
Computational Verification

of Network Programs in Coq

Gordon Stewart�

Princeton University

Abstract. We report on the design of the first fully automatic, machine-
checked tool suite for verification of high-level network programs. The
tool suite targets programs written in NetCore, a new declarative net-
work programming language. Our work builds on a recent effort by Guha,
Reitblatt, and Foster to build a machine-verified compiler from NetCore
to OpenFlow, a new protocol for software-defined networking.

1 Introduction

The past few years have witnessed a groundswell of interest in software-defined
networks (SDNs), as evidenced by the popularity of new standards for pro-
grammable networking such as OpenFlow [9]. In an SDN, rules for packet pro-
cessing still live on network switches with dedicated hardware, as in traditional
networks (data plane). But unlike in traditional networks, SDNs allow decisions
about when and how to update network policies in response to network events
(control plane) to be handled by a dedicated controller program running on
one or more general-purpose computers. The controller machine(s) and switches
interoperate via an open standard, such as OpenFlow, that allows on-the-fly
switch re-programming via special configuration or control messages.

Several recent research efforts have capitalized on the modular structure of
SDNs to build new high-level programming languages for networks, such as Net-
tle [13], Frenetic [2], and NetCore [10]. These high-level languages, which are
typically compiled to low-level OpenFlow forwarding rules, are characterized by
a focus on declarative and modular programming of network policies: The pro-
grammer defines what a particular policy is, not how it is implemented; and
programs are constructed by composing small, reusable components. These two
features of the new breed of network languages make them an ideal target for
program verification. Yet there have been few, if any, efforts to-date to build
verification tools for network programs written in these languages.

As an initial foray, this paper presents the first machine-certified toolset for
verifying network programs written in a high-level network programming lan-
guage. We build on recent work by Monsanto et al. [10], which defined the syn-
tax and semantics of the network programming language NetCore, and on work
by Guha, Reitblatt, and Foster [3], which presented a Coq formalization of Net-
Core and of a lightweight version of the OpenFlow protocol called Featherweight

� Supported in part by the National Science Foundation under grant CNS-0910448.

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 33–49, 2013.
c© Springer International Publishing Switzerland 2013

34 G. Stewart

OpenFlow. Drawing on the NetCore compilation algorithm of Monsanto et al.,
Guha et al. formalized these models in Coq in order to verify the correctness
of a compiler and runtime for NetCore targeting Featherweight OpenFlow. The
result of their work was a fully machine-verified network programming platform
that targeted actual switch hardware.

In this paper we start where Guha et al. left off, by building a suite of tools for
verifying properties of the NetCore programs that are the input to their verified
compiler. For many concrete network specifications—for example, reachability
or security specifications targeting a particular network topology with known
port identifiers—our verification tools are fully automatic: In order to prove the
specification {P} pg {Q} of NetCore program pg , we calculate the weakest pre-
condition wp(pg , Q) of Q given pg . Then we verify that P implies wp(pg , Q) by
checking the implication P =⇒ wp(pg , Q) in a special-purpose resolution the-
orem prover coded in Gallina, the functional programming language embedded
within Coq. Because all of our tools are proved sound in Coq with respect to
an extension of the NetCore semantics presented by Guha et al. [3], we end
up with a fully automatic verification toolset that when connected to Guha et
al.’s verified compiler will provide strong guarantees on the correctness of gen-
erated OpenFlow programs. To demonstrate our tool suite, we use it to verify a
multiplexing network address translation module (§5).

Contributions. The novel contributions of this paper are the following.

1. We develop the first suite of machine-checked tools for verifying correctness
and security properties of network programs written in a high-level program-
ming language (NetCore) targeting an open SDN platform (OpenFlow).

2. To fully automate proofs of NetCore specifications within our system, we
develop (§3) two related weakest precondition calculi for NetCore, and build
a special-purpose resolution theorem prover, in Coq’s Gallina language, for
checking entailments of NetCore program specifications. We prove the reso-
lution prover sound in Coq, and the weakest precondition calculi both sound
and complete, with respect to the NetCore semantics.

3. Because our tool suite targets an extension of the NetCore semantics of Guha
et al. [3], it can be connected to Guha et al.’s verified NetCore compiler to
provide strong guarantees on generated OpenFlow programs. However, we
have not yet fully integrated the Coq proofs of our NetCore verifier with
those of Guha et al.’s NetCore compiler due to engineering concerns.

4. We use the tool suite to verify correctness and security properties of a net-
work address translation module (§5). Section 8 describes additional
applications.

An alternative to checking entailments within Gallina using a custom theo-
rem prover is to send verification conditions to an external first-order prover or
SMT solver, and then to check proof certificates post hoc. We prefer the Gallina
approach for two reasons. First, implementing the entailment checker in Gallina
means we can prove it sound once and for all. In the certificate checking ap-
proach, the potential for soundness bugs in an external tool means that program

Computational Verification of Network Programs in Coq 35

verification may fail unnecessarily when a bad certificate is detected. Second,
building a custom entailment checker means that we can apply domain-specific
reasoning in ways that may not be directly exploited by an external tool. The
final few paragraphs of Section 3 provide one such example, in which we ex-
ploit Coq’s theory of inductive datatypes in order to reason constructively by
inversion, without explicit first-order inversion laws. There are of course dis-
advantages to using a special-purpose entailment checker as well: our tool is
necessarily much less sophisticated than state-of-the-art provers such as Z3 [1].
However, it is still sufficient to discharge the verification conditions that arise
when verifying a range of network programs, as later sections of this paper will
demonstrate.

The Coq Development. This paper is closely tied to a mechanized proof develop-
ment in Coq, which can be downloaded from the address below.1 In code listings,
line numbers refer to the corresponding files in the mechanized development.

2 Software-defined Networking

In a traditional network, control logic is distributed among a number of physi-
cally distinct routers and switches, each with its own flow table. The flow tables
define how packets are processed and forwarded through the router or switch,
and are typically implemented using dedicated hardware such as ternary content
addressable memories (TCAMs), in order to process packets at line rate.

Fig. 1. A software-defined network with a
single switch (center), two endhosts (H1,
H2), a middlebox that performs intrusion
detection (IDS), and a general-purpose
controller machine

Software-defined networks differ
from traditional networks by splitting
the control plane from the data plane,
providing logically centralized control
in the form of a general-purpose con-
troller. The controller, which is con-
nected to the switches over a secure,
special-purpose link, decides when
and how to update the flow rules in-
stalled on the switches in response to
network packets and other network
events.

High-level network programming
languages such as NetCore build
another layer of abstraction above
software-defined networking platforms
such as OpenFlow. Network programs in NetCore are built from small, reusable
packet-processing actions that are composed both in sequence—in order to apply
multiple modifications, in order, to a single packet—and in parallel—in order to
apply multiple forwarding or modification rules to multiple copies of a single
packet. In order to scope the applicability of a network program constructed in

1 http://www.cs.princeton.edu/~jsseven/papers/netcorewp

36 G. Stewart

this manner, NetCore programs can be restricted by predicates on the location
and header fields of network packets. For example, it is good style in NetCore
to write, e.g., a forwarding policy for HTTP traffic first as if it applied to all
packets, and then to restrict the resulting policy just to those TCP packets that
have port tcpDst = 80.

Example. To make this concrete, consider the simple network topology depicted
in Figure 1. The network, which is adapted from Guha et al. [3], comprises a
single switch S1 connected to two endhosts H1 and H2, a middlebox IDS that
performs intrusion detection, and a controller. The endhosts are connected to
the switch on ports 1 and 2 respectively, while IDS is connected on port 3. The
controller machine is connected to the switch via a special-purpose link.

Now imagine we want to impose the following traffic policy, also adapted from
Guha et al. [3]: HTTP traffic on TCP port 80 gets forwarded to IDS (as well
as to its original destination), SSH traffic is dropped, and all other traffic gets
forwarded to the appropriate endhost. In an SDN platform like OpenFlow, this
policy would be defined as a set of flow tables, or packet forwarding rules—one
set of rules for each switch. For example, the following rule expressed in Guha et
al.’s notation causes SSH traffic to be dropped: Add 10 {tcpDst = 22} {| |}. The
10 after Add is the rule’s priority. On the switch, any rules with lower priority
will be applied only if this rule fails to fire. The expression tcpDst = 22 is a
pattern: it limits the applicability of the rule to packets with TCP destination
port equal to 22. The expression {| |} denotes the empty multiset of ports. It
specifies that packets matching the pattern should be forwarded along no ports
(that is, they should be dropped). After configuring this rule on the switch, an
OpenFlow implementation of the high-level policy would add lower-priority rules
for forwarding HTTP traffic to IDS and to the appropriate endhost, in addition
to even lower priority rules for forwarding the remaining traffic.

NetCore. While SDN platforms such as OpenFlow give programmers a great deal
of flexibility when configuring networks, writing network controllers in OpenFlow
is still quite painful. In addition to the actual forwarding logic of the network
application, the programmer must keep track of numerous low-level details such
as dependencies between rule priorities. He also must determine (manually) on
which switch to install each forwarding rule. In essence, the programmer is writ-
ing a low-level distributed program by hand. This can become quite a difficult
task, especially as networks scale to tens or hundreds of switches.

High-level SDN programming languages such as NetCore mitigate many of
these challenges by providing a programming model that is at once more declar-
ative and more modular than those provided by traditional SDN platforms.
NetCore, for example, provides as one of its key abstractions the notion of
whole-network programmability: instead of defining forwarding rules for partic-
ular switches, a NetCore program defines the behavior of the entire network all
at once. The NetCore compiler and runtime system determine on which switch
to install each rule, and with what priority.

Computational Verification of Network Programs in Coq 37

103 (* basic actions *)

104 Inductive action :=

105 | Id: action
106 | UpdIpSrc: Word32.t → action | UpdTcpSrc: Word16.t → action
107 | UpdIpDst: Word32.t → action | UpdTcpDst: Word16.t → action
108 | Fwd: Word16.t → action | Drop: action.
116 (* selected packet patterns *)

117 Inductive ppat :=

124 | DlSrc: Word48.t → ppat (*MAC src*)

125 | DlDst: Word48.t → ppat (*MAC dst*)

133 | TpSrc: Word16.t → ppat (*TCP src*)

134 | TpDst: Word16.t → ppat (*TCP dst*)

140 (* atomic predicates *)

141 Inductive atom :=

142 | Wild: atom | Location: lpat → atom | Packet: ppat → atom.

146 (* Boolean predicates *)

147 Inductive pred :=

148 | Atom: atom → pred
149 | And: pred → pred → pred | Or: pred → pred → pred
150 | Not: pred → pred.
154 (* NetCore programs *)

155 Inductive prog :=

156 | Act: pred → action → prog | Restrict: prog → pred → prog
157 | Par: prog → prog → prog | Seq: prog → prog → prog.

Listing 1. Excerpts from the syntax of NetCore (src/NetCoreSyntax.v)

To illustrate, consider the following implementation in NetCore, the syntax
of which is given in Listing 1, of the high-level policy for the network in Fig-
ure 1.2 First, we define the rules that establish point-to-point connectivity in the
network.

18 Definition pg1 := DLDST=H1 ⇒ FWD 1.

For example, program pg1 defines a basic guarded command in NetCore that
forwards to port 1 (FWD 1) any packets satisfying the predicate DLDST=H1,
that is, with destination MAC address equal to H1. Here DLDST=H1 is syntactic
sugar for the atomic predicate Atom (Packet (DlDst (Val H1))) (cf. Listing 1).

In NetCore, we can compose this first program with a second program that
defines the routing policy for host 2 as follows.

21 Definition pg2 := pg1 ’PAR’ DLDST=H2 ⇒ FWD 2.

The combinator ’PAR’, which is infix notation for the Par constructor of List-
ing 1, defines the parallel composition of two NetCore programs. Semantically, it
duplicates its input packets, applying the program on the left (pg1) to one of the
duplicated input packets and the program on the right (DLDST=H2 ⇒ FWD 2)

2 The code that follows can be found in file src/examples/Guha.v in the code distri-
bution that accompanies this paper.

38 G. Stewart

to the other. The result is a set of packets that will be transferred across links
and further processed by other switches in the network, if any.

The resulting program pg2 can be further composed with the routing policy
for the intrusion detection system, resulting in the following program.

24 Definition pg3 := pg2 ’PAR’ TPDST=80 ⇒ FWD 3.

Program pg3 forwards HTTP packets (TPDST=80) to the IDS middlebox on port
3, packets destined for MAC address H1 to host 1, and those destined for MAC
address H2 to host 2.

Finally, in order to satisfy the high-level policy described above we need to
ensure that SSH traffic on port 22 is dropped. In NetCore, this is accomplished
by restricting program pg3 by a predicate that scopes the resulting program.
Packets that do not satisfy the predicate are implicitly dropped.

28 Definition routing := RESTRICT pg3 BY (NOT (TPDST=22)).

Here, RESTRICT pg3 BY (NOT (TPDST=22)) is syntactic sugar for an applica-
tion of the Restrict constructor of Listing 1. This has the effect of applying pg3 to
any packet satisfying the predicate NOT (TPDST=22) (that is, with TCP desti-
nation port not equal to 22) and dropping all other packets (i.e., those on port
22), which is the behavior we intended.

3 Verification

Now that we have defined the routing policy for the network topology in Figure 1,
we can begin proving properties of the resulting network. For example, imagine
we would like to prove that the routing network defined in Section 2 actually does
drop all SSH traffic. For this particular network, the property is of course trivial:
the network program is guarded by a RESTRICT that filters packets satisfying
exactly this predicate! However, for more complicated network programs, secu-
rity properties such as this one can be significantly less obvious. In any case, it
will be instructive to present our verification methodology in the context of this
simple example; we consider more interesting networks and verification problems
in Sections 5 and 8.

In order to state the theorem described informally above, we first briefly de-
scribe the semantics of NetCore programs. In our Coq development, NetCore pro-
grams are interpreted as inductively defined relations on located packets, where
a located packet is a pair of a packet, including its header fields and payload,
and a location, which is a pair of a switch identifier and a port number.3

72 Inductive progInterp: prog → lp → lp → Prop :=

73 (* · · · *)

80 | InterpUpdSrcIp: ∀x x’ ip cond,
81 (predInterp cond x)=true →
82 upd ip src x ip = Some x’ →

3 The semantics of NetCore is defined in file src/NetCoreSemantics.v.

Computational Verification of Network Programs in Coq 39

83 progInterp (Act cond (UpdIpSrc ip)) x x’
84 (* · · · *)

For example, the InterpUpdSrcIp constructor of the relation states that packet x is
related to packet x’ by program Act cond (UpdIpSrc ip)), which in sugared form
is cond => UpdIpSrc ip, if (1) the predicate cond is satisfied by x (predInterp cond

x=true) and (2) updating the IP address of packet x to ip succeeds, resulting in
x’ (our semantics must handle situations in which x is not a valid IP packet, in
which case the upd ip src operation will fail).

A bit more formally now, the security property we would like to prove is:
for all packets x, if (predInterp (TPDST=22) x)=true then progInterp routing x x’

is false. That is, no input packet with TCP destination port equal to 22 is ever
routed as output packet x’. We could state (and prove) this theorem directly, but
instead we will encapsulate the general kind of specification as a Hoare triple,
with the following definition.

120 Definition triple (P: pred) (pg: prog) (Q: pred) :=

121 ∀x y, (predInterp P x)=true →
122 progInterp pg x y →
123 (predInterp Q y)=true.

That is, a program pg satisfies triple P pg Q when it takes packets x satisfy-
ing precondition P (predInterp P x=true) to packets satisfying postcondition Q

(predInterp Q y=true).
Now, with the help of some syntactic sugar for triple P pg Q, we can restate

the theorem as follows. Using our NetCore tool suite, the proof is a single line.

32 Lemma ssh traffic dropped: |- [TPDST=22] routing [NOT WILD].
33 Proof. Time checker. (*0. secs (0.0156001u,0.s)*) Qed.

Here NOT WILD is the representation of False in the NetCore predicate language.
Thus |- [TPDST=22] routing [NOT WILD] states that packets satisfying TPDST

=22 are never routed (i.e., they are always dropped).
To prove this theorem, one could reason from the definitions of the triple |-

[P] pg [Q] and of the interpretation relation progInterp, perhaps proving a few
general-purpose Hoare rules along the way. Indeed, this would be the conven-
tional way to proceed in an interactive proof assistant such as Coq. However, we
would like to automate this proof, and others like it. In general, we will avoid
making use of the semantic meaning of the Hoare triple defined above whenever
possible, instead relying on the computational verification procedure given in
Listing 2.4

The function check takes as arguments a bound n on the number of iterations
of the procedure, a background theory th, the program pg to be verified, and its
specification spec. The main steps of the procedure are the following.

4 The code that follows is found in file src/Checker.v in our source distribution.

40 G. Stewart

1. Calculate wp pg Q, the weakest precondition of the postcondition Q with
respect to program pg. By soundness of the weakest precondition calculus,
|- [wp pg Q] pg [Q]. Thus by the rule of consequence for Hoare triples,
|- [P] pg [Q] if P =⇒ wp(pg, Q).

1138 Definition check (n: nat) (th: pred) (pg: prog) (spec: pred*pred) :=

1139 let P := fst spec in
1140 let Q := snd spec in
1141 let vc := th ’AND’ P ’AND’ (NOT (wp pg Q)) in
1142 go n nil (preprocess (clausify (normalize n vc) nil nil) nil).

Listing 2. Top-level Verification Procedure

2. Prove that P =⇒ wp pg Q. This entails: Encoding the negation5 of the im-
plication P =⇒ wp pg Q as a formula in clausal normal form; Simplifying
the resulting formula by removing tautological and subsumed conjuncts; and
Proving that the resulting simplified formula is unsatisfiable. In the code in
Listing 2, these steps correspond to the calculation of vc and the call to go,
the top-level loop of the resolution prover. In the definition of vc, the negation
of P =⇒ wp pg Q is implicitly simplified to And P (Not (wp pg Q)).

Weakest Preconditions. Of these two steps, the calculation of the weakest pre-
condition of Q with respect to program pg is the most straightforward. Be-
cause NetCore contains no looping constructs, and therefore no loop invariants
are required, we can calculate wp pg Q using the recursive function defined in
Listing 3.

87 Fixpoint wp (pg: prog) (R: pred): pred :=

88 match pg with
89 | Act cond Id => cond =⇒ R
90 | Act cond (Fwd pt) => cond =⇒ subst port pt R
91 | Act cond (UpdIpSrc ip) =>

92 cond =⇒ Atom (Packet IsIp) =⇒ subst ip src ip R
93 (* · · · *)

102 | Act cond Drop => Atom Wild
103 | Restrict pg’ cond => cond =⇒ wp pg’ R
104 | Par pg1 pg2 => wp pg1 R ’AND’ wp pg2 R
105 | Seq pg1 pg2 => wp pg1 (wp pg2 R)
106 end.

Listing 3. Weakest Precondition Calculus for NetCore (excerpt)

For example, the weakest precondition of postcondition R and the the guarded
identity action Act cond Id (in sugared form cond ⇒ Id) is just R, under the as-
sumption that cond evaluates to true (cond =⇒ R). Likewise, the weakest pre-
condition of the parallel composition of two programs pg1 and pg2 (Par pg1 pg2)

5 Although this procedure follows the usual proof-by-contradiction approach of auto-
mated tools for propositional and first-order logic, it can be done without classical
axioms in Coq because the language of NetCore predicates is decidable.

Computational Verification of Network Programs in Coq 41

is just the conjunction of the weakest preconditions of the component programs
(wp pg1 R ’AND’ wp pg2 R), while the weakest precondition of the sequential
composition of pg1 with pg2 is the weakest precondition of pg1 given postcondi-
tion wp pg2 R.

The weakest preconditions of commands that update packet headers or lo-
cations (Fwd, UpdIpSrc, UpdTcpSrc) are calculated as one would calculate the
weakest precondition of an assignment statement in a typical imperative lan-
guage. That is, the weakest precondition of x := e for R is R[e/x]. However,
instead of substituting an expression e for variable x in R, we substitute true
for occurrences of location or packet predicates that are consistent with a packet
modification, and false for any such atomic predicates that are inconsistent. For
example, the following code excerpt (file src/WP.v) performs the substitution
that is required for forwarding actions.

11 Fixpoint subst port (x: Word16.t) (p: pred) {struct p} :=

12 match p with
13 | Atom Wild => Atom Wild
14 | Atom (Location (Switch)) => p
15 | Atom (Location (Port y)) =>

16 if Word16.eq x y then WILD else NOT WILD
17 | Atom (Packet) => p
23 (* · · · *)

24 end.

In our Coq development, we have proved that wp as defined above is both
sound and complete.

257 Lemma wp sound: ∀pg R, |- [wp pg R] pg [R].

445 Lemma wp complete:
446 ∀P pg Q,
447 |- [P] pg [Q] →
448 ∀l, (predInterp P l)=true → (predInterp (wp pg Q) l)=true.

The proof of soundness is straightforward by induction on the program pg. Com-
pleteness requires that the language of predicates be full-featured enough to ex-
press equality on located packets. That is, we must define a predicate Eq x such
that predInterp (Eq x) x’ if, and only if, x=x’. The equality predicate is used in
the Seq case of the proof to constrain intermediate packets.

Resolution. After we have calculated the weakest precondition wp pg Q of post-
condition Q and program pg, we next must check that P entails wp pg Q (in fact,
this implication must be provable in order for |- [P] pg [Q] to hold since wp is
proved complete). Here we resort to resolution [12], a standard method from au-
tomated theorem proving, in order to check the implication automatically within
Gallina.

To do so, we first encode the negation of the implication as a set of clauses,
or disjunctions of logical literals. Literals are, in turn, either positive or negative
(i.e., negated) atomic predicates.

42 G. Stewart

127 Inductive lit := Neg: atom → lit | Pos: atom → lit.

Clauses are defined in the code as lists of literals, and are interpreted as the
following disjunction of their elements.

141 Definition clauseInterp (cl: clause) (l: lp) :=

142 foldInterp (fun p => litInterp p l) orb false cl.

Here the function foldInterp folds an interpretation function (litInterp) and a com-
binator (orb) over the constituent elements of the list (cl), with unit false.

Encoding a formula as a set of clauses entails: (1) Converting the formula to
negation normal form (NNF), by moving negations inwards using De Morgan
equalities; (2) Distributing disjunctions over conjunctions; and (3) Rewriting
the resulting formula as a set of (implicitly conjoined) clauses. Once we have
encoded the negation of the initial implication P =⇒ wp pg Q, together with
the background theory th, as a set of clauses (its so-called clausal normal form)
we simplify the resulting clause set to remove tautologous and otherwise redun-
dant clauses, then begin searching for a contradiction by iterating the following
procedure.

967 Definition step (act pas: list clause): result :=

968 match pas with
969 | nil => if invert act then Unsat else Sat act
970 | nil :: pas’ => Unsat
971 | given :: pas’ =>

972 let act’ := given::act in
973 let resolvents := map condense (resolve given act’ nil) in
974 let resolvents’ := filter (negb ◦ subsumedBy pas) resolvents in
975 Later act’ (pas’ ++ resolvents’)
976 end.

The step function implements a variation of what is known as the given clause
algorithm for saturating a search space by resolution, which was popularized by
the Otter theorem prover [8]. It operates on two sets of clauses: act, the set
of active or usable clauses, and pas, the set of passive clauses that have not yet
taken part in resolution inferences. Initially, all clauses are in pas.

At each iteration of step, we do a case analysis on pas, resulting in a three-
way branch: Either (1) pas is empty, in which case the search space is saturated
(traditional first-order provers would return Sat at this point); or (2) the head
of pas is the “always false” clause nil6 (pas = nil :: pas’); or (3) the given clause
at the head of pas (pas = given :: pas’) contains at least one literal.

Case (3) is the most interesting. Here we add given to act, resulting in the new
clause set act’, then attempt to resolve given with each clause in act’ (resolve
given act’ nil), including itself. The resulting set of resolvents is then condensed
to remove unnecessary duplicate literals (map condense · · ·). Finally, newly re-
solved clauses that are subsumed by clauses already in pas are filtered away as

6 Recall that clauses are interpreted as the disjunction of their component literals,
with unit false; thus the nil clause is never satisfiable.

Computational Verification of Network Programs in Coq 43

redundant (resolvents’ := · · ·) and the resulting set is appended to pas’. The
Later constructor is used to communicate the updated clause set to the main
loop of the prover, which is not shown in the code above.

In case (2), pas contains the nil, or always false, clause. Thus the prover im-
mediately returns Unsat: nil is unsatisfiable.

In case (1), a traditional resolution prover would return Sat: Because resolution
is refutation complete, the procedure is guaranteed to derive the nil clause when
given an unsatisfiable initial clause set. But since all clauses have been processed
(pas is empty) without the nil clause being discovered, it must be the case that
the initial input clause set has a model.

We could stop here. Indeed, standard resolution provers would stop at this
point. Instead, we use the fact that we are constructing a custom prover to build
in an additional level of inference by inversion on inductive types (invert act).

To see why this is useful, consider a clause set act that contains a pair of
singleton clauses asserting TPSRC=22 and TPSRC=80 respectively. Both of these
assertions cannot be true simultaneously. Yet a traditional first-order prover
would not be able to derive a contradiction at this point; the standard inversion
principles we get when reasoning about the inductive packet and nat types in
Coq must first be explicitly added to the prover’s background theory. This can
be done. For example, in this particular case, we can safely add the clause

1 Neg (TPSRC=22) :: Neg (TPSRC=80) :: nil

which asserts that TPSRC=22 and TPSRC=80 cannot be true simultaneously. How-
ever, a set of more general inversion principles would clutter the search space
with many (usually unnecessary) clauses. It is quite convenient, instead, to be
able to do a domain-specific check, at the point at which all other first-order
inferences have been exhausted, for clauses that are incompatible by inversion.

4 Reachability

In Section 3, we described a general methodology for proving theorems of the
form

1 Lemma ssh traffic dropped: |- [TPDST=22] routing [NOT WILD].

in which the triple |- [P] pg [Q] made a claim about all packets that may
result after routing packets satisfying P but did not ensure that at least one such
packet existed. This form of Hoare triple was useful for writing specifications of
security properties such as “all packets with TCP destination port equal to 22
are dropped.” We will see in Section 5 that this triple is also useful for specifying
the security properties of a network address translation module.

However, it is also quite useful when describing high-level properties of a
network to be able to specify reachability, in addition to security properties.
That is, we would like to be able to prove that, given a packet x satisfying some
predicate P, there exists a second packet y such that y satisfies the predicate
Q. Furthermore, it should be the case that progInterp pg x y for the NetCore

44 G. Stewart

program pg in question, i.e., x is actually routed to y by pg. For example, if
P is specialized to PORT=1 and Q is specialized PORT=2, then a reachability
specification for P and Q states that a host located on port 2 is reachable by a
host on port 1.

In order to specify and prove reachability queries of this form, we have adapted
the weakest precondition calculus of Section 3 to the following variation of the
Hoare triple of that section.

130 Definition triple’ (P: pred) (pg: prog) (Q: pred) :=

131 ∀x, (predInterp P x)=true →
132 ∃y, progInterp pg x y ∧ (predInterp Q y)=true.

This Hoare triple states that there exists a y for which progInterp pg x y holds,
and such that predInterp Q y evaluates to true. In what follows, we will use the
notation |-r [P] pg [Q] to denote reachability specifications of this form.

Adapting the weakest precondition calculus of Section 3 to reachability spec-
ifications is reasonably straightforward. For example, here are the weakest pre-
condition rules for Restrict, Par, and Seq.

112 Fixpoint wp’ (pg: prog) (R: pred) :=

113 match pg with
114 (* · · · *)

124 | Restrict pg’ cond => cond ’AND’ wp’ pg’ R
125 | Par pg1 pg2 => wp’ pg1 R ’OR’ wp’ pg2 R
126 | Seq pg1 pg2 => wp’ pg1 (wp’ pg2 R)
127 end.

They are essentially dual to those given by wp of Section 3.
With these definitions in place, we can easily adapt the verification procedures

of Section 3 to prove reachability theorems such as the following.

37 Lemma http reaches ids: |-r [TPDST=80] routing [PORT=3].
38 Proof. Time checker’. (*0. secs (0.u,0.s)*) Qed.

This theorem states that all packets with TCP destination port equal to 80 are
forwarded to port 3, the network location of the intrusion detection middlebox.

5 Network Address Translation

In Network Address Translation (NAT), IP packet headers are modified on the
fly as packets are routed through a network, typically to implement IP sharing.
For example, in private networks, the source IP addresses of packets routed from
internal hosts to hosts outside the private network will be modified to the IP
address of an externally visible router. The result is that only the router need
be assigned a globally unique IP; internal hosts are not directly visible to the
outside world. The technique can be extended to handle multiple internal hosts
by storing information about the sender in an auxiliary field of the packet header.
For example, for TCP traffic, the source port of the sender might be stored as
the TCP source port.

Computational Verification of Network Programs in Coq 45

As a concrete example, consider the network topology depicted in Figure 2.
It consists of a single switch (center), three endhosts (H1-H3), and a general-
purpose controller. The endhosts are connected on ports 1 through 3, while port 4
maintains connectivity with the Internet.

Fig. 2. Network Address Transla-
tion. HTTP packets sent from in-
ternal endhosts to external hosts
(Internet) are multiplexed over the
single external IP address assigned
to a gateway switch (center)

The network policy we would like to im-
plement is: HTTP packets on port 80 des-
tined for external hosts are forwarded to port
4, but only after their source IP address has
been overwritten to ExternalIp, the IP address
of the gateway switch. In order to correctly
multiplex HTTP packets, the network pro-
gram must also update the source TCP port
of outgoing HTTP packets to equal the switch
location of the sending host. Accordingly, in-
coming external HTTP packets should be sent
to the switch port given by the packet’s TCP
destination, but only after the packet’s TCP
and IP fields have been restored. We imple-
ment this policy by combining a number of
small NetCore programs, as follows.

First, we define7 a NetCore program frag-
ment that overwrites a packet’s source IP ad-
dress, then forwards the packet to port 4.

26 Definition pg1 :=

27 WILD ⇒ UPD IP SRC ExternalIp ’SEQ’ WILD ⇒ FWD 4.

Program pg1 can be combined with a parameterized NetCore program that up-
dates a packet’s TCP source field to equal the sender’s switch port, as follows.

36 Definition pg2 (n: Z) :=

37 PORT=n ⇒ UPD TCP SRC n ’SEQ’ pg1.

All together, the rule for outgoing packets is the restriction of pg2, for hosts 1
through 3, to internal packets that are both not located on port 4 and have TCP
destination port equal to 80.

44 Definition outgoing :=

45 RESTRICT (pg2 1 ’PAR’ pg2 2 ’PAR’ pg2 3)

46 BY (NOT PORT=4 ’AND’ TPDST=80).

The rule for incoming packets on port 4 is defined in a similar way, by first
restoring the packet’s IP and TCP destination fields, then forwarding the packet
to the internal port given by the packet’s initial TCP destination field.

Now that we have defined a NetCore program that implements NAT for the
topology given above, we can verify that the program behaves as we expect. For
example, the following lemma states that packets sent by hosts H1 through H3

7 The code that follows is found in src/examples/NAT.v.

46 G. Stewart

are forwarded to port 4, with source IP address modified to equal ExternalIp and
TCP source port set to the host port number h.

95 Lemma nat ok: ∀h, List.In h hosts →
96 |- [PORT=h] incoming ’PAR’ outgoing
97 [NWSRC=ExternalIp ’AND’ TPSRC=h ’AND’ PORT=4].
98 Proof. Time unfold outgoing; check all hosts. Qed.
99 (*Finished transaction in 0. secs (0.3125u,0.s)*)

Here hosts = [1; 2; 3]. The proof of this theorem relies on an additional au-
tomation tactic provided by our Coq library (check all). The check all tactic proves
correctness theorems of the form ∀x, List.In x all → |- [P x] pg [Q x], where
all is a finite multiset of x’s, and P and Q are predicates on x’s. The tactic works
by breaking the theorem down into a finite set of verification conditions, which
are all then proved automatically using the checker tactic of previous sections.

Using a variation of the check all tactic for reachability queries, we can quite
easily prove that TCP packets destined for external hosts are forwarded to port
4 of the gateway.

116 Lemma nat outgoing: ∀h, List.In h hosts →
117 |-r [TPDST=80 ’AND’ PORT=h ’AND’ IS IP ’AND’ IS TCP]
118 incoming ’PAR’ outgoing
119 [PORT=4].
120 Proof. Time check all’ hosts. Qed.
121 (*Finished transaction in 0. secs (0.40625u,0.s)*)

Recall that the outgoing NetCore program updates both the the TCP source
port and the source IP of outgoing packets. Thus the theorem holds only for
packets that are indeed valid TCP/IP packets. Our Coq development proves an
analogous reachability theorem for incoming traffic.

6 Measurements

20
200

2000

0.01 0.10 1.00 10.00 100.00 1000.00

#A
ST

 N
od

es

Time (s)nat_ok nat_ok qed nat_incomingnat_incoming qed nat_outgoing nat_outgoing qed
Fig. 3. NAT timings for 2 to 65 endhosts

To better understand the perfor-
mance profile of our tool suite,
we extended the network address
translation example of the pre-
vious section to scale from 2 to
65 endhosts.8 The plot in Fig-
ure 3 presents timing results, on
a log-log scale, for the NAT secu-
rity and reachability theorems we
stated and proved in the previous
section. The y-axis gives the size
of the verified NAT programs in

8 File src/examples/NATBench.v in our development.

Computational Verification of Network Programs in Coq 47

number of AST nodes. We measured both the time to execute proof scripts in
Coq, and the time to typecheck proof terms at Qed (x-axis).

While these experiments are still quite preliminary, they seem to indicate
that our tool suite is quite suitable for interactive use, at least for moderately
sized programs. Verifications of programs of up to approximately 250 AST nodes
usually took no more than a second or two. On the other hand, there is still
room for improvement. We would like to increase the efficiency of our resolution
backend, by using more efficient data structures and also term orderings. We
also plan to experiment with certificate-producing backends, in order to better
understand the concomitant tradeoffs. For example, it is not immediately clear
which matters more: the time to check proof certificates versus the potential
gains from using a highly tuned external prover.

7 Related Work

There has been a great deal of work on verification of low-level network con-
figurations in recent years [5–7, 11]. VeriFlow [6] uses an incremental analysis
of OpenFlow rule updates to check network invariants such as reachability in
real time. Anteater [7], an earlier effort, reduces verification of data plane invari-
ants to SAT. Header space analysis [5] does static analysis of low-level network
configurations using a geometric abstract domain. Reitblatt et al. [11] apply
techniques from model checking to verify invariants of OpenFlow configurations.
The VeriFlow paper [6] provides a good summary of additional related work.

The techniques described above all operate directly on switch and router con-
figurations, in the form of unstructured flow tables. They therefore incorporate
very little of the high-level structure present in the NetCore programs we an-
alyze in this paper. In addition, our NetCore weakest precondition calculi are
proved complete (and sound) in Coq. The analyses cited above provide no such
formal guarantees. On the other hand, techniques such as header space analy-
sis, which operates on a geometric abstraction of headers as uninterpreted bit
vectors, make fewer assumptions about the underlying network protocols, and
therefore are more general than the analyses we describe in this paper.

8 Conclusions

We have only scratched the surface of potential applications of the verification
techniques we describe in this paper. In our Coq development, we do example
verifications9 of the conditions that arise when proving disjointness of virtual
networks, or VLANs, using the network slice abstraction recently proposed by
Gutz et al. [4]. We have also begun to explore the use of our tool to detect, and
prove the absence of, loops in multi-switch networks, using a static analysis that
depends heavily on our weakest precondition calculus for reachability. Although
this work is still in progress, completeness of the weakest precondition calculus

9 File src/examples/Slice.v.

48 G. Stewart

should allow us to prove the absence of network loops, given a network program
and topology, rather than just detect them, as is done using existing techniques
such as Header Space Analysis [5].

At the same time, our Coq library is still in its early stages, and is therefore
limited in some ways. For example, at the moment we only target static NetCore
programs running on concrete network topologies (that is, in which the number of
switches, ports, and hosts are all known in advance). We would like to experiment
with using the library as a subcomponent of a larger tool suite, in order to do
verification of controller programs that generate streams of NetCore programs
in response to a stream of network input events. In addition, our specification
language currently only targets expressions in the NetCore predicate language.
In the future, we plan to extend it, and the accompanying tool support, to
enable verification of richer properties. Finally, because our NetCore semantics
was defined before Guha et al.’s verified compiler was publically available, it
differs in some details from the Guha et al. implementation. For example, in
order to do proof by reflection in Coq, we specify packets using a fixed-width
machine integer library that supports computable equality, whereas Guha et al.
use an axiomatization of machine words.We also support sequential composition,
whereas Guha et al.’s compiler does not. It is details like these that have so far
prevented complete convergence of our mechanized development with theirs.

Acknowledgments. I am indebted to the members of the Princeton program-
ming languages group for reading and commenting on early versions of this
paper, and to the anonymous reviewers for their insightful comments.

References

1. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

2. Foster, N., Harrison, R., Freedman, M.J., Monsanto, C., Rexford, J., Story, A.,
Walker, D.: Frenetic: A network programming language. In: ICFP (2011)

3. Guha, A., Reitblatt, M., Foster, N.: Machine-verified network controllers. In: PLDI
(2013)

4. Gutz, S., Story, A., Schlesinger, C., Foster, N.: Splendid isolation: A slice abstrac-
tion for software-defined networks. In: Hot Topics in SDNs. ACM (2012)

5. Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: Static checking
for networks. In: NSDI (2012)

6. Khurshid, A., Zhou, W., Caesar, M., Godfrey, P.: Veriflow: Verifying network-wide
invariants in real time. In: Hot Topics in SDNs. ACM (2012)

7. Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, P., King, S.T.: Debugging
the data plane with Anteater. ACM SIGCOMM CCR 41(4) (2011)

8. McCune, W., Wos, L.: Otter: The CADE-13 competition incarnations. JAR 18,
211–220 (1997)

9. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: OpenFlow: Enabling innovation in campus networks.
ACM SIGCOMM CCR 38(2), 69–74 (2008)

Computational Verification of Network Programs in Coq 49

10. Monsanto, C., Foster, N., Harrison, R., Walker, D.: A compiler and run-time system
for network programming languages. In: POPL (2012)

11. Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., Walker, D.: Abstractions for
network update. In: SIGCOMM (2012)

12. Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the ACM 12, 23–41 (1965)

13. Voellmy, A., Hudak, P.: Nettle: Taking the sting out of programming network
routers. In: Rocha, R., Launchbury, J. (eds.) PADL 2011. LNCS, vol. 6539, pp.
235–249. Springer, Heidelberg (2011)

	Computational Verification of Network Programs in Coq

	1 Introduction
	2 Software-defined Networking
	3 Verification
	4 Reachability
	5 Network Address Translation
	6 Measurements
	7 Related Work
	8 Conclusions
	References

