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Abstract. Sustaining scalable performance trends in the multicore era
has led many compiler researchers to develop a host of optimizations
to parallelize sequential programs. At the same time, formal methods
researchers have pushed compiler verification technology forward to the
point that real compilers may be checked for correctness by proving that
the compiler preserves a simulation relation between the source and tar-
get languages. We join these two lines of research by proving a general
parallelizing transformation schema sound for an extension of the Calcu-
lus of Communicating Systems (CCS) with semaphores and sequential
composition. When source programs contain internal nondeterminism,
we have found that the simulation relations that underlie the most promi-
nent verified compilers, like CompCert, are too strong to admit a large
class of parallelizing transformations. Thus we prove soundness with re-
spect to a new simulation relation, called eventual simulation, that re-
solves this issue and is equivalent to weak bisimulation when no internal
nondeterminism is present. All formal details presented are proven and
mechanically checked using the Coq Proof Assistant.

1 Introduction

Parallelizing optimizations allow programmers to take advantage of the increas-
ing number of cores found in modern CPUs with little additional effort. These
optimizations free the programmer from dealing with the inherent complexities
of writing multithreaded code directly and bring new vigor to a large base of
existing sequential source code by the simple act of recompilation.

Compiler verification guarantees that a compiler does not contain bugs, or
at least does not introduce bugs into compiled programs. Well-known exam-
ples include CompCert (and variations such as the Verified Software Toolchain,
XCERT, and CompCertTSO) and Vellvm [5][1][11][10][13]. CompCert translates
a C source program into successive stages of intermediate languages until it fi-
nally generates PowerPC,ARM, or x86 assembly code. Each translation is proven
correct with respect to a behavioral equivalence called weak bisimulation (hence-
forth referred to as just “bisimulation”); by transitivity, the source and target
assembly programs will bisimulate each other.
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Bisimulation is a member of a large class of simulation relations that have a
co-inductive proof method and preserve many strong properties of program be-
havior, such as the interactions with an environment (e.g. the operating system,
users, and libraries) and deadlocking behavior. It may also be augmented with
termination and divergence sensitivity without much difficulty. Two programs
are bisimilar if they can mimic each other indefinitely.

Parallelizing optimizations have been studied extensively, but research has
been primarily focused on performance considerations and on developing the
supporting static analyses. Our goal is to prove the correctness of optimizations
like DOALL, DOACROSS, and Decoupled Software Pipelining (DSWP) [7][9],
which transform a loop into multiple parallel loops, and may introduce synchro-
nization to communicate data and control flow dependencies. Toward this end,
we have proven the soundness of a highly general parallelizing transformation.

Admitting parallelization presumes that the threading primitives – fork, join,
and synchronization – and the scheduler are not directly observable. In contrast,
the Verified Software Toolchain [1] conservatively treats these primitives as ob-
servable system calls; in this setting, parallelization is clearly not admissible.

Combining parallelization and internal nondeterminism – the choices a source
program makes that are not directly visible to the observer – raises an interest-
ing challenge because parallelization may cause the nondeterminism to interleave
with observable actions. Even when benign, a weak simulation (henceforth re-
ferred to as just “simulation”) is not preserved by this behavior. In many cases,
the source of the internal nondeterminism is “unspecified behavior” that the
compiler may refine. A potential solution is to first refine all internal nondeter-
minism, after which parallelization will preserve a bisimulation.

Internal nondeterminism can be intentional,1 however, and refining it may ei-
ther be incorrect (depending on the language specification) or cause the program
to run slower (e.g., by removing concurrency). Or it may be desirable to perform
the refinement in a latter phase of compilation; after parallelization. Thus we use
a new type of simulation relation, which we call eventual simulation, that allows
the compiler to preserve internal nondeterminism throughout parallelization.

Our main contributions are:

– We prove soundness of a general-purpose parallelizing transformation schema
for an extension of CCS, called CCS-Seq, with respect to a new simulation
relation called eventual simulation. Additionally, we prove that the termina-
tion properties are correctly preserved.

– Because eventual simulation is not symmetric, we propose using contrasim-
ulation [3] in verified compilers. It is implied by eventual simulation and is
generally a congruence for imperative languages. Without internal nonde-
terminism, contrasimulation reduces to bisimulation and thus our proof of
soundness for parallelization is still directly applicable.

1 A specification could permit the program to invoke an unobservable third party
to make a choice, such as a random number generator or (indirectly) through the
interleavings chosen by the scheduler.
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– We mechanically formalize and prove this work – CCS-Seq, eventual simula-
tion, contrasimulation, the proof of parallelization, and all other details – in
the Coq Proof Assistant.2 All definitions and lemmas are in a “mathemati-
cal” notation, yet are otherwise identical to our Coq development.

In Section 2, we begin with an illustrative example of parallelizing a simple
program with internal nondeterminism. Then we give the formal tools necessary
to compare the behaviors of programs and introduce eventual simulation to
state the correctness of this transformation. CCS-Seq is defined in Section 3, for
which we present the parallelizing transformation schema. In Sections 4 and 5
we introduce contrasimulation and then show how using “delayed observations”
allows it to be used in more situations. Soundness proofs and formal definitions
are given in Section 6. The remaining sections discuss related work and conclude.

2 A Simple Parallelizing Transformation
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Fig. 1. Semantics of the
programs as transition
diagrams

We begin by showing how a simple program might be
parallelized. This example introduces a few of the ba-
sic concepts that we will be using throughout this pa-
per – transition diagrams, labeled transition systems,
observable versus unobservable actions, internal non-
determinism, and comparing program behaviors using
simulations and bisimulations. Finally, we define even-
tual simulation and prove that it holds for this example.

The following sequential program randomly assigns
either 1 or 2 to x, outputs 0, and then outputs x.

x:= either 1 or 2; print 0; print x (2.1)

A potential result of parallelizing the program is:

(x:= either 1 or 2 ∥ print 0); print x, (2.2)

which may also output 0 before choosing a value for x.
The either-or statement is an instance of internal non-
determinism. Although the parallelized program is intu-
itively “correct”, the original program does not simulate
it because choosing a random value can be reordered
with console output (an observable action).

Figure 1 presents the semantics of each program
as transition diagrams where nodes represent program
states and directed edges represent program transitions.
The initial states are represented by the root nodes; p0
and q0 correspond to (2.1) and (2.2), respectively. Unobservable (silent) steps
that correspond with a line of source code are labeled in parentheses. For exam-
ple, choosing to assign either 1 or 2 to x is labeled (x:=1) or (x:=2), respectively.
In later examples, silent steps may not be labeled at all. Observable actions
(console output) have bold edges.

2 The full Coq development is at http://www.cs.princeton.edu/~cbell/par/

http://www.cs.princeton.edu/~cbell/par/
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Labeled transition systems. A labeled transition system (LTS) is defined by a
triple, (S,L, δ), where S is the set of states, L is the set of observable actions,
and δ ⊆ S ×(L∪{τ})×S is the transition relation. A step from state p to p′ that
performs action α ∈ L ∪ {τ} is defined if (p,α, p′) ∈ δ and is denoted by p α�→ p′.
τ is reserved for internal (silent) transitions; we write p→ p′ instead of p τ�→ p′.

The transitive reflexive closure of → is denoted by ⇒. We write p
α
	⇒ p′ for

α ∈ L∪{τ} when p performs action α by taking zero or more steps to p′; i.e. p
a
	⇒ p′

for a ∈ L iff p ⇒ ⋅ a�→ ⋅ ⇒ p′ and
τ
	⇒ is equivalent to ⇒. A weak transition from

p to p′ that performs actions �a = [a0, . . . , an] ∈ L
∗ is defined as p⇒ ⋅

a0	⇒⋯
an	⇒ p′

and is denoted by p
�a
	⇒ p′. Weak transitions over an empty list of actions may

take multiple silent steps rather than just zero steps.
Two programs can be compared by showing that one mimics the other indef-

initely, which is defined with respect to a LTS.

Definition 1 (p ≤ q). R ⊆ S × S is a simulation when for any (p, q) ∈ R,
– if p α�→ p′, then q

α
	⇒ q′ and (p′, q′) ∈ R for some q′.

State q simulates p, written p ≤ q (or equivalently q ≥ p), iff there exists a
simulation R and (p, q) ∈ R.

Many verified compilers are founded on bisimulation. It holds between two
programs when each mimics (simulates) the other indefinitely, such that all pairs
of transitional states continue to be bisimilar.R−1 is the inverse ofR: (q, p) ∈ R−1

iff (p, q) ∈ R for any p and q.

Definition 2 (p ≈ q). R is a bisimulation when R and R−1 are simulations. p
and q are bisimilar, written p ≈ q, iff (p, q) ∈ R for some bisimulation R.

It is easy to prove that state q0 simulates p0 in Fig. 1. The simulation relation
is {(pi, qi) ∣ 0 ≤ i ≤ 6}. However, simulation does not hold in the other direction:

Lemma 1. Program (2.1) does not simulate (2.2): p0 ≱ q0.

Proof. By contradiction: assume p0 ≥ q0. We take step q0
0�→ q7 without commit-

ting to print either 1 or 2. By assumption, p0 must be able to mimic this action,
thus p0

0
	⇒ p′ and p′ ≥ q7 for some p′. Fig. 1a shows that p′ is either p3 or p4. In

either case, q7 may perform an action that p′ is not capable of, thus p′ ≱ q7. ⊓⊔

Because simulation fails in this direction, we choose a weaker relation for
parallelization. In particular, one that preserves as many of the strong properties
of bisimulation as possible, such as a co-inductive proof method and the fact that
related programs continue to mimic each other during execution. Note that when
the simulation fails, it is possible for the parallel program to eventually step to
a state where simulation can be reestablished: from state q7 to either q3 or q4.
It turns out that this “eventuality” holds for parallelization in general, and thus
we formalize this idea as eventual simulation.

Definition 3 (p≾ q). R is an eventual simulation when for any (p, q) ∈ R,
– if p

�a
	⇒ p′, then p′ ⇒ p′′, q

�a
	⇒ q′′, and (p′′, q′′) ∈ R for some p′′ and q′′.
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State q eventually simulates p, written p≾ q (or q ≿ p), if there exists a simulation
R whose inverse is an eventual simulation and (p, q) ∈ R.

Eventual similarity is like bisimilarity – and unlike plain similarity – in that
both programs mimic each other indefinitely, but we still call it a “similarity”
because it is asymmetric. It differs from them by considering multiple actions at
once. Bisimilarity implies eventual similarity, eventual similarity is reflexive and
transitive, and crucially, it holds for a large class of parallelizing transformations
in addition to our simple example. Further properties are explored in Section 4.

Lemma 2. If p ≈ q, then p≿ q (and p≾ q because ≈ is symmetric).

Lemma 3. ≿ is reflexive and transitive.

Lemma 4. The programs in Fig. 1 are eventually similar: p0 ≾ q0.

Proof. We select relation R = {(pi, qi) ∣ 0 ≤ i ≤ 6}. Trivially, (p0, q0) ∈ R and
R is a simulation. Finally, we prove that R−1 is an eventual simulation. The
interesting case is for (p0, q0) ∈ R, when q0

0
	⇒ q7. In response, we have p0 follow

by p0
0
	⇒ p3 and q7 ⇒ q3. (We may have instead chosen to step to p4 and q4.) ⊓⊔

3 CCS-Seq

We now investigate parallelization for an extension of the Calculus of Com-
municating Systems (CCS) [6]. CCS is widely used as a model for analyzing
bisimulation relations and the behavior of programs and systems with multi-
ple concurrent agents acting in concert via message passing and synchroniza-
tion. However, we must extend CCS with a sequential composition operator in
order to model parallelizing transformations. Furthermore, implementing asyn-
chronous communication on top of CCS-style synchronous channels is tedious
and not modular (requiring auxiliary threads for buffering), so we replace its
channels with semaphores. We refer to this language as CCS-Seq.

α ∶∶= τ ∣ a ∣ ā

P ∶∶= 0 ∣ P +P ∣ P ∣P ∣ α.P ∣ !P ∣ P ;P ∣ υa ∶n.P

Metavariables P , Q, M , N , and R refer to processes; a is the name of a
semaphore; α is an action (τ is internal), and n is a natural number. Figure 2
lists the operational semantics. Action prefixing, α.P , emits action α and resolves
to P . 0 is a terminated process (we abbreviate α.0 as α), P ∣Q is parallel com-
position, P ;Q is sequential composition, and P +Q represents a choice between
executing either P or Q. A process may create infinite, parallel copies of itself
by replication: !P . Although we do not use replication directly in this paper, its
presence gives the language “teeth” – so that proving termination properties is
not trivial (for this purpose, a termination rule for replication is unnecessary).

Restriction, υa ∶ n.P , declares that a is a semaphore, local to P , with state
n. It is a way of introducing a fresh semaphore name that is hidden from any
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P α
�→ P ′

P ;Q α
�→ P ′;Q

P α
�→ P ′

P ∣Q α
�→ P ′ ∣Q

Q α
�→Q′

P ∣Q α
�→ P ∣Q′

P α
�→ P ′

P +Q α
�→ P ′

Q α
�→Q′

P +Q α
�→Q′

P α
�→ P ′ α ∉ {a, ā}

υa ∶n.P α
�→ υa ∶n.P ′

P ā
�→ P ′

υa ∶n.P → υa ∶ (n+ 1).P ′

P a
�→ P ′

υa ∶ (n+ 1).P → υa ∶n.P ′

α.P α
�→ P

P ∣!P α
�→ P ′

!P α
�→ P ′ 0;P → P υa ∶n.0→ 0 0 ∣0→ 0 0 + 0→ 0

Fig. 2. Operational semantics for CCS-Seq

observer or process outside of P . When P emits action ā or a, the semaphore
is incremented or decremented, respectively, and the observed action is τ . If the
semaphore count is zero, then P cannot emit a to decrement the semaphore until
the count becomes nonzero. We will reason about programs with an arbitrary
number of semaphores, so we define a vectorized form of restriction.

Definition 4. υa1 ∶n1. . . . υak ∶nk.P is abbreviated as Υ�a ∶�n.P .

We define a LTS for CCS-Seq in the usual way. Processes are synonymous
with states, an action is either a or ā for any semaphore a, and the set of single
steps defined in Fig. 2 is the transition relation.

Since we have added sequential semantics, bisimulation alone is not a congru-
ence for sequential composition. For example, even though 0 ≈!τ , it is the case
that 0;a≉!τ ;a. This is easy to fix by adding termination sensitivity.

Definition 5. A relation R is one-way termination sensitive when for any
(p, q) ∈ R, if p is halted (for CCS-Seq, if p = 0), then q ⇒ p. R is termina-
tion sensitive if R and R−1 are one-way termination sensitive.

Definition 6 (p≈
↓ q). States p and q are termination sensitive bisimilar, written

p≈↓ q, if there exists a termination sensitive bisimulation R such that (p, q) ∈ R.

Definition 7 (p≾↓ q). State q termination sensitive eventually simulates p, writ-
ten p≾↓ q (or q ≿↓ p), if there exists a termination sensitive simulation R, whose
inverse is an eventual simulation, such that (p, q) ∈ R.

Lemma 5 (Compositional properties of ≈, ≈↓, ≾, and ≾↓). Where ≡ ranges
over {≈,≈↓,≾,≾↓}; if P ≡ Q then: P ∣R ≡ Q ∣R, α.P ≡ α.Q, !P ≡!Q, υa ∶n.P ≡
υa ∶n.Q, R;P ≡ R;Q, and τ.P +R ≡ τ.Q + R. If P ≈↓Q, then P ;R≈↓Q;R. If
P ≾↓Q, then P ;R≾↓Q;R.

Before presenting a general parallelization transformation for sequential com-
position, we warm up with a simpler form of parallelization in the following
lemma. By targeting the sequentialism found in action prefixing, the lemma
suggests that eventual simulation may have some uses in plain CCS as well.

Lemma 6. τ.(P ∣Q) + τ.(P ∣R) ≾↓ P ∣(τ.Q + τ.R).
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Proof. We choose R = ⋃P (τ.(P ∣Q) + τ.(P ∣R), P ∣(τ.Q + τ.R)) ∪ I, where I is
the identity relation. Showing that R is a simulation and that I is an eventual
simulation is trivial. We show that the first part of R is an eventual simulation.
The right program may either 1) choose between Q or R, or 2) avoid choosing
and only run P : P ∣(τ.Q + τ.R)

�α
	⇒P ′ ∣(τ.Q + τ.R). Case 1: the left program can

converge to the same state. Case 2: we arbitrarily pick Q such that P ′ ∣(τ.Q +
τ.R) ⇒ P ′ ∣Q; the left program can then converge to the same state. ⊓⊔

If we choose P = 0.0, Q = 1.0, and R = 2.0, then sequential program (2.1)
roughly corresponds to τ.(0 ∣ 1) + τ.(0 ∣ 2) and parallel program (2.2) roughly
corresponds to 0 ∣(τ.1 + τ.2). (The “rough” difference is that action 0 is allowed
to interleave with actions 1 and 2 in more ways than in Fig. 1.)

3.1 The Parallelization Transformation

The key idea of Lemma 6 is that the more-parallel program may be able to per-
form some action (by executing P ) without making an internal choice (between
Q and R). However, the more-sequential program will not be able to simulate
this (by running P ) before first committing itself to one of these choices. Even-
tual simulation holds because the more-parallel program can take extra steps to
resolve the same choices so that both programs converge to the same state.

This same idea applies to our key result: a general parallelizing transformation
between sequential and parallel programs. An obvious schema (despite the subtle
premises) for a parallelizing transformation converts two programs in sequence
into two programs in parallel, which we describe here. (Section 6 goes into further
detail and provides proof sketches.)

Proposition 1. If P may always silently terminate (modulo �a), P and Q do not
both decrement any of the same semaphores, and either P or Q never performs
an observable action (modulo �a), then Υ�a ∶�n.(P ;Q)≾↓ Υ�a ∶�n.(P ∣Q).

We specify a list of actions, �a, to facilitate unobservable communication be-
tween P and Q; when we state that an execution is “silent”, we mean that only
hidden actions (i.e. those named by �a) may be performed. If P “may always
silently terminate”, then no matter how P executes (even performing observ-
able actions), we can always ask it to then silently transition to a terminated
state. This allows the sequential program, in response to the parallel program
executing Q before P terminates, to “catch up” by forcing both to terminate
P (possibly making some arbitrary internal choices in doing so) and converging
to the same state. (Although this premise is complex, it is more general than
simply not allowing P to diverge at all and requiring P to be completely silent).

However, it is not enough for P to terminate in isolation because Q will
interleave with P . The second premise ensures that Q cannot block P by stealing
a semaphore and causing it to deadlock.3 The last premise, where either P or

3 If the language were extended with shared queues of values, this condition would
also prevent Q from interfering by stealing values intended for P .
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Q must be silent, prevents parallelization from resulting in new interleavings of
observable actions because such a difference would be trivial to detect.

We also prove a transformation that combines two parallel programs. Two
processes, P1 and P2, coterminate (modulo �a) when (1) P1 ∣P2

�α
	⇒ 0 ∣P ′2 implies

P ′2 may always silently terminate (modulo �a); and when (2) P1 ∣P2
�α
	⇒P ′1 ∣0 im-

plies P ′1 may always silently terminate (modulo �a).

Proposition 2. If P1 and P2 coterminate (modulo �a), P1 and P3 do not decre-
ment any of the same semaphores as P2 and P4, and P2 and P4 never per-
form an observable action (modulo �a), then Υ�a ∶ �n.((P1 ∣P2); (P3 ∣P4))≾↓ Υ�a ∶
�n.((P1;P3) ∣(P2;P4)).

Proposition 2 is strictly more general than Prop. 1 because it allows P1 and
P2 to coordinate termination (or not terminate at all). It results in the paral-
lelization of P3 with P2 and P4 with P1.

Now we show that Prop. 1 is sufficient to parallelize a CCS-Seq implementa-
tion of program (2.1) into (2.2).

Lemma 7. Given

M = Υ [e, f] ∶[0,0]. (Υ [c, d] ∶[0,0]. (τ.c̄ + τ.d̄; 0̄; c.ē + d.f̄) ; e.1̄ + f.2̄)

N = Υ [e, f] ∶[0,0]. (Υ [c, d] ∶[0,0]. ((τ.c̄ + τ.d̄) ∣ (0̄; c.ē + d.f̄)) ; e.1̄ + f.2̄) ,

where M and N correspond to (2.1) and (2.2), respectively: M ≾↓N .

Proof. By Prop. 1 and congruence. τ.c̄+τ.d̄ silently terminates; its actions, c̄ and
d̄, are hidden by the semaphore restriction. Finally, τ.c̄+ τ.d̄ does not decrement
any semaphores and thus the process does not interfere with 0̄; c.ē + d.f̄ . ⊓⊔

4 Pursuing Symmetry: Contrasimulation is a Congruence

≿ is reflexive, transitive, and compositional, but it is not a congruence because
it lacks symmetry. Adding symmetry would enable some useful optimization
strategies, like commuting two blocks of instructions by first parallelizing them,
swapping the threads, and then applying parallelization in reverse to sequen-
tialize them. Although symmetry is not always desirable (e.g. when refining
unspecified behavior), there is no clear benefit to the asymmetry in eventual
similarity. In fact, it is even asymmetric in the wrong direction – it allows more
interleavings to be added, not refined. To obtain symmetry, we might attempt
to define a relation where eventual simulation holds in both directions.

Definition 8. Programs p and q are eventually bisimilar, written p
...
≈ q, if there

exists an R such that R and R−1 are eventual simulations and (p, q) ∈ R.

Lemma 8. If p≾ q or p≿ q, then p
...
≈ q.

However,
...
≈ is not transitive for divergent LTSs, as demonstrated in Fig. 3,

limiting its use to languages without infinite loops or recursion. (It is transitive
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for LTSs that do not diverge.) Parrow and Sjödin worked on a similar problem
that also needed a coarser view of internal nondeterminism than bisimulation af-
forded [8]. They developed coupled simulation to relate the behavior of multiway
distributed internal choice to a reference implementation that resolves all choices
in one synchronous step. Coupled simulation is finer than eventual simulation
and is also not transitive for divergent LTSs. Should they need transitivity, they
suggested use of contrasimulation [3], which contains coupled simulation.

Definition 9 (p≈c q). R is a contrasimulation when for any (p, q) ∈ R,
– if p

�a
	⇒ p′, then q

�a
	⇒ q′ and (p′, q′) ∈ R−1 for some q′.

Note the reversal of R. State q partially contrasimulates p iff there exists a
contrasimulation R such that (p, q) ∈ R. States p and q are contrasimilar, written
p≈c q, iff there exists a contrasimulation R such that (p, q) ∈ R ∩R−1.

Lemma 9. If p
...
≈ q, then p≈c q.

When two programs are contrasimilar, they take turns simulating each other
indefinitely, starting with either program. Unlike bisimilarity, the relation be-
tween two programs only needs to be symmetric for the initial states. Crucially,
contrasimulation is an equivalence.

Lemma 10. Contrasimulation is reflexive, symmetric, and transitive.

As a sanity check, contrasimulation is stronger than trace equivalence:

Definition 10 (p ≈tr q). p and q are trace equivalent, written p ≈tr q, when
– if p

�α
	⇒ p′, then there exists a q′ such that q

�α
	⇒ q′

– if q
�α
	⇒ q′, then there exists a p′ such that p

�α
	⇒ p′.

Lemma 11. If p≈c q, then p ≈tr q.

Trace equivalence is a sufficient soundness criterion in some situations, but it
is useful to prove a simulation relation because trace equivalence is not a con-
gruence (e.g. for parallel composition) and the co-inductive proof method can
be easier to work with. Of course, when the LTS is deterministic, these relation-
ships are all equivalent to bisimulation. But we can prove that contrasimulation
is equivalent to bisimulation when only internal transitions are deterministic,
which suggests that it is not significantly weaker than necessary in order to deal
with the interleaving of internal nondeterminism with observable actions.
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Theorem 1. If p→p′ implies p ≈ p′ for any p and p′, then ≈c is equivalent to ≈.

Proof. Lemmas 8 and 9 prove ≈⊆ ≈c. In the other direction, we show that R = ≈c
is a bisimulation. Because it is symmetric, we only need to prove that R is a
simulation. Assume p≈c q and p α�→ p′; there must exist a q′ such that q

α
	⇒ q′ and

p′ partially contrasimulates q′. The trick is to flip the direction in which partial
contrasimulation holds, implying p′ ≈c q

′. By q′ ⇒ q′, there exists a p′′ such that
p′ ⇒ p′′ and q′ partially contrasimulates p′′. By the premise and Lemmas 2, 8, 9,
and 10, p′′ ≈ p′, q′ partially contrasimulates p′, and thus p′ ≈c q

′. ⊓⊔

As a corollary, ≿ collapses to ≈ when there is no internal nondeterminism. We
define termination sensitive contrasimulation and then show that contrasimilar-
ity has the same compositional properties as bisimilarity and eventual similarity.

Definition 11 (p≈↓c q). States p and q are termination sensitive contrasimilar,
written p≈↓c q, iff there exists a one-way termination sensitive contrasimulation
R such that (p, q) ∈ R ∩R−1.

Lemma 12 (Compositional properties of ≈c and ≈↓c). Where ≡ ranges
over {≈c,≈↓c}; if P ≡ Q then: P ∣R ≡Q ∣R, α.P ≡ α.Q, !P ≡!Q, υa ∶n.P ≡ υa ∶n.Q,
R;P ≡ R;Q, and τ.P +R ≡ τ.Q +R. If P ≈↓cQ, then P ;R≈↓cQ;R.

Like coupled similarity, contrasimilarity is congruent for + when the processes
are equally stable.

Definition 12 (stable p). p is stable if there does not exist a p′ such that p→ p′.

Lemma 13. If P ≈cQ and (stable P iff stable Q), then P +R≈cQ +R.
(And likewise for ≈↓c).

Compiled languages do not usually allow “mixed choice”, where one option is
stable and the other is not, so both bisimulation and contrasimulation are often
full congruences in practice. Thus we can build correct, modular optimizations
based on contrasimulation (or bisimulation) using the above congruence results.
Because bisimulation is finer than contrasimulation, all of its algebraic properties
for CCS (and CCS-Seq) hold for contrasimulation.

Voorhoeve and Mauw investigate further properties of contrasimulation and
describe an axiomatization for CCS [12]. Their axiomatization relates stable in-
ternal choice for an observable action into the action followed by internal choice.

Lemma 14. a.P + a.Q≈c a.(τ.P + τ.Q).
Interestingly, this holds for ≾ as well. a a

P Q

≈c
≾
≤
≱
≉

a

P Q

Combined with a few algebraic properties of
bisimulation, like τ.P + P ≈ τ.P , Lemma 14 proves
equivalence between programs (2.1) and (2.2).
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Fig. 4. Delayed observation semantics for programs (5.1), (2.2), and (2.1)

5 Delayed Observations

1 2

0

Fig. 5

Contrasimulation effectively allows a program to delay an internal
choice until after an observable action. But this does not allow
the observation to be fully commuted. Consider the sequential
program that prints 0 before choosing a value for x,

print 0; x:= either 1 or 2; print x, (5.1)

whose semantics are given by Fig. 5. Intuitively, (5.1) and (2.2) should be equiv-
alent, but contrasimilarity does not hold between their corresponding transition
diagrams, Figs. 1b and 5. If Fig. 1b chooses x:= 1, then Fig. 5 will be unable
to commit to the same choice without first observing 0. We have yet to find a
satisfactory equivalence that holds for Fig. 5.

If (5.1), (2.2), and (2.1) were C programs, however, their semantics would be
subtly different. The specification of many IO operations in C, such as printf,
allows output to be buffered before being printed to the console. In other words,
observable actions may be delayed.

We say that a LTS has delayed observations when output is queued before
appearing on the screen at a nondeterministic point in the future. Figure 4 gives
the semantics of programs (5.1), (2.2), and (2.1) using delayed observations.
Figures 4b and 4c are contrasimilar. Moreover, Figs. 4a and 4b are now bisimilar.

Although contrasimulation cannot directly allow observations to be delayed
until after internal choice, we can side-step the issue by choosing a semantics
with delayed observations. In such a setting, Props. 1 and 2 can be used to
parallelize programs such as (5.1). They also become somewhat easier to use: by
delaying all observations until after termination, proving termination is enough
to prove silent termination. However, a limitation remains: not all observations
may be delayed. For example, C’s fflush forces immediate observation, thus
commuting it with internal choice would not maintain a contrasimulation.
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6 Proof of Parallelization

We first define notions of convergence, termination entailment, cotermination,
free variables, and some helper lemmas before describing the proofs of Props. 2
and 1. Rigorous proofs are in our full implementation (see footnote 1).

6.1 Preliminary Definitions

Definition 13. �α−�a is the trace of labels �α with the semaphores in �a removed.
It represents the result of multiple semaphore restrictions on a trace.

Definition 14 (Well-formed traces). A trace of labels �α is well-formed with
respect to semaphore a with count n if there exists a final count n′ for the
semaphore such that the trace does not decrement the semaphore below a count
of 0. We denote this as n �α

an
′ and define it recursively on the structure of �α.

n
[]

an
′ if n′ = n

n α′∶∶�α
an
′ if α′ ∉ {a, ā} and n �α

an
′

n + 1 a∶∶�α
an
′ if n �α

an
′ (decrements a)

n ā∶∶�α
an
′ if n + 1 �α

an
′ (increments a).

We then define a well-formed trace with respect to a list of semaphores, �n �α
�a�n
′,

recursively on the structure of �a.

[] �α
[]
[] always

(n ∶∶ �m) �α
a∶∶�b(n

′ ∶∶ �m′) if n �α−�b
an
′ and �m �α

�b �m
′.

Definition 14 appears only in the next definition. However, it is used exten-
sively by helper lemmas in our Coq proof development to separate the details of
how a particular process runs from how its semaphores are used. For example,
to state that a sequential and parallelized program use their semaphores in the
same way despite their syntactic difference.

Silent termination and cotermination were introduced in Section 3.1 for use
in Props. 1 and 2. We now give concrete definitions; recall the notation for
vectorized semaphore restriction from Definition 4.

Definition 15 (Silent termination). P silently terminates, written P ⇓�a∶�n, if
for any P ′ and �α, P

�α
	⇒ P ′ implies Υ�a ∶�n′.P ′ ⇒ 0 and �n �α

�a�n
′ for some �n′.

Definition 16 (Termination entailment & cotermination). P1 entails the
termination of P2, written P1 ↓↓

�a∶�n P2, if Υ�a ∶�n.(P1 ∣P2)
�α
	⇒ Υ�a′ ∶�n′.(0 ∣P ′2) im-

plies P ′2 ⇓
�a′∶�n′ . P1 and P2 coterminate, written P1 ↕↕

�a∶�n P2, iff P1 ↓↓
�a∶�n P2 and

P2 ↓↓
�a∶�n P1.

In order to state noninterference properties between processes, we define func-
tions to find the sets of free variables used to increment semaphores, decrement
semaphores, and the union of each within a process.
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Definition 17 (Free observable actions).
fa(ā.P ) = {ā}∪fa(P ) fa(0) = {} fa(P1 +P2) = fa(P1)∪fa(P2)
fa(a.P ) = {a}∪fa(P ) fa(!P ) = fa(P ) fa(P1 ∣P2) = fa(P1)∪fa(P2)
fa(τ.P ) = fa(P ) fa(υa ∶n.P ) = fa(P )∖a ∖ā fa(P1;P2) = fa(P1)∪fa(P2)

Definition 18 (Free variables: increment, decrement, and both).
fvV (P ) = {a ∣ ā ∈ fa(P)} fvP (P ) = {a ∣a ∈ fa(P)} fv (P ) = fvV (P) ∪ fvP (P)

The semaphores that a process, P , can increment and decrement are respec-
tively limited by fvV (P ) and fvP (P ).

6.2 Proof

This first lemma performs case analysis on a single step of a “sequential” program
in order to show that the parallelized program can perform the same action.

Lemma 15. If Υ�a ∶�n.((P1 ∣P2); (P3 ∣P4))
α�→ p′, then either

– there exists �n′, P ′1, and P ′2 such that
● p′ = Υ�a ∶�n.((P ′1 ∣P

′

2); (P3 ∣P4)) and
● Υ�a ∶�n.(P1 ∣P2)

α�→ Υ�a ∶�n′.(P ′1 ∣P
′

2)
● (and thus Υ�a ∶�n.((P1;P3) ∣(P2;P4))

α�→ Υ�a ∶�n′.((P ′1;P3) ∣(P
′

2;P4))),
– or P1 = P2 = 0 and p′ = Υ�a ∶�n.0; (P3 ∣P4).

In the following lemma, we look at an execution of the parallelized program
over multiple steps and show that the sequential program can either simulate it
directly, or that there exists a future state where they can converge.

Lemma 16. If Υ�a ∶�n.((P1;P3) ∣(P2;P4))
�α
	⇒ p′, P1 ↕↕

�a∶�n P2, fv (P2;P4) ⊆ �a, and
fvP (P1;P3) ∩ fvP (P2;P4) = ∅, then either
– there exists �n′, P ′1, and P ′2 such that

● p′ = Υ�a ∶�n′.((P ′1;P3) ∣(P
′

2;P4)),
● Υ�a ∶�n.P1 ∣P2

�α
	⇒ Υ�a ∶�n.(P ′1 ∣P

′

2)
● (and thus Υ�a ∶�n.((P1 ∣P2); (P3 ∣P4))

�α
	⇒ Υ�a ∶�n.((P ′1 ∣P

′

2); (P3 ∣P4)));
– or there exists p′′ such that

● p′ ⇒ p′′ and
● Υ�a ∶�n.((P1 ∣P2); (P3 ∣P4))

�α
	⇒ p′′.

Proof. We consider three outcomes of running Υ�a ∶ �n.((P1;P3) ∣(P2;P4))
�α
	⇒ p′,

where ∗n represents the final state that process Pn reaches (if it runs but does
not terminate). We focus on the second case as the other two are relatively easy.

P3 ∣(∗2;P4) ∗3 ∣(0;P4)

(P1;P3) ∣(P2;P4) (∗1;P3) ∣(∗2;P4) ∗3 ∣∗4 0

(∗1;P3) ∣P4 (0;P3) ∣∗4
1 2 3
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Case 1. P1 ∣P2
�α1	⇒ p1 ∣p2 and �α = �α1 − �a for some p1 and p2. The sequential

program runs P1 ∣P2 to match the actions without converging to the same state.

Case 2. The parallel program has the form of either p3 ∣(p2;P4) or (p1;P3) ∣p4.
We consider only the first (top) form; the second is similar. Because P1 termi-
nated, p2 can silently terminate. This yields Υ�a ∶�n.(p3 ∣(p2;P4)) ⇒ Υ�a ∶�n′.(p3 ∣P4)
for some �n′. However, we need P2 to terminate before P3 even runs in or-
der for the sequential program to mimic the behavior. This is possible if P2

did not emit observable actions (a premise of this lemma) and P3 did not in-
fluence P2 as they interleaved. The last could only have happened if P3 in-
cremented a semaphore on which P2 would otherwise deadlock. Because P2

was capable of terminating by the time P3 ran, such deadlocking was impos-
sible. Thus we know we can run Υ�a ∶�n.(P1 ∣P2)

�α12	⇒ Υ�a ∶�n′0.(0 ∣0), followed by
Υ�a ∶�n′0.(P3 ∣P4)

�α3	⇒ Υ�a ∶�n′.(p3 ∣P4), for some �n′0 and such that �α is equal to some
�α12 appended with �α3. Both programs can converge to state p′′ = Υ�a ∶�n′.(p3 ∣P4).

Case 3. P1 ∣P2
�α1	⇒ 0 ∣0, P3 ∣P4

�α2	⇒ p3 ∣p4, and �α = (�α1 ⋅ �α2) − �a for some p3, p4,
�α1, and �α2. The sequential program runs P1 ∣P2 to termination and then runs
P3 ∣P4 to converge to the same state as the parallel program. ⊓⊔

Theorem 2 (Proof of Prop. 2). If
– P1 and P2 coterminate: P1 ↕↕

�a∶�n P2;
– the processes do not interfere: fvP (P1;P3) ∩ fvP (P2;P4) = ∅; and
– P2 and P4 cannot be observed: fv (P2) ∪ fv (P4) ⊆ �a,

then Υ�a ∶�n.(
(P1 ∣P2) ;
(P3 ∣P4)

) ≾↓ Υ�a ∶�n.((
P1;
P3

) (
P2;
P4

)).

Proof. We choose R = {(p, q) ∣ ∃�a,�n,P1, P2. p = Υ�a ∶ �n.((P1;P3) ∣(P2;P4)) ∧
q = Υ�a ∶�n.((P1 ∣P2); (P3 ∣P4)) ∧ P1 ↕↕

�a∶�n P2 ∧ fv (P2) ∪ fv (P4) ⊆ �a ∧ fvP (P1 ;
P3) ∩ fvP (P2;P4) = ∅} ∪ {(p, q) ∣ p≈↓ q}, and show that R is a termination sen-
sitive simulation, R−1 is an eventual simulation, and that (Υ�a ∶ �n.((P1 ∣P2);
(P3 ∣P4)), Υ�a ∶ �n.((P1;P3) ∣(P2;P4))) ∈ R. The last condition is trivial. The re-
maining step is to consider all pairs (p, q) ∈ R and show that they behave ac-
cordingly for termination sensitivity, simulation and eventual simulation.

Case 1. There exists �a, �n, P1, and P2 such that p = Υ�a ∶�n.((P1;P3) ∣(P2;P4)),
q = Υ�a ∶�n.((P1 ∣P2); (P3 ∣P4)), etc. Termination sensitivity holds because neither
p nor q are halted. To satisfy simulation, we assume that p α�→ p′ and must show
that there exists a matching q′ such that q

α
	⇒ q′ and (p′, q′) ∈ R. This follows

directly from Lemma 15. Finally, we must satisfy eventual simulation. Assuming
q

�α
	⇒ q′, we show that there exists a p′′ and q′′ such that p

α
	⇒ p′′, q′ ⇒ q′′, and

(p′′, q′′) ∈ R. (Notice that this flips the direction of eventual simulation because
we started with it holding for R−1.) This follows from Lemma 16.

Case 2: p≈
↓ q. Termination sensitivity holds because ≈↓ is termination sensitive.

Simulation and (inverse) eventual simulation hold because ≈↓ implies both. ⊓⊔
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Corollary 1 (Proof of Prop. 1). If
– P1 silently converges: P1 ⇓

�a∶�n;
– the processes do not interfere: fvP (P1) ∩ fvP (P2) = ∅; and
– either P1 or P2 cannot be observed: fv (P1) ⊆ �a or fv (P2) ⊆ �a,

then Υ�a ∶�n.(P1;P2)≾↓ Υ�a ∶�n.(P1 ∣P2).

Proof. This reduces to proving either Υ�a ∶�n. ((P1 ∣0) ; (0 ∣P2)) ≾↓ Υ�a ∶�n. ((P1;0) ∣
(0;P2)) or Υ�a ∶�n. ((0 ∣P1) ; (P2 ∣0)) ≾↓ Υ�a ∶�n. ((0;P1) ∣ (P2;0)) by Theorem 2,
depending on whether P2 or P1 is unobservable. ⊓⊔

7 Related Work

Sound Parallelization. C. Hurlin proved partial correctness for an automated
implementation of DOALL, where separation logic assertions provide both the
specification to be preserved and the shape analysis [4]. M. Botinčan, M. Dodds
et al. extended this proof-directed approach to support automated DOACROSS
optimizations by injecting synchronization barriers; they prove a termination
sensitive trace equivalence [2]. Our work supports more diverse dependency and
synchronization patterns and proves a stronger correctness criterion. We view
our proof theory and their automation techniques as being complementary.

Simulations. We are unaware of any prior mention of eventual simulation in
the literature. After developing our proofs with respect to eventual simulation,
we independently derived contrasimulation and its characteristic logic in order
to regain symmetry and transitivity. However, van Glabbeek was the first to
define contrasimulation [3]. Voorhoeve and Mauw investigated many properties
of contrasimulation, describing its characteristic logic and axiomatization for
CCS [12]. They established a notion of “good” and “bad” protocols and proved
that contrasimulation can distinguish between them. Neither work discussed the
possible applications of contrasimulation toward parallelizing transformations.

8 Conclusion

We have proven the soundness of a very general parallelizing transformation
for CCS-Seq with respect to a new type of simulation relation, called eventual
similarity, that allows internal nondeterminism to be preserved. Additionally, we
identify contrasimilarity as a congruence that contains eventual similarity when
symmetry is needed. In the absence of internal nondeterminism, both eventual
similarity and contrasimilarity are equivalent to bisimulation. Because of these
properties, we believe [termination sensitive] contrasimilarity is a good definition
of correctness to build a verified compiler upon.

An underlying goal of this study was to develop a clear theory from the
patchwork correctness criteria that resulted from our first attempt to prove par-
allelization for an imperative language. We were surprised to find that buffered
IO (i.e., delayed observations), which is used to increase performance and is often
overlooked by concurrency researchers, also contributes to expanding the kinds
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of parallelization that we can achieve using contrasimulation. All proofs were
done in the Coq Proof Assistant, which we found instrumental to managing the
complexity of proving parallelization.
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