
A Formal Model and Correctness Proof
for an Access Control Policy Framework

Chunhan Wu1,2, Xingyuan Zhang1, and Christian Urban2

1 PLA University of Science and Technology, China
2 King’s College London, UK

Abstract. If an access control policy promises that a resource is protected in a
system, how do we know it is really protected? To give an answer we formalise
in this paper the Role-Compatibility Model—a framework, introduced by Ott, in
which access control policies can be expressed. We also give a dynamic model
determining which security related events can happen while a system is running.
We prove that if a policy in this framework ensures a resource is protected, then
there is really no sequence of events that would compromise the security of this
resource. We also prove the opposite: if a policy does not prevent a security com-
promise of a resource, then there is a sequence of events that will compromise
it. Consequently, a static policy check is sufficient (sound and complete) in order
to guarantee or expose the security of resources before running the system. Our
formal model and correctness proof are mechanised in the Isabelle/HOL theorem
prover using Paulson’s inductive method for reasoning about valid sequences of
events. Our results apply to the Role-Compatibility Model, but can be readily
adapted to other role-based access control models.

1 Introduction

Role-based access control models are used in many operating systems for enforcing se-
curity properties. The Role-Compatibility Model (RC-Model), introduced by Ott [5,6],
is one such role-based access control model. It defines roles, which are associated with
processes, and defines types, which are associated with system resources, such as files
and directories. The RC-Model also includes types for interprocess communication, that
is message queues, sockets and shared memory. A policy in the RC-Model gives every
user a default role, and also specifies how roles can be changed. Moreover, it specifies
which types of resources a role has permission to access, and also the mode with which
the role can access the resources, for example read, write, send, receive and so on.

The RC-Model is built on top of a collection of system calls provided by the operat-
ing system, for instance system calls for reading and writing files, cloning and killing of
processes, and sending and receiving messages. The purpose of the RC-Model is to re-
strict access to these system calls and thereby enforce security properties of the system.
A problem with the RC-Model and role-based access control models in general is that a
system administrator has to specify an appropriate access control policy. The difficulty
with this is that “what you specify is what you get but not necessarily what you want”
[4, Page 242]. To overcome this difficulty, a system administrator needs some kind of
sanity check for whether an access control policy is really securing resources. Existing

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 292–307, 2013.
c© Springer International Publishing Switzerland 2013

A Formal Model and Correctness Proof for an Access Control Policy Framework 293

works, for example [9,10], provide sanity checks for policies by specifying properties
and using model checking techniques to ensure a policy at hand satisfies these prop-
erties. However, these checks only address the problem on the level of policies—they
can only check “on the surface” whether the policy reflects the intentions of the system
administrator—these checks are not justified by the actual behaviour of the operating
system. The main problem this paper addresses is to check when a policy matches the
intentions of a system administrator and given such a policy, the operating system ac-
tually enforces this policy.

Our work is related to the preliminary work by Archer et al [1] about the security
model of SELinux. They also give a dynamic model of system calls on which the access
controls are implemented. Their dynamic model is defined in terms of IO automata and
mechanised in the PVS theorem prover. For specifying and reasoning about automata
they use the TAME tool in PVS. Their work checks well-formedness properties of ac-
cess policies by type-checking generated definitions in PVS. They can also ensure some
“simple properties” (their terminology), for example whether a process with a particular
PID is present in every reachable state from an initial state. They also consider “deeper
properties”, for example whether only a process with root-permissions or one of its de-
scendents ever gets permission to write to kernel log files. They write that they can state
such deeper properties about access policies, but about checking such properties they
write that “the feasibility of doing so is currently an open question” [1, Page 167]. We
improve upon their results by using our sound and complete static policy check to make
this feasible.

The work we report is also closely related to the work on grsecurity, an access control
system developed as a patch on top of Linux kernel [2]. It installs a reference monitor
to restrict access to system resources. They model a dynamic semantics of the operating
system with four rules dealing with executing a file, setting a role and setting an UID
as well as GID. These rules are parametrerised by an arbitrary but fixed access policy.
Although, there are only four rules, their state-space is in general infinite, like in our
work. They therfore give an abstracted semantics, which gives them a finite state-space.
For example the abstracted semantics dispenses with users and roles by introducing
abstract users and abstract roles. They obtain a soundness result for their abstract se-
mantics and under some weak assumptions also a completeness result. Comparing this
to our work, we will have a much more fine-grained model of the underlying operating
system. We will also obtain a soundness result, but more importantly obtain also a com-
pleteness result. But since we have a much more fine-grained model, it will depend on
some stronger assumptions. The abstract semantics in [2] is used for model-checking
policies according to whether, for example, information flow properties are ensured.
Since their formalism consists of only a few rules, they can get away with “pencil-and-
paper proofs”, whereas reasoning about our more detailed model containing substan-
tially more rules really necessitates the support of a theorem prover and completely
formalised models.

Our formal models and correctness proofs are mechanised in the interactive theorem
prover Isabelle/HOL. The mechanisation of the models is a prerequisite for any cor-
rectness proof about the RC-Model, since it includes a large number of interdependent
concepts and very complex operations that determine roles and types. In our opinion

294 C. Wu, X. Zhang, and C. Urban

it is futile to attempt to reason about them by just using “pencil-and-paper”. Follow-
ing good experience in earlier mechanisation work [11], we use Paulson’s inductive
method for reasoning about sequences of events [8]. For example we model system
calls as events and reason about an inductive definition of valid traces, that is lists of
events. Central to this paper is a notion of a resource being tainted, which for example
means it contains a virus or a back door. We use our model of system calls in order to
characterise how such a tainted object can “spread” through the system. For a system
administrator the important question is whether such a tainted file, possibly introduced
by a user, can affect core system files and render the whole system insecure, or whether
it can be contained by the access policy. Our results show that a corresponding check
can be performed statically by analysing the initial state of the system and the access
policy.

Contributions: We give a complete formalisation of the RC-Model in the interactive
theorem prover Isabelle/HOL. We also give a dynamic model of the operating system
by formalising all security related events that can happen while the system is running.
As far as we are aware, we are the first ones who formally prove that if a policy in
the RC-Model satisfies an access property, then there is no sequence of events (system
calls) that can violate this access property. We also prove the opposite: if a policy does
not meet an access property, then there is a sequence of events that will violate this
property in our model of the operating system. With these two results in place we can
show that a static policy check is sufficient in order to guarantee the access properties
before running the system. Again as far as we know, no such check has been designed
and proved correct before.

2 Preliminaries about the RC-Model

The Role-Compatibility Model (RC-Model) is a role-based access control model. It has
been introduced by Ott [5] and is used in running systems for example to secure Apache
servers. It provides a more fine-grained control over access permissions than simple
Unix-style access control models. This more fine-grained control solves the problem of
server processes running as root with too many access permissions in order to accom-
plish a task at hand. In the RC-Model, system administrators are able to restrict what
the role of server is allowed to do and in doing so reduce the attack surface of a system.

Policies in the RC-Model talk about users, roles, types and objects. Objects are pro-
cesses, files or IPCs (interprocess communication objects—such as message queues,
sockets and shared memory). Objects are the resources of a system an RC-policy can
restrict access to. In what follows we use the letter u to stand for users, r for roles, p for
processes, f for files and i for IPCs. We also use obj as a generic variable for objects.
The RC-Model has the following eight kinds of access modes to objects:

Read, Write, Execute, ChangeOwner, Create, Send, Receive and Delete

In the RC-Model, roles group users according to tasks they need to accomplish. Users
have a default role specified by the policy, which is the role they start with whenever
they log into the system. A process contains the information about its owner (a user),

A Formal Model and Correctness Proof for an Access Control Policy Framework 295

its role and its type, whereby a type in the RC-Model allows system administrators to
group resources according to a common criteria. Such detailed information is needed in
the RC-Model, for example, in order to allow a process to change its ownership. For this
the RC-Model checks the role of the process and its type: if the access control policy
states that the role has ChangeOwner access mode for processes of that type, then the
process is permitted to assume a new owner.

Files in the RC-Model contain the information about their types. A policy then spec-
ifies whether a process with a given role can access a file under a certain access mode.
Files, however, also include in the RC-Model information about roles. This information
is used when a process is permitted to execute a file. By doing so it might change its
role. This is often used in the context of web-servers when a cgi-script is uploaded and
then executed by the server. The resulting process should have much more restricted
access permissions. This kind of behaviour when executing a file can be specified in an
RC-policy in several ways: first, the role of the process does not change when executing
a file; second, the process takes on the role specified with the file; or third, use the role
of the owner, who currently owns this process. The RC-Model also makes assumptions
on how types can change. For example for files and IPCs the type can never change
once they are created. But processes can change their types according to the roles they
have.

As can be seen, the information contained in a policy in the RC-Model can be rather
complex: Roles and types, for example, are policy-dependent, meaning each policy
needs to define a set of roles and a set of types. Apart from recording for each role
the information which type of resource it can access and under which access-mode,
it also needs to include a role compatibility set. This set specifies how one role can
change into another role. Moreover it needs to include default information for cases
when new processes or files are created. For example, when a process clones itself, the
type of the new process is determined as follows: the policy might specify a default type
whenever a process with a certain role is cloned, or the policy might specify that the
cloned process inherits the type of the parent process.

Ott implemented the RC-Model on top of Linux, but only specified it as a set of
informal rules, partially given as logic formulas, partially given as rules in “English”.
Unfortunately, some presentations about the RC-Model give conflicting definitions for
some concepts—for example when defining the semantics of the special role “inherit
parent”. In [5] it means inherit the initial role of the parent directory, but in [7] it means
inherit the role of the parent process. In our formalisation we mainly follow the version
given in [5]. In the next section we give a mechanised model of the system calls on
which the RC-Model is implemented.

3 Dynamic Model of System Calls

Central to the RC-Model are processes, since they initiate any action involving re-
sources and access control. We use natural numbers to stand for process IDs, but do
not model the fact that the number of processes in any practical system is limited. Simi-
larly, IPCs and users are represented by natural numbers. The thirteen actions a process
can perform are represented by the following datatype of events

296 C. Wu, X. Zhang, and C. Urban

event ::= CreateFile p f | ReadFile p f | Send p i | Kill p p ′

| WriteFile p f | Execute p f | Recv p i
| DeleteFile p f | Clone p p ′ | CreateIPC p i
| ChangeOwner p u | ChangeRole p r | DeleteIPC p i

with the idea that for example in Clone a process p is cloned and the new process has
the ID p ′; with Kill the intention is that the process p kills another process with ID
p ′. We will later give the definition what the role r can stand for in the constructor
ChangeRole (namely normal roles only). As is custom in Unix, there is no difference
between a directory and a file. The files f in the definition above are simply lists of
strings. For example, the file /usr/bin/make is represented by the list [make, bin, usr]
and the root-directory is the Nil-list. Following the presentation in [5], our model of
IPCs is rather simple-minded: we only have events for creation and deletion of IPCs, as
well as sending and receiving messages.

Events essentially transform one state of the system into another. The system starts
with an initial state determining which processes, files and IPCs are active at the start
of the system. We assume the users of the system are fixed in the initial state; we also
assume that the policy does not change while the system is running. We have three
sets, namely init procs, init files and init ipcs specifying the processes, files and IPCs
present in the initial state. We will often use the abbreviation

obj ∈ init
def
= obj ∈ init files ∨ obj ∈ init procs ∨ obj ∈ init ipcs

There are some assumptions we make about the files present in the initial state: we
always require that the root-directory [] is part of the initial state and for every file in
the initial state (excluding []) we require that its parent is also part of the initial state.
A state is determined by a list of events, called the trace. The empty trace, or empty
list, stands for the initial state. Given a trace s, we prepend an event to s to stand for
the state in which the event just happened. We need to define functions that allow us
to make some observations about traces. One such function is called current procs and
calculates the set of “alive” processes in a state:

current procs []
def
= init procs

current procs (Clone p p ′::s)
def
= {p ′} ∪ current procs s

current procs (Kill p p ′::s)
def
= current procs s − {p ′}

current procs (::s)
def
= current procs s

The first clause states that in the empty trace the processes are given by init processes.
The events for cloning a process, respectively killing a process, update this set of pro-
cesses appropriately. Otherwise the set of live processes is unchanged. We have similar
functions for alive files and IPCs, called current files and current ipcs.

We can use these functions in order to formally model which events are admissible
by the operating system in each state. We show just three rules that give the gist of this
definition. First the rule for changing an owner of a process:

p ∈ current procs s u ∈ init users

admissible s (ChangeOwner p u)

A Formal Model and Correctness Proof for an Access Control Policy Framework 297

We require that the process p is alive in the state s (first premise) and that the new owner
is a user that existed in the initial state (second premise). Next the rule for creating a
new file:

p ∈ current procs s f /∈ current files s is parent f pf pf ∈ current files s

admissible s (CreateFile p f)

It states that a file f can be created by a process p being alive in the state s, the new file
does not exist already in this state and there exists a parent file pf for the new file. The
parent file is just the tail of the list representing f. Finally, the rule for cloning a process:

p ∈ current procs s p ′ /∈ current procs s

admissible s (Clone p p ′)

Clearly the operating system should only allow to clone a process p if the process is
currently alive. The cloned process will get the process ID generated by the operating
system, but this process ID should not already exist. The admissibility rules for the other
events impose similar conditions.

However, the admissibility check by the operating system is only one “side” of the
constraints the RC-Model imposes. We also need to model the constraints of the ac-
cess policy. For this we introduce separate granted-rules involving the sets permissions
and compatible r: the former contains triples describing access control rules; the latter
specifies for each role r which roles are compatible with r. These sets are used in the
RC-Model when a process having a role r takes on a new role r ′. For example, a login-
process might belong to root; once the user logs in, however, the role of the process
should change to the user’s default role. The corresponding granted-rule is as follows

is current role s p r r ′∈ compatible r

granted s (ChangeRole p r ′)

where we check whether the process p has currently role r and whether the RC-policy
states that r ′ is in the role compatibility set of r.

The complication in the RC-Model arises from the way the current role of a process
in a state s is calculated—represented by the predicate is current role in our formalisa-
tion. For defining this predicate we need to trace the role of a process from the initial
state to the current state. In the initial state all processes have the role given by the
function init current role. If a Clone event happens then the new process will inherit
the role from the parent process. Similarly, if a ChangeRole event happens, then as seen
in the rule above we just change the role accordingly. More interesting is an Execute
event in the RC-Model. For this event we have to check the role attached to the file to
be executed. There are a number of cases: If the role of the file is a normal role, then
the process will just take on this role when executing the file (this is like the setuid
mechanism in Unix). But there are also four special roles in the RC-Model: Inherit-
ProcessRole, InheritUserRole, InheritParentRole and InheritUpMixed. For example, if
a file to be executed has InheritProcessRole attached to it, then the process that exe-
cutes this file keeps its role regardless of the information attached to the file. In this way
programs can be can quarantined; InheritUserRole can be used for login shells to make

298 C. Wu, X. Zhang, and C. Urban

sure they run with the user’s default role. The purpose of the other special roles is to
determine the role of a process according to the directory in which the files are stored.

Having the notion of current role in place, we can define the granted rule for the
Execute-event: Suppose a process p wants to execute a file f. The RC-Model first fetches
the role r of this process (in the current state s) and the type t of the file. It then checks
if the tuple (r, t, Execute) is part of the policy, that is in our formalisation being an
element in the set permissions. The corresponding rule is as follows

is current role s p r is file type s f t (r, t, Execute) ∈ permissions

granted s (Execute p f)

The next granted-rule concerns the CreateFile event. If this event occurs, then we have
two rules in our RC-Model depending on how the type of the created file is derived. If
the type is inherited from the parent directory pf, then the granted-rule is as follows:

is parent f pf is file type s pf t is current role s p r
default type r = InheritPatentType (r, t, Write) ∈ permissions

granted s (CreateFile p f)

We check whether pf is the parent file (directory) of f and check whether the type of
pf is t. We also need to fetch the role r of the process that seeks to get permission for
creating the file. If the default type of this role r states that the type of the newly created
file will be inherited from the parent file type, then we only need to check that the policy
states that r has permission to write into the directory pf.

The situation is different if the default type of role r is some normal type, like text-
file or executable. In such cases we want that the process creates some predetermined
type of files. Therefore in the rule we have to check whether the role is allowed to create
a file of that type, and also check whether the role is allowed to write any new file into
the parent file (directory). The corresponding rule is as follows.

is parent f pf
is file type s pf t is current role s p r default type r = NormalFileType t ′

(r, t, Write) ∈ permissions (r, t ′, Create) ∈ permissions

granted s (CreateFile p f)

Interestingly, the type-information in the RC-model is also used for processes, for ex-
ample when they need to change their owner. For this we have the rule

is current role s p r is process type s p t (r, t, ChangeOwner) ∈ permissions

granted s (ChangeOwner p u)

whereby we have to obtain both the role and type of the process p, and then check
whether the policy allows a ChangeOwner-event for that role and type.

Overall we have 13 rules for the admissibility check by the operating system and 14
rules for the granted check by the RC-Model. They are used to characterise when an
event e is valid to occur in a state s. This can be inductively defined as the set of valid
states.

A Formal Model and Correctness Proof for an Access Control Policy Framework 299

valid []

valid s admissible s e granted s e

valid (e::s)

4 The Tainted Relation

The novel notion we introduce in this paper is the tainted relation. It characterises how
a system can become infected when a file in the system contains, for example, a virus.
We assume that the initial state contains some tainted objects (we call them seeds).
Therefore in the initial state [] an object is tainted, if it is an element in seeds.

obj ∈ seeds

obj ∈ tainted []

Let us first assume such a tainted object is a file f. If a process reads or executes a
tainted file, then this process becomes tainted (in the state where the corresponding
event occurs).

f ∈ tainted s valid (Execute p f ::s)

p ∈ tainted (Execute p f ::s)

f ∈ tainted s valid (ReadFile p f ::s)

p ∈ tainted (ReadFile p f ::s)

We have a similar rule for a tainted IPC, namely

i ∈ tainted s valid (Recv p i::s)

p ∈ tainted (Recv p i::s)

which means if we receive anything from a tainted IPC, then the process becomes
tainted. A process is also tainted when it is a produced by a Clone-event.

p ∈ tainted s valid (Clone p p ′::s)
p ′∈ tainted (Clone p p ′::s)

However, the tainting relationship must also work in the “other” direction, meaning if
a process is tainted, then every file that is written or created will be tainted. This is
captured by the four rules:

p ∈ tainted s valid (CreateFile p f ::s)

f ∈ tainted (CreateFile p f ::s)

p ∈ tainted s valid (WriteFile p f ::s)

f ∈ tainted (WriteFile p f ::s)

p ∈ tainted s valid (CreateIPC p i::s)

i ∈ tainted (CreateIPC p i::s)

p ∈ tainted s valid (Send p i::s)

i ∈ tainted (Send p i::s)

Finally, we have three rules that state whenever an object is tainted in a state s, then it
will be still tainted in the next state e::s, provided the object is still alive in that state.
We have such a rule for each kind of objects, for example for files the rule is:

f ∈ tainted s valid (e::s) f ∈ current files (e::s)

f ∈ tainted (e::s)

300 C. Wu, X. Zhang, and C. Urban

Similarly for alive processes and IPCs (then respectively with premises p∈ current procs
(e::s) and i∈ current ipcs (e::s)). When an object present in the initial state can be tainted
in some state (system run), we say it is taintable:

taintable obj
def
= obj ∈ init ∧ ∃ s. obj ∈ tainted s

Before we can describe our static check deciding when a file is taintable, we need
to describe the notions deleted and undeletable for objects. The former characterises
whether there is an event that deletes these objects (files, processes or IPCs). For this
we have the following four rules:

deleted p ′ (Kill p p ′::s)

deleted f (DeleteFile p f ::s)

deleted i (DeleteIPC p i::s)

deleted obj s

deleted obj (e::s)

Note that an object cannot be deleted in the initial state []. An object is then said to be
undeletable provided it did exist in the initial state and there does not exists a valid state
in which the object is deleted:

undeletable obj
def
= obj ∈ init ∧ ¬ (∃ s. valid s ∧ deleted obj s)

The point of this definition is that our static taintable check will only be complete for
undeletable objects. But these are the ones system administrators are typically interested
in (for example system files).

It should be clear that we cannot hope for a meaningful check by just trying out
all possible valid states in our dynamic model. The reason is that there are potentially
infinitely many of them and therefore the search space would be infinite. For example
starting from an initial state containing a process p and a file pf, we can create files f 1,
f 2, ... via CreateFile-events. This can be pictured roughly as follows:

Initial state:
{p, pf} =⇒

CreateFile p (f 1::pf)

{p, pf , f 1::pf} =⇒
CreateFile p (f 2::f 1::pf)

{p, pf , f 1::pf , f 2::f 1::pf} ...

Instead, the idea of our static check is to use the policies of the RC-model for generating
an answer, since they provide always a finite “description of the system”. As we will
see in the next section, this needs some care, however.

5 Our Static Check

Assume there is a tainted file in the system and suppose we face the problem of finding
out whether this file can affect other files, IPCs or processes? One idea is to work
on the level of policies only, and check which operations are permitted by the role

A Formal Model and Correctness Proof for an Access Control Policy Framework 301

and type of this file. Then one builds the “transitive closure” of this information and
checks for example whether the role root has become affected, in which case the whole
system is compromised. This is indeed the solution investigated in [3] in the context of
information flow and SELinux.

Unfortunately, restricting the calculations to only use policies is too simplistic for
obtaining a check that is sound and complete—it over-approximates the dynamic tainted
relation defined in the previous section. To see the problem consider the case where the
tainted file has, say, the type bin. If the RC-policy contains a role r that can both read
and write bin-files, we would conclude that all bin-files can potentially be tainted. That
is indeed the case, if there is a process having this role r running in the system. But if
there is not, then the tainted file cannot “spread”. A similar problem arises in case there
are two processes having the same role r, and this role is restricted to read files only.
Now if one of the processes is tainted, then the simple check involving only policies
would incorrectly infer that all processes involving that role are tainted. But since the
policy for r is restricted to be read-only, there is in fact no danger that both processes
can become tainted.

The main idea of our sound and complete check is to find a “middle” ground between
the potentially infinite dynamic model and the too coarse information contained in the
RC-policies. Our solution is to define a “static” version of the tainted relation, called
tainteds, that records relatively precisely the information about the initial state of the
system (the one in which an object might be a seed and therefore tainted). However, we
are less precise about the objects created in every subsequent state. The result is that we
can avoid the potential infinity of the dynamic model. For the tainteds-relation we will
consider the following three kinds of items recording the information we need about
processes, files and IPCs, respectively:

Recorded information:

Processes: P(r, dr, t, u)po

Files: F(t, a)fo

IPCs: I(t)io

For a process we record its role r, its default role dr (used to determine the role when
executing a file or changing the owner of a process), its type t and its owner u. For a
file we record just the type t and its anchor a (we define this notion shortly). For IPCs
we only record its type t. Note the superscripts po, fo and io in each item. They are
optional arguments and depend on whether the corresponding object is present in the
initial state or not. If it is, then for processes and IPCs we will record Some id, where id
is the natural number that uniquely identifies a process or IPC; for files we just record
their path Some f. If the object is not present in the initial state, that is newly created,
then we just have None as superscript. Let us illustrate the different superscripts with
the following example where the initial state contains a process p and a file (directory)
pf. Then this process creates a file via a CreateFile-event and after that reads the created
file via a Read-event:

Initial state:
{p, pf} =⇒

CreateFile p (f ::pf)
{p, pf , f ::pf} =⇒

ReadFile p (f ::pf)
{p, pf , f ::pf}

302 C. Wu, X. Zhang, and C. Urban

For the two objects in the initial state our static check records the information P(r, dr, t,
u)Some p and F(t ′, a)Some pf (assuming r, t and so on are the corresponding roles, types
etc). In both cases we have the superscript Some(...) since they are objects present in the
initial state. For the file f ::pf created by the CreateFile-event, we record F(t ′, a ′)None,
since it is a newly created file. The ReadFile-event does not change the set of objects,
therefore no new information needs to be recorded. The problem we are avoiding with
this setup of recording the precise information for the initial state is where two processes
have the same role and type information, but only one is tainted in the initial state, but
the other is not. The recorded unique process ID allows us to distinguish between both
processes. For all newly created objects, on the other hand, we do not care. This is
crucial, because otherwise exploring all possible “reachable” objects can lead to the
potential infinity like in the dynamic model.

An anchor for a file is the “nearest” directory that is present in the initial state and
has not been deleted in a state s. Its definition is the recursive function

anchor s []
def
= if ¬ deleted [] s then Some [] else None

anchor s (f ::pf)
def
= if f ::pf ∈ init files ∧ ¬ deleted (f ::pf) s

then Some (f ::pf) else anchor s pf

generating an optional value. The first clause states that the root-directory is always its
own anchor unless it has been deleted. If a file is present in the initial state and not
deleted in s, then it is also its own anchor, otherwise the anchor will be the anchor of
the parent directory. For example if we have a directory pf in the initial state, then its
anchor is Some pf (assuming it is not deleted). If we create a new file in this directory,
say f ::pf, then its anchor will also be Some pf. The purpose of anchor is to determine the
role information when a file is executed, because the role of the corresponding process,
according to the RC-model, is determined by the role information of the anchor of the
file to be executed.

There is one last problem we have to solve before we can give the rules of our
tainteds-check. Suppose an RC-policy includes the rule (r, foo, Write) ∈ permissions,
that is a process of role r is allowed to write files of type foo. If there is a tainted
process with this role, we would conclude that also every file of that type can potentially
become tainted. However, that is not the case if the initial state does not contain any
file with type foo and the RC-policy does not allow the creation of such files, that is
does not contain an access rule (r, foo, Create) ∈ permissions. In a sense the original
(r, foo, Write) is “useless” and should not contribute to the relation characterising the
objects that are tainted. To exclude such “useless” access rules, we define a relation
reachables restricting our search space to only configurations that correspond to states
in our dynamic model. We first have a rule for reachable items of the form F(t, f)Some f

where the file f with type t is present in the initial state.

f ∈ init files is file type [] f t

F(t, f)Some f ∈ reachables

We have similar reachability rules for processes and IPCs that are part of the initial
state. Next is the reachability rule in case a file is created

A Formal Model and Correctness Proof for an Access Control Policy Framework 303

F(t, a)fo ∈ reachables

P(r, dr, pt, u)po ∈ reachables default type r = NormalFileType t ′

(r, t, Write) ∈ permissions (r, t ′, Create) ∈ permissions

F(t ′, a)None ∈ reachables

where we require that we have a reachable parent directory, recorded as F(t, a)fo, and
also a process that can create the file, recorded as P(r, dr, pt, u)po. As can be seen, we
also require that we have both (r, t, Write) and (r, t ′, Create) in the permissions set for
this rule to apply. If we did not impose this requirement about the RC-policy, then there
would be no way to create a file with NormalFileType t ′ according to our “dynamic”
model. However in case we want to create a file of type InheritPatentType, then we only
need the access-rule (r, t, Write):

F(t, a)fo ∈ reachables P(r, dr, pt, u)po ∈ reachables

default type r = InheritPatentType (r, t, Write) ∈ permissions

F(t, a)None ∈ reachables

We also have reachability rules for processes executing files, and for changing their
roles and owners, for example

P(r, dr, t, u)po ∈ reachables r ′∈ compatible r

P(r ′, dr, t, u)po ∈ reachables

which states that when we have a process with role r, and the role r ′ is in the corre-
sponding role-compatibility set, then also a process with role r ′ is reachable.

The crucial difference between between the “dynamic” notion of validity and the
“static” notion of reachables is that there can be infinitely many valid states, but as-
suming the initial state contains only finitely many objects, then also reachables will
be finite. To see the difference, consider the infinite “chain” of events just cloning a
process p0:

Initial state:
{p0} =⇒

Clone p0 p1

{p0, p1} =⇒
Clone p0 p2

{p0, p1, p2} ...

The corresponding reachable objects are

{P(r, dr, t, u)Some (p0)} =⇒ {P(r, dr, t, u)Some (p0), P(r, dr, t, u)None}
where no further progress can be made because the information recorded about p2, p3

and so on is just the same as for p1, namely P(r, dr, t, u)None. Indeed we can prove the
lemma:

Lemma 1. If finite init, then finite reachables.

This fact of reachables being finite enables us to design a decidable tainted-check. For
this we introduce inductive rules defining the set tainteds. Like in the “dynamic” version
of tainted, if an object is element of seeds, then it is tainteds.

304 C. Wu, X. Zhang, and C. Urban

obj ∈ seeds

[[obj]] ∈ tainteds

The function [[]] extracts the static information from an object. For example for a pro-
cess it extracts the role, default role, type and user; for a file the type and the anchor. If
a process is tainted and creates a file with a normal type t ′ then also the created file is
tainted. The corresponding rule is

P(r, dr, pt, u)po ∈ tainteds

F(t, a)fo ∈ reachables default type r = NormalFileType t ′

(r, t, Write) ∈ permissions (r, t ′, Create) ∈ permissions

F(t ′, a)None ∈ tainteds

If a tainted process creates a file that inherits the type of the directory, then the file will
also be tainted:

P(r, dr, pt, u)po ∈ tainteds F(t, a)fo ∈ reachables

default type r = InheritPatentType (r, t, Write) ∈ permissions

F(t, a)None ∈ tainteds

If a tainted process changes its role, then also with this changed role it will be tainted:

P(r, dr, t, u)po ∈ tainteds r ′∈ compatible r

P(r ′, dr, t, u)po ∈ tainteds

Similarly when a process changes its owner. If a file is tainted, and a process has read-
permission to that type of files, then the process becomes tainted. The corresponding
rule is

F(t, a)fo ∈ tainteds P(r, dr, pt, u)po ∈ reachables (r, t, Read) ∈ permissions

P(r, dr, pt, u)po ∈ tainteds

If a process is tainted and it has write-permission for files of type t, then these files will
be tainted:

P(r, dr, pt, u)po ∈ tainteds F(t, a)fo ∈ reachables (r, t, Write) ∈ permissions

F(t, a)fo ∈ tainteds

We omit the remaining rules for executing a file, cloning a process and rules involving
IPCs, which are similar. A simple consequence of our definitions is that every tainted
object is also reachable:

Lemma 2. tainteds ⊆ reachables

which in turn means that the set of tainteds items is finite by Lemma 1.
Returning to our original question about whether tainted objects can spread in the

system. To answer this question, we take these tainted objects as seeds and calculate the

A Formal Model and Correctness Proof for an Access Control Policy Framework 305

set of items that are tainteds. We proved this set is finite and can be enumerated using
the rules for tainteds. However, this set is about items, not about whether objects are
tainted or not. Assuming an item in tainteds arises from an object present in the initial
state, we have recorded enough information to translate items back into objects via the
function | |:

|P(r, dr, t, u)po| def
= po

|F(t, a)fo| def
= fo

|I(t)io| def
= io

Using this function, we can define when an object is taintables in terms of an item being
tainteds, namely

taintables obj
def
= ∃ item. item ∈ tainteds ∧ |item| = Some obj

Note that taintables is only about objects that are present in the initial state, because for
all other items | | returns None.

With these definitions in place, we can state our theorem about the soundness of our
static taintables-check for objects.

Theorem 1 (Soundness). If taintables obj then taintable obj.

The proof of this theorem generates for every object that is “flagged” as taintables by
our check, a sequence of events which shows how the object can become tainted in the
dynamic model. We can also state a completeness theorem for our taintables-check.

Theorem 2 (Completeness). If undeletable obj and taintable obj then taintables obj.

This completeness theorem however needs to be restricted to undeletebale objects. The
reason is that a tainted process can be killed by another process, and after that can
be “recreated” by a cloning event from an untainted process—remember we have no
control over which process ID a process will be assigned with. Clearly, in this case the
cloned process should be considered untainted, and indeed our dynamic tainted relation
is defined in this way. The problem is that a static test cannot know about a process
being killed and then recreated. Therefore the static test will not be able to “detect”
the difference. Therefore we solve this problem by considering only objects that are
present in the initial state and cannot be deleted. By the latter we mean that the RC-
policy stipulates an object cannot be deleted (for example it has been created by root
in single-user mode, but in the everyday running of the system the RC-policy forbids
to delete an object belonging to root). Like taintables, we also have a static check for
when a file is undeletable according to an RC-policy.

This restriction to undeletable objects might be seen as a great weakness of our re-
sult, but in practice this seems to cover the interesting scenarios encountered by system
administrators. They want to know whether a virus-infected file introduced by a user
can affect the core system files. Our test allows the system administrator to find this out
provided the RC-policy makes the core system files undeletable. We assume that this
proviso is already part of best practice rule for running a system.

306 C. Wu, X. Zhang, and C. Urban

We envisage our test to be useful in two kind of situations: First, if there was a break-
in into a system, then, clearly, the system administrator can find out whether the existing
access policy was strong enough to contain the break-in, or whether core system files
could have been affected. In the first case, the system administrator can just plug the
hole and forget about the break-in; in the other case the system administrator is wise
to completely reinstall the system. Second, the system administrator can proactively
check whether an RC-policy is strong enough to withstand serious break-ins. To do so
one has to identify the set of “core” system files that the policy should protect and mark
every possible entry point for an attacker as tainted (they are the seeds of the tainteds

relation). Then the test will reveal whether the policy is strong enough or needs to be
redesigned. For this redesign, the sequence of events our check generates should be
informative.

6 Conclusion and Related Works

We have presented the first completely formalised dynamic model of the Role-Compa-
tibility Model. This is a framework, introduced by Ott [5], in which role-based access
control policies can be formulated and is used in practice, for example, for securing
Apache servers. Previously, the RC-Model was presented as a collection of rules partly
given in “English”, partly given as formulas. During the formalisation we uncovered
an inconsistency in the semantics of the special role InheritParentRole in the existing
works about the RC-Model [5,7]. By proving the soundness and completeness of our
static taintables-check, we have formally related the dynamic behaviour of the operat-
ing system implementing access control and the static behaviour of the access policies
of the RC-Model. The crucial idea in our static check is to record precisely the infor-
mation available about the initial state (in which some resources might be tainted), but
be less precise about the subsequent states. The former fact essentially gives us the
soundness of our check, while the latter results in a finite search space.

The two most closely related works are by Archer et al and by Guttman et al [1,3].
The first describes a formalisation of the dynamic behaviour of SELinux carried out in
the theorem prover PVS. However, they cannot use their formalisation in order to prove
any “deep” properties about access control rules [1, Page 167]. The second analyses
access control policies in the context of information flow. Since this work is completely
on the level of policies, it does not lead to a sound and complete check for files being
taintable (a dynamic notion defined in terms of operations performed by the operating
system). While our results concern the RC-Model, we expect that they equally apply
to the access control model of SELinux. In fact, we expect that the formalisation is
simpler for SELinux, since its rules governing roles are much simpler than in the RC-
Model. The definition of our admissibility rules can be copied verbatim for SELinux;
we would need to modify our granted rules and slightly adapt our static check. We
leave this as future work. Another direction of future work could be to reason formally
about confidentiality in access control models. This would, of course, need the explicit
assumption about the absence of any covert channels in systems.

A Formal Model and Correctness Proof for an Access Control Policy Framework 307

Our formalisation is carried out in the Isabelle/HOL theorem prover. It uses Paulson’s
inductive method for reasoning about sequences of events [8]. We have approximately
1000 lines of code for definitions and 6000 lines of code for proofs. Our formalisation is
available from the Mercurial repository at http://www.dcs.kcl.ac.uk/staff
/urbanc/cgi-bin/repos.cgi/rc/.

References

1. Archer, M., Leonard, E.I., Pradella, M.: Analyzing Security-Enhanced Linux Policy Specifi-
cations. In: Proc. of the 4th IEEE International Workshop on Policies for Distributed Systems
and Networks (POLICY), pp. 158–169 (2003)

2. Bugliesi, M., Calzavara, S., Focardi, R., Squarcina, M.: Gran: Model Checking Grsecurity
RBAC Policies. In: Proc. of the 25th IEEE Computer Security Foundations Symposium
(CSF), pp. 126–138 (2012)

3. Guttman, J.D., Herzog, A.L., Ramsdell, J.D., Skorupka, C.W.: Verifying Information Flow
Goals in Security-Enhanced Linux. Journal of Computer Security 13(1), 115–134 (2005)

4. Jha, S., Li, N., Tripunitara, M.V., Wang, Q., Winsborough, W.H.: Towards Formal Verifi-
cation of Role-Based Access Control Policies. IEEE Transactions Dependable and Secure
Computing 5(4), 242–255 (2008)

5. Ott, A.: The Role Compatibility Security Model. In: Proc. of the 7th Nordic Workshop on
Secure IT Systems, NordSec (2002)

6. Ott, A.: Mandatory Rule Set Based Access Control in Linux: A Multi-Policy Security Frame-
work and Role Model Solution for Access Control in Networked Linux Systems. PhD thesis,
University of Hamburg (2007)

7. Ott, A., Fischer-Hübner, S.: A Role-Compatibility Model for Secure System Administration,
http://www.rsbac.org/doc/media/rc-paper.php

8. Paulson, L.C.: The Inductive Approach to Verifying Cryptographic Protocols. Journal of
Computer Security 6(1-2), 85–128 (1998)

9. Sarna-Starosta, B., Stoller, S.D.: Policy Analysis for Security-Enhanced Linux. In: Proc. of
the 2004 Workshop on Issues in the Theory of Security (WITS), pp. 1–12 (2004)

10. Uzun, E., Atluri, V., Sural, S., Vaidya, J., Parlato, G., Ferrara, A.L., Madhusudan, P.: Ana-
lyzing Temporal Role Based Access Control Models. In: Proc. of the 17th ACM Symposium
on Access Control Models and Technologies (SACMAT), pp. 177–186 (2012)

11. Zhang, X., Urban, C., Wu, C.: Priority Inheritance Protocol Proved Correct. In: Beringer, L.,
Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 217–232. Springer, Heidelberg (2012)

http://www.dcs.kcl.ac.uk/staff/urbanc/cgi-bin/repos.cgi/rc/
http://www.dcs.kcl.ac.uk/staff/urbanc/cgi-bin/repos.cgi/rc/
http://www.rsbac.org/doc/media/rc-paper.php

	A Formal Model and Correctness Proof for an Access Control Policy Framework
	1 Introduction
	2 Preliminaries about the RC-Model
	3 Dynamic Model of System Calls
	4 The Tainted Relation
	5 Our Static Check
	6 Conclusion and RelatedWorks
	References

