strategy for the observer. Assume that the observer follows S against the surfer
following P \ {vt+1}. Since, S is winning, all vertices of N(vt) must be marked
after turn t, otherwise the surfer would win by moving to an unmarked neighbor
of vt. Therefore, since S can mark at most k vertices each turn, |N(vt)| ≤ kt.

Taking both inequalities, we have that k 2
√
n < |N(vt)| ≤ kt. Hence, 2

√
n < t.

Therefore, n > tk 2
√
n > nk, a contradiction. ��

2.2 Lower Bound

This section is devoted to proving the following theorem.

Theorem 2. There exists a family of graphs G and v0 ∈ V (G) such that

csn(G, v0) > sn(G, v0) + 1.

We use the following result proved in [1]. For any graph G = (V,E) and any
vertex v0 ∈ V , a k-strategy for G with initial vertex v0 is winning if and only if
it is winning against a surfer that is constrained to follow induced paths on G.
In other words, the walk of the surfer is contrained to be an induced path.

In the following theorem, by adding a path P = (v1, · · · , vr) between two
vertices u and v of G, we mean that the induced path P is added as an induced
subgraph of G and the edges {u, v1} and {vr, v} are added.

Let x, α, β and γ be four strictly positive integers satisfying the following:

(1) max{β, β
2
+ γ + 1} < α < min{β + γ + 1, 2γ + 2} (2) β < 2γ + 2

(3) 3x ≥ α+β+2γ+12 (4) x >
4

5
(α+β+γ)+10 (5) 2α ≥ 73+β+2γ.

For instance, x = 250, α = 146, β = γ = 73 satisfy all the above inequalities.
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For proving the main theorem in this section we mainly rely in the family of
graphs built in the following the procedure described below.

Let G = (V,E) be a graph with 10 isolated vertices {v0, w0, w1, w2, w
′
0, w

′
1, w

′
2,

s0, s1, s2}. Then, for all i ∈ {0, 1, 2} do the following:

1. 4x− 9 vertices of degree one are added and made adjacent to si;
2. 3x−2 vertices of degree one are added and made adjacent to wi, respectively

3x− 2 neighbors of degree one are added to w′
i;

3. two disjoint paths Ai = (ai1, · · · , aiα) and A′i = (a′i1 , · · · , a′iα) are added
between v0 and si;

4. a path Bi = (bi1, · · · , biβ) is added between v0 and wi, and a path B′i =

(b′i1 , · · · , b′iβ) is added between v0 and w′
i;

5. for any j ∈ {i, i+ 1 mod 3} a path Ci,j = (ci,j1 , · · · , ci,jγ ) is added between

sj and wi, and a path C′i,j = (c′i,j1 , · · · , c′i,jγ ) is added between sj and w′
i;

6. for any 1 ≤ j ≤ α, 3x−1 vertices of degree one are added and made adjacent
to aij , respectively 3x− 1 neighbors of degree one are added to a′ij ;

7. for any 1 ≤ j ≤ β, 3x−1 vertices of degree one are added and made adjacent
to bij , respectively 3x− 1 neighbors of degree one are added to b′ij ;

8. for any 1 ≤ j ≤ γ, � ∈ {i, i + 1 mod 3}, 3x − 1 vertices of degree one are

added and made adjacent to ci,�j , respectively 3x− 1 neighbors of degree one

are added to c′i,�j .

The shape of G is depicted in Figure 1. G has (30 + 18(α + β) + 36γ)x − 29
vertices. For any i ∈ {0, 1, 2}, the node si has 4x − 3 neighbors, v0 has 12
neighbors, and any other non-leaf node has degree 3x+ 1.

Claim. [9] If max{β, β2 + γ + 1} < α < min{β + γ + 1, 2γ + 2} and β < 2γ + 2,
the unique (up to symmetries) minimum Steiner-tree for S = N [v0]∪{s0, s1, s2}
in G has 15 + α + β + 2γ vertices and consists of the vertices of the paths
A0, B1, C1,1, C1,2 and the vertices in S ∪ {w1}.

In Fig. 1, the scheme of a minimum Steiner-tree for S = N [v0] ∪ {s0, s1, s2}
is depicted with dashed lines.

For any i ∈ {0, 1, 2}, let Ai = N [v0] ∪ N [Ai] ∪ N [si] (resp., A′
i = N [v0] ∪

N [A′i] ∪N [si]). Note that |Ai| = |A′
i| = (3α+ 4)x+ 9 and that the Ai and Aj ,

i �= j, pairwise intersect only in N [v0].
For any i ∈ {0, 1, 2}, let Bi = N [v0]∪N [Bi]∪N [wi]∪N [Ci,i]∪N [Ci,i+1 mod 3]∪

N [si]∪N [si+1 mod 3] and B′
i is defined similarly. |Bi| = |B′

i| = (3β+6γ+11)x+5.
Finally, for any i ∈ {0, 1, 2} and j ∈ {i, i+1 mod 3}, let Bi,j = N [v0]∪N [Bi]∪
N [wi] ∪N [Ci,j ] ∪N [sj] and B′

i,j = N [v0] ∪N [B′i] ∪N [w′
i] ∪N [C′i,j ] ∪N [sj].

Lemma 1. For any i ∈ {0, 1, 2} and j ∈ {i, i+ 1 mod 3}, during its first step,
any winning (3x+ y)-strategy for G must mark at least

– x+ 8− y(α+ 1) nodes in Ai (resp., in A′
i), and

– x+ 8− y(β + γ + 2) nodes in Bi,j (resp., in B′
i,j), and

– 2x+ 4− y(β + 2γ + 3) nodes in Bi (resp., in B′
i).
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Fig. 1. Graph Family Scheme. Here we show only one “layer” of the graph.

The proof can be found in [9].

Lemma 2. sn(G, v0) ≤ 3x.

Proof. To show that sn(G, v0) ≤ 3x, consider the following strategy for the ob-
server. For any i ∈ {0, 1, 2}, in the first step, it marks x−4 one-degree neighbots
of si and the 12 neighbors of v0. Then, at subsequent step, marks all unmarked
neighbors of the current position of the surfer. It is easy to see (see details in [9]),
by induction on the number of steps that, each time that the surfer arrives at a
new node, this node is marked and has at most 3x unmarked neighbors. ��

Lemma 3. csn(G, v0) > 3x+ 1.

Proof. For purpose of contradiction, let us assume that there is a winning con-
nected 3x + 1-strategy. Let F be the set of vertices marked by this strategy
during the first step. Clearly, N(v0) ⊆ F and |F | ≤ 3x+ 1.

For any 0 ≤ i ≤ 2, let fi = |F ∩N [si]| and let fmin = mini fi. Without loss
of generality, fmin = f0. We first show that fmin > 3.

By Lemma 1, for any i ∈ {0, 1, 2}, |F ∩ (Ai \ N [v0])| ≥ x − 5 − α and, for
any i ∈ {0, 2}, |F ∩ (Bi,0 \ N [v0])| ≥ x − 6 − (β + γ) and |F ∩ (B′

i,0 \N [v0])| ≥
x− 6− (β + γ). Therefore,

3x+ 1 ≥ |F ∩ (A0 ∪ A′
0 ∪ A1 ∪ A2 ∪ B0,0 ∪ B2,0 ∪ B′

0,0 ∪ B′
2,0)|

≥ 12 + 4(x− 5− α) + 4(x− 6− (β + γ))− 5|F ∩N [s0]|
≥ 8x− 4(α+ β + γ)− 32− 5fmin

Hence, 5fmin ≥ 5x− 4(α+ β + γ)− 33, and fmin ≥ x− 4
5 (α+ β + γ)− 7 > 3

by the above inequality.
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Therefore, by definition of fmin, |F ∩ N [si]| ≥ 4 for any i ∈ {0, 1, 2}. By
connectivity of the strategy, si ∈ F ∩N [si] for any i ∈ {0, 1, 2}. Hence, F must
contain a subset of vertices inducing a subtree spanning S = N [v0]∪{s0, s1, s2}.
Let T be an inclusion-minimal subset of F that induces a subtree spanning S.
By Claim 2.2, |T | ≥ α+β+2γ+15. Let T ′ = T \ (N [v0]∪

⋃
0≤i≤2N [si]). Then,

|T ′| ≥ α + β + 2γ − 4. Moreover, because of the symmetries, we may assume
w.l.o.g., that T ′ ⊆

⋃
0≤i≤2(Ai ∪ Bi).

By Lemma 1 and because N(v0) ⊆ F , for any 0 ≤ i ≤ 2, |F ∩ (A′
i ∪

B′
i+1 mod 3)| ≥ x+8− (α+1)+2x+4− (β+2γ+3)−12 = 3x− (α+β+2γ)−4.

Hence, |T ′|+|F∩(A′
i∪B′

i+1 mod 3)| ≥ 3x−8. LetWi = F \(A′
i∪B′

i+1 mod 3∪T ′).
Since |F | ≤ 3x+ 1, it follows that |Wi| ≤ 9.

Let fmax = maxi fi and assume w.l.o.g. that fmax = f2. Since
∑

0≤i≤2 fi ≤
|F \ T ′|, we get that f0 + f1 ≤ � 23 (5 + 3x− (α + β + 2γ)�.

To conclude, |F ∩B′
0| = |N(v0)|+f0+f1+|W0| ≤ 21+� 23 (5+3x−(α+β+2γ)�.

On the other hand, Lemma 1 implies that |F ∩B′
0| ≥ 2x+1−(β+2γ). Therefore,

22+ 2
3 (5+3x− (α+β+2γ) > 2x+1− (β+2γ) and it follows 73 > 2α−β− 2γ.

This contradicts the inequalities. ��

Lemmas 2 and 3 are sufficient to prove Theorem 2. More precisely, it shows
that there exists a family of graphs G and v0 ∈ V (G) such that csn(G, v0) ≥
sn(G, v0) + 2. However, the family of graphs we described does not allow to
increase further the cost of connectivity. Indeed, csn(G, v0) ≤ 3x+ 2 [9].

To conclude this section, we answer negatively a question in [1]. We show that

there is a graph G such that sn(G, s) = k and maxS⊆V (G)�{ |N [S]|−1
|S| }� < k [9].

3 Online Surveillance Number

In this section, we study the online variant of the surveillance game motivated
by the web-page prefetching problem where the observer (the web-browser) dis-
covers new nodes through hyperlinks in already marked nodes. In this variant,
the observer does not know a priori the graph in which it is playing. That is,
initially, the observer only knows v0 and the identifiers of its neighbors. Then,
when a new node is marked, the observer discovers all its neighbors that are not
yet marked. Note that the degree of a node is not known before it is marked.

Another property of an online strategy that must be defined concerns the
moment when the observer discovers the unmarked neighbors of a node that it
has decided to mark. There are two natural models. Assume that the set M of
nodes have been marked and this is the turn of the observer, and let N(M) be
the set of nodes with a neighbor in M . Either it first chooses the k nodes that
will be marked among the set N(M)\M of the unmarked neighbors of the nodes
that were already marked and then the observer marks each of these k nodes and
discover their unknown neighbors simultaneously. Or, the observer first chooses
one node x in N(M) \M , marks it and discovers its unmarked neighbors, then
it chooses a new node to be marked in N(M ∪ {x}) \ (M ∪ {x}) and so on until
the observer finishes its turn after marking k nodes. We choose to consider the
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second model because it is less restricted, i.e., the observer has more power, and,
even in this case, our result is pessimistic since we show that the basic strategy
is the best one with respect to the competitive ratio.

Formal Definition of Online Strategy. Now we are ready to formally define
an online strategy. Let k ≥ 1, let G = (V,E) be a graph, v0 ∈ V , and let G be
the set of subgraphs of G.

GivenM ⊆ V be a subset of nodes inducing a connected subgraph containing
v0 in G. Let GM ∈ G be the subgraph of G known by the observer when M
is the set of marked nodes. That is, GM = (M ∪ N(M), EM ) where EM =
{(u, v) ∈ E | u ∈ M}. For any u, v ∈ N(M) \ M , let us set u ∼M v if and
only if N(u) ∩M = N(v) ∩M . Let χM be the set of equivalent classes, called
modules, of N(M) \M with respect to ∼M . The intuition is that two nodes in
the same module of χM are known by the observer but cannot be distinguished.
For instance, χ{v0} = {N(v0)}.

A k-online strategy for the observer starting from v0 is a function σ : G ×V ×
2V × {1, · · · , k} → 2V such that, for any subset M ⊆ V of nodes inducing a
connected subgraph containing v0 in G, for any v ∈ M , and for any 1 ≤ i ≤ k,
then σ(GM , v,M, i) ∈ χM . This means that, if M is the set of nodes already
marked and thus the observer only knows the subgraph GM , if v is the position
of the surfer and it remains k− i+1 nodes to be marked by the observer before
the surfer moves, then the observer will mark one node in σ(GM , v,M, i).

More precisely, we say that the observer follows the k-online strategy σ if the
game proceeds as follows. LetM =M0 be the set of marked nodes just after the
surfer has moved to v ∈M . Initially, M0 = {v0} and v = v0. Then, the strategy
proceeds sequentially in k steps for i = 1 to k. First, the observer marks an
arbitrary node x1 ∈ σ(GM0 , v,M0, 1). Let M1 =M0 ∪ {x1}. Sequentially, after
having marked 1 < i < k nodes at this turn, the observer marks one arbitrary
node xi+1 ∈ σ(GMi , v,M i, i+ 1) and M i+1 =M i ∪ {xi+1}. When the observer
has marked k nodes, that is after choosing xk ∈ σ(GMk−1 , v,Mk−1, k), it is the
turn of the surfer, when it may move to a node adjacent to its current position
and then a new turn for the observer starts. Note that because we are interested
in the worst case for the observer, each marked node xi ∈ σ(GMi−1 , v,M i−1, i)
is chosen by an adversary.

The online surveillance number of a graph G with initial node v0, denoted
by on(G, v0), is the smallest k such that there exists a winning k-online strategy
starting from v0. In other words, there is a winning k-online strategy σ starting
from v0 such that an observer following σ wins whatever be the trajectory of the
surfer and the choices done by the adversary at each step. Note that, since we
consider the worst scenario for the observer, we may assume that the surfer has
full knowledge of G.

Theorem 3. There exists an infinite family of rooted trees such that, for any T
with root v0 ∈ V (T ) in this family, sn(T, v0) = 2 and on(T, v0) = Ω(Δ) where
Δ is the maximum degree of T .

Proof. We first define the family (Tk)k≥1 of rooted trees as follows.
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Fig. 2. Tree Tk described in the proof of Theorem 3

Let k ≥ 4 be a power of two and let i = 2k and d = 2k

k .
Let us consider a path P = (v0, v1, . . . , vi−1) with i nodes Let B be a complete

binary tree of height h = 3k+1 and rooted at some vertex vi, i.e., B has 2h+1−1
vertices. Let w0 be any leaf of B. Finally, let Q = (w1, . . . , wk) be a path on k
nodes. Note that, P,B and Q depend on k.

The tree Tk is obtained from P,B and Q by adding an edge between vi−1

and vi, an edge between w0 and w1. Finally, for any 1 ≤ j ≤ k, let us add an
independent set, Sj , with d vertices and an edge between each vertex of Sj and
wj (i.e., each node in Sj is a leaf). Tk is then rooted in v0.

Let Q+ denote the union of vertices of Q and
⋃k

j=1 Sj . The maximum degree

Δ of Tk is reached by any node wj , 1 ≤ j < k, and Δ = d+ 2 = 2k

k + 2.

Clearly, sn(Tk, v0) > 1. We show that sn(Tk, v0) = 2.
Consider the following (offline) strategy for the observer. At each turn j ≤ i,

the surfer marks the vertex vj and one unmarked vertex of Q+ that is closest
to the surfer. For each turn j > i and while the surfer does not occupy a node
in Q+ ∪ {w0}, the observer marks the neighbors of the current position of the
surfer if they are not already marked. Finally, if the surfer occupies a node in
Q+ ∪ {w0}, the observer marks two unmarked nodes of Q+ that are closest to
the surfer. It is easy to see, by induction on the number of steps that, each time
that the surfer arrives at a new node, this node is marked and has at most 2
unmarked neighbors. Hence, sn(Tk, v0) = 2.

Now it remains to show that on(Tk, v0) = Ω(Δ). Let γ be any online strategy

for Tk and marking at most d
4 = 2k−2

k nodes per turn. We show that γ fails.
For this purpose, we model the fact that the observer does not know the

graph by “building” the tree during the game. More precisely, each time the
observer marks a node v, then the adversary may add new nodes adjacent to v
or decide that v is a leaf. Of course, the adversary must satisfy the constraint
that eventually the graph is Tk. Initially, the observer only knows v0 that has
one neighbor v1. Now, for any 1 ≤ j < i, when the observer marks the node vj of
P , then the adversary “adds” a new node vj+1 adjacent to vj , i.e., the observer
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discovers its single unmarked neighbor vj+1. Now, let v be any node of B. Recall
that h is the height of B. When the observer marks v, there are three cases to
be considered: if v is at distance at most h− 1 from vi, then the adversary adds
two new nodes adjacent to v; if v is at distance h from vi and not all nodes of B
have been marked then the adversary decides that v is a leaf; finally, if all nodes
of B have been marked (v is the last marked node of B, i.e., B is a complete
binary tree of height h), the adversary decides that v = w0 and add one new
neighbor w1 adjacent to it. Note that we can ensure that the last node of B to
be marked is at distance h of vi by connectivity of any online strategy.

Now, let consider the following execution of the game. During the first i steps,
the surfer goes from v0 to vi. Just after the surfer arrives in vi, the observer
has marked at most (di)/4 nodes and all nodes of P ∪ {vi} must be marked
since otherwise the surfer would have won. Therefore, at most i(d/4− 1) + 1 =
22k−2/k − 2k + 1 nodes of B are marked when it is the turn of the surfer at vi.
Since B has 2h+1 − 1 = 23k+2 − 1 nodes, at least one node of B is not marked.

From vi, the surfer always goes toward w0. Note that the observer may guess
this strategy but it does not know where is w0 while all nodes of B have not
been marked.

Then let 0 ≤ t ≤ h and let v′t ∈ V (B) be the position of the surfer at step i+ t
and Bt the subtree of B rooted at v′t. Note that, at step i, v′0 = vi and B

0 = B.
Let Bt

l and B
t
r be the subtrees of B rooted at the children of v′t. W.l.o.g., let us

assume that the number of marked nodes in Bt
l is at most the number of marked

nodes in Bt
r, when it is the turn of the surfer standing at v′t. Then, the surfer

moves to the root of Bt
l . That is, v

′
t+1 is the child of vt whose subtree contains

the minimum number of marked nodes.
Let mt be the number of marks in the subtree of B rooted at v′t when it

is the turn of the surfer at v′t. Since, at beginning of step i there are at most
22k−2/k−2k+1 nodes of B that are marked and k ≥ 4, m0 ≤ 22k−2/k−2k+1 ≤
22k−2/k. Note that, for any t > 0,mt ≤ (mt−1−1+ d

4 )/2 ≤ (mt−1+
d
4 )/2. Simply

expanding this expression we get that, for any t > 0,

mt ≤
m0

2t
+

2k

k

t+2∑
j=3

2−j ≤ 22k−(t+2)

k
+

2k

k

t+2∑
j=3

2−j.

Therefore, for any t ≥ 2k:

mt ≤
1

k
+

2k

k

t+2∑
j=3

2−j ≤ 2k + 1

k
.

In particular, at step i + 2k (when it is the turn of the surfer), the surfer is
at v′2k which is at distance k + 1 from w0. Hence, |B2k| ≥ 2k+1 − 1 and at most
2k+1
k < 2k+1 − 1 of its nodes are marked. Hence, w0 neither no nodes in Q+ are

marked.
From this step, the surfer directly goes to wk unless she meets an unmarked

node, in which case, she goes to it and wins. When the surfer is at wk and it is her
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turn, the observer may have marked at most (2k + 2)d4 ≤
kd
2 + d

2 ≤ 2k−1 + 2k−1

k
nodes in Q+. Since |Q+| = (d + 1)k = 2k + k and k ≥ 4, at least one neighbor
of wk is not marked yet and the surfer wins. ��

Theorem 3 implies that, for any online strategy S, ρ(S) = Ω(Δ). Recall that
the basic strategy B, that marks all unmarked neighbors of the surfer at each
step, is an online strategy. B has trivially competitive ratio ρ(B) = O(Δ). Hence,
no online winning strategy has better competitive ratio than the basic strategy
up to a constant factor. In other words:

Corollary 1. The best competitive ratio of online winning strategies is Θ(Δ),
with Δ the maximum degree.

As mentioned in the introduction, any online strategy is connected and there-
fore, for any graph G and v0 ∈ V (G), csn(G, v0) ≤ on(G, v0). Moreover, we recall
that, for any tree T and for any v0 ∈ V (T ), csn(T, v0) = sn(T, v0) [1]. Hence,
there might be an arbitrary gap between csn(G, v0) and on(G, v0).

4 Conclusion

Despite our results, the main question remains open. Can the difference or the
ratio between the connected surveillance number of a graph and its surveillance
number be bounded by some constant?
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Surveillance Game. Rapport de recherche RR-8297. INRIA (2013)



Non-Additive Two-Option Ski Rental

Amir Levi and Boaz Patt-Shamir

Dept. of Electrical Engineering, Tel Aviv University
Tel Aviv 69978, Israel

{amirlevi,boazps}@tau.ac.il

http://www.eng.tau.ac.il/algs-lab

Abstract. We consider a generalization of the classical problem of ski
rental. There is a game that ends at an unknown time, and the algorithm
needs to decide how to pay for the time until the game ends. There are
two “payment plans” or “options,” such that the cost of t time units
under option i (for i = 1, 2) is given by ait + bi, where bi is a one-time
cost to start using option i, and ai is the ongoing cost per time unit.
We assume w.l.o.g. that a1 > a2 and b1 < b2. (The classical version is
b1 = 0 and a2 = 0, so that option 1 is “pure rent” and option 2 is “pure
buy.”) We give deterministic and randomized algorithms for the general
setting and prove matching lower bounds on the competitive ratios for
the problem. This is the first non-trivial result for the non-additive model
of ski rental, which models non-refundable one-time costs.

Keywords: Online computation, competitive analysis.

1 Introduction and Summary

To commit or not to commit? This classical dilemma is formalized quantitatively
by the classical “ski rental” problem [6]: one alternative is better for the long
term, another for the short term, and only the future will tell us which is the
right choice. Ski rental is an elementary on-line problem, as it allows us to
better understand how to minimize the cost of predicting time duration. This
abstraction is useful in many computer-related scenarios, e.g., snoopy caching
and TCP acknowledgment batching (see [7]), but obviously it applies also to
many real-life situations, e.g., payment plans [4].

The basic setting is as follows. We are given two ways to pay for some resource
we need. In the “buy” option there is a one-time fee and that’s it, and in the
“rent” option, we pay proportionally to the actual usage. (These options are
sometimes called “slopes”.) The algorithm needs only decide how to pay for the
usage, which boils down to decide if and when to switch from the rent to the
buy option, and the challenge is that the duration of the time we need to pay
for is determined on-line, i.e., it is unknown in advance. From the competitive
analysis point of view [3], one would like to bound the competitive ratio, namely
the worst-case ratio, over all possible instances, of the cost paid by the algorithm
to the optimal cost (which can be known only in hindsight). It is straightforward
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to see that the deterministic competitive ratio is 2 for this setting. A deeper result
shows that the randomized competitive ratio is e/(e− 1) ≈ 1.58 [8]. Intuitively,
it turns out that it is a good idea to guess when will the game end; the key is
the distribution of the guesses.

Recently there was some renewed interest in the problem, motivated by power-
saving models: Augustin et al. [1] mapped the “buy” and “rent” options to
different operational modes of a system where cost models energy consumption.
Inspired by this correspondence, they generalized the problem to include options
whose associated cost is a general linear function of time, i.e., any one-time fee
and any on-going payment rate. Formally, using an (a, b)-option for t time units
in this model has cost at+ b, where a, b ≥ 0 are given constants.

To formalize generalized ski rental, one has to state precisely what happens
when the algorithm switches from one option to another. Augustin et al. [1] dis-
tinguish between two variants of this issue: in the additive model, the immediate
cost of switching from an (a, b) option to an (a′, b′) option is b′ − b, namely the
one-time cost paid in the past is deducted from future one-time cost. In the non-
additive model, by contrast, it is assumed that there is an arbitrary transition
cost for switching between any two options.

In this work we present the first complete study of a non-trivial variant of non-
additive ski rental. Our model may be the simplest ski rental problem which is
not additive. Specifically, the problem we study, called na2ssr, is defined next.

1

1

b1

b2

Option 1

Option 2

1-b2

1-b1

time

cost

Fig. 1. A graphic representation of the input. Option i intersects the y axis at bi and
its slope is 1− bi.

The Non-Additive Two-Slope Ski Rental Problem (na2ssr). We are given two
options: the payment for t time units under option i is ait + bi for i = 1, 2.
The algorithm may either start with Option 1 and possibly at some time switch
Option 2, or immediately start with Option 2. We assume that a1 > a2 and
b1 < b2 (so that Option 1 is more “rent” and Option 2 is closer to “buy”). The
cost to the algorithm for using option i for ti time is aiti + bi, where ti is the
length of time Option i was in use. To avoid multiple redundant parameters,
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and without loss of generality, we shall assume that 0 ≤ b1 < b2 ≤ 1, and that
the ai = 1 − bi for i = 1, 2 (see Figure 1).1 Thus, na2ssr is fully specified by
the two parameters, b1 and b2.

Intuitively, our model formalizes simple situations in which changing one’s
mind, even instantly, has a cost. In the additive model, the cost of starting with
Option 1 and switching to Option 2 almost immediately is almost the same as
starting with Option 2. However, in the non-additive model this is not the case: If
the algorithm starts with Option 1 and switches to Option 2 almost immediately,
the resulting cost is at least b1 units more than the cost of starting with Option
2 upfront. Intuitively, the one-time cost b1 is “non-refundable.”

Our results. In this paper we determine the deterministic and randomized com-
petitive ratios of (b1, b2)-na2ssr, for 0 ≤ b1 < b2 ≤ 1. Specifically, we prove the
following results, each stating both an upper and a lower bound.

Theorem 1. The deterministic competitive ratio of (b1, b2)-na2ssr is

min

{
b2 + 1,

b2
b1
,
1− b1
1− b2

}
.

The proof of this result is given in Section 2.

Theorem 2. The randomized competitive ratio of (b1, b2)-na2ssr is

e1−
b1
b2

e1−
b1
b2 − b2 + b1

.

The proof of this result is given in Sections 3 and 4.

Notation. The following notation proves quite handy in the remainder of the

paper: B
def
= e(b2−b1)/b2 . With this notation, the competitive ratio of Theorem 2

can be rewritten slightly more compactly as

B

B − b2 + b1
.

It may be pleasing to observe that in the classical case, where b1 = 0 and b2 = 1,
we have that B = e and the competitive ratio attains its maximum, the well-
known value of e/(e − 1). Figure 2 depicts the optimal competitive ratio as a
function of b1 and b2. We note here that all calculations in this paper (and the
plots in Figure 2) were carried out mechanically using Mathematica software [12].

1 Note that this can always be attained by change of units in time and cost, under
the assumption that a1 > a2 and b1 < b2. If this assumption does not hold then the
instance is trivial, i.e., one option is always better than the other.
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Fig. 2. The competitive ratio of na2ssr as a function of b1 and b2. Left: Deterministic
algorithms. Right: Randomized algorithms. Note that the competitive ratio is 1 when
b1 = b2, and that the worst-case value for randomized algorithms is e

e−1
≈ 1.58, when

b1 = 0 and b2 = 1.

Related work. For general non-additive ski rental instance, the best published re-
sults we know of are as follows. Augustine et al. [1] give an optimal deterministic
algorithm (derived by dynamic programming), whose exact competitive ratio is
unknown. Fujiwara et al. [5] give bounds on deterministic competitive ratio of the
worst and best instances with a given number of slopes, assuming that there are
always pure-rent and pure-buy options. They argue that the “easiest” instances
are additive, and that the “hardest” instances are the ones where the one-time
cost of one option does not deduct the one-time cost of any other option. It
has been observed that any non-additive ski rental problem can be solved using
the generic “repeated doubling” technique, which yields a 4-competitive deter-
ministic algorithm [2] and an e-competitive randomized algorithm [11]. These
algorithms are in some sense oblivious to the particular structure of the given
instance, and are therefore non-optimal in many cases.

The additive model appears more amenable to analysis: [11] presents an al-
gorithm which computes the optimal randomized ski-rental algorithm for any
given additive instance.2 The value of the resulting optimal competitive ratio is
not know in general (it’s never worse than e

e−1 ). One exception is the special
case of two options: one is pure rent, and the other is general (one time fee and
on-going payment). In our notation, this is an instance of na2ssr with b1 = 0
and b2 ∈ [0, 1]. For this case, [10] shows that the competitive ratio is exactly
(upper- and lower-bounded) e

e−b2
, coinciding with our more general bounds.

Organization. The remainder of this paper is organized as follows. In Section
2 we discuss the optimal (offline) strategy and derive an optimal deterministic
algorithm. In Section 3 we prove the upper bound of Theorem 2, and in Section
4 we prove the lower bound.

2 A randomized algorithm for ski rental is a sequence of probability distributions of
when to switch from each slope to another. The algorithm in [11] computes these
optimal distributions.
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2 The Optimal Deterministic Algorithm

In this section we first spell out the optimal offline policy, against which we
measure the competitiveness of our online algorithms. We then turn to analyze
deterministic algorithms for na2ssr.

The optimal policy: Use Option 1 if the stopping time is less than 1, else use
Option 2. The optimal cost is given by the following function of the stopping
time y:

opt(y) =

{
b1 + y(1− b1) if 0 ≤ y ≤ 1, and

b2 + y(1− b2) if y > 1.

Deterministic algorithms. We now prove Theorem 1. To do that, we analyze
the competitive ratios of all deterministic online algorithms, and show that the

competitive ratio of all of them is at least min
{
b2 + 1, b2b1 ,

1−b1
1−b2

}
.

A deterministic algorithm is characterized by its time of switching from Option
1 to Option 2. We denote the algorithm that switches at time z by Az. We
proceed by case analysis.

Consider first A0, the algorithm that immediately uses Option 2 and never
uses Option 1. This algorithm is optimal if the stopping time t satisfies t ≥ 1.

For 0 ≤ t ≤ 1, the competitive ratio is b2+(1−b2)t
b1+(1−b1)t

which is decreasing in t, so the

worst-case competitive ratio of A0 is attained at t = 0, with the value b2/b1.
Next, consider an algorithm that switches at time 0 < z ≤ 1. Az is optimal

if the stopping time satisfies t < z, and for t ≥ z the competitive ratio of Az is
maximized at t = z for the value of

b1 + (1− b1)z + b2
b1 + (1− b1)z

= 1 +
b2

b1 + (1− b1)z
≥ 1 + b2

because b1 + (1 − b1)z ≤ 1 for z ≤ 1.
Now consider an algorithm Az that switches at time z > 1. Az is optimal if

the stopping time satisfies t ≤ 1, and for t ≥ 1 the competitive ratio of Az is
maximized at t = z for the value of

b1 + (1− b1)z + b2
b2 + (1 − b2)z

= 1 +
b1 + (b2 − b1)z
b2 + (1− b2)z

. (1)

Differentiating (1), we find that the competitive ratio, as a function of z, is
increasing if b22 > b1 and decreasing if b22 < b1. Suppose first that b22 > b1. In
this case we have that the competitive ratio of Az is lower-bounded at the lower
end of the range of z, namely at z = 1, where the ratio is 1 + b2. Finally, if
b22 < b1, the competitive ratio is lower bounded by the limit as z → ∞ (i.e., by
the competitive ratio of A∞, the algorithm that never switches to Option 2).
Therefore, the competitive ratio in this case is at least

lim
z→∞

(
b1 + (1− b1)z + b2
b2 + (1− b2)z

)
=

1− b1
1− b2

,
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assuming that b2 < 1. Note that if b22 < b1, then
1−b1
1−b2

≤ 1−b22
1−b2

= 1 + b2. Note

also that 1−b1
1−b2

≤ b2
b1

iff b2 < 1− b1. We can therefore conclude that the optimal
deterministic algorithm is as follows.

(1) If b1 ≥ b22 and b1 ≥ 1− b2, then A∞ is optimal.
(2) If b1 ≤ b22 and b1 ≤ b2

1+b2
, then A1 is optimal.

(3) If b1 ≥ b2
1+b2

and b1 ≤ 1− b2, then A0 is optimal.

In case of ties, we can choose arbitrarily (the algorithms guarantee the same
competitive ratio in these cases). This concludes the proof of Theorem 1.

b1

b2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 3. Partition of the unit square to regions according to the conditions in Theorem 1.
The lines are b1 = b2, b1 = 1 − b2, b1 = b22 and b1 = b2

b2+1
. A0 is optimal in the blue

region (top right), A1 in the gray region (top left), and A∞ in the pink region (left
bottom).

Figure 3 shows the partition of the (b1, b2) plane into regions according to the
optimality of the deterministic algorithm (this is a top projection of the left chart

in Figure 2). We note that when b2 = −1+
√
5

2 ≈ 0.618 and b1 = 1 − b2 ≈ 0.382
all conditions are satisfied and all three algorithms are optimal. (In this case the
competitive ratio is the golden ratio φ ≈ 1.618.)

Finally, we note that unlike additive ski rental, in na2ssr the optimal deter-
ministic algorithm depends on the parameters of the problem. In the additive
version of 2 slopes, we have that b1 = 0 and b2 > 0, and hence A0 and A∞ are
never optimal.

3 The Optimal Randomized Algorithm

In this section we derive an optimal randomized algorithm step-by-step, thus
proving the upper bound of Theorem 2. We model the optimal algorithm as
follows. First, there is some probability that the algorithm starts with Option 2.
Let p0 denote that probability. Next, let p1(t) be the probability of being at
Option 1 by time t ≥ 0, conditioned on the event that the algorithm did not start

with Option 2. Thus p1(0) = 1. We shall focus on p2(t)
def
= 1 − p1(t), namely
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p2(t) is the probability that the algorithm is at Option 2 at time t, given that
the algorithm did not start with Option 2.

To find explicit expressions for p0 and p2, we consider the cost-spending rate of
the algorithm at time t. This cost has two components: the expected spending on
one-time cost toward switching to Option 2, and the ongoing cost, apportioned
to Options 1 and 2. The expected ongoing cost rate at time t is precisely p0(1−
b2) + (1− p0)(p1(t)(1− b1) + p2(t)(1− b2)). The instantaneous rate of spending
due to the one-time cost at time t is precisely (1 − p0)b2 d

dtp2(t). Therefore, the
expected rate of cost to the algorithm for t ≥ 0 is:

d

dt
alg(t) = p0(1− b2) + (1− p0)

(
(1− b1)p1(t) + b2

d

dt
p2(t) + (1− b2)p2(t)

)

= p0(1− b2) + (1− p0)
(
(1− b1)− (b2 − b1)p2(t) + b2

d

dt
p2(t)

)
. (2)

On the other hand, for the optimal policy, only ongoing costs affect the
derivative:

d

dt
opt(t) =

{
1− b1 if 0 < t < 1, and

1− b2 if t > 1.
(3)

To proceed, we make several guesses regarding the optimal solution. These
guesses are justified by arriving at a solution and verifying its properties. First,
we guess that in the optimal solution, for all t ≥ 0 we have a constant competi-

tive ratio c
def
= alg(t)/opt(t). Rearranging and differentiating, this guess takes

the following form.
d

dt
alg(t) = c · d

dt
opt(t) . (4)

We now proceed by cases, to solve for p0, p1, p2 and c.

Case 1: 0 ≤ t ≤ 1. Plugging the expressions of (2) and (3) for this case in (4),
we obtain the differential equation

d

dt
p2(t)−

b2 − b1
b2

· p2(t) =
p0(b2 − b1) + (1− b1)(c− 1)

b2(1− p0)

which we can easily solve for p2(t):

p2(t) =
p0(b2 − b1) + (1− b1)(c− 1)

(b2 − b1)(1− p0)
· (Bt − 1) , (5)

where the invisible 1-factor of Bt was determined by the boundary condition
p2(0) = 0.

Case 2: t ≥ 1. We now make another guess: that the probability of switching
to Option 2 after time 1 vanishes, namely p′2(t) = 0 for all t > 1. Plugging the
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expressions from (2) and (3) in (4) we obtain another expression for p2(t), for
t ≥ 1:

p2(t) =
(1 − b1)− (1− b2)c− p0(b2 − b1)

(1 − p0)(b2 − b1)
. (6)

(Note that p2(1) is the final probability that the algorithm is in Option 2, given
that it didn’t start with Option 2.) Assigning t← 1 in (5) and in (6), we obtain
an expression for c in terms of b1, b2 and p0:

c =
B ((1− b1)− p0(b2 − b1))
B(1 − b1)− (b2 − b1)

. (7)

Special case: t = 0. For t = 0 we have directly from definitions that

alg(0) = p0b2 + (1− p0)b1 and

opt(0) = b1 ,

which means that c = (p0b2 + (1 − p0)b1)/b1. Using also (7) we can solve for p0,
and then obtain a simplified expression for the competitive ratio c. This results
in the following solution.

p0 =
b1

B − (b2 − b1)
, and (8)

c =
B

B − (b2 − b1)
. (9)

We summarize with a complete description of the algorithm.
Recall that B = exp(1− b1

b2
).

Algorithm A∗: a randomized solution to na2ssr.

1. With probability p0 (cf. (8)), start with Option 2.
2. Else (with probability 1− p0):

(a) Choose a number t ∈ [0, 1] using the cumulative probability function
p2, described by (5), which simplifies by (8) and (9) to

p2(t) =
Bt − 1

B − b2
. (10)

With probability p1(1) = 1−p2(1) = 1−b2
B−b2

, no number is chosen. In
this case we set t←∞.

(b) Start with Option 1, and switch to Option 2 at the chosen time t if
the game is not over yet. If t = ∞, the algorithm never switches to
Option 2.
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Verification. To justify our guesses, we now verify the competitive ratio of our
algorithm. This means we need to show that the expected cost to the algorithm,
for any stopping time z of the game, is at most B

B+b1−b2
times the optimal cost.

(We note again that the calculations were done mechanically [12].)
Consider first the special case where the game stops at time 0. In this case

the expected cost to the algorithm is

A∗(0) = p0b2 + (1−p0)b1 =
b1B

B + b1 − b2
,

and since opt(0) = b1, the competitive ratio in this case is B
B+b1−b2

. Next, we
consider stopping time z ∈ (0, 1). Letting p′2(t) denote the derivative of p2(t)
w.r.t. t, the expected cost to the algorithm is

A∗(z) = p0(b2 + (1−b2)z) + (1−p0)
[ ∫ z

0

(b1 + (1−b1)t+ b2 + (1−b2)(z−t))p′2(t)dt

+p1(z)(b1 + (1−b1)z)
]

=
B(b1 + (1−b1)z)
B + b1 − b2

,

which is what we expect, since opt(z) = b1 + (1− b1)z in this case.
Finally, we consider stopping time z′ ≥ 1. In this case the expected cost to

the algorithm is

A∗(z′) = p0(b2 + (1−b2)z′) + (1−p0)
[ ∫ 1

0

(b1 + (1−b1)t+ b2 + (1−b2)(z′−t))p′2(t)dt

+p1(1)(b1 + (1−b1)z′)
]

=
B(b2 + (1−b2)z′)
B + b1 − b2

.

(The differences from the expression for z ∈ (0, 1) above is the upper limit of the
integral and that p1(1) replaces p1(z).) This result is what we expect, because
opt(z′) = b2 + (1− b2)z′. This concludes the proof of the upper bound claimed
in Theorem 2.

Remark: We note that the results above coincide with two special cases: in [10],

the case of b1 = 0 is considered, and the single parameter used is a
def
= 1− b2. In

this case we have B = e. The competitive ratio stated in [10] is e
e−(1−a) =

e
e−b1

,

which coincides with our (9). Another special case is considered in [9], where
b2 = 1. In this case B = e1−b1 . The probability p0 of starting at Option 2, as

stated in [9] is b1
e1−b1−(1−b1)

, and the competitive ratio is e1−b1

e1−b1−(1−b1)
, agreeing

with the more general (8) and (9).

4 Lower Bound on the Randomized Competitive Ratio

We now prove that the algorithm presented in Section 3 is optimal. To this end,
we employ Yao’s Lemma [13], which says in our context that to prove a lower
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bound of ρ on randomized algorithms, it is sufficient to present a probability
distribution D over the instances such that for any deterministic algorithm Az ,
we have that EI∈D[Az(I)/opt(I)] ≥ ρ.

Now an instance is specified by the stopping time. To find the worst-case
probability distribution over stopping times, we make a few guesses. First, we
guess that the desired distribution has the following support: some probability
density function (pdf) on the interval [0, 1], and some positive probability mass
at points 0 and T , for a point T > 1 to be determined. Second, we guess that
with respect to that distribution, the expected competitive ratio of all algorithms
that stop at some time t ∈ [0, 1] ∪ {T }, is the same, and equals B

B−b2+b1
.

Based on these guesses, and using methods similar to the ones we used for
deriving the algorithm in Section 3, we arrive at the following distribution.

– Let

q0
def
=

b21B

b2(B + b1 − b2)
.

With probability q0, the stopping time is 0. In this case the optimal policy
is to take Option 1, for a cost of opt(0) = b1.

– Define

T
def
= 1 +

b2
b2 − b1

, and

qT
def
=

2− b2 − b1
b2

B + b1 − b2
.

With probability qT , the stopping time is T . In this case the optimal policy
is to take Option 2, for a cost of opt(T ) = b2 + T (1− b2).

– With probability 1 − q0 − qT , the stopping time is chosen from the interval
(0, 1). This is done using the following pdf for u ∈ (0, 1):

q(u)
def
= K(b1 + (1− b1)u)B−u ,

Where K is the appropriate constant so that
∫ 1
0
q(u)du = 1− q0 − qT :

K
def
=

(
b2 − b1
b2

)2
B

B + b1 − b2
In this case the optimal policy is Option 1.

– All other stopping times are assigned zero probability.

We now bound the expected competitive ratio of any deterministic algorithm
when the instance is drawn randomly according to the above distribution.

Consider first the algorithm A0 that starts with Option 2 immediately. Its
expected competitive ratio is

ρ(0) = q0
b2
b1

+

∫ 1

0

b2 + (1− b2)u
b1 + (1− b1)u

q(u)du+ qT · 1

=
B

B + b1 − b2
.
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Next, consider an algorithm Az that switches from Option 1 to Option 2 at
time 0 < z ≤ 1. The expected competitive ratio of Az is

ρ(z) = q0 · 1 +
∫ z

0

q(u)du +

∫ 1

z

b1 + (1− b1)z + b2 + (1− b2)(u− z)
b1 + (1− b1)u

q(u)du

+ qT
b1 + (1− b1)z + b2 + (1− b2)(T − z)

b2 + T (1− b2)

=
B

B + b1 − b2
.

Next, we consider Az′ with 1 < z′ ≤ T . In this case the expected competitive
ratio is

ρ(z′) = q0 +

∫ 1

0

q(u)du+ qT
b1 + (1− b1)z′ + b2 + (1− b2)(T − z′)

b2 + T (1− b2)

=
B + (z′ − 1)(b2 − b1)2/b2

B + b1 − b2
≥ B

B + b1 − b2
.

And finally, we consider Az′′ with z′′ > T . The expected competitive ratio in
this case is

ρ(z′′) = q0 +

∫ 1

0

q(u)du + qT
b1 + T (1− b1)
b2 + T (1− b2)

=
B

B + b1 − b2
.

This concludes the proof of the lower bound stated in Theorem 2, and the proof
of Theorem 2 is complete.

5 Conclusion

In this paper we solved what may be the simplest non-trivial variant of the non-
additive ski rental problem. The results reveal that the problem, in this simple
variant, exhibits new features that are not present in the additive model. This is
particularly evident in the structure of the optimal deterministic algorithm, in
which starting with the “buy” option immediately is optimal for a non-empty
range of the parameters. We hope that our results will be a first step in a more
complete understanding of general non-additive ski-rental.
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Abstract. This paper presents an asymptotically optimal online algo-
rithm for compressing the Forwarding Information Base (FIB) of a router
under a stream of updates (namely insert rule, delete rule, and change
port of prefix). The objective of the algorithm is to dynamically aggre-
gate forwarding rules into a smaller but equivalent set of rules while
taking into account FIB update costs. The problem can be regarded as
a new variant of ski rental on the FIB trie, and we prove that our de-
terministic algorithm is 3.603-competitive. Moreover, a lower bound of
1.636 is derived for any online algorithm.

1 Introduction

An Internet router typically stores a large number of forwarding rules: Given
a packet’s IP address, the router uses the so-called Forwarding Information Base
(FIB) to determine the forwarding port (or next-hop) of the packet. These very
time critical FIB lookups require a fast and expensive memory on the line card,
which constitutes a major cost factor of today’s routers. It is expected that the
virtualization trend in the Internet will further increase the memory require-
ments [2,9], and also IPv6 does not mitigate the problem [3].

A simple and local solution to reduce the FIB size is the aggregation (compres-
sion) of the FIB, i.e., the replacement of the existing set of rules by an equivalent
but smaller set. This solution does not affect neighboring routers and it can be
done by a simple software update [18]. However, aggregation may come at the
cost of a higher FIB update churn (e.g., see [5]): upon certain BGP updates, ag-
gregated FIB entries may have to be disaggregated again. Frequent FIB updates
are problematic as upon each update, internal FIB structures have to be rebuilt
to ensure routing consistency. In particular, update costs are also critical in the
context of Software-Defined Networks (SDN) (e.g., based on OpenFlow [10]), as
the network controller is remote from the switch and FIB updates may have to
be transmitted over a bandwidth-limited network [15].

While this problem is currently discussed intensively in the networking com-
munity [7,17], only heuristics and static algorithms have been proposed so far.
We, in this paper, assume the perspective of competitive and worst-case anal-
ysis, and present a solution which jointly optimizes the FIB compression ratio
and the number of FIB updates.
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Fig. 1. Controller and FIB: the controller updates the rules in the FIB. This paper
focuses on online algorithms for the controller.

1.1 The Model

An (IP) address is a binary string of length w (e.g., w = 32 for IPv4 and w = 128
for IPv6) or equivalently an integer from [0, 2w − 1]. An (IP) prefix is a binary
string of length at most w; we denote the empty prefix by ε. A prefix matches
all addresses that start with it, i.e., it corresponds to a range of addresses of the
form [k · 2i, (k + 1) · 2i − 1].

Forwarding Rules. We consider a packet forwarding router with a set of ports
(or next-hops). A Forwarding Information Base (FIB) is a set of forwarding rules
used by the router; each rule is a prefix-port pair (p, c). For the presentation,
we will refer to the ports by colors, i.e., assume a unique color for each port.
For any packet processed by the router, a decision is made on the basis of its
destination IP address x using the longest prefix match policy [11]: among the
FIB rules {(pi, ci)}i, the router chooses the longest pi being a prefix of x, and
forwards the packet to port ci. (We assume that there are no two rules with the
same prefixes and different ports.) If no rule matches, the packet is dropped.

The router contains two parts: the controller (either implemented on the route
processor, or an SDN controller) and the (compressed) FIB (stored in a fast and
expensive memory), cf. Fig. 1. The controller keeps a copy of the uncompressed
FIB (U-FIB) and receives a stream of updates to this structure (e.g., due to
various events from the Border Gateway Protocol, BGP). More precisely, we
assume continuous time; at any time t, (1) a new forwarding rule may be inserted,
(2) an existing rule deleted, or (3) a prefix may change its forwarding port (color
update). A sequence of such events constitutes the input to our problem.

Right after a change occurs, the controller must ensure that the U-FIB and
the FIB are equivalent, i.e., their forwarding and dropping behavior is the same.
In this paper, we will make the simplifying assumption that the FIB prefixes
are independent : the FIB does not contain any prefixes which overlap in their
address range. To this end, the controller may insert, delete or update (change
color) individual rules in the FIB. The controller may also issue these commands
at any point of time (e.g., for a delayed compression of the FIB).

Costs. We associate a fixed cost α with any such change of a single rule in the
FIB. Note that we represent the update cost as a constant to keep the model
general: α is not specific for any particular FIB data structure (e.g., trie, cache,
or Multibit Burrows-Wheeler [12]), but may also model the cost of transmitting
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a control packet between an SDN controller and the OpenFlow switch. (See
also [7].) The total cost paid this way is called update cost; the amount paid by
an algorithm Alg in a time interval I is denoted by U-CostI(Alg).

The second type of cost we want to optimize is the size of the FIB, which —
following [4] — is defined as the number of FIB forwarding rules. This modeling is
justified by state-of-the-art approaches (see, e.g., [11, chapter 15]), where the size
of such a structure is usually proportional to the number of entries in the FIB.
For an algorithm Alg and time t, we denote the number of FIB rules at time t
by Sizet(Alg). The total memory cost in a time interval I is then defined as
M-CostI(Alg) =

∫
I
Sizet(Alg) dt.

In both objective functions (U-Cost and M-Cost), we drop time interval
subscripts when referring to the total cost during the runtime of an algorithm.
This paper focuses on minimizing the sum of these two costs, i.e., Cost(Alg) =
U-Cost(Alg)+M-Cost(Alg). Note that the parameter α can be used to put
more emphasis on either of the two costs.

Competitive Analysis. We assume a conservative standpoint and study al-
gorithms that do not have any knowledge of future prefix changes, and need
to decide online on where and when to aggregate. Not relying on predictions
seems to be a reasonable assumption considering the chaotic behavior of the
route updates in the modern Internet [6]. We use the standard yard-stick of on-
line analysis [1], i.e., we compare the cost of the online algorithm to the cost of
an optimal offline algorithm Opt that knows the whole input sequence in ad-
vance. We call an online algorithmAlg ρ-competitive if there exists a constant γ,
such that for any input sequence it holds that Cost(Alg) ≤ ρ ·Cost(Opt)+γ.
The competitive ratio of an algorithm is the infimum over all possible ρ such
that the algorithm is ρ-competitive.

Empirical Motivation. The motivation for our simplifying assumption of
independent prefixes is twofold. First, an algorithm to solve the independent
case can be applied to the independent subtrees. Moreover, empirical data shows
that while Internet routers typically define a default route (an empty prefix),
the prefix hierarchy is typically very flat [15]: prefixes hardly overlap with more
than one other prefix. As of February 2013, the Internet-wide BGP routing table
contains more than 440k prefixes. In table dumps obtained from RouteViews [13],
we observe that around half of all prefixes do not have any less specifics, and on
average, a prefix has 0.64 less specifics.

Furthermore, in our modeling, we neglect the impact a FIB compression may
have on IP lookup times, because they are affected only to a very limited extent.
The state-of-the-art data structures used for IP lookup (see, [11, chapter 15])
use a large variety of tree-like constructs augmented with additional information.
This allows for lookup times of order O(logw), with practical implementations
using 2-3 memory lookups on the average). Additionally, little is known about
proprietary data structures actually used in the routers of different vendors.



Competitive FIB Aggregation for Independent Prefixes 95

1.2 Related Work

There are known fast algorithms for optimal FIB aggregation of table snapshots,
for example the Optimal Routing Table Constructor (ORTC) [4] and others [16].
However, as these algorithms do not support efficient handling of incremental
updates, a re-computation of the optimally aggregated FIB on each forward-
ing rule change is needed. This is computationally expensive and can lead to
high churn. There are several papers that deal with this problem by proposing
heuristics that simultaneously try to limit the number of updates to the FIB
while maintaining a good compression rate, including SMALTA [17] and oth-
ers [7,8,18]. Moreover, some authors even proposed to only store a subset of
rules in the FIB, leveraging Zipf’s law [15]. However, none of these works give
a formal bound on the achievable performance over time neither with respect
to the number of updates to the aggregated FIB, nor to the aggregation gain.
They also do not consider to use churn locality for their benefit.

The closest paper to ours is [14] by Sarrar et al. The authors first study the
temporal and spatial locality of churn in the trie empirically, and then present
an O(w2)-competitive online algorithm for tries with dependent prefixes. It is
worth noting that in the dependent case, for a large class of online algorithms,
there exists a Ω(w) lower bound. This indicates that the independent prefix
variant might be inherently simpler.

1.3 Our Contribution

The main contribution of this paper is a deterministic online algorithm for the
FIB aggregation problem (with independent prefixes) that jointly optimizes the
FIB size (by rule aggregation) as well as the number of updates to the FIB (by
timed waiting). We prove that our algorithm is 3.603-competitive under a worst-
case sequence of rule updates (events: insert, delete, port change). Furthermore,
we show that there provably does not exist any online algorithm with a compet-
itive ratio smaller than 1.636.

Technically, the problem can be regarded as a variant of online ski rental on
a trie: The presented algorithm Block seeks to aggregate prefixes slowly over
time, amortizing aggregation costs with the memory benefits.

2 Basic Properties

Trie Representation. Throughout this paper, we will represent both the
U-FIB and the FIB as one-bit tries containing all the prefixes from the for-
warding rules. This affects merely the presentation: we do not assume anything
about the actual implementation of the U-FIB/FIB structures. We assume that
each non-leaf node has exactly two children. Each node of the tree (correspond-
ing to some prefix p) has an associated color c if there is a forwarding rule
(p, c); a node without any associated color is called blank. We assume minimal
tries, that is, tries without blank sibling leaves (they may contain blank leaves,
though).
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Fig. 2. One-bit tries representing a U-FIB and two possible compressions to the FIBs.
Mergeable nodes are marked with small squares in the center. Nodes consolidated for
the creation of FIB1 are drawn with bold lines.

For any node v, we denote the subtree rooted at v by T (v). A non-root node
we call left (right) if it is a left (respectively right) son of its parent. Sometimes
it is convenient to identify the nodes with the address ranges they represent.

Mergeable Nodes. Let’s first assume that the state of the U-FIB is static,
i.e., we are not processing an input, and study the structural properties of the
possible FIB aggregations. An internal (blank) node v from U-FIB is called c-
mergeable if all leaves of T (v) are of color c. Sometimes, we will simply say that
a node is mergeable instead of c-mergeable. Clearly, if a node v is c-mergeable,
then all internal nodes from T (v) are c-mergeable.

Mergeable nodes are the key to all compression patterns possible. Namely,
any possible FIB aggregation is defined by choosing any set A of mergeable,
pairwise non-overlapping nodes. For any c-mergeable node v ∈ A, we remove
all descendants of v (recall that each of them is either an internal c-mergeable
node or a leaf of color c) and color v with c. In the U-FIB, we call v and all the
internal (mergeable) nodes of T (v) consolidated, cf. Fig. 2.

Hence, all an algorithm may do is to choose which mergeable nodes to consol-
idate and when. At runtime, an algorithm may change the FIB incrementally,
by consolidating or unconsolidating nodes. The only restriction is that all the
(mergeable) descendants of consolidated nodes have to be consolidated as well.
Therefore, there are two possible operations an algorithm may perform.

– A merge operation (at a mergeable, unconsolidated node v) changes the state
of all, say k, mergeable, unconsolidated nodes from T (v) to consolidated.
These k nodes were internal ones, and hence the operation involves replacing
k+1 leaves in the FIB by a node v, i.e., induces the update cost of (k+2) ·α.

– A split operation has the reverse effect and is described by a tree (rooted
at v) of k′ consolidated nodes whose state is changed to unconsolidated. It
is possible that this tree does not contain all the consolidated nodes of T (v).
In the FIB, this involves replacing node v by k′ + 1 nodes, and hence the
associated update cost is (k′ + 2) · α.

The size of the FIB is tightly related to the number of consolidated nodes. Pre-
cisely speaking, we denote the size of the U-FIB by Size(U-FIB), the number of
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mergeable nodes at time t byM(t), and nodes consolidated by an algorithmAlg

by SALG(t). Then, SALG(t) ≤M(t) and Sizet(Alg) = Size(U-FIB)−SALG(t).
So far, we only studied the compression of a static U-FIB. When at some

time t a prefix (v, c) changes color to c′, the following changes to the U-FIB

occur. If the sibling of v has color c′, then the parent of v and possibly some of
its ancestors may become c′-mergeable. If the sibling of v has color c, then all
the c-mergeable ancestors of v (if any) become non-mergeable. If some of these
nodes were consolidated, a split operation involving these nodes is forced.

Event Costs. We fix any algorithm Alg and take a closer look at its update
cost, U-Cost(Alg). Whenever Alg processes a single event at time t, it has to
update the FIB paying α. However, this cost can be avoided if Alg performs
a related merge or split operation (as defined in Sect. 2) immediately at time t.
For example, if a color update of node v changes the state of the parent of v to
mergeable, Alg may merge the parent of v at the same time and pay only 3α
for the cost of merging without paying the event cost of α. Another example is
a forced split.

Lemma 1. Assume that an online algorithm Alg is R-competitive if we neglect
event costs. Then, it is (R+1/3)-competitive if we take these costs into account.

Proof. We partition U-Cost(Alg) into the sum of O-Cost(Alg), the cost of
all (merge or split) operations performed by Alg, and E-Cost(Alg), the cost
of events on nodes not accompanied by immediate operations on the same nodes.
In these terms, Cost(Alg) = M-Cost(Alg)+O-Cost(Alg)+E-Cost(Alg).

Fix any input sequence. By the assumption of the lemma, M-Cost(Alg) +
O-Cost(Alg) ≤ R · (M-Cost(Opt)+O-Cost(Opt))+γ for some constant γ.
Let k be the number of events in the input sequence. Clearly, E-Cost(Alg) ≤
k ·α. On the other hand, for any event, an optimal offline algorithm Opt either
performs a merge or a split, which increasesO-Cost(Opt) by at least 3α, or does
not perform any spatial operations on the trie, which increases E-Cost(Opt)
by α (color change only). Thus, 1

3 ·O-Cost(Opt) +E-Cost(Opt) ≥ k ·α, and
hence,

Cost(Alg) ≤ R · (M-Cost(Opt) +O-Cost(Opt)) + γ + k · α
≤ R ·M-Cost(Opt) + (R + 1/3) ·O-Cost(Opt)

+ E-Cost(Opt) + γ

≤ (R + 1/3) ·Cost(Opt) + γ ,

which completes the proof. ��

3 The Algorithm BLOCK

Our algorithm Block is very simple: With any node v, we associate a counter
Cv which is a function of time. If v is c-mergeable at time t, then Cv(t) measures
how long (uninterruptedly) v is in this state; otherwise Cv(t) = 0. The algorithm
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Block is parameterized with two constants, A ≥ B; we derive an optimal choice
for these constants later.

As soon as there is a non-consolidated node v whose counter is A · α, Block

merges the tree T (u) rooted at the ancestor u of v which is closest to the trie
root and whose counter is at least B ·α. (It is possible that u = v.) Furthermore,
Block splits only when forced, i.e., when a consolidated node changes state to
non-mergeable.

Lemma 2. Fix any values of A and B. Neglecting event costs, Block(A,B) is
max{(A+6)/A, (B+4)/B, (A+6)/(A+2−B), (B+4)/2, (A+4)/2}-competitive.

Proof. The proof pursues an accounting approach: We charge the non-event costs
of any algorithm to particular nodes and relate the cost of Block and Opt on
chosen subsets of nodes. Recall that whenever an algorithm merges or splits
a subtree, it pays (k+2) ·α, where k is the number of leaves of this subtree. We
assign the cost of 3α to the root of this tree and α to all its remaining internal
nodes. Thus, whenever an algorithm consolidates a mergeable node (or changes
the state back from consolidated) it pays 3α or α. Furthermore, we assume that
only nodes that are mergeable but not consolidated are counted towards the size
of FIB. This way, at time t, we underestimate the actual memory cost by the
number of non-mergeable nodes, Size(U-FIB)−M(t). This amount is however
the same for any algorithm. Therefore, if the algorithm is R-competitive using
charged costs, it is also R-competitive in the actual cost model.

We first take a mergeable period (of length τ) of node v during which it is
not consolidated by Block; we compare the costs of Opt and Block for v in
this period. In this case, Block pays just τ for the memory cost. As Block

does not consolidate v, τ < Aα. If Opt decides to merge v, it pays at least α for
merging v and at least α for splitting it. Otherwise, it pays τ for the memory
cost. In total, the ratio of the Block and Opt costs is at most

R1 = τ/min{τ, 2α} ≤ max{1, τ/2α} ≤ max{1, A/2} .
Now, we compare the costs on nodes that are consolidated (by a single merging

operation) by Block. More precisely, we consider any time t at which Block

merges a tree T rooted at node u. We analyze the total cost of Block and Opt

for all mergeable periods of all nodes from T , such that these periods contain
time t. Let k + 1 be the number of all consolidated nodes from T (i.e., k ≥ 0).
We denote the value of counters of these nodes at time t by Ci. For convenience,
we assume these values are sorted, i.e., Ci ≤ Ci+1. By the definition of the
algorithm, Bα ≤ C1 ≤ C2 . . . Ck ≤ Ck+1 = Aα. On the considered mergeable

periods of nodes of T , Block pays
∑k+1

i=1 Ci (memory cost) plus (k + 3) · α
(merging cost), plus (k+1) ·3α (splitting cost as in the worst case the nodes are
split individually). Thus, in total,

CostT (Block) ≤ 2α+
∑k+1

i=1 (Ci + 4α) ≤ (A+ 6)α+
∑k

i=1(Ci + 4α) .

Now, we compute the cost of Opt on the same mergeable periods. Let K be
the smallest time interval containing all these periods. By the algorithm def-
inition, K starts at time t − Aα. We consider three cases depending on Opt
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actions within K. In each bound, after computing the Block-to-Opt ratio, we
immediately use the relation (a+ b)/(c+ d) ≤ max{a/c, b/d}.

Case 1. Within K, Opt does not merge any subtree rooted at a node from T
nor at any of ancestors of u. In this case, no node of T becomes consolidated by
Opt, and hence Opt just pays memory costs, i.e., CostT (Opt) =

∑k+1
i=1 Ci =

Aα+
∑k

i=1 Ci. Therefore, the Block-to-Opt cost ratio is at most

R2 =
(A+ 6)α+

∑k
i=1(Ci + 4α)

Aα+
∑k

i=1 Ci

≤ max

{
A+ 6

A
,
B + 4

B

}
.

Case 2. Within K, Opt does not merge any subtree rooted at a node in T ,
but does merge a subtree rooted at an ancestor of u, say u′. By the algorithm
definition, Cu′ (t) < B · α (otherwise Block would choose u′ as the root for the
merging operation). This means thatOptmerges not earlier than at time t−B·α,
so the corresponding counters of the nodes from T are at least Ci −Bα. Hence,
the cost of Opt associated with node i is at least Ci −Bα (memory cost) plus

2α (merging and splitting). Therefore, CostT (Opt) ≥
∑k+1

i=1 (Ci −Bα+ 2α) =

(A+ 2−B)α+
∑k

i=1(Ci + (2− B)α), and the ratio in this case is

R3 =
(A+ 6)α+

∑k
i=1(Ci + 4α)

(A+ 2−B)α+
∑k

i=1(Ci + (2 −B)α)
≤ max

{
(A+ 6)

A+ 2−B ,
B + 4

2

}
.

Case 3. Within K, Opt merges some subtree rooted at a node from T . In
this case, we split the indices of nodes of T into two sets: a set S of nodes
that become consolidated sometime within K and a set N of nodes that remain
unconsolidated for the whole period K. Clearly, |S| + |N | = k + 1. For the
node from S being the root of the merged subtree, Opt pays at least 3α + α
(merging and splitting cost) and for the remaining nodes from S at least α+α.
For any node from N , Opt pays at least Ci (memory cost). Hence, in total,
Cost(Opt) = 2α+

∑
i∈S 2α+

∑
i∈N Ci, and the cost ratio is

R4 =
2α+
∑

i∈S(Ci + 4α) +
∑

i∈N (Ci + 4α)

2α+
∑

i∈S 2α+
∑

i∈N Ci
≤ max

{
1,
A+ 4

2
,
B + 4

B

}
.

As we all possible cases are considered above, the competitive ratio is at most
max1≤i≤4 Ri. The lemma follows by substituting the actual values of Ri. ��

Tedious case analysis and elementary algebra shows that the choice of pa-
rameters minimizing the guarantee of Lemma 2 is A =

√
13 − 1 ≈ 2.606 and

B = 2
3A ≈ 1.737. Taking event costs into account (cf. Lemma 1), we obtain the

following result.

Theorem 1. The competitive ratio of Block(
√
13−1, 2

√
13/3−2/3) is at most

(
√
13 + 3)/2 + 1/3 ≈ 3.603.

Note that there is a simpler version of the Block algorithm that consolidates
only one node at a time, i.e., uses A = B. In such case, the optimal choice of
the parameters is A = B = 2, and thus such algorithm is (4 + 1/3)-competitive.
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4 Handling Insertions and Deletions

So far, we show how to handle color updates to the U-FIB. In this section,
we show that it is possible to handle also insertions of new rules to the U-FIB

and deletions of old rules from the U-FIB. Recall that the algorithm Block

simply watches the changes in the mergeability of U-FIB nodes. For completing
the definition of Block, it is therefore sufficient to show how insertions and
deletions affect that aspect.

– A prefix (v, c) is inserted to the U-FIB. If node v already existed in the tree
as a blank node, v must be a leaf. In this case, zero or more ancestors of v
become c-mergeable. If, however, node v did not exist in the tree, then v is
inserted as a leaf with a blank sibling. The set of mergeable nodes does not
change in this case.

– A prefix (v, c) is deleted from the U-FIB. Node v becomes blank and all
ancestors of v (including the root) become non-mergeable. As we require the
tree to be minimal, we may have to perform an optional pruning of blank
nodes. However, this does not change the mergeability of any node.

The only detail that has to be changed in the analysis of Block is that
now the size of the U-FIB is not constant but is a function of time, denoted
Sizet(U-FIB) at time t. Then in the proof of Lemma 2, by using charged costs,
we underestimate the actual memory size by Sizet(U-FIB)−M(t), whereM(t)
is the number of nodes mergeable at t. However, as in the original proof, this
amount is the same for Block and Opt, and thus R-competitiveness using
charged costs implies the R-competitiveness in the actual cost model. Thus, we
obtain the following result.

Theorem 2. The competitive ratio of Block(
√
13−1, 2

√
13/3−2/3) is at most

(
√
13 + 3)/2 + 1/3 ≈ 3.603 also when insertions and deletions may occur in the

input sequence.

5 Lower Bound

The algorithm Block was designed with two objectives in mind: (i) to balance
the memory cost and the update cost, (ii) to exploit the possibility of merging
multiple tree nodes simultaneously at a lower price. An online algorithm is bound
to choose sub-optimally in both of these aspects: we will show a lower bound of
1.636 on the competitive ratio of any online algorithm.

The analysis of Block suggests a straightforward lower bound: We keep
a tree of two prefixes {0, 1}. By changing the color of one of them, the adversary
changes the state of root from non-mergeable to mergeable, and back. When the
root becomes mergeable, the algorithmmay consolidate it at some time, but right
after that happens, the adversary turns the root non-mergeable, enforcing a split.
An analogous approach can be found in many online problems, most notably
in the ski-rental problem [1]. However, unlike in the ski-rental problem, we cannot
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obtain the lower bound of 2 by this adversarial strategy. The first obstacle is
that the memory cost (the equivalent of renting skis) is always at least 1 (even
for Opt). The second obstacle are event costs that are sometimes paid also by
Opt. An exact analysis would yield a lower bound of 1.5. We may improve this
bound by making the tree slightly larger.

Theorem 3. Any online algorithm Alg has a competitive ratio of at least
18/11 ≈ 1.636.

Proof. The set of prefixes in the U-FIB will be constant and equal to {00, 01, 1},
initially with the colors red, green and green, respectively. A strategy of the
adversary consists of phases. At the end of each phase, the state of the U-FIB

will be the same as the initial one, and the Alg-to-Opt cost ratio on any phase
will be at least 18/11. The adversary may generate a sequence consisting of
an arbitrary number of phases, thus ensuring that the costAlg cannot be hidden
in the additive constant γ in the definition of the competitive ratio.

In a single phase starting at time t, the adversary changes the color of pre-
fix 00 to green, making both internal nodes of the tree mergeable. Note that
in such a situation there are three possible states of Alg: a low state (no node
consolidated), a middle state (the lower mergeable node consolidated) and a top
state (both mergeable nodes consolidated). Two cases are possible:

– Alg changes state for the first time (either to the top or to the middle one)
at time t′ ≤ t+ α.

– Alg does not change state in the interval [t, t+α]. In this case, let t′ > t+α
be the first time when it changes its state to the top one (it may change
state to the middle one before t′).

Note that if none of the two described events occurs, then Alg never changes
its state to the top one. In this case, its FIB size is at least 2 whereas the
optimal possible is 1. This would immediately imply a lower bound of 2 on the
competitive ratio.

At time t′+ε, the adversary changes the color of prefix 00 back to red, forcing
Alg to change the state back to the low one, and ending the phase. As the
adversary may choose ε to be arbitrarily small, in the analysis we assume ε = 0.

To analyze the performance of Alg in a single phase, we set � = t′ − t. The
cost ofOpt is upper-bounded by the minimum of costs of two possible strategies:
(i) do nothing, (ii) change the state to top at time t and then back to low at
time t′ + ε. The cost for the former strategy is 3� (memory cost) plus 2α (event
cost), while the cost for the latter is � (memory cost) plus 4α (merging cost) +
4α (splitting cost). Altogether, Cost(Opt) ≤ min{2α+3�, 8α+ �}. We consider
two cases.

1. The first event occurs, i.e, � ≤ α. Then Alg pays at least 3α (merging cost)
and another 3α (splitting cost). Additionally, the memory cost is 3� as Alg

is in the low state till it merges anything. Furthermore, if Alg merges after
time t, then it has to pay event cost α at time t. Thus, we consider two
subcases:
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(a) Algorithm merges already at time t, i.e., � = 0. Then, Cost(Opt) ≤ 2α,
Cost(Alg) = 6α, and hence the ratio is R1 = 3.

(b) Algorithm merges after time t. Then, Cost(Opt) ≤ 2α + 3� while
Cost(Alg) = 7α+ 3�. The ratio is then at least

R2 =
7α+ 3�

2α+ 3�
≥ 7α+ 3α

2α+ 3α
= 2 .

2. The second event occurs, i.e., � > α. We consider two subcases.
(a) Alg changes state only once, at time �. Then, it pays α (event cost) plus

3� (memory cost) plus 4α (merging cost) plus 4α (splitting cost). The
ratio is then

R3 =
9α+ 3�

min{2α+ 3�, 8α+ �} ≥
18

11
≈ 1.636 .

(b) Alg changes state more than once. Then Alg is in low state at least till
time α and in state low or middle at times between α and t′. Therefore,
it pays at least α (event cost) plus 3 · α+ 2 · (�− α) (memory cost) plus
3α+ 3α (merging cost) + 4α (splitting cost). In this case, the ratio is

R4 =
12α+ 2�

min{2α+ 3�, 8α+ �} ≥
18

11
≈ 1.636 .

Altogether, in either case, the competitive ratio is at least 18/11. ��

6 Conclusions

This paper studied a novel online aggregation problem arising in the context
of (classical or SDN) router optimization. The described online algorithm that
provably achieves a low, constant competitive ratio. Since the derived lower
bound is not tight, the main open technical question regards closing the gap
between the upper and lower bound.
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Abstract. We address the question of whether the primal-dual ap-
proach for the design and analysis of online algorithms can be applied
to nonmonotone problems. We provide a positive answer by presenting
a primal-dual analysis to the online algorithm of Awerbuch et al. [1] for
routing virtual circuits with unknown durations.

1 Introduction

The analysis of most online algorithms is based on a potential function (see,
for example, [1–4] in the context of online routing). Buchbinder and Naor [5]
presented a primal-dual approach for analyzing online algorithms. This approach
replaces the need to find the appropriate potential function by the task of finding
an appropriate linear programming formulation.

The primal-dual approach presented by Buchbinder and Naor has a monotone
nature. Monotonicity means that: (1) Variables and constraints arrive in an on-
line fashion. Once a variable or constraint appears, it is never deleted. (2) Values
of variables, if updated, are only increased. We address the question of whether
the primal-dual approach can be extended to analyze nonmonotone algorithms1.

An elegant example of nonmonotone behavior occurs in the problem of online
routing of virtual circuits with unknown durations. In the problem of routing
virtual circuits, we are given a graph with edge capacities. Each request ri con-
sists of a source-destination pair (si, ti). A request ri is served by allocating to it
a path from si to ri. The goal is to serve the requests while respecting the edge
capacities as much as possible. In the online setting, requests arrive one-by-one.
Upon arrival of a request ri, the online algorithm must serve ri. In the special
case of unknown durations, at each time step, the adversary may introduce a
new request or it may terminate an existing request. When a request terminates,
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1 The only instance we are aware of in which the primal-dual approach is applied to
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in each round, is at least a constant times the change in the primal profit. In general,
this property does not hold in a nonmonotone setting.
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it frees the path that was allocated to it, thus reducing the congestion along the
edges in the path. The online algorithm has no knowledge of the future; namely,
no information about future requests and no information about when existing
requests will end. Nonmonotonicity is expressed in this online problem in two
ways: (1) Requests terminate thus deleting the demand to serve them. (2) The
congestion of edges varies in a nonmonotone fashion; an addition of a path in-
creases congestion, and a deletion of a path decreases congestion.

Awerbuch et al. [1] presented an online algorithm for online routing of virtual
circuits when the requests have unknown durations. In fact, their algorithm re-
sorts to rerouting to obtain a logarithmic competitive ratio for the load. Rerout-
ing means that the path allocated to a request is not fixed and the algorithm
may change this path from time to time. Hence, allowing rerouting increases the
nonmonotone characteristics of the problem.

We present an analysis of the online algorithm of Awerbuch et al. [1] for
online routing of virtual circuits with unknown durations. Our analysis uses the
primal-dual approach, and hence we show that the primal-dual approach can be
applied in nonmonotone settings.

2 Problem Definition

2.1 Online Routing of Virtual Circuits with Unknown Durations

Let G = (V,E) denote a directed or undirected graph. Each edge e in E has
a capacity ce ≥ 1. A routing request rk is a 4-tuple rk = (sk, dk, ak, bk), where
(i) sk, dk ∈ V are the source and the destination of the kth routing request,
respectively, (ii) ak ∈ N is both the arrival time and the start time of the request,
and (iii) bk ∈ N is the departure time or end time of the request. Let Γk denote
the set of paths in G from sk to dk. A request rk is served if it is allocated a
path in Γk.

Let [N ] denote the set {0, . . . , N}. The input consists of a sequence of events
σ = {σt}t∈[N ]. We assume that time is discrete, and event σt occurs at time t.
There are two types of events: (i) An arrival of a request. When a request rk
arrives, we are given the source sk and the destination dk. Note that the arrival
time ak simply equals the current time t. (ii) A departure of a request. When a
request rk departs there is no need to serve it anymore (namely, the departure
time bk simply equals the current time t).

The set of active requests at time t is denoted by Alivet and is defined by
Alivet � {rk | ak � t ≤ bk} .

An allocation is a sequence A = {pk}k of paths such that pk is a path from
the source sk to the destination dk of request rk. Let paths t(e, A) denote the
number of requests that are routed along edge e by allocation A at time t,
formally: pathst(e, A) � |{pk : e ∈ pk and rk ∈ Alivet}| . The load of an edge e

at time t is defined by load t(e, A) � pathst(e,A)
ce

. The load of an allocation A at

time t is defined by load t(A) � maxe∈E load t(e, A) . The load of an allocation A
is defined by load(A) � maxt load t(A) .
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An algorithm computes an allocation of paths to the requests, and therefore we
abuse notation and identify the algorithm with the allocation that is computed
by it. Namely, alg(σ) denotes the allocation computed by algorithm alg for an
input sequence σ.

In the online setting, the events arrive one-by-one, and no information is
known about an event before its arrival. Moreover, (1) the length N of the
sequence of events is unknown; the input simply stops at some point, (2) the
departure time bk is unknown (and may even be determined later by the adver-
sary), and (3) the online algorithm must allocate a path to the request as soon
as the request arrives.

The competitive ratio of an online algorithm alg with respect to N ∈ N, and

a sequence σ = {σt}t∈[N ] is defined by ρ(alg(σ)) � load(alg(σ))
load(opt(σ)) , where opt(σ)

is an allocation with minimum load. The competitive ratio of an online algorithm
alg is defined by ρ(alg) � supN∈N maxσ ρ(alg(σ)) .

Note that since every request has a unit demand, we may assume that ce ≥ 1
for every edge e ∈ E.

2.2 Rerouting

In the classical setting, a request rk is served by a fixed single path pk throughout
the duration of the request. The term rerouting means that we allow the allo-
cation to change the path pk that serves rk. Thus, there are two extreme cases:
(i) no rerouting at all is permitted (classical setting), and (ii) total flexibility in
which, a new allocation can be computed in each time step.

Following the paper by Awerbuch et al. [1], we allow the online algorithm to
reroute each request at most O(log |V |) times. In the analysis of the competitive
ratio, we compare the load of the online algorithm with the load of an optimal
(splittable) allocation with total rerouting flexibility. Namely, the optimal solu-
tion recomputes a minimum load allocation at each time step, and, in addition
may serve a request by a convex combination of paths.

3 The Online Algorithm alg

In this section we present the online algorithm alg that is listed in Algorithm 1.
Thus algorithm is equivalent to the algorithm presented in [1].

The algorithm maintains the following variables. (1) For every edge e a variable
xe. The value of xe is exponential in the load of edge e. (2) For every request rk
a variable zk. The value of zk is the complement of the “weight” of the path pk
allocated to rk at the time the path was allocated. (3) For every routing request
rk, and for every path p ∈ Γk a variable fk(p). The value of fk(p) indicates
whether p is allocated to rk. That is, the value of fk(p) equals 1 if path p is
allocated for request rk, and 0 otherwise.

The algorithmalg consists of the following 5 procedures: (1)Main, (2)Route,
(3) Depart, (4) UnRoute, and (5) MakeFeasible.
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The Main procedure begins with initialization. For every e ∈ E, xe is initial-
ized to 1

4m , where m = |E|. For every k ∈ [N ], zk is initialized to zero. For every
k ∈ [N ], and for every path p, fk(p) is initialized to zero. Since the number of zk
and fk(p) variables is unbounded, their initialization is done in a “lazy” fashion;
that is, upon arrival of the kth request the corresponding variables are set to
zero.

The main procedure Main proceeds as follows. For every time step t ∈ [N ] ,
if the event σt is an arrival of a request, then the Route procedure is invoked.
Otherwise, if the event σt is a departure of a request, then theDepart procedure
is invoked.

The Route procedure serves request rk by allocating a “lightest” path pk
in the set Γk (recall that Γk denotes the set of paths from the source sk to the
destination dk). The allocation is done by two actions. First, the allocation of pk
to request rk is indicated by setting fk(pk)← 1. Second, the loads of the edges
along pk are updated by increasing the variables xe for e ∈ pk. The variable
zk equals the “complement” weight of the allocated path pk. Note that this
complement is with respect to half the weight of the path before its update.

The Depart procedure “frees” the path that is allocated for pk, by calling the
UnRoute procedure. TheUnRoute procedure frees pk by nullifying fk(pk) and
zk, and by decreasing the edge variables xe for the edges along pk. The freeing of
pk decreases the load along the edges in pk. As a result of this decrease, it may
happen that a path allocated to an alive request might be very heavy compared
to a lightest path. In such a case, the request should be rerouted. This is why
the MakeFeasible procedure is invoked after the UnRoute procedure.

Rerouting is done by the MakeFeasible procedure. This rerouting is done
by freeing a path and then routing the request again. Requests with improved
alternative paths are rerouted.

The listing of the online algorithm alg appears in Algorithm 1.

4 Primal-Dual Analysis of alg

In this section we prove that the load on every edge is always O(log |V |), and
that each request is rerouted at most O(log |V |) times. We refer to an input
sequence σ as feasible if there is an allocation A, such that for all requests that
are alive at time t, it holds that load t(A) ≤ 1. The following theorem holds under
the assumption that the input sequence σ is feasible. Note that the removal of
this assumption increases the competitive ratio only by a constant factor by
standard doubling techniques [1].

Theorem 1 ([1]). If the input sequence σ is feasible and assuming that ce ≥ 1,
then alg is:

1. An O(log |V |)-competitive online algorithm.
2. Every request is rerouted at most O(log |V |) times.

We point out that the allocation computed by alg is nonsplittable in the sense
that at every given time each request is served by a single path. The optimal
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Algorithm 1 alg: Online routing algorithm. The input consists of (1) a graph
G = (V,E) where each e ∈ E has capacity ce, and (2) a sequence of events
σ = {σt}t∈[N ].

Main(σt)

1: ∀k ∈ [N ] : zk ← 0.
2: ∀e ∈ E : xe ← 1

4m
, where m = |E|.

3: ∀rk ∈ [N ] ∀p : fk(p) ← 0.
4: Upon arrival of event σt do
5: if σt is an arrival of request rk then Call Route(rk).
6: else (σt is an departure of request rk) Call Depart(rk).

Route(rk)

1: Find the “lightest” path: pk ← argmin{∑e∈p′
xe
ce

| p′ ∈ Γk}.
2: zk ← 1− 1

2
·∑e∈pk

xe
ce
.

3: Route rk along pk: fk(pk) ← 1.
4: for all e ∈ pk do

5: xe ← xe · λe where λe �
(
1 + 1

4ce

)
. {Update edge “load”}

Depart(rk)

1: Call UnRoute(rk).
2: Call MakeFeasible(x, z).

UnRoute(rk)

1: Free variables: zk, fk(pk).
2: for all e ∈ pk do

3: xe ← xe/λe where λe �
(
1 + 1

4ce

)
. {Update edge “load”}

MakeFeasible(x, z)

1: ∀rj ∈ Alivet if ∃p ∈ Γj : zj +
∑

e∈p
xe
ce

< 1 then
2: Call UnRoute(rj).
3: Call Route(rj).

allocation, on the other hand, is both totally flexible and splittable. Namely,
the optimal allocation may reroute all the requests in each time step, and, in
addition, may serve a request by a convex combination of paths.

The rest of the proof is as follows. We begin by formulating a packing and
covering programs for our problem in Section 4.1. We then prove Lemma 1 in
Section 4.2. We conclude the analysis with the proof of Theorem 1 in Section 4.3

4.1 Formulation as an Online Packing Problem

For the sake of analysis, we define for every prefix of events {σj}tj=1 a primal
linear program p-lp(t) and its dual linear program d-lp(t). The primal LP is a
covering LP, and the dual LP is a packing LP. The LP’s appear in Figure 1.

The variables of the LPs correspond to the variables maintained by alg, as
follows. The covering program p-lp(t) has a variable xe for every edge e ∈ E,
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and a variable zk for every rk ∈ Alivet. The packing program d-lp(t) has a
variable fk(p) for every request rk ∈ Alivet, and for every path p ∈ Γk. The
variable fk(p) equals to the fraction of rk’s “demand” that is routed along path
p ∈ Γk.

The dual LP has three types of constraints: capacity constraints, demand
constrains, and sign constraints. In the fractional setting the load of an edge is
defined by

load t(e) �
1

ce
·
∑

rk∈Alivet

∑
{p|p∈Γk,e∈p}

fk(p) .

The capacity constraint in the dual LP requires that the load of each edge is at
most one. The demand constraints require that each request rk that is alive at
time t is allocated a convex combination of paths.

If the dual LP is feasible, then the objective function of the dual LP simply
equals the number of requests that are alive at time step t, i.e., |Alivet|.

The primal LP has two types of constraints: covering constraints and sign
constraints. The covering constraints requires that for every request rk that is
alive and for every path p ∈ Γk, the sum of zk and the “weight” of p is at least 1.
Note that the sign constraints apply only to the edge variables xe whereas the
request variables zk are free.

Note that the assumption that σ is feasible is equivalent to requiring that the
dual program d-lp(t) is feasible for every t.

p-lp(t) : min
∑

rk∈Alivet

zk +
∑
e∈E

xe s.t.

∀rk ∈ Alivet ∀p ∈ Γk : zk +
∑
e∈p

xe

ce
≥ 1 (Covering Constraints.)

x ≥ 0

(I)

d-lp(t) : max
∑

rk∈Alivet

∑
p∈Γk

fk(p) s.t.

∀e ∈ E :
1

ce
·

∑
rk∈Alivet

∑
{p|p∈Γk,e∈p}

fk(p) ≤ 1 (Capacity Constraints.)

∀rk ∈ Alivet :
∑
p∈Γk

fk(p) = 1 (Demand Constraints.)

f ≥ 0

(II)

Fig. 1. (I) The primal LP, p-lp(t). (II) The dual LP, d-lp(t).
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4.2 Bounding the Primal Variables

In this section we prove that the primal variables xe are bounded by a constant,
as formalized in the following Lemma.

Lemma 1. If σt is an original event, then ∀e ∈ E : x
(t)
e ≤ 3 .

The proof of Lemma 1 is based on a few lemmas that we prove first.

Notation. Let x
(t)
e , z

(t)
k denote the value of the primal variables xe, zk before

event σt is processed by alg. Let Pt denote the objective function’s value of
p-lp(t), formally:

Pt �
∑

rk∈Alivet

z
(t)
k +
∑
e∈E

x(t)e .

Let ΔtP � Pt+1 − Pt.
Note that Pt refers to the value of p-lp(t) at the beginning of time step t.

The definition of Alivet implies that the constraints and variables of p-lp(t) are
not influenced by the event σt (this happens only for p-lp(t + 1)). Hence the
variables in the definition of Pt are indexed by time step t.

Dummy events. The procedure Route is invoked in two places: (i) in Line 5 of
Main as a result of an arrival of a request, or (ii) in Line 3 ofMakeFeasible. To
simplify the discussion, we create “dummy” events each time theMakeFeasible

procedure reroutes a request. Dummy events come in pairs: first a dummy de-
parture event for request rk is introduced, and then a dummy arrival event for a
“continuation” request rk is introduced. The combination of original events and
dummy events describes the execution of alg. The augmentation of the original
input sequence of events by dummy events does not modify the optimal value of
the dual LP at time steps t that correspond to original events. Hence, we analyze
the competitive ratio ρ(alg(σ)) by analyzing the competitive ratio with respect
to the augmented sequence at time steps t that correspond to original events.

The following lemma follows immediately from the description of the algo-
rithm alg and the definition of dummy events.

Lemma 2 (Primal Feasibility). If σt is an original event, then the variables

{x(t)e }e∈E ∪ {z(t)� }�∈Alivet constitute a feasible solution for p-lp(t).

Proof. When an original event σt′ occurs, the MakeFeasible procedure gen-
erates dummy events at the end of the time step to guarantee that the primal
variables are a feasible solution of the primal LP. Hence, if σt is an original event,
then the primal variables at the beginning of time step t are a feasible solution
for p-lp(t).

Lemma 3. If σt is an arrival of request, then ΔtP < 1.
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Proof. Assume that σt is an event in which request rk arrives. In Step 2 of the

Route algorithm zk is set to 1− 1
2 ·
∑

e∈pk

x(t)
e

ce
. In Step 5 of the Route algorithm,

for every e ∈ pk, xe is increased by
x(t)
e

4ce
. All the other edge variables xe remain

unchanged. Hence,

ΔtP =1− 1

2
·
∑
e∈pk

x
(t)
e

ce
+
∑
e∈pk

x
(t)
e

4ce

=1− 1

4
·
∑
e∈pk

x
(t)
e

ce
(1)

<1 ,

as required.

We refer to the number of requests that are routed along edge e by allocation
alg at time t by pathst(e).

Lemma 4. For every t and e ∈ E, x(t)e = 1
4m · λpathst(e)e .

Proof. The proof is by induction on t. At time t = 0, we have x
(0)
e = 1

4m and
pathst(e) = 0. The proof of the induction basis for t + 1 depends on whether
at time step t an arrival or a departure occurs. If the event does not affect
edge e, then the induction step clearly holds. Assume that the event affects
edge e. If a request rk arrives at time t, then paths t+1(e) = paths t(e) + 1 and

x
(t+1)
e = x

(t)
e ·λe. If a request rk departs at time t, then paths t+1(e) = pathst(e)−1

and x
(t+1)
e = x

(t)
e /λe.

Let Dead t � {rk | bk < t}. In general, it is not true that ΔajP +ΔbjP ≤ 0,
however on average it is true, as stated in the following lemma.

Lemma 5. For every t, ∑
rj∈Deadt

(
ΔajP +ΔbjP

)
≤ 0 . (2)

Proof. First we prove the following proposition.

Proposition 1. Consider a set of I = {Ij = [αj , βj ]}qj=1 such that no two
intervals share a common endpoint. Let cut(t) denote the number of intervals
that contain t. Then, there is a permutation π : [1, q]→ [1, q] such that

∀j ∈ [1, q] : cut(αj) = cut(βπ(j)) . (3)

Proof. The proof is by induction on the number of intervals. The induction
basis, for q = 1 holds trivially because cut(α1) = cut(β1) = 1. The proof of the
induction step is based on the existence of a pair αi < βj such that the open
interval (αi, βj) does not contain any endpoint of the intervals in I. For such a
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pair, we immediately have cut(αi) = cut(βj) so we define π(i) = j and apply
the induction hypothesis.

We first show that such a pair αi < βj exists. We say that an interval Im is
minimal if Im ∩ Ik �= ∅ implies that Im ⊆ Ik. If there exists a minimal interval
Im, then set αi = αm and βj = βm. In such a case since π(m) = m, we can erase
Im and proceed by applying the induction hypothesis to the remaining intervals.
Note that equality of cut sizes is preserved when the interval Im is deleted.

Consider the set of pairs of intersecting intervals without containment defined
as follows A � {(i, j) | αj < αi < βj < βi} . If there is no minimal interval, the
set A is not empty. Any pair (i, j) ∈ A that minimizes the difference (βj − αi)
has the property that the interval (αi, βj) lacks endpoints of intervals in I.

We can define π(i) = j. We proceed by applying the induction hypothesis on
(I \ {Ij , Ii})∪ Ik, where Ik = Ii ∪ Ij . Note that equality of cut sizes is preserved
when Ii and Ij are merged into one interval.

The difference ΔajP consists of two parts: ΔajP = z
(aj+1)
j +

∑
e∈pj

x
(aj)
e

4ce
. The

difference ΔbjP consists of two parts as well: ΔbjP = −z(bj)j −
∑

e∈pj

x
(bj+1)
e

4ce
.

It follows that

∑
rj∈Deadt

(
ΔajP +ΔbjP

)
=
∑

rj∈Deadt

∑
e

1

4ce
·
(
x(aj)
e − x(bj+1)

e

)

=
∑

rj∈Deadt

∑
e

1

4ce
·
(
x(aj)
e − x(bπ(j)+1)

e

)
,

where π is any permutation over the set of requests. In fact, we shall use for each
edge e, a different permutation π = π(e) that is a permutation over the requests
rk such that e ∈ pk.

Assume first that Alivet = ∅. We later lift this assumption.
Fix an edge e. For each request rj such that e ∈ pj , map the duration (aj , bj ]

of request rj to the interval [aj + 1, bj]. The resulting set of intervals satisfies
cut(t) = paths t(e) for every time step t. Let π denote the permutation guaranteed
by Prop. 1. Then, it suffices to prove that

x(aj)
e − x(bπ(j)+1)

e = 0. (4)

Indeed, by Lemma 4, 4m ·
(
x
(aj)
e − x(bπ(j)+1)

e

)
= λ

pathsaj
e −λ

pathsbπ(j)+1

e . In addi-

tion, the property of permutation π states that cut(aj+1) = cut(bπ(j)). It follows
that pathsaj+1 = pathsbπ(j)

. But, pathsaj
= pathsaj+1 − 1 and pathsbπ(j)+1 =

pathsbπ(j)
− 1, and Equation 4 follows.

To complete the proof, consider the requests in Alivet. Because aj, bπ(j) ≤ t,
requests in Alivet do not increase the difference x

(aj)
e − x(bπ(j)+1)

e . Thus x
(aj)
e −

x
(bπ(j)+1)
e ≤ 0, and the lemma follows.
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We are now ready to prove Lemma 1. Recall that Lemma 1 states that the
primal variables xe are bounded by a constant. The proof of Lemma 1 is by
contradiction. In fact, we reach a contradiction to weak duality, that is, we show
that the value of the primal solution is strictly smaller than the value of a feasible
dual solution.

Proof (Lemma 1). The proof is by contradiction. Assume x
(t)
e > 3 and σt is an

original event. Define t2 � min{t | x(t)e > 3 and σt is an original event}. Let t1
be the time step for which x

(t1)
e < 1 and xt

′
e ≥ 1 for every t′ ∈ [t1 + 1, t2].

Define Alive∈e(t1, t2) � {rj | t1 < aj < t2 < bj , e ∈ pj}.
Let δe denote the difference between the number of arrivals and the number

of departures in the time interval [t1, t2) among the requests that were routed
along e. Clearly δe ≤ |Alive∈e(t1, t2)|.

Lemma 4 implies that x
(t2)
e = x

(t1)
e ·
(
1 + 1

4ce

)δe
. The assumption that x

(t2)
e >

3 and x
(t1)
e < 1 imply that

(
1 + 1

4ce

)δe
≥ 3 . Since 1 + x ≤ ex, it follows that

δe > 4 · ce. Hence,

|Alive∈e(t1, t2)| > 4 · ce . (5)

By Equation 1, for each rj ∈ Alive∈e(t1, t2), we have:

ΔajP < 1− 1

4ce
. (6)

Hence,

Pt2 =
1

4m
·m+

t2−1∑
t=0

ΔtP

=
1

4
+
∑

rj∈Deadt2

(ΔajP +ΔbjP ) +
∑

rj∈Alivet2

ΔajP

≤ 1

4
+
∑

rj∈Alivet2

ΔajP

<
1

4
+ |Alivet2 | −

|Alive∈e(t1, t2)|
4ce

< |Alivet2 | . (7)

The justification for these lines is as follows. The first line follows from the
initialization of the primal variables. The second line follows since every event
in time step t ∈ [0, t2 − 1] is either an arrival of a request in Dead t2 ∪Alivet2 or
a departure of a request in Dead t2 . The third inequality is due to Lemma 5. The
fourth equation is due to Equation 6. The last inequality follows from Equation 5.

By Lemma 2, the primal variables at time t2 are a feasible solution of p-lp(t2).
The optimal value of d-lp(t2) equals |Alivet2 |. Hence, Equation 7 contradicts
weak duality, and the lemma follows.
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4.3 Proof of Theorem 1

We now turn to the proof of the main result. The proof is as follows.

Proof (Theorem 1). We begin by proving the bound on the competitive ratio.

Lemma 4 states that ∀t ∀e ∈ E : xe = 1
4m ·
(
1 + 1

4ce

)pathst(e)
. Hence, by

Lemma 1, for each original event σt, ∀e ∈ E : 1
4m ·
(
1 + 1

4ce

)pathst(e)
≤ 3 . Since

2x ≤ 1 + x for all x ∈ [0, 1], it follows that for each original event σt

∀e ∈ E : paths t(e) ≤ ce · 4 log(12m) ,

and the first part of the theorem follows.

We now prove the bound on the number of reroutes. Rerouting an alive request
rj occurs if there exists a path p ∈ Γj such that

∑
e∈p

xe

ce
< 1− zj. By Line 2 of

the Route algorithm, this condition is equivalent to:
∑

e∈p
xe

ce
< 1

2 ·
∑

e∈pj

x
(aj)
e

ce
.

Namely, each time a request is rerouted, the weight of the path is at least halved.
Note that the halving is with respect to the weight of the path at the time it
was allocated.

Let us consider request rj . Let p
∗ � argminp∈Γj

{
∑

e∈p
1
ce
}. By the choice of

a “lightest” path and by Lemma 1, the weight of path pj is upper bounded by

∑
e∈pj

xe
ce
≤
∑
e∈p∗

xe
ce
≤ 3 ·
∑
e∈p∗

1

ce
.

By Lemma 4, xe ≥ 1/(4m), hence the weight of path pj is lower bounded by

∑
e∈p

xe
ce
≥ 1

4m
·
∑
e∈p

1

ce
≥ 1

4m
·
∑
e∈p∗

1

ce
.

It follows that the number of reroutes each request undergoes is bounded by
log2 (12m), and the second part of the theorem follows.

Remark 1. Note that the first routing request will not be rerouted at all, the
second routing request will be rerouted at most twice, and so on. In general, a
routing request that arrives at time t will be rerouted at most |Alivet| times.

5 Discussion

We present a primal-dual analysis of an online algorithm in a nonmonotone
setting. Specifically, we analyze the online algorithm by Awerbuch et al. [1] for
online routing of virtual circuits with unknown durations. We think that the
main advantage of this analysis is that it provides an alternative explanation to
the stability condition for rerouting that appears in [1]. According to the primal-
dual analysis, rerouting is used simply to preserve the feasibility of the solution
of the covering LP.
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Our analysis provides a small improvement compared to [1] in the following
sense. The optimal solution in our analysis is both totally flexible (i.e., may
reroute every request in every time step) and splittable (i.e., may serve a request
using a convex combination of paths). The optimal solution in the analysis of
Awerbuch et al. [1] is only totally flexible and must allocate a path to each
request.

The primal-dual approach of Buchbinder and Naor [5] is based on bounding
the change in the value of the primal solution by the change in the dual solution
(this is often denoted by ΔP ≤ ΔD). The main technical challenge we encoun-
tered was that this bound simply does not hold in our case. Instead, we use an
averaging argument to prove an analogous result (see Lemma 5).
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Abstract. Social networks offer users new means of accessing information, es-
sentially relying on “social filtering”, i.e. propagation and filtering of information
by social contacts. The sheer amount of data flowing in these networks, combined
with the limited budget of attention of each user, makes it difficult to ensure that
social filtering brings relevant content to interested users. Our motivation in this
paper is to measure to what extent self-organization of a social network results in
efficient social filtering.

To this end we introduce flow games, a simple abstraction that models net-
work formation under selfish user dynamics, featuring user-specific interests and
budget of attention. In the context of homogeneous user interests, we show that
selfish dynamics converge to a stable network structure (namely a pure Nash
equilibrium) with close-to-optimal information dissemination. We show that, in
contrast, for the more realistic case of heterogeneous interests, selfish dynam-
ics may lead to information dissemination that can be arbitrarily inefficient, as
captured by an unbounded “price of anarchy”.

Nevertheless the situation differs when user interests exhibit a particular struc-
ture, captured by a metric space with low doubling dimension. In that case, nat-
ural autonomous dynamics converge to a stable configuration. Moreover, users
obtain all the information of interest to them in the corresponding dissemination,
provided their budget of attention is logarithmic in the size of their interest set.

Keywords: Network formation, self organisation, budget of attention, price of
anarchy, social filtering.

1 Introduction

Information access has been revolutionized by the advent of social networks such as
Facebook, Google+ and Twitter. These platforms have brought about the new paradigm
of “social filtering”, whereby one accesses information by “following” social contacts.

This is especially true for twitter-like microblogging social networks. In such net-
works the functions of filtering, editing and disseminating news are totally distributed,
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in contrast to traditional news channels. The efficiency of social filtering is critically
affected by the network topology, as captured by the contact-follower relationships.
Today’s networks provide recommendations to users for potentially useful contacts to
follow, but don’t interfere any further with topology formation. In this sense, these net-
works self-organize, under the selfish decisions of individual users.

This begs the following question: when does such autonomous and selfish self-
organizing topology lead to efficient information dissemination? The answer will in
turn indicate under what circumstances self-organization is insufficient, and thus when
additional mechanisms, such as incentive schemes, should be introduced.

Two parameters play a key role in this problem. On the one hand each user aims to
maximize the coverage of the topics of his interest. On the other hand, a user pays with
his attention: filtering interesting information from spam (i.e. information that does not
fall in his topics of interest) incurs a cost. Users must therefore trade-off topic coverage
against attention cost. As pointed out by Simon [23], as information becomes abundant,
another resource becomes scarce: attention.

Furthermore, there is an interplay between participants in a social network where
filtering by one user may benefit another, inducing complex dependencies in decisions
on creating connections. To model this, we introduce a network formation game called
flow game where some users produce news about specific topics and each user is inter-
ested in receiving all news about a set of topics specific to him. Each user is a selfish
agent that can choose its incoming connections within a certain budget of attention in
order to maximize the coverage of his set of topics of interest.

This model is of interest on its own, as it enriches the class of existing network
formation games with a focus on flow dissemination under bounded connections. This
model could also be of interest in the context of peer-to-peer streaming and file sharing
or publish/subscribe applications.

1.1 Our Results

An important feature in our model is a user’s budget of attention for the consumption
of content. In previous work [14] the budget of attention was modelled as a limit on the
rate with which a user consults a friend, with a different objective of minimizing delay
in receiving all content. In the present work we are interested in a more fundamental
question, of how efficient social networks are formed in the first place. We consider
the model where users are interested in specific subsets of topics and their objective
is to maximize the number of flows received corresponding to these topics. As such,
we model the budget of attention as a constraint on the number of connections a user
may create (rather than a rate of consultation). Our aim is to build a simple model
capturing the complexity of the problem. This way of capturing the budget of attention
amounts to assuming that each connection consumes the same amount of attention. We
discuss in the conclusion how we could tweak our model to more finely model attention
consumption.

We capture users’ interests in topics through user-specific values for each topic and
define the utility a user receives to be the sum of values of all received topics. Each
user’s objective in a flow game is then to choose connections so as to maximize his
utility. We additionally assume that a user may produce news about one topic at most
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even if he redistributes other topics. This is coherent with an empirical study of twitter
traces [5] where it is shown that ordinary users (as opposed to celebrities or newspapers)
can gain influence by concentrating on a single topic.

Our main results relate to the stability and efficiency of the formation of infor-
mation flows. We derive conditions where selfish dynamics converge to a pure Nash
equilibrium.We then give approximation ratios bounding the quality of an equilibrium
compared to an optimal solution. This is traditionally measured through the price of
anarchy, the ratio of the global welfare (measured as the sum of user utilities) at an
optimal solution compared to that at the worst equilibrium.

1.2 Related Work

Information spread in networks has been studied extensively. Much of the past work
study the properties of information diffusion on given networks with given sharing
protocols. Our goal in this work is to study how networks form when users create con-
nections with the objective of efficient content dissemination in a game-theoretical ap-
proach. This work thus follows the large amount of work in network formation games.
However, to the best of our knowledge, the objective of efficient information dissemi-
nation under edge constraints and interest sets that we consider here is novel. We now
discuss some work in those domains that are most relevant to this paper.

Network formation games have been considered in previous work in economics and
in the context of the formation of Internet peering relations and peer-to-peer overlay
networks. Economic models of network formation [13] use edges to represent social re-
lations and it is typically assumed that the creation of an edge needs bilateral agreement
since both users benefit from an edge. Our model is oriented and unilateral agreement
is more relevant to the notion of following in social networks. A non-cooperative one-
way link connection game has been considered been in previous work [3], where each
created link incurs a cost and users are interested in connecting to all other users. Our
model is richer and more realistic where we consider connections to subsets of infor-
mation flows that hold user-specific intrinsic values.

Network creation games in the context of the Internet have been considered [19],
where distributed formation of undirected edges with a linear cost on each edge formed
is studied. In such games, each user’s objective is to minimize total formation cost while
either minimizing distance to all other users [7], or ensuring connection to a given subset
of nodes [2]. We consider a bound on edge costs, in the form of a limit on the number
of in-edges at each node, and further, we focus on connections that allow specific flows
of information.

Interestingly, bounded budget network formation games have already been consid-
ered. Bounded budget connection games [16] consider a bound on each user’s budget in
creating edges, with the objective being the minimization of the sum of weighted dis-
tances to other nodes. A similar model is considered in [4] where each user’s objective
is to maximize his influence, measured using betweenness centrality. In our work how-
ever, rather than minimizing distance to any node, we consider a formation game with
the objective of ensuring connections to a subset of flows of interest, without regard to
the particular nodes.
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The notion of connecting to users that can provide a content flow of interest is similar
to peer-to-peer live streaming systems [17]. Unlike peer-to-peer streaming, we do not
aim to satisfy flow rates, rather our aim is to connect to as many sets of relevant flows
as possible. Moreover, our model allows differing user interests.

To the best of our knowledge the only work considering content dissemination with
some game-theoretical approach concerns the b-matching and acyclic preference sys-
tems studied in the context of peer-to-peer applications [10]. As a generalization of the
stable marriages problem, those systems consider configurations of undirected edges
based on mutual acceptance of an edge, whereas unilateral decision is more suitable
in our model. Our model is more intricate in the sense that connections are based not
only on preferences but also on complementarity of content obtained through various
connections.

In Section 5 we model the space of user interests by a metric space with low dou-
bling dimension. Modeling interests of users through a metric space seems a natural
approach and bounded growth metrics, or more generally doubling metrics, have shown
to be very a general model [20] that can capture general situations, while still providing
an algorithmic perspective. The doubling dimension extends the notion of dimension
from Euclidean spaces to arbitrary metric spaces. It has proven to be useful in many
application domains such as nearest neighbor queries to databases [6], network con-
struction [1], closest server selction [15], etc. Doubling metrics have notably been used
to model distances in networks such as Internet [9].

1.3 Organization of the Paper

Section 2 introduces the model. We study the case of homogeneous interests in Sec-
tion 3. The heterogeneous case in its full generality is considered in Section 4 which
details some negative results. Section 5 is dedicated to the specific scenario where users’
interests are captured by a doubling metric, enabling some positive results. We finally
conclude in Section 6 describing potential extensions of the current work.

2 Model

We consider a social network where users interested in some set of content topics (or
subjects) connect to (or follow in social networking parlance) other users in order to
obtain such contents, materialized by flows of news. Each user may produce news for
at most one topic (but may forward news from other topics she is interested in). To
distinguish the role of publisher from that of follower, we technically assume that news
concerning a given topic (or subject) are produced at a given node called producer which
is identified with that topic.

A flow game is defined as a tuple (V, P, S,Δ) where V is a set of users, P a set of
producers (or subjects or topics) and S : V → P is a function associating to each user
u its interest set Su ⊆ P , and Δ : V → N is a function associating to each user u its
budget of attention Δu. We let n = |V | and p = |P | denote the number of users and
producers respectively. A flow game is homogeneous if all users have the same interest
set: Su = P for all u ∈ V . If this is not the case, the game is said to be heterogeneous.
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A strategy for user u is a subset Fu of {(v, u) : v ∈ V ∪ P} such that |Fu| ≤ Δu

(Δu is an upper bound on the in-degree of u). For all (v, u) ∈ Fu, we say that u follows
v or equivalently that u is connected to v (such a link (v, u) created by u is oriented
according to the data flow, that is from v to u). The collection F = {Fu : u ∈ V }
forms a network defined by the directed graphG(F ) = (V ∪P,E(F )) where E(F ) =
∪u∈V Fu. A user u is interested in a subject s if s ∈ Su. A user u receives a subject
s ∈ P if there exists a directed path from s to u in G(F ) such that all intermediate
nodes are interested in s. This is where filtering occurs: a user retransmit only subjects
she is interested in. The utility Uu(F ) for user u is the number of subjects in Su she
receives. The utility of u is maximized if Uu(F ) = |Su|.

We denote by move, a shift from a collection F of strategies to a collection F ′ where
a single user u changes her strategy from a set Fu to another F ′

u. (We say that u rewires
her connections.) The move is selfish if Uu(F

′) > Uu(F ). Selfish dynamics (or dy-
namics for short) are the sequences of selfish moves. We say that dynamics converge
if any sequence of selfish moves is necessarily finite. The network is at equilibrium
(or stable) if no selfish move is possible. In standard game-theoretic terminology, this
corresponds to a pure Nash equilibrium. The global welfare of the system is defined as
the overall system utility: U =

∑
u∈V Uu. The efficiency of selfish, self-organization

of a game is classically captured by the notion of price of anarchy defined as the ra-
tio of the optimal global welfare over the global welfare of the worst equilibrium:

PoA =
maxF∈F

∑
u∈V Uu(F )

minF∈E
∑

u∈V Uu(F ) , where F denotes the set of possible collection of strate-

gies and E ⊆ F denotes the set of equilibria.
In some of our proofs we make use of the notion of potential functions. An or-

dinal (or general [8]) potential function [18] is a function f : F → R such that
sign(f(F ′) − f(F )) = sign(Uu(F

′) − Uu(F )) for any move from F to F ′ where
user u changes her strategy. If f(F ′)− f(F ) = Uu(F

′)− Uu(F ), f is called an exact
potential function. This notion was introduced by Monderer and Shapley [18] who show
that it is tightly related to the notion of a congestion game [21]. The use of potential
functions is a standard technique to show convergence of dynamics and to bound price
of anarchy [8,22].

3 Homogeneous Interests

We first consider the case where all users have identical sets of interests, Su = P , for
all u ∈ V (G). In this context, we first establish an upper bound on the price of anarchy.
We will then show convergence of dynamics.

3.1 Price of Anarchy

We first derive a simple upper bound on the overall system utility under an optimal
centrally designed configuration. Clearly, any user u cannot achieve utility larger than p,
which corresponds to obtaining all the subjects in P . Moreover, he cannot obtain more
subjects than the aggregate budget of attention of all users, that is

∑
u∈V (G)Δu = nΔ,

where Δ is the average in-degree per node. We can slightly improve this bound by
restricting ourselves to the more interesting case where all users have budget less than p
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and where there are at least two users with budget at least 2. One can easily see that the
optimal solution then consists in forming an oriented ring between users whose budget
is at least 2 and then connecting budget 1 users to some user of the ring. All remaining
connections are used to obtain distinct subjects. Each node then receives the same set
of subjects. As each node connects to a non-producer, the number of subjects gathered
is at most

∑
u∈V (G)Δu − 1. We thus obtain that the maximal utility U∗ a user can get

is:
U∗ = min

(
p, n(Δ− 1)

)
. (1)

We now consider a distributed setting where each user selfishly rewires his incoming
connections if he can improve his utility, i.e., if this allows him to receive more subjects.
The following proposition shows that with homogeneous user interests and budget of
attention at least 3, self organization is efficient if dynamics converge, achieving a price
of anarchy close to 1.

Proposition 1. Assume that 3 ≤ Δu < p for every user u ∈ V of a homogeneous flow
game. Then under any equilibrium the utility of a user is at least Δ−2

Δ−1
U∗ where U∗ is

his optimal utility.The price of anarchy is thus at most 1 + 1/(Δ − 2), approaching 1
for largeΔ.

We first note that the above proposition is tight in the sense that high price of anarchy
can arise when Δu ≤ 2 for all user u, as shown in Figure 1. In this particular case, a
doubly linked chain forms a Nash equilibrium gathering only two subjects in total while
an oriented cycle gathers n subjects. The price of anarchy is thus n/2.

To establish Proposition 1, we use two lemmas. Due to lack of space, we omit the
proofs which are in the extended version of this paper [12]. The first one allows to show
the existence of strongly connected components at equilibrium while the second allows
to build on the avoidance of redundant links.

Lemma 1. If an equilibrium is reached such that there exists a path x, u1, . . . , uk
where x is a producer, uk has in-degree bound Δuk

≥ 3 and a producer y is not
received by uk, then there is a path from uk to u1.

Lemma 2. Consider a strongly connected graph G with n nodes andm arcs (multiple
arcs are allowed). If m ≥ 2n − 1, then G contains a transitivity arc (i.e. an arc (s, t)
such that there exists a directed path from s to t).

Proof.[of Proposition 1] Consider any equilibrium. Assume that a user u receives less
than p subjects. u must be connected to some producer x by a path x, u1, . . . , uk =
u. Consider the graph G′ induced by users reachable from u1 that receive less than
p subjects. By Lemma 1, G′ is strongly connected and all its users receive the same
number p′ < p of subjects.

We claim that two users u and v of G′ cannot follow the same producer y. As there
exists a path from u to v, the link (y, v) would be redundant and v would be better
off following some unreceived subject instead. Moreover, the fact that users in G′ do
not receive all subjects implies that they have spent all their budget of attention. We
thus conclude that the number of edges in G′, m(G′) =

∑
u∈V (G′)Δu − p′. As the
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(a) Benchmark configuration

(b) A Nash equilibrium config-
uration

Fig. 1. Homogeneous interest sets with
degree Δ = 2

Fig. 2. A 4-cycle (A,C) → (B,C) →
(B,D) → (A,D) → (A,C) in the
strategy space

(a) Interest sets

(b) Benchmark configuration

(c) A Nash equilibrium configuration

Fig. 3. Heterogeneous interest sets

network is stable, there is no transitivity arc in G′. Lemma 2 thus implies m(G′) ≤
2n(G′) − 2 ≤ 2n(G′), where n(G′) is the number of nodes in G′. We thus get p′ ≥∑

u∈V (G′)Δu − 2n(G′) =
∑

u∈V (G′)(Δu − 2).
First consider the case p′ ≤ p− 2. Suppose there exists a user w /∈ V (G′). he cannot

receive two subjects not received in G′ otherwise u1 would unfollow x and connect
to w. As Δw ≥ 3, w can gather the p′ subjects received in G′ plus two others by
connecting to one node in G′ plus the two corresponding producers, a contradiction
as this would increase his utility. We thus conclude that G′ indeed contains all users,
implying p′ ≥ n(Δ− 2). Using (1), the utility of each user is at least p′ ≥ Δ−2

Δ−1
U∗.

Finally, in all remaining cases to consider, all users receive at least p − 1 subjects.
The utility of each user is thus at least p−1

p U
∗ ≥ Δ−2

Δ−1
U∗ as p ≥ Δ− 1. �

3.2 Convergence of Dynamics

We have thus shown that stable configurations of self-organizing networks with ho-
mogeneous user interests are efficient. However, do network dynamics converge to an
equilibrium ? The following proposition answers this question in the affirmative.

Proposition 2. Any homogeneous flow game has an ordinal potential function, imply-
ing that selfish dynamics always converge to an equilibrium in finite time.

The proof, whose details are in the extended version of this paper [12], demonstrates
that the function−

∑
0≤i≤p ni n

p−i is an ordinal potential function. Our proof yields a
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very loose bound of np+1 on convergence time. We leave as an open question whether
exponential time of convergence can really arise. However, a homogeneous flow game
is not equivalent to a congestion game in general as illustrated by Figure 2 where a 4-
cycle in the strategy space forbids the existence of an exact potential function. This rules
out the possibility of using techniques similar to [8] to find equilibria in polynomial
time, and more generally to easily bound convergence time.

Combining Proposition 1 and Proposition 2, we obtain:

Theorem 1. In a homogeneous flow game where each user has budget of attention at
least 3, less than p, andΔ in average, selfish dynamics converge to an equilibrium such
that the utility of a user is at least Δ−2

Δ−1
U∗ where U∗ is the optimal utility he can get,

implying a price of anarchy of 1 + 1/(Δ− 2) at most.

4 Heterogeneous Interests

We now consider the more realistic case where users have differing sets of interests.
Here we assume user u is interested in a subset Su ⊆ P of topics. As a user may
connect to other users whose interest sets differ from his own, he potentially receives
subjects out of his interest set. The user may not have the resources to process and store
this irrelevant information. We thus assume a natural filtering rule, where a user only
retransmits subjects that are in his own interest set.

Price of Anarchy. We now show that the price of anarchy of such a system may be
unbounded.

Proposition 3. In a heterogeneous flow game, the price of anarchy can be arbitrarily
large: specific choices yield a PoA of Ω

(
n
Δ

)
.

Proof. We show the result through an example, illustrated in Figure 3. For integer k,
consider a system with n = 2k users having budget of attention Δ ≥ 2 each, and p =
2(Δ − 1)k producers. We distinguish two set of users {a1, . . . , ak} and {b1, . . . , bk}.
Similarly, the producers are partitionned into groups {A1, . . . , Ak} and {B1, . . . , Bk}
where each Ai (resp. Bi) containsΔ− 1 producers.

As illustrated in Figure 3(a), each user ai has a value of 1 for each topic in Ai ∪ Bi

and additionally the first element of each Aj for j �= i. Similarly, each user bi has a
value of 1 for each topic in Ai ∪ Bi and additionally the first element of each Bj for
j �= i. Users have a value of zero for all other topics.

A benchmark configuration is shown in Figure 3(b), with two oriented rings, one for
users ai, i = 1, . . . , k and one for users bi, i = 1, . . . , k. User ai is connected to ai−1

(with a0 corresponding to ak) and to all producers in Ai. User bi is connected to bi−1

(with b0 corresponding to bk) and to all producers in Bi. The corresponding utility is
n(n/2 +Δ− 2), so that the optimal global welfare U∗ satisfies U∗ ≥ n2/2.

The configuration shown in Figure 3(c) is an equilibrium, where each user ai (resp.
bi) connects to producers in Ai (resp. Bi) and to bi (resp. ai). The global utility here is
U = n(2Δ− 2) ≤ 2nΔ, and the price of anarchy is thus at least n

4Δ . �
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Convergence of dynamics. We have shown that the price of anarchy can be unbounded
with respect to the number of users in some cases. Further, the selfish dynamics do not
even guarantee convergence to a Nash Equilibrium. The details of this result are shown
in the extended version of the current paper [12].

5 Structured Interest Sets

We now revisit the efficiency of social filtering in an heterogeneous scenario, where
interest sets are no longer arbitrary but instead are organized according to a well be-
haved geometry. Specifically we assume the following model. A metric d is given on
a set P ′ ⊇ P of subjects. The interest set Su of each user u then coincides with a
ball B(su, Ru) in this metric, specified by a central subject su and a radius of in-
terest Ru. Without loss of generality, we can assume P ′ = {su : u ∈ V } ∪ P and
Su = B(su, Ru)∩P . We shall first give conditions on the metric d and the sets Su un-
der which an efficient configuration exists. We will then introduce modified dynamics
and filtering rules which guarantee stability, i.e. convergence to an equilibrium. A flow
game where interest sets can be defined in this way is called a metric flow game.

The model can easily be generalized to more eclectic user interests where topics a
user is interested in correspond to the disjoint union of a constant number of balls. We
leave out the details of such generalizations so as to keep the focus of the paper. How-
ever, we include a brief discussion later in the section, in the context of Proposition 4.

5.1 Sufficient Conditions for Optimal Utility

Consider the following properties of the interest set geometry.

1. γ-doubling: d is γ-doubling, i.e. for any subject s and radius R, the ball B(s,R)
can be covered by γ balls of radius R/2: there exists I ⊂ S such that |I| ≤ γ and
B(s,R) ⊂ ∪t∈IB(t, R/2).

2. r-covering: r is a covering radius, i.e. any subject s ∈ P is at distance at most r
from the central subject su of some user u with interest radius Ru ≥ r.

3. (r, δ)-sparsity: there are at most δ subjects within distance r: |B(s, r)| ≤ δ, ∀s.
4. r-interest-radius regularity: for any users u, v with d(su, sv) < 3Ru/2+r, we have
Rv ≥ Ru/2 + r (users with similar interests have comparable interest radii).

Property (1) is a classical generalization of dimension from Euclidean geometry to
abstract metric spaces (an Euclidean space with dimension k is 2Θ(k)-doubling). This
is a natural assumption if user interests can be modeled by proximity in a hidden low-
dimensional space. Property (2) states that all subjects are within distance r from some
user’s center of interest and can thus be seen as an assumption of minimum density of
users’ interests over the whole set P of available subjects. Property (3) puts an upper
bound on the density of subjects. In other words, we assume a level of granularity
under which we do not distinguish subjects. Property (4) is another form of regularity
assumption, requiring some smoothness in the radii of interests of nearby users. This
may be the most debatable assumption, for instance if we consider the case of an expert
next to an amateur. However, if we assume that a topic is split into several subjects
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according to the level of expertise required to understand the corresponding news, the
assumption becomes more natural as an expert is still interested in related subjects (with
lower level of understanding) and an amateur still has some focus if the correct number
of levels is considered.

We now show that an optimal solution exists, i.e. one in which each user receives all
subjects in his interest set, as soon as his budget of attention is at least γδ + γ2 log Rm

r
where Rm is the maximum radius of interest over all users. This will be a direct conse-
quence of the following proposition.

Proposition 4. Consider a metric flow game satisfying the γ-doubling, r-covering,
(r, δ)-sparsity and r-interest-radius regularity assumptions. If in addition each user
u has a budget of attention at least γδ+γ2 log Ru

r , then there exists a collection of user
strategies allowing each user u to receive all subjects in Su.

This result can easily be extended to the case where each user interest set is given by
a disjoint union of balls (the number of balls being at most a constant b). It suffices to
repeat the construction of the proof for each ball, resulting in a factor b in the resulting
required budget of attention. The assumptions have to be slightly modified so that any
subject is covered by some ball of a user (in the covering assumption) and that two
nearby balls have comparable radii (in the regularity assumption). The details of the
proof can be found in the extended version of the paper [12].

The core of the construction consists in covering a a given ball radius of 2ir with a
set of γ balls of radius 2i−1r. As a covering set of γ2 balls can be computed through a
simple greedy covering algorithm [11], a solution where the required budget of attention
is within a factor γ from the bound of Proposition 4 can thus be computed in polynomial
time.

As previously mentioned, a budget of attention of Δ = γδ + γ2 log Rm

r per user is
thus enough for maximum utility. This scales logarithmically in Rm, while under the
assumptions of the theorem one can arrange interest sets to have size polynomial inRm

(take for example interests to be regularly placed on a lattice). Thus this configuration
gives substantial savings in comparison to one where users would connect directly to
all their subjects.

Clearly the configuration graph identified in this theorem is an equilibrium: as max-
imum utility is reached, no user can increase its utility by reconnecting. We now study
conditions that guarantee convergence of dynamics.

5.2 Sufficient Conditions for Stability

We first define two rules regarding republication of subjects received and reconnections.

1. Expertise-filtering rule: when a user u is connected to a user v, u only receives
subjects s such that d(sv, s) ≤ d(su, s).

2. Nearest-subject rule for re-connection: when reconnecting, each user u gives pri-
ority to subjects that are closer to su: a new subject s is gained by u so that no
subject t with d(su, t) < d(su, s) is lost. (On the other hand, any subject t with
d(su, t) > d(su, s) can be lost.)
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Rule 1 can be interpreted as follows. The center of expertise of a user is the same as
its center of interest, and the distance d also captures expertise of users about subjects,
in that u is more expert than v on subject s if and only if d(su, s) ≤ d(sv, s). The
rule then amounts to a sanity check where u discards news from sources that have less
expertise than himself on the subject. We capture with the following slight variation of
the model. A flow game with expertise-filtering is a flow game where reception of a
subject s by user u occurs only when there exists a directed path s = u0, . . . , uk = u
from s to u such that for each 1 ≤ i < k, s ∈ Sui (i.e. d(sui , s) ≤ Rui ) and d(sui , s) ≤
d(sui+1 , s).

Rule 2 states that a user u prefers to receive a subject he is more interested in (i.e.
closer to su) rather than any number of subjects that are less interesting. A flow game
is denoted to be with nearest-subject priority if the utility function of each user u is
defined by Uu(F ) = max {R : u receives all s ∈ B(su, R)}.

Proposition 5. Any metric flow game with expertise-filtering and nearest-subject pri-
ority has an ordinal potential function, implying that selfish dynamics always converge
to an equilibrium in finite time.

The proof shows that the function
∑

0≤i≤m ni (n+ p)
2(m−i) is an ordinal potential

function (details in the extended version [12]). As in the previous section, the bound on
convergence time implied by the above proof is very loose. We leave open the question
of determining better bounds or faster convergence conditions.

We are now ready to prove the following:

Theorem 2. Consider a metric flow game with expertise-filtering and nearest-subject
priority that satisfies the γ-doubling, r-covering, (r, δ)-sparsity and r-interest-radius
regularity assumptions. If in addition each user u has budget of attention at least γδ +
γ2 log Ru

r , selfish dynamics converge to an equilibrium where each user u receives all
subjects in Su, implying that the price of anarchy is then 1.
Proof. Consider a configuration where some users do not receive some subject in their
interest ball. Let (u, s) be a user-subject unsatisfied pair such that d(su, s) is minimal.
Consider the smallest integer i such that d(su, s) ≤ 2ir holds. According to the con-
struction of Proposition 4, user u can receive all subjects inBu,i = B(su,min(Ru, 2

ir))
as long as every user v receives all subjects in his ball of radius min(Rv, 2

i−1r) which
is the case according to the choice of the pair (u, s). Note that this construction follows
the expertise filtering rule as each subject at distance greater than 2i−1r is retrieved
through a user at distance at most 2i−1r from the subject. User u can retrieve Bu,i us-
ing at most γδ + γ2(i − 1) connections. The configuration is thus unstable as long as
Δu ≥ γδ+γ2(i−1) which is the case forΔu ≥ γδ+γ2 log Ru

r . Since the system must
stabilize to some equilibrium according to Proposition 5, every user u must receive all
news about subjects in Su in that stable configuration. �

Interestingly, the above proof implies that the convergence is fast: as soon as all
users receive their ball of radius 2i−1r, one reconnection by each user will allow him
to receive his ball of radius 2ir (expertise-filtering and nearest-subject priority ensure
that other users will not lose subjects at distance less than 2ir). Convergence is thus
achieved after log Rm

r rounds where each round consists in letting each user reconnect
once (or more).
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6 Concluding Remarks

We have shown that a flow game can have complex dynamics that may not converge.
However, we can prove convergence to efficient equilibrium for both homogeneous
flow games (with very weak assumptions) and metric flow games (with more technical
assumptions). While our proofs give exponential bounds on convergence time in gen-
eral, we get linear convergence time (up to a logarithmic factor) for structured interest
set with expertise-filtering and nearest-subject priority, showing that understanding the
structure of interests and its relation to forwarding mechanisms is a key aspect of in-
formation flow in social networks. Direct follow up of this work concerns the study of
the speed of convergence in general and the characterization of flow games having pure
Nash equilibria.

Our model makes several simplifying assumptions. A natural generalization would
be to consider a real-valued cost of attention for establishing a link (v, u) instead of a
unitary cost. The cost of establishing link (v, u) could typically be a function of Su and
Sv. A natural cost taking into account the attention required to filter out uninteresting
content would then be c(v, u) = |Sv |

|Su∩Sv| , for example.
A dual variant of our model could be to consider that every user gathers all the

subjects he is interested in while he tries to minimize the required cost of attention. We
could also mix both models, using utility functions combining coverage of interest set
and cost of attention (the function being increasing in the number of interesting subjects
received and decreasing in the costs of attention of the formed links).

In that context, we believe the two following directions are promising for efficient
social dissemination. First, incentive mechanisms, e.g. reputation counters maintained
by users, or payments between users, may considerably augment the performance of
self-organizing social flows. Second, more elaborate content filtering between contact-
follower pairs may also lead to substantial improvements. We have already introduced
expertise filtering, which could translate into implementable mechanisms in existing
social networking platforms. More generally there appears to be a rich design space of
filtering rules based on combinations of interests and expertise.
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Abstract. Content-based routing is widely used in large-scale distribu-
ted systems as it provides a loosely-coupled yet expressive form of
communication: consumers of information register their interests by the
means of subscriptions, which are subsequently used to determine the
set of recipients of every message published in the system. A major chal-
lenge of content-based routing is security. Although some techniques have
been proposed to perform matching of encrypted subscriptions against
encrypted messages, their computational cost is very high. To speed up
that process, it was recently proposed to embed Bloom filters in both
subscriptions and messages to reduce the space of subscriptions that
need to be tested. In this article, we provide a comprehensive analy-
sis of the information leaked by Bloom filters when implementing such a
“prefiltering” strategy. The main result is that although there is a funda-
mental trade-off between prefiltering efficiency and information leakage,
it is practically possible to obtain good prefiltering while securing the
scheme against leakages with some simple randomization techniques.

1 Introduction

Content-based publish/subscribe [1] is an efficient and powerful communication
paradigm for the development of large-scale applications. It supports decou-
pled communication between the producers and the consumers of information,
respectively called publishers and subscribers. Users interested in specific data
register subscriptions, which consist of predicates on the content of messages
called publications sent by the publishers. Data is routed through the network
by comparing the content of messages against the predicates and is delivered
to all users with at least one matching subscription. For instance, as illustrated
at the right of Figure 1, a user monitoring the stock market might register a
subscription s1 = {symbol = ACME ∧ price ≥ 100 ∧ currency = USD} to be
notified of quotes for company ACME with share price greater than or equal
to $100. A publication quote with content p1 = {symbol = ACME, price =
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102.23, volume = 210425, currency = USD}, shown at the left of Figure 1,
matches the subscription s1 and is forwarded to the corresponding subscriber.
The publication also matches Subscription s2 = {symbol = ACME ∧ price ≥ 80},
but not s3 = {symbol = ACME∧ price = 90}.

Security is a major hurdle to the wide adoption of content-based routing.
Indeed, as predicates must be compared against the content of messages, the
entity performing the routing must be trusted by all parties. The nature of
subscriptions may in particular reveal sensitive information about users (e.g.,
stock portfolios, whether two users have the same interests, etc.). Therefore,
both the publications and subscriptions must be encrypted (pi → E(pi) and si →
E(si) in Figure 1), and the routing operation must be performed without access
to the decryption keys. Unfortunately, existing encrypted filtering techniques,
like asymmetric scalar-product preserving encryption (ASPE) [2], have a high
computational cost that makes them inadequate for high-throughput content-
based routing.
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Fig. 1. Encrypted content-based routing with prefiltering using Bloom filters

A promising approach to tackle both the security and performance challenges
of content-based routing is to use an efficient “prefiltering” technique, described
in [3], to significantly reduce the space of subscriptions that must be tested by
the encrypted filtering engine during routing. In a nutshell, the principle is to
embed Bloom filters [4] inside publications and subscriptions; these Bloom filters
encode the values carried by the publications and the equality constraints of the
subscriptions. The simplified example illustrated in Figure 1 considers Bloom
filters of 16 bits with 2 hash functions. The values ACME, 102.23, 210425 and
USD are encoded in the Bloom filter B(p1) of p1, ACME and USD are encoded in
B(s1), ACME in B(s2), and ACME and 90 in B(s3). By testing the Bloom filters of
subscriptions for inclusion in those of publications, one can efficiently determine
the possibility for a message to match a subscription: if the test is negative, the
message is guaranteed not to match; otherwise, it might match. In Figure 1,
B(s1) and B(s2) are included in B(p1), but B(s3) is not. After the prefiltering,
only the subscriptions with matching Bloom filters need to be tested using the
computationally intensive encrypted filtering operation. Since most workloads
are dominated by equality constraints, prefiltering can significantly improve the
performance of high-throughput content-based routing systems.

Despite their hash-based construction and their probabilistic nature, Bloom fil-
ters may still convey sensitive information. In particular, containment produces
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Bloom filters that are included in one another.1 For security reasons, most en-
crypted filtering schemes are designed such that containment relationships be-
tween subscriptions cannot be derived from the encrypted matching mechanism.
However, an attacker can use containment relationships from the Bloom filters to
build groups of subscriptions whose size depends on the popularity of their values.
The attacker can then try to derive values based on the size of the groups, com-
promising the overall system security. This problem can be mitigated by randomly
removing bits from the subscriptions’ Bloomfilters and adding bits to those of pub-
lications, but this degrades the prefiltering accuracy. This performance/security
tradeoff of Bloom filter-based prefiltering for content-based routing is the focus of
this article.

1.1 Our Contributions

Our main insight is to introduce randomness in the prefiltering process by ran-
domly choosing a small number of hash functions from a larger set for each
subscription value encoded in the Bloom filters. Using mathematical analysis
and simulations, we show that there is a fundamental tradeoff between the in-
formation that can be leaked to an attacker from the Bloom filters and the
performance of prefiltering. Although this might seem like a discouraging result,
we prove that it is practically possible to obtain excellent prefiltering perfor-
mance while making the containment extremely challenging to derive from the
Bloom filters, henceforth securing the prefiltering scheme against leakages.

The main attack we analyze is an attacker trying to derive subscriptions con-
tainment relationships based on Bloom filter containment. The major difficulty
is the analysis of the dependencies introduced by hash functions collisions, which
are cumbersome to model mathematically. In practice, we use small Bloom filters
and the domain of possible subscriptions can be small and nonuniform, result-
ing in a large number of collisions in the Bloom filters. We provide evidence,
both mathematically and using numerical simulations, that efficient and secure
prefiltering can be achieved for real-life practical systems.

The article is organized as follows. We start by formally stating the prob-
lem and its assumptions in Section 2. The complete theoretical analysis of the
performance-security tradeoff of the prefiltering scheme is presented in Section
3. A discussion of the results is presented in Section 4. In Section 5, we study
other possible ways for an attacker to obtain containment relationships from sub-
scriptions’ Bloom filters and prove that our prefiltering scheme is secure against
them. We conclude the paper in Section 6.

1.2 Related Work

Bloom filters are widely used in distributed systems for both performance and se-
curity purposes. The prefiltering technique for content-based publish/subscribe

1 We say that a subscription si contains another subscription sj if any event that
matches sj also matches si, in other words if si is more general than sj . At the right
of Figure 1, s2 contains s1 and s3.
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systems described in the introduction was introduced by Barazzutti et al. [3].
Kerschbaum [5] used Bloom filters to protect supply chains information against,
for instance, malicious suppliers counterfeiting products; Bloom filters are used
to encode suppliers IDs attached to items as they pass through the supply chain.
Shikfa et al. [6] used counting Bloom filters to securely compute a weighted
matching ratio in a broker-based scenario. Jerzak and Fetzer [7] used Bloom
filters to speed up matching in publish/subscribe systems by constructing effi-
cient routing tables for the broker network. Perl et al. [8] used of Bloom filters
for a sort of prefiltering of DNA search using homomorphic encryptions. They
used pollution to obfuscate the filters, which is complementary to the pruning
approach we use in this article. Goh [9] presented a secure indexing technique al-
lowing word searches over a collection of encrypted documents. Both documents
and queries are encoded in Bloom filters, and additional bits in the documents
filters are randomly set to 1. Bellovin and Cheswick [10] briefly mentioned that
randomizing the inputs could be beneficial for using Bloom filters for encrypted
search, but they did not develop the idea further. Kuzu et al. [11] perform a
cryptanalysis on Bloom filters used in private record linkage applications. This
applies to keywords n-grams which are encoded in Bloom filters. Their work
shares some characteristics with ours: their Bloom filters are not encrypted, and
they make similar assumptions on the information available to attackers (do-
main probability space and number of hash functions). Finally, following the
seminal work of Bloom [4], a large body of research was also done on Bloom
filters themselves and is described is the extended version of this manuscript.

2 Problem Statement and Assumptions

2.1 Notation and Assumptions

Consider a subscription s1 with c1 ≥ 0 different equality constraints encoded in
a Bloom filter Bα(s1) of size n using α out of k hash functions per constraint.
Furthermore, let us consider a second subscription s2 with c2 ≥ c1 different
equality constraints also encoded in a Bloom filter Bα(s2) of size n with α out
of k hash functions per constraint. We also consider a publication p with cp ≥ c1
different values. The publication is encoded in a Bloom filter Bk(p), that is, all k
hash functions are used. We write Bα(s1) " Bα(s2) if and only if all the nonzero
bits in the Bloom filter of s1 are also nonzero in the Bloom filter of s2. Likewise,
we write Bα(s1) " Bk(p) if the Bloom filter of a subscription s1 is included in
the Bloom filter of a publication p.

We only consider the number of distinguishable values for subscriptions and
publications since it is assumed that the same value appearing for multiple at-
tributes is only hashed once. As mentioned in the introduction, the subscriptions
may also contain “nonequality” constraints (�=, <,≥, . . . ). However, nonequality
constraints are not encoded in the Bloom filters and cannot be prefiltered; we
therefore assume that they are not present in our analysis. Thus, s1, s2 and p
can formally be defined as sets of cardinality c1, c2 and cp, respectively, and we
use the standard notation A ⊆ B to denote that A is a subset of B.
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2.2 Hashing Strategy

It is assumed that the Bloom filters use a set of k independent and perfectly
random hash functions. Our hashing strategy Hα consists, for a fixed α ∈
{1, 2, . . . , k}, of randomly selecting α among the k hash functions for each sub-
scription value to be encoded. We emphasize again that the hashing strategy is
only applied to subscriptions; all the k hash functions must be used for publica-
tions, otherwise false negatives can occur, i.e., matching publication-subscription
pairs can be rejected during the prefiltering operation.

2.3 Subscription/Publication Domains

We assume that there are a possible attributes A1, A2, . . . , Aa with equality
constraints that can be used for each subscription and in publications, and that
the set of v possible values for attribute Ai is Vi = {vi1, vi2, . . . , viv}. It is assumed
that when a subscriber or publisher selects an attribute to put in a subscription
or publication, it chooses any of the a attributes with probability 1

a . It is also
assumed that the attribute takes each of its possible values with probability
1
v . The domain we consider, noted D�=, assumes that Vi ∩ Vj = ∅ for i �= j.
Non-disjoint value sets can always be made disjoint by encoding each value with
a small prefix representing its attribute. Other domains are considered in the
extended version of this work.

It is assumed that an attacker knows the domain and its probability distribu-
tion and also k and α. We assume that when an attacker examines a subscription
Bloom filter, it knows the number of different equality constraints that were en-
coded in it. This increases its power, but only slightly because the number of
nonzero bits in a Bloom filter is highly correlated with the number of encoded
values. Furthermore, this allows us to do the analysis without any assumption
on the distribution of the number of equality attributes per subscription.

The domain uniformity is not a realistic assumption for most content-based
systems, although two remarks must be made. Firstly, the domain uniformity al-
lows us to analyze rigorously how an attacker can infer subscription containment
from the Bloom filters as well as the performance of the prefiltering scheme. Sec-
ondly, the analysis can be carried out numerically for any content-based system
for which an estimate of the statistics at the subscriber, publisher, or system
level is available. One such example is presented in Section 4.

2.4 Problem Statement

The objective of this work is to study, using our hashing strategy, the tradeoff
between the amount of information about subscriptions that can be inferred
by an attacker from a set of leaked Bloom filters, and the performance of the
prefiltering process.

Leaked Information from the Bloom Filters. We want to prove that ran-
domly selecting a small number of hash functions for each coded attribute of
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the Bloom filters restricts the attacker capacity to derive useful subscription
information based on their Bloom filters. The expression of interest is

Pα � Pr[s1 ⊆ s2 | Bα(s1) " Bα(s2)]. (1)

The higher this probability is, the easier it is for an attacker to build an accurate
containment graph when having access to a large number of subscription Bloom
filters included in other subscription Bloom filters. Using Bayes’ law, we can
write

Pα = Pr[s1 ⊆ s2] ·
Pr[Bα(s1) " Bα(s2) | s1 ⊆ s2]

Pr[Bα(s1) " Bα(s2)]
. (2)

When all the k hash functions are chosen, Pr[Bk(s1) " Bk(s2) | s1 ⊆ s2] = 1.

Prefiltering Efficiency. Decreasing the amount of information to potential
attackers is useless if it results in a prefiltering operation that fails to discard
a significant fraction of the subscriptions with equality constraints that do not
match an incoming publication. The expression of interest is the probability of
false positive

Pf pos � Pr[Bα(s1) " Bk(p) | s1 �⊆ p]. (3)

Simply, it is the probability, when the equality constraints of a subscription are
not included in the values set of a publication, that the Bloom filter of the
subscription is included in the Bloom filter of the publication.

3 Exact Analysis with Collisions

In this section, we derive exact expressions for Pα and Pf pos. We first state
preliminary results whose proofs are in the extended version of this work.

Consider the number of common values between a pair of subscriptions. Let
Pr

common
[γ] be the probability that there are γ common values between subscrip-

tions s1 and s2 for 0 ≤ γ ≤ c1.

Lemma 1

Pr
common

[γ] =

(
c2
γ

)
·
c1−γ∑
δ=0

[(
c2−γ

δ

)(
a−c2

c1−γ−δ

)
(v − 1)δvc1−γ−δ

]
(
a
c1

)
vc1

.

Corollary 1

Pr[s1 ⊆ s2] = Pr
common

[c1] =

(
c2
c1

)
(
a
c1

)
vc1
.

We now focus on Pr[Bα(s1) " Bα(s2) | s1 ⊆ s2] and Pr[Bα(s1) " Bα(s2)].
Our main insight is to split the hashes into two categories. First, consider an
attribute value common to subscriptions s1 and s2. If, for this value, there is
a hash function h which is randomly chosen for both Bloom filters Bα(s1) and
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Bα(s2), we say there is a good hash between s1 and s2. Second, it is also possible
that unrelated hash functions selected by both s1 and s2 randomly hash at the
same position in the Bloom filters; this is called a lucky hash. Since we want
Bα(s1) " Bα(s2), all the hashes of s1 in Bα(s1) must be covered by the hashes
of s2 in Bα(s2) by good and/or lucky hashes.

Let Pr
good

[g, γ] be the probability that there are g good hashes between s1 and s2,

where γ is the number of common values between both subscriptions. Pr
good

[g, γ]

is difficult to calculate for α > 1 because the probability that there are l good
hashes for one common value between s1 and s2 is different from the probability
that there are l common values with one good hash each. Thus, to evaluate
Pr
good

[g, γ] we must consider the integer partitions of g [12].

Let IntPart(g, γ, αmin, α) be the set of all integer partitions of g into exactly
γ parts with the additional constraint that the size of each part is at least αmin

and at most α. We write λ # IntPart(g, γ, αmin, α) to denote that λ is an integer
partition of g with the desired properties. The frequency representation of a
partition λ # IntPart(g, γ, αmin, α) is (αmin

pαminαmin+1
pαmin+1 . . . αpα), meaning

that the value αi appears pαi times in the partition.

Lemma 2

Pr
good

[g, γ] =
∑

λ�IntPart(g,γ,αmin,α)

⎡
⎣( γ

pαmin , pαmin+1, . . ., pα

) α∏
β=αmin

[(
α
β

)(
k−α
α−β

)
(
k
α

)
]pβ
⎤
⎦

where αmin = max(0, 2α− k).

The formula is simpler when α = 1, since in that case here is only one integer
partition of g into γ parts when each part is either 0 or 1. The following corollary
describes this.

Corollary 2 When α = 1,

Pr
good

[g, γ] =

(
γ

g

)(
1

k

)g (
k − 1

k

)γ−g

.

If Bα(s1) " Bα(s2), all the Bloom filter bits derived from the hash functions
randomly chosen for s1 must somehow be covered by some of the hash functions
randomly chosen for the Bloom filter of s2. If we have g good hashes between s1
and s2, that leaves c1α − g lucky hashes of s1 that must be covered by some of
the hash functions of s2 randomly hashing at the same positions in the Bloom
filter. Let Pr

lucky
[h1, h2] be the probability that h1 hashes of a subscription or

publication are covered by some of the h2 hashes of a second subscription or
publication randomly hashing at the same positions in the Bloom filter.

Lemma 3

Pr
lucky

[h1, h2] =
1

nh1+h2

h2∑
i=0

⎡
⎣(n
i

)
i!

{
h2
i

} i∑
j=0

(
i

j

)
j!

{
h1
j

}⎤⎦ .
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where
{

k1

k2

}
represent the Stirling numbers of the second kind [13].

Lemma 4

Pr[Bα(s1) " Bα(s2) | s1 ⊆ s2] =
c1α∑
g=0

(
Pr
good

[g, c1] Pr
lucky

[c1α− g, c2α]
)
.

Lemma 5

Pr[Bα[s1] " Bα(s2)] =

c1∑
γ=0

(
Pr

common
[γ]

γα∑
g=0

(
Pr
good

[g, γ] Pr
lucky

[c1α− g, c2α]
))

.

We now present the main results of this work.

Theorem 1

Pα =

(
c2
c1

)
(
a
c1

)
vc1

·

c1α∑
g=0

(
Pr
good

[g, c1] Pr
lucky

[c1α− g, c2α]
)

c1∑
γ=0

(
Pr

common
[γ]

γα∑
g=0

(
Pr
good

[g, γ] Pr
lucky

[c1α− g, c2α]
)) .

Proof The theorem can be derived by merging (2), Lemmas 1, 2, 3, 4, 5, and
Corollaries 1 and 2.

Theorem 2

Pf pos =

c1−1∑
γ=0

(
Pr

common
[γ] Pr

lucky
[α(c1 − γ), cpk]

)
.

Proof From (3), Pf pos � Pr[Bα(s1) " Bk(p) | s1 �⊆ p]. Suppose that there are
γ < c1 common attribute values between s1 and p. Since the publication uses all
the k hash functions for each value in its Bloom filter, it follows that there are
αγ good hashes for s1, leaving α(c1 − γ) lucky hashes that must be covered by
the cpk hashes of p randomly hashing at the same positions in the Bloom filters.
The probability of this occurring is given by Pr

lucky
[α(c1 − γ), cpk]. The result can

be obtained by summing, for all values of γ between 0 and c1 − 1 (s1 ⊆ p if
γ = c1), the probability that there are γ common attribute values between s1
and p times the probability of α(c1 − γ) lucky hashes.

4 Results and Discussion

In this section, we use Theorems 1 and 2 to study the fundamental tradeoffs
between the efficiency and the security of our prefiltering scheme. We first con-
sider as an example the uniform domain D�= with a = 10 attributes and v = 100
values per attribute. It is further assumed that all the subscriptions contain
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c1 = c2 = 3 equality constraints, that all the publications contain cp = 5 values,
and that a set with k = 5 hash functions is used. Figure 2 shows how Pα and
Pf pos vary with the Bloom filter size. For both Pα and Pf pos, the five curves cor-
respond to α ∈ {1, 2, 3, 4, 5}, where α is the number of hash functions randomly
selected. Figure 3 uses the same domain as Figure 2, except that it shows how
Pα and Pf pos vary with k with Bloom filters of 128 bits. The main observation
from both figures is that in order to minimize the amount of information to an
attacker, we can choose a small Bloom filter and select one hash function ran-
domly out of a very large set. In fact, we can show from (2) and Theorem 1 that
limk→∞ Pα = Pr[s1 ⊆ s2]. With a very large k, there is no information leaked to
an attacker who knows the domain probability space. However in this case, since
all the hash functions must be encoded in the Bloom filters for publications, the
publications Bloom filters have all their bits set to one, thus the probability of
false positive approaches 1 and the prefiltering scheme is absolutely useless.
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Figure 4 further emphasizes that there is no free lunch. In Figure 4, we choose
k such that the false positive rate is always 3% (Pf pos ≈ 0.03) and study how
it affects Pα for α = 1 as the Bloom filter size varies. The conclusion is that for
a fixed false positive rate, the security of the prefiltering is essentially fixed no
matter how we vary the size of the Bloom filters and the cardinality of the hash
functions set. One observation that can be drawn from this is that for complexity
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reasons we should set the Bloom filter size as small as we can get away with (for
very small Bloom filters it is not possible to set the probability of false positive
low enough). Typically, Bloom filters of size 64 or 128 are more than sufficient. A
similar behavior can be observed with α > 1, but the tradeoff generally becomes
worst as α increases. Figure 4 also shows that the performance-security tradeoff
is better when the number of subscription equality constraints approaches the
number of publication values. Despite the observed tradeoffs, our truncation
hashing strategy is a valuable mechanism. For instance, it can be observed from
Figure 4 that for a 3% false positive rate, which is excellent, Pα is approximately
5 · 10−11 when cp = c1 = c2 = 5. This makes it extremely challenging for an
attacker to build an accurate containment graph and run statistical attacks using
a set of encrypted subscriptions. Of course in practical systems, subscribers do
not necessarily generate subscriptions with a fixed number of equality attributes,
nor do publishers generate publications with a fixed number of elements. When
this occurs, the performance-security tradeoff must be approximated based on
an estimation of the system workload.
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Finally, since real-world publication and subscription domains are rarely uni-
form, we also test our prefiltering scheme on a nonuniform domain. We use Zipf’s

law with exponential parameter 0, i.e., Pr[X = x] = Pr[X=1]
x for x = {1, 2, 3, . . .}.

Zipf’s law and other power laws appear in a wide range of disciplines like finance,
demography, computer science, biology, ... [14] We consider that the domain at-
tributes follow Zipf’s law; likewise, we assume that the possible values for each
attribute also follow Zipf’s law. We use a = 10, v = 100, 5 values per publica-
tion, 3 equality constraints per subscription, k = 5, and α = 1. We compute Pα
and Pf pos using numerical simulations. The results for Pα and Pf pos comparing
Zipf’s law and a uniform domain are shown in Figure 5. It can be observed that
Pα is slightly higher when the domain follows Zipf’s law, which is not surpris-
ing since the domain entropy is lower and the probability that the subscriptions
share common values increases. Furthermore, Pf pos is almost equal for small
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Bloom filters. This example provides evidence that our prefiltering scheme can
be made secure and efficient with nonuniform real-life practical workloads.

5 Other Containment and Noncontainment Attacks

The attacker can also try to derive containment relationships based on mis-
matched Bloom filters, i.e., Bloom filters Bα(s1) and Bα(s2) such that Bα(s1) �"
Bα(s2) and Bα(s2) �" Bα(s1). Let us consider the probability

Pα � Pr [s1 ⊆ s2 | Bα(s1) �" Bα(s2)] .

Pα can be evaluated using the formulas derived in Section 3. It should be clear
that P k = 0 and that Pα > 0 for α < k, so at first sight randomly choosing some
of the hash functions appears to provide more information to an attacker than
selecting all the hash functions. This is misleading, since Pα increases from zero
to Pr[s1 ⊆ s2], providing no more information to an attacker than from random
subscriptions. This is a welcome tradeoff considering how our hashing strategy
decreases the amount of information leaked from contained subscriptions.

Finally, an attacker could try to derive “noncontainment” attributes about
pairs of encrypted subscriptions. The probability of interest is

Pr [s1 �⊆ s2 | Bα(s1) �" Bα(s2)] ,

which is equal to 1 with α = k and smaller than 1 when α < k. This means
that when α < k, the attacker cannot even conclude with certainty that two
subscriptions are not included into each other.

6 Conclusion and Future Work

Content-based routing middleware yields multiple advantages in terms of flexi-
bility, scalability, and simplicity for the development distributed applications. A
major impairment to wider adoption of these techniques is their security: mes-
sages, individual subscriptions, and containment relationships among a set of
subscriptions may reveal important information about a user or group of users.
While encrypted routing hides the content of messages and subscriptions, it re-
quires costly encrypted processing algorithms that make the filtering operation
computationally prohibitive for high-throughput systems. Prefiltering allows us
to greatly reduce the performance gap between non-encrypted and encrypted
filtering. By adding Bloom filters that encode publication values and subscrip-
tion equality constraints, we can discard a large fraction of subscriptions before
reaching the costly encrypted filtering operation. Furthermore, when selecting
a subset of the hash functions for encoding subscription equality constraint in
the Bloom filters, we showed that it is possible prefilter a large fraction of the
subscriptions while leaking very little information to potential attackers.

We believe that our results can be applied to many other problems in dis-
tributed systems where set inclusions are represented using a compact structure
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such as Bloom filters, and where the security and confidentiality requirements
are stringent. One such application is encrypted distributed databases [15]. The
mathematical analysis presented in this article could also be applied to other
techniques studied empirically, for instance filter obfuscation [8].
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Abstract. We study a combinatorial model of the spread of influence
in networks that generalizes existing schemata recently proposed in the
literature. In our model agents change behaviors/opinions on the basis of
information collected from their neighbors in a time interval of bounded
size whereas agents are assumed to have unbounded memory in previ-
ously studied scenarios. In our mathematical framework, one is given a
network G = (V,E), an integer value t(v) for each node v ∈ V , and a
time window size λ. The goal is to determine a small set of nodes (target
set) that influences the whole graph. The spread of influence proceeds
in rounds as follows: initially all nodes in the target set are influenced;
subsequently, in each round, any uninfluenced node v becomes influenced
if the number of its neighbors that have been influenced in the previous
λ rounds is greater than or equal to t(v). We prove that the problem
of finding a minimum cardinality target set that influences the whole
network G is hard to approximate within a polylogarithmic factor. On
the positive side, we design exact polynomial time algorithms for paths,
rings, trees, and complete graphs.

1 Introduction

Many phenomena can be represented by dynamical processes on networks. Ex-
amples include cascading failures in physical infrastructure networks [21], in-
formation cascades in social and economic systems [8], spreads of infectious
diseases [2], and the spreading of ideas, fashions, or behaviors among people
[12, 40]. Therefore, it comes as no surprise that the study of dynamical pro-
cesses on complex networks is an active area of research, crossing a variety of
different disciplines. Epidemiologists, social scientists, physicists, and computer
scientists have studied diffusion phenomena using very similar models to de-
scribe the spreading of diseases, knowledge, behaviors, and innovations among
individuals of a population (see [4, 9, 24] for surveys of the area).

A particularly important diffusion process is that of viral marketing [30], which
refers to the spread of information about products and behaviors and their adop-
tion by people. Recently, it has also become an important tool in the commu-
nication strategies of politicians [31, 39]. Although there are many similarities
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between social and epidemiological contagion [23], social contagion is usually
an intentional act on the part of the transmitter and/or the adopter, unlike a
pathogen contagion. The spread of ideas requires extra mechanisms in addition
to mere exposure, e.g., some kind of “social pressure”. More importantly, in the
marketing scenario one is interested in maximizing the spread of information
[22], while this is not likely to happen in the spread of pathogenic viruses. The
intent of maximizing the spread of viral information across a network naturally
suggests many optimization problems. Some of them were first articulated in the
seminal papers [27, 28], under various adoption paradigms. In the next section,
we will explain and motivate our model of information diffusion, state the prob-
lem that we are investigating, describe our results, and discuss how they relate
to the existing literature in the area.

Due to space constraints, proofs are omitted from this extended abstract.

2 The Model, the Context, and the Results

The network is represented by a pair (G, t), where G = (V,E) is an undirected
graph and t : V −→ N = {1, 2, . . . , } is a function assigning integer thresholds
to nodes. We assume that 1 ≤ t(v) ≤ deg(v) for each v ∈ V , where deg(v) is the
degree of v. For a given set S ⊆ V and a time window size λ ∈ N, we consider a
dynamical process of influence diffusion in G defined by two sequences of node
subsets, Influenced[S, r] and Active[S, r], r = 0, 1, . . . , where

Influenced[S, 0] = S, Active[S, 0] = ∅, and for any r ≥ 1 it holds that

Influenced[S, r] = Influenced[S, r − 1] ∪
{
v :
∣∣N(v) ∩ Active[S, r]

∣∣ ≥ t(v)}
(1)

Active[S, r] =

{
Influenced[S, r − 1] if r ≤ λ
Influenced[S, r − 1] \ Influenced[S, r − 1− λ] if r > λ

Intuitively, the set S might represent a group of people who are initially influ-
enced/convinced to adopt a product or an idea. Then the cascade proceeds in
rounds. In each round r, the set of influenced nodes is augmented by including
each node v that has a number of influenced and still active neighbors greater
than or equal to its threshold t(v). A node is active for λ rounds after it becomes
influenced and then it becomes inactive.

Our model is based on the models in [20, 33] which assume that people can
be divided into three classes at any time instant. Ignorants are those not aware
of a rumor/not yet influenced, spreaders are those who are spreading it, and
stiflers are those who know the rumor/have been influenced but have ceased
to spread the rumor/influence.1 Several rules have been proposed to govern the
transition from ignorants to spreaders and from spreaders to stiflers, and many
papers have studied the dynamics of these systems, mostly in stochastic scenarios

1 The reader will notice an analogy with the SIR model of mathematical epidemiology
[2], in which individuals can be classified as Susceptible, Infected, and Recovered.
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(see [7, 34] and references quoted therein). Here, we posit that any ignorant
node becomes a spreader if the number of its neighbors who are spreaders is
above a certain threshold (i.e., the node is subject to a large enough amount of
“social pressure”), and any spreader becomes a stifler after λ rounds (because
the spreader loses interest in the rumor, for instance). Other papers have studied
information diffusion under similar assumptions [19, 26].

Our model also captures another important characteristic of influence diffu-
sion. It is well known (e.g. [3]) that people are more inclined to react to pieces
of information cumulatively heard during a “short” time interval than to infor-
mation heard during a considerably longer period of time. In other words, one is
more likely to be convinced of an opinion heard from a certain number of friends
during the last few days than by an opinion heard sporadically during the last
year from the same number of people. Therefore, it seems reasonable to study
diffusion processes in which people have bounded memory, and only the num-
ber of spreaders heard during the last λ rounds may contribute to the change
of status of an ignorant node.2 Formally, one has a dynamical process of influ-
ence diffusion on G described by the sequence of node subsets Influenced′[S, r],
r = 0, 1, . . . , where Influenced′[S, 0] = S, and for any r ≥ 1 it holds that

Influenced
′[S, r] =

= Influenced[S, r − 1] ∪ {
v :

∣∣N(v) ∩ Influenced
′[S, r − 1]

∣∣ ≥ t(v)
}

(2)

if r ≤ λ, and

Influenced ′ [S, r] = Influenced
′[S, r − 1] (3)

∪{v :
∣∣N(v) ∩ (Influenced′[S, r − 1]\Influenced′[S, r − 1− λ])

∣∣ ≥ t(v)
}

if r > λ. It is immediate that (2) and (3) are an equivalent way to write (1) and
(2): for any S ⊆ V and r ≥ 1, Influenced′[S, r] = Influenced[S, r], so we get
that the spreading process with “stiflers” also describes the spreading process
with “bounded memory” governed by (2) and (3).

Summarizing, the problem that we shall study in this paper is the following:

Time Window Constrained Target Set Selection (TWC–TSS)
Input: A graph G = (V,E), a threshold function t : V −→ N, and a time
window size λ.
Output: A minimum size S ⊆ V s.t. Influenced[S, r] = V , for some r ≥ 0.

When λ is large enough, for instance equal to the number n of nodes, our
Time Window Constrained Target Set Selection problem is equivalent
to the classical Target Set Selection problem studied in [1, 5, 6, 10, 13–
18, 37, 41]. In terms of our second formulation of the TWC–TSS problem, the
classical Target Set Selection problem can be viewed as an extreme case in
which it is assumed that people have unbounded memory. In general, the TWC–
TSS and the TSS problems are quite different. One of the main difficulties of the
new TWC–TSS problem is that the sequence of sets Active[S, r], r = 0, 1, . . .
is not necessarily monotonically non-decreasing: it is possible that Active[S, r]

2 Another model in which individuals carry a memory of the “amount of influence”
received during a bounded time interval has been studied in [23].
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is larger than Active[S, r + 1] for some values of r. When λ = n, we have
Active[S, r] = Influenced[S, r − 1] for any r, and monotonicity is restored. At
the other extreme, when λ = 1, a node v becomes influenced at time r only if
at least t(v) of its neighbors become influenced at exactly time r − 1. This sort
of synchronization in the propagation of influence poses new challenges, both in
the assessment of the computational complexity of the TWC–TSS problem and,
especially, in the design of algorithms for its solution. The example in which the
graph G is a path is particularly illuminating. As we shall see in Section 4.1,
the Target Set Selection problem is trivial to solve on a path; it is far from
being so when there is a fixed time window size λ.

Our Results. In Section 3, we prove a polylogarithmic inapproximability re-
sult for the TWC–TSS problem under a plausible computational complexity
assumption. The result is obtained by a modification of the very clever proof
of the inapproximability of TSS by Chen [13]. In view of the strong inapprox-
imability of the TWC–TSS problem, we then turn our attention to special cases
of the problem. In Section 4 we present the main results of the paper: exact
polynomial time algorithms for paths, rings, complete graphs, and trees. The
algorithms for paths and rings are based on dynamic programming, and the al-
gorithm for complete graphs is greedy. The algorithm for trees is also based on
dynamic programming and requires the solution of polynomially many integer
linear programs. The polynomial time solvability of each integer linear program
is guaranteed by the unimodularity of the associated matrix of coefficients.

3 Hardness of TWC–TSS

In general, our optimization problem TWC–TSS is unlikely to be efficiently
approximable, as the following result shows.

Theorem 1. For any fixed value of the time window size λ, the TWC–TSS
problem cannot be approximated within a ratio of O(2log

1−ε n) for any fixed ε > 0,
unless NP ⊆ DTIME(npolylog(n)).

Theorem 1 is a generalization of a similar inapproximability result given in
[13] for the Target Set Selection problem that, as said before, corresponds
to our Time Window Constrained Target Set Selection problem when
the time window size λ is unbounded. Our result holds for any fixed value of λ.
The proof details are presented in the Appendix; here we sketch the main idea.
We prove Theorem 1 by a polynomial time reduction from the same MIN REP

problem used in [13].
Let H = (VA ∪ VB , E) be a bipartite graph, where VA ∩ VB = ∅ and E ⊆

VA × VB. Let A be a family of subsets of VA that partitions VA into |A| equally
sized subsets, and analogously let the family B be a partition of VB into |B|
equally sized subsets. Given graph H and partitions A, B, the MIN REP problem
asks for a subset U ⊆ V of minimum size such that for each A ∈ A and B ∈ B

E ∩ (A×B) �= ∅ implies [E ∩ (A×B)] ∩ (U × U) �= ∅. (4)
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Theorem 2. [13] The MIN REP problem cannot be approximated within a ratio

of O(2log
1−ε n) for any fixed ε > 0, unless NP ⊆ DTIME(npolylog(n)).

Given an instance of MIN REP consisting of the bipartite graph H = (VA ∪
VB, E) and the pair of partitions (A,B), we construct an instance I for the
TWC–TSS problem. More precisely, for the instance I we will only specify a
suitable graph G = (V,E) and threshold function t : V −→ N = {1, 2, . . . , },
since our aim is to prove inapproximability for any value of λ. We denote by Γ�
the gadget shown in Figure 1(a), which consists of � paths of length 2 connecting
the same pair of nodes. If λ ≤ 8, we need another gadget Γ λ

� shown in Figure
1(b); it consists of � paths, each having length 11− λ and connecting the same
pair of extremal nodes. All internal nodes of the gadgets have threshold 1.

x

. . .

y

v1 v2 v�

x

. . .

y

v1,1 v2,1 v�,1

v1,10−λ

v2,10−λ
v�,10−λ

Fig. 1. (a) The gadget Γ� consisting of � paths of length 2 sharing the extremal nodes.

(b) The gadget Γ λ
� consisting of � paths of length 11− λ sharing the extremal nodes.

Let N = |V |+ |E|. The graph G has node set V1 ∪ V2 ∪ V3 ∪ V4 where

– V1 = V and each node has threshold N2,
– V2 = {x(a,b) : (a, b) ∈ E}; each node x(a,b) ∈ V2 has threshold 2N5. The node
x(a,b) is connected to both a ∈ V1 and b ∈ V1 by a gadget ΓN5 ; moreover, if

λ ≤ 8 then x(a,b) is also connected to both a and b by a gadget Γ λ
N5 .

– V3 = {yA,B : (A×B) ∩ E �= ∅}; each node yA,B ∈ V3 has threshold N4 and
is connected by a gadget ΓN4 to each x(a,b) ∈ V2 with a ∈ A and b ∈ B, and

– V4 = {z1, . . . , zN}; each node z ∈ V4 has threshold |V3|×N2 and is connected
by a gadget ΓN2 to each node in V3 and by a gadget ΓN to each node in V1.

Theorem 1 follows by showing that any optimal solution U of the MIN REP in-
stance gives rise to a solution U ⊆ V1 to the TWC–TSS problem with input
instance (G, t, λ). Vice versa, if S is a solution to the TWC–TSS istance, then
in polynomial time one can construct a MIN REP solution of size at most 2|S|.

4 Polynomially Solvable Cases of TWC–TSS

We now present exact polynomial time algorithms to solve the TWC–TSS prob-
lem in several classes of graphs.

4.1 Paths

Let Ln = (V,E) be a path on n nodes, with V = {0, . . . , n−1} and E = {(v, v+
1) : 0 ≤ v ≤ n− 2}. Since the threshold of each node cannot exceed its degree,
we have that t(0) = t(n− 1) = 1 and t(v) ∈ {1, 2}, for each v = 1, . . . , n− 2.
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The TWC–TSS problem is trivial to solve in case λ is unbounded. Letting
{vi1 , vi2 , . . . , vik} be the nodes of Ln having threshold equal to 2, one can see
that {vi1 , vi3 , . . . , vik−2

, vik} is an optimal solution when k is odd, whereas the
subset {vi1 , vi3 , . . . , vik−1

, vik} is optimal when k is even. In case λ has some
fixed value, the situation is much more complicated. Indeed, because of the time
window constraint, one must judiciously choose the initial target set in such a
way that, for every node with threshold 2 that does not belong to the initial
target set, its two neighbors become influenced at the correct times.

To avoid trivialities, we assume that Ln has at least two nodes with threshold
equal to 2. Should it be otherwise, for instance all nodes have threshold 1, then
any subset S of V with |S| = 1 is an optimal solution. If exactly one node, say
v, has threshold 2, then {v} is an optimal solution.

Lemma 1. If � = min{v ∈ V : t(v) = 2} and s = max{v ∈ V : t(v) = 2}, then
there exists an optimal solution S such that

i) S ∩ {0, . . . �− 1} = ∅ = S ∩ {s+ 1, . . . n− 1};
ii) �, s ∈ S.

Lemma 1 implies that we can ignore all nodes in Ln that are to the left of
the lowest numbered node with threshold 2, and to the right of the highest
numbered node with threshold 2. Equivalently, from now on we can assume that
t(0) = t(n− 1) = 2. Define the array D[0 . . . (n− 1)], where D[n− 1] = n− 1 and

D[i] = min{j : i < j ≤ n− 1 and t(j) = 2}, (5)

for i = 0, . . . , n − 2. Since t(n − 1) = 2, value D[i] is always well defined. One
can check that the following algorithm computes an array D satisfying (5).

Algorithm ARRAY(Ln) [ Input: A path Ln with threshold function t(·)]
1. Set D[n− 1] = n− 1 and j = n− 1
2. for i = (n− 2) down to 0 do
3. set D[i] = j
4. if t(i) = 2 then set j = i

For each i = 0, . . . , n− 1, let Ln
i denote the sub-path consisting of the last n− i

nodes {i, i+1, . . . , n− 1} of Ln. We denote by s(i) the minimum size of a TWC
target set for Ln

i that contains both the extreme nodes, that is, i and n− 1. Our
first goal is to compute s(0), the size of an optimal solution for Ln

0 = Ln.

Lemma 2. Fix the time window size λ and consider the family of all TWC
target sets for Ln

i that include both i and n − 1. If i < n − 1, such a family
contains a minimum size TWC target set whose second smallest element is in
{
D[i]

}∪{x : max{D[i]+1, 2D[i]−i−λ+1} ≤ x ≤ min{2D[i]−i+λ−1, D[D[i]]}}. (6)

From Lemma 2, we have s(n− 1) = 1 and, for each i = 0, . . . , n− 2,

s(i) = 1 +min
{
s(D[i]), min

j
s(j)
}

(7)
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where j satisfies max
{
D[i] + 1, 2D[i]− i − λ + 1

}
≤ j ≤ min

{
2D[i]− i + λ −

1, D[D[i]]
}
. The size of an optimal target set for Ln can be computed as s(0).

The actual TWC target set of optimal size s(0) can be constructed using
standard backtracking techniques.

Theorem 3. For any time window size λ, an optimal TWC target set for the
path Ln can be computed in time O(n).

4.2 Rings

We can use Theorem 3 above to design an algorithm for the TWC–TSS problem
on rings. Let Rn denote the ring on n nodes {0, . . . , n − 1} with edges (i, (i +
1) mod n) and thresholds t(i), for i = 0, . . . , n− 1.

We first notice that if all nodes have threshold 2, then an optimal TWC target
set for Rn trivially has size �n/2�, so let us now assume that there exists a node
j that has threshold t(j) = 1. Either j is in an optimal TWC target set for Rn

or it is not. Consider the path Rn
j,2 obtained by “breaking” the ring Rn at node

j, duplicating node j into j and j′, and assigning threshold 2 to both j and j′

(regardless of the original threshold value t(j) = 1 in Rn). Therefore, the edges of
Rn

j,2 are (j, j+1), (j+1, j+2), . . . , (n−2, n−1), (n−1, 0), . . . (j−2, j−1), (j−1, j′).
The thresholds of Rn

j,2 are

tj,2(i) =

{
t(i) if 0 ≤ i ≤ n− 1 and i �= j
2 if i = j or i = j′.

We can use the algorithm of Section 4.1 to compute the size of an optimal TWC
target set Sj,2 for the path Rn

j,2. Notice that both j and j′ must be in Sj,2, so
Sj,2 − {j′} is a TWC target set for the ring Rn, optimal among all TWC target
sets that include node j.

Now we want to compute a TWC target set for the ring Rn that is optimal
among all TWC target sets that do not include node j. To do this, consider the
path Rn

j,1 that has the same nodes and edges as Rn
j,2 but has thresholds

tj,1(i) =

{
t(i) if 0 ≤ i ≤ n− 1 and i �= j
1 if i = j or i = j′.

In particular, the endpoints of Rn
j,1 have thresholds tj,1(j) = tj,1(j

′) = 1. First,
we apply Lemma 1 to Rn

j,1 and then we use the algorithm of Section 4.1 to
compute (the size of) an optimal TWC target set Sj,1. Since j, j

′ /∈ Sj,1, we have
that Sj,1 is a TWC target set for the ring Rn, optimal among all TWC target
sets that do not include node j.

An optimal solution for the ring Rn is then obtained by choosing the smaller
of Sj,2 − {j′} and Sj,1. In conclusion we have the following result.

Theorem 4. For any value of the time window size λ, an optimal TWC target
set for the ring Rn can be computed in time O(n).

4.3 Trees

Let T = (V,E) be a tree with threshold function t : V −→ N, and let λ ≥ 1
be a fixed value of the time window size. We consider T to be rooted at some



148 L. Gargano et al.

arbitrary node p ∈ V . For each node v ∈ V , we denote by Tv = (Vv , Ev) the
subtree of T rooted at v. Moreover, we denote by Ch(v) the set of all children of
node v in Tv.

Definition 1. Given node v ∈ V and integers t, r, with t ∈ {t(v), t(v)− 1} and
r ≥ 0, we denote by s(v, t, r) the minimum size of a TWC target set S ⊆ Vv
for subtree Tv that influences node v in round r (that is, v ∈ Influenced[S, r] \
Influenced[S, r − 1]), under the assumption that v has threshold t in Tv. The
threshold of each other node w �= v in Tv is the original one t(w).

The size of an optimal TWC target set for the tree T can be computed as

min
r

s(p, t(p), r), (8)

where r ranges between 0 and the maximum possible number of rounds needed to
complete the influence diffusion process. The number of rounds is always upper
bounded by the number of nodes in the graph (since at least one new node
must be influenced in each round before the diffusion process stops). However,
for a tree T , this value is upper bounded by the length of the longest path in
T . In other words, the parameter r in Definition 1 is bounded by the diameter
diam(T ) of T .

We use a dynamic programming approach to compute the value in (8). Then,
the corresponding optimal TWC target set S can be built using standard back-
tracking techniques. In our dynamic programming algorithm we compute all of
the values

s(v, t, r) for each v ∈ V , t ∈ {t(v), t(v)− 1} and r = 0, . . . , diam(T ),
and the computation is performed according to a breadth-first search (BFS)
reverse ordering of the nodes of T , so that each node v is considered only when
all of the values s(·, ·, ·) for all of its children are known. The rationale behind
the computation of both s(v, t(v), r) and s(v, t(v)− 1, r) is the following:
i) s(v, t(v), r) corresponds to the case of a target set S for tree T such that

– v ∈ Influenced[S, r] \ Influenced[S, r − 1] and
– at least t(v) of v’s children belong to Active[S ∩ Vv, r] ⊆ Active[S, r];

ii) s(v, t(v)− 1, r) is the size of an optimal target set S for T satisfying
– v ∈ Influenced[S, r] \ Influenced[S, r − 1],
– Active[S, r] contains v’s parent in T , and
– at least t(v)− 1 of v’s children belong to Active[S ∩ Vv, r] ⊆ Active[S, r].
In the following, we show how to compute the above values s(·, ·, ·). The

procedure is summarized in algorithm TREE.
First, consider the computation of s(v, t, r) when v is a leaf of T . In this case

we have t(v) = deg(v) = 1.
– If r = 0, v trivially must belong to the target set since v needs to be active at
time 0; hence s(v, t, 0) = 1.
– If r > 0 and t = t(v) = 1, we observe that any TWC target set that influences
leaf v at time exactly r cannot contain v and, therefore, must influence v’s parent
at time r − 1. To do so, we set s(v, 1, r) = ∞ in the algorithm; this forces the
minimum at line 14 or 18 to be reached with threshold t(v)−1 = 0, thus forcing
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v’s parent to be active in round r − 1.
– If r > 0 and t = t(v)− 1 = 0 then, trivially, s(v, 0, r) = 0.

Algorithm TREE(T, p, λ, t)
[Input: Tree T rooted at p, time window size λ, threshold function t.]

1. For each v ∈ T in reverse order to a BFS of T
2. [We compute s(v, t, r) for each t ∈ {t(v), t(v)− 1} and 0 ≤ r ≤ diam(T )]
3. If v is a leaf then [ here t(v) = 1]
4. For r = 0, . . . , diam(T )

5. Set s(v, 0, r) = 0 and s(v, 1, r) =

{
1 if r = 0

∞ otherwise

6. If v is NOT a leaf in T then

7. For each ( r = 0, . . . , diam(T ) AND t ∈ {t(v), t(v)− 1} (only t = t(v) if v = p) )
8. If r = 0 then
9. Set s(v, t, 0) = 1 +

∑
w∈Ch(v) min {min1≤j≤λ s(w, t(w)− 1, j),minj≥0 s(w, t(w), j)}

10. If r ≥ 1 and t = 0 then
11. Set s(v, 0, r) =

∑
w∈Ch(v) min {minr+1≤j≤r+λ s(w, t(w)− 1, j),minj≥r−1 s(w, t(w), j)}

12. If r ≥ 1 and t = 1 then
13. For each w ∈ Ch(v)
14. Compute m(w) = min {minr+1≤j≤r+λ s(w, t(w)− 1, j),minj≥r−1 s(w, t(w), j)}
15. Set z = argminw∈Ch(v){s(w, t(w), r − 1) −m(w)}
16. Set s(v, 1, r) =

∑
w∈Ch(v)\{z} m(w) + s(z, t(z), r − 1)

17. If r ≥ 1 and t > 1 then
18. Set s(v, t, r) = min

∑
w∈Ch(v) m(w), where

19. m(w) ∈ {s(w, t, j) : (t = t(w) AND j ≥ 0) OR (t = t(w)− 1 AND r < j ≤ r + λ)}
20. |{w : m(w) = s(w, t(w), j), r − λ ≤ j ≤ r − 1}| ≥ t
21. |{w : m(w) = s(w, t(w), j), �− λ ≤ j ≤ �− 1}| < t, ∀� = 1, . . . , r − 1

Now consider an arbitrary internal node v. Since we process nodes in a BFS
reverse order, each child of v has already been processed when the algorithm
processes v. If r = 0, then v must necessarily be in the target set and any
w ∈ Ch(v) can benefit from this. Therefore, the size s(v, t, 0) of an optimal
solution for the subtree Tv is equal to

s(v, t, 0) = 1 +
∑

w∈Ch(v)

min

{
min

1≤j≤λ
s(w, t(w) − 1, j), min

0≤j≤diam(T )
s(w, t(w), j)

}
.

Notice that we have constrained j to be in the range 1, . . . , λ in the formula
above when w’s threshold is t(w) − 1. This is correct since v is active and able
to influence w only in rounds j = 1, . . . , λ.
Now, let us consider the computation of s(v, t, r) with r ≥ 1, that is, when v
is not part of the target set and v is influenced at time r by t of its children
(plus its parent if t = t(v) − 1). To determine the optimal solution, we need to
know the best among the values s(w, τ, j) for each w ∈ Ch(v) and for all possible
values of parameters τ and j, subject to the following two constraints:

1) if τ = t(w)− 1, then r+1 ≤ j ≤ r+λ (indeed v is active and can influence
w only during the λ rounds after it has become influenced, that is, in rounds
j = r + 1, . . . , r + λ),
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2) at least t nodes in Ch(v) are active in round r but at most t− 1 are active
in any previous round j ≤ r − 1 (otherwise v would become influenced before
the required round r).

The special case t = 0 can hold only if t(v) = 1 and t = t(v) − 1; hence node
v must be influenced by its parent at round r and none of its children can be
active before round r.

Lemma 3. The computation at lines 18–21 of the algorithm TREE(T, p, λ) can
be done in polynomial time.

Theorem 5. For any tree T , the optimal TWC target set can be computed in
polynomial time.

4.4 Complete Graphs

Let Kn = (V,E) denote the complete graph on n nodes. The following observa-
tion was made in [35] for target set selection without a time window constraint;
it is easy to see that it also holds in our scenario.

Lemma 4. [35] If the optimal TWC target set for Kn has size k, then there
exists an optimal TWC target set consisting of k nodes with the largest thresholds.

Lemma 4 follows from the observation that in any target set S for Kn, if there
exist v ∈ S and u ∈ V −S with t(v) < t(u), then S \{v}∪{u} is also a target set
for Kn. Lemma 4 implies that we only need to determine the size of an optimal
TWC target set. The following algorithm MAX(n, k) determines the largest
number of nodes that can be influenced using a TWC target set of k nodes. The
algorithm assumes that the thresholds have been sorted in non-decreasing order.
Moreover, it assumes the precomputation of the integer vector A[1..n− 1] such
that A[�] = |{v ∈ V | t(v) ≤ �}|, for � = 1, . . . , n − 1. Notice that both sorting
the thresholds, by counting sort, and computing A can be done in linear time.

Algorithm MAX(n, k) [Input: vector A[1..n-1], parameters λ and k]

1. Set � = k
2. If A[�] > 0 then [at least one node outside the target set can be influenced]
3. For j = 0, . . . , λ− 2
4. Set X [j] = −k
5. Set X [λ− 1] = 0, Set j = 0;
6. Repeat
7. Set y = A[�], � = A[�]−X [j], X [j] = y, j = (j + 1) mod λ
8. Until (A[�]−X [j] ≤ � OR A[�] + k ≥ n)
9. Output min{n, k +A[�]}

We can show that the algorithmMAX(n, k) requires O(n) time to compute the
largest number of nodes that can be influenced in Kn using a TWC target set of
size k. Using a binary search for the optimal value of k we obtain the following
result.

Theorem 6. The optimal TWC target set in a complete graph Kn can be com-
puted in time O(n logn).
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Abstract. This paper proposes and analyses two fully distributed prob-
abilistic splitting and naming procedures which assign a label to each
vertex of a given anonymous graph G without any initial knowledge. We
prove, in particular, that with probability 1− o(n−1) (resp. with proba-
bility 1−o(n−c) for any c ≥ 1) there is a unique vertex with the maximal
label in the graph G having n vertices. In the first case, the size of la-
bels is O(log n) with probability 1 − o(n−1) and the expected value of
the size of labels is also O(log n). In the second case, the size of labels
is O

(
(log n)(log∗ n)2

)
with probability 1 − o(n−c) for any c ≥ 1; their

expected size is O ((log n)(log∗ n)).
We analyse a basic simple maximum broadcasting algorithm and prove

that if vertices of a graph G use the same probabilistic distribution to
choose a label then, for broadcasting the maximal label over the labelled
graph, each vertex sends O(log n) messages with probability 1− o(n−1).

From these probabilistic procedures we deduce Monte Carlo algo-
rithms for electing or computing a spanning tree in anonymous graphs
without any initial knowledge and for counting vertices of an anony-
mous ring; these algorithms are correct with probability 1 − o(n−1) or
with probability 1− o(n−c) for any c ≥ 1. The size of messages has the
same value as the size of labels. The number of messages is O(m log n)
for electing and computing a spanning tree; it is O(n log n) for counting
the vertices of a ring.

We illustrate the power of the splitting procedure by giving a prob-
abilistic election algorithm for rings having n vertices with identities
which is correct and always terminates; its message complexity is equal
to O(n log n) with probability 1− o(n−1). (Proofs are omitted for lack of
space).

1 Introduction

The Problem. We consider anonymous, and, more generally, partially anony-
mous networks: unique identities are not available to distinguish the processes
(or we cannot guarantee that they are distinct). We do not assume any global
knowledge of the network, not even its size or an upper bound on its size. The
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processes have no knowledge on position or distance. In this context, solutions
for classical distributed problems, such as the construction of spanning trees,
counting or election, must use probabilistic algorithms. This paper presents and
studies splitting and naming procedures which provide solutions to these prob-
lems. The question of anonymity is often considered when processes must not
divulge their identities during execution, due to privacy concerns or security pol-
icy issues [GR05]. In addition, each process may be built in large scale quantities
from which it is quite infeasible to ensure uniqueness. Therefore, each process
must execute the same finite algorithm in the same way, regardless of its identity,
as explained in [AAER07].

The Model. Our model is the usual asynchronous message passing model
[AW04, Tel00]. A network is represented by a simple connected graph G =
(V (G), E(G)) = (V,E) where vertices correspond to processes and edges to di-
rect communication links. Each process can distinguish different incident edges,
i.e., for each u ∈ V there exists a bijection between the neighbours of u in G
and [1, degG(u)] (where degG(u) is the number of neighbours of u in G). The
numbers associated by each vertex to its neighbours are called port-numbers.
Each process v in the network represents an entity that is capable of performing
computation steps, sending messages via some ports and receiving any message
via some port that was sent by the corresponding neighbour. We consider asyn-
chronous systems, i.e., each computation may take an unpredictable (but finite)
amount of time. Note that we consider only reliable systems: no fault can occur
on processes or communication links. In this model, a distributed algorithm is
given by a local algorithm that all processes should execute; thus the processes
having the same degree have the same algorithm. A local algorithm consists of
a sequence of computation steps interspersed with instructions to send and to
receive messages. As Tel [Tel00] (p. 71), we define the time complexity by sup-
posing that internal events need zero time units and that the transmission time
(i.e., the time between sending and receiving a message) is at most one time unit.
This corresponds to the number of rounds needed by a synchronous execution
of the algorithm.

A probabilistic algorithm is an algorithm which makes some random choices
based on some given probability distributions; non-probabilistic algorithms are
called deterministic. A distributed probabilistic algorithm is a collection of lo-
cal probabilistic algorithms. Since our networks are anonymous, if two processes
have the same degree their local probabilistic algorithms are identical and have
the same probability distribution. A Las Vegas algorithm is a probabilistic al-
gorithm which terminates with a positive probability (in general 1) and always
produces a correct result. A Monte Carlo algorithm is a probabilistic algorithm
which always terminates; nevertheless the result may be incorrect with a certain
probability.

Distributed algorithms presented in this paper are message terminating. This
means (see [Tel00], Chapter 8) that algorithms reach a terminal configuration
(a configuration in which no further steps are applicable) and processes are not
aware that the computation has terminated. We speak of process termination
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if, when algorithms reach a terminal configuration, processes are in a terminal
state (a state in which there is no event of the process applicable).

Some results on graphs having n vertices are expressed with high probabil-
ity, meaning with probability 1 − o(n−1) (w.h.p. for short) or with very high
probability, meaning with probability 1 − o(n−c) for any c ≥ 1 (w.v.h.p. for

short). We recall that log∗ n = min{i| log(i) n ≤ 2}, where log(1) n = logn and

log(i+1) n = log(log(i) n).

Our Contribution. Let G = (V,E) be an anonymous connected graph having
n vertices. We assume no knowledge on G. In the first part of this paper, we
provide and analyse the following procedure by which each vertex builds its label.
Each vertex v of G draws a bit bv uniformly at random. Let tv be the number of
random draws of bv on the vertex v until bv = 1; it is called the lifetime of the
vertex v. Each vertex v uses its lifetime to draw at random a number idv in the
set {0, ..., 2tv+3 log2(tv) − 1}; finally, v is labelled with the couple (tv, idv). Let T
be the maximal value in the set {tv|v ∈ V (G)}. We prove that w.h.p.:

log2 n− log2 (2 logn) < T < 2 log2 n+ log∗ n.

We prove that, w.h.p., there exists exactly one vertex v such that tv = T and
idv > idw for any vertex w different from v such that tw = T . The size of labels
is O(log n) w.h.p. and the expected value of the size of labels is also O(log n). We
also prove that w.v.h.p.: 1

2 log2 n < T < (log∗ n) log2 n. If each vertex v draws idv
uniformly at random in the set: {0, ..., 2tv log∗ tv − 1} then, w.v.h.p., there exists
exactly one vertex v such that tv = T and idv > idw for any vertex w different
from v such that tw = T . In this case the size of labels is O((log n)(log∗ n)2)
w.v.h.p.; their expected size is O((log n)(log∗ n)).

We analyse a very simple maximum broadcasting algorithm and prove that
if vertices of a graph G use the same distribution to choose their label then,
for broadcasting the maximal label over G, each vertex sends O(log n) messages
w.h.p.

In the second part of this paper, we apply these procedures to classical prob-
lems, in anonymous graphs without any knowledge, such as spanning tree con-
struction, counting the number of vertices of a ring or electing. In this way, we
obtain:

– Monte Carlo spanning tree algorithms correct w.h.p. (resp. w.v.h.p.),
– Monte Carlo counting ring size algorithms correct w.h.p. (resp. w.v.h.p.),
– Monte Carlo election algorithms correct w.h.p. (resp. w.v.h.p.).

The size of messages used by these algorithms is the same as the size of labels
generated by splitting and naming procedures. We prove also that the message
complexities (the number of messages through the graph) is O(m log n) for the
spanning tree computation and election; it is O(n log n) for counting the vertices
of a ring.

We illustrate the power of the splitting procedure by giving a probabilistic
election algorithm for ring graphs with identities which is correct and always
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terminates; its message complexity is equal to O(n log n) w.h.p. (where n is the
number of vertices).

A conclusion explains how to obtain a Monte Carlo algorithm which solves
the counting problem of a ring w.h.p. and which ensures an error probability
bounded by ε where ε is the smallest value among a set of error probabilities
fixed by vertices of the ring R (each vertex knows only its own error probability).

Related Work: Comparisons and Comments. Chapter 9 of [Tel00] and
[Lav95] give a survey of what can be done and of impossibility results in anony-
mous networks. In particular, no deterministic algorithm can elect (see Angluin
[Ang80], Attiya et al. [ASW88] and Yamashita and Kameda [YK88]); further-
more, with no knowledge on the network, there exists no Las Vegas election
algorithm [IR90]. In fact, [IR90] proves that, in this context, the best we can
achieve for electing, counting or spanning tree computing are message termi-
nating Monte Carlo algorithms; there are no such algorithms which are process
terminating.

Message terminating Monte Carlo election algorithms for anonymous graphs
without knowledge are presented in [IR90, AM94, SS94].

The idea that each vertex draws at random a bit until it gets 1 (or 0) is used
in two different contexts in [Pro93, FMS96, KMW11] and in [AM94].

In [Pro93, FMS96, KMW11], typically, as explained in [FMS96], processors
have identification numbers and know the number of processors. A group of n
processors play a game to identify a winner by tossing fair coins; the winner is the
elected vertex. All processors that throw heads are eliminated; those that throw
tails remain candidate and flip their coins again. The process is repeated among
candidate winners until a single winner is identified. If at any stage all remaining
candidate winners throw heads then all remaining players participate again as
candidate winners in the next round of coin tossing. The main parameters studied
are the number of rounds till termination and the total number of coin flips.

In the case where no knowledge on the network is available, Monte Carlo
election algorithms presented in [AM94, SS94] are correct with probability 1− ε,
where ε is fixed and known to all vertices. In [AM94] executing the algorithm,
presented in Section 2 (Networks with unknown size), each vertex tosses a fair
coin until it gets a head for the first time. The number of these tosses is used only
to have a small number of vertices which compete for the election. To obtain
its number, each vertex v selects at random an element idv of [1, ..., d] where
d = 36 log 4r, r = 1/ε and ε is fixed, given a priori (see [AM94], p. 315 Fig.
2.). The time complexity is O(D) where D is the diameter of the network. Let
M = max{idv|v ∈ V }, then there is a unique vertex u such that tu is maximal
and idu =M with probability greater than or equal to 1− ε. The expected size
of each message is O(log logn+ log ε−1). (The idea of eliminating some vertices
before the election appears also in [RFJ+07]; the goal is to reduce the number of
messages for the election.) The algorithm presented in [SS94], maintains a rooted
spanning forest of G. Each vertex belongs to a tree (initially it is alone). In the
course of the algorithm trees expand by merging with adjacent trees. The level of
a tree T , denoted Level(T ), is the integer part of the (base two) logarithm of the
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estimated number of nodes of T. The label of T (and thus of its root) is redrawn
from the domain d2level(T ), where d = �2/ε� and ε is fixed ([SS94] p. 90). Upon
termination, the forest consists of one tree with probability 1− ε; the root of this
tree is taken to be the elected vertex. The size of messages is O(log(n/ε)). The
time complexity is O(n). A message terminating Monte Carlo counting algorithm
for rings is presented in [IR90]. Each vertex generates messages formed by: an
estimation (initially 2) of the size of the ring and a random bit. Next the vertex
sends the message along the ring. If a vertex receives a message which indicates
that the estimation is not correct then it incrementes its estimation and generates
another message. Finally, for each ε, [IR90] provides a counting algorithm correct
with probability 1− ε; its message complexity is O(n3) and its time complexity
is O(n).

Summary. This paper is organised as follows. Sections 2 and 3 present and anal-
yse two fully distributed splitting and naming probabilistic procedures which
generate labels on vertices of graphs. Section 4 analyses a classical broadcasting
algorithm. Sections 5, 6 and 7 present applications to spanning tree construc-
tion, counting and electing for anonymous graphs without any knowledge; more
precisely they present Monte Carlo algorithms which solve these problems and
which are correct w.h.p. or w.v.h.p. Section 8 applies the splitting procedure to
obtain an efficient deterministic election algorithm for named rings.

2 Analysis of a Splitting and Naming Probabilistic
Procedure

This section presents and analyses a fully distributed probabilistic procedure,
denoted Splitting-Naming-whp (see Algorithm 1), which assigns to each vertex
v of a graph G a label (tv, idv) defined as follows. A vertex v draws uniformly at
random (u.a.r. for short) a bit bv.We denote by tv the number of bits generated
by the vertex v until bv = 1; it is called the lifetime of v. A vertex v is said to
be alive at time t if t < tv. The number idv is obtained by generating a number
choosen u.a.r. in the set {0, ..., 2tv+3 log2(tv) − 1}.

Algorithm 1: Procedure Splitting-Naming-whp(v)

1: tv := 0
2: repeat
3: draw uniformly at random a bit b(v);
4: tv := tv + 1
5: until b(v) = 1
6: choose uniformly at random a number idv in the set {0, · · · , 2tv+3 log2(tv) − 1};

We define the order, denoted <, on couples by: (tv, idv) < (t′v, id
′
v) if: either

tv < t
′
v or (tv = t′v and idv < id

′
v).

The sequel of this section analyses Procedure Splitting-Naming-whp(v).
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Analysis of the Maximal Number of Bits Drawn by Each Vertex. We
first analyse the value of tv for any vertex v and the maximal value of tv among
vertices of the graph. Any vertex has probability 1/2 to draw the bit 1. Then tv,
for any vertex v, is a geometric random variable (r.v. for short) with parameter
1/2. The maximal lifetime is simply maxv∈V tv, the maximum of n independent
identically distributed (i.i.d. for short) geometric r.v. and hence:

Proposition 1. Let G = (V,E) be a graph having n > 0 vertices. We consider
a run of Procedure Splitting-Naming-w.h.p. on vertices of G. Let T denote the
maximal value of the set {tv|v ∈ V }; T satisfies the following inequalities: 1.
T < 2 log2 n+ log∗ n w.h.p., 2. T > log2 n− log2 (2 logn) w.h.p.

Note that, in Proposition 1, the term log∗ n can be replaced by any slowly-
growing non bounded function g(n).

From Proposition 1, we can deduce the following:

Corollary 1. The expected value of T is equal to Θ(log n).

Analysis of the Number of Vertices That Share the Same Maximum
LifeTime. For any t ≥ 0, we denote by Xt the number of vertices still alive at
time t. For any i > 0, we have:

Pr (Xt+1 = 0 | Xt = i) =
1

2i
. (1)

This yields the following claim:

Claim 1.

Pr (Xt+1 = 0 | Xt ≥ 2 log2 n) ≤
1

n2
. (2)

Then, we obtain the following proposition:

Proposition 2. The number of vertices which have the same maximum lifetime
is, with high probability, at most 2 log2 n.

Analysis of the Number of Vertices That Have the Same Maximum
LifeTime and the Same Maximum Number.At the end of the initialisation
phase, each vertex v obtains an integer tv. Then it chooses u.a.r. a number

idv ∈
{
0, · · · , 2tv+3 log2(tv) − 1

}
.

We have the following proposition :

Proposition 3. With high probability, there exists a unique vertex v with label
(tv, idv) such that for any w ∈ V \ {v}: (tv, idv) > (tw, idw).

Analysis of the Size of the Random Numbers. A vertex v chooses u.a.r.
a number idv from the set:{

0, · · · , 2tv+3 log2(tv) − 1
}
.

This implies that this randomnumber has a size of atmost 2 log2 n+O (log2 log2 n)
bits w.h.p. Furthermore, from Corollary 1 we deduce directly that the expected
value of the size of idv is O(logn).
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3 Analysis of a Variant of the Splitting and Naming
Probabilistic Procedure

This section presents and analyses a variant of Procedure Splitting-Naming-whp,
it is denoted Splitting-Naming-wvhp (see Algorithm 2). Now, the label of the
vertex v is the couple (tv, idv) where tv is still the lifetime of v. The difference
is in the drawing of idv: the number idv is obtained by generating a number
choosen u.a.r. in the set {0, ..., 2tv log∗ tv − 1}.

Algorithm 2: Procedure Splitting-Naming-wvhp(v)

1: tv := 0
2: repeat
3: draw uniformly at random a bit b(v);
4: tv := tv + 1
5: until b(v) = 1
6: choose uniformly at random a number idv in the set {0, ..., 2tv log∗ tv − 1};

The remainder of the section is devoted to the analysis of Procedure Splitting-
Naming-wvhp.

Analysis of the Maximal Number of Bits Drawn by Each Vertex.

Proposition 4. Let G = (V,E) be a graph with n > 0 vertices. We consider
a run of Procedure Splitting-Naming-wvhp. Let T denote the maximal value of
the set {tv|v ∈ V }; T satisfies the following inequalities: 1. T < (log2 n) log

∗ n.
w.v.h.p., 2. T > 1

2 log2 n w.v.h.p.

Remark 1. Note that, in Proposition 4, as in Proposition 1, the term log∗ n can
be replaced by any slowly-growing non bounded function g(n).

Analysis of the Number of Vertices That Have the Same Maximum
LifeTime and the Same Maximum Number

Proposition 5. With very high probability, there exists a unique vertex v with
the label (tv, idv) such that for any w ∈ V \ {v}: (tv, idv) > (tw, idw).

Analysis of the Size of the Random Numbers

Proposition 6. The size of numbers idv is w.v.h.p. O
(
(logn)(log∗ n)2

)
. Its

expected value is O ((logn)(log∗ n)).

4 Analysis of the Message Complexity of a Maximum
Broadcasting Algorithm

This section analyses the message complexity of a maximum broadcasting al-
gorithm, denoted Algorithm Broadcasting-Max. More precisely, it analyses the
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number of messages exchanged in a labelled graph for broadcasting the maximal
label. This analysis will be useful in next sections. Let G be a graph and L a set
of labels totally ordered by a relation >. Each vertex v of G chooses a label from
L (all the vertices use the same distribution to choose a label), memorises its
value in maxv and sends it to neighbours. If vertex v receives a label l greater
than maxv then it memorises it in maxv and sends it to neighbours. We have
the following proposition:

Proposition 7. Let G be a graph and let L be a totally ordered set of labels. Each
vertex v of G chooses a label from L; all the vertices use the same distribution
to choose a label. For each run of Algorithm Broadcasting-Max the number of
messages sent by each vertex of G is w.h.p. O (logn).

Corollary 2. Let G be a graph of bounded degree having n vertices and let L be
a totally ordered set of labels. Each vertex v of G chooses a label from L; all the
vertices use the same distribution to choose a label. Procedure Broadcasting-Max
has a message complexity equal to O(n log n).

5 A Monte Carlo Spanning Tree Algorithm Correct
w.h.p. (resp. w.v.h.p.)

This section presents message terminating Monte Carlo algorithms, denoted Al-
gorithm Spanning-Tree-whp and a variant, denoted Algorithm Spanning-Tree-
wvhp, for computing a spanning tree of an anonymous graph without any ini-
tial knowledge and with no distinguished vertex; they are correct w.h.p. (resp.
w.v.h.p.). Each vertex v is initially labelled with the label labelv = (tv, idv)
generated by the probabilistic procedure Splitting-naming-whp (resp. Splitting-
naming-wvhp). Each vertex attempts to build a tree considering that it is the
root. If two vertices are competing to capture a third vertex w then w will join
the tree whose root has the higher label; this label is indicated in maxv. The
father of vertex v is indicated by the port number fatherv (by convention, if
rootv = true then fatherv = 0). The children of v correspond to the set of port
numbers childrenv, neighbours of v which are neither children nor the father of
v are indicated in the set of port numbers otherv.

Claim 2. Let G be a graph. For each run of Spanning-Tree-whp, eventually,
the network reaches a terminal configuration in which there is no message in
transition and no action can happen. The time complexity is O(D), where D is
the diameter of the graph.

Let (tmax, idmax) be the maximal couple among labels of the vertices of G.
When the network reaches a terminal configuration the set of fatherv encodes a
spanning forest, the root of each tree is a vertex labelled (tmax, idmax). If there
is a unique vertex v such that (tv, idv) = (tmax, idmax) then the spanning forest
is a spanning tree whose root is v.

Algorithm Spanning-Tree-wvhp is obtained by substituting Splitting-Naming-
wvhp for Splitting-Naming-whp in Algorithm Spanning-Tree-whp. Claim 2 is
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still valid for Algorithm Spanning-Tree-wvhp. Concerning the analysis of com-
plexities, results of previous sections imply:

Proposition 8. Let G be a graph having n vertices and m edges. Algorithm
Spanning-Tree-whp (resp. Algorithm Spanning-Tree-wvhp) computes a span-
ning tree w.h.p. (resp. w.v.h.p.).

The size of messages of Algorithm Spanning-Tree-whp (resp. Spanning-
Tree-wvhp) is O(log n) w.h.p., it is also the expected value
(resp. O

(
(logn)(log∗ n)2

)
w.v.h.p. and the expected value is O ((logn)(log∗ n))).

The message complexity of these two algorithms is w.h.p. O(m log n).

6 A Monte Carlo Counting Algorithm for Rings Correct
w.h.p. (resp. w.v.h.p.)

This section presents a message terminating Monte Carlo algorithm, denoted
Algorithm Counting-Ring-whp, for computing the size of an anonymous ring
without any initial knowledge correct w.h.p. It also presents a variant correct
w.v.h.p., denoted Algorithm Counting-Ring-wvhp. The main idea is very simple:
each vertex v generates a label labelv = (tv, idv) with the probabilistic procedure
Splitting-naming-whp; this label is memorised in maxv. Then v sends over the
ring a message containing this label and a counter equal to 1, denoted (labelv, 1).
Each vertex v memorises in maxv the largest value among labels it has received.
A message is rejected if it is received by a vertex u such that maxu is greater
than the label it contains. If not, the label is memorised in maxu, the counter is
incremented and the message is transmitted to the next vertex until the message
is received by a vertex w having the same label as the label of the message. In
this case w considers that the message is its own message and the value of the
counter is the size of the ring; therefore it sends over the ring a new message to
indicate this fact to each vertex which memorises this size and the associated
label.

Claim 3. Let G be a ring. For each run of Counting-Ring-whp, eventually,
the network reaches a terminal configuration in which there is no message in
transition and no action can happen. The time complexity is O(n), where n
is the number of vertices of the ring. Let (tmax, idmax) be the maximal couple
among labels of the vertices of G. If there is a unique vertex v such that (tv, idv) =
(tmax, idmax) then for each vertex v of G, sizev is equal to the number of vertices
of G and maxv = (tmax, idmax).

Algorithm Counting-Ring-wvhp is obtained by substituting Splitting-Naming-
wvhp for Splitting-Naming-whp in Algorithm Counting-Ring-whp. Claim 3 is
still valid for Algorithm Counting-Ring-wvhp. As for the spanning tree compu-
tation, complexities concerning Algorithm Counting-Ring-whp (resp. Algorithm
Counting-Ring-wvhp) are deduced immediately from previous sections and sum-
marised by:
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Proposition 9. Let G be a ring graph having n vertices. Algorithm Counting-
Ring-whp (resp. Algorithm Counting-Ring-wvhp) is correct w.h.p. (resp. w.v.h.p.).
The size of messages of Algorithm Counting-Ring-whp (resp. Counting-Ring-
wvhp) is O(log n) w.h.p., it is also the expected value (resp. O

(
(log n)(log∗ n)2

)
w.v.h.p. and the expected value is O ((logn)(log∗ n))). The message complexity
of these two algorithms is w.h.p. O(n log n).

7 A Monte Carlo Election Algorithm Correct w.h.p.
(resp. w.v.h.p.)

This section presents a message terminating Monte Carlo election for anonymous
graphs without any initial knowledge correct w.h.p. (resp. w.v.h.p.). They differ
from Algorithm ELECT in [AM94] p. 315 only by the choice of labels of vertices.
The aim of Algorithm Elect-whp is to choose as elected the unique vertex v (if
there exists a unique), such that: ∀ w �= v (tw, idw) < (tv, idv).

Algorithm 3: Elect-whp
I : {If (tv , idv) is not defined}
begin

call Splitting-Naming-whp(v);
maxv := (tv , idv);
leaderv := true;
send < (tv, idv) > to all neighbours

end
D : {A Message (t, id) has arrived at v through port l}
begin

if (tv , idv) is not defined then
call Splitting-Naming-whp(v);
maxv := (tv , idv);
leaderv := true;
send < (tv , idv) > to all neighbours

if (t, id) > maxv then
maxv := (t, id);
leaderv := false;
send < (t, id) > to all neighbours except through l

end

Claim 4. Let G be a graph. For each run of Elect-whp, eventually, the network
reaches a terminal configuration in which there is no message in transition and
no action can happen. The time complexity is O(D), where D is the diameter
of G. Let (tmax, idmax) be the maximal couple among labels of the vertices of G.
If there is a unique vertex v such that (tv, idv) = (tmax, idmax) then there is a
unique vertex such that leader is true, the others have leader equal to false.

Remark 2. Algorithm Elect-wvhp is obtained by substituting Splitting-Naming-
wvhp for Splitting-Naming-whp in Algorithm Elect-whp. Claim 4 is still valid
for Algorithm Elect-wvhp.

Proposition 10. Let G be a graph having n vertices and m edges. Algorithm
Elect-whp (resp. Algorithm Elect-wvhp) is an election algorithm w.h.p. (resp.
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w.v.h.p.). The size of messages of Algorithm Elect-whp (resp. Elect-wvhp) is
O(log n) w.h.p., it is also the expected value (resp. O

(
(logn)(log∗ n)2

)
w.v.h.p.

and the expected value is O ((logn)(log∗ n))). The message complexity of these
two algorithms is w.h.p. O(m log n).

Complexities of Algorithm Elect-whp (resp. Elect-wvhp) are the same as al-
gorithms for spanning tree constructions.

8 Ring with Identities + Splitting Procedure =
O(n logn) Message Complexity w.h.p. Election
Algorithm

This section gives an illustration of the power of the splitting procedure studied in
Section 2 thanks to Proposition 7. Let R be a ring having n vertices. We assume
that vertices of R are aware of n, and each vertex v has a unique identity denoted
identv. We consider the order on couples defined in Section 2. For electing a vertex
ofR, first of all each vertex v ofR appliesProcedure Splitting obtaining tv, and then
it broadcasts over the ring the triple (tv, identv, hop), where identv is the initial
identity of v and hop is an integer (its initial value is 1) which is incremented as
it moves over the ring. Each vertex memorises the maximal value that it sees. A
message is stopped as soon as it reaches a vertexw having a maximal value greater
than or equal to the couple of the message. The elected vertex is the vertex uwhich
receives a message (t, ident, h) with t = tu, ident = identu and h = n. Initially,
for each vertex v leaderv is undefined. Proposition 7 implies:

Proposition 11. Let R be a ring having n vertices such that each vertex has a
unique identity and knows n. Algorithm Elect-ring terminates and elects a vertex
with messages of size O(log n) w.h.p. and the number of messages through the
ring is w.h.p. O(n log n).

In a certain sense our result is optimal since any decentralised wave algorithm
for ring networks exchanges Ω(n logn) messages, on the average as well as the
worst case (see [Tel00] Corollary 7.14).

9 Conclusion

One may wonder whether it is possible to obtain a Monte Carlo algorithm which
solves the counting problem of a ring w.h.p. and also ensures an error probability
bounded by a constant ε as is done by [IR90, AM94, SS94]. The answer is
positive. Let R be a ring, v be a vertex of R and let εv be a constant (εv <
1) known by v. The vertex v wants to ensure that the size computed by the
Monte Carlo algorithm is correct with probability 1 − εv. From the proof of
Proposition 3 we deduce a sizeK of a ring such that the probability of having two
vertices with the maximum lifetime and with the maximum number is bounded
by εv. Now, instead of drawing a bit uniformly at random until it gets 1, the
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vertex v does this operation K times and it memorises the maximal lifetime,

denoted t
(K)
v , among the K lifetimes it obtains. The sequel of the algorithm is

the same as Counting-Ring-whp: the vertex v draws at random a number idv
in the set {0, ..., 2t(K)

v +3 log2(t
(K)
v ) − 1} etc. In this way, we obtain a Monte Carlo

algorithm which solves the counting problem of a ring w.h.p. and ensures an
error probability bounded by a constant ε where ε is the smallest value among
the set of error probabilities fixed by vertices of the ring R. The time complexity
is O(D) (where D is the diameter of the ring) and the message complexity
is w.h.p. O(n log n). The same constructions and results can be obtained for
spanning tree construction and election. This will be developed in a full paper
version.
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Abstract. We consider the problem of resource discovery in distributed systems.
In particular we give an algorithm, such that each node in a network discovers the
address of any other node in the network. We model the knowledge of the nodes as
a virtual overlay network given by a directed graph such that complete knowledge
of all nodes corresponds to a complete graph in the overlay network. Although
there are several solutions for resource discovery, our solution is the first that
achieves worst-case optimal work for each node, i.e. the number of addresses
(O(n)) or bits (O(n log n)) a node receives or sends coincides with the lower
bound, while ensuring only a linear runtime (O(n)) on the number of rounds.

Keywords: distributed algorithms, resource discovery, self-stabilization, clique
network.

1 Introduction

To perform cooperative tasks in distributed systems the network nodes have to know
which other nodes are participating. Examples for such cooperative tasks range from
fundamental problems such as group-based cryptography [14], verifiable secret sharing
[6], distributed consensus [17]to peer-to-peer(P2P) applications like distributed storage,
multiplayer online gaming, and various social network applications such as chat groups.
To perform these tasks efficiently knowledge of the complete network for each node is
assumed. Considering large-scale, real-world networks this complete knowledge has
to be maintained despite high dynamics, such as joining or leaving nodes, that lead to
changing topologies. Therefore the nodes in a network need to learn about all other
nodes currently in the network. This problem called resource discovery, i.e. the discov-
ery of the addresses of all nodes in the network by every single node, is a well studied
problem and was firstly introduced by Harchol-Balter, Leighton and Lewin in [23].

1.1 Resource Discovery

As mentioned in [23] the resource discovery problem can be solved by a simple swamp-
ing algorithm also known as pointer doubling: in each round, every node informs all of
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its neighbors about its entire neighborhood. While this just needs O(log n) communi-
cation rounds, the work spent by the nodes can be very high. We measure the work of a
node as the number of addresses each node receives or sends while executing the algo-
rithm. Moreover, in the stable state (i.e., each node has complete knowledge) the work
spent by every node in a single round is Θ(n2), which is certainly not useful for large-
scale systems. Alternatively, each node may just introduce a single neighbor to all of
its neighbors in a round-robin fashion. However, it is easy to construct initial situations
in which this strategy is not better than pointer doubling.In [23] a randomized algo-
rithm called the Name-Dropper is presented that solves the resource discovery problem
withinO(log2 n) rounds w.h.p. and work ofO(n2 log2 n). In [24] a deterministic solu-
tion for resource discovery in distributed networks was proposed by Kutten et al. which
takes O(log n) rounds and O(n2 logn) amount of work. Konwar et al. presented solu-
tions for the resource discovery problem considering different models, i.e. multicast or
unicast abilities and messages of different sizes, where the upper bound for the work
is O(n2 log2 n). Recently resource discovery has been studied by Haeupler et. al. in
[21], in which they present two simple randomized algorithms based on gossiping that
need Ω(n logn) time and Ω(n2 logn) work per node on expectation. They only allow
nodes to send a single message containing at most one address of size logn in each
round. We present a deterministic solution that follows the idea of [21] and limits the
number of messages each node has to send and the number of addresses transmitted in
one message. Our goal is to reduce the number of messages sent and received by each
node such that we avoid nodes to be overloaded. In detail we show that resource dis-
covery can be solved in O(n) rounds and it suffices that each node sends and receives
O(n) messages in total, each message containing O(1) addresses. Our solution is the
first solution for resource discovery that not only considers the total number of mes-
sages but also the number of messages a single node has to send or receive. Note that
Ω(n) is a trivial lower bound for the work of each node to gain complete knowledge.
So our algorithm is worst case optimal in terms of message complexity. Furthermore
our algorithm can handle the deletion of edges and joining or leaving nodes, as long as
the graph remains weakly connected. Modeling the current knowledge of all nodes as a
directed graph, i.e. there is an edge (u, v) iff u knows v’s ID, one can think of resource
discovery as building and maintaining a complete graph, a clique, as a virtual overlay
network. If the overlay can be recovered out of any (weakly connected) initial graph,
the corresponding algorithm can be considered to be a self-stabilizing algorithm. More
precisely, an algorithm is considered as self-stabilizing if it reaches a legal state when
started in an arbitrary initial state (convergence) and stays in a legal state when started
in a legal state (closure).

1.2 Topological Self-stabilization

There is a large body of literature on how to efficiently maintain overlay networks, e.g.,
[1,2,19,13,15,18,22]. While many results are already known on how to keep an overlay
network in a legal state, far less is known about self-stabilizing overlay networks. The
idea of self-stabilization in distributed computing first appeared in a classical paper by
E.W. Dijkstra in 1974 [8] in which he looked at the problem of self-stabilization in a
token ring. In order to recover certain network topologies from any weakly connected
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network, researchers have started with simple line and ring networks, [7,20]. In [16],
Onus et al. present a local-control strategy called linearization for converting an arbi-
trary connected graph into a sorted list. Various self-stabilzing algorithms for different
network overlay structures have been considered over the years [12,11,9]. In [9] the
authors use a self-stabilizing algorithm in which they collect snapshots of the network
along a spanning tree, which could also be used to form a complete graph. However, the
authors give no bounds on the message complexity of their algorithm. In [3] the authors
present a general framework for the self-stabilizing construction of overlay networks,
which may involves the construction of the clique. However, the work in order to do
that when using this method is too high.

One could use the distributed algorithms for self-stabilizing lists and rings to form a
complete graph, but all algorithms proposed so far for these topologies involve a worst-
case work of Ω(n2) per node.

Alternatively, a self-stabilizing spanning tree algorithm could be used. A large num-
ber of self-stabilizing distributed algorithms has already been proposed for the forma-
tion of spanning trees in static network topologies, [5], [4], [10], [10]. However, these
spanning trees are either expensive to maintain or the amount of work in these algo-
rithms is not being considered.

In summary, no self-stabilizing algorithm has been presented for the formation of a
bounded degree spanning tree if the network topology is under the control of the nodes
and there are no outside services for the introduction of nodes.

1.3 Our Model

We use the network model used in [23,24,21]. We model the network as a directed
graph G = (V,E) where |V | = n. The nodes have unique identifiers with a total
order, and these identifiers are assumed to be immutable (for example, we may use
the IP addresses of the nodes). We are using a standard synchronous message-passing
model: time proceeds in synchronous rounds, and all messages generated in round i
are delivered at the end of round i. In order to deliver a message, a node may use any
address stored in its local variables. No a priori information about the size or diameter
of the network can be assumed by a node and there cannot be made use of some outside
rendezvous service to get introduced to other nodes. Hence, the state of a node is fully
determined by its local variables. Like in [23,24,21] we assume that a node can verify its
neighborhood without extra work, such that there are no false identifiers in the network.
Only local topology changes are allowed, i.e. a node may decide to cut a link to a
neighbor (by deleting its address) or introduce a link to one of its neighbors (by sending
it an address). We model the decisions to cut or establish links and to send messages as
actions. An action has the form < guard >→< commands >. A guard is a Boolean
expression over the state of the node. The commands are executed if the guard is true.
Any action whose guard is true is said to be enabled. We assume that a node can execute
all of its enabled actions in the current round.

The state of the system is the combination of the states of all nodes in the system.
and contains all the information available in the system. A computation is a sequence
of system states such that for each state si at the beginning of round i, the next state
si+1 is obtained after executing all actions that are enabled at the beginning of round
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i and receiving all messages that they generated. We call a distributed algorithm self-
stabilizing if from any initial state in which the overlay network is weakly connected,
it eventually reaches a legal state and stays in a legal state afterwards. In our case,
the legal state is the clique topology. We distinguish between two types of work. The
stabilization work of a node v is defined as the total number of addresses sent and
received by v during the stabilization process. The maintenance work of a node v is
defined as the maximum number of addresses sent and received by v during a single
round of the stable state.

1.4 Our Contributions

In this paper we present a distributed algorithm for resource discovery. We will describe
the algorithm as a self-stabilizing algorithm that forms and maintains a clique as a
virtual overlay network, and show that our algorithm is worst-case optimal in terms of
message complexity.

Theorem 1. For any initial state in which the network is weakly connected, our algo-
rithm requires at mostO(n) rounds andO(n) work per node until the network reaches
a legal state in which it forms a clique.

We further show that the maintenance cost per round is O(1) for each node once
a legal state has been reached. We also consider topology updates caused by a single
joining or leaving node and show that the network recovers in O(n) rounds with at
most O(n) messages over all nodes besides the maintenance work. Note that we use a
synchronous message passing model to give bounds on the message complexity of our
algorithm, but our correctness analysis can also be applied to an asynchronous setting.
A detailed version of this paper containing pseudo code, all missing proofs and further
details can be found in [26].

The paper is structured as follows: In Section 2 we give a description of our al-
gorithm. In Section 3 we prove that the algorithm is self-stabilizing. We consider the
stabilization work and maintenance work in Section 4. In Section 5 we analyze the steps
needed for the network to recover after a node joins or leaves the network. Finally, in
Section 6 we end with a conclusion.

2 A Distributed Self-stabilizing Algorithm for the Clique

In this section we give a general description of our algorithm. First we introduce the
variables being used, and then the actions the nodes take, according to our rules. Each
node x has a buffer B(x) for incoming messages from the previous round. We assume
that the buffer capacity is unbounded and no messages are lost. We do not require any
particular order in which the messages are processed in B(x). Moreover, each node
x stores the following internal variables: its predecessor p(x) , its successor s(x), its
current neighborhoodN(x) in a circular list, the nodes received by messages from the
predecessor in another circular list L(x), the set of nodes S(x) that are received through
scanning messages (defined below), its own identifier id(x) and its status status(x),
which is by default set to ’inactive’ and can be changed to ’active’.
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A message in general consists of the following parts: a sender id, which is the id of
the node sending the message, an optional additional id, if the sender wants to inform
the receiving node about another node, and the type of the message.

Each node has two different kinds of actions that we call receive actions and periodic
actions. A receive action is enabled if there is an incoming message of the corresponding
type in the bufferB(x). A periodic action is enabled in every state, as its guard is simply
true. Each enabled action is executed once every step.

In order to describe the algorithm formally and prove its correctness later on, we
need the definitions given below. In this paper we assume that a predecessor of a node
is a node with the next larger identifier. Therefore for all p(x) links, p(x) > x. Then all
nodes in a connected component considering only p(x) links form a rooted tree, where
for each tree the root has the largest identifier. Note here that the heap H (defined
below) is not a data structure or variable stored by any node. It is a notion used just for
the purpose of the analysis.

Definition 1. We call such a rooted tree formed by p(x) links a heapH . We further call
the root of the tree the head h of the heapH . We further denote with heap(x) the heap
H such that x ∈ H .

Definition 2. A sorted list is a heapH with head h, such that ∀v ∈ H−{h} : p(v) > v
and ∀v ∈ H − {h} : s(p(v)) = v. We call a heap linearized w.r.t. a node u ∈ H , if
∀v ∈ H − {h} : p(v) > v and ∀v ∈ H − {h} ∧ v ≥ u : s(p(v)) = v. We further call
the time until a heap is linearized w.r.t. a node u the linearization time of u. We say that
two heapsHi andHj are merged if all nodes inHi andHj form one heapH .

2.1 Description of Our Algorithm

We only present the intuition behind our algorithm. Our primary goal is to collect
the addresses of all nodes in the system at the node of maximum id, which we also
call the root. In order to efficiently distribute the addresses from this root to all other
nodes in the system we aim at organizing them into a spanning tree of constant degree,
which in our case is a sorted list, ordered in descending ids. The root would then be the
head of the list. In order to reach a sorted list, we first organize the nodes in rooted trees
satisfying the max-heap property, i.e. a parent (also called predecessor in the following)
of a node has a higher id than the node itself. The rooted trees will then be merged and
linearized over time so that they ultimately form a single sorted list.

In our protocol, in order to minimize the amount of messages sent by the nodes, we
allow a node in each round to share information only with its immediate successor s(x)
(which is one of the nodes that considers it as its predecessor) and predecessor p(x).
More precisely, in each round a node forwards one of its neighbors (i.e. the nodes it
knows about) in a round-robin manner to its predecessor.

Moreover, each node chooses the smallest node in its neighborhood that is larger than
itself as its predecessor and requests from it to accept it as successor (pred − request
message). Each node also looks at the nodes which requested to be its successor, assigns
the largest of them as its successor (pred−accept) and forwards the rest of these nodes
to it (new − predecessor).
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We also need to ensure that there exists a path of successors from the root to all
other nodes so that the information can be forwarded to all. This is initially not the case
since there exist many nodes that are the largest in their known neighborhood, thinking
they are the root. We call these nodes heads. All the nodes having the same head as
an ancestor form a heap. The challenge is to merge all heaps into one.In order to en-
able the merging of the heaps, the heads continuously scan their neighborhood. A node
that receives a scan message responds by sending the largest node in its neighborhood
through a scanack message to the node that sent that scanmessage (could be possibly
more than one).

To avoid accumulation of unsent ids in the lists (which would have an effect on the
time and message complexity) maintained by the nodes, the following rules are used.
When x has no predecessor that it can send a forward-from-successor message to, it
changes its status to inactive, and then (with the help of some special messages) all the
nodes in the succesor-line of x are informed in order not to forward any messages to
predeseccors, and are activated again if the information flow is possible again.

3 Correctness

In this section we show the correctness of our approach for the self-stabilizing clique.
At first we show some basic lemmas. We then show that in linear time all nodes be-

long to the same heap. Then we show that the head of this heap (node with the maximal
id) is connected with every node and vice versa after an additional time of O(n). From
this state it takesO(n) more time until every node is connected to every other node and
the clique is formed. We give a formal definition of the legal state.

Definition 3. Let G be a network with node set V and max = max {v ∈ V } be the
node with the maximum id. Then G is in a legal state iff ∀v ∈ V : N(v) = V −{v} and
∀v ∈ V − {max} : p(v) > v and ∀v ∈ V − {max} : s(p(v)) = v.

Note that the legal state contains the clique and also a sorted list over the nodes. In this
section we will prove the following theorem.

Theorem 2. AfterO(n) rounds the network stabilizes to a legal state.

3.1 Phase 0: Recovery to a Valid State

In this phase we show that the network can recover if the internal variables p(x) and
s(x) are undefined or set to invalid values, e.g p(x) < x.

Theorem 3. It takes at most 2 rounds until the network is in a valid state.

3.2 Phase 1: Connect All Heaps by S-Edges

In this phase we show that starting from a valid state all existing heaps will eventually
be connected by s-edges (defined below), so that they will merge afterwards.
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Definition 4. We distinguish between two different kinds of edges that can exist at any
time in our network, the edges in the set E and the ones in the set Es. We say that (x, y)
is in E, if y ∈ N(x) and (x, y) in Es if y ∈ S(x), resulting from a scan from y. We will
call the latter ones s-edges and denote them by (x, y)s.

Definition 5. In the directed graph we define an undirected path as a sequence of
edges (v0, v1), (v1, v2), · · · , (vk−1, vk), such that ∀i ∈ {1, · · · , k} : (vi, vi−1) ∈
E ∨ (vi−1, vi) ∈ E. We say that two heaps H1 and H2 are s-connected if there ex-
ists at least one undirected path from one node in H1 to one node in H2 and this path
consists of either s-edges or edges having both nodes in the same heap.

We say that a subset of s-edgesE′
s ⊆ Es is a s-connectivity set at round t if all heaps

in the graph are s-connected to each other through edges in E′
s at round t.

In the first phase we will show that afterO(n) rounds all heaps have been connected
by s-edges. Let E0 be the set of edges (u, v) ∈ E at time t = 0. We then show that all
these edges are scanned in O(n) rounds, giving us the connections via s-edges.

Theorem 4. After O(n) rounds the heaps Hi and Hj connected by (u, v) ∈ E0 have
either merged or been connected by s-edges .

To prove the theorem we firstly show some basic lemmas needed in the analysis.

Lemma 1. Let u1, · · ·u|H| be the elements in a heap H in descending order. Then it
takes at most i rounds till H is linearized w.r.t ui.

Lemma 2. Once one head learns about the existence of another head, two heaps are
merged.

In case of a merging of two heaps Hi, Hj , the time it takes until the new heap H is
linearized w.r.t. a node u can increase with respect to the linearization time of u in the
heap before the merging.

Lemma 3. If two heaps Hi and Hj merge to one heap H , the linearization time of a
node u ∈ Hi (resp. u ∈ Hj) can increase by at most |Hj | (resp. |Hi|).

From Lemma 1 and Lemma 3 we immediately get via an inductive argument:

Corollary 1. For any heapH of size |H | in round t it takes at most |H |− t rounds until
it forms a sorted list.

Lemma 4. If a node sends an id with a forward-from-successor message, the id will
not be delayed by other forward-from-successormessages on its way to the head.

As a consequence of the observation of Lemma 2 we introduce some additional
notation to estimate the time it takes until any id is scanned by a head of a heap.

For any edge (u, v) ∈ E0 with u ∈ Hi and v ∈ Hj , where hi and hj denote
the corresponding heads of the heaps, we define the following notation in a round t:
Let P t(u) be the length of the path from u to hi, once Hi is linearized w.r.t. u. Let
IDt(u, v) be the number of ids u forwards or scans before sending or scanning v the
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first time. Let LT t(u) be the time it takes until the heap is linearized w.r.t. u , i.e. on
the path from the head hi to u each node has exactly one predecessor and successor.
Corollary 1 shows that LT t(u) is bounded by |Hi|.

Let φt(u, v) = P t(u) + IDt(u, v) + LT t(u). We call φt(u, v) the delivery time
of an id v because if φt(u, v) = 0, the id is scanned in round t or has already been
scanned by hi. We further denote by Φt(u, v) = min {φt(w, v) : heap(u) = heap(w)}
the minimal delivery time of v for the heap containing u.

For any edge (u, v) ∈ E0, with u ∈ Hi and v ∈ Hj , (i.e. u and v are in different
heaps) and Φt(u, v) = 0 the head of Hi scans or has scanned v ∈ Hj resulting in the
s-edge (v, hi)s.The following holds:

Lemma 5. If (u, v) ∈ E0 is an edge between two heaps Hi and Hj , then Φt(u, v) ≤
max {2|Hi|+ n− t, 0} ≤ max {3n− t, 0} for all rounds t.

Proof. We will show the lemma by induction on the number of rounds. For the analysis
we divide each round t → t + 1 into two parts: in the first step t → t′ all actions are
executed and in the second step t′ → t+1 all network changes are considered. Thus, we
assume that all actions are performed before the network changes. This is reasonable as
a node is aware of changes in its neighborhood only in the next round, when receiving
the messages. By network changes we mean the new edges that could be created in the
network. These new edges could possibly lead to the merging of some heaps at time
t+ 1.

Induction base(t = 0): For any edge (u, v) ∈ E0 betweenHi andHj let x ∈ Hi be
the node such that Φ0(u, v) = φ0(x, v). Then P 0(x) ≤ Hi as the path length is limited
by the number of nodes in the heap, ID0(x, v) ≤ n as not more than n ids are in the
system, and following from Lemma 1, LT (x) ≤ |Hi|. Then Φ0(u, v) ≤ φ0(x, v) ≤
2|Hi|+ n ≤ 3n.

Induction step(t→ t′): For any edge (u, v) ∈ E0 betweenHi andHj let x ∈ Hi be
the node such that Φt(u, v) = φt(x, v).

Then in round t the following actions can be executed.

– x is inactive and can not forward an id. Then the heap is not linearized w.r.t.
x, which implies that the linearization time decreases by one, i.e. LT t′(x) =
LT t(x) − 1 and φt

′
(x, v) = φt(x, v) − 1 ≤ 2|Hi| + n− t− 1 as all other values

are not affected.
– u is active, but does not send v by a forward-from-successor message, then the

number of ids that u is sending before v decreases by 1. Note that according to
Lemma 4, x hasn’t sent a forward-from-successor message with v in a round be-
fore, as then there would be another node y ∈ Hi with φt(y, v) < φt(x, v). Then
IDt′(x, v) ≤ IDt(x, v)− 1 and φt

′
(x, v)) = φt(x, v) − 1 ≤ 2|Hi|+ n− t− 1.

– u sends a forward-from-successor message with v, then the length of the path for
v to the head hi decreases by 1 and φt+1(p(x), v) ≤ P t(x) − 1 + IDt(x, v) +
LT t(x) = φt(x, v) − 1 ≤ 2|Hi|+ n− t− 1

Thus, in total Φt′(u, v) ≤ Φt(u, v)− 1 ≤ 2|Hi|+ n− t− 1 ≤ 3n− (t+ 1).
Induction step(t′ → t + 1): Now we consider the possible network changes and

their effects on the potential Φt+1(u, v). Let again x ∈ Hi be the node such that
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Φt(u, v) = φt(x, v) for an edge (u, v) ∈ E0 between Hi and Hj . The following net-
work changes might occur:

– some heapsHk andHl with k �= i and l �= imerge. This has no effect on Φt′(u, v).
Thus, Φt+1(u, v) = Φt′(u, v) ≤ 2|Hi|+ n− t− 1 ≤ 3n− (t+ 1).

– Heaps Hi and Hk merge to H ′
i . Obviously the length of the path of x can increase

and P t+1(x) ≤ P t′(x) + |Hk|. According to Lemma 3 also the linearization
time of x can increase and LT t+1(x) ≤ LT t′(x) + |Hk|. In total Φt+1(u, v) ≤
Φt′(u, v) + 2|Hk| ≤ 2|H ′

i|+ n− t− 1 ≤ 3n− (t+ 1).

Thus, in round t+ 1, Φt+1(u, v) ≤ 2|Hi|+ n− t− 1 ≤ 3n− (t+ 1).

Hence for every edge (u, v) ∈ E0 with u ∈ Hi and v ∈ Hj , Φt(u, v) = 0 after 3n
rounds, which means that the head of Hi scans or has scanned v ∈ Hj resulting in the
s-edge (v, hi). Thus, we immediately get Theorem 4.

3.3 Phase 2: Towards One Heap

Based on the results of Phase 1, we will prove that after O(n) further rounds a clique is
formed. For the purpose of the analysis below, we use the following definitions:

Definition 6. Let ord(x) be the order of a node x, i.e. the ranking of the node if we
sort all n nodes in the network according to their id ( i.e. the node with the largest id
m has ord(m) = 0, the second largest has order 1, and so on). Moreover, we define
the potential λ(x, y) of a pair of nodes x and y to be the positive integer equal to
ω(x, y) = 2 · ord(x) + 2 · ord(y) + K(x, y), where K(x, y) = 1 if x > y and 0
otherwise. Also, let for a set of edges E′ ⊆ E, Λ(E′) = max(u,v)∈E′{ω(u, v)}, if
E′ �= ∅ and 0 otherwise.

Lemma 6. Two heaps Hi, Hj that are connected by an s-edge (x, y)s at time t will
either stay connected via s-edges (xi, yi)s at time t+1 with the property that, ∀(xi, yi),
the potential ω(xi, yi) of the edges we consider at time t+1 is smaller that the potential
ω(x, y) of the edge (x, y)s we considered at time t, or x and y will be in the same heap.

Proof. Let (x, y)s be a s-edge connecting Hi and Hj , i.e. x ∈ Hi, y ∈ Hj . Then
according to our algorithm the following actions might be executed.

– x is the head of Hi and y > x then y = p(x) and x sends a pred-request message
to y, resulting in a merge ofHi andHj .

– x is the head of Hi and x > y and y is a new id, then x sends a scanack to
y with its own id and the edge (y, x)s is created connecting Hi and Hj . Then
ω(y, x) = 2ord(x) + 2ord(y) + 0 < 2ord(x) + 2ord(y) + 1 = ω(x, y).

– x forwards y to p(x) by a forward-head message, such that y ∈ S(p(x)) and Hi

and Hj are connected by (p(x), y)s. Then ω(p(x), y) = 2ord(p(x)) + 2ord(y) +
K(p(x), y) < 2ord(x) + 2ord(y) +K(x, y) = ω(x, y).

– x receives a new id z ∈ S(x) with z = max {v ∈ N(x)}, such that z > y and z >
x. Then x sends a scanack containing z to y and the s-edge (x, y)s is substituted
by s-edges (x, z)s and (y, z)s. And Hi and Hj are connected via s-edges. Note
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that since p(x) > x and z > x, y , ord(p(x)) < ord(x), ord(z) < ord(x) and
ord(z) < ord(y). The potential of the new edges is: ω(p(x), z) = 2ord(p(x)) +
2ord(z) + K(p(x), z) < 2ord(x) + 2ord(y) + K(x, y) = ωt(x, y). ω(y, z) =
2ord(y) + 2ord(z) + 0 < 2ord(x) + 2ord(y) +K(x, y) = ωt(x, y).

– x knows an id z ∈ Hk with z = max {v ∈ N(x)} , z > y and z /∈ S(x). Then one
of the following cases hold:
1. (x, z) ∈ E0, then according to Lemma 5 a node u > x with u ∈ Hi has

scanned z resulting in the s-edge (z, u)s s-connectingHi andHk.
2. x has received z by a forward-from-predecessor message. Then a node u > x

with u ∈ Hi has scanned z resulting in the s-edge (z, u)s s-connectingHi and
Hk.

3. z was in S(x) in a previous round, then the edge (x, z)s existed s-connecting
Hi andHk.

4. x has received z by a forward-from-successor message. Then there is a node
v ≤ x in the sub heap rooted at x such that (v, z) ∈ E0. Then according to
Lemma 5 a node w ∈ Hi with w > v has scanned z and the s-edge (z, w)s
existed s-connecting Hi and Hk. If w > x, Hi and Hk are s-connected by s-
edges (xi, yi)s with ∀(xi, yi) : (x < w < xi∧x < w < yi∧z ≤ xi∧z ≤ yi)∨
(x < w ≤ xi ∧x < w ≤ yi∧ z < xi ∧ z < yi). If w < x then at least as many
rounds have passed since w has scanned z as there are nodes on the path from
w to x, because z has to be forwarded as many times. Then the edge (z, w)s has
been forwarded or substituted t times orHi andHk have merged. ThenHi and
Hk are s-connected by s-edges (xi, yi)s with ∀(xi, yi) : (x < w < xi ∧ x <
w < yi ∧ z ≤ xi ∧ z ≤ yi) ∨ (x < w ≤ xi ∧ x < w ≤ yi ∧ z < xi ∧ z < yi).

In each case x sends a scanack containing z to y and the s-edge (y, z)s is created.
AndHi andHj are s-connected over s-edges and in all cases the potential shrinks,
since for each new s-edge it holds that at least one node is greater and the other
node not smaller than the nodes in the edge they replace.

– x is the head ofHi and x < y, thenHi andHj merge to one heap.
– x is the head of Hi and x > y and y was in N(x) in a previous round, then Hi

and Hj are already s-connected by s-edges (xi, yi)s with greater ids by the same
arguments as in the case before. Since the ids are greater, the potential shrinks also
here.

Lemma 7. If Et is an s-connectivity set at round t, there exists an s-connectivity set
Et+1 at round t+ 1 such that Λ(Et+1) < Λ(Et).

Theorem 5. After at most 4n+1 rounds, all heaps have been merged into one.

3.4 Phase 3: Sorted List and Clique

Theorem 6. If all nodes form one heap, it takesO(n) time until the network reaches a
legal state.

Combining Theorem 3, Theorem 4, Theorem 5 and Theorem 6 our main theorem
Theorem 2 holds.
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4 Message Complexity and Single Join and Leave Event

In this section we give an upper bound for the work spent by each node.
According to Theorem 2 it takes O(n) rounds to reach a legal state. In each round

each active node sends a message to its predecessor and its successor (forward-
from-successor, forward-from-predecessor) and receives a message from them (forward-
from-successor, forward-from-predecessor). Also, a node sends at most one activate/-
deactivate message to its successor at each round. This gives a resulting work of O(n)
for each node or O(n2) in total. By the following lemma we show that the additional
messages sent and received during the linearization are at mostO(n) for each node and
O(1) as soon as a stable state is reached.

Theorem 7. Each node sends and receives at most O(n) messages during the lin-
earization phase (stabilization work) and at mostO(1)messages in a legal state (main-
tenance work).

4.1 Single Join and Leave Event

The case of arbitrary churn is hard to analyze formally. Thus, we will show that the
clique can efficiently recover considering a single join or leave event in a legal state.

Theorem 8. In a legal state it takesO(n) rounds and messages to recover and stabilize
after a new node joins the network. It takes O(1) rounds and messages to recover the
clique after a node leaves the network.

5 Conclusion

In this paper we introduced a local self-stabilizing time-and work-efficient algorithm
that forms a clique out of any weakly connected graph. By forming a clique our algo-
rithm also solves the resource discovery problem, as each node is aware of any other
node in the network. Our algorithm is the first algorithm that solves resource discovery
in optimal message complexity. Furthermore our algorithm is self-stabilizing and thus
can handle deletions of edges and joining or leaving nodes.
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Abstract. In this paper, we propose and analyze a simple localized
algorithm to balance a tree. The motivation comes from live distributed
streaming systems in which a source diffuses a content to peers via a tree,
a node forwarding the data to its children. Such systems are subject
to a high churn, peers frequently joining and leaving the system. It is
thus crucial to be able to repair the diffusion tree to allow an efficient
data distribution. In particular, due to bandwidth limitations, an efficient
diffusion tree must ensure that node degrees are bounded. Moreover,
to minimize the delay of the streaming, the depth of the diffusion tree
must also be controlled. We propose here a simple distributed repair
algorithm in which each node carries out local operations based on its
degree and on the subtree sizes of its children. In a synchronous setting,
we first prove that starting from any n-node tree our process converges
to a balanced tree in O(n2) turns. We then describe a more restrictive
model, adding a small extra information to each node, under which we
adopt our algorithm to converge in Θ(n log n) turns. We then exhibit by
simulation that the convergence is much faster (logarithmic number of
turns in average) for a random tree.

Keywords: Distributed algorithms, tree balancing, live streaming, peer-
to-peer.

1 Introduction

Trees are inherent structures for data dissemination in general and particularly
in peer-to-peer live streaming networks. Fundamentally, from the perspective of a
peer, each atomic piece of content has to be received from some source and
forwarded towards some receivers. Moreover, most of the actual streaming mech-
anisms ensure that a piece of information is not transmitted again to a peer that
already possesses it. Therefore, this implies that dissemination of a single fragment
defines a tree structure. Even in unstructured networks, whose main characteristic
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is lack of defined structure, many systems look into perpetuating such underlying
trees, e.g. the second incarnation of Coolstreaming [7] or PRIME [9].

Unsurprisingly, early efforts into designing peer-to-peer video streaming con-
centrated on defining tree-based structures for data dissemination. These have
been quickly deemed inadequate, due to fragility and unused bandwidth at the
leaves of the tree. One possible fix to these weaknesses was introduced in Split-
Stream [3]. The proposed system maintains multiple concurrent trees to tolerate
failures, and internal nodes in a tree are leaf nodes in all other trees to opti-
mize bandwidth. The construction of intertwined trees can be simplified by a
randomized process, as proposed in Chunkyspread [11], leading to a streaming
algorithm performing better over a range of scenarios.

As found in [7], node churn is the main difficulty for live streaming networks,
especially those trying to preserve structure. On the other hand, in [12] au-
thors embrace change. Their stochastic optimization approach relies on constant
random creating and breaking of relationships. To ensure network connectivity,
nodes are said to keep open connections with hundreds of potential neighbours.
Another approach, displayed in [8], is churn-resiliency by maintaining redun-
dancy within the network structure. Although concentrating on a different field,
authors of [10] face a similar to our own problem of maintaining balanced trees,
needed for connecting wireless sensors. However, their solution is periodical re-
building the whole tree from scratch. Our solution aims at minimizing the dis-
turbance of nodes, whose ancestors were not affected by recent failures, as well
as minimizing the redundancy in the network.

The analysis of these systems focus on the feasibility, construction time and
properties of the established overlay network, see for example [3,11] and [4] for
a theoretical analysis. But these works usually abstract over the issue of tree
maintenance. Generally, in these works, when some elements (nodes or links)
of the networks fail, the nodes disconnected from the root execute the same
procedure as for initial connection. To the best of our knowledge, there are no
theoretical analysis on the efficiency of tree maintenance in streaming systems,
reliability is estimated by simulations or experiments as in [3].

In this paper, we tackle this issue by designing an efficient maintenance scheme
for trees. Our distributed algorithm ensures that the tree recovers fast to a “good
shape” after one or multiple failures occur. We give analytic upper bounds of
the convergence time. To the best of our knowledge, this is the first theoretical
analysis of a repair process for live streaming systems. While the O(n2) worst
case bound seems high, simulations shown in Section 5 suggest that the average
case is closer to O(log n), which is lower than the conceivable time of rebuilding
a tree from scratch.

The problem setting is as follows. A single source provides live media to some
nodes in the network. This source is the single reliable node of the network,
all other peers may be subject to failure. Each node may relay the content to
further nodes. Due to limited bandwidth, both source and any other node can
provide media to a limited number k ≥ 2 of nodes. The network is organized
into a logical tree, rooted at the source of media. If node x forwards the stream
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towards node y, then x is the parent of y in the logical tree. Note that the delay
between broadcasting a piece of media by the source and receiving by a peer
is given by its distance from the root in the logical tree. Hence our goal is to
minimize the tree depth, while following degree constraints.

As shown in [7], networks of this kind experience high rate of node joins
and leaves. Leaves can be both graceful, where a node informs about imminent
departure and network rearranges itself before it stops providing to the children,
or abrupt (e.g. due to connection or hardware failure). In this work, we assume
a reconnection process: when a node leaves, its children reattach to its parent.
This can be done locally if each node stores the address of its grandfather in
the tree. Note that this process is performed independently of the bandwidth
constraint, hence after multiple failures, a node may become the parent of many
nodes. The case of concurrent failures of father and grandfather can be handled
by reattaching to the root of the tree. Other more sophisticated reconnection
processes have been proposed, see for example [6].

This process can leave the tree in a state where either the bandwidth con-
straints are violated (the degree of a node is larger than k) or the tree depth
is not optimal. Thus, we propose a distributed balancing process, where based
on information about its degree and the subtree sizes of its children, a node
may perform a local operation at each turn. We show that this balancing pro-
cess, starting from any tree, converges to a balanced tree and we evaluate the
convergence time.

Related Work. Construction of spanning trees has been studied in the context
of self-stabilizing algorithms. Herault et al. propose in [6] a new analytic model
for large scale systems. They assume that any pair of processes can communi-
cate directly, under condition of knowing receiver’s identifier, what is the case
in Internet Protocol. They additionally assume a discovery service and a failure
detection service. Under this model they propose and prove correctness of an
algorithm constructing a spanning tree over a set of processes. Similar assump-
tions have been used by Caron et al. in [2] to construct a distributed prefix tree
and by Bosilca et al. in [1] to construct a binomial graph (Chord-like) overlay.

In this paper we assume the results of these earlier works: nodes can reliably
communicate, form connections and detect failures. We do not analyze these
operations at message level. Furthermore, we analyze the overlay assuming it
is already a spanning tree. However, it may have an arbitrary shape, e.g. be a
path or a star (all nodes connected directly to the root). This can be regarded as
maintaining the tree after connection or failure of an arbitrary number of nodes.

Our Results. In Section 2, we provide a formal definition of the problem and
propose a distributed algorithm for the balancing process. The process works in
a synchronous setting. At each turn, all nodes are sequentially scheduled by an
adversary and must execute the process. In Section 3, we show that the balancing
process always succeeds in O(n2) turns. Then, in Section 4, we study a restricted
version of the algorithm in which a node performs an operation only when the
subtrees of its children are balanced. In this case, we succeeded in obtaining a
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tight bound of Θ(n logn) on the number of turns for the worst tree. Finally, we
show that the convergence is in fact a lot faster in average for a random tree
and takes a logarithmic number of turns.

Due to space limitations, only intuitions of some proofs are presented here.
The full proofs can be found in [5].

2 Problem and Balancing Process

In this section, we present the main definitions and settings used throughout the
paper, then we present our algorithm and prove some simple properties of it.

2.1 Notations

This section is devoted to some basic notations.
Let n ∈ N∗. Let T = (V,E) be a n-node tree rooted in r ∈ V . Let v ∈ V be

any node. The subtree Tv rooted at v is the subtree consisting of v and all its
descendants. In other words, if v = r, then Tv = T and, otherwise, let e be the
edge between v and its parent, Tv is the subtree of T \e = (V,E \{e}) containing
v. Let nv = |V (Tv)|.

Let k ≥ 2 be an integer. A node v ∈ V (T ) is underloaded if it has at most
k− 1 children and at least one of these children is not a leaf. v is said overloaded
if it has at least k+1 children. Finally, a node v with k children is imbalanced if
there are two children x and y of v such that |nx − ny| > 1. A node is balanced
if it is neither underloaded, nor overloaded nor imbalanced. Note that a leaf is
always balanced.

A tree is a k-ary tree if it has no nodes that are underloaded or overloaded,
i.e., all nodes have at most k children and a node with < k children has only
leaf-children. A rooted k-ary tree T is k-balanced if, for each node v ∈ V (T ), the
sizes of the subtrees rooted in the children of v differ by at most one. In other
words, a rooted tree is k-balanced if and only if all its nodes are balanced.

As formalized by the next claim, k-balanced trees are good for our live stream-
ing purpose since such overlay networks (k being small compared with n) ensure
a low dissemination delay while preserving bandwidth constraints.

Claim 1. Let T be a n-node rooted tree. If T is k-balanced, then each node of
T is at distance at most �logk n� from r.

2.2 Distributed Model and Problem

Nodes are autonomous entities running the same algorithm. Each node v has a
local memory where it stores the size nv of its subtree, the size of the subtrees of
its children and the size of the subtrees of its grand-children, i.e., for any child
x of v and for any child y of x, v knows nx and ny.

Computations performed by the nodes are based only on the local knowledge,
i.e., the information present in the local memory and that concerns only nodes
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Fig. 1. Operations performed by node v in the balancing process

at distance at most 2. We consider a synchronous setting. That is, the time
is slotted in turns. At each turn, any node may run the algorithm based on
its knowledge and, depending on the computation, may do one of the following
operations. In the algorithm we present, each operation done by a node v consists
of rewiring at most two edges at distance at most 2 from v. More precisely, let
v1, vk and vk+1 be children of v, a be a child of v1 and b be a child of vk (if any).
The node v may

– replace the edge {v1, a} by the edge {v, a}. A grand-child a of v then be-
comes a child of v. This operation is denoted by pull(a) and illustrated in
Figure 1a;

– replace the edge {v, vk+1} by the edge {vk, vk+1}. A child vk+1 of v then
becomes a child of another child vk of v. This operation is denoted by push

(vk+1,vk ), see Figure 1b;
– replace the edges {v1, a} and {vk, b} by the edges {v1, b} and {vk, a}. The

children v1 and vk of v exchange two of their own children a and b. This
operation is denoted by swap(a,b) and an example is given in Figure 1c.
Here, a or b may not exist, in which case, one of v1 and vk “wins” a new
child while the other one “looses” a child. This case is illustrated in Figure 1d.

In all cases, the local memory of the at most k2+1, including the parent of v,
nodes that are concerned are updated. Note that each of these operations may
be done using a constant number of messages of size O(log n).

In this setting, at every turn, all nodes sequentially run the algorithm. In order
to consider the worst case scenario, the order in which all nodes are scheduled
during one turn is given by an adversary. The algorithm must ensure that after a
finite number of turns, the resulting tree is k-balanced. We are interested in time
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complexity of the worst case scenario of the repair. That is, the performance of
the algorithm is measured by the maximum number of turns after which the tree
becomes k-balanced, starting from any n-node tree.

2.3 The Balancing Process

In this section, we present our algorithm, called balancing process. We prove
some basic properties of it. In particular, while the tree is not k-balanced, the
balancing process ensures that at least one node performs an operation. In the
next sections, we prove that the balancing process actually allows to reach a
k-balanced tree after a finite number of steps.

At each turn, a node v executes the algorithm described on Figure 2. To sum-
marize, an underloaded node does a pull, an overloaded node does a push and
an imbalanced node (whose children are not overloaded) does a swap operation.
Note that a swap operation may exchange a subtree with an empty subtree,
but cannot create an overloaded node. Intuitively, the children affected by push

and pull are chosen to get probably the least imbalance (reduce the biggest or
merge the two small). It is important to emphasise that the balancing process
requires no memory of the past operations.

Algorithm executed by a node v in a tree T . If v is not a leaf, let (v1, v2, · · · , vd)
be the d ≥ 1 children of v ordered by subtree-size, i.e., nv1 ≥ nv2 ≥ · · · ≥ nvd .

1. If v is underloaded (then d < k), let a be a child of v1 with biggest subtree
size. Then node v executes pull(a). // That is, a becomes a child of v.

2. Else if v is overloaded (then d > k ≥ 2), then node v executes push(vk+1, vk).
// That is, vk+1 becomes a child of vk.

3. Else if v is imbalanced (then d = k) and if v1 and vk are not overloaded,
let a and b be two children of v1 and vk respectively such that |nv1 − na +
nb − (nvk −nb +na)| is minimum (a (resp. b) may be not defined, i.e., na = 0
(resp., nb = 0), if v1 (resp v2) is underloaded).
Then node v execute swap(a, b). // That is, a and b exchange their parent.

Fig. 2. Balancing Process

Note that if the tree if k-balanced, no operation are performed, and that, if
the tree is not, at least one operation is performed.

Claim 2. If T is not k-balanced, and all nodes execute the balancing process,
then at least one node will do an operation.

In the next section, we prove that, starting from any tree, the number of oper-
ations done by the nodes executing the balancing process is bounded. Together
with the previous claim, it allows to prove

Theorem 1. Starting from any tree T where each node executes the balancing
process, after a finite number of steps, T eventually becomes k-balanced.
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Before proving the above result in next Section, we give a simple lower bound
on the number of turns required by the Balancing Process. A star is a rooted
tree where any non root-node is a leaf.

Lemma 1. If the initial tree is a n-node star, then at least Ω(n) turns are needed
before the resulting tree is k-balanced.

3 Worst Case Analysis

In this Section we obtain an upper bound of O(n2) turns needed to balance
the tree. We prove it using a potential function, whose initial value is bounded,
integral and positive, may rise in a bounded number of turns and, otherwise,
strictly decreases. For clarity of presentation we assume we want to obtain a
2-balanced tree. The proofs can be extended to larger k. Due to lack of space,
most of them are only sketched here and can be found in [5].

Lemma 2. Starting from any n-node rooted tree T , after having executed the
Balancing Process during O(n) turns, no node will do a push operation anymore.

This lemma is proved by tracking a potential function Φ(T ) =
∑

v∈V (T ) max

{0, dv − 3}, where dv is the number of children of node v. Note that any node
who started a turn with degree at least three, will perform a push and receive at
least one new child, thus finishing the turn with degree not greater than in the
beginning. Thus, no operation can increase Φ. In each turn, either Φ decreases,
or a node with no overloaded ancestors performs its last push. As the value of
Φ is bounded by the number of nodes, the lemma holds.

Let Q be the sum over all nodes u ∈ T of the distance between u and the
root.

Lemma 3. Starting from any n-node rooted tree T , there are at most O(n2) dis-
tinct (not necessarily consecutive) turns with a pull operation. More precisely,
the sum of the sizes of the subtrees that are pulled during the whole process does
not exceed n2.

Proof. First, by Lemma 2, there are no push operations after O(n) turns. Note
that a swap operation does not change Q. Moreover, a pull operation of a
subtree Tv makes Q decrease by nv. Since Q =

∑
u∈V (T ) d(u, r) ≤ n2, the sum

of the sizes of the subtrees that are pulled during the whole process does not
exceed n2. ��

Potential Function. To prove the main result of this section, we define a
potential function and show that: (1) the initial value of the potential function
is bounded; (2) its value may raise due to pull operations, but in a limited
number of turns and by a bounded amount; (3) a swap operation may not
increase its value; (4) if no push nor pull operation are done, there exists at
least one node doing a swap operation, strictly decreasing the potential function.
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We tried simple potential functions first. However, they led either to an un-
bounded number of turns with non-decreasing value, or to a larger upper bound.
For example, it would be natural to define the potential of a node as the differ-
ence between its subtree sizes. For this potential function, (1) (2) and (3) are
true, but, unfortunately, for some trees the potential function does not decrease
during a turn. This function can be patched so that each operation makes the
potential decrease: multiplying the potential of a node by its distance to the
root. However, the potential in this case can reach O(n3).

The potential function giving the O(n2) bound is defined as follows. Recall
that we consider a n-node tree T rooted in r such that all nodes have at most two
children. Let E0 = n and, for any 0 ≤ i ≤ �log(n+1)�, let Ei = 2Ei+1 +1. Note
that (Ei)i≤�log(n+1)	 is strictly decreasing, and 0 < E�log(n+1)	 ≤ 1. Intuitively,
Ei is the mean-size of a subtree rooted in a node at distance i from the root in
a balanced tree with n nodes.

Let Ki be the set of nodes of T at distance exactly i ≥ 0 from the root and
|Ki| = ki, and, for any 0 ≤ i ≤ �log(n + 1)�, let mi = 2i − ki. Intuitively, mi

represents the number of nodes, at distance i from the root, missing compared
to a complete binary tree.

For any v ∈ V (T ) at distance 0 ≤ i ≤ �log(n+ 1)� from the root, the default
of v, denoted by μ(v), equals nv−�Ei� if nv > Ei and �Ei�−nv otherwise. Note
that μ(v) ≥ 0 since nv is an integer.

Let the potential at distance i from r , 0 ≤ i ≤ �log(n+ 1)�, be Pi = mi ·
�Ei�+

∑
u∈Ki

μ(u). Finally, let us define the potential P =
∑

0≤i≤�log(n+1)	 Pi.

Since μ(u) ≤ n for any u ∈ V (T ), and
∑

0≤i≤�log(n+1)	mi + ki ≤ 2n, then

P(T ) = O(n2).

Lemma 4. For any n-node rooted tree T , a pull operation of a subtree Tv may
increase the potential P by at most 2nv.

This lemma is proved by case analysis. Let u be the node performing the
operation, x its unique child and v the node being pulled. We show that the
default increases by at most nv for x, �Ej−1� − �Ej� for nodes below it whose
distance j from the root is j ≤ �log(n+ 1)� and by at most nw for every node
whose distance from root is �log(n+ 1)�+1. Calculating the new potential, using
all those inequations, the lemma holds.

Let v be a node at distance �log(n+ 1)� > i ≥ 0 from the root r of T . v
is called i-median if it has one or two children a and b and na > Ei+1 > nb
(possibly v has exactly one child and nb = 0).

Lemma 5. For any n-node rooted tree T , a swap operation executed by any
node v does not increase the potential P. Moreover, if v is (i − 1)-median then
P strictly decreases by at least one.

This lemma is proved by calculating the new potential, in all the possible
cases of relative sizes of the children and Ei before and after the operation.

Let v be a node at distance 0 ≤ i < �log(n+ 1)� − 1 from the root r of T . v
is called i-switchable if it has one or two children a and b and na > Ei+1 > nb
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(possibly v has only exactly child, and nb = 0), na − nb ≥ 2 and none of its
ancestors can execute a swap operation. Note that, if a node is i-switchable,
then it is i-median.

Lemma 6. Let T be a tree where no push nor pull operation is possible. If
a node v is i-switchable, then either v can do a swap operation, or 0 ≤ i <
�log(n+ 1)� − 2 and it has a (i+ 1)-switchable child.

To prove this lemma we first take care of nodes at distance �log(n+ 1)� from
r, showing that in all the possible cases of its children sizes a swap can be
performed. Then, for nodes at smaller distances to r, if an i-switchable node
can not perform a swap, then in all possible cases one of its children is (i+ 1)-
switchable.

Lemma 7. At each turn when no pull nor push operations are done, if the
tree is not balanced, then there is a i-switchable node, 0 ≤ i < �log(n+ 1)� − 1.

To prove this lemma, we define a Si-situation: for any j < i, all nodes at
distance j from the root cannot do a swap operation, and for any j ≤ i, kj = 2j

and, f or any node v at distance i from the root, nv ∈ {�Ei�, �Ei�}. If the tree
is in a S�log(n+1)	−1-situation, then it is balanced. Let j be the smallest integer
such that T is not in a Sj-situation. Then there is a node at distance j − 1 from
the root, which in all possible cases is (j − 1)-switchable.

Theorem 2. Starting from any n-node rooted tree, the balancing process reaches
a 2-balanced tree in O(n2) turns.

Proof. By Lemma 2, after O(n) turns, no push operations are executed anymore
and all nodes have at most two children. From then, there may have only pull
or swap operations. Moreover, by Claim 2, there is at least one operation per
turn while T is not balanced. From Lemma 3, there are at most O(n2) turns
with a pull operation. Once no push operations are executed anymore, from
Lemmata 3, 4 and 5, potential P can increase by at most O(n2) in total (over all
turns). Moreover, by Lemma 5, if a i-median node executes a swap operation,
the potential P strictly decreases by at least one.

By Lemma 7, at each turn when no pull nor push operations are done, there
is an i-switchable node, 0 ≤ i < �log(n + 1)� − 1. Thus, by Lemma 6, at each
such turn, there is an i-switchable that can execute a swap operation. Since
a i-switchable node is i-median (0 ≤ i < �log(n + 1)� − 1), by Lemma 5, the
potential P strictly decreases by at least one.

The result then follows from the fact that P ≤ n2. ��

4 Adding an Extra Global Knowledge to the Nodes

In this section, we assume an extra global knowledge: each node knows whether
it has a descendant that is not balanced. This extra information is updated after
each operation. Then, our algorithm is modified by adding the condition that
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any node v executing the balancing process can do a pull or swap operation
only if all its descendants are balanced. Adding this property allows to prove
better upper bounds on the number of steps, by avoiding conflict between an
operation performed by a node and an operation performed by one of its not
balanced descendant. We moreover prove that this upper bound for our algo-
rithm is asymptotically tight, reached when input tree is a path. The approach
presented in this section is specific for k = 2. I.e., the objective of the Balancing
Process is to reach a 2-balanced tree.

First, we define a function f used to bound the number of turns needed to
balance a tree consisting of two balanced subtrees and a common ancestor. Let
f : N× N→ N be the function defined recursively as follows.

∀a ≥ 0, f(a, a) = 0
∀a ≥ 1, f(a, a− 1) = 0
∀a ≥ 2, f(a, 0) = 1 + f(

⌊
a−1
2

⌋
, 0)

∀a > 2, ∀1 ≤ b < a− 1, f(a, b) = 1 +max
(
f(
⌈
a−1
2

⌉
,
⌊
b−1
2

⌋
), f(
⌊
a−1
2

⌋
,
⌈
b−1
2

⌉
)
)

Lemma 8. For any a ≥ 0, a ≥ b ≥ 0, f(a, b) ≤ max{0, log2 a}.

This lemma is proved by a simple induction on a. Now, we give a function
bounding the number of turns needed to balance any tree of a given size. Let
g : N→ N be the function defined recursively as follows.

∀n ∈ {0, 1}, g(n) = 0
∀n > 1, g(n) = maxa≥b≥0,a+b=n−1(max{g(a), g(b)}+ f(a, b))

Using a simple induction on n, we obtain that:

Lemma 9. For any n ≥ 0, g(n) ≤ max{0, n log2 n}.

We now state our main results:

Theorem 3. Starting from any n-node rooted tree, the balancing process with
global knowledge reaches a 2-balanced tree in O(n log n) turns.

Note first that Lemma 2 still holds with the new balancing process, that is: no
node is overloaded after O(n) turns. Let now x be a node with all descendants
balanced. Let y and z be the children of x. We show by induction on ny that x
becomes balanced in at most f(ny, nz) turns. Then, by induction on n, we show
that T can be balanced in at most g(n) turns.

Next theorem shows that there are trees starting from which the balancing
process actually uses a number of turns of the order of the above upper bound.

Theorem 4. Starting from an n-node path rooted in one of its ends, the balanc-
ing process with global knowledge reaches a 2-balanced tree in Ω(n logn) turns.

The proof is done by an induction on the tree size.
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5 Simulations

In the previous sections we obtained upper and lower bounds for the maximum
number of turns needed to balance a tree of a given size. A significant gap
between those bounds raises the question: which bound is closer to what happens
for random instances? We investigate the performance of the algorithm running
an implementation under a discrete event simulation. Scheduling of nodes within
a turn is given by a simple adversary algorithm. First, it detects which nodes can
perform no operation. It schedules them to move first, to ensure that they do
not perform operations enabled by operations of other nodes. Then, it schedules
the remaining nodes in a random order.

The process starts in a random tree. It is obtained by assigning random
weights to a complete graph and building a minimum weight spanning tree over
it. Figure 3 displays the number of turns it took to balance trees of progress-
ing sizes. For each size the numbers are aggregated over 10000 different starting
trees. The solid line marks the average, dotted lines the minimum and maximum
numbers of turns and error bars show the standard deviation.

What can be seen from this figure, is that the number of turns spent to balance
a random tree progresses logarithmically in regard to the tree size. This holds
true both for average and the worst cases encountered. This is significantly less
even than the lower bound on maximum time. This is because that comes from
the particular case of star as the starting tree, which is randomly obtained with
probability 1

n! and did not occur in our experiments for bigger values of n.
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Fig. 3. Balancing a random tree

6 Conclusions and Future Research

We have proposed a distributed tree balancing algorithm and shown following
properties. The algorithm does stop only when the tree is balanced. After at
most Ω(n) turns there are no overloaded nodes in the tree, what corresponds to
a broadcast tree where every node receives content. This bound is reached when
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the starting tree is a star. Balancing process after there are no overloaded nodes
lasts at most O(n2) turns. With the additional restriction that a node acts only
if all of its descendants are balanced, the number of turns to balance any tree is
O(n log n). This bound is reached when the starting tree is a path.

An obvious, but probably hard, open problem is closing the gap between
the O(n2) upper bound and the Ω(n) lower bound on balancing time. Another
possibility is examination of the algorithm’s average behaviour, which as hinted
by simulations should yield O(log n) bound on balancing time.

The algorithm itself can be extended to handle well the case of trees that are
not regular. Furthermore, in order to approach a practical system, moving to
multiple trees would be highly beneficial. Allowing the algorithm to stop with
more imbalance, where children are allowed to differ by a given threshold instead
of one, could lead to a faster convergence.
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Abstract. We study the impact that persistent memory has on the
classical rendezvous problem of two mobile computational entities, called
robots, in the plane. It is well known that, without additional assump-
tions, rendezvous is impossible if the entities have no persistent memory,
even if the system is semi-synchronous and movements are rigid. It has
been recently shown that if each entity is endowed with O(1) bits of
persistent visible memory (called lights), they can rendezvous even if the
system is asynchronous.

In this paper we investigate the rendezvous problem in two weaker set-
tings in systems of robots endowed with visible lights: in FState, a robot
can only see its own light, while in FComm a robot can only see the other
robot’s light. Among other things, we prove that, with rigid movements,
finite-state robots can rendezvous in semi-synchronous settings, and finite-
communication robots are able to rendezvous even in asynchronous ones.
All proofs are constructive: in each setting, we present a protocol that al-
lows the two robots to rendezvous in finite time.

1 Introduction

1.1 Framework and Background

Rendezvous is the process of two computational mobile entities, initially dis-
persed in a spatial universe, meeting within finite time at a location, non known
a priori. When there are more than two entities, this task is known as Gather-
ing. These two problems are core problems in distributed computing by mobile
entities. They have been intensively and extensively studied when the universe
is a connected region of R2 in which the entities, usually called robots, can freely
move; see, for example, [1,3,4,8,9,11,14,15,16,17,18].

Each entity is modeled as a point, it has its own local coordinate system of
which it perceives itself as the centre, and has its own unit distance. Each entity
operates in cycles of Look, Compute, Move activities. In each cycle, an entity
observes the position of the other entities expressed in its local coordinate sys-
tem (Look); using that observation as input, it executes a protocol (the same
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for all robots) and computes a destination point (Compute); it then moves to
the computed destination point (Move). Depending on the activation sched-
ule and the synchronization level, three basic types of systems are identified in
the literature: a fully synchronous system (FSynch) is equivalent to a system
where there is a common clock and at each clock tick all entities are activated si-
multaneously, and Compute and Move are instantaneous; a semi-synchronous
system (SSynch) is like a fully synchronous one except that, at each clock tick,
only some entities will be activated (the choice is made by a fair scheduler);
in a fully asynchronous system (ASynch), there is no common notion of time,
each Compute and Move of each robot can take an unpredictable (but finite)
amount of time, and the interval of time between successive activities is finite
but unpredictable. The focus of almost all algorithmic investigations in the con-
tinuous setting has been on oblivious robots, that is when the memory of the
robots is erased at the end of each cycle, in other words the robots have no
persistent memory (e.g., for an overview see [10]).

The importance of Rendezvous in the continuous setting derives in part from
the fact that it separates FSynch from SSynch for oblivious robots. Indeed,
Rendezvous is trivially solvable in a fully synchronous system, without any ad-
ditional assumption. However, without additional assumptions, Rendezvous is
impossible for oblivious robots if the system is semi-synchronous [19]. Interest-
ingly, from a computational point of view, Rendezvous is very different from
the Gathering problem of having k � 3 robots meet in the same point; in fact,
Gathering of oblivious robots is always possible for any k � 3 even in ASynch

without any additional assumption other than multiplicity detection [3]. Fur-
thermore, in SSynch, k � 3 robots can gather even in spite of a certain number
of faults [1,2,7], and converge in spite of inaccurate measurements [5]; see also
[12]. The Rendezvous problem also shows the impact of certain factors. For exam-
ple, the problem has a trivial solution if the robots are endowed with consistent
compasses even if the system is fully asynchronous. The problem is solvable in
ASynch even if the local compasses have some degree of inconsistency of an
appropriate angle [13]; the solution is no longer trivial, but does exist.

In this paper, we are interested in determining what type and how much per-
sistent memory would allow the robots to rendezvous. What is known in this
regard is very little. On the one hand, it is well known that, in absence of addi-
tional assumptions, without persistent memory rendezvous is impossible even in
SSynch [19]. On the other hand, a recent result shows that rendezvous is pos-
sible even in ASynch if each robot has O(1) bits of persistent memory and can
transmit O(1) bits in each cycle and can remember (i.e., can persistently store)
the last received transmission [6] (see also [20] for size-optimal solutions). The
conditions of this result are overly powerful. The natural question is whether the
simultaneous presence of these conditions is truly necessary for rendezvous.

1.2 Main Contributions

In this paper we address this question by weakening the setting in two different
ways, and investigate the Rendezvous problem in these weaker settings. Even
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though its use is very different, in both settings, the amount of persistent mem-
ory of a robot is constant.

We first examine the setting where the two robots have O(1) bits of internal
persistent memory but cannot communicate; this corresponds to the finite-state
(FState) robots model. Among other contributions, we prove that FState

robots with rigid movements can rendezvous in SSynch, and that this can be
done using only six internal states. The proof is constructive: we present a pro-
tocol that allows the two robots to rendezvous in finite time under the stated
conditions.

We then study the finite-communication (FComm) setting, where a robot can
transmit O(1) bits in each cycle and remembers the last received transmission,
but it is otherwise oblivious: it has no other persistent memory of its previ-
ous observations, computations and transmissions. We prove that two FComm

robots with rigid movements are able to rendezvous even in ASynch; this is
doable even if the different messages that can be sent are just 12. We also prove
that only three different messages suffice in SSynch. Also for this model all the
proofs are constructive.

Finally, we consider the situation when the movement of the robots is not
rigid, that is it can be interrupted by an adversary. The only constraint on the
adversary is that a robot moves at least a distance δ > 0 (otherwise, rendezvous
is clearly impossible). We show that, with knowledge of δ, three internal states
are sufficient to solve Rendezvous by FState robots in SSynch, and three pos-
sible messages are sufficient for FComm robots in ASynch.

These results are obtained modeling both settings as a system of robots en-
dowed with a constant number of visible lights : a FState robot can see only
its own light, while a FComm robot can see only the other robot’s light. Our
results seem to indicate that “it is better to communicate than to remember”.
In addition to the specific results on the Rendezvous problem, an important
contribution of this paper is the extension of the classical model of oblivi-
ous silent robots into two directions: adding finite memory, and enabling finite
communication.

Due to space limitations, several details and proofs are omitted; they can be
found in http://arxiv.org/abs/1306.1956.

2 Model and Terminology

The general model we employ is the standard one, described in [10]. The two
robots are autonomous computational entities modeled as points moving in R2.
Each robot has its own coordinate system and its own unit distance, which may
differ from each other, and it always perceives itself as lying at the origin of its
own local coordinate system. Each robot operates in cycles that consist of three
phases: Look, Compute, and Move. In the Look phase it gets the position
(in its local coordinate system) of the other robot; in the Compute phase, it
computes a destination point; in the Move phase it moves to the computed
destination point, along a straight line. Without loss of generality, the Look

http://arxiv.org/abs/1306.1956
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phase is assumed to be instantaneous. The robots are anonymous and oblivious,
meaning that they do not have distinct identities, they execute the same algo-
rithm in each Compute phase, and the input to such algorithm is the snapshot
coming from the previous Look phase.

We study two settings; both can be described as restrictions of the model of
visibile lights introduced in [6]. In that model, each robot carries a persistent
memory of constant size, called light; the value of the light is called color or state,
and it is set by the robot during each Compute phase. Other than their own
light, the robots have no other memory of past snapshots and computations.

In the first setting, that of silent finite-state (FState) robots, the light of a
robot is visible only to the robot itself; i.e., the colored light merely encodes an
internal state. In the second setting, of oblivious finite-communication (FComm)
robots, the light of a robot is visible only to the other robot; i.e., they can com-
municate with the other robot through their colored light, but by their next
cycle they forget even the color of their own light (since they do not see it). The
color a robot sees is used as input during the computation.

In the asynchronous (ASynch) model, the robots are activated independently,
and the duration of each Compute, Move and inactivity is finite but unpre-
dictable. As a consequence, the robots do not have a common notion of time,
they can be seen while moving, and computations can be made based on obsolete
observations. In the semi-synchronous (SSynch) model the activationsof robots
can be logically divided into global rounds; in each round, one or both robots
are activated, obtain the same snapshot, compute, and perform their move. It is
assumed that the activation schedule is fair, i.e., each robot is activated infinitely
often.

Depending on whether or not the adversary can stop a robot before it reaches
its computed destination, the movements are called non-rigid and rigid, respec-
tively. In the case of non-rigid movements, there exists a constant δ > 0 such
that if the destination point’s distance is smaller than δ, the robot will reach
it; otherwise, it will move towards it by at least δ. Note that, without this as-
sumption, an adversary could make it impossible for any robot to ever reach its
destination, following a classical Zenonian argument.

The two robots solve the Rendezvous problem if, within finite time, they move
to the same point (not determined a priori) and do not move from there. A ren-
dezvous algorithm for SSynch (resp., ASynch) is a protocol that allows the
robots to solve the Rendezvous problem under any possible schedule in SSynch

(resp., ASynch). A particular class of algorithms, denoted by L, is that where
each robot may only compute a destination point of the form λ · other.position,
for some λ ∈ R obtained as a function only of the light of which the robot is
aware (i.e., its internal state in the FState model, or the other robot’s color
in the FComm model). The algorithms of this class are of interest because they
operate also when the coordinate system of a robot is not self-consistent (i.e., it
can unpredictably rotate, change its scale or undergo a reflection).
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3 Finite-State Robots

We fist consider FState robots and we start by identifying a simple impossibility
result for algorithms in L.

Theorem 1. In SSynch, Rendezvous of two FState robots is unsolvable by
algorithms in L, regardless of the amount of their internal memory.

Thus the computation of the destination must take into account more than just
the lights (or states) of which the robot is aware.

The approach we use to circumvent this impossibility result is to have each
robot use its own unit of distance as a computational tool; recall that the two
robots might have different units, and they are not known to each other. We
propose Algortihm 1 for Rendezvous in SSynch. Each robot has six internal
states, namely Sstart, S1, S

left
2 , Sright

2 , S3, and Sfinish. Both robots are assumed
to begin their execution in Sstart. Each robot lies in the origin of its own local
coordinate system and the two robots have no agreement on axes orientations or
unit distance. Intuitively, the robots try to reach a configuration in which they
both observe the other robot at distance not lower than 1 (their own unit). From
this configuration, they attempt to meet in the midpoint. If they never meet
because they are never activated simultaneously, at some point one of them
notices that its observed distance is lower than 1. This implies a breakdown
of symmetry that enables the robots to finally gather. In order to reach the
desired configuration in which they both observe a distance not lower than 1,
the two robots first try to move farther away from each other if they are too
close. If they are far enough, they memorize the side on which they see each
other (left or right), and try to switch positions. If only one of them is activated,
they gather; otherwise they detect a side switch and they can finally apply the
above protocol. This is complicated by the fact that the robots may disagree
on the distances they observe. To overcome this difficulty, they use their ability
to detect a side switch to understand which distance their partner observed. If
the desired configuration is not reached because of a disagreement, a breakdown
of symmetry occurs, which is immediately exploited to gather anyway. As soon
as the two robots coincide at the end of a cycle, they never move again, and
Rendezvous is solved.

Theorem 2. In SSynch, Rendezvous of two FState robots is solvable with
six internal states. This result holds even without unit distance agreement.

4 Finite-Communication Robots

4.1 Asynchronous

It is not difficult to see that algorithms in L are not sufficient to solve the
problem.

Theorem 3. In ASynch, Rendezvous of two FComm robots is unsolvable by
algorithms in L, regardless of the amount of colors employed.
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Algorithm 1. Rendezvous for rigid SSynch with no unit distance agreement
and six internal states
1: dist ← ‖other.position‖
2: if dist = 0 then
3: terminate
4: if other.position.x > 0 then
5: dir ← right
6: else if other.position.x < 0 then
7: dir ← left
8: else if other.position.y > 0 then � other.position.x = 0
9: dir ← right
10: else
11: dir ← left
12: if me.state = Sstart then
13: if dist < 1 then
14: me.state ← S1

15: me.destination ← other.position · (1− 1/dist)
16: else
17: me.state ← Sdir

2

18: me.destination ← other.position

19: else if me.state = S1 then
20: if dist � 1 then
21: me.state ← Sfinish

22: me.destination ← (0, 0)
23: else
24: me.state ← Sdir

2

25: me.destination ← other.position

26: else if me.state = Sd
2 then

27: if dir = d then
28: me.state ← Sfinish

29: me.destination ← other.position
30: else if dist < 1/2 then � side switch detected
31: me.state ← Sfinish

32: me.destination ← (0, 0)
33: else
34: me.destination ← other.position/2
35: if dist < 1 then
36: me.state ← S3

37: else if me.state = S3 then
38: me.state ← Sfinish

39: if dist < 1/4 then
40: me.destination ← (0, 0)
41: else � 1/4 � d < 1/2
42: me.destination ← other.position

43: else � me.state = Sfinish

44: if dist � 1 then
45: me.destination ← (0, 0)
46: else
47: me.destination ← other.position
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We now describe an algorithm (which is not in L) that solves the problem.
Also this algorithm uses the local unit distance as a computational tool, but in a
rather different way since a robot cannot remember and has to infer information
by observing the other robot’s light.

> Moving Away

Test

Me > 1

Approaching

Me < 1

Both < 1 You Moved

Coming

Waiting

Both = 2StayHalted

d=0 d=2d<2

d>2

>d>1

>d>1

d<1

d<1 d>0

d>0
d=0

Fig. 1. State transitions in Algorithm 2

Intuitively, the two robots try to reach a configuration in which both robots
see each other at distance lower than 1. To do so, they first communicate to
the other whether or not the distance they observe is smaller than 1 (recall
that they may disagree, because their unit distances may differ). If one robot
acknowledges that its partner has observed a distance not smaller than 1, it
reduces the distance by moving toward the midpoint.

The process goes on until both robots observe a distance smaller than 1. At
this point, if they have not gathered yet, they try to compare their distance
functions, in order to break symmetry. They move away from each other in such
a way that their final distance is the sum of their respective unit distances.
Before proceeding, they attempt to switch positions. If, due to asynchrony, they
failed to be in the same state at any time before this step, they end up gathering.
Instead, if their execution has been synchronous up to this point, they finally
switch positions. Now, if the robots have not gathered yet, they know that their
distance is actually the sum of their unit distances. Because each robot knows
its own unit, they can tell if one of them is larger. If a robot has a smaller unit,
it moves toward its partner, which waits.

Otherwise, if their units are equal, they apply a simple protocol: as soon as
a robot wakes up, it moves toward the midpoint and orders its partner to stay
still. If both robots do so, they gather in the middle. If one robot is delayed due
to asynchrony, it acknowledges the order to stay still and tells the other robot
to come.

Theorem 4. In ASynch, Rendezvous of two FComm robots is solvable with
12 colors. This result holds even without unit distance agreement.
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Algorithm 2. Rendezvous for rigid ASynch with no unit distance agreement
and 12 externally visible states

1: dist ← ‖other.position‖
2: if other.state = (Test) then � testing distances
3: if dist � 1 then
4: me.state ← (Me � 1)
5: else
6: me.state ← (Me < 1)

7: else if other.state = (Me � 1) then � reducing distances
8: me.state ← (Approaching)
9: me.destination ← other.position/2
10: else if other.state = (Approaching) then � test distances again
11: me.state ← (Test)
12: else if other.state = (Me < 1) then
13: if dist � 1 then
14: me.state ← (Me � 1)
15: else
16: me.state ← (Both < 1)

17: else if other.state = (Both < 1) then
18: if dist = 0 then � we have gathered
19: me.state ← (Halted)
20: else
21: me.state ← (Moving Away)
22: if dist < 1 then � moving away by 1− dist/2
23: me.destination ← other.position · (1/2 − 1/dist)

24: else if other.state = (Moving Away) then
25: me.state ← (You Moved)
26: else if other.state = (You Moved) then
27: me.state ← (Coming)
28: me.destination ← other.position
29: else if other.state = (Coming) then
30: me.state ← (Waiting)
31: else if other.state = (Waiting) then
32: if dist > 2 then � my unit is smaller
33: me.state ← (Stay)
34: me.destination ← other.position
35: else if dist = 2 then � our units are equal
36: me.state ← (Both = 2)
37: else � my unit is bigger or we have gathered
38: me.state ← (Halted)

39: else if other.state = (Both = 2) then
40: me.state ← (Stay)
41: if dist = 2 then � moving to the midpoint
42: me.destination ← other.position/2

43: else if other.state = (Stay) then
44: me.state ← (Halted)
45: else � other.state = (Halted)
46: if dist = 0 then � we have gathered
47: me.state ← (Halted)
48: terminate
49: else � maintain position while I come
50: me.state ← (Stay)
51: me.destination ← other.position
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Proof. We show that Algorithm 2, also depicted in Figure 1, correctly solves
Rendezvous . Both robots start in state (Test), and then update their state to
(Me � 1) or (Me < 1), depending if they see each other at distance greater or
lower than 1 (they may disagree, because their distance functions may be differ-
ent). If robot r sees robot s set to (Me � 1), it starts approaching it by moving
to the midpoint, in order to reduce the distance. No matter if r approaches s
several times before s is activated, or both robots approach each other at differ-
ent times, one of them eventually sees the other set to (Approaching). When
this happens, their distance has reduced by at least a half, and at least one robot
turns (Test) again, thus repeating the test on the distances. At some point, both
robots see each other at distance lower than 1 during a test, and at least one of
them turns (Both < 1). If they have not gathered yet, they attempt to break
symmetry by comparing their distance functions. To do so, when a robot sees
the other set to (Both < 1), it turns (Moving Away) and moves away by its
own unit distance minus half their current distance. This move will be performed
at most once by each robot, because if one robot sees the other robot still set to
(Both < 1), but it observes a distance not lower than 1, then it knows that it
has already moved away, and has to wait. When a robot sees its partner set to
(Moving Away), it shares this information by turning (You Moved). If only
one robot turns (You Moved), while the other is still set to (Moving Away),
then the second robot turns (Coming) and reaches the other robot, which just
turns (Waiting) and stays still until they gather. Otherwise, if both robots see
each other set to (You Moved), they both turn (Coming) and switch positions.
At least one of them then turns (Waiting). Now, if a robot sees its partner set to
(Waiting) and they have not gathered yet, it knows that their current distance
is the sum of their unit distances. If such distance is greater than 2, then the
robot knows that its partner’s unit distance is bigger, and it moves toward it,
while ordering it to stay still. Vice versa, if the distance observed is smaller than
2, the observing robot stays still and orders its partner to come. Finally, if the
distance observed is exactly 2, the observing robot knows that the two distance
functions are equal, and turns (Both = 2). In this case, a simple protocol allows
them to meet. If a robot sees the other set to (Both = 2) at distance 2, it turns
(Stay) and moves to the midpoint. If both robots do so, they eventually gather.
Indeed, even if the first robot reaches the midpoint while the other is still set to
(Both = 2), it now sees its partner at distance 1, and knows that it has to wait.
On the other hand, whenever a robot sees its partner set to (Stay), it turns
(Halted), which tells its partner to reach it. This guarantees gathering even if
only one robot attempts to move to thee midpoint.

4.2 Semi-Synchronous

In SSynch the situation is radically different from the ASynch case. In fact,
it is possible to find a simple solution in L that uses the minimum number of
colors possible, and operates correctly without unit distance agreement, starting
from any arbitrary color configuration, and with interruptable movements (see
Algorithm 3).
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Algorithm 3. Rendezvous for non-rigid SSynch with three externally visible
states
1: if other.state = A then
2: me.state ← B
3: me.destination ← other.position/2
4: else if other.state = B then
5: me.state ← C
6: else � other.state = C
7: me.state ← A
8: me.destination ← other.position

Theorem 5. In SSynch, Rendezvous of two FComm robots is solvable by an
algorithm in L with only three distinct colors. This result holds even if starting
from an arbitrary color configuration, without unit distance agreement, and with
non-rigid movements.

Note that the number of colors used by the algorithm is optimal. This follows
as a corollary of the impossibility result when lights are visible to both robots:

Lemma 1. [20] In SSynch, Rendezvous of two robots with persistent memory
visible by both of them is unsolvable by algorithms in L that use only two colors.

5 Movements: Knowledge vs. Rigidity

In this section, we consider the Rendezvous problem when the movement of the
robots can be interrupted by an adversary; previously, unless otherwise stated,
we have considered rigid movements, i.e., in each cycle a robot reaches its com-
puted destination point. Now, the only constraint on the adversary is that a
robot, if interrupted before reaching its destination, moves by at least δ > 0
(otherwise, rendezvous is clearly impossible). We prove that, for rendezvous with
lights, knowledge of δ has the same power as rigidity of the movements. Note
that knowing δ implies also that the robots can agree on a unit distance.

5.1 FState Robots

Both robots start in state A. If a robot sees its partner at distance lower than
δ/2, it moves in the opposite direction, to the point at distance δ/2 from its
partner. On the other hand, if the distance observed is not lower than δ, it
moves toward the point located δ/4 before the midpoint.

It is easy to see that after sufficiently many turns, the robots find themselves
at a distance in the interval [δ/2, δ), and both in state A. From now on, all their
movements are rigid.

Theorem 6. In non-rigid SSynch, Rendezvous of two FState robots with
knowledge of δ is solvable with three colors.
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5.2 FComm Robots

The idea of the Algorithm is simple. Both robots begin their execution in state
Start, and attempt to position themselves at a distance in the interval (δ, 2δ].
To do so, they adjust their position by moving by δ/2 at each step. When a
robot sees its partner at the desired distance, it turns Ready and stops. It is
easy to show that, even if its partner is still moving, it will end its move at a
distance in the interval (δ, 2δ]. When a robot sees its partner set to Ready, it
turns Come and moves to the midpoint; the midpoint is eventually reached,
because the distance traveled is not greater than δ.
We can conclude that:

Theorem 7. In non-rigid ASynch, Rendezvous of two FComm robots with
knowledge of δ is solvable with three colors.

6 Open Problems

Our results, showing that rendezvous is possible in SSynch for FState robots
and in ASynch for FComm robots, seem to indicate that “it is better to com-
municate than to remember”. However, determining the precise computational
relationship between FState and FComm is an open problem. To settle it, it
must be determined whether or not it is possible for FState robots to ren-
dezvous in ASynch.

Although minimizing the amount of constant memory was not the primary
focus of this paper, the number of states employed by our algorithms is rather
small. An interesting research question is to determine the smallest amount of
memory necessary for the robots to rendezvous when rendezvous is possible, and
devise optimal solution protocols.

The knowledge of δ in non-rigid scenarios is quite powerful and allows for
simple solutions. It is an open problem to study the Rendezvous problem for
FState and FComm robots when δ is unknown or not known precisely.

This paper has extended the classical models of oblivious silent robots into
two directions: adding finite memory, and enabling finite communication. It thus
opens the investigation in the FState and FComm models of other classical
robots problems (e.g., Pattern Formation, Flocking, etc.); an exception is Gath-
ering because, as mentioned in the introduction, it is already solvable without
persistent memory and without communication [3].
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Abstract. We investigate the pattern formation problem by mobile
robots with limited visibility that can observe the positions of robots
within limited distance. For robots with unlimited visibility, Fujinaga
et al. (DISC 2012) showed that asynchronous oblivious robots have the
same formation power as fully-synchronous non-oblivious robots, that is,
starting from any initial configuration I , target pattern F is formable if
and only if ρ(I) divides ρ(F ) where ρ(·) is the geometric symmetricity.
We first show that fully-synchronous oblivious robots with limited visibil-
ity cannot form F even when ρ(I) divides ρ(F ). Hence, limited visibility
substantially weakens the formation power of oblivious robots. Secondly,
we show that despite limited visibility, semi-synchronous robots with
rigid moves, and fully-synchronous robots with non-rigid moves have the
same formation power as robots with unlimited visibility. Consequently,
local memory is necessary and sufficient for these robots.

1 Introduction

A mobile robot system consists of a set of autonomous mobile robots each of
which observes the locations of other robots (Look phase), computes its next
location (Compute phase) and moves to the next location (Move phase). Each
robot repeats “Look-Compute-Move” cycles locally without explicitly exchang-
ing messages. One of the most important problems in self-organization of a
mobile robot system is the pattern formation problem, that is, starting from an
initial deployment of robots, form a given target pattern.

In this paper, we focus on pattern formation by mobile robots with limited
visibility. While unlimited visibility allows a robot to observe the positions of
all other robots irrespective of distance, limited visibility provides observation
of the positions of robots within limited distance V . Existing pattern formation
algorithms [5,7,8] show that unlimited visibility provides rich solutions to a mo-
bile robot system. However, the formation power of robots with limited visibility
has not been discussed yet.
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We model these robots by a set of points on a Euclidean space. The robots
have very weak capabilities. Each robot does not have the access to the global
coordinate system and uses its own local coordinate system. These robots are
anonymous in the sense that they have no ID, and they execute the same
algorithm. These robots are oblivious if the Compute phase depends only on
the observation (i.e., Look phase) of the current cycle, otherwise non-oblivious.
The executions of the Look-Compute-Move cycles are neither instantaneous nor
synchronized. We call this synchronization model the asynchronous (ASYNC)
model. Even in the asynchronous phase, the Look phase is assumed to be instan-
taneous, in the sense that it returns the locations of all robots at a time. Another
stronger synchronization models are the semisynchronous (SSYNC) model and
the fully-synchronous (FSYNC) model. In the SSYNC model, Look-Computer-
Move cycles are instantaneous, and in the FSYNC model, all robots execute the
i-th instantaneous cycle simultaneously.

Suzuki and Yamashita first investigated the pattern formation problem in
SSYNC model and FSYNC model [7,8]. They characterized the class of patterns
formable by mobile robots and showed the effect of local memory and synchro-
nization. They showed that in the SSYNC model, the gathering problem for two
oblivious robots is unsolvable, despite that it is trivially solvable for non-oblivious
robots, which differentiates non-oblivious from oblivious robots. FSYNC robots
have stronger formation power than SSYNC by definition, however, all patterns
formable by non-oblivious FSYNC robots are also formable by oblivious SSYNC
robots, except gathering of two robots. Later, Flocchini et al. [3] introduced the
ASYNC model. Fujinaga, Yamauchi, Kijima, and Yamashita showed that obliv-
ious ASYNC robots have the same formation power as non-oblivious FSYNC
robots, except the gathering of two robots [5].

Let P be a set of distinct points. We assume that any point does not have the
multiplicity, i.e., no two robots are located on the same point 1. The symmetricity
ρ(P ) of P is defined to be 1 if there is a point at the center of the smallest
enclosing circle c(P ) of P . Otherwise, ρ(P ) is the number of angles θ between
(0, 2π] such that rotating P by θ results in P . Then, [7,8] showed that a target
pattern F is formable if and only if ρ(I) divides ρ(F ).

All these existing pattern formation algorithms [5,7,8] depend on unlimited
visibility of each mobile robot. Based on the smallest enclosing circle of robots,
[7,8] constructs a global coordinate system, and [5] embeds the target pattern
and assign a robot to each point in the embedded target pattern by using the
clock-wise matching [4]. However the pattern formation power of robots with
limited visibility has not been discussed yet.

Several papers discussed gathering and convergence of robots with limited
visibility as a first step towards self-organization of these robots. Ando, Oasa,
Suzuki, and Yamashita investigated the point convergence problem of oblivi-
ous SSYNC robots with limited visibility [1]. Flocchini, Prencipe, Santoro, and
Widmayer investigated the gathering problem in ASYNC robots with common

1 In this paper, we assume that robots do not have the multiplicity test capability, in
other words, they cannot count the number of robots at a point.
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compass [2]. Pagli, Prencipe, and Viglietta proposed a gathering algorithm for
the ASYNC model, that avoids collisions of robots under the assumption of a
common compass [6].

Our main focus is the difference in formation power caused by limited visi-
bility. We first show that oblivious FSYNC robots with limited visibility cannot
form pattern F even when the symmetricity ρ(I) of the initial configuration I
divides ρ(F ). SSYNC robots and ASYNC robots have weaker formation power.
Hence, limited visibility substantially weakens the pattern formation power of
oblivious robots irrespective of asynchrony. Second, we show the formation power
of non-oblivious robots, each of which can record the history of local views and
outputs during execution. We first consider the robots with rigid moves, i.e.,
in the Move phase, robots move according to the algorithm without stopping
on the way to the destination. We present a pattern formation algorithm that
first gathers robots until they observe each other by using [1], and starts ex-
isting pattern formation algorithm for unlimited visibility [5,7,8]. Because the
convergence phase may increase the symmtericity, we put a symmtericity con-
trol phase between the two phases, that decreases the symmtericity below ρ(F ).
Rigid moves guarantees that robots can reconstruct their initial positions, hence,
they can regain ρ(I). Finally, we present a symmetricity control algorithm for
non-oblivious FSYNC robots with non-rigid moves, that allows robots stop on
the way to the destination. We will show that even when moves are non-rigid, the
FSYNC robots can regain ρ(I) with their entire local history during the conver-
gence phase. Consequently, non-oblivious FSYNC robots with limited visibility
have the same formation power as robots with unlimited visibility.

2 Robot Model and Pattern Formation

Robot System: Let R = {r1, r2, . . . , rn} (n ≥ 3) be a set of anonymous robots
in a Euclidean space. Each robot ri does not have an identifier, and we use ri
just for description.

We consider discrete time 0, 1, 2, . . .. Let pi(t) (in the global coordinate system
Z0) be the position of ri at time t (ri ∈ R). P (t) = {p1(t), p2(t), . . . , pn(t)} is a
configuration of robots at time t. The robots initially occupy distinct locations,
i.e., |P (0)| = n. We denote the distance (in Z0) between two points p, q by
dist(p, q).

The robots do not agree on the coordinate system, and each robot ri has its
local coordinate system Zi(t) such that the origin of Zi(t) is the position of ri at
time t (i.e., 0 = Zi(t)[pi(t)]). However, we assume all local coordinate systems
are right-handed. We denote by Zi(t)[P (t)] the set of points P (t) observed in
Zi(t). We assume that during a move phase, the origin of Zi(t) is fixed to the
point of ri in the look phase, and does not change.

Each robot can observe the positions of robots in distance V (in Z0). Let
Ri(t) be the set of robots visible from ri at time t, and Pi(t) = {pj |rj ∈ Ri(t)}.
In a look phase, ri obtains Si(t) = Zi(t)[Pi(t)] at some time t in the look phase.
We call Si(t) the local view of ri at time t. Because the visibility range V is
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common to all robots, ri ∈ Sj(t) means rj ∈ Si(t). We define an undirected
graph G(t) = (R,E(t)) for P (t), called mutual visibility graph at time t where
(ri, rj) ∈ E(t) if and only if ri ∈ Sj(t) 2. We assume that G(0) is connected. In
the following, we use P (t) and G(t) (Si(t) and the subgraph of G(t) induced by
Ri(t), respectively) interchangeably.

An algorithm is a function, say ψ, that returns a curve to the next location
in the Euclidean space, and each robot moves along the curve. The move phase
is rigid if ri moves along ψ and to the endpoint of ψ. On the other hand, a
non-rigid move phase may finish while ri is still on the way to the next location.
However, we assume that each robot moves at least δ (in Z0), or reaches the
next location if the length of the curve is shorter than δ. We consider non-rigid
moves without any explicit explanation when it is clear from the context.

An execution is a sequence of configurations, P (0), P (1), P (2), . . .. The execu-
tion is not uniquely determined even when it starts from a fixed initial configu-
ration I. Rather, there are many possible executions depending on the distance
that the robots move, the activation schedule of robots in SSYNC and ASYNC
model, and the length of the move phase in ASYNC model. We denote the
transition from P (t) to P (t+ 1) by P (t)→ P (t+ 1).

Pattern Formation: A target pattern F is given to every robot ri as a set of
points Z0[F ] = {Z0[p] : p ∈ F}. (Remember that ri does not have access to the
global coordinate system Z0.) We assume that |F | = n. In the following, as long
as it is clear from the context, we identify p with Z0[p], and write, e.g., “F is
given to ri”, instead of “Z0[F ] is given to ri”.

Let T be the set of all coordinate systems, which can be identified with the
set of all transformations consisting of transformations, rotations, and uniform
scalings. Let Pn be the set of all patterns of n points. For any P, P ′ ∈ Pn, P is
similar to P ′, if there exists Z ∈ T such that Z[P ] = P ′, denoted by P % P ′.

We say that algorithm ψ forms pattern F ∈ Pn from initial configuration I,
if for any execution P (0)(= I), P (1), . . ., there exists a time instant t such that
P (t′) % F for all t′ > t.

For any P ∈ Pn, let C(P ) be the smallest enclosing circle of P , and c(P ) be
the center of C(P ). Formally, the symmetricity ρ(P ) of P is defined by

ρ(P ) =

{
1 if c(P ) ∈ P,
|{Z ∈ T : P = Z[P ]}| otherwise.

We can also define ρ(P ) in the following way [7]: P can be divided into regular
k-gons with co-center c(P ), and ρ(P ) is the maximum of such k. Here, any point
is a regular 1-gon with an arbitrary center, and any pair of points {p, q} is a
regular 2-gon with its center (p+ q)/2.

A point on the circumference of C(P ) is said to be “on circle C(P )”. The
radius of C(P ) is denoted by r(P ).

2 Because V is common to all robots, G(t) is a unit disk graph.
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3 Pattern Formation by Oblivious Robots

Clearly, we have the following lemma even for the robots with limited visibility
in the same way as robots with unlimited visibility [7].

Lemma 1. Let F, I ∈ Pn for any n ≥ 3. Then, F is not formable from any
initial configuration I by oblivious FSYNC robots with limited visibility, if ρ(I) >
ρ(F ).

In the following, we will show Theorem 1.

Theorem 1. Let F, I ∈ Pn for any n ≥ 3. There exist infinitely many F such
that for any pattern formation algorithm ψ for oblivious FSYNC robots with lim-
ited visibility, there exists an initial configuration Iψ such that F is not formable
from Iψ even when ρ(Iψ) divides ρ(F ).

Proof. We consider an adversary with arbitrarily small δ. Hence, each robot can
be stopped almost every point on the output of compute phase.

Let ψ be an arbitrary pattern formation algorithm for oblivious FSYNC robots
with limited visibility, that forms any target pattern F from an initial configu-
ration I when ρ(I) divides ρ(F ). Algorithm ψ at robot ri at t is a function from
F and the local view of ri, say Si(t), to a curve, denoted by ψ(F, Si(t)).

Fig. 1 (a) show an initial configuration I with ρ(I) = 2 and Fig. 1 (c) show a
target pattern F with ρ(F ) = 2 that have an execution in which the symmetricity
becomes 4, and F is no more formable. The basic structure of I is the 16 black
robots and 4 white robots connected by edges of length V , and they form a
pattern with symmetricity 4. Once the mutual visibility graph is disconnected,
there exists an execution where robots never form F . Hence, the black robots
cannot move in I because any movement disconnects the mutual visibility graph
unless their coordinate systems are agreed. On the other hand, the white robots
can move. We add four white robots with two different local views SA and SB
so that (i) ρ(I) = 2, (ii) they are not seen by the 16 robots outside their local
view, and (iii) they move symmetric position for c(I). From (ii), the 4 white
robots move symmtrically without knowing the difference between SA and SB.
Together with (ii), (iii) increases the symmetricity of the 24 robots to 4 > ρ(F ).
We will show the existence of such local views (SA and SB), and outputs of ψ
(ψ(F, SA) and ψ(F, SB)), that satisfies (iii).

Consider an initial configuration I ′ and a target pattern F shown in Fig. 1 (b)
and (c). Algorithm ψ forms F from I ′ because ρ(I ′) = ρ(F ) = 2. I ′ consists of
24 identical robots connected by edges of length V . Hence, algorithm ψ cannot
move the black robots in I ′ because any movement can disconnect the mutual
visibility graph. On the other hand, ψ should move at least one of the white
robots, otherwise the configuration never changes. Hence, ψ outputs some curve
when given a local view Sr in Fig. 1 (d). Let this output be ψ(F, Sr).

Given local view of Sr, we consider a polar coordinate system whose origin is
the other robot, say rO as shown in Fig. 1 (d). Let the endpoint of the output
curve of ψ(F, Sr) be point p = (x, θ). Then, we have the following two cases.
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Case 1: Curve rp is an arc of the circle centered at rO (Fig. 2 (a)). Consider
r′ in Fig. 2 (b). The local view of r′ is identical to Sr. Choose α so that curve
rp and curve r′p′ has a common point q as shown in Fig. 2 (c). Now we use Sr
(curve rq) as SA, and Sr′ (curve r

′q) as SB. We can choose small enough α and
β as shown in Fig. 3 (a) and (b) so that the white robots in SA and SB are not
seen by other robots outside the local views.
Case 2: Otherwise. Consider local view Sr′ shown in Fig. 4 (a) where x ≤ y < V .
Let r′p′ be the output curve of ψ(F, Sr′). We have the following two cases. (Note
that the following discussion holds for θ = 0.)
Case 2(a): ψ(F, Sr′) is non-empty (Fig. 4 (a)). There exists at lease one point
q′ = (z, α) on curve r′p′ that satisfies x ≤ z < V . The curve rp also contains a
point q whose radial coordinate is z as shown in Fig. 4 (b). Hence, we use curve
rq as ψ(F, SA) and curve r′q′ as ψ(F, SB).
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Case 2(b): ψ(F, Sr′) is empty (Fig. 4 (c)). In this case, we use the curve rr′ as
ψ(F, SA) and the empty curve as ψ(F, SB) Fig. 4 (d).

We can find at least one point r′ that satisfies Case 2(a) with small enough
α and β, or Case 2(b) with small enough γ so that the white robots in SA and
SB are not seen by other robots in I. Consequently, we have the theorem for
FSYNC model. We note that there exists infinitely many I ′ and F such that we
can construct an initial configuration I from which F is not formable even when
ρ(I) divides ρ(F ). ��

4 Pattern Formation by Non-oblivious Robots

In this section, we show the following theorems.

Theorem 2. Let F, I ∈ Pn for any n ≥ 3. Then F is formable from any initial
configuration I by non-oblivious FSYNC/SSYNC robots with limited visibility
and rigid moves, if and only if ρ(I) divides ρ(F ).

Theorem 3. Let F, I ∈ Pn for any n ≥ 3. Then F is formable from any initial
configuration I by non-oblivious FSYNC robots with limited visibility, if and only
if ρ(I) divides ρ(F ).

We present pattern formation algorithms that consist of two phases. First, the
algorithm make the robots converge until each robot observes all other robots.
Because each robot knows F (|F | = n) and V , the robot can check the termina-
tion locally. After that, the algorithm starts pattern formation in the same way
as the robots with unlimited visibility, for example, [3,7,5].
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Ando et al. proposed a point convergence algorithm for oblivious ASYNC
robots [1]. Their algorithm is based on the following simple idea: (i) robots in a
connected visibility graph “get closer”, and (ii) robots that are mutually visible
at time t remain so for all t′ > t. Intuitively, (i) is achieved by making each robot
ri move toward the center of the smallest enclosing circle of its local view. To
predict the moving distance of other robots, each robot checks a common point
of circles with radius V/2 and centered at the midpoint between ri and rj for all
rj in its local view. Then, (ii) is achieved by stopping ri at the furthest common
point on the way to the center of the smallest enclosing circle. By the above two
properties, the algorithm ensures that the convex hull of the positions of robots
shrinks, and eventually robots converge to a point.

During any execution of the convergence algorithm, robots may increase the
symmetricity without knowing the global configuration. Our result shows that
even when symmetricity becomes larger than ρ(F ), we can reduce the sym-
metricity to ρ(I) by using the local views and local outputs recorded by the
non-oblivious robots3. After symmetricity becomes smaller than ρ(F ), the pro-
posed algorithms execute the existing pattern formation algorithms.

The symmetricity control problem is formally defined as follows: Given target
pattern F and initial configuration P such that ρ(F ) < ρ(P ), form some pattern
F ′ such that ρ(F ′) ≤ ρ(F ).

In the proposed symmetricity control algorithm, we use the sequence of local
views recorded at each robot. For any execution P (0), P (1), . . ., local history of
robot ri at time t is a sequence Hi(t) = Si(0), Si(1), . . . , Si(t

′) where Si(j) is
the local view at j-th activation of ri (0 ≤ j ≤ t′). Note that in the FSYNC
model t′ = t at each robot, while in the SSYNC or ASYNC model t′ ≤ t. Let
�(P (t)) be the symmetricity of configuration P (t) considering the local history
of robots. Let H(t) = {(pi(t), Zi(t)[hi(t)]) : ri ∈ R}.

�(P (t)) =

{
1 if c(P (t)) ∈ P (t),
|{Z ∈ T : H(t) = Z[H(t)]}| otherwise.

Clearly, �(P (t)) ≤ ρ(P (t)). We can also define the partition of P (t) into regular
�(P (t))-gons co-centered at c(P (t)) in the same way as (geometric) symmetricity.

We modify Ando’s convergence algorithm and obtain the following conver-
gence algorithm ψA.

1. Each robot ri records Si(t) = Zi(t)[Pi(t)] at each time t, and
2. Each robot ri stops execution of Ando’s algorithm when all robots can ob-

serve each other, i.e., |Si(t)| = n and the radius of the smallest enclosing
circle of n robots is smaller than V/2.

Clearly, the FSYNC/SSYNC robots can agree on the termination of ψA.
Remember that adversary cannot change the local coordinate system of robots

after execution starts. Because the output of ψA is a line segment, any movement

3 We also note that the convergence algorithm [1] allows two or more robots occupy the
same location. The proposed symmetricity control algorithm resolves multiplicity,
however, we omit the detail for simplicity.
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of ri just translates the local coordinate system of ri without any rotation. Hence,
each robot can recognize the rotation between two consecutive outputs of ψA.
We confirm the property of ψA as follows.

Property 1. Algorithm ψA has the following properties:

1. The output of ψA at robot ri at time t depends only on Si(t).

2. The output of ψA at robot ri is always a line segment.

3. Robot ri knows the rotation angle of ψ(Si(t)) from ψ(Si(t+1)) for all t > 0.

4.1 Symmetricity Control with Rigid Moves

We start with FSYNC robots with rigid moves. From Property1 and rigid moves,
after the termination of ψA, each robot can recognize its initial position by using
its local history.

Consider an execution P (0), P (1), P (2), . . . of ψA where ψA terminates at time
t. In P = P (t), each robot can observe all other robots. By definition, we can
partition P into regular ρ(P )-gons P1, P2, . . . , Pn/ρ(P ) co-centered at c(P ). An
important observation in [8] is that, all robots that observe P even in its local
coordinate system, agree on an order of Pi’s such that the distance of the points
in Pi from c(P ) is no greater than that of Pi+1, and that each robot is conscious
of the group Pi it belongs to. Note that there may exist some i, j such that
C(Pi) = C(Pj)

4.
Now, each robot starts the execution of the symmetricity control algorithm

ψB described in the following. Algorithm ψB first make r(Pi) �= r(Pj) for all
1 ≤ i, j ≤ n/ρ(P (t)) by repeating the following procedure: If C(Pi) = C(Pj) for
some 1 ≤ i < j ≤ n/ρ(P (t)), then the robots in C(Pi) move toward c(P ) for
distance (r(Pi)− r(Pk))/2 where Pk is the largest k in C(Pi). If C(Pi) contains
more than three ρ(P )-gons, then the robots in ρ(P )-gon with the smallest index
move inside. Let P (t′) be the first discrete time after t where r(Pi) �= r(Pj) for
all 1 ≤ i, j ≤ ρ(P (t)). All robots can recognize the termination of this phase.
For simplicity, in the following, we assume that a terminal configuration of ψA

satisfies the above condition.
At time t′, each robot ri translates its initial position Zi(t

′)[pi(0)] in a polar
coordinate system with origin c(P (t′)), unit distance dist(c(P (t)), pi), and polar
axis c(P (t′))pi shown in Fig. 5 (a). We denote this polar coordinate system by
Zi(c(P (t

′)), pi(t
′)). Let (πi, �i) = Zi(c(P (t

′)), pi(t
′))[Zi(t

′)[pi(0)]]. We have the
following lemma for the translated initial positions of robots.

Lemma 2. Let P (0), P (1), . . . be an execution of ψA where ψA terminates at
P (t) = P . Assume ρ(P ) > ρ(P (0)). Let P1, P2, . . . , Pn/ρ(P ) be the partition of
P into regular ρ(P )-gons co-centered at c(P ). Then, there exists at least one
regular ρ(P )-gon Pi, where (πj , �j) of all rj ∈ Pi are not identical.

4 Note that C(Pi) is a circle centered at c(P ) and containing all robots in Pi, and
r(Pi) is the radius of C(Pi).
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(a) Polar coordinate at ri (b) Identical initial positions of Pi

Fig. 5. Initial position in polar coordinate system: black point is a robot, and white
point connected by a solid line is its initial position

Proof. Assume that for every Pi (1 ≤ i ≤ n/ρ(P )), (πj , �j) of all rj ∈ Pi are
identical. Hence, the initial positions of robots in Pi are regular ρ(P )-gons co-
centered at c(P ) as shown in Fig. 5 (b). Consequently, the initial positions of all
robots are regular ρ(P )-gons co-centered at c(P ) and we have ρ(P ) = ρ(P (0)),
which is a contradiction. ��

Algorithm ψB make each robot ri ∈ Pj circulate on C(Pj) into the clockwise
direction to show πi and �i. First, if the smallest enclosing circle C(Pn/ρ(P ))
consists of only two robots, ψB moves the robots in C(Pn/ρ(P )−1) to the small-
est enclosing circle to form a regular tetragon. After that, in the first time step,
ψB circulates ri in the clockwise direction for distance (πr(Pj))/(|Pj |�i), and
in the next time step, ψB circulates ri in the clockwise direction for distance
(πr(Pj))/(|Pj |πi). (Note that (πr(Pj))/|Pj | is the half length of the arc between
neighboring robots in Pj .) From Property 2, in these two moves, one of the reg-
ular ρ(P )-gons becomes non-regular. Algorithm ψB repeats the above procedure
until the symmetricity becomes smaller than ρ(F ).

We can directly apply ψB to SSYNC robots, because asynchrony just give
chance to reduce symmetricity. Consequently, we have Theorem 2.

4.2 Symmetricity Control with Non-rigid Moves

A non-rigid move stops a robot on the way to the endpoint of the output curve
of the Compute phase. Hence, the robot cannot obtain its local position from its
local history. We will show that, even when moves are non-rigid, the symmetricity
considering local histories is always smaller than ρ(I).

Lemma 3. For any execution P (0)(= I), P (1), P (2), . . . of ψA of non-oblivious
FSYNC robots with limited visibility, for any t > 0, �(P (t)) ≤ �(P (0)) = ρ(I).

Proof. Assume that there exists an execution P (0), P (1), P (2), . . . that does not
satisfy the lemma. Hence, there exists t such that ∀t′ > t, �(Ct′) > ρ(C0).
Let t be the smallest such value. Hence, �(P (t)) ≤ ρ(I) < �(P (t + 1)). Let
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Fig. 6. Incidence angle and moving distance to form Pk

c = c(P (t + 1)) and P1, P2, . . . , Pn/�(P (t+1)) be the partition of P (t + 1) into
regular �(P (t+ 1))-gons co-centered at c. From definition, after t, the robots in
Pi (1 ≤ i ≤ n/�(P (t+ 1))) move globally symmetrically against c.

In P (t + 1), for robot ri, define the incidence angle θi of its move in P (t) →
P (t + 1) as the clockwise rotation angle that overlaps ri’s movement to line
c pi(t+1) in P (t)→ P (t+1) (Fig. 6 (a)). Then, for each Pk, the incidence angle
of ri, rj ∈ Pk are identical. Otherwise, the rotation angle of ψA(Si(t+ 1)) from
ψA(Si(t)) is different from the rotation angle of ψA(Sj(t + 1)) from ψA(Sj(t))
(Fig. 6 (b)).

There exists at least one �(P (t+ 1))-gon Pk such that there exist ri, rj ∈ Pk
whose move distances in P (t)→ P (t+1) are different. Otherwise, all Pk’s form
regular �(P (t+ 1))-gon in P (t) and �(P (t)) = �(P (t+ 1)).

Once robots move closer enough to see each other, the robots in the same
ρ(P (t + 1))-gon Pk (0 ≤ k ≤ n/ρ(P (t + 1))) obtain a symmteric coordinate
system as in Fig. 5 (a). In the following, we consider that local histories of these
robots are observed by this coordinate system. Without loss of generality, we
asseume that ri and rj occupy neighboring corners of Pk. Let rj′ be the other
neighbor of rj on Pk. Let Ri,j (Ri,j′ , respectively) be the set of robots that are
in the sector defined by ri and rj (rj and rj′ , respectively) in P (t) (Fig. 6 (c)).
Ri,j is not empty and the robots in Ri,j connect ri to rj , otherwise, the mutual
visibility graph is disconnected. This also holds for Ri,j′ . Each robot r ∈ Ri,j

has a corresponding robot r′ in Ri,j′ that forms the same ρ(P (t + 1))-gon in
P (t+1). Ri,j also defines r′’s incidence angle. The incidence angles of robots in
Ri,j′ are completely determined by Ri,j . However, it is impossible to construct
the same local views for all robots in Ri,j′ that coincide with incidence angles
determined by Ri,j , because the moving distance of ri is different from that of
rj . Hence, there exists no such transition P (t)→ P (t+ 1). ��

Let P (0), P (1), P (2), . . . be an execution of ψA of FSYNC robots where the
convergence terminates in P (t′). From Lemma 3, when ρ(P (t)) > ρ(F ), the
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FSYNC robots can reduce the symmetricity to ρ(I) by showing local views and
outputs during the execution of ψA.

Now, we present the symmetricity control algorithm ψC for non-oblivious
FSYNC robots. Algorithm ψC first assigns different radius to each co-centered
ρ(P (t′))-gons in the same way as ψB. Let this procedure finish at time t and
P1, P2, . . . , Pn/ρ(P (t)) be the decomposition of P (t) into regular ρ(P (t))-gons co-
centered at c(P (t)).

Then, ψC moves robots in the same way as ψB to show their local histories.
However, each robot ri cannot show Hi(t) by move distance, because moves
are non-rigid. Hence, ψC translates Hi(t) to a binary sequence, say Ti(t)[·], and
make ri stop/move by reading each bit of Ti(t). In configuration P (t+k), unless
ρ(P (t+ k)) ≤ ρ(F ), ψC circulates each robot ri ∈ Pj on C(Pj) in the clockwise
direction to the midpoint of neighboring robot in Pj if Ti(t)[k] = 1, otherwise do
nothing. Each robot synchronously reads their local history, and From Lemma 3,
it is guaranteed that they find a difference in finite time. Consequently, we have
Theorem 3.

5 Concluding Remark

We investigated the pattern formation problem by mobile robots with limited
visibility. The results show that limited visibility weakens the formation power of
oblivious robots, however, does nothing for non-oblivious FSYNC robots. Non-
oblivious SSYNC robots with rigid moves still have the same power as unlimited
visibility robots.
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Abstract. The paper presents general results about the gathering prob-
lem on graphs. A team of robots placed at the vertices of a graph, have to
meet at some vertex and remain there. Robots operate in Look-Compute-
Move cycles; in one cycle, a robot perceives the current configuration in
terms of robots disposal (Look), decides whether to move towards one of
its neighbors (Compute), and in the positive case makes the computed
move (Move). Cycles are performed asynchronously for each robot.

So far, the goal has been to provide feasible resolution algorithms
with respect to different assumptions about the capabilities of the robots
as well as the topology of the underlying graph. In this paper, we are
interested in studying the quality of the resolution algorithms in terms of
the minimum number of asynchronous moves performed by the robots.

We provide results for general graphs that suggest resolution tech-
niques and provide feasibility properties. Then, we apply the obtained
theory on specific topologies like trees and rings. The resulting algo-
rithms for trees and rings are then compared with the existing ones,
hence showing how the old solutions can be far apart from the optimum.

1 Introduction

The gathering task in robot based computing systems represents one of the most
fundamental problems widely considered in the literature. The basic requirement
of the problem is to devise a distributed algorithm that allows a team of robots
to meet at some common place. Different assumptions on the capabilities of the
robots as well as on the environment where they move, lead to very different
scenarios (see [7,16] for a survey).

In this paper, we are interested in robots placed on the vertices of a graph.
Robots are equipped with visibility sensors and motion actuators, and operate
in Look -Compute-Move cycles (see, e.g. [10]). The Look-Compute-Move model
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assumes that in each cycle a robot takes a snapshot of the current global config-
uration (Look), then, based on the perceived configuration, takes a decision to
stay idle or to move to one of its adjacent vertices (Compute), and in the latter
case it moves to this neighbor (Move). Cycles are performed asynchronously, i.e.,
the time between Look, Compute, and Move operations is finite but unbounded,
and it is decided by an adversary for each robot. Hence, robots may move based
on outdated perceptions. In fact, due to asynchrony, by the time a robot takes
a snapshot of the configuration, this might have drastically changed. The sched-
uler determining the Look-Compute-Move cycles timing is assumed to be fair,
that is, each robot performs its cycle within finite time and infinitely often.

So far, the problem has been focused on the feasibility of resolution algorithms
for various initial configurations.A main distinction has been considered for the
graph topology, by letting robots move on rings [6,11,14], grids [4,8], or trees [7].
Another crucial property concerns robots’ capabilities. Robots are assumed to
be oblivious (without memory of the past), uniform (running the same determin-
istic algorithm), autonomous (without a common coordinate system, identities
or chirality), asynchronous (without central coordination), without the capabil-
ity to communicate. Neither vertices nor edges are labeled (i.e., the graph is
anonymous) and no local memory is available on vertices.

An important capability associated to robots concerns the so called multi-
plicity detection (see, e.g. [17]). During the Look phase, a robot may perceive
whether a vertex is occupied by more than one robot in different ways. Here
we assume the so called global strong multiplicity detection [2], meaning that
robots perceive the actual number of robots among all the vertices. The global
weak form considers robots able to detect only whether a vertex is occupied by
more than one robot, but not the exact number. The local versions instead of
global refer to the corresponding ability of a robot in perceiving the information
about multiplicities only concerning the vertex where it currently resides.

In this paper, the aim is to provide a general theory, valid for any input
graph and any configuration. Based on this theory, we want to devise resolution
algorithms that also minimize the number of asynchronous moves performed by
the robots in order to accomplish the gathering task, when possible. In particular,
our algorithms will be based on the concept of Weber-point [15] on weighted
graphs [9]. A Weber-point for a discrete set of sample points in the Euclidean
space is the point minimizing the sum of distances to the sample points. On
graphs with robots, there might occur more than one Weber-point. These are
all the vertices of the graph that minimize the sum of the shortest paths from
each robot toward each of such vertices.

If an algorithm is able to assure the gathering on a Weber-point by letting
move robots along the shortest paths towards such a vertex, we talk about exact
algorithm. This is clearly optimal with respect to the number of asynchronous
moves performed by the robots. However, sometimes it is just not possible to
gather the robots on a Weber-point, but still the algorithm might be optimal.

If from the one hand our assumption on the multiplicity detection refers to
the global strong version, that is the most powerful option, on the other hand
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we do not make any assumption concerning the initial disposal of the robots on
the graph (see, e.g. [11,13]), that is, initial configurations may also contain mul-
tiplicities. Moreover, it is possible to show configurations where exact gathering
cannot be accomplished without the global strong assumption.

2 Definitions

In this section we provide all the basic definitions and notation necessary for the
understanding of the proposed results.

A simple undirected graph G = (V,E), with vertex set V and edge set E, will
represent the topology where robots are placed on. A function � : V −→ N, repre-
sents the number of robots on each vertex of G, and we call (G, �) a configuration
whenever

∑
v∈V �(v) is bounded and greater than zero. A configuration is final if

all the robots are on a single vertex u (i.e., �(u) > 0 and �(v) = 0, ∀v ∈ V \{u}).
The distance d(u, v) between two vertices u, v in V is the number of edges of a
shortest path connecting u to v.

Two graphs G = (VG, EG) and H = (VH , EH) are isomorphic if there is a
bijection ϕ from VG to VH such that uv ∈ EG if and only if ϕ(u)ϕ(v) ∈ EH .

An automorphism on a graph G is an isomorphism from G to itself, that is a
permutation of the vertices of G that maps edges to edges and non-edges to non-
edges. The set of all automorphisms of G forms a group called automorphism
group of G and denoted by Aut(G).

We extend the concept of isomorphism to configurations in a natural way:
two configurations (G, �) and (G′, �′) are isomorphic if G and G′ are isomorphic
via a bijection ϕ and for each vertex v in G, �(v) = �′(ϕ(v)). An automorphism
on a configuration (G, �) is an isomorphism from (G, �) to itself and the set of
all automorphisms of (G, �) forms a group that we call automorphism group of
(G, �), denoted by Aut((G, �)).

Given an isomorphism ϕ ∈ Aut((G, �)), the cyclic subgroup of order k gener-
ated by ϕ is given by {ϕ0, ϕ1 = ϕ, ϕ2 = ϕ ◦ ϕ, . . . , ϕk} where ϕ0 is the identity.

If H is a subgroup of Aut((G, �)), the orbit of a vertex v of G is Hv =
{γ(v) | γ ∈ H}.

If |Aut(G)| = 1, that is, G admits only the identity automorphism, then G is
said asymmetric, otherwise it is said symmetric. Analogously, if |Aut((G, �))| = 1,
we say that (G, �) is asymmetric, otherwise it is symmetric.

Definition 1. Given a configuration (G, �), with G = (V,E), the centrality of
each v ∈ V , is cG,�(v) =

∑
u∈V d(u, v) · �(u).

A vertex v ∈ V is a Weber-point if it has the minimal centrality, that is,
cG,�(v) = min{cG,�(u) | u ∈ V }.

Whenever clear by the context, we refer to the centrality of a vertex v by cG(v),
c�(v), or simply c(v). By definition, a Weber-point is a vertex that has the overall
minimal distance from all the robots in the configuration. Then, an algorithm
that gathers all the robots on a Weber-point via shortest paths is optimum w.r.t.
the total number of moves. More formally, a gathering algorithm must define the



216 G. Di Stefano and A. Navarra

sequence of moves for each robot, leading to a final configuration. A move is the
change of the position of a single robot from a vertex u to an adjacent vertex
v. This equals to change the configuration from, say (G, �) to (G, �′), where
�(w) = �′(w) ∀w ∈ V \ {u, v}, �′(u) = �(u) − 1 and �′(v) = �(v) + 1. A robot
perceives its position on the graph G if (G, �) is asymmetric. Whereas, if G
admits a non-identity isomorphism ϕ, a robot cannot distinguish its position at
u from ϕ(u). As a consequence, two robots (e.g., one on u and one on ϕ(u)) can
decide to move simultaneously, as any algorithm is unable to distinguish between
them. This fact greatly increases the difficulty to devise a gathering algorithm
for symmetric configurations.

We say that an algorithm assures the gathering if it achieves the gathering
regardless any possible sequence of the moves it allows, and possible simultaneous
moves. We propose to measure the efficiency of a gathering algorithm by counting
the number of moves that it requires to gather all the robots from an arbitrary
initial configuration to a single vertex. We say that an algorithm is optimal if it
requires the minimum possible number of moves. We say that an algorithm is
exact if it achieves the gathering with a number of moves equal to the centrality
of a Weber-point in the initial configuration. Of course, this is a lower bound for
each algorithm. As we will see, not all the optimal gathering algorithms can be
exact. We say that an algorithm is r-approximate if r is the ratio between the
moves it requires and the moves required by an optimal algorithm.

3 General Graphs

In this section, we provide the core of the paper by means of general results that
allow to define optimal and exact gathering algorithms, or to recognize when
this is not possible. Actually, the gathering problem is so characterized:

Proposition 1. Gathering is achieved on a configuration ((V,E), �) if and only
if there exists a v ∈ V such that c(v) = 0.

Proof. If gathering is achieved, all the robots are on a vertex v. Then c(v) = 0
as �(v′) = 0 for all the vertices v′ �= v, and d(v, v) = 0 when �(v) �= 0. On the
other hand, by definition of c(v), d(u, v) · �(u) must be equal to zero for all the
vertices u �= v. This implies that �(u) = 0 for all the vertices u �= v, and hence
all the robots are on v. ��

Along the text, we say that a robot on a vertex u moves towards a vertex v if
it moves to a vertex adjacent to u along a shortest path between u and v.

Theorem 1. Given a configuration ((V,E), �) with Weber-points in X ⊆ V , a
move of a robot towards a Weber-point x gives rise to a configuration ((V,E), �′)
with Weber-points in X ′ ⊆ V such that:

1. c�′(v) = c�(v)− 1 for each v ∈ X ′;
2. x ∈ X ′;
3. X ′ ⊆ X.
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Proof. If a robot moves from w to w′, then, for each v ∈ V , c�′(v) =
∑

u∈V \{w,w′}
d(u, v) · �(u)+ d(w, v) · �′(w)+ d(w′, v) · �′(w′) =

∑
u∈V \{w,w′} d(u, v) · �(u)+

d(w, v) · (�(w) − 1)+ d(w′, v) · (�(w′) + 1) = c�(v)− d(w, v)+ d(w′, v).
Being w′ adjacent to w, for each v ∈ V , c�(v) − 1 ≤ c�′(v) ≤ c�(v) + 1 and

c�′(v) = c�(v)− 1 if w′ is on the shortest path from w to v (that is the robot on
w moves towards v). This immediately proves points 1 and 2. For point 3, it is
sufficient to note that no vertex can became a Weber-point if it was not as such
before the move, since the variation of its centrality is of at most one unit. ��

When the configuration admits a unique Weber-point, the above theorem
suggests an exact gathering algorithm that also exploits concurrency among
robots. In fact, regardless other robots, each one can move towards the only
Weber-point via the shortest path, until finalizing the gathering.

Corollary 1. If a configuration admits only one Weber-point then the gathering
can be achieved by an exact algorithm.

Other situations where the optimal gathering can be achieved are stated by
the next corollary.

Corollary 2. Given a configuration ((V,E), �), if there exists a real function
f : V −→ R+ and f admits only one minimum on the set of Weber-points, then
gathering can be achieved by an exact algorithm.

On the negative side, the next theorem provides a sufficient condition for a
configuration to be not gatherable, but we first need the following definition:

Definition 2. Let C = ((V,E), �) be a configuration. An isomorphism ϕ ∈
Aut(C) is called partitive on V ′ ⊆ V if the cyclic subgroup H = {ϕ0, ϕ1 =
ϕ, ϕ2 = ϕ ◦ϕ, . . . , ϕk} generated by ϕ has order k > 1 and is such that |Hu| = k
for each u ∈ V ′.

Note that, in the above definition, the orbits Hu, for each u ∈ V ′ form a
partition of V ′. The associated equivalence relation is defined by saying that x
and y are equivalent if and only if there exists a γ ∈ H with γ(x) = y. The
orbits are then the equivalence classes under this relation; two elements x and y
are equivalent if and only if their orbits are the same; i.e., Hx = Hy. Moreover,
note that �(u) = �(v) whenever u and v are equivalent.

Theorem 2. Let C = ((V,E), �) be a non-final configuration. If there exists
ϕ ∈ Aut(C) partitive on V then C is not gatherable.

Proof. Assume there exists an algorithm A that starting from configuration C
reaches a final configuration F , where all robots lie on vertex x.

If a robot on a vertex v moves to w by following algorithm A, a new configu-
ration C′ = ((V,E), �′) is reached. There are two cases depending on whether v
and w are equivalent (i.e., Hv = Hw) or not.

Assuming that v and w are equivalent, then there exists i ≤ k such that
ϕi(v) = w. Let γ = ϕi. Note that, for each h, γh(v)γh+1(w) ∈ E. Then, there
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Fig. 1. A gray vertex indicates the presence of one robot. a) Configuration admitting
a partitive isomorphism: the sets of the partition are the three central vertices, the
vertices with robots, and the three remaining vertices. b) Configuration admitting a
non-partitive isomorphism that maps v in u, u in w, w in v, x in y and y in x. c)
Configuration admitting a non-partitive isomorphism with two sets of the partition
with size two, and one with size one.

exists a cycle (v = γ0(v), w = γ1(v), γ2(v), . . . , γj(v)) of equivalent vertices.
Now, if the algorithm moves a robot from v to w, it cannot avoid that a robot
on γh(v) moves to γh+1(v), for each 1 ≤ h ≤ j. This makes unchanged �(u)
for each u ∈ Hu. It follows that ϕ ∈ Aut(C′), that is, it is still a partitive
isomorphism in the new configuration.

On the other hand, if Hv �= Hw, the algorithm cannot avoid that one robot
on ϕh(v) moves to ϕh(w), for each 0 ≤ h ≤ |Hv|. As |Hv| = |Hw|, all the
vertices ϕh(w), 0 ≤ h ≤ |Hv|, are distinct, and then �′(u) = �(u) − 1 for each
u ∈ Hv, and �′(u) = �(u) + 1 for each u ∈ Hw. This implies that ϕ is still a
partitive isomorphism in Aut(C′).

Hence, for any move decided by A, a new configuration can arise such that ϕ
is still an isomorphism for it. But this contradicts ϕ �∈ Aut(F ). In fact, |Hx| = 1
since vertex x (where the gathering is finalized) cannot be mapped to a different
vertex, whereas |Hx| should be greater than one as ϕ is partitive. ��

In Figure 1a, it is shown a partitive configuration where each vertex belongs
to an orbit of size three. By the above theorem we deduce that the gathering
cannot be assured, since each move allowed by an algorithm can be executed
synchronously by all the three robots due to an adversary. This would always
produce a new partitive configuration. Figure 1b, shows a configuration admit-
ting an isomorphism which is not partitive. In this case the gathering is possible
even though not the exact one. In fact, each of the three occupied vertices are
Weber-points, but moving from one to another may produce the same config-
uration if the three robots move concurrently in the same direction. Hence, a
gathering algorithm can move the three robots towards the two empty vertices.
Once all the three robots have moved, a multiplicity is created. The multiplicity
either contains all the robots or just two. In the first case the gathering has been
accomplished. In the second case, the gathering is finalized by letting move the
single robot towards the multiplicity. Finally, Figure 1c shows a configuration
admitting a non-partitive isomorphism but the gathering cannot be assured as
shown in [12]. It follows that, there exist configurations not admitting partitive
isomorphisms but still not gatherable.
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It is worth noting how most of the configurations proved to be not gatherable
for the rings [13], trees [7], and grids [4] fall into the hypothesis of Theorem 2.
Considering the ring case [13], for instance, periodic configurations (i.e., invariant
with respect to not full rotations), or configurations admitting an edge-edge
symmetry (i.e., invariant to reflection on an even ring) are not gatherable.

The next theorem suggests the gathering point in some circumstances.

Theorem 3. Given a configuration C = ((V,E), �), if there exists an automor-
phism ϕ ∈ Aut(C) that is partitive on V \{v}, with l(v) = 0, then, any gathering
algorithm can not assure the gathering on a vertex u �= v.

The above theorem implies that some configurations can be gathered only at
some predetermined vertices, regardless they are Weber-points or not. Hence,
in such cases the optimality of the provided solutions cannot be measured with
respect to the minimum distances of the robots towards Weber-points.

In the next sections, we show how the obtained results can be applied and
extended with respect to specific topologies like trees and rings.

4 Trees

In this section, we characterize the gathering on tree topologies. We provide a
general algorithm that always achieves the exact gathering starting from config-
urations not falling into the hypothesis of Theorem 2. To this aim, we exploit
interesting properties resulting from the tree topology.

Let (T, �) be a configuration for a tree T , and a and b two of its vertices.
We denote by Pab the path between a and b of length |Pab|. Tree T can be
decomposed into three subtrees: The one containing a when removing from T the
edge incident to a in Pab, and denoted by Ta; The one containing b when removing
the edge incident to b in Pab, and denoted by Tb; And the third one obtained
from T by removing both Ta and Tb, and denoted by Tab. Let La =

∑
v∈Ta

�(v)
and Lb =

∑
v∈Tb

�(v), that is the number of robots in Ta and Tb, respectively.

Theorem 4. Let (T, �) be a configuration for a tree T . Given two distinct
Weber-points a and b, Tab does not contain any robots.

Corollary 3. Let (T, �) be a configuration for a tree T . Given two distinct
Weber-points a and b, La = Lb.

Theorem 5. Let (T, �) be a configuration for a tree T . The Weber-points form
a path.

Proof. If (T, �) admits only one or two adjacent Weber-points, then the claim
holds. Otherwise, let a and b be two non-adjacentWeber-points. Let α be a vertex
between a and b in Pab, and pα be its distance from a. By Corollary 3, it follows
that cT (α) = cTa(a)+Lapα+cTb

(b)+Lb(|Pab|−pα) = cTa(a)+cTb
(b)+Lb|Pab| =

cT (a), and then all the vertices in Pab are Weber-points.



220 G. Di Stefano and A. Navarra

To show that all the Weber-points lie on a path, we prove that any subgraph
K1,3 (that is a star graph of four vertices) of T cannot consist of all Weber-points.
By contradiction let us assume that such a subgraph exists. Let a, b, c be the
three vertices connected to the center of the star. By Theorem 4, there are no
robots on Tab, Tbc, and Tac, respectively. This would imply that T is empty. ��

Theorem 6. Given a configuration (T, �), if the number of robots is odd, then
there exists only one Weber-point.

The above theorem, along with Corollary 1, implies the existence of a sim-
ple exact gathering algorithm when the number of robots is odd. A complete
characterization about the existence of exact gathering algorithms on trees is
given by the next theorem. It shows that an exact algorithm exists unless there
is an automorphism that maps each vertex to a different one. This is a lighter
condition with respect to the case given in Theorem 2.

Theorem 7. Let C = (T, �) be a configuration for a tree T = (V,E). There
exists an exact gathering algorithm for C if and only if for each ϕ ∈ Aut(C)
there exists v ∈ V such that ϕ(v) = v.

Proof. (⇒) Assume there is a ϕ ∈ Aut(C) such that ϕ(v) �= v for each v ∈ V .
We show that in this case there is no gathering algorithm for C.

A center is a vertex of a graph having a minimal eccentricity, that is the
greatest distance to any other vertex. A tree can have only one or two centers.
In the latter case the two centers are joined by an edge (see, e.g., [18]).

If T has one center x, any automorphism must map x to itself, a contradiction.
Then T has two centers x and y such that ϕ(x) = y and ϕ(y) = x. Moreover,
if we consider the two subtrees Tx and Ty rooted in x and y, respectively, and
obtained from T by removing edge xy, each child of x (y resp.) must be mapped
to a child of y (x, resp.) and then, recursively, each vertex in Tx (Ty resp.) must
be mapped to a vertex of Ty (Tx, resp.). Hence the two trees are isomorphic.
The isomorphism that maps each vertex in Tx to a vertex in Ty and viceversa
gives rise to orbits each of size two, then it is partitive. Hence, by Theorem 2,
no gathering algorithm exists for C.

(⇐) From Theorem 5, let Pab be the path of Weber-points and let us suppose
that T has one center x. There must be a vertex v in Pab nearest to x (possibly, x
coincides with v). By Corollary 2, it follows that all the robots can move towards
v via the shortest paths, and eventually finalizing the exact gathering.

Let us suppose now that T has two centers joined by edge xy. If xy is in Ta
(Tb, respectively) then, by Corollary 2, all the robots can move towards a (b,
resp.), the gathering point. If xy is in Tab but either x or y is not in Pab, there
must be a vertex w in Pab nearest to xy (possibly, w coincides either with x or
with y). Again by by Corollary 2, all the robots can move towards w and gather
there. Finally, let us assume that xy is an edge of Pab. As, by hypothesis, for
each ϕ ∈ Aut(C) there exists v ∈ V such that ϕ(v) = v, then the two subtrees
Tx and Ty obtained by removing xy cannot be isomorphic. Then it is always
possible to determine which tree between Tx and Ty is less than the other with
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b)
a)

Fig. 2. A gray vertex indicates the presence of one robot; Dashed circled vertices are
Weber-points. Dashed line stands for an undefined sequence of empty vertices. Vertices
pointed by an arrow represent the gathering vertices with respect to algorithms in [7]
for a), and in [13] for b).

respect to a natural ordering on labeled trees (see, e.g. [1,3]), where the label of a
vertex is given by function �, and each tree is represented by the string obtained
by reading the labels from the root downwards to the leaves. Without loss of
generality, assuming Tx greater than Ty, all the robots in Tx can move towards
x. In this way, after each move, Tx remains always greater than Ty. Once all the
robots in Tx are at x, they move to y. As soon as one robot moves from x to y,
the path of Weber-points will be Pyb, xy is not in Pyb and we can proceed as
before: all the robots can move towards y and gather there. ��

The gathering algorithm provided by the above theorem exploits similar prop-
erties of that presented in [7]. However, this new version accomplishes the exact
gathering while the old one always gather robots on a center of the underlying
tree. Considering Figure 2a, it is easy to provide configurations where our algo-
rithm performs the gathering in two moves, while the old algorithm requires n
moves, i.e., it is a n

2 -approximate algorithm.

5 Rings

In this section, we characterize the gathering on ring topologies. Before provid-
ing a gathering algorithm for achieving exact gathering starting from the same
settings of [13], we provide some useful properties concerning the disposal of
Weber-points on rings.

Lemma 1. Given a configuration (P, �) where P is a path graph, the set of
Weber-points is constituted either by one occupied vertex, or by one subpath
whose extremes are occupied.

Theorem 8. Given a configuration (R, �) on a ring R, if an empty vertex u is
a Weber-point then also its neighbors are Weber-points.

Proof. Let v be a neighbor of u. If R is even, let xy be the antipodal edge of
uv, with x being closer to u than to v. Let Pxy be the path obtained from R by
removing edge xy. All the distances from the robots to v do not change when
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considering Pxy instead of R. In fact, the only ambiguity may occur if vertex
x is occupied since its distance to v in R can be evaluated in both clock- and
anticlock-wise directions. The same holds for u. Since v is a Weber-point in R,
it must be a Weber-point also in Pxy, as the centrality of any other vertex w
different from u and v can only increase when considering Pxy instead of R. The
claim then follows by Lemma 1 since on Pxy, if a Weber-point is empty, it is
included in a path of Weber-points whose extremes are occupied.

If R is odd, similar arguments can be applied by removing from R the vertex
x antipodal to uv. This can be done since d(x, u) = d(x, v) and hence the con-
tribution of x to c(u) and c(v) is the same. ��

By the above theorem, as for the path case, if there exist a sequence of vertices
that are Weber-points, then the extremes of such a sequence are Weber-points
occupied by robots. It is worth noting that on rings there might occur more than
one of such sequences.

As further application of our theory, we now provide an exact algorithm for
asymmetric configurations on rings1, in the same settings as in [13], that is,
starting from configurations without multiplicities, and assuming the global weak
multiplicity detection.

Theorem 9. Given an asymmetric configuration (R, �) without multiplicities
on a ring R of n vertices, it is always possible to accomplish the exact gathering
even with the global weak multiplicity detection.

Proof. In order to prove the theorem we need to specify what a robot per-
ceives during the Look phase. Depending on the direction it looks at vertices
of the ring, two possible sequences may arise: (�(v0), �(v1), . . . , �(vn−1)) and
(�(v0), �(vn−1), . . . , �(v1)), with v0 being the vertex where it resides.

From Theorem 8, there exists in R at least one Weber-point occupied by a
robot. We consider two different cases: either there are only isolated Weber-
points (i.e., no two Weber-points are adjacent) or not.

In the first case, as the configuration is asymmetric, among all the pos-
sible Weber-points which are occupied by robots, there must be one whose
view represents the lexicographical maximum among all the views. Let r be
the robot occupying such a Weber-point, and without loss of generality, let
(�(v0), �(v1), . . . , �(vn−1)) be its maximum view.

Let r′ be a robot on vi, where i > 0 is the smallest index such that �(vi) = 1.
The gathering algorithm makes move r′ towards r. By Theorem 1, v0 remains a
Weber-point. Moreover the view of r remains maximum as it has been increased.
This is repeated until a multiplicity is created on v0.

In the second case, the algorithm considers the robots on Weber-points with
views such that v1 or vn−1 is a Weber-point. If both v1 and vn−1 are Weber-
points, the robot chooses the maximum view, otherwise it chooses the view in
the direction of the adjacent Weber-point. Let r be the robot with the maximal
view w.r.t. these constraints, and r′ be the first robot seen by r according to its
view. By Theorem 8, r and r′ determine a path P of Weber-points.

1 Asymmetric configurations are referred as rigid configurations in [13].
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Consider the two views of r and r′, respectively, in the opposite direction with
respect to P . The algorithm moves r (r′, resp.) towards r′ (r resp.) if its view
is lexicographically bigger than that of r′ (r, resp.). In doing so, the path P is
shortened and will be again selected in the subsequent steps as r has increased
its maximum view. As above, this is repeated until a multiplicity is created.

In both cases, the algorithm finalizes the exact gathering by moving, at turn,
the closest robot to the multiplicity towards it along a shortest path. ��

The proposed algorithm differs from that in [13] simply in the choice of the
vertex where a multiplicity is created. Once this is done, the two algorithms
proceed in the same way. The algorithm proposed in [13] considers the longest
interval I of empty vertices. Among the two intervals of empty vertices neigh-
boring to I, the shortest one was reduced by moving the robot limiting I. Ties
were broken by the asymmetry of the configuration. The described move was
repeated until creating a multiplicity.

In Figure 2b, it is shown a configuration where our algorithm requires 25
moves while the algorithm in [13] takes 35 moves. It is easy to provide worsen
instances where I is far apart from Weber-points, hence resulting in a much
larger difference with our algorithm in terms of computed moves.

Concerning the symmetric configurations studied in [5,6], is it worth noting
that the gathering vertices selected by those algorithms turn out to be the right
choice according to Theorem 3. However, such algorithms are not optimal as the
performed moves are not always along the shortest paths towards the gathering
vertex. The design of optimal algorithms for symmetric configurations with either
global strong or other types of multiplicity detection remains an open problem.

6 Conclusion

We have studied the gathering problem under the Look-Compute-Move cycle
model with the global strong multiplicity detection assumption. A new theory
holding for general graphs has been devised, and a characterization for pur-
suing optimal gathering in terms of computed moves has been addressed. We
have also compared the obtained results with existing gathering algorithms on
tree and ring topologies. This study is a first step towards the optimization of
the gathering task in terms of computed moves. It opens a wide research area
for reconsidering previous strategies with respect to the new twofold objective
function that requires not only to accomplish the gathering task but also the
minimum number of moves.
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Abstract. Consider the task of maintaining connectivity in a wireless network
where the network nodes are equipped with directional antennas. Nodes corre-
spond to points on the unit disk and each uses a directional antenna covering a
sector of a given angle α , where the orientation of the sector is either random or
not.

The width required for a connectivity problem is to find out the necessary and
sufficient conditions of α that guarantee connectivity when an antenna’s location
is uniformly distributed and the direction is either random or not.

We prove basic and fundamental results about this (reformulated) problem.
We show that when the number of network nodes is big enough, the required α̌
approaches zero. Specifically, on the unit disk it holds with high probability that

the threshold for connectivity is α̌ =Θ( 4
√

logn
n ). This is shown by the use of Pois-

son approximation and geometrical considerations. Moreover, when the model is
relaxed to allow orientation towards the center of the area, we demonstrate that
α̌ =Θ( logn

n ) is a necessary and sufficient condition.

Keywords: Wireless networks; Directional antennas; Connectivity threshold.

1 Introduction

Communication among wireless devices is of great interest in the scope of current wire-
less technology, where devices are part of sensor networks, mobile ad-hoc networks
and RFID devices that take part in the emerging ubiquitous computing, and even satel-
lite networks. These communication networks are usually extremely dynamic, where
devices frequently join and leave (or crash) and, therefore, require probabilistic tech-
niques and analysis. Imagine, for example, sensor networks that use directed antennas
(saving expensive energy and increasing communication capacity) among the sensors

� Partially supported by a Russian-Israeli grant from the Israeli Ministry of Science and Technol-
ogy and the Russian Foundation for Basic Research, the Rita Altura Trust Chair in Computer
Sciences, the Lynne and William Frankel Center for Computer Sciences, Israel Science Foun-
dation (grant number 428/11), Cabarnit Cyber Security MAGNET Consortium, Grant from the
Institute for Future Defense Technologies Research named for the Medvedi of the Technion,
MAFAT, and Israeli Internet Association.

T. Moscibroda and A.A. Rescigno (Eds.): SIROCCO 2013, LNCS 8179, pp. 225–236, 2013.

The original version of this chapter was revised: The copyright line was incorrect. This has been corrected.
 The Erratum to this chapter is available at DOI: 10.1007/978-3-319-03-758-9  29_

c© Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-319-03578-9_29


226 H. Daltrophe, S. Dolev, and Z. Lotker

that should be connected even though they are deployed by an airplane that drops them
from the air (just as in a smart dust scenario). What is the density of those sensors
needed to ensure their connectivity? Is there a way to renew connectivity after some
portion of the sensors stops functioning- maybe by deploying only an additional frac-
tion, uniformly distributed in the area with random orientation of the antennas? In this
work, we try for the first time to suggest and analyze ways to ensure connectivity in
such probabilistic scenarios. Namely, we have studied the problem of arranging ran-
domly scattered wireless sensor antennas in a way that guarantees the connectivity of
the induced communication graph. The main challenge here is to minimize energy con-
sumption while preserving node connectivity.

In order to save power, increase transmission capacity and reduce interference [11],
antennas should communicate along a wedge-shaped area, that is, an angular and prac-
tically infinite section of a certain angle α whose apex is the antenna.

The smaller the angle is, the better it is in terms of energy saving. When knowing
nothing about the future positioning of the antennas, each antenna may be directed to a
random direction that may stay fixed forever. Therefore, we wish to find the minimum
α > 0 so that no matter what finite set of locations the antennas are given, with high
probability they can communicate with each other. Our goal is to specify necessary and
sufficient conditions for the width of wireless antennas that enable one to build a con-
nected communication network when antennas locations and directions are randomly
and uniformly chosen.

Throughout this paper, we relate to an undirected graph, where two antennas are
connected by an edge if and only if each lies in each other’s wedge. However, our
calculations hold for the directed case as well. Specifically, Theorem 1 hold for both
cases, and the result proven by Theorem 2 also implies a connectivity threshold for the
directed graph case.

Previous results that handle wireless directional networks [5,1] assume coordinated
locations and orientations for the antennas. They show that a connected network can be
built with antennas of width α = π/3. The same model’s assumptions were used by [2]
to study graph connectivity in the presence of interference and in [10] to optimize the
transmission range as well as the hop-stretch factor of the communication network. A
different model of a directed graph of directional antennas of bounded transmission
range was studied in [4,7].

In contrast to the above worst case approaches, to the best of our knowledge, we con-
sider for the first time the connectivity problem in a probabilistic perspective. Namely,
we are interested in the minimal communication angle that implies high probability for
the graph to be connected as a function of the number of nodes. This approach signifi-
cantly reduces the required communication angle and is more general in the sense that
it also allows omission of the use of a directing procedure. A particular example of a
system for which our results can be applied is a MIMO (multiple input multiple output)
based system [15]. Wireless sensor networks using MIMO wireless links have recently
emerged as one of the most significant technical breakthroughs in modern communi-
cations [3]. Our results imply that the use of multiple antenna elements (lobes) may
improve the transmission width by a polynomial factor. The MIMO technique can en-
sure that a directed to the center antenna exists; hence, we reduce the square factor
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of the gap between Theorems 2 and Theorem 1, namely, the connectivity threshold is

Θ
(

logn
n

)
instead of Θ

(
4
√

logn
n

)
.

The probabilistic setting of the problem is related to other research in the field of
continuum percolation theory [12]. The model for the points here is a Poisson point
process, and the focus is on the existence of a connected component under different
models of connections. For example, [16] studied the number of neighbors that implies
connectivity. Works [14,8] are focused on the minimal number r such that two points
are connected if and only if their metric distance is ≤ r. In [9] the authors generalized
the results in [14,8] and proved that for a fractal in Rd , it holds with high probability
that r ≈ ( logn

n )1/d , where ≈ means that the quantity is bounded between two absolute
constants.

Our main results (summarized in Theorems 1 and 2) handle two different models.
The first is related to the case where all the antennas are directed to one reference point
(specifically, we used the center of a disk). The second model generalizes the results
by dealing with randomly chosen locations and directions with no prior knowledge.
Assuming that the number of nodes is big enough, we show in both cases that with high
probability, the threshold α̌ approaches zero.

We obtain the following results that we believe are important for both their combina-
torial and computational geometric perspectives and in their implications in the design
of wireless networks.

Theorem 1. α =Θ( logn
n ) is necessary and sufficient for the (asymptotical) connectivity

of n nodes that choose their transmission direction to the center. Specifically, there are
two constants 0< c1 < c2 such that:

lim
n→∞

Pr [G(n,c1 logn/n) is disconnected] = 1 and

lim
n→∞

Pr [G(n,c2 logn/n) is connected] = 1

Theorem 2. α =Θ( 4
√

logn
n ) is necessary and sufficient for the (asymptotical) connec-

tivity of n nodes that choose their transmission direction uniformly. Specifically, there
are two constants 0< c1 < c2 such that:

lim
n→∞

Pr
[
G
(
n,c1

4
√

logn/n
)
is disconnected

]
= 1 and

lim
n→∞

Pr
[
G
(
n,c2

4
√

logn/n
)
is connected

]
= 1

Remark 1. From the calculation in the proofs of Theorems 1 and 2, one can choose any
c1 < 1/2 and c2 > π2.

Remark 2. The connectivity threshold in the random direction settings (Theorem 2)

holds for an undirected graph. We also prove that for a directed graph, α =Θ( 3
√

logn
n )

is the necessary and sufficient threshold for graph connectivity, though not necessarily
for graph strong connectivity.

Remark 3. Due to space restrictions some of the proofs are omitted from this extended
abstract. The full proofs and can be found in [6].
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2 Preliminaries

 

 

 

Fig. 1. Fixing at each point pi two
opposite wedges of angle α with
direction θ

Let P= {p1(x,y,θ ), ..., pn(x,y,θ )} be a set of n points
(or nodes). The point location (x,y) is chosen inde-
pendently from the uniform distribution over the unit
disk D in the plane (or over the unit disk boundary).
The antenna direction θ of each point is chosen inde-
pendently and uniformly over [0,π ]. Each point repre-
sents a communication station by fixing two opposite
wedges of angle α with direction θ at each node (see
Figure 1).

Definition 1 (The communication graph). Given nodes u and v with communication
angle α , we say that u sees v if u lies in the wedge (on the intercepted arc) of v. The
communication graph G(P,E,α) is an undirected graph that consists of the node set
P, its communication angle α and the set of edges E = {(u,v)|u sees v and v sees u}.
(Since E is straightly defined by P(x,y,θ ) and α , we omit E in the sequel from the
graph notation, i.e., G(P,E,α) = G(P,α)).

 u 

v w 
  

 u 

v 
w 

 
 

Fig. 2. The communication graph G = (V,E) = ({u,v,w} ,{(u,v)}) on the disk (on the left) and
on the boundary (on the right). Note that G is not connected.

Definition 2 (Connectivity threshold problem). Given a set P and its induced graph
G, our goal is to find the critical angle≡ α̌ , such that G is connected with probability
1− o(1) as n tends to infinity iff α ≥ α̌ .

Notations

– The intercepted arc of a point u with angle α is the part of a circle that lies between
the two rays of α that intersect it.

– Let arc(u) be the intercepted arc of u and let |arc(u)| denote its length.
– Let wedge(u) be the wedge area of u and let |wedge(u)| denote its area.
– Let ∗ be an equivalence relation such that for a point u∈ P, u∗ is the antipodal point

of u (i.e., u and u∗ are opposite through the center).
– Throughout, we use the term w.h.p. as a shortcut for “with probability 1− o(1) as
n tends to infinity.”

– Following we sometimes use the term “random point” instead of “random variable.”
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– Let D denote the unit disk (in R2) and let ∂D denote its boundary.
– Let ∂D2 be the space of pairs {u,u∗} of antipodal points in the unit disk boundary
∂D.

– Let X = {X1, ...,Xn} be a set of uniform random variables defined over D.
– Let Y = {Y1, ...,Yn} be a set of uniform random variables defined over ∂D.
– Let Z = {Z1, ...,Zn} be a set of uniform random variables defined over ∂D2.
– Let (Y1,R1), ...,(Yn,Rn) be pairs of uniform random variables defined over ∂D2×
[0,1].

– Let (Z1,χ1), ...,(Zn,χn) be pairs of uniform random variables defined over ∂D2×
{0,1}.

Poisson Distribution and Approximation

Throughout this paper, the wireless network is modeled as nodes located randomly on
the plane according to a Poisson point process. We use standard tools from continuum
percolation and refer the reader to [12,13] for a general introduction of the topic. The
discrete Poisson approximation is a random process that yields random points in Rd

with density λ . See [13] Chapter 5 for a precise definition.

Definition 3. The number of points in the set P of points in a unit disk is a random

variable with distribution Pr(|P|= n) = e−λ λ n

n! .

This follows immediately from the definition of a Poisson process.
The connectivity threshold problem can be translated into the mathematical frame-

work of “balls and bins.” We have n balls that are thrown independently and uniformly
at random into m bins. The distribution of the number of balls in a given bin is approxi-
mately a Poisson variable with a density parameter λ = n/m. By the “coupon collector”
principle, we get that the number of balls that need to be thrown until all bins have at
least one ball w.h.p. is m logm (see Theorem 5.13 at [13]). In the sequel, we will use
these results in a variety of settings.

With relation to the connectivity problem, the “balls” represent the set P of nodes
distributed over the disk (the disk’s boundary), and the “bins” are slices of the disk area
(boundary) defined by the wedge area (by the intercepted arc) of the nodes (note that
the bins in this setting are not disjoint, and we will refer to this later).

Let us call the scenario in which the number of balls in the bins are taken to be
independent Poisson random variables with mean λ = m/n the Poisson case, and the
scenario where m balls are thrown into n bins independently and uniformly at random
the exact case. We justify the use of Poisson approximation instead of calculating the
exact case by using the following Theorem (which is given by Corollary 5.11 at [13]):

Theorem 3. LetΛ be an event whose probability is either monotonically increasing or
monotonically decreasing in the number of balls. If Λ has probability p in the Poisson
case, then Λ has probability at most 2p in the exact case.

Throughout this paper, we use Poisson distribution as well as uniform distribution
since in all cases the probability is monotone (decreasing). N denotes the random Pois-
son variable with the parameter λ = f (n), and n denotes the exact number of points in
the uniform case.
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Following, we also use the Chernoff bound for a sum of Poisson trials (a.k.a.
Bernoulli trials) (Theorem 4.5 in [13]):

Theorem 4. Let X1, ...,Xn be independent Poisson trials such that Pr(Xi) = pi. Let X =

∑n
i=1Xi and E(X) = μ . Then, for 0< δ < 1:

Pr(X ≤ (1− δ )μ)≤ e−μδ
2/2

Definition 4 (Covering problem). We would like to find the minimal communication
angle ᾱ , such that the wedge area (intercepted arc) induced by the set P defined over
D (over ∂D), covers the whole disk (boundary):

⋃
u∈P

wedge(u) = D (
⋃
u∈P

arc(u) = ∂D)

with high probability.

Note that the disk cover is a necessary but not a sufficient condition for the graph to
be connected, as illustrated in Figure 3.

Using this notation, we rewrite the connectivity problem terms of the boundary
setting:

Definition 5 (Connectivity problem). We would like to find the minimal communica-
tion angle α̌ , such that the nodes’ wedge area (intercepted arc) induces a connected
graph with high probability.

  

  

Fig. 3. The disk is covered by the nodes, how-
ever, the induced graph is not connected (the
graph contain only two edges)

The relation between the covering and
the connectivity problems is given by
the following Lemma which is explicitly
proven in Lemma 2.2 of [9].

Lemma 1. Given ᾱ which is the mini-
mal angle that induces a cover, with high
probability, α̌ = 3ᾱ is the expected con-
nectivity threshold.

3 Centered Angles

In this section, we consider the case where the antennas’ communication angle α is
directed to the center o of the disk. We define three different models, prove their equiv-
alence and use one of them to resolve the connectivity threshold.

G(X ,Θ (α)) G(Z,Θ (α))

G(Y,Θ (α))

Lemma 2

Lemma 3Lemma 4

The diagram at the right illus-
trates the way we have proven
that the three models are equiv-
alent up to O(·) notation:

The equivalence of these
three models imply the following corollary:

Corollary 1. Let α̌G(Y,α) be the criticalα of G(Y,α), then there exists a constant c> 0
such that the criticalα of G(X ,α) is α̌G(X ,cα) =Θ(α̌G(Y,α)).
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We prove each of the three equivalences separately, producing a new set of points
from the given one, as follows:

Definition 6. Let φ : D−→ ∂D2 be a function defined as follows. φ projects every point
u∈D to the antipodal pair {ū, ū∗} ∈ ∂D2 located on the intersection of ∂D and the line
goes through u and o (the center of the disk).

Proposition 1. Given the set {X1, ...,Xn}, one can produce the set {Z1, ...,Zn} by Zi ≡
Xi ◦ φ−1, which implies that Zi is independently identically uniformly distributed over
∂D2.

Proposition 2. φ defines for every edge (u,v) ∈ G(X ,α) a connected path:
Pū,v̄ = {(ū, v̄∗),(v̄∗, v̄),(v̄, ū∗),(ū∗, ū)} ∈ G(Z,α).

Lemma 2. Given the communication graphs G(X ,α) and G(Z,α) such that Zi = Xi ◦
φ−1, then if G(X ,α) is connected, it implies that G(Z,α) is connected.

Definition 7. Let ϕ : ∂D2×{0,1} −→ ∂D be a function that gets the pair {u,u∗} ∈
∂D2 and a bit b and returns one node u′ ∈ ∂D from the pair, e.g., ϕ({u,u∗,0}) = u and
ϕ({u,u∗,1}) = u∗.

Proposition 3. Given the set {(Z1,χ1), ...,(Zn,χn)}, one can produce the set {Y1, ...,Yn}
by Yi ≡ (Zi,χi) ◦ϕ−1, which implies that Yi is independently identically uniformly dis-
tributed.

Lemma 3. Given the communication graphs G(Z,α) and G(Y,3α) such that Yi =
(Zi,χi)◦ϕ−1. If G(Z,α) is connected, then w.h.p G(Y,3α) is connected.

Definition 8. Letψ : ∂D× [0,1]−→D be a function defined as follows. For every point
ū∈ ∂D, ψ gets a radius ru and returns the point u∈D located on the line going through
ū and o, such that dist(u, ū) =

√
ru.

Proposition 4. Given the set (Y1,R1), ...,(Yn,Rn), one can produce the set X1, ...,Xn by
Xi ≡ (Yi,Ri) ◦ψ−1, which implies that Xi is independently identically uniformly dis-
tributed over D.

Lemma 4. Given the communication graphs G(Y,α/2) and G(X ,α) such that Xi =
(Yi,Ri)◦ψ−1, and given that G(Y,α/2) is connected, then G(X ,α) is connected.

3.1 Finding the Connectivity Threshold

Given the set L of n uniformly distributed points on ∂D, such that the angle α of ev-
ery node is directed to the center, we show that the threshold for G(Y,α) is α̌(Y ) =
Θ(logn/n) as presented in the following two lemmas.

Lemma 5 (Sufficient condition for connectivity). Given the set (Y,α), there exists a
constant c > 0 such that when α ≥ c logn

n , the communication graph G(Y,α) is con-
nected w.h.p.
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Proof. The proof provides a cover of the disk’s boundary, and then by Lemma 1 we can
achieve the expected cover.

Given a node u ∈ G(Y,α) we divide arc(u) to three equal length bins denoted (from
left to right) by b�,bmid and br. Since |arc(u)|= 2α , the length of each bin is 2α/3. Let
� be a node at b�, and u� be a node that lies at arc(�). The angles are centered; hence,
the nodes u, � and u� are connected. In the same way, we expand the cover to the left
(with relation to arc(u)). The same considerations are valid for the right side of the arc
and for u,r and ur, respectively. Note that the existence of �,r,u� and ur is an outcome
of the connectedness of G(Y,α).

By the coupon collector principle, we know that the number of balls that need to be
thrown until all bins have at least one ball with high probability is m logm, where m is
the number of bins. Similarly, when placing n balls, n/ logn bins will promise that in
each bin, there will be at least one ball.

Dividing the circumference to 2α/3 cells, we have 2πr
2α/3 = 3π

α bins (note that r = 1).

Assigning 3π
α = n

logn bins, we get that α =O(logn/n) as expected.

Lemma 6 (Necessary condition for connectivity). Given the set (Y,α), there exists
a constant c > 0 such that if α < c logn

n , then w.h.p. the induced communication graph
G(Y,α) is not connected.

Proof. Let A= {Ai}
n

c logn
i=1 be a set of n

c logn disjoint arc intervals induced by n
c logn nodes

of G(Y,α). We show that there exists an arc at A that does not contain any node; hence,
its antipodal arc is not covered, which yields by Lemma 1 that G(Y,α) is not connected.
The existence of A is proven in Proposition 5 below.

Let Xi be a discrete Poisson random variable over the number of balls j in the bin
i. Let χi be an indicator random variable that is 1 when the ith bin is empty and 0
otherwise. The density parameter of X is λ = n/|A| = n/(n/c logn) = c logn. Thus,
the probability that a bin i is empty is Pr(χi = 1) = Pr(Xi = 0) = e−c logn =

(
1
n

)c
. By

the union bound, we get that the probability that a bin i is not empty is Pr(χi = 0) =

1−
(

1
n

)1/c
. Using the independency property of the Poisson variables, the probability

that in all the bins there is at least one ball is

Pr
(
χ1 = 0∩ χ2 = 0∩ ...∩ χ|A| = 0

)
=

(
1−
(

1
n

)c)|A|
=

=

(
1−
(

1
n

)c) n
c logn

≤ exp
(
−n

1−c
c logn

)

When setting 0 < c < 1, we get that exp
(
− n1−c

c logn

)
n→∞−→ 0, which implies that w.h.p.

there exists an empty bin, i.e., an arc fragment that is not covered.

Proposition 5. Let I = {Ii}ni=1 be a set of intervals of length |Ii| ≤ logn
n . There exists

a positive constant c and natural n0 such that for all n ≥ n0 and for all I, there exist

subset I′ =
{
Ii j
} n

c logn
j=1 ⊆ I of n

c logn disjoint intervals.



Probabilistic Connectivity Threshold for Directional Antenna Widths 233

4 Random Angle Direction

Fig. 4. The torus T ∈ R3. The blue circle (with
the “minor radius”) is swept around the axis
defining the red circle. The radius of the red cir-
cle R, (the “major radius”) is the distance from
the center of the tube to the center of the torus.

Given the set P of N Poisson distributed
points (variables) on a disk, we now as-
sume that the direction of the antenna is
a random variable θi. Hence, each point
can be represented by three parameters
(x,y,θ ) where x and y indicate the point
location, distributed over D, and θ dis-
tributed over [0,π ] is the direction of
the antenna. Since the problem has three
dimensions, it makes sense to use a three-
dimensional object, such that the proba-
bility is representing by the volume of the
object. Observe the set P lies over a torus
T in R3, such that the unit disk is swept
around an axis with length 2π (all the possible directions1). At this setting, T’s inte-
rior volume is VT = πr22πR= {R= r = 1}= 2π2. To achieve a probability space, we
normalize this number to be equal to one.

Our goal is to find the minimal angle that promises that the induced communication
graph is connected; hence, we would like to find the set of points that induces the min-
imal communication area and ensures that these points induce a cover (which in turn
yields a connected graph due to the relation between the covering and the connectivity
problems, see Lemma 1). Observing that when the node is located on the boundary and
the node’s direction is close to the tangent direction, the communication area is mini-
mal, we focus on the set B of points that their location is α–closed to the disk’s bound-
ary and their direction is α–closed to the tangent’s direction. At the three-dimensional
representation, B lies at the external ring (a.k.a. annulus) Tex of T (see Figure 5), i.e.,
B = {(xi,yi,θi) ∈ Tex∩P : θi is the tangent direction}, such that B induces a minimal
communication volume.

Proposition 6. For any constant c≥ 4 there exists natural n0, such that for all n≥ n0,
tangent angle induce a wedge of size ≤ c(α(n))3.

Proposition 7. For any constant c≥ 2 there exists natural n0 such that for all n ≥ n0,
B lies over a volume VB ≥ c(α(n))2.

Each node i= (xi,yi,θi) ∈ B defines a ball (spherical cap) Hi of the set of nodes that
can communicate with i: Hi =

{
(x j,y j,θ j) ∈ P∩Tex : θ j ∈ [θi−α,θi+α]

}
(i.e., Hi is

the 3D shape symmetric to the 2D sector defined by wedge(i)).

Proposition 8. For any constant c≥ 4 there exists natural n0 such that for all n ≥ n0,
the volume of the ball Hi is VHi ≤ c(α(n))4.

1 Note that in this setting, θ is distributed over [0,2π] instead of [0,π]. However, these are equal
in O(·) notation.
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Fig. 5. When the node is located on the boundary and the node’s direction is close to the tangent
direction, the communication area is minimal. We are interested in the points that are α-close to
T’s crust. We calculate their volume by eliminating the interior torus with r = 1−α from VT.

Proof. From proposition 6, we find that the area of wedge(i) is ≤ cα3 (for c≥ 4). We
multiply this by α to insert the direction constraint (see Proposition 9) and achieve the
expected volume.

Remark 4. For the directed communication settings, we can avoid multiplying by α
since the nodes in the ball Hi do may not be directed to the nodes that reside in B. Hence,

the volumeVHi is ≤ α3, and the connectivity threshold becomes α̌ =Θ( 3
√

logn
n ).

Proposition 9. Given the nodes u,v each with an angle α , the possible directions that
induce adjacency between v and u is α .

Proposition 10. There exist a constant c > 0 and natural n0 such that for all n ≥ n0,
there are at least cn1/2 nodes in the set B.

Proposition 11. Given a volume V = 4
√

logn/n at R3, throwing
√
n balls with volume

V 4 = logn/n to V , there exist a constant c > 0 and natural n0 > 0 such that for all
n≥ n0, with high probability there is a subset of at least c

√
n disjoint balls.

Lemma 7 (Sufficient condition for connectivity). Given n nodes that are uniformly

distributed on the unit disk, there exists a constant c> 0 such that if α ≥ c 4
√

logn
n , then

w.h.p. the induced communication graph is connected.

Proof. The set B represents the nodes that induce the minimal communication volume
(VHi). To achieve the space cover, we can divide it to disjoint cells of size VHi and use
probabilistic consideration to promise that w.h.p. there exists at least one ball in every
cell.

Proposition 8 implies that for a constant c≥ 4, VHi ≤ cα4; hence, we have 1
cα4 cells.

By the coupon collector principle, when we set the number of nodes n to be 1
cα4 log 1

cα4 ,

it yields that with high probability there is no empty cell. As a result, α = c 4
√

logn
n .

Lemma 8 (Necessary condition for connectivity). Given n nodes that are uniformly

distributed on the unit disk, there exists a constant c> 0 such that if α < c 4
√

logn
n , then

w.h.p. the induced communication graph is not connected.
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Proof. We show that when α = c 4
√

logn
n , the graph G is not connected since B induce a

volume that is not covered w.h.p.
Let H =

⋃
Hi∩Hj= /0

Hi be a set of n1/2 disjoint balls. The existence of this set is proven in

Proposition 10 and 11. To complete the proof of Lemma 8, we show that w.h.p. there
exists a ball Hi ∈H that is empty, i.e., the node i ∈ B is not connected.

Let χi denote an indicator random variable that is 1 when the ball Hi is empty and
0 otherwise. Let Xi be a discrete Poisson random variable over the number of nodes in
Hi. The density parameter of Xi is λ = n/VHi = n/α4 = n

c logn/n = c
logn . Therefore, the

probability that a given ball Hi is empty is

Pr(χi = 1) = Pr(Xi = 0) = e−λ = e−
c

logn = (1/n)
c

log2 n

Using the independency property of the Poisson variable, we get that the probability
that all of the balls in H are not empty is

Pr
(
χ1 = 0∩ χ2 = 0∩ ...∩ χ√n = 0

)
= Pr(χ1 = 0)Pr(χ2 = 0)...Pr(χ√n = 0) =

=

(
1−
(

1
n

) c
log2 n

)√n

≤ exp

(
−n−

c
log2 n

+ 1
2

)

Since exp

(
−n−

c
log2 n

+ 1
2

)
n→∞−→ 0, it implies that, with high probability, there exists an

empty ball. Hence, the graph is not connected.

5 Concluding Remarks

In this paper, we have analyzed the connectively threshold for directional antennas.
Our results show that if one can adjust the direction of the antennas, then in order to

guarantee the network connectivity, the angle should be Θ
(

log(n)
n

)
. In contrast, if the

direction of the antenna is a random variable, then the angle should be Θ
(

4
√

log(n)
n

)
.

This gives a polynomial gap between the two models.
One of the simplest ways to increase the capacity of the network is by directional

antennas. Our work defines theoretical bounds on how small the angle of the direc-
tional antennas can be in order to maintain connectivity. If we compare the classical
results on connectivity in the unit disk graph model to our results, we find two main
differences. The first difference is that in the unit disk graph model, the minimal graph
that maintains the connectivity of the network is the Euclidean minimal spanning tree.
In the directional antennas, the minimal graph is closer to the Hamiltonian cycle in na-
ture. More accurately, if our points are located on the boundary of a disk, then it is the
Hamiltonian cycle. Moreover, our analysis indicates that the network is totally different
near the critical angle from a usual network graph implied by the unit disk; while in the
unit disk graph model the communication moves over short distances, on the directional
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antenna model, the communication prefers long distances, i.e., forms a point p to the
antipodal point p∗.

We believe that much more work is needed in order to understand the geometry of
the network with directed antennas, and that this paper is a step in this direction.

Throughout the paper, we have assumed that the wireless antennas are scattered on
a unit disk. We believe that the disk assumption can be relaxed to accommodate a more
general and realistic setting, namely; our results hold for any convex fat object with
curvature> 0, denoted by S.
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Abstract. We study dynamic broadcasting in multiple access channels
in adversarial settings. There is an unbounded supply of anonymous sta-
tions attached to the channel. There is an adversary who injects packets
into stations to be broadcast on the channel. The adversary is restricted
by the injection rate, burstiness, and by how many passive stations can be
simultaneously activated by injecting packets into their empty queues.
We consider deterministic distributed broadcast algorithms, which are
further categorized by their properties. We investigate for which injection
rates can algorithms attain bounded packet latency, when adversaries are
restricted to be able to activate at most one station per round. The rates
of algorithms we present make the increasing sequence 1

3
, 3

8
and 1

2
, re-

flecting the additional features of algorithms. We show that no injection
rate greater than 3

4
can be handled with bounded packet latency.

Keywords: multiple access channel, adversarial queuing, distributed
broadcast, deterministic algorithm, stability, packet latency.

1 Introduction

Multiple access channels model shared-medium networks in which simultaneous
broadcast to all users is provided. They are an abstraction of the networking
technology of the popular implementation of local area networks by the Ethernet
suite of algorithms [18]. In a multiple access channel, transmissions by multiple
users that overlap in time result in interference so that none can be successfully
received. This makes it necessary either to avoid conflict for access to the channel
altogether or to have a mechanism to resolve conflict when it occurs. We consider
broadcasting in multiple-access channels in a dynamic scenario when there are
many stations attached to the channel, but only a few of them are active at any
time and the stations’ status of active versus passive keeps changing.

Considering deterministic algorithms and their worst-case performance re-
quires a methodological setting specifying worst-case bounds on how much traf-
fic a network would need to handle. This can be accomplished formally through
suitable adversarial models of demands on network traffic. Another component
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in a specification of a broadcast system is how much knowledge about the sys-
tem can communicating agents use in their codes of algorithms. Historically, the
first approach was to use the queue-free model, in which each injected packet
is treated as if handled by an independent station without any name and no
private memory for a queue. In such an ad hoc model, the number of stations is
not set in any way, as stations come and go similarly as packets do; see [12] for
the initial work on this model, and [6] for more recent one. An alternative ap-
proach to ad hoc channels is to have a system with a fixed number n of stations,
each equipped with a private memory to store packets in a queue. An attractive
feature of such fixed-size systems is that even simple randomized protocols like
Aloha are stable under suitable traffic load [22], while in the queue-free model
the binary exponential backoff is unstable for any arrival rate [1].

The popular assumptions used in the literature addressing distributed de-
terministic broadcasting stipulate that there are some n stations attached to a
channel and that each station is identified by its name in the interval [0, n− 1],
with each station knowing the number n and its own name; see [2,4,3,9,10]. Our
goal is to explore deterministic broadcasting on multiple-access channels when
there are many stations attached to a channel but only a few stations use it at
a time. In such a situation, using names permanently assigned to stations by
deterministic distributed algorithms may create an unnecessarily large overhead
measured as packet latency and queue size.

In this paper, we consider distributed deterministic broadcasting but we de-
part from the assumption about a fixed known size of the system. Instead, we
view the system as consisting of a very large set of stations that are not in-
dividually identified in any way. The stations that want to use the channel to
communicate join broadcasting activity. This needs to be coordinated with the
other currently active stations by an algorithm, which could be associated with
the medium-access control layer. The process of activating stations is modeled
by a suitable adversarial model that we propose. This adversarial model is de-
signed to represent a flexible system in which we relax the assumption that there
is a finite fixed set of stations attached to the channel, and that their number is
known to each participating station, and that each station has assigned a unique
name which it knows. We call such channels ad hoc to emphasize the volatility
of the system and the relative lack of knowledge of individual stations about
themselves and the environment.

Our results. We propose an adversarial model of traffic demands for ad hoc
multiple access channels, which represents dynamic environments in which sta-
tions freely join and leave broadcasting activity. To make an anonymous system
able to break symmetry in a deterministic manner, we restrict adversaries by
allowing them to activate at most one station per round. This is shown to be
sufficient for deterministic distributed broadcast algorithms to exist. We cate-
gorize algorithms into acknowledgment based, activation based and full sensing.
Independently from that, we differentiate algorithms by the property if they use
control bits in messages or not, calling them adaptive and non-adaptive, respec-
tively. We give a number of algorithms, for channels with and without collision
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detection, for which we assess injection rates they can handle with bounded
packet latency. Our non-adaptive activation-based algorithm can handle injec-
tions rates smaller than 1

3 on channels with collision detection, the non-adaptive
full-sensing algorithm can handle injection rate 3

8 on channels with collision de-
tection, and the adaptive activation-based algorithm can handle injection rate 1

2
on channels without collision detection. We show that no algorithm can provide
bounded packet latency when injection rates are greater than 3

4 .

Related work. The adversarial queuing methodology was introduced by Borodin
et al. [8] and Andrews et al. [5], who used it to study the stability of store-and-
forward routing in wired networks. Adversarial queueing on multiple access chan-
nels was first studied by Bender et al. [6], who considered randomized algorithms
for the queue-free model. A deterministic distributed broadcasting on multiple
access channels with queues in adversarial settings was investigated by Chlebus
et al. [9,10] and by Anantharamu et al. [2,4,3]. That work on deterministic dis-
tributed algorithms was about systems with a known number of stations attached
to the channel and with stations using individual names. Acknowledgment-based
algorithms include the first randomized algorithms studied on dynamic channels,
as Aloha and binary exponential backoff fall into this category. The throughput
of multiple access channels, understood as the maximum injection rate with Pois-
son traffic that can be handled by a randomized algorithm and make the system
stable (ergodic), has been intensively studied in the literature. It was shown to be
as low as 0.568 by Tsybakov and Likhanov [21]. Goldberg et al. [13] gave related
bounds for backoff, acknowledgment-based and full-sensing algorithms. H̊astad et
al. [16] compared polynomial and exponential backoff algorithms in the queuing
model with respect to bounds on their throughput. For early work on full-sensing
algorithms in channels with collision detection in the queue-free model see the
survey by Gallager [12]. Randomized algorithms of bounded packet latency were
given by Raghavan and Upfal [19] in the queuing model and by Goldberg et
al. [14] in the queue-free model. Upper bounds on packet latency in adversarial
networks was studied by Anantharamu et al. [2,4] in the case of multiple access
channels with injection rate less than 1 and by Rosén and Tsirkin [20] for gen-
eral networks and adversaries of rate 1. Deterministic algorithms for collision
resolution in static algorithmic problems on multiple access channels were first
considered by Greenberg and Winograd [15] and Komlós and Greenberg [17].
Algorithmic problems of distributed-computing flavor in systems in which mul-
tiple access channels provide the underlying communication infrastructure were
considered by Bieńkowski et al. [7] and Czyżowicz et al. [11].

2 Technical Preliminaries

A multiple-access channel consists of a shared communication medium and sta-
tions attached to it. We consider dynamic broadcasting, in which packets are
injected into stations continually and the goal is to have them successfully trans-
mitted on the channel. A message transmitted by a station includes at most one
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packet and some control bits, if any. Every station receives a transmitted mes-
sage successfully, including the transmitting station, when the transmission of
this message does not overlap with transmissions by other stations of their mes-
sages; in such a case we say that the message is heard on the channel. We consider
synchronous channels which operate in rounds. Rounds and messages are cali-
brated such that transmitting one message takes the duration of one round. A
message transmitted in a round is delivered to every station in the same round.
When at least two messages are transmitted in the same round then this creates
a collision, which prevents any station from hearing any of the transmitted mes-
sages. When no station transmits in a round, then the round is called silent. A
channel is said to be with collision detection when the feedback from the channel
in a collision round is different from the feedback received during a silent round,
otherwise the channel is without collision detection. For a channel without col-
lision detection, a collision round and a silent one are perceived the same. A
round is void when no station hears a message; such a round is either silent or
a collision one.

Ad hoc channels. A station is said to be active, at a point in time, when it
has pending packets that have not been heard on the channel yet. A station is
passive, at a point in time, if either it has never had any packets to broadcast or
all the packets it has ever received to broadcast have already been heard on the
channel. These “points in time” are understood as real-number time coordinates,
which are finer than the discrete partitioning of time into rounds. This is needed
to avoid ambiguity in a situation when a station begins a round with just one
pending packet, this packet is heard on the channel in this round, and new
packets are injected into this station in this very round. We assume that there is
an unbounded supply of passive stations. A passive station is said to get activated
when a packet or multiple packets are injected into it. We impose quantitative
restrictions on how passive stations may be activated in a round, which results
in finitely many stations being active in any round. There is no upper bound on
the number of active stations in a round in an infinite execution, since there is
an unbounded supply of passive stations. Stations are anonymous when there
are no individual names assigned to them. We consider channels that are ad
hoc which means that (1) every station is anonymous, (2) an execution starts
with every station initialized as passive, and (3) there is an unbounded supply
of passive stations.

Adversarial model of packet injection. Packets are injected by leaky-bucket ad-
versaries. For a number 0 < ρ ≤ 1 and integer b > 0, the adversary of type (ρ, b)
may inject at most ρ|τ |+ b packets in any time interval τ of |τ | rounds. In such
a context, the number ρ is called the rate of injection. The maximum number
of packets that an adversary may inject in one round is called the burstiness of
this adversary. The adversary of type (ρ, b) has burstiness equal to �ρ+ b�. The
adversaries we consider are constrained by how many stations they can activate
in a round. An adversary is k-activated, for an integer k > 0, if at most k sta-
tions may be activated in a round. We consider 1-activated adversaries, unless
explicitly stated otherwise.
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Broadcast algorithms. We consider deterministic distributed broadcast algo-
rithms. In the context of communication algorithms, the “knowledge” of proper-
ties of a system means using such properties as a part of code of an algorithm.
The algorithms we consider do not know the names of stations and the number
of stations in the system. This is in contrast with previous work on determin-
istic distribute algorithms, see [2,4,3,9,10], where the names of stations and the
number of stations could be used in a code. No information about adversaries is
reflected in the code executed by stations. Every station has a private memory
to store data relevant to executing a communication algorithm. This memory is
considered to be unbounded, in the sense that it may store an arbitrary amount
of data. The part of a private memory of a station used to store packets pend-
ing transmission is organized as a queue operating in a first-in-first-out manner.
Successfully broadcast packets are removed from their queues and discarded.
Packets are never dropped unless just after a successful broadcast. The state of
a station is determined by the values of its private variables, with the excep-
tion of the queue to store packets, which is not a part of a state. One state
is distinguished as initial. An execution begins with every station in the initial
state and with empty queue. The algorithms we consider are distributed in the
sense that they are “event driven.” An event, in which a station participates,
consists of everything that happens to the station in a round, including what
the station receives as feedback from the channel and how many packets are
injected into it. An event is structured as the following sequence of actions oc-
curring in a round in the order given: (i) transmitting a packet, (ii) receiving
feedback from the channel, (iii) having new packets injected, (iv) making a state
transition. Some among the actions (i) and (iii) may be void in a station in a
round. A state transition depends on the current state, the feedback from the
channel, and on whether new packets were injected in the round. In particular,
the following actions occur during a state transition. If a packet has just been
successfully transmitted then it is dequeued and discarded. If new packets have
just been injected then they are all enqueued. If a message is to be transmitted
in the next round, possibly subject to packet availability, then a message to be
transmitted is prepared. Such a message may include the packet from the top
of the queue, when the queue is nonempty, but a message may consist only of
some control bits. A station that begins a round as active becomes passive when
it successfully transmits its only pending packet. More precisely, such a station
becomes passive at the point in time when this station receives the transmitted
message as the feedback from the channel. When new packets are injected into
this station in this very round, then it means that this passive station gets acti-
vated again. A station’s status, of active versus passive, is dynamic in the course
of an execution. In particular, an active station may eventually be relegated to
passive and stay such forever, or it may stay active forever, or it may change its
status between active and passive any number of times.

Classes of algorithms. We define subclasses of algorithms by specifying what can
be sent in messages and how state transitions occur.We begin with the categoriza-
tions into full-sensing, activation-based and acknowledgment-based algorithms.
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General algorithms are called full sensing. Thismeans that stationsmay have state
transitions occur in each round, according to the state-transition rules represented
by the code. This term“full sensing”is to indicate that every station is sensing the
channel in every round.This encompasses passive stations, whichmeans that when
a full-sensing algorithm is executed, then passive stations undergo state transitions
from the beginning of the execution. Algorithms such that every station stays in
the initial state while passive and it resets itself to the initial state when it be-
comes passive again, that is, in a round in which its last pending packet is heard
on the channel, are called activation based. These algorithms have stations ignore
the feedback from the channel when they do not have any packets to broadcast. Fi-
nally, algorithms such that a station stays in the initial state while passive and it
resets itself to the initial state in a round in which a packet that it transmitted was
heard on the channel are called acknowledgment based. This definition is correct
due to the stipulation that the contents of queues do not belong to what consti-
tutes a state; in particular, a station may be in the initial state when its queue
is nonempty. A station executing a full-sensing algorithm may (in principle) re-
member the whole history of the feedback from the channel, unless the size of its
private memory restricts it in this respect, which is not the case in our consider-
ations. An active station executing an activation-based algorithm may remember
the history of the feedback from the channel since the activation. An active sta-
tion executing an acknowledgment-based algorithm may remember the history of
the feedback from the channel since the latest successful transmission or the latest
activation, whichever occurred later. We understood these categorizations so that
an acknowledgment-based algorithm is activation based, and an activation-based
algorithm is full sensing. This is because a station executing an activation-based
algorithm could be considered as receiving feedback from the channel but idling in
the initial state when not having pending packets. When control bits are used in
messages then we say that a algorithm is adaptive, otherwise the algorithm is non-
adaptive. The categorization of adaptive versus non-adaptive is independent of the
other three categorizations, into full sensing and activation based and acknowledg-
ment based, so we have six categories of algorithms overall. This categorization of
algorithms holds independently for channels with and without collision detection.
The strongest algorithmsare full sensing adaptive for channelswith collision detec-
tion, while the weakest ones are acknowledgment-based non-adaptive for channels
without collision detection.

The quality of broadcasting. An execution of an algorithm is said to be fair
when each packet injected into a station is eventually heard on the channel. An
algorithm is fair against an adversary when each of its executions is fair when
packets are injected subject to the constrains of the type of the adversary. An
execution of an algorithm has at most Q packets queued when in each round the
number of packets stored in the queues of the active stations is at most Q. We
say that an algorithm has at most Q packets queued, against an adversary of a
given type, when at most Q packets queued in each execution of the algorithm
against such an adversary. An algorithm is stable, against an adversary of a given
type, when there exist an integer Q such that at most Q packets are queued in
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any execution against this adversary. When an algorithm is unstable then the
queues may grow unbounded in some executions, but no packet is ever dropped
unless heard on the channel. The semantics of multiple access channels allows
at most one packet to be heard on the channel in a round. This means that
when injection rate of an adversary is greater than 1 then for any algorithm
some of its executions produce unbounded queues. In this paper, we consider
only injection rates that are at most 1. An execution of an algorithm has packet
latency t when each packet spends at most t rounds in the queue before it is
heard on the channel. We say that an algorithm has packet latency t against an
adversary of a given type when each execution of the algorithm against such an
adversary has packet latency t.

3 Limitations on Deterministic Broadcasting

In this section we consider what limitations on deterministic distributed broad-
casting are inherent in the properties of ad-hoc multiple access channels and the
considered classes of algorithms.

Proposition 1. No deterministic distributed algorithm is fair against a 2-
activated adversary of burstiness at least 2.

In the light of Proposition 1, we will restrict our attention to 1-activated
adversaries in what follows. For 1-activated adversaries, we may refer to stations
participating in an execution by the round numbers in which they get activated.
So when we refer to the station v, for an integer v ≥ 0, then we mean the station
that got activated in the round v. If no station got activated in a round v, then
a station bearing the number v does not exist.

Proposition 2. No acknowledgment-based algorithm is fair against a 1-activated
adversary of type (ρ, b) such that 2ρ+ b ≥ 3.

Theorem 1. No deterministic distributed algorithm can provide bounded packet
latency against a 1-activated adversary of injection rate greater than 3

4 and with
burstiness at least 2.

Theorem 1 demonstrates a difference between the adversarial model of ad-hoc
channels with the model of channels in which stations know the fixed number of
stations attached to the channel and their names. In that latter model, a bounded
packet latency can be attained for any injection rate less than 1, see [2,4], and
a mere stability can be obtained even for the injection rate 1, as it was demon-
strated in [9].

4 A Non-adaptive Activation Based Algorithm

We propose a non-adaptive activation-based algorithm Counting-Backoff. It
is designed for channels with collision detection. The underlying paradigm of
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algorithm Counting-Backoff is that active stations maintain a global vir-
tual stack, that is, a last-in-first-out queue. Each station needs to remember its
position on the stack, which is maintained as a counter with the operations of
incrementing and decrementing by one. A passive or newly activated station has
the counter equal to zero. The station at the top of the stack has the counter
equal to one. The algorithm applies the rule that if a collision of two concur-
rent transmissions occurs then the station activated earlier gives up temporarily,
which is understood as giving up the position at the top of the stack, while the
station activated later persists in transmissions, which is interpreted as claiming
the top position on the stack. Every station has a private integer-valued variable
backoff_counter, which is set to zero when the station is passive. The private
instantiations of the variable backoff_counter are manipulated by the active
stations according to the following general rules. An active station transmits a
packet in a round when it backoff_counter is at most one. When a collision
occurs, then each active station increments its backoff_counter by one. When
a silent round occurs, then each active station decrements its backoff_counter
by one. When a message is heard then the counters backoff_counter are not
modified, with the possible exception of a station activated in the previous round
which changes this variable from zero to one. A station that gets activated ini-
tially keeps its backoff_counter equal to zero, so the station transmits in the
round just after the activation. Such a station increments its backoff_counter
in the next round, unless its only packet got heard, in which case the station
becomes passive without ever modifying its backoff_counter. A station that
transmits and its packet is heard withholds the channel and keeps transmitting
in the following rounds, unless it does not have any other pending packets or a
collision occurs. The variables backoff_counter are manipulated such that they
implement positions on a stack, and thereby serve as dynamic transient names
for the stations that are otherwise nameless. This prevents conflicts for access
among the stations that are already on the stack.

Theorem 2. When algorithm Counting-Backoff is executed against an ad-
versary of type (ρ, b), where ρ < 1

3 and b > 1, then the packet latency is at most
3b−3
1−3ρ and there are at most 3b−5

2 packets queued in any round.

The bound on packet latency of algorithm Counting-Backoff given in The-
orem 2 is tight. It follows that packet latency grows unbounded when the injec-
tion rate ρ approaches 1

3 . On the other hand, the bound on queue size given in
Theorem 2 depends only on the burstiness of the adversary. The upper bound
3b−5
2 on queues holds also when injection rate equals 1

3 , so algorithm Counting-

Backoff is stable but not fair when injection rate equals 1
3 .

5 A Non-adaptive Full Sensing Algorithm

Stations executing a full-sensing algorithm can listen to the channel at all times
and so they may have a sense of time by maintaining common references to the
past rounds. This makes it possible to process consecutive past rounds to give
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stations activated in them an opportunity to transmit. This, just by itself, may
result in unbounded packet latency, if we spend at least one round to examine
any past round for a possible activation in it, because the repeated case of active
stations with multiple packets would accrue unbounded delays. To prevent this
from occurring, one may consider groups of rounds and have stations activated
in these rounds transmit simultaneously. If at most one station got activated
in a group then we save at least one round of examination, which compensates
for delay due to some stations holding more than one packet and for occasional
collisions. To implement this approach, a channel needs to be with collision
detection, which is assumed in this section. We refer to active stations by the
respective rounds of their activation. A round gets verified when either all the
packets of the station activated in this round have been heard or when it becomes
certain that no station got activated in this round.

We present a non-adaptive full-sensing algorithm which we call Quadruple-

Round. The rounds of an execution of the algorithm are partitioned into disjoint
groups of four consecutive rounds, each called a segment. The first and second
rounds of a segment make its left pair, while the third and fourth rounds make
the right pair of the segment. The rounds of execution spent on processing the
rounds in a segment make the phase corresponding to this segment. The purpose
of a phase is to verify the stations in the corresponding segment.

A phase is organized as a loop, which repeats actions that we collectively
refer to as an iteration of the loop. It takes at most four rounds to perform
an iteration. An iteration is executed as follows. All the stations activated in
the rounds of the phase’s segment, if there are any, transmit together in the
first round of an iteration. A station, that is scheduled to transmit, transmits a
packet from its private queue, unless the queue is empty. This results in either
a silence or a message heard or a collision, as a feedback from the channel. This
creates the three corresponding cases which we consider next.

When the first round of an iteration is silent, then this ends the iteration
and also the loop. This is because such a silence confirms that there are no
outstanding packets in the active stations in the segment. When a message is
heard in the first round of an iteration, then this ends the iteration but not the
loop. The reason of continuing the loop is that the station, which transmitted
the packet heard on the channel, may have more packets. If a collision occurs in
the first round of an iteration, then the stations of the left pair transmit together
in the second round. This leads to the three sub-cases presented next.

The first sub-case is of silence in the second round, which means that no station
in the left pair is active. As the first round produced a collision, this means that
each station in the right pair holds a pending packet. In this sub-case, the third
and fourth rounds of the iteration are spend by the third and fourth stations of
the segment transmitting one packet each in order, which concludes the iteration
but not the loop. The second sub-case is of a message heard in the second round,
which concludes the iteration but not the loop. The third case occurs when there
is a collision in the second round of the iteration, which means that each station
in the left pair of the segment holds an outstanding packet. In this case, the
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third and fourth rounds are spend by the first and second stations of the segment
transmitting one packet each in order, which concludes the iteration but not the
loop.

Theorem 3. When algorithm Quadruple-Round is executed against an ad-
versary of type (38 , b), then packet latency is at most 2b+4 and there are at most
b+O(1) packets queued in any round.

6 An Adaptive Activation Based Algorithm

Adaptive algorithms may use control bits in messages. We present an adap-
tive activation-based algorithm which we call Queue-Backoff. The underly-
ing paradigm is that active stations maintain a global virtual first-in-first-out
queue. This approach is implemented so that if a collision occurs, caused by two
concurrent transmissions, then the station activated earlier persists in transmit-
ting while the station activated later gives up temporarily. This is a dual al-
ternative to the rule used in algorithm Counting-Backoff. Assume first that
the channel is with collision detection. Every station has three private integer-
valued variables: queue_size, queue_position, and collision_count, which
are all set to zero in a passive station. The values of these variables represent
a station’s knowledge about the global distributed virtual queue of stations.
A message transmitted on the channel includes a packet and the value of the
sender’s variable queue_size; if this is the last packet from the sender’s queue
then a marker bit “over” is also set on in the message. In a round, an active
station transmits a message when its queue_position equals either zero or one.
The private variables are manipulated according to the following rules. When
a collision occurs, then each active station with a positive value of queue_size
increments its queue_size by one while an active station with queue_size= 0
increments its collision_count by one and sets queue_position← −1. When
a message with some value K > 0 of queue_size is heard and an active sta-
tion has queue_position = −1, then the station sets queue_size ← K and
queue_position← K−(collision_count−1). When a message with the“over”
bit is heard, then each active station decrements its variables queue_position
and queue_size by one. When a station is still active, it has just heard its
own message and its queue_size equals zero, then the station sets its variable
queue_size← 1 and queue_position← 1; this occurs when the global virtual
queue is empty.

Some of the underlying ideas of this algorithm are similar to those used in
the design of algorithm Counting-Backoff, they are as follows. A station
that becomes activated transmits in the next round after activation, as then
its queue_position is still zero. A station that transmits and the transmit-
ted message is heard withholds the channel by transmitting in the following
rounds, subject to packet availability. This works because the first transmission
is with queue_position equal to either zero or one and the following ones with
queue_position equal to one. A collision in a round means that some new sta-
tion got activated in the previous round. This is because the station that has
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transmitted multiple times, with no other station successfully intervening, has
its queue_position equal to one, while the other option is to have this variable
equal to zero, which is only possible when this value is inherited from the state
when still being a passive station.

Theorem 4. When algorithm Queue-Backoff is executed against an adver-
sary of type (12 , b), then there are at most 2b − 3 packets queued in any round
and packet latency is at most 4b− 4.

Algorithm Queue-Backoff was presented as implemented for channels with
collision detection. When the global queue is nonempty then each round con-
tributes either a collision or a message heard on the channel. This means that
when the channel is without collision detection, then collisions can be detected
as void rounds by any involved active station, while passive stations do not
participate anyway. It follows that this algorithm can be executed on channels
without collision detection with minor modifications in code only and with the
same performance bounds.

7 Conclusion

We introduced ad hoc multiple access channels along with an adversarial model
of packet injection in which deterministic distributed algorithms can handle non-
trivial injection rates. These rates make the increasing sequence of 1

3 ,
3
8 and 1

2 .
To improve beyond the rate 1

3 attained by an activation-based non-adaptive
algorithm, we designed a full sensing algorithm that handles injection rate 3

8
and an adaptive one that handles the injection rate 1

2 . The optimality of these
algorithms, in terms of the magnitude of the injection rate that the algorithms
in the respective class of algorithms can handle with bounded packet latency
against 1-activated adversaries, is open. We showed that no algorithm can handle
the injection rate higher that 3

4 . It is an open question if any injection rate in
the interval (12 ,

3
4 ) can be handled with bounded packet latency by deterministic

distributed algorithms against 1-activated adversaries.

References

1. Aldous, D.J.: Ultimate instability of exponential back-off protocol for
acknowledgment-based transmission control of random access communication chan-
nels. IEEE Transactions on Information Theory 33(2), 219–223 (1987)

2. Anantharamu, L., Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Deterministic
broadcast on multiple access channels. In: Proceedings of the 29th IEEE Interna-
tional Conference on Computer Communications (INFOCOM), pp. 1–5 (2010)

3. Anantharamu, L., Chlebus, B.S., Rokicki, M.A.: Adversarial multiple access chan-
nel with individual injection rates. In: Abdelzaher, T., Raynal, M., Santoro, N.
(eds.) Principles of Distributed Systems. LNCS, vol. 5923, pp. 174–188. Springer,
Heidelberg (2009)



248 L. Anantharamu and B.S. Chlebus

4. Anantharamu, L., Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Medium access
control for adversarial channels with jamming. In: Kosowski, A., Yamashita, M.
(eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 89–100. Springer, Heidelberg (2011)

5. Andrews, M., Awerbuch, B., Fernández, A., Leighton, F.T., Liu, Z., Kleinberg,
J.M.: Universal-stability results and performance bounds for greedy contention-
resolution protocols. Journal of the ACM 48(1), 39–69 (2001)

6. Bender, M.A., Farach-Colton, M., He, S., Kuszmaul, B.C., Leiserson, C.E.: Adver-
sarial contention resolution for simple channels. In: Proceedings of the 17th Annual
ACM Symposium on Parallel Algorithms (SPAA), pp. 325–332 (2005)

7. Bieńkowski, M., Klonowski, M., Korzeniowski, M., Kowalski, D.R.: Dynamic shar-
ing of a multiple access channel. In: Proceedings of the 27th International Sym-
posium on Theoretical Aspects of Computer Science (STACS), Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. Leibniz International Proceedings in Informatics,
vol. 5, pp. 83–94 (2010)

8. Borodin, A., Kleinberg, J.M., Raghavan, P., Sudan, M., Williamson, D.P.: Adver-
sarial queuing theory. Journal of the ACM 48(1), 13–38 (2001)

9. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Maximum throughput of multiple
access channels in adversarial environments. Distributed Computing 22(2), 93–116
(2009)

10. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the multiple
access channel. ACM Transactions on Algorithms 8(1), 5:1–5:31 (2012)
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Abstract. All-optical networks have been largely investigated due to
their high data transmission rates. The key to the high speeds in all-
optical networks is to maintain the signal in optical form, to avoid the
overhead of conversion to and from electrical form at the intermediate
nodes. In the traditional WDM technology the spectrum of light that can
be transmitted through the optical fiber has been divided into frequency
intervals of fixed width with a gap of unused frequencies between them.
In this context the term wavelength refers to each of these predefined
frequency intervals.

An alternative architecture emerging in very recent studies is to move
towards a flexible model in which the usable frequency intervals are of
variable width. Every lightpath is assigned a frequency interval which
remains fixed through all the links it traverses. Two different lightpaths
using the same link have to be assigned disjoint sub-spectra. This tech-
nology is termed flex-grid or flex-spectrum.

The introduction of this technology requires the generalization of
many optimization problems that have been studied for the fixed-grid
technology. Moreover it implies new problems that are irrelevant or triv-
ial in the current technology. In this work we focus on bandwidth uti-
lization in path toplogy and consider two wavelength assignment, or in
graph theoretic terms coloring, problems where the goal is to maximize
the total profit. We obtain bandwidth maximization as a special case.

Keywords: all-optical networks, flex-grid, approximation algorithms,
network design.

1 Introduction

The WDM Technology: All-optical networks have been largely investigated in

recent years due to the promise of high data transmission rates. Its major appli-
cations are in video conferencing, scientific visualization, real-time medical imag-
ing, high-speed super-computing, cloud computing, distributed computing, and
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media-on-demand. The key to high speeds in all-optical networks is to maintain
the signal in optical form, thereby avoiding the prohibitive overhead of conver-
sion to and from the electrical form at the intermediate nodes.

In modern optical networks, high-speed signals are sent through optical fibers
using WDM (Wavelength Division Multiplexing) technology: several signals con-
necting different source - destination pairs may share a link, provided they are
transmitted on carriers having different wavelengths of light. These signals are
routed at intermediate nodes by optical cross-connects (OXCs) that can route
an incoming signal arriving from an incident edge to another, based on the sig-
nal’s wavelength. A signal transmitted optically from some source node to some
destination node over a wavelength is termed a lightpath.

Fixed-Grid and Flex-Grid DWDM Networks: Traditionally the spectrum of
light that can be transmitted through the fiber has been divided into frequency
intervals of fixed width with a gap of unused frequencies between them. In this
context the term wavelength refers to each of these predefined frequency inter-
vals. This technology is termed WDM, DWDM or UDWDM depending on the
gap of unused frequencies between the wavelengths.

An alternative architecture emerging in very recent studies is to move away
from this rigid DWDM model towards a flexible model in which the usable
frequency intervals are of variable width (even within the same link). Every
lightpath has to be assigned a frequency interval (sub-spectrum), which remains
fixed through all the links it traverses. As in the traditional model, two different
lightpaths using the same link have to be assigned disjoint sub-spectra. This
technology is termed flex-grid or flex-spectrum, as opposed to fixed-grid or fixed-
spectrum current technology. Specifically this new technology is feasible due to
gridless wavelength selective switches (WSS), based on a very large number of
pixels. This sliceable transceiver technology is not as mature, but is critical to
the economic viability of flex-grid.

The introduction of the flex-grid technology requires the generalization of
most of the many optimization problems that have been studied under the
fixed-grid technology. For instance, as a result of the variability of the width
of the sub-spectra, lightpaths have different transmission impairments, thus dif-
ferent regeneration needs. Another major difference is that in the fixed-grid it
is assumed that lightpath requests are for one wavelength’s bandwidth because
otherwise it can be treated as multiple independent requests. In the flex-grid
technology this assumption does not hold because two lightpaths assigned two
arbitrary wavelengths are not equivalent to one lightpath assigned two consecu-
tive colors. This assignments differ both in terms of regeneration needs, and in
terms of bandwidth utilization.

In this work we focus on the bandwidth utilization in path topology as a basic
network to analyze in this introductory work. Results on path topology may
extend to rings and trees that are other natural topologies in optical networks.
Such results often have applications in the scheduling context in which the path
network becomes the time axis. For problems that are provably hard in the
general case we consider special cases such as bounded load and proper intervals.
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We assume that the lightpath requests have bandwidth requirements that
are multiples of some basic unit. This unit is smaller than the traditional wave-
length bandwidth. The entire bandwidth of the fiber isW units. We consider two
wavelength assignment, or in graph theoretic terms coloring, problems. In both
problems every lightpath request consists of a path P , with minimum and maxi-
mum bandwidth requirements aP and bP respectively, and a unit profit wP (i.e.,
the profit for each color assigned). In the first problem such a lightpath P has
to be assigned a set w(P ) of colors such that ap ≤ |w(P )| ≤ bP where color is a
number between 0 andW−1. In the second problem, in addition, the set w(P ) of
colors assigned to a lightpath P constitutes an interval of colors from some color
λ to some color λ′ ≥ λ so that the loss, due to the otherwise unused gap between
the colors, is avoided. We term these colorings as non-contiguous colorings (or
just colorings), and contiguous colorings respectively. Note that these colorings
correspond to ordinary colorings and to interval colorings of the intersection
graph of the paths.

The profit obtained from a lightpath is proportional to the number of colors it
is assigned and its unit profit, i.e. wP · |w(P )|. Our goal is to maximize the total
profit. We have an important special case when wP is equal to the length of the
path P . In this case the profit is the total bandwidth utilization of the network.

Related Work: [1] is a general reference for optical networks. For a discussion of
their data transmission rates see [2]. [3,4] suggest flex-grid DWDM as an alter-
native emerging architecture. The network implications of this new architecture
are explained in detail in [5], which refers to the key enabling technologies for
the flex-spectrum.

Closely related to ourwork is the coloring and interval coloring of interval graphs.
[6] is an excellent reference book on these subjects. To find an interval coloring
with minimum colors in an interval graph is known as the shipbuilding problem,
and also as the dynamic storage allocation problem. The problem is stated in [7]
asNp-Complete under the latter name (problem [SR2]). In [8] it is conjectured to
be in Apx-Hard. Interval coloring of interval graphs with different optimization
functions have also been studied in the literature (see for instance [9]).

Our Contribution: In this paper we consider three profit maximization prob-
lems, Pmc is for non-contiguous coloring, Pmcc is for contiguous coloring and
Pmccc is for circularly contiguous coloring. Circularly contiguous coloring means
that the interval of colors assigned can be wrapped around from W − 1 back
to 0. For Pmc, we show a polynomial time optimal algorithm for arbitrary a
and b when the network is a path. For Pmcc, we derive an algorithm that con-
verts a circularly contiguous coloring to a contiguous coloring with a small loss
in the profit. We observe that Pmcc is Np-Hard for path networks and study
special cases. We study the case when the number of paths that using any given
edge is bounded by some constant and give a polynomial time optimal algo-
rithm. We further consider the case when the input set of paths is proper, i.e.,
no path properly contains another, and show an approximation algorithm with
approximation ratio 4/3 for some special values of a and b.
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2 Preliminaries

Graphs and Paths: In path (multi) coloring problems we are given a network
modeled by a graph G and a set of lightpaths modeled by a set P of non-
trivial paths of G. V (G) and E(G) denote the vertex set and edge set of G,
respectively. We denote by δG(v) the set of edges incident to a vertex v in G, i.e.
δG(v) = {e ∈ E(G)|v ∈ e}, and dG(v) = |δG(v)| is the degree of v in G. For a
directed graph G, A(G) denotes the arc set of G. We denote by δ−G(v) and δ

+
G(v)

the sets of incoming arcs and outgoing arcs of a vertex v, respectively. Similarly
d−G(v) =

∣∣δ−G(v)∣∣ (resp. d+G(v) = ∣∣δ+G(v)∣∣) denotes the in-degree (resp. out-degree)
of v in G.

We consider paths as sets of edges, e.g. for two paths P, P ′ we denote by
P ∩ P ′ the set of their common edges, and by |P | the length of P . For an edge
e of G, we denote by Pe the subset of P consisting of the paths containing e,

i.e. Pe
def
= {P ∈ P : e ∈ P}. The number of these paths is termed the load on

the edge e, and denoted by Le(P)
def
= |Pe|. An important parameter we consider

is the maximum load over all the edges of G. We denote it by Lmax(P)
def
=

max {Le(P) : e ∈ E(G)}. Note that in the intersection graph of the paths P , the
subset of vertices corresponding to Pe is a clique. Therefore Lmax(P) is a lower
bound to the size of the maximum clique of the intersection graph.

In this work we focus on the case where G is a path, i.e. the intersection
graph of P is an interval graph. It is well known that every clique of an interval
graph corresponds to some Pe, therefore Lmax(P) is equal to the size of the
maximum clique. A set of paths that no two of them intersect is an independent
set of the intersection graph. When we say that a set of paths is a clique (or an
independent set) we implicitly refer to their intersection graph.

Colors and Colorings: In addition to the graph G and the set P of paths, we
are given an integer W that denotes the number of colors available. For two

integers i, j such that i ≤ j, [i, j] def
= {k ∈ N : i ≤ k ≤ j}. The set of available

colors is Λ = [0,W − 1]. A set [i, j] ⊆ Λ is said to be an interval of colors. When

0 ≤ j < i ≤ W − 1 we define [i, j]
def
= [i,W − 1] ∪ [0, j]. In both cases [i, j] is

termed a circular interval of colors, i.e. colors that are consecutive on a ring (in
which 0 is the successor of W − 1).

A (multi)coloring is a function w : P *→ 2Λ that assigns to each path P ∈ P a
subset of the set Λ of colors. A coloring w is valid if for any two paths P, P ′ ∈ P
such that P ∩ P ′ �= ∅ we have w(P ) ∩w(P ′) = ∅. For a color λ ∈ Λ, Pw

λ denotes
the set of paths assigned the color λ by w, i.e. Pw

λ = {P ∈ P : λ ∈ w(P )}. If w
is a valid coloring, then for any two paths P, P ′ ∈ Pw

λ we have P ∩ P ′ = ∅. In
other words, Pw

λ is an independent set of P . When there is no ambiguity, we
omit the superscript w and denote Pw

λ as Pλ.
A coloring is contiguous (resp. circularly contiguous), if for every P ∈ P , w(P )

is an interval (resp. circular interval) of colors.

Vector Notation and Profits: Throughout the paper we use vectors of integers
indexed by the elements of P . We denote vectors with bold typeface, e.g. v =
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{vP : P ∈ P}. The vector 0 is the zero vector, 1 is the vector consisting of a 1
in every index.

The size vector of a coloring w is a vector s(w) such that s(w)P = |w(P )| for
every P ∈ P , i.e. the entries of s(w) are the number of colors assigned to each
path. We say that a coloring w is a (a−b)-coloring if a ≤ s(w) ≤ b, and w is a
v-coloring if it is a (v − v)-coloring. An ordinary coloring in which every path
is assigned one color corresponds to a 1-coloring, and clearly any coloring is a
(0−W · 1)−coloring.

Given a real vector w of weights, the profit pw(P,w) obtained by a coloring

w, from a path P is pw(P,w)
def
= wP · |w(P )|. The total profit due to a coloring

w is pw(P ,w)
def
=
∑

P∈P pw(P,w).
In this work we use the term maximum independent set to mean an indepen-

dent set with maximum profit, and denote the profit obtained from such a set as
α(P ,w). Usually the weight function under consideration will be clear from the
context and we will use pw(P) (resp. α(P)) as a shorthand for pw(P ,w) (resp.
α(P ,w)).

We note that pw(P) =
∑

P∈P pw(P ) =
∑

P∈P wP · |w(P )| = w · s(w). We can
write the profit of a valid coloring w, from a path P as the sum of the profits
obtained from every color of P , i.e. pw(P ) = wP · |w(P )| =

∑
λ∈w(P ) wP and

therefore

pw(P) =
∑
P∈P

∑
λ∈w(P )

wP =
∑
λ∈Λ

∑
P∈Pw

λ

wP ≤
∑
λ∈Λ

α(P) =W · α(P)

where the inequality follows from the fact that Pw
λ is an independent set.

The Problem(s): In this work we consider the following problem and its variants.

Profit Maximizing Coloring(Pmc)

Input: A tuple (G,P ,W, a,b,w) where G is a graph, P is a set of paths on
G, W is an integer, a and b are two integer vectors and w is a real vector
indexed by P .
Output: A valid (a− b)-coloring w.
Objective: Maximize pw(P ,w).

The problems Profit Maximizing Contiguous Coloring (Pmcc) and Profit
Maximizing Circularly Contiguous Coloring (Pmccc) problems are variants of
Pmc in which the coloring w has to be contiguous, and circularly contiguous,
respectively.

We denote the optimum of an instance (G,P ,W, a,b,w) of a problem Prb ∈
{Pmc,Pmcc,Pmccc} by OptPrb(G,P ,W, a,b,w). A contiguous coloring is a
circularly contiguous coloring, which is in turn a coloring. Therefore we have:

OptPmcc(G,P ,W, a,b,w) ≤ OptPmccc(G,P ,W, a,b,w)

≤ OptPmc(G,P ,W, a,b,w). (1)
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Any coloring, and in particular an optimal one that we denote by w∗, satisfies
pw

∗
(P) ≤W · α(P). Therefore we have

OptPmc(G,P ,W, a,b,w) ≤W · α(P).

We now observe that the above inequalities are tight when the lower and upper
bounds a and b are trivial. In other words, in this case all the three problems
equivalent to the problem of finding α(P).

Proposition 1. If a = 0,b =W · 1 then

OptPmcc(G,P ,W, a,b,w) = OptPmccc(G,P ,W, a,b,w)

= OptPmc(G,P ,W, a,b,w) =W · α(P).

Proof. It suffices to show that OptPmcc(G,P ,W, a,b,w) ≥ W · α(P). Indeed,
let I be a maximum independent set of P . The coloring that assigns Λ to ever
path of I and ∅ to all the rest is a valid contiguous (0 −W · 1)-coloring with
profit W · α(P). ��

Path Networks: When G is a path we assume without loss of generality that
the vertex set of G is [1, n] where the vertices are numbered according to their
order in G. We sometimes refer to the vertices and edges of G as drawn on the
real line where 1 is the leftmost vertex and n is the rightmost one. Given this
numbering, s(P ) and t(P ) denote the endpoints of a path P with s(P ) < t(P ).
We term these vertices as the start and termination vertices of P , respectively.
We denote a sub-path of G with endpoints i < j as [i, j], i.e. P = [s(P ), t(P )].
Given a sub-path δ of G, Pδ denotes the set of all paths of P that are contained
in δ.

3 Profit Maximizing Colorings

A maximum independent set can be calculated in polynomial time when the
network is a path [6]. By Proposition 1 this implies an algorithm for all three
problems for the case where G is a path and a = 0 and b = W · 1. In this
section we extend the study to path networks for arbitrary a and b, and provide
a polynomial-time optimal algorithm.

We first introduce notations and definitions that we use in this section. Let w
be a coloring of a set Q of paths, and Q′ ⊆ Q. w′ = w

∣∣
Q′ denotes the coloring w

restricted to Q′, i.e. w′(P ) = w(P ) whenever P ∈ Q′, and w′(P ) = ∅ otherwise.
We reduce Pmc to the Minimum Cost Maximum Flow (MinCostMaxFlow)

problem that is well known to be solvable in polynomial time [10]. Instances of
MinCostMaxFlow are tuples (H, s, t, κ, κ′, c) where H is a directed graph,
s ∈ V (H) (resp. t ∈ V (H)) is the source (resp. sink) vertex, κ : A(H) *→ R
(resp. κ′ : A(H) *→ R) determines the lower (resp. upper) bounds of the flow on
every arc, and finally c : A(H) *→ R determines the cost of a unit flow on every
arc. The goal is to find a flow f : A(H) *→ R from s to t that has a minimum
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cost among all maximum flows, i.e. among all flows of maximum amount, as
follows. Recall that the amount of a flow f is the amount of flow entering t, i.e.∑

e∈δ−H(t) f(e) and its cost c(f) is
∑

e∈A(H) f(e) · c(e).
Given an instance I = (G,P ,W, a,b,w) of Pmc, we build a flow networkN(I)

= (H, s, t, κ, κ′, c). For convenience we introduce two additional semi-infinite (i.e.
having one endpoint) paths P (−) = [−∞, 1] and P (+) = [n,∞] with zero profit,
andwedefineP ′ = P∪

{
P (−), P (+)

}
.V (H) = S∪T whereT = {tP : P ∈ P ′} , S =

{sP : P ∈ P ′}. A(H) = A1 ∪ A2 where A1 = {(sP , tP ) : P ∈ P ′} and A2 =
{(tP , sP ′) : s(P ′) ≥ t(P )}. We proceed with the bounds and costs of the arcs. For
every pathP ∈ P the bounds and costs on the corresponding arc a= (sP , tP ) ∈ A1

are κ(a) = aP , κ
′(a) = bP and c(a) = −wP . For each one of the two arcs a corre-

sponding to the two semi-infinite paths we set κ(a) = 0, κ′(a) =W and c(a) = 0.
For an arc a = (tP , sP ′) of A2 we set κ(a) = 0, κ′(a) = ∞ and c(a) = 0. Finally
we set s = sP (−) and t = tP (+) .

Lemma 1. For every feasible coloring w of an instance I of Pmc, there is a
maximum flow f (w) of N(I), such that c(f (w)) = −pw(P). Moreover, given a
maximum flow f of N(I) a coloring w such that f (w) = f can be found in
polynomial-time.

Proof. We first observe that the maximum flow of N(I) is W . Indeed a flow of
amount W can be pushed from sP (−) via tP (−) and sP (+) to tP (+) . On the other
hand this is a maximum flow because the arc (sP (−) , tP (−)) constitutes a cut of
weight W .

Given a feasible coloring w of I we define the flow f (w) as the sum of W flows

f
(w)
1 , f

(w)
2 , . . . , f

(w)
W . For each color λ ∈ Λ, f (w)

λ corresponds to the independent

set Pw
λ . f

(w)
λ pushes one unit of flow from sP (−) to tP (+) over the path that

consists of the arcs of A1 corresponding to the paths of Pw
λ and the arcs of A2

connecting two consecutive paths of Pw
λ . The cost of an A2 arc is zero, and the

cost of an A1 arcs corresponding to a path P is −wP . Therefore the cost of fλ
is c(f

(w)
λ ) = −

∑
P∈Pw

λ
wP . Summing up over all colors λ we get

c(f (w)) =
∑
λ∈Λ

c(f
(w)
λ ) = −

∑
λ∈Λ

∑
P∈Pw

λ

wP = −pw(P).

f (w) satisfies the bounds κ and κ′. Indeed, for an arc a of A1 corresponding to a
path P ∈ P ′ we have f (w)(a) = |w(P )| and κ(a) = aP ≤ |w(P )| ≤ bP = κ′(a).
For the arcs of A2 we have κ(a) = 0 ≤ f (w)(a) ≤ ∞ = κ′(a).

Any maximum flow f of N(I) can be split, in polynomial time, into W unit
flows f1, f2, . . . , fW . Each unit flow uses a path from sP (−) to tP (+) . Such a path
starts with an A1 arc, and alternates between A1 and A2 arcs. The set of odd
arcs corresponds to an independent set paths of P . w is defined such that Pw

λ is
the independent set corresponding to fλ. ��

Corollary 1. The profit pw(P) is maximized when c(f (w)) is minimum.
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This implies the following a polynomial time algorithm for Pmc: Given an
instance I, calculate a minimum cost maximum flow f of N(I) and return a
coloring w such that f (w) = f .

4 Profit Maximizing Contiguous Colorings

In this section we consider contiguous colorings. We first observe that the prob-
lem is Np-Hard even if the graph is a path. In Section 4.1 we compare circularly
contiguous colorings to contiguous colorings and we provide an algorithm that
transforms a circularly contiguous coloring to a contiguous coloring with a small
loss in the profit. In Section 4.2 we consider the case where the load on the edges
is bounded by some constant and provide a polynomial-time algorithm for this
case. In Section 4.3 we provide an approximation algorithm for another special
case where the paths constitute a proper set.

Let G be a graph and f a weight function f : V (G) → N on its vertices.
An interval coloring w of G, f assigns an interval w(v) of f(v) integers to every
vertex v of G, such that f(v) ∩ f(v′) = ∅ whenever v and v′ are adjacent in G.
The weight f(K) of a clique K ⊆ V (G) is the sum

∑
v∈K f(v) of the individual

weights of its vertices. The clique number ω(G, f) of the weighted graph (G, f) is
the maximum weight of its cliques. The interval chromatic number of χ(G, f) is
the minimum number of colors used by an interval coloring of (G, f) [6]. Clearly
χ(G, f) ≥ ω(G, f). The problem of finding the interval chromatic number of a
weighted interval graph is also known as the shipbuilding problem, and also as the
dynamic storage allocation problem. This problem is known to be Np-Complete
[7]. Therefore

Lemma 2. Pmcc is Np-Hard even when G is a path.

Proof. Let (G, f) be a weighted interval graph, and P the set of paths on a
path H which represent G. Let w be any weight function on P . The instance
(H,P ,W, f, f,w) is feasible if and only if the interval chromatic number of (G, f)
is at most W . ��

4.1 Comparison with Circularly Contiguous Colorings

In this section we present the algorithm CircularToContiguous that con-
verts a circularly contiguous (a − b)-coloring wcc to a contiguous (�a/2� − b)-
coloring wc such that pw

c

(P) ≥ 3
4p

wcc

(P).
A circularly contiguous interval [i, j] is either contiguous or the disjoint union

of two contiguous intervals [j,W−1], [0, i]. The size of one of these sub-intervals is
at least half of the size of the entire interval. CircularToContiguous chooses
a color λ̄ uniformly at random and renames all the colors such that λ̄ becomes
0, (λ̄ + 1) mod W becomes 1, and so on. Then to every path P for which
the obtained coloring is not contiguous it assigns the biggest among the two
corresponding contiguous colorings.
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wc is clearly a contiguous (�a/2� − b)-coloring. For a given path P we now
calculate the expected value of |wc(P )|. Let � = |wcc(P )|, and [i, j] = wcc(P ).
We consider three cases: (a) λ̄ is not in [i+1, j]. In this case, after the renaming
phase, wc(P ) is contiguous. Therefore |wc(P )| = �. (b) λ̄ = i+ k and k <= �/2.
In this case |wc(P )| = � − k. (c) λ̄ = i + k and l/2 < k < l. In this case
|wc(P )| = k. The probability that λ̄ gets any given value is 1/W. We consider
only the case that � is even which leads to a smaller expected value. We have

E[|wc(P )|] = 1

W

⎛
⎝ �/2∑

k=1

(� − k) +
l−1∑

k=�/2+1

k + (W − �+ 1)�

⎞
⎠

=
1

W

(
3

4
�2 − �+ (W − �+ 1)�

)
= �− �

W

�

4
≥ 3

4
� =

3

4
|wcc(P )| .

We use the above inequality and linearity of expectation to calculate the
expected value of the solution.

E[pw
c

(P)] = E[w · s(wc)] = w · E[s(wc)] ≥ 3

4
E[s(wcc)] =

3

4
pw

cc

(P).

Therefore

Lemma 3. There is a randomized polynomial-time algorithm that converts a
valid circularly contiguous (a−b)-coloring wcc to a valid contiguous (�a/2�−b)-
coloring wc satisfying pw

c

(P) ≥ 3
4p

wcc

(P).

The above randomized algorithm can be de-randomized by trying every pos-
sible value of W and picking up the best result. Clearly at least one solution is
at least as good as the expected value. This de-randomization does not lead to a
polynomial-time algorithm whenever the value of W is exponential in the input
size. An efficient de-randomization can be obtained by guessing each one bit of
λ̄ at a time. We conclude

Lemma 4. There is a deterministic polynomial-time algorithm that converts a
valid circularly contiguous (a−b)-coloring wcc to a valid contiguous (�a/2�−b)-
coloring wc satisfying pw

c

(P) ≥ 3
4p

wcc

(P).

4.2 Bounded Load

Let I = (G,P ,W, a,b,w) be an instance of Prb ∈ {Pmc,Pmcc,Pmccc}, and
let v ∈ [1, n]. We denote by I(v+) the instance obtained from I by restricting
the paths set to ones that start at vertex v or before. Formally
I(v+) = (G,P(v+),W, a(v),b(v+),w(v+)) where P(v+) = {P ∈ P : s(P ) ≤ v},
a(v) = a

∣∣
P(v+) , b

(v+) = b
∣∣
P(v+) and w(v+) = w

∣∣
P(v+) .

We say that two colorings w,w′ of two subsets Q,Q′ of P agree if w(P ) =
w′(P ) whenever P ∈ Q ∩ Q′, and we denote this by w ∼ w′. Let w̄ be a col-
oring of the paths Pev where ev denotes the edge {v − 1, v}. We denote by
OptPrb(I, v, w̄) the optimum of problem Prb for the instance I(v) when the
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feasible colorings are restricted to colorings that agree with w̄. As our goal in
this section is to provide an optimal algorithm for Pmccc, and this implies an
optimal algorithm for all problems, in the sequel we refer only to this problem,
although the arguments hold for all three problems. Clearly

OptPmcc(I) = OptPmcc(I
(n)) = max {OptPmc(I, n, w̄) : w̄ is a cont. coloring ofPen} .

Consider a contiguous coloring w of P(v+), and a contiguous coloring w− of
P(v−1) that agrees w. We have

pw(P(v+)) = pw
−
(P(v−1)) +

∑
P s.t. s(P )=v−1

|w(P )| ·wP .

We note that the second term depends only on w
∣∣
Pev

. Among all contiguous

colorings w that agree with a given contiguous coloring w̄ of Pev , the second
term is a constant. Therefore the maximum is obtained at the maximum of the
first term. We conclude

OptPmcc(I, v, w̄) = max
w̄−∼w̄

{
OptPmcc(I, v − 1, w̄−)

}
+

∑
P s.t. s(P )=v−1

|w(P )| ·wP .

These equations imply the dynamic programming algorithm ContColor-

DynProg. For simplicity ContColorDynProg calculates the optimum of
the instance without explicitly finding an optimal coloring. It can be easily ex-
tended to return an optimal coloring.

Algorithm 1. ContColorDynProg I = (G,P ,W, a,b,w)

1: OptPmc(I, 1, wempty) ← 0. � wempty is the empty coloring.
2: for v = 2 to v = n do
3: for all Contiguous colorings w̄ of Pev do
4: C ← ∑

P s.t. s(P )=v−1 |w(P )| ·wP .
5: M ← 0.
6: for all Contiguous colorings w̄− of Pev−1 s.t. w̄− ∼ w̄ do
7: if OptPmcc(I, v − 1, w̄−) > M then
8: M ← OptPmcc(I, v − 1, w̄−).
9: end if
10: end for
11: OptPmcc(I, v, w̄) ← M + C.
12: end for
13: end for
14: return max {OptPmc(I, n, w̄) : w̄ is a contiguous coloring of Pen}.

The loops at lines 3 and 6 constitute the dominant part in the running time of
the algorithm. A contiguous coloring of Pev can be found by fixing a permutation
of the � = Lev paths, and assigning to each path a positive number so that their
sum does not exceed W . The number of permutations is �! and the number of
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possible assignments of the numbers is

(
W
�

)
. Therefore each one of the loops

iterates at most �!

(
W
�

)
≤ W � times, and the total number of iterations is at

most W 2·� ≤W 2·Lmax(P). Therefore

Lemma 5. There is a polynomial-time algorithm that solves Pmc

(G,P ,W, a,b,w) when G is a path network and Lmax(P) is bounded by a con-
stant.

4.3 Proper Sets of Paths

A set of paths is proper if no path in the set properly contains another. The
intersection graph of a proper set of paths on a path graph is a proper interval
graph. Let P, P ′ be two paths in a proper set P of paths. s(P ) ≤ s(P ′) if and
only of t(P ) ≤ t(P ′).

We present a simple algorithm ProperToCircular that converts any col-
oring w of a proper set of paths can to a circularly contiguous coloring wcc with
the same profit. ProperToCircular iterates over the paths according to the
total order implied by their start vertices. Every path is assigned a circular in-
terval [λ, λ+ |w(P )| − 1] where λ = 0 for the first path, and for each subsequent
path λ is the last color of the previous path, plus one. Clearly wcc is a circularly
contiguous (a− b)-coloring and pw

cc

(P) = pw(P). It remains to show that wcc

is valid.
Assume, by way of contradiction, that wcc is not valid. Then there are two

intersecting paths P, P ′ ∈ P and a color λ such that λ ∈ wcc(P ) ∩ wcc(P ′).
Assume without loss of generality that s(P ) ≤ s(P ′), and let e be the last edge
of P , i.e. e = {t(P )− 1, t(P )}. As P is a proper set of paths and P ∩P ′ �= ∅, we
have e ∈ P ′. Moreover any path P ′′ such that s(P ) ≤ s(P ′′) ≤ s(P ′) contains
the edge e. Therefore the set Q of all paths whose start vertices are between
s(P ) and s(P ′) (inclusive) is a subset of Pe. As ProperToCircular considers
the paths in the order of their start vertices, and λ was used in both P and P ′,
this means that the number of colors assigned by wcc to the paths of Q exceeds
W . However, this is exactly the number of colors assigned to these paths by
w. Then w assigns more than W colors to the paths of Pe, therefore invalid,
contradicting our assumption.

Combining with (1) we conclude

Lemma 6. When G is a path and P is a proper set of paths

OptPmccc(G,P ,W, a,b,w) = OptPmc(G,P ,W, a,b,w).

Moreover there is a polynomial-time algorithm solving Pmccc(G,P ,W, a,b,w)
optimally.

Combining this with Lemma 4 we obtain the following two corollaries.

Corollary 2. There is a deterministic polynomial-time 4/3-approximation algo-
rithm for Pmcc (G,P ,W, a,b,w) when G is a path, P is a proper set of paths,
b is a valid coloring and a ≤ �b/2�.
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5 Future Work

A few open problems regarding contiguous colorings in path networks that are
closely related to our results, namely: a) to find an approximation algorithm for
Pmcc, b) to obtain prove APX-hardness of Pmcc, c) To determine if Pmcc is
polynomial time solvable for proper intervals.

Another research direction is to extend the results to other topologies, es-
pecially those that are relevant in optical networks, such as rings, trees, grids,
bounded treewidth. Finally, as stated in the introduction, the flex-grid tech-
nology opens a wide range of problems, such as regenerator placement, traffic
grooming etc., that have been studied in the fixed-grid context, to be reconsid-
ered in the flex-grid context.
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Abstract. In this paper we explore the problem of achieving efficient packet
transmission over unreliable links with worst case occurrence of errors. In such
a setup, even an omniscient offline scheduling strategy cannot achieve stability
of the packet queue, nor is it able to use up all the available bandwidth. Hence,
an important first step is to identify an appropriate metric for measuring the ef-
ficiency of scheduling strategies in such a setting. To this end, we propose a rel-
ative throughput metric which corresponds to the long term competitive ratio
of the algorithm with respect to the optimal. We then explore the impact of the
error detection mechanism and feedback delay on our measure. We compare in-
stantaneous error feedback with deferred error feedback, that requires a faulty
packet to be fully received in order to detect the error. We propose algorithms
for worst-case adversarial and stochastic packet arrival models, and formally an-
alyze their performance. The relative throughput achieved by these algorithms is
shown to be close to optimal by deriving lower bounds on the relative through-
put of the algorithms and almost matching upper bounds for any algorithm in the
considered settings. Our collection of results demonstrate the potential of using
instantaneous feedback to improve the performance of communication systems
in adverse environments.

1 Introduction

Motivation. Packet scheduling [8] is one of the most fundamental problems in com-
puter networks. As packets arrive, the sender (or scheduler) needs to continuously make
scheduling decisions. Typically, the objective is to maximize the throughput of the link
or to achieve stability. Furthermore, the sender needs to take decisions without knowl-
edge of future packet arrivals. Therefore, many times this problem is treated as an online
scheduling problem [4,10] and competitive analysis [1,13] is used to evaluate the per-
formance of proposed solutions: the worst-case performance of an online algorithm is
compared with the performance of an offline optimal algorithm that has a priori knowl-
edge of the problem’s input.
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In this work we focus on online packet scheduling over unreliable links, where pack-
ets transmitted over the link might be corrupted by bit errors. Such errors may, for ex-
ample, be caused by an increased noise level or transient interference on the link, that
in the worst case could be caused by a malicious entity or an attacker. In the case of an
error the affected packets must be retransmitted. To investigate the impact of such errors
on the scheduling problem under study and provide provable guarantees, we consider
the worst case occurrence of errors, that is, we consider errors caused by an omniscient
and adaptive adversary [12]. The adversary has full knowledge of the protocol and its
history, and it uses this knowledge to decide whether it will cause errors on the packets
transmitted in the link at a certain time or not. Within this general framework, the packet
arrival is continuous and can either be controlled by the adversary or be stochastic.

Contributions. Packet scheduling performance is often evaluated using throughput,
measured in absolute terms (e.g., in bits per second) or normalized with respect to the
bandwidth (maximum transmission capacity) of the link. This throughput metric makes
sense for a link without errors or with random errors, where the full capacity of the link
can be achieved under certain conditions. However, if adversarial bit errors can occur
during the transmission of packets, the full capacity is usually not achievable by any
protocol, unless restrictions are imposed on the adversary [2,12]. Moreover, since a bit
error renders a whole packet unusable (unless costly techniques like PPR [5] are used),
a throughput equal to the capacity minus the bits with errors is not achievable either. As
a consequence, in a link with adversarial bit errors, a fair comparison should compare
the throughput of a specific algorithm to the maximum achievable amount of traffic that
any protocol could send across the link. This introduces the challenge of identifying an
appropriate metric to measure the throughput of a protocol over a link with adversarial
bit errors.

Relative throughput: Our first contribution is the proposal of a relative throughput met-
ric for packet scheduling algorithms under unreliable links (Section 2). This metric is a
variation of the competitive ratio typically considered in online scheduling. Instead of
considering the ratio of the performance of a given algorithm over that of the optimal
offline algorithm, we consider the limit of this ratio as time goes to infinity. This corre-
sponds to the long term competitive ratio of the algorithm with respect to the optimal.

Problem outline: We consider a sender that transmits packets to a receiver over an un-
reliable link, where the errors are controlled by an adversary. Regarding packet arrivals
(at the sender), we consider two models: (a) the arrival times and their sizes follow
a stochastic distribution, and (b) the arrival times and their sizes are also controlled
by an adversary. The general offline version of our scheduling problem, in which the
scheduling algorithm knows a priori when errors will occur, is NP-hard. This further
motivates the need for devising simple and efficient online algorithms for the problem
we consider.

Feedbackmechanisms: Then, moving to the online problem requires detecting the pack-
ets received with errors, in order to retransmit them. The usual mechanism [7], which
we call deferred feedback, detects and notifies the sender that a packet has suffered an
error after the whole packet has been received by the receiver. It can be shown that,
even when the packet arrivals are stochastic and packets have the same length, no on-
line scheduling algorithm with deferred feedback can be competitive with respect to
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Table 1. Summary of results presented. The results for deferred feedback are for one packet
length, while the results for instantaneous feedback are for 2 packet lengths �min and �max. Note
that γ = �max/�min, γ = �γ�, λp is the arrival rate of �min packets, and p and q = 1 − p are
the proportions of �min and �max packets, respectively.

Arrivals Feedback Upper Bound Lower Bound

Deferred 0 0

Adversarial Instantaneous TAlg ≤ γ/(γ + γ) TSL−Pr ≥ γ/(γ + γ)

TLL = 0, TSL ≤ 1/(γ + 1)

Deferred 0 0

Stochastic Instantaneous TAlg ≤ γ/γ TCSL−Pr ≥ γ/(γ + γ),

if λp�min ≤ γ/(2γ)

TAlg ≤ max
{
λp�min,

γ
(γ+γ)

}

if p < q TCSL−Pr ≥ min {λp�min, γ/γ},
otherwise

TLL = 0, TSL ≤ 1/(γ + 1)

the offline one. Hence, we center our study a second mechanism, which we call in-
stantaneous feedback. It detects and notifies the sender of an error the moment this
error occurs. This mechanism can be thought of as an abstraction of the emerging Con-
tinuous Error Detection (CED) framework [11] that uses arithmetic coding to provide
continuous error detection. The difference between deferred and instantaneous feed-
back is drastic, since for the instantaneous feedback mechanism, and for packets of the
same length, it is easy to obtain optimal relative throughput of 1, even in the case of
adversarial arrivals. However, the problem becomes substantially more challenging in
the case of non-uniform packet lengths. Hence, we analyze the problem for the case of
packets with two different lengths, �min and �max, where �min < �max.

Bounds for adversarial arrivals: We show (Section 3), that an online algorithm with
instantaneous feedback can achieve at most almost half the relative throughput with
respect to the offline one. It can also be shown that two basic scheduling policies, giving
priority either to short (SL – Shortest Length) or long (LL – Longest Length) packets,
are not efficient under adversarial errors. Therefore, we devise a new algorithm, called
SL-Preamble, and show that it achieves the optimal online relative throughput. Our
algorithm, transmits a “sufficiently” large number of short packets while making sure
that long packets are transmitted from time to time.

Bounds for stochastic arrivals: In the case of stochastic packet arrivals (Section 4), as
one might expect, we obtain better relative throughput in some cases. The results are
summarized in Table 1. We propose and analyze an algorithm, called CSL-Preamble,
that achieves relative throughput that is optimal. This algorithm schedules packets ac-
cording to SL-Preamble, giving preference to short packets depending on the parameters
of the stochastic distribution of packet arrivals. (If the distribution is not known, then
one needs to use the algorithm developed for the case of adversarial arrivals that needs
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no knowledge a priori.) We show that the performance of algorithm CSL-Preamble is
optimal for a wide range of parameters of stochastic distributions of packets arrivals,
by proving a matching upper bound for the relative throughput of any algorithm in this
setting.(Analyzing algorithms yields lower bounds on the relative throughput, while an-
alyzing adversarial strategies yields upper bounds on the relative throughput.)

A note on randomization:All the proposed algorithms are deterministic. Interestingly, it
can be shown that using randomization does not improve the results; the upper bounds
already discussed hold also for the randomized case.

To the best of our knowledge, this is the first work that investigates in depth the
impact of adversarial worst-case link errors on the throughput of the packet scheduling
problem. Collectively, our results (see Table 1) show that instantaneous feedback can
achieve a significant relative throughput under worst-case adversarial errors (almost half
the relative throughput that the offline optimal algorithm can achieve). Furthermore, we
observe that in some cases, stochastic arrivals allow for better performance.

Omitted results, proofs and discussion can be found in the full version [3].

Related Work. A vast amount of work exists for online (packet) scheduling. Here we
focus only on the work that is most related to ours. For more information the reader can
consult [9] and [10]. The work in [6] considers the packet scheduling problem in wire-
less networks. Like our work, it looks at both stochastic and adversarial arrivals. Unlike
our work though, it considers only reliable links. Its main objective is to achieve maxi-
mal throughput guaranteeing stabiliy, meaning bounded time from injection to delivery.
The work in [2] considers online packet scheduling over a wireless channel, where both
the channel conditions and the data arrivals are governed by an adversary. Its main ob-
jective is to design scheduling algorithms for the base-station to achieve stability in
terms of the size of queues of each mobile user. Our work does not focus on stability,
as we assume errors controlled by an unbounded adversary that can always prevent it.
The work in [12] considers the problem of devising local access control protocols for
wireless networks with a single channel, that are provably robust against adaptive ad-
versarial jamming. At certain time steps, the adversary can jam the communication in
the channel so that the wireless nodes do not receive messages (unlike our work, where
the receiver might receive a message, but it might contain bit errors). Although the
model and the objectives of this line of work is different from ours, it shares the same
concept of studying the impact of adversarial behavior on network communication.

2 Model

Network Setting. We consider a sending station transmitting packets over a link. Pack-
ets arrive at the sending station continuously and may have different lengths. Each
packet that arrives is associated with a length and its arrival time (based on the station’s
local clock). We denote by �min and �max the smallest and largest lengths, respectively,
that a packet may have. We use the notation γ = �max/�min, γ = �γ� and γ̂ = �γ�−1.
The link is unreliable, that is, transmitted packets might be corrupted by bit errors. We
assume that all packets are transmitted at the same bit rate, hence the transmission time
is proportional to the packet’s length.



Measuring the Impact of Adversarial Errors on Packet Scheduling Strategies 265

Arrival Models. We consider two models for packet arrivals.
Adversarial: The packets’ arrival time and length are governed by an adversary. We
define an adversarial arrival pattern as a collection of packet arrivals caused by the
adversary.
Stochastic: We consider a probabilistic distribution Da, under which packets arrive at
the sending station and a probabilistic distributionDs, for the length of the packets. In
particular, we assume packets arriving according to a Poisson process with parameter
λ > 0. When considering two packet lengths, �min and �max, each packet that arrives
is assigned one of the two lengths independently, with probabilities p > 0 and q > 0
respectively, where p+ q = 1.

Packet Bit Errors. We consider an adversary that controls the bit errors of the pack-
ets transmitted over the link. An adversarial error pattern is defined as a collection of
error events on the link caused by the adversary. More precisely, an error event at time
t specifies that an instantaneous error occurs on the link at time t, so the packet that
happens to be on the link at that time is corrupted with bit errors. A corrupted packet
transmission is unsuccessful, therefore the packet needs to be retransmitted in full. As
mentioned before, we consider an instantaneous feedback mechanism for the notifica-
tion of the sender about the error. The instant the packet suffers a bit error the sending
station is notified (hence it can stop transmitting the remainder of the packet, if any).

The Power of the Adversary. Adversarial models are typically used to argue about
the algorithm’s behavior in worst-case scenarios. In this work we assume an adaptive
adversary that knows the algorithm and the history of the execution up to the current
point in time. In the case of stochastic arrivals, this includes all stochastic packet arrivals
up to this point, and the length of the packets that have arrived. However it only knows
the distribution but neither the exact timing nor the length of the packets arriving beyond
the current time.

Note that in the case of deterministic algorithms, in the model of adversarial arrivals
the adversary has full knowledge of the computation, as it controls both packet arrivals
and errors, and can simulate the behavior of the algorithm in the future (there are no ran-
dom bits involved in the computation). This is not the case in the model with stochastic
arrivals, where the adversary does not control the timing of future packet arrivals, but
knows only about the packet arrival and length distributions.

Efficiency Metric: Relative Throughput. Due to dynamic packet arrivals and adver-
sarial errors, the real link capacity may vary throughout the execution. Therefore, we
view the problem of packet scheduling in this setting as an online problem and we pur-
sue long-term competitive analysis. Specifically, let A be an arrival pattern and E an
error pattern. For a given deterministic algorithm Alg, let LAlg(A,E, t) be the total
length of all the successfully transferred (i.e., non-corrupted) packets by time t under
patterns A and E. Let OPT be the offline optimal algorithm that knows the exact ar-
rival and error patterns before the start of the execution. We assume that OPT devises
an optimal schedule that maximizes at each time t the successfully transferred packets
LOPT(A,E, t). Observe that, in the case of stochastic arrivals, the worst-case adver-
sarial error pattern may depend on stochastic injections. Therefore, we view E as a
function of an arrival pattern A and time t. In particular, for an arrival pattern A we
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consider a function E(A, t) that defines errors at time t based on the behavior of a
given algorithm Alg under the arrival pattern A up to time t and the values of function
E(A, t′) for t′ < t.

Let A denote a considered arrival model, i.e., a set of arrival patterns in case of
adversarial, or a distribution of packet injection patterns in case of stochastic, and let
E denote the corresponding adversarial error model, i.e., a set of error patterns derived
by the adversary, or a set of functions defining the error event times in response to
the arrivals that already took place in case of stochastic arrivals. In case of adversarial
arrivals, we require that any pair of patternsA ∈ A andE ∈ E occurring in an execution
must allow non-trivial communication, i.e., the value ofLOPT(A,E, t) in the execution
is unbounded with t going to infinity. In case of stochastic arrivals, we require that
any adversarial error function E ∈ E applied in an execution must allow non-trivial
communication for any stochastic arrival pattern A ∈ A.

For arrival pattern A, adversarial error function E and time t, we define the relative
throughput TAlg(A,E, t) of a deterministic algorithm Alg by time t as:

TAlg(A,E, t) =
LAlg(A,E, t)

LOPT(A,E, t)
.

For completeness, TAlg(A,E, t) equals 1 if LAlg(A,E, t) = LOPT(A,E, t) = 0.
We define the relative throughput of Alg in the adversarial arrival model as:

TAlg = inf
A∈A,E∈E

lim
t→∞

TAlg(A,E, t) ,

while in the stochastic arrival model it needs to take into account the
random distribution of arrival patterns in A, and is defined as follows:

TAlg = inf
E∈E

lim
t→∞

EA∈A[TAlg(A,E, t)] .

To prove lower bounds on relative throughput, we compare the performance of a
given algorithm with that of OPT. When deriving upper bounds, it is not necessary to
compare the performance of a given algorithm with that of OPT, but instead, with the
performance of some carefully chosen offline algorithm OFF. As we demonstrate later,
this approach leads to accurate upper bound results.

Finally, we consider work conserving online scheduling algorithms, in the follow-
ing sense: as long as there are pending packets, the sender does not cease to schedule
packets. Note that it does not make any difference whether one assumes that offline al-
gorithms are work-conserving or not, since their throughput is the same in both cases (a
work conserving offline algorithm always transmits, but stops the ongoing transmission
as soon as an error occurs and then continues with the next packet). Hence for simplicity
we do not assume offline algorithms to be work conserving.

3 Adversarial Arrivals

This section focuses on adversarial packet arrivals. First, observe that it is relatively
easy and efficient to handle packets of only one length.

Proposition 1. Any work conserving online scheduling algorithm with instantaneous
feedback has optimal relative throughput of 1 when all packets have the same length.
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3.1 Upper Bound for at Least Two Packet Lengths

Let Alg be any deterministic algorithm for the considered packet scheduling problem.
In order to prove upper bounds, Alg will be competing with an offline algorithm OFF.
The scenario is as follows. We consider an infinite supply of packets of length �max

and initially assume that there are no packets of length �min. We define as a link error
event, the point in time when the adversary corrupts (causes an error to) any packet
that happens to be in the link at that specific time. We divide the execution in phases,
defined as the periods between two consecutive link error events. We distinguish 2 types
of phases as described below and give a description for the behavior of the adversarial
models A and E . The adversary controls the arrivals of packets at the sending station
and error events of the link, as well as the actions of algorithm OFF. The two types of
phases are as follows:

1. A phase in which Alg starts by transmitting an �max packet (the first phase of the
execution belongs to this class). Immediately after Alg starts transmitting the �max

packet, a set of γ̂ �min packets arrive, that are scheduled and transmitted by OFF.
After OFF completes the transmission of these packets, a link error occurs, so Alg
cannot complete the transmission of the �max packet (more precisely, the packet
undergoes a bit error, so it needs to be retransmitted). Here we use the fact that
γ̂ < γ.

2. A phase in which Alg starts by transmitting an �min packet. In this case, OFF trans-
mits an �max packet. Immediately after this transmission is completed, a link er-
ror occurs. Observe that in this phase Alg has transmitted successfully several �min

packets (up to γ of them).

Let A and E be the specific adversarial arrival and error patterns in an execution of
Alg. Let us consider any time t (at the end of a phase for simplicity) in the execution.
Let v1 be the number of phases of type 1 executed by time t. Similarly, let v2(j) be the
number of phases of type 2 executed by time t in which Alg transmits j �min packets,
for j ∈ [1, γ]. Then, the relative throughput can be computed as follows.

TAlg(A,E, t) =
�min

∑γ
j=1 jv2(j)

�max

∑γ
j=1 v2(j) + �minγ̂v1

· (1)

From the arrival pattern A, the number of �min packets injected by time t is exactly
γ̂v1. Hence,

∑γ
j=1 jv2(j) ≤ γ̂v1. It can be easily observed from Eq. 1 that the relative

throughput increases with the average number of �min packets transmitted in the phases
of type 2. Hence, the throughput would be maximal if all the �min packets are used in
phases of type 2 with γ packets. With the above we obtain the following theorem.

Theorem 1. The relative throughput of Alg under adversarial patterns A and E and
up to time t is at most γ

γ+γ ≤
1
2 (the equality holds iff γ is an integer).

3.2 Lower Bound and SL-Preamble Algorithm

Two natural scheduling policies one could consider are the Shortest Length (SL) and
Longest Length (LL) algorithms; the first gives priority to �min packets, whereas the
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second gives priority to the �max packets. However, these two policies are not efficient
in the considered setting; LL cannot achieve a relative throughput more than 0 while
SL achieves at most T = 1

γ+1 . Therefore, we present algorithm SL-Preamble that tries
to combine, in a graceful and efficient manner, these two policies.

Algorithm description: At the beginning of the execution and whenever the sender is
(immediately) notified by the instantaneous feedback mechanism that a link error oc-
curred, it checks the queue of pending packets to see whether there are at least γ packets
of length �min available for transmission. If there are, then it schedules γ of them —
this is called a preamble — and then the algorithm continues to schedule packets us-
ing the LL policy. Otherwise, if there are not enough �min packets available, it simply
schedules packets following the LL policy.

Algorithm analysis (sketch): We show that algorithm SL-Preamble achieves a relative
throughput that matches the upper bound shown in the previous subsection, and hence,
it is optimal. According to the algorithm there are four types of phases that may occur.

1. Phase starting with �min packet and has length L < γ�min

2. Phase starting with �min packet and length L ≥ γ�min

3. Phase starting with �max packet and has length L < �max

4. Phase starting with �max packet and length L ≥ �max

For phases of type 1, SL-Preamble is not able to transmit successfully the γ packets
�min of the preamble, but clearly OPT is only able to complete at most as much work
(understood as the total length of sent packets). For phases of type 2 and 4, the amount
of work completed by OPT can be at most the work completed by SL-Preamble plus
�max (and hence the former is at most twice the latter). In the case of phases of type
3, SL-Preamble is not able to successfully transmit any packet, whereas OPT might
transmit up to γ̂�min packets. Amortizing the work completed by OPT in these phases
with those completed in the preambles of types 1 and 2 by algorithm SL-Preamble is the
most challenging part of the proof. This process is divided into two cases, depending
on whether the number of type 3 phases is bounded or not, leading to the following:

Theorem 2. The relative throughput of Algorithm SL-Preamble is at least γ
γ+γ .

4 Stochastic Arrivals

We now turn our attention to stochastic packet arrivals.

4.1 Upper Bounds for at least Two Packet Lengths

In order to find the upper bound of the relative throughput, we consider again an arbi-
trary work conserving algorithm Alg. Recall that we assume that λp > 0 and λq > 0,
which implies that there are in fact injections of packets of both lengths �min and �max

(recall the definitions of λ, p and q from Section 2). We define the following adversarial
error model E .
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1. When Alg starts a phase by transmitting an �max packet then,
(a) If OFF has �min packets pending, then the adversary extends the phase so that

OFF can transmit successfully as many �min packets as possible, up to γ̂. Then,
it ends the phase so that Alg does not complete the transmission of the �max

packet (since γ̂�min < �max).
(b) If OFF does not have any �min packets pending, then the adversary inserts a link

error immediately (say after infinitesimally small time ε).
2. When Alg starts a phase by transmitting an �min packet then,

(a) If OFF has a packet of length �max pending, then the adversary extends the phase
so OFF can transmit an �max packet. By the time this packet is successfully
transmitted, the adversary inserts an error and finishes the phase. Observe that
in this case Alg was able to successfully transmit up to γ packets �min.

(b) If OFF has no �max packets pending, then the adversary inserts an error imme-
diately and ends the phase.

Observe that in phases of type 1b and 2b, neither OFF nor Alg are able to transmit any
packet. These phases are just used by the adversary to wait for the conditions required
by phases of type 1a and 2a to hold. In those latter types some packets are successfully
transmitted (at least by OFF). Hence we call them productive phases. Analyzing a pos-
sible execution, in addition to the concept of phase that we have already used, we define
rounds. There is a round associated with each productive phase. The round ends when
its corresponding productive phase ends, and starts at the end of the prior round (or at
the start of the execution if no prior round exists). Depending on the type of productive
phase they contain, rounds can be classified as type 1a or 2a.

Let us fix some (large) time t. We denote by r(j)1a the number of rounds of type 1a
in which j ≤ γ̂ �min packets are sent by OFF completed by time t. The value r(j)2a

with j ≤ γ �min packets sent by Alg, is defined similarly for rounds of type 2a. (Here
rounding effects do not have any significant impact, since they will be compensated
by the assumption that t is large.) We assume that t is a time when a round finishes.
Let us denote by r the total number or rounds completed by time t, i.e.,

∑γ
j=1 r

(j)
2a +∑γ̂

j=1 r
(j)
1a = r. The relative throughput by time t can be computed as

TAlg(A,E, t) =
�min

∑γ
j=1 j · r

(j)
2a

�max

∑γ
j=1 r

(j)
2a + �min

∑γ̂
j=1 j · r

(j)
1a

. (2)

From this expression, we can show the following result.

Theorem 3. No algorithm Alg has relative throughput larger than γ
γ .

Proof. It can be observed in Eq. 2 that, for a fixed r, the lower the value of r(j)1a the
higher the relative throughput. Regarding the values r(j)2a , the throughput increases when
there are more rounds in the larger values of j. E.g., under the same conditions, a
configuration with r(j)2a = k1 and r(j+1)

2a = k2, has lower throughput than one with
r
(j)
2a = k1 − 1 and r(j+1)

2a = k2 + 1. Then, the throughput is maximized when r(γ)2a = r

and the rest of values r(j)1a and r(j)2a are 0, which yields the bound.

To provide tighter bounds for some special cases, we prove the following lemma.
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Lemma 1. Consider any two constants η, η′ such that 0 < η < λ < η′. Then:

(a) there is a constant c > 0, dependent only on λ, p, η, such that for any time t ≥ �min,
the number of packets of length �min (resp., �max) injected by time t is at least tηp
(resp., tηq) with probability at least 1− e−ct;

(b) there is a constant c′ > 0, dependent only on λ, p, η′, such that for any time t ≥
�min, the number of packets of length �min (resp., �max) injected by time t is at
most tη′p (resp., tη′q) with probability at least 1− e−c′t.

Now we can show the following result.

Theorem 4. Let p < q. Then, the relative throughput of any algorithm Alg is at most

min
{
max
{
λp�min,

γ
γ+γ

}
, γγ

}
.

Proof. The claim has two cases. In the first case, λp�min ≥ γ
γ . In this case, the upper

bound of γ
γ is provided by Theorem 3. In the second case λp�min <

γ
γ . For this case,

define two constants η, η′ such that 0 < η < λ < η′ and η′p < ηq. Observe that these
constants always exist. Then, we prove that the relative throughput of any algorithm

Alg in this case is at most max
{
η′p�min,

γ
γ+γ

}
.

Let us introduce some notation. We use amin
t and amax

t to denote the number of
�min and �max packets, respectively, injected up to time t. Let rofft and sofft be the
number of �max and �min packets respectively, successfully transmitted by OFF by
time t. Similarly, let salgt be the number of �min packets transmitted by algorithm Alg

by time t. Observe that salgt ≥ rofft ≥ � s
alg
t

γ �.
Let us consider a given execution and the time instants at which the queue of OFF is

empty of �min packets in the execution. We consider two cases.
Case 1: For each time t, there is a time t′ > t at which OFF has the queue empty of
�min packets. Let us fix a value δ > 0 and define time instants t0, t1, . . . as follows. t0
is the first time instant no smaller than �min at which OFF has no �min packet and such
that amin

t0 > �max. Then, for i > 0, ti is the first time instant not smaller than ti−1+δ at
which OFF has no �min packets. The relative throughput at time ti can be bounded as

TAlg(A,E, ti) ≤
salgti �min

roffti �max + amin
ti �min

≤
salgti �min

� s
alg
ti

γ ��max + amin
ti �min

.

This bound grows with salgti when amin
ti > �max, which leads to a bound on the relative

throughput as follows:

TAlg(A,E, ti) ≤
amin
ti �min

amin
ti ( �max

γ + �min)− �max

=
amin
ti γ

amin
ti (γ + γ)− γγ .

Which as i goes to infinity yields a bound of γ
γ+γ .

Case 2: There is a time t∗ after which OFF never has the queue empty of �min packets.
Recall that for any t ≥ �min, from Lemma 1, we have that the number of �min

packets injected by time t satisfy amin
t > η′pt with probability at most exp(−c′t)

and the injected max packets satisfy amax
t < ηqt with probability at most exp(−ct).

By the assumption of the theorem and the definition of η and η′, η′p < ηq. Let us define
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t∗ = 1/(ηq− η′p). Then, for all t ≥ t∗ it holds that amax
t ≥ amin

t + 1, with probability
at least 1 − exp(−c′t) − exp(−ct). If this holds, it implies that OFF will always have
�max packets in the queue.

Let us fix a value δ > 0 and define t0 = max(t∗, t
∗), and the sequence of instants

ti = t0 + iδ, for i = 0, 1, 2, . . .. By the definition of t0, at all times t > t0 OFF is
successfully transmitting packets. Using Lemma 1, we can also claim that in the interval
(t0, ti] the probability that more than η′piδ packets �min are injected is no more than
exp(−c′′iδ).

With the above, the relative throughput at any time ti for i ≥ 0 can be bounded as

TAlg(A,E, ti) ≤
(amin

t0 + η′p · iδ)�min

rofft0 �max + sofft0 �min + iδ

with probability at least 1 − exp(−cti)− exp(−c′ti)− exp(−c′′ti). Observe that as i
goes to infinity the above bound converges to η′p�min, while the probability converges
exponentially fast to 1.

4.2 Lower Bound and Algorithm CSL-Preamble

In this section we consider algorithm CSL-Preamble (stands for Conditional
SL-Preamble), which builds on algorithm SL-Preamble presented in Section 3.2, in
order to solve packet scheduling in the setting of stochastic packet arrivals. The algo-
rithm, depending on the arrival distribution, either follows the SL policy (giving priority
to �min packets) or algorithm SL-Preamble. More precisely, algorithm CSL-Preamble
acts as follows:

If λp�min >
γ
2γ then algorithm SL is run, otherwise algorithm SL-Preamble is

executed.

Theorem 5. The relative throughput of algorithm CSL-Preamble is not smaller than
γ

γ+γ for λp�min ≤ γ
2γ , and not smaller thanmin

{
λp�min,

γ
γ

}
otherwise.

Proof. (Sketch) We break the analysis of the algorithm into cases according to the prob-
ability of �min packet arrivals and consider the time line of executions ignoring any
OPT-unproductive periods.

Case λp�min ≤ γ
2γ . In this case algorithm CSL-Preamble runs algorithm SL-Preamble,

achieving, per Theorem 2, relative throughput of at least γ
γ+γ under any error pattern.

Case γ
2γ ≤ λp�min ≤ 1. It can be proved that the relative throughput is not smaller than

min
{
ηp�min,

γ
γ

}
, for any η satisfying λ/2 < η < λ. To prove it, we consider time

points ti being multiples of �max and show that with high probability, at those points
there have already arrived at least tiηp packets. Using this property, we show that the

relative throughput at time tj is at least min
{
ηp�min − γ�min

tj
, (1− 1/

√
j) · γγ
}

with

probability at least 1 − c′ exp (−ct√j), for some constant c, c′ > 0 dependent only on
λ, η, p. It follows that if j grows to infinity, we obtain the desired relative throughput.

Case λp�min > 1. In this case we simply observe that we get at least the same rel-
ative throughput as in case λp�min = 1, because we are dealing with executions
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saturated with packets of length �min with probability converging to 1 exponentially
fast. (Recall that we use the same algorithm SL in the specification of CSL-Preamble,
both for λp�min = 1 and for λp�min > 1.) Consequently, the relative throughput in
this case is at least min {ηp�min, γ/γ}, for any λ/2 < η < λ, and thus it is at least
min {λp�min, γ/γ} ≥ min {1, γ/γ} = γ/γ.
Combining the three cases, we get the claimed result.

Observe that if we compare the upper bounds on relative throughput shown in the
previous subsection with the lower bounds of the above theorem, then we may conclude
that in the case where γ is an integer, algorithm CSL-Preamble is optimal (wrt relative
throughput). In the case where γ is not an integer, there is a small gap between the upper
and lower bound results.

5 Conclusions

This work has considered packet scheduling with dynamic packet arrivals and adversar-
ial bit errors. We studied scenarios with two different packet lengths, developed efficient
algorithms, and proved upper and lower bounds for relative throughput in average-case
(i.e., stochastic) and worst-case (i.e., adversarial) online packet arrivals. These results
demonstrate that exploring instantaneous feedback mechanisms (and developing more
effective implementations of it) has the potential to significantly increase the perfor-
mance of communication systems.

Several future research directions emanate from this work. Some of them concern
the exploration of variants of the model considered, for example, assuming that pack-
ets that suffer errors are not retransmitted (which applies when Forward Error Correc-
tion [11] is used), considering packets of more than two lengths, or assuming bounded
buffers. Other lines of work deal with adding QoS requirements to the problem, such
as requiring fairness in the transmission of the packets from different flows or imposing
deadlines to the packets. In the considered adversarial setting, it is easy to see that even
an omniscient offline solution cannot achieve stability: for example, the adversary could
prevent any packet from being transmitted correctly. Therefore, an interesting extension
of our work is to study conditions (e.g., restrictions on the adversary) under which an
online algorithm could maintain stability, and still be efficient with respect to relative
throughput. Finally, we believe that the definition of relative throughput as proposed
here can be adapted, possibly in a different context, to other metrics and problems.
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Abstract. We consider a variant of the online buffer management prob-
lem in network switches, called the k-frame throughput maximization
problem (k-FTM). Large data, called frames, carried on the Internet
are split into small k packets by a sender, and the receiver can recon-
struct each frame only if he/she accepts all the k constituent packets of
the frame. Packets pass through network switches on the Internet, and
each switch is equipped with a FIFO buffer to temporarily store arriv-
ing packets. Since the size of the buffer is bounded, some packets must
be discarded if it is full. It is impossible to reconstruct frames including
discarded packets any more. Our goal is to maximize the number of re-
constructed frames. Kesselman et al. proposed this problem, and showed
that any online algorithm has an unbounded competitive ratio even when
k = 2. Hence, they considered the “order-respecting” variant of k-FTM.
They showed that the competitive ratio of their algorithm is at most
( 2kB
�B/k	 + k) for any B ≥ k, where B is the size of the buffer. Also, they

gave a lower bound of B
�2B/k	 on the competitive ratio when 2B ≥ k and

k is a power of 2. Furthermore, they proved that the competitive ratio
of a greedy algorithm is at most (11 + 8

B−1
) for any B(≥ 2) and k = 2.

We analyze a greedy algorithm for k = 2, and show that its compet-
itive ratio is at most 3 for any B, improving the previous upper bound
of 4B

�B/2	 +2(≥ 10). Moreover, we show that the competitive ratio of any
deterministic algorithm is at least 3 for any B in k = 2, which matches
our upper bound.

1 Introduction

Large and sequential data are currently used by real-time multimedia applica-
tions on the Internet. The data are called frames, which are too large to be
transferred over the Internet. (For example, each frame in the case of video data
corresponds to each picture of the video.) Thus, they are fragmented into small
packets. When all the packets arrive at the receiver, each frame is reconstructed
from the packets. Then, each packet has to pass through many switches (routers)
on the Internet. Buffer management in the switches can become a bottleneck for
transferring packets to the receiver. In particular, each switch is equipped with
a buffer to store packets arriving at a burst. However, if the number of arriving
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The original version of this chapter was revised: The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI: _10.1007/978-3-319-03758-9  29

c© Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-319-03578-9_29


Optimal Buffer Management for 2-Frame Throughput Maximization 275

packets surpasses the size of the buffer, the switch has to decide which packets
can be accepted for insertion into its buffer.

Recently, this kind of problem was modeled as online problems, and a great
amount of work has been done. Many models have been proposed, of which the
most basic one is as follows [1]: A switch is equipped with a buffer (FIFO queue)
of bounded size B. An input consists of a sequence of events. Each event is an
arrival event or a send event. At an arrival event, one packet arrives at an input
port. Each packet is of unit size and has a value that represents its priority. A
buffer can store packets provided that the total size of stored packets does not
exceed B, namely, a switch can store up to B packets at the same time. Stored
packets are delivered in the FIFO order. At an arrival event, if the buffer is full,
the new packet is rejected. If there is room for the new packet, an online policy
determines, without knowledge of the future, whether to accept the packet. At
each send event, the packet at the head of the queue is transmitted. The goal of
the problem is to maximize the sum of the values of the transmitted packets. The
performance of an online algorithm is evaluated by competitive analysis [5,16].
If, for any input σ, a deterministic online algorithm ALG gains the benefit,
which is at least 1/c of the optimal offline policy for σ, then we say that ALG
is c-competitive.

Kesselman et al. [11] focused on the buffer management with frame reconstruc-
tion, and formulated the k-frame throughput maximization problem (k-FTM),
where k (≥ 2) is an integer. Each arriving packet belongs to some frame, and
every frame consists of exactly k packets. We say that a frame f is completed
if all the packets constituting f are transmitted. Otherwise, we say that f is
incompleted. Our goal is to maximize the number of completed frames.

Previous Results. Kesselman et al. [11] showed that the competitive ratio of
any algorithm for k-FTM is unbounded even when k = 2. The order of arrival of
each packet in the instance used in the proof does not have the relation between
packets in different frames. However, such an instance does not reflect the actual
situation of networks since each packet generally arrives in the order of depar-
ture in a network such as a TCP/IP network. Hence, the authors introduced the
order-respecting setting as follows: For any frame f , and the i(∈ [1, k])th arriving
packet p which is included in f , we call p the i-packet in f . The arrival order of
the j-packets of frames fi and fi′ must obey the arrival order of the j′-packets
of fi and fi′ (j

′ < j) (a formal definition will be given later). We call the k-FTM
problem in the order-respecting setting the order-respecting k-frame throughput
maximization problem (k-OFTM). For the k-OFTM problem, Kesselman et al.
showed a lower bound of B

�2B/k� on the competitive ratio for any determinis-

tic algorithm, where B ≥ k/2 and k is a power of 2. Also, they presented a
( 2kB
�B/k� + k)-competitive deterministic algorithm, called StaticPartitioning

(SPA), when B ≥ k. The authors proved that for k ≥ 3, a greedy algorithm
for k-OFTM is not competitive. They also showed that the competitive ratio of
the preemptive greedy algorithm for 2-OFTM is at most 11+ 8/(B− 1) for any
B(≥ 2).
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Our Results. In this paper, we analyze a greedy algorithm (GR) for 2-OFTM,
and improve the upper bound from 2kB

�B/k� + k = 4B
�B/2� + 2 ≥ 10 to 3 for any B.

Furthermore, we prove a lower bound of 3 for any deterministic algorithm for any
B in 2-OFTM, which matches our upper bound. In computational complexity
theory, it is common to evaluate the performance of algorithms by its asymptotic
behavior, e.g., when k approaches infinity. However, from a practical point of
view, it is natural to assume that the number of packets constructing each frame,
namely k, is bounded. Thus, it is significant to analyze the competitive ratio
when k is constant.

Let us briefly explain our idea of improvement. Our main idea is to “assign”
packets in frames completed by an online algorithm ALG to the 1-packet in
each frame completed by an optimal offline algorithm OPT at the end of the
input. Suppose that any 1-packet (2-packet, respectively) in ALG’s completed
frame is assigned at most x times (y times, respectively). Then, it can be shown
that the competitive ratio of ALG is at most x + y. We can consider that the

authors in [11] showed that x = y = B/2+2B
B/2 = 5 for their online algorithm

SPA and x = 1, y = 2 + 8(1 + 1
B−1 ) for some greedy algorithm. (Note that

they showed the results NOT using “assignments” of packets transmitted by an
online algorithm.) We prove that the assignment such that x = 1 and y = 2
can be constructed in order to show that the competitive ratio of GR is at most
3. We try to assign each GR’s packet at the moment when it arrives at the
buffer. However, when we assign GR’s 1-packet p1 to OPT ’s 1-packet, we do
not know whether or not to complete the frame f including p1 in the future.
Specifically, the 2-packet in f can be discarded by GR after p1 is transmitted. If
p1 is assigned to some 1-packet which arrives at OPT ’s buffer, the competitive
ratio of GR cannot correctly be evaluated. To that end, if we assign the 1-packet
in an incompleted frame, (that is, the 2-packet corresponding to the 1-packet is
discarded by GR,) then we assign a packet in a completed frame to the discarded
2-packet. Hence, we can bound the competitive ratio of GR from above.

Related Results. Scalosub et al. [15] proposed the max frame goodput
problem which is a generalized problem of k-FTM. A set of frames is called
a stream in this problem, and a constraint is imposed on the arrival order of
each packet in frames which belong to the same stream. They established an
O((kMB+M)k+1)-competitive deterministic algorithm, where k is the number
of packets in each frame, B is the size of a buffer, and M is the number of
streams. Furthermore, they showed that the competitive ratio of any determin-
istic algorithm is Ω(kM/B).

Many studies concentrate on buffer management. The most basic model is
that by Aiello et al. [1] consisting of a single FIFO queue as mentioned above. In
this model, each packet can take one of two values: 1 or α(> 1). Andelman et al.
[4] generalized the values of packets to any value between 1 and α. The goal
of these problems is to maximize the sum of the values of packets transmitted
by an algorithm. Results of the competitiveness on these models are given in
[9,17,10,3,2,7].
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In addition, some research focuses on reconstructing frames from packets ar-
riving at buffers. In the online set packing problem by Emek et al. [6], elements
of each set are given in an online fashion, and the goal of this problem is to
maximize the number of sets whose elements are completed. Sets and elements
in each set are regarded as frames and packets in each frame, respectively. The
numbers of elements in any two given sets are not necessarily equivalent. Let
kmax denote the maximum number of elements which belong to one set, and
let σmax denote the maximum number of elements that may arrive simultane-
ously. Emek et al. designed a kmax

√
σmax-competitive randomized algorithm.

Moreover, some variants of this problem have been studied [8,13,14].

2 Preliminaries

2.1 Order-Respecting k-Frame Throughput Maximization Problem
(k-OFTM)

In this section, we give a formal description of k-OFTM. Arriving packets, each
of size 1, are stored in a buffer. The buffer, which is a FIFO queue, can store
B packets at the same time. An input is a sequence of phases starting from the
0th phase. Each phase consists of an arrival subphase and a delivery subphase.
At an arrival subphase, some packets arrive at the buffer, and the task of an
algorithm for each arriving packet p is to decide whether to accept or reject it.
An algorithm can discard a packet p′ existing in the current buffer, and make
space in order to accept an arriving packet (preempt p′). If a packet p′′ is rejected
or preempted, we say that p′′ is dropped. If there is no space to accept arriving
packets in the buffer, they have to be rejected. If a packet is accepted, it is
stored at the tail of the queue. Packets accepted at the same arrival subphase
can be inserted into the queue in an arbitrary order. If a packet p arrives at the
ith arrival subphase, we write arr(p) = i. Next, a delivery subphase follows the
arrival subphase. At this subphase, the first packet of the queue is transmitted
if the buffer is not empty. Each frame f consists of k packets p1, . . . , pk, where
k(≥ 2) is an integer. For any frame f = {p1, . . . , pk} such that pi (i ∈ [1, k]) is a
packet constructing f and arr(p1) ≤ · · · ≤ arr(pk), we call pi the i-packet in f for
any i ∈ [1, k]. For any frames fi = {pi,1, . . . , pi,k} and fi′ = {pi′,1, . . . , pi′,k} such
that for any � ∈ [1, k], pi,� and pi′,� are the �-packets, and for any j, j′ = 1, . . . , k,
arr(pi,j) ≤ arr(pi′,j) ⇔ arr(pi,j′) ≤ arr(pi′,j′ ), which is called order-respecting.
For any algorithm ALG, and any frame f = {p1, . . . , pk} such that they arrive
at the buffer of ALG, we say that f of ALG is completed if all the packets
which construct f , namely p1, . . . , pk, are transmitted by ALG. The benefit of an
algorithm is the number of completed frames. Therefore, our goal is to maximize
the number of completed frames. The benefit gained by an algorithm ALG for
an input σ is denoted by VALG(σ).

Without loss of generality, we can assume that OPT never preempts packets.
In addition, we assume that OPT never accepts packets in an incompleted frame.
For ease of presentation, for any i-packet and j(�= i)-packet such that they belong
to the same frame, we say that the i-packet corresponds to the j-packet. Also,



278 J. Kawahara and K.M. Kobayashi

for any algorithm ALG and any packet p which arrives at ALG’s buffer, we say
that p is a packet of ALG.

2.2 Greedy Algorithm

In this section, we give the definition of a preemptive greedy algorithm (GR)
for k = 2 which is analyzed in this paper. In brief, GR’s favorite packets are as
follows: (A 2-packet for which the 1-packet corresponding to it has been trans-
mitted) > (A 2-packet for which the 1-packet corresponding to it has already
arrived, but has not been transmitted) = (A 1-packet for which the 2-packet
corresponding to it has already arrived, but has not been transmitted) > (A
1-packet for which the 2-packet corresponding to it has not yet arrived).

Next, we discuss the formal definition. When k = 2, packets stored in GR’s
buffer can be classified into four categories as follows: (B1-1) A 1-packet for
which the decision to accept the 2-packet corresponding to it has not been made
yet, (B1-2) a 1-packet for which the 2-packet corresponding to it is stored in
the buffer of GR, (B2-2) a 2-packet for which the 1-packet corresponding to
it is stored in the buffer of GR, and (B2-3) a 2-packet for which the 1-packet
corresponding to it has already been transmitted. Furthermore, arriving packets
at GR’s buffer can be classified into six categories as follows: (A1-1) A 1-packet
for which the 2-packet corresponding to it has not yet arrived, (A1-4) a 1-
packet for which the 2-packet corresponding to it arrives simultaneously, (A2-2)
a 2-packet for which the 1-packet corresponding to it is stored in the buffer of
GR, (A2-3) a 2-packet for which the 1-packet corresponding to it has already
been transmitted, (A2-4) a 2-packet for which the 1-packet corresponding to
it also arrives at the same time, and (A2-5) a 2-packet for which the 1-packet
corresponding to it has already been dropped.

The priority of packets for GR is as follows: (B2-3)>(A2-3)>(B2-2)=(B1-
2)>(A2-2)>(A2-4)=(A1-4)>(B1-1)>(A1-1)>(A2-5). It is easy to see that any
reasonable algorithm (including GR) never accepts 2-packets in (A2-5). GR de-
cides whether to accept each arriving packet in order of the priority, namely,
(A2-3)>(A2-2)>(A2-4)=(A1-4)>(A1-1). If there exist some packets in (A2-2)
(or (A2-3)) at a time, GR deals with them in order of the arrival time of the
corresponding 1-packet. If GR’s buffer has space to store an arriving packet
p, GR accepts p. Otherwise, (that is, GR’s buffer has no space to accept p,) if
there exists a packet whose priority is lower than that of p, GR preempts one of
the packets with the lowest priority in its buffer, and accepts p. If several pack-
ets have the same priorities, GR preempts the packet with the same priority
which is the closest to the tail of GR’s queue. Otherwise, (that is, in the case
where any packet in GR’s buffer has a higher or the same priority,) p is rejected.
However, for any 1-packet p′ in (A1-4), GR decides whether to accept both p′

and the 2-packet p′′ corresponding to p′ in (A2-4) together. In addition, when
they are accepted, p′′ is inserted into GR’s queue after it first inserts p′. For any
arriving 2-packet p̃ in (A2-2), (that is, p̃ arrives, and there exists the 1-packet p̂
corresponding to p̃ in GR’s buffer,) p̂ is preempted if GR rejects p̃.
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3 Upper Bound

3.1 Overview of the Analysis

We give some definitions for our analysis. Let ALG denote either GR or OPT
throughout Sec. 3. For any algorithm ALG, and any j(∈ {1, 2}), VALG,j denotes
the number of j-packets transmitted by ALG by the end of the input. For a given
input, V GR,2 denotes the total number of frames, each of which includes the 1-
packet transmitted by GR and the 2-packet dropped by GR. Then, VOPT (σ) =
VOPT,1 since OPT does not accept any packet in an incompleted frame. Also,
VGR(σ) = VGR,2 = VGR,1 − V GR,2.

At the end of the input σ, packets of GR are “assigned” to both all the 1-
packets in completed frames of OPT and some 2-packets in incompleted frames
of GR according to the assignment routine which is defined later. (GR’s packets
used by the routine are not always in completed frames.) We can show a connec-
tion between packets being assigned and assigned ones, and have the following
properties from (i) to (iv). (i) For any 1-packet p in OPT ’s completed frame,
either one 1-packet transmitted by GR or one 2-packet in GR’s completed frame
is assigned to p, (ii) for any 2-packet p′ dropped by GR for which the 1-packet
corresponding to p′ is assigned to some packet, either one 1-packet transmitted
by GR or one 2-packet in GR’s completed frame is assigned to p′, (iii) the num-
ber of packets to which one 1-packet transmitted by GR is assigned is at most
one, and (iv) the number of packets to which the 2-packet in one completed
frame of GR is assigned is at most two.

Using these properties, we have that VOPT,1 + V GR,2 ≤ VGR,1 + 2VGR,2. (See
Lemma 1.) By the above inequalities, VOPT (σ) = VOPT,1 ≤ −V GR,2 + VGR,1 +
2VGR,2 = VGR,2 + 2VGR,2 = 3VGR(σ) holds. Therefore, we have the following
theorem:

Theorem 1. The competitive ratio of GR is at most 3 when k = 2.

3.2 Notation for Analysis

We use the following notation, because dealing with packets one by one in our
analysis when they arrive. Suppose that n packets p1, p2, . . . , pn arrive at the ith
arrival subphase, and GR deals with the n packets one by one in this order. Let
tpi denote the moment when GR decides whether or not to accept pi (1 ≤ i ≤ n).
We call this moment the decision time of pi. Let tdi denote the moment when
the ith delivery subphase occurs. We call this moment the delivery time. Also,
a delivery time or a decision time is called an event time. A moment which is
not any event time is called a non-event time. For all the event times at the
ith phase, we define tp1 < tp2 < · · · < tpn < tdi . However, when a 1-packet p
and the 2-packet p′ corresponding to p arrive at the same phase, GR decides
whether or not to accept them at the same time by the definition of GR. Hence,
we define tp = tp′ . Furthermore, for any integers i and i′(> i), and any event
time e (e′, respectively) at the ith phase (i′th phase, respectively), let us define
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e < e′. For any event time e, any non-event time d, and the event time e′ just
before d (just after d, respectively), we define e < d (d < e, respectively) if e ≤ e′
(e′ ≤ e, respectively). Moreover, for any event time e, e+ denotes the non-event
time after e and before the next event time. Also, e− denotes the non-event
time before e and after the previous event time. To analyze the performance
of algorithms, we introduce the above notation to specify the location of each
packet in a buffer shortly before and after the moment when a packet is accepted
or transmitted. For each arriving packet, we assume that OPT decides whether
or not to accept it at the same time as GR does.

3.3 Assignment Routine

Next, we introduce some notation to give the definition of our assignment rou-
tine. For any non-event time d, and any 2-packet p of GR, we say that p is
1-completed at d if GR transmits the 1-packet corresponding to p before d. For
any non-event time d, and any 2-packet p of GR such that p is 1-completed at
d and the 1-packet corresponding to p is assigned to some packet at d, we say
that p is a key 2-packet at d.

For any non-event time d, we define candidate packets at d as those packets
that satisfy one of the following conditions: (i) Any 1-packet p is stored in GR’s
buffer at d such that p is not assigned to any packet at d, and (ii) any 2-packet
p′ is stored in GR’s buffer at d such that p′ is assigned to at most one packet
at d. Especially, we define a candidate 2-packet at d as a packet satisfying the
condition (ii).

At each time when any packet to be assigned arrives, we assign one candidate
packet at this time to the arriving packet. (However, there is one exception in
Case 3.2.1.) As a result, the assignments mentioned in the previous section are
achieved sequentially. Also, if a packet p is assigned to some packet p′, and GR
preempts p at some time, then we unassign p, and assign another packet p′′ of
GR to p′. Hence, for any packet p̂ to be assigned, some packet of GR is always
assigned to p̂ when p̂ is stored in a buffer. Furthermore, when a packet p is
assigned to some packet p′, the assignment never changes after p is transmitted.
Therefore, we obtain the assignments which satisfy the properties mentioned in
Sec. 3.1 after the final packet is transmitted.

The assignments described above are realized byAssignmentRoutine which
is defined later. For all arriving packets, this routine is executed at each decision
time. First, we sketch the actions of AssignmentRoutine at the decision time
e. The actions are categorized into three types: (i) If OPT accepts a 1-packet p
at e, then the routine assigns one candidate packet at e− to p. (Cases 1.1 and
1.2) (ii) If a packet p in GR’s buffer is preempted at e, and p is assigned to some
packet q at e−, then the routine unassigns p, and assigns some packet in GR’s
buffer at e+ to q. Moreover, if there exist some packets p′ and q′ such that p′

is assigned to q′ at e−, p′ is stored in GR’s buffer at e−, and the position of
p is closer to the head of GR’s queue than that of p′ at e−, then the routine
unassigns p′, and instead assigns some packet in GR’s buffer at e+ to q′. (Cases
2.2.1, 2.3.1, 3.4.1, and 3.5.1) This is because each assignment needs to satisfy
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the position condition which is described below. Also, note that packets used
to assign are not only candidate packets in GR’s buffer at e− but also packets
which the routine unassigns at e and the packet inserted into GR’s buffer at
e. The routine might assign some packets in the actions in (ii), and calls the
subroutine ReassignmentSubroutine, which has two parameters: the names
of the packet which GR decides to accept at e and the packet p preempted at
e. (iii) If GR rejects a key 2-packet p at e, then the routine assigns one packet
at e− to p. (Case 3.2) The packet used in Case 3.2.1 is not a candidate packet.
In this case, notice that GR’s buffer is full, and all the packets in its buffer are
only 2-packets.

Now let us explain the position condition mentioned above. For any non-event
time d, any algorithm ALG, and any packet p of ALG, we define �ALG(d, p) = x
if p is located at the xth position from the top in ALG’s buffer at d. Also,
�ALG(d, p) = ∞ if either p arrives after d or p is dropped by ALG before d.
Furthermore, �ALG(d, p) = 0 if ALG transmits p before d. At each decision
time e, when the routine assigns some packet p′ of GR to a packet p of A′(∈
{GR,OPT }), it certainly selects p′ such that �GR(e+, p

′) ≤ �A′(e+, p), which is
called the position condition. (It will be shown in the full version of this paper.)
By satisfying the condition, we can prove that each packet in GR’s buffer is not
assigned to any packet which has already been transmitted. (For details, see the
full version.) As a result, we can show that there exist enough packets to assign
at each time when the routine needs to assign packets.

Note that the case where both a 1-packet and the corresponding 2-packet may
arrive at the same time is included in Case 1. Also, note that the case in whichGR
accepts an arriving 1-packet, and preempts another packet in its buffer (in Case
1) never occurs. For ease of presentation, we give the notation. For any algorithm
ALG, any non-event time d, any x ∈ [1, B], and any y ∈ [x,B], let PALG(d, x, y)
denote the set of packets p such that p is located at a position in [x, y] in ALG’s
buffer at d. In other words, PALG(d, x, y) = {p | �ALG(d, p) ∈ [x, y]}. For any
non-event time d, any x ∈ [1, B] and any y ∈ [x,B], we define A(d, x, y) =
{q | p ∈ PGR(d, x, y) is assigned to q at d}. That is, A(d, x, y) denotes the set
of packets p′ such that some packet located at a position in [x, y] in GR’s buffer
at d is assigned to p′ at d.

AssignmentRoutine

Consider the decision time of a packet p.

Case 1: p is a 1-packet.

Case 1.1: Both OPT and GR accept p.

Case 1.1.1: �GR(tp+, p) ≤ �OPT (tp+, p).
Assign p of GR to p of OPT .

Case 1.1.2: �GR(tp+, p) > �OPT (tp+, p).
Let p′ be a candidate packet at tp− such that �GR(tp+, p′) ≤ �OPT (tp+, p).

Assign p′ to p of OPT .

Case 1.2: OPT accepts p, but GR rejects p.
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Let p′ be a candidate packet at tp− such that �GR(tp+, p′) ≤ �OPT (tp+, p).
Assign p′ to p of OPT .

Case 1.3: OPT rejects p.

Do nothing.

Case 2: p is a 2-packet to which the corresponding 1-packet p′ is stored
in GR’s buffer.

Case 2.1: GR accepts p.

Do nothing.

Case 2.2: GR preempts only one packet p′′, and accepts p.

Case 2.2.1: p′′ is assigned to some packet at tp−.
Call ReassignmentSubroutine(p, p′′).

Case 2.2.2: p′′ is not assigned to any packet at tp−.
Do nothing.

Case 2.3: GR preempts p′, and rejects p.

Case 2.3.1: p′ is assigned to some packet at tp−.
Call ReassignmentSubroutine(p, p′).

Case 2.3.2: p′ is not assigned to any packet at tp−.
Do nothing.

Case 3: p is a 1-completed 2-packet at tp−.
Case 3.1: GR accepts p.

Do nothing.

Case 3.2: GR rejects p and p is key at tp−.
Case 3.2.1: There exists a 2-packet p̃ in GR’s buffer at tp− such

that the 1-packet p′ corresponding to p̃ is not assigned at tp−.
Assign p′ to p of GR.

Case 3.2.2: Otherwise, i.e., there does not exist such p̃ at Case
3.2.1.

Let p′′ be a candidate 2-packet at tp−. Assign p′′ to p of GR.

Case 3.3: GR rejects p and p is not key at tp−.
Do nothing.

Case 3.4: GR accepts p, and preempts a 1-packet p′.
Case 3.4.1: p′ is assigned to some packet at tp−.
Call ReassignmentSubroutine(p, p′).

Case 3.4.2: p′ is not assigned to any packet at tp−.
Do nothing.

Case 3.5: GR accepts p, and preempts both a 1-packet p′ and the
2-packet p′′ corresponding to p′.

Case 3.5.1: Either p′ or p′′ is assigned to some packet at tp−.
Call ReassignmentSubroutine(p, p′).

Case 3.5.2: Neither p′ nor p′′ is assigned to any packet at tp−.
Do nothing.

Case 4: Otherwise.

Do nothing.
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ReassignmentSubroutine(p, p′)
for each packet p̃ ∈ PGR(tp−, �GR(tp−, p′), B) do
if p̃ is assigned to some packet at tp−, then unassign p̃.

end for
Q := {p} ∪ PGR(tp−, �GR(tp−, p′) + 1, B).

/* Q is the set of packets which can be used for assignments by this subroutine.
*/
R := A(tp−, �GR(tp−, p′), B) /* R is the set of packets to be assigned. */
while R �= ∅ do
q ∈ argminq′′{�OPT (tp−, q′′) | q′′ ∈ R}.
q′ := (the packet located at the lowest position in {q′′ ∈ Q | �GR(tp+, q′′) ≤

�OPT (tp+, q)}).
Assign q′ to q.
R := R \ {q}.
if either q′ is a 1-packet or q′ is a 2-packet, and the number of packets to

which q′ is assigned is 2, then Q := Q \ {q′}.
end for

If this routine can be executed at each time, we can show the following lemma.
We then obtain Theorem 1 using the lemma.

Lemma 1. Suppose that the assignment routine can be executed at any decision
time. Then, VOPT,1 + V GR,2 ≤ VGR,1 + 2VGR,2.

Proof. We have the following facts by the definitions of candidate packets and the
routine. For any 1-packet p accepted by OPT , either one 1-packet transmitted
by GR or one 2-packet in a completed frame of GR is assigned to p. (By the
assumption of OPT , OPT does not preempt any packet.) Also, for any rejected
2-packet p′ which is key just beforeGR rejects p′, either one 1-packet transmitted
by GR or one 2-packet in a completed frame of GR is assigned to p′. (We call
these facts the property (i).) On the other hand, the number of packets to which
a 1-packet transmitted by GR is assigned is at most one. Also, the number of
packets to which a 2-packet included in a completed frame of GR is assigned is
at most two. (We call these facts the property (ii).)

Then, let VGR,11 denote the number of 1-packets, each of which is transmitted
by GR and is assigned to a 1-packet transmitted by OPT , and let VGR,12 denote
the number of 2-packets, each of which is in a completed frame of GR and is
assigned to a 1-packet transmitted by OPT . Let VGR,21 denote the number of
1-packets, each of which is transmitted by GR and is assigned to a rejected 2-
packet p′ which is key just beforeGR rejects p′, and let VGR,22 denote the number
of 2-packets, each of which is in a completed frame of GR and is assigned to a
rejected 2-packet p′ which is key just beforeGR rejects p′. Furthermore, let ṼGR,2

(V̂GR,2, respectively) denote the number of 2-packets, each of which is key (not
key, but only 1-completed, respectively) just before GR rejects the 2-packet.
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By the property (i), we have VOPT,1 = VGR,11 + VGR,12, ṼGR,2 = VGR,21 +

VGR,22, and V GR,2 = ṼGR,2 + V̂GR,2. Also, using the property (ii), VGR,11 +

VGR,21 + V̂GR,2 ≤ VGR,1 and VGR,12 + VGR,22 ≤ 2VGR,2. By the above equalities

and inequalities, VOPT,1 +V GR,2 = VGR,11+VGR,12+ ṼGR,2+ V̂GR,2 ≤ VGR,11+
VGR,12+VGR,21+VGR,22+VGR,1−VGR,11−VGR,21 = VGR,12+VGR,22+VGR,1 ≤
2VGR,2 + VGR,1.

Due to page limitation, the proof for executability of each case will be shown
in the full version of this paper.

4 Lower Bound

In this section, we present a lower bound of 3 on the competitive ratio of any
deterministic algorithm for k = 2.

Theorem 2. When k = 2, the competitive ratio of any deterministic algorithm
is at least 3 for any B.

Proof. Fix an online algorithm ALG. We consider the following input σ: At the
0th phase, 2B 1-packets arrive. Then, ALG accepts x(≤ B) 1-packets, and OPT
accepts B 1-packets which are not accepted by ALG. Let C (D, respectively) be
the set of the x packets (the B packets, respectively) accepted by ALG (OPT ,
respectively).

After B delivery subphases occur, 2B 1-packets arrive in the same manner
as the first 2B 1-packets. We suppose that ALG accepts y(≤ B) packets. Then,
OPT accepts B packets which are not accepted by ALG. Let E (F , respectively)
be the set of the y packets (the B packets, respectively) accepted by ALG (OPT ,
respectively).

This process is repeated one more time. Namely, 2B 1-packets arrive at the
2Bth phase after B delivery subphases occur. Then, ALG accepts z(≤ B) pack-
ets and OPT accepts B packets which are not accepted by ALG. Let G (H ,
respectively) be the set of the z packets (the B packets, respectively) accepted
by ALG (OPT , respectively). Afterward, no additional 1-packets arrive in this
instance. After the 2Bth phase, each 2-packet arrives.

First, the B 2-packets corresponding to B 1-packets in D arrive after B de-
livery subphases happen. OPT accepts them, and they are transmitted at the
B delivery subphase. On the other hand, there is no point for ALG to accept
them.

Then, x+ y+ z 2-packets corresponding to x+ y+ z 1-packets in C,E and G
arrive at a burst. ALG can accept at most B packets.

On the other hand, at the same time, the B 2-packets corresponding to B 1-
packets in F arrive. OPT accepts and transmits them at B delivery subphases.
After OPT transmits them, the B 2-packets corresponding to B 1-packets in
H arrive. Similarly, OPT accepts them and they are transmitted at B delivery
subphases.

By the above argument, we have VALG(σ) ≤ B and VOPT (σ) = 3B. Therefore,
VOPT (σ)
VALG(σ) ≥

3B
B = 3.
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Abstract. In this paper we focus on dynamic batch algorithms for sin-
gle source shortest paths in graphs with positive real edge weights. A
dynamic algorithm is called batch if it is able to handle graph changes
that consist of multiple edge updates at a time, i.e. a batch. We propose
a new algorithm to process a decremental batch (containing only delete
and weight increase operations), a new algorithm to process an incremen-
tal batch (containing only insert and weight decrease operations), and a
combination of these algorithms to process arbitrary sequences of incre-
mental and decremental batches. These algorithms are update-sensitive,
namely they are efficient w.r.t. to the number of nodes in the shortest
paths tree that change the parent and/or the distance from the source
as a consequence of the changes.

1 Introduction

The problem of updating shortest paths in real networks whose topology dynam-
ically changes over time is a core functionality in many real-world scenarios as
Internet routing, routing in road networks, timetabling in railways networks. In
these scenarios, shortest-path trees are stored and have to be updated when the
underlying graph undergoes dynamic updates. For example, in communication
networks, a faulty network device or congestion phenomena may cause several
links to become slower or unavailable. In order to preserve the quality of service,
shortest paths need to be efficiently updated to reflect the underlying changes.

In general, the typical update operations that can occur on a network can be
modelled as insertions and deletions of edges and edge weight changes (weight
decrease or weight increase) in the underlying graph. When arbitrary sequences
of these operations are allowed, we refer to the fully dynamic problem, otherwise
we refer to the partially dynamic problem; if only insert and weight decrease
(delete and weight increase) operations are allowed, then the partially dynamic
problem is called incremental (decremental). A dynamic algorithm is a batch
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algorithm if it is able to handle graph changes that consist of multiple edge
updates at a time, i.e. a batch. If a batch consists of only delete and weight
increase (insert and weight decrease) operations, then it is called decremental
batch (incremental batch), otherwise it is called full batch.

Shortest paths can be computed by Dijkstra’s algorithm [10]. Unfortunately,
real-world networks are huge yielding unsustainable times to compute shortest
paths. Over the last decade great efforts have been done to improve the practical
performance of Dijkstra’s algorithm. These efforts have led to the development
of a number of so-called speed-up techniques (see, e.g., [1,2,9,14]), whose aim
is to compute additional data in a preprocessing phase in order to accelerate
the answer to shortest paths queries during an on-line phase. None of these
techniques is theoretically better than Dijkstra’s algorithm in the worst case,
while some of them have been shown to be very effective in practice.
Related work. The problem of updating single-source shortest paths in dy-
namic scenarios has been widely studied in the literature. None of the pro-
posed algorithms is better than the recomputation from scratch in the worst
case ([6,7,8,12,13,15,16]). Some of these algorithms store a shortest-path tree
[6,7,8,12,13,15] or the shortest-path subgraph [16]. Some of them are only able
to cope with the update of one edge at a time [6,7,8,12,13], while others can
perform batch updates [15,16]. In the original works these algorithms are the-
oretically analyzed with respect to different measures. These measures mostly
depend on the size of the output information that changes, and in particular,
given a graph G and an edge update μ, on the size of the set δ(G, μ) contain-
ing the so-called affected vertices, i.e., vertices that change either their parent
towards the source or their distance from the source in G as a consequence of
μ. Recently, many works have been proposed to maintain approximate shortest
path on digraphs (see [4,18] and references therein).

In [17] the authors provide a fully dynamic algorithm for general graphs. The
worst case cost of a single edge update μ, is O(||μ||·log ||μ||). Here, ||μ|| represents
the size of the change in the input and the output, and it is given by the sum of
the number of affected vertices plus the number of modified components in the
graph, i.e., the two vertices that are adjacent to the updated edge and the set of
edges that are incident to affected vertices and/or to any of these two vertices.
Note that, if n is the number of nodes of G, then ||μ|| might be n times larger
than the number of affected vertices. In the case of batch updates, in [16] the
same authors propose an algorithm running in O(||β|| · log ||β||) time, where β
is a batch of update operations, ||β|| is again the size of the change in the input
and the output as a consequence of β.

In [11] the authors separately consider the incremental and the decremental
problem. The decremental solution works only for planar graphs G, and each
operation requires O(|δ(G, μ)| · log n) time. The incremental solution works for
any graph and its complexity depends on the existence of a k-bounded accounting
function for G (k-baf from now on). In particular, for any incremental sequence
of updates, if the final graph has a k-baf, then the complexity of the incremen-
tal algorithm is O(k · log n) amortized time per affected vertex. An accounting
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function f for G is a function that, for each edge (x, y) of G, determines either
vertex x or vertex y as the owner of the edge; f is k-bounded if k is the maximum
over all vertices x of the cardinality of the set of edges owned by x. As shown
in [12], several classes of graphs admit a k-baf. In general, if m is the number
of edges of the graph, then k = O(

√
m) always holds. In [12] the results of [11]

are extended to the fully dynamic case for general graphs as follows. If the input
graph G admits a k-baf and only weight updates of edges are allowed, then each
operation requires O(k · log n) worst case time per affected vertex, i.e., a total
O(|δ(G, μ)| · k · log n) time. If also insertions and deletions of edges are allowed,
then the bound per affected vertex becomes amortized.

In [15] the authors propose a framework containing six single-edge update
algorithms. The best of these algorithms requires O(|δ(G, μ)| · log(|δ(G, μ)|) + γ ·
Dmax · |δ(G, μ)|) time, where Dmax is the maximum vertex degree and γ can be
as large as the number of nodes that change both their parent and their distance.
These algorithms can be adapted to handle batches of updates, but doing so will
not provide any tangible improvement on the computational complexity.

In [3] an experimental study of the algorithms in [12,15,16] have been proposed
in the case of batch updates.
Contribution of the Paper. In this paper, we focus on the batch shortest path
problem and extend the results of [11] to positively weighted general graphs, and
to batch updates. In particular, if β = (μ1, . . . , μh) is a batch of edge update
operations, we define δ̂(G, β) as the set of affected vertices caused by the exe-
cution of all the operations in β, simultaneously. Notice that |δ̂(G, β)| can be
much smaller than the sum over all i of |δ(G, μi)|, as vertices that are affected
multiple times with respect to the single operations in β are considered only
once in δ̂(G, β), and a vertex affected several times may result as unaffected at
the end of the batch. If the input graph admits a k-baf, then the results of this
paper can be summarized as follows:

1. We propose a new algorithm which is able to process a decremental batch β
in O((|β| + |δ̂(G, β)| · k) · log n) worst case time.

2. We propose a new algorithm which is able to process an incremental batch
β of only weight decrease operations in O(|β|+ |δ̂(G, β)| ·k · log n) worst case
time. If the incremental batch contains also edge insertions, then it can be
processed in O(|β| + |δ̂(G, β)| · max{k, k∗} · log n) worst case time, where k∗

is the minimum integer such that a k∗-baf exists for the graph after β.
3. We combine these new algorithms to deal with a mixed sequence B =

(β1, . . . , βh) of incremental and decremental batches in O((|B| + |Δ̂(G, B)| ·
k) · log n) overall time where |B| =

∑
βi∈B |βi| and |Δ̂(G, B)| is the sum over

all batches of B of the number of vertices affected by each of these batches.

These results clearly improve over the results of [11]. Moreover, as far as the
decremental and the incremental problem is concerned, we improve the corre-
sponding results of [12]. Indeed, our solutions for the batch problem give basically
the same bounds the solution of [12] gives in the case of a single update. As far
as the mixed case is concerned, a comparison with the result provided in [16]
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for positively weighted graphs is quite unfeasible on a theoretical basis. This is
due to the different parameters appearing in the respective time analysis. Notice
indeed that even a single edge update may induce a linear number of modified
components in the graph, which clearly makes non output-sensitive the algo-
rithm given in [16]. However, if the updates in the batch induce a small number
of modified components, then the result in [16] becomes very competitive.

2 Background

Let G = (V, E, w) be a weighted undirected graph with n vertices and m edges,
and let s ∈ V be a fixed source. Each edge (x, y) ∈ E has a real positive weight
wxy associated. Let d : V ⇒ R+ be a distance function giving, for each x ∈ V ,
the minimum distance of x from s, let T (s) = (VT , ET ) be a shortest paths tree
of G rooted at s, and, for any x ∈ V , let T (x) be the subtree of T (s), rooted at
x. Every x ∈ V has one parent (except for the source s), denoted as parent(x),
and a set of children, denoted as children(x), in T (s). An edge (x, y) is a tree
edge if (x, y) ∈ ET ; otherwise it is a non-tree edge.

If G is a graph and μ (resp., β) is an edge update (resp., a batch of edge
updates) of G, we denote by G′, T ′(s), d′(x) and parent′(x), the graph, the
shortest paths tree, the distance of vertex x from s and the parent of vertex x
in T ′(s), respectively, after the execution of μ (resp., β).

Complexity Model. In [11], the authors propose to measure the complexity of
the single source shortest paths problem in a dynamic scenario as follows: given
a graph G = (V, E, w) with source s, the output information consists of d(x),
for any x ∈ V , and of T (s). Let μ be an edge operation to be performed on G
(insertion, deletion, or weight update), and G′ be the new graph after that μ
has been performed on G. The set of output updates δ(G, μ) to be performed
is given by the set of vertices that either change their distance from the source,
or change their parent in the shortest paths tree, due to μ. The number of
output updates caused by μ is the cardinality of δ(G, μ). This notion has been
also defined in [11] for sequences of updates as follows. Let σ = (μ1, μ2, . . . , μh)
be a sequence of input modifications (insertions, deletions or weight updates of
edges) to be performed on G; each input modification μi ∈ σ is performed on
graph Gi−1, with G0 ≡ G, and gives the new graph Gi. The output information
is required to be updated after each input modification μi ∈ σ. Let δ(Gi−1, μi)
and Δ(G, σ) be the set of output updates caused by μi and by the whole sequence
σ, respectively. The total number of output updates over the sequence σ is given
by |Δ(G, σ)| =

∑
μi∈σ |δ(Gi−1, μi)|. Note that, no algorithm can process σ by

performing explicit updates in less than |σ| + |Δ(G, σ)| time: this is the cost an
ideal algorithm that carries out each update in constant time.

We extend the model of [11] to batches of updates as follows. Let β =
(μ1, . . . , μh) be a batch of operations on the edges of G, we call δ̂(G, β) the
set of output updates caused by all the operations in β, simultaneously. Notice
that |δ̂(G, β)| can be much smaller than |Δ(G, β)| as vertices that are affected
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multiple times with respect to Δ(G, β) are considered only once in δ̂(G, β). In
a similar way, if B = (β1, β2, . . . , βh) is a sequence of batches, then we define
|Δ̂(G, B)| =

∑
βi∈B |δ̂(Gi−1, βi)| where G0 ≡ G and Gi is the graph obtained

after the first i batches of B. Moreover, with a little abuse of notation, let |B|
be the total number of update operations contained in B, i.e. |B| =

∑
βi∈B |βi|.

Data Structures. To implement our algorithms, we use the same technique of
[12] to partition the edges incident to each vertex of G and to store them. In
particular, any edge (x, y) has an owner, denoted as owner(x, y), that is either x
or y. For each vertex x, ownership(x) denotes the set of edges owned by x, and
non-ownership(x) denotes the set of edges with one endpoint in x, but not owned
by x. If G has a k-baf then, for each x ∈ V , ownership(x) contains at most k
edges. Notice that, a 2-approximation of an optimal accounting function for a
generic graph G can be computed in linear time [13]. Furthermore, given an edge
(z, q) of G, the backward level (forward level, respectively) of edge (z, q) and of
vertex q, relative to vertex z, is the quantity b_levelz(q) = d(q) − wzq (resp.,
f_levelz(q) = d(q)+wzq). The intuition behind these definition is that the level
of an edge (z, q) provides information about the shortest available path from s to
q passing through z. The edges in non-ownership(x) are stored as follows. In the
decremental batch algorithm, non-ownership(x) is stored as a min-based priority
queue Fx; the priority of edge (x, y) in Fx, denoted as Fx(y), is the computed
value of f_levelx(y). In the incremental batch algorithm, non-ownership(x) is
stored as a max-based priority queue Bx; the priority of edge (x, y) in Bx, de-
noted as Bx(y), is the computed value of b_levelx(y). The priority queues are
implemented by efficient heaps as those of [5], which support insert, findMin,
findMax and decreaseKey operations in O(1) worst-case time, and delete and
increaseKey operations in O(log n) worst-case time. The described data struc-
tures require O(|V | + |E|) space. Since distances and the shortest path tree are
stored, shortest path queries are answered in optimal time.

In what follows, for any x ∈ V , we say that edges in ownership(x) are scanned
by ownership, edges in non-ownership(x) are scanned by priority. Moreover, D(x)
(resp., P (x)) stores the distance from s to x (resp., parent of x in the current short-
est paths tree) computed by the algorithms. We assume that, before the execution
of any update procedure, D(x) = d(x) for each x ∈ V , and we will prove that
D(x) = d′(x) upon termination of the procedures. We assume that before the ex-
ecution of a batch of operations all data structures are correctly stored.

3 Decremental Batch Algorithm

In this section we provide an algorithm, named decrementalBatch, for the decre-
mental batch single-source shortest path problem. Algorithm decrementalBatch,
reported in Figure 1, computes the updated shortest path tree T ′(s) and distance
function d′ of G′, where G′ is the result of the application of a decremental batch
β = (μ1, . . . , μh) on G. We use the following notion of coloring. Given a vertex
q ∈ V , color(q) is: white if q changes neither the distance from s nor the parent
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in T (s); red if q increases the distance from s, i.e., d′(q) > d(q); pink if q preserves
its distance from s, but it must replace the old parent in T (s), i.e., q is pink if
d′(q) = d(q), but parent′(q) �= parent(q).

The algorithm works in three phases. The first phase (Lines 1–10), analyzes
each operation μi of the decremental batch β as follows. If μi is a weight increase
operation on an edge (z, q), owned by z, then the priority of z needs to be updated
in Fq. Otherwise, if μi is a delete operation, then the priority of z needs to be
removed from Fq. Moreover, in both cases, if (z, q) is a tree edge and z is the
parent of q in the shortest path tree, then q is inserted in a min-heap Q with
priority equal to its distance from s in G.

Once all the affected edges have been analyzed, the second phase (Lines 11–
17) is performed. In this phase, the algorithm assigns a color to each vertex as
follows. It first extracts from Q the min-priority vertex x, that is the vertex
which was closer to s in G. Now, two cases can occur. If vertex x has a neighbor
y such that color(y) �= red and d(y) + wxy = d(x), that is a vertex that allows x
to keep its distance unchanged, then the color of x is set to pink and its parent
P (x) is set to y (as shown in Procedure checkP ink). Otherwise, the color of x is
set to red. Furthermore, all the children v, in T (s), of x are inserted in Q, if they
have not been inserted yet, with priority equal to d(v). The algorithm proceeds
by extracting the next vertex from Q and by iterating the above strategy. When
the heap becomes empty, the coloring phase terminates (Line 17).

Now, the algorithm performs a third phase (Lines 18–25) where it updates the
distance from s of all the red vertices. Note that, the pink vertices do not change
their distance and have already updated the parent in T (s) during the second
phase. The update phase proceeds as follows. For each red vertex x (as shown in
Procedure checkBestNonRed), the algorithm tries to find what we call the best
non-red neighbor, that is a vertex y such that d(y) + wxy = min

k∈N(x)
{d(k) + wkx}

and color(y) �= red. If such neighbor exists, it is inserted in a min-heap Q with
priority equal to d(y)+wxy , and the distance from s to x is set to the same value.
Otherwise, x is inserted in Q with priority equal to infinity, the distance from s
to x is set to infinity and the parent of x is set to null. In order to speed-up the
search for the best non-red neighbor of a red vertex x, the priority of the edges
owned by x, that links x to non-red vertices is updated during the first phase.
In such way, the best non-red neighbor is always the best among the non-red
neighbors j of x such that x owns (x, j) and the first non-red vertex in Fx.

Now, a relaxing step is performed. In particular, the min-priority vertex x
is extracted from Q and, for each neighbor v of x, the distance from s to v is
relaxed as shown in Procedure processRed. If D(v) > D(x) + wxv, then D(v)
is set to D(x) + wxv and P (v) is set to x. Moreover, the priority of v in Q
is also updated to D(v) + wxv. Note that, once a vertex is extracted from Q,
its distance does not change anymore. The algorithm proceeds by extracting the
next vertex from Q and by iterating the above strategy. When the heap becomes
empty the algorithm and both the shortest path tree and the distance function
are updated, that is for each v ∈ V , D(v) = d′(v) and P (v) = parent′(v).
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Procedure: decrementalBatch(β)
/* Phase 1: */

1 foreach μ ∈ β do
2 if μ is a weight increase on edge (x, y) then
3 if owner(x, y) = x then Update Fy(x);
4 else Update Fx(y);
5 if μ is a deletion on edge (x, y) then
6 if owner(x, y) = x then Delete Fy(x);
7 else Delete Fx(y);
8 if (x, y) is a tree edge then
9 if D(x) > D(y) then Enqueue(Q, 〈x, D(x)〉);

10 else Enqueue(Q, 〈y, D(y)〉);
/* Phase 2: */

11 while Q is not empty do
12 〈z, D(z)〉 := extractMin(Q);
13 checkP ink(z);
14 if color(z) �= pink then
15 color(z) := red;
16 foreach v ∈ children(z) : v �∈ Q do
17 Enqueue(Q, 〈v, D(v)〉);

/* Phase 3: */
18 foreach z ∈ V : color(z) = red do
19 Create an empty list list(z);
20 foreach z ∈ V : color(z) = red do
21 checkBestNonRed(z);
22 Enqueue(Q, 〈z, D(z)〉);
23 while Q is not empty do
24 〈z, D(z)〉 := extractMin(Q);
25 processRed(z);
26 Restore white color for all colored vertices

Fig. 1. Procedure decrementalBatch

Theorem 1. If G has a k-baf, then decrementalBatch requires O(|β| log n +
|δ̂(G, β)| · k log n) worst case time to process a decremental batch β.

Proof. First of all, it is easy to see that Phase 1 requires time O(|β| log n), as
each delete or increase operation of the batch β is processed in O(log n) time.
Concerning Phase 2, consider that the overall cost of lines 1–4 of Procedure
checkP ink is proportional to the number of edges that are scanned by ownership
while searching for the non-red neighbor, and requires at most O(k) time per
colored vertex. Note that if edge (z, q) is considered while searching for a non-red
neighbor for z in Procedure checkP ink then z will be colored either pink or red.

The rest of Procedure checkP ink performs a scan by priority. All the edges
scanned by priority but the last are such that both their endpoints are colored.
As there are at most O(k) of these edges per colored vertex, then the total cost
of Phase 2 is bounded by O(k log n) times the number of red and pink vertices.
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Procedure: checkP ink(z)
1 foreach (z, q) ∈ ownership(z) : color(q) �= red do
2 if D(q) + wzq = D(z) then /* Check by ownership */
3 color(z) := pink;
4 P (z) := q;
5 if color(z) �= pink then /* Check by ownership failed */
6 while Fz is not empty do
7 q := extractMin(Fz);
8 if D(q) + wzq > D(z) then break;
9 if color(q) �= red then /* Check by priority */

10 color(z) := pink;
11 P (z) := q;
12 break;
13 Reinsert all the extracted vertices, with the same priority, into Fz;

Fig. 2. Procedure checkP ink

Procedure: checkBestNonRed(z)
1 D(z) := ∞; P (z) := null;
2 foreach (z, q) ∈ ownership(z) do /* Check by ownership */
3 if color(q) �= red and D(q) + wzq < D(z) then
4 D(z) := D(q) + wzq;
5 P (z) := q;
6 else
7 list(z).append(z, q);
8 list(q).append(z, q);
9 while Fz is not empty do

10 q := extractMin(Fz);
11 if color(q) �= red and D(q) + wzq < D(z) then /* Check by priority */
12 D(z) := D(q) + wzq;
13 P (z) := q;
14 break;
15 Reinsert all the extracted vertices, with the same priority, into Fz;

Fig. 3. Procedure checkBestNonRed

Procedure: processRed(z)
1 foreach (z, q) ∈ list(z) do /* (z, q) ∈ E : color(q) = red */
2 if D(z) + wzq < D(q) then
3 D(q) := D(z) + wzq;
4 P (q) := z;
5 Heap_Improve(Q, 〈q, D(q)〉);
6 foreach (z, q) ∈ ownership(z) do /* Check by ownership */
7 Update Fq(z);

Fig. 4. Procedure processRed
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To bound the cost of Phase 3, observe that the cycle at line 18 requires a
time proportional to the number of red vertices and that the execution of the
procedure checkBestNonRed performs both a scan by ownership and a scan by
priority. The scan by ownership requires at most O(k) time per red vertex while
all the edges scanned by priority but the last are such that both their endpoints
are red. As there are at most O(k) of these edges per colored vertex, the total
time required by the procedure is O(k log n) per red vertex. The remaining
time of Phase 3 is dominated by the cost of executing line 24 of Procedure
decrementalBatch and the whole Procedure processRed. Clearly the cost of
line 24 of Procedure decrementalBatch is O(log n) per red vertex, while the
cost of Procedure processRed can be bounded by noticing that all the edges
considered are such that both their endpoints are red, that the cost of Line 5
of processRed is O(log n), and that updating the structures Fq requires at most
O(log n) time per operation. It follows that the total cost of Phase 3 is O(k log n)
per red vertex and that the overall cost of algorithm decrementalBatch is
O(|β| log n + |δ̂(G, β)| · k log n). ��

4 Incremental Batch Algorithm

In this section we provide an algorithm, named incrementalBatch, for the incre-
mental batch single-source shortest path problem. Algorithm incrementalBatch,
reported in Figure 5, computes the updated shortest path tree T ′(s) and dis-
tance function d′ of G′, where G′ is the result of the application of an incremental
batch β = (μ1, . . . , μh) on G. We use the following notion of coloring. Given a
vertex q ∈ V , color(q) is: white if q changes neither the distance from s nor the
parent in T (s); blue if q changes its distance from s.

The algorithm works in two phases, as follows. In the first phase, all the
operations in the incremental batch are considered, one by one and all the data
structures are updated. If an operation in the batch involving an edge (z, q)
induces a decrease in the distance from s of one of the two endpoints x ∈ {z, q},
that is d′(x) < d(x), then the procedure sets color(x) to blue and inserts it into
a min-heap Q with priority equal to the new induced distance. Note that, if x is
already in Q, the algorithm simply updates the priority.

In the second phase, the algorithm processes the vertices in Q: it extracts the
min-priority vertex x from Q and, for each y ∈ N(x), it performs a relaxing
step: if a path from s to y passing through x is discovered in G′ that is shorter
than the shortest path from s to y in G, the color of y is set blue, its distance
is updated and it is inserted into Q with priority equal to the new distance.

Lemma 1. Given a graph G = (V, E) and a set of additional edges F , let G′ =
(V, E ∪ F ) and let k∗ be the minimum integer such that a k∗-baf for G′ exists.
If a k-baf for G is known then it is possible to compute, in O(|F |) time, a k′-baf
for G′ such that k′ ≤ max{2k, 4k∗}.

Proof. Consider the graph H = (V ′, F ) where V ′ is the set of vertices adjacent
to some vertex in F . Compute an accounting function for H using the linear-time
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Procedure: incrementalBatch(β)
/* Phase 1 */

1 F := ∅ ;
2 foreach μ ∈ β : μ is an insertion of edge (x, y) do
3 Add (x, y) to G with weight wxy ;
4 F := F ∪ (x, y);
5 Recompute an ownership function for G using the set F , as shown by Lemma 1;
6 foreach μ ∈ β do
7 Let (x, y) the edge involved by μ;
8 if D(y) < D(x) then Swap x and y
9 if owner(x, y) = x then Update By(x); /* or insert */

10 else Update Bx(y); /* or insert */
11 if D(x) + wxy < D(y) then
12 D(y) := D(x) + wxy ;
13 P (y) := x;
14 color(y) := blue;
15 Enqueue(Q, 〈y, D(y)〉); /* or update */

/* Phase 2 */
16 while Q is not empty do
17 〈z, D(z)〉 := extractMin(Q);
18 foreach v ∈ N(z) do
19 if (z, v) ∈ ownership(z) then
20 Update Bv(z);
21 if D(v) > D(z) + wzv then
22 D(v) := D(z) + wzv;
23 P (v) := z;
24 color(v) := blue;
25 Enqueue(Q, 〈v, D(v)〉); /* or update */
26 Reinsert all the extracted vertices, with the same priority, into Bz;
27 Restore white color for all colored vertices

Fig. 5. Procedure incrementalBatch

2-approximation algorithm shown in [13] for finding a k-baf with the minimum
value of k. Let h ≤ 2k∗ be the value returned by this algorithm. By combining
this function with the k-baf for G we get a k′ = (k + h)-baf for G′. If k ≥ h then
we have k′ ≤ 2k. Otherwise, if k < h we have k′ ≤ 2h ≤ 2 · 2k∗. ��

Theorem 2. If G has a k-baf, then incrementalBatch requires O(|β|+|δ̂(G, β)|·
max{k, k∗} · log n) worst case time to process an incremental batch β, where k∗

is the minimum integer such that a k∗-baf exists for the resulting graph.

Proof. Let F be the set of the newly inserted edges in β. Phase 1 requires time
O(|β|) as each operation of the batch β is processed in constant time and the
ownership function can be updated in O(|F |) time as shown in Lemma 1. Let
k′ ≤ max{2k, 4k∗} be the maximum number of edges owned by a vertex with
respect to the new ownership function.
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To bound the complexity of Phase 2, we note that a vertex is in Q if and only
if it decreases its distance from s. Moreover, once a vertex x has been extracted
from Q its distance is D(x) = d′(x) and it never changes again. As every vertex
x is inserted in Q only if a better path from s to x is discovered this implies that
vertices are inserted in Q at most once.

The above considerations imply that the number of processed vertices in
Phase 2 is |δ̂(G, β)|, i.e. the number of blue vertices. Processing a vertex z
takes at most O(k′ log n) time: first the structures associated with vertices v ∈
ownership(z) are updated in O(k′) total time, then the neighbors of z are ex-
amined. This is done by ownership, which requires at most O(k′) time, and
by priority: vertices are extracted from Bz(v) until they do not improve their
distance any more. All (but the last) extracted vertices are blue and each ex-
traction costs O(log n). We bound this cost by charging the owner of the edge
each time an edge is processed by priority. As each vertex owns at most k′ edges,
the overall time needed is O(k′ log n) per affected vertex. ��

5 Sequences of Incremental and Decremental Batches

In this section we analyze the case in which the input graph G is subject to arbi-
trary sequences of incremental and decremental batches. We remark that for any
sequence of such updates that has either no insertion of new edges or has a con-
stant number of insertions it is possible to repeatedly apply decrementalBatch
and incrementalBatch when needed, to obtain the same bounds of Sections 3
and 4. The only modification needed in both algorithms is the following: every
time Fx is updated for some vertex x, also Bx has to be updated, and viceversa.

In the more general case in which the number of insert operation is not con-
stant, we need to apply a further modification to the algorithms. Before reverting
the colored vertices to white, we perform an additional scan by ownership from
each vertex in order to construct a list of edges that are incident to the affected
vertices. Then, for each edge of this list, we change its owner. This means that
the structures associated with both endpoints need to be updated. This costs
O(log n) per affected vertex. During the execution of the incremental algorithm
we no longer need to recompute an accounting function for newly inserted edges
and we can just choose an arbitrary endpoint as its owner. In this case we can
state the following theorem whose proof will be given in the full paper.

Theorem 3. Given G = (V, E) and a sequence B = (β1, . . . , βh) of incremental
and decremental batches on G, let Gi = (V, Ei) be the graph obtained by applying
the first i batches of B to G. If there exists an accounting function f for GB =
(V,

⋃h
i=1 Ei) such that f is k-bounded for each Gi, then it is possible to:

– preprocess G in order to compute a shortest path tree T (s) and to initialize
all the necessary data structures in O(m + n log n) worst case time.

– process B in O(|B| log n + |Δ̂(G, B)| · k log n) overall worst case time, that
gives O(|βi| log n+ |δ̂(Gi−1, βi)| ·k log n) amortized time per batch βi, in such
a way that T (s) and all distances from s are correctly updated at the end of
each batch in B.
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Abstract. This paper investigates the relation linking the s-simultaneous con-
sensus problem and the k-set agreement problem in wait-free message-passing
systems. To this end, it first defines the (s, k)-SSA problem which captures jointly
both problems: each process proposes a value, executes s simultaneous instances
of a k-set agreement algorithm, and has to decide a value so that no more than
sk different values are decided. The paper introduces then a new failure detec-
tor class denoted Zs,k, which is made up of two components, one focused on
the “shared memory object” that allows the processes to cooperate, and the other
focused on the liveness of (s, k)-SSA algorithms. A novelty of this failure de-
tector lies in the fact that the definition of its two components are intimately re-
lated. Then, the paper presents a Zs,k-based algorithm that solves the (s, k)-SSA
problem, and shows that the “shared memory”-oriented part of Zs,k is neces-
sary to solve the (s, k)-SSA problem (this generalizes and refines a previous re-
sult that showed that the generalized quorum failure detector Σk is necessary to
solve k-set agreement). Finally, the paper investigates the structure of the family
of (s, k)-SSA problems and introduces generalized (asymmetric) simultaneous
set agreement problems in which the parameter k can differ in each underlying
k-set agreement instance. Among other points, it shows that, for s, k > 1, (a)
the (sk, 1)-SSA problem is strictly stronger that the (s, k)-SSA problem which
is itself strictly stronger than the (1, ks)-SSA problem, and (b) there are pairs
(s1, k1) and (s2, k2) such that s1k1 = s2k2 and (s1, k1)-SSA and (s2, k2)-SSA
are incomparable.

Keywords: Asynchronous system, Distributed computing, Distributed
computability, Failure detector, Fault tolerance, Message-passing system, Quo-
rum, Reduction, k-Set agreement, Simultaneous consensus, Wait-freedom.

1 Introduction

The k-set agreement problem The k-set agreement problem is a paradigm of coordina-
tion problems. Defined in the setting of systems made up of processes prone to crash
failures, it is a simple generalization of the consensus problem (that corresponds to the
case k = 1). The aim of this problem, introduced by Chaudhuri [9], was to investi-
gate how the number of choices (k) allowed to the processes is related to the maximum
number of processes t that can crash. The problem is defined as follows. Each process
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proposes an input value, and any process that does not crash must decide a value (ter-
mination), such that a decided value is a proposed value (validity), and no more than k
distinct values are decided (agreement).

While it can be solved in synchronous systems prone to any number of process
crashes (see [20] for a survey), the main result associated with k-set agreement is
the impossibility to solve it in presence of both asynchrony and process crashes when
t ≥ k [4,15,25].

A way to circumvent this impossibility consists in enriching the underlying pure
asynchronous system with a failure detector [7,22,24]. A failure detector is a device
that provides processes with information on failures. According to the type and the
quality of this information, several failure detectors have been proposed (see [21] for
a survey of failure detectors suited to k-set agreement). It has been shown that the
failure detector Ωk (anti-omega-k) [19,26] is the weakest failure detector that allow
k-set agreement to be solved despite any number of process crashes in asynchronous
read/write systems [13].

The situation is different in asynchronous crash-prone message-passing system.
More precisely, (a) while weakest failure detectors are known only for the cases k = 1
and k = n− 1 [8,11,12], (b) it has been shown that the generalized quorum failure de-
tector denotedΣk is necessary [3]. Several k-set agreement algorithms based on failure
detectors stronger than Σk can found in the literature (e.g., [3,5,10,16,17,18]).

The s-simultaneous consensus problem This problem has been introduced in [1]. Each
of the n processes proposes the same value to s independent instances of the consensus
problem, denoted 1, ..., s. Each correct process has to decide a pair (c, v) (termination),
where c ∈ {1, ..., s} is a consensus instance and v is a proposed value (validity). More-
over, if (c, v) and (c, v′) are decided we have v = v′ (agreement). (This is the scalar
form of the problem: each process proposes the same value to each consensus instance.
In the vector form, a process proposes a vector of s values, one value to each consensus
instance. It is shown in [1] that both forms have the same computational power).

It is shown in [1] that the x-simultaneous consensus problem and the x-set agreement
problem are computationally equivalent in asynchronous read/write systems where up
to t = n− 1 processes may crash. It follows that in these systems, the failure detector
Ωx is both necessary and sufficient to solve x-simultaneous consensus.

As far as asynchronous message-passing systems are concerned, it is shown in [6]
that, for x > 1 and t > n+x−2

2 , x-simultaneous consensus is strictly stronger than
x-set agreement. This means that, differently from what can be done in asynchronous
read/write systems, it is not possible to solve x-simultaneous consensus from a black
box solving x-set agreement.

Content of the paper The aim of this paper is to (a) better understand the relations
linking s-simultaneous consensus and k-set agreement, and (b) become closer to the
weakest failure detector that allows k-set agreement to be solved in crash-prone asyn-
chronous message-passing system.

To this end, the paper introduces first a problem that generalizes both s-simultaneous
consensus and k-set agreement. This problem, denoted (s, k)-SSA (for s-Simultaneous
k-Set Agreement) consists in s independent instances of the k-set agreement problem
(hence, (s, 1)-SSA is x-simultaneous consensus, while (1, k)-SSA is k-set agreement).
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Then, the paper introduces a new failure detector, denoted Zs,k, that allows (s, k)-
SSA to be solved in the asynchronous message-passing communication model, despite
any number of process crashes. This failure detector is captured by an array of size s
each entry of which is made up of two components. The first, which is nothing else
than the quorum failure detector Σk, addresses the data sharing needed to correctly
coordinate the processes. The second component states a leader-based property that
allows the correct processes to always decide a value. When considering the (1, k)-SSA
problem, it appears that Z1,k is a weaker failure detector than all the failure detectors
proposed so far to solve k-set agreement. A noteworthy feature of Zs,k lies in the fact
that these two components are not defined independently one from the other (e.g., as
done in the pair (Σ,Ω) [11]), namely, the definition of the leader component of some
entry of the array is intimately related to the associated quorum component.

The paper presents then a Zs,k-based algorithm that solves the (s, k)-SSA problem,
and shows that the quorum part of Zs,k is necessary to solve the (s, k)-SSA problem
(this proof generalizes the proof given in [3] that shows that Σk captures information
on process crashes that is necessary to solve k-set agreement).

Last but not least, the paper considers the family of asymmetric {k1, ..., ks}-SSA
problems, defined by s simultaneous instances of the kx-set agreement problem where
kx = k1, ..., ks. It shows that these problems define a strong hierarchy from a com-
putability point of view. It follows from this hierarchy that (as indicated in the abstract)
for s, k > 1, (a) the (sk, 1)-SSA problem is strictly stronger that the (s, k)-SSA prob-
lem which is itself strictly stronger than the (1, ks)-SSA problem, and (b) there are
pairs (s1, k1) and (s2, k2) such that s1k1 = s2k2 and (s1, k1)-SSA and (s2, k2)-SSA
are incomparable problems. More generally, given K , the paper shows that the struc-
ture of the set of symmetric (s, k)-SSA problems (where sk = K) is a lattice where
an arrow from A to B means that B can be solved from a block box solving A, but
not vice-versa. The paper associates also with each such pair a failure detector that is
necessary to solve A and a failure detector that is sufficient to solve B.

Roadmap. The paper is made up of 5 sections. Section 2 defines the computation model,
the (s, k)-SSA problem, and the Failure Detector class Zs,k. Section 3 extends our
previous results to the (s, k)-SSA problem, namely, it presents a simple Zs,k-based
algorithm that solves the (s, k)-SSA problem, and proves that the safety part of Zs,k

is necessary when one wants to solve the (s, k)-SSA problem (from information on
failures). Section 4 investigates the graph structure of the family of asymmetric SSA
problems and shows that these problems define a strong hierarchy. Finally Section 5
concludes the paper. Due to page limitation, all the proofs are missing but can be found
in [23].

2 Computation Model, (s, k)-SSA Problem, and the Failure
Detector Zs,k

2.1 Computation Model

Process model The system is made up of n asynchronous sequential processes de-
noted Π = {p1, . . . , pn} (to simplify notations, we sometimes consider that Π is the
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set {1, . . . , n}). Each process is a Turing machine enriched with two operations, which
allows it to send and receive messages. “Asynchronous” means that there is no assump-
tion on the speed of processes: each process proceeds at its own speed, which may
arbitrarily vary and is unknown from the other processes.

A process behaves correctly until it possibly crashes (a crash is an unanticipated
premature stop). Up to (n − 1) processes may crash (wait-free model). A process that
crashes in a run is said to be faulty in that run, otherwise, it correct. Given a run, C
denotes the set of processes which are correct in that run.

Communication model. Each pair of processes is connected by a bidirectional channel.
The channels are failure-free (no creation, duplication, alteration, or loss of messages),
and asynchronous. “Asynchronous” means that, while each message is received, there
is no bound on message transfer delays.

Timing model. The underlying timing model is the set of natural integers N. As the
system is asynchronous, this time notion remains unknown to the processes. It is only
used, from an external observer point of view, to state or prove properties. Time instants
are denoted τ , τ ′, etc.

Notation. The previous wait-free message-passing model is denotedAMPn,n−1[∅].

2.2 The s-Simultaneous k-Set Agreement –(s, k)-SSA– Problem

As indicated in the introduction, the s-simultaneous k-set agreement problem (in short
(s, k)-SSA) consists in the simultaneous execution of s instances of the k-set agree-
ment problem. Moreover, each process proposes the same value to each instance of the
k-set agreement problem. The (s, k)-SSA problem is defined by the three following
properties.

– Termination. Every correct process decides.
– Validity. A decided value is a pair (c, v) where 1 ≤ c ≤ s and v is a value proposed

by a process.
– Agreement. For any c ∈ {1, ..., s}, there are at most k different values v such that
(c, v) is decided.

It is easy to see that at most K = sk different values v are decided, and consequently,
any algorithm solving the (s, k)-SSA problem solves the K-set agreement problem.
Moreover, (1, k)-SSA is k-set agreement, while (s, 1)-SSA is s-simultaneous consen-
sus.

2.3 The Failure Detector Class Zs,k

Definition A failure detector of the class Zs,k provides each process pi with two arrays
denoted qri[1..s] and �di[1..s]. Intuitively, qri[z] and �di[z], 1 ≤ z ≤ s, denote, with
respect to the index z, the current quorum and the current leader of pi, respectively.
Zs,k is defined by the following properties, where qrτi [z] and �dτi [z] denote the value of
qri[z] and �di[z] at time τ .
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– Safety property. ∀ z ∈ [1..s] :
• Quorum intersection property (QI).
∀ i1, ..., ik+1 ∈ Π, ∀ τ1, ..., τk+1 : ∃h, � ∈ [1..k + 1]:

(h �= �) ∧ (qrτhih [z] ∩ qr
τ�
i�
[z] �= ∅).

• Leader validity property(LV). ∀ τ, ∀ i : �dτi [z] ∈ Π .
– Liveness property. ∃z ∈ [1..s] :

• Quorum liveness property (QL). ∀ i ∈ C : ∃ τ : ∀ τ ′ ≥ τ : qrτ ′
i [z] ⊆ C.

• Eventual leadership property (EL). ∃� ∈ C : ∀i ∈ C :[
∀ τ : ∃ τ ′, τ ′′ ≥ τ : (qrτ ′

i [z] ∩ qrτ ′′
� [z] �= ∅)

]
⇒
[
∃ τ : ∀ τ ′ ≥ τ : (�dτ ′

i [z] = �)
]
.

The quorum intersection property states that, for any z ∈ {1, ..., s}, there are two quo-
rum values that intersect in any set of k+1 quorum values, each taken at any time. The
leader validity property states that the leader domain is the set of processes.

While the safety properties concern all the entries of the arrays qri[1..s] and �di[1..s],
the liveness properties are only on a single of these entries, say z. The quorum liveness
property states that there is a finite time after which all quorum values (appearing in
qri[z] for every i ∈ C) contain only correct processes. The eventual leader liveness
property involves only the quorum values taken by the entries qri[z], for every i ∈
C. Hence, it relates these quorum values with the eventual leader values in the local
variables �di[z] at each correct process pi. More precisely, it states that there is a correct
process p� such that, for any correct process pi whose quorum qri[z] intersects infinitely
often with the quorum qr�[z] of p� (left part of the implication), p� becomes eventually
the permanent leader of pi (saved in �di[z], right part of the implication).

The generality of Zs,k wrt other failure detectors is investigated in [23].

Notation. Let Z(Q)s,k denote the quorum part of Zs,k (defined by the properties QI
and QL). Similarly, let Z(L)s,k denote the leader part of Zs,k (defined by the properties
LV and EL where the quorum part brings no information on failures, which means that
we have then ∀ i, ∀ z, ∀τ : qrτi [z] = Π).

Let FD be a failure detector class.AMPn,n−1[FD ] denotes the wait-free message-
passing model enriched with a failure detector of the class FD . Sometimes FD is also
used to denote a failure detector of the class FD .

3 Extending Two Previous Results

This section extends two of our previous results from k-set agreement to (s, k)-SSA.

3.1 A Zs,k-Based Algorithm for the (s, k)-SSA Problem

An algorithm solving the (s, k)-SSA problem can be easily obtained by launching s
concurrent instances of the previous k-set algorithm, the zth instance (1 ≤ z ≤ s)
relying, at each process pi, on the components qri[z] and �di[z] ofAMPn,n−1[Zs,k]. A
process decides the value returned by the first of the s instances that locally terminates.
Hence, it decides the pair (c, v) where c is its first deciding instance and v the value
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it decides in that instance. As there are s instances of the base k-set algorithm and at
most k values can be decided in each of them, it follows that at most K = sk different
values can be decided. Moreover, as there is at least one instance z such that the failure
detector outputs �di[z] at each correct process pi converge to the same correct process,
it follows that the correct processes decide (if not done before) in at least one of the s
underlying k-set agreement instances.

An underlying k-set agreement algorithm can be easily designed from an underlying
abstraction (object) called alphak (this object has been introduced in [18], which is a
generzalization of the alpha objects introduced in [14,24]).

Due to page limitation, both the underlying k-set agreement algorithm and the asso-
ciated abstraction alphak can be found in [23].

3.2 Z(Q)s,k is Necessary to Solve the (s, k)-SSA Problem

This section shows thatZ(Q)s,k is necessary to solve the (s, k)-SSA problem as soon as
we are looking for a failure detector-based solution. To that end, given a failure detector
FD and an algorithm A that solves the (s, k)-SSA problem in AMPn,n−1[FD ], this
section presents an algorithm that emulates the output of Z(Q)s,k, namely an array
qri[1..s] at each process pi, which satisfies the properties QI and QL. This means that it
is possible to build Z(Q)s,k from any failure detector FD that can solve the (s, k)-SSA
problem.

According to the usual terminology, Z(Q)s,k is extracted from the FD-based algo-
rithm A. This extraction is a generalization of the algorithm introduced in [3], which
extracts Σk from any failure detector-based algorithm solving k-set agreement.

The extraction algorithm. Each process pi participates in several executions of the
algorithmA. S being a set of processes,AS denotes the execution ofA in which exactly
the processes of S participate. In this execution, each process of S either decides, blocks
forever, or crashes. So the execution of the extraction algorithm is composed of 2n − 1
executions of A.

The behavior of each process pi is described in algorithm 1. The internal statements
of the tasks T 1 and T 5, and the tasks T 2-T 4 are locally executed in mutual exclusion.
The local array Qi[1..s] is initialized to [Π, . . . ,Π ]. The aim of Qi[c] is to contain all
the sets S such that a value has been decided in the cth instance of the k-set agreement
of the execution of AS .

Initially, each process pi proposes its identity i to all the instances of A in which
it participates. To that end it invokes AS .ssa proposes,k(i) for each set S such that
i ∈ S (ssa proposes,k() is the operation associated with each instance of the (s, k)-
SSA problem). When it decides in the cth k-set agreement of AS (task T 3), pi adds the
set S to Qi[c] and informs each other process pj , which includes S in Qj [c] when it
learns it (task T 4).

Each alive process pi sends periodically messages ALIVE(i) (task T 1) to inform
the other processes that it is alive. When it receives a message ALIVE(j) (task T 2),
a process pi moves j to the head of its local queue (denoted queuei) which always
contains all process identities. It follows that the identities of all the correct processes
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Init: Qi[1, . . . , s] ← [Π, . . . , Π ]; queuei ← 〈1, . . . , n〉;
for each S ⊆ Π such that(i ∈ S) do AS.ssa proposes,k(i) end for; activate T1 to T5.

Task T1: repeat periodically send ALIVE(i) to each pj such that j ∈ Π \ {i} end repeat.

Task T2: when ALIVE(j) is received: move j at the head of queuei.

Task T3: when (c,−) is decided by pi in the cth k-set agreement instance of AS :
Qi[c] ← Qi[c] ∪ {S}; send DECISION(c,S) to each pj such that j ∈ Π \ {i}.

Task T4: when DECISION(c,S) is received: Qi[c] ← Qi[c] ∪ {S}.

Task T5: repeat forever
for each c ∈ {1, ..., s} do

min ranki ← min{max{rank(queuei, j), j ∈ S}, S ∈ Qi[c]};
qri[c] ← any Smin ∈ Qi[c] s.t. max{rank(queuei, j), j ∈ Smin} = min ranki

end for;
end repeat.

Algorithm 1: Extracting Z(Q)s,k from a FD-based algorithmA solving (s, k)-SSA [3]

eventually precede in this queue the identities of all the faulty processes. (Initially, each
queue queuei contains all process identities, in any order.)
T 5 is a task whose aim is to repeatedly compute the current value of qri[1..s]. It

uses the function rank(queuei, j) which returns the current rank of pj in the queue
queuei. The value of qri[c] is computed as follows. It is the “first set of Qi[c] with
respect to queuei” (i.e., with respect to the processes which are currently seen as be-
ing alive). This is captured with the help of the local variable minranki. As an ex-
ample, let Qi[c] = {{3, 4, 9}, {2, 3, 8}, {4, 7}, {1, 2, 3, 4, 5, 6, 7, 8, 9}}, and queuei =
〈4, 8, 3, 2, 7, 5, 9, 1, 6〉. We have thenminrank = 4, and Smin = {2, 3, 8}. This set of
identities is the first set of Qi[c] with respect to queuei because each of the other sets
{3, 4, 9}, {4, 7}, or {1, 2, 3, 4, 5, 6, 7, 8, 9}, includes an element (9, 7, and 6, respec-
tively) that appears in queuei after all the elements of {2, 3, 8} (in case several sets are
“first”, any of them can be selected).

Theorem 1. Given any algorithm A that solves the (s, k)-SSA problem in the system
model AMPn,n−1[FD ], the extraction algorithm described in Figure 1 is a wait-free
construction of a failure detector Z(Q)s,k. (Proof in [23].)

4 The Structure of Generalized (s, k)-SSA Problems

This section studies the mathematical structure of the family of (s, k)-SSA problems for
sk = K . To that end, it first introduces a straightforward generalization of this family
and then shows that this generalized family can be represented by a directed graph
where an arrow fromA to B means that the problemB can be solved from a black box
solving the problemA, while the opposite is impossible. To attain this goal, this section
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associates a pair of failure detectors with each pair of problems (A,B), such that one
of these failure detectors is necessary to solveA while the other is sufficient to solveB.

4.1 The Generalized Asymmetric {k1, ..., ks}-SSA Problem

While the (s, k)-SSA problem is a symmetric problem which consists in s simultaneous
instances of the k-set agreement problem, a simple generalization consists in consider-
ing an asymmetric version made up of s simultaneous instances of possibly different
set agreement problems, namely the k1-set agreement problem, the k2-set agreement
problem, etc., and the ks-set agreement problem. Hence, among the proposed values, at
mostK = Σs

x=1kx different values are decided.
This asymmetric version is denoted {k1, ..., ks}-SSA where {k1, ..., ks} is a multi-

set1. The particular instance where k1 = · · · = ks = k is the symmetric (s, k)-SSA
problem. As permuting the integers kx does not change the problem, we consider the
canonical notation where k1 ≥ k2 ≥ . . . ≥ ks ≥ 1.

4.2 Associating a Graph with a Family of Generalized {k1, ..., ks}-SSA
Problems

Graph definition Given an integer K and starting from the source vertex labeled with
the multiset {1, ..., 1} (K times the integer 1), let us define a graph denoted G(K) as
follows. Given a vertex labeled {k1, ..., ks} (initially, s = K and k1 = · · · = kK =
1), we add all possible vertices of s − 1 elements labeled {k′1, ..., k′s−1} and directed
edges from {k1, ..., ks} to each vertex {k′1, ..., k′s−1} defined as follows. Any pair of
elements kx, ky of the multiset {k1, ..., ks} gives rise to a vertex labeled by the multiset
{k′1, ..., k′s−1} such that

{k′1, ..., k′s−1} = {k1, ..., ks} \ {kx, ky} ∪ {kx + ky}.
Then, the construction process is recursively repeated until we arrive at a sink node
composed of a single element labeled {K}.

An example of graph
for K = 6 is given
on the right. The
labels corresponding
to symmetric in-
stances ((s, k)-SSA
problems) are un-
derlined. The graph
(lattice) on the right
side of the figure
considers only the
symmetric problem
instances.

{2, 2, 1, 1}{3, 1, 1, 1}

{5, 1}

{3, 2, 1}{4, 1, 1}

{4, 2}

{1, 1, 1, 1, 1, 1}

{3, 3} {2, 2, 2}
(3, 2)-SSA problem

{6}

(2, 3)-SSA problem

(6, 1)-SSA problem

(1, 6)-SSA problem

{6}

{3, 3}

{2, 2, 2}

{2, 1, 1, 1, 1}

{1, 1, 1, 1, 1, 1}

1 The set notation is used to represent a multiset. A multiset is a set in which several elements
can have the same value. As an example, {1, 2, 1, 1, 3} is a multiset of 5 elements. Hence, the
multisets {1, 2, 1, 1, 3} and {2, 1, 3} are different (while {1, 2, 1, 1, 3} = {2, 1, 3} from a set
point of view).
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Meaning of the graph As we will see in Section 4.4, given an integer K , this graph
describes the computability hierarchy linking all the {k1, k2, ...}-SSA agreement
problems such that k1 + k2 + · · · = K . Let the label A of a vertex denotes both the
vertex itself and the associated agreement problem. An edge from a vertexA to a vertex
B means that (a) given an algorithm that solves the problemA it is possible to solve the
problemB, while (b) the opposite is impossible.

Lemma 1. G(K) is cycle-free. (Proof in [23].)

As we will see in Lemma 2, the following predicate P characterizes (with the ex-
istence of a function f ) the pairs of vertices connected by a path in G(K). Given
two nodes {k1, ..., ks} and {k′1, ..., k′s′} of G(K), this function f maps each index of
{k1, ..., ks} to an index of {k′1, ..., k′s′}.

Definition Let {k1, ..., ks} and {k′1, ..., k′s′} be any pair of vertices of G(K).

P
(
{k1, ..., ks}, {k′1, ..., k′s′}

) def
=

∃f : {1, . . . , s} → {1, . . . , s′} s.t. ∀y ∈ {1, . . . , s′} : ky =
∑

x∈f−1(y) kx.

Lemma 2.
(
∃ a path: {k1, ..., ks} to {k′1, ..., k′s′}

)
⇔
(
P ({k1, ..., ks}, {k′1, ..., k′s′})

)
.

(Proof in [23].)

Theorem 2. The transitive closure of G(K) is a partial order. (Proof in [23].)

4.3 Associated Generalized Failure DetectorGZk1,...,ks

The failure detector Zs,k is implicitly tailored for the symmetric (s, k)-SSA problem.
A simple generalization allows to extend it to obtain an “equivalent” failure detector
suited to asymmetric problems.

As Zs,k, this generalized failure detector, denotedGZk1,...,ks , provides each process
pi with an array qri[1..s] and an array �di[1..s]. It differs from Zs,k in the constraint
imposed by the quorum intersection property that is now specific to each entry z ∈
{1, ..., s}. More explicitly, QI is replaced by the property GQI defined as follows

– Quorum intersection property (GQI). ∀ z ∈ [1..s]:
∀ i1, ..., ikz+1 ∈ Π, ∀ τ1, ..., τkz+1 : ∃h, � ∈ [1..kz + 1] : (h �= �) ∧ (qrτhih [z] ∩
qrτ�i� [z] �= ∅).

The other properties –leader validity (LV), quorum liveness (QL), and eventual leader
liveness (EL)– remain unchanged. It is easy to see, that GZk1,...,ks boils down to Zs,k

when k1 = · · · = ks = k.
Let GZ(Q)k1,...,ks denotes the quorum part of GZk1,...,ks (properties GQI and QL).

The proof of the following theorem is a simple extension of the proof of Theorem 1.

Theorem 3. Given any algorithm A that solves the {k1, ..., ks}-SSA problem in the
system model AMPn,n−1[FD ], the extraction algorithm described in Figure 1 is a
wait-free construction of a failure detector GZ(Q)k1,...,ks .
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4.4 A Hierarchy of Agreement Problems

Problem hierarchy AMPn,n−1[X ] denotes the asynchronous message-passing model
in which any number of processes may crash (AMPn,n−1[∅]) enriched with an algo-
rithm that solves the problemX .

Given the the message-passing modelAMPn,n−1[∅], a problem A is stronger than
a problem B (denoted A , B) if B can be solved in AMPn,n−1[A] (we also say that
B is weaker than A, denotedB - A). Moreover,A is strictly stronger thanB (denoted
A . B) if A , B and ¬(B , A) (A cannot be solved in AMPn,n−1[B]).

Lemma 3. P
(
{k1, ..., ks}, {k′1, ..., k′s′}

)
⇒
(
{k1, . . . , ks}-SSA , {k′1, . . . , k′s′}

-SSA
)
. (Proof in [23].)

Lemma 4. Let n > K ≥ 2.(
{k1, . . . , ks}-SSA , {k′1, . . . , k′s′}-SSA

)
⇒ P
(
{k1, . . . , ks}, {k′1, . . . , k′s′}

)
.

(Proof in [23]; this proof is the most technical of this paper.)

Theorem 4. Let n > K ≥ 2.(
{k1, . . . , ks}-SSA , {k′1, . . . , k′s′}-SSA

)
⇔ P
(
{k1, . . . , ks}, {k′1, . . . , k′s′}

)
.

(Proof in [23].)

Theorem 5. The relation . on generalized-SSA problems is a partial order.
(Proof in [23].)

The next corollary follows from the observation that, for any K > 1, the K-set agree-
ment problem is a sink vertex in the directed graphG(K).

Corollary 1. The weakest failure detector for the K-set agreement problem does not
allow to solve any {k1, . . . , ks}-SSA problem such that s > 1 and k1 + · · ·+ ks = K .

4.5 The Lattice of Symmetric SSA Problems

As seen before, a symmetric vertex is a vertex {k1, ..., ks} such that k1 = . . . = ks =
k. Let SG(K) denote the graph whose vertices are the symmetric vertices of G(K),
and there is an edge from (sx, kx) to (sy , ky) iff there is a path in G(K) from the
vertex {kx, ..., kx} (kx appearing sx times) to the vertex {ky, ..., ky} (ky appearing sy
times) and no path connecting these vertices passes through a symmetric vertex. As an
example, SG(6) is given in Section 4.2.

Theorem 6. For anyK , SG(K) is a lattice. (Proof in [23].)

The next corollary follows from the previous theorem.

Corollary 2. Let (s1, k1) and (s2, k2) be two different pairs of integers such that
s1k1 = s2k2, and none of k1 and k2 divides the other one. The symmetric (s1, k1)-
SSA and (s2, k2)-SSA problems are incomparable in AMPn,n−1[∅].

As far as agreement problems are concerned, this shows a strong difference be-
tween the message-passing model and the read/write model. In the read/write model,
(s1, k1)-SSA and (s2, k2)-SSA are the same problem (they are both equivalent to the
K-simultaneous problem which is itself equivalent to the K-set agreement problem,
whereK = s1k1 = s2k2).



308 M. Raynal and J. Stainer

5 Conclusion

This paper has investigated the comparative power of simultaneous agreement and set
agreement in asynchronous message-passing systems prone to any number of process
crashes. This study was initially motivated by the lasting (and difficult) quest for the
weakest failure detector for the k-set agreement problem in message-passing systems.

While k-simultaneous consensus and k-set agreement are equivalent problems in
asynchronous read/write systems prone to any number of process crashes [1], the pa-
per has introduced a general formulation of agreement problems, namely the family
of (s, k)-SSA (s-simultaneous k-set agreement) problems, and has shown that these
agreement problems define a strong hierarchy, thereby showing that their shared mem-
ory equivalence is no longer true in message-passing systems. Hence, this study con-
tributes to a better understanding of the relation (equivalence/difference) between the
send/receive model and the read/write model (equivalence when a majority of processes
are correct [2], and difference –from a problem ranking point of view– in the other
cases).

Finally, it follows from the results of this paper that the (yet unknown) weakest fail-
ure detector for k-set agreement in asynchronous message-passing systems is not pow-
erful enough to solve the generalized {k1, ..., ks}-SSA problem where s > 1.
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Abstract. Given an undirected weighted graph G with n nodes, the k-
Undirected Steiner Tree problem is to find a minimum cost tree spanning
a specified set of k nodes. If this problem and its directed version have
several applications in multicast routing in packet switching networks,
the modeling is not adapted anymore in networks based upon the circuit
switching principle in which not all nodes are able to duplicate packets.
In such networks, the number of branching nodes (with outdegree > 1)
in the multicast tree must be limited.

We introduce the (k, p)−Steiner Tree with Limited Number of Branch-
ing nodes problems where the goal is to find an optimal Steiner tree with
at most p branching nodes. We study, when p is fixed, its complexity de-
pending on two criteria: the graph topology and the parameter k. In
particular, we propose a polynomial algorithm when the input graph
is acyclic and an other algorithm when k is fixed in an input graph of
bounded treewidth. Moreover, in directed graphs where p ≤ k − 2, or in
planar graphs, we provide an nε-inapproximability proof, for any ε < 1.

Keywords: graph algorithm, parameterized complexity, Steiner tree.

1 Introduction

The k-Undirected Steiner Tree problem (min-k-UST) consists, given an undi-
rected weighted graph and k nodes called terminals, in the search of a minimum
cost tree spanning the terminals. In the directed version (min-k-DST), the min-
imum cost directed tree must be rooted at a specific node r.

Those problems are known to have applications in multicast routing where one
wants to minimize the bandwidth consumption [1–3]. Recent work emphasizes
the fact that in optical networks, some nodes are not able to duplicate packets
[4–6]. If such a node needs to transmit the same information to d neighbours, the
root has to send the same message d times to these neighbours individually. As
a consequence the bandwidth consumption considerably increases between the
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root and that node. Fortunately, there exist two different routers, the branch-
ing routers, capable of copying packets. The opto-electronical router receives an
optical packet, translates it into a temporary electronical message, and creates
for each neighbour a copy of the optical packet. The splitter router uses a set of
mirrors to split the signal into several copies. However, those routers introduce
supplementary cost to the network due to expensive maintenance, and when
splitting packets, they introduce supplementary delay to the transmission (in
the opto-electronical case) or an attenuation of the optical signal from the root
to the terminals (in the splitter case). Therefore they have to be limited in the
solution. It is why we will especially focus on the degree of the solution nodes,
and see if it is possible to find an optimal solution with a limited number of
branching routers and no repetition of the same message over the network.

Consequently, we modify the Steiner problems definition in order to consider
this new element and introduce the (k, p)-Steiner Tree with Limited number of
Branching nodes problems in an undirected or a directed graph ((k, p)-USTLB
and (k, p)-DSTLB).

Definition 1. In a undirected (resp. directed) tree, a branching node is a node
whose degree (resp. outdegree) is strictly greater than 2 (resp. 1).

Problem 1. min-(k, p)-USTLB: Given an undirected graph G = (V,E) with
n nodes and a non negative cost function ω on its edges, a set X ⊂ V of k
terminals, determine, if it exists, a minimum cost tree T ∗ spanning all the nodes
of X and containing at most p branching nodes.

Problem 2. min-(k, p)-DSTLB: Given a directed graph G = (V,E) with n
nodes and a non negative cost function ω on its arcs, a node r and a set X ⊂ V
of k terminals, determine, if it exists, a minimum cost directed tree T ∗ rooted
at r, spanning all the nodes of X and containing at most p branching nodes.

When p = k−1, the min-(k, k−1)-DSTLB problem is the min-k-DST problem
because an optimal solution of this problem cannot have more than k−1 branch-
ing nodes. Similar observation holds for the undirected case (with p = k − 2).
When k = n, the problem is equivalent to the minimum spanning tree problem
with few branch vertices [6]. When p = 0, the problem searches for a path going
through each terminal, which is equivalent to the Steiner Cycle problem [7]. It
was shown to be difficult in directed graphs when k ≥ 2 [8]. We extend those
results for any p ≤ k − 2.

We define as (k, p)-DSTLB and (k, p)-USTLB the problems of finding a fea-
sible solution in a min-(k, p)-DSTLB or min-(k, p)-USTLB instance. Finally we
define as min-(∗, p)-DSTLB, min-(∗, p)-USTLB, (∗, p)-DSTLB and (∗, p)-USTLB
the previous problems where the parameter k is not fixed.

Table 1 summarizes the results of this article and the remaining open prob-
lems. We first prove the general directed case with a fixed number of terminals
to be NP-Complete, even if we just look for a feasible solution. The proof is
a reduction from the two vertex-disjoint paths problem, which consists in con-
necting with two node-disjoint paths the nodes of two distinct couples of nodes.
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This problem is NP-Complete in directed graphs [9]. However, this is not true in
the general undirected case [10], in planar graphs [11] or in the acyclic directed
case [9], and the reduction is not applicable. Consequently, the other results are
dedicated to determining the complexity class of those cases. We finally study
the undirected case in bounded treewidth graph as it is to our knowledge the
only relevant case where one can find a solution to the k-vertex disjoint paths
problem at minimum total cost with an FPT algorithm in the treewidth of the
graph [12]. Indeed, a parameterized algorithm in p and k for USTLB follows
from that property.

Table 1. Results for the USTLB and DSTLB problems

Problem Conditions Find a feasible solution Minimization

(k, p)-DSTLB General graph, p ≤ k − 2 NPC (Th. 1) nε-Inappr. (Th. 2)
(k, p)-USTLB General graph, p ≤ k − 3 P (Th. 8) OPEN

(k, p)-USTLB
Bounded treewidth graph

P (Th. 9) P (Th. 9)
(∗, p)-USTLB OPEN OPEN

(k, p)-DSTLB

Planar graph

P (Th. 7) OPEN
(∗, p)-DSTLB NPC (Th. 3) nε-Inappr. (Th. 4)
(k, p)-USTLB P (Th. 8) OPEN
(∗, p)-USTLB NPC (Th. 3) nε-Inappr. (Th. 4)

(∗, p)-DSTLB Acyclic graph W[2]-hard in p (Th. 5) P (Th. 6)

In the following section, we present a survey of some results related to the
Steiner problem.We then divide our study into three parts. In Section 3, we prove
the hardness results of Table 1. In Section 4, we propose a polynomial algorithm
for the min-(∗, p)-DSTLB case where we impose the graph to be acyclic. In
Section 5, we prove the last polynomial results of Table 1. We lastly give the
conclusions and perspectives for further works.

2 Related Work

The Undirected Steiner Tree problem is NP-hard and can be approximated
within constant ratio [13–15]. For a general survey, see [16].

The Directed Steiner Tree was first studied in acyclic graphs [17]. A paper
then developed a non trivial series of approximation within kε in the general case
[18], which is currently the best known ratio although the algorithm itself was
improved [19] or the approximation ratio was rediscovered by other methods [20].
As a generalization of the Set Cover problem, it was known to be inapproximable
within a O(log(k)) ratio unless NP ⊆ DTIME [nO(log log n)] (see [21]).

Given an undirected graph G = (V,E) and a list of k subsets of nodes called
groups, the k-Group Steiner Tree problem (min-k-GST) consists in finding a
minimum cost tree spanning at least one node in each group. We can reduce the
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GST problem to the DST problem. The GST problem can not be approximated
within a O(log(k)2) ratio [22] and so does the DST problem. In addition, it can
be randomly approximated within a O(log(n) log(k)) ratio if the input graph is
a tree and within a O(log3(n) log(k)) ratio in the general case [23].

The min-k-GST, min-k-UST and min-k-DST problems are FPT with respect
to the parameter k as it exists an exact algorithm in time O(3kn + 2k(k +
log(n))n+ n2) and in space O(2kn) [24].

In this paper, by reducing the number of branching nodes, we modify the set
of feasible solutions and cannot easily adapt those previous results in order to
solve or approximate the USTLB and DSTLB problems.

An other generalization of the Steiner problems, the rooted connectivity prob-
lem, asks for a subgraph which has a specified number of openly (node or arc)
disjoint paths from a root to each terminal. The undirected version with re-
quirements for node-disjoint paths and all the directed versions of the problem
cannot be approximated within O(kε) [25]. As we will see for the (k, p)-DSTLB
problem, the introduction of constraints implying to find disjoint paths makes
the problem harder to approximate.

3 Hardness Results

In this section, we will prove seven results of Table 1: the NP-hardness and
inapproximability of the problem in general digraphs when both parameters k
and p are fixed, and in planar graphs when only the parameter p is fixed. We
will finally prove a parameterized complexity hardness result in the acyclic case.

3.1 The General Directed Case with Fixed k and p

This part extends previous results of [8] about the k-Directed Steiner Cycle
problem (equivalent to min-(k, 0)-DSTLB) to any p ≤ k − 2.

NP-Completeness of Finding a Feasible Solution to (k, p)-DSTLB

Theorem 1. Let the two parameters k and p satisfy k ≥ 2 and p ≤ k − 2.
(k, p)-DSTLB is NP-Complete.

In order to prove Theorem 1, we first define a reduction from the 2 Vertex
Disjoint Paths problem (2VDP).

Problem 3. 2VDP: Given a directed graph and four distinct nodes s1, s
′
1, s2

and s′2, find two node-disjoint paths from s1 to s′1 and from s2 to s′2.

The 2VDP problem is known to be NP-Complete [9]
Let I = (G = (V,E), s1, s

′
1, s2, s

′
2) be an instance of the 2VDP problem. We

will construct an instance I ′ = (G′, r,X, ω) of the (k, p)-DSTLB problem as
follows. G is a subgraph included in G′. We add a node r, p nodes {b1, b2, ... bp}
and k nodes X = {t1, t12, t22 ... tk−1

2 } into V ′. If p �= 0, we add into E′ the arcs
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(r, s1), (s
′
1, t1), (t1, s2), (s

′
2, b

1), (bi, ti2) for all i ≤ p, (bi, bi+1) for all i ≤ p − 1
and (bp, ti2) for all i ∈ �p; k − 1�. An example is shown in Figure 1. If p = 0, we
add the arcs (r, s1), (s

′
1, t1), (t1, s2), (s

′
2, t

1
2) and (ti−1

2 , ti2) for all 2 ≤ i ≤ k − 1.
This last case is not treated in the following proof, but is similar to the previous
case. We define the instance I ′ by setting r as the root, X as the terminals, the
unit function as the cost function ω.

r s1 s′1

s2s′2

b1

t1

b2bp

t12t22tp2tk−1
2

G

Fig. 1. The reduction from 2VDP to (k, p)-DSTLB. The dashed ellipse represents the
copy of G in G′. The dashed lines depict potential paths from s1 to s′1 and s2 to s′2.

Lemma 1. If there exists a solution for I, there exists a solution for I ′.

Proof. Let ps be the set of arcs contained in the two disjoint paths of I and
T ′ the graph induced by ps ∪ (E′ − E). This solution is a directed tree because
the paths of ps are node-disjoint and E′ − E is a forest. T ′ is rooted at r and
spans X . Lastly, T ′ contains only p branching nodes (b1, b2 ... bp). Thus, T ′ is a
feasible solution for I ′. ��

Lemma 2. If there exists a solution for I ′, there exists a solution for I.

Proof. Let T ′ be the solution of I ′. Since for each i ∈ �1; p� T ′ spans ti2, it also
spans its only predecessor bi. Consequently, b1, b2 ... bp are the p branching nodes
of T ′. In the same way, it contains s′1 as it is the only predecessor of terminal t1.

Let P be the path from r to b1 in T ′. No branching node can be in G so P is
an elementary path containing in that order s1, s

′
1, s2, s

′
2. Thus, the subpath of

P going from s1 to s′1 and the subpath of P going from s2 to s′2 are disjoint. ��

Proof (Theorem 1). (k, p)-DSTLB is in the complexity class NP as we can poly-
nomially decide if a set of arcs is a directed tree rooted at a specific node r,
spanning specific nodes X with at most p branching nodes.

Furthermore, Lemmas 1 and 2 prove that there exists a polynomial-time re-
duction from 2VDP to (k, p)-DSTLB. So (k, p)-DSTLB is NP-Complete. ��

Inapproximability of the Problem. The previous reduction tells us that
computing a feasible solution may be hard. In order to work with an optimization
problem where the feasible solution set is not empty, we add to the previous
instance a long path starting from the root and going through each terminal.
This long path is a feasible solution with no branching node. If this path is
long enough between each terminals, it will not be allowed to be part of any
approximate solution. We now prove the following theorem.
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Theorem 2. Let the two parameters k and p satisfy k ≥ 2 and p ≤ k − 2. Let
ε < 1 be a real number. If P �= NP, the min-(k, p)-DSTLB problem with unit
costs cannot be approximated within a factor of N ε where N is the number of
nodes in the instance, even if a feasible solution is given.

Proof. Let I = (G = (V,E), s1, s
′
1, s2, s

′
2) be an instance of the 2VDP problem

with n nodes such that n ≥ k > p. We construct a min-(k, p)-DSTLB instance
I ′ like we did in the last section except that we also add for each terminal a long
path with h arcs. The first path links r to t1, the second links t1 to t12, and the
others link ti2 to ti+1

2 for i ∈ �1; k − 1�. We will fix the value of h later.
The number of nodes N in G′ is k · h+ n+ p+ 1.
Let T ∗ be an optimal solution of I ′. It exists because the new paths are a

solution with no branching node. Let ε < 1, and suppose it exists a N ε-approxi-
mation algorithm for min-(k, p)-DSTLB.

If there exist two node-disjoint paths in I, T ∗ contains at most n+ p+ k+ 1
nodes (for example, the n nodes of G, the k terminals, b1. . . bp and r), thus at
most n+k+p arcs. So the approximate solution has a cost cYES ≤ (n+k+p)·N ε.

If there are not two node-disjoint paths in I, the previous section proves
that without one of the long paths we cannot build a feasible solution. So the
approximate solution uses at least one long path and has a cost cNO > h.

If cNO > h > cYES, then the approximation algorithm can decide whether
there are two node-disjoint paths in I or not.

Let h satisfies h = 6
1

1−εn
1+ε
1−ε + 1. Notice that h > 2 for all ε < 1, n ≥ k > p.

h > 6
1

1−εn
1+ε
1−ε (1)

h1−ε > 6n1+ε (2)

h > 3 · 2n1+εhε > 3 · 2εn1+εhε (3)

h > 3n1+ε(2h)ε > 3n1+ε(2 + h)ε (4)

h > 3n(2 + h)ε · nε = 3n(2n+ n · h)ε (5)

h > (n+ p+ k)(n+ p+ 1 + k · h)ε (6)

cNO > h > cYES (7)

As a consequence, if P �= NP, such an algorithm does not exist. ��

3.2 The Undirected and Directed Planar Cases with Fixed p

The previous reduction is not applicable in a planar graph as the 2VDP problem
is polynomial in this case [11]. However a similar result holds if k is not fixed.

Theorem 3. (∗, p)-DSTLB and (∗, p)-USTLB are NP-Complete, even if G is
planar.

Proof. The (k, 0)-DSTLB problem is equivalent to the Hamiltonian Path prob-
lem in a graph with k nodes. Thus (∗, 0)-DSTLB is NP-Complete even if G is
planar. We now extend this reduction to any fixed parameter p.
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Let p be a positive integer and G = (V,E) be a directed planar graph. Let B
be a binary arborescence rooted at r with p internal nodes and p + 1 leaves L.
Let Gv be the graph obtained when adding B to G by linking one leaf of L to
a node v ∈ V . We denote r as the root and X = L ∪ V as the terminals. By
solving the (∗, p)-DSTLB problem on Gv for all v ∈ V we can decide whether or
not G contains an hamiltonian path.

A similar proof holds for undirected planar graphs. ��
Like in Section 3.1, we now add an expensive feasible solution to prove an

inapproximability result. However, this is more complex than in the previous
section because we have to keep a the graph planar while doing this. Due to lack
of space, we do not detail the proof in this paper but provide it in [26].

Theorem 4. Let ε < 1 be a real number. If P �= NP, the min-(∗, p)-DSTLB and
the min-(∗, p)-USTLB problems in planar graphs with unit costs and N nodes
cannot be approximated within a factor of N ε, even if a feasible solution is given.

3.3 The Directed Acyclic Case with Fixed p

In a directed acyclic graph, the reduction given in Section 3.1 is not applicable
because 2VDP is polynomial [9]. However, when k is not fixed, we are able to
prove that finding a feasible solution is W[2]-hard in p.

Theorem 5. The (∗, p)-DSTLB problem is W [2]-hard with respect to the pa-
rameter p even if the graph is acyclic.

Proof. We use a variant of the classic Directed Steiner Tree reduction from the
Set Cover problem. Given a set of elements U , a set S of subsets of U and an
integer N , the set cover problem is to find N or less sets of S covering all the
elements in U . This problem is W [2]-complete in N [27].

We define a fixed-parameter reduction from this parameterized problem to
min-(∗, p)-DSTLB on acyclic graphs. We construct an instance I = (G =
(V,A), r,X) of (∗, p)-DSTLB. For each set in S we add a set node s in V , a
terminal ts in XS and link s to it. For each element in U , we add an element
terminal in Xe. We set X = XS ∪ Xe. Finally we add a root r to V . We link
r to each set node, and link a set node to an element terminal if the associated
element is in the associated set in the set cover instance. We set the parameter
p to N + 1. An example is shown in Figure 2.

As a feasible tree T covers every terminals, it covers XS and thus contains all
the set nodes, which outdegree is at least 1. The root is consequently a branching
node in T , and each set node father of an element node in T is a branching node.

If there exists a cover c ⊂ S with |c| ≤ N , the arborescence using each set
node associated with a set of c to cover Xe has |c| + 1 ≤ p branching nodes.
If there exists an arborescence T using the set nodes c ⊂ V to cover Xe, the
corresponding subset of S covers every elements of U with |c| ≤ N sets. This
FPT reduction proves the (∗, p)-DSTLB problem to be W [2]-hard in p. ��

Although Theorem 5 proves min-(∗, p)-DSTLB to be W[2]-hard with respect
to the parameter p, the next section shows it remains in the XP class.
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r

Element terminals Xe

Set nodes and XS

Fig. 2. Example of reduction from a Set Cover instance with U = {x1, x2, x3, x4} and
S = {{x1, x2}, {x2, x3, x4}, {x2, x4}}

4 A Polynomial Algorithm for Solving the Directed
Acyclic Case with Fixed p

This section provides an algorithm running in polynomial time when p is fixed
to compute an optimal solution when the directed graph G contains no circuit.

Theorem 6. The min-(∗, p)-DSTLB problem can be solved in O(np+2m3 log(n))
time where n and m respectively are the number of nodes and arcs in the graph.

The remaining of this section is dedicated to the proof of Theorem 6. The main
idea is to try every possible set of branching nodes. We compute afterwards in
polynomial time the minimum cost tree whose branching nodes are among the
set and then try another set. In the end, we return the minimum cost tree.

We now describe the polynomial algorithm which finds the minimum cost tree
using a given subset of V as branching nodes. We use a Minimum Cost Flow
instance where an integral flow joins the sink if and only if there exists a rooted
tree with the branching nodes constraint. We get the minimum-cost rooted tree
by computing an integral minimum-cost flow.

We first recall the definition of the Minimum Cost Flow problem and then
define the instance which solves our problem:

Problem 4. MCF: Given a directed graph G with a cost function ω on its arcs,
a capacity function c on its nodes and with a source node S, a sink node S′ and
an integer l, send l units of integral flow from S to S′ at minimum cost.

MCF is polynomial [28]. Let I = (G = (V,E), r,X, ω) be a min-(∗, p)-DSTLB
instance, j ≤ p an integer and κ = {v1, v2, ..., vj} j distinct nodes of V . We
construct an instance Fκ of the MCF problem. Let D be the set κ∪X . Consider
now the graph G where each node v of D is replaced by two nodes v− and v+.
Let D− and D+ be respectively the images of D by the functions v− and v+.
Finally let d be the function which satisfies d(v−) = v and d(v+) = v.

Each arc entering (resp. leaving) a node v of D is replaced by an arc with
same cost entering v− (resp. leaving v+). We add to Fκ a source S and a sink
S′. We link S to each node of D+ and r, and each node of D− to S′, by arcs
with cost 0. As a consequence, the flow leaving the source goes into D+ ∪ {r}
at first and later D− before entering the sink. Notice that if r ∈ D, the graph
contains the arc (S, r−) instead of (S, r). At last, we give an infinite capacity to
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S, S′ and v+ for v ∈ κ and a unit capacity to all other nodes. Figure 3 gives an
example of such a graph with j = 1.

r v r v− v+

S SS′

S′

Fig. 3.Graph F{v} (on the right) obtained from a graph G (on the left) with 3 terminals
(square nodes). Only S, S′ and v have infinite capacity. The source S and the sink S′

have been duplicated for readability. Bold elements are one feasible solution.

If I contains a feasible solution with the set κ as branching nodes, we can
send |D| flow units from S to S′ using the same arcs in Fκ, as shown with the
bold arcs and nodes in Figure 3. Consider now an integral solution f of Fκ. We
define Gκ as the subgraph of G induced by r and by the arcs where f is not null.

Lemma 3. The flow f goes through each node of D−.

Proof. The only |D| nodes preceding the sink with a unit capacity are in D−. ��

Lemma 4. Gκ is a feasible solution for I and its branching nodes are in κ.

Proof. Since from Lemma 3 the flow f goes through every node of D−, Gκ

contains D = κ ∪ X and it contains r by definition. As D+ contains the only
nodes with a non unit capacity, all the branching nodes of Gκ are in κ.
Gκ has only one connected component. Otherwise there would be a connected

component with a root node different from r. Thus, there would be a node w
of Fκ through which the flow goes with no other predecessor than the source
S. So w would have to belong to D+. However f goes through every node of
D− and particularly d(w)−, which would have a predecessor and so would d(w).
Therefore, d(w) could not be a root in a connected component.

Finally, Gκ is a rooted tree, otherwise it would contain a cycle or a circuit.
There is no circuit as G is acyclic. There is no cycle as only the nodes of D+ have
a capacity c > 1, as their only predecessor is S, and as the flow is integral. ��

Proof (Theorem 6). A subgraph of G and a flow f using the same arcs in Fκ

have the same cost because the output node of each arc in Fκ has a unit capacity
except the arcs with cost 0. Let κ∗ be the set for which Gκ∗ has minimum cost.
Let T � be an optimal rooted tree of I and κ� its branching nodes. We can send
in Fκ� a flow f� using the arcs of T �. By definition of Gκ� , the cost of f� is
greater than or equal to the cost of Gκ� , which is greater than or equal to the
cost of Gκ∗ . By Lemma 4 Gκ∗ is an optimal solution for I.

We try
(
n
1

)
+
(
n
2

)
+ ...+
(
n
p

)
sets κ. A minimum cost flow instance can be solved

in time O(n2m3 log(n)) [28]. The running time of this algorithm follows. ��
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5 Polynomial-Time Algorithm for Fixed k and p

The parameters k and p are now fixed. We provide a polynomial algorithm for
solving (k, p)-USTLB in general graphs, (k, p)-DSTLB in planar digraphs and
min-(k, p)-USTLB in bounded treewidth graphs.

The main idea of the algorithm is to define and enumerate some feasible
solution classes, called patterns, whose number depends on k and p, such that
if the instance has no feasible solution, each pattern is empty, and on the other
hand, if it has a solution, one of the pattern contains the optimal solution.

5.1 Patterns

Assuming it exists a feasible solution T of a (k, p)-DSTLB instance, let VP be a
set containing its branching nodes, the root and the terminals. By contracting
into a single edge each path of T having both endpoints in VP and no other node
in VP , we get a smaller tree P with VP as nodes. P still contains k terminals,
at most p branching nodes among V and the root. P is called the pattern of T
and we write T → P . An example is shown in Figure 4.

r r

Fig. 4. An example of trees T and P with T → P . Dashed nodes are contracted.

Definition 2. Let I be a (k, p)-DSTLB instance. We denote as ΠI the set of
patterns of I. For P ∈ ΠI, S(P ) is the feasible solutions T satisfying T → P .

If S(P ) is empty for every P , the instance has no feasible solution. As a
pattern is a rooted tree with the k terminals and at most p nodes among V , the
set |ΠI | = O(np) and thus is polynomial in n.

5.2 Algorithm

Lemma 5. Let I be a (k, p)-DSTLB instance in a planar graph. Let P =
(VP , AP ) be a pattern of ΠI . We can decide in polynomial time if S(P ) = ∅. If
not, we can return a directed tree of S(P ).

Proof. Assume S(P ) is not empty. In any tree T such that T → P , each arc (u, v)
of AP corresponds to a path puv of T , and the paths of the set {puv, (u, v) ∈ AP }
are pairwise vertex-disjoint, except, possibly, at their endpoints. There are at
most k + p such paths as there are at most k + p arcs in P .

In a directed planar graph, we can find in polynomial time a fixed number of
vertex disjoint paths [11]. If there are no such path, S(P ) is empty.

On the other hand, if we find k + p vertex disjoint paths linking nodes u to
nodes v for (u, v) ∈ AP , the union of the paths form a directed tree rooted at r
with at most p branching nodes among V , covering X . ��
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By iterating on every pattern P of ΠI whose size is polynomial in n, we check
if S(P ) is empty or not. There is no feasible solution if all sets are empty. If not,
by Lemma 5, we can find a solution. This proves the following theorem:

Theorem 7. The (k, p)-DSTLB problem, in planar graphs, is polynomial.

We can similarly prove the following theorems, knowing that the Undirected
Vertex Disjoint Paths problem (UVDP) is FPT in the number of paths [10],
and the min-sum UVDP (in which one wants to find vertex disjoint paths at
minimum total cost) is FPT in the treewidth of the graph [12].

Theorem 8. The (k, p)-USTLB problem is polynomial.

Theorem 9. The min-(k, p)-USTLB problem, restricted to bounded treewidth
graphs, is polynomial.

6 Concluding Remarks and Open Problems

The results we obtained and the main open questions concerning the problems
studied in this paper are summarized in Table 1. It appears that DSTLB and
USTLB are related to the min-sum Disjoint Paths problem (in which one wants
to find disjoint paths between given pairs of nodes, with minimum total length).

On the one hand, when one adds the branching nodes constraint to the steiner
problem, any solution must contain an elementary path between each couple of
successive branching nodes. That property allows us to build a reduction from
a Disjoint Paths problem, and make the general directed case hard to approxi-
mate. New hardness results on the min-sum Disjoint Paths problem (especially
in planar graphs) may enable us to complete the results of Table 1.

On the other hand, we gave a parameterized algorithm for the (k, p)-DSTLB
problem in planar graphs, the (k, p)-USTLB problem, and the min-(k, p)-USTLB
problem in bounded treewidth graphs, based on Disjoint Paths polynomial al-
gorithms. However, some minimization cases and the parameterized complexity
class of those problems with respect to couple of parameters (k, p) remain open.
New polynomial results on the min-sum Disjoint Paths problem may also enable
us to complete the results of Table 1.
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Abstract. When a large collection of objects (e.g., robots, sensors, etc.)
has to be deployed in a given environment, it is often required to plan
a coordinated motion of the objects from their initial position to a fi-
nal configuration enjoying some global property. In such a scenario, the
problem of minimizing the distance travelled, and therefore energy con-
sumption, is of vital importance. In this paper we study several motion
planning problems that arise when the objects must be moved on a net-
work, in order to reach certain goals which are of interest for several
network applications. Among the others, these goals include broadcast-
ing messages and forming connected or interference-free networks. We
study these problems with the aim to minimize a number of natural
measures such as the average/overall distance travelled, the maximum
distance travelled, or the number of objects that need to be moved. To
this respect, we provide approximability and inapproximability results,
most of which are tight.

1 Introduction

In many practical applications a number of objects need to be moved in a given
environment in order to complete some task. Problems of this kind often occur in
robot motion planning where we seek to move a set of robots from their starting
position to a set of ending positions such that a certain property is satisfied. For
example, if the robots are equipped with a short range communication device we
might want to move them so that a message originating from one of the robots can
be routed to all the others. If the robots’ goal is to monitor a certain area we might
want to move them so that they are not too close to each other. Other interest-
ing problems include gathering (placing robots next to each other), monitoring of
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traffic between two locations, building interference-free networks, and so on. To
make things harder, objects to be moved are often equipped with a limited supply
of energy. Preserving energy is a critical problem in ad-hoc networking, and move-
ments are expensive. To prolong the lifetime of the objects we seek to minimize the
energy consumed during movements and thus the distance travelled. Sometimes,
instead, movements are cheap but before and/or after an object moves it needs to
perform expensive operations. In this scenario we might be interested in moving
the minimum number of objects needed to reach the goal.

In this paper, we assume the underlying environment is actually a network,
which can be modelled as an undirected graph G, and the moving objects are
centrally controlled pebbles that are initially placed on vertices of G, and that
can be moved to other vertices by traversing the graph edges. To this respect, we
study several movement planning problems that arise by various combinations
of final positioning goals and movement optimization measures. In particular,
we focus our study on the scenarios where we want the pebbles to be moved to a
connected subgraph (Con), an independent set (Ind), or a clique (Clique) of G,
while minimizing either the overall movement (Sum), the maximum movement
(Max), or the number of moved pebbles (Num). We also give some preliminary
results on the problem of moving the pebbles to a set of vertices whose removal
separates two given vertices (s-t-Cut) while minimizing the above measures.

We will denote each of the above problems with ψ-c, where ψ represents the
goal to be achieved and c the measure to be minimized. For a more rigorous
definition of the problems we refer the reader to Section 2.

Related work. Although movement problems were deeply investigated in a dis-
tributed setting (see [12] for a survey), quite surprisingly the centralized coun-
terpart has received attention from the scientific community only in the last few
years.

The first paper which defines and studies these problems in this latter setting
is [4]. In their work, the authors study the problem of moving the pebbles on a
graph G of n vertices so that their final positions form a connected component,
a path (directed or undirected) between two specified nodes, an independent set,
or a matching (two pebbles are matched together if their distance is exactly 1).
Regarding connectivity problems, the authors show that all the variants are hard
and that the approximation ratio of Con-Max is between 2 and O(1 +

√
k/c∗),

where k is the number of pebbles and c∗ denotes the measure of an optimal
solution. This result has been improved in [2], where the authors show that
Con-Max can be approximated within a constant factor.

In [4] it is also shown that Con-Sum and Con-Num are not approximable
within O(n1−ε) (for any positive ε) and o(log n), respectively, while they ad-
mit approximation algorithms with ratios of O(min{n log n, k}) (where n is the
number of vertices of G) and O(kε), respectively. Moreover, they also provide
an exact polynomial-time algorithm for Con-Max on trees.

Concerning independency problems, in [4] the authors remark that it is NP-
hard even to find any feasible solution on general graphs since it would require to
find an independent set of size at least k. This clearly holds for all three objective
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functions. For this reason, they study an Euclidean variant of these problems
where pebbles have to be moved on a plane so that their pairwise distances
are strictly greater than 1. In this case, the authors provide an approximation
algorithm that guarantees an additive error of at most 1 + 1/

√
3 for Ind-Max,

and a polynomial time approximation scheme for Ind-Num.
More recently, in [7], a variant of the classical facility location problem has

been studied. This variant, called mobile facility location, can be modelled as a
movement and is approximable within (3 + ε) (for any constant ε > 0) if we seek
to minimize the total movement [1]. A variant where the maximum movement
has to be minimized admits a tight 2-approximation [1, 4].

As it is frequent, in practice, to have a small number of pebbles compared
to the size of the environment (i.e., the vertices of the graph), the authors of
[5] turn to study fixed-parameter tractability. They show a relation between
the complexity of the problems and their minimal configurations (sets of final
positions of the pebbles that correspond to feasible solutions, such that any
removal of an edge makes them unacceptable).
Our results. We study independency motion problems on graphs where a maxi-
mum independent set (and thus a feasible solution for the corresponding motion
problem) can be computed in polynomial time. This class of graphs includes, for
example, perfect and claw-free graphs. More precisely, we show that Ind-Max
and Ind-Sum are NP-hard even on bipartite graphs (which are known to be per-
fect graphs [3]). Moreover we devise a polynomial-time approximation algorithm
for Ind-Max that computes solutions where the maximum movement is at most
the value of the optimum plus 1. This result is clearly tight.

Concerning the problem of moving pebbles towards a clique of a general graph,
we prove that all the three variants are NP-hard. Then, we provide an approxi-
mation algorithm for Clique-Max which is optimal unless an additive term of 1
(this result is clearly tight). We show that both Clique-Sum and Clique-Num
are approximable within a factor of 2 but they are not approximable within
a factor better than 10

√
5 − 21 > 1.3606. If the unique game conjecture [10] is

true, then both problems are not approximable within a factor better than 2 and
the provided approximation algorithms are tight. We also show that an exact
solution for Clique-Num can be computed in polynomial time on every class of
graphs which finding a maximum weight clique requires polynomial time (these
classes of graphs also include perfect and claw-free graphs).

Finally, we present a strong inapproximability results of Ω(n1−ε) (for any ε >
0) for s-t-Cut-Max and s-t-Cut-Sum along with two approximation algorithms.
The approximation algorithm for s-t-Cut-Max is essentially tight, while we
show that any constant-factor approximation for s-t-Cut-Num would imply a
tight approximation for s-t-Cut-Sum.

We were also able to devise five exact polynomial-time algorithms for solv-
ing Ind-Max on paths and Ind-Sum, Ind-Num, Con-Sum and Con-Num on
trees, respectively.1 The latter two algorithms complement the already known
polynomial-time algorithm for Con-Max on trees, shown in [4].
1 These results and some of the proofs can be found in the full version of the paper.
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The state of the art of the studied problems, along with the results of this
paper, is summarized in Table 1.

Table 1. Known and new (in bold) results for the various motion problems on general
graphs (G), bipartite graphs (B), graphs on which a maximum independent set or
a maximum weight clique can be computed in polynomial time (IS, MWC), trees
(T), and paths (P). n and d denote the number of vertices and the diameter of G,
respectively. k is the number of pebbles, ρ denotes the best approximation ratio for
the corresponding problem, c∗ is the measure of an optimal solution. For independency
problems on general graphs it is NP-hard even to find any feasible solution. All the
inapproximability results hold under the assumption that P �= NP.

Max Sum Num
Con G: 2 ≤ ρ = O(1) [2, 4]

T: polynomial [4]
G: ρ = Ω(n1−ε) [4]

ρ = O(min{n, k}) [4]
T: polynomial

G: ρ = Ω(log n) [4]
ρ = O(k2) [4]

T: polynomial
Ind G: NP-hard [4]

IS: c∗ + 1, ρ ≤ 2
B: ρ ≥ 2
P: polynomial

G: NP-hard [4]
B: NP-hard
T: polynomial

G: NP-hard [4]
T: polynomial

Clique G: NP-hard
c∗ + 1

G: NP-hard
10

√
5 − 21 ≤ ρ ≤ 2

MWC: polynomial

G: NP-hard
10

√
5 − 21 ≤ ρ ≤ 2

s-t-Cut G: ρ = Ω(n1−ε)
ρ ≤ d

G: ρ = Ω(n1−ε)
ρ ≤ k · d

G: ρ-apx =⇒ (ρ · d)-apx
for s-t-���-���

2 Formal Definitions

A pebble motion problem, denoted by ψ-c, is an optimization problem whose
instances consist of a loop-free connected undirected graph G on n nodes, a set
P = [k] = {1, . . . , k} of pebbles, a function σ : P → V (G) that assigns each
pebble to a start vertex of G and a boolean predicate ψ : 2V (G) → {
, ⊥} that
assigns a truth values to every possible subset of vertices of G.

A (feasible) solution is a function μ : P → V (G) that maps each pebble to an
end vertex such that ψ(μ[P ]) is true, where μ[P ] denotes the image of P under
μ. Notice that, in general, it is not required for σ or μ to be injective.

Finally, c(μ) ∈ N0 is a measure function that assigns a non-negative integer
to each feasible solution. A solution μ∗ that minimizes c is said to be optimal.

In the following, we will study some of the movement problems that arise from
the different choices of predicates and measures. We will assume that a pebble
moving from a vertex u to a vertex v always uses a shortest path in G between u
and v. Moreover we denote by dG(u, v) the length of such a path. In particular,
we will consider the following predicates:

Independency: Ind(U) is true if and only if U is an independent set of size
k (|U | = k) for G, i.e., there is at most one pebble per vertex and no two
pebbles are on adjacent vertices;

Clique: Clique(U) is true if and only if U is a clique of G, i.e., for each pair
u, v of distinct vertices in U there exists the edge (u, v) ∈ E(G);
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s-t-Cut: Given s, t ∈ V (G) with s �= t. s-t-Cut(U) is true if and only if s �∈ U ,
t �∈ U and U is a cut that disconnects s from t, i.e., there exists no path
between s and t in the graph induced by the vertices in V (G) − U ;

and the following measures:

Overall movement: The sum of the distances travelled by pebbles has to be
minimized: every pebble p ∈ P moves from its starting vertex σ(p) to his
end vertex μ(p), so the overall distance is: Sum(μ) =

∑
p∈P dG(σ(p), μ(p));

Maximum movement: We seek for a solution that minimizes the maximum
distance travelled by a pebble. This is captured by the measure Max(μ) =
maxp∈P dG(σ(p), μ(p));

Number of moved pebbles: We aim to minimize the number of pebbles that
need to be moved from their starting positions. The associated measure is
Num(μ) = |{p ∈ P : σ(p) �= μ(p)}|.

3 Independency Motion Problems

In this section we focus on independency motion problems for which we provide
both positive and negative results. Since if k ≥ n there is no feasible solution,
we will consider only instances where k < n.

As we already pointed out, for independency problems on general graphs
it is NP-hard even to find any feasible solution since it would require to find
an independent set of size at least k. Nevertheless, one may wonder whether
independency motion problems are tractable on instances on which a maximum
independent set can be found in polynomial time. We provide a negative answer
to this question, by showing that Ind-Max and Ind-Sum are NP-hard even if
the input graph is bipartite. Moreover, we show that on these graphs Ind-Max
is not approximable within a factor better than 2. This is tight, as we provide
an optimal solution, unless an additive term of 1, to Ind-Max on any class of
graphs where a maximum independent set can be found in polynomial time.

We start by stating the following result:

Theorem 1. Ind-Max and Ind-Sum are NP-hard on bipartite graphs.

Actually, Ind-Max is hard already when the cost of an optimal solution is 1
and this immediately implies the following:

Corollary 1. Ind-Max is not approximable in polynomial time within a factor
of 2 − ε for any positive ε, unless P = NP. This also holds for bipartite graphs.

We now show how to find a solution for Ind-Max such that its cost is at most
the optimum cost plus one. This can be done in polynomial time for every class
of graphs where a maximum independent set can be found in polynomial time.
These include perfect graphs and claw-free graphs.

Given a graph H and a subset of vertices A ⊆ V (H) we will denote the
open neighbourhood of A by NH(A) = {v ∈ V (H) : ∃u ∈ A s.t. (u, v) ∈ E(H)}.
Moreover we will denote the closed neighbourhood of A by NH [A] = A∪NH(A).

Let U∗ be a maximum independent set of G, the following lemma holds:
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Lemma 1. For each independent set U of G it is true that |U∗ ∩ NG[U ]| ≥ |U |.
Proof. By contradiction, let |U∗ ∩ NG[U ]| < |U | then U ′ = (U∗ \ NG[U ]) ∪ U =
(U∗ \ (U∗ ∩ NG[U ])) ∪ U is an independent set of G and |U ′| > |U∗|. ��

To prove the following lemma we use the following well known result [8]:

Theorem 2 (Hall’s Matching Theorem). Let H = (V1+V2, E) be a bipartite
graph. There exists a matching of size |V1| on H iff |A| ≤ |NH(A)|, ∀A ⊆ V1.

Lemma 2. For each independent set U of G, there exists an injective function
f : U → U∗ such that dG(u, f(u)) ≤ 1.

Proof. Construct the bipartite graph H = (U + U∗, E) where all the vertices
of U are considered to be distinct from the ones in U∗ and E = {(u, v) : u ∈
U ∧ v ∈ U∗ ∧ v ∈ NG[{u}]}.

Notice that, by construction, if two vertices u, v are adjacent in H either they
are the same vertex or they are adjacent in G, i.e., dG(u, v) ≤ 1.

Lemma 1 shows that, for every A ⊆ U , we have N(A) = |U∗ ∩ NG[A]| ≥ |A|.
By Hall’s Matching Theorem, the above implies the existence of a matching of
size U on H (and thus the existence of the function f). ��
Theorem 3. There exists a polynomial-time algorithm for Ind-Max which, for
every class of graphs where the maximum independent set can be found in poly-
nomial time, computes a solution μ̃ such that c(μ̃) ≤ c∗ + 1 where c∗ is the
measure of an optimal solution.

Proof. The algorithm works as follows: first it computes a maximum independent
set U∗ of G then, for every value of z from 0 to n − 1, it computes a solution Sz

for maximum matching on the bipartite graph H = (P +U∗, E) where (p, v) ∈ E
if and only if d(σ(p), v) ≤ z.

Let z̃ be the first value of z such that |Sz̃| = k, i.e., all the pebbles have been
matched. Set μ̃(p) = v where v is the only vertex such that (p, v) ∈ Sz̃ and
return μ̃. Clearly c(μ̃) = z̃. Let μ∗ be an optimal solution to Ind-Max and let
U = μ∗[P ]. By Lemma 2 there exists an injective function f that maps every
vertex of the independent set U on an adjacent vertex of U∗.

For every p ∈ P we have dG(σ(p), μ∗(p)) + dG(μ∗(p), f(μ∗(p))) ≤ c∗ + 1,
therefore there exists a way to place all the pebbles on vertices of U∗ while
travelling a maximum distance of at most c∗ + 1. This implies z̃ ≤ c∗ + 1. ��

Concerning the independency motion problems on trees and paths, we are
able to prove the following results:

Theorem 4. Ind-Sum on trees can be solved in O(n2 · k2) time.

Theorem 5. Ind-Num on trees can be solved in O(n2 · k2) time.

Theorem 6. Ind-Max on paths can be solved in O(n + k log n) time.

We end this section by mentioning that it remains open to establish whether
Ind-Max on trees can be solved in polynomial time.
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4 Clique Motion Problems

In this section we prove that the problems Clique-Max, Clique-Sum and
Clique-Num are NP-hard. Then, we give a tight approximation algorithm for
Clique-Max that computes a solution that costs at most one more than the
optimal solution. As of Clique-Sum and Clique-Num, we show that the prob-
lems are not approximable within any factor smaller than 10

√
5 − 21 and we

devise two 2-approximation algorithms.
Actually, we will show that any approximation for Clique-Sum or Clique-

Num implies an approximation with the same ratio for minimum vertex cover,
which is known to be not approximable under 10

√
5 − 21 [6]. Moreover, if the

unique game conjecture [10] is true, then both approximation algorithms are
tight as the corresponding problems are not approximable within any constant
factor better than 2 [11].

Finally, for classes of graphs where we can find a maximum weight clique in
polynomial time, we can also solve Clique-Num in polynomial time.

4.1 Approximability of ������-��	

We prove the following:

Theorem 7. Clique-Max is NP-hard.

Proof. We show a reduction from the problem of determining if there exists
a dominating clique in a graph H , which is known to be NP-Complete [9]. A
dominating clique is a subset of vertices C ⊆ V (H) such that C is both a clique
and a dominating set for H .

We construct an instance of Clique-Max by setting G = H and placing a
pebble on each vertex of G. We claim that there exists a dominating clique in H
if and only if the optimal solution for Clique-Max has measure c∗ at most 1.

Suppose that there exists a dominating clique C in H . By definition, C is also
a dominating set of G. We define μ so that every pebble initially placed on a
vertex u �∈ C is moved to a vertex v ∈ C such that (u, v) ∈ E(G) (notice that
such a vertex always exists). After their movement the pebbles are placed on a
clique of G and each pebble has travelled a distance of at most 1.

Now suppose that there exists a solution μ for Clique-Max such that c(μ) ≤
1. Clearly μ[P ] is a clique, to show that it is also a dominating set note that, for
each vertex u �∈ μ[P ], there exists a vertex v ∈ μ[P ] such that (u, v) ∈ G. ��
Theorem 8. It is possible to compute a solution μ̃ for Clique-Max such that
c(μ̃) ≤ c∗ +1 in polynomial time, where c∗ is the measure of an optimal solution.

Proof. Consider the following algorithm: for each vertex u ∈ V (G) construct a
solution μu that moves all the pebbles to u (i.e., set μu(p) = u, ∀p ∈ P ) and
compute c(μ). Among the n possible solutions choose the one of minimum cost
and call it μ̃. Let μ∗ be an optimal solution.

Recall that c(μ∗) = maxp∈P {dG(σ(p), μ∗(p))}. Now call C = μ∗[P ] the clique
where pebbles have been placed by μ∗ and notice that when the above algorithm
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considers a node u ∈ C we have: dG(σ(p), μu(p)) ≤ dG(σ(p), μ∗(p)) + 1 ∀p ∈ P ,
thus c(μ̃) ≤ c(μu) ≤ c(μ∗) + 1. ��

4.2 Approximability of ������-
��

We prove the following:

Theorem 9. Clique-Num is 2-approximable and it is not approximable within
any constant factor smaller than 10

√
5 − 21, unless P = NP.

Proof. Let 〈G, P, σ〉 be an instance of Clique-Num and let ϕ(u) = |{p ∈ P :
σ(p) = u}| be the number of pebbles that are initially placed on vertex u ∈ V .

Let us assume that ϕ(u) ≤ 1 for every u ∈ V , i.e., no two pebbles are placed
on the same vertex. We will show later that this assumption is not restrictive.

Call H the graph induced by the vertices u with ϕ(u) = 1. Let H̄ be the
complement graph of H w.r.t. the edge set, that is the graph such that V (H̄) =
V (H) and E(H̄) = {(u, v) : u, v ∈ V (H) ∧ u �= v ∧ (u, v) �∈ E(H)}.

We will show that there exists a vertex cover C for H̄ if and only if there exists
a solution for the instance 〈G, P, σ〉 of Clique-Num of cost |C|.

Let C be a vertex cover for H̄ , this implies that Q = V (H) − C is an indepen-
dent set for H̄ and therefore a clique for H and G. We construct a solution μ
for Clique-Num by moving the |C| pebbles that are not yet placed on vertices
in Q to one of such vertices.

Now let μ be a solution for the instance 〈G, P, σ〉 of Clique-Num and let
Q = {u ∈ V (H) : ∃p ∈ P s.t. σ(p) = μ(p) = u}. Notice that the cost of μ is
exactly k−|Q| = |V (H)−Q|. Clearly Q ⊆ μ[P ] is a clique for G and H , therefore
it is also an independent set for H̄ . This implies that C = V (H) − Q is a vertex
cover for H̄ . From the above it follows that the cost of an optimal solution is
equal to the size of the minimum vertex cover for H̄ .

To approximate Clique-Num we construct the graph H̄ , compute a
2-approximate minimum vertex cover C̃ and reconstruct the solution μ.

If the previous assumption is not met, i.e., there exists at least a vertex on
which two or more pebbles are placed by σ, a slight modification to the instance
is needed before we can apply the previous approach. We modify the graph G
by replacing each vertex u such that ϕ(u) > 1 with a clique of size ϕ(u). Each
edge e incident to u is replaced by ϕ(u) edges connecting every vertex of the
clique to the other endpoint of e. Then, we modify the function σ so that the
ϕ(u) pebbles that were placed on u are assigned to each of the ϕ(u) vertices of
the corresponding clique. After the modifications, the cost of an optimal solution
has not changed, moreover every solution for the modified instance can be easily
reconverted to a solution for the original instance without increasing its cost.

We prove the inapproximability result by contradiction: suppose that there
exists an algorithm that approximates Clique-Num with a ratio better than
10

√
5 − 21, this would allow to approximate minimum vertex cover with the

same approximation ratio. Let H̄ be the an instance of minimum vertex cover,
call G the complement of H̄ w.r.t. the edge set, let P = [|V (G)|], and let σ be a
function that places a single pebble on each vertex of G. We can now compute an
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approximate solution for the instance 〈G, P, σ〉 of Clique-Num and reconstruct
a solution with the same cost for minimum vertex cover, as shown before. ��

By considering a weighted variant of the graph G where each vertex v has a
weight equal to the number of pebbles starting on v, we can prove the following:

Theorem 10. An exact solution to Clique-Sum can be found in polynomial
time on every class of graphs where a maximum weight clique can be found in
polynomial time.

4.3 Approximability of ������-���

We prove the following:

Theorem 11. Clique-Sum is 2-approximable and is not approximable within
any constant factor better than 10

√
5 − 21, unless P = NP.

Proof. Let μ∗ be an optimal solution to Clique-Sum. If μ∗ moves all the pebbles
(i.e., σ(p) �= μ∗(p), ∀p ∈ P ) then we can compute a 2-approximate solution μ̃
by guessing a vertex u ∈ μ∗[P ] and moving all the pebbles to u (i.e., setting
μ̃(p) = u, ∀p ∈ P ). Indeed, we have:

c(μ̃)
c(μ∗)

=
∑

p∈P dG(σ(p), μ̃(p))
∑

p∈P dG(σ(p), μ∗(p))
≤ |P | +

∑
p∈P dG(σ(p), μ∗(p))

∑
p∈P dG(σ(p), μ∗(p))

≤ 2

where we used the fact that dG(σ(p), μ̃(p)) ≤ dG(σ(p), μ∗(p)) + 1 and that
dG(σ(p), μ∗(p)) ≥ 1, for every pebble p ∈ P .

On the other hand, if there exists at least one pebble p′ ∈ P such that σ(p′) =
μ∗(p′), then we guess its starting vertex u = σ(p′). We call P0 the set of pebbles
whose starting vertex is u, P1 the set of pebbles whose starting vertex is adjacent
to u, and P2 the set of pebbles that are initially placed on a vertex at distance
2 or more from u. We set μ̃(p) = u if p ∈ P0 or p ∈ P2. With a reasoning similar
to the one of the previous case we can show that:

∑

p∈P2

dG(σ(p), μ̃(p)) ≤ |P2| +
∑

p∈P2

dG(σ(p), μ∗(p)) ≤ 2
∑

p∈P2

dG(σ(p), μ∗(p)).

Concerning P1, assume P1 �= ∅, and so we need to compute μ̃ for the pebbles
in P1. To do that, consider the instance 〈H, P1, σ〉 of Clique-Num where H
is the subgraph of G induced by the vertices initially occupied by pebbles in
P1 ∪ {p′}, and compute a 2-approximate solution μ′ as shown in Theorem 9. Set
μ̃(p) = σ(p) for every pebble p ∈ P1 such that μ′(p) = σ(p) and set μ̃(p) = u for
the remaining pebbles in P1.

Clearly μ̃[P ] is a clique for G as the vertices in μ′[P1] are a clique for G, u is
adjacent to every vertex in μ′[P1], and μ̃[P ] ⊆ μ′[P1] ∪ {u}.
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Notice that the cost of moving the pebbles in P1 w.r.t. μ∗ is greater than or
equal to the cost of the optimal solution for the instance 〈H, P1, σ〉 of Clique-
Num. Moreover the cost of moving the pebbles in P1 w.r.t. μ̃ is equal to the cost
of μ′. From the above it follows that:

∑

p∈P1

dG(σ(p), μ̃(p)) ≤ 2
∑

p∈P1

dG(σ(p), μ∗(p)).

Therefore, the overall cost of this approximated solution is:

c(μ̃) ≤ 2
∑

p∈P1

dG(σ(p), μ∗(p)) + 2
∑

p∈P2

dG(σ(p), μ∗(p)) ≤ 2 c(μ∗).

To prove the inapproximability result, take a graph H = (V, E) and construct
the graph G by complementing H w.r.t. the edge set and adding an additional
vertex v0 adjacent to every other vertex. Let P = [|V (H)|] and let σ be a function
that places a pebble to each vertex of G except v0. We will show that, given any
solution for Clique-Sum, it is possible to construct a vertex cover of H of the
same cost, and vice versa. This implies that any approximation algorithm for
Ind-Sum translates into an approximation algorithm for minimum vertex cover
with the same approximation ratio, therefore no approximation algorithm with
an approximation ratio less than 10

√
5 − 21 can exist for Ind-Sum [6].

Let C be a vertex cover for H , then V (H) − C is an independent set for H
and a clique for G. The solution that moves all the pebble of C to v0 and leaves
the other on their starting position is feasible and costs C.

Now let μ be a solution for the instance Ind-Sum. Let Q = {u ∈ V (H) : ∃p ∈
P s.t. σ(p) = μ(p) = u} (notice that v0 �∈ Q) and let C = V (H) − Q. The cost
of μ is |V (H)| − |Q| = |C|, and Q ⊆ μ[P ] is a clique for G. Therefore Q is also
an independent set for H and C is a vertex cover for H . ��

5 s-t-��� Motion Problems

In this section we discuss (in)approximability results for s-t-Cut-Max and
s-t-Cut-Sum. Among the others, we provide an essentially tight approximation
algorithm for s-t-Cut-Max. Regarding s-t-Cut-Num, establishing its tractabil-
ity remains open, but we will show that approximating such a problem can be
useful to approximate s-t-Cut-Sum, as well. We start by proving the following:

Theorem 12. s-t-Cut-Max and s-t-Cut-Sum are NP-hard even if G is a bi-
partite graph.

Proof. Due to space limitations we only sketch the proof. The reduction is from
the decisional version of 3-SAT: given a C.N.F. boolean formula f decide whether
there is a truth assignment to the variables such that f is satisfied.

Given a formula f , we construct an instance of s-t-Cut-Max (resp., s-t-Cut-
Sum) similar to the one shown in Figure 1 where, for each variable in xi of f ,
there is a gadget composed of three nodes ui, xi, x̄i, and, for each clause cj of
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Fig. 1. Instance of s-t-Cut-Max corresponding to the formula (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨
x̄2 ∨ x3). Pebbles are placed on black vertices. All the edges not incident to a black
vertex represent paths of length h between their endpoints.

f , there is a gadget of five nodes �j
1, vj , �j

2, v′
j , �j

3. We connect all the vertices ui

to s and all the vertices vj , v′
j to t. Moreover when a literal appears in a clause

we connect the corresponding literal to an �-vertex of the clause using a path of
length h > k. We place a pebble on each of the vertices ui, vj and v′

j .
The claim follows as there exists a truth assignment satisfying f iff an optimal

solution for s-t-Cut-Max (resp., s-t-Cut-Sum) has cost at most 1 (resp., k).
��

We now show that s-t-Cut-Max and s-t-Cut-Sum are actually very hard to
approximate:

Theorem 13. s-t-Cut-Max and s-t-Cut-Sum are not approximable within a
factor of n1−ε for every ε > 0, unless P = NP. This also holds for bipartite
graphs.

Proof. As shown in the proof of Theorem 12, it is possible to construct instances
of s-t-Cut-Max (and s-t-Cut-Sum) such that the optimal solution has measure
at most 1 (resp., k = τ + 2m) if and only if a boolean C.N.F. formula with three
literals per clause, τ variables and m clauses is satisfiable.

Moreover any solution with cost z such that τ + 2m < z < h (recall that h is
the length of the “long” paths) can be easily transformed into a solution of cost
at most τ + 2m by moving each pebble that has been placed on the long paths
to an appropriate endpoint (i.e., the one adjacent to its starting position).

This implies that, if f is satisfiable, the measure z∗ of an optimal solution is
at most k for both the problems, while, if f is not satisfiable, z∗ is at least h.

Take a formula f , construct an instance for s-t-Cut-Max (and s-t-Cut-Sum)
and suppose that there exists a polynomial time algorithm that approximates
the optimal solution within a factor of n1−ε, for some positive ε ≤ 1. Let c̃ be
the measure of an approximate solution.

It is possible to upper bound the number of vertices n of the instance with
the quantity 2 + 3τ + 5m + 2τh + 6mh ≤ 11h(τ + m) ≤ 11hk.

If f is satisfiable, we have c̃ ≤ kn1−ε, while if f is not satisfiable we have
c̃ ≥ h. If kn1−ε < h holds then it is possible to decide 3-SAT by running the
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approximation algorithm and looking the measure of the approximate solution.
This can be guaranteed by choosing h > (11k)2/ε as we have: h > (11k)2/ε =⇒
hε > 11k2 =⇒ hε > 111−εk2−ε =⇒ h > k(11hk)1−ε =⇒ h > kn1−ε. ��

By moving all the pebbles on a minimum s-t-cut of G we can show that the
inapproximability result provided above is tight for s-t-Cut-Max:

Theorem 14. s-t-Cut-Max is d-approximable in polynomial time, where d <
n is the diameter of G. s-t-Cut-Sum is (k · d)-approximable in polynomial time.

We close this section stating a theorem which is useful in linking the approx-
imability of s-t-Cut-Num to that of s-t-Cut-Sum:

Theorem 15. If there exists a ρ-approximation algorithm for s-t-Cut-Num
then there exists a (ρ·d)-approximation algorithm for s-t-Cut-Sum, where d < n
is the diameter of G.
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Abstract. We present a maximum-separable-distance (MDS) code suitable for
computing erasure resilient codes for large word lengths. Given n data blocks
(words) of any even bit length w the Circulant Cauchy Codes compute m ≤ w+1
code blocks of bit length w using XOR-operations, such that every combination
of n data words and code words can reconstruct all data words. The number of
XOR bit operations is at most 3nmw for encoding all check blocks. The main
contribution is the small bit complexity for the reconstruction of u ≤ m missing
data blocks with at most 9nuw XOR operations.

We show the correctness for word lengths of form w = p − 1 where p is
a prime number for which two is a primitive root. We call such primes Artin
numbers. We use efficiently invertible Cauchy matrices in a finite field GF [2p]
for computing the code blocks To generalize these codes for all even word lengths
w we use � independent encodings by partitioning each block into sub-blocks of
size pi − 1, i.e. w =

∑�
i=1 pi − � for Artin numbers pi. While it is not known

whether infinitely many Artin numbers exist we enumerate all Circulant Cauchy
Codes for w ≤ 105 yielding MDS codes for all m+ n ≤ 10

62
w.

Keywords: RAID, erasure codes, storage, fault-tolerance.

1 Introduction

Computer systems are prone to data loss in many situations, ranging from the failure of
a hard disk, communication errors in the physical layer, to the incomplete transmission
of large files in overlay networks. Data is often stored in fixed block sizes and many
systems rely on creating extra code blocks, from which one can recover the original
data. A wide-spread example of such codes are RAID storage systems [14], where the
parity of data blocks are stored on extra hard disks to recover the data. If the number of
code blocks and data blocks necessary to restore a message equals the original number of
data blocks, say n, such coding schemes are called maximum distance separable (MDS).

We consider the input data partitioned into n blocks of w bits. We generatem addi-
tional check blocks with w bits each. MDS codes allow by definition to retrieve all n
data blocks from any combination of the n+m data and check blocks. MDS codes have
been studied extensively and the standard method is Reed-Solomon codes [17]. These
codes can be represented as a matrix multiplication over a finite field F[2w]. Addition
in a Galois field is a bitwise XOR operation, while multiplication is a product of poly-
nomials modulo a polynomial (and modulo base 2). The multiplication operation is the
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most time consuming part of such codes and therefore there have been research efforts
to establish MDS codes only based on XOR operations.

It should be noted that Luby has found more efficient codes [11] based on XOR
operations, spawning a lot of work in this area. However, these LT codes and successors
are not MDS codes, and are thus not relevant for many uses, e.g. in RAID systems.

⎛
⎜⎜⎜⎜⎝
I 0 0
0 I 0
0 0 I
H11 H12 H13

H21 H22 H23

⎞
⎟⎟⎟⎟⎠
⎛
⎝d1d2
d3

⎞
⎠ =

⎛
⎜⎜⎜⎜⎝
d1
d2
d3
c1
c2

⎞
⎟⎟⎟⎟⎠ (1)

1.1 State of the Art

For RAID systems, MDS codings are considered where the original data is part of the
encoding and the check blocks are generated by a matrix multiplication. Such MDS
codes use a nw× (n+m)w systematic generator matrixG where the first nw columns
are occupied with the identity matrix I , see (1). For the complexity of such an approach
Blaum has proved in Proposition 3.4 [5] that at least nw(m + 1) nonzero entries are
in the generator matrix, where n is the number of original blocks, m is the number of
check blocks and w is the word length. For F2 he improves his bound in Proposition
5.2 to a minimum of (m + 1)nw + 1

2
mn

1−1/n entries of value 1 in the generator matrix.

This corresponds to nmw + 1
2

mn
1−1/n XOR operations for computing the check blocks,

but does not imply a lower bound, since a small number of XOR operations can con-
struct full matrices. Note that sparser matrices exist, if one drops the systematic matrix
property, see [19].

In [4] MDS codes based on Galois-fields F[2p] with generator polynomials 1 + x +
. . .+ xp, where p is a prime number and 2 is a generator, i.e. {20, 21 mod p, . . . , 2p−1

mod p} = {1, . . . , p−1} are shown. The authors use this approach to establish efficient
coding for up to 8 check blocks. In this paper, we use the same generator polynomial
and extend it to general block sizes and number of check blocks.

Many MDS codes like Even-Odd [3], Row-Diagonal Parity (RDP) [7], and Libera-
tion Codes [15] construct only two parities and optimize on the number of XOR opera-
tion for computing the code blocks. In [2] RDP was generalized to compute up to eight
check blocks while maintaining the optimal encoding complexity of RDP. An MDS
code optimizing the reconstruction complexity has been presented in [12].

Blömer et al. [6] use Cauchy Reed-Solomon matrices to construct check matrices for
systematic MDS codes. It turns out that the number of operations over the Galois field
for reconstructing n data words is bounded by O(nm) operations of the Galois field. In
general, a multiplication in a Galois field can be performed in time w logw2O(log∗ w)

using Fürer‘s integer multiplication algorithm [10]. For small word lengths, such multi-
plication can be performed on modern computers in constant time using table lookups
with table size O(2w) and corresponding precomputing time. In [6] the authors recom-
mend to precompute the factors for coding and decoding and word-parallel computation
which reduces the complexity of computing m check blocks to O(nmw) word-wise
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XOR operations assuming the processor has word size w. Based on the approach of [6]
Plank uses exhaustive search techniques to reduce the XOR complexity of such Cauchy
Reed-Solomon matrices [16].

In [8] the usage of circular Boolean matrices helped to find an efficient MDS code for
tolerating three disk failures. They showed that encoding takes 3wn XOR operations
and decoding can be done within 3wn+9(w+1) XOR operations. Using these Cauchy
Reed-Solomon matrices (aka. Rabin Codes) the same authors generalized this result in
[9] to a MDS code with complexity of 9wnXOR operations for encoding andO(w3m4)
XOR operations for decoding when m disks fail (and (9n + 95)(w + 1) for m = 4).
The approach presented here has a similar coding complexity of 9mn, but reduces the
decoding complexity to 9nuw XOR operations.

1.2 Contribution

We present MDS codes, called Circulant Cauchy Codes, with an asymptotic optimal
bit complexity for computing the check blocks and reconstructing data blocks. Bit com-
plexity denotes the overall number of bit operations used in the calculation. In particular,
we have an encoding bit complexity of 3nmw for computing m check blocks from n
data blocks of word length w. The reconstruction of u data blocks from any n data or
check blocks needs 9unw XOR bit operations. We prove that Circulant Cauchy Codes
are defined for any even word length w.

However the maximum number of check blocks m depends on n and w. We prove
that any number of check blocks can be generated if a conjecture of Emil Artin is true.
It states that there are infinitely many prime numbers with two as primitive root. This
conjecture does not give a good bound on the number of check blocks unless these
prime numbersA = {3, 5, 11, 13, . . .} are dense. At least we can show that for all even
w ≤ 105 we can generate at least m = 10

62w − n check blocks. If w is a power of two
we have evaluated that at least 29

128w − n parity check blocks can be generated for all
w ≤ 220. We conjecture that if w tends to infinity the number of possibly parity check
blocks approaches 1

4w − n.
An implementation can be downloaded from our website [18].

2 Circulant Boolean Matrices

The key to our efficient MDS codes are circulant Boolean matrices. A circulant matrix
n× n matrix A = Cirn(s1, · · · , sn) has the following form

Cir(s0, · · · , sn−1) := (si−j mod n)i,j∈[n] (2)

We consider Boolean circulant matrices encoding bit-strings of lengthn. For si ∈ {0, 1}
we denote by s =

∑p−1
i=0 si2

i the matrix Cirn(s) = Cir(s0, . . . , sn−1) and operations
are defined over F2 (XOR is addition and AND denotes the multiplication of bits). So,
the cyclic shift by one position is denoted by a multiplication with Cir(2). Cir(1) is the
neutral element for multiplication and Cir(0) is the neutral element for addition, see
Fig. 1.
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Cir5(1)Cir5(0) Cir5(2) Cir5(30) Cir5(12)

Fig. 1. Examples for Cir5(x)

It is well known, that Boolean circulant matrices describe a semiring. Cir(2)i =
Cir(2i) describe cyclic rotations by i positions. Since the rank of all Boolean circulant
matrices is at most n− 1, Boolean circulant matrices do not describe a finite field.

An alternative way to describe these semigroups is to consider them as monic poly-
nomials

∑n−1
i=0 siz

i modulo the monic polynomial zn + 1 which is reducible, since
zn+1 = (zn−1+ . . .+ z+1)(z+1) mod 2. Now, zn−1+ . . .+ z+1 is irreducible if
n is a prime number and 2 is a primitive root for p. Such finite fields have been already
considered by Blaum et al. [4]. From now on we assume p to be such a prime with
primitive root 2 and we call this set of numbers A.

Lemma 1. For p ∈ A, i.e. a prime number where 2 is a primitive root modulo p, the
set of all matrices Ep of Cirp(s) for binary strings s ∈ {0, 1}p with even parity forms a
finite field for addition and multiplication as described above.

Proof. If p is a prime number and 2 is a primitive root for m, then the polynomial
1 + z + . . .+ zp−1 is irreducible according to [13].

Note that (z + 1)(1 + z + . . . + zp−1) ≡ zp + 1 (mod 2). Operations modulo
the polynomial zp + 1 do not describe a field, since the polynomial is not irreducible.
However, addition and multiplication modulo zp + 1 correspond to the addition and
multiplication of circulant Boolean matrices.

Given Cirp(a) with binary representation a0, . . . , ap−1 we prove an operation pre-
serving isomorphism described by the mapping f : Ep → {0, 1}p−1 where

f(Cirp(a0, . . . , ap−1)) = (ai + ap−1)i∈{0,...,p−2} (3)

and the inverse function is

f−1((ai)i∈{0,...,p−2}) = Cirp

((∑
j∈{0,...,p−2}\{i} aj

)
i∈{0,...,p−1}

)
(4)

We prove that

f(Cirp(a) + Cirp(b)) ≡ f(a) + f(b) (mod 1 + z + . . .+ zp−1) (5)

f(Cirp(a) · Cirp(b)) ≡ f(a)f(b) (mod 1 + z + . . .+ zp−1) (6)

Note that for a, b ∈ Ep we have a+ b ∈ Ep and a · b ∈ Ep. From the irreducibility of
1 + z + . . .+ zp−1 the claim follows since we have an isomorphism to a finite field.

It remains to prove (5) and (6).

1. Addition

f(Cirp(a) + Cirp(b))

= (ai + bi + ap−1 + bp−1)i∈{0,...,p−2}

= f(Cirp(a)) + f(Cirp(b)) (7)



338 C. Schindelhauer and C. Ortolf

2. Multiplication: Note that f(Cirp(2p − 3)) = (0, 1, 0, . . . , 0) = x, f(Cirp(2p −
1)) = 1, f(Cirp(0)) = 0, f(Cirp(2p − 3)i) = f(Cirp(2p − 1 − 2i mod p−2)) = xi.
Furthermore,

f(Cirp(2p − 3)) · a = f(Cirp(ai−1 mod p)i∈{0,...,p−1}

= (ai−1 mod p + ap−2)i∈{0,...,p−2}

=

p−2∑
i=0

(ai + ap−1)x
i+1

= f(Cirp(a)) · x (8)

since xp−1 ≡
∑p−2

i=0 x
i (mod 1 + x+ x2 + . . .+ xp−1).

So, for Cirp(b) =
∑p−1

i=0 biCirp(2)i we have

f(Cirp(a) · Cirp(b)) = f

(
Cirp(a) ·

p−1∑
i=0

biCirp(2)
i

)

= f

(
p−1∑
i=0

biCirp(a)Cirp(2
p − 3)i

)

=

p−1∑
i=0

bif(Cirp(a)Cirp(2
p − 3)i))

=

p−1∑
i=0

f(Cirp(a))bix
i

=

p−2∑
i=0

f(Cirp(a))(bi + bp−2)x
i

= f(Cirp(a)) · f(Cirp(b)) (9)

Using the observation that Circulant matrices with even parity form a finite field,
one can reduce the number of XOR operations. For this, we use the complement of an
element as an alternative representation. So, define for each element a ∈ [0, 2p−1 − 1]:
[a] := {Cir(a),Cir(2p−1−a)}. Define the addition over these sets [a]+[b] = {x+y |
x ∈ [a], y ∈ [b]} and similarly, [a]·[b] = {x·y | x ∈ [a], y ∈ [b]}. Now, the observation
of Figures 2 and 3 can be generalized as follows.

[a+ b] = [a] + [b] , (10)

[a · b] = [a] · [b] . (11)

When coding or decoding all inputs a ∈ {0, 1}p−1 of word size p− 1 are mapped to
such sets [a] of word size p at the beginning. All subsequent operations will be done on
the increased word size p since in the representation fewer XOR operations are needed.
Therefore, we do not distinguish between both representations [a] = {a, 2p − 1 − a}.
Eventually, we eliminate the ambiguity by a final computation where we choose the
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+ =

even
parity

odd
parity

+ ====

Fig. 2. Example for addition [a+ b]

× =

even
parity

odd
parity

=× =

Fig. 3. Example for multiplication [a] · [b]

element of which the least significant bit is 0. This final operation costs p − 1 XOR
operations and reduces the output to the original word length p − 1. See Fig. 4. The
transition from the data to one of its representation can be denoted by multiplication
with matrix R, which is just a copy operation and its reverse operation with matrix L
where p− 1 XORs are needed.

[Cir5(12)] = {Cir5(12), Cir5(19)}

12

4
8

+

+

12R

L × =

R ×

=

×

L

Fig. 4. Example for representation of 12 in [Cir5(12)]

Lemma 2. The basic operations in the table below need the given number of XOR
operations for input word length w = p− 1, where i and j are constants and a, b input
variables.

Operation XOR operations

R · a = Cirp(a) 0
L · Cir(a) = a w
Cir(a) + Cir(b) w + 1

Cir(2)i · a 0
Cir(2i + 2j) · a w + 1

[Cir(2i + 2j)−1 · a] 2w − 1

Proof. 1. a *→ Cirp(a): For this operation we simply append a constant 0 to the rep-
resentation.

2. Cir(a) *→ (ai + ap)i∈{0,...,p−1}: This operation is necessary to produce the out-
put and to transform the representation of a by Circulant Boolean matrices to the
corresponding finite field element. Clearly, p XORs are sufficient to compute the
result.

3. Cir(a) + Cir(b): We compute pairwise XORs of the corresponding bits of a and b.
4. Cir(2)i · a: For constant i this constitutes a clock-wise right shift by i steps. No

XOR operations are necessary.
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5. Cir(2i + 2j) · a: The complexity follows by computing Cir(2)i · a+ Cir(2)j · a.
6. [Cir(2k + 2�)−1 · a] : This is the only non-trivial case. Note that

Cir(2k + 2�) ·

⎛
⎜⎝
b0
...

bp−1

⎞
⎟⎠ =

⎛
⎜⎝
a0
...

ap−1

⎞
⎟⎠ . (12)

This is equivalent to

ai+� +
∑
j

aj = bi mod p + bi+(�−k) mod p (13)

for all i ∈ {0, . . . , p− 1}.

Since, any of the two elements of [a] = {a, 2p − 1 − a} is allowed as result we
choose b0 = 0. So we get for i ∈ {0, . . . , p− 2}

b(i+1)2(�−k) mod p = b2i(�−k) mod p

+ a2(i+1)(�−k)+k mod p

+ a(2i+1)(�−k)+k mod p . (14)

The calculation for an example can be seen in Fig. 5

×

Cir11(21 + 23) a

b

×

b
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

set to 0

a or aa

=

b=

Fig. 5. Multiplication and division by Cir11(9)

It is straightforward that the result is either b or 2p−b. The result might be inverted,
but this is acceptable, as we have described above.

3 Circulant Cauchy Matrix

Cauchy Reed-Solomon matrices have been introduced for MDS codes by Blömer et al.
[6]. For n data blocks and m check blocks of word length w we use a m × n Cauchy
matrix where each entry is a Boolean Circulant matrix defined as

Mij =
1

xi + yj
(15)
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for xi �= yj for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. For the Circulant Cauchy matrix
we choose xi = Cirp(2i−1) for i ∈ {1, . . . ,m} and y1 = 0, yj = Cirp(2p−j) for
j ∈ {2, . . . , n}. Therefore for n+m ≤ p+ 1 the sets {x1, . . . , xn} and {y1, . . . , ym}
are distinct which is the prerequisite for the full rank property of the Cauchy matrix.

So the check blocks c1, . . . , cm ∈ {0, 1}p−1 are computed from the data block
d1, . . . , dn ∈ {0, 1}p−1 by

⎛
⎜⎝

L 0
. . .

0 L

⎞
⎟⎠ ·M ·

⎛
⎜⎝

R · · · 0
...

. . .
...

0 · · · R

⎞
⎟⎠ ·

⎛
⎜⎝

d1
...
dn

⎞
⎟⎠ =

⎛
⎜⎝

c1
...
cm

⎞
⎟⎠ (16)

where L is a (p − 1) × p matrix with Lii = 1, Li,p = 1 for i ∈ {1, . . . , p − 1} and
Li,j = 0 elsewhere. R is a p× (p− 1) matrix with Rii = 1 and Ri,p = 0 elsewhere.

Theorem 1. The computation ofm check blocks of the Circulant Cauchy matrix from n
data blocks of block sizew can be computed with (3m−2)nw+n−m = (3+o(1))nmw
XOR-operations.

Proof. The transformation from di to a circulant matrix does not use any operations.
The multiplication with the first row of the Circulant Cauchy matrix is a cyclic shift op-
eration since x1 = Cirp(0) which does not involve any XOR bit operation. For the mul-
tiplication of the residualm−1 operations we divide by terms of the form Cirp(2k+2�).
Lemma 2 states that 2w−1 XOR operations are sufficient resulting in (m−1)n(2w−1)
XOR operations. For adding all results we need (n − 1)m(w + 1) XOR operations. A
multiplication with an L matrix needs w XOR operations resulting inmw operations.

So, the overall number of XOR operations is (n − 1)m(w + 1) + n(m − 1)(2w −
1) +mw = 3mnw − 2nw −m+ n.

Theorem 2. The Circulant Cauchy matrix is an MDS code, i.e. from every set of n data
or check blocks the data can be recovered, if n+m ≤ p+ 1.

Proof. The determinant of a n× n Circulant Cauchy matrixMij =
(

1
xi+yj

)
is

det(M) =

∏
i<j(xi + xj)(yi + yj)∏

i,j xi + yj
(17)

Let Crs = Mrs be the adjugate matrix of M (deleting row i and column j). Note
that the adjugate matrix is again a Circulant Cauchy matrix.

det(Crs) =

∏
i<j,i,j �=r(xi + xj)

∏
i<j,i,j �=s(yi + yj)∏

i�=r,j �=s xi + yj
(18)

Now for the inverse matrix dij we have

dij =
det(Cji)

det(M)
=

∏
u xj + yu

∏
u xu + yi∏

u�=j(xu + xj)
∏

u�=i(yu + yi)

1

(xi + yj)
(19)

For computing the data blocks, we choose the square submatrix B of the generator
matrix corresponding to the indices of the u unknown data blocks and the k given check
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blocks. Note that B is a Circulant Cauchy matrix and thus invertible. The k × n − k
submatrix A corresponds to the given data blocks and unknown check blocks. So, we
can calculate the missing data blocks by⎛

⎜⎝
di1
...
diu

⎞
⎟⎠ = B−1

⎛
⎜⎝
⎛
⎜⎝
cj1
...
cju

⎞
⎟⎠+A ·

⎛
⎜⎝
dg1

...
dgn−u

⎞
⎟⎠
⎞
⎟⎠ (20)

where i1, . . . , iu are the indices of the unknown data blocks, j1, . . . ju the indices of the
given check blocks, and g1, . . . , gn−u the indices of the given data blocks.

Our main contribution is the efficiency of this operation.

Theorem 3. Given n− u data blocks and u check blocks of a Circulant Cauchy Code
the missing u data blocks can be computed with at most 3nuw + 6u2w ≤ 9nuw XOR
bit operations.

Proof. Using Equation 20 the given input dg1 , . . . , dgn−k
is multiplied with the subma-

trix k × (n− k)A. From Theorem 1 this can be done with 3u(n− u)w− 2(n− u)w+
n− 2u = 3nuw− 3u2w− 2nw+ 2uw− 2u XOR operations. With another uw XOR
operations the result is added to the given u check blocks of word size w giving the
intermediate result y1, . . . , yu ∈ {0, 1}w+1.

Then, the Circulant Cauchy matrix is reduced to the u×u sub-matrixB correspond-
ing to the check blocks which results in a smaller Circulant Cauchy matrix. Following
the approach in [6] the inverse (dij)i,j∈1,...,n of a Circulant Cauchy matrix ( 1

xi+yj
)i,j

can be computed as follows.

ak =
∏
i�=k

(xi + xk) , bk =
∏
i�=k

(yi + yk) , ek =

n∏
i=1

(xk + yi) ,

fk =

n∏
i=1

(xi + yk) , dij =
eifj

aibj(xi + yj)
.

(21)

We multiply the inverse with the intermediate result y1, . . . , yu. We have to compute
the data blocks d1, . . . , du (WLOG we assume that the first u data blocks need to be
restored) such that for all j ∈ {1, . . . , u}

di =

u∑
j=1

dijyj =

u∑
j=1

eifj
aibj(xi + yj)

yj =
ei
ai

u∑
j=1

1

(xi + yj)

fj
bj
yj . (22)

First we compute for all i ∈ {1, . . . , u}

C′
j =

fj
bj
Cj =

∏n
i=1(xi + yj)∏
i�=j(yi + yj)

Cj (23)

This results in u2 multiplications with terms of the form Cir(2ν + 2η) and u(u − 1)
divisions by Cir(2ν + 2η). Some factors or divisors may be of form Cir(2ν) since we
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choose x1 = 0. This case only reduces the complexity and is from now on omitted
for simplicity. The number of XOR operations is therefore at most u(u − 1)(w + 1) +

u2(2w − 1) = 3u2w − uw − u. Then, we compute all terms of the form
C′

j

xi+yj
which

takes at most u2(2w − 1) = 2u2w − u2 XOR operations.
The following sum costs u(u− 1)(w + 1) = u2w − uw + u2 − u XOR operations.

Finally each of the u sums need to be multiplied by

ei
ai

=

∏
j(xi + yj)∏u

j �=i(xi + xj)
(24)

So, u2 multiplications by terms of the form Cir(2i + 2j) are necessary (w + 1 single
XOR operations each) and u(u−1) divisions by terms of form Cir(2i+2j) with (2w−1
XOR operations). Hence, u2(w+1)+u(u−1)(2w−1) = 3u2w−2uw+u operations
suffice.

Finally, the size of the u data bits of word length w+ 1 need to be reduced to size w
adding another uw Xor operations.

The overall number of XOR bit operations is therefore at most 3nuw + 6u2w −
2nw − 4u ≤ 3nuw + 6u2w ≤ 9nuw.

Because of the run-time of 3nmw for computing the check blocks and 9nuw for
reconstructing the data, the length of w does not play any role. It is advisable to choose
w as large as possible, since it increases the number of possible code words and does
not change the run-time, e.g. if the input consist of N bits, then the complexity for
computing all the m check blocks is 3N

w nw = 3Nm and similarly for reconstruction
N data bits from u check blocks: 9N

w uw = 9Nu. One might argue that usually the
input size is not a multiple of w (since we have a restriction on w + 1 being an Artin
number). However, we overcome this problem in the next section where we show that
w can be chosen to be any even number.

4 Generalizing the Word Length

While Artin numbers do not appear to be scarce, it is an open problem first conjectured
by Emil Artin in 1927 [1] (p. 246) whether an infinite number of such prime numbers
exist. On the positive side there are efficient methods to test the Artin number property.

Most notably, the run-time grows only linearly with the length of the words. There-
fore, for the time complexity partitioning the data in word size w = 4 orw = 1018 does
not make a difference for the run-time. Since larger word sizes allow more redundancy
and the combination of more data blocks, it is advisable to increase it as large as the
CPU cache and the block size of the data allows.

We now overcome the restriction that the word size has the form w = p− 1, where
p is an Artin number.

Fact 1. A partition of an integer w is valid if

w =

�∑
i=1

(pi − 1) , (25)
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where pi are Artin primes, i.e. 2 is a primitive root of pi.

– There exists a valid partition for every even numberw ≤ 105 such that the minimum
term is at least 10

62w.
– If w ≤ 220 is a power of two the minimum term of a valid partition is at least 28

128w.

We have verified this fact using computer algebra programs and exhaustive testing.
To overcome the word size restriction we us a valid partition and apply the Circulant

Cauchy codes for each of the sub-words separately. The MDS property is preserved
and also for the run-time we get 3nm(w1 + . . . + wk) = 3nmw XOR operations for
encoding and 9nuw for decoding. Since, the number of reconstructable blocks is limited
by wi + 1 it is desirable to maximize the smallest term. While it is an open question
whether infinitely many Artin primes exist, the above fact shows that the density for
numbers up to 105 is high enough to guarantee good partitions.

Clearly, the most interesting word lengths are powers of two. The following valid
partitions maximize the size of the smallest subword size.

8 = 4 + 4 16 = 4 + 12
32 = 10 + 10 + 12 64 = 28 + 36

128 = 28 + 100 256 = 60 + 196
512 = 196 + 316 1024 = 372 + 652
2048 = 940 + 1108 4096 = 2028 + 2068
8192 = 3796 + 4396 16384 = 8116 + 8268

(26)

5 Conclusions

We have presented a new approach to MDS codes using long word lengthsw which after
adding a parity bit to a given word uses only cyclic shift operations and bit-wise XOR-
operations. Our method allows the generation of arbitrarily many check blocks and
arbitrarily large word sizes. It is based on the isomorphism between Boolean circulant
matrices and finite fields where w + 1 is a prime number and 2 is a primitive root
modulo w + 1. We show how this method can be applied to arbitrary word length by a
partitioning of the words without an impact to the coding and decoding complexity. We
use Cauchy Reed-Solomon codes and present the first MDS scheme with asymptotical
optimal XOR complexity for computing the check blocks and recovering data blocks.
Furthermore, the constant factors are small and these codes can be easily implemented
on existing computer architectures.
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