
Georges Gonthier
Michael Norrish (Eds.)

 123

LN
CS

 8
30

7

Third International Conference, CPP 2013
Melbourne, VIC, Australia, December 2013
Proceedings

Certified Programs
and Proofs

Lecture Notes in Computer Science 8307
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Georges Gonthier Michael Norrish (Eds.)

Certified Programs
and Proofs
Third International Conference, CPP 2013
Melbourne,VIC,Australia, December 11-13, 2013
Proceedings

13

Volume Editors

Georges Gonthier
Microsoft Research Cambridge
21 Station Road
Cambridge CB1 2FB, UK
E-mail: gonthier@microsoft.com

Michael Norrish
Canberra Research Lab., NICTA
PO Box 8001
Canberra, ACT 2601, Australia
E-mail: michael.norrish@nicta.com.au

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-03544-4 e-ISBN 978-3-319-03545-1
DOI 10.1007/978-3-319-03545-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013952466

CR Subject Classification (1998): F.3, D.2.4, I.2.3, F.4, D.3, I.1, D.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at CPP 2013, the Third International
Conference on Certified Proofs and Programs, held during December 11–13,
2013, in Melbourne.

The CPP series of meetings aims to cover those topics in computer science
and mathematics in which certification via formal techniques is crucial. This
year’s edition of CPP was co-located with APLAS 2013 (Asian Symposium on
Programming Languages and Systems), similarly to CPP and APLAS 2012 in
Japan, and CPP and APLAS 2011 in Taiwan. The next CPP will, however, be
colocated with POPL 2015 in India, and the plan is to eventually locate CPP
in Europe and North America as well as in Asia. A manifesto for CPP, written
by Jean-Pierre Jouannaud and Zhong Shao, appears in the proceedings of CPP
2011 (LNCS 7086).

We were pleased that Dan Licata and Carroll Morgan accepted our invitation
to be invited speakers for CPP 2013 and that Nick Benton also agreed to be a
keynote speaker addressing both APLAS 2013 and CPP 2013.

The Program Committee for CPP 2013 was composed of 20 researchers from
12 countries. We received a total of 39 submissions and accepted 18 papers.
Every submission was reviewed by at least four Program Committee members
and their selected reviewers.

We wish to thank the Program Committee members and their reviewers for
their efforts in helping to evaluate the submissions: it was a privilege to work
with them. The EasyChair conference management system helped us to deal
with all aspects of putting together our program. It was a pleasure to work with
Peter Schachte the general chair for CPP and APLAS 2013, and with Chung-
chieh Shan, the Program Committee chair for APLAS 2013. We also wish to
thank the invited speakers, the authors of submitted papers, and the reviewers
for their interest and strong support of this new conference series.

October 2013 Georges Gonthier
Michael Norrish

Organization

General chair

Peter Schachte University of Melbourne, Australia

Steering Committee

Andrew Appel Princeton University, USA
Nikolaj Bjørner Microsoft Research
Georges Gonthier Microsoft Research
John Harrison Intel Corporation, USA
Jean-Pierre Jouannaud Université Paris-Sud, France and Tsinghua

(Co-chair) University, China
Xavier Leroy Inria, France
Gerwin Klein NICTA, Australia
Tobias Nipkow Technische Universität München, Germany
Zhong Shao (Co-chair) Yale University, USA

Program Committee

Derek Dreyer MPI-SWS, Germany
William Farmer McMaster University, Canada
Jean-Christophe Filliâtre CNRS, France
Cédric Fournet Microsoft Research
Georges Gonthier Microsoft Research
Benjamin Grégoire Inria, France
Aquinas Hobor National University of Singapore, Singapore
Reiner Hähnle TU Darmstadt, Germany
Gyesik Lee Hankyong National University, South Korea
Toby Murray NICTA, Australia
Cesar Muñoz NASA, USA
Gopalan Nadathur University of Minnesotta, USA
Michael Norrish NICTA, Australia
Claudio Sacerdoti Coen University of Bologna, Italy
Peter Sewell University of Cambridge, UK
Bas Spitters Radboud University of Nijmegen,

The Netherlands
Gang Tan Lehigh University, USA
Alwen Tiu Nanyang Technical University, Singapore
Yih-Kuen Tsay National Taiwan University
Lihong Zhi Academia Sinica, Taiwan

VIII Organization

Additional Reviewers

Aldini, Alessandro
Aransay-Azofra, Jesus
Asperti, Andrea
Avigad, Jeremy
Barthe, Gilles
Betarte, Gustavo
Boldo, Sylvie
Bormer, Thorsten
Braibant, Thomas
Brotherston, James
Cha, Reeseo
Clouston, Ranald
Conchon, Sylvain
Dawson, Jeremy
Dupressoir, Francois
Gacek, Andrew
Harrison, John
Hasan, Osman
Hritcu, Catalin
Hur, Chung-Kil
Ilik, Danko
Im, Hyeonseung
Kim, Ik-Soon
Li, Guodong

Marché, Claude
Melquiond, Guillaume
Mu, Shin-Cheng
Nahas, Mike
Nanevski, Aleks
Narkawicz, Anthony
Neis, Georg
Palmskog, Karl
Paskevich, Andrei
Paulin, Christine
Paulin-Mohring, Christine
Pientka, Brigitte
Rayadurgam, Sanjai
Ruemmer, Philipp
Sozeau, Matthieu
Tassi, Enrico
Tsai, Ming-Hsien
Urban, Christian
Wang, Bow-Yaw
Wang, Shuling
Zavattaro, Gianluigi
Zhang, Lijun
Ziliani, Beta
Zuliani, Paolo

The “Probabilistic Information-Order

for Noninterference” Competition:
Do we have a winner?

Carroll Morgan

University of New South Wales, Sydney, Australia

Many information measures compete for our attention when we want to decide
whether one program leaks no more information than another: an early favourite
was Shannon Entropy, of course. But more recent entries are Bayes Vulnerability,
Marginal Guesswork, Guessing Entropy. . . and the field has become rather full.
It’s a bit of a zoo. All of the measures have their own advantages and disadvan-
tages, their adherents and detractors. But do any of them have mathematical
properties relevant to specification and refinement? Do they admit a program
algebra? Do they allow compositional reasoning?

Individually, they don’t; but taken together, perhaps they do. There is new
information order, recently discovered by two groups independently [1,2], which
generalises Landauer and Redmond’s Lattice of Information and seems to gener-
alise much of the zoo: furthermore, it has the following two important properties.
First (soundness), if a specification is refined by an implementation in this order,
then the implementation leaks no more than the specification for any measure
in the zoo and in any context (as determined by a pGCL-like programming
language [3] equipped with hidden state). Second (completeness), if there is a
(pGCL) context in which the implementation has more Bayes Vulnerability than
did the specification, then the (purported) implementation cannot actually have
been a refinement of the specification in this order.

I will describe the new order, and where it comes from, and will explain the
properties above and why they are so important.

The practical implications are that if onewants to implement a noninterference-
based secure system in a compositional way, i.e. from a specification via stepwise
refinement, then there is a very strong case for using this new order to determine
the proof obligations, no matter which of the other popular (and more specialised)
orders your application ultimately requires.

References

1. McIver, A.K., Meinicke, L.A., Morgan, C.C. Compositional closure for Bayes
risk in probabilistic noninterference. Proc. ICALP 2010.

2. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G. Measuring in-
formation leakage using generalized gain functions. Proc. CSF 2012.

3. McIver, A.K. and Morgan, C.C. Abstraction, Refinement and Proof for Prob-
abilistic Systems. Springer Monographs in Computer Science, 2005.

Table of Contents

Invited Lectures

πn(S
n) in Homotopy Type Theory . 1

Daniel R. Licata and Guillaume Brunerie

Session 1: Code Verification

Mostly Sound Type System Improves a Foundational Program
Verifier . 17

Josiah Dodds and Andrew W. Appel

Computational Verification of Network Programs in Coq 33
Gordon Stewart

Aliasing Restrictions of C11 Formalized in Coq . 50
Robbert Krebbers

Session 2: Elegant Proofs

Proof Pearl: A Verified Bignum Implementation in x86-64 Machine
Code . 66

Magnus O. Myreen and Gregorio Curello

A Constructive Theory of Regular Languages in Coq 82
Christian Doczkal, Jan-Oliver Kaiser, and Gert Smolka

Certified Parsing of Regular Languages . 98
Denis Firsov and Tarmo Uustalu

Session 3: Proof Libraries

Nonfree Datatypes in Isabelle/HOL: Animating a Many-Sorted
Metatheory . 114

Andreas Schropp and Andrei Popescu

Lifting and Transfer: A Modular Design for Quotients
in Isabelle/HOL . 131

Brian Huffman and Ondřej Kunčar

Refinements for Free! . 147
Cyril Cohen, Maxime Dénès, and Anders Mörtberg

XII Table of Contents

Session 4: Mathematics

A Formal Proof of Borodin-Trakhtenbrot’s Gap Theorem 163
Andrea Asperti

Certified Kruskal’s Tree Theorem . 178
Christian Sternagel

Extracting Proofs from Tabled Proof Search . 194
Dale Miller and Alwen Tiu

Session 5: Certified Transformations

Formalizing the SAFECode Type System . 211
Daniel Huang and Greg Morrisett

Certifiably Sound Parallelizing Transformations . 227
Christian J. Bell

Programming Type-Safe Transformations Using Higher-Order Abstract
Syntax . 243

Olivier Savary-Belanger, Stefan Monnier, and Brigitte Pientka

Session 6: Security

Formalizing Probabilistic Noninterference . 259
Andrei Popescu, Johannes Hölzl, and Tobias Nipkow

Machine Assisted Proof of ARMv7 Instruction Level Isolation
Properties . 276

Narges Khakpour, Oliver Schwarz, and Mads Dam

A Formal Model and Correctness Proof for an Access Control Policy
Framework . 292

Chunhan Wu, Xingyuan Zhang, and Christian Urban

Author Index . 309

πn(Sn) in Homotopy Type Theory

Daniel R. Licata1 and Guillaume Brunerie2

1 Wesleyan University
���������	
�	���	��

2 Université de Nice Sophia Antipolis
����	��	�����	��

1 Introduction

Homotopy type theory [Awodey and Warren, 2009; Voevodsky, 2011] is an extension of
Martin-Löf’s intensional type theory [Martin-Löf, 1975; Nordström et al., 1990] with
new principles such as Voevodsky’s univalence axiom and higher-dimensional induc-
tive types [Lumsdaine and Shulman, 2013]. These extensions are interesting both from
a computer science perspective, where they imbue the equality apparatus of type theory
with new computational meaning, and from a mathematical perspective, where they al-
low higher-dimensional mathematics to be expressed cleanly and elegantly in type the-
ory. One example of higher-dimensional mathematics is the subject of homotopy theory,
a branch of algebraic topology. In homotopy theory, one studies topological spaces by
way of their points, paths (between points), homotopies (paths between paths), homo-
topies between homotopies (paths between paths between paths), and so on. This infi-
nite tower of concepts—spaces, points, paths, homotopies, and so on—is modeled in
type theory by types, elements of types, proofs of equality of elements, proofs of equal-
ity of proofs of equality, and so on. A space corresponds to a type A. Points of a space
correspond to elements a,b : A. Paths in a space are modeled by elements of the identity
type (propositional equality), which we notate p : a =A b. Homotopies between paths p
and q correspond to elements of the iterated identity type p =a=Ab q. The rules for the
propositional equality type allow one to define the operations on paths that are consid-
ered in homotopy theory. These include identity paths id : a= a (reflexivity of equality),
inverse paths ! p : b= a when p : a= b (symmetry of equality), and composition of paths
q◦ p : a = c when p : a = b and q : b = c (transitivity of equality), as well as homotopies
relating these operations (for example, id◦ p = p), and homotopies relating these homo-
topies, etc. This equips each type with the structure of a (weak) ∞-groupoid, as studied
in higher category theory [Lumsdaine, 2009; van den Berg and Garner, 2011]. In cate-
gory theoretic terminology, the elements of a type correspond to objects (or 0-cells), the
proofs of equality of elements to morphisms (1-cells), the proofs of equality of proofs
of equality to 2-morphisms (2-cells), and so on.

One basic question in algebraic topology is calculating the homotopy groups of a
space. Given a space X with a distinguished point x0, the fundamental group of X at
the point x0 (denoted π1(X ,x0)) is the group of loops at x0 up to homotopy, with com-
position as the group operation. This fundamental group is the first in a sequence of
homotopy groups, which provide higher-dimensional information about a space: the

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 1–16, 2013.
c© Springer International Publishing Switzerland 2013

dlicata@wesleyan.edu
brunerie@unice.fr

2 D.R. Licata and G. Brunerie

homotopy groups πn(X ,x0) “count” the n-dimensional loops in that space up to ho-
motopy. π2(X ,x0) is the group of homotopies between idx0 and itself, π3(X ,x0) is the
group of homotopies between ididx0

and itself, and so on. Calculating a homotopy group
πn(X ,x0) is to construct a group isomorphism between πn(X ,x0) and some explicit de-
scription of a group, such as Z or Zk (Z mod k).

The homotopy groups of a space can be difficult to calculate. This is true even for
spaces as simple as the n-dimensional spheres (the circle, the sphere, . . .)—some homo-
topy groups of spheres are currently unknown. A category-theoretic explanation for this
fact is that the spheres can be presented as free ∞-groupoids constructed by certain gen-
erators, and it can be difficult to relate a presentation of a space as a free ∞-groupoid
to an explicit description of its homotopy groups. For example, the circle is the free
∞-groupoid generated by one point and one loop:

base
loop

base is a point (object) on the circle, and loop is a path (morphism) from base to itself.
That the circle is the free ∞-groupoid on these generators means that all the points,
paths, homotopies, etc. on the circle are constructed by applying the ∞-groupoid oper-
ations to these generators in a free way. The generator loop represents “going around
the circle once counter-clockwise.” Using the groupoid operations, one can construct
additional paths, such as ! loop (going around the circle once clockwise) and loop◦ loop
(going around the circle twice counter-clockwise). Moreover, there are homotopies be-
tween paths, such as loop◦! loop = id (going clockwise and then counter-clockwise is
the same, up to homotopy, as staying still). In this case, one can prove that, up to homo-
topy, every loop on the circle is either id or (loop◦ loop . . . ◦ loop) (n times, for any n)
or (! loop◦! loop . . .◦! loop) (n times, for any n), and thus that the loops on the circle are
in bijective correspondence with the integers. Moreover, under this bijection, concate-
nation of paths corresponds to addition of integers. Thus, the fundamental group of the
circle is Z.

However, in general, it can be quite difficult to relate a presentation of a space as a
free ∞-groupoid to an explicit description of its homotopy groups, in part because of
action across levels. For example, the sphere can be presented as the free ∞-groupoid
generated by one point (0-cell) base and one homotopy (2-cell) loop2 between idbase
(the path that stands still at base) and itself—think of loop2 as “going around the the
surface of the sphere.” An ∞-groupoid has group operations at each level, so just as
we have identity, inverse, and composition operations on paths (1-cells), we have iden-
tity, inverse, and composition operations on homotopies (2-cells). Thus, we can form
homotopies such as loop2 ◦ loop2 (going around the surface of the sphere twice) and
loop2◦! loop2 (going around the surface of the sphere once in one direction, and then
in the opposite direction)—and, analogously to above, there is a homotopy-between-
homotopies relating the latter path to the constant homotopy (loop2◦! loop2 = ididbase).
Thus, one would expect that the homotopies (2-cells) on the sphere have the same struc-
ture as the paths (1-cells) on the circle, and this is indeed the case: π2(S2) is also
Z. However, ∞-groupoids have more structure than just the group operations at each

πn(Sn) in Homotopy Type Theory 3

level—for example, lower-dimensional generators can construct higher-dimensional
paths. An example of this is that π3(S2), the group of homotopies between homotopies
(3-cells) on the sphere, is also Z, despite the fact that there are no generators for 3-cells
in the presentation of the sphere! The paths arise from the applying the algebraic oper-
ations of an ∞-groupoid to the 2-cell generator loop2—and this action across levels is
one reason that homotopy groups are so difficult to calculate.

One enticing idea is to use homotopy type theory to calculate homotopy groups: by
doing so, we can give computer-checked proofs of these calculations, and we can po-
tentially exploit constructivity and the type-theoretic perspective ∞-groupoids to attack
these difficult problems in algebraic topology. To pose the problem of calculating a
homotopy group in homotopy type theory, we use two ingredients.

First, we describe basic spaces using higher inductive types, which generalize ordi-
nary inductive types by allowing constructors not only for elements of the type, but for
paths (proofs of equality) in the type. For example, the circle is represented by a higher
inductive type with two constructors

base : S1

loop : base=S1 base

This says that base is a point on the circle, while loop is a path from base to base. In
type theory, we express that S1 is the free type with these generators by an elimination
rule: to define a function from S1 into any other type C, it suffices to give a point in
c : C, which is the image of base, and a loop p : c =C c, which is the image of loop:

c : C p : c =C c

S1−recC(c,p) :S1 → C

That is, to define a function S1 →C, it suffices to find a “circle” in C, which gives the
image of the generators.

The computation rules for this elimination rule are as follows:

S1−recC(c, p)base :≡ c
ap(S1−recC(c, p))loop := p

ap (“action on paths”) applies a function f : A → B to a path p : a =A a′ to produce a
path f a =B f a′. Note that the first computation rule is a definitional equality, while the
second is a propositional equality/path—while future versions of homotopy type theory
might take this to be a definitional equality, the known semantics of higher inductive
types justifies only a propositional equality [Lumsdaine and Shulman, 2013]. To ex-
press freeness, we also need to know that S1−recC(c, p) is the unique such map, up
to homotopy. This can be expressed either by generalizing the simple elimination rule
to a dependent elimination rule, or by adding an η-equality axiom (see [Awodey et al.,
2012] for a discussion of these alternatives for ordinary inductive types).

The second ingredient is to define the homotopy groups of a type. One might think
that we could define the homotopy groups by iterating the identity type:

π1(X ,x0) := x0 =X x0

π2(X ,x0) := idx0 =(x0=X x0) idx0

π3(X ,x0) := ididx0
=(idx0=x0=X x0 idx0)

ididx0

4 D.R. Licata and G. Brunerie

and so on. However, these iterated identity types may still have non-trivial higher-
dimensional structure. The nth homotopy group considers only the structure up to level
n, so we need to “kill” the higher-dimensional structure of these types. Thus, we first
define the nth loop space Ω n(X ,x0) so that

Ω 1(X ,x0) := x0 =X x0

Ω 2(X ,x0) := idx0 =(x0=X x0) idx0

Ω 3(X ,x0) := ididx0
=(idx0=x0=X x0 idx0)

ididx0

and so on. We write Ω(X ,x0) for Ω 1(X ,x0).
Then we can define

πn(X ,x0) := ||Ω n(X ,x0)||0
where ||A||0, the 0-truncation of A, is a set (a type with no higher structure—any two
paths are homotopic) constructed by “killing” the higher-dimensional structure of A—
i.e. equating any two paths between the same two points. For a more leisurely intro-
duction to these definitions, we refer the reader to previous work [Licata and Shulman,
2013; The Univalent Foundations Program, 2013].

Using these two ingredients, we can use homotopy type theory to calculate homo-
topy groups of spaces: define the space X as a higher inductive type, and give a group
isomorphism between the type πn(X ,x0) (with path composition as the group struc-
ture) and an explicit description of a group like Z. In this note, we give a calculation
of the fact that πn(Sn) = Z. That is, we describe a proof in homotopy type theory that
the nth homotopy group of the n-dimensional sphere is isomorphic to Z. This proof is
interesting for several reasons:

– Calculating πn(Sn) is a fairly easy theorem in algebraic topology (e.g. it would be
covered in a first- or second-year graduate algebraic topology course), but it is more
complex than many of the results that had previously been proved in homotopy type
theory. For example, it was one of the first results about an infinite family of spaces,
of variable dimension, to be proved in homotopy type theory.

– When doing homotopy theory in a constructive/synthetic style in homotopy type
theory, there is always the possibility that classical results will not be provable—the
logical axioms for spaces might not be strong enough to prove certain classical the-
orems about them. Our proof shows that the characterization of πn(Sn) does follow
from a higher-inductive description of the spheres, in the presence of univalence,
which provides evidence for the usefulness of these definitions and methods.
Moreover, while we do not yet have a full computational interpretation of uni-
valence, one can see, in the proof, a computational process that transforms n-
dimensional loops on the n-sphere into integers. This is one of the first examples
of computation with arbitrary-dimensional structures that has been considered in
homotopy type theory.

– The proof is not a transcription of a textbook homotopy theoretic proof,
but mixes classical ideas with type-theoretic ones. The type-theoretic tech-
niques used here have been applied in other proofs. For example, the proof
described here led to a simpler proof of a more general theorem, the
Freudenthal Suspension Theorem (Lumsdaine’s proof is described in the HoTT

πn(Sn) in Homotopy Type Theory 5

book [The Univalent Foundations Program, 2013]), which gives a shorter calcula-
tion of πn(Sn) (also described in the HoTT book). This, in turn, led to a proof of an
even more general theorem, the Blakers-Massey theorem [Finster et al., 2013].

– We give a direct higher-inductive definition of the n-dimensional sphere Sn as the
free type with a base point base and a loop in Ω n(Sn). This definition does not
fall into the collection of higher inductive types that has been formally justified by
a semantics, because it involves a path constructor at a variable level (i.e. in Ω n,
where n is an internal natural number variable). However, our result shows that it
is a useful characterization of the spheres to work with, and it has prompted some
work on generalizing schemas for higher inductive types to account for these sorts
of definitions.

– The proof we present here includes an investigation of some of the type-theoretic
structure of loop spaces. We will characterize Ω n(A) for various types A, which
explains how concepts such as function extensionality and univalence induce paths
at higher levels. This characterization could potentially inform investigations into
the computational interpretation of univalence, a major open problem.

– The proof has been formalized in Agda [Norell, 2007], and is available on GitHub
in the repository ��������	
������������	������� (tag ���������������).
The proof includes a library of lemmas about iterated loop spaces that is indepen-
dent of the particular application to n-dimensional spheres.

In the remainder of this paper, we give an informal overview of some of
the interesting aspects of the proof, and discuss the Agda formalization. From
this point forward, we assume that the reader is familiar with the calculation of
π1(S1) [Licata and Shulman, 2013] and with Part I and Chapter 8 of the HoTT
book [The Univalent Foundations Program, 2013].

2 Overview of the Proof

2.1 Definition of the Spheres

We define the n-dimensional sphere Sn (for n≥ 1) as the higher inductive type generated
by one point base and one point in the nth loop space of Sn at base:

basen : Sn

loopn : Ω n(Sn,base)

The corresponding elimination rule, sphere recursion, says that to define a function
Sn →C, it suffices to give a point c : C and a loop in Ω n(C,c):

C : Type c : C p : Ω n(C,c)

Sn−recC(c,p) :Sn → C

The computation rules for this elimination rule are as follows:

Sn−recC(c, p)basen :≡ c
apn(Sn−recC(c, p))loopn := p

github.com/dlicata335/hott-agda

6 D.R. Licata and G. Brunerie

where apn applies a function f : A → B to an n-dimensional loop in Ω n(A,a) to get
an n-dimensional loop in Ω n(B, f a). We discuss the definition of Ω n(X ,x0) and apn in
Section 2.4 below.

We also require a dependent elimination rule, sphere induction:

C : Sn → Type c : C(basen) p : Ω n
loopn

(C,c)

Sn−elimC(c,p) :Π x:Sn.C(x)

Here, the type Ω n
p(C,c) represents an “n-dimensional loop-over-a-loop”; it is well-

formed when C : A → Type and p : Ω n(A,a) and c : C(a) (for some A and a). Topo-
logically, it represents an n-dimensional path at c in the total space of C that projects
down to p. We discuss the definition of Ω n

p(C,c) in Section 2.4 below. The computation
rules for sphere induction are similar to those for sphere recursion.

Note that the constructor loopn is a path whose level depends on n: for n = 1, it
is a path, for n = 2, it is a path between paths, and so on. Because of this, the above
definition of Sn does not fall into any of the schemas for higher inductive types that
have been formally studied. However, it seems like a sensible notion, because for any
fixed n, it expands to a type a higher inductive constructor would be permitted to have:
For n = 1, it is base1 =S1 base1, for n = 2, it is id =base2=S2base2 id, and so on. All
of these are iterated identity types in Sn, which is the type being defined. We leave it
to future work to justify this kind of definition semantically. Another possible justi-
fication would be to take the above rules not as a specification of a higher-inductive
type, but as an interface, and implement it by the definition of Sn by iterated suspen-
sion [The Univalent Foundations Program, 2013, Section 6.5].

2.2 Calculation of πn(Sn)

We now describe the calculation that πn(Sn) = Z for n ≥ 1.1 Formally, this statement
means that there is a group isomorphism between the group πn(Sn) (with composition
as the group operation) and the additive group Z. In what follows, we will discuss the
proof that the type πn(Sn) is equivalent (and hence equal, by univalence) to the type Z,
and omit the proof that this equivalence sends composition to addition.

The first step is an induction on n. In the base case, we use the homotopy type theory
proof of π1(S1) = Z described in previous work [Licata and Shulman, 2013]. In the
inductive step, the key lemma is that πn+1(Sn+1) = πn(Sn), which, combined with the
inductive hypothesis gives the result.

To show that πn+1(Sn+1) = πn(Sn), we calculate as follows:2

1 We write πn(X) for πn(X ,x0) (and similarly for Ω) when the base point is clear from context.
For the spheres, if we elide the base point, it is the constructor basen.

2 We use the convention of eliding the base point heavily here. The base point of Ω(A) is ida,
when a is the base point of A. The base point of ||A||k is |a|, where a is the base point of A, and
| − | is the constructor for the n-truncation type ||A||n [The Univalent Foundations Program,
2013, Section 7.3].

πn(Sn) in Homotopy Type Theory 7

πn+1(Sn+1) = ||Ω n+1(Sn+1)||0 definition
= ||Ω n(Ω(Sn+1))||0 unfold Ω n+1

= Ω n(||Ω(Sn+1)||n) swap truncation and loop space
= Ω n(||Sn||n) main lemma
= ||Ω n(Sn)||0 swap truncation and loop space
= πn(Sn) definition

Several of these steps are relatively easy lemmas. For example, we can unfold Ω n+1(X)
as Ω n(Ω(X))—one might take this as the definition of Ω n+1, but for the definition below
it is a lemma, which we will call LoopPath. Additionally, there is a rule for swapping a
truncation with a loop space, incrementing the index:

||Ω(X)||n = Ω(||X ||n+1)

Intuitively, ||Ω(X)||n is a type built from Ω(X) by equating all (n+ 1)-cells in Ω(X).
However, Ω(X) is the space of 1-cells (paths) in X , so the (n+1)-cells in Ω(X) are the
(n+ 2)-cells in X . Thus, it is equivalent to equate all (n+ 2)-cells in X , and then take
the loop space. Iterating this reasoning gives the equation used above, that

||Ω n(X)||0 = Ω n(||X ||n)

This reasoning reduces the problem to proving the main lemma, that

||Ω(Sn+1)||n = ||Sn||n

That is, the loop space on the (n+ 1)-sphere is equivalent to the n-sphere, when ap-
propriately truncated. Ω(Sn+1) is, by definition, the type basen+1 =Sn+1 basen+1, so
this lemma is characterizing (the truncation of) a path space of a higher-inductive
type. A general template for doing such characterizations is the encode-decode method
[The Univalent Foundations Program, 2013, Section 8.9], which we apply here.

2.3 The Encode-Decode Argument

The bulk of the proof consists of proving that ||Ω(Sn+1)||n = ||Sn||n. To build intuition,
consider the case of ||Ω(S2)||1 = ||S1||1. Setting aside the truncations for the moment,
this means we are comparing points on S1 (the circle) with loops on S2 (the sphere). The
idea is to set up a correspondence where the base point of the circle (base1) corresponds
to the constant path at the base point of the sphere (idbase2), and going n times around the
loop of the circle (loopn

1) corresponds to going n times around the surface of the sphere
(loopn

2). In classical topology, it is clear that this correspondence induces a bijection
between the set of points on the circle and the set of loops on the sphere (both considered
up to homotopy): the circle has one connected component, and any loop on the sphere
can be contracted to the constant loop. Moreover, it induces a bijection between the
set of loops on the circle and the set of 2-loops on the sphere (again considered up to
homotopy), because every loop on the circle is loopn

1 for some n, and every 2-loop on
the sphere is loopn

2 for some n. While proving these facts is essentially what we are

8 D.R. Licata and G. Brunerie

doing in this section, it should at least be intuitively plausible that the points and loops
on the circle are the same as the loops and 2-dimensional loops on the sphere. But the
loops and 2-dimensional loops on the sphere are the points and loops of the loop space
of the sphere, Ω(S2), so the points and loops of S1 are the same as the points and loops
of Ω(S2).

However, it is not the case that S1 and Ω(S2) are equivalent types, because S2 has
non-trivial 3-dimensional paths, while S1 has only trivial 2-dimensional paths. Thus,
the situation is that the points and paths of S1 are in correspondence with the points and
paths of Ω(S2), but the correspondence does not extend to higher dimensions. The role
of the truncation is to account for this difference. Comparing ||S1||1 with ||Ω(S2)||1 con-
siders only points and paths, not any higher-dimensional cells, and restricted to points
and paths the above correspondence is in fact an equivalence.

To prove the lemma, we proceed as follows. First, we define a map Sn → Ω(Sn+1)
by sphere recursion, where

promote : Sn → Ω(Sn+1)
promote(basen) :≡ idbasen+1

apn promote (loopn) := loopn+1

In the third line, we omit an application of LoopPath, which coerces Ω n+1(Sn+1),
the type of loopn+1, to the required type Ω n(Ω(Sn+1))—loopn+1 can be seen as an
n-dimensional loop in Ω(Sn+1). promote is one direction of the correspondence de-
scribed above; for example, it sends loops on the circle to 2-dimensional loops on the
sphere. Because functions are functors, we specify only the action on the generators
basen and loopn; the function automatically preserves identity, composition, etc., and
thus, for example, takes the n-fold composition loopn

1 to the n-fold composition loopn
2,

as desired. Thinking of Sn+1 as the suspension of Sn, this is the meridian map of the sus-
pension, which embeds X into Ω(ΣX)—i.e. it’s the unit of the suspension/loop space
adjunction.

Because truncation is functorial, promote extends to a map ||Sn||n → ||Ω(Sn+1)||n:

decode′ : ||Sn||n → ||Ω(Sn+1)||n
decode′(|x|) = |promote(x)|

(where peeling off the truncation is permitted by truncation-elimination, because ||−||n
is an n-type).

We would like to show that this map is an equivalence. To define the inverse map
||Ω(Sn+1)||n → ||Sn||n, we need to define a map out of (the truncation of) a path space.
One central tool for doing this is univalence: we define a map from Sn+1 into the uni-
verse, so that the base point of Sn+1 is sent to ||Sn||n and paths in Sn+1 are sent to
equivalences, and then we apply the equivalence determined by a loop to the base point
of ||Sn||n. In this case, we define a fibration Codes by sphere recursion

Codes : Sn+1 → Type
Codes(basen+1) :≡ ||Sn||n
apn Codes (loopn+1) := (. . . : Ω n+1(Type, ||Sn||n))

The fiber over the base point is ||Sn||n, so Codes will send an element of Ω(Sn+1)
(which, recall, is notation for basen+1 =Sn+1 basen+1) to an equivalence ||Sn||n � ||Sn||n.

πn(Sn) in Homotopy Type Theory 9

Thus, we can define a function encode′ : ||Ω(Sn+1)||n → ||Sn||n by applying Codes to
the given path (after peeling off the truncation brackets, which is allowed because the
result is an n-type), and then applying the resulting equivalence to |basen|:

encode′ : ||Ω(Sn+1)||n → ||Sn||n
encode′(|p|) = (ap(Codes)p)|basen|

Eliding truncations for a moment, the term apn(encode′) is a function from
Ω n(Ω(Sn+1)) to Ω n(Sn), so it determines (by LoopPath) a function from Ω n+1(Sn+1)
to Ω n(Sn). Because we would like encode′ to be inverse to decode′, we need to fill in
the . . . in the definition of Codes so that apn encode′ sends loopn+1 to loopn (modulo
truncations and LoopPath). Thus, we need an element of Ω n+1(Type, ||Sn||n) that is
somehow determined by loopn, so that we get loopn back out when we apply encode′.

The key maneuver is to apply an equivalence between Ω n+1(Type,A) and
Π x:A.Ω n(A,x) (discussed below). That is, an n+ 1-dimensional loop in the space of
types with base point A is the same as a family of n-dimensional loops in A, given for
each point in A. This reduces the problem to giving an element of type

Π x:||Sn||n.Ω n(||Sn||n,x)

which (modulo some truncation manipulation) is defined by sphere-elimination, send-
ing basen to loopn, and proving that this choice respects loopn. For n = 1, a small
calculation is needed to prove this final condition, and for any greater n it is trivial by
truncation reasons. This “packages up” loopn in the Codes fibration in such a way that
encode′ extracts it.

This defines a fibrationCodes over Sn+1, where the fiber over the base point is ||Sn||n,
and the lifting of the n+ 1-loop is an n-dimensional homotopy given by “going around
loopn once”. For n = 1, this is a fibration over S2, where the fiber over the base is S1 (S1

is already a 1-type, so the truncation cancels), and the lifting of loop2 goes around the
circle—i.e., it is the Hopf fibration (though we do not need to calculate the total space
to prove our theorem).

Now that we have defined encode′ and decode′, the task is to show that they are
mutually inverse. The remaining steps required to do so are as follows:

– First, we do a calculation to show that encode′(decode′c) = c. The proof uses
sphere-elimination, and calculations with the loop space library—this is where we
prove that encode′ takes loopn+1 to loopn.

– The definition of encode′ given above in fact has a more general type: it works not
only for loops, but for paths to any endpoint x:

encode : Π x:Sn+1.(basen+1 =Sn+1 x)→ Codes(x)
encode(|p|) = (ap(Codes)p)|basen|

– Through a somewhat involved calculation with the loop space library, we can show
that decode′ extends to a function

decode : Π x:Sn+1.Codes(x)→ (basen+1 =Sn+1 x)

This function is defined by sphere elimination; when x is basen+1, the function is
decode′; then we have to prove that this choice respects the loop.

10 D.R. Licata and G. Brunerie

– Now that we have generalized to encode and decode, it is easy to show that

Πx : Sn+1, p : ||basen+1 = x||.decodex(encodex(p)) = p

by path induction, because on the identity path, it is true by definition.

The details of these steps are somewhat intricate, so we refer the reader to the Agda
proof.

2.4 Loop Space Library

Next, we give a brief overview of some of the key lemmas in the loop space library.

Definitions, groupoid and functor structure First, we define

Ω(X : Type,x0 : X) : Type
Ω(X ,x0) :≡ (x0 =X x0)

Ω n≥1(X : Type,x0 : X) : Type
Ω 1(X ,x0) :≡ Ω(X ,x0)
Ω 1+n(X ,x0) :≡ Ω(Ω n(X ,x0), id

n)

idn : Ω(X ,x0)

id1 :≡ idx0

id1+n :≡ ididn

That is, we define Ω n mutually with a point idn of it. This definition unfolds as Ω 1+n(X)=
Ω(Ω n(X)). An alternative is to define

Ω 1
0 (X ,x0) :≡ Ω(X ,x0)

Ω 1+n
0 (X ,x0) :≡ Ω n

0 (Ω(X), idx0)

i.e. Ω 1+n
0 (X) = Ω n

0 (Ω(X)). By the LoopPath lemma, these two definitions are equiv-
alent, so we can unfold Ω 1+n in both ways. The current loop space library takes Ω as
the main definition and uses Ω0 as an auxiliary notion. However, since the different
definitions have different definitional behaviors, it would be interesting to try revising
the library based on taking Ω0 as the main notion, to see if it is simpler or not.

In addition to idn, there are also inverse and composition operations on each loop
space:

!n(l : Ω n(X ,x0)) : Ω n(X ,x0)
(l1 : Ω n(X ,x0))◦n (l2 : Ω n(X ,x0)) : Ω n(X ,x0)

We prove various groupoid laws for these operations (unit, involution).
Many loop space operations are defined by induction on n. For example, consider

applying a function to a loop. Intuitively, the idea is that apn f l iterates ap to apply f

πn(Sn) in Homotopy Type Theory 11

at the appropriate level. For example, ap2 f should be ap(ap f), while ap3 f should be
ap(ap (ap f)). In general, it is defined as follows:

apn(f : X → Y)(l : Ω n(X ,x0)) : Ω n(Y, f x0)
ap1 f l :≡ ap f l
ap1+n f l :≡ apn-id◦ap(apn f)l ◦ (!apn-id)

In the 1 + n case, l : Ω(Ω n(X)). The recursive call apn f has type Ω n(X ,x0) →
Ω n(Y, f (x0)). Thus, using ap to apply this to the path l gives an element of

apn f idn = apn f idn

We require an element of idn = idn, so we compose on both sides with a proof apn-id that
apn preserves identities. Many definitions on Ω n follow this template: an induction on
n, defined mutually with a lemma stating preservation of identities. apn also preserves
inverses and composition, and is functorial in the function position:

apn(λ x.x)l = l
apn(g ◦ f)l = apn g(apn f l)

Another key lemma is that ap1+n can be unfolded in the other assocativity: above, we
essentially defined ap1+n = ap(apn f). We can prove that it is also equal to apn(ap f)
(with the appropriate LoopPath coercions inserted).

Some properties hold only for n ≥ 2. For example,

apn ! l =!nl

This follows from the Eckmann-Hilton argument, which shows that the higher homotopy
groups are abelian, and that the two different ways of composing higher-dimensional
loops are homotopic.

Loops in Types. For many types A, one can give a straightforward characterization of
the paths in A. For example:

– Paths f =A→B g are equivalent to paths Π x:A. fx =B gx, by function extensionality.
– Paths A =Type B are equivalent to equivalences between A and B, by univalence.
– Paths e1 =A�B e2 between equivalences are equivalent to paths e1 =A→B e2 (where

we implicitly cast ei from an equivalence to a function), because being an equiva-
lence is an hprop.

One important piece of the loop space library is an investigation of how these char-
acterizations extend to higher-dimensional loop spaces.

Functions. First, we characterize Ω n(Π x:A.B, f). For n = 1, it is equal to Π x:A.Ω n

(B, f x) by function extensionality. For n = 2, the question is to characterize the type

id f = f=Π x:A.B f id f

12 D.R. Licata and G. Brunerie

But by applying function extensionality (and using its action on id f), this type is equiv-
alent to

(λ x.id f x) =Π x:A. fx=B(x)fx (λ x.id f x)

Using function extensionality again, this type is equivalent to

Π x:A. id f x = f x=B(x) f x id f x

which is Π x:A.Ω 2(B(x), f x).
Indeed, in general, we prove

Ω n(Π x:A.B, f) = Π x:A.Ω n(B(x), f x)

That is, a loop in a function space is a family of loops.

Paths between types. Second, we characterize Ω n(A =Type A, p), where p is path in
the universe from A to A. Consider n = 1: by univalence, we know that Ω(A = A, p) is
equivalent to Ω(A � A, p∗), where p∗ is the equivalence induced by the path p. But a
path between equivalences is equivalent to a path between the underlying functions: an
equivalence between A and B is a pair (f , i) where f : A → B and i : IsEquiv(f), and
being an equivalence is an hprop, so the second components of such pairs are always
equal. Thus,

Ω(A = A, p) = Ω(A → A,coe(p))

where coe(p : A = B) : A → B—i.e. coe (“coerce”) can be thought of as turning the
path into an equivalence, and then selecting the “forward” direction. We can prove by
induction that this rule extends to higher dimensions, so that

Ω n(A = A, p) = Ω n(A → A,coe(p))

Loop spaces. The LoopPath lemma mentioned above also fits this pattern: it char-
acterizes an n-dimensional loop in a loop space as a (1+ n)-dimensional loop in the
underlying space:

Ω n(Ω(A), ida) = Ω 1+n(A,a)

Putting it all together. Combining the previous three lemmas, we have that

Ω 1+n(Type,A) = Ω n(Ω(Type,A), idA) loop in loop space
= Ω n(A =Type A, idA) definition
= Ω n(A → A,λ x.x) loop in path between types
= Π x:A.Ω n(A,x) loop in function type

This equivalence is the “key maneuver” that we used to define the Codes fibration in
Section 2.3 above.

πn(Sn) in Homotopy Type Theory 13

Loops over a Loop. The notion of a “path over a path” is a key ingredient of the
dependent elimination rule for higher inductive types. Given p : a1 =A a2, and a fi-
bration B : A → Type, a path over p relates b1 : B(a1) to b2 : B(a2). This is a kind of
heterogeneous equality [McBride, 2000] between elements of different instances of B.
However, the notion of a path over a path need not be taken as primitive, since it can be
represented by a homogeneous path transportB p b1 =B(a2) b2.

In the library, we define an n-dimensional loop over a loop Ω n
p(B,b0) (where p :

Ω n(A,a0) and b0 : B(a0)) by induction on n, using transport at each level to account for
the heterogeneity. For small n, this definition gives the expected dependent elimination
rule for, e.g., S1 and S2 and S3, the specific spheres whose higher inductive elimination
rule had previously been written out. For example, for S2, sphere elimination with B :
S2 → Type and b : B(base) requires a proof of

(transport(λ x.(transportB x b) = b) loop2 id) = id

A key lemma relates this definition of loop-over-a-loop to an alternate characteri-
zation, which coalesces all of the transports into a single use of apn combined with
the equivalence defined above between Ω 1+n(Type,A) and Π x:A.Ω n(A,x). The rea-
son this lemma is important is that we then give rules for apnA driven by the structure
of A, such as when A is λ x.A1(x) → A2(x) or when A is λ x. f (x) = g(x) or when A is
λ x.||A1(x)||k. These rules are higher-dimensional analogues of the computation rules
for transportA that are driven by the structure of A.

3 Formalization

The calculation of πn(Sn) described in Sections 2.2 and 2.3 is in ����������	
�
���;
it is about 250 lines of code. The loop space library described in Section 2.4 is in
�	�����������; it is about 1500 lines of code. The proof of πn(Sn), including specifying
the lemmas it uses from the loop space library, took a few days. The loop space library
then took a couple of weeks to complete, working for perhaps 4 hours per day.

The formalization has one cheat, which is that it takes place in an Agda homotopy
type theory library that uses type:type as a terser form of universe polymorphism than
Agda’s. More recent homotopy type theory libraries use Agda’s universe polymorphism
instead of type:type, and we believe that the proof could be ported to such a library.

Agda does not provide very much proof automation for this proof: the bulk of the
proof is manual equational calculations with the loop space operations. However, with
an improved computational understanding of homotopy type theory, some of these cal-
culation steps might be definitional equalities.

That said, Agda was quite useful as a proof checker, and for telling us what we
needed to prove next. The terms involved in the calculations get quite long, so it would
be difficult to do these calculations, or to have confidence that they were done correctly,
without the use of a proof checker.

It is worth describing one new device that we developed for this proof, which is a
combination of a mathematical and a engineering insight. Often in this proof, we are
manipulating paths that have the form � ◦ � ◦ ! � (� conjugated by �), where � is thought
of as “the actual path of interest” and � is some “coercion” or “type cast” that shows that

14 D.R. Licata and G. Brunerie

it has some desired type. Early in the development of the proof, we got stuck, because
manipulating these coercions explicitly gets quite cumbersome.

The engineering insight is that, if we define a function �� � � that returns � ◦ � ◦ ��,
but make it abstract (i.e. hide its definition), then Agda can fill in in terms of the form
�� � in the middle of an equational calculation by unification. By stating the coercions
at the beginning and end of the proof, and using lemmas that propagate this informa-
tion without explicitly mentioning it, we need not state the coercions at each step of
the proof. Though �� � � is abstract, we export a propositional equality equating it to
� ◦ � ◦ ��, so that we can use this technique in the intermediate steps of a calculation;
the overall theorem is the same.

The mathematical insight is that, for an element � of a doubly-iterated identity type
(i.e. when � is at least a path between paths), for any coercions � and �� of the same
type, (� ◦ � ◦ ! �) = (�� ◦ � ◦ ���). This is a consequence of the higher homotopy groups
being abelian.

Combining these two insights, we can let Agda infer the coercions as we proceed
through the steps of the proof, and then, at the end, when we need the inferred coercion
to turn out to be a specific one, we simply apply the lemma. As a practical matter, this
technique for managing these coercions was essential to our being able to complete this
proof.

For example, here is a snippet of an equational deduction without applying the
technique:

adjust (ap^-id n (λ f → f x) {f}) (ap (λ f → apl n f x) (adjust (λ l-id n) (ap (λ l n) (λ� a))))�〈 ... 〉
adjust (ap^-id n (λ f → f x) {f}) (ap (λ f → apl n f x) (adj (ap (λ l n) (λ� a))))�〈 . . 〉
adj (ap^-id n (λ f1 � f1 x)) (ap (λ f → apl n f x) (adj (ap (λ l n) (λ� a))))�〈 ... 〉
adj (ap^-id n (λ f1 � f1 x) ◦ ap (λ f’ � apl n f’ x) (λ l-id n)) (ap (λ f → apl n f x) (ap (λ l n) (λ� a)))�〈 ... 〉
adj (ap^-id n (λ f1 � f1 x) ◦ ap (λ f’ � apl n f’ x) (λ l-id n)) (ap (λ f � apl n (λ l n f) x) (λ� a))�〈 ... 〉
adj ((ap^-id n (λ f1 � f1 x) ◦ ap (λ f’ � apl n f’ x) (λ l-id n)) ◦ ap� (! (β n (λ x1 � id^ n)))) (ap (λ f � f x) (λ� a))�〈 ... 〉
adj ((ap^-id n (λ f1 � f1 x) ◦ ap (λ f’ � apl n f’ x) (λ l-id n)) ◦ ap� (! (β n (λ x1 � id^ n)))) (a x)�〈 ... 〉
adj id (a x)�〈 ! (adj-id) 〉
a x �

Here is the same snippet, where we use the technique and replace the first argument to
�� with :

adjust (ap^-id n (λ f → f x) {f}) (ap (λ f → apl n f x) (adjust (λ l-id n) (ap (λ l n) (λ� a))))�〈 ... 〉
adjust (ap^-id n (λ f → f x) {f}) (ap (λ f → apl n f x) (adj (ap (λ l n) (λ� a))))�〈 ... 〉
adj (ap (λ f → apl n f x) (adj (ap (λ l n) (λ� a))))�〈 ... 〉
adj (ap (λ f → apl n f x) (ap (λ l n) (λ� a)))�〈 ... 〉
adj (ap (λ f � apl n (λ l n f) x) (λ� a))�〈 ... 〉
adj (ap (λ f � f x) (λ� a))�〈 ... 〉
adj (a x)�〈 ... 〉
adj id (a x)�〈 ... 〉
a x �

Moreover, if we did not appeal to the fact that any two coercions give equal results, it
is unclear how we would even prove, between the second-to-last and third-to-last lines,
that

((ap^-id n (λ f1 � f1 x) ◦ ap (λ f’ � apl n f’ x) (λ l-id n)) ◦ ap� (! (β n (λ x1 � id^ n)))) = id

πn(Sn) in Homotopy Type Theory 15

The inferred coercion (the left-hand-side of this equation) uses several loop space lem-
mas that are defined by induction on �, and it is unclear how to prove that they cancel
each other.

4 Conclusion

In this paper, we have described a computer-checked calculation of πn(Sn) in homo-
topy type theory. One important direction for future work is to develop a computational
interpretation of homotopy type theory; our proof would be a good test case for such an
interpretation. Given a number k, how does the proof compute the path loopk

n? Or, more
interestingly, given a path on Sn, how does the proof compute a number? Another direc-
tion would be to investigate the relationship between this proof and proofs of πn(Sn) in
classical homotopy theory. The proof we have described here has since been generalized
to a proof of the Freudenthal Suspension Theorem [The Univalent Foundations Program,
2013], which is one way that πn(Sn) is proved in classical homotopy theory. However,
it would be interesting to see whether the more specific proof presented here has been
(or can be) phrased in classical terms.

Acknowledgments. We thank the participants of the Institute for Advanced Study’s
special year on homotopy type theory for uncountably many helpful conversations.

This material is based in part upon work supported by the National Science Founda-
tion under grants CCF-1116703 and DMS-1128155 and by the Institute for Advanced
Study’s Oswald Veblen fund. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation or any other sponsoring entity.

References

Awodey, S., Warren, M.: Homotopy theoretic models of identity types. In: Mathematical Pro-
ceedings of the Cambridge Philosophical Society (2009)

Awodey, S., Gambino, N., Sojakova, K.: Inductive types in homotopy type theory. In: IEEE Sym-
posium on Logic in Computer Science (2012)

Finster, E., Licata, D.R., Lumsdaine, P.L.: The Blakers-Massey theorem in ∞-topoi and homotopy
type theory (in preparation, 2013)

Licata, D.R., Shulman, M.: Calculating the fundamental group of the cirlce in homotopy type
theory. In: IEEE Symposium on Logic in Computer Science (2013)

Lumsdaine, P.L.: Weak ω-categories from intensional type theory. In: Curien, P.-L. (ed.) TLCA
2009. LNCS, vol. 5608, pp. 172–187. Springer, Heidelberg (2009)

Lumsdaine, P.L., Shulman, M.: Higher inductive types (in preparation, 2013)
Martin-Löf, P.: An intuitionistic theory of types: Predicative part. In: Rose, H., Shepherdson, J.

(eds.) Proceedings of the Logic Colloquium, Logic Colloquium 1973. Studies in Logic and the
Foundations of Mathematics, vol. 80, pp. 73–118. Elsevier (1975)

McBride, C.: Dependently Typed Functional Programs and Their Proofs. PhD thesis, University
of Edinburgh (2000)

Nordström, B., Peterson, K., Smith, J.: Programming in Martin-Löf’s Type Theory, an Introduc-
tion. Clarendon Press (1990)

16 D.R. Licata and G. Brunerie

Norell, U.: Towards a practical programming language based on dependent type theory. PhD
thesis, Chalmers University of Technology (2007)

The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathe-
matics. Institute for Advanced Study (2013), ������������������	��	�����������

van den Berg, B., Garner, R.: Types are weak ω-groupoids. Proceedings of the London Mathe-
matical Society 102(2), 370–394 (2011)

Voevodsky, V.: Univalent foundations of mathematics. In: Beklemishev, L.D., de Queiroz, R.
(eds.) WoLLIC 2011. LNCS, vol. 6642, p. 4. Springer, Heidelberg (2011)

http://homotopytypetheory.org/book

Mostly Sound Type System Improves

a Foundational Program Verifier

Josiah Dodds and Andrew W. Appel

Princeton University

Abstract. We integrate a verified typechecker with a verified program
logic for the C language, proved sound with respect to the operational
semantics of the CompCert verified optimizing C compiler. The C lan-
guage is known to not be type-safe but we show the value of a provably
mostly sound type system: integrating the typechecker with the program
logic makes the logic significantly more usable. The computational na-
ture of our typechecker (within Coq) makes program proof much more
efficient. We structure the system so that symbolic execution—even tac-
tical (nonreflective) symbolic execution—can keep the type context and
typechecking always in reified form, to avoid expensive re-reification.

1 Introduction

Hoare logics [15] and separation logics are valuable tools for program under-
standing. These logics can be straightforward to design when they target small,
type-safe programming languages. Program logics for less cooperative program-
ming languages often have complex inference rules that are difficult to apply,
requiring extensive proofs even for simple operations.

Despite these difficulties we built a usable program logic for C, proved sound
with respect to CompCert’s operational semantics (a thorough description of
this logic will soon be available [4]). Applying the Hoare logic directly to the C
program instead of a lower-level language makes it easy for users to understand
how the program relates to the proof. Other tools such as Frama-C [12] and
VCC [11] utilize intermediate languages, and translate back to C source when
user interaction is required. Our tool permits user interaction at the source level,
the same source program the user wrote.

Some features of C are unfriendly to Hoare logic, in particular subexpressions
with side effects, so we use a slightly different language. This factored language,
called C light, is already one of the high-level intermediate languages of the
CompCert compiler. Every C light program is a C program and every C program1

can be translated to C light with only automatic local transformations. If the C
program is already in the C light subset, the first phase of CompCert will leave
it unchanged (except for parsing it from ascii into abstract syntax trees).

Our program logic (a higher-order impredicative concurrent separation logic
[2]) can be used in (at least) two ways: by applying it interactively in a proof

1 We use the same specification of the C language as CompCert [16].

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 17–32, 2013.
c© Springer International Publishing Switzerland 2013

18 J. Dodds and A.W. Appel

assistant, or by using the program logic to prove the soundness of a fully auto-
matic static analysis. We have previously demonstrated such a foundationally
verified shape analysis [3]; in this paper we focus on interactive proof.

We address the problem of numerous and complex verification side conditions
that arise when verifying C programs. In idealized presentations of Hoare logics,
we write P [e/x] meaning “assertion P with the value of expression e substituted
for program variable x.” We implicitly assume that e has a value, that is, will
evaluate deterministically in the current dynamic context without getting stuck;
and we implicitly assume that the value will match the type of variable x (pencil-
and-paper presentations may even assume a unityped language). Proof rules for
a real language (especially one not designed for Hoare logic) will need many side
conditions to establish that these assumptions hold. These hypotheses and side
conditions become tedious proof obligations for the user. In this paper we show
how to use the type system of C to automatically discharge these hypotheses
in the majority of cases. To make this process efficient, we design for the use
of computational reflection (Section 6). In many cases we are able to make
interactive proofs work in the same way as a pencil-and-paper proof would.

One might think this is obvious: well-typed programs don’t go wrong. But that
is only in a language with a sound type system, and C does not have a sound
type system: it is mostly sound. In this paper we show that a mostly sound
type system can still be very useful. In a mostly sound type system well-typed
programs go wrong only in well defined cases that can be avoided by proving
specific obligations.

Contributions. We formalize a mostly sound type system for C, we prove its
mostly-soundness, we implement it computationally in Coq, we integrate it into
a program logic for C, we prove the integration is entirely sound with respect
to the operational semantics of CompCert C, and we demonstrate that our type
system integrates into a tactical proof system (written in Ltac) that is convenient
and efficient to apply to C programs using semiautomatic forward symbolic exe-
cution2. In our mostly sound type system, the typechecker does not just succeed
or fail, it calculates an appropriate precondition assertion for the safe evaluation
of an expression. In practice, this assertion is True for many expressions.

We also discuss other design decisions regarding the interface of a program
logic to operational semantics of the C language.

2 Example

Consider a naive Hoare assignment rule for the C language.

� {P [e/x]} x := e {P} (naive-assignment)

This rule is not sound with respect to the operational semantics of C. We
need a proof that e evaluates to a value. It could, for example, be a division

2 Our source code can be found at http://vst.cs.princeton.edu/typecheck/ .

http://vst.cs.princeton.edu/typecheck/

Mostly Sound Type System Improves a Foundational Program Verifier 19

by zero, in which case the program would crash and Hoare triples would not
hold. This is an example of the mostly-sound property of the C type system.
The expression e might typecheck in the C compiler, but can still get stuck
in the operational semantics (“crash” during expression evaluation). A better
assignment rule requires e to evaluate:

∃v.e ⇓ v

� {P [v/x]} x := e {P}
assignment-ex

The proof of this rule is relatively easy, but the rule is inconvenient to apply
because we must use the operational semantics to show that v exists. In fact,
any time that we wish to talk about the value that results from the evaluation
of an expression, we must add an existential quantifier to our assertion. Showing
that an expression evaluates can require a number of additional proofs. If our
expression is (y / z), we will need to show that our precondition implies: y and
z are both initialized, z �= 0, and ¬(y = int-min ∧ z = -1). The latter case causes
overflow, which is undefined in the C standard. These requirements will become
apparent as we apply the semantic rules.

We can remove the existential variables and make the requirements for eval-
uation easier to discover by creating specialized rules:

initialized(y) initialized(z) z �= 0 ¬(y = int min ∧ z = −1)

� {P [(y/z)/x]} x := y/z {P}
intdiv

This moves the proof of expression evaluation into the rule’s soundness proof
where it only needs to be done once. Such an approach would lead to an over-
whelming number of new rules—and it hardly allows for any nested expressions,
requiring substantial program rewrites.

Instead, we build a static analysis to generate simple preconditions that will
ensure expression evaluation. We define a function typecheck-expr (Section 7) to
tell us when expressions evaluate. Now our assignment rules are,

Δ � {typecheck expr(e,Δ) ∧ P [e/x]} x := e {P}
tc-assignment

Δ � {typecheck expr(e, Δ) ∧ P}x := e {∃v.x = eval(e[v/x]) ∧ P [v/x]}
tc-floyd-assignment

The typecheck expr is not a side condition, as it is not simply a proposition
(Prop in Coq) but a separation-logic predicate quantified over an environment.
When run on the expression (y/z) it computes to the assertion z �= 0 ∧ ¬(y �=
int min∨ z �= −1) where z and y are not the variables, but the values that result
when z and y are evaluated in some environment. The assertions initialized(y)
and initialized(z) may not be produced as proof obligations if the type-and-
initialization context Δ assures that y and z are initialized (Section 5). The
calculation of Δ is also part of our type system.

We use the Floyd-style forward assignment rule, instead of the Hoare-style
weakest-precondition rule. This is not related to type-checking; separation logic
with backward verification-condition generation gives us magic wands which are
best avoided when possible [6].

20 J. Dodds and A.W. Appel

3 Expression Evaluation

CompCert defines expression evaluation by an inductive relation eval-expr; fail-
ure to evaluate is denoted by omitting tuples from the relation. This is a standard
technique in operational semantics, but it is inconvenient in a program logic: as-
sertions would need existential quantifiers, as in ∃v.e ⇓ v ∧ P (v), “there exists
some value such that e evaluates to v and P holds on v.” It is much cleaner to
say P (eval expr(e)), or “P holds on the evaluation of e”. We want eval expr(e)
to be a value, not a value-option, or else we (again) need existential quantifiers.
Defining evaluation as a function also makes proofs more computational—more
efficient to build and check.

We simplify eval-expr in our program logic—and make it computational—by
leveraging the typechecker’s guarantee that evaluation will not fail. Our total
recursive function eval-expr (e: expr) (rho: environ): in environment ρ, expression
e evaluates to the value (eval-expr e ρ). When CompCert.eval-expr fails, our own
eval-expr (though it is a total function) can return an arbitrary value. We can
do this because the function will be run on a program that typechecks—the
failure is unreachable in practice. We then prove the relationship between the
two definitions of evaluation on expressions that typecheck (we state the theorem
in English and in Coq):

Theorem 1. For all logical environments ρ that are well typed with respect to
a type context Δ, if an expression e typechecks with respect to Δ, the Comp-
Cert evaluation relation relates e to the result of the computational expression
evaluation of e in ρ.

Lemma eval-expr-relate :
∀ Δ ρ e m ge ve te, typecheck-environ Δ ρ →mkEnviron ge ve te = ρ →
denote-tc-assert (typecheck-expr Δ e) ρ →
Clight.eval-expr ge ve te m e (eval-expr e ρ)

Expression evaluation requires an environment, but when writing assertions for
a Hoare logic, we actually write assertions that are functions from environments
to Prop. So if we wish to say “the expression e evaluates to 5”, we write fun ρ ⇒
eq (eval-expr e ρ) 5. Because Coq does not match or rewrite under lambda (fun),
assertions of this form hinder proof automation. Our solution is to follow Bengtson
et al. [5] in lifting eq over ρ: ‘eq (eval-expr e) ‘5. This produces an equivalent asser-
tion, but one that we are able to rewrite and match against. The first backtick lifts
eq from val→ val→Prop to (environ→ val)→ (environ→ val)→Prop, and the second
backtick lifts 5 from val to a constant function in environ→ val.

4 C Light

Our program logic is for C, but the C programming language has features that are
unfriendly to Hoare logic: side effects within subexpressions make it impossible
to simply talk about “the value of e” and taking the address of a local variable

Mostly Sound Type System Improves a Foundational Program Verifier 21

means that one cannot reason straightforwardly about substituting for a program
variable (as there might be aliasing).

The first passes of CompCert translate CompCert C (a refined and formalized
version of C90 [16]) into C light. These passes remove side effects from expres-
sions and distinguish nonaddressable local variables from addressable locals.3 We
recommend that the user do this in their C code, however, so that the C light
translation will exactly match the original program.

C has pointers and permits pointer dereference in subexpressions:
d = p→ head+q→ head. Traditional Hoare logic is not well suited for pointer-
manipulating programs, so we use a separation logic, with assertions such as (p→
head �→ x)∗(q→head �→ y). Separation logic does not permit pointer-dereference
in subexpressions, so to reason about d = p→ head+q→ head the programmer
should factor into: t = p→ head; u = q→ head; d=t+u; where dereferences occur
only at top-level in assignment commands. Adding these restrictions to C light
gives us Verifiable C, which is not a different semantics but a proper sublanguage,
enforced by our typechecker.

A well typed C program might still go wrong. These are the cases where the
typechecker must generate assertions. A few of these cases might be surprising,
even to experienced C programmers. The following operations are undefined in
the C standard, and stuck in CompCert C:

– shifting an integer value by more than the word size,
– dividing the minimum int by −1 (overflows),
– subtracting two pointers with different base addresses (i.e., from different

malloc’ed blocks or from different addressable local variables),
– casting a float to an int when the float is out of integer range,
– dereferencing a null pointer, and
– using an uninitialized variable.

Some operations, like overflow on integer addition, are undefined in the C
standard but defined in CompCert. The typechecker permits these cases.

5 Type Context

Expression evaluation requires an expression and an environment. An expression
will evaluate to different values (or Vundef) depending on the environment. To
guarantee that certain expressions will evaluate, we will need to control what val-
ues can appear in environments. We use a type context to describe environments
where our expressions will evaluate to defined values.

Definition tycontext: Type :=
(PTree.t (type ∗ bool) ∗ (PTree.t type) ∗ type ∗ (PTree.t global-spec)).

3 Xavier Leroy added the SimplLocals pass to CompCert 1.12 at our request, pulling
nonaddressable locals out of memory in C light. Prior to 1.12, source-level reasoning
about local variables (represented as memory blocks) was much more difficult.

22 J. Dodds and A.W. Appel

PTree.t(τ) is CompCert’s efficient computational mapping data-structure (from
identifiers to τ) implemented and proved correct in Coq. The elements of the
type context are

– a mapping from temp-var names to type and initialization information,
– a mapping from local variable names to types,
– a return type for the current function, and
– a mapping from global variable names to types (and Hoare specifications for

global functions).

The first, second, and fourth items match exactly with the three parts of an
environment (environ), which is made up of temporary variable mappings, local
variable mappings, and global variable mappings.

A temporary variable is a (local) variable whose address is not taken anywhere
in the procedure. Unlike local and global variables, temporaries do not alias—so
we can statically determine when their values are modified. If the typechecker
sees that a temporary variable is initialized, it knows that it will stay initialized.
If the typechecker is unsure, it can emit an assertion guard for the user to prove
initialization. Calculating initialization automatically is a significant convenience
for the user; proofs in the previous generation of our program logic were littered
with definedness assertions in invariants.

The initialization information is a Boolean that tells us if a temporary vari-
able has certainly been initialized. The rules for this are simple, if a variable is
assigned to, that variable will always be initialized in code executed after it. The
initialization status on leaving an if-then-else is the GLB of the two branches.
Loops have similar rules.

typecheck-environ checks an environ with respect to a tycontext. It does not
generate assertions as typecheck-expr does, it simply returns a Boolean that if
true claims all of the following:

– If the type context contains type information for a temporary variable the
temp environment contains a value for that variable. If the variable is claimed
to be initialized, that value must belong to the type claimed in the type
environment.

– If the type context contains type information for a (addressable) local vari-
able, the local variable environment contains a local variable of matching
type.

– If the type context contains type information for a global variable, the global
environment contains a global variable of matching type.

– If the type context contains type information for a global variable, either
• the local variable environment does not have a value for that variable or
• the type context has type information for that variable as a local variable.

The fourth point is required because local variables shadow global variables.
Initialization information is changed by statements. We only know a variable

is initialized once we see that it is assigned to. Our typechecker only needs to
operate at the level of expressions, so we can merge maintainence of the type

Mostly Sound Type System Improves a Foundational Program Verifier 23

context into the definition of our logic rules. We will now give some of these rules
and explain how they work to keep the type context correct.

We provide a function

Definition func-tycontext (func: function) (V: varspecs) (G: funspecs): tycontext

that automatically builds a correct type context (for the beginning of the func-
tion body) given the function, local, and global specifications. The resulting con-
text contains every variable used in the function matched with its correct type.
We have proved that the environment created by the operational semantics when
entering a function body typechecks with respect to the context generated by
this function. Once the environment is created, the Hoare rules use the function
updatetycon to maintain the type context across statements.

Δ � {P} c {Q} Δ′ = updatetycon(Δ, c) Δ′ � {Q} d {R}
Δ � {P} c; d {R}

seq

updatetycon tells us that variables are known to be initialized after they are
assigned to. It also says that variables are initialized if they were initialized
before the execution of any statement, and that a variable is initialized if we
knew it was initialized at the end of both branches of a preceding if statement.
When we say initialized, we mean unambiguously initialized, meaning that it
will be initialized during all possible executions of the program.

The type context is deeply integrated with the type rules. We write our hoare
judgment as Δ � {P} c {Q}. We added the type context Δ because instead of
quantifying over all environments as a normal Hoare triple does, we quantify
only over environments that are well typed with respect to Δ. This has a huge
benefit to the users of the rules: they do not need to worry about the contents of
Δ, and they do not need to show that the environment typechecks or mention Δ
explicitly in preconditions. Our rule of consequence illustrates what we always
know about Δ:

typecheck environ(ρ,Δ) ∧ P � P ′ Δ � {P ′} c {R}
Δ � {P} c {R}

The conjunct typecheck environ(ρ,Δ) gives the user more information to work
with in proving the goal.Without this, the user would need to explicitly strengthen
assertions and loop invariants to keep track of the initialization status of variables
and the types of values contained therein.

With func-tycontext and updatetycon the rules can guarantee that the type
context is sound at all times. To keep the type context updated, the user must
simply apply the normal Hoare rules, with our special Hoare rule for statement
sequencing shown above.

6 Keeping it Real

Proof by reflection is a three-step process. A program is reified (made real)
by translating it from Prop to a data structure that can be reasoned about

24 J. Dodds and A.W. Appel

computationally. Computation is then performed on that data structure and the
result is reflected back into Prop where it can be used in a proof (see bottom of
Fig. 1). Reification is costly, however, so our approach is different. We provide a
brief example of standard reflection in order to discuss the differences.

We could use reflection, for example, to remove True and False from propo-
sitions containing conjunctions and disjunctions. Chlipala discusses a similar
problem in more detail [10]. The first step is to define a syntax that represents
the propositions of interest. Our tc-assert syntax has 14 cases—to cover issues
described in Section 4—of which we show the first four, followed by a function
to reflect this syntax into the logic of propositions:

Inductive tc-assert :=
| tc-FF | tc-TT: tc-assert
| tc-andp’: tc-assert → tc-assert → tc-assert
| tc-nonzero: expr → tc-assert
| ... end.

Definition denote-tc-nonzero (v: val) :=
match v with Vint i ⇒ if negb (Int.eq i Int.zero) then True else False

| -⇒ False end.
...

Fixpoint denote-tc-assert (a: tc-assert) : environ →Prop :=
match a with
| tc-FF ⇒ ‘False | tc-TT ⇒ ‘True
| tc-andp’ b c ⇒ ‘and (denote-tc-assert b) (denote-tc-assert c)
| tc-nonzero e ⇒ ‘denote-tc-nonzero (eval-expr e)
| ... end.

If we were doing standard reflection—which we are not—we would then write
a reification tactic,

Ltac p-reify P :=
match P with

| True ⇒ tc-TT | False ⇒ tc-FF
| ?P1 ∧ ?P2 ⇒ let t1 := p-reify P1 in let t2 := p-reify P2 in constr:(tc-andp t1 t2) ...

Finally, we do write a simplification function that operates by recursion on
tc-assert. Comparing the steps, we see that the reflection step, as well as any
transformations on our reified data, will be computational. Reification, on the
other hand, operates by matching proof terms. The computational steps are
efficient because they operate in the same way as any functional program. Ltac
is less efficient because it operates by matching on arbitrary proof terms.

To avoid the costly reification step, the typechecker generates syntax directly—
so we can perform the computation on it immediately, without need for reifica-
tion. This keeps interactive proofs fast. The typechecker keeps all of its compo-
nents real, meaning there are no reification tactics associated with it.

Mostly Sound Type System Improves a Foundational Program Verifier 25

We use this design throughout the typechecker. We keep data reified for as
long as possible, reflecting it only when it is in a form that the user needs to
solve directly. The difference between the two approaches can be seen in Fig. 1.

Real

Reflected

Real

Reflected

Computation

Time Reification

Proof

ReflectionX

X X X

Fig. 1. Our approach (top) vs. standard reflection (bottom)

7 Typechecker

The typechecker produces assertions that, if satisfied, prove that an expression
will always evaluate to a value.

In the C light abstract syntax produced by CompCert from C source code,
every subexpression is syntactically annotated with a C-language type, accessed
by (typeof e). Thus our typing judgment does not need to be of the form Δ � e :
τ , it can be Δ � e, meaning that e typechecks according to its own annotation.

We define a function to typecheck expressions with respect to a type context:

Fixpoint typecheck-expr (Δ : tycontext) (e: expr) : tc-assert :=
let tcr := typecheck-expr Δ in match e with
| Econst-int -(Tint ---) ⇒ tc-TT
| Eunop op a ty ⇒ tc-andp

(tc-bool (isUnOpResultType op a ty) (op-result-type e)) (tcr a)
| Ebinop op a1 a2 ty ⇒ tc-andp

(tc-andp (isBinOpResultType op a1 a2 ty) (tcr a1)) (tcr a2)
... end.

This function traverses expressions emitting conditions that ensure that the ex-
pressions will evaluate to a value in a correctly typed environment. The type-
checker is actually a mutually recursive function: one function typechecks rvalues
and the other typechecks lvalues. For convenience, this paper only discuss rval-
ues. Although CompCert’s operational semantics are written as an inductive
Coq type, they also have parts that are computational. For example, when we
need to typecheck operation expressions, we use functions from CompCert that
classify them. The following function is used to typecheck binary operations:

26 J. Dodds and A.W. Appel

Definition isBinOpResultType op a1 a2 ty : tc-assert :=
match op with
| Oadd ⇒ match classify-add (typeof a1) (typeof a2) with

| add-default ⇒ tc-FF
| add-case-ii - ⇒ tc-bool (is-int-type ty)
| add-case-pi - -⇒ tc-andp (tc-isptr a1) (tc-bool (is-pointer-type ty))

... end
... end.

Classification functions determine which of the overloaded semantics of oper-
ators should be used. These semantics are determined based on the types of the
operands. The C light operational semantics uses the constructors (add-case-ii,
add-case-pi, (and so on)) to choose whether to apply integer-integer add (ii),
pointer-integer add (pi), and so on. The typechecker uses the same constructors
add-case-ii, add-case-pi, to choose type-checking guards, as shown above.

Despite the reuse of CompCert code on operations, the bulk of the type-
checker’s code checks binary operations. This is because of the operator over-
loading on almost every operator in C. The typechecker looks at eight types of
operations (shifts, boolean operators, and comparisons can be grouped together
as they have the exact same semantics with respect to the type returned). Each
of these has approximately four behaviors in the semantics giving a total of
around thirty cases that need to be handled individually for binary operations.

The code above is a good representation of how the typechecker is imple-
mented. The first step is to match on the syntax. Next, if the expression is
an operation, we use CompCert’s classify function to decide which overloaded
behavior to use. From there, we generate the appropriate assertion.

8 Soundness

The soundness statement for our typechecker is:

Theorem 1. If the dynamic environment ρ is well typed with respect to the
static type context Δ (Section 5), and the expression e typechecks with respect
to Δ producing an assertion that in turn is satisfied in ρ, then the value we get
from evaluating e in ρ (Section 3) will match the type that e is labeled with.

typecheck-environ ρ Δ = true → denote-tc-assert (typecheck-expr Δ e) ρ →
typecheck-val (eval-expr e ρ) (typeof e) = true.

This guarantees that an expression will evaluate to the right kind of value:
integer, or float, or pointer. As a corollary we guarantee the absence of Vundef,
which has no type.

The proof proceeds by induction on the expression. One of the most difficult
parts of the soundness proof is the proofs about binary operations. We need to
prove that when a binary operation typechecks it evaluates to a value as a case
for the main soundness proof. The proof is difficult because of the number of

Mostly Sound Type System Improves a Foundational Program Verifier 27

cases. When all integers and floats of different sizes and signedness are taken
into account, there are seventeen different CompCert types. This means that
there are 289 combinations of two types. A proof needs to be completed for each
combination of types for all seventeen C light operators, leading to a total of
4913 cases that need to be proved. Each proof requires a decent amount of work,
so the amount of memory taken by the proof becomes a problem. We use lemmas
to group some of the cases together to keep the proof time reasonable.

These cases are not all written by hand: we automate using Ltac. Still, the
proofs are large, and Coq takes almost 4 minutes to process the file containing
the binary operation proofs.

9 A Tactical Proof

In this section, we apply our C light program logic to verify a simple C program
interactively in Coq. We will verify the C program:

int assigns (int a) { int b, c; c = a∗a; b = c/3; return b; }
We begin by passing our program through the CompCert clightgen tool to

create a file that we can read into Coq. The next step is to specify our program.
The specification for this program is:

Δ � {Vint(v) = eval a ρ} assigns . . . {retval ρ = Vint((v ∗ v)/3)}

Barring any unexpected evaluation errors, we expect this specification to hold.
The specification states that in an arbitrary initial state, the program will either
infinite loop or terminate in a state in which retval = (a∗a)/3. For this example
we will focus on proving the specification of the function body:

Lemma body-test : semax-body Vprog Gtot f-assigns assign-spec.
Proof. start-function. name a -a. name b -b. name c -c.

forward. forward. go-lower. normalize. solve-tc. forward. go-lower.
(∗ ... prove that the function-body postcondition implies the
function-specification postcondition ... ∗) Qed.

The function semax-body creates a triple for a function body given a list of
global variable specifications (Vprog, the empty list), a list of global function
specifications (Gtot, list of this function and main), the pointer to the function
(f-assigns, pointer from program .v file), and a specification (assign-spec, the Coq
version of the triple shown above). The tactic start-function unfolds semax-body
and ensures that the precondition is in a usable form. The relation semax defines
the triple we have seen throughout the paper.

The name tactic, and the name hypotheses it generates, relate variable names
to value names. For example -a is the name of the variable a in the program.
The tactic name a -a tells the tactics that values associated with evaluating -a
should be called a.

We will examine the proof state at a few points to highlight the forward and
go-lower tactics and show goals generated by the typechecker. We have replaced

28 J. Dodds and A.W. Appel

C light AST with C-like syntax in the lines marked (∗pseudocode ∗). Assertions
are in a canonical form, separated into PROP (propositions that don’t require
state), LOCAL (assertions lifted over the local environment), and SEP (separation
assertions over memory). Empty assertions for any of these mean True.

a : name -a
b : name -b
c : name -c
Δ := initialized -c (func-tycontext f-assigns Vprog Gtot) : tycontext
============================
semax Δ (PROP ()

LOCAL (‘eq (eval-id -c) (eval-expr(-a ∗ -a)); (‘eq (eval-id -a) v)) SEP ())
(-b = -c / 3; return -b;) (∗ pseudocode standing for C-light AST ∗)
(function-body-ret-assert tint (-a ∗ -a / 3) = retval)

Above is the state after we apply forward for the first time. This tactic performs
forward symbolic execution using Coq tactic programs, as various authors have
demonstrated [1,9,5,17]. In effect, forward applies the appropriate Hoare rule for
the next command, using the sequence rule if necessary. The backtick (‘) is the
“lifting” coercion of Bengtson et al. [5]. function-body-ret-assert tells us that our
postcondition talks about the state when the program returns successfully. A
program that does not return successfully will not satisfy this triple.

The forward tactic makes a decision when it sees an assignment. In general,
it uses the Floyd assignment rule that existentially quantifies the “old” value
of the variable being assigned to (in this case c). It needs to do this because
otherwise we would lose information from our precondition by losing the old
value of c. This means the postcondition would end up in the form ”∃ old, ...”.
If the variable doesn’t appear in the precondition, however, the existential can
be removed because it will never be used. The forward tactic checks to see if it
needs to record the old value of the variable or not. In this case, it sees that c is
not in the precondition and does not record its old value.

In the proof so far (after symbolic execution of the command c=a∗a;) we have
not yet seen a typechecking side condition—not because they were automatically
solved, but because they were never generated in the first place. They were
checked computationally, but no assertion about them is given. The condition
that a be initialized immediately evaluates to True and is dispelled trivially.

Finally we notice that Δ has been updated with initialized -c. This was done
by the sequence rule as discussed in Section 5.

Applying forward again gives the following separation-logic side condition:

a : name -a
b : name -b
c : name -c
Δ := initialized -b (initialized -c (func-tycontext f-assigns Vprog Gtot) : tycontext
============================
PROP() LOCAL(tc-environ Δ; ‘eq (eval-id -c) (eval-expr (-a ∗ -a)); (‘eq (eval-id -a) v))
SEP(‘TT) � local (tc-expr Δ (-c / 3)) && local (tc-temp-id -b tint Δ)

This is an entailment, asking us to prove the right hand side given the left
hand side. We need to show that the expression on the right hand side of the

Mostly Sound Type System Improves a Foundational Program Verifier 29

assignment typechecks, and that the id on the left side typechecks. We would
expect to see that: c is initialized, 3 �= 0 and ¬(c = min int ∧ 3 = −1).

Why is it useful to have tc-environ Δ? This entailment is lifted (and quantified)
over an abstract environ ρ; if we were to intro ρ and make it explicit, then we
would have conditions about eval-id -c ρ, and so on. To prove these entailments,
we need to know that (eval-id -a ρ) and (eval-id -c ρ) are defined and well-typed.

In a paper proof it is convenient to think of an integer variable -a as if it
were the same as the value obtained when looking -a up in environment ρ—we
write this (eval-id -a ρ). In general, we can not think this way about C programs
because in an arbitrary environment, -a may be of the incorrect type or unini-
tialized. In an environment ρ that typechecks with respect to some context Δ,
however, we can bring this way of thinking back to the user. Our automatic
go-lower tactic, after introducing ρ, uses the name hints to replace every use of
(eval-id -a ρ) with simply a, and it proves a hypothesis that the value a has the
expected type. In the case of an int, it does one step more: knowing that the
value (eval-id -a ρ) typechecks implies it must be Vint x for some x, so it intro-
duces a as that value x. (Again, the name a is chosen from the hint, a: name -a.)
Thus, the user can think about values, not about evaluation, just as in a paper
proof. Our go-lower tactic, followed by normalize for simplification converts the
entailment into

c : int
a : int
H0 : Vint c = Vint (Int.mul a a) (∗simplified∗)
============================
denote-tc-nodivover (Vint c) (Vint (Int.repr 3))

All we are left with is the case that the division doesn’t overflow. The other
conditions (c is initialized, 3 �= 0) have computed to True and simplified away.
We can no longer see the variables -c and -a.

Now we can apply some simple Boolean rewrite rules with solve-tc and solve
the goal. Not all typechecker-introduced assertions will be so easy to solve, of
course; in place of solve-tc the user might have to do some real work.

The rest of the proof advances through the return statement, then proves that
the postcondition after the return matches the postcondition for the specifica-
tion. In this case it is easy, just a few unfolds and rewrites.

10 Related Work

Frama-C is a framework for verifying C programs [12]. It presents a unified
assertion language to enable static analysis cooperation. The assertion language
allows users to specify only first-order properties about programs, and does not
include separation logic. The Value analysis [8] uses abstract interpretation to
determine possible values, giving errors for programs that might have runtime
errors. The WP plugin uses weakest precondition calculus to verify triples. WP
is only correct when first running Value which may result in some verification

30 J. Dodds and A.W. Appel

conditions that can then be verified byWP along with the function specifications.
Frama-C does not seem to have any soundness proof.

VCC is a verifier for concurrent C programs. It works by translating C pro-
grams to Boogie, which is a combination of an intermediate language, a VC
generator, and an interface to pass VCs off to SMT solvers such as Z3. VCC
adds verification conditions that ensure that expressions evaluate.

Greenaway et al. [14] show a verified conversion from C into a high-level speci-
fication that is easy for users to read. They do this by representing the high-level
specification in a monadic language. They add guards during their translation
out of C in order to ensure expression evaluation (this is done by Norrish’s C
parser [18]). Many of these guards will eventually be removed automatically.
Their tool is proved correct with respect to the semantics of an intermediate
language, not the semantics of C. The expression evaluation guards are there
to ensure that expressions always evaluate in the translated program, because
there is no concept of undefined operations in the intermediate language. With-
out formalized C semantics, however, the insertion of guards must be trusted to
actually do this. This differs from our approach where the typechecker is proved
sound with respect to a C operational semantics; so we have more certainty that
we have found all the necessary side conditions. Another difference is that they
produce all the additional guards and then solve most of them automatically,
while we avoid creating most such assertions. Expression evaluation is not the
main focus of Greenaway’s work, however, and the ideas presented for simplifying
C programs could be useful in conjunction with our work.

Bengtson et al. [5] provide a framework for verifying correctness of Java-like
programs with a higher-order separation logic similar to the one we use. They
use a number of Coq tactics to greatly simplify interactive proofs. Chlipala’s
Bedrock project [9] also aims to decrease the tedium of separation logic proofs
in Coq, with a focus on tactical- and reflection-based automation of proofs about
low level programs. Bengtson operates on a Java-like language and Chlipala uses
a simple but expressive low-level continuation-based language. Earlier versions
of our work (Appel [1]) used a number of tactics to automate proofs as well. In
this system, the user was left with the burden of completing proofs of expression
evaluation.

The proof rules we use in this paper are also used in the implementation
of a verified symbolic execution called VeriSmall [3]. VeriSmall does efficient,
completely automatic shape analysis.

Tuerk’s HolFoot [19] is a tactical system in HOL for separation logic proofs in
an imperative language. Tuerk uses an idealized language “designed to resemble
C,” so he did not have to address many of the issues that our typechecker resolves.

One of Tuerk’s significant claims for HolFoot is that his tactics solve purely
shape-analysis proofs without any user assistance, and as a program specifica-
tion is strengthened from shape properties to correctness properties, the system
smoothly “degrades” leaving more proof obligations for the interactive user. This
is a good thing. As we improve our typechecker to include more static analysis,
we hope to achieve the same property, with the important improvement that

Mostly Sound Type System Improves a Foundational Program Verifier 31

the static analysis will run much faster (as it is fully reified), and only the user’s
proof goals will need the tactic system.

Our implementation of computational evaluation is similar to work on exe-
cutable C semantics by Ellison and Rosu [13] or Campbell [7]. Their goals are
different, however. Campbell, for example, used his implementation to find bugs
in the specification of the CompCert semantics. We, on the other hand, are
accepting the CompCert semantics as the specification of the language we are
operating on. Ellison and Rosu have the goal of showing program correctness,
which is a similar goal to ours. They show program correctness by using their
semantics as a debugger or an engine for symbolic execution.

11 Conclusion

By integrating a typechecker with a program logic, we improve the usability of the
logic. Our system maintains type and initialization information through a Hoare-
logic proof in a continuously reified form, leading to efficiency and improved
automation. Automatic maintenance of the well-typedness of the local-variable
environment (tc-environ) makes it easy to discharge “trivial” (but otherwise an-
noying) subgoals. We have a proof of soundness of the whole system (w.r.t. the
CompCert C operational semantics) even though C does not actually have a sound
type system.

We have used the tool to prove full functional correctness of programs such
as list sum, list reverse, imperative thread queue, and object-oriented message
passing.We are currently working on safety and correctness of an implementation
of the SHA-256 hash function.

Our style of integrating a static analysis with a program logic should not
be limited to a typechecker. Many of the ideas presented in this paper could
be used to integrate other static analyses with program logics. Symbolic execu-
tion, abstract interpretation, and more (or less) sound typecheckers could all be
integrated in a similar fashion.

Acknowledgments. This material is based on research sponsored by the Air
Force Office of Scientific Research under agreement FA9550-09-1-0138 and by
DARPA under agreement number FA8750-12-2-0293. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes not
withstanding any copyright notation thereon. The views and conclusions con-
tained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of
DARPA of the U.S. Government.

References

1. Appel, A.W.: Tactics for separation logic (2006)
2. Appel, A.W.: Verified Software Toolchain. In: Barthe, G. (ed.) ESOP 2011. LNCS,

vol. 6602, pp. 1–17. Springer, Heidelberg (2011)

32 J. Dodds and A.W. Appel

3. Appel, A.W.: VeriSmall: Verified Smallfoot shape analysis. In: Jouannaud, J.-P.,
Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 231–246. Springer, Heidelberg
(2011)

4. Appel, A.W., Dockins, R., Hobor, A., Beringer, L., Dodds, J., Stewart, G., Blazy,
S., Leroy, X.: Program Logics for Certified Compilers. Cambridge (to appear, 2014)

5. Bengtson, J., Jensen, J.B., Birkedal, L.: Charge! A framework for higher-order
separation logic in Coq. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406,
pp. 315–331. Springer, Heidelberg (2012)

6. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidel-
berg (2005)

7. Campbell, B.: An executable semantics for compCert C. In: Hawblitzel, C., Miller,
D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 60–75. Springer, Heidelberg (2012)

8. Canet, G., Cuoq, P., Monate, B.: A value analysis for C programs. In: Ninth Source
Code Analysis and Manipulation, pp. 123–124. IEEE (2009)

9. Chlipala, A.: Mostly-automated verification of low-level programs in computational
separation logic. In: PLDI 2011, pp. 234–245 (2011)

10. Chlipala, A.: Reflection. In: Certified Programming With Dependent Types. MIT
Press (2013)

11. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

12. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012)

13. Ellison, C., Roşu, G.: An executable formal semantics of C with applications.
In: Proceedings of the 39th Symposium on Principles of Programming Languages
(POPL 2012), pp. 533–544. ACM (2012)

14. Greenaway, D., Andronick, J., Klein, G.: Bridging the gap: Automatic verified
abstraction of C. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp.
99–115. Springer, Heidelberg (2012)

15. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 578–580 (1969)

16. Leroy, X.: The CompCert verified compiler, software and commented proof (June
2013), http://compcert.inria.fr

17. McCreight, A.: Practical tactics for separation logic. In: Berghofer, S., Nipkow,
T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 343–358.
Springer, Heidelberg (2009)

18. Norrish, M.: C-to-isabel parser (2013),
http://www.ssrg.nicta.com.au/software/TS/c-parser/

19. Tuerk, T.: A formalisation of Smallfoot in HOL. In: Berghofer, S., Nipkow, T., Ur-
ban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 469–484. Springer,
Heidelberg (2009)

http://compcert.inria.fr
http://www.ssrg.nicta.com.au/software/TS/c-parser/

Computational Verification

of Network Programs in Coq

Gordon Stewart�

Princeton University

Abstract. We report on the design of the first fully automatic, machine-
checked tool suite for verification of high-level network programs. The
tool suite targets programs written in NetCore, a new declarative net-
work programming language. Our work builds on a recent effort by Guha,
Reitblatt, and Foster to build a machine-verified compiler from NetCore
to OpenFlow, a new protocol for software-defined networking.

1 Introduction

The past few years have witnessed a groundswell of interest in software-defined
networks (SDNs), as evidenced by the popularity of new standards for pro-
grammable networking such as OpenFlow [9]. In an SDN, rules for packet pro-
cessing still live on network switches with dedicated hardware, as in traditional
networks (data plane). But unlike in traditional networks, SDNs allow decisions
about when and how to update network policies in response to network events
(control plane) to be handled by a dedicated controller program running on
one or more general-purpose computers. The controller machine(s) and switches
interoperate via an open standard, such as OpenFlow, that allows on-the-fly
switch re-programming via special configuration or control messages.

Several recent research efforts have capitalized on the modular structure of
SDNs to build new high-level programming languages for networks, such as Net-
tle [13], Frenetic [2], and NetCore [10]. These high-level languages, which are
typically compiled to low-level OpenFlow forwarding rules, are characterized by
a focus on declarative and modular programming of network policies: The pro-
grammer defines what a particular policy is, not how it is implemented; and
programs are constructed by composing small, reusable components. These two
features of the new breed of network languages make them an ideal target for
program verification. Yet there have been few, if any, efforts to-date to build
verification tools for network programs written in these languages.

As an initial foray, this paper presents the first machine-certified toolset for
verifying network programs written in a high-level network programming lan-
guage. We build on recent work by Monsanto et al. [10], which defined the syn-
tax and semantics of the network programming language NetCore, and on work
by Guha, Reitblatt, and Foster [3], which presented a Coq formalization of Net-
Core and of a lightweight version of the OpenFlow protocol called Featherweight

� Supported in part by the National Science Foundation under grant CNS-0910448.

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 33–49, 2013.
c© Springer International Publishing Switzerland 2013

34 G. Stewart

OpenFlow. Drawing on the NetCore compilation algorithm of Monsanto et al.,
Guha et al. formalized these models in Coq in order to verify the correctness
of a compiler and runtime for NetCore targeting Featherweight OpenFlow. The
result of their work was a fully machine-verified network programming platform
that targeted actual switch hardware.

In this paper we start where Guha et al. left off, by building a suite of tools for
verifying properties of the NetCore programs that are the input to their verified
compiler. For many concrete network specifications—for example, reachability
or security specifications targeting a particular network topology with known
port identifiers—our verification tools are fully automatic: In order to prove the
specification {P} pg {Q} of NetCore program pg , we calculate the weakest pre-
condition wp(pg , Q) of Q given pg . Then we verify that P implies wp(pg , Q) by
checking the implication P =⇒ wp(pg , Q) in a special-purpose resolution the-
orem prover coded in Gallina, the functional programming language embedded
within Coq. Because all of our tools are proved sound in Coq with respect to
an extension of the NetCore semantics presented by Guha et al. [3], we end
up with a fully automatic verification toolset that when connected to Guha et
al.’s verified compiler will provide strong guarantees on the correctness of gen-
erated OpenFlow programs. To demonstrate our tool suite, we use it to verify a
multiplexing network address translation module (§5).

Contributions. The novel contributions of this paper are the following.

1. We develop the first suite of machine-checked tools for verifying correctness
and security properties of network programs written in a high-level program-
ming language (NetCore) targeting an open SDN platform (OpenFlow).

2. To fully automate proofs of NetCore specifications within our system, we
develop (§3) two related weakest precondition calculi for NetCore, and build
a special-purpose resolution theorem prover, in Coq’s Gallina language, for
checking entailments of NetCore program specifications. We prove the reso-
lution prover sound in Coq, and the weakest precondition calculi both sound
and complete, with respect to the NetCore semantics.

3. Because our tool suite targets an extension of the NetCore semantics of Guha
et al. [3], it can be connected to Guha et al.’s verified NetCore compiler to
provide strong guarantees on generated OpenFlow programs. However, we
have not yet fully integrated the Coq proofs of our NetCore verifier with
those of Guha et al.’s NetCore compiler due to engineering concerns.

4. We use the tool suite to verify correctness and security properties of a net-
work address translation module (§5). Section 8 describes additional
applications.

An alternative to checking entailments within Gallina using a custom theo-
rem prover is to send verification conditions to an external first-order prover or
SMT solver, and then to check proof certificates post hoc. We prefer the Gallina
approach for two reasons. First, implementing the entailment checker in Gallina
means we can prove it sound once and for all. In the certificate checking ap-
proach, the potential for soundness bugs in an external tool means that program

Computational Verification of Network Programs in Coq 35

verification may fail unnecessarily when a bad certificate is detected. Second,
building a custom entailment checker means that we can apply domain-specific
reasoning in ways that may not be directly exploited by an external tool. The
final few paragraphs of Section 3 provide one such example, in which we ex-
ploit Coq’s theory of inductive datatypes in order to reason constructively by
inversion, without explicit first-order inversion laws. There are of course dis-
advantages to using a special-purpose entailment checker as well: our tool is
necessarily much less sophisticated than state-of-the-art provers such as Z3 [1].
However, it is still sufficient to discharge the verification conditions that arise
when verifying a range of network programs, as later sections of this paper will
demonstrate.

The Coq Development. This paper is closely tied to a mechanized proof develop-
ment in Coq, which can be downloaded from the address below.1 In code listings,
line numbers refer to the corresponding files in the mechanized development.

2 Software-defined Networking

In a traditional network, control logic is distributed among a number of physi-
cally distinct routers and switches, each with its own flow table. The flow tables
define how packets are processed and forwarded through the router or switch,
and are typically implemented using dedicated hardware such as ternary content
addressable memories (TCAMs), in order to process packets at line rate.

Fig. 1. A software-defined network with a
single switch (center), two endhosts (H1,
H2), a middlebox that performs intrusion
detection (IDS), and a general-purpose
controller machine

Software-defined networks differ
from traditional networks by splitting
the control plane from the data plane,
providing logically centralized control
in the form of a general-purpose con-
troller. The controller, which is con-
nected to the switches over a secure,
special-purpose link, decides when
and how to update the flow rules in-
stalled on the switches in response to
network packets and other network
events.

High-level network programming
languages such as NetCore build
another layer of abstraction above
software-defined networking platforms
such as OpenFlow. Network programs in NetCore are built from small, reusable
packet-processing actions that are composed both in sequence—in order to apply
multiple modifications, in order, to a single packet—and in parallel—in order to
apply multiple forwarding or modification rules to multiple copies of a single
packet. In order to scope the applicability of a network program constructed in

1 http://www.cs.princeton.edu/~jsseven/papers/netcorewp

36 G. Stewart

this manner, NetCore programs can be restricted by predicates on the location
and header fields of network packets. For example, it is good style in NetCore
to write, e.g., a forwarding policy for HTTP traffic first as if it applied to all
packets, and then to restrict the resulting policy just to those TCP packets that
have port tcpDst = 80.

Example. To make this concrete, consider the simple network topology depicted
in Figure 1. The network, which is adapted from Guha et al. [3], comprises a
single switch S1 connected to two endhosts H1 and H2, a middlebox IDS that
performs intrusion detection, and a controller. The endhosts are connected to
the switch on ports 1 and 2 respectively, while IDS is connected on port 3. The
controller machine is connected to the switch via a special-purpose link.

Now imagine we want to impose the following traffic policy, also adapted from
Guha et al. [3]: HTTP traffic on TCP port 80 gets forwarded to IDS (as well
as to its original destination), SSH traffic is dropped, and all other traffic gets
forwarded to the appropriate endhost. In an SDN platform like OpenFlow, this
policy would be defined as a set of flow tables, or packet forwarding rules—one
set of rules for each switch. For example, the following rule expressed in Guha et
al.’s notation causes SSH traffic to be dropped: Add 10 {tcpDst = 22} {| |}. The
10 after Add is the rule’s priority. On the switch, any rules with lower priority
will be applied only if this rule fails to fire. The expression tcpDst = 22 is a
pattern: it limits the applicability of the rule to packets with TCP destination
port equal to 22. The expression {| |} denotes the empty multiset of ports. It
specifies that packets matching the pattern should be forwarded along no ports
(that is, they should be dropped). After configuring this rule on the switch, an
OpenFlow implementation of the high-level policy would add lower-priority rules
for forwarding HTTP traffic to IDS and to the appropriate endhost, in addition
to even lower priority rules for forwarding the remaining traffic.

NetCore. While SDN platforms such as OpenFlow give programmers a great deal
of flexibility when configuring networks, writing network controllers in OpenFlow
is still quite painful. In addition to the actual forwarding logic of the network
application, the programmer must keep track of numerous low-level details such
as dependencies between rule priorities. He also must determine (manually) on
which switch to install each forwarding rule. In essence, the programmer is writ-
ing a low-level distributed program by hand. This can become quite a difficult
task, especially as networks scale to tens or hundreds of switches.

High-level SDN programming languages such as NetCore mitigate many of
these challenges by providing a programming model that is at once more declar-
ative and more modular than those provided by traditional SDN platforms.
NetCore, for example, provides as one of its key abstractions the notion of
whole-network programmability: instead of defining forwarding rules for partic-
ular switches, a NetCore program defines the behavior of the entire network all
at once. The NetCore compiler and runtime system determine on which switch
to install each rule, and with what priority.

Computational Verification of Network Programs in Coq 37

103 (* basic actions *)

104 Inductive action :=

105 | Id: action
106 | UpdIpSrc: Word32.t → action | UpdTcpSrc: Word16.t → action
107 | UpdIpDst: Word32.t → action | UpdTcpDst: Word16.t → action
108 | Fwd: Word16.t → action | Drop: action.
116 (* selected packet patterns *)

117 Inductive ppat :=

124 | DlSrc: Word48.t → ppat (*MAC src*)

125 | DlDst: Word48.t → ppat (*MAC dst*)

133 | TpSrc: Word16.t → ppat (*TCP src*)

134 | TpDst: Word16.t → ppat (*TCP dst*)

140 (* atomic predicates *)

141 Inductive atom :=

142 | Wild: atom | Location: lpat → atom | Packet: ppat → atom.

146 (* Boolean predicates *)

147 Inductive pred :=

148 | Atom: atom → pred
149 | And: pred → pred → pred | Or: pred → pred → pred
150 | Not: pred → pred.
154 (* NetCore programs *)

155 Inductive prog :=

156 | Act: pred → action → prog | Restrict: prog → pred → prog
157 | Par: prog → prog → prog | Seq: prog → prog → prog.

Listing 1. Excerpts from the syntax of NetCore (src/NetCoreSyntax.v)

To illustrate, consider the following implementation in NetCore, the syntax
of which is given in Listing 1, of the high-level policy for the network in Fig-
ure 1.2 First, we define the rules that establish point-to-point connectivity in the
network.

18 Definition pg1 := DLDST=H1 ⇒ FWD 1.

For example, program pg1 defines a basic guarded command in NetCore that
forwards to port 1 (FWD 1) any packets satisfying the predicate DLDST=H1,
that is, with destination MAC address equal to H1. Here DLDST=H1 is syntactic
sugar for the atomic predicate Atom (Packet (DlDst (Val H1))) (cf. Listing 1).

In NetCore, we can compose this first program with a second program that
defines the routing policy for host 2 as follows.

21 Definition pg2 := pg1 ’PAR’ DLDST=H2 ⇒ FWD 2.

The combinator ’PAR’, which is infix notation for the Par constructor of List-
ing 1, defines the parallel composition of two NetCore programs. Semantically, it
duplicates its input packets, applying the program on the left (pg1) to one of the
duplicated input packets and the program on the right (DLDST=H2 ⇒ FWD 2)

2 The code that follows can be found in file src/examples/Guha.v in the code distri-
bution that accompanies this paper.

38 G. Stewart

to the other. The result is a set of packets that will be transferred across links
and further processed by other switches in the network, if any.

The resulting program pg2 can be further composed with the routing policy
for the intrusion detection system, resulting in the following program.

24 Definition pg3 := pg2 ’PAR’ TPDST=80 ⇒ FWD 3.

Program pg3 forwards HTTP packets (TPDST=80) to the IDS middlebox on port
3, packets destined for MAC address H1 to host 1, and those destined for MAC
address H2 to host 2.

Finally, in order to satisfy the high-level policy described above we need to
ensure that SSH traffic on port 22 is dropped. In NetCore, this is accomplished
by restricting program pg3 by a predicate that scopes the resulting program.
Packets that do not satisfy the predicate are implicitly dropped.

28 Definition routing := RESTRICT pg3 BY (NOT (TPDST=22)).

Here, RESTRICT pg3 BY (NOT (TPDST=22)) is syntactic sugar for an applica-
tion of the Restrict constructor of Listing 1. This has the effect of applying pg3 to
any packet satisfying the predicate NOT (TPDST=22) (that is, with TCP desti-
nation port not equal to 22) and dropping all other packets (i.e., those on port
22), which is the behavior we intended.

3 Verification

Now that we have defined the routing policy for the network topology in Figure 1,
we can begin proving properties of the resulting network. For example, imagine
we would like to prove that the routing network defined in Section 2 actually does
drop all SSH traffic. For this particular network, the property is of course trivial:
the network program is guarded by a RESTRICT that filters packets satisfying
exactly this predicate! However, for more complicated network programs, secu-
rity properties such as this one can be significantly less obvious. In any case, it
will be instructive to present our verification methodology in the context of this
simple example; we consider more interesting networks and verification problems
in Sections 5 and 8.

In order to state the theorem described informally above, we first briefly de-
scribe the semantics of NetCore programs. In our Coq development, NetCore pro-
grams are interpreted as inductively defined relations on located packets, where
a located packet is a pair of a packet, including its header fields and payload,
and a location, which is a pair of a switch identifier and a port number.3

72 Inductive progInterp: prog → lp → lp → Prop :=

73 (* · · · *)

80 | InterpUpdSrcIp: ∀x x’ ip cond,
81 (predInterp cond x)=true →
82 upd ip src x ip = Some x’ →

3 The semantics of NetCore is defined in file src/NetCoreSemantics.v.

Computational Verification of Network Programs in Coq 39

83 progInterp (Act cond (UpdIpSrc ip)) x x’
84 (* · · · *)

For example, the InterpUpdSrcIp constructor of the relation states that packet x is
related to packet x’ by program Act cond (UpdIpSrc ip)), which in sugared form
is cond => UpdIpSrc ip, if (1) the predicate cond is satisfied by x (predInterp cond

x=true) and (2) updating the IP address of packet x to ip succeeds, resulting in
x’ (our semantics must handle situations in which x is not a valid IP packet, in
which case the upd ip src operation will fail).

A bit more formally now, the security property we would like to prove is:
for all packets x, if (predInterp (TPDST=22) x)=true then progInterp routing x x’

is false. That is, no input packet with TCP destination port equal to 22 is ever
routed as output packet x’. We could state (and prove) this theorem directly, but
instead we will encapsulate the general kind of specification as a Hoare triple,
with the following definition.

120 Definition triple (P: pred) (pg: prog) (Q: pred) :=

121 ∀x y, (predInterp P x)=true →
122 progInterp pg x y →
123 (predInterp Q y)=true.

That is, a program pg satisfies triple P pg Q when it takes packets x satisfy-
ing precondition P (predInterp P x=true) to packets satisfying postcondition Q

(predInterp Q y=true).
Now, with the help of some syntactic sugar for triple P pg Q, we can restate

the theorem as follows. Using our NetCore tool suite, the proof is a single line.

32 Lemma ssh traffic dropped: |- [TPDST=22] routing [NOT WILD].
33 Proof. Time checker. (*0. secs (0.0156001u,0.s)*) Qed.

Here NOT WILD is the representation of False in the NetCore predicate language.
Thus |- [TPDST=22] routing [NOT WILD] states that packets satisfying TPDST

=22 are never routed (i.e., they are always dropped).
To prove this theorem, one could reason from the definitions of the triple |-

[P] pg [Q] and of the interpretation relation progInterp, perhaps proving a few
general-purpose Hoare rules along the way. Indeed, this would be the conven-
tional way to proceed in an interactive proof assistant such as Coq. However, we
would like to automate this proof, and others like it. In general, we will avoid
making use of the semantic meaning of the Hoare triple defined above whenever
possible, instead relying on the computational verification procedure given in
Listing 2.4

The function check takes as arguments a bound n on the number of iterations
of the procedure, a background theory th, the program pg to be verified, and its
specification spec. The main steps of the procedure are the following.

4 The code that follows is found in file src/Checker.v in our source distribution.

40 G. Stewart

1. Calculate wp pg Q, the weakest precondition of the postcondition Q with
respect to program pg. By soundness of the weakest precondition calculus,
|- [wp pg Q] pg [Q]. Thus by the rule of consequence for Hoare triples,
|- [P] pg [Q] if P =⇒ wp(pg, Q).

1138 Definition check (n: nat) (th: pred) (pg: prog) (spec: pred*pred) :=

1139 let P := fst spec in
1140 let Q := snd spec in
1141 let vc := th ’AND’ P ’AND’ (NOT (wp pg Q)) in
1142 go n nil (preprocess (clausify (normalize n vc) nil nil) nil).

Listing 2. Top-level Verification Procedure

2. Prove that P =⇒ wp pg Q. This entails: Encoding the negation5 of the im-
plication P =⇒ wp pg Q as a formula in clausal normal form; Simplifying
the resulting formula by removing tautological and subsumed conjuncts; and
Proving that the resulting simplified formula is unsatisfiable. In the code in
Listing 2, these steps correspond to the calculation of vc and the call to go,
the top-level loop of the resolution prover. In the definition of vc, the negation
of P =⇒ wp pg Q is implicitly simplified to And P (Not (wp pg Q)).

Weakest Preconditions. Of these two steps, the calculation of the weakest pre-
condition of Q with respect to program pg is the most straightforward. Be-
cause NetCore contains no looping constructs, and therefore no loop invariants
are required, we can calculate wp pg Q using the recursive function defined in
Listing 3.

87 Fixpoint wp (pg: prog) (R: pred): pred :=

88 match pg with
89 | Act cond Id => cond =⇒ R
90 | Act cond (Fwd pt) => cond =⇒ subst port pt R
91 | Act cond (UpdIpSrc ip) =>

92 cond =⇒ Atom (Packet IsIp) =⇒ subst ip src ip R
93 (* · · · *)

102 | Act cond Drop => Atom Wild
103 | Restrict pg’ cond => cond =⇒ wp pg’ R
104 | Par pg1 pg2 => wp pg1 R ’AND’ wp pg2 R
105 | Seq pg1 pg2 => wp pg1 (wp pg2 R)
106 end.

Listing 3. Weakest Precondition Calculus for NetCore (excerpt)

For example, the weakest precondition of postcondition R and the the guarded
identity action Act cond Id (in sugared form cond ⇒ Id) is just R, under the as-
sumption that cond evaluates to true (cond =⇒ R). Likewise, the weakest pre-
condition of the parallel composition of two programs pg1 and pg2 (Par pg1 pg2)

5 Although this procedure follows the usual proof-by-contradiction approach of auto-
mated tools for propositional and first-order logic, it can be done without classical
axioms in Coq because the language of NetCore predicates is decidable.

Computational Verification of Network Programs in Coq 41

is just the conjunction of the weakest preconditions of the component programs
(wp pg1 R ’AND’ wp pg2 R), while the weakest precondition of the sequential
composition of pg1 with pg2 is the weakest precondition of pg1 given postcondi-
tion wp pg2 R.

The weakest preconditions of commands that update packet headers or lo-
cations (Fwd, UpdIpSrc, UpdTcpSrc) are calculated as one would calculate the
weakest precondition of an assignment statement in a typical imperative lan-
guage. That is, the weakest precondition of x := e for R is R[e/x]. However,
instead of substituting an expression e for variable x in R, we substitute true
for occurrences of location or packet predicates that are consistent with a packet
modification, and false for any such atomic predicates that are inconsistent. For
example, the following code excerpt (file src/WP.v) performs the substitution
that is required for forwarding actions.

11 Fixpoint subst port (x: Word16.t) (p: pred) {struct p} :=

12 match p with
13 | Atom Wild => Atom Wild
14 | Atom (Location (Switch)) => p
15 | Atom (Location (Port y)) =>

16 if Word16.eq x y then WILD else NOT WILD
17 | Atom (Packet) => p
23 (* · · · *)

24 end.

In our Coq development, we have proved that wp as defined above is both
sound and complete.

257 Lemma wp sound: ∀pg R, |- [wp pg R] pg [R].

445 Lemma wp complete:
446 ∀P pg Q,
447 |- [P] pg [Q] →
448 ∀l, (predInterp P l)=true → (predInterp (wp pg Q) l)=true.

The proof of soundness is straightforward by induction on the program pg. Com-
pleteness requires that the language of predicates be full-featured enough to ex-
press equality on located packets. That is, we must define a predicate Eq x such
that predInterp (Eq x) x’ if, and only if, x=x’. The equality predicate is used in
the Seq case of the proof to constrain intermediate packets.

Resolution. After we have calculated the weakest precondition wp pg Q of post-
condition Q and program pg, we next must check that P entails wp pg Q (in fact,
this implication must be provable in order for |- [P] pg [Q] to hold since wp is
proved complete). Here we resort to resolution [12], a standard method from au-
tomated theorem proving, in order to check the implication automatically within
Gallina.

To do so, we first encode the negation of the implication as a set of clauses,
or disjunctions of logical literals. Literals are, in turn, either positive or negative
(i.e., negated) atomic predicates.

42 G. Stewart

127 Inductive lit := Neg: atom → lit | Pos: atom → lit.

Clauses are defined in the code as lists of literals, and are interpreted as the
following disjunction of their elements.

141 Definition clauseInterp (cl: clause) (l: lp) :=

142 foldInterp (fun p => litInterp p l) orb false cl.

Here the function foldInterp folds an interpretation function (litInterp) and a com-
binator (orb) over the constituent elements of the list (cl), with unit false.

Encoding a formula as a set of clauses entails: (1) Converting the formula to
negation normal form (NNF), by moving negations inwards using De Morgan
equalities; (2) Distributing disjunctions over conjunctions; and (3) Rewriting
the resulting formula as a set of (implicitly conjoined) clauses. Once we have
encoded the negation of the initial implication P =⇒ wp pg Q, together with
the background theory th, as a set of clauses (its so-called clausal normal form)
we simplify the resulting clause set to remove tautologous and otherwise redun-
dant clauses, then begin searching for a contradiction by iterating the following
procedure.

967 Definition step (act pas: list clause): result :=

968 match pas with
969 | nil => if invert act then Unsat else Sat act
970 | nil :: pas’ => Unsat
971 | given :: pas’ =>

972 let act’ := given::act in
973 let resolvents := map condense (resolve given act’ nil) in
974 let resolvents’ := filter (negb ◦ subsumedBy pas) resolvents in
975 Later act’ (pas’ ++ resolvents’)
976 end.

The step function implements a variation of what is known as the given clause
algorithm for saturating a search space by resolution, which was popularized by
the Otter theorem prover [8]. It operates on two sets of clauses: act, the set
of active or usable clauses, and pas, the set of passive clauses that have not yet
taken part in resolution inferences. Initially, all clauses are in pas.

At each iteration of step, we do a case analysis on pas, resulting in a three-
way branch: Either (1) pas is empty, in which case the search space is saturated
(traditional first-order provers would return Sat at this point); or (2) the head
of pas is the “always false” clause nil6 (pas = nil :: pas’); or (3) the given clause
at the head of pas (pas = given :: pas’) contains at least one literal.

Case (3) is the most interesting. Here we add given to act, resulting in the new
clause set act’, then attempt to resolve given with each clause in act’ (resolve
given act’ nil), including itself. The resulting set of resolvents is then condensed
to remove unnecessary duplicate literals (map condense · · ·). Finally, newly re-
solved clauses that are subsumed by clauses already in pas are filtered away as

6 Recall that clauses are interpreted as the disjunction of their component literals,
with unit false; thus the nil clause is never satisfiable.

Computational Verification of Network Programs in Coq 43

redundant (resolvents’ := · · ·) and the resulting set is appended to pas’. The
Later constructor is used to communicate the updated clause set to the main
loop of the prover, which is not shown in the code above.

In case (2), pas contains the nil, or always false, clause. Thus the prover im-
mediately returns Unsat: nil is unsatisfiable.

In case (1), a traditional resolution prover would return Sat: Because resolution
is refutation complete, the procedure is guaranteed to derive the nil clause when
given an unsatisfiable initial clause set. But since all clauses have been processed
(pas is empty) without the nil clause being discovered, it must be the case that
the initial input clause set has a model.

We could stop here. Indeed, standard resolution provers would stop at this
point. Instead, we use the fact that we are constructing a custom prover to build
in an additional level of inference by inversion on inductive types (invert act).

To see why this is useful, consider a clause set act that contains a pair of
singleton clauses asserting TPSRC=22 and TPSRC=80 respectively. Both of these
assertions cannot be true simultaneously. Yet a traditional first-order prover
would not be able to derive a contradiction at this point; the standard inversion
principles we get when reasoning about the inductive packet and nat types in
Coq must first be explicitly added to the prover’s background theory. This can
be done. For example, in this particular case, we can safely add the clause

1 Neg (TPSRC=22) :: Neg (TPSRC=80) :: nil

which asserts that TPSRC=22 and TPSRC=80 cannot be true simultaneously. How-
ever, a set of more general inversion principles would clutter the search space
with many (usually unnecessary) clauses. It is quite convenient, instead, to be
able to do a domain-specific check, at the point at which all other first-order
inferences have been exhausted, for clauses that are incompatible by inversion.

4 Reachability

In Section 3, we described a general methodology for proving theorems of the
form

1 Lemma ssh traffic dropped: |- [TPDST=22] routing [NOT WILD].

in which the triple |- [P] pg [Q] made a claim about all packets that may
result after routing packets satisfying P but did not ensure that at least one such
packet existed. This form of Hoare triple was useful for writing specifications of
security properties such as “all packets with TCP destination port equal to 22
are dropped.” We will see in Section 5 that this triple is also useful for specifying
the security properties of a network address translation module.

However, it is also quite useful when describing high-level properties of a
network to be able to specify reachability, in addition to security properties.
That is, we would like to be able to prove that, given a packet x satisfying some
predicate P, there exists a second packet y such that y satisfies the predicate
Q. Furthermore, it should be the case that progInterp pg x y for the NetCore

44 G. Stewart

program pg in question, i.e., x is actually routed to y by pg. For example, if
P is specialized to PORT=1 and Q is specialized PORT=2, then a reachability
specification for P and Q states that a host located on port 2 is reachable by a
host on port 1.

In order to specify and prove reachability queries of this form, we have adapted
the weakest precondition calculus of Section 3 to the following variation of the
Hoare triple of that section.

130 Definition triple’ (P: pred) (pg: prog) (Q: pred) :=

131 ∀x, (predInterp P x)=true →
132 ∃y, progInterp pg x y ∧ (predInterp Q y)=true.

This Hoare triple states that there exists a y for which progInterp pg x y holds,
and such that predInterp Q y evaluates to true. In what follows, we will use the
notation |-r [P] pg [Q] to denote reachability specifications of this form.

Adapting the weakest precondition calculus of Section 3 to reachability spec-
ifications is reasonably straightforward. For example, here are the weakest pre-
condition rules for Restrict, Par, and Seq.

112 Fixpoint wp’ (pg: prog) (R: pred) :=

113 match pg with
114 (* · · · *)

124 | Restrict pg’ cond => cond ’AND’ wp’ pg’ R
125 | Par pg1 pg2 => wp’ pg1 R ’OR’ wp’ pg2 R
126 | Seq pg1 pg2 => wp’ pg1 (wp’ pg2 R)
127 end.

They are essentially dual to those given by wp of Section 3.
With these definitions in place, we can easily adapt the verification procedures

of Section 3 to prove reachability theorems such as the following.

37 Lemma http reaches ids: |-r [TPDST=80] routing [PORT=3].
38 Proof. Time checker’. (*0. secs (0.u,0.s)*) Qed.

This theorem states that all packets with TCP destination port equal to 80 are
forwarded to port 3, the network location of the intrusion detection middlebox.

5 Network Address Translation

In Network Address Translation (NAT), IP packet headers are modified on the
fly as packets are routed through a network, typically to implement IP sharing.
For example, in private networks, the source IP addresses of packets routed from
internal hosts to hosts outside the private network will be modified to the IP
address of an externally visible router. The result is that only the router need
be assigned a globally unique IP; internal hosts are not directly visible to the
outside world. The technique can be extended to handle multiple internal hosts
by storing information about the sender in an auxiliary field of the packet header.
For example, for TCP traffic, the source port of the sender might be stored as
the TCP source port.

Computational Verification of Network Programs in Coq 45

As a concrete example, consider the network topology depicted in Figure 2.
It consists of a single switch (center), three endhosts (H1-H3), and a general-
purpose controller. The endhosts are connected on ports 1 through 3, while port 4
maintains connectivity with the Internet.

Fig. 2. Network Address Transla-
tion. HTTP packets sent from in-
ternal endhosts to external hosts
(Internet) are multiplexed over the
single external IP address assigned
to a gateway switch (center)

The network policy we would like to im-
plement is: HTTP packets on port 80 des-
tined for external hosts are forwarded to port
4, but only after their source IP address has
been overwritten to ExternalIp, the IP address
of the gateway switch. In order to correctly
multiplex HTTP packets, the network pro-
gram must also update the source TCP port
of outgoing HTTP packets to equal the switch
location of the sending host. Accordingly, in-
coming external HTTP packets should be sent
to the switch port given by the packet’s TCP
destination, but only after the packet’s TCP
and IP fields have been restored. We imple-
ment this policy by combining a number of
small NetCore programs, as follows.

First, we define7 a NetCore program frag-
ment that overwrites a packet’s source IP ad-
dress, then forwards the packet to port 4.

26 Definition pg1 :=

27 WILD ⇒ UPD IP SRC ExternalIp ’SEQ’ WILD ⇒ FWD 4.

Program pg1 can be combined with a parameterized NetCore program that up-
dates a packet’s TCP source field to equal the sender’s switch port, as follows.

36 Definition pg2 (n: Z) :=

37 PORT=n ⇒ UPD TCP SRC n ’SEQ’ pg1.

All together, the rule for outgoing packets is the restriction of pg2, for hosts 1
through 3, to internal packets that are both not located on port 4 and have TCP
destination port equal to 80.

44 Definition outgoing :=

45 RESTRICT (pg2 1 ’PAR’ pg2 2 ’PAR’ pg2 3)

46 BY (NOT PORT=4 ’AND’ TPDST=80).

The rule for incoming packets on port 4 is defined in a similar way, by first
restoring the packet’s IP and TCP destination fields, then forwarding the packet
to the internal port given by the packet’s initial TCP destination field.

Now that we have defined a NetCore program that implements NAT for the
topology given above, we can verify that the program behaves as we expect. For
example, the following lemma states that packets sent by hosts H1 through H3

7 The code that follows is found in src/examples/NAT.v.

46 G. Stewart

are forwarded to port 4, with source IP address modified to equal ExternalIp and
TCP source port set to the host port number h.

95 Lemma nat ok: ∀h, List.In h hosts →
96 |- [PORT=h] incoming ’PAR’ outgoing
97 [NWSRC=ExternalIp ’AND’ TPSRC=h ’AND’ PORT=4].
98 Proof. Time unfold outgoing; check all hosts. Qed.
99 (*Finished transaction in 0. secs (0.3125u,0.s)*)

Here hosts = [1; 2; 3]. The proof of this theorem relies on an additional au-
tomation tactic provided by our Coq library (check all). The check all tactic proves
correctness theorems of the form ∀x, List.In x all → |- [P x] pg [Q x], where
all is a finite multiset of x’s, and P and Q are predicates on x’s. The tactic works
by breaking the theorem down into a finite set of verification conditions, which
are all then proved automatically using the checker tactic of previous sections.

Using a variation of the check all tactic for reachability queries, we can quite
easily prove that TCP packets destined for external hosts are forwarded to port
4 of the gateway.

116 Lemma nat outgoing: ∀h, List.In h hosts →
117 |-r [TPDST=80 ’AND’ PORT=h ’AND’ IS IP ’AND’ IS TCP]
118 incoming ’PAR’ outgoing
119 [PORT=4].
120 Proof. Time check all’ hosts. Qed.
121 (*Finished transaction in 0. secs (0.40625u,0.s)*)

Recall that the outgoing NetCore program updates both the the TCP source
port and the source IP of outgoing packets. Thus the theorem holds only for
packets that are indeed valid TCP/IP packets. Our Coq development proves an
analogous reachability theorem for incoming traffic.

6 Measurements

20
200

2000

0.01 0.10 1.00 10.00 100.00 1000.00

#A
ST

 N
od

es

Time (s)nat_ok nat_ok qed nat_incomingnat_incoming qed nat_outgoing nat_outgoing qed
Fig. 3. NAT timings for 2 to 65 endhosts

To better understand the perfor-
mance profile of our tool suite,
we extended the network address
translation example of the pre-
vious section to scale from 2 to
65 endhosts.8 The plot in Fig-
ure 3 presents timing results, on
a log-log scale, for the NAT secu-
rity and reachability theorems we
stated and proved in the previous
section. The y-axis gives the size
of the verified NAT programs in

8 File src/examples/NATBench.v in our development.

Computational Verification of Network Programs in Coq 47

number of AST nodes. We measured both the time to execute proof scripts in
Coq, and the time to typecheck proof terms at Qed (x-axis).

While these experiments are still quite preliminary, they seem to indicate
that our tool suite is quite suitable for interactive use, at least for moderately
sized programs. Verifications of programs of up to approximately 250 AST nodes
usually took no more than a second or two. On the other hand, there is still
room for improvement. We would like to increase the efficiency of our resolution
backend, by using more efficient data structures and also term orderings. We
also plan to experiment with certificate-producing backends, in order to better
understand the concomitant tradeoffs. For example, it is not immediately clear
which matters more: the time to check proof certificates versus the potential
gains from using a highly tuned external prover.

7 Related Work

There has been a great deal of work on verification of low-level network con-
figurations in recent years [5–7, 11]. VeriFlow [6] uses an incremental analysis
of OpenFlow rule updates to check network invariants such as reachability in
real time. Anteater [7], an earlier effort, reduces verification of data plane invari-
ants to SAT. Header space analysis [5] does static analysis of low-level network
configurations using a geometric abstract domain. Reitblatt et al. [11] apply
techniques from model checking to verify invariants of OpenFlow configurations.
The VeriFlow paper [6] provides a good summary of additional related work.

The techniques described above all operate directly on switch and router con-
figurations, in the form of unstructured flow tables. They therefore incorporate
very little of the high-level structure present in the NetCore programs we an-
alyze in this paper. In addition, our NetCore weakest precondition calculi are
proved complete (and sound) in Coq. The analyses cited above provide no such
formal guarantees. On the other hand, techniques such as header space analy-
sis, which operates on a geometric abstraction of headers as uninterpreted bit
vectors, make fewer assumptions about the underlying network protocols, and
therefore are more general than the analyses we describe in this paper.

8 Conclusions

We have only scratched the surface of potential applications of the verification
techniques we describe in this paper. In our Coq development, we do example
verifications9 of the conditions that arise when proving disjointness of virtual
networks, or VLANs, using the network slice abstraction recently proposed by
Gutz et al. [4]. We have also begun to explore the use of our tool to detect, and
prove the absence of, loops in multi-switch networks, using a static analysis that
depends heavily on our weakest precondition calculus for reachability. Although
this work is still in progress, completeness of the weakest precondition calculus

9 File src/examples/Slice.v.

48 G. Stewart

should allow us to prove the absence of network loops, given a network program
and topology, rather than just detect them, as is done using existing techniques
such as Header Space Analysis [5].

At the same time, our Coq library is still in its early stages, and is therefore
limited in some ways. For example, at the moment we only target static NetCore
programs running on concrete network topologies (that is, in which the number of
switches, ports, and hosts are all known in advance). We would like to experiment
with using the library as a subcomponent of a larger tool suite, in order to do
verification of controller programs that generate streams of NetCore programs
in response to a stream of network input events. In addition, our specification
language currently only targets expressions in the NetCore predicate language.
In the future, we plan to extend it, and the accompanying tool support, to
enable verification of richer properties. Finally, because our NetCore semantics
was defined before Guha et al.’s verified compiler was publically available, it
differs in some details from the Guha et al. implementation. For example, in
order to do proof by reflection in Coq, we specify packets using a fixed-width
machine integer library that supports computable equality, whereas Guha et al.
use an axiomatization of machine words.We also support sequential composition,
whereas Guha et al.’s compiler does not. It is details like these that have so far
prevented complete convergence of our mechanized development with theirs.

Acknowledgments. I am indebted to the members of the Princeton program-
ming languages group for reading and commenting on early versions of this
paper, and to the anonymous reviewers for their insightful comments.

References

1. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

2. Foster, N., Harrison, R., Freedman, M.J., Monsanto, C., Rexford, J., Story, A.,
Walker, D.: Frenetic: A network programming language. In: ICFP (2011)

3. Guha, A., Reitblatt, M., Foster, N.: Machine-verified network controllers. In: PLDI
(2013)

4. Gutz, S., Story, A., Schlesinger, C., Foster, N.: Splendid isolation: A slice abstrac-
tion for software-defined networks. In: Hot Topics in SDNs. ACM (2012)

5. Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: Static checking
for networks. In: NSDI (2012)

6. Khurshid, A., Zhou, W., Caesar, M., Godfrey, P.: Veriflow: Verifying network-wide
invariants in real time. In: Hot Topics in SDNs. ACM (2012)

7. Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, P., King, S.T.: Debugging
the data plane with Anteater. ACM SIGCOMM CCR 41(4) (2011)

8. McCune, W., Wos, L.: Otter: The CADE-13 competition incarnations. JAR 18,
211–220 (1997)

9. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: OpenFlow: Enabling innovation in campus networks.
ACM SIGCOMM CCR 38(2), 69–74 (2008)

Computational Verification of Network Programs in Coq 49

10. Monsanto, C., Foster, N., Harrison, R., Walker, D.: A compiler and run-time system
for network programming languages. In: POPL (2012)

11. Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., Walker, D.: Abstractions for
network update. In: SIGCOMM (2012)

12. Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the ACM 12, 23–41 (1965)

13. Voellmy, A., Hudak, P.: Nettle: Taking the sting out of programming network
routers. In: Rocha, R., Launchbury, J. (eds.) PADL 2011. LNCS, vol. 6539, pp.
235–249. Springer, Heidelberg (2011)

Aliasing Restrictions of C11 Formalized in Coq

Robbert Krebbers

ICIS, Radboud University Nijmegen, The Netherlands

Abstract. The C11 standard of the C programming language describes
dynamic typing restrictions on memory operations to make more effec-
tive optimizations based on alias analysis possible. These restrictions are
subtle due to the low-level nature of C, and have not been treated in a
formal semantics before. We present an executable formal memory model
for C that incorporates these restrictions, and at the same time describes
required low-level operations.

Our memory model and essential properties of it have been fully for-
malized using the Coq proof assistant.

1 Introduction

Aliasing is when multiple pointers refer to the same object in memory. Consider:

int f(int *p, int *q) { int x = *q; *p = 10; return x; }

When f is called with aliased pointers for the arguments p and q, the assignment
to *p also affects *q. As a result, a compiler cannot transform the function body
of f into *p = 10; return (*q);.

Unlike this example, there are many situations in which pointers cannot alias.
It is essential for an optimizing compiler to determine when aliasing cannot occur,
and use this information to generate faster code. The technique of determining
whether pointers are aliased or not is called alias analysis.

In type-based alias analysis, type information is used to determine whether
pointers are aliased or not. Given the following example

float g(int *p, float *q) { float x = *q; *p = 10; return x; }

a compiler should be able to assume that p and q are not aliased as their types
differ. However, the static type system of C is too weak to enforce this restriction
because a union type can be used to call g with aliased pointers.

union { int x; float y; } u = { .y = 3.14 }; g(&u.x, &u.y);

A union is C’s version of a sum type, but contrary to ordinary sum types, unions
are untagged instead of tagged. This means that their current variant cannot be
obtained. Unions destroy the property that each memory area has a unique type
that is statically known. The effective type [6, 6.5p6-7] of a memory area thus
depends on the run time behavior of the program.

The strict-aliasing restrictions [6, 6.5p6-7] imply that a pointer to a variant of
a union type (not to the whole union itself) can only be used for an access (a read

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 50–65, 2013.
c© Springer International Publishing Switzerland 2013

Aliasing Restrictions of C11 Formalized in Coq 51

or store) if the union is in that particular variant. Calling g with aliased pointers
(as in the example where u is in the y variant, and is accessed through a pointer
p to the x variant) thus results in undefined behavior, meaning the program may
do literally anything. C uses a “garbage in, garbage out” principle for undefined
behavior to refrain compilers from having to insert (possibly expensive) checks
to handle corner cases. A compiler thus does not have to generate code that tests
whether effective types are violated (here: to test whether p and q are aliased),
but is allowed to assume no such violations occur.

As widely used compilers (e.g. GCC and Clang) perform optimizations based
on C’s aliasing restrictions, it is essential to capture these in a formal memory
model for C. Not doing so, makes it possible to prove certain programs to be
correct when they may crash when compiled with an actual C compiler.

Approach. The main challenge of formalizing C’s strict-aliasing restrictions is
that both high-level (by means of typed expressions) and low-level (by means of
byte-wise manipulation) access to memory is allowed. Hence, an abstract “Java-
like” memory model would not be satisfactory as it would disallow most forms
of byte-wise manipulation.

Significant existing formal semantics for C (e.g. Leroy et al. [10], Ellison and
Rosu [3]) model the memory using a finite partial function to objects, where each
object consist of an array of bytes. Bytes are symbolic to capture indeterminate
storage and pointer representations. However, because no information about the
variants of unions is stored, this approach cannot capture C’s strict-aliasing
restrictions. We refine this approach in two ways.

– Instead of using an array of bytes as the contents of each object, we use
well-typed trees with arrays of bits that represent base values as leafs.

– We use symbolic bits instead of bytes as the smallest available unit.

The first refinement is to capture strict-aliasing restrictions: effective types are
modeled by the state of the trees in the memory model. Our use of trees also
captures restrictions on padding bytes1 simply because these are not represented.
The second is to deal with bit fields as part of structs (in future work) where
specific bits instead of whole bytes may be indeterminate.

The novelty of our memory model is that it also describes low-level operations
such as byte-wise copying of objects and type-punning. As depicted in Figure 1,
the model has three layers: (a) abstract values: trees with mathematical integers
and pointers as leafs, (b) memory values : trees with arrays of bits as leafs, and
(c) arrays of bits. Memory values are internal to the memory model, and abstract
values are used for its external interface. Pointers are represented by a pair of a
cell identifier and a path through the corresponding memory value.

In order to enable type-based alias analysis, we have to ensure that only under
certain conditions a union can be read using a pointer to another variant than

1 In particular: “When a value is stored in an object of structure or union type,
including in a member object, the bytes of the object representation that correspond
to any padding bytes take unspecified values” [6, 6.2.6.1p6].

52 R. Krebbers

(a)

33 •

(b)

1000010000000000 ································

(c)
1000010000000000 ································

ofval

toval

mtobits mofbits

Fig. 1. The representations of struct { short x, *p; } s = { 33; &s.x }

the current one (this is called type-punning [6, 6.5.2.3]). Since the C11 standard
is unclear about these conditions2, we follow the GCC documentation [4] on it. It
states that “type-punning is allowed, provided the memory is accessed through
the union type”. This means that the function f has defined behavior3:

union U { int x; float y; };

int f() { union U t; t.y = 3.0; return t.x; }

whereas the function g exhibits undefined behavior:

int g() { union U t; int *p = &t.x; t.y = 3.0; return *p; }

We formalize the previously described behavior by decorating the formal defini-
tion of pointers with annotations. Whenever a pointer to a variant of some union
is stored in memory, or used as the argument of a function, the annotations are
changed to ensure that type-punning is no longer possible via that pointer.

We tried to follow the C11 standard [6] as closely as possible. Unfortunately,
it is often ambiguous due to its use of natural language (see the example above,
this message [12] on the standard’s committee’s mailing list, and Defect Report
#260 and #236 [5]). In the case of ambiguities, we tried to err on the side of
caution. Generally, this means assigning undefined behavior.

Related work. The first formalization of a significant part of C is due to Nor-
rish [14] using HOL4. He considered C89, in which C’s aliasing restrictions were
not introduced yet, and thus used a memory model based on just arrays of bytes.
Tuch et al. [18] also consider a memory model based on just arrays of bytes.

Leroy et al. have formalized a large part of a C memory model as part of
CompCert; a verified optimizing C compiler in Coq [11,10]. The first version of
their memory model [11] uses type-annotated symbolic bytes to represent integer,
floating point, and pointer values. This version describes some aliasing restric-
tions (namely those on the level of base types), but at the cost of prohibiting any
kind of “bit twiddling”. In the second version of their memory model [10], type
information has been removed, and symbolic bytes were only used for pointer
values and indeterminate storage. Integers and floating points were represented

2 The term type-punning is merely used in a footnote, but for the related common
initial segment rule, it uses the notion of visible, which is not clearly defined either.

3 Provided size_of(int) ≤ size_of(float) and ints do not have trap values.

Aliasing Restrictions of C11 Formalized in Coq 53

using numeric bytes. We adapt their choice of using symbolic representations for
indeterminate storage and pointers. Moreover, we adapt their notion of memory
extensions [11]. As an extension of CompCert, Robert and Leroy have verified
an untyped alias analysis [16].

Ellison and Rosu [3] have defined an executable semantics of the C11 standard
in the K-framework. Their memory model is based on the CompCert memory
model by Leroy et al. and does not describe the aliasing restrictions we consider.

The idea of a memory model that uses trees instead of arrays of plain bits,
and paths instead of offsets to model pointers, has been used for object oriented
languages before. It goes back to at least Rossie and Friedman [17], and has been
used by Ramananandro et al. [15] for C++. However, we found no evidence in
the literature of using trees to define a memory model for C.

Contribution. This work presents an executable mathematically precise version
of a large part of the (non-concurrent) C memory model. In particular:

– We give a formal definition of the core of the C type system (Section 2).
– Our formalization is parametrized by an abstract interface to allow imple-

mentations that use multiple integer representations (Section 3).
– We define a memory model that describes a large set of subtly interacting

features: effective types, byte-level operations, type-punning, indeterminate
memory, and pointers “one past the last element” (Sections 4 to 6).

– We demonstrate that our memory model is suitable for formal proofs by
verifying essential algebraic laws, an abstract version of memcpy, and an
essential property for aliasing analysis (Section 6).

– All proofs have been formalized using the Coq proof assistant (Section 7).

As this paper describes a large formalization effort, we often just give represen-
tative parts of definitions due to space restrictions. The interested reader can
find all details online as part of our Coq formalization.

Notations. We let Bopt denote the option type, which is inductively defined as
either ⊥ or x for some x ∈ B. We often implicitly lift operations to operate on
the option type, which is done using the option monad in the Coq formalization.
A partial function f : A → Bopt is called finite if its domain dom f is finite. The
operation f [x := y] stores the value y at index x.

2 Types

We treat the most relevant C-types: integers, pointers, arrays, structs, unions,
and the void type. Floating point and function types are omitted as these are
orthogonal to the aliasing restrictions described in this paper. The void type
plays a dual role, it is used for functions without a return value, and for pointers
to data of an unspecified type.

54 R. Krebbers

Definition 2.1. Integer, base, and full types are inductively defined as:

si ∈ signedness ::= signed | unsigned
τi ∈ inttype ::= si k

τb ∈ basetype ::= τi | τ∗
τ ∈ type ::= τb | void | τ [n] | struct s | union u

In the above definition, k ranges over integer ranks (see Section 3), and s, u ∈
tag range over struct and union names (called tags). Environments (Γ ∈ env)
are finite partial functions from tags to lists of types representing struct and
union fields. Since fields are represented using lists, they are nameless. We allow
structs and unions with the same name for simplicity.

The above definition still allows ill-formed types as void[0]. Also, we have to
ensure that cyclic structs and unions are only allowed when recursion is guarded
by a pointer. The type struct T1 { struct T1 x; }; should thus be prohib-
ited whereas struct T2 { struct T2 *p; }; should be allowed.

Definition 2.2. The judgment Γ �b τb describes valid base types, Γ � τ valid
types, and Γ �∗ τ types to which pointers are allowed.

Γ �b τi

Γ �∗ τ

Γ �b τ∗
Γ �b τb

Γ � τb

Γ � τ 0 < n

Γ � τ [n]

Γ s = �τ

Γ � struct s

Γ u = �τ

Γ � union u

Γ �b τb

Γ �∗ τb Γ �∗ void

Γ � τ 0 < n

Γ �∗ τ [n] Γ �∗ struct s Γ �∗ union u

The judgment for well-formed environments Γ valid is defined as:

∅ valid

Γ valid Γ � �τ s /∈ dom Γ 0 < |�τ |
(s : �τ , Γ) valid

Due to the fact that C allows (mutually) recursive struct and union types, we
allow pointers to struct and union types before they are declared in the Γ �∗ τ
judgment. Note that Γ � τ does not imply Γ valid.

Well-formedness of Γ = T2 : [struct T2∗] can be derived using the judgments
∅ �∗ struct T2, ∅ �b struct T2∗, ∅ � struct T2∗, and thus Γ valid. The environment
T1 : [struct T1] is ill-formed because we do not have ∅ � struct T1.

Lemma 2.3. Given an arbitrary set A, and functions fb : basetype → A, fa :
type → N → A → A, fs, fu : tag → list type → list A → A, the function
type iter : env → type → A is total for well-formed environments and types.

type iterΓ τb := fb τb

type iterΓ (τ [n]) := fa τ n (type iterΓ τ)

type iterΓ (struct s) := fs s (Γ s) (type iterΓ (Γ s))

type iterΓ (union u) := fu u (Γ u) (type iterΓ (Γ u))

We often lift type iter Γ to operate pointwise on lists of types.

Aliasing Restrictions of C11 Formalized in Coq 55

The previous lemma is used to define functions where recursion on fields of
unions and structs is needed. Totality is proven by well-founded induction on
the size of the type environment.

Our formalization of the C type system differs in various ways from existing
work. In CompCert [10], fields of structs and unions are not stored in an envi-
ronment, but are stored in the types itself. Hence, instead of having a construct
struct s, they have a construct struct s �τ and a special pointer type struct ptr s
to allow recursive structs. Although this relieves one from having to carry a type
environment around, the main disadvantage is that one has to roll and unroll
types at certain places, and that one loses canonicity.

Affeldt and Marti [1] have also formalized a part of the C type system. Like
us, they use an environment to capture the types of fields of structs, but they
define non-cyclicity of type environments using a complex constraint on paths
through types. Our definition Γ valid follows the structure of type environments,
and seems more easy to use (for example for proving termination of the iteration
function type iter). Also, they omit union types, and do not parametrize by an
abstract interface to allow multiple integer implementations.

3 Integer Arithmetic

In order to make C portable, the C standard gives compilers a lot of freedom to
represent integers and to perform integer arithmetic. First of all, it does not spec-
ify the sizes of integer types. For example, signed int does not necessarily have
to be 32 bits, use two’s complement representation, and be able to exactly hold
values between −231 and 231 − 1. Only some minimum limits are described [6,
5.2.4.2.1]. Secondly, the standard puts few constraints on the way integers are
represented as bits. Thirdly, overflow of signed integers is undefined behavior,
whereas it wraps around modulo for the case of unsigned integers.

In order to capture different integer implementations, our memory model is
parametrized by an abstract interface of integer implementations. This interface
consists of a set K of integer ranks and functions:

char : K endianize : K → list bool → list bool
int : K deendianize : K → list bool → list bool

ptr rank : K int binop ok : inttype → binop → Z → Z → bool
char bits : N≥8 int binop : inttype → binop → Z → Z → Z
rank size : K → N>0 int cast ok : inttype → Z → bool

int cast : inttype → Z → Z

Here, binop is the inductive type of the C binary operations.

op ∈ binop ::= + | - | * | << | >> | / | % | == | <= | < | & | | | ^

Unary operations are derived from the binary operations.
The rank char is the rank of the smallest available integer type, and ptr rank

the rank of the types size_t and ptrdiff_t. At an actual machine char corre-
sponds to a byte, and its bit size is char bits (called CHAR_BIT in the C header
files). The function rank size k gives the byte size of an integer with rank k.

56 R. Krebbers

Since all modern architectures use two’s complement representation, we allow
representations to differ solely in endianness. The function endianize takes a list of
bits in little endian order and permutes them according to the implementation’s
endianness. The function deendianize performs the inverse.

Since we restrict to two’s complement, and do not allow integer representa-
tions to contain padding bits, an x ∈ Z is an integer of type signed k in case
−2char bits∗rank size k−1 ≤ x < 2char bits∗rank size k−1. An x ∈ Z is an integer of type
unsigned k in case 0 ≤ x < 2char bits∗rank size k.

In order to deal with underspecification of operations, our interface not just
contains a function int binop to perform binary operations, but also a predicate
int binop ok τ op x y that describes when op is allowed to be performed on integers
x and y of type τ . This is to allow both strict implementations that make integer
overflow undefined, and those that let it wrap (as for example GCC with the
-fno-strict-overflow flag and CompCert do). This predicate should be at
least as strong as what is allowed by the C standard. Whenever an operation is
allowed by the C standard, the result of int binop τ op x y should correspond to
its specification by the standard.

Integer promotions/demotions should be handled explicitly using casts, for
which we use a similar treatment as for operations.

Finally, a C environment consists of an integer implementation with integer
ranks K, a valid typing environment Γ , and functions sizeof : type → N>0 and
fieldsizes : list type → list N. These functions should satisfy:

sizeof (si k) = rank size k sizeof void = 1 sizeof (τ [n]) = n ∗ sizeof τ
sizeof (struct s) = Σ fieldsizes �τ if Γ s = �τ

sizeof τi ≤ zi for each i < |�τ | and fieldsizes �τ = �z

sizeof τi ≤ sizeof (union u) for each i < |�τ | and Γ u = �τ

We define bitsizeof τ as sizeof τ · char bits. We let sizeof void = 1 so as to capture
that a void pointer can point to individual bytes.

Although the definition of a C environment does not explicitly state anything
about alignment, it is implicitly there. If an implementation has constraints on
alignment, it should set up the function fieldsizes in such a way. Together with
the dynamic typing constraints of the memory (as defined in Section 4) it is
ensured that no improperly aligned stores and reads will occur.

Nita et al. describe a more concrete notion of a C platform than our notion
of a C environment [13]. Important difference are that alignment is implicit in
our definition, that we allow pointers τ∗ whose size can depend on τ , and that
we restrict to 2’s complement.

4 Bits, Bytes and Memory Values

This section defines the internals of our memory model, and the representation of
pointers. In the remainder of this paper we implicitly parametrize all definitions
and proofs by a C environment with ranks K and typing environment Γ .

Aliasing Restrictions of C11 Formalized in Coq 57

struct T {
union U {

signed char x[2]; int y;
} u;
void *p;

} s = {
{ .x = {33,34} }, s.u.x + 2

}

ws =

.0

signed char: 10000100 01000100

void∗: (ptr p)0 (ptr p)1 . . . (ptr p)31

rp p

Fig. 2. A memory value ws with pointer p = (xs, rp, 2)signed short>void on x86

Definition 4.1. Bits, memory values, objects, and memories are defined as:

b ∈ bit ::= β | (ptr p)i | indet
w ∈ mval ::= baseτb

�b | array �w | structs �w | unionu (i, w) | unionu�b
o ∈ obj ::= w | freed τ

Memories (m ∈ mem) are finite partial functions of a countable set of memory
indexes (x ∈ index) to objects.

A bit is either a concrete bit β (with β a Boolean), the ith fragment bit (ptr p)i
of a pointer p (see Definition 4.2 for pointers), or the indeterminate bit indet. As
shown in Figure 2, integers are represented using concrete sequences of bits, and
pointers as sequences of fragments. This way of representing pointers is similar
to Leroy et al. [10], but is on the level of bits instead of bytes.

Memory values are decorated with types, so that we can read off the type
typeof w of each memory value w. As empty arrays are prohibited, we do not
store the element type of the array �w construct. We define the following partial
function:

indextypem x :=

{
typeof w if mx = w

τ if mx = freed τ

We consider two kinds of union values. The construct unionu (i, w) represents

unions that are in a particular variant i, and the construct unionu�b represents
unions whose variant is unknown. Unions of the latter kind can be obtained
by byte-wise copying, and will appear in uninitialized memory. Note that the
variant of a union is internal to the memory model, and should not be exposed
through the operational semantics (as an actual machine does not store it).

Leroy et al. [10] represent pointers as pairs (x, i) where x identifies the object
in the whole memory, and i the offset into that object. Since we use trees as the
contents of objects, we use paths through these trees to represent pointers.

Definition 4.2. References, addresses and pointers are defined as:

r ∈ ref ::= T | r s� i | r u�q i | r n� i

a ∈ addr ::= (x, r, i)τ>σ

p ∈ ptr ::= NULL τ | a

58 R. Krebbers

References are paths from the top of a memory value to a subtree: the con-
struct r

s� i is used to take the ith field of a struct s, the construct r
s�q i to

take the ith variant of a union u (the annotation q ∈ {◦, •} will be explained on

page 60), and the construct r
n� i to take the i element of an array of length n.

We use r1 ++ r2 to denote the concatenation of r1 and r2. We define r : τ � σ
to capture that r is a well-typed reference from type τ to σ.

In order to represent pointers, we have defined a richer structure than ref-
erences, namely addresses. An address (x, r, i)τ>σ consists of: (a) an object
identifier x, (b) a reference r to a subtree of the memory value in the object at
x, (c) an offset i to refer to a particular byte in the subtree at r (note that one
cannot address individual bits in C), (d) the type τ of the subtree, and (e) the
type σ to which the address is cast. The type τ is stored so we do not have to
recompute it when performing a pointer cast.

Typing. We define typing judgments for all of the previously defined structures.
As array indexing in C is performed using pointer arithmetic, we need some
auxiliary operations on references to define the typing judgment of addresses.

refoffset r :=

{
i if r = r′

n� i

0 otherwise
refsize r :=

{
n if r = r′

n� i

0 otherwise

r ⊕ j :=

{
r′

n� i+ j if r = r′
n� i

r otherwise

Definition 4.3. The typing judgment m � a : σ for addresses is defined as:

refoffset r = 0, r : indextypem x � τ, τ > σ, i ≤ sizeof τ · refsize r, sizeof σ | i
m � (x, r, i)τ>σ : σ

Here, i | j means that i is a divisor of j. The relation τ > σ, type τ is pointer
castable to σ, is the reflexive closure of: τ > unsigned char and τ > void.

The premise refoffset r = 0 ensures that r always points to the first element of
an array subobject, the byte index i is then used to select an individual byte (if τ
is unsigned char or void), or an element of the whole array. Adding j to (x, r, i)τ>σ

thus consists of changing the offset into i+ j · sizeof σ instead of moving r. Only
when a pointer is dereferenced, or used for struct or union indexing, we use the
normalized reference r ⊕ i÷ sizeof σ.

An address remains well-typed after the object it points to has been deallo-
cated (indextype is defined on freed objects as well). However, as addresses of
deallocated objects are indeterminate [6, 6.2.4p2], we forbid them to be used for
pointer arithmetic, etc. We use the non-strict inequality i ≤ sizeof τ · refsize r in
the typing rule to allow addresses to be “one past the last element” [6, 6.5.6p8].
We call an address strict if is not “one past the last element” and its object has
not been deallocated.

We define judgments m � p : τ for pointers, m � b valid for bits, m � w : τ for
memory values, and m � o : τ for objects. We display the rule for the construct
unionu�b of a union whose variant is unknown for illustration.

Aliasing Restrictions of C11 Formalized in Coq 59

Γ u = �τ |�τ | �= 1 m � �b valid |�b| = bitsizeof (union u)

m � unionu�b : union u

We exclude unions with only one variant in this rule because their variant is
always known. Validity of memories, notation m valid, is defined as:

∀xw .mx = o → ∃τ .m � o : τ ∧ sizeof τ < 2char bits∗(rank size ptr rank)−1

We need the restriction on the size to ensure that the result of pointer subtraction
is representable by a signed integer of rank ptr rank.

Conversion from and to bits. We compute the bit representation mtobits w of
a memory value w by flattening it and inserting padding bits (as specified by
fieldsizes). The bit representation of ws displayed in Figure 2 is thus:

mtobits ws = 1000010001000100 indet indet . . . indet (ptr p)0 (ptr p)1 . . . (ptr p)31

Likewise, given a type τ and sequence of bits �b, we construct a memory value
mofbits τ �b of type τ by iteration on τ (using Lemma 2.3). In the case of a union
type u, we obviously cannot guess the variant as that information is not stored
in the bit representation, so we use the unionu�b construct.

Notice that mtobits and mofbits are neither left nor right cancellative. We do
not have mofbits τ (mtobits w) = w for each m � w : τ as variants of unions may

have gotten lost, nor mtobits (mofbits τ �b) = �b for each �b with |�b| = bitsizeof τ as
padding bits become indeterminate during the conversion.

Operations. In Section 6 we will define the following memory operations:

1. alloc : mem → index → type → mem allocates a new object.
2. free : mem → index → mem deallocates an object.
3. !! : mem → addr → valopt yields a stored value or fails in case it does not

exist or effective types are violated.
4. [:=] : mem → addr → val → mem stores a value.

Here, val is the data type of abstract values (see Section 5). Many of the above
operations are partial, but are defined using a total function that assigns a default
behavior to ease formalization. For example, alloc should only be used on fresh
indexes, and [:=] should only be used if the address is accessible (i.e.
!! succeeds). Notice that we model an unbounded memory as we consider a

countable set of memory indexes. Formalizing a bounded memory is orthogonal
to the strict-aliasing restrictions, and thus left for future work.

So as to define these operations, we first define variants on memory values,
and lift those to whole memories in Section 6.

60 R. Krebbers

Definition 4.4. The empty memory value new : type → mval is defined as:

new τb := baseτb (indet . . . indet) (bitsizeof τb times)

new (τ [n]) := array (new τ . . . new τ) (n times)

new (struct s) := structs (new τ0 . . . new τn−1) if Γ s = τ0 . . . τn−1

new (union u) :=

{
unionu (0, new τ) if Γ u = τ

unionu (indet . . . indet) (bitsizeof (union u) times) otherwise

The operation new is used to create an empty memory value to implement
alloc. The definition is well-defined for valid types by Lemma 2.3.

Definition 4.5. The operation !! : mval → ref → mvalopt is defined as:

w !! T := w

(array �w) !! (T
n� i ++ r) := wi !! r

(structs �w) !! (T
s� i ++ r) := wi !! r

(unionu (i, w)) !! (T
u�q i ++ r) := w !! r

(unionu (j, w)) !! (T
u�• i ++ r) := (mofbits τi (mtobits w)) !! r if Γ u = �τ , i �= j

(unionu�b) !! (T
u�q i ++ r) := (mofbits τi�b) !! r if Γ u = �τ

The look up operation is taking annotations q on union references r
s�q i into

account: q = • means that we may access a union using a different variant than
the current one (this is called type-punning [6, 6.5.2.3]), and q = ◦ means that
this is prohibited. To enable type-punning, we convert back and forth to bits so
as to interpret the memory value using a different type.

To ensure that type-punning is merely allowed when the memory is accessed
“through the union type” [4], we change all annotations into ◦ whenever a pointer
is stored in memory (see the definition of the function btobits in Section 5) or
used as the argument of a function. This operation is called freezing a pointer,
and the pointers whose annotations are all of the shape ◦ are called frozen.
Frozen pointers cannot be used for type-punning by definition of !! .

The strict-aliasing restrictions [6, 6.5p6-7] state that an access affects the
effective type of the accessed object. Since the word “access” covers both reads
and stores [6, 3.1], this means that not only a store has a side-effects, but also a
read. We factor these side-effects out using a function force : ref → mval → mval
that changes the effective types after a succeeded look up. To define the force and
store operation, we define an auxiliary operation alter f : ref → mval → mval that
applies f : mval → mval to a subtree and changes the effective types accordingly.
The interesting cases for unions are as follows (where Γ u = �τ and i �= j):

alter f (T
u�q i ++ r) (unionu (j, w)) := unionu (i, alter f r (mofbits τi (mtobits w)))

alter f (T
u�q i ++ r) (unionu�b) := unionu (i, alter f r (mofbits τi �b))

Now force r w := alter (λw′ . w′) r w and w[r := w′] := alter (λ .w′) r w.

Aliasing Restrictions of C11 Formalized in Coq 61

5 Abstract Values

The notion of memory values, as defined in the previous section, is quite low-level
and exposes implementation-specific properties as bit representations. These de-
tails should remain internal to the memory model.

Definition 5.1. Base values and abstract values are defined as:

vb ∈ baseval ::= indetτb | intτi i | ptr p | byte�b
v ∈ val ::= vb | array�v | structs �v | unions (i, v) | unionu �v

Abstract values contain mathematical integers and pointers instead of bit
arrays as their leafs. As fragment bits of pointers need to be kept outside of
the memory when performing a byte-wise copy, the byte�b construct still exposes
some low-level details. The typing rule for this construct is:

Not all �b indet Not all �b of the shape β m � �b valid |�b| = char bits

m �b byte�b : unsigned char

This rule ensures that the byte�b is only used if �b cannot be interpreted as an
integer intunsigned char i or indetunsigned char. The judgment m �b vb : τb moreover
ensures that integers intτi i are within range, and pointers ptr p are typed.

The function base binop : binop → baseval → baseval → baseval that performs
a binary operation on base values is defined as:

base binop op (intτb i) (intτb j) := intτ (int binop τb op i j)

base binop + (ptr (x, r, i)τ>σ) (intτb j) := ptr (x, r, i + j · sizeof σ)τ>σ

and so on . . . , together with a predicate base binop ok : binop → baseval →
baseval → bool that describes when it is allowed to perform the operation. Binary
operations are prohibited on indetτb and byte�b constructs.

Base values are converted into bit sequences as follows:

btobits (indetτb) := indet . . . indet (bitsizeof τb times)

btobits (intτi x) := endianize (τi-little endian representation of x)

btobits (ptr p) := (ptr (freeze p))0 . . . (ptr (freeze p))bitsizeof (typeof p∗)−1

btobits (byte�b) := �b

This function will be used to store values in memory (see Definition 6.1), hence
we freeze pointers so as to avoid prohibited type-punning. The inverse function
bofbits is defined in such a way that invalid bit patterns yield an indetτb .

Abstract values contain the construct unionu �v for unions whose variant is
unknown. The values �v correspond to interpretations of all variants of u. Of
course, these values should be consistent in the sense that they can be represented
by the same bit sequence. The typing rule to ensure this is:

Γ u = �τ |�τ | �= 1 m � �b valid |�b| = bitsizeof (union u) ∀i . vi = vofbits τi �b

m � unionu �v : union u

62 R. Krebbers

The operation vofbits to obtain the bit representation of an abstract value, is
defined similarly as its variant mtobits on memory values, but uses bofbits on the
leafs. Obtaining a memory value ofval v and bit representation vtobits v from a
value v is more challenging as the evidence of existence of a bit representation of
a unionu �v construct is only present in the typing judgment, and not in the value
itself. We reconstruct the bits by “merging” the bit representations of all variants
�v. For this, we define a join � on bits satisfying indet � b = b, b � indet = b, and
b � b = b. The case for the unknown union construct is

ofval (unionu (v0 . . . vn−1)) := unionu (vtobits v0 � . . . � vtobits vn−1)

where � is applied pointwise to the bit sequences obtained from vtobits. This
reconstruction is well-defined for well-typed abstract values.

6 The Memory

Now that we have all definitions in place, we can finally combine them to define
the main memory operations. In order to shorten these definitions we lift the
operations !! and [:=] on memory values to whole memories. We define
m !! (x, r) := mx !! r, and m[(x, r) := w] := m[x := (mx)[r := w]]. Notations
are overloaded for conciseness of presentation.

Definition 6.1. The main memory operations are defined as:

m !! (x, r, i)τ>σ :=

⎧⎪⎨
⎪⎩
let r̂ := r ⊕ i÷ sizeof σ, j := i mod sizeof σ in

if τ = σ then toval (m !! (x, r̂))

else vofbits (unsigned char) (jth byte of m !! (x, r̂))

m[(x, r, i)τ>σ := v] :=

⎧⎪⎨
⎪⎩
let r̂ := r ⊕ i÷ sizeof σ, j := i mod sizeof σ in

if τ = σ then m[(x, r̂) := ofval v]

else m[(x, r̂) := set jth byte of m !! (x, r̂) to vtobits v]

force (x, r, i)τ>σ m := let r̂ := r ⊕ i÷ sizeof σ in m[x := force r̂ (mx)]

alloc x τ m := m[x := new τ]

free x m := m[x := freed (indextypem x)]

The lookup operation m !! (x, r, i)τ>σ normalizes the reference r, and then
makes a case distinction on whether a whole subobject or a specific byte should
be returned. In case of the former (i.e. τ = σ), it converts the memory value
m !! (x, r̂) of the subobject in question into an abstract value. Otherwise, it
yields an abstract value representing the jth byte of m !! (x, r̂).

In the Coq development we have proved the expected laws about the interac-
tion between the memory operations. We list some for illustration:

– If m valid, m � a : τ , and m !! a = v, then m � v : τ
– If m valid, m � a : τ , m � v : τ , and m � a′ : σ, then m[a := v] � a′ : σ

Aliasing Restrictions of C11 Formalized in Coq 63

– If m valid, a1 ⊥ a2, m � a2 : τ2, m � v2 : τ2, and m !! a1 = v1, then
m[a2 := v2] !! a1 = v1

Here, a1 ⊥ a2, denotes that a1 and a2 are disjoint, which means that somewhere
along their path from the top of the whole object to their subobject they take a
different branch at an array of struct subobject.

Theorem 6.2 (Strict-aliasing). Given a memory m with m valid, and frozen
addresses m � a1 : σ1 and m � a2 : σ2 such that σ1, σ2 �= unsigned char and σ1

not a subtype of σ2 and vice versa. Now a1 ⊥ a2, or accessing a1 after accessing
a2 and vice versa fails.

Using this theorem, a compiler can optimize the generated code in the example
below based on the assumption that p and q are not aliased.

float g(int *p, float *q) { float x = *q; *p = 10; return x; }

If these pointers are aliased, the program exhibits undefined behavior as both
the read from *q, and the assignment to *p, are considered an access (captured
by the operations force and [:=] respectively).

In order to prove the correctness of program transformations one has to relate
the memory states during execution of the original program to the memory states
during execution of the transformed program. Leroy and Blazy [11] defined the
notions of memory extensions and injections to facilitate this. We adapt memory
extensions to our memory model, and demonstrate it by verifying an abstract
version of the memcpy function that copies an object byte-wise.

A memory extension is a binary relation � on memories. The relation m1 �
m2 captures thatm2 makes more memory contents determinate, and thatm2 has
fewer restrictions on effective types. This means that m2 allows more behaviors.
In order to define � we first define relations �m on bits, abstract values, memory
values, and objects. Some rules of these relations are:

b �m b

m � b valid

indet �m b

w1 �m w2

unionu (i, w1) �m unionu (i, w2)

�b1 �m
�b2

unionu�b1 �m unionu�b2

Γ u = �τ |�τ | �= 1 w �m mofbits τi �b m � �b valid |�b| = bitsizeof (union u)

unionu (i, w) �m unionu�b

The relation m1 � m2 is now defined as for all x and o with m1 x = o1 there
exists an o2 �m2 o1 s.t. m2 x = o2. This relation is a partial order. In order
to use memory extensions to reason about program transformations we have to
prove that all memory operations are respected by it. For example:

– If w1 �m w2 then mtobits w1 �m mtobits w2

– If m1 valid, m1 � m2 and m1 !! a = v1, then ∃v2 �m2 v1 s.t. m2 !! a = v2

So as to show that a copy by assignment can be transformed into a byte-wise
copy we proved that if m � w : τ , then ofval (toval w) �m mofbits τ (mtobits w).

64 R. Krebbers

7 Formalization in Coq

Developing a formal version of a C11 memory model turned out to be much
more difficult than we anticipated due to the complex and highly subtle nature
of the aliasing restrictions introduced by the C99 and C11 standards. Hence, the
use of a proof assistant has been essential for our development.

Since Coq is also a functional programming language, we can execute the
memory model using it. This will be essential for the implementation of a certified
interpreter in future work. We used Coq to formally prove properties such as:

– Type preservation and essential laws of the the memory operations.
– Compatibility of operations with respect to memory extensions.
– The fact that memory extensions form a partial order and respect typing.
– Correctness of an abstract memcpy and the Strict-aliasing Theorem 6.2.

We used Coq’s notation mechanism combined with unicode symbols and type
classes to let the Coq development correspond better to the definitions on paper.
Type classes were also used to parametrize the whole development by an abstract
interface for integer implementations and C environments (Section 3).

Although many operations on our memory model are partial, we formalized
many such operations using a total function that assigns an appropriate default
behavior. To account for partiality, we defined predicates that describe when
these operations may be used. Alternatives include using the option monad or
dependent types, but our approach turned out to be convenient as various proofs
could be done easily by induction on the aforementioned predicate.

Our Coq code, available at http://robbertkrebbers.nl/research/ch2o/,
is about 8.500 lines of code including comments and white space. Apart from
that, we developed a library on general purpose theory (finite sets, finite func-
tions, lists, the option monad, etc.) of about 10.000 lines.

8 Conclusion

The eventual goal of this work is to develop a formal semantics for a large part
of the C11 programming language [8]. In previous work [9] we have developed a
concise operational and axiomatic semantics for non-local control flow (goto and
return statements). Recently, we have extended this work to include sequence
points and non-deterministic expressions with side-effects [7]. The next step is
to integrate our memory model into our operational semantics. Once integrated,
we intend to develop a verified interpreter so we can test the memory model
using actual C programs.

There are many other obvious extensions to our memory model: support for
floating points, bit fields, variable length arrays, concurrency, etc. Bit fields are
presumably easy to integrate as bits are already the smallest available unit in
our memory model. Concurrency in C and C++ has received a lot of attention
in formal developments (see e.g. Batty et al. [2]), but is extremely challenging
on its own. Treating the weaker aliasing restrictions on base types (e.g. reading
a signed int using an unsigned int) is left for future work too.

http://robbertkrebbers.nl/research/ch2o/

Aliasing Restrictions of C11 Formalized in Coq 65

In order to integrate the memory model into our axiomatic semantics based
on separation logic [9], we have to be able to split memory objects into disjoint
subobjects. This requires a disjoint union operation on memory values. Besides,
the axiomatic semantics should take types seriously as our memory model is
typed. The work of Tuch et al. [18] may be interesting for this even though they
do not consider the aliasing restrictions of C.

Acknowledgments. I thank Freek Wiedijk, Herman Geuvers, Michael Nahas,
and the anonymous referees for their helpful suggestions. I thank Xavier Leroy
for many discussions on the CompCert memory model. This work is financed by
the Netherlands Organisation for Scientific Research (NWO).

References

1. Affeldt, R., Marti, N.: Towards formal verification of TLS network packet process-
ing written in C. In: PLPV, pp. 35–46 (2013)

2. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ con-
currency. In: POPL, pp. 55–66 (2011)

3. Ellison, C., Rosu, G.: An executable formal semantics of C with applications. In:
POPL, pp. 533–544 (2012)

4. GNU. GCC, the GNU Compiler Collection (2011), http://gcc.gnu.org/
5. International Organization for Standardization. WG14 Defect Report Summary

(2008), http://www.open-std.org/jtc1/sc22/wg14/www/docs/
6. International Organization for Standardization. ISO/IEC 9899-2011: Programming

languages – C. ISO Working Group 14 (2012)
7. Krebbers, R.: An operational and axiomatic semantics for non-determinism and

sequence points in C. To appear in: POPL 2014 (2013)
8. Krebbers, R., Wiedijk, F.: A Formalization of the C99 Standard in HOL, Isabelle

and Coq. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Calcule-
mus/MKM 2011. LNCS (LNAI), vol. 6824, pp. 301–303. Springer, Heidelberg (2011)

9. Krebbers, R., Wiedijk, F.: Separation Logic for Non-local Control Flow and
Block Scope Variables. In: Pfenning, F. (ed.) FOSSACS 2013. LNCS, vol. 7794,
pp. 257–272. Springer, Heidelberg (2013)

10. Leroy, X., Appel, A.W., Blazy, S., Stewart, G.: The CompCert Memory Model,
Version 2. Research report RR-7987, INRIA (2012)

11. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for
verifying program transformations. JAR 41(1), 1–31 (2008)

12. Maclaren, N.: What is an Object in C Terms? Mailing list message (2001),
http://www.open-std.org/jtc1/sc22/wg14/9350

13. Nita, M., Grossman, D., Chambers, C.: A theory of platform-dependent low-level
software. In: POPL, pp. 209–220 (2008)

14. Norrish, M.: C formalised in HOL. PhD thesis, University of Cambridge (1998)
15. Ramananandro, T., Dos Reis, G., Leroy, X.: Formal verification of object layout

for C++ multiple inheritance. In: POPL, pp. 67–80 (2011)
16. Robert, V., Leroy, X.: A Formally-Verified Alias Analysis. In: Hawblitzel, C., Miller,

D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 11–26. Springer, Heidelberg (2012)
17. Rossie, J.G., Friedman, D.P.: An Algebraic Semantics of Subobjects. In: OOPSLA,

pp. 187–199 (1995)
18. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: POPL,

pp. 97–108 (2007)

http://gcc.gnu.org/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/
http://www.open-std.org/jtc1/sc22/wg14/9350

Proof Pearl: A Verified Bignum

Implementation in x86-64 Machine Code

Magnus O. Myreen1 and Gregorio Curello2

1 Computer Laboratory, University of Cambridge, UK
2 Autonoma University of Barcelona, Spain

Abstract. Verification of machine code can easily deteriorate into an
endless clutter of low-level details. This paper presents a case study which
shows that machine-code verification does not necessitate ghastly low-
level proofs. The case study we describe is the construction of an x86-64
implementation of arbitrary-precision integer arithmetic. Compared with
closely related work, our proofs are shorter and, more importantly, the
reasoning is at a more convenient high level of abstraction, e.g. pointer
reasoning is largely avoided. We achieve this improvement as a result of
using an abstraction for arrays and previously developed tools, namely,
a proof-producing decompiler and compiler. The work presented in this
paper has been developed in the HOL4 theorem prover. The case study
resulted in 800 lines of verified 64-bit x86 machine code.

1 Introduction

Hardware executes all software in the form of machine code. As a result, program
verification ought to, ultimately, provide guarantees about the execution of the
machine code. However, direct manual verification of machine code is to be
avoided as such verification proofs easily become lengthy and unmaintainable.

Recent advances in compiler verification seem promising (e.g. [10]), making
it possible to relate verification results from the source code to the compiler-
generated machine code. Unfortunately, current verified compilers do not support
source code with real inlined assembly (since the semantics of inlined assembly
is difficult to state in terms of the semantics of the source language). Inlined
assembly is a natural component of certain programs: programs that need direct
access to hardware peripherals (e.g. operating systems), hand-optimised code or
special-purpose machine instructions.

This paper presents a case study which shows that machine-code verification
does not always require ghastly unmaintainable proofs. This paper describes how
a proof-producing decompiler and compiler can together make it easy to produce
verified machine code that essentially contains inlined assembly.

The case study we describe is the construction of an x86-64 implementation of
arbitrary-precision arithmetic (bignum) functions. We have implemented the ba-
sic integer arithmetic operations (i.e. +,−,×, div,mod, <,=) for arbitrary sized
integers (represented as arrays in memory) and have proved that this x86-64
implementation correctly performs the desired arithmetic operations and leaves

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 66–81, 2013.
c© Springer International Publishing Switzerland 2013

Proof Pearl: A Verified Bignum Implementation in x86-64 Machine Code 67

memory untouched outside the result array. The implementation makes use of
special-purpose instructions for multi-word arithmetic.

This paper makes the following contributions.

– The proofs presented in this paper have produced a reusable verified x86-64
implementation of bignum integer operations. We envisage that this imple-
mentation will be of use in construction of larger bodies of verified code,
for example, verified language runtimes that provide support for bignum
arithmetic. For the purpose of reuse, we keep all interfaces clean and simple.

– Compared with closely related work (Section 7), our proofs are shorter and,
more importantly, the reasoning is at a more convenient high level of ab-
straction, e.g. pointer reasoning is largely avoided. This improvement in the
length and level of detail in the proofs is due to the use of a convenient
abstraction for arrays and use of previously developed tools, namely a proof-
producing decompiler and compiler, that can easily be made to operate over
this domain-specific abstraction.

– To the best of our knowledge, we are the first to have formally verified func-
tional correctness of machine code that implements bignum integer division.

The case study resulted in 800 lines of verified 64-bit x86 machine code. The
proof development1 presented in this paper has been carried out in the HOL4
theorem prover [20].

2 Method

The method by which we construct the verified x86 implementation consists of
three steps:

1. We start by defining the algorithms involved as functions in logic. The func-
tions operate over lists of binary words. We prove that these functions cor-
rectly implement integer arithmetic, e.g. given two lists that represent the
‘digits’ of two integer numbers, the function for an arithmetic operation re-
turns a list that is the representation of the ‘digits’ of the resulting integer.
These high-level functions summarise the operations of the algorithm sepa-
rately from any architecture details, e.g. the machine-word length is kept as
a (type) variable throughout. (Section 3)

2. In order to generate and reason about machine code that implements the
functions from above, we instantiate a proof-producing compiler and decom-
piler with information about how lists of 64-bit ‘digits’ can be represented in
memory as arrays. Concretely, we define a separation logic assertion about
arrays and prove theorems about x86 machine instructions for load and store
instructions that access and update arrays. The decompiler and compiler can
use these theorems to make it seem as if the underlying machine has a mem-
ory that consists of arrays. (Section 4)

1 The HOL4 scripts are available at http://www.cl.cam.ac.uk/~mom22/cpp13/

http://www.cl.cam.ac.uk/~mom22/cpp13/

68 M.O. Myreen and G. Curello

3. Finally, we use the decompiler to prove theorems for hand-written x86 as-
sembly, and then use the array-aware compiler to produce x86 machine code
that uses hand-written assembly and the x86 instructions that we proved
to have array-like behaviour. The compiler takes as input functions that
are restricted in format, but otherwise operate over the same types as the
algorithm specifications from Step 1 (instantiated to 64-bit word length).
The compiler produces as output a proof of a theorem which states that the
input function is an accurate description of the behaviour of the generated
machine code. We manually prove that the input to the compiler perform
the same steps as the algorithm specifications from Step 1. (Section 5)

The result of combining all of the correctness theorems together is a single theo-
rem (Section 6) describing the behaviour of a single chunk of x86 machine code,
for which we have a top-level correctness theorem: given an operation identifier
(referring to one of +,−,×, div,mod, <,=), pointers to two immutable input ar-
rays and a pointer to a separate mutable array, where the result is to be stored,
execution of the verified x86 code terminates with the result of the arithmetic
operation stored in the mutable array.

3 Algorithm Specification and Verification

As mentioned above, the first step is to specify the bignum algorithms as func-
tions in logic and verify that they correctly compute integer arithmetic. This
section provides details on this first step.

3.1 Abstract Representation of Bignums

The algorithms operate over lists of machine words. In order to make sure these
algorithm specifications do not get tied to any particular architecture, we use a
variable as the length of the machine word. In HOL, machine words are most
conveniently modelled as finite cartesian products of booleans, a neat idea by
Harrison [7], which allows (the cardinality of) a type to define the size of the
word. We will write boolα for the type of words of width α and bool64 for the
type of words with 64 bits. In this section, all words will have a variable width,
i.e. have type boolα. In subsequent sections, all words will be specialised to be
64 bits wide, i.e. have type bool64.

For this representation, we have the usual word operations and mappings for
turning a natural into a word (n2w) and back (w2n):

n2w : N → boolα

w2n : boolα → N

Note that n2w and w2n have polymorphic types and their definition depends on
this type. The following theorems describe their relationship:

∀n. w2n (n2w n) = n MOD 2α ∀w. n2w (w2n w) = w

Proof Pearl: A Verified Bignum Implementation in x86-64 Machine Code 69

The algorithms operate over lists of such words, i.e. lists of type boolα list.
We have functions that map natural numbers to lists of multiple words (n2mw)
and back (n2mw). Here and throughout :: is list cons.

n2mw n = if n = 0 then [] else n2w (n MOD 2α) :: n2mw (n DIV 2α)

mw2n [] = 0

mw2n (w::ws) = w2n w + 2α × mw2n ws

We also define functions which translate between integers and a representation
of integers as a pair consisting of a sign and a list of machine words.

i2mw i = (i < 0, n2mw (abs i))

mw2i (sign, ws) = if sign then 0 - mw2n ws else mw2n ws

Thus, the algorithm functions operate over bignum integers as represented by
terms of type bool × (boolα list).

3.2 Algorithm Specifications

The algorithm specification for each arithmetic function is a function of the
following type. The comparison operations, of course, return bool.

(bool × (boolα list)) → (bool × (boolα list)) → (bool × (boolα list))

The following presents our specification of the long-multiplication algorithm
(mwi mul). Multiplication will be our running example, since it is neat and simple
compared with the tedium of dealing with alternating signs and variable length
arguments for bignum integer addition or subtraction.

Our specification of multiplication describes the operations of the standard
school-book long-multiplication.

6 2 3 5 1
2 4 6

3 7 4 1 0 6
2 4 9 4 0 4

1 2 4 7 0 2

1 5 3 3 8 3 4 6

There are, of course, a number of more sophisticated and better algorithms [9],
e.g. the Karatsuba and Tom-Cook algorithms are significantly faster for large
inputs; and Montgomery multiplication is better suited for multiplications that
are to be performed modulo a prime number.

When modelling the multiplication algorithm, we start by defining a few prim-
itive operations that we can expect to implement in custom assembly. For ex-
ample, we define a function for word addition with a carry-in and carry-out.

70 M.O. Myreen and G. Curello

single_add (x:boolα) (y:boolα) (c:bool) =

(n2w (w2n x + w2n y + if c then 1 else 0),

2α ≤ w2n x + w2n y + if c then 1 else 0)

And a similar function for multiplication, which given three words, x, y, z, com-
putes w2n x × w2n y + w2n z and returns two words describing this result.
We expect either to find such a machine instruction in each architecture or im-
plement this operation using a few instructions.

single_mul (x:boolα) (y:boolα) (z:boolα) =

(n2w (w2n x × w2n y + w2n z),

n2w ((w2n x × w2n y + w2n z) DIV 2α))

Equipped with the functions from above, we can define a function for the
body of the inner loop of multiplication. We follow the standard school-book
long-multiplication algorithm almost exactly. The only minor optimisation is
that the additions that are done on paper last are done by this algorithm in
conjunction with the rest of the computation. The function describing the body
of the inner loop takes word, p and q, from each input and a word k from the
accumulated result. The body performs a multiplication and two additions:

single_mul_add p q k s =

let (x1,x2) = single_mul p q k in

let (y1,c1) = single_add x1 s false in

let (y2,c2) = single_add x2 0 c1 in

(y1,y2)

The function describing the inner loop traverses one of the inputs ys and the
accumulated result zs for one word from the other input x.

mw_mul_pass x [] zs k = [k]

mw_mul_pass x (y::ys) (z::zs) k =

let (y1,k1) = single_mul_add x y k z in

y1 :: mw_mul_pass x ys zs k1

The outer loop calls the inner loop for each word in the first input.

mw_mul [] ys zs = zs

mw_mul (x::xs) ys zs =

let zs2 = mw_mul_pass x ys zs 0 in

HD zs2 :: mw_mul xs ys (TL zs2)

The entire multiplication algorithm comes together in mwi mul, which computes
the resulting sign and initialises the accumulated result to all zeros before start-
ing the loop. Below, mw rm zero deletes the possible leading zero from the result.

mwi_mul (s,xs) (t,ys) =

if (xs = []) ∨ (ys = []) then (false,[]) else

(s �= t, mw_rm_zero (mw_mul xs ys (MAP (λx. 0) ys)))

mw_rm_zero [] = []

mw_rm_zero (xs ++ [x]) = if x = 0 then xs else xs ++ [x]

In the eventual machine code, mw rm zero shortens the length of the array where
the result is stored so that that array has no leading zero.

Proof Pearl: A Verified Bignum Implementation in x86-64 Machine Code 71

3.3 Algorithm Verification

The top-level correctness theorem for each arithmetic operation is easy to state
using the function i2mw for converting an integer into a signed list of words. For
multiplication, the correctness statement relates mwi mul to multiplication over
the integers (×).

∀i j. mwi_mul (i2mw i) (i2mw j) = i2mw (i × j)

Such statements guarantee that zero will never have the negative sign set and
that mwi mul never returns a list of words with redundant leading zeros.

Although the correctness theorem is stated in terms of i2mw, it seems easiest
to arrive at the correctness theorem via proofs about mw2n. Each component in
the algorithm has a neat description in terms of mw2n and w2n.

∀p q k1 k2 x1 x2.

single_mul_add p q k1 k2 = (x1,x2) =⇒
w2n x1 + 2α × w2n x2 = w2n p × w2n q + w2n k1 + w2n k2

∀ys zs x k.

LENGTH ys = LENGTH zs =⇒
mw2n (mw_mul_pass x ys zs k) = w2n x × mw2n ys + mw2n zs + w2n k

∀xs ys zs.

LENGTH ys = LENGTH zs =⇒
mw2n (mw_mul xs ys zs) = mw2n xs × mw2n ys + mw2n zs

4 Instantiation of Proof Tools for Arrays

With the bignum arithmetic algorithms specified and verified in the previous
section, this section describes the Hoare logic and proof tools that are used in
the next section for construction of the verified machine-code implementation.

4.1 Hoare Logic for Machine Code

We will skip a detailed description of the operational semantics for x86 used in
this paper, since that semantics has been described previously [15]. Instead, a
few examples will be used to explain features of a machine-code Hoare logic [14]
that sits on top of the bare operational semantics.

All our reasoning about x86 machine code is performed through a machine-
code Hoare logic, which can be instantiated to different instruction set architec-
tures. Here we consider only an instantiation to 64-bit x86.

The following is a Hoare triple describing an x86 instruction add r8,r9, en-
coded as 4D01C8, that adds the content of 64-bit register 8 with register 9 and
stores the result in register 8. The following Hoare triple can be read informally
as follows: for any state where the program counter (PC) is p, register 8 and 9
are r8 and r9, respectively, the flags have some value (S), and 4D01C8 is at

72 M.O. Myreen and G. Curello

location p in memory, execution will reach a state where the program counter
is set to p + 3, register 8 contains the value r8 + r9 and the flags again have
some value (S). Here * is a form of separating conjunction [18,14]. Details of
this separating conjunction are unimportant for this paper. However, it is worth
noting that these Hoare triples are part of a separation logic and, in particular,
that all other resources not mentioned in the precondition of such a Hoare triple
must have been kept unchanged (e.g. the theorem below implicitly states that
the value of register 10 was unaffected by the add r8,r9 instruction).

{ PC p * R8 r8 * R9 r9 * S }
p : 4D01C8

{ PC (p + 3) * R8 (r8 + r9) * R9 r9 * S }

An unusual feature of these Hoare triples is that the pre- and postconditions
include the value of the program counter. Its inclusion makes it easy to specify
branch instructions. Example: a jump-if-equal instruction, je -40 encoded as
48EBD5, is described by the following Hoare-triple theorem. The jump is condi-
tional on the x86 z flag, which is set by most arithmetic operations.

{ PC p * S (a,c,o,p,z) }
p : 48EBD5

{ PC (if z then p - 40 else p + 3) * S (a,c,o,p,z) }

Memory accesses are specified using a memory assertion memory m, which
states that a part of memory (the set of addresses in domain m) are described
by the partial function m. The following is a Hoare triple for a store instruction,
mov [r8],r9 encoded as 4D8908, which stores the content of register 9 at an
address given in register 8. This instruction is independent of the flags (S).

r8 ∈ domain m ∧ word_aligned r8 =⇒
{ PC p * R8 r8 * R9 r9 * memory m }
p : 4D8908

{ PC (p + 3) * R8 r8 * R9 r9 * memory (m[r8 �→ r9]) }

Note that the underlying model of x86 treats code as part of memory, but here
the Hoare triples separate ‘data’ memory from the code. This is achieved by in-
ternally separating the precondition from the code segment using the separating
conjunction *, for details see Myreen [15].

This Hoare logic supports the usual inference rules. As a result, one can per-
form proofs directly using these Hoare triples, as was done in previous work [13].
However, it is significantly easier if tools are used which automate much of the
routine reasoning.

4.2 Proof-Producing Decompiler and Compiler

Tool support, developed and carefully explained in previous work [14], is able to
automate much of the routine Hoare logic reasoning. An example will illustrate
what our decompiler can do. The HOL4 syntax below calls our decompiler for
assembly code that computes, in r9, Knuth’s D constant ahead of his bignum
division algorithm [9].

Proof Pearl: A Verified Bignum Implementation in x86-64 Machine Code 73

val (x64_calcd_cert,x64_calcd_def) = x64_decompile "x64_calcd"

‘ LOOP: cmp r8,0

js EXIT

add r8,r8

add r9,r9

jmp LOOP

EXIT: ’

This call to x64 decompile first runs an assembler to turn the assembly into
concrete machine code, it then derives Hoare-triple theorems for each of the
instructions and finally composes the Hoare triples together. The result of this
composition is a theorem that describes one pass through the loop:

{ PC p * R8 r8 * R9 r9 * S }
p : 4983F80 48789 4D1C0 4D1C9 48EBF0

{ let (p,r8,r9) =

(if word_sign_bit r8 then (p + 14, r8, r9) else (p, r8+r8, r9+r9))

in

PC p * R8 r8 * R9 r9 * S }

By applying a special loop rule [14], the decompiler turns this theorem into
a theorem describing a full terminating execution of the loop. The decompiler
returns two functions describing the behaviour of the machine code: the first
function describes the data update performed by the code, the second function
encodes a side condition on termination. Loops always produce tail-recursive
functions, which can be defined HOL without termination proofs.

x64_calcd (r8,r9) =

if word_sign_bit r8 then (r8,r9)

else let r8 = r8 + r8 in let r9 = r9 + r9 in x64_calcd (r8,r9)

x64_calcd_pre (r8,r9) =

if word_sign_bit r8 then true

else let r8 = r8 + r8 in let r9 = r9 + r9 in x64_calcd_pre (r8,r9)

The result of running the decompiler is the extraction of functions that de-
scribe the behaviour of the given machine code and a separate Hoare-triple the-
orem, which states that the function x64 calcd is an accurate description of the
effect of executing the x86-64 machine code, if the side-condition x64 calcd pre

(r8,r9) is provable (which, in this case, is true if r8 is initially non-zero). We
call such Hoare-triple theorems certificate theorems.

x64_calcd_pre (r8,r9) =⇒
{ PC p * R8 r8 * R9 r9 * S }
p : 4983F80 48789 4D1C0 4D1C9 48EBF0

{ let (r8,r9) = x64_calcd (r8,r9) in

PC (p + 14) * R8 r8 * R9 r9 * S }

The beauty of using the decompiler is that all subsequent reasoning can be
done on the extracted function x64 calcd, since any result proved for this func-
tion is related back to the machine code through the certificate theorem.

74 M.O. Myreen and G. Curello

Writing assembly code manually is tiresome. To help with this, a proof-
producing compiler has been constructed using the decompiler. This compiler
essentially takes as input tail-recursive functions of the form x64 calcd, it then:
(1) generates (without proof) assembly code based on the input function, (2) de-
compiles the assembly as above, and (3) proves that the function decompilation
produced is identical to the function that was to be compiled, i.e. the compiler
can return the certificate theorem produced by the underlying decompiler.

4.3 Array Support in the Compiler

As explained above, the decompiler and compiler produce their proofs by simply
composing machine-code Hoare triples together. By default these tools use only
automatically derived Hoare triples that provide a cumbersome flat functional
view of the memory of the underlying x86 machine semantics.

The technique by which we instantiate the tools to the problem domain of
bignum-array programs is to supply the tools with custom Hoare-triple theorems
that are stated in terms of a domain-specific bignum-memory assertion. With
such an assertion the decompiler and compiler can make the machine seem as if
it has a memory containing arrays (in which we will store bignums).

We define the domain-specific assertion bignums based on the default mem-
ory assertion memory as explained below. The definition of bignums uses a few
basic concepts of separation logic defined next. The separating conjunction is
defined as usual, taking the disjoint union (∪·) of two memory segments. The emp
assertion is true only for the empty memory segment. The unusual part is our
definition of the maps-to assertion: a �→ x is true for a memory segment if the
bytes of 64-bit word x are stored from 64-bit address a onwards. Here [7--0]x
is notation for selecting bits 7 to 0 from x.

(p � q) m = ∃m1 m2. p m1 ∧ q m2 ∧ (m = m1 ∪· m2)

emp m = (domain m = ∅)

(a �→ x) m = (domain m = {a,a+1,a+2,a+3,...,a+7}) ∧
(m a = [7--0]x) ∧ (m (a+1) = [15--8]x) ∧ ...

These basic concepts of separation logic are enough to define an array assertion
for memory segments: array a xs is true for a memory segment m if the 64-bit
words in list xs are stored in order from address a onwards.

array a [] = emp

array a (x::xs) = a �→ x � array (a + 8) xs

The bignum code that we produce uses three arrays: we call the content of
these arrays xs, ys and zs, and have pointers, xa, ya, za, point to the (word-
aligned) base of these arrays. We allow pointers xa and ya to alias. If they do
alias, then the content of xs and ys must be identical. The intention is that xs
and ys hold bignum inputs and zs is the mutable result array.

Proof Pearl: A Verified Bignum Implementation in x86-64 Machine Code 75

bignum_memory m xa xs ya ys za zs =

word_aligned xa ∧ word_aligned ya ∧ word_aligned za ∧
if xa = ya then

(xs = ys) ∧ (array xa xs � array za zs) m

else

(array xa xs � array ya ys � array za zs) m

The definition of the bignums assertion constrains the default memory asser-
tion with the bignum memory condition and states that pointers xa, ya, za are
kept in registers 13, 14 and 15, respectively.

bignums (xa,xs,ya,ys,za,zs) =

∃m. memory m * R13 xa * R14 ya * R15 za *

〈bignum_memory m xa xs ya ys za zs〉
Using this bignums assertion, we can now manually verify a number of Hoare-

triple theorems which make certain machine instructions seem as if they operate
over arrays directly. For example the load instruction mov r0,[8*r10+r13],
encoded as 4B8B44D500, loads the list element (EL) at index w2n r10 from list
xs, if w2n r10 is within the size of xs.

w2n r10 < LENGTH xs =⇒
{ PC p * R0 r0 * R10 r10 * bignums (xa,xs,ya,ys,za,zs) }
p : 4B8B44D500

{ let r0 = EL (w2n r10) xs in

PC (p + 5) * R0 r0 * R10 r10 * bignums (xa,xs,ya,ys,za,zs) }
Similarly, mov [8*r10+r15],r0, encoded as 4B8904D7, updates (LUPDATE) list
index w2n r10 of list zs, if w2n r10 is within the size of zs.

w2n r10 < LENGTH zs =⇒
{ PC p * R0 r0 * R10 r10 * bignums (xa,xs,ya,ys,za,zs) }
p : 4B8904D7

{ let zs = LUPDATE r0 (w2n r10) zs in

PC (p + 4) * R0 r0 * R10 r10 * bignums (xa,xs,ya,ys,za,zs) }
Supplied with such Hoare-triple theorems, the compiler can compile functions

which contain the following lines:

let r0 = EL (w2n r10) xs in

let zs = LUPDATE r0 (w2n r10) zs in

By supplying enough such Hoare-triple theorems, we can exclusively use only
statements about recognised list/array operations and thus never, in manual
proofs, require pointer reasoning beyond this point. Examples of compiled array
accessing functions are given in Section 5.2.

5 Construction of Verified Machine Code

With a proof-producing compiler that understands basic operations over a few
arrays, we are ready to describe how one can construct verified implementa-
tions for the algorithms from Section 3. This section continues with the running
example of multiplication.

76 M.O. Myreen and G. Curello

5.1 Verification of Hand-Written Assembly

Certain parts of the algorithms in Section 3 are best implemented in custom
hand-written assembly. The following call to x64 decompile decompiles an as-
sembly implementation of single mul add from Section 3.2. The assembler, that
we use, aliases r0 with rax, r1 with rcx, r2 with rdx and r3 with rbx.

val (_, x64_single_mul_add_def) = x64_decompile "x64_single_mul_add"

‘ mul r2

add r0,r1

adc r2,0

add r0,r3

adc r2,0 ’

This call results in a function x64 single mul add (r0,r1,r2,r3), which is
easily proved to be an implementation of single mul add:

∀p k q s.

x64_single_mul_add_pre (p,k,q,s) = true ∧
x64_single_mul_add (p,k,q,s) =

let (x1,x2) = single_mul_add p q k s in (x1,k,x2,s)

5.2 Using Inlined Assembly in Compilations

Each run of the decompiler produces a certificate theorem. The certificate theo-
rem produced for the decompilation above can be used in subsequent decompi-
lations and compilations. Concretely, this means that the compiler can produce
code for functions involving the line:

let (r0,r1,r2,r3) = x64_single_mul_add (r0,r1,r2,r3) in

Such lines result in code where the implementation of x64 single mul add is in-
lined in the generated machine code. The decompiler uses the certificate theorem
for x64 single mul add at the point where it encounters the inlining.

This inlining feature allows writing an implementation of the inner loop,
mw mul pass, of the multiplication algorithm. The function that we compile in
order to generate machine code for mw mul pass is called x64 mul pass. Its def-
inition is shown in Figure 1. The compiler-generated machine code, shown in
Figure 2, uses the custom assembly code and the list/array operations EL and
LUPDATE from Section 4.3. A disassembly of the generated machine code is listed
in Figure 2. The entire bignum library implementation is produced via such
compilations that inline the result of previous compilations and decompilations.

Proof Pearl: A Verified Bignum Implementation in x86-64 Machine Code 77

val (_,x64_mul_pass_def,x64_mul_pass_pre_def) = x64_compile ‘

x64_mul_pass (r1,r8,r9,r10,r11,ys,zs) =

if r9 = r11 then

let zs = LUPDATE r1 (w2n r10) zs in

let r10 = r10 + 1w in

(r1,r9,r10,ys,zs)

else

let r3 = EL (w2n r10) zs in

let r2 = EL (w2n r11) ys in

let r0 = r8 in

let (r0,r1,r2,r3) = x64_single_mul_add (r0,r1,r2,r3) in

let zs = LUPDATE r0 (w2n r10) zs in

let r1 = r2 in

let r10 = r10 + 1w in

let r11 = r11 + 1w in

x64_mul_pass (r1,r8,r9,r10,r11,ys,zs) ’

Fig. 1. HOL4 syntax for a call to the compiler for x64 mul pass

00: 4D39D9 L1: cmp r9, r11

03: 48742C je L2

06: 4B8B1CD7 mov r3,[8*r10+r15] // EL (w2n r10) zs

0A: 4B8B14DE mov r2,[8*r11+r14] // EL (w2n r11) ys

0E: 498BC0 mov r0, r8

11: 48F7E2 mul r2 // inlined part

14: 4801C8 add r0,r1 // inlined part

17: 4883D20 adc r2,0 // inlined part

1B: 4801D8 add r0,r3 // inlined part

1E: 4883D20 adc r2,0 // inlined part

22: 4B8904D7 mov [8*r10+r15],r0 // LUPDATE r0 (w2n r10) zs

26: 488BCA mov r1, r2

29: 49FFC2 inc r10

2C: 49FFC3 inc r11

2F: 48EBCE jmp L1

32: 4B890CD7 L2: mov [8*r10+r15],r1 // LUPDATE r1 (w2n r10) zs

36: 49FFC2 inc r10

Fig. 2. Annotated disassembly of machine code generated for x64 mul pass

5.3 Verification of the Generated Machine Code

Since the compiler produces a certificate theorem relating the given input func-
tion to the generated machine code, it suffices to prove properties of the input
functions (and generated precondition functions) in order to prove the correct-
ness of the machine code. For x64 mul pass, this means that we need to prove

78 M.O. Myreen and G. Curello

that x64 mul pass implements mw mul pass. The statement we prove, below,
might seem hard to comprehend, but look closer and it becomes clear that this
is a reasonably straight forward property. The length of the proof of this goal is
less than twice the length of the goal statement.

∀ys x zs k zs1 zs2 z2.

length zs = length ys ∧ length (zs1 ++ zs) < 264 =⇒
∃r1.
x64_mul_pass_pre

(k,x,n2w (length ys),n2w (length zs1),n2w 0,ys,

zs1 ++ zs ++ z2::zs2) = true ∧
x64_mul_pass

(k,x,n2w (length ys),n2w (length zs1),n2w 0,ys,

zs1 ++ zs ++ z2::zs2) =

(r1,n2w (length ys),n2w (length (zs1 ++ zs) + 1),ys,

zs1 ++ mw_mul_pass x ys zs k ++ zs2)

6 Results

The result of this verification effort is a verified library of bignum integer arith-
metic functions implemented in 64-bit x86 machine code. The intention was to
make this case study as reusable as possible so that future verified language im-
plementations, e.g. future version of our verified Lisp implementation [16], can
make use of arbitrary-precision integer arithmetic.

6.1 Top-Level Theorem

The verified library of integer arithmetic operations has a top-level entry point
which implements a clean and simple interface: as inputs, it expects three point-
ers, pointers to two input arrays and one array for the result, it expects the
length and sign of the input numbers to be provided in specific registers and it
reads the operation identifier from a register. If the output array is long enough
and disjoint from the input arrays, then the verified machine-code implementa-
tion will terminate with the result of the arithmetic operation of choice produced
in the result array and the sign and length of the result return in a register. The
input arrays are left unchanged.

6.2 In Numbers

In order to give some measure of the effort involved, the table below lists how
many lines of proof scripts were produced for each part of this project. The three
middle columns list the length of our HOL4 proof scripts and the last column
lists the number of instructions in the verified machine code that was produced.

Proof Pearl: A Verified Bignum Implementation in x86-64 Machine Code 79

part / operation alg. impl. total x86

prelude & tool setup 398 357 755 0
comparison 138 118 256 58
addition & subtraction 307 655 962 122
multiplication 149 266 415 105
division & modulus 2149 1482 3631 447
conversion to decimal 113 95 208 57

all parts together 3254 2973 6227 779

alg. — lines for specification and verification of algorithms (Section 3)
impl. — lines for construction and verification of machine code (Sections 4, 5)
total — sum of alg. and impl. columns
x86 — number of instructions in the verified 64-bit x86 machine code

One can (correctly) read from this table that the algorithm proofs were roughly
as time consuming as the construction and verification of the machine code.

The verified algorithms are the obvious single-pass algorithms for comparison,
addition and subtraction; the algorithm for multiplication was described in Sec-
tion 3; the algorithm for division and modulus was taken from Knuth [9]; and
the conversion into decimal form performs repeated division by 10.

7 Related Work

The most closely related work on verified implementation of arithmetic functions
is that of Affeldt [2], Fischer [6], Berghofer [4] and Moore [11]. We will also
compare with the first author’s early poster on this topic [13], and reflect on
recent trends in programming logics for assembly verification.

Affeldt has constructed and verified SmartMIPS assembly code that imple-
ments the basic arithmetic functions: +,−,×, <,=, notably excluding div and
mod, but including Montgomery multiplication. Affeldt uses separation logic [18]
and explicit reasoning about pointers in his verification proofs, which appear to
be more low-level and labour intensive than the proofs reported on in this paper.
Affeldt uses the GMP [1] library’s bignum integer representation (which includes
indirection) and, as a result, can not use the convenient array abstraction that
was used in this paper. Affeldt proposes the use of a simulation relation to lift
reasoning of compound operations to a more manageable level of detail.

Fischer and Berghofer both use the Isabelle/HOL theorem prover and both
verify implementations written in a higher-level language. Fischer verified a C-
like implementation of arbitrary-precision integer arithmetic, including division
and modulus, using manual application of a separation-logic instantiation of
Schirmer’s Hoare logic framework [19]. Fischer reports that her proofs required
significant manual effort to deal with selection of frames for the separation-
logic reasoning. Her bignums were represented as linked lists. Berghofer verified
a bignum library, which includes Montgomery multiplication but not division,

80 M.O. Myreen and G. Curello

written in Spark/Ada using a combination of the Spark/Ada tool suite and
the Isabelle/HOL prover.

The first author’s early poster, Myreen and Gordon [13], on the topic of
machine-code verification showed that it is possible to use a Hoare logic directly
to manually verify, in the HOL4 theorem prover, the correctness of ARMmachine
code implementing an optimised version of Montgomery multiplication.

Moore seems to have been the first to have formally verified the correctness
of a bignum assembly routine, using the Nqthm prover. In his paper on the
verified implementation of the Piton language, Moore explains that it is possible
to verify an assembly routine for addition for bignums stored as arrays.

In terms of future direction, there seems to be a trend of making high-level
language reasoning seamlessly available in the context of assembly verification.
Significant recent work in this area include the programming logic by Jensen et
al. [8], which has a powerful ‘macro feature’. This macro feature makes it possible
to define functions in the logic that operate over the assembly syntax and thus
introduce, say, a while-loop macro and derive neat and familiar-looking proof
rules for such, even though the reasoning is still about assembly code. Another
noteworthy recent result in this area is Chlipala’s Bedrock framework [5]. The
Bedrock framework neatly fits into the Coq prover and provides proof tools which
automate most routine separation-logic reasoning for assembly programs. The
current paper has shown that our previously developed tools [14] are capable
of providing convenient verification environment for the HOL4 theorem prover
and, for this case study, explicit proofs about pointers can be avoided.

The work of this paper has focused on proof of full functional correctness. How-
ever, great strides have also been made in proofs of safety properties. Necula’s
work on proof-carrying code [17] spurred a lot of interest in low-level code [3,21].
An exciting recent result in this area is a new method for software-fault isolation
for real machine code [12].

8 Summary

This paper has demonstrated how a proof-producing decompiler and compiler
can be used in the construction of verified machine-code implementations of
bignum arithmetic. By careful instantiation of the previously developed tools,
the entire verification effort is kept at a manageable complexity with proofs in-
volving pointer reasoning nearly completely avoided (only present in Section 4.3).
The resulting 64-bit x86 machine code was produced from both inlined custom
assembly and functions written at a higher level of abstraction.

Acknowledgements. The first author was funded by the Royal Society, UK.
The second author was a summer intern supported by the University of Cam-
bridge Computer Laboratory, UK.

References

1. GMP, the GNU multiple precision arithmetic library, http://gmplib.org/

http://gmplib.org/

Proof Pearl: A Verified Bignum Implementation in x86-64 Machine Code 81

2. Affeldt, R.: On construction of a library of formally verified low-level arithmetic
functions. Innovations in Systems and Software Engineering 9(2) (2013)

3. Appel, A.W.: Foundational proof-carrying code. In: Logic in Computer Science
(LICS). IEEE Computer Society (2001)

4. Berghofer, S.: Verification of dependable software using spark and isabelle. In:
Brauer, J., Roveri, M., Tews, H. (eds.) Systems Software Verification (SSV). OA-
SICS, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

5. Chlipala, A.: Mostly-automated verification of low-level programs in computational
separation logic. In: Hall, M.W., Padua, D.A. (eds.) Programming Language Design
and Implementation (PLDI). ACM (2011)

6. Fischer, S.: Formal verification of a big integer library. In: DATE 2008: Workshop
on Dependable Software Systems (2008),
http://busserver.cs.uni-sb.de/publikationen/Fi08DATE.pdf

7. Harrison, J.: A HOL theory of euclidean space. In: Hurd, J., Melham, T. (eds.)
TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005)

8. Jensen, J.B., Benton, N., Kennedy, A.: High-level separation logic for low-level
code. In: Principles of Programming Languages (POPL). ACM (2013)

9. Knuth, D.E.: The art of computer programming, 2nd edn. Seminumerical Algo-
rithms, vol. 2. Addison Wesley Longman Publishing (1981)

10. Leroy, X.: Formal certification of a compiler back-end, or: programming a com-
piler with a proof assistant. In: Morrisett, J.G., Jones, S.L.P. (eds.) Principles of
Programming Languages (POPL). ACM (2006)

11. Moore, J.S.: A mechanically verified language implementation. Journal of Auto-
mated Reasoning 5 (1989)

12. Morrisett, G., Tan, G., Tassarotti, J., Tristan, J.B., Gan, E.: RockSalt: better,
faster, stronger SFI for the x86. In: Vitek, J., Lin, H., Tip, F. (eds.) Programming
Language Design and Implementation (PLDI). ACM (2012)

13. Myreen, M., Gordon, M.J.C.: Verification of machine code implementations of
arithmetic functions for cryptography. In: Schneider, K., Brandt, J. (eds.) The-
orem Proving in Higher Order Logics, Emerging Trends Proceedings (TPHOLs,
Poster Session), University of Kaiserslautern, Internal Report 364/07 (2007)

14. Myreen, M.O.: Formal verification of machine-code programs. Ph.D. thesis, Uni-
versity of Cambridge (2009)

15. Myreen, M.O.: Verified just-in-time compiler on x86. In: Hermenegildo, M.V., Pals-
berg, J. (eds.) Principles of Programming Languages (POPL). ACM (2010)

16. Myreen, M.O., Davis, J.: A verified runtime for a verified theorem prover. In:
van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS,
vol. 6898, pp. 265–280. Springer, Heidelberg (2011)

17. Necula, G.C.: Proof-carrying code. In: Principles of Programming Languages
(POPL). ACM (1997)

18. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In: Logic
in Computer Science (LICS). IEEE Computer Society (2002)

19. Schirmer, N.: Verification of Sequential Imperative Programs in Isabelle/HOL.
Ph.D. thesis, Technical University of Munich (2006)

20. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008)

21. Tan, G., Appel, A.W.: A compositional logic for control flow. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 80–94. Springer, Heidel-
berg (2006)

http://busserver.cs.uni-sb.de/publikationen/Fi08DATE.pdf

A Constructive Theory
of Regular Languages in Coq

Christian Doczkal, Jan-Oliver Kaiser, and Gert Smolka

Saarland University, Saarbrücken, Germany
{doczkal,jokaiser,smolka}@ps.uni-saarland.de

Abstract. We present a formal constructive theory of regular languages
consisting of about 1400 lines of Coq/Ssreflect. As representations we con-
sider regular expressions, deterministic and nondeterministic automata,
and Myhill and Nerode partitions. We construct computable functions
translating between these representations and show that equivalence of
representations is decidable. We also establish the usual closure properties,
give a minimization algorithm for DFAs, and prove that minimal DFAs
are unique up to state renaming. Our development profits much from
Ssreflect’s support for finite types and graphs.

Keywords: regular languages, regular expressions, finite automata,
Myhill-Nerode, Coq, Ssreflect.

1 Introduction

The theory of regular languages is a standard topic in the computer science
curriculum [10,13]. We are interested in an elegant and instructive formalization
of this theory in constructive type theory. We prove Kleene’s theorem [12], the
Pumping Lemma, uniqueness of minimal deterministic automata, the Myhill-
Nerode theorem [16,17], and various closure properties of regular languages. For
our formalization [7], we use the Ssreflect [9] extension to Coq [20] which features
an extensive library with support for reasoning about finite structures such as
finite types and finite graphs. Building on top of the Ssreflect infrastructure,
we can establish all of our results in about 1400 lines of Coq, half of which are
specifications. So our development may be considered a longish proof pearl.

The largest part of our formalization deals with translations between different
representations of regular languages: regular expressions [12] (RE), deterministic
finite automata [15] (DFA), minimal DFAs [11] (mDFA), nondeterministic finite
automata [18] (NFA), Myhill partitions [16] (MP), and Nerode partitions [17]
(NP). We formalize all these representations and construct computable conver-
sion functions between them. The conversion functions can be summarized by
the following diagram:

RE DFA

mDFANFA

MP

NP

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 82–97, 2013.
c© Springer International Publishing Switzerland 2013

A Constructive Theory of Regular Languages in Coq 83

The triangle corresponds to Kleene’s theorem. For our representation of finite
automata, we make use of the fact that in Coq, unlike HOL-based systems, types
are first-class values. This allows us to formalize the sets of states of finite au-
tomata as finite types (i.e, types with finitely many inhabitants). Finite types are
closed under many type constructors, and Ssreflect offers excellent support for
finite types. So this representation is close to the usual mathematical definition
and easy to work with.

For the conversion from regular expressions to finite automata (dashed lines),
we need one construction for every constructor of regular expressions. By first
establishing conversions between DFAs and NFAs, we can carry out each of these
constructions on the automata model that fits best. The translation from DFAs
to REs is based on Kleene’s algorithm [12].

The rectangle in the diagram corresponds to the Myhill-Nerode theorem. Our
constructive version of the Myhill-Nerode theorem differs from the usual for-
mulation. We define Myhill and Nerode representations using functions from
words into a finite type. We then give conversions to and from finite automata.
This is similar to the formalization of the Myhill-Nerode theorem in Nuprl by
Constable et al. [5], where decidability of Myhill-Nerode relations and finiteness
of the corresponding quotient types are assumed.

Finite Myhill and Nerode partitions can be seen as abstract representations of
DFAs where Nerode partitions correspond to minimal DFAs [13]. So the conver-
sions from Nerode partitions to Myhill partitions and from Myhill partitions to
DFAs are fairly direct. For the conversion from DFAs to Nerode partitions, we
rely on automata minimization. For this, we prove correct a variant of Huffman’s
table filling algorithm for DFA minimization [11].

We also prove that regular languages are closed under images and preimages
of homomorphisms, and we prove decidability of language equivalence for all rep-
resentations. We prove our decidability results by defining, in Coq, functions to
bool that decide the problem. This is sufficient since we work in the constructive
logic of Coq without axioms, so every function into bool is total and computable.

1.1 Related Work

There are several recent publications concerned with the formalization of the
theory of regular languages. Wu et al. [21] describe a formalization of the Myhill-
Nerdode theorem in Isabelle/HOL based directly on regular expressions. The
authors explain this unusual choice with limitations of Isabelle/HOL, which lacks
a good graph library and does not allow quantification over types. This makes
it difficult to define a type of automata that is easy to work with. Neither of
these restrictions apply to Coq with Ssreflect. However, we could not find a
formalization of automata theory in the literature that makes good use of the
fact that types are fist-class values in Coq. For example, Braibant and Pous [4]
formalize automata as part of a larger development building a certified decision
procedure for Kleene algebras. They use numbered states, an approach rejected
as “clunky” in [21].

84 C. Doczkal, J.-O. Kaiser, and G. Smolka

There are a number of other papers describing certified implementations of
decision procedures. These include decision procedures for regular expression
equivalence [1,6] in Coq or Matita. Berghofer et al. [3] formalize automata over
bitstrings in Isabelle/HOL. Building on this formalization, they obtain a certified
decision procedure for Presburger arithmetic. In these developments the focus is
on efficiency. The formalizations are significantly longer than our development
and formalize only those results relevant to the respective decision procedures.
Kraus and Nipkow [14] develop a certified decision procedure for regular expres-
sion equivalence in Isabelle/HOL. Their formalization is very short, but they only
show partial correctness. In contrast to most of the papers mentioned above, we
are interested in simple proofs rather than practical executability. This gives us
more freedom in our choice of representations.

1.2 Outline
After we introduce some notations and basic definitions, we explain our formal-
ization of languages and give a decidable semantics for regular expressions. In
Section 4, we prove Kleene’s theorem. We also prove that equivalence of DFAs is
decidable. In Section 5, we certify a minimization algorithm for DFAs and show
that minimal DFAs are unique up to isomorphism. In Section 6, we prove our
constructive Myhill-Nerode theorem. In Section 7, we prove that regular lan-
guages are closed under images and preimages of homomorphisms. In Section 8,
we demonstrate how our Myhill-Nerode theorem can be used to show that a
language is not regular.

2 Preliminaries
We review the basic mathematical definitions of formal languages and regular
expressions. An alphabet Σ is a finite set of symbols. The letters a, b, etc. denote
symbols. For simplicity, we fix some alphabet Σ throughout the paper. A word
w is a finite sequence of symbols from Σ. We write wn for the n-th symbol of w.
The variables u, v and w always denote words and ε denotes the empty word. A
language is a set of words. We write Σ∗ for the language of all words and L for
Σ∗ \ L. We write |w| to denote the length of the word w and v · w or just vw for
the concatenation of v and w. Here, uv binds tighter than function application
which in turn binds tighter than ·.

We consider simple regular expressions as defined by the following grammar

r, e := ∅ | ε | a | r · e | r + e | r∗

The language of a regular expression is defined as follows:
L(∅) = ∅ L(ε) = {ε} L(a) = {a}

L(r + e) = L(r) ∪ L(e)

L(r · e) = L(r) · L(e) = {v · w | v ∈ L(r) and w ∈ L(e)}

L(r∗) = L(r)∗ = {w1 · . . . · wn | n ≥ 0 and ∀ 0 < i ≤ n. wi ∈ L(r)}

A Constructive Theory of Regular Languages in Coq 85

3 Decidable Languages and Regular Expressions

Set theoretically, a language is just a set of words. Let char be a type of characters.
We write word char for sequences over char and represent languages as predicates
of type word char → Prop. Note that languages are not necessarily decidable, i.e.,
there are languages L for which we can prove neither w ∈ L nor w /∈ L. Regular
languages, however, are always decidable. So for most of our development we use
decidable languages word char → bool, which are more convenient to work with.
We formalize decidable languages using Ssreflect’s boolean predicates.
Definition dlang char := pred (word char).

Note that our representation of languages as predicates is intensional, i.e., equiva-
lent languages are not necessarily equal. We state equivalences between decidable
languages using Ssreflect’s extensional equality operator, which satisfies

L1 =i L2 ↔ ∀ w, (w ∈ L1) = (w ∈ L2)

Here, ∈ is Ssreflect’s generic membership operator for everything that can be
seen as a boolean predicate. All our constructions respect this equivalence, so
for our informal explanations we consider equivalent languages as equal.

We assign decidable languages to every representation of regular languages.
To do this for regular expressions, we have to show that decidable languages
are closed under all regular operations. Proving this in Coq amounts to defining
∅, ε, a, ·, +, and ∗ as operators on decidable languages. We use the definitions from
Coquand and Siles [6] who also work with decidable languages. All operators but
· and ∗ are easily defined. The operator for · is
Definition conc (L1 L2: dlang char) : dlang char :=

fun v ⇒ [exists i : ’I (size v).+1, L1 (take i v) && L2 (drop i v)].

where ’I (size v).+1 is the type of natural numbers smaller than (size v) + 1.
This type has only finitely many inhabitants and is therefore called a finite
type. Decidability is preserved by quantification over finite types and Ssreflect’s
boolean quantifier [exists x : T, p x] yields a boolean result provided that T is
a finite type and p is a boolean predicate. Hence, conc L1 L2 is a decidable
language.

For the concatenation operator, we prove the correctness lemma
Lemma concP {L1 L2 : dlang char} {w : word char} :

reflect (∃ w1 w2, w = w1 ++ w2 ∧ w1 ∈ L1 ∧ w2 ∈ L2) (w ∈ conc L1 L2).

which reflects1 the boolean membership statement into a Coq proposition. The
definitions of the remaining operators and the associated correctness lemmas can
be found in the file regexp.v of our formalization [7].

We represent regular expressions using an inductive type. Having defined all
the regular operations on languages, we can associate a decidable language to
every regular expression.
1 For P : Prop and p : bool, the statement reflect P p asserts that the Coq proposition

P and p = true are logically equivalent.

86 C. Doczkal, J.-O. Kaiser, and G. Smolka

Fixpoint re lang (e : regexp char) : dlang char :=
match e with
| Void ⇒ void char
| Eps ⇒ eps char
| Atom x ⇒ atom x
| Star e1 ⇒ star (re lang e1)
| Plus e1 e2 ⇒ plus (re lang e1) (re lang e2)
| Conc e1 e2 ⇒ conc (re lang e1) (re lang e2)
end.

Theorem 1. The matching problem for regular expressions is decidable.

Proof. This is an immediate consequence of defining the semantics of regular
expressions in terms of decidable languages. �	
We now call a general language regular if it is equivalent to the language of some
regular expression.
Definition regular char (L : word char → Prop) := ∃ e : regexp char, ∀ w, L w ↔ w ∈ e.

Defining regularity on general languages has the advantage that one can prove
regularity by giving a regular expression or a finite automaton without first
proving that the language is decidable.

4 Kleene’s Theorem

While regular expressions can be seen as the natural characterization of regular
languages, finite automata can be seen as an operational characterization of the
same class of languages. Several theorems about regular languages can be proven
more easily using automata rather than regular expressions. This includes the
closure of regular languages under complement and the Myhill-Nerode theorem.
We formalize nondeterministic and total deterministic automata and show that
both have the same expressive power as regular expressions.

Definition 1. – A nondeterministic finite automaton (NFA) is a tuple (Q, s,
F, δ) where Q is a finite set of states, s ∈ Q is the starting state, F ⊆ Q is
the set of accepting states, and δ ⊆ (Q × Σ) × Q is the transition relation.

– A deterministic finite automaton (DFA) is a tuple (Q, s, F, δ) as above, ex-
cept that δ : Q × Σ → Q is a total function.

We formalize NFAs and DFAs as two separate record types.
Record nfa : Type := {

nfa state :> finType;
nfa s : nfa state;
nfa fin : pred nfa state;
nfa trans : nfa state → char → nfa state → bool }.

The definition of dfa is the same, except that the transition function dfa trans is
a function of type dfa state → char → dfa state.

A Constructive Theory of Regular Languages in Coq 87

For these definitions, we make use of the fact that types are first-class objects
in Coq. This allows us to represent the set of states as a type. We require that
the type of states has a finType structure [8], i.e., is a finite type. The collection
of types with a finType structure can be thought of as a type class. It is closed
under the product, sum, option, and set type constructors. That means that
if we have finType structures for T and T’, the type checker can infer finType
structures for T ∗T ′, T +T ′, option T, and {set T}, the type of sets over T. So the
finType structures of all our automata constructions are inferred automatically.
The annotation :> for nfa state registers nfa state as a coercion. So if A:nfa, x:A
means that x is a state of A.

We follow [13] and define acceptance for all states of an automaton by recur-
sion on words.
Fixpoint nfa accept (A : nfa) (x : A) w :=

if w is a :: w’ then [exists y, nfa trans A x a y && nfa accept A y w’]
else x ∈ nfa fin A.

Fixpoint dfa accept (A : dfa) (x : A) w :=
if w is a :: w’ then dfa accept A (dfa trans A x a) w’ else x ∈ dfa fin A.

The language of an automaton is the set of words accepted by the starting state.
Every DFA can easily be converted into an NFA accepting the same language.
For the converse direction we formalize the usual powerset construction. Thus
we obtain:

Theorem 2. For every NFA (DFA) we can construct a DFA (NFA) accepting
the same language.

4.1 Regular Expressions to Finite Automata

Our next result about finite automata is the construction of an automaton for
every regular expression. For this we need constructions on finite automata cor-
responding to constructors of regular languages. Since dfa accept does not use ex-
istential quantification, DFAs are generally easier to work with. However, some
constructions become much easier when done on NFAs.

Since we have already established conversions between NFAs and DFAs, we
can carry out each construction on the automata model that fits best. We define
the constructions for A∗, A ·B, and ’a’ on NFAs and we define the constructions
for ∅, ε, and A+B on DFAs. All six constructions are fairly straightforward. Our
NFA constructions differ slightly from Kozen’s [13] since our NFAs do not admit
ε-transitions. Whenever one would usually use an ε-transition from a state x
to a state y, we instead duplicate all incoming transitions from x as incoming
transitions of y. See the file automata.v [7] for details.

Theorem 3. For every regular expression r, we can construct a DFA accepting
the same language.

Proof. Induction on r using the respective constructions on automata. �	

88 C. Doczkal, J.-O. Kaiser, and G. Smolka

For DFAs it is also easy to show closure under complement and intersection. In
fact, the DFA for A ∩ B and the DFA for A + B used above are both instances
of one generic construction for binary boolean operations. Further, we can give
a function that decides whether the language of a DFA is empty.
Definition dfa lang empty A := [forall (x | reachable A x), x /∈ dfa fin A].

The function simply checks that none of the states of A which are reachable from
the starting state are final states of A. Here, reachable is defined with respect to
the reflexive transitive closure of the relation below:
Definition dfa trans some (x y : A) := [exists a, dfa trans x a == y].

The reflexive transitive closure of a decidable relation over a finite type is again
a decidable relation and this construction is contained in the Ssreflect libraries.
So we obtain:

Theorem 4. 1. Language emptiness for DFAs is decidable.
2. Language equivalence for DFAs is decidable.

Proof. (1) is decided by dfa lang empty. Part (2) reduces to (1). �	
Note that decidability of language equivalence for DFAs implies decidability of
language equivalence for all representations that can be translated to DFAs. We
will show that this is the case for all representations we consider.

4.2 Finite Automata to Regular Expressions

We now show that we can construct a regular expression for every deterministic
finite automaton. We use Kleene’s algorithm [12], because we think it is easiest
to formalize. For the rest of this section, we assume that we are given a DFA
A = (Q, s, F, δ).

Definition 2. Let w be a word and x ∈ Q. We call the state sequence x1 . . . xn

the run from x on w, written run(x, w), if x
w1→ x1 . . .

w|w|→ x|w| where y
a→ z

abbreviates δ(y, a) = z. We define δ̂(x, w) to be the last element of x :: run(x, w)
and write δ̂s for λw. δ̂(s, w).

Based on the notion of run, we can define the languages of runs from one state
to another. Restricting the set of states that may be traversed in between, we
obtain the following indexed collection of languages:

Definition 3. Let X ⊆ Q, x, y ∈ Q, and w a word. w ∈ LX
x,y iff (1) δ̂(x, w) = y

and (2) all states of run(x, w) except possibly the last are contained in X.

Lemma 1. L(A) =
⋃

x∈F LQ
s,x

According to Lemma 1, it suffices to construct regular expressions for LQ
s,x for

the various states x ∈ F in order to obtain a regular expression for L(A). We
recursively solve the problem for all languages LQ

x,y by successively removing
states from Q. Once we reach the empty set of states, we can directly give a
regular expression.

A Constructive Theory of Regular Languages in Coq 89

Definition 4. Let x, y ∈ Q, then

R∅
x,y

def≡ (if x = y then ε else ∅) +
∑

a∈Σ
δ(x,a)=y

a

Lemma 2. L (
R∅

x,y

)
= L∅

x,y

Now consider the case of a nonempty set X ⊆ Q, where z ∈ X and w ∈ LX
x,y.

Then run(x, w) may reach z, come back to z an arbitrary number of times, and
then end in y. Alternatively, the run may not reach z at all. This motivates the
following lemma:

Lemma 3. Let x, y, z ∈ Q and X ⊆ Q, then

w ∈ L{z}∪X
x,y ⇐⇒ w ∈ LX

x,z · (
LX

z,z

)∗ · LX
z,y + LX

x,y

The formalization of Lemma 3 is one of the more involved parts of our develop-
ment. Writing delta for δ̂, we formalize LX

x,y as follows:

Definition L (X : {set A}) (x y : A) :=
[pred w | (delta x w == y) && abl (mem X) (dfa run x w)].

Here, abl (mem X) (dfa run x w) checks the second condition of Definition 3. Show-
ing the direction from right to left is relatively easy. We prove the converse
direction by induction on |w|. The essential lemma for this direction is:

Lemma L split X x y z w : w ∈ Lˆ(z |: X) x y →
w ∈ LˆX x y ∨ ∃ w1 w2, w = w1 ++ w2 ∧ size w2 < size w

∧ w1 ∈ LˆX x z ∧ w2 ∈ Lˆ(z |: X) z y.

which is itself proved by induction on w. The Notation z |: X stands for {z} ∪ X .
Following Lemma 2 and Lemma 3, we can give a recursive procedure R such that
the language of RˆX x y is LˆX x y.
Function R (X : {set A}) (x y : A) {measure (fun X ⇒ #|X|) X} :=

match [pick z ∈ X] with
| None ⇒ R0 x y
| Some z ⇒ let X’ := X :\ z in

Plus (Conc (R X’ x z) (Conc (Star (R X’ z z)) (R X’ z y))) (R X’ x y)
end.

The definition employs Coq’s Function command, which allows the definition of
functions by size recursion. In our case, the measure is the size of the set X.
The expression [pick z ∈ X] evaluates to None if X is empty and to Some z with
z ∈ X otherwise. Due to the match on the pick expression, Coq is, at the time
of writing, not capable of generating the functional induction principle for R.
However, this does not pose a problem, since the correspondence between R and
L can be proved directly by induction on the size of X.
Lemma L R n (X : {set A}) x y : #|X| = n → LˆX x y =i RˆX x y.

Thus we have:

90 C. Doczkal, J.-O. Kaiser, and G. Smolka

Theorem 5. For every automaton A, we can construct a regular expression
accepting L(A).

Corollary 1. Let r and e be regular expressions. We can construct regular ex-
pressions accepting L(r) ∩ L(e) and L(r).

5 Minimization

We now construct a minimization function for DFAs. We follow Kozen’s pre-
sentation [13] of Huffman’s table filling algorithm [11]. We fix some DFA A =
(Q, s, F, δ).

Definition 5. Let x, y ∈ Q. The collapsing relation on A is defined as follows:

x ≈ y
def≡ ∀w. δ(x, w) ∈ F ⇐⇒ δ(y, w) ∈ F

Minimization merges every equivalence class of the collapsing relation into a
single state. To construct this quotient automaton in Coq, we need to show
that the collapsing relation is decidable. Once we have a boolean reflection
collb : A → A → bool of the collapsing relation, the quotient construction follows
a generic pattern.

The construction makes use of the fact that there is a constructive choice
operator for finite types. Consider, for instance, a decidable equivalence relation
e over a type T with choice operator. We use this choice operator to get a
canonical element2 of every equivalence class of e.
Definition repr x := choose (e x) x.

We call repr x the representative of the equivalence class of x with respect to e.
The function repr is idempotent. Thus, the quotient of T modulo e can be defined
as follows:
Definition quot := { x : T | x == repr x }.

The type quot is a sigma type, i.e., the type of dependent pairs of elements x
and proofs of x == repr x. In particular, this type is finite if T is finite, since
x == repr x has at most one proof and, thus, quot has at most as many elements
as T. Using repr we can also define a function class : T → quot corresponding to
the function λx.[x]e. The first projection of quot, written val, allows us to obtain
the canonical representative of the class [x]e. Taking e to be collb we can define
the quotient automaton as follows:
Definition minimize : dfa := {|

dfa s := class (dfa s A);
dfa trans x a := class (dfa trans (val x) a);
dfa fin := [pred x | val x ∈ dfa fin A] |}.

2 If p y = true, the result of choose p y satisfies p but does not depend on y.

A Constructive Theory of Regular Languages in Coq 91

To compute collb, we compute its complement, the distinguishable states,
using a fixpoint construction. Final and non-final states are distinguishable using
the empty word.
Definition dist0 : {set A∗A} := [set x | (x.1 ∈ dfa fin A) != (x.2 ∈ dfa fin A)].

We also mark those pairs as distinguishable that transition to an already distin-
guishable pair of states.
Definition distS (dist : {set A∗A}) :=

[set x | [exists a, (dfa trans x.1 a, dfa trans x.2 a) ∈ dist]].

Now we can define a monotone function one step dist : {set M ∗ M} → {set M ∗ M}
corresponding to one pass through Huffman’s algorithm [11].

Definition one step dist dist := dist0 ∪ distS dist.

Its least fixpoint, computed by iterating the function sufficiently often on the
empty set, is exactly the set of distinguishable pairs. This finishes the minimiza-
tion construction. At this point, we can show:
Lemma minimize correct A : dfa lang (minimize A) =i dfa lang A.

Lemma minimize size A : #|minimize A| ≤ #|A|.

For connected DFAs the result of minimization is indeed minimal and minimal
DFAs are unique up to isomorphism, i.e, up to a renaming of the states. In
this context, a connected DFA is a DFA A = (Q, s, F, δ) where δ̂s is surjective.
Surjectivity of δ̂s allows us to define a partial inverse δ̂−1

s : Q → Σ∗ such that
δ̂s(δ̂−1

s x) = x. For this we exploit that there is also a choice operator for the
countable type of words. In fact our inverse construction for δ̂s is just an instance
of a generic inverse construction for surjective functions from types with choice
operator to types with decidable equality.
Definition cr {X : choiceType} {Y : eqType} {f : X → Y} (Sf : surjective f) y : X :=

xchoose (Sf y).

We call cr Sf x (with types as above) the canonical representative of x. The con-
struction uses xchoose, a stronger variant of constructive choice, which for a
decidable predicate p turns a proof of ∃ x, p x into an element satisfying p.

We now show that all connected and collapsed (i.e., the collapsing relation
is the identity) DFAs are isomorphic. Consider two collapsed DFAs A and B
accepting the same language and a proof A conn : connected A for A and likewise
for B. We use cr to define an isomorphism between A and B.
Definition iso (x : A) : B := delta (dfa s B) (cr A conn x).

To show that iso is a bijection we define its inverse iso inv by swapping the role of
A and B in the definition of iso and show that iso and iso inv cancel each other in
both directions. The proofs make use of the following fact about the interaction
of delta and iso:
Lemma delta iso w x : delta (iso x) w ∈ dfa fin B = (delta x w ∈ dfa fin A).

92 C. Doczkal, J.-O. Kaiser, and G. Smolka

Using the fact that both automata are fully collapsed, we can show that iso is
not just a bijection but also respects the structure of the automata. Thus, we
have shown:

Theorem 6. Let A = (Q1, s1, F1, δ1), B = (Q2, s2, F2, δ2) be collapsed and con-
nected DFAs. If L(A) = L(B), then there exists a bijection i : Q1 → Q2 satisfying

∀q ∈ Q1. i(δ1(q, a)) = δ2(i(q), a)
∀q ∈ Q1. i(q) ∈ F2 ⇐⇒ q ∈ F1

i(s1) = s2

It is easy to show that minimization preserves connectedness and yields col-
lapsed DFAs. In particular, this entails that the result of minimizing a con-
nected automaton is indeed minimal and that minimal DFAs are unique up to
isomorphism.

6 Myhill-Nerode Theorem

Myhill [16] and Nerode [17] relations characterize regular languages in terms
of simple algebraic properties. We now define two additional representations
of regular languages: Myhill partitions and Nerode partitions. Our constructive
version of the Myhill-Nerode theorem then consists of three conversion functions:
from Nerode partitions to Myhill partitions, from Myhill partitions to DFAs, and
from minimal DFAs to Nerode partitions.

Definition 6. Let ≡ ⊆ Σ∗ ×Σ∗ be an equivalence relation. The partition (I, E)
with I a finite set and E : Σ∗ → I surjective represents ≡ if

∀u v. E u = E w ⇐⇒ u ≡ w

We call I the index set and E the representation function. Further, E(w) rep-
resents [w]≡, the equivalence class of w with respect to ≡.

Every partition (I, E) represents some equivalence relation of finite index. We
phrase the Myhill and Nerode conditions directly in terms of partitions.

Definition 7. Let P = (I, M) be a partition. P is a Myhill partition for L, if M

1. is right congruent: ∀u ∈ Σ∗ v ∈ Σ∗ a ∈ Σ. M u = M v ⇒ M ua = M va

2. refines L: ∀u ∈ Σ∗ v ∈ Σ∗. M u = M v ⇒ (u ∈ L ⇐⇒ v ∈ L)

Definition 8. Let P = (I, N) be a partition. P is a Nerode partition for L if

∀u ∈ Σ∗ v ∈ Σ∗. N u = N v ⇐⇒ ∀w ∈ Σ∗. (uw ∈ L ⇐⇒ vw ∈ L)

A Constructive Theory of Regular Languages in Coq 93

We refer to the representation functions of Myhill partitions as Myhill functions
and similarly for Nerode partitions. We formalize finite partitions using records:
Record finPar := {

finpar classes : finType;
finpar fun :> word → finpar classes;
finpar surj : surjective finpar fun }.

In addition to finpar fun, we manually register finpar classes as a second coercion.
So if E:finPar, we write x:E to mean that x is in the index set just as we did for
the states of automata, but we can also write E w for the class of a word w.

We then formalize Myhill and Nerode partitions as more constrained versions
of the above type. For example, Nerode partitions for L are defined as follows:
Definition nerode (X : eqType) (L : dlang char) (E : word → X) :=

∀ u v, E u = E v ↔ ∀ w, (u++w ∈ L) = (v++w ∈ L).

Record nerodePar L := {
nerode par :> finPar;
nerodeP : nerode L nerode par }.

We now define the translation functions we need for our Myhill-Nerode theorem.
Myhill partitions can be seen as abstract representations of connected DFAs and
Nerode partitions can be seen as abstract representations of minimal DFAs.

The translation from Nerode partitions to Myhill partitions is particularly
easy. The representation function of a Nerode partition for a language L refines
L and is right congruent. Thus the representation function of a Nerode partition
can also serve as representation function for a Myhill partition.

For the direction from Myhill partitions to DFAs consider some Myhill parti-
tion (I, M) representing a Myhill relation ≡ for some language L. We construct
an automaton A with Q := I and s := M ε. For the final states and the tran-
sition function, we make use of the fact that M : Σ∗ → I is surjective. Due to
surjectivity, every x ∈ I represents a class [w]≡ for some w. Using cr we can
now define a transition function on I which in terms of the represented classes
satisfies δ([w]≡, a) = [wa]≡.

Definition fp trans (E : finPar) (x : E) a := E (cr E x ++ [:: a]).

The conversion from Myhill partitions to DFAs is then defined as follows:
Definition myhill to dfa L (M : myhillPar L) :=
{| dfa s := M [::]; dfa fin x := cr M x ∈ L; dfa trans := @fp trans M |}.

Lemma myhill to dfa correct L (M : myhillPar L) : dfa lang (myhill to dfa M) =i L.

For the conversion from DFAs to Nerode partitions we can rely on our min-
imization algorithm. Hence, it is sufficient to convert minimal DFAs to Nerode
partitions. Consider, for instance, a minimal DFA A = (Q, s, F, δ). Since A is
minimal and thus connected, the function δ̂s : Σ∗ → Q is surjective. Further A
is collapsed and therefore (Q, δ̂s) is a Nerode partition. Thus we have:

94 C. Doczkal, J.-O. Kaiser, and G. Smolka

Theorem 7

1. For every Nerode partition we can construct an equivalent Myhill partition.
2. For every Myhill partition we can construct an equivalent DFA.
3. For every DFA we can construct an equivalent Nerode partition.

7 Closure under Homomorphisms

In Section 4.2, we have shown that regular languages are closed under inter-
section and complement. We now show that regular languages are closed under
preimages and images of homomorphisms. For this section we assume a second
alphabet Γ .

Definition 9. Let h : Σ∗ → Γ ∗ be a function.

– h is a homomorphism if h uv = h u · h v for all u ∈ Σ∗ and v ∈ Σ∗.
– The preimage of L under h is h−1(L) := {w | h w ∈ L}
– The image of L under h is h(L) := {v | ∃w ∈ L. h w = v}

The closure under taking the preimage of a homomorphism is easy to show. We
use Kozen’s [13] construction on DFAs.

The closure of regular languages under taking the image of a homomorphism
is more interesting. Unlike all the closure properties of regular languages we have
shown so far, it is not a closure property of decidable languages in general. This
means, that we cannot define an image operator on decidable languages. We can
only express the image as a predicate in Prop.
Definition image (h : word char → word char’) (L : word char → Prop) v :=

∃ w, L w ∧ h w = v.

For a homomorphism h, Kozen [13] gives a construction of a regular expression eh

from a regular expression e satisfying L(eh) = h(L(e)). The construction works
by replacing all atoms a in e with the string h a. We can prove this construction
correct, but we can only state the correctness as a reflection lemma and not as
a quantified boolean equation as we did for all the other constructions so far.
Lemma re imageP e v : reflect (image h (re lang e) v) (v ∈ re image e).

Once we abstract away the concrete constructions, this difference disappears and
we obtain:
Lemma preim regular (char char’ : finType) (h : word char → word char’) L :

homomorphism h → regular L → regular (preimage h L).

Lemma im regular (char char’ : finType) (h : word char → word char’) L :
homomorphism h → regular L → regular (image h L).

Theorem 8. Regular languages are closed under taking preimages and images
of homomorphisms.

A Constructive Theory of Regular Languages in Coq 95

8 Proving Languages Non-regular

So far, we have formalized a number of constructions that can be used to prove
that a language is regular. One option to prove that a language is not regular
is using the Pumping Lemma, which is included in our formalization. More
interesting in our constructive setting is the use of Nerode partitions. If we want
to prove that a language L is not regular, we can assume that L is regular.
This provides us with a corresponding decidable language L′ and, using our
translation functions, with a Nerode partition for L′.
Lemma regularE (L : word char → Prop) : regular L →

∃ L’ : dlang char, (∀ w, L w ↔ w ∈ L’) ∧ inhabited (nerodePar L’).

Hence, it is sufficient to have a reasoning principle to show non-regularity of
decidable languages. One such criterion is the existence of an infinite collection
of words that are not related by the Nerode relation.
Lemma nerodeIN (f : nat → word char) (L : dlang char) :

(∀ n1 n2, (∀ w, (f n1 ++ w ∈ L) = (f n2 ++ w ∈ L)) → n1 = n2) →
∼ regular L.

We use this principle to prove that {w | ∃n. w = anbn} is not regular.
So for proofs of non-regularity, the restriction of Nerode partitions to decid-

able languages is irrelevant. For proofs of regularity, it does pose a restriction,
and this restriction is unavoidable in a constructive setting. Consider some inde-
pendent proposition P , i.e., some P for which we can prove neither P nor ¬P .
Then regularity of the language L := {w | P } is equivalent to the unprovabe
proposition P ∨ ¬P . However, we can still prove that L has exactly one Nerode
class. So except for the decidability requirement on the language itself, we have
a Nerode partition and thus a proof of regularity. This also shows that there
are some languages on which the constructive interpretation of regularity differs
from the set theoretic interpretation.

9 Conclusion

We have formalized a number of fundamental results about regular languages.
Our selection of results corresponds roughly to the first part of Kozen’s “Au-
tomata and Computability” [13]. We added the uniqueness result for minimal
DFAs and skipped NFAs with ε-transitions, stopping right before the definition
of 2DFAs.

Concerning ε-NFAs, we came to the conclusion that the added flexibility is
not worth the effort. In fact, we had a formalization of ε-NFAs. However, in
our formalization the correctness proof for the conversion function from ε-NFAs
to NFAs was just reflexivity and thus not interesting. So the only advantage
of working with ε-NFAs would be more compact definitions, but at the cost
of having to consider, in proofs, possible sequences of ε-transitions at every
transition step.

96 C. Doczkal, J.-O. Kaiser, and G. Smolka

A more interesting addition to our development would be 2DFAs. Since 2DFAs
may move back and forth on the input word and even have infinite runs, their
language cannot be defined by a simple recursion on the input word. Instead,
the boolean acceptance predicate would be computed using a finite fixpoint
construction similar to the one we employed in the minimization algorithm.

To make our formalization more instructive, we obtain our results with many
small lemmas. This way at least the overall structure of the proofs can be under-
stood without stepping through the proofs. In total, we prove about 170 lemmas
and almost 50% of the 1400 lines of our development are specifications.

All of our proofs are carried out in the constructive type theory of Coq,
and there are a number of places where we have to deviate from the textbook
presentation [13] of the material we formalize. We have to show at several places
that the predicates and relations we define are decidable, which is supported
very well by Ssreflect.

For Kleene’s Theorem, staying constructive did not cause any difficulties,
since the textbook proof [13] of this theorem is also constructive. For automata
minimization, the lack of general quotient types in Coq forces us to compute
the collapsing relation before we can define the quotient automaton. However,
the collapsing algorithm is interesing in its own right. For the Myhill-Nerode
Theorem, we represent equivalence relations of finite index by making the finite
set of equivalence classes explicit in the form of a finite type. This turns Myhill
and Nerode partitions into objects we can compute with. Consequently, we have
to rely on minimization to obtain Nerode partitions.

Many of the constructions we use in our development are applicable in a wide
range of situations. Notably, this includes finite types, constructive quotients,
and finite fixpoints. While we are certainly not the first to use these techniques,
we believe they deserve a wider recognition. Since the material we formalize
is fairly standard, we hope that our proofs can serve as examples for teaching
theory development in Coq.

Acknowledgments. We thank the anonymous reviewers of the preliminary
versions of this paper for their helpful comments.

References
1. Asperti, A.: A compact proof of decidability for regular expression equivalence. In:

Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 283–298. Springer,
Heidelberg (2012)

2. Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.): TPHOLs 2009. LNCS,
vol. 5674. Springer, Heidelberg (2009)

3. Berghofer, S., Reiter, M.: Formalizing the logic-automaton connection. In:
Berghofer, et al. (eds.) [2], pp. 147–163

4. Braibant, T., Pous, D.: Deciding kleene algebras in coq. Logical Methods in Com-
puter Science 8(1) (2012)

5. Constable, R.L., Jackson, P.B., Naumov, P., Uribe, J.C.: Constructively formalizing
automata theory. In: Plotkin, G.D., Stirling, C., Tofte, M. (eds.) Proof, Language,
and Interaction, pp. 213–238. The MIT Press (2000)

A Constructive Theory of Regular Languages in Coq 97

6. Coquand, T., Siles, V.: A decision procedure for regular expression equivalence in
type theory. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp.
119–134. Springer, Heidelberg (2011)

7. Doczkal, C., Kaiser, J.O., Smolka, G.: Formalization accompanying this paper,
http://www.ps.uni-saarland.de/extras/cpp13/

8. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical
structures. In: Berghofer, et al. (eds.) [2], pp. 327–342

9. Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension for the
Coq system. Rapport de recherche RR-6455, INRIA (2008),
http://hal.inria.fr/inria-00258384

10. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-
guages, and computation - international edition, 2nd edn. Addison-Wesley (2001)

11. Huffman, D.: The synthesis of sequential switching circuits. Journal of the Franklin
Institute 257(3), 161–190 (1954)

12. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, McCarthy (eds.) [19], pp. 3–42

13. Kozen, D.: Automata and computability. Undergraduate texts in computer science.
Springer (1997)

14. Krauss, A., Nipkow, T.: Proof pearl: Regular expression equivalence and relation
algebra. J. Autom. Reasoning 49(1), 95–106 (2012)

15. Moore, E.F.: Gedanken-experiments on sequential machines. In: Shannon, Mc-
Carthy (eds.) [19], pp. 129–153

16. Myhill, J.R.: Finite Automata and the Representation of Events. Tech. Rep. WADC
TR-57-624, Wright-Paterson Air Force Base (1957)

17. Nerode, A.: Linear automaton transformations. Proceedings of the American Math-
ematical Society 9(4), 541–544 (1958)

18. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3(2), 114–125 (1959)

19. Shannon, C., McCarthy, J. (eds.): Automata Studies. Princeton University Press
(1956)

20. The Coq Development Team: http://coq.inria.fr
21. Wu, C., Zhang, X., Urban, C.: A formalisation of the Myhill-Nerode theorem based

on regular expressions (Proof pearl). In: van Eekelen, M., Geuvers, H., Schmaltz,
J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 341–356. Springer, Heidelberg
(2011)

http://www.ps.uni-saarland.de/extras/cpp13/
http://hal.inria.fr/inria-00258384
http://coq.inria.fr

Certified Parsing of Regular Languages

Denis Firsov and Tarmo Uustalu

Institute of Cybernetics, Tallinn University of Technology
Akadeemia tee 21, 12618 Tallinn, Estonia

{denis,tarmo}@cs.ioc.ee

Abstract. We report on a certified parser generator for regular languages
using the Agda programming language. Specifically, we programmed a
transformation of regular expressions into a Boolean-matrix based repre-
sentation of nondeterministic finite automata (NFAs). And we proved (in
Agda) that a string matches a regular expression if and only if the NFA
accepts it. The proof of the if-part is effectively a function turning accep-
tance of a string into a parse tree while the only-if part gives a function
turning rejection into a proof of impossibility of a parse tree.

1 Introduction

Parsing is the process of structuring a linear representation (sentence, a com-
puter program, etc.) in accordance with a given grammar. Parsers are proce-
dures which perform parsing. They are being used extensively in a number of
disciplines: in computer science (for compiler construction, database interfaces,
artificial intelligence), in linguistics (for text analysis, corpora analysis, machine
translation, textual analysis of biblical texts), in typesetting chemical formulae,
in chromosome recognition, and so on [4]. It is therefore clear that having cor-
rect parsers is important for all these disciplines. Surprisingly, relatively little
research had been done in field of certified parsing.

However, with the recent development of programming languages with depen-
dent types it has become possible to encode useful invariants in the types and
prove properties of a program while implementing it. In this paper we use the
system of dependent types of the Agda language [8], which is based on Martin-
Löf’s type theory. One of the basic ideas behind Martin-Löf’s type theory is the
Curry-Howard interpretation of propositions as types. A proposition is proved
by writing a program of the corresponding type.

Dependent types allow types to talk about values. A classical example of a
dependent type is the type of lists of a given length: Vec A n. Here A is the type
of the elements and n is the length of the list. Having such a definition of vector,
we can define “safe” functions. Let us look at definition of a safe head function:

head : ∀ {A n} → Vec A (suc n) → A
head (x :: xs) = x

This definition says that the function head accepts only vectors with at least one
element. So, it is now the responsibility of the programmer to provide non-empty
vectors, otherwise compilation will fail.

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 98–113, 2013.
c© Springer International Publishing Switzerland 2013

Certified Parsing of Regular Languages 99

In this paper, we have adopted the same general technique of expressing prop-
erties of data in their types to implement a library of matrix operations, program
a transformation of regular expressions into a Boolean matrix based represen-
tation of nondeterministic finite automata (NFAs) and prove it correct. The
correctness proof turns NFAs effectively into parsers: the proof of acceptance or
rejection of a string gives us a parse tree (a witness of matching) or a proof of
impossibility of one.

Our Agda development can be found online at http://cs.ioc.ee/˜denis/
cert-reg .

2 Regular Expressions

Before we start, let us take care of the alphabet (Σ) of our interest. Since many
functions require Σ as a parameter and an NFA must share its alphabet with
the regular expressions, we define Σ as a global parameter for each module of
the parser-generator library.

module ModuleName (Σ : Set) (_ ?=_ : Decidable (_≡_ {A = Σ}))
It states that the module is parametrized by an alphabet and also a decidable
equality on the alphabet.

The datatype for regular expressions is called RegExp and is defined as

data RegExp : Set where
ε : RegExp
′_ : Σ→ RegExp
∪ : RegExp → RegExp → RegExp
· : RegExp → RegExp → RegExp
_+ : RegExp → RegExp

The base cases are regular expressions for the empty string (ε) and for single-
character strings (′_). The step cases are given by the regular operations: _∪_
for union, _·_ for concatenation and _+ for iteration at least once. Note that
instead of the Kleene star (_*) we use plus (_+). This is more convenient for
us and does not restrict generality, as star is expressible as choice between the
empty string and plus.

Now, we need to specify when a string (an element of type List Σ) is in the
language of the regular expression, which is also called matching. This is done
by introducing a parsing (or matching) relation (denoted by _�_) between
strings and regular expressions.

String : Set
String = List Σ
data _�_ : String → RegExp → Set where

empt : [] � ε
symb : {x : Σ} → [x] � ′ x
unionl : {u : String} {e1 e2 : RegExp} → u � e1 → u � e1 ∪ e2

unionr : {u : String} {e1 e2 : RegExp} → u � e2 → u � e1 ∪ e2

http://cs.ioc.ee/~{}denis/cert-reg
http://cs.ioc.ee/~{}denis/cert-reg

100 D. Firsov and T. Uustalu

con : {u v : String} {e1 e2 : RegExp} → u � e1 → v � e2

→ u ++ v � e1 · e2

plus1 : {u : String} {e : RegExp} → u � e → u � e+

plus2 : {u v : String} {e : RegExp}
→ u � e → v � e+ → u ++ v � e+

(Arguments enclosed in curly braces are implicit. The type checker will try to
figure out the argument value for you. If the type checker cannot infer an implicit
argument, then it must be provided explicitly, e.g., symb {x}.)

Let us now examine the constructors of the relation _�_:

1. The constructor empt states that the empty string is in the language of the
regular expression ε.

2. The constructor symb states that the string consisting of a single character x
is in the language of the regular expression ′ x.

3. The constructor unionl (unionr) states that if a string u is in the language
defined by e1 (e2), then u is also in the language of e1 ∪ e2 for any e2 (e1).

4. The constructor con states that if a string u is in the language e1 and a
string v is in the language of e2 then the concatenation of both strings is in
the language of e1 · e2.

5. The constructor plus1 states that if a string u is in the language of e, then
it is also in the language of e+.

6. The constructor plus2 states that if a string u is in the language of e and a
string v is in the language of e+, then concatenation of both strings is in the
language of e+.

Note that a proof that a string is in the parsing relation with a regular ex-
pression is a parse tree. Note that we do not introduce any notion of “raw” parse
trees, a parse tree is always a parse tree of a specific string.

3 A Matrix Library

The transition relation of a nondeterministic finite automaton (NFA) can be
viewed as a labeled directed graph. So it can be expressed as a family of incidence
matrices (one matrix per label). In addition to the nice algebraic properties
that this approach highlights, it allows us to compose automata (expressed with
matrices) in various ways by using block operations.

We therefore formalize matrices and some important matrix operations and
their properties.

3.1 Matrices and Matrix Operations

What sort of elements can a matrix contain? Our approach abstracts from the
type of elements. But in order for matrix addition and multiplication to be
well-defined and satisfy the standard properties, it must form a commutative
semiring. In Agda we introduce a parametrized module

Certified Parsing of Regular Languages 101

module Data.Matrix (sr : CommSemiRing)

This declaration says that the module Data.Matrix is parametrized by a commu-
tative semiring sr. A semiring will be a record containing the carrier type R, the
operations, and the proofs of the laws of the semiring.

Next we define a representation for matrices. A matrix is a vector of vectors,
therefore the matrix type can be defined as

× : N → N → Set
k × l = Vec (Vec R l) k

where k denotes the number of rows and l the number of columns in a matrix.
Let us implement some of the most important operations on matrices:

Null Matrix. The zero or null matrix is a matrix with all entries zero.

null : {k l : N} → k × l
null = replicate (replicate zero)

Here zero is the additive identity element of the semiring. Note that the
arguments k and l are implicit (enclosed in curly braces), so in the most
cases we can omit them and the type checker will try to infer their values
automatically.

Identity Matrix. The identity or unit matrix of size k is the k × k square
matrix with ones on the main diagonal and zeros elsewhere.

id : {k : N} → k × k
id {0} = []
id {suc k} = (one :: replicate zero) :: zipWith _++_ null (id {k})

Here one is the multiplicative identity element.
Addition. Matrix addition is the operation of adding two matrices by adding

corresponding entries together.

⊕ : {k l : N} → k × l → k × l → k × l
⊕ [] [] = []
⊕ (rowA :: A′) (rowB :: B′) = zipWith _+_ rowA rowB :: A′ ⊕ B′

Note, that signature of addition requires the dimensions of the two input
matrices to be equal.

Transposition. The transpose of a matrix A is another matrix 〈 A 〉 (or AT in
mathematical notation) created by writing the rows of A as the columns of
〈 A 〉.

〈_〉 : {k l : N} → k × l → l × k
〈 [] 〉 = replicate []
〈 rowA :: A′ 〉 = zipWith _::_ rowA 〈 A′ 〉

Multiplication. Matrix multiplication is a binary operation that takes a pair
of matrices and produces another matrix. If A is an k × l matrix and B is
an l × m matrix, the result A ⊗ B of their multiplication is an k × m matrix

102 D. Firsov and T. Uustalu

defined only if the number l of columns of the first matrix A is equal to the
number of rows of the second matrix B.

⊗ : {k l m : N} → k × l → l × m → k × m
⊗ [] = []
⊗ (rowA :: A′) B = multRow :: A′ � B

where
multRow = map

(λ colB → (foldr (_+_) zero (zipWith (_*_) rowA colB))) 〈 B 〉
The result of matrix multiplication is a matrix whose elements are found by
multiplying the elements within a row from the first matrix by the associated
elements within a column from the second matrix and summing the products.

In our library we have proved a number of basic properties of matrix trans-
position, addition, multiplication.

3.2 Block Operations

How to create matrices from smaller matrices systematically? This section de-
scribes an approach to block operations on matrices that has been advocated
by Macedo and Oliveira [6]. It is centered around four operations corresponding
to the injections and projections of the biproducts on the category of natural
numbers and matrices.

1. ι1 : {k l : N} → (k + l) × k
ι1 = id ++ null

2. ι2 : {k l : N} → (k + l) × l
ι2 = null ++ id

3. π1 : {k l : N} → k × (k + l)
π1 = zipWith _++_ id null

4. π2 : {k l : N} → l × (k + l)
π2 = zipWith _++_ null id

Example 1. Let us show some instances of these operations:

ι1{3}{1} =

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎦ ι2{2}{2} =

⎡
⎢⎢⎣
0 0
0 0
1 0
0 1

⎤
⎥⎥⎦

π1{3}{1} =

⎡
⎣1 0 0 0

0 1 0 0
0 0 1 0

⎤
⎦ π2{2}{2} =

[
1 0 0 0
0 1 0 0

]

The main block operations are now defined as follows:

Concatenation (copairing) is the operation of placing two matrices next to
each other.

[_|_] : {k l m : N} → k × l → k × m → k × (l + m)
[A | B] = A ⊗ π1 ⊕ B ⊗ π2

Certified Parsing of Regular Languages 103

Stacking (pairing) is the operation of placing two matrices on top of each other.

[_/_] : {k l m : N} → k × m → l × m → (k + l) × m
[A / B] = ι1 ⊗ A ⊕ ι2 ⊗ B

Example 2. Let A =
[
1 2
3 4

]
and B =

[
5 6
7 8

]
. Then

[A | B] =
[
1 2 5 6
3 4 7 8

]
and [A / B] =

⎡
⎢⎢⎣

1 2
3 4
5 6
7 8

⎤
⎥⎥⎦

3.3 Properties of Block Operations

The main advantage of working with injections and projections is that they
structure proofs about block operations. Next, we list some properties of block
operations.

– Multiplying the concatenation of A and B by ι1 (ι2) yields A (B).

m1m2-con-ι1 : {k l m : N} (A : k × l) (B : k × m)
→ [A | B] ⊗ (ι1 { l} {m}) ≡ A

m1m2-con-ι2 : {k l m : N} (A : k × l) (B : k × m)
→ [A | B] ⊗ (ι2 { l} {m}) ≡ B

– Multiplying π1 (π2) by the stacking of A and B gives A (B).

π1-m1m2-stack : {k l m : N} (A : k × l) (B : m × l)
→ π1 {k} {m} ⊗ [A / B] ≡ A
π2-m1m2-stack : {k l m : N} (A : k × l) (B : m × l)
→ π2 {k} {m} ⊗ [A / B] ≡ B

– The product of C and the concatenation of A and B is equal to the concate-
nation of C ⊗ A and C ⊗ B.

distrib-lft : {k l m n : N} (A : k × l) (B : k × m) (C : n × k)
→ C ⊗ [A | B] ≡ [C ⊗ A | C ⊗ B]

– The product of a stacking reduces to a stacking of products.

distrib-rgt : {k l m n : N} (A : k × l) (B : m × l) (C : l × n)
→ [A / B] ⊗ C ≡ [A ⊗ C / B ⊗ C]

– Multiplying the concatenation of A and B by the stacking of C and D yields
the sum of A ⊗ C and B ⊗ D.

con-⊗-stack : {k l m n : N} (A : k × l) (B : k × m)
→ (C : l × n) → (D : m × n)
→ [A | B] ⊗ [C / D] ≡ A ⊗ C ⊕ B ⊗ D

104 D. Firsov and T. Uustalu

4 NFAs and Parsing with NFAs

We are now in the position to implement a parser generator for regular languages.
We parse strings with nondeterministic finite automata and represent them in
terms of Boolean matrices.

From now on we therefore use matrices over the commutative semiring of
Booleans, with false as zero, disjunction as addition, true as one, conjunction as
multiplication.

4.1 Nondeterministic Finite Automata

A Σ-NFA can be defined as a record with four fields.

record NFA : Set where
field ∇ : N

δ : Σ→ ∇ × ∇
I : 1 × ∇
F : ∇ × 1

– ∇ is the size of the state space. We do not name states. Instead we identify
them with positions in rows and columns of matrices.

– δ specifies the transition function. In our implementation δ is a total function
from letters of the alphabet to incidence matrices such that for any x : Σ
the function call δ x will return an incidence matrix D of size ∇ × ∇ where
Dij = 1 iff qj is a successor of qi for character x.

– I specifies the set of initial states. The initial states can be represented by a
1 × ∇ matrix (row vector) where the element I1i is 1 iff qi is an initial state.

– F specifies the set of final states. The final states can be represented by a
∇ × 1 matrix (column vector) where the element Fi1 is 1 iff qi is a final state.

4.2 Running an NFA

Running an NFA on the string x0 . . . xn from a set of states X represented by a
row vector can be implemented as the series of multiplications
X ⊗ δ nfa x0 ⊗ ... ⊗ δ nfa xn. This computes the row vector of all states
reachable from the states X by following the transitions corresponding to the
individual letters of the string x0 . . . xn.

run : (nfa : NFA) → String → 1 × ∇ nfa → 1 × ∇ nfa
run nfa u X = foldl (λ A x → A ⊗ δ nfa x) X u

If we take X to be I and multiply the matrix further with the column vector
F of the final states, we get the 1 × 1 matrix id {1} (i.e. [[true]]), if there is an
overlap between the states reachable from some initial state and the final states,
i.e., if the string is accepted, and null (i.e. [[false]]) otherwise.

runNFA : NFA → String → 1 × 1
runNFA nfa u = (run nfa u (I nfa)) ⊗ F nfa

Certified Parsing of Regular Languages 105

4.3 Converting Regular Expressions to NFAs (Parsers)

We have introduced and defined the types RegExp and NFA. We now implement
a conversion from RegExp to NFA, which we will use as a parser generator.

reg2nfa : RegExp → NFA
reg2nfa ε = ε′

reg2nfa (′ a) = ′′ a
reg2nfa (e1 ∪ e2) = (reg2nfa e1) ∪′ (reg2nfa e2)
reg2nfa (e+) = (reg2nfa e) +′

reg2nfa (e1 · e2) = (reg2nfa e1) ·′ (reg2nfa e2)

This function recurses over the regular expression and replaces every construc-
tor with a corresponding operation on NFAs. We describe each case:
– e = ε:

ε′ = record {
∇ = 1 ;
δ = λ x → null;
I = id;
F = id}

Clearly, an NFA that accepts only the empty string can be given by one
state 0 that is both initial and final.

– e = ′ a:
In this case, the regular expression describes the single-character string a.
So, the corresponding NFA should accept only this string.

′′ a = record {
∇ = 2;
δ = λ x → if a ?= x then [[null | id {1}] /

[null | null]]
else null;

I = [id {1} | null];
F = [null / id {1}]}

This NFA has two states 0 and 1 such that 0 is an initial and 1 a final state.
The transition function compares the character x with the expected character
a. If they coincide, then it returns the incidence matrix for the graph with a
single edge from 0 to 1, otherwise, the null matrix for the empty graph.

– e = e1 ∪ e2:
Recall that strings of both languages must be accepted. So we must run both
NFAs.

nfa1 ∪′ nfa2 = record {
∇ = ∇ nfa1 + ∇ nfa2;
δ = λ x → [[δ nfa1 x | null] /

[null | δ nfa2 x]];
I = [I nfa1 | I nfa2];
F = [F nfa1 / F nfa2]}

106 D. Firsov and T. Uustalu

The resulting NFA is built of nfa1 and nfa2 as follows:
(∇) The state space of the resulting NFA must contain states from nfa1 and

nfa2. So ∇ = ∇ nfa1 + ∇ nfa2.
(δ) The transition function of the resulting NFA is composed of four blocks.

1. The top left block is the incidence matrix of the first NFA.
2. The top right block is null. So, no transitions from nfa1 to nfa2.
3. The bottom left block is null. In terms of incidence matrices this

signals that there are no transitions from nfa2 to nfa1.
4. The bottom right block is the incidence matrix of the second NFA.

(I) The set of initial states in the resulting NFA is the union of the sets of
initial states of nfa1 and nfa2.

(F) The set of final states in the resulting NFA is the union of the sets of
final states of nfa1 and nfa2.

– e = e′+:

nfa+′ = record {
∇ = ∇ nfa;
δ = λ x → (id ⊕ F nfa ⊗ I nfa) ⊗ (δ nfa x)
I = I nfa;
F = F nfa}

The difference between nfa+′ and nfa is in δ only. Specifically, we add a new
edge from each final state to each successor of an initial state. This is achieved
by F nfa ⊗ I nfa ⊗ δ nfa x, where I nfa ⊗ δ nfa x stands for edges reachable
from initial state by reading the token x. And F nfa ⊗ I nfa ⊗ δ nfa x puts
an edge from each final state to each successor of an initial state.

– e = e1 · e2:

nfa1 ·′ nfa2 = record {
∇ = ∇ nfa1 + ∇ nfa2;
δ = λ x → [[δ nfa1 x | F nfa1 ⊗ I nfa2 ⊗ δ nfa2 x] /

[null | δ nfa2 x]];
I = [I nfa1 | null];
F = [F nfa1 ⊗ I nfa2 ⊗ F nfa2 / F nfa2]}

The fields of nfa1 and nfa2 are combined in the following way:
(∇) The state space of the resulting NFA consists of the disjoint union of

state spaces of nfa1 and nfa2, i.e. ∇ = ∇ nfa1 + ∇ nfa2.
(δ) The transition function constructs incidence matrices from four blocks.

1. The top left block contains the incidence matrix of nfa1. Hence, the
transition relation between the states of nfa1 is not changed.

2. The top right block is F nfa1 ⊗ I nfa2 ⊗ δ nfa2 x. This expression
constructs an incidence matrix with transitions from all final states
of nfa1 to all successors of initial states in nfa2. In other words, it
says that upon reaching a final state of nfa1, it is time to transition
to nfa2.

3. The bottom left block is null. Hence, there are no transitions from
nfa2 back to nfa1.

Certified Parsing of Regular Languages 107

4. The bottom right block consists of the transition function of nfa2.
So, the transitions between the states of nfa2 are unchanged.

(I) The resulting NFA’s initial states must contain only initial states of nfa1.
(F) Clearly, the final states of the resulting NFA must contain all final states

of the second NFA. But what if the second NFA accepts the empty string?
Then the resulting NFA must also accept the language of the first NFA,
hence, contain all its final states. The desired behaviour is achieved by

F = [F nfa1 ⊗ I nfa2 ⊗ F nfa2 / F nfa2]

The top block of this column vector is equal to either the empty vector
or F nfa1 depending on the result of I nfa2 ⊗ F nfa2. The latter multi-
plication is equal to id {1}, if nfa2 accepts the empty string, and null,
if it does not. The bottom block of F is always equal to F nfa2. So, the
desired behaviour is achieved.

4.4 Correctness

The correctness of an NFA with respect to a regular expression consists of com-
pleteness and soundness. Completeness guarantees that every string matching a
regular expression will be accepted by the NFA. However, completeness alone
is not enough, since an NFA accepting all strings is also complete. Soundness
in turn guarantees that, if the NFA accepts, the string matches the regular ex-
pression. Similarly to the case of completeness, soundness is not sufficient alone,
because an NFA rejecting every string is sound.

Completeness. Completeness states that, if a string is matched by the given
regular expression, then the constructed NFA reg2nfa e accepts it.

complete : (e : RegExp) → (u : String) → u � e
→ runNFA (reg2nfa e) u ≡ id {1}

We prove this theorem by induction on the proof of u � e. Hence, all shapes
of parse trees must be considered. We describe only the cases for union and
concatenation, the others can be found in the Agda code.

Union In this case e = e1 ∪ e2.

complete (e1 ∪ e2) u parseTree = . . .

We start with pattern matching on parseTree.

complete (e1 ∪ e2) u (unionl parseTree′) = . . .
complete (e1 ∪ e2) u (unionr parseTree′) = . . .

This yields two cases for the last rule used in the parse tree: unionl or unionr.
Since both cases are proved in the same way, we describe only the first one.

The main idea is to show that a run of nfa1 ∪′ nfa2 can be split into runs of
nfa1 and nfa2. It is proved by the lemma union-split:

108 D. Firsov and T. Uustalu

union-split : (nfa1 nfa2 : NFA) (u : String) (X1 : 1 ×) (X2 : 1 ×)
→ run (nfa1 ∪′ nfa2) s [X1 | X2] ≡ [run nfa1 s X1 | run nfa2 s X2]

Next, by using the previously described property

con-⊗-stack : {k l m n : N} (A : k × l) (B : k × m) (C : l × n) (D : m × n)
→ [A | B] ⊗ [C / D] ≡ A ⊗ C ⊕ B ⊗ D

we complete the proof:

id {1} ⊕ id {1} ≡ id {1} Boolean arithm.

(run nfa1 s X1 ⊗ (F nfa1)) ⊕ (run nfa2 s X2 ⊗ (F nfa2)) ≡ id {1} IHs

[run nfa1 s X1 | run nfa2 s X2] ⊗ [F nfa1 / F nfa2] ≡ id {1} con-⊗-stack

run (nfa1 ∪′ nfa2) s [X1 | X2] ⊗ [F nfa1 / F nfa2] ≡ id {1} union-split

Plus In this case e = e′+.

complete (e′+) u parseTree = . . .

Pattern matching on parseTree yields two cases. We examine them in turn:

1. In the first case the last rule of the parse tree is plus1.

complete (e′+) u (plus1 parseTree′) = . . .

Recall that plus1 is a constructor which states that, if u is in language of e′,
then it is also in language of (e′+). Hence, the main lemma for this case can
be stated as

plus-weak : (nfa : NFA) (u : String) (X : 1 × (∇ nfa))
→ run nfa u X ⊗ F nfa ≡ id {1}
→ run (nfa+′) u X ⊗ F nfa ≡ id {1}

It is proved by induction on the length of the string u.
2. In the second case the last rule of the parse tree is plus2.

complete (e′+) . (u1 ++ u2) (plus2 {u1} {u2} tree1 tree2) = . . .

Note that string u is now split into u1 and u2 such that u1 is in the language
of e′ and u2 is in the language of e′+. We must prove that u1 ++ u2 are in
the language of e′+. To do so, we first introduce some useful lemmas.
– We show that run on u1 ++ u2 can be split into a run on u1 and a run

on u2.

plus-split : (nfa : NFA) (u1 u2 : String)
→ run (nfa+′) (u1 ++ u2) (I nfa) ⊗ F nfa
≡ run (nfa+′) u2 (run (nfa+′) u1 (I nfa)) ⊗ F nfa

– We also show that, if the automaton nfa+′ accepts a string from the
initial states, then it will also accept that string from any final state.

plus-fin : (nfa : NFA) (u : String) (X : 1 × ∇ nfa)
→ run (nfa+′) u (I nfa) ⊗ F nfa ≡ id {1}
→ X ⊗ F nfa ≡ id {1}
→ run (nfa+′) u X ⊗ F nfa ≡ id {1}

Certified Parsing of Regular Languages 109

Finally, the big picture of the proof looks like this:

run (nfa+′) u2 (I nfa) ⊗ F nfa ≡ id {1} IH
run nfa u1 (I nfa) ⊗ F nfa ≡ id {1} IH

run (nfa+′) u1 (I nfa) ⊗ F nfa ≡ id {1}
plus-weak

run (nfa+′) u2 (run (nfa+′) u1 (I nfa)) ⊗ F nfa ≡ id {1}
plus-fin

run (nfa+′) (u1 ++ u2) (I nfa) ⊗ F nfa ≡ id {1}
plus-split

Soundness. Showing that our NFA generation is sound is more complicated,
but also more interesting. Let us look at the signature of the soundness theorem:

sound : (e : RegExp) → (u : String)
→ runNFA (reg2nfa e) u ≡ id {1} → u � e

It states that, if the NFA accepts a string, then it matches the regular expression.
sound is a proposition, but it is also a type! Its proof is a function that delivers
parse trees. We prove this theorem by induction on the argument e : RegExp.

As in case of completeness, our aim is to explain the high-level ideas of the
proof. We skip most of the details and describe only two cases.

Single character. This case is interesting because it demonstrates the essence
of all soundness cases. We are given an accepting run of the automaton. Using
this fact we must construct a parse tree. However, most of the cases generated
by pattern matching are discharged by showing that they contradict with the
accepting run we have at our disposal.

sound (′ a) u run = ...

We pattern match on the string u and examine three different cases in turns:

1. u is the empty string.

sound (′ a) u run = ...

We must show that in this case it is impossible to give run. We do so by
pattern matching on run and the rest is taken care of by Agda’s type checker.

2. u is a string of one symbol.

sound (′ a) (x :: []) run = ...

This is the only situation when the automaton can accept u. Still, we must
check if x is equal to a. We case analyse on the decidable equality of a and x:

sound (′ a) (x :: []) run with a ?= x
sound (′ a) (x :: []) | eq = ...
sound (′ a) (x :: []) | neq = ...

Then two cases must be discharged.
(a) x is equal to a.

This is exactly the case when the automaton finishes in the accepting
state. To close this case, we rewrite the context using a ≡ x and provide
the constructor symb {x} as the required proof.

110 D. Firsov and T. Uustalu

(b) x is not equal to a.
Then Agda computes that runNFA (reg2nfa (′ a)) [x] is equal to null, but
this contradicts the assumptions. Hence, the case is discharged.

3. u is a string of two or more characters.

sound (′ a) (x1 :: x2 :: xs) run = ...

Similarly to the first case, our goal is to show that runNFA (reg2nfa (′ a)) u
will never accept a string consisting of two or more characters. This is done
by observing the fact that, even if the automaton reaches the second state
by reading the first character, then by reading the second character the
automaton will lose all active states, since there are no transitions going
out of the second state. Hence, runNFA (reg2nfa (′ a)) (x1 :: x2 :: xs) cannot
return id {1}. Therefore, the case is discharged.

Concatenation. We are in the case

sound (e1 · e2) u run = ...

Fortunately, there is only one possible constructor for this case in the parsing
relation, namely con. It states that to prove u � e1 · e2 we must show that
u1 � e1 and u2 � e2 for some splitting of u into u1 and u2. Hence, we must
be able to extract from run two shorter runs and use them to get u1 � e1 and
u2 � e2 by induction hypothesis. To express this in Agda we use sigma-types,
corresponding to existentials.

cons-split : (nfa1 nfa2 : NFA) (u : String)
→ run (nfa1 ·′ nfa2) u [I nfa1 | null]

⊗ [F nfa1 ⊗ I nfa2 ⊗ F nfa2 / F nfa2] ≡ id {1}
→ ∃ [u1 : String] ∃ [u2 : String] u ≡ u1 ++ u2

∧ run nfa1 u1 (I nfa1) ⊗ F nfa1 ≡ id {1}
∧ run nfa2 u2 (I nfa2) ⊗ F nfa2 ≡ id {1}

Note that we split the string u into u1 and u2, but must also provide a proof
that u ≡ u1 ++ u2. To prove it, we will need a variant of cons-split.

cons-split-state : (nfa1 nfa2 : NFA) (x : Σ) (u : String) (X : 1 ×)
→ run (nfa1 ·′ nfa2) (x :: u) [X | null] ⊗ (null ++ F nfa2) ≡ id {1}
→ ∃ [u1 : String] ∃ [u2 : String] (x :: u) ≡ u1 ++ u2

∧ run nfa1 u1 X ⊗ F nfa1 ≡ id {1}
∧ run nfa2 u2 (I nfa2) ⊗ F nfa2 ≡ id {1}

The important differences between cons-split and cons-split-state are the
following:

– In cons-split, the given run starts from [I nfa1 | null], where I nfa1 is the set
of initial states of nfa1, but in cons-split-state, we use a more general variant
[X | null], where X is a given parameter.

– In cons-split, the run of the automaton can terminate either in the final states
of nfa1 or in the final states of nfa2, but in cons-split-state, the set of final
states is limited to those of nfa2.

Certified Parsing of Regular Languages 111

– In contrast with cons-split-state, the string xs can be empty in cons-split.

The restrictions present in cons-split-state force it to address the specific and most
complicated case when the given run starts in some states of nfa1, but terminates
in nfa2. The lemma states that in this case we can break an accepting run of
nfa1 ·′ nfa2 down into two smaller accepting runs.

We will not describe here how cons-split-state is proved. Instead we show
how to reduce cons-split to cons-split-state. To do so, we perform multiple case
analyses. First, we distinguish the empty string case from the cons-case.

1. If u ≡ [], then u1 ≡ [] and u2 ≡ [] and we must show that I nfa1 ⊗ F nfa1 ≡
id {1} and I nfa2 ⊗ F nfa2 ≡ id {1}. Both proofs are easily derived from the
given premise:

[I nfa1 | null] ⊗ [F nfa1 ⊗ (I nfa2 ⊗ F nfa2) / F nfa2] ≡ id {1}
2. If u ≡ x :: xs, then we perform an additional case analysis: whether the

second automaton has final states among its initial states:
(a) I nfa2 ⊗ F nfa2 ≡ null. In this case, the problem is clearly an instance of

cons-split-state.
(b) I nfa2 ⊗ F nfa2 ≡ id {1}. In this case, we perform a third level of case

analysis: whether the first automaton nfa1 accepts the whole string.
i. run nfa1 u (I nfa1) ⊗ F nfa1 ≡ id {1}.

If we take u1 ≡ u and u2 ≡ [], then case is immediately discharged.
ii. run nfa1 u (I nfa1) ⊗ F nfa1 ≡ null.

In this case, we need an additional lemma

consnd2 : (nfa1 nfa2 : NFA) (u : String)
→ (run nfa1 u (I nfa1)) ⊗ F nfa1 ≡ null
→ (run (nfa1 ·′ nfa2) u [I nfa1 | null]) ⊗ [F nfa1 / F nfa2]
≡ (run (nfa1 ·′ nfa2) u [I nfa1 | null]) ⊗ [null / F nfa2]

It states that, if the first automaton does not accept the whole string,
then running the automaton nfa1 ·′ nfa2 with the final states of
nfa1 is equivalent to running the automaton nfa1 ·′ nfa2 without the
final states of nfa1. So, this branch of cons-split is also reduced to
cons-split-state.

sound returns one parse tree. If there are multiple parse trees for a single string,
it prefers unionl over unionr and also plus1 over plus2. It also never invokes plus2
with the first string empty, as in this case no progress is made. In fact makes sense
to restrict the first string argument of plus2 to be a cons-string—this removes
the possibility for a string to have an infinite number of parse trees.

4.5 Parsing

Correctness of reg2nfa turns the NFA for a regular expression effectively into a
parser. Since we can decide whether a 1 × 1 matrix contains true or false, using
sound and complete, for any string we can have a parse tree or a proof of that
there cannot be one.

112 D. Firsov and T. Uustalu

parse : (e : RegExp) → (u : String) → u � e (u � e → ⊥)

5 Related Work

Braibant and Pous [1] implement a Coq tactic for deciding equational theory
of Kleene algebras. The work is based on checking if two regular expressions
represent the same language. This is done in four steps. First, regular expressions
are converted into ε-NFAs. Then ε-transitions are removed to get NFAs. Next,
determinisation procedure converts NFAs into DFAs. Finally, they check whether
the DFAs are equivalent. This results in a general decision procedure for Kleene
algebras. In principle, it can be used to solve the recognition problem: to check
whether a word w is in the language defined by a regular expression r, we can
check if w ∪ r and r define the same language. But as this requires go through
all four steps for each query, it is impractical.

In contrast, we focus only on the recognition problem. The main difference
of our work is that we convert regular expressions directly into NFAs without
ε-transitions. This makes the overall process simpler, since then we do not have
to find ε-closures and remove ε-transitions afterward and pepper all that, as
Braibant and Pous confirm, with quite tricky proofs of correctness.

Many works formalizing recognition of regular languages are based on the
concept of the derivative of a language [5,2,3,7]. This is not accidental, since
derivatives have nice algebraic properties which make them attractive for a for-
mal development.

It seems that the alternative approach of converting regular expressions to
finite automata is believed to be a messy procedure with too much low-level
detail involved. For instance, Krauss and Nipkow [5] discuss the link between
regular expressions and finite automata in the context of lexing, but point out
that encoding finite automata as graphs involves a painful amount of detail and
a higher-level approach is desirable.

Wu et al. [9] show how to formalize the Myhill-Nerode theorem by only using
regular expressions and the motivation behind this approach is again to avoid
the trouble of representing automata as graphs.

We have shown that conversion from regular expressions to finite state au-
tomata encoded as Boolean matrices can be done in a concise and high-level way
by using block operations on matrices. Proofs in this setting benefit significantly
from lemmas about block operations.

6 Conclusion

We presented an implementation of a certified parser generator for regular lan-
guages. In particular we showed how to reduce operations and proofs about NFAs
into linear-algebra operations and proofs. The practical part of this work was
divided into two parts. In the first part, we implemented a generic library for
matrices, focusing on block operations. Besides an implementation of basic ma-
trix operations, we also proved many well-known properties of these functions.

Certified Parsing of Regular Languages 113

In the second part of the practical work, we implemented a transformation of
regular expressions to NFAs and proved its correctness. A string is parsed by
checking whether the NFA accepts it, as soundness turns the positive answer
into a parse tree while completeness can be used to conclude impossibility of a
parse tree in the negative case.

This work could be continued in several directions. The implemented frame-
work (the matrix library, RegExp and NFA libraries) can be used to formalize
different aspects of regular language theory: minimizing NFAs, showing equiva-
lence of regular expressions, conversion of NFAs to regular expressions, etc.

One variation on the theme of this work would be to consider matrices over
natural numbers instead of Booleans. This would allow counting of accepting
runs of an NFA (paths from an initial to a final state). Soundness and com-
pleteness of the transformation of regular expressions to NFAs would establish
a bijection between the parse trees of a given string and the accepting runs of
the NFA.

Acknowledgements. This work was supported by the ERDF funded CoE
project EXCS, the Estonian Ministry of Education and Research target-financed
theme no. 0140007s12 and the Estonian Science Foundation grant no. 9475.

References

1. Braibant, T., Pous, D.: An efficient Coq tactic for deciding Kleene algebras. In: Kauf-
mann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 163–178. Springer,
Heidelberg (2010)

2. Coquand, T., Siles, V.: A decision procedure for regular expression equivalence in
type theory. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086,
pp. 119–134. Springer, Heidelberg (2011)

3. Danielsson, N.A.: Total parser combinators. In: Proc. of 15th ACM SIGPLAN Int.
Conf. on Functional Programming, ICFP 2010, pp. 285–296. ACM (2010)

4. Grune, D.: Parsing Techniques: A Practical Guide, 2nd edn. Springer (2010)
5. Krauss, A., Nipkow, T.: Proof pearl: Regular expression equivalence and relation

algebra. J. of Autom. Reasoning 49(1), 95–106 (2012)
6. Macedo, H.D., Oliveira, J.N.: Typing linear algebra: A biproduct-oriented approach.

Sci. of Comput. Program. 78(11), 2160–2191 (2013)
7. Morrisett, G., Tan, G., Tassarotti, J., Tristan, J.B., Gan, E.: Rocksalt: better, faster,

stronger SFI for the x86. In: Proc. of 33rd ACM SIGPLAN Conf. on Programming
Language Design and Implementation, PLDI 2012, pp. 395–404. ACM (2012)

8. Norell, U.: Dependently typed programming in Agda. In: Koopman, P., Plasmei-
jer, R., Swierstra, D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 230–266. Springer,
Heidelberg (2009)

9. Wu, C., Zhang, X., Urban, C.: A formalisation of the Myhill-Nerode theorem based
on regular expressions (Proof pearl). In: van Eekelen, M., Geuvers, H., Schmaltz,
J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 341–356. Springer, Heidelberg
(2011)

Nonfree Datatypes in Isabelle/HOL
Animating a Many-Sorted Metatheory

Andreas Schropp1,3 and Andrei Popescu1,2

1 Technische Universität München, Germany
2 Institute of Mathematics Simion Stoilow of the Romanian Academy

3 COMSA GmbH

Abstract. Datatypes freely generated by their constructors are well supported
in mainstream proof assistants. Algebraic specification languages offer more ex-
pressive datatypes on axiomatic means: nonfree datatypes generated from con-
structors modulo equations. We have implemented an Isabelle/HOL package for
nonfree datatypes, without compromising foundations. The use of the package,
and its nonfree iterator in particular, is illustrated with examples: bags, polynomi-
als and λ-terms modulo α-equivalence. The many-sorted metatheory of nonfree
datatypes is formalized as an ordinary Isabelle theory and is animated by the
package into user-specified instances. HOL lacks a type of types, so we employ
an ad hoc construction of a universe embedding the relevant parameter types.

1 Introduction

Free datatypes are at the heart of logic and computer science and are well supported
in most proof assistants. Equational theories over them are often less convenient. Finite
multisets or “bags” are a popular construction and can be regarded as finite lists modulo
the permutation of elements. This results in the following nonfree datatype of bags over
the type α, with “empty bag” and “bag-insert” constructors:

datatype α bag = BEmp | BIns α (α bag)
where BIns a1 (BIns a2 B) = BIns a2 (BIns a1 B)

where the equation, left-commutativity, is (implicitly) universally quantified over a1, a2

and B. Bags are thus specified by list-like constructors and an identification of differ-
ently constructed terms based on (all consequences of) the indicated equation.

This style of definition is standard in the world of algebraic specifications [6, 7].
Nonfree datatypes and suitable recursors for them allow one to express many concepts
at the appropriate level of abstraction, as opposed to encoding them in more concrete
free types. For instance, bags are encodable as lists, but the price is a loss of abstraction,
hence more error-prone processing methods. This is equally true for programming [23]
and theorem proving. However, mainstream proof assistants based on type theory [1,5]
or higher-order logic (HOL) [10, 17] currently do not provide mechanisms for specify-
ing nonfree datatypes directly.

In HOL-based provers, such as our favorite one Isabelle/HOL [17], datatypes are not
integrated into the logic, but are provided as a definitional layer on top of the logical
primitives. Given a user specification, a definitional package produces the appropriate

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 114–130, 2013.
c© Springer International Publishing Switzerland 2013

Nonfree Datatypes in Isabelle/HOL 115

types, terms and theorems, including induction and recursion schemes. In this paper, we
present a definitional package in Isabelle/HOL for nonfree datatypes. Its expressiveness
goes a little beyond standard algebraic specifications (typically, equational theories),
allowing Horn clauses over equations and predicates.

Our package also contributes a new methodology for addressing an old problem: the
incomplete, dynamic nature of typical package certification. Indeed, the mathematics
behind a datatype package requires reasoning about arbitrary numbers of types and op-
erators on them. This is not possible generically inside HOL, because it lacks a type of
types. The constructions performed by HOL packages are usually certified dynamically,
for each particular instance that the user requests. Our package essentially limits the
amount of dynamic certification to a minimum of uniform facts concerning the transfer
across isomorphisms.1 The nontrivial part of the constructions is statically certified in a
metatheory formalized in Isabelle. It is parameterized on a collection of sets over a fixed
“universe” type, instead of a collection of types. This “universe” type is instantiated by
ad hoc sums over the relevant types when animating the metatheory.

The paper is structured in two main parts. The first part, consisting of §2, illustrates
the package by examples—bags, polynomials and λ-terms modulo α-equivalence—
carefully chosen to illustrate different aspects and features of the package: nonfree
recursion, interaction with Isabelle’s type classes, and predicate-based Horn specifi-
cations. We also hope that these examples help popularize nonfree recursion, a standard
technique that is not so standard in proof assistants. The second part describes the pack-
age design and architecture: §3 illustrates with an example the actual steps that are
automated by the package, §4 presents the formalization of the metatheory up to the
construction of the initial model, and §5 shows how the metatheory is automatically
instantiated to user-specified datatypes. The package is compatible with Isabelle2013
and is publicly available [21].

Preliminaries. In this paper, by HOL we mean classical higher-order logic with Hilbert
choice, schematic polymorphism and the typedef principle. The Isabelle/HOL proof as-
sistant [17] is an implementation of HOL enhanced with Haskell-style type classes [9]
and locales [15]. Types in HOL are either atomic types such as unit, nat and bool,
or type variables α, β, or built from these using type constructors. We use postfix no-
tation for type constructors, e.g., α list and α set denote the list and powerset types
over α. Polymorphic types are not syntactically distinguished—e.g., α list also denotes
the polymorphic type ∀α. α list. We write α→ β, α+β, and α×β for the function-space,
sum and product types, respectively. All types are nonempty.2 New types are introduced
with the typedef principle by carving out nonempty subsets of existing types. A term t
of type τ is indicated as t : τ. (We prefer the more mathematical notations α→ β and
t : τ to the Isabelle notations α⇒ β and t :: τ.)

Type classes are an overloading mechanism wired into Isabelle’s type system. A
type class C specifies for its member types, τ : C, constants of composite types con-
taining τ and axioms for these constants. Typical cases are the algebraic classes, e.g.,
τ : semigroup means that there exists an operation + : τ→ τ→ τ assumed associative.

1 Additionally we employ rewriting steps, forward chaining of facts, well-sortedness checking
rules, and finite datatypes and functions over them to construct the signature instantiation.

2 HOL is not following the propositions-as-types paradigm, so this is not troublesome.

116 A. Schropp and A. Popescu

Isabelle locales are essentially proof contexts, fixing type and term variables with as-
sumptions. A locale can be instantiated by providing concrete types and terms for its
type and term variables and then discharging its assumptions. This makes the instanti-
ated content of the locale available in the outer context.

2 The Package in Action

Here we present the package and its different features by examples. We start with the
datatype of bags, whose single-equation specification makes it easy to present in detail
the package’s contract: what is expected from the user and what is produced in response.

2.1 Bags

The declaration of the datatype of bags from §1 produces the type α bag and the fol-
lowing polymorphic constants:

– the constructors BEmp : α bag and BIns : α→ α bag→ α bag,
– the iterator iter_bag : β→ (α→ β→ β)→ α bag→ β.

In addition, several characteristic theorems are derived. They include facts also available
for standard free datatypes:
– Case distinction: (B = BEmp −→ ϕ) ∧ (∀a C. B = BIns a C −→ ϕ) −→ ϕ
– Induction: ϕ BEmp ∧ (∀a B. ϕ B → ϕ (BIns a B)) −→ (∀B. ϕ B)

Note that the injectivity of the constructors, here,
BIns a1 B1 = BIns a2 B2 −→ a1 = a2 ∧ B1 = B2,

is not among these facts, since it does not hold for nonfree datatypes.
The interesting derived theorems are those specific to nonfree datatypes:

– The characteristic equation(s) specified by the user:
BIns a1 (BIns a2 B) = BIns a2 (BIns a1 B)

– The recursion principle, consisting of conditional equations for iteration:
bag_alg E I → iter_bag E I BEmp= E
bag_alg E I → (∀a B. iter_bag E I (BIns a B) = I a (iter_bag E I B))

where bag_alg E I is the predicate ∀ a1 a2 b. I a1 (I a2 b) = I a2 (I a1 b).
Thus, the package produces a type α bag that satisfies the specified equation. In addi-

tion, α bag is initial among the algebras (β, E : β, I : α→ β→ β) satisfying the equation
(with E and I replacingBEmp and BIns) as expressed by the predicate bag_alg E I. This
means that from α bag to any such algebra there exists precisely one morphism, i.e.,
function commuting with the algebra operations. The existence of a morphism is ex-
pressed by the iteration equations: given such an algebra, the morphism is iter_bag E I.
Its uniqueness is given by the induction principle.

As with other definitional packages for recursion, the user does not needs to em-
ploy the iterator directly—the package allows the user to inline I and E in the desired
recursive equations. For example, the following specifies the map function for bags:

nonfreerec bag_map : (α→ β)→ α bag→ β bag where

bag_map f BEmp = BEmp

bag_map f (BIns a B) = BIns (f a) (bag_map f B)

Nonfree Datatypes in Isabelle/HOL 117

In response to this command, the package does the following (for a fixed f : α→ β):
(1) identifies E and I as being BEmp : β bag and (λa. BIns (f a)) : α→ β bag→ β bag;
(2) defines bag_map f = iter_bag E I;
(3) prompts the user to discharge the goal bag_alg E I;
(4) infers the desired unconditional equations stated in the nonfreerec declaration
from the conditional equations for iter_bag and the fact proved at step (3).

Thus, the user obtains the desired simplification rules for the newly introduced
bag_map after discharging the bag_alg goal, here,

BIns (f a1) (BIns (f a2) B) = BIns (f a2) (BIns (f a1) B)
which is immediate from the characteristic equation for β bag.

This complication, of having to discharge goals that imply well-definedness of a
function definition, is inherent in the nature of quotiented types and is shared with the
quotient and nominal packages [11, 13, 14]. For this paper’s examples, the conditions
are easy to discharge by simplification (but this cannot be guaranteed in general). This
is also the case for the sum of a numeric function over the elements of a bag:

nonfreerec sum : (α→ nat)→ α bag→ nat where

sum f BEmp = 0

sum f (BIns a B) = sum f B + f a

which yields the goal (m+ f a1) + f a2 = (m+ f a2) + f a1. It is discharged using
associativity and commutativity of + on nat, which means that the definition gener-
alizes: we can replace nat with the type class member β : comm_monoid_add, cov-
ering all types equipped with a commutative monoid structure (β, 0,+). The multi-
plicity of an element in a bag, mult : α → α bag → nat is obtained as mult a B =
sum (λa′. if a = a′ then 1 else 0) B.

2.2 Algebra

The package can be used to streamline algebraic constructions. The following example
builds the ring of polynomials over a commutative ring α with variables in β, where
Sc is the embedding of scalars yielding Sc 0 as the zero polynomial and Var gives the
polynomial variables.

datatype (α : comm_ring, β) poly = Sc α | Var β | Uminus ((α, β) poly) |
Plus ((α, β) poly) ((α, β) poly) | Times ((α, β) poly) ((α, β) poly)

where (−a1) = a −→ Uminus (Sc a1) = Sc a
and a1 + a2 = a −→ Plus (Sc a1) (Sc a2) = Sc a
and a1 ∗ a2 = a −→ Times (Sc a1) (Sc a2) = Sc a
and Plus (Sc 0) P = P
and Plus (Plus P1 P2) P3 = Plus P1 (Plus P2 P3)

*** Etc.: All the commutative-ring axioms for Plus, Times, Sc 0 ***
This example illustrates the nontrivial use of type class annotations in the datatype
declaration: since α is a ring, it provides operations ∗,+, 0, which are used in the def-
inition of the new type. Type class constraints in polymorphic datatype specifications
are already present in Isabelle’s standard datatype package, but only serve as a syntactic
constraint there. The feature is essential here for performing universal extensions over
an unspecified algebraic structure: we need to form a type depending on its operations.

118 A. Schropp and A. Popescu

The first three clauses ensure that the restrictions of polynomial inverse, addition and
multiplication to scalars, collapse to the scalar operations−, + and ∗. They illustrate the
use of parameter variables a1, a2, a from type α. Strictly speaking, each of the clauses
forms an infinite family of Horn clauses, indexed by a, a1, a2 : α. One may employ any
condition on the parameters, not just equality as here.

This direct definition of polynomials can replace the tedious standard construction
based on lists. By its characteristic equations, (α, β) poly forms a commutative ring if α
does and we can register this with the type-class system. Universality is established by
an operator that extends morphisms f : (α : comm_ring)→ (γ : comm_ring) (assumed
to commute with +, ∗, 0) and variable interpretations g : β→ γ, to morphisms ext f g :
(α, β) poly→ γ. In the context of such f and g, we define ext by simply writing down
its desired interaction with the polynomial operators:

nonfreerec ext : (α, β) poly→ γ where

ext (Sc a) = f a ext (Var b) = g b ext (Uminus P) = − ext P
ext (Plus P Q) = ext P+ ext Q ext (Times P Q) = ext P∗ ext Q

where simplification with the ring axioms of γ and the morphism axioms of f imme-
diately discharges the goals (resulting from the nonfreerec command). Polynomial
evaluation is obtained from ext taking f = id.

2.3 λ-Terms Modulo α-Equivalence

Next we discuss a less standard example—λ-terms modulo α-equivalence—which em-
ploys the full expressive power of the package, combining parameter conditions with
Horn predicates. This type can be specified as the initial model of a Horn theory if
we factor in the freshness predicate and at least one of the substitution and swapping
operators [18, 19]. In particular, the following provides (a type isomorphic to) the λ-
calculus terms (modulo α-equivalence) over variables in α and constants in β, including
the syntactic constructors, freshness and substitution:

datatype (α, β) lterm = Var α | Ct β | App ((α, β) lterm) ((α, β) lterm) |
Lam α ((α, β) lterm) | Subst ((α, β) lterm) ((α, β) lterm) α

with fresh : α→ (α, β) lterm→ bool
where (Var x) [t/x] = t
and x �= y −→ (Var y) [t/x] = Var y
and (Ct c) [t/x] = Ct c
and (App s1 s2) [t/x] = App (s1[t/x]) (s2[t/x])
and x �= y ∧ fresh y t −→ (Lam y s) [t/x] = Lam y (s [t/x])
and x �= y −→ fresh x (Var y)
and fresh x (Ct c)
and fresh x s1 ∧ fresh x s2 −→ fresh x (App s1 s2)
and fresh x (Lam x s)
and fresh x s −→ fresh x (Lam y s)
and x �= y ∧ fresh x s −→ Lam y s = Lam x (s [Var x / y])

where we wrote s[t/x] instead of Subst s t x. Besides operations, this type also comes
with a predicate fresh, which plays a crucial role in the behavior of the capture-free
substitution operators, as regulated by the above Horn clauses. Specifically, substitu-
tion can “enter” λ-abstractions only under certain freshness conditions. Nevertheless,

Nonfree Datatypes in Isabelle/HOL 119

substitution can always be reduced away from terms by using the last clause to perform
a renaming to a fresh variable.

This Horn-based definition of λ-terms is easily extendable to any syntax with static
bindings, but does require some tuning to become a useful framework for reasoning
about bindings. In particular it lacks a substitution-free induction schema. One type
of task where the Horn view of λ-terms excels are recursive definitions: besides go-
ing through modulo α-equivalence, they also yield compositionality with freshness
and substitution as a bonus. This is argued in [19] with many examples, ranging from
higher-order abstract syntax and semantic-domain interpretation to CPS transforma-
tions. These examples are instances of the nonfree recursion provided by our package.

For instance, occs t x yields the number of free occurrences of a variable x in a λ-term
t. It is defined stating the “naive” recursive equations (as if terms were not quotiented
w.r.t. α) together with indicating the correct behavior w.r.t. freshness and substitution:

nonfreerec occs : (α, β) lterm→ (α→ nat) where

occs (Ct c) = (λx. 0) occs (Lam y s) = (λx. if x = y then 0 else occs s x)
occs (Var y) = (λx. if x = y then 1 else 0) occs (App s t) = (λx. occs s x+occs s y)

occs (s [t/y]) = (λx. occs s y∗occs t x+ (if x = y then 0 else occs s x))
fresh y s −→ occs s y = 0

Note that, while the operators require (recursive) equations, predicates such as fresh re-
quire implications. Indeed, the implication for fresh indicates that, on the target domain
α→ nat, freshness is interpreted as λy s. occs s y = 0. The goals emerging from this
definition amount to arithmetic properties known by the Isabelle simplifier.

3 Automated Constructions

Here we sketch the development required to obtain the functionality provided by the
package, using our λ-term example. (1) One starts with the free datatype of “pre-terms":

datatype (α, β) lterm′ = Var′ α | Ct′ β | App′ ((α, β) lterm′) ((α, β) lterm′) |
Lam′ α ((α, β) lterm′) | Subst′ ((α, β) lterm′) ((α, β) lterm′) α

(2) Next, one defines mutually inductively the desired “equality” ≡ and the “pre-fresh”
predicate. (In general, mutually recursive datatypes involve n equalities, one for each
type, and m predicates, one for each predicate specified by the user.)
inductive ≡ : α lterm′ → α lterm′ → bool and fresh′ : α lterm′ → bool
where

*** One clause for each user-specified Horn clause: ***
(Var′ x)[t/x]≡ t

and x �= y −→ (Var′ y) [t/x]≡ Var′ y
*** etc. ***
*** The equivalence rules: ***
and s ≡ s and s1 ≡ s2 −→ s2 ≡ s1 and s1 ≡ s2 ∧ s2 ≡ s3 −→ s1 ≡ s3

*** A congruence rule for each user-specified constructor: ***
and s1 ≡ t1 ∧ s2 ≡ t2 −→ App′ s1 s2 ≡ App′ t1 t2

*** etc. ***
*** A preservation rule for each constructor-predicate combination: ***
and s1 ≡ t1 ∧ s2 ≡ t2 ∧ fresh′ x (App′ s1 s2) −→ fresh′ x (App′ t1 t2)

*** etc. ***

120 A. Schropp and A. Popescu

(3) The type α lterm is defined by quotienting α lterm′ by the equivalence ≡, es-
tablishing a surjection π : α lterm′ → α lterm, with the choice function ε : α lterm →
α lterm′ as its right inverse. The operations Var, App and Lam and the predicate fresh
are defined on α lterm from the corresponding ones from α lterm′ using π and ε. (4) The
induction principle from α lterm′ is transported to α lterm. (5) α lterm is shown to sat-
isfy all the desired Horn clauses. To obtain the recursion principle, we fix an arbitrary
type β with operations and relations on it and assume it satisfies the Horn clauses. (6) A
function f : α lterm′ → β is then defined by standard recursion. (7) By induction on the
derivation of ≡, we get that f is invariant under equivalent arguments. (8) This allows
one to define a function g : α lterm→ β such that g ◦ π= f . (9) Using the surjectivity
of π, this function is shown to commute with the operations and preserve the relations.

All the involved constructions and proofs are fairly easy to perform by hand, but
quite tedious and time-consuming. Parts (3–5) and (8,9) of this process can be eased by
existing Isabelle quotient/lifting/transfer packages [12, 14].

Our package automates the whole construction. Moreover, it does not perform this
construction over and over, for each newly specified nonfree datatype. We have experi-
mented with a different methodology:
– Formalize the metatheory for an arbitrary many-sorted signature and Horn theory.
– Upon a user specification, instantiate the locale, then copy isomorphically the relevant
types, operations, and theorems about them.

The next two sections describe these steps.

4 Formalized Metatheory

We have formalized the theory of Horn clauses up to the construction of the initial
model. The development is parameterized by an arbitrary signature (giving sorts and
sorted operations and relation symbols) and a set of Horn clauses over the signature.
An example instantiation is given in §5.1. Both terms and clauses are deeply embed-
ded. Sorts represent relevant Isabelle types. A specific feature is the consideration of
parameters and parameter conditions in clauses, motivated by the desire to capture pa-
rameterized instances such as polymorphic datatypes and clausal side conditions.

We will use the following constants. Inl :α→α+β and Inr : β→α+β are the left and
right injections into the sum type, and isInl, isInr : α+β→ bool are their corresponding
discriminators; namely, isInl c holds iff c has the form Inl a for some a, and isInr c
holds iff c has the form Inr b for some b. [] is the empty list, [a1, . . . , an] is the list
of the n indicated elements. map : (α→ β) → α list → β list is the standard list-map
operator, and map2 : (α→ β→ γ) → α list→ β list→ γ list is its binary counterpart,
with map2 f [a1, . . . , an] [b1, . . . , bn] = [f a1 b1, . . . , f an bn]. Similarly, list_all : (α→
bool) → α list → bool is the universal quantifier over lists, with list_all ϕ [a1, . . . , an]
meaning that ϕ ai holds for all i, and list_all2 : (α→ β→ bool)→ α list→ β list→ bool
is its binary counterpart, with list_all2 ϕ al bl meaning that al has the form [a1, . . . , an],
bl has the from [b1, . . . , bn], and ϕ ai bi holds for all i. In particular list_all2 ϕ al bl
requires that al and bl have equal lengths. As a notational convention, we use the suffix
“l" to indicate lists. E.g., if ps ranges over the type psort, then psl ranges over psort list.

Nonfree Datatypes in Isabelle/HOL 121

4.1 Horn Clause Syntax

We define the types var, of variables, and pvar, of parameter variables (p-variables), as
copies of nat. Our constructions are parameterized by the following type variables: sort,
of sorts, giving the syntactic categories of terms (representing the mutually recursive
datatypes); opsym, of operation symbols (representing the datatype constructors); rlsym,
of relation symbols (representing relations); param, the parameter universe; psort, of
parameter sorts (p-sorts; representing the parameter types in the datatype).

The type of terms is defined as follows:

datatype (sort, opsym) trm = Var sort var |
Op opsym (pvar list) (((sort, opsym) trm) list)

Thus a term T is either a sorted variable Var s x or has the form Op σ pxl Tl, applying
an operation symbol σ to a list pxl of parameter variables and a list Tl of terms.

The type of atoms (or atomic statements) is defined as follows:

datatype (sort, opsym, rlsym, psort, param) atm=
Pcond (param list→ bool) (psort list) (pvar list) |
Eq ((sort, opsym) trm) ((sort, opsym) trm) |
Rl rlsym (pvar list) (((sort, opsym) trm) list)

We provide an intuition of the semantics of these atoms here. §4.3 provides the details.
The semantics of these atoms is relative to interpretations of sorts as subsets of a model,
of variables as elements in a model, of operation symbols as functions on a model, of
relation symbols as relations on a model and of p-variables as parameters:
(1) Parameter-condition atoms have the form Pcond R psl pxl. Semantically they will
be interpreted as the predicate R on the interpretation of the p-variables pxl (where this
interpretation is assumed to be consistent with the p-sorts psl).
(2) Equational atoms have the form Eq s T1 T2. They will be interpreted as a specialized
“equality" relation between T1 and T2, assumed to be of sort s.
(3) Relational atoms have the form Rl π pxl Tl. They will be interpreted as the model
relation corresponding to π on the interpretations of the p-variables pxl and the inter-
pretations of the terms Tl. The sorts of Tl are assumed to agree with the sorting of π.

Horn clauses are essentially lists of atoms: the premises are paired with one atom, the
conclusion. In §4.3 we will interpret a Horn clause as the implication between the in-
terpretations of the premises and the conclusion, schematically quantified over variable
interpretations:

datatype (sort, opsym, rlsym, psort, param) hcl=
Horn (((sort, opsym, rlsym, psort, param) atm) list)

((sort, opsym, rlsym, psort, param) atm)

In what follows, we fix the type parameters and omit them when writing the various
types that depend on them, e.g., writing trm instead of (sort, opsym) trm.

122 A. Schropp and A. Popescu

4.2 Signatures

We define signatures as a locale that fixes the data required to classify terms and param-
eters according to sorts:

locale Signature=
fixes stOf : opsym→ sort
and arOf : opsym→ sort list and arOfP : opsym→ psort list
and rarOf : rlsym→ sort list and rarOfP : rlsym→ psort list
and params : psort→ param→ bool
and prels : ((param list→ bool)×psort list) set

Recall from the definition of terms that operation symbols are applied not only to terms,
but also to parameters. Then arOf (read “arity of”), arOfP (read “parameter-arity of")
and stOf (read “sort of”), regulate the sorts of terms (or, in general, elements of models)
and parameters that an operation symbol takes and the sort of terms it returns. Similarly,
rarOf and rarOfP indicate the arities and parameter-arities of relation symbols. More-
over, params classifies parameters according to sorts. Finally, prels specifies the set of
relations over parameters that can be used as parameter conditions in Horn clauses,
together with their intended arities. Given (R, psl) ∈ prels, we only care about the be-
havior of R on lists pl of parameters having sorts psl according to params, i.e., such
that list_all2 params pl psl holds. We have to represent R as a relation on the larger type
param list because dependent types are not available. Similar phenomena are observable
in our definitions of models below.

4.3 Models

We work in the Signature context. The (well-formed) terms of a given sort are defined
as the predicate trms : sort → trm → bool, by requiring that operation symbols are
applied according to their arities.

A model is a tuple (α, intSt, intOp, intRl), where:
– α is the carrier type,
– intSt : sort→ α→ bool classifies the elements of α according to sorts;
– intOp : opsym→ param list→ α list→ α interprets the operation symbols as param-
eterized operations on α;
– intRl : rlsym→ param list→ α list→ bool interprets the relation symbols as parame-
terized relations on α.

In (well-formed) models the interpretation of operation symbols has to be compati-
ble with sorting, i.e., the following predicate compat intSt intOp holds:

∀σ pl al. list_all2 params (arOfP σ) pl ∧ list_all2 intSt (arOf σ) al →
intSt (stOf σ) (intOp σ pl al).

Given a model (α, intSt, intOp, intRl), the notions of term interpretation and atom sat-
isfaction are defined relative to interpretations of parameter variables intPvar : psort→
pvar→ param and variables intVar : sort→ var → α. For equational atoms, we do not
require equality, but further parameterize on a relation intEq : α→ α→ bool.

Nonfree Datatypes in Isabelle/HOL 123

intTrm intOp intPvar intVar (Var s x) = intVar s x
intTrm intOp intPvar intVar (Op σ pxl Tl) =

intOp σ (map2 intPvar (arOfP σ) pxl) (map (intTrm intOp intPvar intVar) Tl)

satAtm intOp intEq intRl intPvar intVar (PcondR psl pxl) ←→ R (map2 intPvar psl pxl)
satAtm intOp intEq intRl intPvar intVar (Eq s T1 T2) ←→

intEq (intTrm intOp intPvar intVar T1) (intTrm intOp intPvar intVar T2)
satAtm intOp intEq intRl intPvar intVar (Rl π pxl Tl) ←→

intRl π (map2 intPvar (rarOfP π) pxl) (map (intTrm intOp intPvar intVar) Tl)

Thus, the term interpretation is defined recursively over terms, employing interpre-
tations of p-variables and variables. For atom satisfaction, we distinguish the three
kinds of atom, employing the parameter-conditions, the equality interpretation and the
relation-symbol interpretation, respectively. Note that the interpretations do not depend
on the model-carrier sorting intSt : α → sort. However, for well-formed models we
prove that well-sorted interpretations of (p-)variables yield term interpretations com-
patible with sorting, in that they send terms of sort s to model elements of sort s:

lemma: compat intSt intOp ∧ (∀ ps px. params ps (intPvar ps px)) ∧
(∀ s x. intSt s (intVar s x)) → (trms s T → intSt s (intTrm intOp intPvar intVar T)).

The above approach is pervasive in our formalization: We do not index everything
by sorts, but use global (unsorted) functions and relations as much as possible, and then
show that they are compatible with sorting. This optimization is particularly helpful
when we quotient terms w.r.t. the Horn-induced equivalence relation building a single
quotient instead of a sorted family of quotients (as customary in universal algebra).

Finally, satisfaction of a Horn clause by a model is defined as the implication be-
tween satisfaction of the premises and satisfaction of the conclusion for all well-sorted
interpretations intPvar of the p-variables and intVar of the variables:

satHcl intSt intOp intEq intRl (Horn atml atm) ←→
∀ intPvar intVar. (∀ ps px. params ps (intPvar ps px)) ∧ (∀s x. intSt s (intVar s x)) ∧

list_all (satAtm intOp intEq intRl intPvar intVar) atml →
satAtm intOp intEq intRl intPvar intVar atm

4.4 The Initial Model of a Horn Theory

Traditionally, ground terms are simply terms with no free variables. However, in our
parameterized setting, terms contain p-variables, while the ground terms will need to
contain actual parameters. We define a separate type of ground terms, gtrm, built recur-
sively from operation symbols applied to lists of parameters and list of ground terms:

datatype (opsym, param) gtrm= Gop opsym (param list) (((opsym, param) gtrm)list)

The initial model of a Horn theory will be constructed by quotienting ground terms
w.r.t. an equivalence relation. Hence its carrier will be the following type of “Horn
terms” defined to be sets of ground terms:

type_synonym (opsym, param) htrm= ((opsym, param) gtrm) set

In what follows, we fix a signature with assumptions guaranteeing non-emptiness
of sorts and p-sorts and a well-formed Horn theory HCL. Technically, we work in the
context of the following locale extending the Signature locale:

124 A. Schropp and A. Popescu

locale HornTheory = Signature + fixes HCL : hcl set
assumes ∀hcl ∈ HCL. wf hcl and ∀s. reach s and ∀ps. ∃p. params ps p

Above, wf hcl states that the Horn clause is well-formed in that all its atoms are
well-formed in the expected way, e.g., in equational atoms Eq s T1 T2, s is the sort of
T1 and T2. The inductively defined predicate reach s states that the sort s is reachable by
operation symbols. This ensures the existence of ground terms of sort s, where sorting
of ground terms gtrms : sort→ gtrm→ bool is defined as expected.

On gtrm we define mutually inductive relations Geq : gtrm → gtrm → bool and
Grel : rlsym → param list → gtrm list → bool in a similar fashion to the example of
§3, but working symbolically with the clauses in HCL instead of concrete clauses. We
show that Geq is an equivalence and that both relations are compatible with sorting and
with the operations. This allows us to quotient gtrm by Geq, giving the type htrm. We
lift the sorting gtrms of ground terms and the interpretations Gop, Grel of the operation
and relation symbols on ground terms to equivalence classes. This yields the functions
htrms : sort→ htrm→ bool, Hop : opsym→ param list→ htrm list→ htrm and Hrel :
rlsym→ param list→ htrm list→ bool.

The ground-term model (gtrm, gtrms, Gop, Grel) satisfies all the clauses in HCL if
we interpret equality as Geq:

lemma: hcl ∈ HCL → satHcl gtrms Gop Geq Grel hcl
From this, we obtain that the Horn-term model (htrm, htrms, Hop, Hrel) satisfies the

clauses with the standard interpretation of equality:

theorem satisfaction: hcl ∈ HCL → satHcl htrms Hop (=) Hrel hcl
Structural induction is easily inherited by Horn terms from ground terms:

theorem induction: (∀σ pl Hl. list_all2 params (arOfP σ) pl ∧
list_all2 htrms (arOf σ) Hl ∧ list_all2 ϕ (arOf σ) Hl → ϕ (stOf σ) (Hop σ pl Hl))
→ (htrms s H → ϕ s H).

Moreover, the cases theorem is obtained as a degenerate induction. We are left to
show that (htrm, htrms, Hop, Hrel) is initial among the models of HCL. First we define
giter : (opsym → param list → α list → α) → gtrm → α that interprets ground terms
with an operation symbol interpretation on a type α, as giter intOp (Gop σ pl Tl) =
intOpσ pl (map (giter intOp) Tl). Then we lift giter to htrm equivalence classes, giving
iter : (opsym → param list → α list → α) → htrm → α. If (α, intSt, intOp, intRl) is a
model that satisfies HCL, then iter intOp is well-sorted and behaves like an iterator, i.e.,
commutes with the operations, and preserves the relations:

theorem it_sort: compat intSt intOp ∧ (∀ hcl∈ HCL. satHcl intSt intOp (=) intRl hcl)
→ htrms s H → intSt s (iter intOp H)

theorem iteration: compat intSt intOp ∧ (∀ hcl∈HCL. satHcl intSt intOp (=) intRl hcl)
→ iter intOp (Hop σ pl Hl) = intOp σ pl (map (iter intOp) Hl)

theorem it_pres: compat intSt intOp ∧ (∀ hcl∈HCL. satHcl intSt intOp (=) intRl hcl)
→ Hrel π pl Hl → intRl π pl (map (iter intOp) Hl).

After some lemmas concerning the interaction between the choice function and the
operations on Gop, the above theorems are proved by induction on the definition of

Nonfree Datatypes in Isabelle/HOL 125

Geq and Grel. Note that our iterator only depends on the operation part of the model,
although its properties rely on the whole model and its satisfaction of HCL.

5 Animation of the Metatheory

From a purely mathematical viewpoint, having formalized the general case for arbitrary
signatures and Horn theories, we did capture all the instances. But we still have to bridge
the gap between the abstract characterization of the instances in the metatheory and
the instance descriptions offered by users of the package. Moreover, the metatheory
introduces operations over a quotient term universe, while users want to use curried
datatype constructors between distinguished types for each of the mutually recursive
datatypes.

5.1 Instantiation of the Metatheory

We focus on an example instantiation of the metatheory here and refer to [20] for a
description of the instantiation in general.

To obtain the λ-terms modulo α from §2.3, we simply instantiate the HornTheory
locale. The types are instantiated as follows:
– sort becomes a type with 1 element, lt, for the unique syntactic category of λ-terms;
– opsym becomes a type with 5 elements, var, ct, app, lam, subst, corresponding to the
operations Var, Ct, App, Lam, Subst;
– rlsym becomes a type with 1 element, fr, corresponding to the predicate fresh;
– param becomes the sum type α+ β, embedding the type α of variables and β of
constants used in λ-terms and thus forming the parameter universe;
– psort becomes a type with 2 elements, a and b, matching the 2 kinds of parameters.

The signature variables are instantiated as follows:
– stOf _ = lt; arOf var = []; arOfP var = [a]; arOf ct= []; arOfP ct= [b];
arOf app= [lt, lt]; arOfP app= []; arOf lam= [lt]; arOfP lam= [a];
arOf subst= [lt, lt]; arOfP subst= [a]; rarOf fr = [lt]; rarOfP fr = [a];

– params ps p ←→ (ps = a ∧ isInl p)∨ (ps = b ∧ isInr p);
– prels = {(dif2, [a, a])}, where dif2 is the function sending any list of two parameters
of the form [Inl a1, Inl a2] to (the truth-value of) a1 �= a2 (and with immaterial definition
elsewhere).

Finally, HCL is instantiated to the set containing the reflections of the λ-term clauses.
For example, x �= y ∧ fresh x s −→ Lam y s = Lam x (s [Var x / y]) becomes
Horn [atm1, atm2] atm3, where:
– we take x and y to be distinct elements of pvar and s to be some element of var;
– atm1 = Pcond dif2 [a, a] [x, y],
– atm2 = Rl fr [x] [Var lt s] and atm3 = Eq lt T1 T2, with T1 = Op lam [y] [Var lt s] and
T2 = Op lam [x] [Op subst [y] [Var lt s, Op var [x] []]].

Then, after checking the HornTheory assumptions for this particular instances, we
indeed obtain valid formulations of the satisfaction, induction and iteration theorems for
λ-terms as instances of the general theorems. However, these formulations are inconve-
nient to use in a theorem prover. One would certainly prefer to write App s1 s2 instead

126 A. Schropp and A. Popescu

of Hop app [] [s1, s2] for λ-term application, and ∀x y s. x �= y ∧ fresh x s −→ Lam y s=
Lam x (s [Var x / y]) instead of satHcl intSt intOp (=) intRl (Horn [atm1, atm2] atm3).

Superficially, fixing this seems to be a matter of syntactic sugar. But the situation is
a little more complex, since we also want to use a more appropriate type for λ-terms.
Indeed, htrm may contain junk—the general theorems only speak about sorted terms.
Therefore, the type we care about needs to be carved out from htrm by restricting to
those T such that htrms lt T (where lt is here the only sort). Then App needs to be
defined as a copy of Hop app on the new type, also using two arguments instead of lists
with two elements. These transformations are realized with the isomorphic transfer of
types and terms, which we describe in the next section.

5.2 Isomorphic Transfer

Isomorphic transfer is based on establishing appropriate bijections between primitive
types, lifting these bijections to composite types and mapping term constructions under
the corresponding bijections away from the input types.

We shall employ relators, which are operators on predicates matching the type con-
structors. E.g., given ϕ : A → bool and ψ : B → bool, ϕ⊗ψ : A× B → bool is defined
by (ϕ⊗ψ) (a, b)←→ (ϕ a ∧ ψ b) and ϕ⇒ ψ : (A → B)→ bool is defined by (ϕ⇒ ψ) f
←→ (∀a. ϕ a → ψ (f a)).

htrms lt : htrm→ bool lterm

isInl : param→ bool α

isInr : param→ bool β

(list_all2 params (arOfP app))⊗ (list_all2 htrms (arOf app)) :
param list×htrm list→ bool

lterm× lterm

(list_all2 params (arOfP lam))⊗ (list_all2 htrms (arOf lam)) :
param list×htrm list→ bool

α× lterm

Fig. 1. Instance types and predicates (left) versus target types (right)

Figure 1 shows two categories of types side by side:
– on the left, the instance types, i.e., those obtained from the locale instantiation, where
necessary together with predicates describing the relevant subset based on the sorting;
– on the right, the corresponding target types exported to the user.

We assume α and β have been fixed and omit spelling them out, e.g., we write lterm
instead of (α, β)lterm. Also, param, htrm, etc. refer to the concrete types obtained by
the locale instantiation from §5.1.

The first 3 rows show the primitive types. For the Horn terms, we have defined lterm
by carving out from trmHCL the terms of sort lt (were there multiple sorts, we would
have multiple target types of terms). For parameters, the instance type was defined from
the target types, as their sum. In either case, we have bijections between sets of elements
in the instance types satisfying corresponding predicates and the target types.

These bijections are extended to bijections between the domains of the instance op-
erations and the intended domains of the target operations3—rows 4 and 5 show the

3 To ease the presentation, we ignore currying and pretend that the domains are products.

Nonfree Datatypes in Isabelle/HOL 127

extensions for two operation symbols, app and lam. To see how the extension operates,
note that the instance predicates regulate the length of the lists and the sorts of their con-
tents. E.g., since arOf app = [lt, lt], we see that list_all (arOf app) Hl requires that Hl
have the form [H1, H2] such that htrms lt H1 and htrms lt H2 hold—thus, the lists boil
down to pairs of Horn terms of sort lt, hence correspond bijectively to lterm× lterm.

With the bijection construction in place, we proceed to copy the operations on the
instance types into operations on the target types, by defining constants equal to their
image under the corresponding bijection. E.g., App : lterm× lterm→ lterm is defined
as the image of Hop app : param list× htrm list → trmHCL restricted according to
the suitable predicates. Thus, App corresponds to Hop app under the lifted bijection to
lterm× lterm→ lterm from the set of elements of param list×htrm list→ trmHCL for
which the predicate (list_all2 params (arOfP app))⊗ (list_all2 htrms (arOf app)) ⇒
htrms (stOf app) holds. This set contains Hop app because of the sorting of app.

Finally, the theorems about instance types, that is, the satisfaction, induction, cases
and recursion theorems, are transported from the instance types to the target types.
Technically this works because we choose the bijection on propositions to be the iden-
tity. For instance, let us consider the induction theorem, where we write l2 instead of
list_all2:

∀ϕ s H. (∀σ pl Hl. l2 params (arOfP σ) pl ∧ l2 htrms (arOf σ) Hl ∧ l2 ϕ (arOf σ) Hl →
ϕ (stOf σ) (Hop σ pl Hl))→ htrms s H → ϕ s H

To ease the presentation let us pretend that the signature only has app and lam as oper-
ation symbols. The theorem is processed as follows, into equivalent theorems. First, the
quantification over σ is replaced by conjunction over all operation symbols:

∀ϕ s H. (∀ϕ pl Hl. l2 params (arOfP app) pl ∧ l2 htrms (arOf app)Hl ∧ l2 ϕ (arOf app)Hl→ϕ (stOf app) (Hopapp pl Hl))

∧ (∀ϕ pl Hl. l2 params (arOfP lam) pl ∧ l2 htrms (arOf lam) Hl ∧ l2 ϕ (arOf lam)Hl→ ϕ (stOf lam) (Hop lam pl Hl))

→ htrms s H → ϕ s H

Computing the values of the sort and arity functions, this becomes:

∀ϕ s H. (∀ϕ pl Hl. l2 params [] pl ∧ l2 htrms [lt, lt] Hl ∧ l2 ϕ [lt, lt] Hl → ϕ lt (Hop app pl Hl))
∧ (∀ϕ pl Hl. l2 params [a] pl ∧ l2 htrms [lt] Hl ∧ l2 ϕ [lt] Hl → ϕ lt (Hop lam pl Hl))

→ htrms s H → ϕ s H

By isomorphic transfer over the aforementioned extended bijections, we obtain:

(∀H1 H2. ϕ H1 ∧ ϕ H2 → ϕ (App H1 H2)) ∧ (∀x H. ϕ H → ϕ (Lam x H)) → ϕ H.

In this step the l2 params, l2 htrms constraints have disappeared, since the extended
bijections map the constrained variables pl, Hl to empty tuples, pairs or single elements.

5.3 General Animation Infrastructure

All these constructions, namely, defining the types and terms necessary for the instan-
tiation, establishing bijections between primitive types, extending them to the relevant
composite types, and transferring the term constructions and theorems to the target
types, are automated by employing a general infrastructure for algorithmic rule systems
and forward propagation of facts.

128 A. Schropp and A. Popescu

Algorithmic rule systems are collections of proven rules about moded judgments,
which are defined predicates in Isabelle/HOL. The definition of such a judgment con-
stitutes its propositional meaning, while the rules are theorems that constitute the sound
algorithm we use to synthesize the outputs and establish the judgment. For details we
refer to the first author’s M.Sc. thesis [20]. We just note here that the animation of algo-
rithmic rule systems can be regarded as a deterministic variant of Lambda-Prolog [16].

We employ the new concept of “forward rules” to drive the instantiation of the
metatheory and invoke the term transformations. A forward rule is an implicational
theorem that, algorithmically speaking, waits for input facts matching its conjunctive
head premise, processes them with algorithmic rule systems indicated by judgmental
premises, issues term and type definitions indicated by further premises and makes out-
put facts available that correspond to the conclusion.

Isomorphic transfer is implemented [20] in the form of an algorithmic rule system.
We want to note that currying of functions over finite products is an ad hoc higher-order
transformation overriding the uniform transfer of applications. In our case the prod-
ucts are realized as lists over a universe. Currying an operator application f (Cons t ts)
proceeds by recursion on the list argument, regarding the uncurry-image of the partially-
curried operator ψ1 f applied to the transformed first component ψ2 t, as the new oper-
ator ψ−1

3 ((ψ1 f) (ψ2 t)) in the recursive transfer of ψ−1
3 ((ψ1 f) (ψ2 t)) ts. The general

approach using algorithmic rule systems is beneficial for term transformations with
nonuniform behaviour.

6 Conclusions and Related Work

We implemented the first package for nonfree datatypes in a HOL-based prover, pio-
neering a metatheory approach. We provide parameter conditions, relations, induction,
case distinction, satisfaction of the specification and iterative recursion (i.e. initiality).
The presented ideas are relevant to all HOL-based provers, but type class constraints
are Isabelle-specific and essential for some nonfree datatypes (see §2.2).

The metatheories of packages in HOL usually are of an informal nature and rely on
the dynamic checking of inferences for soundness. Formalizing their metatheories will
make theorem provers more reliable by offering completeness guarantees. Metatheo-
rems of a common shape can be processed uniformly, which leads to better extensibility
of packages. Metatheory-based constructions are a relatively recent idea even in depen-
dent type theories that can engage in generic programming over type universes [3].
Application of these metatheories is usually not facilitated with automated isomorphic
transfer and is thus left to idealistic users.

The Isabelle package for (co)datatypes [24] based on bounded natural functors
(BNFs) lacks support for equational theories. But nonfree datatypes defined with our
package can be registered as a BNF and nested in later (co)datatype definitions.

Nonfree datatypes are natively supported by algebraic-specification provers such as
the Maude ITP [2]. One simply declares signatures and arbitrary sets of equations in
Maude, on top of which a basic mechanism for inductive reasoning is available. New
function symbols can be declared together with equations defining them, but there is no
compatibility check w.r.t. the other equations. This means a check of well-definedness
as for our nonfree recursor is lacking.

Nonfree Datatypes in Isabelle/HOL 129

Moca [4] translates nonfree datatype specifications with an equational theory speci-
fied in a extension of OCaml, down to implementation datatypes with private datatype
constructors. These can only be used for pattern matching and inhabitants are instead
constructed with construction functions that normalize w.r.t. the equational theory. Effi-
cient construction functions are a core concern of Moca. A translation to Coq is planned.

The quotient/lifting/transfer packages of Isabelle [12, 14] overlap in functionality
with our tool for isomorphic transfer. The novelty here is its realization inside a general
infrastructure and the possibility of ad hoc higher-order transformations such as curry-
ing of functions on finite products. We support the transfer under setoid isomorphisms,
so quotient lifting is available with the canonical surjection into the quotient type as the
setoid isomorphism. Packages for quotient lifting/transfer can ease some parts of the
manual construction of nonfree datatypes (see §3).

In the homotopy interpretation of type theory there is a recent trend [22] to investi-
gate “higher inductive datatypes” that feature constructors introducing equalities. The
main motivation here is to represent constructions of homotopy theory by describing
their path space, but quotients similar to our package can also be introduced. The uni-
valence axiom implies [8] that isomorphic mathematical structures are identified, so
isomorphic transfer is available by substitution.

Acknowledgements. We thank Tobias Nipkow for making this collaboration possi-
ble, Jasmin Blanchette, Armin Heller, and the reviewers for providing many comments
that helped improve the presentation, Ondrej Kuncar for answering questions about Is-
abelle’s new lifting/transfer package, and the people on the Coq-Club mailing list for
pointing us to related work. The work reported here is supported by the DFG project Ni
491/13–2 (part of the DFG priority program Reliably Secure Software Systems–RS3).

References

1. The Coq Proof Assistant (2013), http://coq.inria.fr
2. Maude ITP (2013), http://maude.cs.uiuc.edu/tools/itp
3. Altenkirch, T., McBride, C., Morris, P.: Generic programming with dependent types. In:

Backhouse, R., Gibbons, J., Hinze, R., Jeuring, J. (eds.) SSDGP 2006. LNCS, vol. 4719, pp.
209–257. Springer, Heidelberg (2007)

4. Blanqui, F., Hardin, T., Weis, P.: On the implementation of construction functions for non-
free concrete data types. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 95–109.
Springer, Heidelberg (2007)

5. Bove, A., Dybjer, P.: Dependent types at work. In: Bove, A., Barbosa, L.S., Pardo, A.,
Pinto, J.S. (eds.) LerNet ALFA Summer School 2008. LNCS, vol. 5520, pp. 57–99. Springer,
Heidelberg (2009)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.F.:
The Maude system. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631,
pp. 240–243. Springer, Heidelberg (1999)

7. CoFI task group on semantics, CASL — The Common Algebraic Specification Language,
Semantics (1999),
http://www.informatik.uni-bremen.de/cofi/wiki/index.php/CASL

8. Coquand, T., Danielsson, N.A.: Isomorphism is equality. Draft (2013)
9. Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch, T., McBride,

C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 160–174. Springer, Heidelberg (2007)

http://coq.inria.fr
http://maude.cs.uiuc.edu/tools/itp
http://www.informatik.uni-bremen.de/cofi/wiki/index.php/CASL

130 A. Schropp and A. Popescu

10. Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD
1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

11. Homeier, P.V.: A design structure for higher order quotients. In: Hurd, J., Melham, T. (eds.)
TPHOLs 2005. LNCS, vol. 3603, pp. 130–146. Springer, Heidelberg (2005)

12. Huffman, B., Kuncar, O.: Lifting and transfer: A modular design for quotients in Is-
abelle/HOL. In: Isabelle Users Workshop (2012)

13. Huffman, B., Urban, C.: A new foundation for Nominal Isabelle. In: Kaufmann, M., Paulson,
L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 35–50. Springer, Heidelberg (2010)

14. Kaliszyk, C., Urban, C.: Quotients revisited for Isabelle/HOL. In: SAC, pp. 1639–1644
(2011)

15. Kammüller, F., Wenzel, M., Paulson, L.C.: Locales - A sectioning concept for Isabelle. In:
Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS,
vol. 1690, pp. 149–166. Springer, Heidelberg (1999)

16. Nadathur, G., Miller, D.: An overview of Lambda-Prolog. In: ICLP/SLP, pp. 810–827 (1988)
17. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order

Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)
18. Norrish, M.: Recursive function definition for types with binders. In: Slind, K., Bunker,

A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004. LNCS, vol. 3223, pp. 241–256. Springer,
Heidelberg (2004)

19. Popescu, A., Gunter, E.L.: Recursion principles for syntax with bindings and substitution.
In: ICFP, pp. 346–358 (2011)

20. Schropp, A.: Instantiating deeply embedded many-sorted theories into HOL types in Isabelle.
Master’s thesis, Technische Universität München (2012),
http://home.in.tum.de/~schropp/master-thesis.pdf

21. Schropp, A., Popescu, A.: Nonfree datatypes: metatheory, implementation and examples,
http://bitbucket.org/isaspecops/nonfree-data/downloads/cpp2013_bundle.zip

22. Shulman, M., Licata, D., Lumsdaine, P.L., et al.: Higher inductive types on the homotopy
type theory blog,
http://homotopytypetheory.org/category/higher-inductive-types/

23. Breazu-Tannen, V., Subrahmanyam, R.: Logical and computational aspects of programming
with sets/bags/lists. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP
1991. LNCS, vol. 510, pp. 60–75. Springer, Heidelberg (1991)

24. Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional (co)datatypes for
higher-order logic—Category theory applied to theorem proving. In: LICS 2012, pp. 596–605
(2012)

http://home.in.tum.de/~schropp/master-thesis.pdf
http://bitbucket.org/isaspecops/nonfree-data/downloads/cpp2013_bundle.zip
http://homotopytypetheory.org/category/higher-inductive-types/

Lifting and Transfer: A Modular Design
for Quotients in Isabelle/HOL

Brian Huffman1 and Ondřej Kunčar2

1 Galois, Inc.
2 Technische Universität München

Abstract. Quotients, subtypes, and other forms of type abstraction are ubiqui-
tous in formal reasoning with higher-order logic. Typically, users want to build a
library of operations and theorems about an abstract type, but they want to write
definitions and proofs in terms of a more concrete representation type, or “raw”
type. Earlier work on the Isabelle Quotient package has yielded great progress in
automation, but it still has many technical limitations.

We present an improved, modular design centered around two new packages:
the Transfer package for proving theorems, and the Lifting package for defining
constants. Our new design is simpler, applicable in more situations, and has more
user-friendly automation.

1 Introduction

Quotients and subtypes are everywhere in Isabelle/HOL. For example, basic numeric
types like integers, rationals, reals, and finite words are all quotients. Many other types
in Isabelle are implemented as subtypes, including multisets, finite maps, polynomials,
fixed-length vectors, matrices, and formal power series, to name a few.

Quotients and subtypes are useful as type abstractions: Instead of explicitly asserting
that a function respects an equivalence relation or preserves an invariant, this infor-
mation can be encoded in the function’s type. Quotients are also particularly useful in
Isabelle, because reasoning about equality on an abstract type is supported much better
than reasoning modulo an equivalence relation.

Building a theory library that implements a new abstract type can take a lot of work.
The challenges are similar for both quotients and subtypes: Isabelle requires explicit co-
ercion functions (often “Rep” and “Abs”) to convert between old “raw” types and new
abstract types. Definitions of functions on abstract types require complex combinations
of these coercions. Users must prove numerous lemmas about how the coercions inter-
act with the abstract functions. Finally, it takes much effort to transfer the properties of
raw functions to the abstract level. Clearly, this process needs good proof automation.

1.1 Related Work

Much previous work has been done on formalizing quotients in theorem provers. Slo-
tosch [12] and Paulson [10] each developed techniques for defining quotient types and
defining first-order functions on them. They provided limited automation for transfer-
ring properties from raw to abstract types in the form of lemmas that facilitate manual

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 131–146, 2013.
c© Springer International Publishing Switzerland 2013

132 B. Huffman and O. Kunčar

proofs. Harrison [3] implemented tools for lifting constants and transferring theorems
automatically, although this work was still limited to first-order constants and theorems.
In 2005, Homeier [4] published a design for a new HOL package, which was the first
system capable of lifting higher-order functions and transferring higher-order theorems.

Isabelle’s Quotient package was implemented by Kaliszyk and Urban [5], based
upon Homeier’s design. It was first released with Isabelle 2009-2. The Quotient pack-
age is designed around the notion of a quotient, which involves two types and three
constants: a raw type ’a with a partial equivalence relation R :: ’a ⇒ ’a ⇒ bool and
the abstract type ’b, whose elements are in one-to-one correspondence with the equiv-
alence classes of R. The abstraction function Abs :: ’a ⇒ ’b maps each equivalence
class of R onto a single abstract value, and the representation function Rep :: ’b ⇒ ’a
takes each abstract value to an arbitrary element of its corresponding equivalence class.

The Quotient package implements a collection of commands, proof methods, and
theorem attributes. Given a raw type and a (total or partial) equivalence relation R, the
quotient type command defines a new type with Abs and Rep that form a quotient.
Given a function g on the raw type and an abstract type, the quotient definition com-
mand defines a new abstract function g′ in terms of g, Abs, and Rep. The user must
provide a respectfulness theorem showing that g respects R. Finally the descending and
lifting methods can transfer propositions between g and g′. Internally, this uses respect-
fulness theorems, the definition of g′, and the quotient properties of R, Abs and Rep.

Lammich’s automatic procedure for data refinement [7] was directly inspired by our
packages, especially by the idea to represent types as relations.

In Coq, implementations of generalized rewriting by Coen [1] and Sozeau [13] are
similar to our Transfer method—in particular, Sozeau’s “signatures” for higher-order
functions are like our transfer rules. Sozeau’s work has better support for subrelations,
but our Transfer package is more general in allowing relations over two different types.

Magaud [8] transfers Coq theorems between different types, but unlike our work, his
approach is based on transforming proof terms.

1.2 Limitations of the Quotient Package

We decided to redesign the Quotient package after identifying several limitations of its
implementation. A few such limitations were described by Krauss [6]: 1.) The quotient
relation R and raw function f must be dedicated constants, not arbitrary terms. Thus
the tool cannot be used on locale parameters and some definitions in a local theory. 2.)
One cannot turn a pre-existing type into a quotient afterwards; nor can one declare a
user-defined constant on the quotient type as the lifted version of another constant.

To solve problem 1 does not require major organizational changes. However, prob-
lem 2 has deeper roots and suggested splitting the Quotient package into various layers:
By having separate components with well-defined interfaces, we could make it easier
for users to connect with the package in non-standard ways.

Besides the problems noted by Krauss, we have identified some additional problems
with the descending/lifting methods. Consider ’a fset, a type of finite sets which is a
quotient of ’a list. The Quotient package can generate fset versions of the list functions
map :: (’a ⇒ ’b) ⇒ ’a list ⇒ ’b list and concat :: ’a list list ⇒ ’a list, but it has dif-
ficulty transferring the following theorems to fset:

Lifting and Transfer: A Modular Design for Quotients in Isabelle/HOL 133

concat (map (λx. [x]) xs) = xs
map f (concat xss) = concat (map (map f) xss)
concat (map concat xsss) = concat (concat xsss)

The problem is with the user-supplied respectfulness theorems. Note that map oc-
curs at several different type instances here: It is used with functions of types ’a ⇒ ’b,
’a ⇒ ’a list, and ’a list ⇒ ’b list. Unfortunately a single respectfulness theorem for
map will not work in all these cases—each type instance requires a different respect-
fulness theorem. On top of that, the user must also prove additional preservation lem-
mas, essentially alternative definitions of map fset at different types. These rules can
be tricky to state correctly and tedious to prove.

The Quotient package’s complex, three-phase transfer procedure was another moti-
vation to look for a new design. We wanted to have a simpler implementation, involv-
ing fewer separate phases. We also wanted to ease the burden of user-supplied rules, by
requiring only one rule per constant. Finally, we wanted a more general, more widely
applicable transfer procedure without so many hard-wired assumptions about quotients.

1.3 Overview

Our new system uses a layered design, with multiple components and interfaces that
are related as shown in Fig. 1. Each component depends only on the components under-
neath it. At the bottom is the Transfer package, which transfers propositions between
raw and abstract types (§2). Note that the Transfer package has no dependencies; it does
not know anything about Rep and Abs functions or quotient predicates.

Above Transfer is the Lifting package, which lifts constant definitions from raw to
abstract types (§3). It configures each new constant to work with Transfer. At the top
are commands that configure new types to work with Lifting, such as setup lifting and
quotient type. We expect that additional type definition commands might be imple-
mented later. We conclude with the contribution and results of our packages (§4).

Our work was released in Isabelle 2013-1.

Transfer package

Lifting package
User-defined
transfer rules

User-defined
quotient +

setup-lifting

typedef +
setup-lifting
commands

quotient-type
command

. . .

Fig. 1. Modular design of packages for formalizing quotients

134 B. Huffman and O. Kunčar

2 Transfer Package

The primary function of the Transfer package is to transfer theorems from one type
to another, by proving equivalences between pairs of related propositions. This pro-
cess is guided by an extensible collection of transfer rules, which establish connections
between pairs of related types or constants.

The Transfer package provides multiple user interfaces: The transfer proof method
replaces the current subgoal by a logically equivalent subgoal—typically, it replaces a
goal about an abstract type by a goal about the raw type. The package also provides
the transferred theorem attribute, which yields a theorem about an abstract type when
given a theorem involving a raw type.

2.1 Types as Relations

The design of the Transfer package is based on the idea of types as binary relations. The
notions of relational parametricity by Reynolds [11], free theorems by Wadler [14], and
representation independence by Mitchell [9] were primary sources of inspiration.

Relational parametricity tells us that different type instances of a parametrically poly-
morphic function must behave uniformly—that is, they must be related by a binary re-
lation derived from the function’s type. For example, the standard filter function on lists
satisfies the parametricity property shown below in Eq. (2). The relation is derived from
filter’s type by replacing each type constructor with an appropriate relator. Relators
lift relations over type constructors: Related data structures have the same shape, with
pointwise-related elements, and related functions map related input to related output
(see Fig. 2). For base types like bool or int we use identity relations (←→ or =).

filter :: (’a ⇒ bool) ⇒ ’a list ⇒ ’a list (1)

∀A. ((A �⇒ op ←→) �⇒ list all2 A �⇒ list all2 A) filter filter (2)

This parametricity property means that if predicates p1 and p2 agree on related inputs
(i.e., A x1 x2 implies p1 x1 ←→ p2 x2) then filter p1 and filter p2 applied to related
lists will yield related results. (Wadler-style free theorems are derived by instantiating
A with the graph of a function f; in this manner, we can obtain a rule stating essentially
that filter commutes with map.) Parametricity rules in the style of Eq. (2) can serve as
transfer rules, relating two different type instances of the same polymorphic function.

Representation independence is one useful application of relational parametricity.
Mitchell [9] used it to reason about data abstraction in functional programming. Imag-
ine we have an interface to an abstract datatype (e.g. queues) with two different im-
plementations. We would hope for any queue-using program to behave identically no

(prod rel A B) x y ≡ A (fst x) (fst y) ∧ B (snd x) (snd y)
(A �⇒ B) f g ≡ (∀x y. A x y −→ B (f x) (g y))

(set rel A) X Y ≡ (∀x ∈ X. ∃y ∈ Y. A x y) ∧ (∀y ∈ Y. ∃x ∈ X. A x y)
(list all2 A) xs ys ≡ length xs = length ys ∧ (∀(x, y) ∈ set (zip xs ys). A x y)

Fig. 2. Relators for various type constructors

Lifting and Transfer: A Modular Design for Quotients in Isabelle/HOL 135

matter which queue implementation is used—i.e., that the two queue implementations
are contextually equivalent. Representation independence implies that this is so, as long
as we can find a relation between the two implementation types that is preserved by all
the corresponding operations. In our work, we refer to such a relation as a transfer
relation.

The Transfer package is essentially a working implementation of the idea of repre-
sentation independence, but in a slightly different setting: Instead of a typical functional
programming language, we use higher-order logic; and instead of showing contextual
equivalence of programs, we show logical equivalence of propositions.

Example: Int/nat transfer. We consider a simple use case, transferring propositions be-
tween the integers and natural numbers. We can think of type int as a concrete represen-
tation of the more abstract type nat; each type has its own implementation of numerals,
arithmetic operations, comparisons, and so on. To specify the connection between the
two types, we define a transfer relation ZN :: int ⇒ nat ⇒ bool.

ZN x n ≡ (x = int n) (3)

We can then use ZN to express relationships between constants in the form of trans-
fer rules. Obviously, the integer 1 corresponds to the natural number 1. The respective
addition operators map related arguments to related results. Similarly, less-than on in-
tegers corresponds to less-than on naturals. Finally, bounded quantification over the
non-negative integers corresponds to universal quantification over type nat.

(ZN) (1::int) (1::nat) (4)

(ZN �⇒ ZN �⇒ ZN) (op +) (op +) (5)

(ZN �⇒ ZN �⇒ op ←→) (op <) (op <) (6)

((ZN �⇒ op ←→) �⇒ op ←→) (Ball {0..}) All (7)

The Transfer package can use the rules above to derive equivalences like the following.

(∀x::int ∈ {0..}. x < x + 1) ←→ (∀n::nat. n < n + 1) (8)

If we apply the transfer method to a subgoal of the form ∀n::nat. n < n + 1, the Trans-
fer package will prove the equivalence above, and then use it to replace the subgoal with
∀x::int ∈ {0..}. x < x + 1. The transferred attribute works in the opposite direction:
Given the theorem ∀x::int ∈ {0..}. x < x + 1, it would prove the same equivalence,
and return the theorem ∀n::nat. n < n + 1. In general, the Transfer package can han-
dle any lambda term constructed from constants for which it has transfer rules.

2.2 Transfer Algorithm

The core functionality of the Transfer package is to prove equivalence theorems in the
style of Eq. (8). To derive an equivalence theorem, the Transfer package uses transfer
rules for constants, along with elimination and introduction rules for �⇒.

(A �⇒ B) f g A x y

B (f x) (g y)
(�⇒-ELIM)

∀x y. A x y −→ B (f x) (g y)

(A �⇒ B) f g
(�⇒-INTRO)

136 B. Huffman and O. Kunčar

Alternatively, these rules can be restated in the form of structural typing rules, similar
to those for the simply typed lambda calculus. A typing judgment here involves two
terms instead of one, and a binary relation takes the place of a type. The environment Γ
collects the local assumptions for bound variables.

APP

Γ � (A �⇒ B) f g Γ � A x y

Γ � B (f x) (g y)

ABS

Γ, A x y � B (f x) (g y)

Γ � (A �⇒ B) (λx. f x) (λy. g y)

VAR

A x y ∈ Γ
Γ � A x y

To transfer a theorem requires us to build a derivation tree using these rules, with
transfer rules for constants at the leaves of the tree. For the transfer method, we are
given only the abstract right-hand side; for the transferred attribute, only the left-hand
side. The job of the Transfer package is to fill in the remainder of the tree—essentially
a type inference problem.

Our implementation splits the process into two steps. Step one is to determine the
overall shape of the derivation tree: the arrangement of APP, ABS, and VAR nodes,
and the pattern of unknown term and relation variables. Step two is then to fill in the
leaves of the tree using the collection of transfer rules, at the same time instantiating the
unknown variables.

Step one starts by building a “skeleton” s of the known term t—a lambda term with
the same structure, but with constants replaced by fresh variables. Using Isabelle’s stan-
dard type inference algorithm, we annotate s with types; the inferred types determine the
pattern of relation variables in the derivation tree. For step two, we set up a schematic
proof state with one goal for each leaf of the tree, and then match transfer rules with
subgoals. We use backtracking search in case multiple transfer rules match a given left-
or right-hand side.

As an example, we will transfer the proposition ∀n::nat. n ≤ n. This is actually syn-
tax for All (λn::nat. le n n), so its skeleton has the form t (λx. u x x). Type inference
yields a most general typing with t :: (’a ⇒ ’b) ⇒ ’c and u :: ’a ⇒ ’a ⇒ ’b, where ’a,
’b, and ’c are fresh type variables. We generate fresh relation variables ?a, ?b, and ?c
corresponding to these, and use them to build an initial derivation tree following the
skeleton’s structure and inferred types:

� ((?a �⇒ ?b) �⇒ ?c) ?t All

?a x n � (?a �⇒ ?a �⇒ ?b) ?u le ?a x n � ?a x n

?a x n � (?a �⇒ ?b) (?u x) (le n) ?a x n � ?a x n

?a x n � ?b (?u x x) (le n n)
� (?a �⇒ ?b) (λx. ?u x x) (λn. le n n)

� ?c (?t (λx. ?u x x)) (All (λn. le n n))
Note that the leaves with ?a x n are solved with rule VAR, but the leaves with con-

stants All and le are as yet unsolved. Therefore this derivation tree yields a theorem with
two hypotheses, ((?a �⇒ ?b) �⇒ ?c) ?t All and (?a �⇒ ?a �⇒ ?b) ?u le, and a conclu-
sion ?c (?t (λx. ?u x x)) (All (λn. le n n)). In step two, we set up a proof state with
the hypotheses as subgoals. The first goal is matched by Eq. (7), and the second goal
by (ZN �⇒ ZN �⇒ op ←→) (op ≤) (op ≤). Similarly instantiating the schematic vari-
ables in the conclusion yields the final equivalence theorem:

(∀x::int ∈ {0..}. x ≤ x) ←→ (∀n::nat. n ≤ n) (9)

Lifting and Transfer: A Modular Design for Quotients in Isabelle/HOL 137

2.3 Parameterized Transfer Relations

The design of the Transfer package generalizes easily to transfer relations with pa-
rameters. As an example, we define a transfer relation between lists and a finite set
type; it is parameterized by a relation on the element types. We assume a function
Fset :: ’a list ⇒ ’a fset that converts the given list to a finite set.

LF :: (’a1 ⇒ ’a2 ⇒ bool) ⇒ ’a1 list ⇒ ’a2 fset ⇒ bool (10)

(LF A) xs Y ≡ ∃ys. list all2 A xs ys ∧ Fset ys = Y (11)

If we define versions of the functions map and concat that work on finite sets, we
can relate them to the list versions with the transfer rules shown here.

((A �⇒ B) �⇒ LF A �⇒ LF B) map map fset (12)

(LF (LF A) �⇒ LF A) concat concat fset (13)

These rules allow the Transfer package to work on formerly problematic goals such
as map fset f (concat fset xss) = concat fset (map fset (map fset f) xss), as long as
appropriate transfer rules for equality are also present. The same transfer rules work for
all type instances of these constants.

2.4 Transfer Rules with Side Conditions

Some polymorphic functions in Isabelle require side conditions on their parametricity
theorems. For example, consider the equality relation =, which has the polymorphic
type ’a ⇒ ’a ⇒ bool. Its type would suggest (A �⇒ A �⇒ op ←→) (op =) (op =), but
this does not hold for all relations A—it only holds if A is bi-unique, i.e., single-valued
and injective.

bi unique A =⇒ (A �⇒ A �⇒ op ←→) (op =) (op =) (14)

As pointed out by Wadler [14], this restriction on relations is akin to an eqtype an-
notation in ML, or an Eq class constraint in Haskell. While Haskell allows users to
provide Eq instance declarations, the Transfer package allows us to provide additional
rules about bi-uniqueness that serve the same purpose, for example: bi unique ZN,
bi unique A =⇒ bi unique (set rel A) and bi unique A =⇒ bi unique (list all2 A).

Using the above rules, the Transfer package is able to relate equality on lists of
integers with equality on lists of naturals, using the relation list all2 ZN. It can similarly
relate equality on sets, lists of sets, sets of lists, and so on.

The universal quantifier requires a different side condition on its parametricity rule.
While equality requires bi-uniqueness, the universal quantifier requires the relation A
to be bi-total—i.e., A must be both total and surjective.

bi total A =⇒ ((A �⇒ op ←→) �⇒ op ←→) All All (15)

Universal quantifiers appear in most propositions used with transfer; however, many
transfer relations (including ZN) are not bi-total, but only right-total, i.e., surjective.
The following transfer rule can then be used if no other specialized rule is provided:

right total A =⇒ ((A �⇒ op ←→) �⇒ op ←→) (Ball {x. Domainp A x}) All (16)

138 B. Huffman and O. Kunčar

The predicate Domainp is defined as Domainp T x ≡ ∃y. T x y. Because it is awk-
ward to work with expressions like Domainp T in the transferred goal, we imple-
mented a post-processing step that can replace Domainp expressions with equivalent
but more convenient predicates. This is configured by registering a transfer domain
rule: Domainp ZN = (λx. x ≥ 0). We provide transfer domain rules for lists and other
types; thus we can replace, for example, Domainp (list all2 ZN) by list all (λx. x ≥ 0).
The use of Domainp is not limited to quantifiers—the usual parametricity rules for con-
stants like UNIV, Collect, and set intersection

⋂
require bi-totality, but we also provide

more widely applicable transfer rules using Domainp.
The last condition we can use to restrict relations is being right-unique, i.e., single-

valued. Bi-totality, right-totality and right-uniqueness are like bi-uniqueness preserved
by many relators, including those for lists and sets. We mentioned that ZN is not bi-total
but, e.g, total quotients yield bi-total transfer relations; see the overview in Tab. 1.

Handling equality relations. Many propositions contain non-polymorphic constants that
remain unchanged by the transfer procedure, e.g., boolean operations. We would like to
avoid the necessity for lots of trivial transfer rules like the rule for the boolean con-
junction: (op ←→ �⇒ op ←→ �⇒ op ←→) (op ∧) (op ∧). Instead we define a predicate
is equality A, which holds if and only if A is the equality relation on its type, and regis-
ter a single reflexivity transfer rule is equality A =⇒ A x x. The is equality predicate is
preserved by all of the standard relators, including lists, sets, pairs, and function space.

2.5 Proving Implications Instead of Equivalences

The transfer proof method can replace a universal with an equivalent bounded quan-
tifier: e.g., (∀n::nat. n < n + 1) is transferred to (∀x::int ∈ {0..}. x < x + 1). This
yields a useful extra assumption in the new subgoal. With the transferred attribute, how-
ever, it may be preferable to start with a stronger theorem (∀x::int. x < x + 1), without
the bounded quantifier. In this case, the Transfer package can prove an implication:

(∀x::int. x < x + 1) −→ (∀n::nat. n < n + 1) (17)

The Transfer algorithm works exactly the same; we just need some new transfer rules
that encode monotonicity. We provide rules for quantifiers and implication, using vari-
ous combinations of −→, ←−, and ←→; a few are shown here.

right total A =⇒ ((A �⇒ op −→) �⇒ op −→) All All (18)

right total A =⇒ ((A �⇒ op ←→) �⇒ op −→) All All (19)

(op ←− �⇒ op −→ �⇒ op −→) (op −→) (op −→) (20)

The derivation of Eq. (17) uses transfer rule (19); rule (18) comes into play when
quantifiers are nested. These rules are applicable to relation ZN because it is right-
total. Further variants of these rules (involving reverse implication) are used to transfer
induction and case analysis rules, which have many nested implications and quantifiers.

Having many different transfer rules for the same constants would tend to introduce
a large amount of backtracking search in step two of the transfer algorithm. To counter
this, we pre-instantiate some of the relation variables to −→, ←−, or ←→, guided by a
simple monotonicity analysis.

Lifting and Transfer: A Modular Design for Quotients in Isabelle/HOL 139

3 Lifting Package

The Lifting package allows users to lift terms of the raw type to the abstract type,
which is a necessary step in building a library for an abstract type. Lifting defines a
new constant by combining coercion functions (Abs and Rep) with the raw term. It also
proves an appropriate transfer rule for the Transfer package and, if possible, an equation
for the code generator. Doing this lifting manually is mostly tedious and uninteresting;
our goal is to automate as much as possible, so users can focus on the interesting bits.

The Lifting package provides two commands: setup lifting for initializing the pack-
age to work with a new type, and lift definition for lifting constants. The Lifting pack-
age works with four kinds of type abstraction: type copies, subtypes, total quotients and
partial quotients. See Tab. 1 for an overview of these.

Example: finite sets. Let us define a type of finite sets as a quotient of lists, where two
lists are in the same equivalence class if they represent the same set:

quotient type ’a fset = ’a list / (λxs ys. set xs = set ys)

Now we can define the union of two finite sets as a lifted function of concatenation of
two lists append :: ’a list ⇒ ’a list ⇒ ’a list, which has infix syntax @ :

lift definition funion :: ’a fset ⇒ ’a fset ⇒ ’a fset" is append

The command opens a proof environment with the following obligation:∧
l1 l2 l3 l4. set l1 = set l2 =⇒ set l3 = set l4 =⇒ set (l1 @ l3) = set (l2 @ l4)

The obligation is called a respectfulness theorem and says that append respects the
equivalence relation that defines ’a fset. When the user proves the obligation, the new
function funion is defined as follows:

funion A B ≡ abs fset ((rep fset A) @ (rep fset B))

The package also generates a code equation for the code generator:

funion (abs fset A) (abs fset B) = abs fset (A @ B)

And finally, because the package proved internally a corresponding transfer rule, we can
prove, e.g., that funion commutes: lemma funion A B = funion B A. If we apply the
method transfer, we get

∧
A B. set (A @ B) = set (B @ A), which is easily provable.

If we defined ’a fset by typedef ’a fset = {A :: ’a set. finite A}, i.e., as a subtype
of sets, and funion as a lifted function of the set union ∪, we would get the proof
obligation

∧
s1 s2. finite s1 =⇒ finite s2 =⇒ finite (s1 ∪ s2) and the code equation

rep fset (funion A B) = rep fset A ∪ rep fset B.1

3.1 General Case

We abstract from the presented example now and give a description that covers the gen-
eral case of what the Lifting package does. The input of the lifting is a term t :: τ1 on

1 See §3.3 for more about what the code equations are and how they are derived.

140 B. Huffman and O. Kunčar

the concrete level, an abstract type τ2 and a name f of the new constant. In our ex-
ample, t = append, τ1 = ’a list ⇒ ’a list ⇒ ’a list, τ2 = ’a fset ⇒ ’a fset ⇒ ’a fset
and f = funion. We work generally with types τ which are composed from type con-
structors κ and other types ϑ. Then we write τ = ϑ κ. Each type parameter of κ can be
either co-variant (we write +) or contra-variant (−). E.g., in the function type α → β,
α is contra-variant whereas β is co-variant.

In this section, we define three functions Morphp, Relat and Trans. Morphp is a com-
bination of abstraction and representation functions and gives us the definition of f . The
polarity superscript p (+ or −) encodes if an abstraction or a representation function
should be generated. Relat is a combination of equivalence relations and allows us to
describe that t behaves correctly—respects the equivalence classes. Finally, Trans is a
composed transfer relation and describes how t and f are related. More formally, if the
user proves the respectfulness theorem Relat(τ1, τ2) t t, the Lifting package will define
the new constant f as f =Morph+(τ1, τ2) t and proves the transfer rule Trans(τ1, τ2) t f .

For now we will not distinguish between quotients, subtypes, etc. Instead we unify
all four kinds of type abstraction with a general notion of an abstract type.

Definition 1. We say that κ2 is an abstract type of κ1 if there is a transfer relation Tκ1,κ2 ::
(ϑ) κ1 → (α) κ2 → bool associated with κ1 and κ2 (see also Fig. 3a) such that

1. Tκ1,κ2 is right-total and right-unique,
2. all type variables in ϑ are in α, which contains only distinct type variables.

We say that τ2 = (ρ) κ2 is an instance of an abstract type of τ1 = (σ) κ1 if

1. κ2 is an abstract type of κ1 certified by Tκ1,κ2 :: (ϑ) κ1 → (α) κ2 → bool,
2. σ= θ ϑ, where θ = match(ρ,α) 2.

In our finite sets example, the quotient type command internally generates a trans-
fer relation between the concrete type ’a list and the abstract type ’a fset. In principle,
such a transfer relation alone is sufficient to characterize all four kinds of type ab-
straction: type copies, subtypes, total and partial quotients. We could build compound
transfer relations for compound types and get other components (e.g., the morphisms
Morphp for the definition) from this relation using the choice operator. But it turns out
that it is useful to have these other components explicitly, e.g. for generating code equa-
tions. The other components that we can derive from each transfer relation Tκ1,κ2 and
associate with each abstract type are (◦◦ is the relation composition):

– Partial equivalence relation Rκ1,κ2 (Fig. 3b), specified by Rκ1,κ2 = Tκ1,κ2 ◦◦T−1
κ1,κ2

.
– Abstraction function Absκ1,κ2 (Fig. 3c), specified by Tκ1,κ2 a b −→ Absκ1,κ2 a = b.
– Representation function Repκ1,κ2 (Fig. 3d), specified by Tκ1,κ2 (Repκ1,κ2 a) a.

Since Tκ1,κ2 is right-total and right-unique, there always exist some Abs and Rep func-
tions that meet the above given specification. On the other hand, given R, Abs and Rep,
the specification allows only right-total and right-unique T .

The reflexive part of the partial equivalence relation Rκ1,κ2 implicitly specifies which
values of the concrete type are used for the construction of the abstract type.3 The

2 Match is a usual matching algorithm, i.e., match(β,α) yields a substitution θ such that β= θ α.
3 We omitted reflexive edges of Rκ1,κ2 in Fig. 3b.

Lifting and Transfer: A Modular Design for Quotients in Isabelle/HOL 141

Tκ1,κ2

(a)

Rκ1,κ2

(b)

Absκ1,κ2

(c)

Repκ1,κ2

(d)

Fig. 3. Components of an abstract type

representation and abstraction functions map abstract values to concrete values and vice
versa. Absκ1,κ2 is underspecified outside of a range of Tκ1,κ2 (dashed lines in Fig. 3c) and
Repκ1,κ2 can select only one of the values in the corresponding class.

Now we come to the key definition of this section. We derived R, Abs and Rep
only for transfer relations that are associated with a type constructor. But later on, we
build compound transfer relations for general types. What are R, Abs and Rep in this
case? Again any functions meeting the above given specification. The following quo-
tient predicate captures this idea and bundles all the components together.

Definition 2. We define a quotient predicate with the syntax 〈., ., ., .〉 and we say that
〈R,Abs,Rep,T 〉 if 1. R = T ◦◦T−1, 2. T a b −→ Abs a = b and 3. T (Rep a) a.

The following definition requires that 〈., ., ., .〉 is preserved by going through the type
universe using map functions and relators.

Definition 3. We say that mapκ is a map function for κ and relκ is a relator for κ,
where κ has arity n, if the assumptions 〈R1,m

+
1 ,m

−
1 ,T1〉, . . . ,〈Rn,m+

n ,m
−
n ,Tn〉 implies

〈relκR1 . . . Rn,mapκ mp1
κ . . . mp2n

κ ,mapκ m−p1
κ . . . m−p2n

κ , relκ T1 . . . Tn〉.

Indexes pi
κ encode which arguments of the map function are co-variant (+) or contra-

variant (−). The map function can in general take 2n arguments because each type
parameter of κ can be co-variant and contra-variant at the same time, e.g., α κ≡ α→ α.

Now we finally define Morphp, Relat and Trans, as we promised to be the main goal
of this section. First, let us define auxiliary functions morphp, relat and trans, which are
going to be used as the single step in the main definition of Morphp, Relat and Trans.
Functions morphp, relat and trans are defined for all types τ1 = (σ) κ1 and τ2 = (ρ) κ2,
where τ2 is an instance of an abstract type of τ1, as follows:

– morph+(τ1, τ2) = Absκ1,κ2 :: τ1 → τ2

– morph−(τ1, τ2) = Repκ1,κ2 :: τ2 → τ1

– relat(τ1, τ2) = Rκ1,κ2 :: τ1 → τ1 → bool
– trans(τ1, τ2) = Tκ1,κ2 :: τ1 → τ2 → bool

Now we extend the simple step functions morphp, relat and trans defined only for
abstract types to functions Morphp, Relat and Trans, which take general types τ1 and
τ2, by doing induction and case split on the type structure:

142 B. Huffman and O. Kunčar

– Base case. If τ1 = τ2, then

Morphp(τ1, τ2) = id :: τ1 → τ1,

Relat(τ1, τ2) = op =:: τ1 → τ1 → bool,

Trans(τ1, τ2) = op =:: τ1 → τ1 → bool.

– Non-abstract type case. If τ1 = (σ) κ and τ2 = (ρ) κ, then

Morphp(τ1, τ2) = mapκMorphp1
κ p(σ1,ρ1) . . . Morphp2n

κ p(σn,ρn),

Relat(τ1, τ2) = relκRelat(σ1,ρ1) . . . Relat(σn,ρn),

Trans(τ1, τ2) = relκTrans(σ1,ρ1) . . . Trans(σn,ρn),

where mapκ is a map function for κ and pi
κp is a usual multiplication of polarities:

+ ·−=−·+=− and + ·+=−·−=+. The function relκ is a relator for type κ.
– Abstract type case. If τ1 = (σ) κ1, τ2 = (ρ) κ2, κ1 �= κ2, and κ2 is an abstract type

of κ1 certified by Tκ1,κ2 :: (ϑ) κ1 → (α) κ2 → bool, let us define σ′ = θ ϑ, where
θ = match(ρ,α). 4 Then we define these equations

Morph+(τ1, τ2) = morph+((σ′) κ1, τ2)◦Morph+(τ1,(σ′) κ1),

Morph−(τ1, τ2) = Morph−(τ1,(σ′) κ1)◦morph−((σ′) κ1, τ2),

Relat(τ1, τ2) = Trans(τ1,(σ′) κ1)◦◦ relat((σ′) κ1, τ2)◦◦Trans(τ1,(σ′) κ1)
−1,

Trans(τ1, τ2) = Trans(τ1,(σ′) κ1)◦◦ trans((σ′) κ1, τ2).

The functions Morphp, Relat and Trans are undefined if κ2 is not an abstract type for
κ1 in the abstract type case. In such a case the Lifting package reports an error. Let us
assume for the rest that we work only with such τ1 and τ2 that this does not happen.

Theorem 1. Morphp, Relat and Trans have the following types: Morph+(τ1, τ2) :: τ1 →
τ2, Morph−(τ1, τ2) :: τ2 → τ1, Relat(τ1, τ2) :: τ1 → τ1 → bool and Trans(τ1, τ2) :: τ1 →
τ2 → bool.

Proof. By induction on defining equations of Morphp, Relat and Trans. ��

Thus in our context, where t :: τ1, the terms Relat(τ1, τ2) t t, f = Morph+(τ1, τ2) t
and Trans(τ1, τ2) t f are well-typed terms and f has indeed type τ2. The respectful-
ness theorem Relat(τ1, τ2) t t has to be proven by the user. The definitional theorem
f = Morph+(τ1, τ2) t is proven by Isabelle. The remaining question is how we get the
transfer rule Trans(τ1, τ2) t f . Two following theorems give us the desired transfer rule.

Theorem 2. If 〈R,Abs,Rep,T 〉, f = Abs t and R t t, then T t f .

Proof. Because R = T ◦◦T−1, and R t t, we have ∃x. T t x. Let us denote this x as g.
Thus Abs t = g follows from T t g. But from f = Abs t we have f = g and thus T t f . ��

The following theorem is the key theorem of this section: it proves that our definitions
of Morphp, Relat and Trans are legal, i.e., they have the desired property that they still
form a (compound) abstract type, i.e., they meet the quotient predicate.

4 Definition 1 guarantees that all type variables in ϑ are in α and thus ρ uniquely determines σ′.

Lifting and Transfer: A Modular Design for Quotients in Isabelle/HOL 143

Theorem 3. 〈Relat(τ1, τ2),Morph+(τ1, τ2),Morph−(τ1, τ2),Trans(τ1, τ2)〉

Proof. By induction on defining equations of Morphp, Relat and Trans: Base case:
〈op =, id, id,op =〉 holds. Non-abstract type case: 〈., ., ., .〉 is preserved as it is required
in Definition 3. Abstract type case: for all τ2, an instance of the abstract type of τ1,
〈relat(τ1, τ2),morph+(τ1, τ2),morph−(τ1, τ2), trans(τ1, τ2)〉 holds by construction. And
finally, the key fact that we need: 〈R1,Abs1,Rep1,T1〉 and 〈R2,Abs2,Rep2,T2〉 implies
〈T1 ◦◦R2 ◦◦T−1

1 ,Abs2 ◦ Abs1,Rep1 ◦Rep2,T1 ◦◦T2〉, i.e., 〈., ., ., .〉 is preserved through
the composition of abstract types. We proved this key fact in Isabelle/HOL. ��

If we compose Theorem 3 with the Theorem 2 and use f = Morph+(τ1, τ2) t and
Relat(τ1, τ2) t t, we get the desired transfer rule Trans(τ1, τ2) t f .

In the original Quotient package, Relat(τ1, τ2) in the abstract type case was defined
as Relat(τ1,(σ′) κ1)◦◦ relat((σ′) κ1, τ2)◦◦Relat(τ1,(σ′) κ1). Although Theorem 1 still
holds, Theorem 3 cannot be proven and thus the Quotient package does not cover the
whole possible type universe. As a consequence, transferring of theorems did not work
for general case of composed abstract types, but the package was still a great progress.

3.2 Implementation

In Isabelle/HOL, 〈., ., ., .〉 is defined as the Quotient predicate, whose definition is equiv-
alent to Definition 2. A new abstract type can be registered by a command setup lifting
by providing such a Quotient R Abs Rep T theorem, which certifies that the given com-
ponents R, Abs, Rep and T constitute an abstract type. Quotient theorems for relators
and map functions are registered by the attribute quot map. Such a theorem for the
function type is the most prominent one; another example is a theorem for the list type:

lemma fun quotient: Quotient R1 abs1 rep1 T1 =⇒ Quotient R2 abs2 rep2 T2 =⇒
Quotient (R1 �⇒ R2) (rep1 �→ abs2) (abs1 �→ rep2) (T1 �⇒ T2)

lemma Quotient list: Quotient R Abs Rep T =⇒
Quotient (list all2 R) (map Abs) (map Rep) (list all2 T)

We implemented a syntax-driven procedure that proves a Quotient theorem for a
given pair of types τ1 and τ2. This procedure recursively descends τ1 and τ2 to prove
Theorem 3 for τ1 and τ2 and the implementation basically follows our induction defini-
tion of Morphp, Relat and Trans in the previous section. The advantage is that this pro-
cedure not only proves the compound Quotient theorem in order to derive the transfer
theorem, but it also synthesizes the terms Morphp(τ1, τ2), Relat(τ1, τ2) and Trans(τ1, τ2)
as a side effect. This approach was not used in the Quotient package; thanks to it, we
got a simpler implementation and managed to remove many technical limitations of the
original Quotient package with surprising ease.

Users generally will not prove the Quotient theorem manually for new types, as spe-
cial commands exist to automate the process. The command quotient type defines
a new quotient type, internally proves the corresponding Quotient theorem and reg-
isters it with setup lifting. We also support types defined by the command typedef.
The theorem type definition Rep Abs {x. P x}, which axiomatizes the newly defined
subtype, can be supplied to setup lifting. It then internally proves the quotient the-
orem Quotient (invariant P) Abs Rep T, where the transfer relation T is defined as
T x y ≡ Rep y = x and the equivalence relation invariant P ≡ (λx y. x = y ∧ P x).

144 B. Huffman and O. Kunčar

Since the respectfulness theorem is the only proof obligation presented to the user,
we also implemented a procedure that does some preprocessing to present this obliga-
tion in a user-friendly, readable form in lift definition. The procedure also simplifies
the goal if the involved relations come from a subtype. Then the user gets predicates and
predicators (e.g., list all for ’a list) instead of relations and relators. If the relation comes
only from type copies, the respectfulness theorem is fully proven by our procedure.

We also implemented a procedure that automatically proves a parameterized transfer
rule, which is a stronger transfer rule (see §2.3), in lift definition if the user provides
a theorem certifying that the concrete term used in the definition is parametric.

3.3 Code Equations

The code generator is a central component in Isabelle/HOL and is used in a lot of
projects for algorithm verification. That is why when we define a new constant by
lift definition, we are concerned with how to execute the new constant provided the
concrete term is also executable. This can be done by providing code equations. See [2]
for more about the code equations and how Lifting and Transfer provide efficient code
for operations on abstract types. The code generator accepts two types of equations:

– Representation function equation has form Rep f = t, where Rep is not in t and
Abs (Rep x) = x holds, which is provable for any abstract type in our context.

– Abstract function equation has form f (Abs1 x1) . . .(Absn xn) = t.

Here we give only a glimpse how the equations are proven. We assume the usual map
function �→ ((f �→ g) h = g◦h◦ f) and relator �⇒ (as in Fig. 2) for function type. Let us
have the definition f = Abs t, f ::σ1 →···→σn →σn+1 and the proven respectfulness
theorem R t t. Then from the Quotient theorem for the function type and from the
construction described in §3.1 it easily follows that R = R1 �⇒ . . . �⇒ Rn �⇒ Rn+1, Abs =
Rep1 �→ . . . �→ Repn �→ Absn+1 and Rep = Abs1 �→ . . . �→ Absn �→ Repn+1.

Representation function equation. By unfolding the map function �→ in the definition
of f and using simple facts we get Repn+1 (f x1 . . . xn) = Repn+1 (Absn+1 T), where
T = t (Rep1 x1) . . .(Repn xn). If Rn+1, Repn+1 and Absn+1 represent a subtype or a type
copy, the relation Rn+1 is a subset of the equality and thus Repn+1 (Absn+1 T) = T and
finally Repn+1 (f x1 . . . xn) = t (Rep1 x1) . . .(Repn xn).

Abstraction function equation. By unfolding �⇒ in R and �→ in Rep and using simple
facts we get this equation R1 x1 x1 −→ . . .−→ Rn xn xn −→ f (Abs1 x1) . . .(Absn xn) =
Absn+1 (t x1 . . . xn). If R1 to Rn are relations that are composed from relators that pre-
serve reflexivity (e.g., holds for any datatype relator) and the abstract types that are in-
volved are total (i.e., a type copy or a total quotient), the procedure that we implemented
discharges automatically each of these assumptions and gives us a plain equation.5

5 The function relator �⇒ does not preserve reflexivity in the negative position. But this is not
a limitation in practice, because there is hardly a function with a functional parameter that
would have an abstract type in the negative position. Because �⇒ preserves equality, we can
still discharge functional parameters using type copies or non-abstract functional parameters.

Lifting and Transfer: A Modular Design for Quotients in Isabelle/HOL 145

Table 1. Categorization of abstract types and respective equations

total equivalence relation partial equivalence relation

tr
iv

ia
lr

el
at

io
n

(s
ub

se
to

f
=

) type copy subtype

rep eq: + code: abs eq rep eq: + code: rep eq
abs eq: + relation: bi-unique, bi-total abs eq: ∼ relation: bi-unique, right-total
example: Mappings example: Lift Dlist

(’a, ’b) mapping = ’a ⇒ ’b option ’a dlist = {x :: ’a list. distinct x}

no
n-

tr
iv

ia
lr

el
at

io
n total quotient partial quotient

rep eq: − code: abs eq rep eq: − code: none
abs eq: + relation: right-unique, bi-total abs eq: ∼ relation: right-unique, right-total
example: Lift FSet example: Rat

’a fset = ’a list / (λx y. set x = set y) ’a rat = int × int / ratrel6
+ . . . yes − . . . no ∼ . . . only with assumptions

Thus we can generate representation function equations for type copies and subtypes
and abstraction function equations for any abstract type, but we can discharge the extra
assumptions only for total types. See Tab. 1 for an overview.

4 Conclusion

We have presented a new design for automation of abstract types in Isabelle/HOL. The
distinctive features and the main contributions are:

– The modular design of cleanly separated components with well-defined interfaces
yields flexibility, i.e., Lifting is not limited to types defined by quotient type and
similarly Transfer to constants defined by lift definition.

– Only one transfer rule is needed for different instances of polymorphic constants
like fmap :: (’a ⇒ ’b) ⇒ ’a fset ⇒ ’b fset.

– The Lifting package supports arbitrary type constructors, rather than only co-variant
ones plus hard-coded function type.

– The Lifting package can handle a composition of abstract types in all cases.
– The Lifting package generates code equations for the code generator.
– The package generates the statement of the respectfulness theorem, discharges it

automatically for type copies, and simplifies it to user-friendly form in other cases.

6 ratrel x y ≡ snd x �= 0 ∧ snd y �= 0 ∧ fst x ∗ snd y = fst y ∗ snd x.

146 B. Huffman and O. Kunčar

In Isabelle 2013, we have converted the numeric types int, rat, and real to use Lifting
and Transfer (Previously they were constructed as quotients with typedef, in the style
of Paulson [10].). This reduced the amount of boilerplate. But what has greater merit
is that we can conclude that the packages singificantly improve the level of abstraction
when building abstract types and moving terms and lemmas between different types.

Our packages are used in many theories by the Isabelle community: there are almost
400 calls of lift definition and over 900 calls of transfer.7 Besides other things, they
are used to define various executable data structures: e.g., numerals, red-black trees,
distinct lists, mappings, finite sets, associative lists, intervals, floats, multisets, finite bit
strings, co-inductive streams, almost constant functions and others. We can conclude
that our packages have found their users and become a standard part of Isabelle/HOL.

References

1. Coen, C.S.: A Semi-reflexive Tactic for (Sub-)Equational Reasoning. In: Filliâtre, J.-C.,
Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004. LNCS, vol. 3839, pp. 98–114. Springer,
Heidelberg (2006)

2. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data Refinement in Isabelle/HOL. In:
Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 100–115.
Springer, Heidelberg (2013)

3. Harrison, J.: Theorem Proving with the Real Numbers. Springer (1998)
4. Homeier, P.V.: A Design Structure for Higher Order Quotients. In: Hurd, J., Melham, T.

(eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 130–146. Springer, Heidelberg (2005)
5. Kaliszyk, C., Urban, C.: Quotients revisited for Isabelle/HOL. In: Proc. of the 26th ACM

Symposium on Applied Computing (SAC 2011), pp. 1639–1644. ACM (2011)
6. Krauss, A.: Simplifying Automated Data Refinement via Quotients. Tech. rep., TU München

(2011), http://www21.in.tum.de/~krauss/papers/refinement.pdf
7. Lammich, P.: Automatic data refinement. In: Blazy, S., Paulin-Mohring, C., Pichardie, D.

(eds.) ITP 2013. LNCS, vol. 7998, pp. 84–99. Springer, Heidelberg (2013)
8. Magaud, N.: Changing data representation within the Coq system. In: Basin, D., Wolff, B.

(eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 87–102. Springer, Heidelberg (2003)
9. Mitchell, J.C.: Representation Independence and Data Abstraction. In: POPL, pp. 263–276.

ACM Press (January 1986)
10. Paulson, L.C.: Defining functions on equivalence classes. ACM Trans. Comput. Logic 7(4),

658–675 (2006)
11. Reynolds, J.C.: Types, Abstraction and Parametric Polymorphism. In: IFIP Congress, pp.

513–523 (1983)
12. Slotosch, O.: Higher Order Quotients and their Implementation in Isabelle HOL. In: Gunter,

E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 291–306. Springer, Heidelberg
(1997)

13. Sozeau, M.: A New Look at Generalized Rewriting in Type Theory. In: 1st Coq Workshop
Proceedings (2009)

14. Wadler, P.: Theorems for free! In: Functional Programming Languages and Computer Archi-
tecture, pp. 347–359. ACM Press (1989)

7 Isabelle distribution and Archive of Formal Proofs (http://afp.sf.net), release 2013-1.

http://www21.in.tum.de/~krauss/papers/refinement.pdf
http://afp.sf.net

Refinements for Free!�

Cyril Cohen1, Maxime Dénès2, and Anders Mörtberg1

1 Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

{cyril.cohen,anders.mortberg}@gu.se
2 INRIA Sophia Antipolis – Méditerranée

mail@maximedenes.fr

Abstract. Formal verification of algorithms often requires a choice be-
tween definitions that are easy to reason about and definitions that are
computationally efficient. One way to reconcile both consists in adopt-
ing a high-level view when proving correctness and then refining stepwise
down to an efficient low-level implementation. Some refinement steps are
interesting, in the sense that they improve the algorithms involved, while
others only express a switch from data representations geared towards
proofs to more efficient ones geared towards computations. We relieve
the user of these tedious refinements by introducing a framework where
correctness is established in a proof-oriented context and automatically
transported to computation-oriented data structures. Our design is gen-
eral enough to encompass a variety of mathematical objects, such as
rational numbers, polynomials and matrices over refinable structures.
Moreover, the rich formalism of the Coq proof assistant enables us to
develop this within Coq, without having to maintain an external tool.

Keywords: Coq, Data refinements, Formal proofs, Efficient algorithms
and data structures, Parametricity.

1 Introduction

It is commonly conceived that computationally well-behaved programs and data
structures are more difficult to study formally than naive ones. Rich formalisms
like the Calculus of Inductive Constructions, on which the Coq [6] proof assistant
relies, allow for several different representations of the same mathematical object
so that users can choose the one suiting their needs.

Even simple objects like natural numbers may have both a unary representa-
tion which features a very straightforward induction scheme and a binary one
which is exponentially more compact, but usually entails more involved proofs.
Their respective incarnations in the standard library of Coq are the two in-
ductive types nat and N along with two isomorphisms N.of_nat : nat -> N

and N.to_nat : N -> nat. Recent versions of the library make use of ML-like
modules and functors [4] to factor programs and proofs over these two types.

� The research leading to these results has received funding from the European Union’s
7th Framework Programme under grant agreement nr. 243847 (ForMath).

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 147–162, 2013.
c© Springer International Publishing Switzerland 2013

148 C. Cohen, M. Dénès, and A. Mörtberg

The traditional approach to abstraction is to first define an interface specifying
operators and their properties, then instantiate it with concrete implementations
of the operators with proofs that they satisfy the properties. However, this has
at least two drawbacks in our context. First, it is not always obvious how to
define the correct interface, and it is not clear if a suitable one even exists.
Second, having abstract axioms goes against the type-theoretic view of objects
with computational content, which means in practice that proof techniques like
small scale reflection, as advocated by the SSReflect extension [9], are not
applicable.

Instead, the approach we describe here consists in proving the correctness of
programs on data structures designed for proofs — as opposed to an abstract
signature — and then transporting them to more efficient implementations. We
distinguish two notions: program refinements and data refinements. The first of
these consists in transforming a program into a more efficient one computing
the same thing using a different algorithm, but preserving the involved types.
For example, standard matrix multiplication can be refined to a more efficient
implementation like Strassen’s fast matrix product [25]. The correctness of this
kind of refinements is often straightforward to state. In many cases, it suffices
to prove that the two algorithms are extensionally equal. The second notion
of refinement consists in changing the data representation on which programs
operate while preserving the algorithm, for example a multiplication algorithm
on dense polynomials may be refined to an algorithm on sparse polynomials.
This kind of refinement is more subtle to express as it involves transporting
both programs and their correctness proofs to the new data representation.

The two kinds of refinements can be treated independently and in the follow-
ing, we focus on data refinements. A key feature of these should be composi-
tionality, meaning that we can combine multiple data refinements. For instance,
given both a refinement from dense to sparse polynomials and a refinement from
unary to binary integers we get a refinement from dense polynomials over unary
integers to sparse polynomials over binary integers.

In a previous work [8], two of the authors defined a framework for refining alge-
braic structures in a comparable way, while allowing a step-by-step approach to
prove the correctness of algorithms. The present work1 improves several aspects
by considering the following methodology:

1. relate a proof-oriented data representation with a more efficient one (Sect. 2),

2. parametrize algorithms and the data on which they operate by an abstract
type and its basic operations (Sect. 3),

3. instantiate these algorithms with proof-oriented data types and their basic
operations, and prove the correctness of that instance,

4. use parametricity of the algorithm (with respect to the data representation
on which it operates), together with points 2 and 3, to deduce that the
algorithm instantiated with the more efficient data representation is also
correct (Sect. 4).

1 The formal development is available at http://www.maximedenes.fr/coqeal/

http://www.maximedenes.fr/coqeal/

Refinements for Free! 149

Further, this paper also contains a detailed example application of this new
framework to Strassen’s algorithm for efficient matrix multiplication (Sect. 5).
Section 6 provides an overview of related work.

2 Data Refinements

In this section we will study various data refinements by considering some ex-
amples. All of these fit in a general framework of data refinements based on
heterogeneous relations which relate proof-oriented types for convenient proofs
with computation-oriented types for efficient computation.

2.1 Refinement Relations

In some cases we can define (possibly partial) functions from proof-oriented
to computation-oriented types and vice versa. We call a function from proof-
oriented to computation-oriented types an implementation function, and a func-
tion going the other way around a specification function.

Note that a specification function alone suffices to define a refinement relation
between the two data types: a proof-oriented term p refines to a computation-
oriented term c if the specification of c is p. We write the following helper
functions to map respectively total and partial specification functions to the
corresponding refinement relations:

Definition fun_hrel A B (f : B -> A) : A -> B -> Prop :=

fun a b => f b = a.

Definition ofun_hrel A B (f : B -> option A) : A -> B -> Prop :=

fun a b => f b = Some a.

Isomorphic Types. Isomorphic types correspond to the simple case where the
implementation and specification functions are inverse of each other.

The introduction mentions the two types nat and N which represent unary and
binary natural numbers. These are isomorphic, which is witnessed by the imple-
mentation function N.of_nat : nat -> N and the specification function
N.to_nat : N -> nat. Here, the proof-oriented type is nat and the computation-
oriented type is N. Another example of isomorphic types is the efficient binary
representation Z of integers in the Coq standard library that can be declared as
a refinement of the unary, nat-based, representation int of integers in the SSRe-
flect library.

Quotients. Quotients correspond to the case where the specification and im-
plementation functions are total and where the specification is a left inverse of
the implementation. This means that the computation-oriented type may have
“more elements” and that the implementation function is not necessarily sur-
jective (unless the quotient is trivial). In this case the proof-oriented type can

150 C. Cohen, M. Dénès, and A. Mörtberg

be seen as a quotient of the computation-oriented type by an equivalence rela-
tion defined by the specification function, i.e. two computation-oriented objects
are related if their specifications are equal. This way of relating types by quo-
tients is linked to the general notion of quotient types in type theory [5]. The
specification corresponds to the canonical surjection in the quotient, while the
implementation corresponds to the choice of a canonical representative. How-
ever, here we are not interested in studying the proof-oriented type, which is the
quotient type. Instead, we are interested in studying the computation-oriented
type, which is the type being quotiented.

An important example of quotients is the type of polynomials. These are
represented in SSReflect as a record type with a list and a proof that the last
element is nonzero, however this proof is only interesting when developing theory
about polynomials and not for computation. Hence a computation-oriented type
can be just the list of coefficients and the specification function would normalize
polynomials by removing zeros in the end.

A better representation of polynomials is sparse Horner normal form [10]
which can be implemented as:

Inductive hpoly := Pc : A -> hpoly

| PX : A -> pos -> hpoly -> hpoly.

Here A is an arbitrary type and pos is the type of positive numbers, the
first constructor represents a constant polynomial and PX a n p should be in-
terpreted as a + Xnp where a is a constant, n is a positive number and p is
another polynomial in sparse Horner normal form. However, with this represen-
tation not only polynomials with zeros in the end can be represented but there
are also multiple ways to represent polynomials like X2 as it can be represented
by either 0+X2 · 1 or 0+X1(0+X1 · 1). To remedy this we implement a speci-
fication function that normalize polynomials and translate them to SSReflect
polynomials.

Partial Quotients. Quotient based refinement relations cover a larger class of
data refinements than the relations defined by isomorphisms, but there are still
interesting examples that are not covered, for example when the specification
function is partial. To illustrate this, let us consider rational numbers. The SS-
Reflect library contains a definition where they are defined as pairs of coprime
integers with nonzero denominator:

Record rat : Set := Rat {

valq : int * int;

_ : (0 < valq.2) && coprime ‘|valq.1| ‘|valq.2|

}.

Here ‘|valq.1| denotes the absolute value of the first projection of the valq

pair. This definition is well-suited for proofs, notably because elements of type
rat can be compared using Leibniz equality since they are normalized. But main-
taining this invariant during computations is often too costly since it requires
multiple gcd computations. Besides, the structure also contains a proof which is

Refinements for Free! 151

not interesting for computations but only for developing the theory of rational
numbers.

In order to be able to compute efficiently we would like to refine this to
pairs of integers (int * int) that are not necessarily normalized and perform
all operations on the subset of pairs with nonzero second component. The link
between the two representations is depicted in Fig. 1:

Proof-oriented type A
Valid elements

Computation-oriented type C

implementation

specification

Fig. 1. Partial quotients

In the example of rational numbers the proof-oriented type is rat while the
computation-oriented type is int * int and computations should be performed
on the subset of valid elements of the computation-oriented type, i.e. pairs with
nonzero second component. In order to conveniently implement this, the output
type of the specification function has been extended to option A in order to
make it total. The key property of the implementation and specification functions
is still that the specification is a left inverse of the implementation. This means
that the proof-oriented type can be seen as a quotient of the set of valid elements,
i.e. elements that are not sent to None by the specification function. For rational
numbers the implementation and specification functions and their correctness
looks like:

Definition rat_to_Qint (r : rat) : int * int := valq r.

Definition Qint_to_rat (r : int * int) : option rat :=

if r.2 != 0 then Some (r.1%:Q / r.2%:Q) else None.

Lemma Qrat_to_intK :

forall (x : rat), Qint_to_rat (rat_to_Qint x) = Some x.

The notation %:Q is the cast from int to rat. Here the lemma says that the
composition of the implementation with the specification is the identity. Using
this, we get a relation between rat and int * int by using ofun_hrel defined
at the beginning of this section:

Definition Rrat : rat -> int * int -> Prop := ofun_hrel Qint_to_rat.

Functional Relations. Partial quotients often work for the data types we
define, but fails to describe refinement relations on functions. Given two rela-
tions R : A -> B -> Prop and R’ : A’ -> B’ -> Prop we build a relation

152 C. Cohen, M. Dénès, and A. Mörtberg

on the function space: R ==> R’ : (A -> A’) -> (B -> B’) -> Prop. It is a
heterogeneous generalization of the respectful functions defined for generalized
rewriting [22].

This definition is such that two functions are related by R ==> R’ if they send
related inputs to related outputs. We can now use this to define the correctness
of addition on rational numbers:

Lemma Rrat_addq : (Rrat ==> Rrat ==> Rrat) +rat +int∗int.

The lemma states that if the two arguments are related by Rrat then the
outputs are also related by Rrat.

However, we have left an issue aside: we refined rat to int * int, but this
is not really what we want to do as the type int is itself proof-oriented. Thus,
taking it as the basis for our computation-oriented refinement of rat would be
inefficient. Instead, we would like to express that rat refines to C * C for any
type C that refines int. The next section will explain how to program, generically,
operations in the context of such parametrized refinements. Then, in Sect. 4, we
will show that correctness can be proved in the specific case when C is int,
and automatically transported to any other refinement by taking advantage of
parametricity.

2.2 Comparison with the Previous Approach

We gain in generality with regard to the previous work on refinements [8] in
several ways. The previous work assumed a total injective implementation func-
tion, which intuitively corresponds to a partial isomorphism: the proof-oriented
type is isomorphic to a subtype of the computation-oriented type. Since we do
not rely on those translation functions anymore, we can now express refinement
relations on functions. Moreover, we take advantage of (possibly partial) speci-
fication functions, rather than implementation functions.

Another important improvement is that we do not need any notion of equality
on the computation-oriented type anymore. Indeed, the development used to rely
on Leibniz equality, which prevented us from using setoids [2] as computation-
oriented types. In Sect. 2.1, we use the setoid int * int of rational numbers, but
the setoid equality is left implicit. This is in accordance with our principle never
to do proofs on computation-oriented types. We often implement algorithms to
decide equality, but these are treated as any other operation (Sect. 3).

2.3 Indexing and Using Refinements

We use the Coq type class mechanism [23] to maintain a database of lemmas es-
tablishing refinement relations between proof-oriented and computation-oriented
terms. The way this database is used is detailed in Sect. 4.

In order to achieve this, we define a heterogeneous generalization of the Proper
relations from generalized rewriting [22]. We call this class of relations param and
define it by:

Refinements for Free! 153

Class param (R : A -> B -> Prop) (a : A) (b : B) := param_rel : R a b.

Here R is meant to be a refinement relation from A to B, and we can register
an instance of this class whenever we have two elements a and b and a proof
that R a b. For example, we register the lemma Rrat_addq from Sect. 2.1 using
the following instance:

Instance Rrat_addq : param (Rrat ==> Rrat ==> Rrat) +rat +int∗int.

Given a term x, type class resolution searches for y and a proof of param R
x y. If R was obtained from a specification function, then x = spec y and we

can always substitute x by spec y and compute y, thus taking advantage of our
framework to do efficient computation steps within proofs.

3 Generic Programming

We may want to provide operations on the computation-oriented type corre-
sponding to operations on the proof-oriented type. For example, we want to
define an addition addQ on computation-oriented rationals C * C, correspond-
ing to the addition (+rat) on rat. However this computation-oriented operation
relies on both addition (+C) and multiplication (*C) on C, so we parametrize
addQ by (+C) and (*C):

Definition addQ C (+C) (*C) : (C * C) -> (C * C) -> (C * C) :=

fun x y => (x.1 *C y.2 +C y.1 *C x.2, x.2 *C y.2).

This operation is correct if (+rat) refines to (addQ C (+C) (*C)) whenever
(+int) refines to (+C) and (*int) refines to (*C). The refinement from (+rat)

to (addQ C (+C) (*C)) is explained in Sect. 4.1.
Since we abstracted over operations of the underlying data type, only one

implementation of each algorithm suffices, the same code can be used for doing
both correctness proofs and efficient computations as it can be instantiated by
both proof-oriented and computation-oriented types and programs. This means
that the programs need only be written once and code is never duplicated, which
is an improvement compared to the previous development.

In order to ease the writing of this kind of programs and refinement state-
ments in the code, we use operational type classes [24] for standard operations
like addition and multiplication together with appropriate notations. This means
we define a class for each operator and a generic notation referring to the corre-
sponding operation. For example, in the code of addQ we can always write (+)

and (*) and let the system infer the operations,

Instance addQ C ‘{add C, mul C} : add (C * C) :=

fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

Here ‘{add C, mul C} means that C comes with type classes for addition and
multiplication operators. Declaring addQ as an instance of addition on C * C

enables the use of the generic (+) notation to denote addQ.

154 C. Cohen, M. Dénès, and A. Mörtberg

4 Parametricity

The approach presented in the above section is incomplete though: once we have
proven that the instantiation of a generic algorithm to proof-oriented structures
is correct, how can we guarantee that other instances will be correct as well?
Proving correctness directly on computation-oriented types is precisely what we
are trying to avoid.

Informally, since our generic algorithms are polymorphic in their types and
operators, their behavior has to be uniform across all instances. Hence, a cor-
rectness proof should be portable from one instance to another, so long as the
operators instances are themselves correct.

The exact same idea is behind the interpretation of polymorphism in relational
models of pure type systems [3]. The present section builds on this analogy to
formalize the automated transport of a correctness proof from a proof-oriented
instance to other instances of the same generic algorithm.

4.1 Splitting Refinement Relations

Let us illustrate the parametrization process by an example on rational numbers.
For simplicity, we consider negation which is implemented by:

Instance oppQ C ‘{opp C} : opp (C * C) :=

fun (a : Q C) => (-C a.1, a.2).

The function takes a negation operation in the underlying type C and define
negation on C * C by negating the first projection of the pair (the numerator).
Now let us assume that C is a refinement of int for a relation Rint : int ->

C -> Prop and that we have:

(Rint ==> Rint) (-int) (-C)

(Rrat ==> Rrat) (-rat) (oppQ int (-int))

The first of these states that the (-C) parameter of oppQ is correctly instanti-
ated, while the second one expresses that the proof-oriented instance of oppQ is
correct. Assuming this, we want to show that (-rat) refines all the way to oppQ,
but instantiated with C and (-C) instead of their proof-oriented counterparts
(int and (-int)).

In order to write this formally, we define the product and composition of
relations as R * S := fun x y => R x.1 y.1 /\ S x.2 y.2 and R \o S :=

fun x y => exists z, R x z /\ S z y. Using this we can define the rela-
tion RratC : rat -> C * C -> Prop as RratC := Rrat \o (Rint * Rint).
We want to show:

(RratC ==> RratC) (-rat) (oppQ C (-C))

A small automated procedure, relying on type class instance resolution, first
splits this goal in two, following the composition \o in the definition of RratC:

(Rrat ==> Rrat) (-rat) (oppQ int (-int))

(Rint * Rint ==> Rint * Rint) (oppQ int (-int)) (oppQ C (-C))

Refinements for Free! 155

The first of these is one of the assumptions while the second relates the results
of the proof-oriented instance of oppQ to another instance. This is precisely where
parametricity comes into play, as we will show in the next section.

4.2 Parametricity for Refinements

While studying the semantics of polymorphism, Reynolds introduced a relational
interpretation of types [19]. Parametricity [27] is a reformulation based on the
fact that if a type has no free variable, its relational interpretation expresses
a property shared by all terms of this type. This result extends to pure type
systems [3] and provides a meta-level transformation [[·]] defined inductively on
terms and contexts. In the closed case, this transformation is such that if � A : B,
then � [[A]] : [[B]]AA. That is, for any term A of type B, it gives a procedure to
build a proof that A is related to itself for the relation interpreting the type B.

The observation we make is that the last statement of Sect. 4.1 is an instance
of such a free theorem. More precisely, we know that [[oppQ]] is a proof of

[[∀Z, (Z → Z) → Z ∗ Z → Z ∗ Z]] oppQ oppQ

which expands to

∀Z : Type, ∀Z′ : Type, ∀ZR : Z → Z′ → Prop,
∀oppZ : Z → Z, ∀oppZ′ : Z′ → Z′, [[Z → Z]] oppZ oppZ′ →

[[Z ∗ Z → Z ∗ Z]] (oppQ Z oppZ) (oppQ Z′ oppZ′).

Then, instantiating Z to int, Z’ to C and ZR to Rint gives us the exact
statement we wanted to prove, since [[Z → Z]] is what we denoted ZR ==> ZR.

Following the term transformation [[·]], we design a logic program in order to
derive proofs of closed instances of the parametricity theorem. Indeed, it should
be possible in practice to establish the parametric relation between two terms
like oppQ and itself, since oppQ is closed.

For now, we can only express and infer parametricity on polymorphic expres-
sions (no dependent types allowed), by putting the polymorphic types outside
the relation. Hence we do not need to introduce a quantification over relations.

4.3 Generating the Parametricity Lemma

Rather than giving the details of how we programmed the proof search using
type classes and hints in the Coq system, we instead show an execution of this
logic program on our simple example, starting from:

(Rrat ==> Rrat) (-rat) (oppQ C (-C))

Let us first introduce the variables and their relations, and we get to prove

(Rint * Rint) (oppQ int (-int) a) (oppQ C (-C) b)

knowing that ((Rint ==> Rint) (-int) (-C)) and ((Rint * Rint) a b).
By unfolding oppQ, it suffices to show:

156 C. Cohen, M. Dénès, and A. Mörtberg

(Rint * Rint) (-int a.1, a.2) (-C b.1, b.2)

To show that, we use parametricity theorems for the pair constructor pair
and eliminators _.1 and _.2. In our context, we have to give manual proofs for
them. Indeed, we lack automation for the axioms, but the number of combinators
to treat by hand is negligible compared to the number of occurrences in user-
defined operations. These lemmas look like:

param_pair := forall RA RB, (RA ==> RB ==> RA * RB) pair pair

param_fst := forall RA RB, (RA * RB ==> RA) _.1 _.1

param_snd := forall RA RB, (RA * RB ==> RB) _.2 _.2

Unfolding the last of these gives:

forall (RA : A -> A’ -> Prop) (RB : B -> B’ -> Prop)

(a : A) (a’ : A’) (b : B) (b’ : B’),

RA a a’ → RB b b’ → (RA * RB) (a, b) (a’, b’)

This can be applied to the initial goal, giving two subgoals:

Rint (-int a.1) (-C b.1)

Rint a.2 b.2

The second of these follow directly from param_snd and to show the first it
suffices to prove:

(Rint ==> Rint) (-int) (-C)

Rint a.1 b.1

The first of these is one of the assumptions we started with and the second
follows directly from param_fst.

5 Example: Strassen’s Matrix Product

In the previous development an important application of the refinement frame-
work was Strassen’s algorithm for the product of two square matrices of size n
with time complexity O(n2.81) [25]. We show here how we adapted it to the new
framework described in this paper.

Let us begin with one step of Strassen’s algorithm: given a function f which
computes the product of two matrices of size p, we define, generically, a function
Strassen_step f which multiplies two matrices of size p + p:

Variable mxA : nat -> nat -> Type.

Context ‘{hadd mxA, hsub mxA, hmul mxA, hcast mxA, block mxA}.

Context ‘{ulsub mxA, ursub mxA, dlsub mxA, drsub mxA}.

Definition Strassen_step {p : positive} (A B : mxA (p+p) (p+p))

(f : mxA p p -> mxA p p -> mxA p p) : mxA (p+p) (p+p) :=

let A11 := ulsubmx A in let A12 := ursubmx A in

Refinements for Free! 157

let A21 := dlsubmx A in let A22 := drsubmx A in

let B11 := ulsubmx B in let B12 := ursubmx B in

let B21 := dlsubmx B in let B22 := drsubmx B in

let X := A11 - A21 in let Y := B22 - B12 in

let C21 := f X Y in let X := A21 + A22 in

let Y := B12 - B11 in let C22 := f X Y in

let X := X - A11 in let Y := B22 - Y in

let C12 := f X Y in let X := A12 - X in

let C11 := f X B22 in let X := f A11 B11 in

let C12 := X + C12 in let C21 := C12 + C21 in

let C12 := C12 + C22 in let C22 := C21 + C22 in

let C12 := C12 + C11 in let Y := Y - B21 in

let C11 := f A22 Y in let C21 := C21 - C11 in

let C11 := f A12 B21 in let C11 := X + C11 in

block_mx C11 C12 C21 C22.

The mxA variable represents the type of matrices indexed by their sizes. The
various operations on this type are abstracted over by operational type classes,
as shown in Sect. 3. Playing with notations and scopes allows us to make this
generic implementation look much like an equivalent one involving SSReflect
matrices.

Note that Strassen_step expresses matrix sizes by the positive type. These
are positive binary numbers, whose recursion scheme matches the one of
Strassen’s algorithm through matrix block decomposition. This is made com-
patible with the nat-indexed mxA type thanks to a hidden coercion nat_of_pos.

The full algorithm is expressed by induction over positive. However, in order
to be able to state parametricity lemmas, we do not use the primitive Fixpoint
construction. Instead, we use the recursion scheme attached to positive:

positive_rect : forall P : positive -> Type,

(forall p : positive, P p -> P (p~1)%positive) ->

(forall p : positive, P p -> P (p~0)%positive) ->

P 1%positive -> forall p : positive, P p

We thus implement three functions corresponding to the three cases given
by the constructor of the positive inductive type: Strassen_xI for odd-sized
matrices, Strassen_xO for even-sized ones and Strassen_xH for matrices of
size 1. Strassen’s algorithm is then defined as:

Definition Strassen :=

(positive_rect (fun p => (mxA p p -> mxA p p -> mxA p p))

Strassen_xI Strassen_xO Strassen_xH).

Then we instantiate the mxA type and all the associated operational type
classes to SSReflect proof-oriented matrix type and operators. In this con-
text, we prove the program refinement from the naive matrix product mulmx to
Strassen’s algorithm:

Lemma StrassenP p : param (eq ==> eq ==> eq) mulmx (@Strassen p).

158 C. Cohen, M. Dénès, and A. Mörtberg

The proof is essentially unchanged from [8], the present work improving only
the data refinement part. The last step consists in stating and proving the para-
metricity lemmas. This is done in a context abstracted over both a representation
type for matrices and a refinement relation:

Context (A : ringType) (mxC : nat -> nat -> Type).

Context (RmxA : forall {m n}, ’M[A]_(m, n) -> mxC m n -> Prop).

Operations on matrices are also abstracted, but we require them to have an
associated refinement lemma with respect to the corresponding operation on
proof-oriented matrices. For instance, for addition we write as follows:

Context ‘{hadd mxC, forall m n, param (RmxA ==> RmxA ==> RmxA)

(@addmx A m n) (@hadd_op _ _ _ m n)}.

We also have to prove the parametricity lemma associated to our recursion
scheme on positive:

Instance param_elim_positive P P’

(R : forall p, P p -> P’ p -> Prop) txI txI’ txO txO’ txH txH’ :

(forall p, param (R p ==> R (p~1)) (txI p) (txI’ p)) ->

(forall p, param (R p ==> R (p~0)) (txO p) (txO’ p)) ->

(param (R 1) txH txH’) ->

forall p, param (R p) (positive_rect P txI txO txH p)

(positive_rect P’ txI’ txO’ txH’ p).

We declare this lemma as an Instance of the param type class. This allows
to automate data refinement proofs requiring induction over positive. Finally,
we prove parametricity lemmas for Strassen_step and Strassen:

Instance param_Strassen_step p :

param (RmxA ==> RmxA ==> (RmxA ==> RmxA ==> RmxA) ==> RmxA)

(@Strassen_step (@matrix A) p) (@Strassen_step mxC p).

Instance param_Strassen p :

param (RmxA ==> RmxA ==> RmxA)

(@Strassen (@matrix A) p) (@Strassen mxC p).

Here, the improvement over [8] is twofold: only one generic implementation of
the algorithm is now required and refinement proofs are now mostly automated,
including induction steps.

A possible drawback is that our generic description of the algorithms requires
all the operators to take the sizes of the matrices involved as arguments, which
are sometimes not required for computation-oriented operators. However, some
preliminary benchmarks seem to indicate that this does not entail a significant
performance penalty.

6 Related Work

Our work addresses a fundamental problem: how to change data representations
in a compositional way. As such, it is no surprise that it shares aims with other

Refinements for Free! 159

work. We already mentioned ML-like modules and functors, that are available
in Coq, but forbid proof methods to have a computational content.

The most general example of refinement relations we consider are partial
quotients, which are often represented in type theory by setoids over partial
equivalence relations [2] and manipulated using generalized rewriting [22]. The
techniques we are using are very close to a kind of heterogeneous version of the
latter. Indeed, it usually involves a relation R : A -> A -> Prop for a given
type A, whereas our refinement relations have the shape R : A -> B -> Prop

where A and B can be two different types.
Some years ago, a plugin was developed for Coq for changing data representa-

tions and converting proofs from a type to another [16]. However, this approach
was limited to isomorphic types, and does not provide a way to achieve generic
programming (only proofs are ported). Our design is thus more general, and we
do not rely on an external plugin which can be costly to maintain.

In [15], a methodology for modular specification and development of programs
in type theory is presented. The key idea is to express algebraic specifications
using sigma-types which can be refined using refinement maps, and realized by
concrete programs. This approach is close to the use of ML-like modules, since
objects are abstracted and their behavior is represented by a set of equational
properties. A key difference to our work is that these equational properties are
stated using an abstract congruence relation, while we aim at proving correctness
on objects that can be compared with Leibniz equality, making reasoning more
convenient. This is made possible by our more relaxed relation between proof-
oriented and computation-oriented representations.

Another way to reconcile data abstraction and computational content is the use
of views [17,26]. In particular, it allows to derive induction schemes independently
of concrete representations of data. This can be used in our setting to write generic
programs utilizing these induction schemes for defining recursive programs and
proving properties for generic types, in particular param_elim_positive(Sect. 5)
is an example of a view.

The closest work to ours is probably the automatic data refinement tool Au-
toref implemented independently for Isabelle [14]. While many ideas, like the
use of parametricity, are close to ours, the choice is made to rely on an exter-
nal tool to synthesize executable instances of generic algorithms and refinement
proofs. The richer formalism that we have at our disposal, in particular full poly-
morphism and dependent types makes it easier to internalize the instantiation
of generic programs.

Another recent work that is related to this paper is [11] in which the authors
explain how the Isabelle/HOL code generator uses data refinements to gener-
ate executable versions of abstract programs on abstract types like sets. In the
paper they use a refinement relation that is very similar to our partial quotients
(they use a domain predicate instead of an option type to denote what values are
valid and which are not). The main difference though is that they are applying
data refinements for code generation while in our case this is not necessary since

160 C. Cohen, M. Dénès, and A. Mörtberg

all programs written in Coq can be executed as they are and data refinements
are only useful to perform more efficient computations.

7 Conclusions and Future Work

In this paper an approach to data refinements has been presented where the user
only needs to supply the minimum amount of necessary information and both
programs and their correctness proofs gets transported to new data representa-
tion. The three main parts of the approach are:

1. a lightweight and general refinement interface to support any heterogeneous
relation between two types,

2. operational type classes to increase generality of implementations and
3. parametricity to automatically transport correctness proofs.

As mentioned in the introduction of this paper, this work is an improvement
of a previous work [8]. More precisely it improves the approach presented in
Sect. 5 of [8] in the following aspects.

1. Generality: it extends to previously unsupported data types, like the type of
non-normalized rationals (Sect. 2.2).

2. Modularity: each operator is refined in isolation instead of refining whole
algebraic structures (Sect. 2.3), as suggested in the future work section of
the previous paper.

3. Genericity: before, every operation had to be implemented both for the proof-
oriented and computation-oriented types, now only one generic implementa-
tion is sufficient (Sect. 3).

4. Automation: the current approach has a clearer separation between the dif-
ferent steps of data refinements which makes it possible to use parametricity
(Sect. 4) in order to automate proofs that previously had to be done by hand.

The implementation of points 2, 3 and 4 relies on the type class mechanism
of Coq in two different ways: in order to support ad-hoc polymorphism of alge-
braic operations, and in order to do proof and term reconstruction automatically
through logic programming. The automation of proof and term search is achieved
by the same set of lemmas as in the previous paper, but now these do not impact
the interesting proofs anymore.

The use of operational type classes is very convenient for generic program-
ming. But the more complicated programs get, the more arguments they need.
In particular, we may want to bundle operators in order to reduce the size of
contexts that users need to write when defining generic algorithms.

The handling of parametricity is currently done by meta-programming but
requires some user input and deals only with polymorphic constructions. We
should address these two issues by providing a systematic way of producing
parametricity lemmas for inductive types [3] and extending relation construc-
tions with dependent types. We may adopt Keller and Lasson’s [13] way of
producing parametricity theorems and their proofs for closed terms.

Refinements for Free! 161

Currently all formalizations have been done using standard Coq, but it would
be interesting to see how the univalent foundations [18] can be used for simplify-
ing our approach to data refinements. Indeed, in the presence of the univalence
axiom, isomorphic structures are equal [1,7] which should be useful when refining
isomorphic types. Also in the univalent foundations there are ways to represent
quotient types (see for example [20]). This could be used to refine types that are
related by quotients or even partial quotients.

The work presented in this paper is currently being used as a new basis for
CoqEAL — The Coq Effective Algebra Library — which is a library, cur-
rently in development, containing many formally verified program refinements,
for instance: Strassen’s fast matrix product [25], Karatsuba’s fast polynomial
product [12], the Sasaki-Murao algorithm for efficiently computing the charac-
teristic polynomial of a matrix [21] and an algorithm for computing the Smith
normal form of matrices over Euclidean rings.

Acknowledgments. The authors are grateful to the anonymous reviewers for
their useful comments and feedback. We also thank Bassel Mannaa and Dan
Rosén for proof reading the final version of this paper.

References

1. Ahrens, B., Kapulkin, C., Shulman, M.: Univalent categories and the Rezk com-
pletion (2013) (Preprint), http://arxiv.org/abs/1303.0584

2. Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. Journal of Functional
Programming 13(2), 261–293 (2003)

3. Bernardy, J.-P., Jansson, P., Paterson, R.: Proofs for free. Journal of Functional
Programming 22(2), 107–152 (2012)

4. Chrz ↪aszcz, J.: Implementing Modules in the Coq System. In: Basin, D., Wolff, B.
(eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 270–286. Springer, Heidelberg (2003)

5. Cohen, C.: Pragmatic Quotient Types in Coq. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 213–228. Springer, Heidelberg
(2013)

6. Coq development team. The Coq Proof Assistant Reference Manual, version 8.4.
Technical report, Inria (2012)

7. Danielsson, N.A., Coquand, T.: Isomorphism is Equality (2013) (Preprint),
http://www.cse.chalmers.se/~nad/publications/

coquand-danielsson-isomorphism-is-equality.html

8. Dénès, M., Mörtberg, A., Siles, V.: A Refinement-Based Approach to Computa-
tional Algebra in Coq. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406,
pp. 83–98. Springer, Heidelberg (2012)

9. Gonthier, G., Mahboubi, A.: A Small Scale Reflection Extension for the Coq sys-
tem. Technical report, Microsoft Research INRIA (2009)

10. Grégoire, B., Mahboubi, A.: Proving Equalities in a Commutative Ring Done Right
in Coq. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 98–113.
Springer, Heidelberg (2005)

11. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data Refinement in Is-
abelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 100–115. Springer, Heidelberg (2013)

http://arxiv.org/abs/1303.0584
http://www.cse.chalmers.se/~nad/publications/coquand-danielsson-isomorphism-is-equality.html
http://www.cse.chalmers.se/~nad/publications/coquand-danielsson-isomorphism-is-equality.html

162 C. Cohen, M. Dénès, and A. Mörtberg

12. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic
computers. USSR Academy of Sciences 145, 293–294 (1962)

13. Keller, C., Lasson, M.: Parametricity in an Impredicative Sort. In: CSL, vol. 16,
pp. 381–395. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

14. Lammich, P.: Automatic Data Refinement. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 84–99. Springer, Heidelberg
(2013)

15. Luo, Z.: Computation and reasoning: a type theory for computer science. Oxford
University Press, Inc., New York (1994)

16. Magaud, N.: Changing Data Representation within the Coq System. In: Basin, D.,
Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 87–102. Springer, Heidelberg
(2003)

17. McBride, C., McKinna, J.: The view from the left. Journal of Functional Program-
ming 14(1), 69–111 (2004)

18. T. U. F. Program: Homotopy Type Theory: Univalent Foundations of Mathematics.
Institute for Advanced Study (2013), http://homotopytypetheory.org/book/

19. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP
Congress, pp. 513–523 (1983)

20. Rijke, E., Spitters, B.: Sets in homotopy type theory (2013) (Preprint),
http://arxiv.org/abs/1305.3835

21. Sasaki, T., Murao, H.: Efficient Gaussian Elimination Method for Symbolic Deter-
minants and Linear Systems. ACM Trans. Math. Softw. 8(3), 277–289 (1982)

22. Sozeau, M.: A new look at generalized rewriting in type theory. Journal of Formal-
ized Reasoning 2(1), 41–62 (2009)

23. Sozeau, M., Oury, N.: First-Class Type Classes. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 278–293. Springer, Heidelberg
(2008)

24. Spitters, B., van der Weegen, E.: Type Classes for Mathematics in Type Theory.
MSCS, Special Issue on ‘Interactive Theorem Proving and the Formalization of
Mathematics’ 21, 1–31 (2011)

25. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13(4),
354–356 (1969)

26. Wadler, P.: Views: A way for pattern matching to cohabit with data abstraction.
In: POPL, pp. 307–313. ACM Press (1987)

27. Wadler, P.: Theorems for free? In: Functional Programming Languages and Com-
puter Architecture, pp. 347–359. ACM Press (1989)

http://homotopytypetheory.org/book/
http://arxiv.org/abs/1305.3835

A Formal Proof of Borodin-Trakhtenbrot’s

Gap Theorem

Andrea Asperti

Department of Computer Science and Engineering – DISI
University of Bologna
asperti@cs.unibo.it

Abstract. In this paper, we discuss the formalization of the well known
Gap Theorem of Complexity Theory, asserting the existence of arbi-
trarily large gaps between complexity classes. The proof is done at an
abstract, machine independent level, and is particularly aimed to iden-
tify the minimal set of assumptions required to prove the result (smaller
than expected, actually). The work is part of a long term reverse com-
plexity program, whose goal is to obtain, via a reverse methodological
approach, a formal treatment of Complexity Theory at a comfortable
level of abstraction and logical rigor.

1 Introduction

The Gap Theorem, first proved by Boris Trakhtenbrot in 1964 [33] and indepen-
dently rediscovered eight years later by Allan Borodin [12], is a major theorem
of Complexity Theory stating the existence of arbitrarily large gaps in the hi-
erarchy of complexity classes. More explicitly, given a computable function g
representing an increase in computational resources, one can effectively find a
recursive function t such that the complexity classes with boundary functions t
and g ◦ t are identical. In Borodin’s words [12] “no matter how much better one
computer may seem compared to the other, there will be a t such that the set
of functions computable in time t is the same for both computers”.

The Gap Theorem is a typical example of an “abstract” complexity result,
that is a fact that can be proved without any reference to concrete computational
models. Actually, our main motivation for addressing the formalization of this
theorem was to derive, along a reverse methodological approach, a minimal set
of logical assumptions sufficient to entail the result. The work is part of a larger
“reverse complexity” program, outlined in [2], that applies the methodology of
reverse mathematics [20,30] to Complexity Theory, reconstructing from proofs
the basic notions and assumptions underlying the major results of this field.
The final, long term goal would be to obtain a formal, axiomatic treatment of
Complexity Theory at a comfortable level of abstraction and mathematical rigor,
reviving under a new perspective and through an innovative methodological
approach the old quest for a machine-independent theory of complexity; we refer
the reader to [2] for a short historical survey and a more exhaustive discussion
of the Reverse Complexity program.

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 163–177, 2013.
c© Springer International Publishing Switzerland 2013

164 A. Asperti

Mechanical devices such as proof assistants and interactive theorem provers
play a major role in our program, not only to check the formal correctness of the
resulting theory, but as actual drivers of the research. In fact, the reverse method-
ology presupposes a deep and frequent refactoring of the formalization, playing
with different axiomatizations, improving the readability and maintainability of
the code, or reducing its complexity: it is natural to expect to be supported by
automatic devices along this process. As we already observed in [4], the situa-
tion is similar to the role of type checkers in software development, that are not
simply meant to discriminate good programs from bad ones: type checkers are
essential drivers of the development phase, and major tools for the deployment
of lightweight, adaptive software methodologies, requiring frequent modifications
and refactoring. This interactive exploitment of proof checkers, more than their
batch usage as oracles to discriminate between correct and wrong arguments is,
in our opinion, the new and challenging frontier of interactive provers.

The formalization of the Gap Theorem discussed in this paper was done with
the assistance of the Matita Interactive Theorem Prover [7]. Matita is a light
implementation of the Calculus of Inductive Construction developed and main-
tained at the University of Bologna. We do not have enough space to describe
here the syntax of Matita’s script language, so we shall omit formal proofs. We
only wish to remark that Matita is a constructive system, and all proofs in this
paper are constructive.

The development itself is accessible (and executable!) through the web inter-
face of Matita [6] at the following url: http://matita.cs.unibo.it/matitaweb.
shtml. An offline version can be downloaded at http://www.cs.unibo.it/

~asperti/gap.tar.
The structure of the paper is the following. In the next section we shall

start giving a rigorous formulation of the gap theorem and the original proof of
Borodin [12], discussing it as well as other, later versions of the proof [15,35,17].
Section 3 is devoted to a brief review of the main modules of the Matita li-
brary that will be required for the formalization of the result, and in particular:
bounded quantification, big operators and minimization, iteration, and a bit of
combinatorics. In Section 4, we introduce the axiomatic setting that we shall
use for the proof, essentially based on the existence of a suitable function (intu-
itively) playing the role of Kleene’s T-predicate. Section 5 contains the formal
proof, as well as the computation of an interesting and apparently original upper
bound for the gap operator. Conclusions are discussed in Section 6.

2 Borodin’s Proof of the Gap Theorem

The gap theorem can be stated and proved without any reference to a concrete
computational model. The typical setting adopted for expressing and proving it
is Blum’s abstract complexity framework [11], that applies to time, space, and
many other reasonable complexity measures.

We write f(x)↓ to express that the partial function f is defined for input x.

http://matita.cs.unibo.it/matitaweb.shtml
http://matita.cs.unibo.it/matitaweb.shtml
http://www.cs.unibo.it/~{}asperti/gap.tar
http://www.cs.unibo.it/~{}asperti/gap.tar

A Formal Proof of Borodin-Trakhtenbrot’s Gap Theorem 165

Definition 1. (Blum [11]) A pair 〈ϕ,Φ〉 is a computational complexity measure
if ϕ is a principal effective enumeration of all partial recursive functions and Φ
satisfies the following axioms:

(a) ϕi(n) ↓↔ Φi(n) ↓
(b) the predicate Φi(n) = m is decidable

We adopt the convention that Φi(n) = ∞ if Φi(n) ↑; in particular, the relation
Φi(n) > n also holds when Φi(n) is undefined.

Blum’s axioms are very weak and very general, and nevertheless they are suf-
ficient to prove a large number of interesting results in Complexity Theory. In
particular, they proved to be a convenient setting to investigate the order struc-
ture of complexity classes under set theoretic inclusion [12,26], their recursive
presentability and the computational quality of such a presentation [25,34,24].
It is important to observe that, from a strictly formal point of view, Blum’s
“axioms” do not provide a real axiomatization, since they rely on the delicate
notion of computable function. The fact that ϕ is a principal effective enumer-
ation (see e.g.[28]) of all partial recursive functions is used in an essential way
in most proofs based on Blum’s axioms, usually by an invocation of Church
Thesis. For this reason, Blum’s axioms are not easy to use in a strictly formal
framework, urging us to look for a more convenient and possibly more primitive
axiomatisation.

Borodin’s proof of the gap theorem is very concise and elegant, so we report
his original argument here; we just slightly rephrased it for notational reasons,
and retouched some bounds in order to get a more elegant formalization.

Theorem (Gap Theorem). Let 〈ϕ,Φ〉 be a complexity measure, g
a nondecreasing recursive function such that ∀x.x ≤ g(x). Then there
exists a nondecreasing recursive function t such that, for sufficiently large
n,

Φi(n) ≤ t(n) or Φi(n) > g ◦ t(n)

PROOF. Define t as follows:

– t(0) = 1,
– t(n+ 1) = μk ≥ t(n){∀i ≤ n.[Φi(n) ≤ k or Φi(n) > g(k)]}

Then:

1. for any n, k exists, since forall i ≤ n if Φi(n) ↑ then ∀k.Φi(n) > g(k),
and if Φi(n) ↓ then ∃k.Φi(n) ≤ k.

2. k can be found recursively, since Φ is a complexity measure and thus
Φi(n) ≤ k and Φi(n) > g(k) are recursive predicates.

3. t satisfies the theorem, since n ≥ i implies that either Φi(n) ≤ t(n)
or Φi(n) > g ◦ t(n).

QED.

166 A. Asperti

An arbitrarily large t can be found to satisfy the conditions of the gap theo-
rem, by taking k larger than max{r(n), t(n)} (for a suitable function r) in the
definition of t(n+ 1).

2.1 Discussion

The first problem in formalizing the previous proof in a proof system like Matita
is due to the definition of t, that is formulated by means of general (unbounded)
minimization. In general, this kind of recursive functions cannot be directly
expressed in the Calculus of Constructions, and you should resort to an indirect
encoding, by means of a suitable predicate, that is not particularly elegant. A
second problem is point 1. in the proof, that seems to use tertium non datur on
a semidecidable predicate, namely if Φi(n) ↓ or not.

Luckily, as already pointed out by [35] (see also [17]) the existence of k can be
proved in a more constructive way, and this will also induce a more constrained
(primitive recursive) definition of t.

The general idea is relatively simple. Suppose we wish to find a k larger than
a base value b, such that (for given i and n)

Φi(n) ≤ k or Φi(n) > g(k) (1)

If Φi(n) ≤ b then we take k = b (note that the test Φi(n) ≤ b is decidable!);
otherwise we check if Φi(n) < g(b): if the answer is yes, we take k = g(b) and
otherwise we again take k = b (the interesting point is not the decidability of
equation (1), that is obvious, but the fact that we can put an upper bound to
the search for a k solving the equation).

The previous reasoning can be iterated over all i ≤ n: in particular, in the
interval between b and gn+1(b) there must exist at least one k such that

∀i ≤ n.Φi(n) ≤ k or Φi(n) > g(k)

Suppose that at least j functions terminate within bj ≤ gj(b); if no other function
terminates within g(bj) we are done; otherwise we take bj+1 = g(bj) ≤ gj+1(b)
and go on. Since the number of terminating functions increases at each iteration,
we shall eventually stop after n+ 1 steps.

Stated in a different way, let us consider the intervals [gi(b), gi+1(b)[for 0 ≤
i ≤ n and all functions with index j < n such that Φj(n) ≤ gn+1(b). We have at
most n functions to distribute over n+ 1 intervals, so at least one interval must
remain empty.

An interesting consequence of the previous reasoning, that apparently has
never been emphasized by any author, is that we can compute an explicit upper
bound u for t. In particular, let σ(n) =

∑
i≤n i = n · (n+ 1)/2; then, for any n,

t(n) ≤ gσ(n)(1) ≤ gn
2

(1)

(see Section 5.2 for the simple proof).

A Formal Proof of Borodin-Trakhtenbrot’s Gap Theorem 167

3 Preliminaries

In this section, we shall discuss some of the background material we need for our
development: bounded quantification 3.1, big operators and minimization 3.2,
iteration 3.3 and a few combinatorial results 3.4.

Most of the results in this section are absolutely standard; we present them
for the sake of completeness, in order to provide a self-contained description of
the formalization, fixing names and notations.

In the rest of the article, all parts inside round boxes are Matita code; all
proofs are skipped, but they are really simple.

3.1 Bounded Quantification

We need to exploit a small library of results about bounded quantification.
A proposition P is decidable if P ∨ ¬P is provable:
� �

definition decidable : Prop →Prop :=λA:Prop. A ∨¬A.
� �

It is trivial to prove that decidable propositions are closed with respect to logical
connectives and bounded quantification:
� �

lemma decidable not: ∀P. decidable P → decidable (¬P).

lemma decidable or: ∀P,Q. decidable P →decidable Q →decidable (P∨Q).

lemma decidable forall: ∀P. (∀i.decidable (P i)) →∀n.decidable (∀i. i < n →P i).

lemma decidable exists: ∀P. (∀i.decidable (P i)) →∀n.decidable (∃i. i < n ∧P i).
� �

On a decidable predicate we have the usual duality properties we know from
classical logic, and in particular:
� �

lemma not exists to forall: ∀P,n.
¬ (∃i. i < n ∧P i) →∀i. i < n →¬P i.

lemma not forall to exists: ∀P,n. (∀i .decidable (P i)) →
¬ (∀i. i < n →P i) → (∃i. i < n ∧¬ (P i)).

� �

3.2 Big Operators and Minimization

Matita’s library offers a well developed module on big operators, that has been
described in some detail in [5].

A big operator is a higher-order construction that is supposed to iterate a
function F over all elements in a given range, combining the results with an
operator op; a nil value is returned when the range is empty. The range, the
function F , the operator op and the value nil are all explicit parameters of the
big operator.

Matita’s notation is relatively standard ([10]), and has the following shape:

168 A. Asperti

� �

\big[op,nil] { range description } F
� �

The range description gives a name to the iteration variable and fixes the domain
over which this variable is supposed to range. The elements in the range are
supposed to be enumerated (that is not a limitation, considering that the range
must be finite), hence the range is specified as an interval i ∈ [a, b] where a is
the lower bound and b is the upper bound (both included in the range). In case
the lower bound is 0, the simpler notation i ≤ b can also be used. The variable i
whose name can obviously be chosen by the user, is bound by the notation, and
it usually occurs free in F .

The range can be further restricted specifying an additional boolean predicate,
acting as a filter. For instance, the following notation represents the product of
all primes less or equal to n
� �

\big[times,1] {p ≤n | primeb p} p
� �

In this paper, we shall use big operators to iterate boolean functions over finite
domains; for instance, the notation
� �

\big[andb,true] {i < n} (b i).
� �

expresses the boolean conjunction of all (b i) for all i less than n.
Minimization is essentially a big operator where we iterate the binary mini-

mum function min on all elements in a given range enjoying a suitable predicate;
the only problem is the definition of a default nil element. A relatively natural
choice, in case we found no element in the range [a, b[matching the test, is to
return b:
� �

definition Min :=λa,b,f.\big[min,b] {i ∈ [a,b] | f i} i .
� �

Although the definition is elegant, the possibility to exploit results on big oper-
ators for proving properties of Min poses some problems, in this case. The point
is that the lemmas on big operations are hierarchically organized according to
the algebraic structure associated with the operator. In the case of the mini-
mum, we have associativity and commutativity, but we do not have a (generic)
neutral element (see also [10] for the discussion of a similar problem relative to
maximization on real numbers), so we have only access to very basic results.

For minimization we shall use the following ad hoc notation:
� �

μ { i ∈ [a,b] } p
� �

to express the minimum element in the range [a, b] that satisfies p (and returns
the successor of b is no such element is found).

The main results about minimization that we shall exploit are the following:
under the assumption that there exists an element in the range [a, b] that satisfies
f , then the minimum m satisfies f and moreover it is not greater than b (as a
matter of fact, the definition of the function t of the gap theorem does not exploit
minimality, but only existence).

A Formal Proof of Borodin-Trakhtenbrot’s Gap Theorem 169

� �

lemma f min true: ∀f,a,b.
(∃i . a ≤ i ∧ i ≤b ∧ f i = true) → f (μ {i ∈[a,b]} (f i)) = true.

� �

� �

lemma min up: ∀f,a,b.
(∃i . a ≤ i ∧ i ≤b ∧ f i = true) →μ {i ∈[a,b]}(f i) ≤b.

� �

3.3 Iteration

We shall need to consider progressive intervals of the kind [gi(b), gi+1(b)[, that
requires a simple higher-order iterator:
� �

let rec iter (A:Type[0]) (g:A→A) n a on n :=
match n with

[O ⇒ a
|S m ⇒ g (iter A g m a)].

� �

The notation gi(b) is hence a shorthand for (iter nat g i b).
For the proof of the gap theorem we only need the following result:
� �

lemma le iter: ∀g,a. (∀x. x ≤ g x) →∀i. a ≤ gˆi a.
� �

A few more simple lemmas about composition and monotonicity are used for
computing an upper bound of the gap operator:
� �

lemma iter iter: ∀A.∀g:A→A.∀a,b,c. gˆc (gˆb a) = gˆ(b+c) a.

lemma monotonic iter: ∀g,a,b,i. (monotonic ? le g) → a ≤ b →
gˆi a ≤ gˆi b.

lemma monotonic iter2: ∀g,a,i,j. (∀x. x ≤ g x) → i ≤ j → gˆi a ≤ gˆj a.
� �

The question mark in monotonic_iter is an implicit parameter, that is an ar-
gument automatically filled in by the type inference algorithm (in this case,
nat).

3.4 A Bit of Combinatorics

The final ingredient we need for the proof of the gap theorem is a bit of com-
binatorics. The only delicate point in the definition of t is the termination of
the minimization. The general idea is to consider a succession of n+ 1 disjoint
intervals [ri, ri+1[for 0 ≤ i ≤ n; then, we consider a set of at most n values to
distribute over them (expressing the resources required by a machine with index
i < n to terminate on a specific input). Since we have strictly less items than
intervals, one of the interval [rk, rk+1[must remain empty, that gives the desired
k. This is essentially a variant (an inverse form) of the Pigeonhole principle (also
know as Dirichlet’s drawer principle), that states that if n items are put into m

170 A. Asperti

pigeonholes where n > m, then at least one pigeonhole must contain more than
one item.

A simple way to formalize the principle is by considering lists of natural
numbers. Given a list l we shall denote with |l| the length of l, and we shall
write x ∈ l to express that x is an element f the list. Let us consider a list l of
distinct numbers in the interval [0, n[; then, obviously, |l| ≤ n. The interesting
point is that

|l| = n ↔ ∀i.i < n → i ∈ l

This is expressed by the following notions and results in the library of Matita.
The unique predicate express the fact that the list has no duplicates:
� �

let rec unique A (l: list A) on l :=
match l with
[nil ⇒ True
|cons a tl ⇒ ¬ a ∈tl ∧ unique A tl].

� �

Then, we can prove the following results (the proofs are not entirely straightfor-
ward, but these basic combinatorial principles belong by now to the folklore of
interactive proving, so we do not discuss them).
� �

lemma length unique le: ∀n,l.
unique ? l → (∀x. x ∈ l → x < n) →|l| ≤n.

lemma eq length to mem all: ∀n,l.
| l | = n → unique ? l → (∀x. x ∈ l → x < n) →∀i. i < n → i ∈ l .

lemma lt length to not mem: ∀n,l.
unique ? l → (∀x. x ∈ l → x < n) →|l| < n →∃i. i < n ∧¬ (i ∈ l).

� �

4 Kleene’s Predicate

The starting point of our axiomatization is Kleene’s predicate, that we shall
represent with a function U with the following type:
� �

axiom U: nat →nat →nat → option nat.
� �

The intuitive idea is that

U i x r =

{
Some y if program i on input x returns y with resource bound r

None otherwise

You should think of U as some agent performing the execution of the program,
and checking that it respects the given resource bounds. The only assumption
we make about U is about its “monotonicity” with respect to the amount of
resources at our disposal:
� �

axiom monotonic U: ∀i,n,m,y. n ≤m →
U i x n = Some ? y →U i x m = Some ? y.

� �

A Formal Proof of Borodin-Trakhtenbrot’s Gap Theorem 171

From the previous axiom we easily conclude that U is single valued:
� �

lemma unique U: ∀i,x,n,m,yn,ym.
U i x n = Some ? yn →U i x m = Some ? ym → yn = ym.

� �

We say that the computation of program x on input y terminates with resource
bound r (notation: 〈i, x〉 ↓ r) if there exists y such that U i x r = Some y:
� �

definition terminate :=λi,x,r. ∃y. U i x r = Some ? y.
� �

It is straightforward to prove that the previous notion of (bounded) termination
is decidable:
� �

lemma terminate dec: ∀x,i,n. 〈x,i〉 ↓ n ∨ ¬ 〈x, i〉 ↓ n.
� �

In order to define the gap operator, we need a boolean version of the termi-
nation test:
� �

definition termb :=λi,x,t.
match U i x t with [None ⇒ false |Some y ⇒ true].

� �

It is easy to prove that termb reflects terminate in the sense of [21]:
� �

lemma termb true to term: ∀i,x,t. termb i x t = true →〈i,x〉 ↓ t .

lemma term to termb true: ∀i,x,t. 〈i,x〉 ↓ t → termb i x t = true.
� �

Exploiting the decidability of termination and the closure properties of section
3.1 it is easy to prove that that the test used in the definition of the gap function
is decidable too:
� �

lemma decidable test : ∀n,x,r,r1.
(∀i . i < n →〈i,x〉 ↓ r ∨ ¬ 〈 i ,x〉 ↓ r1) ∨
(∃i . i < n ∧ (¬ 〈i,x〉 ↓ r ∧ 〈 i ,x〉 ↓ r1)).

� �

5 The Proof of the Gap Theorem

Let us define the following predicate gapP n x g r expressing that for all pro-
grams up to n, there is a gap between r and g r on input x:
� �

definition gapP :=λn,x,g,r. ∀i. i < n →〈i,x〉 ↓ r ∨ ¬ 〈 i ,x〉 ↓ g r .
� �

The important fact is that, for any b, g, n, x we can always find a r in the interval
between b and gn b such that (gapP n x g r):
� �

lemma upper bound: ∀g,b,n,x. (∀x. x ≤ g x) →
∃r.b ≤ r ∧ r ≤ gˆn b ∧ gapP n x g r.

� �

For the proof, we pass through the following auxiliary lemma

172 A. Asperti

� �

lemma upper bound aux: ∀g,b,n,x. (∀x. x ≤ g x) →∀k.
(∃j . j < k ∧
(∀i . i < n →〈i,x〉 ↓ gˆj b ∨ ¬ 〈 i ,x〉 ↓ gˆ(S j) b)) ∨

∃l . | l | = k ∧ unique ? l ∧ ∀i . i ∈ l → i < n ∧ 〈i ,x〉 ↓ gˆk b .
� �

This is proved by induction on k. At the inductive step k0 we reason by cases on
the inductive hypothesis: we already found our j or we have a list of programs ter-
minating with bound gk0 b on input x. In the first case, we are done. In the other
case we reason by cases on decidable_test n x (g^k0 b) (g^(S k0) b)). In
the first case, we can take j = k0, and otherwise we have a program i that does
not terminate in gk0 b but terminates in gk0+1 b on input x, and we add i to the
list l.

Starting from upper_bound_aux it is now easy to prove upper_bound. The
idea is to proceed by cases on (upper_bound_aux g b n x Hg n), where Hg is
the hypothesis that g is increasing. In case we have a j, we take r = gj b and we
conclude easily. Otherwise, we have a list of programs terminating with bound
gn b on input x. Since the list has length n, by property eq_length_to_mem_all

all programs up to n must appear in this list, and we can just take r = gn b.

5.1 The Gap Operator

The first step for defining the gap operator is to express the gap predicate gapP
as a computable boolean function; a simple approach is to use big operators to
encode bounded quantification:
� �

definition gapb :=λn,x,g,r.
\big[andb,true] {i < n} ((termb i x r) ∨ ¬ (termb i x (g r))).

� �

It is straightforward to prove that gapb reflects the gap predicate gapP, and in
particular:
� �

lemma gapb true to gapP : ∀n,x,g,t.
gapb n x g t = true →∀i. i < n →〈i,x〉 ↓ t ∨ ¬ (〈i,x〉 ↓ (g t)).

lemma gapP to gapb true : ∀n,x,g,r.
(∀i . i < n →〈i,x〉 ↓ r ∨ ¬ (〈i,x〉 ↓ (g r))) → gapb n x g r = true.

� �

It is now easy to define the gap operator as a higher-order function parametric
in g:
� �

let rec gap g n on n :=
match n with
[O ⇒ 1
| S m ⇒ let b :=gap g m in μ {k ∈[b,gˆn b]} (gapb n n g k)
].

� �

From upper_bound it is easy to derive an analogous upper bound for gapb:

A Formal Proof of Borodin-Trakhtenbrot’s Gap Theorem 173

� �

lemma upper bound gapb: ∀g,m. (∀x. x ≤ g x) →
∃r.gap g m ≤ r ∧ r ≤ gˆ(S m) (gap g m) ∧ gapb (S m) (S m) g r = true.

� �

Then, using property f_min_true we easily conclude:
� �

lemma gapS true: ∀g,m. (∀x. x ≤ g x) → gapb (S m) (S m) g (gap g (S m)) = true.
� �

and from the previous result we derive the expected behaviour of gap operator,
in the general case:
� �

theorem gap theorem: ∀g,i.(∀x. x ≤ g x)→∃k.∀n.k < n →
〈 i ,n〉 ↓ (gap g n) ∨ ¬ 〈 i ,n〉 ↓ (g (gap g n)).

� �

We just instantiate k with i and proceed by cases on i.

5.2 An Upper Bound

We conclude this section providing a simple upper bound for gap g, namely, for
any n

gap g n ≤ gσ(n)(1) ≤ gn
2

(1)

where σ(n) =
∑

i≤n i = n · (n+ 1)/2.
� �

let rec sigma n :=
match n with
[O ⇒ 0 | S m ⇒ n + sigma m].

lemma gap bound: ∀g. (∀x. x ≤ g x) → (monotonic ? le g) →
∀n.gap g n ≤ gˆ(sigma n) 1.

� �

The proof is a simple induction on n. If n = 0 both sides are equal to 1. In the
inductive case:

gap g (S n) ≤ g(S n)(gap g n) by min up using upper bound gapb
≤ g(S n)(gσ(n)1) by induction hypothesis

= g(S n+σ(n)1 by iter iter
= gσ(Sn)1 by definition of sigma

It is worth observing that if g is primitive recursive, than (gap g) is too, and not
too far away from g in the elementary hierarchy.

Many authors (see e.g Papadimitriou [27]) note the “fantastically fast growth”
of the gap function (without providing an explicit bound), but after all it is no so
scary (at least, compared to the enormous complexity of other logical problems
[19]). Of course, the growth-rate of the function has little to do with its ability to
create a gap: its upper bound gσ(n)1 is a (space and time) constructible function,
hence the hierarchy theorems apply and it does not define any gap. The really
surprising fact is that in a relatively small interval as that comprised between
g(n) and gσ(n)1 we can find a function with such a strange behaviour as (gap g).

174 A. Asperti

6 Conclusions

In this paper, we presented a formalization in the Matita Interactive Theorem
Prover of Borodin-Trakhtenbrot’s Gap Theorem of Computational Complexity.
The work is part of a huge program of formal revisitation of Complexity Theory,
that we call reverse complexity, based on the application of methodologies typical
of reverse mathematics [20,30], consisting in a backward reconstruction from
proofs of the basic notions and assumptions underlying the main results of the
field.

The final goal is to understand, at a suitable level of abstraction and logical
rigor, what really matters for a foundational investigation of Complexity, since we
know that the details of the different, specific computational models are largely
uninfluential.

The need for a better understanding of the logical grounds of complexity the-
ory is testified by a long series of works aimed to provide machine-independent
characterizations, spanning from the old works of Blum [11], to the recent field of
Implicit Computation Complexity (see [8], and the bibliography therein), pass-
ing through a multitude of systems defined by controlling different aspects of
the computation: explicit bounds on the growth rate of functions [14,13], the
logical power required for proving termination [18], the use and replication of
computational resources [9]. See also [16] for a modern treatment of bounded
arithmetical systems and an investigation of proof complexity from the point of
view of computational complexity.

Even in the relatively simple case of the Gap Theorem, the reverse methodol-
ogy was instructive, allowing us to clarify that the full power of Blums’ abstract
framework is not required for this proof. In particular, there is no need to refer to
a principal enumeration of partial recursive functions, that would be a difficult
notion to characterize at an abstract level.
We only postulated the existence of a function U , intuitively playing the role of
Kleene’s T’-predicate, but avoiding any explicit reference to a system of com-
putable functions; we just assumed U to be monotonic:
� �

axiom U: nat →nat →nat → option nat.

axiom monotonic U: ∀i,n,m,y. n ≤m →
U i x n = Some ? y →U i x m = Some ? y.

� �

The U function seems to provide an interesting starting point for many different
investigations. For instance, exploiting the idea embodied in Kleene’s normal
form, we can easily axiomatize the existence of an interpreter (universal ma-
chine):
� �

axiom universal: ∃u.∀i,x,y.
∃n. U u 〈i ,x〉 n = Some y ↔∃m.U i x m = Some y.

� �

In [3], we proved that any indexed set of partial functions that is closed under
composition, contains all projections, an interpreter, and satisfies the s-m-n the-
orem of Recursion Theory is algorithmically complete, that is, it enumerates all

A Formal Proof of Borodin-Trakhtenbrot’s Gap Theorem 175

computable functions. So, adding a few more axioms, we get a natural, abstract
theory of computable functions. Morevoer, following the ideas outlined in [1],
we can integrate the closure conditions on the class of computable functions
by suitable complexity conditions, obtaining an interesting formal framework to
address complexity theory.

Even more interestingly, we can investigate weaker logical frameworks, corre-
sponding to system of subrecursive functions. For instance, for many interesting
results of Complexity Theory, you do not need the existence of a full interpreter,
but just the possibility to perform a restricted form of bounded interpretation.
This is for instance the case of the well known hierarchy theorems of computa-
tional complexity [22,31], whose formalization was investigated in [2]. The rela-
tion between full and bound interpretation from the point of view of Complexity
Theory seems to be an argument worth to be further investigated too.

The new, major milestone in our program is however to provide a suitable,
abstract axiomatization of the so called “reachability method”. The general idea
is to consider the graph of all possible configurations of the computational de-
vice, reducing the existence of a computation to a reachability problem in such
a graph. Time bounds the dimension of the graph, and in turn the dimen-
sion of each configuration bounds the number of possible distinct nodes in the
graph, allowing to establish the main relations between time and space. This is
largely indepedent from any specific computational device, and it seems impor-
tant to identify the right abstract setting underlying the previous ideas, paving
the way to a reverse investigation of the well known theorems of Savitch [29] and
Immerman-Szelepcsényi [23,32].

References

1. Asperti, A.: The intensional content of Rice’s theorem. In: Proceedings of the 35th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), San Francisco, California, USA, January 7-12, pp. 113–119. ACM (2008)

2. Asperti, A.: Reverse complexity. Submitted for publication (2013)
3. Asperti, A., Ciabattoni, A.: Effective applicative structures. In: Johnstone, P.T.,

Rydeheard, D.E., Pitt, D.H. (eds.) CTCS 1995. LNCS, vol. 953, pp. 81–95.
Springer, Heidelberg (1995)

4. Asperti, A., Geuvers, H., Natarajan, R.: Social processes, program verification and
all that. Mathematical Structures in Computer Science 19(5), 877–896 (2009)

5. Asperti, A., Ricciotti, W.: A proof of Bertrand’s postulate. Journal of Formalized
Reasoning 5(1), 37–57 (2012)

6. Asperti, A., Ricciotti, W.: A web interface for Matita. In: Jeuring, J., Campbell,
J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012.
LNCS, vol. 7362, pp. 417–421. Springer, Heidelberg (2012)

7. Asperti, A., Ricciotti, W., Sacerdoti Coen, C., Tassi, E.: The Matita interactive the-
orem prover. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS,
vol. 6803, pp. 64–69. Springer, Heidelberg (2011)

8. Baillot, P., Marion, J.-Y., Della Rocca, S.R. (eds.): Special issue on implicit com-
plexity. ACM Transactions on Computational Logic 10(4) (2009)

176 A. Asperti

9. Bellantoni, S., Cook, S.A.: A new recursion-theoretic characterization of the poly-
time functions (extended abstract). In: Proceedings of the 24th Annual ACM Sym-
posium on Theory of Computing, Victoria, British Columbia, Canada, May 4-6,
pp. 283–293. ACM (1992)

10. Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I.: Canonical big operators. In:
Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp.
86–101. Springer, Heidelberg (2008)

11. Blum, M.: A machine-independent theory of the complexity of recursive functions.
J. ACM 14(2), 322–336 (1967)

12. Borodin, A.: Computational complexity and the existence of complexity gaps. J.
ACM 19(1), 158–174 (1972)

13. Clote, P., Takeuti, G.: On the computational complexity of algorithms. Annals of
Pure and Applied Logic 56(1-3), 73–117 (1992)

14. Cobham, A.: The intrinsic computational difficulty of functions. In: Proceedings of
the 1964 International Congress for Logic, Methodology, and Philosophy of Science,
pp. 24–30. North-Holland, Amsterdam (1964)

15. Constable, R.L.: The operator gap. J. ACM 19(1), 175–183 (1972)
16. Cook, S., Nguyen, P.: Logical Foundations of Proof Complexity. Cambridge Uni-

versity Press (2010)
17. Cutland, N.J.: Computability: An Introduction to Recursive Function Theory.

Cambridge University Press (1980)
18. Leivant, D.: A foundational delineation of computational feasibility. In: Proceedings

of the Sixth Annual IEEE Symposium on Logic in Computer Science (LICS), pp.
2–11. IEEE (1991)

19. Friedman, H.: Some decision problems of enormous complexity. In: 14th Annual
IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, pp. 2–12.
IEEE Computer Society (1999)

20. Friedman, H., Simpson, S.G.: Issues and problems in reverse mathematics. Con-
temporary Mathematics 257, 127–143 (2000)

21. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in coq. Jour-
nal of Formalized Reasoning 3(2), 95–152 (2010)

22. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms.
Transaction of the American Mathematical Society 117, 285–306 (1965)

23. Immerman, N.: Nondeterministic space is closed under complementation. SIAM J.
Comput. 17(5), 935–938 (1988)

24. Landweber, L.H., Robertson, E.L.: Recursive properties of abstract complexity
classes. Journal of ACM 19(2), 296–308 (1972)

25. Lewis, F.D.: Unsolvability considerations in computational complexity. In: Pro-
ceedings of the Second Annual ACM Symposium on Theory of Computing (STOC),
Northampton, Massachusetts, USA, May 4-6, pp. 296–308. ACM (1970)

26. McCreight, E.M., Meyer, A.R.: Classes of computable functions defined by bounds
on computation. In: Proceedings of the 1st Annual ACM Symposium on Theory
of Computing (STOC), Victoria, British Columbia, Canada, May 4-6, pp. 79–88.
ACM (1969)

27. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
28. Rogers, H.: Theory of Recursive Functions and Effective Computability. MIT Press

(1987)
29. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-

plexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)
30. Simpson, S.G.: Subsystems of second order arithmetic. Cambridge University Press

(2009)

A Formal Proof of Borodin-Trakhtenbrot’s Gap Theorem 177

31. Stearns, R.E., Hartmanis, J., Lewis, P.M.: Hierachies of memory limited computa-
tions. In: Proceedings of the 6th Annual Symposium on Switching Circuit Theory
and Logical Design (SWCT 1965), FOCS, pp. 179–190 (1965)

32. Szelepcsényi, R.: The method of forced enumeration for nondeterministic au-
tomata. Acta Inf. 26(3), 279–284 (1988)

33. Trakhtenbrot, B.: Turing computations with logarithmic delay. Algebra and
Logic 3(4), 33–48 (1964)

34. Young, P.R.: Toward a theory of enumeration. Journal of ACM 16(2), 328–348
(1969)

35. Young, P.R.: Easy constructions in complexity theory: gap and speed-up theorems.
Proceedings of A.M.S. 37(2), 555–563 (1973)

Certified Kruskal’s Tree Theorem

Christian Sternagel�

JAIST, Japan
c-sterna@jaist.ac.jp

Abstract. This paper gives the first formalization of Kruskal’s tree the-
orem in a proof assistant. More concretely, an Isabelle/HOL development
of Nash-Williams’ minimal bad sequence argument for proving the tree
theorem is presented. Along the way, the proofs of Dickson’s lemma and
Higman’s lemma are discussed.

Keywords: Well-Quasi-Orders, Dickson’s Lemma, Minimal Bad
Sequences, Higman’s Lemma, Kruskal’s Tree Theorem.

1 Introduction

Kruskal’s tree theorem [1] (sometimes called the tree theorem in the following) is
a famous result in combinatorics, more precisely well-quasi-order (wqo) theory.

Kruskal’s Tree Theorem. When a set A is wqo’d (by a relation $), then so
is the set of finite trees over A (by homeomorphic embedding w.r.t. $).

Nash-Williams gave a short and elegant proof of the tree theorem [2], where he
first established what is now known as the minimal bad sequence argument : as-
sume the existence of a minimal “bad” infinite sequence of elements, construct an
even smaller “bad” infinite sequence, thus contradicting minimality and proving
wqo’dness (since the definition of wqo requires all infinite sequences of elements
to be “good”).

Besides the minimal bad sequence argument, Nash-Williams’ work [2] contains
proofs of Dickson’s lemma [3] (if A and B are wqo’d, then so is the Cartesian
product A × B) and a variant of Higman’s lemma [4] (if A is wqo’d, then so is
the set of finite subsets of A), where the latter also incorporates an instance of
the minimal bad sequence argument.

The work at hand constitutes a formalization of Nash-Williams’ original proofs
in the proof assistant Isabelle [5].1 As indicated also by others, his argumentation
is short (in fact, Nash-Williams’ paper consists of only two and a half pages in
total) and elegant (which was also the main reason for basing the formalization
on his work). However, formalizations using proof assistants typically require
us to be more rigorous than with pen and paper. Thus, the formalization is

� Supported by the Austrian Science Fund (FWF): J3202.
1 Available from http://isabelle.in.tum.de (try Isabelle/jEdit for browsing).

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 178–193, 2013.
� Springer International Publishing Switzerland 2013

http://isabelle.in.tum.de

Certified Kruskal’s Tree Theorem 179

more detailed in places, which results in somewhat longer (about three and a
half thousand lines of Isabelle/HOL theories) and slightly less elegant proofs.
Fortunately the most detailed part could be localized (pun intended), thus not
derogating the elegance of the remaining proofs.

The author wants to stress that everything presented in the following, is for-
malized using the proof assistant Isabelle. In this paper, a high-level overview of
this formalization is given. The full development is part of the Archive of Formal
Proofs [6].

Contributions. To the best of the author’s knowledge, the presented work con-
stitutes the first unrestricted formalization of Higman’s lemma in Isabelle/HOL
as well as the first formalization of Kruskal’s tree theorem ever. Both are impor-
tant combinatorial results with applications in rewriting theory. For example,
the theory of simplification orders [7] was formalized as part of IsaFoR,2 where
it is applied to show well-foundedness of the Knuth-Bendix-Order [8].

Moreover, the author believes that besides their high trustworthiness (which
is of course very important), formalizations of existing mathematical results are
also of archival and educational value. The reason is that a formalization contains
all non-trivial steps of a proof. No doubt, more often than not, those steps were
already conducted in the minds of the original proof authors. However, when
the original author writes down a proof in condensed form for publishing, some
of the steps may get lost. If, much later, another person tries to understand the
proof, there may be some mental gaps (or in the worst case even errors).

Finally, formalizations are often hard to read for non-experts (but note that
the Isar language for Isabelle [9] is a huge improvement in that respect). Thus,
the author hopes that this high-level overview makes the presented formalization
more accessible.

Differences to Nash-Williams’ Work. The formalization presented here differs
from the original presentation of Nash-Williams in several details: As stated
above, Nash-Williams proved a variant of Higman’s lemma [2, Lemma 2]. Also
his version of the tree theorem [2, Theorem 1] does not mention homeomorphic
embedding. In the following, every reference to Higman’s lemma, means “If A
is wqo’d, then A∗ is wqo’d by homeomorphic embedding on lists,” and every
reference to the tree theorem, means “If A is wqo’d, then the set of finite trees
over A is wqo’d by homeomorphic embedding on trees.” The structure of the
proofs, stays the same.

Overview. The remainder is structured as follows. In Section 2, necessary prelim-
inaries are covered. Then, in Section 3, the structure of Nash-Williams’ original
proofs is reviewed. The next four sections present a formalization of Dickson’s
lemma (featuring a proof of a variant of Dickson’s lemma for almost-full rela-
tions, i.e., not relying on transitivity), in Section 4; a general construction of
minimal bad sequences, in Section 5; a formalization of Higman’s lemma, in Sec-
tion 6; and ultimately, a formalization of Kruskal’s tree theorem, in Section 7.

2 http://cl-informatik.uibk.ac.at/software/ceta/

http://cl-informatik.uibk.ac.at/software/ceta/

180 C. Sternagel

Finally, the paper concludes in Section 8, where also applications are sketched,
and future as well as related work is discussed.

2 Preliminaries

Throughout this exposition, standard mathematical notation is used as far as
possible. However, additionally some Isabelle specific notation is employed, since
Isabelle’s document preparation facilities were used for typesetting all lemmas
and theorems (in the words of Haftmann et al. [10]: no typos, no omissions, no
sweat; alas, this does not extend to the regular text). Thus, some explanation
might be in order.

Isabelle/HOL is a higher-order logic based on the simply-typed lambda cal-
culus. Thus, every term has a type, where Greek letters α, β, γ, . . . are used for
type variables ; and type constructors like nat for natural numbers, α ⇒ β for the
function space, α × β for ordered pairs, α set for sets, and α list for finite lists.
Type constraints are written t ::τ and denote that term t is of type τ . As usual for
lambda calculi, function application is denoted by juxtaposition, i.e., f x denotes
the application of function f to the argument x. The type α ⇒ α ⇒ bool is used
to encode binary relations. (An alternative would have been to use (α × α) set.
However, the two representations are mostly equivalent and the former is used
for many binary relations of Isabelle/HOL’s library.)

Further, the following constants from Isabelle/HOL’s library are freely used:
◦::(α ⇒ β) ⇒ (γ ⇒ α) ⇒ γ ⇒ β, where f ◦ g denotes the functional composi-

tion of the two functions f and g, i.e., f ◦ g
def
= λx . f (g x), and sometimes f ϕ is

used instead of f ◦ ϕ for brevity (especially when f denotes an infinite sequence
and ϕ is an index-mapping); fst ::α × β ⇒ α and snd ::α × β ⇒ β extract the
first and second component of a pair, respectively; set ::α list ⇒ α set , where
set xs is the set of elements occurring in the list xs ; []::α list, the empty list;
·::α ⇒ α list ⇒ α list , where x ·xs denotes “consing” the element x in front of
the list xs ; and @::α list ⇒ α list ⇒ α list , where xs @ ys denotes the concate-
nation of the two lists xs and ys. Note that since · and @ are both right-associative
and have the same priority, xs @ y·ys is the same as xs @ (y·ys) and denotes a
list that is constructed by inserting the element y between those of xs and ys.

When stating formulas, sometimes Isabelle specific notation is used. Then,
∧

denotes universal quantification and =⇒ (right-associative) implication. More-
over, nested implication, like A =⇒ B =⇒ C, is abbreviated to [[A; B]] =⇒ C .

Let $ be a binary relation and A a set. The relation $ is reflexive on A,
written reflA($), iff ∀ x∈A. x $ x ; and transitive on A, written transA($), iff
∀ x∈A. ∀ y∈A. ∀ z∈A. x $ y ∧ y $ z −→ x $ z .

Infinite sequences over elements of type α are represented by functions of type
nat ⇒ α. A binary relation $ is transitive on a sequence f, written transf ($),
iff ∀ i j . i < j −→ f i $ f j . A sequence f is good w.r.t. $, written good�(f), iff
∃ i j . i < j ∧ f i $ f j. If a sequence is not good, it is called bad.

Certified Kruskal’s Tree Theorem 181

The author follows Veldman [11] and Vytiniotis et al. [12] in basing wqos on
almost-full relations (which are basically wqos without transitivity). The main
reason for doing so, is that all the properties of interest also hold for almost-full
relations and are easily extended to wqos.

The relation $ is almost-full on A, written afA($), iff all infinite sequences

over elements of A are good, i.e., afA($)
def
= ∀ f . (∀ i . f i ∈ A) −→ good�(f). Note

that every almost-full relation is necessarily reflexive (see, e.g., [13, Lemma 1]).
Let $ be almost-full on A. If in addition $ is transitive on A, then $ is a wqo

on A (equivalently, A is wqo’d by $), written wqoA($).

3 Nash-Williams’ Proof

Before a detailed account of the formalization is given (in the sections to come),
let us review Nash-Williams’ original proofs. The purpose of this section is to
familiarize the reader with the overall structure of those proofs, highlight differ-
ences to the approach of this paper, and indicate places where the formalization
requires additional work – marked by (D1)–(D3). Since the full proofs are not
reproduced, a copy of Nash-Williams’ paper [2] might be useful for reference.

Nash-Williams starts by giving a proof of Dickson’s lemma: If A and B are
wqo’d, then so is A×B [2, Lemma 1]. Assume there are two infinite sequences a
(over elements of A) and b (over elements of B) that are both known to be good.
Then, witnesses i and j such that i < j and (a i , b i) $ (a j , b j) have to be
constructed. First, construct a subsequence aϕ of a, such that aϕ i $1 aϕ (i+1)
for all i. Then, since b is good, indices i < j with bϕ i $2 bϕ j are obtained. At
this point, in order to obtain aϕ i $1 aϕ j and thus (aϕ i , bϕ i) $ (aϕ j , bϕ j),
transitivity of $1 is essential (refer to theory Dickson-with-Transitivity for a
formalization of Nash-Williams’ original proof, where TRANS marks the step
in which transitivity is applied). In contrast, the presented formalization proves
Dickson’s lemma for almost-full relations based on an existing formalization of
Ramsey’s theorem, thus avoiding the transitivity requirement on $1.

Next comes a proof of Higman’s lemma: If A is wqo’d, then A∗ is wqo’d
by homeomorphic embedding on lists [2, Lemma 2]. Assume that the statement
is false. Then construct a bad sequence in which every element is as small as
possible, i.e., a bad sequence such that replacing any given element by a smaller
one, the resulting sequence would be good. The construction is described roughly
as follows (where Ao is used to denote the set of “objects” built over elements
of A; which might refer to the set of finite subsets, the set of finite lists, the set
of finite trees, . . . in a concrete case):

Select an x1 ∈ Ao such that x1 is the first term of a bad sequence of
members of Ao and |x1| is as small as possible. Then select an x2 such
that x1, x2 (in that order) are the first two terms of a bad sequence of
members of Ao and |x2| is as small as possible [. . .]. Assuming the axiom
of choice, this process yields a bad sequence [. . .]

182 C. Sternagel

In the formalization, this construction is realized by a recursive definition (as-
suming the existence of an appropriate choice-function). But the definition alone
is not enough. It has to be shown that

the definition is well-defined and results in a minimal bad sequence (D1)

where well-definedness relies on the existence of the mentioned choice-function.
This is the first place where the formalization requires drastically more details
than the original proof. Moreover, it constitutes the most technical part of the
formalization.

For now, assume that there is a minimal bad sequence m (which is a se-
quence of finite lists). Let h be the sequence of heads of m and t the sequence
of corresponding tails. It is then shown that

there is no ϕ such that tϕ is bad and ϕ 0 ≤ ϕ i for all i, (S1)

since otherwise m would not be minimal. Furthermore, let T = {t i | i ≥ 0}.
Then it is stated, without proof, that

a bad sequence over T indicates a sequence of shape (S1). (D2)

In the formalization the corresponding proof is mandatory. From the above it
follows that T is wqo’d, since there are no bad sequences. Let H = {h i | i ≥ 0},
which is wqo’d sinceA is. Then, by Dickson’s lemma,H×T is wqo’d. Hence, there
are i and j such that i < j and (h i , t i) $ (h j , t j), which implies m i $ m j
and thus contradicts the badness of m.

Finally, for the tree theorem the proof structure is very similar to the pre-
vious one (only using finite trees instead of finite lists and homeomorphic em-
bedding on trees instead of homeomorphic embedding on lists). Assume that
the statement is false. Again a minimal bad sequence m has to be constructed.
Instead of heads and tails of lists, now roots and direct subtrees (which are also
called successors) of trees are considered. Let r and s denote the sequences of
roots and successors of m and S i be the set of successors of the i-th tree, i.e.,
S i = {x | x ∈ set (s i)} (note that s is a sequence of finite lists). Then it is
shown that

there is no bad sequence t, such that t i ∈ Sϕ i and ϕ 0 ≤ ϕ i for all i, (S2)

since otherwise m would not be minimal. Let S ′ = {t | ∃ i . t ∈ set (s i)}. Then
it is stated, without proof, that

a bad sequence over S ′ indicates a sequence of shape (S2). (D3)

Again the formalization needs to provide the corresponding proof.

4 Dickson’s Lemma

In essence, the formalization is about preservation of wqo’dness by certain type
constructors (Dickson’s lemma for pairs, Higman’s lemma for lists, and the tree

Certified Kruskal’s Tree Theorem 183

theorem for trees). For each of these constructors, a way to extend the orders
on the base types to an order on the newly constructed type is required. For
Dickson’s lemma the following is used: Given two orders$1 and$2, the pointwise

order on pairs is defined by (a1, a2) $ (b1, b2)
def
= a1 $1 b1 ∧ a2 $2 b2.

Before proving Dickson’s lemma (i.e., that the pointwise combination of orders
preserves wqo’dness when forming Cartesian products), let us have a look at
how Ramsey’s theorem allows us to disregard transitivity (and hence prove a
similar lemma already for almost-full relations rather than wqos; see theory
Almost-Full-Relations for the formal proof development).

The following variant of Ramsey’s theorem (which is part of Isabelle/HOL’s
library; ~~/src/HOL/Library/Ramsey.thy) is used:

[[infinite Z ; ∀ i∈Z . ∀ j∈Z . i �= j −→ h {i , j} < n]]
=⇒ ∃ I c. I ⊆ Z ∧ infinite I ∧ c < n ∧ (∀ i∈I . ∀ j∈I . i �= j −→ h {i , j} = c)

In words: Let Z be an infinite set and let h be a function that, given a two-
element subset of Z, returns a natural number smaller than n. Then there is an
infinite subset I of Z and a natural number c smaller than n such that h encodes
all two-element subsets of I by c. More abstractly, assume there is an infinite
graph with nodes from Z such that every edge has exactly one of n colors. Then
there is an infinite subgraph with nodes from I and all edges of color c.

Using Ramsey’s theorem, the auxiliary fact that whenever the union of two
binary relations is transitive on an infinite sequence, then there is an infinite
subsequence on which either the first or the second relation is transitive, is
shown.

Lemma 1. transf ($1 ∪ $2) =⇒ ∃ϕ. transϕ(<) ∧ (transfϕ($1) ∨ transfϕ($2))

Here ϕ is a strictly monotone (since < is transitive on it) mapping from natural
numbers to natural numbers. Hence, f ϕ is a subsequence of f whose elements
are in the same relative order.

Proof (of Lemma 1). Assume transf ($1 ∪ $2), which means that

for all i < j, either f i $1 f j or f i $2 f j. ()

Then colorize the set of two-element subsets {i , j} of the natural numbers using
h, defined by, if i < j and f i $1 f j, then h {i , j} is 0 (white), otherwise 1
(black). Now Ramsey’s theorem can be applied (since the set of natural numbers
is infinite and there are exactly two colors). Thus, an infinite set I of natural
numbers and a color c such that for all i �= j in I, the corresponding color h {i , j}
is c, is obtained. Since I is well-ordered, there is a function ϕ::nat ⇒ nat that
enumerates its elements in increasing order, i.e., transϕ(<). Consider the two
cases (for arbitrary but fixed i < j):

– case (c is white). Since ϕ is strictly monotone, also ϕ i < ϕ j. Therefore,
h {ϕ i , ϕ j} = 0 , and thus f ϕ i $1 f ϕ j.

– case (c is black). Again, ϕ i < ϕ j. Thus h {ϕ i , ϕ j} = 1, which together
with () implies f ϕ i $2 f ϕ j. ��

184 C. Sternagel

Using this auxiliary fact, Dickson’s lemma for almost-full relations is shown.

Lemma 2. [[afA1($1); afA2($2)]] =⇒ afA1×A2($)

Proof. Assume afA1($1) and afA2($2). Moreover, to derive a contradiction, as-
sume ¬ afA1×A2($). Then there is some sequence f on A1×A2 which is bad. Let
x � y and x � y denote fst x �$1 fst y and snd x �$2 snd y, respectively. Since f
is bad, also ∀ i j . i < j −→ f i � f j ∨ f i � f j, i.e., transf (� ∪ �). Then, by
Lemma 1, a strictly monotone mapping ϕ such that transfϕ(�) or transfϕ(�)
is obtained. In the first case fst ◦ f ϕ is bad and in the second snd ◦ f ϕ is bad,
both contradicting the assumptions. ��

The previous lemma trivially extends to wqos.

Dickson’s Lemma. [[wqoA1($1); wqoA2($2)]] =⇒ wqoA1×A2($)

Proof. Assuming transitivity of $1 on A1 and $2 on A2, it is trivial to show
transitivity of $ on A1 ×A2. With Lemma 2, this yields Dickson’s lemma. ��

5 Minimal Bad Sequences

Since the minimal bad sequence argument is needed for Higman’s lemma as well
as the tree theorem, a general construction that is applicable to both cases is
provided (see theory Minimal-Bad-Sequences for the formal proof development).
To this end, Isabelle/HOL’s locale mechanism is employed which allows us to
define new constants and prove facts using an “interface” of hypothetical con-
stants and assumptions. As long as the assumptions can be discharged, the new
constants and proven facts can be instantiated to arbitrary special cases.

Below, the locale mbs which captures the construction of a minimal bad se-
quence over elements from a given set is described (an early version, that could
be simplified drastically since, was presented at the Isabelle Users Workshop in
2012 [13]). The locale fixes the following constants:

– The set of elements A, and
– a binary relation � that is used to compare the structural size of elements.

Furthermore, it has the assumptions:

wfA(�) (M1)

[[x � y; y � z]] =⇒ x � z (M2)

That is, the structural comparison is well-founded on A (M1) (thus, it makes
sense to talk about minimal elements) and transitive (M2). It turns out that
these ingredients are enough to construct – under the assumption that there is
a bad sequence – a minimal bad sequence. Informally, an infinite bad sequence
is a minimal bad sequence, when replacing any element by a smaller one, turns
it into a good sequence.

Certified Kruskal’s Tree Theorem 185

Definition 1 (Minimality). More formally, let an infinite sequence f be min-
imal at position n, written minn

�(f), iff

∀ g. (∀ i . g i ∈ A) ∧ (∀ i<n. g i = f i) ∧ g n � f n −→ good�(g)

A sequence is minimal if it is minimal at every position.

In words, the definition of minn
�(f) is: for every sequence g whose initial part up

to (but not including) position n coincides with f and where the n-th element
of g is strictly smaller than the n-th element of f ; g is good. This definition
facilitates the construction of a minimal bad sequence from a given bad sequence
by iterating over its positions: elements before the current position stay fixed and
at the current position an element that is as small as possible is inserted.

As indicated above, a given sequence is modified iteratively. To this end the
following auxiliary lemma is employed (which shows that from a sequence that
is minimal at position n, a sequence that is also minimal at the next position
n+1, can be obtained):

Lemma 3. [[∀ i . f i ∈ A; bad�(f); minn
�(f)]]

=⇒ ∃ g. (∀ i≤n. g i = f i) ∧
g (n+1) � f (n+1) ∧ (∀ i . g i ∈ A) ∧ bad�(g) ∧ minn+1

� (g)

Proof. Since � is well-founded on A, the induction schema

[[x ∈ A;
∧
x . [[x ∈ A;

∧
y. [[y ∈ A; y � x]] =⇒ P y]] =⇒ P x]] =⇒ P x

is valid. Assume ∀ i . f i ∈ A, bad�(f), and minn
�(f). Let ∃ g. C g f (f (n+1))

abbreviate the conclusion of Lemma 3 (parametrized over the sequences g and
f and the element on which induction will be applied). In order for the later
induction to go through, a slightly stronger statement than Lemma 3 is shown.
To this end, let I x abbreviate

∀ f . x = f (n+1) ∧ (∀ i . f i ∈ A) ∧ bad�(f) ∧ minn
�(f) −→ (∃ g. C g f x)

(i.e., generalize over f and let x – on which well-founded induction will be applied
– equal the n+1-th element of f).

For an arbitrary but fixed x, let x = f (n+1). Hence, from the assumption
∀ i . f i ∈ A it follows that x ∈ A. Now the above induction schema is used to
prove (discharging its first assumption by x ∈ A):

∧
x . x = f (n+1) =⇒ I x.

Thus, x ∈ A for some arbitrary but fixed x, and
∧
y. [[y ∈ A; y � x]] =⇒ I y

is the induction hypothesis (IH). Then show I x.
To this end, assume x = f (n+1), ∀ i . f i ∈ A, minn

�(f), and bad�(f) for

some arbitrary but fixed f. Now either minn+1
� (f), concluding the proof, or there

is a sequence h such that

h (n+1) � f (n+1) (1)

∀ i<n+1. h i = f i (2)

∀ i . h i ∈ A (3)

bad�(h) (4)

186 C. Sternagel

employing Definition 1. From (1), (3), and the IH, obtain I (h (n+1)). Moreover,
from (2) and minn

�(f) it follows that minn
�(h), which together with (4) yields a

sequencem that satisfies C m h (h (n+1)). Additionally, from (1) and transitivity
of � it follows that m (n+1) � x. Combining the previous facts, we obtain
∃m. C m f x, thus finishing the prove of

∧
x . x = f (n+1) =⇒ I x. Choosing

x = f (n+1) (i.e., discharging the first assumption by reflexivity) and using the
initial assumptions yields ∃ g. C g f (f (n+1)). ��

For a step-wise construction of a minimal bad sequence it remains to be shown
that from an arbitrary bad sequence, one that is minimal at position 0 can be
obtained. This is taken care of by the next lemma.

Lemma 4. [[∀ i . f i ∈ A; bad�(f)]] =⇒ ∃ g. (∀ i . g i ∈ A) ∧ min0
�(g) ∧ bad�(g)

Proof. Similar structure to the proof of Lemma 3 (but much simpler). ��

At this point it can be shown that if a relation is not almost-full, then there
is a minimal bad sequence, thereby taking care of (D1).

Theorem 1. ¬ afA($) =⇒ ∃m. bad�(m) ∧ (∀n. minn
�(m)) ∧ (∀ i . m i ∈ A)

Proof. Assume ¬ afA($). Then there is a bad sequence f, i.e., ∀ i . f i ∈ A and
bad�(f). From Lemma 4 a bad sequence g that is minimal at its first position
is obtained. Then, with Lemma 3, together with the axiom of choice,3 a choice
function ν such that

∀ f n.
(∀ i . f i ∈ A) ∧ minn

�(f) ∧ bad�(f) −→
(∀ i . ν f n i ∈ A) ∧
(∀ i≤n. ν f n i = f i) ∧
ν f n (n+1) � f (n+1) ∧ bad�(ν f n) ∧ minn+1

� (ν f n)

is obtained. That is, ν f n provides a witness to Lemma 3, provided that f and
n satisfy its assumptions.

Then define an auxiliary sequence (of sequences) m ′ by m ′ 0 = g and
m ′ (n+1) = ν (m ′ n) n. The desired minimal bad sequence m, is defined to
be λi . m ′ i i (i.e., the “diagonal” of the auxiliary sequence m ′). Of course, it
has to be proven that m actually is a minimal bad sequence. To this end, the
following statements are simultaneously shown by induction on n (i.e., they are
true for any n):

∀ i . m ′ n i ∈ A ∀ i≤n. min i
�(m ′ n)

∀ i≤n. m i = m ′ n i bad�(m ′ n)

From this bad�(m) can be shown as follows: Assume that m is not bad, then
there are indices i and j, such that m i $ m j ; but then also m ′ j i $ m ′ j j,
contradicting bad�(m ′ j). Moreover, from ∀n i . i ≤ n −→ mini

�(m ′ n) it is
easy to show that ∀n. minn

�(m). Ultimately, from ∀n i . m ′ n i ∈ A, it follows
that ∀ i . m i ∈ A, concluding the proof. ��
3 In Isabelle/HOL: ∀ x . ∃ y . Q x y =⇒ ∃ f . ∀ x . Q x (f x).

Certified Kruskal’s Tree Theorem 187

6 Higman’s Lemma

Before Higman’s lemma for almost-full relations is stated formally, a construction
that extends a given order on elements to an order on lists is required: homeo-
morphic embedding. Furthermore, a kind of structural comparison between lists
as well as the set of lists built over a given set of elements is needed. The set of
lists over elements from a set A, written A∗, is defined inductively:

[] ∈ A∗
x ∈ A xs ∈ A∗

x ·xs ∈ A∗

The list xs is a proper suffix of the list ys iff ∃ us . ys = us @ xs ∧ us �= [] (writ-
ten xs < ys). Homeomorphic embedding on lists, for a given base order $, is
defined inductively by the rules

[] $∗ ys

xs $∗ ys

xs $∗ y·ys
x $= y xs $∗ ys

x ·xs $∗ y·ys
where R= denotes the reflexive closure of R. Note that this definition makes
$∗ reflexive for arbitrary $. For reflexive (and thus also for almost-full) $, the
assumption x $= y can be replaced by x $ y. Intuitively, it might be easier to
think about homeomorphic embedding on lists as follows: a list xs is embedded
in a list ys iff xs can be obtained from ys by dropping elements and replacing
elements with arbitrary smaller ones (w.r.t. the base order). An important special
case of embedding is =∗, which is called the sublist relation. Then, xs =∗ ys iff
the list xs can be obtained from the list ys by dropping elements.

Using the definitions above, the mbs locale can be instantiated as follows (for
some arbitrary relation $): use A∗ for A and < for �. The assumptions of the
mbs locale are discharged by the following facts:

wfA∗(<) [[xs < ys ; ys < zs]] =⇒ xs < zs

Thus,

¬ afA∗($∗) =⇒ ∃m. bad�∗(m) ∧ (∀n. minn
�∗(m)) ∧ (∀ i . m i ∈ A∗)

which allows us to prove Higman’s lemma for almost-full relations.

Lemma 5. afA($) =⇒ afA∗($∗)

Proof. Assume afA($) but ¬ afA∗($∗), for the sake of a contradiction. Then
there is a bad sequence f. This, in turn, implies the existence of a minimal bad
sequence m. All lists in m are non-empty (since otherwise m would be good).
Hence, there are sequences h and t of heads and tails of m (i.e., m i = h i ·t i).

First, it is shown that there is no index-mapping ϕ such that ϕ 0 ≤ ϕ i
for all i and the sequence tϕ is bad. Assume, to the contrary, that such a
ϕ exists. Let n abbreviate ϕ 0 and c be the combination of m with t, de-

fined by c i
def
= if i < n then m i else t (ϕ (i − n)) (i.e., c is the same as tϕ, but

prepended by the first n elements of m). Then c is bad, since otherwise a con-
tradiction is obtained as follows: Assume c is good. Then there are i < j such
that c i $∗ c j . Now, analyze the following cases:

188 C. Sternagel

– case (j < n). Then m i $∗ m j, contradicting badness of m.
– case (n ≤ i). Let i ′ = i − n and j ′ = j − n. Then i ′ < j ′ and tϕ i ′ $∗ tϕ j ′,

contradicting badness of tϕ.
– case (i < n and n ≤ j). Let j ′ = j − n. Then t (ϕ j ′) ≤ m (ϕ j ′) (since the

tail of a non-empty list is obviously also a suffix) and m i $∗ t (ϕ j ′) (from
c i $∗ c j). Moreover, m i $∗ m (ϕ j ′) (since the suffix relation is a special
case of embedding and embedding is transitive). Together with i < ϕ j ′, this
contradicts the badness of m.

Thus, c is bad. Furthermore, ∀ i<n. c i = m i and c n < m n, and thus c is
good (since m is minimal): A contradiction, concluding the proof of

�ϕ. (∀ i . ϕ 0 ≤ ϕ i) ∧ bad�∗(tϕ). ()

Let H and T denote the sets of heads and tails of the lists in m, respectively,
i.e., H = {h i | i ≥ 0} and T = {t i | i ≥ 0}. Obviously $ is almost-full on H,
since H ⊆ A and $ is almost-full on A. Moreover, since every bad sequence over
T would admit a subsequence of the shape in (), the relation $∗ is almost-full
on T. With Lemma 2, it is shown that the pointwise combination of $ and $∗

is almost-full on H ×T . Thus, there are i < j with h i $= h j and t i $∗ t j. By
definition of $∗, this implies m i $∗ m j, contradicting the badness of m. ��
But wait a moment, “since every bad sequence over T . . . ” above, is exactly
(D2), for which a proof has to be provided.

Lemma 6. [[refl{t i|i≥0}($); ∀ i . f i ∈ {t i | i ≥ 0}; bad�(f)]]
=⇒ ∃ϕ. (∀ i . ϕ 0 ≤ ϕ i) ∧ bad�(tϕ)

Proof. Assume that $ is reflexive (on {t i | i ≥ 0}), and f is a bad sequence
(over {t i | i ≥ 0}). First note that for every i, there exists a j such that f i =
t j. By the axiom of choice, an index-mapping ϕ ′ with f i = tϕ ′ i for all i is
obtained. Since f is bad, also tϕ ′ is bad. Next it is shown that

for every i there is a j > i such that ϕ ′ 0 ≤ ϕ ′ j. ()

Assume otherwise, then there is some i such that for all j > i the index-mapping
satisfies ϕ j < ϕ ′ 0 . Thus, the image of ϕ ′ under {j | i < j} is finite, whereas
{j | i < j} itself is infinite. By the pigeonhole principle, a k > i is obtained such
that there are infinitely many j > i with ϕ ′ j = ϕ ′ k. But then, there is some
l > k for which ϕ ′ l = ϕ ′ k . Since $ is reflexive and k < l, this implies that tϕ ′

is good; a contradiction. Using () and the axiom of choice, an index-mapping
ψ ′ such that i < ψ ′ i and ϕ ′ 0 ≤ ϕ ′ (ψ ′ i) for all i, is obtained. Now, let ψ

abbreviate λi . ψ ′i 0 (the i-fold application of ψ ′ to 0) and ϕ abbreviate ϕ ′ ◦ ψ.
Then, ψ is strictly monotone and ϕ 0 ≤ ϕ i for all i. Moreover, since tϕ ′ is bad
and ψ is monotone, also tϕ is bad. This concludes the proof. ��
Higman’s Lemma. wqoA($) =⇒ wqoA∗($∗)

Proof. For transitivity of $∗ (under the assumption that $ is transitive), refer
to lemma list-hembeq-trans in theory Sublist. Together with Lemma 5, this yields
Higman’s lemma. ��

Certified Kruskal’s Tree Theorem 189

7 The Tree Theorem

The tree theorem is for finite trees, what Higman’s lemma is for finite lists.
However, whereas for finite lists, their representation inside Isabelle/HOL is
quite unambiguous and the existing data type is generally applicable; this is not
so much the case for finite trees. Consider the following two data types

datatype α t = Node α (α t list)

datatype α t ′ = Empty | Node α (α t ′ list)

or the type of first-order terms

datatype (α, β) term = Var β | Fun α ((α, β) term list)

also a kind of finite tree (and more importantly, one of the types to which the tree
theorem is applied, in order to formalize the fact that the Knuth-Bendix order
is a simplification order [8]). Restricting the tree theorem to a specific data type
would strongly restrict its applicability. Therefore, again Isabelle/HOL’s locale
mechanism is employed. This time, for a locale finite-tree that fixes the following
constants (see theory Finite-Tree for details):

– A function mk ::β ⇒ α list ⇒ α that is used to construct a finite tree from
a given node and a given list of finite trees.

– A function root ::α ⇒ β that extracts the root node from a given tree.
– As well as a function succs ::α ⇒ α list that extracts the list of direct subtrees

(successors) from a given tree.

These constants are required to satisfy the following assumptions (thereby turn-
ing mk into kind of a data type constructor with extractors root and succs):

root (mk f ts) = f (F1)

succs (mk f ts) = ts (F2)

(mk f ss = mk g ts) = (f = g ∧ ss = ts) (F3)

As opposed to a real data type, the above assumptions do not guarantee that
all finite trees are built from a finite number of applications of mk. Thus, the
set of finite trees over nodes from A, written T (A), is defined inductively by:

f ∈ A ∀ t∈set ts . t ∈ T (A)

mk f ts ∈ T (A)

The notion of structural decrease, as needed to instantiate the mbs locale, is
provided by the subtree relation:

t ∈ set ts

t � mk f ts

s � t t ∈ set ts

s � mk f ts

190 C. Sternagel

Where a tree s is a proper subtree of another tree t, if it is either a direct subtree
of t itself or a proper subtree of one of the direct subtrees of t.

Homeomorphic embedding on finite trees is also defined inductively by:

t ∈ set ts

t $emb mk f ts

s $emb t t $emb u

s $emb u

s $emb t

mk f (ss1 @ s ·ss2) $emb mk f (ss1 @ t ·ss2)
f $= g ss =∗ ts

mk f ss $emb mk g ts

The first three rules are easy: homeomorphic embedding extends the subtree
relation, is transitive, and is closed under contexts. The last rule states that the
nodes of a tree may be replaced by smaller ones (w.r.t. $) and that arbitrary
successors may be dropped. From this definition, the following property can be
shown:

Lemma 7. [[f $= g; ss $emb
∗ ts]] =⇒ mk f ss $emb mk g ts

Proof. This property seems obvious, as $emb is reflexive, transitive, and closed
under contexts. However, it turns out to be surprisingly tedious to formalize (or
at least the author did not find an elegant way). To spare the reader some tedium
the details (to be found in lemma tree-hembeq-list-hembeq of theory Finite-Tree)
are skipped. ��

To instantiate the mbs locale, the following facts (see [6] for proofs) are shown:

wfT (A)(�) [[s � t ; t � u]] =⇒ s � u

Thus,

¬ afT (A)($emb) =⇒ ∃m. bad�emb
(m) ∧ (∀n. minn

�emb
(m)) ∧ (∀ i . m i ∈ T (A))

Finally, the tree theorem for almost-full relations can be stated and proved
(see theory Kruskal for details).

Theorem 2. afA($) =⇒ afT (A)($emb)

Proof. Assume afA($) but ¬ afT (A)($emb) for the sake of a contradiction. Then
there is a bad sequence and thus a minimal bad sequence m. All trees in m are
in the set T (A) (and thus non-empty). Hence, there are sequences r and s of
roots and successor lists of the trees in m (i.e., m i = mk (r i) (s i)).

First it is shown that there is no sequence of trees t and index-mapping ϕ such
that t i ∈ set (sϕ i) (i.e., the sequence t selects an arbitrary successor of mϕ i as
its i-th element) and ϕ 0 ≤ ϕ i for all i, and t is bad. Assume, to the contrary, that

such t and ϕ exist. Let n abbreviate ϕ 0 and c be the sequence defined by c i
def
= if i

< n then m i else t (i − n). Then c is bad, since assuming that it was good results
in a contradiction by a similar case analysis conducted in the proof of Lemma 5
above. Furthermore, ∀ i<n. c i = m i and c n � m n, and thus c is good (since m
is minimal). This contradiction concludes the proof of

Certified Kruskal’s Tree Theorem 191

� t ϕ. (∀ i . t i ∈ set (sϕ i) ∧ ϕ 0 ≤ ϕ i) ∧ bad�emb
(t). ()

Let R and S denote the sets of roots and successor lists of trees in m, respec-
tively, i.e., R = {r i | i ≥ 0} and S = {s i | i ≥ 0}). Clearly, $ is almost-full on
R (since R ⊆ A). Let S ′ abbreviate {t | ∃ i . t ∈ set (s i)}. Every bad sequence
over S ′ would admit a sequence of the shape in (), thus $emb is almost-full on
S ′. From Lemma 5, together with S ⊆ S ′∗, it follows that $emb

∗ is almost-full on
S. With Lemma 2, it follows that the pointwise combination of $ and $emb

∗ is
almost-full on R×S. Thus, there are i < j such that r i $= r j and s i $emb

∗ s j ,
which, employing Lemma 7, implies that m i $emb m j and thus contradicts the
badness of m. ��

Note that “Every bad sequence over S ′ . . . ” above, corresponds to (D3). The
corresponding proof is required.

Lemma 8. Let $ be a binary relation and X be the set {t | ∃ i . t ∈ set (s i)}
for a sequence of lists s. Then,

[[reflX($); ∀ i . f i ∈ X ; bad�(f)]]
=⇒ ∃ t ϕ. (∀ i . t i ∈ set (sϕ i) ∧ ϕ 0 ≤ ϕ i) ∧ bad�(t)

Proof. The proof is structured similarly to the proof of Lemma 6 but slightly
more involved, due to the extra indirection via list elements. For details, refer
to lemma bad-of-special-shape ′ in theory Kruskal-Auxiliaries of [6]. ��

Kruskal’s Tree Theorem. wqoA($) =⇒ wqoT (A)($emb)

Proof. Theorem 2 and transitivity of $emb yield the tree theorem. ��

8 Conclusions and Related Work

An Isabelle/HOL formalization of three important results from combinatorics
was presented: Dickson’s lemma, Higman’s lemma, and Kruskal’s tree theorem.

Parts of the presented formalization were used by Wu et al. [14] to formalize
a proof of: For every language A, the languages of sub- and superstrings of A
are regular. (Details are presented in a submitted journal version of [15].)

Moreover, the presented formalization of the tree theorem is employed for
a proof that the Knuth-Bendix order is a simplification order [8]. To this end,
actually a variant of the tree theorem as presented in this paper is needed – which
might be called the term theorem. The reason is that in the above mentioned
proof it is essential to consider arities of function symbols, whereas in Section 7,
a node in a tree is allowed to have an arbitrary (finite) number of successors.

It is left as future work to investigate whether the tedious induction in the
proof of Theorem 1 can be replaced by an invocation of Zorn’s lemma (and this
in turn, by an application of open induction [16,17], thereby hopefully giving also
insight into the computational content of the minimal bad sequence argument).

192 C. Sternagel

There are formalizations of Higman’s lemma in Isabelle/HOL by Berghofer
[18] and using other proof assistants by Murthy [19], Fridlender [20], Herbelin
[21], Seisenberger [22], and Mart́ın-Mateos et al. [23].

Since Berghofer’s work was also conducted using Isabelle/HOL, some com-
ments on the relation to the presented work are in order. First note that Berg-
hofer’s formalization is constructive (based on an earlier proof by Coquand and
Fridlender in an unpublished manuscript entitled A Proof of Higman’s Lemma by
Structural Induction). Furthermore, it is restricted to a two letter alphabet (and
Berghofer notes that “the extension of the proof to an arbitrary finite alphabet is
not at all trivial”). Also noteworthy is that the focus of Berghofer’s work is on
program extraction and the computational behavior of the resulting program.
In contrast, the presented work constitutes a formalization of Higman’s lemma
without restricting the alphabet, i.e., the alphabet may be infinite as long as it
is equipped with a wqo (which is always the case for finite alphabets).

An intuitionistic proof of Kruskal’s tree theorem is presented in [11]. However,
to the best of the author’s knowledge the presented work constitutes the first
formalization of the tree theorem in a proof assistant ever.

Acknowledgments. I thank Mizuhito Ogawa for helpful discussions on every-
thing related to the tree theorem, as well as enabling (together with the Austrian
Science Fund) my stay in Japan.

References

1. Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Trans. Amer. Math. Soc. 95(2), 210–225 (1960), doi:10.2307/1993287

2. Nash-Williams, C.S.J.A.: On well-quasi-ordering finite trees. Proc. Cambridge Phi-
los. Soc. 59(4), 833–835 (1963), doi:10.1017/S0305004100003844

3. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers withn
distinct prime factors. Amer. J. Math. 35(4), 413–422 (1913), doi:10.2307/2370405

4. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc.
s3-2(1), 326–336 (1952), doi:10.1112/plms/s3-2.1.326

5. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002),
doi:10.1007/3-540-45949-9

6. Sternagel, C.: Well-Quasi-Orders. In: Klein, G., Nipkow, T., Paulson, L.C. (eds.)
AFP (2012), http://afp.sf.net/devel-entries/Well_Quasi_Orders.shtml

7. Middeldorp, A., Zantema, H.: Simple termination of rewrite systems. Theor. Com-
put. Sci. 175(1), 127–158 (1997), doi:10.1016/S0304-3975(96)00172-7

8. Sternagel, C., Thiemann, R.: Formalizing Knuth-Bendix orders and Knuth-Bendix
completion. In: van Raamsdonk, F. (ed.) RTA 2013. LIPIcs, vol. 21, pp. 286–301,
Schloss Dagstuhl (2013), doi:10.4230/LIPIcs.RTA.2013287

9. Wenzel, M.: Isabelle/Isar – A Versatile Environment for Human-readable For-
mal Proof Documents. PhD thesis, Technische Universität München (2002),
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.pdf

10. Haftmann, F., Klein, G., Nipkow, T., Schirmer, N.: LATEX sugar for Isabelle docu-
ments (2013), http://isabelle.in.tum.de/dist/Isabelle2013/doc/sugar.pdf

http://afp.sf.net/devel-entries/Well_Quasi_Orders.shtml
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.pdf
http://isabelle.in.tum.de/dist/Isabelle2013/doc/sugar.pdf

Certified Kruskal’s Tree Theorem 193

11. Veldman, W.: An intuitionistic proof of Kruskal’s theorem. Arch. Math.
Logic 43(2), 215–264 (2004), doi:10.1007/s00153-003-0207-x

12. Vytiniotis, D., Coquand, T., Wahlstedt, D.: Stop when you are almost-full - ad-
ventures in constructive termination. In: Beringer, L., Felty, A. (eds.) ITP 2012.
LNCS, vol. 7406, pp. 250–265. Springer, Heidelberg (2012),
doi:10.1007/978-3-642-32347-8 17

13. Sternagel, C.: A locale for minimal bad sequences. In: IUW 2012, arxiv 1208.1366
(2012)

14. Wu, C., Zhang, X., Urban, C.: The Myhill-Nerode theorem based on regular ex-
pressions. In: Klein, G., Nipkow, T., Paulson, L.C. (eds.) AFP (2011),
http://afp.sf.net/entries/Myhill-Nerode.shtml

15. Wu, C., Zhang, X., Urban, C.: A formalisation of the Myhill-Nerode theorem based
on regular expressions (proof pearl). In: van Eekelen, M., Geuvers, H., Schmaltz,
J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 341–356. Springer, Heidelberg
(2011), doi:10.1007/978-3-642-22863-6 25

16. Raoult, J.C.: Proving open properties by induction. Inform. Process. Lett. 29(1),
19–23 (1988), doi:10.1016/0020-0190(88)90126-3

17. Ogawa, M., Sternagel, C.: Open Induction. In: Klein, G., Nipkow, T., Paulson, L.C.
(eds.) AFP (2012), http://afp.sf.net/devel-entries/Open_Induction.shtml

18. Berghofer, S.: A constructive proof of Higman’s lemma in Isabelle. In: Berardi, S.,
Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 66–82. Springer,
Heidelberg (2004), doi:10.1007/978-3-540-24849-1 5

19. Murthy, C.R.: Extracting Constructive Content from Classical Proofs. PhD thesis,
Cornell University (1990), http://hdl.handle.net/1813/6991

20. Fridlender, D.: Higman’s lemma in type theory. In: Giménez, E., Paulin-Mohring,
C. (eds.) TYPES 1996. LNCS, vol. 1512, pp. 112–133. Springer, Heidelberg (1996),
doi:10.1007/BFb0097789

21. Herbelin, H.: A program from an A-translated impredicative proof of Higman’s
lemma (1994), http://coq.inria.fr/pylons/contribs/view/HigmanNW/v8.3

22. Seisenberger, M.: On the Constructive Content of Proofs. PhD thesis, LMUMunich
(2003), http://nbn-resolving.de/urn:nbn:de:bvb:19-16190

23. Mart́ın-Mateos, F.J., Ruiz-Reina, J.L., Alonso, J.A., Hidalgo, M.J.: Proof pearl:
A formal proof of Higman’s lemma in ACL2. J. Autom. Reason. 47(3), 229–250
(2011), doi:10.1007/s10817-010-9178-x

http://afp.sf.net/entries/Myhill-Nerode.shtml
http://afp.sf.net/devel-entries/Open_Induction.shtml
http://hdl.handle.net/1813/6991
http://coq.inria.fr/pylons/contribs/view/HigmanNW/v8.3
http://nbn-resolving.de/urn:nbn:de:bvb:19-16190

Extracting Proofs from Tabled Proof Search�

Dale Miller1 and Alwen Tiu2

1 INRIA-Saclay & LIX/École Polytechnique
2 Research School of Computer Science, The Australian National University

& School of Computer Engineering, Nanyang Technological University

Abstract. We consider the problem of model checking specifications in-
volving co-inductive definitions such as are available for bisimulation. A
proof search approach to model checking with such specifications often
involves state exploration. We consider four different tabling strategies
that can minimize such exploration significantly. In general, tabling in-
volves storing previously proved subgoals and reusing (instead of reprov-
ing) them in proof search. In the case of co-inductive proof search, tables
allow a limited form of loop checking, which is often necessary for, say,
checking bisimulation of non-terminating processes. We enhance the no-
tion of tabled proof search by allowing a limited deduction from tabled
entries when performing table lookup. The main problem with this en-
hanced tabling method is that it is generally unsound when co-inductive
definitions are involved and when tabled entries contain unproved en-
tries. We design a proof system with tables and show that by managing
tabled entries carefully, one would still be able to obtain a sound proof
system. That is, we show how one can extract a post-fixed point from
a tabled proof for a co-inductive goal. We then apply this idea to the
technique of bisimulation “up-to” commonly used in process algebra.

1 Introduction

Model checking and theorem proving are usually considered two distinct tech-
niques in formal verification: the former is concerned mainly with satisfiability
in a given model while the latter is concerned mainly with provability (e.g.,
validity in all models). Viewed algorithmically, model checking can be loosely
characterized as a model exploration technique (e.g., explorations of states in a
transition systems, worlds in a Kripke structure, etc). We adopt this view here.
When inference and proof are enriched to contain flexible treatments of (least
and greatest) fixed points, model checking can be seen as deduction. As such,
the model checkers can be expected to output proof certificates justifying their
completed state explorations in a manner similar to what one might expect to
have output from automatic or interactive theorem provers.

� We thank the anonymous referees for their helpful comments. The first author has
been supported by the ERC Advanced Grant ProofCert and the second author has
been supported by the ARC Discovery Grant DP110103173.

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 194–210, 2013.
c© Springer International Publishing Switzerland 2013

Extracting Proofs from Tabled Proof Search 195

In this paper, formal proofs will be based on the Linc sequent calculus [15,17]
(see Section 2), which generalizes Gentzen’s sequent calculus LJ for intuition-
istic logic with induction and co-induction. We shall also focus on the Bedwyr
model checking implementation of part of Linc [1], particularly the form of tabled
deduction that is implemented in that system. Bedwyr has been most success-
fully applied to domains where model checking is performed on syntactically
rich domains (involving expressions taken from process calculi and program-
ming languages) instead of more simple state-like domains comprised of tuples
of booleans, small integers, etc.

1.1 Model Checking as Proof Search

In this paper, we address the problem of integrating (co-)inductively proved
theorems with model checking and we will use bisimulation as a specific and
important example. In the setting of Linc, bisimulation is defined as the greatest
fixed point of the following recursive definition.

bisim(P,Q)
ν
= [∀P ′∀A. P A−→ P ′ ⊃ ∃Q′. Q

A−→ Q′ ∧ bisim(P ′, Q′)] ∧

[∀Q′∀A. Q A−→ Q′ ⊃ ∃P ′. P
A−→ P ′ ∧ bisim(Q′, P ′)]

Bedwyr’s proof search mechanism will turn this definition into a state exploration
procedure. Such a direct and intimate connection between bisimulation defined
as a logical formula and an algorithmic state exploration algorithm provides at
least two important novelties. First, logical encodings may clarify some aspects of
the theories being encoded: for example, the difference between late bisimulation
and open bisimulation for the π-calculus can be explained as the distinction
between intuitionistic and classical logic, i.e., the presence (or absence) of the
excluded middle principle applied to the equality of names [16]. Second, since
model checking can be seen as building Linc proofs, a checker should be able to
output a formal proof certificate: for example, successful proof search in Bedwyr
for a query concerning bisimilarity of two processes or satisfiability of a modal
formulas by a process yields a Linc proof which can be extracted and checked
independently.

Although such logical encoding of state exploration techniques is in principle
straightforward, naive proof search techniques can yield inefficient algorithmic
search and proof certificates that are unacceptably large. One way to address
these problems is to use tabled deduction so that proved subgoals can be shared
and not reproved. For example, Bedwyr stores certain (sub)goals that have been
proved and attempts to reuse them when proving other (sub)goals. The tabling
of proved subgoals is not, however, sufficient to deal with model checking of po-
tentially non-terminating systems. For example, to prove bisimilarity of simple
processes such as !a and !(a+ a), a naive unfolding of the processes will not ter-
minate (of course, checking bisimilarity is undecidable so no fixed strategy will
yield bounded search in all cases). A more clever approach to showing bisim-
ulation is the bisimulation up-to technique [11], which can employ additional

196 D. Miller and A. Tiu

information about bisimulation in order to reduce the size of the relation (the
table) needed to demonstrate bisimilarity.

1.2 Four Tabling Strategies

In this paper, we examine how tabled deduction can be used to build a bisim-
ulation as well as a bisimulation-up-to. In particular, we examine four tabling
strategies in model checking that allow building smaller witnesses (ultimately,
proof certificates) of relationships on possibly non-terminating processes. In each
case, the main technical difficulties involves extracting an independently check-
able proof certificate: obviously, such extraction guarantees soundness of the
tabling method. As a case study, we show how bisimulation up-to techniques for
process calculi can be encoded in proof search in one of the tabling strategies,
and show how proof certificates can be generated.

Since we view model checking as a certain process for building a proof, at any
particular moment, the state of that process can be abstracted to be roughly
two items: the partial proof and the table. The first of these is a tree structure of
nodes that is labeled by atomic formulas. Nodes are either leaf nodes or interior
nodes and both of these classes can be further divided between open and closed.
A closed leaf node is one that has been proved and an open leaf node is one for
which no proof has yet been found. A closed interior node is one all of whose
descendant leaf nodes are closed and an open interior node is one with some
descendant leaf node that is open. The second component of the model checker’s
state, the table, is a set of node occurrences. We shall always allow a table to
contain closed leaf occurrences from the associated partial proof. We shall also
use the term history atom to describe a formula that labels an interior node.

Two independent choices are available in describing a tabling strategy: the first
choice is between allowing or not allowing history atoms into the table and the
second is allowing the table to infer an atom by simply checking its membership
in the table or by allowing a deduction from tabled atoms and some assumed set
of theories. As an example of this latter choice, consider a table that contains the
atomic statements (bisim(p1, p2)) and (bisim(p2, p3)). If the table is only used
to infer its members, we can infer these two atoms. If we have proved elsewhere
(using a proof assistant that understands (co-)induction) that the (bisim(·, ·))
relationship is transitive, then a table that incorporates that theorem could also
conclude (bisim(p1, p3)). More formally, if R is the set of atoms in a table and T
is a set of theories, then we are allowed to infer the atomic formula G from this
table if formula (R∧T) → G is provable. In this paper, we shall assume that T is
a set of hereditary Harrop (hH) formulas (formulas containing only conjunction,
implication, and universal quantifiers: these formulas subsume Horn clauses and
are basis of λProlog [7]). While in most of our examples, such hH formulas will
form a simple, decidable theory, we shall not assume a priori that theories are,
in fact, decidable.

Extracting Proofs from Tabled Proof Search 197

We identify the following four tabling strategies.

I History atoms are not tabled; the table only infers its members.

II History atoms are not tabled; the table uses theories to infer additional
atoms.

III History atoms can be tabled; the table only infers its members.

IV History atoms can be tabled; the table uses theories to infer additional
atoms.

The first two strategies yield proof certificates that simply use the cut rule: these
two strategies are always sound as long as the theory (in Strategy II) is known to
be valid, i.e., proved elsewhere using (co-)inductive techniques. Actually, Strat-
egy I collapses into Strategy II if the empty set is an allowed theory. Soundness
of these two strategies is not difficult to establish and it follows the work pre-
sented in [8]. Strategy III is sound only when the tabled entries are co-inductive
predicates: furthermore, a proof certificate can always be constructed and it will
be essentially a post-fixed point found within the table. When tabled entries are
restricted to co-inductive predicates, the last strategy corresponds to the bisim-
ulation up-to technique, as described in, say [10]. In this case, the theory T that
is used to expand the table no longer corresponds to a lemma in the meta logic.
They instead encode functions on relations, and soundness of a tabled proof in
this case depends on the soundness of these functions, i.e., whether they allow
one to construct a post-fixed point of a co-inductive definition. We shall focus
on strategy III and IV in this paper, but the soundness results for Strategy I
and II can be found in [9, Appendix B].

There is significant precedent in the literature related to the use of history
atoms to capture aspects of co-inductive proofs, notably works on cyclic proofs
for logics with induction and co-induction [14,4]. In particular, proof search
strategies similar to strategy III above have also been used in cyclic theorem
provers [3] and tabling methods in co-inductive logic programming (see e.g.
[5,13]). Soundness of cyclic proofs (inductive or co-inductive) is not difficult to
establish semantically and there are well known syntactic criteria for cyclic proof
systems to be sound, e.g., the notion of a progressing trace that dates back to
work on modal μ-calculus [18] and its first-order extensions [14]. However, there
are two main distinguishing features of our work compared to these related work:

First, we do not justify the soundness of cyclic proofs via semantics but instead
we translate cyclic proofs into a more standard proof system that uses explicit
(co-)induction rules, e.g., the logic Linc or higher-order logic, for which the issue
of soundness has been well established and for which there is a well developed
proof theory. Such translation is in general difficult: Sprenger and Dam in [14]
provide such a general translation but it requires annotations of fixed point
operators with ordinals. For annotation-free cyclic proof systems such as that
of Brotherston [4], the translation from cyclic proofs to proofs with explicit (co-
)induction rules remains an open problem. While our cyclic proof system (for
strategy III) does not introduce explicit ordinal annotations, the kind of cyclic
structures allowed in that proof system is much simpler than in [14,4] and forbids

198 D. Miller and A. Tiu

cross-branch cycles and mutually recursive definitions. We are thus able to give
simple constructions of proofs with explicit (co-)induction rules.

Second, our strategy IV has no counterpart in literature of cyclic proofs. The
interpretation of such a cyclic proof is not a straightforward construction of post
fixed points since the circularity induced by applications of the theory component
in this strategy does not obey the notion of progressing traces underlying existing
cyclic proof systems mentioned above. Of course semantic soundness for such
applications is known in the literature of bisimulation up-to [10]; our work can
be seen as a formal logical formulation of the soundness criteria in [10].

We note that strategies I to III have been implemented in the current de-
velopment version of Bedwyr, and a preliminary version of strategy IV is being
developed at the Parsifal team at INRIA. An example in [9, Section A] illustrates
the use of strategy IV to prove bisimilarity of two non-terminating processes,
something which is not possible with other strategies.

In Section 2, we present the proof system for intuitionistic logic that we use
in the rest of this paper. In Section 3, we present a proof system which uses
tables. The four tabling strategies outlined above are differentiated in this tabled
system by a function that filters appropriate elements of the tables and the
theories that are assumed in the proof. Soundness of strategy III is proved in
Section 4, where we show how to construct a post fixed point from tabled entries.
In Section 5 we show how to interpret theories as up-to functions and tabled
entries as a post fixed point “up-to”. In Section 6, we show how compositions of
up-to functions can be encoded as compositions of logical theories. We then show,
via a permutation argument, that up-to functions can be freely and soundly
composed, provided certain conditions related to how these theories permute
over each other hold. In Section 7, we discuss further work. The appendix of the
companion paper [9] contains several proofs that are omitted in the main text.

2 Backgrounds

We give an overview of the logical framework used as the foundation of this
work, i.e., the logic Linc [15], and the bisimulation up-to techniques [11,10].

The Linc logic is essentially a version of Church’s Simple Theory of Types with
the following differences. (i) Linc is based on intuitionistic provability (described
here using a two-sided sequent calculus similar to Gentzen’s LJ proof system).
(ii) The type of quantified variables are restricted to those not containing the
type of propositions (i.e., the type o in Church’s notation): thus, Linc does
not allow predicate quantification. (iii) Linc also contains free equality, i.e.,
equality in the term model, and inductive and co-inductive definitions as logical
connectives and these will be given introduction rules in the sequent calculus.
(iv) Finally, Linc also contains the ∇-quantifier (see, for example, [16]) but we
can safely ignore it in this paper.

Each predicate symbol in Linc is given a designation as either undefined, in-
ductive or co-inductive. An undefined predicate is the usual one in first-order
intuitionistic logic, i.e., its interpretation in a model is allowed to be an arbi-
trary subset of the domain of interpretation. To each (co-)inductive predicate

Extracting Proofs from Tabled Proof Search 199

{Γ [ρ] −→ C[ρ]}ρ∈U(s,t)

s = t, Γ −→ C
eqL

Γ −→ t = t
eqR

B S �y −→ S �y Γ, S �t −→ C

Γ, p�t −→ C
IL, p �x

μ
= B p�x

Γ −→ B p�t

Γ −→ p�t
IR, p �x

μ
= B p�x

B p�t, Γ −→ C

p�t, Γ −→ C
CIL, p �x

ν
= B p�x

Γ −→ S�t S �x −→ B S �x

Γ −→ p�t
CIR, p �x

ν
= B p�x

Fig. 1. The Linc inference rules for equality and the least and greatest fixed points

p, we associate a definition, i.e., a formula possibly containing occurrences of p.

Formally, we write p �x
μ
= D p �x to denote an inductive definition of p. Here D is

an abstraction, containing no occurrences of p, that is applied to p and variables
�x. We shall require that p occurs strictly positively in D p �x. A co-inductive

definition is similarly defined, with
ν
= replacing

μ
= . We write p �x

�
= D p �x to

denote either an inductive or a co-inductive definition.
In Section 1.1, the definition of bisimulation illustrates this scheme by setting

the schema variable D to be the λ-term with abstractions λbisimλPλQ and with
its body being the entire right-hand-side of the definition. Further restrictions
are needed, e.g., restrictions on mutual recursions between inductive and co-
inductive definitions, to guarantee cut-elimination; see [15,17] for details.

We consider terms as equal modulo α-conversion and assume the usual notion
of capture-avoiding substitutions for λ-calculus. The application of a substitution
θ to a term t is written t[θ]. This notation extends to application of substitutions
to multisets of formulas, i.e., Γ [θ] = {B[θ] | B ∈ Γ}. The inference rules of Linc
are those for LJ plus the rules for equality and fixed points that are given in
Figure 1. In eqL, the expression U(s, t) is used to denote a complete set of unifiers
for s and t. Since equality has introduction rules, it is a logical connective and not
a predicate. The rules for the introduction of inductive predicates on the right or
co-inductive predicates on the left are given by familiar unfolding rules while the
introduction of inductive predicates on the left or co-inductive predicates on the
right are given by the corresponding induction or co-induction principles. In this
latter case, the predicate variable S in those inference rules correspond to the
invariant (pre-fixed point) or co-inductive invariant (post-fixed point). Notice
that unfolding inductive predicates on the left and co-inductive predicates on
the right are admissible (sound) inference rules.

We shall often need to restrict ourselves to the “level 0/1 fragment” [1] of
Linc. To define this fragment, we assume that every predicate symbol is either
inductive or co-inductive and is assigned a level of 0 or 1. A formula is level-0
if it contains no predicates of level 1 and contains no occurrences of implication
or universal quantifier. Level-1 formulas satisfy the following grammar:

F ::= ⊥ | (| t = s | p�t | ∃x.F | ∀x.F | G ⊃ F | F ∧ F | F ∨ F.

200 D. Miller and A. Tiu

where G ranges over level-0 formulas and p ranges over level-0 or level-1 pred-

icates. A definition p �x
�
= B is a level-0 (level-1) definition if both p and B are

level-0 (resp. level-1) formulas.
Bisimulation up-to [11] refers to a technique for proving bisimilarity of pro-

cesses that aims at reducing the size of the relation one needs to construct to
prove bisimilarity. Bisimulation is a binary relation R that satisfies some closure
properties w.r.t. the transition system generated by processes, as shown in the
diagram on the left below. The up-to technique modifies this definition to allow
P ′ and Q′ to be related by a larger relation F(R), defined via an up-to function
F , as shown in the diagram on the right below.

P
α ��

R Q
α��

P ′ R Q′

P
α ��

R Q
α��

P ′ F(R) Q′

Let B be the function on binary relations defined by

B(R) = {〈P,Q〉 | [∀P ′∀A. P A−→ P ′ ⊃ ∃Q′. Q
A−→ Q′ ∧R(P ′, Q′)] ∧

[∀Q′∀A. Q A−→ Q′ ⊃ ∃P ′. P
A−→ P ′ ∧R(Q′, P ′)]}

Then bisimilarity, denoted by ∼, is defined as the greatest fixed point of B. The
left-diagram above shows that R ⊆ B(R), i.e., that R is a post-fixed point of
B. Since B is monotone, the Knaster-Tarski fixed point theorem implies that
R is included in ∼ . The right-diagram, on the other hand, only proves that
R ⊆ B(F(R)) and in general this does not establish R as a post-fixed point
of B, so one needs to prove that the function F is sound, i.e., for every R, if
R ⊆ B(F(R)) then R ⊆∼. This up-to technique is not limited to bisimulation
and it can be used with other co-inductive definitions [10].

3 Tabled Deduction Presented as a Proof System

When inductive and co-inductive predicates are not used, tabled deduction is
easily justified using the cut inference rules of sequent calculus [8]. For example,
proving A ∧B from assumptions Γ can proceed as follows:

ΞA

Γ −→ A

A,Γ −→ A
init ΞB

A,Γ −→ B

A,Γ −→ A ∧B
∧R

Γ −→ A ∧B
cut

Here, A is both proved by the subproof ΞA and is an assumption in the subproof
ΞB of B from Γ .

When co-inductive predicates are present, one way to establish a co-inductive
goal, say bisimulation, is to allow a form of circular proofs. In a circular proof,
a branch in the proof tree is allowed to close when there is a ‘loop’, i.e., the
sequent at the leaf of the branch matches another sequent lower in the tree. This

Extracting Proofs from Tabled Proof Search 201

is a familiar notion in fixed point logics and conditions that guarantee soundness
for such circular proofs are known: e.g., the notion of a progressing trace in [4].
Such conditions include forbidding loops across minor premises of an inference
rule, and every loop must be ‘guarded’, i.e., there must be an unfolding of a co-
inductive atom in the loop. These kind of conditions are too strong, however, to
encode up-to techniques for bisimulation. A commonly used up-to technique for
bisimulation, say for CCS, is the up-to context technique, which uses the up-to
function F(R) = {(C[P], C[Q]) | (P,Q) ∈ R}, where C is a process context. So,
for example, to establish P+Q ∼ R+Q, one can simplify this first to the problem
of checking P ∼ R via the up-to function F . This kind of simplification via up-to
context is exploited in [2], for example, to obtain a better bisimulation checking
algorithm. An example of using “up-to context” is given in [9, Section A].

To capture bisimulation up-to, we need to encode up-to functions as logical
theories, and use them to simplify a goal, before doing loop checking. This leads
to inconsistency if done naively, even when the theories are valid. For example,
since the processes a.0 and b.0 are not bisimilar, the formula bisim(a, b) ⊃ ⊥
should be provable. Now consider the following circular proof:

bisim(a, b) ⊃ ⊥ −→ bisim(a, b)
loop

bisim(a, b) ⊃ ⊥,⊥ −→ bisim(a, b)
⊥L

bisim(a, b) ⊃ ⊥ −→ bisim(a, b)
⊃L

where the leftmost leaf is the same as the root sequent. If this were admitted
as a proof, then one can prove ⊥. Indeed, this kind of loop is forbidden in
sound circular proof systems [4,14] and is an example of a non-progressing loop.
Unfortunately, as we mentioned above, forbidding circular proofs outright leads
to a restricted system where bisimulation up-to algorithms cannot be encoded
directly. An important part of the design of the tabled proof system is to rule out
unsound loops while still being able to encode up-to techniques. This involves a
careful management of tabled entries from which we deduce good loops.

In our tabled proof system, we capture the notion of a loop in a derivation by
extending sequents with history contexts. We consider only tabling of atoms and
universally quantified atoms. We distinguish three types of co-inductive atoms:
proved atoms, history atoms, and open atoms. Only the first two types of atoms
can appear in a table. Open atoms can only appear in the goal formula (i.e., the
formula on the right-hand side of a sequent) or a theory, and are used to indicate
atoms that are yet to be proved or disproved. When atoms occur in sequents, the
history atoms will be annotated with ◦ while open atoms are annotated with ∗.
History atoms and open atoms are syntactic devices used only in the tabled proof
system; they have no meaning inside Linc. As the name suggests, history atoms
are those encountered during proof search, for which a co-inductive rule has been
applied. If a predicate symbol is co-inductively defined, then its history atoms
are used to establish a post-fixed point. We consider only history atoms that are
co-inductive.1 A formula is ∗-free (resp., history free) if it has no occurrences of

1 Inductive history atoms can be added, and their use would be to table disproved
atomic goals. We leave the treatment of inductive history atoms to future work.

202 D. Miller and A. Tiu

open atoms (resp., history atoms). Given a set P of formulas, we denote with
P◦ the set of history atoms in P . Given a predicate p, we denote with P \ p the
set P with all atoms of the form p�t removed.

Sequents have for form P ; T ;Γ −→ C;P ′, where Γ is a set of level-0 ∗-
free and history-free formulas; C is a level-1 history-free formula; P and P ′ are
multisets of ∗-free atoms or universally quantified atoms; and T is a theory, i.e.,
a set of closed formulas. The set P and P ′ are bookkeeping devices essentially.
Operationally, the sequent can be understood as follows: in the beginning of
proof search for the sequent, P contains the current table entries, and when
proof search concludes successfully, P ′ contains the new table entries generated
by the proof search.

Depending on the tabling strategy, theories can be lemmas (provable in, say,
Linc) or rewriting rules on open atoms (which correspond to up-to functions), or
a mixture of both. When no history atoms are present, the informal reading of
such a sequent is as follows: assuming T and P are provable in Linc, then Γ −→
C is provable in Linc and its proof contains subproofs of atoms in P ′. When
history atoms are present, the interpretation of the sequent is more complicated.
Roughly, assuming we only have one co-inductively defined predicate symbol,
say p, and the only history atoms are those of p, then P◦ ∪ (P ′)◦ forms a post
fixed point of (the operator associated with) p. The precise interpretation will
be given when we formally prove the soundness result for each strategy.

The inference rules involving these richer sequents are given in Figure 2. We
consider only unification problems that have most general unifiers, e.g., first-
order or higher-order pattern unification: in this way, eqL has at most one
premise. In branching rules, the accumulated history or proved atoms on the
right-hand side of a sequent in one branch are passed on to the other branch.
When using this proof system for proof search, this set will be populated de-
terministically in a depth-first search strategy. The most interesting rule is νR.
Here, reading the rule upwards, one replaces the co-inductive predicate p with
p∗, and add p◦�t to the history context on the left to allow it to be used to detect
loops. When proof search is done, the history context on the right will be popu-
lated with history atoms. The intention is that these history atoms will form a
post-fixed point (up-to) of p; hence when the proof search concludes, we replace
each history atom p◦ on the right with p, signifying that every element in the
post-fixed point is contained in the largest fixed point of p.

Notice that our sequent calculus does not have explicit structural rules (con-
traction and weakening) since these rules have been internalized in other rules.
We have also omitted the cut rule. We currently do not know whether cut is
admissible, but it is not important for this work as we only are interested in
soundness. Notice also that if a sequent has a non-empty left-hand (Γ) context,
then it can be the conclusion of only left-introduction rules: furthermore, since
Γ can only contain level-0 formulas, there is no need for left introduction rules
for implications and universal quantifiers.

Let p1, . . . , pn be the set of all co-inductive predicates that are defined in the
logic. We denote by L the set {∀ �x1(p

◦
1 �x1 ⊃ p∗1 �x1), . . . , ∀ �xn(p

◦
n �xn ⊃ p∗n �xn)}. That

Extracting Proofs from Tabled Proof Search 203

S(P ,T) �I A

P ; T ; · −→ A; · init P ;T ;⊥, Γ −→ B; · ⊥L P ; T ; · −→ �; · �R

P ; T ;B,C, Γ −→ D;P ′

P ; T ;B ∧ C,Γ −→ D;P ′ ∧L
P ; T ; · −→ B;P1 P ,P1; T ; · −→ C;P ′

P ; T ; · −→ B ∧ C;P ′,P1
∧R

P ; T ;B,Γ −→ D;P1 P ,P1; T ;C,Γ −→ D;P ′

P ; T ;B ∨ C,Γ −→ D;P ′,P1
∨L

P ; T ; · −→ Bi;P ′

P ; T ; · −→ B1 ∨B2;P ′ ∨R

P ; T ;B −→ C;P ′

P ; T ; · −→ B ⊃ C;P ′ ⊃R
P ; T ; · −→ B[y/x];P ′

P ; T ; · −→ ∀x.B;P ′ ∀R

P ; T ;B[y/x], Γ −→ C;P ′

P ;T ;∃x.B,Γ −→ C;P ′ ∃L
P ; T ; · −→ B[t/x];P ′

P ; T ; · −→ ∃x.B;P ′ ∃R

P ; T ;Γ [ρ] −→ C[ρ];P ′

P ;T ; s = t, Γ −→ C;P ′ eqL, ρ = mgu(s, t)
P ; T ; · −→ t = t; · eqR

P ; T ; s = t, Γ −→ C; · eqL, s and t not unifiable.

P ; T ;B p�t, Γ −→ C;P ′

P ; T ; p�t, Γ −→ C;P ′ defL
S(P ,T) ��I p�t P ;T ; · −→ B p�t;P ′

P ;T ; · −→ p�t;P ′,∀�x.p�t
defR

S(P , T) ��I p∗�t P , p◦�t; T ; · −→ B p∗ �t;P ′

P ; T ; · −→ p∗ �t;P ′, p◦�t
ν∗
R

S(P \ p◦, T) ��I p�t (P \ p◦), p◦�t; T ; · −→ B p∗ �t;P ′

P ; T ; · −→ p�t;P ′[p/p◦], p�t
νR

Fig. 2. Inference rules for the tabled proof system. In defL and defR, p �x
�
= B p�x, and

in ν∗
R and νR, p �x

ν
= B p�x and �t are ground terms.

is, L allows one to backchain from an open atom to a history atom. Adding L
as theories to the tabled proof system allows one to loop on co-inductive atoms.

The function S used in Figure 2 is determined by the tabling strategies:

Strategy I: S(P , T) = P \ P◦ Strategy III: S(P , T) = P ∪ L
Strategy II: S(P , T) = (P \ P◦) ∪ T Strategy IV: S(P , T) = P ∪ T

We shall refer to these functions as, respectively, S1, S2, S3 and S4. The proof
systems for these strategies are defined as follows: the proof systems T D1 and
T D2 are proof systems obtained by using, respectively, S1 and S2, and whose
rules include all the inference rules in Figure 2 except ν∗R and νR. The proof
systems T D3 and T D4 are proofs systems obtained using, respectively, S3 and
S4, and whose rules include all the inference rules in Figure 2 except defR.

The relation �I refers to the deducibility relation of intuitionistic logic (with-
out fixed points). When T is restricted to formulas containing just ⊃, ∧, and ∀
the relation �I is implemented by λProlog [7].

204 D. Miller and A. Tiu

4 Constructing Post-Fixed Point from Tables

In the following, given two lists of terms �s = s1, . . . , sn and �t = t1, . . . , tn, we
write �s = �t to denote the formula (s1 = t1) ∧ (s2 = t2) ∧ · · · ∧ (sn = tn). For
simplicity, we shall assume that all co-inductive predicates have the same arity.
We denote by P• the set P \ P◦.

Theorem 1. Suppose P ; T ;Γ −→ C;P ′ is derivable in T D3, where Γ is history-
free and C contains no negative occurrences of history atoms. Let {p1, . . . , pn}
be the set of co-inductive predicates occuring in P , C and P ′. Then there exist
invariants S1, . . . , Sn such that

– the sequent (P•, Γ −→ C[S1/p
∗
1, . . . , Sn/p

∗
n]) is derivable in Linc,

– for each B ∈ (P ′)•, the sequent (P• −→ B) is derivable in Linc, and

– for each p◦i�t ∈ (P ′)◦, where pi �x
ν
= Di pi �x, the sequent (P• −→ Di Si �t) is

derivable in Linc.

Proof. (Outline.) Given sequent P ; T ;Γ −→ C;P ′, the abstraction Si

Si = λ�x.
∧

(P)• ∧
∨

{(�x = �t) | p◦i �t ∈ P ∪ P ′},

forms a post-fixed point of the definition of pi, i.e., D Si �x −→ Si �x. ��

5 Co-inductive Tabling Modulo Theories

In a naive algorithm for bisimulation checking, one can construct a bisimulation
set by progressively unfolding transitions from a given pair of processes, until
one arrives at stuck processes or encounters a previously seen pair of processes.
This is very similar to how proof search with strategy III works. The up-to
techniques add to this the possibility of simplifying the continuations of a pair
of processes, before doing the loop checking. For example, a typical simplification
rule is the context closure, e.g., when one encounters a new pair to be checked
((P | R), (Q | R)), instead of unfolding these, we simplify it to (P,Q) and proceed.
This kind of simplification before loop checking is in general unsound; see [11]
for an example. An important line of research in the up-to techniques is in
characterizing sound simplification rules.

To capture up-to techniques in our tabling proof system, we need a mechanism
to apply simplification to an open co-inductive goal before doing loop checking.
This can be done simply by backchaining on the co-inductive goal. Since open co-
inductive goals are marked with ∗, to be able to backchain on them, we need to
allow ∗-atoms in the theory component of a sequent. However, when the theory
T contains ∗-atoms, it is not possible in general to construct a post fixed point
from tabled entries as they are no longer closed under fixed point unfolding. This
is because the theory T may allow one to deduce ∗-atoms that have not been
encountered during proof search (hence those particular atoms would not have
been unfolded). Soundness in this case is conditional on an additional statement,

Extracting Proofs from Tabled Proof Search 205

which happens to coincide with the (logical interpretation) of the soundness
condition for up-to techniques [10].

To simplify the presentation, we shall restrict to one co-inductive definition in
the following. We shall refer to this definition simply as p�x

ν
= Dp�x. So we have

only one kind of history atoms and one kind of ∗ atoms, i.e., those of the form p◦�t
and p∗�t. The set L in this case contains exactly one formula, i.e., ∀�x(p◦�x ⊃ p∗�x).

To formalize the up-to techniques, we need to quantify over relations and
functions. Thus we introduce HOLinc, the extension of Linc that contains higher-
order quantifiers. In other words, the logic we have now is an intuitionistic higher-
order logic (i.e., the intuitionistic version of Church’s Simple Theory of Types)
with fixed points and (free) equality. The latter two can be encoded in higher-
order logic, so we essentially only work within higher-order logic.

Definition 1. An up-to theory is a set T of higher-order hereditary Harrop
(hH) formulas such that the head of each clause is of the form p∗�t. We assume
that L ⊆ T , and the only place where history atoms occur in T is in this subset.

Definition 2. If T is an up-to theory, it induces the function

FT = λRλ�x.∀q.
∧

T [q/p∗,R/p◦] ⊃ q�x.

In more informal set-theoretic notation, FT can be written as:

FT (R) = {�x | ∀q
(∧

T [q/p∗,R/p◦] ⊃ q�x
)
is provable in HOLinc. }

The adequacy of this encoding of up-to functions is the result of the completeness
of goal-directed proof for hH fragment of higher-order logic; see [7].

Definition 3. An up-to theory T is sound if the following formula, named
Snd(T) holds: ∀R.(∀�x.(R�x ⊃ D (FT R) �x)) ⊃ (∀�x.R�x ⊃ p �x).

Theorem 2. Suppose P ; T ;Γ −→ C;P ′ is derivable in T D4. Then there exists
an invariant S such that

– the sequent (Snd(T),P•, Γ −→ C[FT S/p
∗]) is derivable in HOLinc,

– for each B ∈ (P ′)•, the sequent (P• −→ B) is derivable in HOLinc, and
– for each p�t ∈ (P ′)◦, the sequent (P• −→ D (FT S)�t) is derivable in HOLinc.

Proof. (Outline.) Given P ; T ;Γ −→ C;P ′, the abstraction λ�x.
∨
{(�x = �u) |

p◦�u ∈ P ∪ P ′} can be shown to be a post-fixed point “up-to” FT . ��

Corollary 1. Let T be an up-to theory. If ·; T ; · −→ B;P is derivable in T D4,
for some P, then Snd(T) −→ B is derivable in HOLinc.

Thus strategy IV is sound for, say, bisimulation checking if one can discharge
the assumption Snd(T), a task that can often be tedious to do. We are currently
developing some of these proofs in the (higher-order version of the) theorem
prover Abella, which is an interactive prover based on a logic similar to Linc.

206 D. Miller and A. Tiu

6 Compositions of Up-to Functions

One important line of research in the up-to techniques in bisimulation is that of
compositions of up-to functions. More precisely, one is interested in characteriz-
ing when the composition of two sound up-to functions gives rise to a sound up-to
function. Such results allow one to combine simple functions to form powerful
sound composite functions. We show next that composition of up-to functions
can be defined via a notion of composition of up-to theories.

Definition 4. Let T1 and T2 be up-to theories. Their composition, written T1 ◦
T2, is defined as T1 ◦ T2 = T1[F/p◦] where F = λ�x.(∀q.

∧
T2[q/p∗] ⊃ q �x).

The following lemma states that this definition of composition of theories is
adequate, i.e., it respects the composition of logical up-to functions.

Lemma 1. FT1 ◦ FT2 and FT1◦T2 define the same function.

In practice, up-to techniques are often used by interleaving applications of
several up-to functions. However, proving that such interleaving is sound is ob-
viously more complicated than proving soundness of restricted compositions. In
the logical encodings, interleaving of two theories T1 and T2 can be captured
simply by joining the theories, i.e., T1 ∪ T2. We show next that soundness of
tabled proof search in the up-to theory T1 ∪ T2 can be reduced to soundness of
proof search under their composition T1 ◦ T2, under certain conditions.

To prove the following results, it is convenient to view a theory as an inference
rule. This is straightforward when the theories are Horn clauses. The Horn clause

∀�x.(A1 ∧ · · · ∧ An) ⊃ p∗�t can be written as the rule
A1 · · · An

p∗�t
,

where A1, . . . , An are atoms and where �x become schematic variables of the
inference rule. Let D(T) denote the set of inference rules for a given Horn theory
T . Then P , T �I p∗�t holds iff there is a derivation of p∗�t from P in the inference
system D(T). We say that an inference rule r1 permutes over another inference
rule r2 iff every derivation of p∗�t, for any �t, where r2 appears immediately above
r1 can be transformed into another derivation of p∗�t where r1 appears above r2.
Given D(T1) and D(T2), we say that D(T1) permutes over D(T2) iff every rule
of D(T1 \ T2) permutes over every rule of D(T2 \ T1).

Lemma 2. Let T1 and T2 be two Horn up-to theories such that D(T2) permutes
over D(T1). Then (P , T1, T2 �I p∗�t) iff (P , T1 ◦ T2 �I p∗�t), for every set of ∗-free
atoms P and every �t.

Theorem 3. Let T1 and T2 be two Horn up-to theories such that T1◦T2 is sound
and that D(T2) permutes over D(T1). If ·; T1, T2; · −→ B;P is derivable in T D4,
for some P, then Snd(T1 ◦ T2) −→ B is derivable in HOLinc.

Proof. This follows from Theorem 2 and Lemma 2. ��

Extracting Proofs from Tabled Proof Search 207

Note that Theorem 3 does not imply that FT1∪T2 is sound given that FT1◦T2 is
sound; it only implies that, for the purpose of proving a co-inductive goal in the
tabled proof system, one can freely combine T1 and T2 without losing soundness.
This is useful in practice where one could combine different up-to techniques
freely but only need to prove soundness for a restricted form of composition.

Below, we shall use ∼ to denote the predicate bisim.

Example 1. Consider the CCS example again. Let T1 be the up-to theory for-
malizing context closure, and let T2 be the up-to theory formalizing reflexive and
transitive closure. The inference rules of D(T1) are the rules {b, re, tr} and the
rules of D(T2) are {b, cng}, where b, re, tr, cng are as follows:

s ∼◦ t
s ∼∗ t

b
t ∼∗ t

re s ∼∗ u u ∼∗ t
s ∼∗ t

tr
s ∼∗ t

C[s] ∼∗ C[t]
cng

and where C[] is a process context. It can be easily shown that cng permutes
up over re and tr, for example:

s ∼∗ u u ∼∗ t
s ∼∗ t

tr

C[s] ∼∗ C[t]
cng �

s ∼∗ u
C[s] ∼∗ C[u]

cng u ∼∗ t
C[u] ∼∗ C[t]

cng

C[s] ∼∗ C[t]
tr

So we can freely mix T1 and T2 in proving particular instances of bisimilarity,
but we only need to prove soundness of the composition T1 ◦ T2.

If the up-to theory T contains occurrences of the co-inductive predicate p, then
we can consider using previously proved facts, say T ′, about p to prove subgoals
of the form p�t. The use of lemmas is orthogonal to the soundness condition for
up-to techniques, as stated in the following theorem.

Theorem 4. Let U be a set of ∗-free and history-free formulas that are valid in
HOLinc. Suppose P ;U , T ;Γ −→ C;P ′ is derivable in T D4. Then there exists an
invariant S such that

– the sequent (Snd(T),P•, Γ −→ C[FT S/p
∗]) is derivable in HOLinc,

– for each B ∈ (P ′)•, the sequent (P• −→ B) is derivable in HOLinc, and
– for each p�t ∈ (P ′)◦, the sequent P• −→ D (FT S)�t) is derivable in HOLinc.

Proof. This proof follows the proof of Theorem 2, except we use the following
invariant: given sequent P ;U , T ;Γ −→ C;P ′, define S = λ�x.

∧
U ∧

∨
{(�x = �u) |

p◦�u ∈ P ∪ P ′}. ��

The composition result (Theorem 3) can be slightly modified to take into
account uses of lemmas. As we shall see later, this leads to a rather pleasant
result concerning compositions with up-to bisimilarity.

Lemma 3. Let U be a set of Horn clauses which are also lemmas of HOLinc.
Let T1 and T2 be two Horn up-to theories such that D(U ∪ T2) permutes over
D(U ∪ T1). Then (P ,U , T1, T2 �I p∗�t) iff (U ,P , T1 ◦ T2 �I p∗�t), for every set of
∗-free atoms P and every �t.

208 D. Miller and A. Tiu

Theorem 5. Let U be a set of lemmas of HOLinc. Let T1 and T2 be two Horn up-
to theories such that T1◦T2 is sound and that D(U∪T2) permutes over D(U∪T1).
If ·;U , T1, T2; · −→ B;P is derivable in T D4, for some P, then Snd(T1◦T2) −→ B
is derivable in HOLinc.

Example 2. Let T1 be the theory encoding up-to bisimilarity and let T2 be the
theory encoding up-to context-closure for CCS. The inference rules of T1 consist
of the rule b (see Example 1) and the following rule:

s ∼ u u ∼∗ v v ∼ t
s ∼∗ t

bs

The composition T1 ◦ T2 is shown to be sound in, e.g., [10]. Since bisimilarity in
CCS is closed under arbitrary contexts, we can prove the lemma below (left) in
HOLinc: the inference rule corresponding to that lemma is on the right:

∀C∀x, y (x ∼ y ⊃ C[x] ∼ C[y])
s ∼ t

C[s] ∼ C[t]
bcng

where C denotes a process context. Let U be a set of Horn lemmas that includes
this lemma. We show that D(U ∪ T2) permutes over D(U ∪ T1). It is enough to
show that the rule cng (see Example 1) permutes over bs:

s ∼ u u ∼∗ v v ∼ t
s ∼∗ t

bs

C[s] ∼∗ C[t]
cng �

s ∼ u
C[s] ∼ C[u]

bcng s ∼∗ u
C[u] ∼∗ C[v]

cng v ∼ t
C[v] ∼ C[t]

bcng

C[s] ∼∗ C[t]
bs

This shows that, rather surprisingly, we can apply the congruence rule first,
before applying up-to bisimilarity, without losing soundness, even though the
meta theory only allows one to apply congruence rules last. This can potentially
lead to a shorter proof as the congruence rule allows simplification of processes.

7 Conclusion and Future Work

We have shown a range of strategies for incorporating tables into proof search,
where the most advanced strategy allows us to capture the up-to techniques
for bisimilarity. For all strategies, we show that tabled proofs can be soundly
interpreted as a proper proof in the same logic and formal proof certificates
can be constructed from each successful proof search. Our encoding of up-to
techniques also enables us to derive a new result in the composition of up-to
techniques, allowing one to freely compose up-to techniques while only needing
to prove soundness of a limited form of composition.

Orthogonal to all these strategies is the question of whether one should allow
quantified formulas (existentially or universally) in the table. Such a possibility

Extracting Proofs from Tabled Proof Search 209

can arise if for example one can prove a goal (p a X) for any X , e.g., simply
because X is not used in the definition of p. Then a natural interpretation of this
is to say that we have actually proved ∀x.p a x. While this kind of quantified
tabled entries is harmless in Strategy I and II, it is less clear whether it is sound
for Strategy III and IV. We shall leave this as future work.

We have concentrated on strong bisimulation as an application in this paper,
but the framework we established here should apply to weak bisimulation as
well, at least as far as the cyclic structure of proofs is concerned. The theory
of weak-bisimulation up-to is a lot of more complex than the strong bisimula-
tion up-to and less uniform, e.g., some obvious up-to functions (e.g., up-to weak
bisimilarity) is unsound [12]. In terms of formalization in our framework, how-
ever, this complexity is mostly isolated in the theory part, i.e., in establishing
Snd(T). We plan to investigate weak-bisimilarity in immediate future work.

References

1. Baelde, D., Gacek, A., Miller, D., Nadathur, G., Tiu, A.: The Bedwyr system
for model checking over syntactic expressions. In: Pfenning, F. (ed.) CADE 2007.
LNCS (LNAI), vol. 4603, pp. 391–397. Springer, Heidelberg (2007)

2. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congru-
ence. In: Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 457–468. ACM (2013)

3. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367.
Springer, Heidelberg (2012)

4. Brotherston, J., Simpson, A.: Complete sequent calculi for induction and infinite
descent. In: 22nd Symp. on Logic in Computer Science, pp. 51–62 (2007)

5. Jaffar, J., Santosa, A.E., Voicu, R.: A CLP proof method for timed automata. In:
RTSS, pp. 175–186. IEEE Computer Society (2004)

6. McDowell, R., Miller, D., Palamidessi, C.: Encoding transition systems in sequent
calculus. Theoretical Computer Science 294(3), 411–437 (2003)

7. Miller, D., Nadathur, G.: Programming with Higher-Order Logic. Cambridge Uni-
versity Press (June 2012)

8. Miller, D., Nigam, V.: Incorporating tables into proofs. In: Duparc, J., Henzinger,
T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 466–480. Springer, Heidelberg (2007)

9. Miller, D., Tiu, A.: Extracting proofs from tabled proof search: Extended version.
Technical report, HAL-INRIA (2013), http://hal.inria.fr/hal-00863561

10. Pous, D., Sangiorgi, D.: Enhancements of the bisimulation proof method. In: San-
giorgi, D., Rutten, J. (eds.) Advanced Topics in Bisimulation and Coinduction, pp.
233–289. Cambridge University Press (2011)

11. Sangiorgi, D.: On the bisimulation proof method. Mathematical Structures in Com-
puter Science 8(5), 447–479 (1998)

12. Sangiorgi, D., Milner, R.: The problem of “weak bisimulation up to”. In: Cleave-
land, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 32–46. Springer, Heidelberg
(1992)

13. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive logic programming.
In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330–345.
Springer, Heidelberg (2006)

http://hal.inria.fr/hal-00863561

210 D. Miller and A. Tiu

14. Sprenger, C., Dam, M.: On global induction mechanisms in a μ-calculus with ex-
plicit approximations. ITA 37(4), 365–391 (2003)

15. Tiu, A.: A Logical Framework for Reasoning about Logical Specifications. PhD
thesis, Pennsylvania State University (May 2004)

16. Tiu, A., Miller, D.: Proof search specifications of bisimulation and modal logics for
the π-calculus. ACM Trans. on Computational Logic 11(2) (2010)

17. Tiu, A., Momigliano, A.: Cut elimination for a logic with induction and co-
induction. Journal of Applied Logic (2012)

18. Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional μ-
calculus. Inf. Comput. 157(1-2), 142–182 (2000)

Formalizing the SAFECode Type System

Daniel Huang and Greg Morrisett

Harvard University, Cambridge MA 02138, USA
dehuang@fas.harvard.edu,
greg@eecs.harvard.edu

Abstract. The Secure Virtual Architecture (SVA) provides an object-
level integrity policy, similar to type-safety, for languages such as C and
C++, and thus rules out a wide range of common vulnerabilities. SVA
uses an enhanced version of the Low-Level Virtual Machine (LLVM)
compiler called SAFECode to enforce the policy through a combination
of static and dynamic type-checks. However, this results in a relatively
large trusted computing base (TCB). SVA reduces the TCB with an
unverified type-checker that relies upon a paper-and-pencil proof of type-
soundness for a core-language. As a further step towards increasing the
assurance of the compiler, we present a mechanized proof of soundness
and a verified type-checker for a realistic subset of the SAFECode type
system developed using the Coq Proof Assistant.

Keywords: verification, SAFECode, LLVM, memory safety.

1 Introduction

Most of our computing infrastructure is coded using low-level languages such as
C/C++. Unsurprisingly, it is easy to make simple mistakes in these languages
that lead to well-known vulnerabilities. In principle, recoding the infrastructure
in a type-safe language would eliminate many of these vulnerabilities, but the
costs of doing so seem to outweigh the benefits.

An attractive alternative is to bring the benefits of type-safety to legacy code
by combining static analyses and run-time checks to automatically enforce a
type-safety policy. There are many challenges in doing this effectively, as static
analyses are generally too weak to reason effectively about real C/C++ pro-
grams, resulting in many false positives. The cost of inserting run-time checks
and maintaining the meta-data needed to support those checks can also be pro-
hibitively expensive. Recently, a number of systems have successfully combined
the benefits of static analysis, dynamic checks, program optimization, and clever
run-time representations to produce viable solutions [3,10,11,5,4].

One such system, SAFECode [5], uses sophisticated analyses and optimiza-
tions to eliminate run-time checks. However, this adds the SAFECode compiler
to the trusted computing base (TCB). We could try to prove that the analy-
ses and transformations (and subsequent optimizations) are correct as in the
CompCert project [8]. Perhaps more easily, we can build a verified checker that

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 211–226, 2013.
c© Springer International Publishing Switzerland 2013

212 D. Huang and G. Morrisett

Type τ ::= int | char | unknown | τ ∗ ρ | handle(ρ, τ)
Statements S ::= ε | S; S | x = E | store E, E | storeToU x, E, E

| storec E, E | storecToU E, E | poolfree(E, E)

| poolinit(ρ, τ)x{S} | pool{S}pop(ρ)
Expressions E ::= var | V | E op E | load E | loadFromU x, E | loadc E

| loadcFromU E | cast E to τ | poolalloc(x, E)

| (x, &E[E]) | castint2pointer x, E to τ
Value V ::= uninit | Int | region(ρ)

Fig. 1. Core-language presented in original SAFECode paper

attempts to prove that rewritten and optimized code respects the SAFECode
security policy. The goal of this paper is to increase the assurance of the SAFE-
Code compiler by formalizing a realistic subset of the language and its type
system, presenting a mechanically-checked proof of soundness, and building a
verified checker that can be used to check code emitted by SAFECode.

2 Overview of SAFECode

Our work builds upon a previous paper describing the SAFECode system [5],
which enforces an object-level integrity policy similar to, but weaker than tradi-
tional notions of type-safety. Conceptually, SAFECode instruments all dangerous
operations such as loads and stores with dynamic checks. To justify the elimina-
tion of unnecessary run-time checks, the paper formalized a core-language, type
system and gave a paper-pencil proof of soundness for the typing rules.

We have reproduced their core-language in Figure 1. SAFECode uses regions,
similar to the approach pioneered by Tofte and Talpin [12] and later refined in
Cyclone [6]. Like these previous systems, a pointer type τ∗ρ is indexed by a region
variable ρ indicating the region of memory it references. However, SAFECode
only places objects of the same type in a given region, allowing region meta-
data to support efficient run-time casts. Objects whose type cannot be statically
determined are put in untyped regions. The type system tracks which regions
are accessible, and hence, which pointers can be safely dereferenced.

More concretely, SAFECode provides a lexically scoped construct of the form
poolinit(ρ, τ){· · · }, which allocates a new region (or pool) to exclusively hold
values of type τ and binds the region to ρ. Regions are typically represented
as lists of pages that can be dynamically grown as new objects are allocated.
Initially, the pages are zero-filled and zero is assumed to be a valid value for
any type. In particular, dereferencing address zero will result in a trapped error
(segmentation fault). Within the scope of the poolinit, programs can allocate
objects of type τ in ρ using poolalloc, which returns a pointer of type τ ∗ ρ.
Such pointers can be dereferenced (via load), updated (via store), or used to
deallocate the object (via poolfree) while in the scope of ρ. Memory reclaimed
in a region can be recycled for use at the same type. At the end of poolinit’s

Formalizing the SAFECode Type System 213

Δ : ρ ⇀ τ Γ : x ⇀ τ

r1: i32

r2: i32*r1

x: i32*r1

y: i32*r1*r2

z: i32*r1

p:i32*r1

w1: i32

w2: i32

1. poolinit (r1, i32) {

2. poolinit (r2, i32*r1) {

3. x = poolalloc (r1, 4);

4. y = poolalloc (r2, 4);

5. store x, y;

6. z = load y;

7. poolfree(z);

8. p = (i32*r1) 42;

9. w1 = load z;

10. w2 = load p;

11. }

12. }

Fig. 2. Example program and typing derivation

scope, the entire region is deallocated and its memory can be safely recycled for
use in other regions to hold values of potentially different types. SAFECode also
supports checked operations loadU(ρ,q), storeU(ρ,v,q), and checked casts.
These operations do not require that q is ascribed the static type τ ∗ ρ. Rather,
a run-time check is performed to see if q is a valid, τ -aligned pointer into ρ. If
the check fails, then the program is terminated.

Figure 2 illustrates a SAFECode program in the core-language. In the exam-
ple, r1 is a statically-typed region that holds integer values and region r2 is a
statically-typed region holding i32*r1 values. The typing context tracks the set
of region variables in scope and their types (Δ) as well as the set of variables and
their types (Γ). The table to the left of the code summarizes the context used to
check each line. For example, after line 1, region r1 is in scope and is assumed
to hold values of type i32. By line 5, we assume variable x has type i32*r1 and
y has type i32*r1*r2. The store instruction type-checks because y is a pointer
value into region r2, x is of the appropriate type i32*r1, and r2 holds values of
type i32*r1. The following load instruction type-checks similarly.

Lines 7 through 10 illustrate how type-homogenous regions enable SAFECode
to relax traditional notions of type-safety. For instance, the dangling pointer
dereference on line 9 type-checks because the region r1 is still live and type-
homogeneity guarantees it will produce a value of type int. SAFECode also
allows arbitrary integers to be casted to pointers. Doing so may necessitate a
run-time check that can fail, but if the integer actually is an address of the appro-
priate type in the appropriate region, the cast will succeed. SAFECode accepts
the above program as well-typed and guarantees for all possible executions that
x and z always point into region r1, and that y always points into region r2.
Furthermore, dereferencing x and z guarantees an integer, and dereferencing y

guarantees a pointer into region r1 (or else zero values).
Currently, there is a huge gap between the original presentation and the ac-

tual SAFECode implementation, which is a large amount of C/C++ code im-
plementing a LLVM bitcode transformation. At a first approximation, there is
a mismatch between the C-like core-language presented in the paper and the

214 D. Huang and G. Morrisett

implementation which is at the level of the LLVM IR. Moreover, the lack of
any real language features (e.g. structs, control flow, procedure calls, etc.) in
the core-language makes the argument of type soundness less compelling in the
context of the implementation. For example, the lack of control flow and ability
to express interesting data structures drastically reduces the complexity of rea-
soning about a region’s liftime. However, the actual system supports almost the
entirety of LLVM, including extra features such as region-polymorphic functions
that induce a LIFO-ordering of regions not expressible in the original model.

In the rest of this paper, we describe a verified checker that we have con-
structed for the SAFECode compiler using the Coq Proof Assistant [1]. In par-
ticular, we describe (a) our formalization of the syntax and semantics of the
SAFECode variant of the LLVM [7] intermediate language, (b) a new declara-
tive type system that formalizes the SAFECode policy, (c) a proof that the type
system is sound with respect to our semantics, (d) an executable type-checker
for SAFECode, (e) a proof that the type-checker is correct with respect to the
declarative typing rules, and (f) our experiences in type-checking code generated
by the SAFECode compiler.

In addition to scaling the language to the actual implementation, we also
hope that our reformulation of SAFECode is cleaner than the one originally
presented. For example, the original small-step semantics contains 40 opera-
tional transitions (even though it is not very expressive), exposes the details
of region and memory meta-data in the operational semantics leading to a less
modular proof, has memory leaks, and contains many constructs with duplicate
functionality such as load, loadc, loadFromU and loadcFromU. While none of
these prove fatal to the soundness of the type system, we believe a cleaner model
reduces clutter and provides a better intuition for how the proof of soundness is
related to the actual system implementation.

3 Language and Operational Semantics

Here, we describe the formal language and semantic model that we have con-
structed in Coq, but take the liberty of using conventional notation to describe
the ideas instead of the details of the Coq code.1

3.1 Language

The language is derived from the LLVM IR to mirror the SAFECode imple-
mentation as closely as possible and is summarized in Figure 3. Types τ include
arbitrary width integers (in), single/double precision floats (d32 and d64), typed-
pointers (τ ∗ ρ), untyped-pointers (U(b) ∗ ρ) to b bytes, arrays ([τ × n]), region-
polymorphic named types, and region-polymorphic functions. Named types are
used to support aggregate and (iso-)recursive data structures. For example, to
define a linked-list node parameterized over a region ρ, we can write the type
node = 〈ρ〉{i32; node ∗ ρ}. The notation name〈ρ〉 indicates that a named type

1 http://people.fas.harvard.edu/~dehuang/projects/sc-formalism.zip

http://people.fas.harvard.edu/~dehuang/projects/sc-formalism.zip

Formalizing the SAFECode Type System 215

x: local variable, ρ: region variable, f : function, : block label, in: n-bit integer
constant, n: integer size, d: single/double precision float

type τ ::= in | d32 | d64 | τ ∗ ρ | U(b) ∗ ρ | name〈ρ〉 | [τ × n] | ∀ρ.τρ → τρ
name env Υ ::= name ⇀ 〈ρ〉{τ1ρ; · · · ; τnρ}
operand o ::= x | in | f | d | undef(τ) | blockaddr(f,) | null

insn ι ::= x = o1 binop o2 | x = o1 icmp o2 | x = o1 fbinop o2 |
x = o1 fcmp o2 | x = iconv τ1 o to τ2 | x = fconv τ1 o to τ2
x = ptrtoint τ1 o to τ2 | x = inttoptr τ1 o to τ2 |
x = extractvalue τ1 o, τ2 in | x = insertvalue τ1 o1, τ2 o2 in |
x = bitcast τ1 o to τ2 | x = select τ1 o1, τ2 o2, τ3 o3 | exit |
x = getelementptr τ1 o1, τ2 o2 | x = getelementptrU τ o1 o2 |
x = load τ o | store τ1 o1, τ2 o2 |
x = poolcheck ρ τ o | x = poolcheckU ρ c o | poolfree τ o

terminator tm ::= return τ x | br | br o 1 2 | switch τ o, τ ∗ o ∗ |
indirectbr τ o, | x = poolalloc τ, ρ, i, |
x = τ call o 〈ρ〉(o), | x = τ unsafecall o 〈ρ〉(o), |

φ node Φ ::= x = φ(o)� : τ
block blk ::= [Φ1; . . . Φn; ι1; . . . ιm; tm]
function fn ::= τ f〈ρp〉(x : τρp){

ρl = poolinit τρp∪ρl ;

body : → blk
}

fn table F : f ⇀ fn

Fig. 3. Abstract syntax for our SAFECode language. We use x to denote a list of x’s.
The subscripts on types indicate which regions the types can mention.

is instantiated with the regions specified by ρ. A global environment Υ is used
to associate names with their definitions. Union types can be represented using
LLVM’s encoding as a byte struct whose size is the maximum size of all the
types in the union.

The syntax supports nested aggregates (i.e., structs) through names, but in-
ternally, we only manipulate flattened primitive types. For example, given named
types Foo = {i32; i32*} and Bar = {Foo; i32}, the flattened representation
of Bar is {i32; i32*; i32}. Flattening aggregates in this fashion supports more
(type-safe) projections, and avoids the need for complicated path expressions to
calculate offsets. Given a name environment Υ , we define a partial function �(τ)
that flattens τ into a vector of primitive (non-aggregate) types.

�(in) = [in] �(d32) = [d32] �(d64) = [d64] �(τ ∗ ρ) = [τ ∗ ρ]

�(U(b) ∗ ρ) = [U(b) ∗ ρ] �([τ × n]) = �(τ) ++ · · · ++ �(τ)

�(name〈ρ〉) = (�(τ1) ++ · · · ++ �(τn)){ρ/ρ′} when Υ (name) = 〈ρ′〉{τ1; · · · ; τn}

Note that �(−) stops when it encounters a pointer, and is thus well-founded
when recursive uses of names are limited to positions under a pointer (as in C).
Here, we have omitted details of padding and alignment, which are covered in
our Coq development.

216 D. Huang and G. Morrisett

Basic blocks consist of a sequence of φ-nodes followed by a sequence of deter-
ministic instructions, and end with a terminator instruction. Instructions manip-
ulate operands which are either variables or constants, and are mostly derived
from the LLVM IR. The instructions are organized into two categories: The
first contains instructions modeled deterministically (i.e., functionally). The sec-
ond category contains LLVM terminator instructions (i.e., control-flow opera-
tors) and instructions modeled non-deterministically (i.e., axiomatically) such
as poolalloc. Unlike LLVM, we consider a call to terminate a block, as a call
will generally have non-deterministic behavior. Another difference with LLVM
is that our getelementptr instruction does not perform multistep indexing be-
cause the type environment for aggregate data structures is already flattened.

Functions abstract over a set of caller-provided regions, and begin by defining
a set of local regions which are scoped over the lifetime of the function invoca-
tion. The syntax prevents new regions from being allocated in the function body.
While the actual SAFECode system allows regions to be allocated anywhere, we
opt for this design because in practice, the compiler usually emits poolinit in-
structions at the beginning of a function. We encode allocas (stack allocations)
as a poolalloc and poolfree.

One difference between our language and the SAFECode implementation is
that we introduce a dedicated untyped pointer U(b) ∗ ρ to make it easier to
express that we can safely dereference b bytes, but do not know what those
bytes are. As a result, the syntax provides two versions of poolcheck/U and
getelementptr/U to work with types in the typed-region case and bytes in the
untyped-region case.

3.2 Representation of Run-Time Values

All run-time values are represented as a list of bit strings:

val ::= [v1; v2; . . . ; vn]
v ::= bitn(i) (i ∈ [0..2n))

For example, the 16-bit integer 0xF00D is represented as [bit16(0xF00D)], whereas
a struct containing a 16-bit integer and 32-bit pointer {0xBEEF; 0x0BADF00D}
is represented as [bit16(0xBEEF), bit32(0x0BADF00D)]. Note that pointers and
integers (of the appropriate size) have the same representation.

There are other possible representations. For instance, CompCert [8,9] treats
a pointer as a symbolic block number and an offset within that block, (b, o). This
“Swiss cheese” model effectively enforces object isolation: we simply cannot get
to an object at address a through pointer arithmetic on the base address of a
different object b. Such a model makes sense when trying to define the formal
semantics of C which makes actions, such as treating an integer as a pointer
undefined.

In our case, SAFECode allows integers to be used as pointers provided that
the compiler can statically prove that it is safe or it is guarded with a dynamic
check. To support this behavior, we found the simplest approach for our model
was to treat all run-time values as bit strings.

Formalizing the SAFECode Type System 217

Local environment env : var ⇀ val Primitive types K := {in, d32, d64, τ ∗ ρ,
Region instantiation σ : P ⇀ R U(b) ∗ ρ,∀ρ.τ → τ}
Memory M : mem t Region names P := {ρ1, . . . , ρn}
Live region set L : set R Run-time regions R := {r1, . . . , rn}
Heap typing Σ : heap t Heap type heap t := Z ⇀ (K,R)

Execution context E ::= (fn,blk, env,Σ, σ,L)
Execution stack S : list E Machine state ms ::= (M,E, S)

Fig. 4. Components of the abstract machine

3.3 Abstract Machine

The components of our abstract machine are presented in Figure 4. A machine
state is represented by the tuple (M,E, S), where M is the current memory, E is
the current execution context, and S is the control stack of execution contexts.
An execution context contains information relevant to the computation in the
current stack frame, including the function definition (f), a currently executing
basic block (b), and an environment (env) mapping variables to run-time values.
The last three components of E are used to support regions. The first of these
is the heap typing Σ, which maps addresses to a pair of a primitive type and
region. Conceptually, the heap typing holds the run-time meta-data, allowing the
system to perform a run-time check. Next, σ contains a mapping of the region
variables written in code to their actual run-time regions. The component L
represents the set of live regions.

3.4 Memory Model and Memory Management

At the level of our abstract machine, we do not want to specify how regions
are represented, nor the meta-data that is needed to manage memory. Rather,
we parameterized our development over an abstract memory management in-
terface specified axiomatically. To ensure that the axioms are consistent, we
implemented a simple allocation strategy and proved that the strategy satisfied
the axioms.

We treat memory as a partial map from integers to bytes, paired with some
allocator-specific meta-data of abstract type:

mem t : (Z ⇀ byte)× metadata t

Conceptually, this meta-data can encode information such as the size of memory
or a specific allocation strategy. In our instance of the memory model, we use
the meta-data to ensure that all addresses in use fall within the range of 64-bit
machine integers to model a finite memory with 264 addresses.

We summarize the memory operations and sketch the pre- and post-conditions
in Figures 5, 6 and 7. The mload function reads sizeof(τ) bytes from the
specified address and returns an optional value. The mstore function writes
sizeof(τ) bytes coming from the specified value to the specified address and

218 D. Huang and G. Morrisett

mload : mem t× Z×K → val⊥
mstore : mem t× Z×K× val → mem t⊥
mpoolalloc : mem t× set R× heap t×K× N×R → (Z ∗ mem t)⊥
mpoolfree : mem t× Z → mem t⊥
mpoolinit : mem t× σ × set R× heap t× (R ∗ K) → (mem t ∗ heap t ∗ R)⊥
mpooldel : mem t× set R× heap t× set R → (mem t ∗ heap t ∗ set R)⊥
mcheck : heap t× Z×R×K → bool

Fig. 5. Memory signature. X indicates a list of values drawn from the domain X.

mload M 0 τ = ⊥ mstore M 0 τ v = ⊥
mload (mstore M a τ v) a τ = v

mload (mstore M a1 τ1 v) a2 τ2 = mload M a2 τ2 when

[a1, a1 + sizeof(τ1)) disjoint [a2, a2 + sizeof(τ2))

mload (#2 mpoolalloc M L Σ τ ′) a τ = v =⇒ mload M a τ = v

mload (mpoolfree M a) a′ τ = mload M a′ τ

Fig. 6. Selected memory operation equations. We write #2 for second projection.

optionally returns the updated memory. Loading or storing to the null pointer
0 results in failure. We note the types are used strictly for size information.

The operations mpoolalloc and mpoolfree are used to allocate and free
memory within a specified region. Unlike conventional allocation, mpoolalloc
does not generate fresh locations, i.e., the heap typing remains invariant. Instead,
it checks to see if there is a block of memory mapped in the heap typing at the
specified type and region. If successful, mpoolalloc returns a pointer to that
memory and can update its internal meta-data. The specification allows repeated
calls to mpoolalloc for the same type to return the same pointer. In practice, one
would use the internal meta-data for a freshness guarantee. Similarly, mpoolfree
does not change the heap typing, but reflects that its meta-data might have
changed to reclaim a set of addresses. This allows reclaimed addresses to be
recycled for allocations of the same type.

The operation mpoolinit allocates fresh locations for a specified region. It first
generates a region name fresh from L. It then allocates fresh locations for that
region, zeroes out the allocated memory, and updates the heap typing to map
the appropriate addresses to the appropriate types and region.2 The operation
mpooldel is the inverse of mpoolinit. It runs through the input heap typing
and frees up all addresses mentioning the specified regions. Lastly, the operation
mcheck models a run-time check. Given a heap typing, it verifies whether an
address belongs to a region at the correct type. Note that mcheck works at
the level of primitive types, so if the check returns true for a specified address,

2 In our Coq development, we break this operation into two parts, one for fresh region
creation, and one for region allocation to support mutually recursive regions.

Formalizing the SAFECode Type System 219

{ M(a) = b1 ∧ . . . ∧M(a+ sizeof(τ)) = bn }
mload M a τ = v

{ v = endian [b1, . . . , bn] }

{ }
poolalloc M L Σ τ n r = (a,M ′)

{ mcheck Σ a r τ = true }

{ ∃v2, mload M a τ = v2 }
mstore M a τ v1 = M ′

{ M(a) = b1 ∧ . . . ∧M(a+ sizeof(τ)) = bn
where v1 = endian(b1, . . . , bn) }

{ }
mcheck Σ a r [τ1, . . . , τn] = true

{Σ(a) = (τ1, r),
Σ(a+ sizeof(τ1)) = (τ2, r), . . .}

{ }
poolinit M σ L Σ (ρ, τ) = (M ′, Σ′, r)

{ a1, . . . , an fresh ∧ r /∈ L ∧ �(τ) = [τ1, . . . , τm] ∧
Σ′ = {ai �→ (τ1[σ], r)} � {ai + sizeof(τ1) �→ (τ2[σ], r)} � . . . �Σ ∧

mload M ai τ = ⊥ for i = 1, . . . , n ∧ mload M ′ ai τ = 0 for i = 1, . . . , n }

{r ∈ L}
mpooldel M L Σ r = (M ′, Σ′,L′)

{ L = r ∪ L′ ∧Σ = (a1 �→ (τ, r)) � . . . � (an �→ (τ, r)) �Σ′ ∧
mload M ′ a1 τ = ⊥ ∧ . . . ∧ mload M ′ an τ = ⊥}

Fig. 7. Axiomatic specification of memory operations. We use M(a) to abbreviate the
first projection of M at a, and τ [σ] to instantiate τ with regions specified in σ.

region and list of primitive types, it will also return true for any truncation of
the sequence, holding the other parameters constant.

3.5 Operational Semantics

We structure the semantics as an evaluation function (Coq function) and a small-
step relation (inductive predicate) on abstract machine states.

Figure 8 shows selected definitions from our evalblock function, which com-
putes the resulting memory and local environment after evaluating all deter-
ministic instructions in a basic block. The parts of the abstract machine not
mentioned such as the control stack remain invariant when executing a basic
block. There are two distinguished failure states Err and Halt. The Err state
denotes a stuck state that our soundness theorem will rule out. A transition to
the Err state can occur if we look up a variable that is not bound in the environ-
ment. A transition to the Halt state indicates that the run-time has prevented
an unsafe memory operation. For example, a call to poolcheck may fail, halting
the system. The functions describing instruction evaluation are straightforward,
and make use of the definitions from our memory model in the case of memory
instructions, or machine arithmetic in the case of binary operations.

Figure 9 shows almost all of our operational rules, omitting just the failure
transitions for call and poolalloc, and the unsafecall and branch cases. A
function call may fail if we run out of memory to hold local regions, while a
poolalloc may fail if a specific region runs out of memory. The small-step seman-
tics is compact because it pushes most of the work into the evaluation function.

220 D. Huang and G. Morrisett

evalblock nil M env =

Ok(M,env)

evalblock (ι :: ι) M env =

match eval ι M env with

| Ok(M ′, env′) =>

evalblock ι M ′ env′

| ans => ans

eval [x = poolcheck ρ τ o] M env =

match eval op o env with

| Ok(bit(a)) =>

if mcheck Σ a σ(ρ) τ [σ]

then Ok(M, env[x �→ ptr(a)])

else Halt

| => Err

Fig. 8. Selected evaluation rules. We use the notation τ [σ] to indicate applying a region
instantiation map σ to τ .

This is beneficial for model validation since the evaluation function is already
executable. We only need to write an interpreter for the terminator instructions
such as branch and return (which we can’t do in Coq since it might diverge), and
prove that the driver for terminator instructions respects the relation. Further-
more, if we grow a language by adding additional instructions, these instructions
are unlikely to be terminator instructions, so validation should continue to scale.

4 Type System

Our goal to support real SAFECode programs means that the type system is
quite complex. For the sake of brevity, we present a subset of the rules here and
elide many details that are present in our Coq-development, such as sub-typing
relations, primitive type manipulations, and contexts related to φ-node typing.

4.1 Typing Rules

At its core, the type system tracks region lifetimes and ensures that type-
homogeneity is preserved for typed-regions. The key idea is that pointers into
live regions can always be safely dereferenced at the appropriate type. The rules
used to define the typing judgments are sketched in Figure 10. Throughout,
we assume a context including the function table F mapping function names
to their definitions, and a type environment Υ mapping named types to their
definitions. In addition, the judgments use region contexts Δ to determine the
region variables in scope, variable contexts Γ mapping variables to their types,
and a label environment Ψ mapping block labels to their preconditions.

The well-formedness rules for types and instruction operands are straight-
forward. A type is well-formed (Δ � τ) if all the regions that appear free in
the type are in the region context Δ. Function types are required to be locally
closed. That is, the argument and return types may only depend upon the region
variables bound by the function. The second judgement (Δ � o : τ) determines
when operands are well-formed at a type.

Formalizing the SAFECode Type System 221

eval
evalblock E.b.ι M E.env = (M ′, env′)

(M, E, S) → (M ′, E[env := env′], S)

eval-halt
evalblock E.b.ι M E.env = Halt

(M, E, S) → Halt

return
mpooldel(M,L, Σ) = (M ′, Σ′′,L′′) env(x1) = v

(M, (f, [b.ι = return τ x1], env, Σ, σL),
(f ′, [b′.nd = x2 = call τ ′ o′〈ρ〉(x), l′)], env′, Σ′, σ′,L′) :: S) →

(M ′, (f ′, [b′.tm = br l′], (x2 �→ v) ∪ env′, Σ′′, σ′,L′′), S)

call
F (o) = τ f ′〈ρp〉(y : τρp

){ρl = poolinit τρp∪ρl
; body : � → blk}

b′ = f ′.entry env′ = env[{y �→ env(x)} {ρp �→ σ(ρ)} = σ′
e

{ρl �→ rgns′} ∪ σ′
e = σ′

mpoolinit(M, σ′,L, Σ, ρl ∗ τρp∪ρl
) = (M ′, Σ′, rgns′)

(M, (f, [b.ι = (x1 = call τ ′ o′〈ρ〉(x), l′)].env, Σ, σ,L), S) →
(M, (f ′, b′, env′, Σ′, σ′

b, rgns′ ∪ L), (f, [b.ι = (x1 = call τ ′ o′〈ρ〉(x), l′)], env, Σ, σ′,L) :: S)

poolalloc
�(τ) = τ mpoolalloc(M, lo,L, Σ, τ [σ], n, σ(r)) = (a, M ′)

(M, (f, [b.nd = (x = poolalloc τ, ρ, n, �)], env, Σ, σ,L), S) →
(M, (f, [b.tm = br �], env[(x �→ ptr(a))], Σ, σ,L), S)

Fig. 9. Selected operational rules. The function table F remains constant throughout
operation and is not shown in the rules. The notation a.b projects b from a.

The judgment for typing instructions has the form Δ;Γ � ι : Γ ′. For example,
the load rule checks that the operand has pointer type τ ∗ρ and that the pointer
type is well-formed. The postcondition guarantees that a τ value has been loaded
and passes that context forward to the next instruction. The postcondition for
poolcheck says that no matter what the operand is, we can add the checked
type into the context. There is a run-time check to ensure that this rule is sound.

The poolalloc rule is conceptually similar to a malloc rule where the result is
a pointer of the correct type. The rule additionally checks that the type requested
corresponds to the region’s type. Thus, we cannot allocate an i32 in a region
that holds {i32; i32}, although we can load an i32 out. Note that a request
for n objects of type τ only reveals that the pointer to the front of that object
is valid. This captures the essence of SAFECode that type-safety is guaranteed
at the region-level, not for individual pointers. The call rule fully instantiates
the function’s polymorphic regions and then checks that the arguments have the
appropriate types.

The typing rule for a function declaration (Figure 10) imposes a LIFO ordering
on region lifetimes. The rule uses two region contexts Δp and Δl to accomplish
this. Δp mentions only the regions the function is polymorphic in, while Δl

extends Δp with locally allocated regions. We type the function signature and
return type under Δp and the function body under contextΔl. This ensures that
regions never escape from callees to callers and that the only regions in scope
of a function body are live. Typing for a function body (ommited) is done in a
straightforward manner by typing all basic blocks in the body using the rules for

222 D. Huang and G. Morrisett

Δ � τ Well-formed type

Δ � in Δ � d32 Δ � d64

Δ � τ ρ ∈ dom(Δ)

Δ � τ ∗ ρ
ρ ∈ dom(Δ)

Δ � U(b) ∗ ρ

Υ (name) = τ ∀ρ ∈ ρ, ρ ∈ dom(Δ)

Δ � name〈ρ〉
ρ � τ → τ

Δ � ∀ρ.τ → τ

Δ � τ n �= 0

Δ � [τ × n]

Γ � o : τ Well-formed operand (selected rules)

{τ ′ ∗ ρ,U(b) ∗ ρ} /∈ τ

Γ � undef(τ) : τ

F (f) = f〈ρ〉(x : τ){body} → τ

Γ � f : ∀ρ.τ → τ

Γ (x) = τ

Γ � reg x : τ

Δ;Γ � ι : Γ Well-formed instruction (selected rules)

Δ;Γ � o : τ ∗ ρ Δ � τ ∗ ρ
Δ;Γ � x = load (τ ∗ ρ) o : Γ [x �→ τ]

Δ;Γ � o : τ ′ Δ � τ ∗ ρ
Δ;Γ � x = poolcheck ρ τ o : Γ [x �→ τ ∗ ρ]

Δ;Ψ ;Γ � tm Well-formed terminator instruction (selected rules)

Γ � o : τ Δ � τ

Δ;Ψ ;Γ � return τ o

Δ;Ψ ;Γ [x �→ τ ∗ ρ] � br Δ(ρ) = τ

Δ;Ψ ;Γ � x = poolalloc τ, ρ, n,

Γ � o : ∀ρp. τρp → τ ′
ρp Γ � o : τ [ρ/ρp]

∀ρ ∈ ρ. ρ ∈ dom(Δ) τ = τ ′[ρ/ρp] �(τ) = τ Δ;Ψ ;Γ [x �→ τ] � br

Δ;Ψ ;Γ � x = τ call o〈ρ〉(o),

Ψ ;Δp;Δl � func Well-formed function

ρp ∩ ρl = ∅ Δp � ρp Δl � ρl Δp ⊆ Δl

∀τ ∈ τ l. Δl � τ Δp � τ ∀τ ∈ τ1. Δ1 � τ ∀ ∈ dom(body). Ψ ;Δl � body()

Ψ ;Δp;Δl � τ f〈ρp〉(x : τ 1){ρl = poolinit τ2; body : → blk}

FΨ ;FΔ � prog Well-formed program

FΨ (fi) = Ψf FΔ(fi) = (Δp,Δl) Ψf ;Δp;Δl � fi, for i = 1, . . . , n

FΨ ;FΔ � {f1, . . . , fn}

Fig. 10. Selected typing rules

Formalizing the SAFECode Type System 223

deterministic and terminator instructions. The top-level typing rule ensures that
all functions are well-formed. It introduces two new contexts FΨ : f ⇀ Ψ and
FΔ : f ⇀ (Δp, Δl). The former maps a function to its basic block preconditions.
The latter maps a function to its appropriate region contexts. The top-level
mapping ensures that mutually recursive functions use consistent contexts.

4.2 Type Soundness

The most difficult part of the proof reduces to arguing about the LIFO structure
of region lifetimes to ensure that pointers only point into live regions. As func-
tions can only be declared at the top-level in LLVM, we do not need to worry
about regions escaping through closures. The key invariant to highlight is that
the heap typing stack is well-formed.

Definition (Well-formed stack: heap typing). For any two adjacent execution
contexts E1 and E2, where E1 is the callee frame and E2 is the caller frame,

(a) E2.Σ ⊆ E1.Σ
(b) E2.L ∪ {r1 . . . rn} = E1.L ∧ E2.L ∩ {r1 . . . rn} = ∅
(c) E2.L � E2.Σ
(d) E1.L � E1.Σ

In words, the heap typing increases monotonically (in terms of addresses mapped)
as we move from caller to callee frames in the execution stack. Similarly, the live
region set grows monotonically. Lastly, the regions mentioned in an execution
context’s heap typing are closed under its respective live region set.

We now state the main lemmas that are used in the proof of type soundness.

Lemma 1. (Progress and Preservation of basic block evaluation) If FΨ ;FΔ �
{f1, . . . , fn} ∧ � (M,E, S), then either evalblk E.b.ι M E.env = Ok(M ′, env′) ∧ �
(M ′, E[env := env′], S) or evalblk E.b.ι M E.env = Halt.

The proof is mechanized in Coq, but the interesting bit is that our mixed seman-
tics allows us to prove progress and preservation simultaneously as proving that
our evaluation function evalblk preserves the invariants also implies that we
must be able to take a step. One nice property of this structure is if we extend
the language by adding additional instructions to evalblk, we only need to mod-
ify our proof of type soundness in one place. This was particularly useful when
we were scaling our language out to handle real programs, as many instructions
that we added later (e.g. insertvalue) required minimal proof changes.

Lemma 2. (Preservation) If FΨ ;FΔ � {f1, . . . , fn} ∧ � (M,E, S) ∧ (M,E,S) →
(M ′, E′, S′), then � (M ′, E′, S′).

Recall that the core of the proof reduces to arguing about LIFO region lifetimes.
As our abstract memory interface specifies that mpoolinit (used on a function
call) and mpooldel (used on a return) are inverses of each other with respect to
the heap typing, the proof reduces to invoking this fact to argue that a callee
returns the heap-typing to the state expected by the caller.

224 D. Huang and G. Morrisett

Lemma 3. (Progress) If FΨ ;FΔ � {f1, . . . , fn} ∧ � (M,E,S), then either (M,E, S)

→ (M ′, E′, S′) ∧ � (M ′, E′, S′) or (M,E, S) → Halt.

This lemma has few cases because of the small operational semantics and is
straightforward to prove. Our soundness result implies that a pointer with type
τ ∗ ρ in a well-typed program always points into region ρ and references a τ .

5 Evaluation

The previous section described a declarative type system and argued that it is
sound. We have also built an algorithmic type system tc (i.e., a type-checker as
a function) and proved that it respects the declarative typing rules:

Lemma 4. (Type-checker sound) If tc(FΨ , FΔ, {f1, . . . , fn}) = true, then FΨ ;FΔ �
{f1, . . . , fn}.

The type-checker is straightforward to write and prove sound. It can be ex-
tracted as an executable OCaml program to serve as a verified type checker for
SAFECode. Unfortunately, the SAFECode compiler emits code that does not
adhere strictly to the SAFECode type system. For ease of code generation, the
compiler erases almost all region and type information from the LLVM bitcode.
This significantly increases the difficulty of applying our type-checker as we now
need to perform type-inference.

We had to write two pieces of code to close this gap. First, we wrote an
LLVM pass in C++ that crawls SAFECode’s internal structures that annotates
the resulting code with region information. Second, we wrote an OCaml pass
that performs type-inference and translates the input LLVM bitcode into our
representation. The bulk of the OCaml pass is dedicated to reconstructing the
types that SAFECode erases. In principle, we should not need to write this pass
because conceptually, the SAFECode compiler produces this typing derivation
when instrumenting code. Our type-checker checks the output of these two pieces
of code. The Coq formalization is about 12000 lines of code, while our OCaml
translation and inference pass is about 4800.

5.1 Experimental Results

In addition to the two pieces of code, we had to make a few simplifications that
possibly introduce unsoundness into the system to type-check real code. First,
we translate calls to library functions where we do not have the code or are not
instrumented by SAFECode into unsafecalls. We also cannot type variable
argument functions and certain LLVM intrinsic functions and translate those
to unsafecalls as well.3 Lastly, to keep our type system from becoming too
unwieldy, we choose not to add a typing context to handle aliases. In practice,
SAFECode sometimes calls poolcheck on a variable x, and later uses an alias

3 Consequently, preservation holds only on code that does not contain unsafecalls.

Formalizing the SAFECode Type System 225

of x without a check. As a workaround, every time a poolcheck is encountered
during translation, we emit an extra poolcheck for x’s aliases.

We ran our type-checker on micro-benchmarks included with the SAFECode
distribution and on the Olden benchmarks [2], a pointer-intensive test suite on
which the original SAFECode system was evaluated. We discovered some bugs
with the current SAFECode4 instrumentation of a few programs in the Olden
benchmarks, mostly with region instantiations. In the program bh, we found
that a call to a region-polymorphic function was not instantiated with a re-
gion. In the program em3d, we found that a pointer to a function-local pool
was allocated and returned to the caller, violating the LIFO region invariant.
We also discovered some false-positives. For example, in the program perimeter,
SAFECode performs an interval-analysis over multiple program paths to deter-
mine that an array index variable is statically in-bounds. This is a limitation
of our type-checker, as it cannot reason about the above analysis. Although our
type-checker is still a prototype, it is already effective at finding bugs.

6 Related and Future Work

Zhao et al. [13] presented a semantics for the LLVM IR formalized in Coq and
used it to prove the correctness of a closely related, but alternative technique
for enforcing spacial memory safety on C code called Softbound [10]. On the
one hand, their proof is more impressive because it shows the correctness of the
transformation. On the other hand, their model for LLVM’s IR cannot handle
idioms that arise in real C/C++ programs, (e.g., casting a pointer to an integer
and then back) because their treatment of memory is too high-level. Further-
more, our type-checker can be used not only to validate the initial transformation
of the code, but also the code that comes out of subsequent optimizations.

In addition to SAFECode, there is a rich history of region-based type systems,
first pioneered by Tofte and Talpin [12] and later refined in Cyclone [6] that
our type system draws inspiration from. In many regards, our type system is
much simpler because regions can only be passed “downwards” to functions
and never returned. Furthermore, SAFECode does not support lexically scoped
closures or existential types, so there is no need for type-and-effects systems.
Languages such as Cyclone had many more cases in which region names could
escape function scope, and thus required a much more complicated type system.
In contrast, the regions in SAFECode and our type system are type-homogenous
and allow explicit deallocation of memory in these regions, operations which were
not permitted except in restricted cases in those languages.

In our future work, we hope to thoroughly test our semantics to make sure
that it is compatible with the actual semantics implemented by the LLVM com-
piler and SAFECode run-time system. However, we structured our semantics to
lighten the burden of validation as explained in Section 3.

4 The system we evaluated our type-checker on is the most current implementation
and not the one presented in the original paper.

226 D. Huang and G. Morrisett

Acknowledgements. We thank Gregory Malecha, John Criswell, Joseph Tas-
sarotti, Stephen Chong and our reviewers for their helpful discussions.

References

1. Coq Proof Assistant, http://coq.inria.fr/
2. Carlisle, M.C.: Olden: Parallelizing Programs with Dynamic Data Structures on

Distributed-Memory Machines. PhD thesis (1996)
3. Castro, M., Costa, M., Martin, J.-P., Peinado, M., Akritidis, P., Donnelly, A.,

Barham, P., Black, R.: Fast Byte-Granularity Software Fault Isolation. In: Proc.,
SOSP 2009 (2009)

4. Criswell, J., Lenharth, A., Dhurjati, D., Adve, V.: Secure Virtual Architecture: A
Safe Execution Environment for Commodity Operating Systems. In: Proc., SOSP
2007 (2007)

5. Dhurjati, D., Kowshik, S., Adve, V.: SAFECode: Enforcing Alias Analysis for
Weakly Typed Languages. In: Proc., PLDI 2006 (2006)

6. Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., Cheney, J.: Region-
Based Memory Management in Cyclone. In: Proc., PLDI 2002 (2002)

7. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proc. International Symposium on Code Genera-
tion and Optimization, CGO 2004 (March 2004)

8. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7) (July
2009)

9. Leroy, X., Blazy, S.: Formal Verification of a C-like Memory Model and Its Uses
for Verifying Program Transformations. J. Autom. Reason. 41(1) (July 2008)

10. Nagarakatte, S., Zhao, J., Martin, M.M.K., Zdancewic, S.: SoftBound: Highly Com-
patible and Complete Spatial Memory Safety for C. In: Proc. PLDI 2009 (2009)

11. Necula, G.C., McPeak, S., Weimer, W.: CCured: Type-Safe Retrofitting of Legacy
Code. In: Proc. POPL (2002)

12. Tofte, M., Talpin, J.-P.: Region-based memory management. Inf. Comput. 132(2)
(February 1997)

13. Zhao, J., Nagarakatte, S., Martin, M.M.K., Zdancewic, S.: Formalizing the LLVM
Intermediate Representation for Verified Program Transformations. In: Proc.
POPL 2012 (2012)

http://coq.inria.fr/

Certifiably Sound Parallelizing Transformations

Christian J. Bell⋆

Princeton University
cbell@cs.princeton.edu

http://www.cs.princeton.edu/

Abstract. Sustaining scalable performance trends in the multicore era
has led many compiler researchers to develop a host of optimizations
to parallelize sequential programs. At the same time, formal methods
researchers have pushed compiler verification technology forward to the
point that real compilers may be checked for correctness by proving that
the compiler preserves a simulation relation between the source and tar-
get languages. We join these two lines of research by proving a general
parallelizing transformation schema sound for an extension of the Calcu-
lus of Communicating Systems (CCS) with semaphores and sequential
composition. When source programs contain internal nondeterminism,
we have found that the simulation relations that underlie the most promi-
nent verified compilers, like CompCert, are too strong to admit a large
class of parallelizing transformations. Thus we prove soundness with re-
spect to a new simulation relation, called eventual simulation, that re-
solves this issue and is equivalent to weak bisimulation when no internal
nondeterminism is present. All formal details presented are proven and
mechanically checked using the Coq Proof Assistant.

1 Introduction

Parallelizing optimizations allow programmers to take advantage of the increas-
ing number of cores found in modern CPUs with little additional effort. These
optimizations free the programmer from dealing with the inherent complexities
of writing multithreaded code directly and bring new vigor to a large base of
existing sequential source code by the simple act of recompilation.

Compiler verification guarantees that a compiler does not contain bugs, or
at least does not introduce bugs into compiled programs. Well-known exam-
ples include CompCert (and variations such as the Verified Software Toolchain,
XCERT, and CompCertTSO) and Vellvm [5][1][11][10][13]. CompCert translates
a C source program into successive stages of intermediate languages until it fi-
nally generates PowerPC,ARM, or x86 assembly code. Each translation is proven
correct with respect to a behavioral equivalence called weak bisimulation (hence-
forth referred to as just “bisimulation”); by transitivity, the source and target
assembly programs will bisimulate each other.

⋆ This work was supported in part by the NSF under grants 1047879 and 1016937.
Any opinions, findings, and recommendations are those of the author and do not
necessarily reflect the views of the NSF.

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 227–242, 2013.
� Springer International Publishing Switzerland 2013

http://www.cs.princeton.edu/

228 C.J. Bell

Bisimulation is a member of a large class of simulation relations that have a
co-inductive proof method and preserve many strong properties of program be-
havior, such as the interactions with an environment (e.g. the operating system,
users, and libraries) and deadlocking behavior. It may also be augmented with
termination and divergence sensitivity without much difficulty. Two programs
are bisimilar if they can mimic each other indefinitely.

Parallelizing optimizations have been studied extensively, but research has
been primarily focused on performance considerations and on developing the
supporting static analyses. Our goal is to prove the correctness of optimizations
like DOALL, DOACROSS, and Decoupled Software Pipelining (DSWP) [7][9],
which transform a loop into multiple parallel loops, and may introduce synchro-
nization to communicate data and control flow dependencies. Toward this end,
we have proven the soundness of a highly general parallelizing transformation.

Admitting parallelization presumes that the threading primitives – fork, join,
and synchronization – and the scheduler are not directly observable. In contrast,
the Verified Software Toolchain [1] conservatively treats these primitives as ob-
servable system calls; in this setting, parallelization is clearly not admissible.

Combining parallelization and internal nondeterminism – the choices a source
program makes that are not directly visible to the observer – raises an interest-
ing challenge because parallelization may cause the nondeterminism to interleave
with observable actions. Even when benign, a weak simulation (henceforth re-
ferred to as just “simulation”) is not preserved by this behavior. In many cases,
the source of the internal nondeterminism is “unspecified behavior” that the
compiler may refine. A potential solution is to first refine all internal nondeter-
minism, after which parallelization will preserve a bisimulation.

Internal nondeterminism can be intentional,1 however, and refining it may ei-
ther be incorrect (depending on the language specification) or cause the program
to run slower (e.g., by removing concurrency). Or it may be desirable to perform
the refinement in a latter phase of compilation; after parallelization. Thus we use
a new type of simulation relation, which we call eventual simulation, that allows
the compiler to preserve internal nondeterminism throughout parallelization.

Our main contributions are:

– We prove soundness of a general-purpose parallelizing transformation schema
for an extension of CCS, called CCS-Seq, with respect to a new simulation
relation called eventual simulation. Additionally, we prove that the termina-
tion properties are correctly preserved.

– Because eventual simulation is not symmetric, we propose using contrasim-
ulation [3] in verified compilers. It is implied by eventual simulation and is
generally a congruence for imperative languages. Without internal nonde-
terminism, contrasimulation reduces to bisimulation and thus our proof of
soundness for parallelization is still directly applicable.

1 A specification could permit the program to invoke an unobservable third party
to make a choice, such as a random number generator or (indirectly) through the
interleavings chosen by the scheduler.

Certifiably Sound Parallelizing Transformations 229

– We mechanically formalize and prove this work – CCS-Seq, eventual simula-
tion, contrasimulation, the proof of parallelization, and all other details – in
the Coq Proof Assistant.2 All definitions and lemmas are in a “mathemati-
cal” notation, yet are otherwise identical to our Coq development.

In Section 2, we begin with an illustrative example of parallelizing a simple
program with internal nondeterminism. Then we give the formal tools necessary
to compare the behaviors of programs and introduce eventual simulation to
state the correctness of this transformation. CCS-Seq is defined in Section 3, for
which we present the parallelizing transformation schema. In Sections 4 and 5
we introduce contrasimulation and then show how using “delayed observations”
allows it to be used in more situations. Soundness proofs and formal definitions
are given in Section 6. The remaining sections discuss related work and conclude.

2 A Simple Parallelizing Transformation

p0

p1

p3

p5

1

0

(
x:
=1
)

p2

p4

p6

2

0

(x:=2
)

(a) sequential (2.1)

q0

q1

q3

q5

1

0

(
x:
=1
)

q7

0

q2

q4

q6

2

0

(x:=2
)

(
x:
=1
)

(x:=2
)

(b) parallel (2.2)

Fig. 1. Semantics of the
programs as transition
diagrams

We begin by showing how a simple program might be
parallelized. This example introduces a few of the ba-
sic concepts that we will be using throughout this pa-
per – transition diagrams, labeled transition systems,
observable versus unobservable actions, internal non-
determinism, and comparing program behaviors using
simulations and bisimulations. Finally, we define even-
tual simulation and prove that it holds for this example.

The following sequential program randomly assigns
either 1 or 2 to x, outputs 0, and then outputs x.

x:= either 1 or 2; print 0; print x (2.1)

A potential result of parallelizing the program is:

(x:= either 1 or 2 ∥ print 0); print x, (2.2)

which may also output 0 before choosing a value for x.
The either-or statement is an instance of internal non-
determinism. Although the parallelized program is intu-
itively “correct”, the original program does not simulate
it because choosing a random value can be reordered
with console output (an observable action).

Figure 1 presents the semantics of each program
as transition diagrams where nodes represent program
states and directed edges represent program transitions.
The initial states are represented by the root nodes; p0
and q0 correspond to (2.1) and (2.2), respectively. Unobservable (silent) steps
that correspond with a line of source code are labeled in parentheses. For exam-
ple, choosing to assign either 1 or 2 to x is labeled (x:=1) or (x:=2), respectively.
In later examples, silent steps may not be labeled at all. Observable actions
(console output) have bold edges.

2 The full Coq development is at http://www.cs.princeton.edu/~cbell/par/

http://www.cs.princeton.edu/~cbell/par/

230 C.J. Bell

Labeled transition systems. A labeled transition system (LTS) is defined by a
triple, (S,L, δ), where S is the set of states, L is the set of observable actions,
and δ ⊆ S ×(L∪{τ})×S is the transition relation. A step from state p to p′ that
performs action α ∈ L ∪ {τ} is defined if (p,α, p′) ∈ δ and is denoted by p α�→ p′.
τ is reserved for internal (silent) transitions; we write p→ p′ instead of p τ�→ p′.

The transitive reflexive closure of → is denoted by ⇒. We write p
α
	⇒ p′ for

α ∈ L∪{τ} when p performs action α by taking zero or more steps to p′; i.e. p
a
	⇒ p′

for a ∈ L iff p ⇒ ⋅ a�→ ⋅ ⇒ p′ and
τ
	⇒ is equivalent to ⇒. A weak transition from

p to p′ that performs actions �a = [a0, . . . , an] ∈ L
∗ is defined as p⇒ ⋅

a0	⇒⋯
an	⇒ p′

and is denoted by p
�a
	⇒ p′. Weak transitions over an empty list of actions may

take multiple silent steps rather than just zero steps.
Two programs can be compared by showing that one mimics the other indef-

initely, which is defined with respect to a LTS.

Definition 1 (p ≤ q). R ⊆ S × S is a simulation when for any (p, q) ∈ R,
– if p α�→ p′, then q

α
	⇒ q′ and (p′, q′) ∈ R for some q′.

State q simulates p, written p ≤ q (or equivalently q ≥ p), iff there exists a
simulation R and (p, q) ∈ R.

Many verified compilers are founded on bisimulation. It holds between two
programs when each mimics (simulates) the other indefinitely, such that all pairs
of transitional states continue to be bisimilar.R−1 is the inverse ofR: (q, p) ∈ R−1

iff (p, q) ∈ R for any p and q.

Definition 2 (p ≈ q). R is a bisimulation when R and R−1 are simulations. p
and q are bisimilar, written p ≈ q, iff (p, q) ∈ R for some bisimulation R.

It is easy to prove that state q0 simulates p0 in Fig. 1. The simulation relation
is {(pi, qi) ∣ 0 ≤ i ≤ 6}. However, simulation does not hold in the other direction:

Lemma 1. Program (2.1) does not simulate (2.2): p0 ≱ q0.

Proof. By contradiction: assume p0 ≥ q0. We take step q0
0�→ q7 without commit-

ting to print either 1 or 2. By assumption, p0 must be able to mimic this action,
thus p0

0
	⇒ p′ and p′ ≥ q7 for some p′. Fig. 1a shows that p′ is either p3 or p4. In

either case, q7 may perform an action that p′ is not capable of, thus p′ ≱ q7. ⊓⊔

Because simulation fails in this direction, we choose a weaker relation for
parallelization. In particular, one that preserves as many of the strong properties
of bisimulation as possible, such as a co-inductive proof method and the fact that
related programs continue to mimic each other during execution. Note that when
the simulation fails, it is possible for the parallel program to eventually step to
a state where simulation can be reestablished: from state q7 to either q3 or q4.
It turns out that this “eventuality” holds for parallelization in general, and thus
we formalize this idea as eventual simulation.

Definition 3 (p≾ q). R is an eventual simulation when for any (p, q) ∈ R,
– if p

�a
	⇒ p′, then p′ ⇒ p′′, q

�a
	⇒ q′′, and (p′′, q′′) ∈ R for some p′′ and q′′.

Certifiably Sound Parallelizing Transformations 231

State q eventually simulates p, written p≾ q (or q ≿ p), if there exists a simulation
R whose inverse is an eventual simulation and (p, q) ∈ R.

Eventual similarity is like bisimilarity – and unlike plain similarity – in that
both programs mimic each other indefinitely, but we still call it a “similarity”
because it is asymmetric. It differs from them by considering multiple actions at
once. Bisimilarity implies eventual similarity, eventual similarity is reflexive and
transitive, and crucially, it holds for a large class of parallelizing transformations
in addition to our simple example. Further properties are explored in Section 4.

Lemma 2. If p ≈ q, then p≿ q (and p≾ q because ≈ is symmetric).

Lemma 3. ≿ is reflexive and transitive.

Lemma 4. The programs in Fig. 1 are eventually similar: p0 ≾ q0.

Proof. We select relation R = {(pi, qi) ∣ 0 ≤ i ≤ 6}. Trivially, (p0, q0) ∈ R and
R is a simulation. Finally, we prove that R−1 is an eventual simulation. The
interesting case is for (p0, q0) ∈ R, when q0

0
	⇒ q7. In response, we have p0 follow

by p0
0
	⇒ p3 and q7 ⇒ q3. (We may have instead chosen to step to p4 and q4.) ⊓⊔

3 CCS-Seq

We now investigate parallelization for an extension of the Calculus of Com-
municating Systems (CCS) [6]. CCS is widely used as a model for analyzing
bisimulation relations and the behavior of programs and systems with multi-
ple concurrent agents acting in concert via message passing and synchroniza-
tion. However, we must extend CCS with a sequential composition operator in
order to model parallelizing transformations. Furthermore, implementing asyn-
chronous communication on top of CCS-style synchronous channels is tedious
and not modular (requiring auxiliary threads for buffering), so we replace its
channels with semaphores. We refer to this language as CCS-Seq.

α ∶∶= τ ∣ a ∣ ā

P ∶∶= 0 ∣ P +P ∣ P ∣P ∣ α.P ∣ !P ∣ P ;P ∣ υa ∶n.P

Metavariables P , Q, M , N , and R refer to processes; a is the name of a
semaphore; α is an action (τ is internal), and n is a natural number. Figure 2
lists the operational semantics. Action prefixing, α.P , emits action α and resolves
to P . 0 is a terminated process (we abbreviate α.0 as α), P ∣Q is parallel com-
position, P ;Q is sequential composition, and P +Q represents a choice between
executing either P or Q. A process may create infinite, parallel copies of itself
by replication: !P . Although we do not use replication directly in this paper, its
presence gives the language “teeth” – so that proving termination properties is
not trivial (for this purpose, a termination rule for replication is unnecessary).

Restriction, υa ∶ n.P , declares that a is a semaphore, local to P , with state
n. It is a way of introducing a fresh semaphore name that is hidden from any

232 C.J. Bell

P α
�→ P ′

P ;Q α
�→ P ′;Q

P α
�→ P ′

P ∣Q α
�→ P ′ ∣Q

Q α
�→Q′

P ∣Q α
�→ P ∣Q′

P α
�→ P ′

P +Q α
�→ P ′

Q α
�→Q′

P +Q α
�→Q′

P α
�→ P ′ α ∉ {a, ā}

υa ∶n.P α
�→ υa ∶n.P ′

P ā
�→ P ′

υa ∶n.P → υa ∶ (n+ 1).P ′

P a
�→ P ′

υa ∶ (n+ 1).P → υa ∶n.P ′

α.P α
�→ P

P ∣!P α
�→ P ′

!P α
�→ P ′ 0;P → P υa ∶n.0→ 0 0 ∣0→ 0 0 + 0→ 0

Fig. 2. Operational semantics for CCS-Seq

observer or process outside of P . When P emits action ā or a, the semaphore
is incremented or decremented, respectively, and the observed action is τ . If the
semaphore count is zero, then P cannot emit a to decrement the semaphore until
the count becomes nonzero. We will reason about programs with an arbitrary
number of semaphores, so we define a vectorized form of restriction.

Definition 4. υa1 ∶n1. . . . υak ∶nk.P is abbreviated as Υ�a ∶�n.P .

We define a LTS for CCS-Seq in the usual way. Processes are synonymous
with states, an action is either a or ā for any semaphore a, and the set of single
steps defined in Fig. 2 is the transition relation.

Since we have added sequential semantics, bisimulation alone is not a congru-
ence for sequential composition. For example, even though 0 ≈!τ , it is the case
that 0;a≉!τ ;a. This is easy to fix by adding termination sensitivity.

Definition 5. A relation R is one-way termination sensitive when for any
(p, q) ∈ R, if p is halted (for CCS-Seq, if p = 0), then q ⇒ p. R is termina-
tion sensitive if R and R−1 are one-way termination sensitive.

Definition 6 (p≈
↓ q). States p and q are termination sensitive bisimilar, written

p≈↓ q, if there exists a termination sensitive bisimulation R such that (p, q) ∈ R.

Definition 7 (p≾↓ q). State q termination sensitive eventually simulates p, writ-
ten p≾↓ q (or q ≿↓ p), if there exists a termination sensitive simulation R, whose
inverse is an eventual simulation, such that (p, q) ∈ R.

Lemma 5 (Compositional properties of ≈, ≈↓, ≾, and ≾↓). Where ≡ ranges
over {≈,≈↓,≾,≾↓}; if P ≡ Q then: P ∣R ≡ Q ∣R, α.P ≡ α.Q, !P ≡!Q, υa ∶n.P ≡
υa ∶n.Q, R;P ≡ R;Q, and τ.P +R ≡ τ.Q + R. If P ≈↓Q, then P ;R≈↓Q;R. If
P ≾↓Q, then P ;R≾↓Q;R.

Before presenting a general parallelization transformation for sequential com-
position, we warm up with a simpler form of parallelization in the following
lemma. By targeting the sequentialism found in action prefixing, the lemma
suggests that eventual simulation may have some uses in plain CCS as well.

Lemma 6. τ.(P ∣Q) + τ.(P ∣R) ≾↓ P ∣(τ.Q + τ.R).

Certifiably Sound Parallelizing Transformations 233

Proof. We choose R = ⋃P (τ.(P ∣Q) + τ.(P ∣R), P ∣(τ.Q + τ.R)) ∪ I, where I is
the identity relation. Showing that R is a simulation and that I is an eventual
simulation is trivial. We show that the first part of R is an eventual simulation.
The right program may either 1) choose between Q or R, or 2) avoid choosing
and only run P : P ∣(τ.Q + τ.R)

�α
	⇒P ′ ∣(τ.Q + τ.R). Case 1: the left program can

converge to the same state. Case 2: we arbitrarily pick Q such that P ′ ∣(τ.Q +
τ.R) ⇒ P ′ ∣Q; the left program can then converge to the same state. ⊓⊔

If we choose P = 0.0, Q = 1.0, and R = 2.0, then sequential program (2.1)
roughly corresponds to τ.(0 ∣ 1) + τ.(0 ∣ 2) and parallel program (2.2) roughly
corresponds to 0 ∣(τ.1 + τ.2). (The “rough” difference is that action 0 is allowed
to interleave with actions 1 and 2 in more ways than in Fig. 1.)

3.1 The Parallelization Transformation

The key idea of Lemma 6 is that the more-parallel program may be able to per-
form some action (by executing P) without making an internal choice (between
Q and R). However, the more-sequential program will not be able to simulate
this (by running P) before first committing itself to one of these choices. Even-
tual simulation holds because the more-parallel program can take extra steps to
resolve the same choices so that both programs converge to the same state.

This same idea applies to our key result: a general parallelizing transformation
between sequential and parallel programs. An obvious schema (despite the subtle
premises) for a parallelizing transformation converts two programs in sequence
into two programs in parallel, which we describe here. (Section 6 goes into further
detail and provides proof sketches.)

Proposition 1. If P may always silently terminate (modulo �a), P and Q do not
both decrement any of the same semaphores, and either P or Q never performs
an observable action (modulo �a), then Υ�a ∶�n.(P ;Q)≾↓ Υ�a ∶�n.(P ∣Q).

We specify a list of actions, �a, to facilitate unobservable communication be-
tween P and Q; when we state that an execution is “silent”, we mean that only
hidden actions (i.e. those named by �a) may be performed. If P “may always
silently terminate”, then no matter how P executes (even performing observ-
able actions), we can always ask it to then silently transition to a terminated
state. This allows the sequential program, in response to the parallel program
executing Q before P terminates, to “catch up” by forcing both to terminate
P (possibly making some arbitrary internal choices in doing so) and converging
to the same state. (Although this premise is complex, it is more general than
simply not allowing P to diverge at all and requiring P to be completely silent).

However, it is not enough for P to terminate in isolation because Q will
interleave with P . The second premise ensures that Q cannot block P by stealing
a semaphore and causing it to deadlock.3 The last premise, where either P or

3 If the language were extended with shared queues of values, this condition would
also prevent Q from interfering by stealing values intended for P .

234 C.J. Bell

Q must be silent, prevents parallelization from resulting in new interleavings of
observable actions because such a difference would be trivial to detect.

We also prove a transformation that combines two parallel programs. Two
processes, P1 and P2, coterminate (modulo �a) when (1) P1 ∣P2

�α
	⇒ 0 ∣P ′2 implies

P ′2 may always silently terminate (modulo �a); and when (2) P1 ∣P2
�α
	⇒P ′1 ∣0 im-

plies P ′1 may always silently terminate (modulo �a).

Proposition 2. If P1 and P2 coterminate (modulo �a), P1 and P3 do not decre-
ment any of the same semaphores as P2 and P4, and P2 and P4 never per-
form an observable action (modulo �a), then Υ�a ∶ �n.((P1 ∣P2); (P3 ∣P4))≾↓ Υ�a ∶
�n.((P1;P3) ∣(P2;P4)).

Proposition 2 is strictly more general than Prop. 1 because it allows P1 and
P2 to coordinate termination (or not terminate at all). It results in the paral-
lelization of P3 with P2 and P4 with P1.

Now we show that Prop. 1 is sufficient to parallelize a CCS-Seq implementa-
tion of program (2.1) into (2.2).

Lemma 7. Given

M = Υ [e, f] ∶[0,0]. (Υ [c, d] ∶[0,0]. (τ.c̄ + τ.d̄; 0̄; c.ē + d.f̄) ; e.1̄ + f.2̄)

N = Υ [e, f] ∶[0,0]. (Υ [c, d] ∶[0,0]. ((τ.c̄ + τ.d̄) ∣ (0̄; c.ē + d.f̄)) ; e.1̄ + f.2̄) ,

where M and N correspond to (2.1) and (2.2), respectively: M ≾↓N .

Proof. By Prop. 1 and congruence. τ.c̄+τ.d̄ silently terminates; its actions, c̄ and
d̄, are hidden by the semaphore restriction. Finally, τ.c̄+ τ.d̄ does not decrement
any semaphores and thus the process does not interfere with 0̄; c.ē + d.f̄ . ⊓⊔

4 Pursuing Symmetry: Contrasimulation is a Congruence

≿ is reflexive, transitive, and compositional, but it is not a congruence because
it lacks symmetry. Adding symmetry would enable some useful optimization
strategies, like commuting two blocks of instructions by first parallelizing them,
swapping the threads, and then applying parallelization in reverse to sequen-
tialize them. Although symmetry is not always desirable (e.g. when refining
unspecified behavior), there is no clear benefit to the asymmetry in eventual
similarity. In fact, it is even asymmetric in the wrong direction – it allows more
interleavings to be added, not refined. To obtain symmetry, we might attempt
to define a relation where eventual simulation holds in both directions.

Definition 8. Programs p and q are eventually bisimilar, written p
...
≈ q, if there

exists an R such that R and R−1 are eventual simulations and (p, q) ∈ R.

Lemma 8. If p≾ q or p≿ q, then p
...
≈ q.

However,
...
≈ is not transitive for divergent LTSs, as demonstrated in Fig. 3,

limiting its use to languages without infinite loops or recursion. (It is transitive

Certifiably Sound Parallelizing Transformations 235

1

3 4

2

⋮

(a)

1

3

4

2

⋮

(b)

1

3 2

⋮

(c)

Fig. 3. Counterexample of transitiv-
ity for

...
≈. Each transition diagram

depicts an infinite series of states
where the actions continue to grow.
Although a

...
≈ b and b

...
≈ c, it is not

the case that a
...
≈ c.

for LTSs that do not diverge.) Parrow and Sjödin worked on a similar problem
that also needed a coarser view of internal nondeterminism than bisimulation af-
forded [8]. They developed coupled simulation to relate the behavior of multiway
distributed internal choice to a reference implementation that resolves all choices
in one synchronous step. Coupled simulation is finer than eventual simulation
and is also not transitive for divergent LTSs. Should they need transitivity, they
suggested use of contrasimulation [3], which contains coupled simulation.

Definition 9 (p≈c q). R is a contrasimulation when for any (p, q) ∈ R,
– if p

�a
	⇒ p′, then q

�a
	⇒ q′ and (p′, q′) ∈ R−1 for some q′.

Note the reversal of R. State q partially contrasimulates p iff there exists a
contrasimulation R such that (p, q) ∈ R. States p and q are contrasimilar, written
p≈c q, iff there exists a contrasimulation R such that (p, q) ∈ R ∩R−1.

Lemma 9. If p
...
≈ q, then p≈c q.

When two programs are contrasimilar, they take turns simulating each other
indefinitely, starting with either program. Unlike bisimilarity, the relation be-
tween two programs only needs to be symmetric for the initial states. Crucially,
contrasimulation is an equivalence.

Lemma 10. Contrasimulation is reflexive, symmetric, and transitive.

As a sanity check, contrasimulation is stronger than trace equivalence:

Definition 10 (p ≈tr q). p and q are trace equivalent, written p ≈tr q, when
– if p

�α
	⇒ p′, then there exists a q′ such that q

�α
	⇒ q′

– if q
�α
	⇒ q′, then there exists a p′ such that p

�α
	⇒ p′.

Lemma 11. If p≈c q, then p ≈tr q.

Trace equivalence is a sufficient soundness criterion in some situations, but it
is useful to prove a simulation relation because trace equivalence is not a con-
gruence (e.g. for parallel composition) and the co-inductive proof method can
be easier to work with. Of course, when the LTS is deterministic, these relation-
ships are all equivalent to bisimulation. But we can prove that contrasimulation
is equivalent to bisimulation when only internal transitions are deterministic,
which suggests that it is not significantly weaker than necessary in order to deal
with the interleaving of internal nondeterminism with observable actions.

236 C.J. Bell

Theorem 1. If p→p′ implies p ≈ p′ for any p and p′, then ≈c is equivalent to ≈.

Proof. Lemmas 8 and 9 prove ≈⊆ ≈c. In the other direction, we show that R = ≈c
is a bisimulation. Because it is symmetric, we only need to prove that R is a
simulation. Assume p≈c q and p α�→ p′; there must exist a q′ such that q

α
	⇒ q′ and

p′ partially contrasimulates q′. The trick is to flip the direction in which partial
contrasimulation holds, implying p′ ≈c q

′. By q′ ⇒ q′, there exists a p′′ such that
p′ ⇒ p′′ and q′ partially contrasimulates p′′. By the premise and Lemmas 2, 8, 9,
and 10, p′′ ≈ p′, q′ partially contrasimulates p′, and thus p′ ≈c q

′. ⊓⊔

As a corollary, ≿ collapses to ≈ when there is no internal nondeterminism. We
define termination sensitive contrasimulation and then show that contrasimilar-
ity has the same compositional properties as bisimilarity and eventual similarity.

Definition 11 (p≈↓c q). States p and q are termination sensitive contrasimilar,
written p≈↓c q, iff there exists a one-way termination sensitive contrasimulation
R such that (p, q) ∈ R ∩R−1.

Lemma 12 (Compositional properties of ≈c and ≈↓c). Where ≡ ranges
over {≈c,≈↓c}; if P ≡ Q then: P ∣R ≡Q ∣R, α.P ≡ α.Q, !P ≡!Q, υa ∶n.P ≡ υa ∶n.Q,
R;P ≡ R;Q, and τ.P +R ≡ τ.Q +R. If P ≈↓cQ, then P ;R≈↓cQ;R.

Like coupled similarity, contrasimilarity is congruent for + when the processes
are equally stable.

Definition 12 (stable p). p is stable if there does not exist a p′ such that p→ p′.

Lemma 13. If P ≈cQ and (stable P iff stable Q), then P +R≈cQ +R.
(And likewise for ≈↓c).

Compiled languages do not usually allow “mixed choice”, where one option is
stable and the other is not, so both bisimulation and contrasimulation are often
full congruences in practice. Thus we can build correct, modular optimizations
based on contrasimulation (or bisimulation) using the above congruence results.
Because bisimulation is finer than contrasimulation, all of its algebraic properties
for CCS (and CCS-Seq) hold for contrasimulation.

Voorhoeve and Mauw investigate further properties of contrasimulation and
describe an axiomatization for CCS [12]. Their axiomatization relates stable in-
ternal choice for an observable action into the action followed by internal choice.

Lemma 14. a.P + a.Q≈c a.(τ.P + τ.Q).
Interestingly, this holds for ≾ as well. a a

P Q

≈c
≾
≤
≱
≉

a

P Q

Combined with a few algebraic properties of
bisimulation, like τ.P + P ≈ τ.P , Lemma 14 proves
equivalence between programs (2.1) and (2.2).

Certifiably Sound Parallelizing Transformations 237

(1) 0

(x:
=1
)

0

0 (2)

(x:=2
)

(0)

1

0 (1)

2

0(2)

(
x:
=1
)

(x:=2
)

(a)

(1) 0

(0)

(x:
=1
)

0

(0)

0 (2)

(0)

(x:=2
)

1

0 (1)

2

0(2)

(x:
=1
)

(x:=2
)

(
x:
=1
)

(x:=2
)

(b)

(1) 0

(0)

(x
:=
1)

0 (2)

(0)

(x:=2
)

1

0 (1)

2

0(2)

(c)

Fig. 4. Delayed observation semantics for programs (5.1), (2.2), and (2.1)

5 Delayed Observations

1 2

0

Fig. 5

Contrasimulation effectively allows a program to delay an internal
choice until after an observable action. But this does not allow
the observation to be fully commuted. Consider the sequential
program that prints 0 before choosing a value for x,

print 0; x:= either 1 or 2; print x, (5.1)

whose semantics are given by Fig. 5. Intuitively, (5.1) and (2.2) should be equiv-
alent, but contrasimilarity does not hold between their corresponding transition
diagrams, Figs. 1b and 5. If Fig. 1b chooses x:= 1, then Fig. 5 will be unable
to commit to the same choice without first observing 0. We have yet to find a
satisfactory equivalence that holds for Fig. 5.

If (5.1), (2.2), and (2.1) were C programs, however, their semantics would be
subtly different. The specification of many IO operations in C, such as printf,
allows output to be buffered before being printed to the console. In other words,
observable actions may be delayed.

We say that a LTS has delayed observations when output is queued before
appearing on the screen at a nondeterministic point in the future. Figure 4 gives
the semantics of programs (5.1), (2.2), and (2.1) using delayed observations.
Figures 4b and 4c are contrasimilar. Moreover, Figs. 4a and 4b are now bisimilar.

Although contrasimulation cannot directly allow observations to be delayed
until after internal choice, we can side-step the issue by choosing a semantics
with delayed observations. In such a setting, Props. 1 and 2 can be used to
parallelize programs such as (5.1). They also become somewhat easier to use: by
delaying all observations until after termination, proving termination is enough
to prove silent termination. However, a limitation remains: not all observations
may be delayed. For example, C’s fflush forces immediate observation, thus
commuting it with internal choice would not maintain a contrasimulation.

238 C.J. Bell

6 Proof of Parallelization

We first define notions of convergence, termination entailment, cotermination,
free variables, and some helper lemmas before describing the proofs of Props. 2
and 1. Rigorous proofs are in our full implementation (see footnote 1).

6.1 Preliminary Definitions

Definition 13. �α−�a is the trace of labels �α with the semaphores in �a removed.
It represents the result of multiple semaphore restrictions on a trace.

Definition 14 (Well-formed traces). A trace of labels �α is well-formed with
respect to semaphore a with count n if there exists a final count n′ for the
semaphore such that the trace does not decrement the semaphore below a count
of 0. We denote this as n �α

an
′ and define it recursively on the structure of �α.

n
[]

an
′ if n′ = n

n α′∶∶�α
an
′ if α′ ∉ {a, ā} and n �α

an
′

n + 1 a∶∶�α
an
′ if n �α

an
′ (decrements a)

n ā∶∶�α
an
′ if n + 1 �α

an
′ (increments a).

We then define a well-formed trace with respect to a list of semaphores, �n �α
�a�n
′,

recursively on the structure of �a.

[] �α
[]
[] always

(n ∶∶ �m) �α
a∶∶�b(n

′ ∶∶ �m′) if n �α−�b
an
′ and �m �α

�b �m
′.

Definition 14 appears only in the next definition. However, it is used exten-
sively by helper lemmas in our Coq proof development to separate the details of
how a particular process runs from how its semaphores are used. For example,
to state that a sequential and parallelized program use their semaphores in the
same way despite their syntactic difference.

Silent termination and cotermination were introduced in Section 3.1 for use
in Props. 1 and 2. We now give concrete definitions; recall the notation for
vectorized semaphore restriction from Definition 4.

Definition 15 (Silent termination). P silently terminates, written P ⇓�a∶�n, if
for any P ′ and �α, P

�α
	⇒ P ′ implies Υ�a ∶�n′.P ′ ⇒ 0 and �n �α

�a�n
′ for some �n′.

Definition 16 (Termination entailment & cotermination). P1 entails the
termination of P2, written P1 ↓↓

�a∶�n P2, if Υ�a ∶�n.(P1 ∣P2)
�α
	⇒ Υ�a′ ∶�n′.(0 ∣P ′2) im-

plies P ′2 ⇓
�a′∶�n′ . P1 and P2 coterminate, written P1 ↕↕

�a∶�n P2, iff P1 ↓↓
�a∶�n P2 and

P2 ↓↓
�a∶�n P1.

In order to state noninterference properties between processes, we define func-
tions to find the sets of free variables used to increment semaphores, decrement
semaphores, and the union of each within a process.

Certifiably Sound Parallelizing Transformations 239

Definition 17 (Free observable actions).
fa(ā.P) = {ā}∪fa(P) fa(0) = {} fa(P1 +P2) = fa(P1)∪fa(P2)
fa(a.P) = {a}∪fa(P) fa(!P) = fa(P) fa(P1 ∣P2) = fa(P1)∪fa(P2)
fa(τ.P) = fa(P) fa(υa ∶n.P) = fa(P)∖a ∖ā fa(P1;P2) = fa(P1)∪fa(P2)

Definition 18 (Free variables: increment, decrement, and both).
fvV (P) = {a ∣ ā ∈ fa(P)} fvP (P) = {a ∣a ∈ fa(P)} fv (P) = fvV (P) ∪ fvP (P)

The semaphores that a process, P , can increment and decrement are respec-
tively limited by fvV (P) and fvP (P).

6.2 Proof

This first lemma performs case analysis on a single step of a “sequential” program
in order to show that the parallelized program can perform the same action.

Lemma 15. If Υ�a ∶�n.((P1 ∣P2); (P3 ∣P4))
α�→ p′, then either

– there exists �n′, P ′1, and P ′2 such that
● p′ = Υ�a ∶�n.((P ′1 ∣P

′

2); (P3 ∣P4)) and
● Υ�a ∶�n.(P1 ∣P2)

α�→ Υ�a ∶�n′.(P ′1 ∣P
′

2)
● (and thus Υ�a ∶�n.((P1;P3) ∣(P2;P4))

α�→ Υ�a ∶�n′.((P ′1;P3) ∣(P
′

2;P4))),
– or P1 = P2 = 0 and p′ = Υ�a ∶�n.0; (P3 ∣P4).

In the following lemma, we look at an execution of the parallelized program
over multiple steps and show that the sequential program can either simulate it
directly, or that there exists a future state where they can converge.

Lemma 16. If Υ�a ∶�n.((P1;P3) ∣(P2;P4))
�α
	⇒ p′, P1 ↕↕

�a∶�n P2, fv (P2;P4) ⊆ �a, and
fvP (P1;P3) ∩ fvP (P2;P4) = ∅, then either
– there exists �n′, P ′1, and P ′2 such that

● p′ = Υ�a ∶�n′.((P ′1;P3) ∣(P
′

2;P4)),
● Υ�a ∶�n.P1 ∣P2

�α
	⇒ Υ�a ∶�n.(P ′1 ∣P

′

2)
● (and thus Υ�a ∶�n.((P1 ∣P2); (P3 ∣P4))

�α
	⇒ Υ�a ∶�n.((P ′1 ∣P

′

2); (P3 ∣P4)));
– or there exists p′′ such that

● p′ ⇒ p′′ and
● Υ�a ∶�n.((P1 ∣P2); (P3 ∣P4))

�α
	⇒ p′′.

Proof. We consider three outcomes of running Υ�a ∶ �n.((P1;P3) ∣(P2;P4))
�α
	⇒ p′,

where ∗n represents the final state that process Pn reaches (if it runs but does
not terminate). We focus on the second case as the other two are relatively easy.

P3 ∣(∗2;P4) ∗3 ∣(0;P4)

(P1;P3) ∣(P2;P4) (∗1;P3) ∣(∗2;P4) ∗3 ∣∗4 0

(∗1;P3) ∣P4 (0;P3) ∣∗4
1 2 3

240 C.J. Bell

Case 1. P1 ∣P2
�α1	⇒ p1 ∣p2 and �α = �α1 − �a for some p1 and p2. The sequential

program runs P1 ∣P2 to match the actions without converging to the same state.

Case 2. The parallel program has the form of either p3 ∣(p2;P4) or (p1;P3) ∣p4.
We consider only the first (top) form; the second is similar. Because P1 termi-
nated, p2 can silently terminate. This yields Υ�a ∶�n.(p3 ∣(p2;P4)) ⇒ Υ�a ∶�n′.(p3 ∣P4)
for some �n′. However, we need P2 to terminate before P3 even runs in or-
der for the sequential program to mimic the behavior. This is possible if P2

did not emit observable actions (a premise of this lemma) and P3 did not in-
fluence P2 as they interleaved. The last could only have happened if P3 in-
cremented a semaphore on which P2 would otherwise deadlock. Because P2

was capable of terminating by the time P3 ran, such deadlocking was impos-
sible. Thus we know we can run Υ�a ∶�n.(P1 ∣P2)

�α12	⇒ Υ�a ∶�n′0.(0 ∣0), followed by
Υ�a ∶�n′0.(P3 ∣P4)

�α3	⇒ Υ�a ∶�n′.(p3 ∣P4), for some �n′0 and such that �α is equal to some
�α12 appended with �α3. Both programs can converge to state p′′ = Υ�a ∶�n′.(p3 ∣P4).

Case 3. P1 ∣P2
�α1	⇒ 0 ∣0, P3 ∣P4

�α2	⇒ p3 ∣p4, and �α = (�α1 ⋅ �α2) − �a for some p3, p4,
�α1, and �α2. The sequential program runs P1 ∣P2 to termination and then runs
P3 ∣P4 to converge to the same state as the parallel program. ⊓⊔

Theorem 2 (Proof of Prop. 2). If
– P1 and P2 coterminate: P1 ↕↕

�a∶�n P2;
– the processes do not interfere: fvP (P1;P3) ∩ fvP (P2;P4) = ∅; and
– P2 and P4 cannot be observed: fv (P2) ∪ fv (P4) ⊆ �a,

then Υ�a ∶�n.(
(P1 ∣P2) ;
(P3 ∣P4)

) ≾↓ Υ�a ∶�n.((
P1;
P3

) (
P2;
P4

)).

Proof. We choose R = {(p, q) ∣ ∃�a,�n,P1, P2. p = Υ�a ∶ �n.((P1;P3) ∣(P2;P4)) ∧
q = Υ�a ∶�n.((P1 ∣P2); (P3 ∣P4)) ∧ P1 ↕↕

�a∶�n P2 ∧ fv (P2) ∪ fv (P4) ⊆ �a ∧ fvP (P1 ;
P3) ∩ fvP (P2;P4) = ∅} ∪ {(p, q) ∣ p≈↓ q}, and show that R is a termination sen-
sitive simulation, R−1 is an eventual simulation, and that (Υ�a ∶ �n.((P1 ∣P2);
(P3 ∣P4)), Υ�a ∶ �n.((P1;P3) ∣(P2;P4))) ∈ R. The last condition is trivial. The re-
maining step is to consider all pairs (p, q) ∈ R and show that they behave ac-
cordingly for termination sensitivity, simulation and eventual simulation.

Case 1. There exists �a, �n, P1, and P2 such that p = Υ�a ∶�n.((P1;P3) ∣(P2;P4)),
q = Υ�a ∶�n.((P1 ∣P2); (P3 ∣P4)), etc. Termination sensitivity holds because neither
p nor q are halted. To satisfy simulation, we assume that p α�→ p′ and must show
that there exists a matching q′ such that q

α
	⇒ q′ and (p′, q′) ∈ R. This follows

directly from Lemma 15. Finally, we must satisfy eventual simulation. Assuming
q

�α
	⇒ q′, we show that there exists a p′′ and q′′ such that p

α
	⇒ p′′, q′ ⇒ q′′, and

(p′′, q′′) ∈ R. (Notice that this flips the direction of eventual simulation because
we started with it holding for R−1.) This follows from Lemma 16.

Case 2: p≈
↓ q. Termination sensitivity holds because ≈↓ is termination sensitive.

Simulation and (inverse) eventual simulation hold because ≈↓ implies both. ⊓⊔

Certifiably Sound Parallelizing Transformations 241

Corollary 1 (Proof of Prop. 1). If
– P1 silently converges: P1 ⇓

�a∶�n;
– the processes do not interfere: fvP (P1) ∩ fvP (P2) = ∅; and
– either P1 or P2 cannot be observed: fv (P1) ⊆ �a or fv (P2) ⊆ �a,

then Υ�a ∶�n.(P1;P2)≾↓ Υ�a ∶�n.(P1 ∣P2).

Proof. This reduces to proving either Υ�a ∶�n. ((P1 ∣0) ; (0 ∣P2)) ≾↓ Υ�a ∶�n. ((P1;0) ∣
(0;P2)) or Υ�a ∶�n. ((0 ∣P1) ; (P2 ∣0)) ≾↓ Υ�a ∶�n. ((0;P1) ∣ (P2;0)) by Theorem 2,
depending on whether P2 or P1 is unobservable. ⊓⊔

7 Related Work

Sound Parallelization. C. Hurlin proved partial correctness for an automated
implementation of DOALL, where separation logic assertions provide both the
specification to be preserved and the shape analysis [4]. M. Botinčan, M. Dodds
et al. extended this proof-directed approach to support automated DOACROSS
optimizations by injecting synchronization barriers; they prove a termination
sensitive trace equivalence [2]. Our work supports more diverse dependency and
synchronization patterns and proves a stronger correctness criterion. We view
our proof theory and their automation techniques as being complementary.

Simulations. We are unaware of any prior mention of eventual simulation in
the literature. After developing our proofs with respect to eventual simulation,
we independently derived contrasimulation and its characteristic logic in order
to regain symmetry and transitivity. However, van Glabbeek was the first to
define contrasimulation [3]. Voorhoeve and Mauw investigated many properties
of contrasimulation, describing its characteristic logic and axiomatization for
CCS [12]. They established a notion of “good” and “bad” protocols and proved
that contrasimulation can distinguish between them. Neither work discussed the
possible applications of contrasimulation toward parallelizing transformations.

8 Conclusion

We have proven the soundness of a very general parallelizing transformation
for CCS-Seq with respect to a new type of simulation relation, called eventual
similarity, that allows internal nondeterminism to be preserved. Additionally, we
identify contrasimilarity as a congruence that contains eventual similarity when
symmetry is needed. In the absence of internal nondeterminism, both eventual
similarity and contrasimilarity are equivalent to bisimulation. Because of these
properties, we believe [termination sensitive] contrasimilarity is a good definition
of correctness to build a verified compiler upon.

An underlying goal of this study was to develop a clear theory from the
patchwork correctness criteria that resulted from our first attempt to prove par-
allelization for an imperative language. We were surprised to find that buffered
IO (i.e., delayed observations), which is used to increase performance and is often
overlooked by concurrency researchers, also contributes to expanding the kinds

242 C.J. Bell

of parallelization that we can achieve using contrasimulation. All proofs were
done in the Coq Proof Assistant, which we found instrumental to managing the
complexity of proving parallelization.

References

1. Appel, A.W.: Verified software toolchain - (invited talk). In: Barthe, G. (ed.) ESOP
2011. LNCS, vol. 6602, pp. 1–17. Springer, Heidelberg (2011)

2. Botinčan, M., Dodds, M., Jagannathan, S.: Proof-directed parallelization synthesis
by separation logic. ACM Trans. Program. Lang. Syst. 35(2), 8:1–8:60 (2013)

3. van Glabbeek, R.J.: The linear time - branching time spectrum II. In: Best, E.
(ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

4. Hurlin, C.: Automatic parallelization and optimization of programs by proof rewrit-
ing. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 52–68. Springer,
Heidelberg (2009)

5. Leroy, X.: Formal verification of a realistic compiler. Communications of the
ACM 52(7), 107–115 (2009)

6. Milner, R.: A Calculus of Communicating Systems. Springer-Verlag New York,
Inc., Secaucus (1982)

7. Padua, D.A., Wolfe, M.J.: Advanced compiler optimizations for supercomputers.
Communications of the ACM 29(12), 1184–1201 (1986)

8. Parrow, J., Sjödin, P.: The complete axiomatization of cs-congruence. In: Enjalbert,
P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 555–568.
Springer, Heidelberg (1994)

9. Rangan, R., Vachharajani, N., Vachharajani, M., August, D.I.: Decoupled software
pipelining with the synchronization array. In: IEEE PACT, pp. 177–188 (2004)

10. Ŝevčik, J., Vafeiadis, V., Nardelli, F.Z., Jagannathan, S., Sewell, P.: Relaxed-
memory concurrency and verified compilation. SIGPLAN Not. 46(1), 43–54 (2011)

11. Tatlock, Z., Lerner, S.: Bringing extensibility to verified compilers. SIGPLAN
Not. 45(6), 111–121 (2010)

12. Voorhoeve, M., Mauw, S.: Impossible futures and determinism. Inf. Process.
Lett. 80(1), 51–58 (2001)

13. Zhao, J., Nagarakatte, S., Martin, M.M.K., Zdancewic, S.: Formalizing the
LLVM intermediate representation for verified program transformations. SIGPLAN
Not. 47(1), 427–440 (2012)

Programming Type-Safe Transformations

Using Higher-Order Abstract Syntax

Olivier Savary-Belanger1, Stefan Monnier2, and Brigitte Pientka1

1 McGill University
2 Université de Montréal

Abstract. Compiling syntax to native code requires complex code
transformations which rearrange the abstract syntax tree. This can be
particularly challenging for languages containing binding constructs, and
often leads to subtle, hard to find errors. In this paper, we exploit higher-
order abstract syntax (HOAS) to implement a type-preserving compiler
for the simply-typed lambda-calculus, including transformations such as
closure conversion and hoisting, in the dependently-typed language Bel-
uga. Unlike previous implementations, which have to abandon HOAS
locally in favor of a first-order binder representation, we are able to take
advantage of HOAS throughout the compiler pipeline, so that we do not
have to include any lemmas about binder manipulation. Scope and type
safety of the code transformations are statically guaranteed, and our im-
plementation directly mirrors the proofs of type preservation. Our work
demonstrates that HOAS encodings offer substantial benefits to certified
programming.

1 Introduction

Type-based verification methods support building correct-by-construction soft-
ware, and hold the promise of dramatically reducing the costs of quality assur-
ance. Instead of verifying properties post-hoc about software, we rely on rich
type abstractions which can be checked statically during the development.

Compiler implementers have long recognized the power of types to estab-
lish key properties about complex code transformations. However, the standard
approach is to type-check the intermediate representations produced by com-
pilation. This amounts to testing the result of compilation via type-checking.
In this paper, we explore the use of sophisticated type systems to implement a
correct-by-construction compiler for the simply typed lambda-calculus, including
translation to continuation-passing style (CPS), closure conversion and hoisting.
We concentrate here on the last two phases which are particularly challenging
since they rearrange the structure of the abstract syntax tree.

A central question when implementing code transformations is the repre-
sentation of the source and target languages. Shall we represent binders via
first-order abstract syntax using de Bruijn indices or names or higher-order
abstract syntax (HOAS) where we map binders in our source and target lan-
guage to binders in our meta-language? - Arguably HOAS is the more sophisti-
cated representation technique, eliminating the need to deal with common and

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 243–258, 2013.
c© Springer International Publishing Switzerland 2013

244 O. Savary-Belanger, S. Monnier, and B. Pientka

notoriously tricky aspects such as renaming, fresh name generation and capture-
avoiding substitution. However, while the power and elegance of HOAS encod-
ings have been demonstrated in representing proofs, for example in the Twelf
system [Pfenning and Schürmann, 1999], it has been challenging to exploit its
power in program transformations which rearrange abstract syntax trees and
move possibly open code fragments. Previous implementations (for example
Chlipala [2008]; Guillemette and Monnier [2008]) have been unable to take ad-
vantage of HOAS throughout the full compiler pipeline and have to abandon
HOAS in closure conversion and hoisting. In this work, we rely on the rich type
system and abstraction mechanisms of the dependently-typed language Bel-
uga [Pientka and Dunfield, 2010; Cave and Pientka, 2012] to implement a type
and scope preserving compiler for the simply-typed lambda-calculus using HOAS
for all the stages. There are two key ingredients crucial to the success: First, we
encode our source and target languages using HOAS within the logical frame-
work LF [Harper et al., 1993] reusing the LF function space to model object-level
binders. As a consequence, we inherit support for α-renaming, capture-avoiding
substitution, and fresh name generation from LF. Second, we represent and
embed open code fragments using the notions of contextual objects and first-
class contexts. A contextual object, written as [Ψ.M], characterizes an open
LF object M which may refer to the bound variables listed in the context Ψ
[Nanevski et al., 2008]. We internalize this notion on the level of types using the
contextual type [Ψ.A] which classifies the contextual objects [Ψ.M] where M has
type A in the context Ψ . By embedding contextual objects into computations,
users can not only characterize abstract syntax trees with free variables, but also
manipulate and rearrange open code fragments using pattern matching.

Our implementation of a type-preserving compiler is very compact avoiding
tedious infrastructure for manipulating binders. Our code directly manipulates
intrinsically typed source terms and is an executable version of the proof that
the compiler is type-preserving.

We believe our work shows that programming with contextual objects of-
fers significant benefits to certified programming. For the full development see:
http://complogic.cs.mcgill.ca/beluga/cc-code.

2 Source Language: Simply Typed Lambda-Calculus

We describe first the source language of our compiler, the simply typed lambda-
calculus (STLC) extended with n-ary tuples, selectors, let-expressions and unit.

(Type) T, S ::= S → T | code S T | S × T | unit
(Source) M,N ::= x | λx.M | M N | fst M | rst M | (M1,M2)

| let x = N in M | ()
(Context) Γ ::= · | Γ, x : T

Each of our type-preserving algorithms transforms the source language to a
separate target language, but uses the same language for types. N-ary products
are constructed using the binary product S×T and unit. In closure conversion, we

http://complogic.cs.mcgill.ca/beluga/cc-code

Programming Type-Safe Transformations Using HOAS 245

will use n-ary tuples to describe the environment. Foreshadowing the subsequent
explanation of closure conversion, we also add a special type code S T ; this type
only arises as a result in closure conversion where it describes closed functions.

We omit the typing rules for our source language, since they are standard.
The encoding of the source language into the logical framework LF is straight-

forward. In this paper, we are using the dependently typed language Beluga,
which supports writing LF specifications and programs about them. By indexing
source terms by their types, we only represent well-typed terms.

datatype source : tp → type =
| lam : (source S → source T) → source (arr S T)
| app : source (arr S T) → source S → source T
| fst : source (cross S T) → source S
| rst : source (cross S T) → source T
| cons : source S → source T → source (cross S T)
| nil : source unit
| letv : source S → (source S → source T) → source T;

In Beluga’s concrete syntax, the kind type declares an LF type family, as
opposed to a computational data type. Binders in our object languages are rep-
resented via the LF function space. For example, the lam constructor takes as
argument a function source S → source T and constructs an object of type source

(arr S T). As a consequence, we inherit α-renaming from LF and substitution
is modelled via function application. N-ary tuples are represented using the con-
structor cons and () is represented as nil, emphasizing that n-ary tuples are
encoded as lists.

3 Closure Conversion

Closure conversion is a code transformation that makes the manipulation of
closure objects explicit and results in a program whose functions are closed so
that they can be hoisted to the top-level.

3.1 Target Language

Our target language for closure conversion contains, in addition to functions
(λy. P), function application P Q, tuples (P,Q), selectors (fst and rst), and
let-expressions (let y = P in Q), two new constructs: 1) we can form a closure
〈P,Q〉 of an expression P with its environment Q, represented as an n-ary tuple.
2) we can break apart a closure P using let 〈yf , yenv〉 = P in Q.

(Target) P,Q ::= x | λx. P | P Q | fst P | rst P | let x = P in Q
| (P,Q) | () | 〈P,Q〉 | let 〈yf , yenv〉 = P in Q

(Context) Δ ::= · | Δ,x : T

The essential idea of closure conversion is to make the evaluation context of
functions explicit; variables bound outside of a function are replaced by projec-
tions from an environment variable. Given a source-level function of type T → S,
we return a closure 〈λyc.P,Q〉 consisting of a closed function λyc.P , where yc

246 O. Savary-Belanger, S. Monnier, and B. Pientka

pairs the input argument y and the environment variable yenv, and its environ-
ment Q, containing all its free variables. Such packages are traditionally given
an existential type such as ∃l.(code (T × l) S) × l where l is the type of the
environment. We instead reuse the source type T → S which also hides l and
saves us from having to handle existential types in their full generality. The
rules for t pack and t letpack are modelling implicitly the introduction and elim-
ination rules for existential types. Moreover, we enforce that λx.P is closed. The
remaining typing rules for the target language are mostly straightforward and
summarized next.

Δ � P : T Target P has type T

Δ, x : T � P : S

Δ � λx. P : code T S
t lam

Δ � P : code T S Δ � Q : T

Δ � P Q : S
t app

x : T ∈ Δ
Δ � x : T

t var
· � P : code (T × Tenv) S Δ � Q : Tenv

Δ � 〈P,Q〉 : T → S
t pack

Δ � P : T → S Δ, yf : code (T × l) S, yenv : l � Q : S

Δ � let 〈yf , yenv〉 = P in Q : S
t letpackl

Δ � P : T Δ � Q : S

Δ � (P,Q) : T × S
t cons

Δ � () : unit
t unit

3.2 Closure Conversion Algorithm

Before describing the algorithm in detail, let us illustrate briefly the idea of
closure conversion using an example. Our algorithm translates the program
(λx.λy.x + y) 5 2 to

let 〈f1, c1〉 =
let 〈f2, c2〉 =
〈 λe2. let x = fst e2 in let xenv = rst e2 in
〈λe1. let y = fst e1 in let yenv = rst e2 in fst yenv + y, (x, ())〉
, () 〉
in f2 (5 , c2)

in f1 (2, c1)

Closure conversion introduces an explicit representation of the environment,
closing over the free variables of the body of an abstraction. We represent the
environment as a tuple of terms, corresponding to the free variables in the body
of the abstraction.

We define the algorithm for closure conversion using [[M]]ρ, where M is a
source term which is well-typed in the context Γ and ρ a mapping of source
variables in Γ to target terms in the context Δ. Intuitively, ρ maps source vari-
ables to the corresponding projection of the environment. It is defined as follows:

Programming Type-Safe Transformations Using HOAS 247

Δ � ρ : Γ ρ maps variables from source context Γ to target context Δ

Δ � id : · m id
Δ � ρ : Γ Δ � P : T

Δ � ρ, x �→ P : Γ, x : T
m dot

For convenience, we write πi for the i-th projection instead of using the se-
lectors fst and rst . We give here only the cases for variables, functions and
function applications.

[[x]]ρ = ρ(x)

[[λx.M]]ρ = 〈 λxc. let x = fst xc in let xenv = rst xc in P , Penv 〉
where {x1, . . . , xn} = FV(λx.M)
and ρ′ = x1 �→ π1 xenv, ..., xn �→ πn xenv, x �→ y
and Penv = (ρ(x1), . . . , ρ(xn)) and P = [[M]]ρ′

[[M N]]ρ = let 〈xf , xenv〉 = P in xf (Q , xenv) where P = [[M]]ρ and Q = [[N]]ρ

To translate a source variable, we look up its binding in the map ρ. When
translating a lambda-abstraction λx.M , we first compute the set {x1, . . . , xn} of
free variables occurring in λx.M . We then form a closure consisting of two parts:
1) a term P which is obtained by converting M with the new map ρ′ which maps
variables x1, . . . , xn to their corresponding projection of the environment variable
and x to itself, thereby eliminating all free variables in M . 2) an environment
tuple Penv, obtained by applying ρ to each variable in (x1, . . . , xn).

When translating an application M N , we first translate M and N to target
terms P and Q. Since the source term M denotes a function, the target term
P will denote a closure. We unpack the closure obtaining xf , the part denoting
the function, and xenv, the part denoting the environment. We then apply xf to
the extended environment (Q, xenv).

Our goal is to implement the described algorithm as a recursive program
which manipulates intrinsically well-typed source terms. This is non-trivial. To
understand the general idea behind our program, we discuss how to prove that
given a well-typed source term M we can produce a well-typed target term which
is the result of converting M . The proof relies on several straightforward lemmas
which correspond exactly to auxiliary functions needed in our implementation.

Auxiliary lemmas:

– Strengthening: If Γ � M : T and Γ ′ = FV (M), then Γ ′ � M : T and
Γ ′ ⊆ Γ

– Weakening: If Γ ′ � M : T and Γ ′ ⊆ Γ then Γ � M : T .
– Context reification: Given a context Γ = x1 : T1, . . . , xn : Tn, there exists

a type TΓ = (T1×. . .×Tn) and there is a ρ = x1 �→ π1 xenv, . . . , xn �→ πn xenv

s.t. xenv : TΓ � ρ : Γ and Γ � (x1, . . . xn) : TΓ .
– Map extension: If Δ � ρ : Γ , then Δ,x : T � ρ, x �→ x : Γ, x : T .
– Map lookup: If x : T ∈ Γ and Δ � ρ : Γ , then Δ � ρ(x) : T .
– Map lookup (tuple):

If Γ � (x1, . . . , xn) : T and Δ � ρ : Γ then Δ � (ρ(x1), . . . , ρ(xn)) : T .

248 O. Savary-Belanger, S. Monnier, and B. Pientka

We show here the key cases of the proof concentrating on lambda abstractions
and variables.

Theorem 1. If Γ � M : T and Δ � ρ : Γ then Δ � [[M]]ρ : T

Proof. By induction on the structure of the term M .

Case : M = x.
Γ � x : T and Δ � ρ : Γ by assumption
Δ � ρ(x) : T by Map lookup
Δ � [[x]]ρ: T by definition

Case M = λx.M
Γ � λx.M : T → S and Δ � ρ : Γ by assumption
Γ ′ � λx.M : T → S and Γ ′ ⊆ Γ
where Γ ′ = FV (λx.M) by Term strengthening
Γ ′, x : T � M : S by inversion on t lam
Γ ′ � (x1, . . . , xn) : TΓ ′ and xenv : TΓ ′ � ρ′ : Γ ′ by Context reification
Γ � (x1, . . . , xn) : TΓ ′ by Term Weakening
Δ � ρ : Γ by assumption
(ρ(x1), . . . , ρ(xn)) = Penv by assumption
Δ � Penv : TΓ ′ by Map lookup (tuple)
xenv : TΓ ′ , x : T � ρ′, x �→ x : Γ ′, x : T By Map extension
xenv : TΓ ′ , x : T � P : S
where P = [[M]]ρ′,x �→x by i.h. on M
c : T × TΓ ′ , x : T, xenv : TΓ ′ � P : S by Term weakening
c : T × TΓ ′ , x : T � let xenv = rst c in P : S by rule t let
c : T × TΓ ′ � let x = fst x in let xenv = rst c in P : S by rule t let
· � λc. let x = fst c in let xenv = rst c in P : code (T × TΓ ′) S by rule t lam
Δ � 〈λc. let x = fst c in let xenv = rst c in P , Penv〉 : T → S by rule t pack
Δ � [[λx.M]]ρ : T → S by definition

��

3.3 Representation of Target Language in LF

We now describe the implementation of the closure conversion algorithm in
Beluga. We begin by defining the target language, showing the constructs for
lambda-abstraction, application, creating a closure and taking a closure apart.

datatype target: tp → type =
| clam : (target T → target S) → target (code T S)
| capp : target (code T S) → target T → target S
| cpack : target (code (cross T L) S) → target L → target (arr T S)
| cletpack: target (arr T S)

→ ({l:tp} target (code (cross T l)) S)→target l → target S)
→ target S;

The data-type definition directly reflects the typing rules with one exception:
our typing rule t pack enforced that P was closed. This cannot be achieved in

Programming Type-Safe Transformations Using HOAS 249

the LF encoding, since the context of assumptions is ambient. As a consequence,
hoisting, which relies on the fact that the closure converted functions are closed,
cannot be implemented as a separate phase after closure conversion. We will
come back to this issue in Section 4.

3.4 Type-Preserving Closure Conversion in Beluga: An Overview

The top-level closure conversion function cc translates a closed source term of
type T to a closed target term of type T, which is encoded in Beluga using the
computation-level type [.source T] → [.target T]. We embed closed contextual
LF object of type source T and target T into computation-level types via the
modality []. The . separates the context of assumptions from the conclusion.
Since we are describing closed objects, the context is left empty.

However, when closure converting and traversing source terms, our source
terms do not remain closed. We generalize the closure conversion function to
translate well-typed source terms in a source context Γ to well-typed target
terms in the target context Δ given a map of the source context Γ to the target
context Δ. Δ will consists of an environment variable xenv and the variable x

bound by the last abstraction, along with variables introduced by let bindings.

cc’: Map [Δ] [Γ] → [Γ. source T] → [Δ. target T]

Just as types classify terms, schemas classify contexts in Beluga, similarly to
world declarations in Twelf [Pfenning and Schürmann, 1999]. The schema tctx

defines a context where the type of each declaration is an instance of target T;
similarly the schema sctx defines a context where the type of each declaration is
an instance of source T. While type variables appear in the typing rule t_letpack,
they only occur locally and are always bound before the term is returned by our
functions, such that they do not appear in the context variables indexing them.

schema tctx = target T;
schema sctx = source T;

We use the indexed recursive type Map to relate the target context Δ and
source context Γ [Cave and Pientka, 2012]. In Beluga’s concrete syntax, the
kind ctype indicates that we are not defining an LF datatype, but a recursive
type on the level of computations. → is overloaded to mean computation-level
strong functions rather than the LF function space. Map is defined recursively on
the source context Γ directly encoding our definition Δ � ρ : Γ given earlier.

datatype Map:{Δ:tctx}{Γ:sctx} ctype =
| Id :{Δ:tctx} Map [Δ] []
| Dot: Map [Δ] [Γ] → [Δ. target S] → Map [Δ] [Γ,x:source S];

Beluga reconstructs the type of free variables Δ, Γ , and S and implicitly
abstracts over them. In the constructor Id, we choose to make Δ an explicit
argument to Id, since we often need to refer to Δ explicitly in the recursive
programs we are writing about Map. The next section presents the implementation
of the necessary auxiliary functions, followed by cc’.

250 O. Savary-Belanger, S. Monnier, and B. Pientka

3.5 Implementation of Auxiliary Lemmas

Term strengthening and weakening Both operations rely on an inclusion relation
Γ ′ ⊆ Γ where we preserve the order, which is defined using the indexed recursive
computation-level data-type SubCtx.

datatype SubCtx: {Γ ′:sctx} {Γ:sctx} ctype =
| WInit: SubCtx [] []

| WDrop: SubCtx [Γ ′] [Γ] → SubCtx [Γ ′] [Γ,x:source T]

| WKeep: SubCtx [Γ ′] [Γ] → SubCtx [Γ ′,x:source T] [Γ,x:source T];

Given a source term M in Γ the function strengthen computes the strengthened
version of M which is well-typed in Γ ′ characterizing the free variables in M to-
gether with the proof SubCtx [Γ ′] [Γ]. We represent the result using the indexed
recursive type StrTerm encoding the existential in the specification as a universal
quantifier using the constructor STm. The fact that Γ’ describes exactly the free
variables of M is not captured by the type definition.

datatype StrTerm: {Γ:sctx} [.tp] → ctype =

| STm: [Γ ′. source T] → SubCtx [Γ ′] [Γ] → StrTerm [Γ] [.T];

rec strengthen: [Γ.source T] → StrTerm [Γ] [.T]

Just as in the proof of the term strengthening lemma, we cannot implement
this function directly. This is because, while we would like to perform induction
on the size of Γ , we cannot appeal to the induction hypothesis while maintaining
a well-scoped source term in the case of an occurring variable in front of Γ .
Instead, we implement str, which, intuitively, implements the lemma

If Γ1, Γ2 � M : T and Γ ′
1, Γ2 = FV(M), then Γ ′

1, Γ2 � M : T and Γ ′
1 ⊆ Γ1.

In Beluga, contextual objects can only refer to one context variable - we
cannot simply write [Γ1, Γ2. source T]. To express this, we use a data-type wrap

which abstracts over all the variables in Γ2. wrap is indexed by the type T of the
source term and the size of Γ2. str then recursively analyses Γ1, adding variables
occurring in the input term to Γ2. The type of str asserts, through its index N,
the size of Γ2.

datatype wrap: tp → nat → type =
| ainit: (source T) → wrap T z
| add: (source S → wrap T N) → wrap (arr S T) (suc N);

datatype StrTerm’: {Γ:sctx} [.tp] → [.nat] → ctype =

| STm’: [Γ ′. wrap T N] → SubCtx [Γ ′] [Γ] → StrTerm’ [Γ] [.T] [.N];

rec str: [Γ. wrap T N] → StrTerm’ [Γ] [.T] [.N]

The function str is implemented recursively on the structure of Γ exploits
higher-order pattern matching to test whether a given variable x occurs in a
term M. As a consequence, we can avoid the implementation of a function which
recursively analyzes M and test whether x occurs in it. While one can implement
term weakening following similar ideas, we incorporate it into the variable lookup
function defined next.

Programming Type-Safe Transformations Using HOAS 251

Map extension and lookup The lookup function takes a source variable of type
T in the source context Γ and Map [Δ] [Γ] and returns the corresponding target
expression of the same type.

rec lookup: {#p:[Γ.source T]} Map [Δ] [Γ] → [Δ. target T] =
λ�#p ⇒ fn ρ ⇒ let (ρ: Map [Δ] [Γ]) = ρ in case [Γ. #p...] of

| [Γ ′,x:source T. x] ⇒ let Dot ρ′ [Δ.M...] = ρ in [Δ.M...]
| [Γ ′,x:source S. #q...] ⇒ let Dot ρ′ [Δ.M...] = ρ in lookup [Γ ′.#q...] ρ′;

We quantify over all variables in a given context by {#p:[Γ.source T]} where #p

denotes a variable of type source T in the context Γ . In the function body, λ�-
abstraction introduces an explicitly quantified contextual object and fn-abstraction
introduces a computation-level function. The function lookup is implemented by
pattern matching on the context Γ and the parameter variable #p.

To guarantee coverage and termination, it is pertinent that we know that
an n-ary tuple is composed solely of source variables from the context Γ , in
the same order. We therefore define VarTup as a computational datatype for
such variable tuples. Nex v of type VarTup [Γ] [.LΓ], where Γ = x1:T1,. . .,xn:Tn,
is taken to represent the source language tuple (x1,. . .,xn) of type T1 × . . .× Tn

in the context Γ .

datatype VarTup: {Γ:sctx} [.tp] → ctype =
| Emp: VarTup [] [.unit]
| Nex: VarTup [Γ] [.L] → VarTup [Γ,x:source T] [.cross T L];

The function lookupVars applies a map ρ to every variable in a variable tuple.

rec lookupVars: VarTup [Γ ′] [.LΓ ′] → SubCtx [Γ ′] [Γ] → Map [Δ] [Γ]
→ [Δ. target LΓ ′]

lookupVars allows the application of a Map defined on a more general context
Γ provided that Γ ′ ⊆ Γ . This corresponds, in the theoretical presentation, to
weakening a variable tuple before applying a mapping on it.

extendMap, which implements the Map extension lemma, weakens a mapping
with the identity on a new variable x. It is used to extend the Map with local
variables, for example when we encounter a let binding construct.

rec extendMap: Map [Δ] [Γ] → Map [Δ,x:target S] [Γ,x:source S]

A Reification of the Context as a Term Tuple The context reification lemma
is proven by induction on Γ ; to enable pattern matching on the context Γ , we
wrap it in the indexed data-type Ctx.

datatype Ctx: {Γ:sctx} ctype =
| Ctx: {Γ:sctx} Ctx [Γ];

datatype CtxAsTup: {Γ:sctx} ctype =
| CTup: VarTup [Γ] [.LΓ] → Map [x:target LΓ] [Γ] → CtxAsTup [Γ];

rec reify: Ctx [Γ] → CtxAsTup [Γ]

The function reify translates the context Γ to a source term. It produces a
tuple containing variables of Γ in order, along with Map [x:target TΓ] [Γ] de-
scribing the mapping between those variables and their corresponding projec-
tions. The type of reify enforces that the returned Map contains, for each of the

252 O. Savary-Belanger, S. Monnier, and B. Pientka

rec cc’: Map [Δ] [Γ] → [Γ. source T] → [Δ. target T] =
fn ρ ⇒ fn m ⇒ case m of

| [Γ. #p...] ⇒ lookup ρ [Γ. #p...]

| [Γ. lam λx.M... x] ⇒
let STm’ [Γ ′. add (λx. ainit (M’ ... x))] rel = str [Γ. add λx.ainit (M ... x)] in

let CTup [Γ ′. E...] (ρ′′:Map [xenv:target TΓ ′] [Γ ′]) = reify (Ctx [Γ ′]) in

let ρ′ = extendMap ρ′′ in

let [xenv:target TΓ ′,x:target T. (P xenv x)] = cc’ ρ′ [Γ ′,x:source _. M... x] in

let [Δ. Penv...] = lookupVars [Γ ′. E...] rel ρ in

[Δ. cpack (clam (λc. (clet (cfst c)
(λx.(clet (crst c)

(λxenv. P xenv x))))))
(Penv...)]

Fig. 1. Implementation of closure conversion in Beluga

variables in Γ , a target term of the same type referring solely to a variable x

of type TΓ . This means the tuple of variables of type TΓ also returned by reify

contain enough information to replace occurrences of variables in any term in
context Γ perserving types - it contains either the variables themselves or terms
of the same type.

3.6 Closure Conversion: Top-Level Function

The function cc’ (see Fig. 1) implements our closure conversion algorithm recur-
sively by pattern matching on objects of type [Γ. source T] . It follows closely the
earlier proof (Thm. 1). We describe here on the cases for variables and lambda-
abstractions omitting the case for applications. When we encounter a variable,
we simply lookup its corresponding binding in ρ.

Given a lambda abstraction in context Γ and ρ which represents the map
from Γ to Δ, we begin by strengthening the term to some context Γ ′. We then
reify the context Γ ′ to obtain a tuple E together with the new map ρ′′ of type
Map [xenv:target TΓ ′] [Γ ′]. Next, we extend ρ′′ with the identity on the lambda-
abstraction’s local variable to obtain ρ′, and recursively translate M using ρ′,
obtaining a target term in context xenv,x. Abstracting over xenv and x gives us
the desired closure-converted lambda-abstraction. To obtain the environment
Penv, we apply ρ on each variables in E using lookupVars. Finally, we pack the
converted lambda-abstraction and the environment Penv as a closure, using the
constructor cpack.

Our implementation of closure conversion, including all definitions and auxil-
iary functions, consists of approximately 250 lines of code.

4 Hoisting

Hoisting is a code transformation that lifts the lambda-abstractions, closed by
closure conversion, to the top level of the program. Function declarations in the
program’s body are replaced by references to a global function environment.

Programming Type-Safe Transformations Using HOAS 253

As we alluded to earlier, our encoding of the target language of closure con-
version does not guarantee that functions in a closure converted term are indeed
closed. While this information is available during closure conversion, it cannot
easily be captured in our meta-language. We therefore extend our closure con-
version algorithm to perform hoisting at the same time. Hoisting can however
be understood by itself; we highlight here its main ideas.

Performing hoisting on the closure-converted program presented in Sec. 3

let 〈f1, c1〉 =
let 〈f2, c2〉 =
〈 λe2. let x = fst e2 in let xenv = rst e2 in
〈λe1. let y = fst e1 in let yenv = rst e2 in fst yenv + y, (x, ())〉
, () 〉
in f2 (5 , c2)

in f1 (2, c1)

will return

let l = (λl2.λe2.let x = fst e2 in let xenv = rst e2 in 〈 (fst l2) (rst l2) , (x, ()) 〉,
λl1.λe1.let y = fst e1 in let yenv = rst e2 in fst yenv + y, ())

in let 〈f1, c1〉 =
let 〈f2, c2〉 = 〈(fst l) (rst l), (·)〉
in f2 (5, c2)

in f1 (2, c1)

4.1 Source and Target Languages - Revisited

We define hoisting on the target language of closure conversion and keep the
same typing rules (see Fig. 3.1) with one exception: the typing rule for t pack is
replaced by the one below.

l : Tf � P : code (T × Tx) S Δ, l : Tf � Q : Tx

Δ, l : Tf � 〈P,Q〉 : T → S
t pack’

When hoisting is performed at the same time as closure conversion, P is not
completely closed anymore, as it refers to the function environment l. Only at
top-level, where we bind the collected tuple as l, will we recover a closed term.
The distinction between t pack and t pack’ is irrelevant in our implementation,
as in our representation of the typing rules in LF the context is ambient.

We now define the hoisting algorithm as [[P]]l = Q �� E . Hoisting takes
as input a target term P and returns a hoisted target term Q together with its
function environment E, represented as a n-ary of product type L. We write
E1 ◦ E2 for appending tuple E2 to E1 and L1 ◦ L2 for appending the product
type L2 to L1. We concentrate here on the cases for variables and closures.

[[x]]l = x �� ()

[[〈P1, P2〉]]l = 〈(fst l) (rst l), Q2〉 �� E where Q1 �� E1 = [[P1]]l
and Q2 �� E2 = [[P2]]l
and E = (λl.Q1, E1 ◦E2)

254 O. Savary-Belanger, S. Monnier, and B. Pientka

While the presented hoisting algorithm is simple to implement in an untyped
setting, its extension to a typed language demands more care with respect to
the form and type of the functions environment. As ◦ is only defined on n-ary
tuples and product types and not on general terms and types, we enforce that
the returned E and its type L are of the right form. We take Δ �l E : L to mean
Δ � E : L for a n-ary tuple E of product type L.

Auxiliary lemmas:

– Append function environments
If Δ �l E1 : L1 and Δ �l E2 : L2, then Δ �l E1 ◦ E2 : L1 ◦ L2.

– Function environment weakening (1)
If Δ, l : Lf1 � P : T and Lf1 ◦ Lf2 = Lf , then Δ, l : Lf � P : T .

– Function environment weakening (2)
If Δ, l : Lf2 � P : T and Lf1 ◦ Lf2 = Lf , then Δ, l : Lf � P : T .

Theorem 2. If Δ � P : T then · �l E : Lf and Δ, l : Lf � Q : T for some Lf

where [[P]]l = Q �� E .

Proof. By induction on the term P .

4.2 Auxiliary Functions

Defining environments Our hoisting algorithm uses operations such as ◦, which
are only defined on n-ary tuples and on product types. To guarantee coverage, we
define an indexed datatype encoding the judgement Δ �l E : Lf , which asserts
that environment E and its type Lf are of the right form.

datatype Env: {Lf:[.tp]} [.target Lf] → ctype =
| EnvNil: Env [.unit] [.cnil]
| EnvCons: {P:[.target T]}

Env [.L] [.E] → Env [.cross T L] [.ccons P E];

Appending function environments. When hoisting terms with more than one
subterm, each recursive call on those subterms results in a different function
environment; they need to be merged before combining the subterms again.
This is accomplished by the function append which takes in Env [.L1] [.E1] and
Env [.L2] [.E2], and constructs the function environment Env [.L1 ◦ L2] [.E1 ◦
E2]. As Beluga does not support functions in types, we return some function
environment E of type L, and a proof that E and L are the results of concatenating
respectively E1 and E2, and L1 and L2.

datatype App: {T:[.tp]}{S:[.tp]}{TS:[.tp]} [.target T] → [.target S]
→ [.target TS] → ctype =

| AStart: Env [.S] [.Q] → App [.unit] [.S] [.S] [.cnil] [.Q] [.Q]
| ACons: App [.T] [.S] [.TS] [.P] [.Q] [.PQ]

→ App [.(cross T’ T)] [.S] [.(cross T’ TS)]
[.(ccons P’ P)] [.Q] [.(ccons P’ PQ)];

datatype ExApp: {T:[.tp]}{S:[.tp]} [.target T] → [.target S] → ctype =
| AP: App [.L1] [.L2] [.L] [.E1] [.E2] [.E] → Env [.L] [.E]

→ ExApp [.L1] [.L2] [.E1] [.E2];

rec append: Env [.L1] [.E1]→ Env [.L2] [.E2]→ ExApp [.L1] [.L2] [.E1] [.E2]

Programming Type-Safe Transformations Using HOAS 255

App [.L1] [.L2] [.L] [.E1] [.E2] [.E] can be read as E1 and E2 being tuples of
type L1 and L2, and concatening them yields the tuple E of type L.

Next, we show the type of the two lemmas about function environment weak-
ening. They are a direct encoding of their specifications.

rec weakenEnv1: (Δ:tctx) App [.L1] [.L2] [.L] [.E1] [.E2] [.E]
→ [Δ, l:target L1. target T] → [Δ, l:target L. target T]

rec weakenEnv2: (Δ:tctx) App [.L1] [.L2] [.L] [.E1] [.E2] [.E]
→ [Δ, l:target L2. target T] → [Δ, l:target L. target T]

4.3 The Main Function

The top-level function hcc generalizes cc such that it performs hoisting at the
same time as closure conversion. Again we only concentrate on the case for vari-
ables and lambda-abstraction to illustrate that only small changes are required.
We generalize hcc and implement hcc’ to closure convert and hoist open terms
when given a map between the source and target context.

datatype HCCRet:{Δ:tctx} [.tp] → ctype =
| HRet: [Δ,l:target Lf. target T] → Env [.Lf] [.E] → HCCRet [Δ] [.T];

rec hcc’: Map [Δ] [Γ] → [Γ. source T] → HCCRet [Δ] [.T] =
fn ρ ⇒ fn m ⇒ case m of

| [Γ. #p...] ⇒
let [Δ. Q...] = lookup [Γ] [Γ. #p...] ρ in
HRet [Δ,l:target (prod unit). Q...] EnvNil

| [Γ. lam λx.M... x] ⇒
let STm’ [Γ ′.add λx.ainit (M’... x)] rel = str [Γ.add λx. ainit (M ... x)] in

let CTup vt (ρ′′:Map [xenv:target TΓ ′] [Γ ′]) = reify (Ctx [Γ ′]) in
let [Δ. Penv...] = lookupTup vt rel ρ in

let HRet r e = hcc’’ (extendMap ρ′′) [Γ ′,x:source _.M’..x] in (rho → ρ′′ , g’ →
Γ ′)

let [xenv:target TΓ ′, x:target T, l:target Tf. (Q xenv x l)] = r in

let e’ = EnvCons [.clam λl. clam λc.
clet (cfst c) (λx.clet (crst c) (λxenv. Q xenv x l))]

e in
let [.T’] = [.cross (code Tf (code (cross T TΓ ′) S)) Tf]

in HRet [Δ,l:target T’. cpack (capp (cfst l) (crst l)) (Penv...)] e’
;

rec hcc: [.source T] → [.target T] =
fn m ⇒ let HRet r (e: Env [._] [.E]) = hcc’ (IdMap []) m in

let [l:target S. Q l] = r in
[.clet E (λl. Q l)];

hcc calls hcc’ with the initial map and the source term m of type T. It then
binds, with clet, the function environment as l in the hoisted term, resulting in
a closed target term of the same type.

hcc’ converts a source term in the context Γ given a map between the source
context Γ and the target context Δ following the algorithm described in Sec. 4.
It returns a target term of type T which depends on a function environment l of
some product type Lf together with a concrete function environment of type Lf .
The result of hcc’ is described by the datatype HCCRet which is indexed by the
target context Δ and the type T of the target term.

256 O. Savary-Belanger, S. Monnier, and B. Pientka

hcc’ follows closely the structure of cc’. When we encounter a variable, we look
it up in ρ and return the corresponding target term with an empty well-formed
function environment EnvNil. When reaching a lambda-abstraction of type arr

S T, we again strengthen the body lam λx.M ... x to some context Γ ′. We then
reify Γ ′ to obtain a variable tuple (x1, . . . , xn) and convert the strengthened M

recursively using the map ρ extended with the identity. As a result, we obtain
a closed target term Q together with a well-formed function environment e con-
taining the functions collected so far. We then build the variable environment
(ρ(x1), . . . , ρ(xn)), extend the function environment with the converted result of
M which is known to be closed, and return capp (cfst l) (crst l) where l abstracts
over the current function environment.

Our implementation of hoisting adds in the order of 100 lines to the develop-
ment of closure conversion and retains its main structure.

An alternative to the presented algorithm would be to thread through the
function environment as an additional argument to hcc. This avoids the need
to append function environments and obviates the need for weakenEvn1. Other
properties around concat would however still have to be proven, some of which
require multiple nested inductions; therefore, the complexity and length of the
resulting implementation is similar or even larger.

5 Related Work

While HOAS holds the promise of dramatically reducing the overhead related
to manipulating abstract syntax trees with binders, the implementation of a
certified compiler, in particular the phases of closure conversion and hoisting,
using HOAS has been elusive.

One of the earliest studies of using HOAS in implementing compilers was
presented in Hannan [1995], where the author describes the implementation of
a type-directed closure conversion in Elf [Pfenning, 1989], leaving open several
implementation details, such as how to reason about variables equality.

Abella [Gacek, 2008] is an interactive theorem prover which supports HOAS,
but not dependent types at the specification level. The standard approach would
be to specify source terms, typing judgments, and the closure conversion algo-
rithm, and then prove that it is type-preserving. However, one cannot obtain an
executable program from the proof. Moreover, it is not obvious how to specify
closure conversion algorithm since one of its arguments is the mapping ρ which
itself inductively defined

Closely related to our work is Guillemette and Monnier [2007]’s implemen-
tation of a type-preserving closure conversion algorithm over STLC in Haskell.
While HOAS is used in the CPS translation, the languages from closure conver-
sion onwards use de Bruijn indices. Since the language targeted by their closure
conversion syntactically enforces that functions are closed, it is possible for them
to perform hoisting in a separate phase. In Guillemette and Monnier [2008], the
authors extend the closure conversion implementation to System F.

Chlipala [2008] presents a certified compiler for STLC in Coq using parametric
higher-order abstract syntax (PHOAS), a variant of weak HOAS. He however

Programming Type-Safe Transformations Using HOAS 257

annotates his binders with de Bruijn level before the closure conversion pass,
thus degenerating to a first-order representation. His closure conversion is hence
similar to the one of Guillemette and Monnier [2007]. As in our work, hoisting
is done at the same time as closure conversion, because his target language does
not capture that functions are closed.

In both implementations, infrastructural lemmas dealing with binders consti-
tute a large part of the development. Moreover, additional information in types is
necessary to ensure the program type-checks, but is irrelevant at a computational
level. In contrast, we rely on the rich type system and abstraction mechanisms
of Beluga to avoid all infrastructural lemmas.

The closure conversion algorithm has also served as a key benchmark for
systems supporting first-class nominal abstraction such as FreshML [Pottier,
2007] and αProlog [Cheney and Urban, 2004]. Both languages provide facilities
for generating names and reasoning about their freshness, which proves to be
useful when computing the free variables in a term. However, capture-avoiding
substitution still needs to be implemented separately. Since these languages lack
dependent types, implementing a certified compiler is out of their reach.

6 Conclusion

In addition to closure conversion and hoisting, we also have implemented the
translation to continuation-passing style. Our compiler not only type checks,
but also coverage checks. Termination can be verified straightforwardly by the
programmer, as every recursive call is made on a structurally smaller argument,
such that all our functions are total. The fact that we are not only preserv-
ing types but also the scope of terms guarantees that our implementation is
essentially correct by construction.

Although HOAS is one of the most sophisticated encoding techniques for
structures with binders and offers significant benefits, problems such as clo-
sure conversion, where reasoning about the identity of free variables is needed,
have been difficult to implement using an HOAS encoding. In Beluga, con-
texts are first-class; we can manipulate them, and indeed recover the identity
of free variables by observing the context of the term. This is unlike other sys-
tem supporting HOAS such as Twelf [Pfenning and Schürmann, 1999] or Del-
phin [Poswolsky and Schürmann, 2008]; in Abella [Gacek, 2008], we can test
variables for identity, but users need to represent and reason about contexts
explicitly. More importantly, we cannot obtain an executable program from the
proof.

In addition, Beluga’s computation-level recursive datatypes provide us with
an elegant tool to encode properties about contexts and contextual object. Our
case study clearly demonstrates the elegance of developing certified programs in
Beluga. We rely on built-in substitutions to replace bound variables with their
corresponding projections in the environment; we rely on the first-class context
and recursive datatypes to define a mapping of source and target variables as well
as computing a strengthened context only containing the relevant free variables
in a given term.

258 O. Savary-Belanger, S. Monnier, and B. Pientka

In the future, we plan to extend our compiler to System F. While the algo-
rithms seldom change from STLC to System F, open types pose a significant
challenge. This will provide further insights into what tools and abstractions are
needed to make certified programming accessible to the every day programmer.

Acknowledgements. We thank Mathieu Boespflug for his feedback and work
on the implementation of Beluga, and anonymous referees for helpful sugges-
tions and comments on drafts of this paper.

References

Cave, A., Pientka, B.: Programming with binders and indexed data-types. In: Sympo-
sium on Principles of Programming Languages, pp. 413–424. ACM (2012)

Cheney, J., Urban, C.: αProlog: A logic programming language with names, binding
and α-equivalence. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132,
pp. 269–283. Springer, Heidelberg (2004)

Chlipala, A.J.: Parametric higher-order abstract syntax for mechanized semantics. In:
International Conference on Functional Programming, pp. 143–156. ACM (2008)

Gacek, A.: The Abella interactive theorem prover (System description). In: Armando,
A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp.
154–161. Springer, Heidelberg (2008)

Guillemette, L.-J., Monnier, S.: A type-preserving closure conversion in Haskell. In:
Workshop on Haskell, pp. 83–92. ACM (2007)

Guillemette, L.-J., Monnier, S.: A type-preserving compiler in Haskell. In: International
Conference on Functional Programming, pp. 75–86. ACM (2008)

Hannan, J.: Type systems for closure conversions. In: Workshop on Types for Program
Analysis, pp. 48–62 (1995)

Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the
ACM 40(1), 143–184 (1993)

Nanevski, A., Pfenning, F., Pientka, B.: Contextual modal type theory. Transactions
on Computational Logic 9(3), 1–49 (2008)

Pfenning, F.: Elf: A language for logic definition and verified meta-programming. In:
Symposium on Logic in Computer Science, pp. 313–322. IEEE (1989)

Pfenning, F., Schürmann, C.: System description: Twelf - A meta-logical framework
for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632,
pp. 202–206. Springer, Heidelberg (1999)

Pientka, B., Dunfield, J.: Beluga: A framework for programming and reasoning with
deductive systems (System description). In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010.
LNCS, vol. 6173, pp. 15–21. Springer, Heidelberg (2010)

Poswolsky, A., Schürmann, C.: Practical programming with higher-order encodings
and dependent types. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp.
93–107. Springer, Heidelberg (2008)

Pottier, F.: Static name control for FreshML. In: Symposium on Logic in Computer
Science, pp. 356–365. IEEE (July 2007)

Formalizing Probabilistic Noninterference

Andrei Popescu1,2, Johannes Hölzl1, and Tobias Nipkow1

1 Technische Universität München
2 Institute of Mathematics Simion Stoilow of the Romanian Academy

Abstract. We present an Isabelle formalization of probabilistic noninterference
for a multi-threaded language with uniform scheduling. Unlike in previous settings
from the literature, here probabilistic behavior comes from both the scheduler and
the individual threads, making the language more realistic and the mathematics
more challenging. We study resumption-based and trace-based notions of proba-
bilistic noninterference and their relationship, and also discuss compositionality
w.r.t. the language constructs and type-system-like syntactic criteria. The formal-
ization uses recent development in the Isabelle probability theory library.

1 Introduction

Language-based noninterference [26] is a major topic in computer security. To state
noninterference, one typically assumes the program memory is separated into a low, or
public, part, which an attacker is able to observe, and a high, or private, part, hidden to
the attacker. A program satisfies noninterference if, upon running it, the high part of the
initial memory does not affect the low part of the resulting memory. In other words, the
program has no information leaks from the private part of the memory into the public
one, so that a potential attacker should not be able to obtain information about private
data by inspecting public data.

While research on language-based noninterference has been thriving in recent years,
only little effort has been put in the mechanical verification of results in this area. In a
previous paper [23], we presented a formalization of possibilistic noninterference, with
a focus on compositionality and type-system-like syntactic criteria. Here, we continue
this research agenda with noninterference for a probabilistic language. The general mo-
tivation for our formalization efforts is the belief, shared by more and more researchers
lately, that the development of programming language metatheory should be pursued
with the help (and confidence) offered by a proof assistant [1]. But there is also a more
specific motivation. Previous work on probabilistic language-based noninterference is
presented in a very informal fashion, even by the standards of a “pen-and-paper” math-
ematician. While justified by the complexity of the involved concepts, this situation is
certainly not satisfactory. The work reported here tries to alleviate this problem, tak-
ing advantage of the recent development of a rich Isabelle/HOL library for probability
theory [11, 12].

We start by formalizing a probabilistic multi-threaded language and its small-step
operational semantics under a uniform scheduler (§2). Then we proceed with the for-
malization of noninterference properties (§3). At the heart of the formalization is an
abstract equivalence ∼ on the memory states, called indistinguishability, where s ∼ t

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 259–275, 2013.
c© Springer International Publishing Switzerland 2013

260 A. Popescu, J. Hölzl, and T. Nipkow

intuitively means that an attacker cannot distinguish between s and t. (For a concrete
notion of state that assigns values to variables and a classification of variables as high
or low, ∼ becomes the standard low equality, i.e., identity on the low variables.) In
this context, noninterference of a program roughly means that selected parts of its ex-
ecution are compatible with ∼, in that if starting in indistinguishable states they yield
indistinguishable results. We consider two flavors of noninterference.

Resumption-based (or bisimulation-based) noninterference (§3.1), amply represented
in the literature [3, 6–8, 27–32] requires that each execution chunk (where the chunk
may be one single step or several steps, depending on the specific notion) is compatible
with ∼ on states, and that this property is also resumed in the matching continuations.
For a probabilistic language, it does not suffice to speak of solitary matching contin-
uations; instead, one partitions the continuations and matches the sets of the partition
in a probability-preserving way. A main advantage of resumption-based notions is usu-
ally compositionality w.r.t. the language constructs; as we argue in [23] for possibilistic
noninterference, this can form the basis of the automatic inference of type-system-like
criteria—and indeed, this also applies here (§3.3). Therefore, we take compositionality
as a major test for a newly introduced resumption-based notion (§3.2). A first notion we
consider is a variation of standard probabilistic bisimilarity, which is mostly composi-
tional but does not interact well with thread-termination sensitive parallel composition.
To cope with this problem, we define a weaker notion, 01-bisimilarity, relaxing the
requirement to match continuation steps by allowing stutter moves.

Trace-based noninterference (§3.4), rather scarce in language-based settings [18,34]
but pervasive in system-based settings (overviewed in [17]), requires that the whole set
of execution traces is compatible with ∼. In a possibilistic framework, this would mean
that, given two indistinguishable states s ∼ t, for any execution starting in s and ending
in s′ there exists an execution starting in t and ending in some t ′ such that s′ ∼ t ′. In a
probabilistic framework however, one needs to take a global view and equate, for each
possible indistinguishability class S of the result, the (cumulated) measure of all traces
starting in s and ending in S with the measure of all traces starting in t and ending
in S. We formalize two natural trace-based notions representing end-to-end security
guarantees of our two main resumption-based notions.

The results of our formal development [22] can be summarized as follows:

syntactic criteria
compositionality

=⇒ resumption nointerference =⇒ trace noninterference

Besides the certification aspect, our formalization makes new contributions to the state
of the art in language-based noninterference:

– it considers for the first time a fully probabilistic language, where probabilistic be-
havior comes not only from the scheduler, but also from the individual threads (through
probabilistic choice);
– it performs a comprehensive study, including both trace-based and resumption-based
noninterference and their comparison.

On the other hand, the formalized language has several limitations:

– it restricts thread communication to shared-state communication;
– it does not cover dynamic thread creation;
– it is confined to a uniform scheduler, assigning equal probabilities to each thread.

Formalizing Probabilistic Noninterference 261

Throughout the paper, we employ notations close to the formalization, but we occa-
sionally take some liberties with the Isabelle notation in order to ease the presentation.

2 The Programming Language

We formalize a programming language featuring the usual sequential commands, ex-
tended with probabilistic choice and parallel composition under a uniform scheduler.

2.1 Syntax

The language is parameterized by the following types:
– atom, of atoms, ranged over by atm;
– test, of tests, ranged over by tst;
– choice, of (probabilistic) choices, ranged over by ch.

Standard examples of atoms and tests are assignments such as x := x+y and Boolean
expressions such as x < y+ x. Moreover, as we discuss in §2.2, choices are flexible
enough to cover the standard “if” conditions, as well as stateless probabilistic choice.

The type com, of commands, ranged over by c,d, is defined as follows:

datatype com = Atm atom | Done | Seq com com | While test com |
Ch choice com com | Par (com list) | ParT (com list)

For atomic commands Atm atm we usually omit the constructor Atm. The lists of com-
mands passed as arguments to Par and ParT will be indicated using explicit index no-
tation, e.g., [c0, . . . ,cn−1] is a list of length n—this is a detour from the Isabelle syntax
aimed at making the presentation clearer.

A command is called finished if it is either Done or, inductively, a Par- or ParT-
composition of finished commands:
finished Done;
(
∧n−1

i=0 finished ci) =⇒ finished (Par [c0, . . . ,cn−1]);
(
∧n−1

i=0 finished ci) =⇒ finished (ParT [c0, . . . ,cn−1]).
Seq c1 c2 is the sequential composition of c1 and c2, written in concrete syntax1 as

c1 ; c2. While tst c is the usual while loop, in concrete syntax,while tst do c. Ch ch c1 c2 is
a choice command. Par [c0, . . . ,cn−1] and ParT [c0, . . . ,cn−1] are two variants of parallel
composition of the thread pool [c0, . . . ,cn−1], written in concrete syntax as c1 ‖ . . . ‖
cn−1 and c1 ‖T . . . ‖T cn−1, respectively. They differ in that the latter is termination-
sensitive, removing finished threads from the thread pool.

2.2 Semantics

The semantics of the language indicates the immediate steps available to a command in
a given state, where the steps are assigned weights that sum up to 1. It is parameterized
by the following data:

1 We use abstract syntax in theoretical results and concrete syntax in examples.

262 A. Popescu, J. Hölzl, and T. Nipkow

c wt c s i cont c s i eff c s i

atm 1 Done aexec c s
Done 1 Done s

Seq c1 c2 wt c1 s i
c2, if finished c1
Seq (cont c1 s i) c2, otherwise

eff c1 s i

Ch ch c1 c2
cval ch s, if i = 0
1−cval ch s, if i = 1

c1, if i = 0
c2, if i = 1

s

While tst d 1
Seq d (While tst d), if tval tst s
Done, otherwise

s

Par [c0, . . . ,cn−1]
1
n
∗wt ck s j Par [c0, . . . ,cont ck s j, . . . ,cn−1] eff ck s j

ParT [c0, . . . ,cn−1]

1
m

∗wt ck s j,

if ¬ finished ck
0, otherwise

ParT [c0, . . . ,cont ck s j, . . . ,cn−1] eff ck s j

(k, j) ≡ the unique pair in nat×nat such that 0≤ k< n ∧ 0≤ j < brn ck ∧ i=(∑k−1
l=0 brn cl)+ j

m ≡ the number of indexes l ∈ {0, . . . ,n−1} such that ¬ finished cl

Fig. 1. Probabilistic Small-Step Semantics

– a type of (memory) states, state, ranged over by s, t;
– an execution function for the atoms, aexec : atom → state → state;
– an evaluation function for the tests, tval : test → state → bool;
– an evaluation function for the choices, cval : choice → state → [0,1], where [0,1] is
the real unit interval.

cval ch s expresses the probability with which the left branch, c1, will be picked
when executing the command Ch ch c1 c2 (while the right branch, c2, will be picked
with probability 1− cval ch s).

For every command c, we define its branching number (branching for short), brn c:
brn atm = brn Done= brn (While tst d) = 1; brn (Seq c1 c2) = brn c1;
brn (Ch ch c1 c2) = 2; brn (Par [c0, . . . ,cn−1]) = brn (ParT [c0, . . . ,cn−1]) = ∑n−1

l=0 brn cl .
Indexes ranging from 0 to brn c−1 are used to label the single-step transitions avail-

able from a command c. Then, given current states s, these transitions are assigned
weights, continuation commands (continuations for short) and state effects (effects for
short) by the functions wt c s : {0, . . . ,brn c−1}→ [0,1], cont c s : {0, . . . ,brn c−1}→
com, and eff c s : {0, . . . ,brn c−1}→ state, respectively. All these are defined in Fig. 1’s
table. The first column lists all possible forms of c, and the other columns show, for the
three operators, the defining recursive clauses for each form (with i∈ {0, . . . ,brn c−1}).

The semantics of atm and Done are straightforward: there is one single available
step (hence brn is 1) with weight 1, transiting to the terminating continuation Done. For
Done, there is no effect on the state (i.e., the state s remains unchanged), and for atm,
the effect is given by aexec. For technical reasons, Done has a dummy transition to itself.

A Seq c1 c2 command obtains its branching, weight and effect from c1, and its con-
tinuation is the continuation of c1 if unfinished and is c2 otherwise. While tst d performs

Formalizing Probabilistic Noninterference 263

cf1 = (Ch0.5 (x := 3)Done, s)

0.5

���������������������
0.5

��������������������

cf2 = (x := 3,s)

1
��

cf3 = (Done,s)

1

��

cf4 = (Done,s[x ← 3])

1

��

Fig. 2. Markov Chain

an unfolding step to the continuation Seq d (While tst d) if the test is True and to Done

otherwise, in both cases with weight 1 and no effect.
A choice command Ch ch c1 c2 is assumed to perform an effectless branching ac-

cording to ch. It has 2 branches, labeled 0 and 1: the left one with weight cval ch s
and continuation c1, and the right one with complementary weight 1− cval ch s and
continuation c2.

If c has the form Par [c0, . . . ,cn−1], then it consists of n threads, c0, . . . , cn−1, running
in parallel under a uniform scheduler assigning them equal probabilities. The branching
of c is thus the sum of the branchings of cl for l ∈ {0, . . . ,n− 1}. A branch label i of c
determines uniquely the numbers k and j so that i corresponds to the j’s branch of ck,
via the equation i = (∑k−1

l=0 brn cl)+ j. The weight of i in c is [the probability of picking
thread ck (out of n possibilities)] times [the weight of j in ck], i.e., (1/n) ∗wt ck s j.
The i-continuation from c is obtained by replacing, in the thread pool, ck with its j-
continuation cont ck s j. The i-effect of c is the j-effect of ck, eff ck s j.

ParT behaves like Par, except that it is termination-sensitive, in that finished threads
are not taken into consideration (being assigned weight 0), and the choice is made
among the m unfinished threads—consequently, the weight of an unfinished thread is
1/m. In case all threads are finished, we simply add a single idle transition, with prob-
ability 1—this trivial case is not shown in the figure.

Example 1. Here is a simple standard instantiation of the generic notions of state,
atomic statement and test. state consists of assignments of values to variables, var →
val, where val is a type of values (e.g., integers) and var a countable type of variables.
The atomic statements and the tests are built by means of arithmetic and boolean ex-
pressions applied to variables. The atom and test valuation functions are as expected.

Since the choice is allowed to depend on the state, it can capture not only standard
probabilistic choice, but also the “if” statement [13]. We define choice to be [0,1]+
test, i.e., a choice is either Inl x, the embedding of a unital real number, or Inr tst, the
embedding of a test tst. Then cval (Inl x) s = x for all s, making Ch (Inl x) c1 c2, simply
written Chx c1 c2, the stateless probabilistic choice. Moreover, cval (Inr tst) s = 1 if
tval tst s = True and = 0 otherwise, making Ch (Inr tst) c1 c2, simply written if tst then
c1 else c2, the standard conditional statement.

264 A. Popescu, J. Hölzl, and T. Nipkow

For any command, the sum of the weights of its branches is 1, meaning that the
small-step semantics yields the transition matrix M of a Markov chain on the type of
configurations, config = com× state:

M (c,s) (c′,s′) = ∑{wt c s i | i ∈ {0, . . . ,brn c− 1} ∧ (c′,s′) = (cont c s i, eff c s i)}
Fig. 2 shows the portion of the Markov chain reachable from (Ch0.5 (x := 3) Done,s).
Note that a node (c,s) may have fewer outer edges than brn c, since some branches may
lead to the same node, case in which they are merged into a single transition weighed
with the sum of their weights. E.g., if c = Ch0.5 d d, then (c,s) has a single Markov
transition to (d,s) of weight 0.5+ 0.5= 1.

Let Trace(c,s) = {(ci,si)i∈nat | (c0,s0) = (c,s) ∧ ∀i ∈ nat.M (ci,si) (ci+1,si+1)> 0},
the set of traces starting at (c,s) ((c,s)-traces for short). A basic event for (c,s) is the set
of all (c,s)-traces of a given finite prefix (ci,si)

n
i=0; the measure of such a basic event

is the product of transition weights ∏n
i=0 M (ci,si) (ci+1,si+1). Let Alg(c,s) be the σ -

algebra generated by the basic events, i.e., the smallest collection of subsets of Trace(c,s)
that is closed under countable union and complement and contains every basic event. By
standard probability theory [15], there is a unique probability measure Pr(c,s) : Alg(c,s) →
[0,1] extending the measure of basic events. ([11] describes in detail the formalization
of the involved standard constructions.) For example, in Fig. 2’s Markov chain, we
have only two (c0,s)-traces, cf1 cf2 cf ω

4 and cf1 cf ω
3 . In general, the set of traces may be

infinite, even uncountable. We have Pr(c0,s) {cf1 cf2 cf ω
4 }= Pr(c0,s) {cf1 cf ω

3 }= 0.5.

3 Noninterference

We fix a relation ∼ on states, called indistinguishability, where s ∼ t is meant to say “s
and t are indistinguishable by the attacker.”

Example 2. In the context of Example 1, ∼ is often defined as follows. Variables are
classified as either low (lo) or high (hi) by a given security level function sec : var →
{lo,hi}. Then ∼ is defined as coincidence on the low variables, with the intuition that
the attacker can only observe these: s ∼ t ≡ ∀x ∈ var. sec x = lo=⇒ s x = t x.

Noninterference of a program states that its execution is compatible with the indis-
tinguishability relation: given two indistinguishable states s and t, (partially) executing
the program once starting from s and once starting from t yield indistinguishable states.

There are two main types of formulation of noninterference: as an indefinite indistin-
guishability resumption property (bisimilulation) and as a property of alternative exe-
cution traces. The seminal paper [33] proposes an end-to-end noninterference property
using big-step semantics, which can be seen as a property of traces. Much of subse-
quent work [3,6–8,27–32] prefers small-step semantics and resumption-based notions,
although trace-based notions are also considered [18, 34].

In the presence of concurrency, resumption-based notions have been shown to be
more compositional (which was no surprise, since this phenomenon is known from
process algebra). Sabelfeld and Sands [27] were the first to observe the tight connection
between the compositionality of resumption-based notions and sufficient type-system
criteria—in a previous paper [23], we used this idea to devise a uniform methodology
for extracting syntactic criteria from compositionality.

Formalizing Probabilistic Noninterference 265

On the other hand, trace-based notions are often more intuitive to grasp, as they do
not involve the alternation complexity of bisimulations. Also, trace-based notions can
benefit from other kinds of static analyses, such as data-race analysis [34].

Next, we study and relate the two flavors of noninterference, including composition-
ality and syntactic criteria, for the introduced probabilistic language.

3.1 Resumption-Based Noninterference

We define the following notions of self isomorphism, siso, and discreetness, discr, coin-
ductively as greatest fixed points, i.e., as the weakest predicates satisfying certain equa-
tions. (They are probabilistic counterparts of possibilistic notions introduced in [23].)

For siso, one requires that, if started in indistinguishable states, executions take the
same branches with the same probabilities. For discr, one requires that, during the com-
putation, the states stay indistinguishable from the initial state.
siso c ≡ (∀s t i. s ∼ t ∧ i < brn c =⇒ wt c s i = wt c t i ∧ cont c s i = cont c t i ∧
eff c s i ∼ eff c t i) ∧ (∀s i. i < brn c =⇒ siso (cont c s i))
discr c ≡ ∀s i. i < brn c =⇒ s ∼ eff c s i ∧ discr (cont c s i)

siso and cont are very demanding notions of security. To define weaker notions, we
need to allow alternative executions to take different branches, while also allowing exe-
cution to change the indistinguishability class of the state. It is easy to notice that these
two relaxations lead us to the consideration of (binary) relations rather than unary pred-
icates. Indeed, if the command c branches according to a high test in two continuations
d1 and d2, then the notion of security of c is conditioned by the notion of “equivalence”
of d1 and d2. This equivalence will be defined as bisimilarity, while security of c will
be defined as self bisimilarity (c bisimilar to itself).

To introduce probabilistic bisimulation, we need a few preparations. Given
I ⊆ {0, . . . ,brn c− 1}, we write Wt c s I for the cumulated weights from (c,s) of the
labels in I, namely, ∑i∈I wt c s i. Given sets A and P, we say P is a partition of A, written
part A P, if P consists of mutually disjoint nonempty sets whose union is A.

The following predicate matchC
C (read “match continuation against continuation”)

shows, for a relation on commands θ and two commands c and d, how the steps taken
by c and d are matched unambiguously and weight-exhaustively, so that their effects
are indistinguishable and their continuations are in θ :
matchC

C θ c d ≡
∀s t. s ∼ t =⇒ ∃P Q F.
part {0, . . . ,brn c−1}P ∧ part {0, . . . ,brn d−1}Q ∧ [F : P → Q bijection] ∧
(∀I ∈ P.Wt c s I =Wt d t (F I) ∧

(∀i ∈ I. ∀ j ∈ F I. eff c s i ∼ eff d t j ∧ θ (cont c s i) (cont d t j)))
Thus, matchC

C θ c d states that there exist partitions P and Q of the branches of c
and d and a bijective correspondence F : P → Q so that, for any corresponding sets of
branches I and F I:

– The cumulated weights are the same.
– For any pair (i, j) of branches in these sets, the effects are indistinguishable and the
continuations are in θ .

266 A. Popescu, J. Hölzl, and T. Nipkow

Strong bisimilarity, ≈S, is defined coinductively as the largest (i.e., weakest) rela-
tion satisfying ∀c,d. c ≈S d ⇐⇒ matchC

C (≈S) c d, or, equivalently, the largest relation
satisfying ∀c,d. c ≈S d =⇒ matchC

C (≈S) c d. If we ignore preservation of the state in-
distinguishability, this boils down to a well known property of Markov chains called
probabilistic bisimulation or lumpability [15, 16].

According to the insight obtained in [23], a good during-execution noninterference
candidate should be compositional with the language constructs and weaker than both
siso and discr. It turns out that ≈S has many of these characteristics, in particular, it will
be shown to commute with all the constructs except for While and ParT.

To compensate for the lack of ParT-compositionality of ≈S , we introduce a weaker
relation, ≈01, that we call 01-bisimilarity because it requires a step to be matched by
either no step (a stutter move) or one step. Its characteristic matcher is
matchC

01C θ c d ≡
∀s t. s ∼ t =⇒ ∃P Q I0 F.
part {0, . . . ,brn c−1}P ∧ part {0, . . . ,brn d−1}Q ∧ I0 ∈ P ∧ [F : P → Q bijection]

(∀I ∈ P−{I0}.
Wt c s I

1−Wt c s I0
=

Wt d t (F I)
1−Wt d t (F I0)

∧

(∀i ∈ I. ∀ j ∈ F I. eff c s i ∼ eff d t j ∧ θ (cont c s i) (cont d t j))) ∧
(∀i ∈ I0. s ∼ eff c s i ∧ θ (cont c s i) d) ∧
(∀ j ∈ F I0. t ∼ eff d t j ∧ θ c (cont d t j))

matchC
01C θ c d relaxes matchC

C to allow matching continuation steps not only by con-
tinuation steps, but also by stutter moves. Thus, in the partitions P and Q, one singles
out sets of stutter branches I0 and F I0 whose effects are required to preserve indis-
tinguishability and whose continuations are required to be in relation θ with the other
party’s source command, d or c. Moreover, the cumulated weights in corresponding
non-stutter sets of branches are no longer required to be equal, but only equal relatively
to the cumulated weights of all non-stutter branches (i.e., to 1 minus the cumulated
weights of the stutter ones).

01-bisimilarity, ≈01, is now defined analogously to ≈S, as the largest relation sat-
isfying ∀c d. c ≈01 d ⇐⇒ matchC

01C (≈01) c d. The notion of security associated to a
bisimilarity is its diagonal version, which we call self bisimilarity. Thus, c is called
self strongly-bisimilar if c ≈S c and self 01-bisimilar if c ≈01 c.

The 01-steps relaxation scheme is well-known in language-based possibilistic bisim-
ulations [6–8, 23], and corresponds to the triangle unwinding scheme in system-based
security [17]—our relation ≈01 seems to be its first probabilistic adaptation.

Note that all the above four notions of security are defined employing universal quan-
tification over the relevant current states (either s alone for discr or the indistinguishable
states s and t for the other notions), which are therefore “refreshed” at each resumption
point. This means that security is defined interactively, guaranteeing correct behavior
under the assumption that the environment (consisting perhaps of the attacker or of
the other threads) may change the state at any point. This is crucial for composition-
ality [23, 25, 27]. It is immediate to prove by coinduction that ≈01 is weaker than ≈S,
which in turn is weaker than siso and discr:

Prop 1. The implications shown in the left of Fig. 3 hold.

Formalizing Probabilistic Noninterference 267

c ≈01 c

c ≈S c

��

discr c

���������

�������
siso c

���������

�������

≈01 c

≈S c

��

discr c

��������

������
siso c

��������

������

Fig. 3. Resumption-Based Notions and Syntactic Criteria

3.2 Compositionality

Here we establish the compositionality properties of the two resumption-based notions
w.r.t. the language constructs and discuss their relative strengths and weaknesses.

First, we need atomic properties of preservation and compatibility adapted to the ab-
stract notions of state and indistinguishability relation. An atom atm is called
∼-preserving, written pres atm, if ∀s. aexec atm s ∼ s; it is called ∼-compatible, written
cpt atm, if ∀s t. s ∼ t =⇒ aexec atm s ∼ aexec atm t. A test tst is called ∼-compatible,
written cpt tst, if ∀s t. s ∼ t =⇒ tval tst s = tval tst t. A choice ch is called ∼-compatible,
written cpt ch, if ∀s t. s ∼ t =⇒ cval ch s = cval ch t.

In the setting of Example 2, for atoms, ∼-preservation means no assignment to low
variables and∼-compatibility means no direct leaks, i.e., no assignment to low variables
of expressions depending on high variables. Moreover, for tests, ∼-compatibility means
no dependence on high variables. A stateless choice is always compatible and an “if”
choice is compatible if it is so as a test.

The next proposition states various compositionality results, schematically repre-
sented in Fig. 4 as follows. The first column lists the possible forms of a command c (c
may be an atom atm, or have the form Seq c1 c2, etc.). The next columns list conditions
under which the predicates stated on the first row hold for c. Thus, e.g., row 4 column
3 says: if cpt ch, siso c1 and siso c2, then siso (Ch ch c1 c2). The horizontal line in row 3
columns 4 and 5 represents an “or”—thus, e.g., row 3 column 4 says: if either [siso c1

and c2 ≈S c2] or [c1 ≈S c1 and discr c2] then Seq c1 c2 ≈SSeq c1 c2.

Prop 2. The compositionality facts stated in Fig. 4 hold.

As expected, compatibility is a minimal security requirement for atoms, with discreet-
ness requiring even preservation. Sequential composition behaves perfectly w.r.t. siso
and discr, but for ≈S and ≈01 it requires strengthening either to siso on the left com-
ponent or to discr on the right component. For choice, compatibility is required for all
notions except for discr; in the particular case of “if” tests, this becomes the well-known
“no high test” condition; for stateless choices, the condition is vacuously true.

The compositionality w.r.t. Par and ParT reveal some interesting phenomena. While
in the possibilistic case we have shown that, in the presence of the aforementioned
interactivity proviso, parallel composition is unconditionally compositional, here the
situation is less convenient. Possibilistically, it makes no difference whether or not a
finished thread is removed from the pool. Indeed, scheduling it to take a stutter move
has no possibilistic effect. However, it does have the effect of delaying the steps taken
by other threads. This is already discussed in [29, 30] for sequential threads, and is

268 A. Popescu, J. Hölzl, and T. Nipkow

c discr c siso c c ≈S c c ≈01 c

atm pres atm cpt atm cpt atm cpt atm

Seq c1 c2
discr c1
discr c2

siso c1
siso c2

siso c1
c2 ≈S c2

c1 ≈S c1
discr c2

siso c1
c2 ≈01 c2

c1 ≈01 c1
discr c2

Ch ch c1 c2
discr c1
discr c2

cpt ch
siso c1
siso c2

cpt ch
c1 ≈S c1
c2 ≈S c2

cpt ch
c1 ≈01 c1
c2 ≈01 c2

While tst d discr d
cpt tst
siso d

False False

Par [c0, . . . ,cn−1]
discr cl
0 ≤ l < n

siso cl
0 ≤ l < n

cl ≈S cl
0 ≤ l < n

False

ParT [c0, . . . ,cn−1]
discr cl
0 ≤ l < n

False False
cl ≈S cl
0 ≤ l < n

Fig. 4. Compositionality of Resumption-Based Noninterference

reflected in our case by ≈S not being compositional w.r.t. ParT. Also, ≈01 is not ParT-
compositional either. Fortunately, ParT composition of ≈S-related threads yields ≈01-
related results, which saves the day—this is the main reason for introducing ≈01.

Another problem that seems specific to probabilistic semantics is that ≈S and ≈01 are
not compositional w.r.t. While. The main reason is that both ≈S and ≈01 are termination-
insensitive, and hence they do not detect, in a while loop, when the body command has
finished executing, which makes synchronization impossible in the bisimilarity game.

These compositionality problems are actually not as bad as they may seem: as we
discuss in §3.3, when proving noninterference of a command c, if a notion fails to be
compositional w.r.t. the construct from the top of c, one can fall back on a stronger
notion, for which the proof can progress.

3.3 Syntactic Criteria

With the implications between bisimilarities and their compositionality facts in place,
we can automatically infer type-system criteria. This was described in [23, §6] as a
“table-and-graph” method for a possibilistic programming language. Since the analysis
from there is semantics-independent, it also applies here. For each security notion χ ∈
{discr, siso,≈S,≈01 }, we define a function χ : com → bool following a potential attempt
to prove χ c, first using the corresponding compositionality fact from Fig. 4’s table, and,
if this fails, falling back on stronger notions given by the predecessors of χ from Fig. 3’s
left graph. Thus, the cell corresponding to the form of c and the notion χ contains some
properties of the components of c and possibly a side condition. Then:
– if the side condition holds, then χ c is defined recursively as the conjunction of all
χ ′ c′, where χ ′ c′ are the listed conditions for the components c′ of c;
– otherwise, χ c is defined as the disjunction of all χ ′ c, where χ ′ are the immediate
predecessors of χ in Fig. 3’s left graph.

Formalizing Probabilistic Noninterference 269

Concretely:

discr atm ⇐⇒ pres atm; discr (Seq c1 c2)⇐⇒ discr (Ch ch c1 c2)⇐⇒ discr c1 ∧ discr c2;
discr (While tst d)⇐⇒ discr d;
discr (Par [c0, . . . ,cn−1])⇐⇒ discr (ParT [c0, . . . ,cn−1])⇐⇒∧n−1

i=0 discr ci;

siso atm ⇐⇒ cpt atm; siso (Seq c1 c2)⇐⇒ siso c1 ∧ siso c2;
siso (Ch ch c1 c2)⇐⇒ cpt ch ∧ siso c1 ∧ siso c2; siso (While tst d)⇐⇒ cpt tst ∧ siso d;
siso (Par [c0, . . . ,cn−1])⇐⇒ ∧n−1

i=0 siso ci; siso (ParT [c0, . . . ,cn−1])⇐⇒ False;

≈S atm ⇐⇒ cpt atm; ≈S (Seq c1 c2)⇐⇒ (siso c1 ∧ ≈S c2) ∨ (≈S c1 ∧ discr c2);
≈S (Ch ch c1 c2)⇐⇒ cpt ch ∧ ≈S c1 ∧ ≈S c2;
≈S (While tst d)⇐⇒ siso (While tst d) ∨ discr (While tst d);
≈S (Par [c0, . . . ,cn−1])⇐⇒∧n−1

i=0 ≈S ci;
≈S (ParT [c0, . . . ,cn−1])⇐⇒ siso (ParT [c0, . . . ,cn−1]) ∨ discr (ParT [c0, . . . ,cn−1]);

≈01 atm ⇐⇒ cpt atm; ≈01 (Seq c1 c2)⇐⇒ (siso c1 ∧ ≈01 c2) ∨ (≈01 c1 ∧ discr c2);
≈01 (Ch ch c1 c2)⇐⇒ cpt ch ∧ ≈01 c1 ∧ ≈01 c2; ≈01 (While tst d)⇐⇒ ≈S (While tst d);
≈01 (Par [c0, . . . ,cn−1])⇐⇒ ≈S (Par [c0, . . . ,cn−1]);
≈01 (ParT [c0, . . . ,cn−1])⇐⇒ ∧n−1

i=0 ≈S ci.

The above are valid recursive definitions: each operator χ is defined recursively in
terms of itself and/or in terms of previously defined operators. Note how, when compo-
sitionality for a notion fails, stronger notions are invoked, e.g.:
≈S (While tst d)⇐⇒ siso (While tst d)∨discr (While tst d)⇐⇒ (cpt tst∧ siso d)∨discrd

We can prove that the syntactic notions are indeed sufficient criteria for their seman-
tic counterparts, and that the former inherit the hierarchy of the latter.

Prop 3. (1) For any χ in Fig. 3 left, it holds that ∀c. χ c =⇒ χ c.
(2) The implications shown in the right of Fig. 4 hold.

The next example illustrates the semantic notions and their syntactic criteria:

Example 3. Consider the following commands, with h,h′ high and l, l′ low variables.
– d0: h′ := 0 ; while h > 0 do Ch0.5 (h := 0) (h′ := h′+ 1)
– d1: while h > 0 do Ch0.5 (h := h− 1) (h := h+ 1)
– d2: if l = 0 then l′ := 1 else d0

– d3: h := 5 ; (d0 ‖T l := 1)
– d4: (if h = 0 then h := 1 ; h := 2 else h := 3) ; l := 4
– d5: d4 ‖T l := 5

Provided initially h > 0, d0 has the effect of assigning a random geometrically dis-
tributed integer value to h′, and d1 performs a one-dimensional random walk with the
value of h (the so-called gambler’s ruin), resulting invariably in exit (at h = 0) with
probability 1. d3 illustrates one advantage of being able to nest parallel composition in-
side sequential composition—the possibility to make some global initializations (here,
h := 5) before starting up the thread pool (here, containing two threads, d0 and l := 1).

d0 and d1 are discreet, d2 is self strongly bisimilar, and d3 is self 01-bisimilar, but
not self strongly bisimilar due to the presence of ParT whose compositionality requires
the shift from ≈S to ≈01. (d3 would become self strongly bisimilar had we replaced ParT

with Par.) Indeed, d0–d3 are deemed secure by the syntactic criteria from Fig. 3, e.g.:

270 A. Popescu, J. Hölzl, and T. Nipkow

c ≈01 c
aeT c �� eSec c

c ≈S c

��

�� amSec c

��

Fig. 5. Resumption-Based and Trace-Based Notions of Security

≈01 d3 ⇐⇒
siso (h := 5) ∧ ≈01 (d0 ‖T l := 1) ∨ ≈01 (h := 5) ∧ discr (d0 ‖T l := 1) ⇐⇒

True ∧ ≈S d0 ∧ ≈S (l := 1) ∨ True ∧ discr d0 ∧ discr (l := 1) ⇐⇒
. . . ⇐⇒

True ∧ True ∧ True ∨ True ∧ True ∧ False ⇐⇒
True ∨ False ⇐⇒

True
On the other hand, d4 and d5 are not secure, not even according to ≈01. The problem with

d4 is that the timing of the low assignment l := 4 depends on the value of the high variable h,
which can cause probabilistic leaks when placed in parallel with other threads that may update l.
d5 shows such a situation: the initial value of h influences the likelihood that l := 4 is executed
before l := 5. And indeed, d4 and d5 are rejected by all the syntactic criteria, e.g.:

≈01 d4 ⇐⇒
siso (if h = 0 . . .) ∧ ≈01 (l := 4) ∨ ≈01 (if h = 0 . . .) ∧ discr (l := 4) ⇐⇒

. . . ⇐⇒
False ∧ True ∨ True ∧ False ⇐⇒

False

3.4 Trace-Based Noninterference

Both ≈S and ≈01 protect against the following end-to-end kind of probabilistic attack:
The attacker may run the program multiple times and collect statistical information
about the distribution of the final state up to ∼ (which corresponds to the low part of
the memory); however, this data will never allow the attacker to infer anything about
the initial state beyond the ∼-abstraction (which corresponds to the high part of the
memory). Such a property is best formalized as trace-based noninterference.

For technical reasons, all our execution traces are infinite, with dummy transitions
added for finished commands. We call terminating those traces reaching a configuration
whose command is finished: termin (ci,si)i∈nat ≡ ∃i ∈ nat. finished ci. Since dummy
transitions do not affect the state, the final state of a terminating trace, fstate (ci,si)i∈nat,
is well defined as the unique s such that ∃i. s = si ∧ finished ci.

We define the following sets of traces, for any (c,s), n and t:
T(c,s),n,t ≡ {(ci,si)i∈nat ∈ Trace(c,s) | sn ∼ t},
the set of (c,s)-traces whose n-th configuration’s state is indistinguishable from t;
T(c,s),t ≡ {(ci,si)i∈nat ∈ Trace(c,s) | termin (ci,si)i∈nat ∧ fstate (ci,si)i∈nat ∼ t},
the set of terminating (c,s)-traces whose final state is indistinguishable from t.

The set of terminating states, as well as T(c,s),n,t and T(c,s),t , are all measurable sets
since they can be written as countable unions of countable intersections of basic events.
We say c almost everywhere terminates, written aeT c, if ∀s. Pr(c,s) {(ci,si)i∈nat ∈
Trace(c,s) | termin (ci,si)i∈nat}= 1, i.e., the set of terminating (c,s)-traces has measure 1.

Formalizing Probabilistic Noninterference 271

We can now define the following trace-based notions of noninterference:
– Any-moment security states that, for any two executions starting in indistinguishable
states and any given time, the probability of being at that time in any given indistin-
guishability class is the same:

amSec c ≡ ∀s1 s2. s1 ∼ s2 =⇒ ∀n t. Pr(c,s1) T(c,s1),n,t = Pr(c,s2) T(c,s2),n,t – End
security states that, for any two executions starting in indistinguishable states, the prob-
ability of ending up in any given indistinguishability class is the same:

eSec c ≡ ∀s1 s2.s1 ∼ s2 =⇒∀t. Pr(c,s1) T(c,s1),t = Pr(c,s2) T(c,s2),t
Any-moment security is a strong guarantee: even if one is able to observe the distri-

bution of the low memory at any given moment, one still cannot infer anything about
the initial high memory. On the other hand, end security warrants something weaker:
that the final distribution of the low memory tells nothing about the initial high mem-
ory. One can prove that ≈S implies any-moment security, and that this in turn implies
end security. More interestingly, ≈01 implies end security if we also assume almost-
everywhere termination; roughly, the last assumption is necessary to make sure that the
“bisimulation noise” caused by stutter moves cannot delay synchronization forever, but
eventually becomes negligible.

Prop 4. The implications listed in Fig. 5 hold.

In Example 3, d0–d3 are all ≈01-secure programs and are also almost-everywhere termi-
nating, hence they satisfy eSec by Prop. 4. Moreover, since d2 is ≈S-secure, it satisfies
the stronger property amSec by Prop. 4. d5 does not satisfy eSec, since the distribution
of the final low memory reveals whether h is 0 or not: if h = 0, then 1 out of 4 execu-
tions yields l = 4; otherwise, only 1 out of 8. On the other hand, even though d4 is not
≈01-secure, it obviously satisfies eSec, since all its executions yield l = 4.

4 Overview and Statistics

Our formal development [22] amounts to about 8000 lines of scripts in Isabelle [20].
Fig. 6 shows the main theory structure, indicating for each theory the number of lines
and the corresponding sections of the paper. The types and functions parameterizing the
language syntax and semantics, as well as the state-indistinguishability relation ∼, are
fixed in Isabelle locales [14]—theory Concrete instantiates these locales as discussed in
Examples 1 and 2.

The language semantics was tedious to formalize due to parallel composition (espe-
cially the termination-sensitive one), which involves list-index manipulation—employing
iterated binary parallel composition instead (as in the possibilistic case [23]) was not an
option, since the scheduler needs to address the thread pool as a whole. On the other
hand, probabilistic semantics displays a certain conceptual simplification over tradi-
tional nondeterministic semantics: for each language construct, the direct rules and the
inversion rules are merged into “direct” quantitative equations (as described in Fig. 1).

We defined the probabilistic bisimulations on the concrete branches of the opera-
tional semantics, and not on the more abstract Markov-chain transitions (which may
identify some of the branches); indeed, the branches provided us with a good notation

272 A. Popescu, J. Hölzl, and T. Nipkow

Syntactic Criteria [140] (§3.3) Concrete [200] Trace Based [1260] (§3.4)

Compositionality [2900] (§3.2)

�������������

Resumption Based [1750] (§3.1)

������������

�������������������

Language Semantics [1880] (§2)

Fig. 6. Isabelle Theory Structure

for partitioning the continuations and, more importantly, with the right level of abstrac-
tion for proving compositionality facts without having to query whether some continua-
tions happen to be equal. On the other hand, we used the general-purpose Markov-chain
construction of the traces and their probability space [11] as opposed to building them
from branches, which of course saved us much background work but complicated a
little the proofs relating resumption notions with trace notions.

The largest and most laborious part (roughly 36% of the whole development) deals
with the compositionality results listed in Prop. 2—the bisimulation relations provided
as witnesses in coinductive proofs involved tedious constructions of partitions and
sums over sets. Isabelle’s Sledgehammer tool for deploying external automatic theorem
provers [21], very helpful in discharging goals on possibilistic bisimulations, was less
helpful here, where the ∀∃ scheme of traditional bisimulations gives way to a quan-
titative ∀∑ scheme. Another laborious task was establishing the connection between
trace-based and resumption-based notions, which also involved heavy sum reasoning.

Having the compositionality preparations, the inference of syntactic criteria (Prop. 3)
was immediate, with the induction goals discharged automatically by the simplifier and
the classical reasoner. The route through compositionality facts localized at each lan-
guage construct does better justice to noninterference results than previous formulations
from the literature [18, 28–30, 32], which rely on complex monolithic proofs.

5 Conclusions and Related Work

We have formalized noninterference properties for a multi-threaded language with prob-
abilistic choice and uniform scheduler. Distinguishing features of our approach are the
comprehensive study, covering both resumption-based and trace-based notions, and the
automatic extraction of syntactic criteria from compositionality. Moreover, all previous
workconsiders systems of sequential deterministic threads run in parallel by a prob-
abilistic scheduler. Our language is more powerful, allowing pervasive probabilistic
behavior, including probabilistic threads. This makes the mathematical analysis more
challenging, since each thread yields a Markov chain, which needs to be combined by
parallel composition in the larger Markov chain of the thread pool. In fact, the very
notions of thread and thread pool are relative here, since the language allows nesting
parallel composition into other constructs (e.g., having Seq on top of Par or ParT), al-
though, as we have seen, security requirements restrict some of this expressiveness.

Formalizing Probabilistic Noninterference 273

If we are to identify a “pen-and-paper” reference for our formalized resumption-
based notions, the closest is a series of papers by Smith and others [28–30, 32],
which progressively introduces notions analogous to ours. Specifically, [32] introduces
self isomorphism, [28] strong bisimilarity, and [29, 30] a notion weaker than our 01-
bisimilarity called weak bisimilarity. In each case, the type system proved sound in
there is equivalent to our syntactic criterion uniformly extracted from compositionality
(Prop. 3).

A further point of convergence with the above works is the consideration of various
flavors of parallel composition. [32] and [28] consider the termination-insensitive Par,
while later work [29, 30] focuses on the termination-sensitive ParT. Retrospectively, in
the light of the compositionality facts of Prop. 2, this is not surprising, since siso and ≈S

are both compositional w.r.t. Par, and ≈01 is quasi-compositional w.r.t. ParT.
Interestingly, all of the above works prove that the type system implies the corre-

sponding resumption-based version, but they allude informally to a trace-based notion
as the ultimately targeted security guarantee. E.g., [28, page 10] reads: “the proba-
bility that the low variables have certain values after k steps is the same when start-
ing from (O,μ) as where starting from (O,ν)” (where (O,μ) and (O,ν) are bisimilar
configurations)—we have formalized this as any-moment security. Also, [29, page 8]
reads: “the probability that the low variables end up with some values from (O,μ)
is the same as the probability that they end up with those values from (O,ν)”—we
have formalized this as end security. Establishing formally the relationship between
a resumption-based notion and a trace-based notion can range from routine (as in ≈S

versus any-moment security) to highly nontrivial (as in ≈01 versus end security).
There are some extensions and generalizations of probabilistic semantics and nonin-

terference not covered by our formalization. Smith [29] also considers a protect com-
mand enforcing atomicity of execution. (In principle, our formalization can handle this
language construct by “instantiating” the atom parameter to a type mutually recursive
with com.) He also sketches an extension to dynamic thread creation. Sabelfeld and
Sands [27] show that a type system corresponding to our syntactic criterion siso for self
isomorphism is strong enough to ensure noninterference for any scheduler, not only
the uniform one. Mantel and Sudbrock [18] relax the siso requirement, while still cov-
ering relevant schedulers such as uniform and round robin. Our own “pen-and-paper”
work [24] generalizes the results of Smith based on weak bisimilarity [29, 30] to a
different class of schedulers than Mantel and Sudbrock’s, providing an arguably more
manageable criterion for schedulers and a stronger security guarantee.

Our end security is a generalization of the one from [18], where one defines the prop-
erty only for globally terminating thread pools—this simplifying assumption allows an
elementary treatment of the relevant probabilities, not requiring measure theory. We
relax the termination requirement to almost-everywhere termination. This relaxation is
relevant for probabilistic languages, where many interesting programs terminate only
almost everywhere—this also happens to be the case for d0–d3 in Example 3.

Probabilistic, but single-threaded languages in the style of pGCL [19] have been for-
malized before in HOL4 [13], Coq [2, 4, 5] and Isabelle [9]. In very recent work [10],
Cock verifies in Isabelle a lattice scheduler (a uniform scheduler that distinguishes be-
tween high and low processes) aimed at closing covert channels such as cash channels.

274 A. Popescu, J. Hölzl, and T. Nipkow

While the work does not target a programming language, the scheduler itself is speci-
fied as a program in pGCL and shown probabilistically noninterfering w.r.t. a version
of lumpability.

Acknowledgments. We thank the reviewers for comments that helped improve the pre-
sentation. This work was supported by the DFG project Ni 491/13–2 (part of the DFG
priority program Reliably Secure Software Systems–RS3) and the DFG RTG 1480.

References

1. The POPLmark challenge (2009), http://www.seas.upenn.edu/~plclub/poplmark/
2. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. S. of Comp.

Prog. 74(8), 568–589 (2009)
3. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition. In:

CSFW, pp. 100–114 (2004)
4. Barthe, G., Daubignard, M., Kapron, B.M., Lakhnech, Y.: Computational indistinguishability

logic. In: CCS, pp. 375–386 (2010)
5. Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryptographic

proofs. In: POPL, pp. 90–101 (2009)
6. Barthe, G., Nieto, L.P.: Formally verifying information flow type systems for concurrent and

thread systems. In: FMSE, pp. 13–22 (2004)
7. Boudol, G.: On typing information flow. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005.

LNCS, vol. 3722, pp. 366–380. Springer, Heidelberg (2005)
8. Boudol, G., Castellani, I.: Noninterference for concurrent programs and thread systems. The-

oretical Computer Science 281(1-2), 109–130 (2002)
9. Cock, D.: Verifying probabilistic correctness in Isabelle with pGCL. In: SSV, pp. 167–178

(2012)
10. Cock, D.: Practical probability: Applying pGCL to lattice scheduling. In: Blazy, S., Paulin-

Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 311–327. Springer, Hei-
delberg (2013)

11. Hölzl, J.: Analyzing discrete-time Markov chains with countable state space in Isabelle/HOL.
Draft, http://home.in.tum.de/~hoelzl/classifying

12. Hölzl, J., Nipkow, T.: Verifying pCTL model checking. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 347–361. Springer, Heidelberg (2012)

13. Hurd, J., McIver, A., Morgan, C.: Probabilistic guarded commands mechanized in HOL.
Theor. Comput. Sci. 346(1) (2005)

14. Kammüller, F., Wenzel, M., Paulson, L.C.: Locales - a sectioning concept for Isabelle. In:
Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS,
vol. 1690, pp. 149–166. Springer, Heidelberg (1999)

15. Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov chains, 2nd edn. Springer
(1976)

16. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Compu-
tation 94(1), 1–28 (1991)

17. Mantel, H.: A uniform framework for the specification and verification of security properties.
Ph.D. thesis, Univ. of Saarbrücken (2003)

18. Mantel, H., Sudbrock, H.: Flexible scheduler-independent security. In: Gritzalis, D., Preneel,
B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 116–133. Springer, Hei-
delberg (2010)

http://www.seas.upenn.edu/~plclub/poplmark/
http://home.in.tum.de/~hoelzl/classifying

Formalizing Probabilistic Noninterference 275

19. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems.
Springer (2005)

20. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-order
Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

21. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical
link between automatic and interactive theorem provers. In: IWIL (2010)

22. Popescu, A., Hölzl, J.: Formal development associated with this paper,
http://www21.in.tum.de/~popescua/prob.zip (to appear in the Archive of Formal
Proofs, 2013)

23. Popescu, A., Hölzl, J., Nipkow, T.: Proving concurrent noninterference. In: Hawblitzel, C.,
Miller, D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 109–125. Springer, Heidelberg (2012)

24. Popescu, A., Hölzl, J., Nipkow, T.: Noninterfering schedulers - when possibilistic noninter-
ference implies probabilistic noninterference. In: CALCO, pp. 236–252 (2013)

25. Sabelfeld, A.: Confidentiality for multithreaded programs via bisimulation. In: Broy, M.,
Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 260–274. Springer, Heidelberg (2004)

26. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Journal on Se-
lected Areas in Communications 21(1), 5–19 (2003)

27. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs. In:
CSFW, pp. 200–214 (2000)

28. Smith, G.: A new type system for secure information flow. In: CSFW, pp. 115–125 (2001)
29. Smith, G.: Probabilistic noninterference through weak probabilistic bisimulation. In: CSFW,

pp. 3–13 (2003)
30. Smith, G.: Improved typings for probabilistic noninterference in a multi-threaded language.

Journal of Computer Security 14(6), 591–623 (2006)
31. Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative language. In:

POPL, pp. 355–364 (1998)
32. Volpano, D., Smith, G.: Probabilistic noninterference in a concurrent language. Journal of

Computer Security 7(2,3), 231–253 (1999)
33. Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis. Journal of

Computer Security 4(2,3), 167–187 (1996)
34. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program security. In:

CSFW, pp. 29–43 (2003)

http://www21.in.tum.de/~popescua/prob.zip

Machine Assisted Proof of ARMv7 Instruction
Level Isolation Properties

Narges Khakpour1, Oliver Schwarz1,2, and Mads Dam1

1 KTH Royal Institute of Technology, Stockholm, Sweden
2 SICS Swedish ICT, Kista, Sweden
{nargeskh,oschwarz,mfd}@kth.se

Abstract. In this paper, we formally verify security properties of the
ARMv7 Instruction Set Architecture (ISA) for user mode executions.
To obtain guarantees that arbitrary (and unknown) user processes are
able to run isolated from privileged software and other user processes,
instruction level noninterference and integrity properties are provided,
along with proofs that transitions to privileged modes can only occur
in a controlled manner. This work establishes a main requirement for
operating system and hypervisor verification, as demonstrated for the
PROSPER separation kernel. The proof is performed in the HOL4 theo-
rem prover, taking the Cambridge model of ARM as basis. To this end, a
proof tool has been developed, which assists the verification of relational
state predicates semi-automatically.

Keywords: ARM instruction set, noninterference, user mode execution,
kernel security, theorem proving.

1 Introduction

The ability to execute application software in a manner which is isolated from
other application software running on a shared processing platform is an essential
prerequisite for security. This allows user applications or virtual machines to
coexist without violating confidentiality or integrity of critical data, it allows
critical system resources to be protected from user manipulation, it can help to
prevent fault propagation, and it can be used to save costly hardware that might
otherwise be needed to provide physical separation.

Isolation is typically provided by a mix of hardware and software. A memory
management unit (MMU) may be used to provide basic memory protection, and
the processor may be equipped with multiple privilege levels, running application
programs as userland processes and kernel routines at privileged levels, with
additional abilities to access and configure critical parts of the processor, the
MMU, and various storage/display/peripheral devices attached to the processor.

In such a setting, isolation is a result of the correct interplay between hard-
ware and kernel. It is the responsibility of the kernel to correctly manipulate
the processor state to achieve the desired effects, whatever they may be (con-
text switching, logging, fault management, device management, etc). It is the

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 276–291, 2013.
c© Springer International Publishing Switzerland 2013

Machine Assisted Proof of ARMv7 Instruction Level Isolation Properties 277

responsibility of the processing hardware to correctly implement the partitioning
safeguards and mode transition conventions assumed by the kernel. For security,
the kernel and the processor must both be correct and agree on their mode of
interaction. Most formal kernel analyses in the literature [7,12,13,15,18] address
the kernel software itself, in source or binary form, and leave the properties of
the instruction set architecture (ISA) to be handled by fiat. Our contribution is
to suggest a possible approach, including tool support, for performing the ISA
specific security analysis, specifically for user mode execution.

We have identified two main concerns.
First, an implicit contract must exist which stipulates the “region of influ-

ence/dependency” of userland processes. That is, in a given user mode proces-
sor/MMU configuration it must be determined which memory locations and
(control) registers can be read or written, or, in a more fine grained analysis,
how information is able to flow to or from specific parts of the processor and
the memory. User processes must be constrained in accessing or otherwise being
influenced by critical resources of the kernel or of other user processes. This is
not trivial. For instance, as shown by Duflot et al. [9], on some x86 processors it
is possible for low-privilege code to overwrite higher privilege code by writing to
an address that usually refers to the video card. To enable this attack, it suffices
to first flip a configuration bit usually accessible from the low privilege level.

Second, kernel code relies on a set of mode switching conventions, for instance
on ARM that program status registers and relevant user registers (including the
program counter) are properly banked, the program counter is updated to point
at the correct location in the vector table, and so on. If these conventions are not
established by the processor and adhered to by the kernel, it may be possible for
userland processes to induce various sorts of malicious behavior, for instance by
letting a handler’s link register point to a foreign address.

Performing this analysis is not trivial, particularly not if information flow
is to be taken into account, as is done in this paper. All instructions, error
conditions, and user to privileged mode transitions must be considered. The
number of instructions is high and in modern processors a single instruction can
involve a large number (order of 20-30) of atomic register or memory accesses.

In this paper, we identify and prove several partitioning-related properties
of the ARMv7 ISA specification [2,3] addressing user mode execution and mode
switching. The first is an instruction level noninterference property related to the
non-infiltration property in [12] stating that the behavior of an ARMv7 proces-
sor in user mode only depends on its accessible resources, mostly user registers,
MMU configurations and the memory allocated to that process. The second,
corresponding to the non-exfiltration property of [12], is an integrity property
stating that, again while in user mode, the processor is unable to modify pro-
tected resources. A third set of properties concerns mode switching conventions.
These properties have been applied in the PROSPER project [5] to verify iso-
lation for the PROSPER separation kernel [8]. The PROSPER project aims
at producing and verifying a fully functional secure hypervisor for embedded

278 N. Khakpour, O. Schwarz, and M. Dam

arm-state = <| psrs : PSRName -> ARMpsr;
regs : RName -> word32;
memory : word32 -> word8;
coproc : coprocessors;
accesses : memory_access list;
misc : Monitors # ARMinfo # bool # bool |>;

Fig. 1. The ARM state in HOL4

systems, providing services such as guest isolation, so that only explicitly al-
lowed communication occurs.

Our proof uses the HOL4 [4] model of ARM, developed at Cambridge by Fox
et al. [10]. We extend this model by simple memory protection. The ARMv7 ISA
properties outlined above are formalized and proved. To make the quite sizable
proof task feasible, we have developed a helper tool based on relational Hoare
logic, that is able to automate significant parts of the proof.

To the best of our knowledge our work represents the first formalized analysis
of the ARMv7 ISA. Others, specifically the Cambridge HOL4 group, have de-
veloped various helper tools for assembling, disassembling, executing, and man-
aging ARM machine code and the HOL4 ARM ISA model [10,16]. Also, the
HOL4 ARM model has been used in several verification exercises in the liter-
ature, on software fault isolation (SFI) [22] and on the extension of the seL4
verification work [13] from C to binary level [20]. However, we have not yet seen
general correctness properties formalized and verified for ARM at the ISA level.
In fact, we believe the type of analysis presented here can be useful beyond
kernel verification. For instance, formalized security properties can be useful to
both improve the usefulness and precision of ISA specifications, and to enable
developers obtain a concise description of secure configurations, without manual
consideration of extensive architecture specifications.

2 The Formal Specification of ARM

We use Fox et al’s monadic HOL4 model [10] of the ARMv7 ISA. This model
covers the ARM, Thumb and ThumbEE instruction sets, comprising 81 instruc-
tions for branching, memory access, data processing, co-processor access, status
access, and miscellaneous functionality. Figure 1 shows a simplified definition of
an ARM state in this model. The function psrs returns the value of a processor
state register (of type ARMpsr). The processor state registers include the current
program status register, CPSR, in addition to the banked psrs SPSR_m for each
privileged mode m, except for system mode. Program status registers encode
arithmetic flags, the processor mode M, interrupt masks (I for ordinary and F
for fast interrupts) and instruction encoding. The ARMv7 core provides seven
processor modes: one non-privileged user mode usr, and six privileged modes
(abt,fiq,irq,svc,und,sys), activated when an exception (such as an inter-
rupt) is invoked. Variants with the TrustZone extension [1] also have a monitor

Machine Assisted Proof of ARMv7 Instruction Level Isolation Properties 279

mode. However, this has to be invoked from a privileged mode and we consider
its usage out of scope of this paper.

The function regs takes a register name and returns its value. The ARM reg-
isters include sixteen general purpose registers (r0-r15) that are available from
all modes in addition to the banked registers of each privileged mode (except
of sys) that are available only in that mode. Among the user registers, register
r13 functions as stack pointer SP, register r14 as link register LR and register
r15 as program counter PC.

The function memory reads a byte (word8) from an address (word32). The field
coproc represents those coprocessor registers in CP14 and CP15 that implicitly
influence execution. The coprocessor registers central for this work are registers
SCTLR , TTBR0 and DACR of coprocessor 15. They, together with the page table,
are used to configure the MMU. The field misc represents the exclusive monitors
used for synchronization purposes, general information about the state, e.g. the
architecture version, if the system is waiting for an interrupt etc, and accesses
records the accesses to the memory.

A computation in the monadic HOL4 ARM model is a term of the following
(slightly beautified) type

α M = arm_state �→ (α, arm_state) error_option.

where error_option is a datatype defined as follows:

(α,β) error_option = ValueState of α => β
| Error of string

Computations act on a state arm_state and return either ValueState a s, a
new state s of type arm_state along with a return value a of type α, or an error
e. The unpredictable computations, i.e., those that are underspecified by the
ARM specification return an error. The monad unit constT injects a value into
a computation, i.e. constT a s = ValueState a s, while binding is a sequential
composition operation

f1 �=e f2 = λs.case f1s of Error c → Error c

|| ValueState a s′ →
if e s′ then f2 a s′ else f1 s.

That is, if e holds in the final state of f1, the return value of f1 is passed to f2
as the input parameter, otherwise f2 is not executed.

In addition to unit and binding, the ARM monadic specification uses stan-
dard constructs for lambda, let, and cases, as well as the monad operations
parallel composition (f1 |||e f2), positive conditional (condT e f), full condi-
tional (if e then f1 else f2), error (errorT a), and an iterator (forTe l h f),
(inductively) defined in Figure 2.

3 Memory Management

The Memory Management Unit (MMU) enforces memory access policies and is
therefore important for isolation. MMU configurations consist of page tables in

280 N. Khakpour, O. Schwarz, and M. Dam

errorT a = Error a
condT e f = if e then f else constT ()
if e then f1 elsef2 = λs.if e s then f1 s else f2 s
f1 |||e f2 = f1 �=e (λx.f2 �=e (λy.constT (x, y)))
forTe l h f = if l > h then constT []

else ((f l) �=e (λr.forTe (l + 1) h f �=e (λl.constT r :: l)))

Fig. 2. Auxiliary monad operations

memory and dedicated registers of CP15. Specific to ARM is the possibility of
partitioning pages into collections of memory regions, so-called domains. The
theorems in this paper are based on the concrete MMU configurations (memory
ranges, the page table setup etc.) used in the PROSPER kernel. The coprocessor
registers involved are SCTLR, TTBR0 and DACR. The SCTLR register determines
whether the MMU is enabled, TTBR0 contains the base address of the page table,
and DACR manages the ARM domains.

MMU Extension. The evaluation function permitted takes as parameters a byte
address, a flag indicating whether reading or writing access is to be evaluated,
the values of SCTLR, TTBR0 and DACR, a flag indicating whether permissions are
to be checked against a privileged mode, and the memory containing the page
tables. The pair of booleans returned by permitted states whether the access
permission on the specified byte is defined in the given configuration and the
outcome of that decision (true if access is granted). The PROSPER kernel uses
a basic version of permitted, supporting one-level page tables without address
translation, but including the interpretation of ARM domains. It is shown that
permitted is defined for all addresses in all reachable states.

The history of memory accesses is tracked in the accesses field of the machine
state, allowing to compute the set of memory pages accessed by an instruction.
To stop computation after the first access violation, .=nav has been chosen
as standard binding operator, where nav s (“no access violation”) is true if
and only if there is no entry in the access list of machine state s that causes
permitted to return a negative answer int the current configuration of s. The
recording of an access always happens before the access itself.

The instruction execution function next (see Figure 3) takes an exception/in-
terrupt flag irpt and a state s and produces the consequent state, by either
initiating the demanded exception or by fetching and executing the next instruc-
tion pointed to by the PC in s. If an access violation is recorded after instruction
fetching or execution, a prefetch or data abort exception (respectively) is initi-
ated. The access list is cleared between the single steps, preventing the execution
from halting and instead proceeding with exception handling. Occasionally, the
unconditional binding .=T is used.

MMU Configuration. Let accessible i a express that address a is readable
and writable by user process i. The predicate mmu_setup i s holds if and only

Machine Assisted Proof of ARMv7 Instruction Level Isolation Properties 281

next irpt s =
(clear_alist �=nav

(λu. if irpt = NoInterrupt then
waiting_for_interrupt �=nav

(λwfi. condT (¬wfi)
(fetch_instruction �=T

(λ(opc, ins). is_viol �=T (λav. clear_alist �=nav

(λu. if av then prefetch_abort
else

(execute ins �=T (λu. is_viol �=T

(λav. condT av
(clear_alist �=nav

(λu. data_abort))))))))))
else take_exception irpt �=nav (λu. clear_wait_for_irpt))) s

Fig. 3. The next computation

if (i) state s implements the desired access policy for process i, (ii) no MMU
configuration for any address is underspecified, and (iii) none of the active page
tables in s (represented by the address set page_table_adds s) is accessible
according to the policy.

mmu_setup i s = ∀add, is_write, u, p.
(u,p) = permitted add is_write (mmu_registers s) F s.memory

⇒ u ∧ ((accessible a i) ⇔ p)
∧ (a ∈ (page_table_adds s) ⇒ ¬(accessible a i))

4 Security Properties

We next turn to formalizing the instruction level partitioning properties. For
user mode execution we formulate the requirements in terms of non-infiltration
and non-exfiltration properties (cf. [12]), adapted to our setting.

Our model does not include caches, timing or hardware extensions such as
TrustZone or virtualization support. Devices are not part of the model either;
however, interrupts and other exceptions are taken into account, apart from fast
interrupts and resets. Accordingly, the fiq and mon modes are outside of our
analysis. As discussed, the chosen memory configuration is specific to the PROS-
PER project. Consequences of a limited coprocessor model and underspecified
instructions are discussed in Section 8.

4.1 Non-infiltration

Confidentiality of the kernel and neighboring user processes is guaranteed by non-
infiltration, a noninterference-like property at the user mode single instruction
level. Consider two machine states in user mode that are low equivalent in the
sense that the two states agree on the resources (registers and memory locations)

282 N. Khakpour, O. Schwarz, and M. Dam

that are permitted to influence user mode execution, but do not necessarily agree
on other resources. Non-infiltration holds if the poststates, after execution of one
instruction, remain low equivalent (or produce the same error).

Theorem 1. Non-infiltration

∀s1, s2, i, irpt. mode s1 = mode s2 = usr ∧ bisim i s1 s2
⇒ (∃t1, t2. next irpt s1 = ValueState () t1

∧ next irpt s2 = ValueState () t2 ∧ bisim i t1 t2)
∨ (∃e. next irpt s1 = Error e ∧ next irpt s2 = Error e)

The relation bisim is the low equivalence relation. User mode processes are
allowed to be influenced by the user mode registers, the memory assigned to
them, the CPSR, the coprocessors, pending access violations and the misc state
component. Exclusive monitors (as field of misc) can inherently influence and
be influenced by user mode software and need thus to be cleared by kernels on
context switches.

bisim i s1 s2 =
mmu_setup i s1 ∧ mmu_setup i s2 ∧ (equal_user_regs s1 s2)

∧ (∀a. (accessible i a) ⇒ (s1.memory a = s2.memory a))
∧ (s1.psrs(CPSR)= s2.psrs(CPSR)) ∧ (s1.coproc.state = s2.coproc.state)
∧ (nav s1 = nav s2) ∧ (s1.misc = s2.misc)
∧ s1.psrs(spsr_(mode s1)) = s2.psrs(spsr_(mode s2))
∧ s1.regs(lr_(mode s1)) = s2.regs(lr_(mode s2))

The two last items have been included to assure that SPSR and link register
(of a possibly privileged poststate) only depend on resources allowed to influence
user mode execution as well, so that they can actually be restored later on.

4.2 Non-exfiltration

Non-exfiltration guarantees the integrity of resources foreign to the active user
process. It expresses that, given an MMU setup for user process i active, the
execution of a single instruction in user mode will not modify any other resources
but those considered to be modifiable by i.

Theorem 2. Non-exfiltration

∀s, t, i, irpt. mode s = usr ∧ mmu_setup i s
∧ next irpt s = ValueState () t ⇒ unmodified i s t

Here, unmodified expresses the desired relation between the prestate s and the
poststate t of an active process i. We require that coprocessors, the fast interrupt
flag and any memory not belonging to i remain unchanged. The only registers
allowed to change are the CPSR, the user mode registers, and the PSR and the
link register of the mode in t. The interrupt flag of the CPSR is not modified
when staying in user mode.

Machine Assisted Proof of ARMv7 Instruction Level Isolation Properties 283

unmodified i s t =
(s.coproc = t.coproc) ∧ (s.psrs(CPSR).F = t.psrs(CPSR).F)

∧ (∀a. ¬(accessible i a) ⇒ (s.memory a = t.memory a))
∧ ((mode s ∈ {usr, mode t} ∧ mode t ∈ {usr, fiq, irq, svc, abt, und})
⇒((∀reg. reg /∈ accessible_regs(mode t) ⇒ s.regs(reg) = t.regs(reg))

∧ (∀psr. psr /∈ {CPSR, spsr_(mode t)} ⇒ s.psrs(psr) = t.psrs(psr))
∧ (mode t = usr ⇒((s.psrs(CPSR)).I = (t.psrs(CPSR)).I))))

4.3 Switching to Privileged Modes

Secure user mode execution is not by itself sufficient. It is also necessary to con-
sider transitions to privileged modes to prevent user processes from privileged
execution rights. No user process should be able to effect a mode change with the
PC set to a memory location of his choice. Instead, all entry points into privileged
modes should be in the exception vector table. Similarly, even though user pro-
cesses are allowed to choose a different endianness for their own execution, that
should not influence the interpretation of the system handlers when switching
back to privileged mode. Theorem 3 covers those additional constraints.

Theorem 3. Privileged Constraints

∀s, t, i, irpt. mode s = usr ∧ mmu_setup i s
∧ next irpt s = ValueState () t ⇒ priv_const s t

Besides the above properties, the relation priv_const lists the reachable pro-
cessor modes1 and assures that interrupts are masked when entering a privileged
mode. Also, status register flags regarded as unwritable will be copied from the
CPSR in prestate s to the SPSR in poststate t. This guarantees that a kernel can
restore the saved program status register without further modifications when
jumping back to the user process. Otherwise, user processes would be able to
make the kernel enable/disable interrupts or change their execution mode. All
access violations, if there were any, will have been handled (nav t).

priv_const s t =
mode t ∈ {usr, fiq, irq, svc, abt, und}
∧ (mode t �= usr ⇒

(t.regs(PC) ∈ vt_adds(vt_base s, mode t) ∧ nav t
∧ (t.psrs(CPSR)).(I, J, IT, E) = (T, F, 0w, endianess s)
∧ (t.psrs(spsr_(mode t))).(M, I, F)

= (usr, (s.psrs(CPSR)).I, (s.psrs(CPSR)).F)))

4.4 Link Register Contents in Supervisor Mode

Upon reception of a software interrupt, exception handlers in the invoked su-
pervisor mode (svc) often need to analyze the calling instruction, in order to
determine the software interrupt number for example. Therefore, verification
1 Monitor and system mode can only be reached from another privileged mode.

284 N. Khakpour, O. Schwarz, and M. Dam

might require assertions that the memory location pointed to by the link regis-
ter actually does belong to the user process which caused the switch to supervisor
mode. Formally, when going from state s in user mode to state t in supervisor
mode, it is required that the svc-link register of t (i) is equal to the PC of s plus
an instruction set dependent offset and (ii) corrected by the offset, points to an
aligned word that is readable in t (independent of the mode). Note that offset
and width of the word depend on the instruction set used by the user process,
not on the one used by the handler.

Theorem 4. Link Register Constraints

∀s, t, i, irpt, lr. mode s = usr ∧ mmu_setup i s
∧ next irpt s = ValueState () t ∧ mode t = svc ∧ lr = t.regs(LR_svc)

⇒ lr = s.regs(PC) + offset s
∧ ((t.psrs(SPSR_svc)).T ⇒ aligned_word_readable t T (lr - 2w))
∧ (¬(t.psrs(SPSR_svc)).T ∧ ¬(t.psrs(SPSR_svc)).J

⇒ aligned_word_readable t F (lr - 4w))

Here, aligned_word_readable s b add states that the aligned word referred
to by add is readable in s. Dependent on whether b is true or false, word width
and alignment are 16 or 32 bit.

4.5 Safe User Mode Execution

The final aim is to guarantee that as long as the machine is executing in
user mode, it causes no noninterference or integrity violations. Let s1 � sn de-
note a sequence of next computations s1 → s2 → → sn in user mode, i.e.
mode si = usr, 1 ≤ i < n and mode sn �= usr. The following theorem assures the
safe execution and safe mode switching of a user process.

Theorem 5. Let s1 � sn and mmu_setup i s1, (i) if s′1 � s′n and bisim i s1 s′1 then
bisim i sn s′n, (ii) unmodified i s1 sn, and (iii) priv_const sn−1 sn.

The proof of (i) and (ii) is an easy induction on n using theorems 1 and 2.
Item (iii) follows from Theorem 3.

5 The Logic Framework

Considering the size and complexity of the ARM model and the instruction set,
to prove the properties of the previous section tool support is essential. In this
section we present proof rules for relational and invariant reasoning that help to
automate the proof.

Non-infiltration The proof uses a relational Hoare logic based on assertions {f:R
→R’} defined as follows:

{f:R → R’} = ∀s1,s2. R s1 s2 ⇒
(∃a,t1,t2. f s1 = ValueState a t1 ∧

f s2 = ValueState a t2 ∧ R’ t1 t2)
∨(∃e.f s1 = Error e ∧ f s2 = Error e)

Machine Assisted Proof of ARMv7 Instruction Level Isolation Properties 285

errorTR
{errorT a : R_m → R_m}

constTR
{constT a : R_m → R_m}

condTR
{f : R_m → R_m}

{condT ψ f : R_m → R_m}
forTR

{f : R_m → R_m}
{forTnav l h f : R_m → R_m}

conR
{f : R_m → R_n} {f ′ : R_m → R_n}
{if ψ then f else f ′ : R_m → R_n}

widenR
{f : R_m → R_n}

{f : R_m → R_(n,k)}
absR

∀y.{f y : R_m → R_n}
{λy.f : R_m → R_n}

seqTR
{f : R_m → R_n} {f ′ : R_n → R_k} (m = n) ∨ (n = k)

{f �=nav f
′ : R_m → R_(n,k)}

parTR
{f : R_m → R_n} {f ′ : R_n → R_k} (m = n) ∨ (n = k)

{f |||navf ′ : R_m → R_(n,k)}

Fig. 4. Relational inference rules

The judgment asserts that, if started in prestates s1, s2 related by prerelation
R, either the executions of the monadic computation f return identical values
a with poststates t1, t2 related by postrelation R’, or else they both return the
same error e.

For the analysis it suffices to consider a fixed set of relations

R_m = λs1.λs2.bisim i s1 s2 ∧ mode s1 = m ∧ mode s2 = m

or R_(n,m) = R_n ∪ R_m.
Figure 4 shows the relational logic inference rules. The inference system is

incomplete, but sufficient for our purpose. A relation R_m is preserved by errorT
and constT (rules constTR and errorTR), and if a computation preserves one
of the R_m relations then that computation can be used in a conditional or a for
loop as well (condTR, conR and forTR). The rule widenR and absR are used to
weaken the postrelation and reason about lambda computations, respectively.
The rule seqTR states that the postrelation of f .=nav f ′ is the union of the
postrelations of f and f ′, provided that either f preserves R_n or f ′ preserves
R_k. If there is an access violation after f , the computation stops and R_n must
hold. Otherwise, f ′ will execute and R_k must hold. Thus, the postrelation is
the union of R_n and R_k.

Theorem 6. All assertions {f : R → R′} derivable according to the inference
rules in Figure 4 are valid.

Non-exfiltration Similar to the non-infiltration proof, the proof of non-exfiltration
uses a sound but incomplete inference system, this time concerning computation
invariants of the following shape:

INV〈f, Q, P〉 = ∀s, t. Q s ∧ f s = ValueState a t =⇒ P s t ∧ Q t .

That is, if Q holds of the prestate then P holds of the prestate-poststate pair,
and Q of the poststate. We use a simple collection of inference rules to prove

286 N. Khakpour, O. Schwarz, and M. Dam

errorTI
INV〈errorT a, Q, P〉

constTI refl P
INV〈constT c, Q, P〉

condTI
refl P INV〈f, Q, P〉
INV〈condT e f, Q, P〉

forTI
refl P trans P INV〈f, Q, P〉

INV〈forTe l h f, Q, P〉

conRI
INV〈f, Q, P〉 INV〈f ′, Q, P〉

INV〈if ψ then f else f ′, Q, P〉

absI
∀y.INV〈f y, Q, P〉
INV〈λy.f, Q, P〉

seqTI
INV〈f, Q, P〉 INV〈f ′, Q, P〉 trans P

INV〈f �=e f ′, Q, P〉

parTI
INV〈f, Q, P〉 INV〈f ′, Q, P〉 trans P

INV〈f |||ef ′, Q, P〉

Fig. 5. Invariant inference rules

Q and P , shown in Figure 5. In this figure, refl P and trans P respectively
state that P is reflexive and transitive. For non-exfiltration we need to prove that
unmodified i is satisfied during the execution of each instruction both when
it ends in user mode and when switching to privileged mode. A prerequisite for
this is that the MMU is configured correctly during computation. To prove the
non-exfiltration property, we check INV〈next, mmu_setup i, unmodified i 〉.
Theorem 7. All assertions INV〈f,Q,P〉 derivable according to the inference
rules in Figure 5 are valid.

Privileged Constraints The final goal is to prove that next establishes the rela-
tion priv_const, a conjunction of primitive constraints P. Since the primitive
constraints do not always hold during computations in privileged mode, the in-
ference rules of Figure 5 are generally not able to prove this property. To make
verification tractable, we prove primitive constraints locally at the point in the
monadic computation where it is established and then use a set of inference
rules to infer its correctness for the entire computation. We illustrate the proof
using an example. In the ARM model, all computations which lead to a privi-
leged mode m end by a computation called take_m_exception. Figure 6 shows
the function take_svc_exception for switching to supervisor mode. Let this
computation start in state s1 and end in state sn. Consider the primitive con-
straint Ppsr stating that SPSR_svc of the final state sn must be equal to CPSR
of the initial state s1. Let t and t′, respectively be the initial state and final
state of write_spsr cr and m be the mode of t′. The computation write_spsr
cr writes the value of free variable cr into SPSR_m and establishes the property
P′psr

def
= t′.psrs(SPSR_m) = cr. We call write_spsr cr a P′psr-establisher. A

computation g is P-establisher, if independently of its input state, P holds in its
output state, i.e.

P−establ(g) = ∀s, a, t. g s = ValueState a t ∧ nav t =⇒ P t

We can prove that the block starting from write_spsr cr establishes P′psr as
well, because the rest of the computations of this block does not modify this prop-
erty. Then we can prove that the free variable cr takes the value s1.psrs(CPSR),

Machine Assisted Proof of ARMv7 Instruction Level Isolation Properties 287

take_svc_exception = IT_advance �=nav

(λ u.(read_reg 15w |||nav exc_vector_base |||nav read_cpsr |||nav
read_scr |||nav read_sctlr)�=nav

(λ(pc,ExcVectorBase,cr,scr,sctlr).
(condT (cr.M = 0b10110w) (write_scr (scr with NS := F)) |||nav
write_cpsr (cr with M := 0b10011w)) �=nav

(λ (u1,u2). (write_spsr cr |||nav
write_reg 14w (if cr.T then pc - 2w else pc - 4w) |||nav
(read_cpsr �=nav

(λ cr’.write_cpsr (cr’ with
<| I := T; IT := 0b00000000w;J := F;

T := sctlr.TE; E := sctlr.EE |>))) |||nav
branch_to (ExcVectorBase + 8w)) �=nav unit4)))

Fig. 6. The HOL4 code for switching to svc mode [4]

seqTS1
P−establ(f) INV〈f ′, P,�〉

P−establ(f �=nav f
′)

seqTS2
P−establ(f)

P−establ(f ′ �=nav f)

parTS1
P−establ(f) INV〈f ′, P,�〉

P−establ(f |||nav f ′)
parTS2

P−establ(f)

P−establ(f ′ |||nav f)

absS
∀y.P−establ(f y)

P−establ(λy.f)

Fig. 7. Privileged constraints inference rules

and m is bound to svc. Thus, sn.psrs(SPSR_svc) = s1.psrs(CPSR) holds for the
computation block from write_spsr cr. As this block is a Ppsr-establisher, we
conclude that the computations before write_spsr do not influence the estab-
lished property and Ppsr is satisfied by take_svc_exception.

Figure 7 shows the P-establisher inference rules. These rules along with the
inference rules of Figure 5 are used to prove the privileged constraints. The rule
seqTS1 states that if the monadic computation f is a P-establisher and P is an
invariant of f ′, then the sequential composition f .=nav f

′ is P-establisher. The
rule seqTS2 describes that if the monadic computation f is a P-establisher, then
f ′ .=nav f is also P-establisher. Similar rules are defined for the |||nav operator.

Theorem 8. All assertions P-establ(f) derivable according to the inference
rules in Figure 7 are valid.

6 Implementation and Evaluation

Implementation We use the HOL4 theorem prover to verify our properties. The
central assets of our work are available from [5]. We have developed a tool, ARM-
prover, to automate the verification process based on the proof systems in Fig. 4

288 N. Khakpour, O. Schwarz, and M. Dam

and 5. To avoid having to explore the instruction set more than once the prover
actually combines the theorems 1, 2 and 3 into one.

The proof systems do not provide rules for case and let statements. These are
easily handled using standard HOL4 simplification. Other monadic expressions
are refined using the inference rules in Fig. 4 and 5 in a top down fashion. The
proofs for “write” primitives as well as register and memory accesses in user mode
are done manually, but the tool can handle some of the “read” computations
directly, allowing to prove a large share of the workload automatically.

A particular difficulty concerns binding. When a binding expression f1 .=nav

f2 is decomposed the return value of f1 becomes unbound in f2. To handle this
we simplify computations by embedding more information before calling the
prover, using some auxiliary lemmas. For example, the following formula states
that cpsr in computation H following read_cpsr can be substituted by the CPSR
in prestate s with mode m.

(mode s = m) ⇒ (read_cpsr �=nav (λcpsr. H(cpsr))) s =
(read_cpsr �=nav (λcpsr. H(s.psrs(CPSR) with M:=m))) s

For the case that an instruction leads to a privileged mode, the last execution
phase of the instruction, called switching phase, is in privileged mode. However,
the privileged constraints first have to be established over the course of several
steps and do not hold from the beginning. Since we can not use the ARM-prover
tool to prove them automatically, we prove the privileged constraints for the
switching phase manually.

Evaluation. The Cambridge model of ARM is 9 kLOC. In addition to the ARM
model, we rely mainly on the relatively small inference kernel of the HOL4
theorem prover, our MMU extension (about 180 lines of definitions) and the
formulation of the discussed properties (about 290 lines). The entire proof script
has a length of about 13 kLOC and needs roughly an hour to run on an Intel(R)
Xeon(R) X3470 core. We invested about one person year of effort into this work.

7 Related Work

Several recent works address kernel verification. Some target information flow
properties [7,12,15,18], based on variants of noninterference [11]. Other work es-
tablishes a refinement relation between kernel code, in some representation, and
an abstract specification. For the seL4 microkernel this was first performed for
its C implementation [13] and is now extended to binary level [20]. As is the
case with most refinement/simulation-based approaches, this work does not ad-
dress information flow. In recent work on seL4 verification, Murray et al. [14,15]
present an unwinding-style characterization of intransitive noninterference. They
introduce a proof calculus on nondeterministic state monads that is similar to
that of this work. Their assertions are more general, however our proof rules
cover several monadic operators and statements. In addition, we introduce rules

Machine Assisted Proof of ARMv7 Instruction Level Isolation Properties 289

to prove properties about executions that relate the final state of a computation
to its initial state.

Alkassar et al. [6] describe the emulation of a simplified MIPS machine in C.
The emulator allows the use of VCC to automatically check that every reachable
state of a guest on a hypervisor is also reachable when the guest is running on a
completely isolated machine. The C emulator has been adopted to verify parts of
the hypervisor that mix C and assembly [17], and allows unknown user processes
to be considered. Information flow properties are not considered, however.

Wilding et al. [21] formally proved exfiltration, infiltration and mediation
theorems for the partitioning system of the AAMP7G microprocessor in ACL2.
The hardware architecture differs from the one of ARM in several points, such
as that there are no user-visible registers or that AAMP7G itself functions as
a separation kernel. Proofs were performed using abstraction/refinement tech-
niques and address kernel microcode. The verification led to a MILS certificate
on Evaluation Assurance Level 7.

The ARMor system [22] sandboxes applications on ARM and provides for-
mal verification of memory safety and control flow integrity, using the Cam-
bridge HOL4 ARM model. Its software fault isolation does not use hardware
features such as an MMU, but uses instead rewriting and subsequent verifica-
tion of the compiled programs. This implies performance overhead, limitations
on supported programs and verification processes in the extend of hours for
each program. Furthermore, ARMor only establishes memory write protection;
neither confidentiality nor protection of privileged registers is addressed.

Most works on kernel verification address handler code only and do not con-
sider user mode execution. In a few cases [6,19] user mode execution is consid-
ered, but without justification in terms of concrete processor access modalities.
The main contribution of our work, over and beyond the above works, is that we
attempt to justify the critical assumptions on processor level information flow
in user mode execution through analysis at the level of a formalized ISA model.

Heitmeyer et al. [12] introduce non-exfiltration, non-infiltration, kernel in-
tegrity and data/control separation properties to verify a separation kernel. Since
we focus on user-mode execution, those properties apply only partially here. Our
non-infiltration property is the same as in [12], but the non-exfiltration property
in our work covers both their kernel integrity and non-exfiltration.

8 Conclusion

We introduced and proved several security properties including a non-exfiltration,
a non-infiltration and a safe switching property for user mode executions on the
ARM architecture, using the Cambridge HOL4 ISA model. A logical framework
based on (relational) Hoare logic has been developed for the analysis, supported
by a tool, ARM-prover, which helps automate the proof. The ARM-prover can
be used to prove general invariants about the ARM model (i.e., statements that
need to hold at each execution point). We are planning to continue the devel-
opment of the ARM-prover to improve automation further and cater for more
general proof tasks.

290 N. Khakpour, O. Schwarz, and M. Dam

Our results concerning register contents are generally valid and with small
adaptations applicable in isolation verification of other hypervisors, separation
kernels, and operating systems. Statements on memory safety depend on our spe-
cific setup. A reformulation that is independent of concrete MMU configurations
should require a minor effort and is planned for future work.

The HOL4 model of ARM supports a partial coprocessor model. We made the
assumption that the access to coprocessors via dedicated instructions is always
denied in user mode. To have a more precise analysis and cover all possible side
channels, a more comprehensive model of the available coprocessors involving
all registers, the coprocessors’ behavior and an acceptance/rejection-mechanism
for register reads and writes that follows the specification is required. During
context switches kernels need to mediate coprocessor registers user-accessible by
dedicated coprocessor instructions. All other coprocessor registers are guaran-
teed to be non-modifiable in user mode. However, kernels must not introduce
information flow from non-active processes to the coprocessor registers that are
part of the present ARM model, since those might influence user mode execution.

Instructions that are underspecified (“unpredictable”) in the ARM Architec-
ture Reference Manual (ARMARM) are problematic. The ARM specification
states that “unpredictable behavior must not perform any function that cannot
be performed at the current or lower level of privilege using instructions that are
not unpredictable”[3]. In one interpretation of this statement, theorems 2, 3 and
4 are valid on unpredictable instructions as well. In general, this is not true for
non-infiltration. Yet, ARMARM requires further that “unpredictable behavior
must not represent security holes” [2]. This formulation is very vague. However,
we make the assumption that non-infiltration is preserved. In fact, we argue
that the security properties we have presented provide manufacturers of ARM
processors with a precise description of secure behavior for unpredictable cases.

Acknowledgments. Work supported by framework grant "IT 2010" from the
Swedish Foundation for Strategic Research.

References

1. ARM TrustZone technology,
http://www.arm.com/products/processors/technologies/trustzone.php

2. ARMv7-A architecture reference manual, issue B,
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406b

3. ARMv7-A architecture reference manual, issue C,
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c

4. HOL4, http://hol.sourceforge.net/
5. PROSPER project, http://prosper.sics.se/
6. Alkassar, E., Hillebrand, M.A., Paul, W.J., Petrova, E.: Automated verification of

a small hypervisor. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE
2010. LNCS, vol. 6217, pp. 40–54. Springer, Heidelberg (2010)

7. Barthe, G., Betarte, G., Campo, J.D., Luna, C.: Formally verifying isolation and
availability in an idealized model of virtualization. In: Butler, M., Schulte, W.
(eds.) FM 2011. LNCS, vol. 6664, pp. 231–245. Springer, Heidelberg (2011)

http://www.arm.com/products/processors/technologies/trustzone.php
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406b
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c
http://hol.sourceforge.net/
http://prosper.sics.se/

Machine Assisted Proof of ARMv7 Instruction Level Isolation Properties 291

8. Dam, M., Guanciale, R., Khakpour, N., Nemati, H., Schwarz, O.: Formal verifi-
cation of information flow security for a simple ARM-based separation kernel. In:
Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2013 (2013)

9. Duflot, L., Etiemble, D., Grumelard, O.: Using CPU system management mode to
circumvent operating system security functions. In: Proc. CanSecWest (2006)

10. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7 in-
struction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS,
vol. 6172, pp. 243–258. Springer, Heidelberg (2010)

11. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

12. Heitmeyer, C., Archer, M., Leonard, E., McLean, J.: Applying formal methods to
a certifiably secure software system. IEEE Trans. Softw. Eng. 34(1), 82–98 (2008)

13. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: formal verification of an OS kernel. In: Matthews, J.N.,
Anderson, T.E. (eds.) SOSP, pp. 207–220. ACM (2009)

14. Murray, T.C., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S.,
Lewis, C., Gao, X., Klein, G.: seL4: From general purpose to a proof of information
flow enforcement. In: IEEE Symposium on Security and Privacy, pp. 415–429. IEEE
Computer Society (2013)

15. Murray, T., Matichuk, D., Brassil, M., Gammie, P., Klein, G.: Noninterference for
operating system kernels. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS,
vol. 7679, pp. 126–142. Springer, Heidelberg (2012)

16. Myreen, M.O., Fox, A., Gordon, M.J.C.: Hoare logic for ARM machine code. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 272–286. Springer,
Heidelberg (2007)

17. Paul, W., Schmaltz, S., Shadrin, A.: Completing the automated verifica-
tion of a small hypervisor – assembler code verification. In: Eleftherakis, G.,
Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 188–202.
Springer, Heidelberg (2012)

18. Richards, R.J.: Modeling and security analysis of a commercial real-time operating
system kernel. In: Hardin, D.S. (ed.) Design and Verification of Microprocessor
Systems for High-Assurance Applications, pp. 301–322 (2010)

19. Rushby, J.: Formally verified hardware encapsulation mechanism for security, in-
tegrity, and safety. Technical report, DTIC Document (2002)

20. Sewell, T., Myreen, M.O., Klein, G.: Translation validation for a verified OS kernel.
In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pp. 471–482 (2013)

21. Wilding, M.M., Greve, D.A., Richards, R.J., Hardin, D.S.: Formal verification of
partition management for the AAMP7G microprocessor. In: Hardin, D.S. (ed.) De-
sign and Verification of Microprocessor Systems for High-Assurance Applications,
pp. 175–191. Springer US (2010)

22. Zhao, L., Li, G., De Sutter, B., Regehr, J.: ARMor: Fully verified software fault
isolation. In: Proceedings of the International Conference on Embedded Software,
EMSOFT 2011, pp. 289–298 (2011)

A Formal Model and Correctness Proof
for an Access Control Policy Framework

Chunhan Wu1,2, Xingyuan Zhang1, and Christian Urban2

1 PLA University of Science and Technology, China
2 King’s College London, UK

Abstract. If an access control policy promises that a resource is protected in a
system, how do we know it is really protected? To give an answer we formalise
in this paper the Role-Compatibility Model—a framework, introduced by Ott, in
which access control policies can be expressed. We also give a dynamic model
determining which security related events can happen while a system is running.
We prove that if a policy in this framework ensures a resource is protected, then
there is really no sequence of events that would compromise the security of this
resource. We also prove the opposite: if a policy does not prevent a security com-
promise of a resource, then there is a sequence of events that will compromise
it. Consequently, a static policy check is sufficient (sound and complete) in order
to guarantee or expose the security of resources before running the system. Our
formal model and correctness proof are mechanised in the Isabelle/HOL theorem
prover using Paulson’s inductive method for reasoning about valid sequences of
events. Our results apply to the Role-Compatibility Model, but can be readily
adapted to other role-based access control models.

1 Introduction

Role-based access control models are used in many operating systems for enforcing se-
curity properties. The Role-Compatibility Model (RC-Model), introduced by Ott [5,6],
is one such role-based access control model. It defines roles, which are associated with
processes, and defines types, which are associated with system resources, such as files
and directories. The RC-Model also includes types for interprocess communication, that
is message queues, sockets and shared memory. A policy in the RC-Model gives every
user a default role, and also specifies how roles can be changed. Moreover, it specifies
which types of resources a role has permission to access, and also the mode with which
the role can access the resources, for example read, write, send, receive and so on.

The RC-Model is built on top of a collection of system calls provided by the operat-
ing system, for instance system calls for reading and writing files, cloning and killing of
processes, and sending and receiving messages. The purpose of the RC-Model is to re-
strict access to these system calls and thereby enforce security properties of the system.
A problem with the RC-Model and role-based access control models in general is that a
system administrator has to specify an appropriate access control policy. The difficulty
with this is that “what you specify is what you get but not necessarily what you want”
[4, Page 242]. To overcome this difficulty, a system administrator needs some kind of
sanity check for whether an access control policy is really securing resources. Existing

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 292–307, 2013.
c© Springer International Publishing Switzerland 2013

A Formal Model and Correctness Proof for an Access Control Policy Framework 293

works, for example [9,10], provide sanity checks for policies by specifying properties
and using model checking techniques to ensure a policy at hand satisfies these prop-
erties. However, these checks only address the problem on the level of policies—they
can only check “on the surface” whether the policy reflects the intentions of the system
administrator—these checks are not justified by the actual behaviour of the operating
system. The main problem this paper addresses is to check when a policy matches the
intentions of a system administrator and given such a policy, the operating system ac-
tually enforces this policy.

Our work is related to the preliminary work by Archer et al [1] about the security
model of SELinux. They also give a dynamic model of system calls on which the access
controls are implemented. Their dynamic model is defined in terms of IO automata and
mechanised in the PVS theorem prover. For specifying and reasoning about automata
they use the TAME tool in PVS. Their work checks well-formedness properties of ac-
cess policies by type-checking generated definitions in PVS. They can also ensure some
“simple properties” (their terminology), for example whether a process with a particular
PID is present in every reachable state from an initial state. They also consider “deeper
properties”, for example whether only a process with root-permissions or one of its de-
scendents ever gets permission to write to kernel log files. They write that they can state
such deeper properties about access policies, but about checking such properties they
write that “the feasibility of doing so is currently an open question” [1, Page 167]. We
improve upon their results by using our sound and complete static policy check to make
this feasible.

The work we report is also closely related to the work on grsecurity, an access control
system developed as a patch on top of Linux kernel [2]. It installs a reference monitor
to restrict access to system resources. They model a dynamic semantics of the operating
system with four rules dealing with executing a file, setting a role and setting an UID
as well as GID. These rules are parametrerised by an arbitrary but fixed access policy.
Although, there are only four rules, their state-space is in general infinite, like in our
work. They therfore give an abstracted semantics, which gives them a finite state-space.
For example the abstracted semantics dispenses with users and roles by introducing
abstract users and abstract roles. They obtain a soundness result for their abstract se-
mantics and under some weak assumptions also a completeness result. Comparing this
to our work, we will have a much more fine-grained model of the underlying operating
system. We will also obtain a soundness result, but more importantly obtain also a com-
pleteness result. But since we have a much more fine-grained model, it will depend on
some stronger assumptions. The abstract semantics in [2] is used for model-checking
policies according to whether, for example, information flow properties are ensured.
Since their formalism consists of only a few rules, they can get away with “pencil-and-
paper proofs”, whereas reasoning about our more detailed model containing substan-
tially more rules really necessitates the support of a theorem prover and completely
formalised models.

Our formal models and correctness proofs are mechanised in the interactive theorem
prover Isabelle/HOL. The mechanisation of the models is a prerequisite for any cor-
rectness proof about the RC-Model, since it includes a large number of interdependent
concepts and very complex operations that determine roles and types. In our opinion

294 C. Wu, X. Zhang, and C. Urban

it is futile to attempt to reason about them by just using “pencil-and-paper”. Follow-
ing good experience in earlier mechanisation work [11], we use Paulson’s inductive
method for reasoning about sequences of events [8]. For example we model system
calls as events and reason about an inductive definition of valid traces, that is lists of
events. Central to this paper is a notion of a resource being tainted, which for example
means it contains a virus or a back door. We use our model of system calls in order to
characterise how such a tainted object can “spread” through the system. For a system
administrator the important question is whether such a tainted file, possibly introduced
by a user, can affect core system files and render the whole system insecure, or whether
it can be contained by the access policy. Our results show that a corresponding check
can be performed statically by analysing the initial state of the system and the access
policy.

Contributions: We give a complete formalisation of the RC-Model in the interactive
theorem prover Isabelle/HOL. We also give a dynamic model of the operating system
by formalising all security related events that can happen while the system is running.
As far as we are aware, we are the first ones who formally prove that if a policy in
the RC-Model satisfies an access property, then there is no sequence of events (system
calls) that can violate this access property. We also prove the opposite: if a policy does
not meet an access property, then there is a sequence of events that will violate this
property in our model of the operating system. With these two results in place we can
show that a static policy check is sufficient in order to guarantee the access properties
before running the system. Again as far as we know, no such check has been designed
and proved correct before.

2 Preliminaries about the RC-Model

The Role-Compatibility Model (RC-Model) is a role-based access control model. It has
been introduced by Ott [5] and is used in running systems for example to secure Apache
servers. It provides a more fine-grained control over access permissions than simple
Unix-style access control models. This more fine-grained control solves the problem of
server processes running as root with too many access permissions in order to accom-
plish a task at hand. In the RC-Model, system administrators are able to restrict what
the role of server is allowed to do and in doing so reduce the attack surface of a system.

Policies in the RC-Model talk about users, roles, types and objects. Objects are pro-
cesses, files or IPCs (interprocess communication objects—such as message queues,
sockets and shared memory). Objects are the resources of a system an RC-policy can
restrict access to. In what follows we use the letter u to stand for users, r for roles, p for
processes, f for files and i for IPCs. We also use obj as a generic variable for objects.
The RC-Model has the following eight kinds of access modes to objects:

Read, Write, Execute, ChangeOwner, Create, Send, Receive and Delete

In the RC-Model, roles group users according to tasks they need to accomplish. Users
have a default role specified by the policy, which is the role they start with whenever
they log into the system. A process contains the information about its owner (a user),

A Formal Model and Correctness Proof for an Access Control Policy Framework 295

its role and its type, whereby a type in the RC-Model allows system administrators to
group resources according to a common criteria. Such detailed information is needed in
the RC-Model, for example, in order to allow a process to change its ownership. For this
the RC-Model checks the role of the process and its type: if the access control policy
states that the role has ChangeOwner access mode for processes of that type, then the
process is permitted to assume a new owner.

Files in the RC-Model contain the information about their types. A policy then spec-
ifies whether a process with a given role can access a file under a certain access mode.
Files, however, also include in the RC-Model information about roles. This information
is used when a process is permitted to execute a file. By doing so it might change its
role. This is often used in the context of web-servers when a cgi-script is uploaded and
then executed by the server. The resulting process should have much more restricted
access permissions. This kind of behaviour when executing a file can be specified in an
RC-policy in several ways: first, the role of the process does not change when executing
a file; second, the process takes on the role specified with the file; or third, use the role
of the owner, who currently owns this process. The RC-Model also makes assumptions
on how types can change. For example for files and IPCs the type can never change
once they are created. But processes can change their types according to the roles they
have.

As can be seen, the information contained in a policy in the RC-Model can be rather
complex: Roles and types, for example, are policy-dependent, meaning each policy
needs to define a set of roles and a set of types. Apart from recording for each role
the information which type of resource it can access and under which access-mode,
it also needs to include a role compatibility set. This set specifies how one role can
change into another role. Moreover it needs to include default information for cases
when new processes or files are created. For example, when a process clones itself, the
type of the new process is determined as follows: the policy might specify a default type
whenever a process with a certain role is cloned, or the policy might specify that the
cloned process inherits the type of the parent process.

Ott implemented the RC-Model on top of Linux, but only specified it as a set of
informal rules, partially given as logic formulas, partially given as rules in “English”.
Unfortunately, some presentations about the RC-Model give conflicting definitions for
some concepts—for example when defining the semantics of the special role “inherit
parent”. In [5] it means inherit the initial role of the parent directory, but in [7] it means
inherit the role of the parent process. In our formalisation we mainly follow the version
given in [5]. In the next section we give a mechanised model of the system calls on
which the RC-Model is implemented.

3 Dynamic Model of System Calls

Central to the RC-Model are processes, since they initiate any action involving re-
sources and access control. We use natural numbers to stand for process IDs, but do
not model the fact that the number of processes in any practical system is limited. Simi-
larly, IPCs and users are represented by natural numbers. The thirteen actions a process
can perform are represented by the following datatype of events

296 C. Wu, X. Zhang, and C. Urban

event ::= CreateFile p f | ReadFile p f | Send p i | Kill p p ′

| WriteFile p f | Execute p f | Recv p i
| DeleteFile p f | Clone p p ′ | CreateIPC p i
| ChangeOwner p u | ChangeRole p r | DeleteIPC p i

with the idea that for example in Clone a process p is cloned and the new process has
the ID p ′; with Kill the intention is that the process p kills another process with ID
p ′. We will later give the definition what the role r can stand for in the constructor
ChangeRole (namely normal roles only). As is custom in Unix, there is no difference
between a directory and a file. The files f in the definition above are simply lists of
strings. For example, the file /usr/bin/make is represented by the list [make, bin, usr]
and the root-directory is the Nil-list. Following the presentation in [5], our model of
IPCs is rather simple-minded: we only have events for creation and deletion of IPCs, as
well as sending and receiving messages.

Events essentially transform one state of the system into another. The system starts
with an initial state determining which processes, files and IPCs are active at the start
of the system. We assume the users of the system are fixed in the initial state; we also
assume that the policy does not change while the system is running. We have three
sets, namely init procs, init files and init ipcs specifying the processes, files and IPCs
present in the initial state. We will often use the abbreviation

obj ∈ init
def
= obj ∈ init files ∨ obj ∈ init procs ∨ obj ∈ init ipcs

There are some assumptions we make about the files present in the initial state: we
always require that the root-directory [] is part of the initial state and for every file in
the initial state (excluding []) we require that its parent is also part of the initial state.
A state is determined by a list of events, called the trace. The empty trace, or empty
list, stands for the initial state. Given a trace s, we prepend an event to s to stand for
the state in which the event just happened. We need to define functions that allow us
to make some observations about traces. One such function is called current procs and
calculates the set of “alive” processes in a state:

current procs []
def
= init procs

current procs (Clone p p ′::s)
def
= {p ′} ∪ current procs s

current procs (Kill p p ′::s)
def
= current procs s − {p ′}

current procs (::s)
def
= current procs s

The first clause states that in the empty trace the processes are given by init processes.
The events for cloning a process, respectively killing a process, update this set of pro-
cesses appropriately. Otherwise the set of live processes is unchanged. We have similar
functions for alive files and IPCs, called current files and current ipcs.

We can use these functions in order to formally model which events are admissible
by the operating system in each state. We show just three rules that give the gist of this
definition. First the rule for changing an owner of a process:

p ∈ current procs s u ∈ init users

admissible s (ChangeOwner p u)

A Formal Model and Correctness Proof for an Access Control Policy Framework 297

We require that the process p is alive in the state s (first premise) and that the new owner
is a user that existed in the initial state (second premise). Next the rule for creating a
new file:

p ∈ current procs s f /∈ current files s is parent f pf pf ∈ current files s

admissible s (CreateFile p f)

It states that a file f can be created by a process p being alive in the state s, the new file
does not exist already in this state and there exists a parent file pf for the new file. The
parent file is just the tail of the list representing f. Finally, the rule for cloning a process:

p ∈ current procs s p ′ /∈ current procs s

admissible s (Clone p p ′)

Clearly the operating system should only allow to clone a process p if the process is
currently alive. The cloned process will get the process ID generated by the operating
system, but this process ID should not already exist. The admissibility rules for the other
events impose similar conditions.

However, the admissibility check by the operating system is only one “side” of the
constraints the RC-Model imposes. We also need to model the constraints of the ac-
cess policy. For this we introduce separate granted-rules involving the sets permissions
and compatible r: the former contains triples describing access control rules; the latter
specifies for each role r which roles are compatible with r. These sets are used in the
RC-Model when a process having a role r takes on a new role r ′. For example, a login-
process might belong to root; once the user logs in, however, the role of the process
should change to the user’s default role. The corresponding granted-rule is as follows

is current role s p r r ′∈ compatible r

granted s (ChangeRole p r ′)

where we check whether the process p has currently role r and whether the RC-policy
states that r ′ is in the role compatibility set of r.

The complication in the RC-Model arises from the way the current role of a process
in a state s is calculated—represented by the predicate is current role in our formalisa-
tion. For defining this predicate we need to trace the role of a process from the initial
state to the current state. In the initial state all processes have the role given by the
function init current role. If a Clone event happens then the new process will inherit
the role from the parent process. Similarly, if a ChangeRole event happens, then as seen
in the rule above we just change the role accordingly. More interesting is an Execute
event in the RC-Model. For this event we have to check the role attached to the file to
be executed. There are a number of cases: If the role of the file is a normal role, then
the process will just take on this role when executing the file (this is like the setuid
mechanism in Unix). But there are also four special roles in the RC-Model: Inherit-
ProcessRole, InheritUserRole, InheritParentRole and InheritUpMixed. For example, if
a file to be executed has InheritProcessRole attached to it, then the process that exe-
cutes this file keeps its role regardless of the information attached to the file. In this way
programs can be can quarantined; InheritUserRole can be used for login shells to make

298 C. Wu, X. Zhang, and C. Urban

sure they run with the user’s default role. The purpose of the other special roles is to
determine the role of a process according to the directory in which the files are stored.

Having the notion of current role in place, we can define the granted rule for the
Execute-event: Suppose a process p wants to execute a file f. The RC-Model first fetches
the role r of this process (in the current state s) and the type t of the file. It then checks
if the tuple (r, t, Execute) is part of the policy, that is in our formalisation being an
element in the set permissions. The corresponding rule is as follows

is current role s p r is file type s f t (r, t, Execute) ∈ permissions

granted s (Execute p f)

The next granted-rule concerns the CreateFile event. If this event occurs, then we have
two rules in our RC-Model depending on how the type of the created file is derived. If
the type is inherited from the parent directory pf, then the granted-rule is as follows:

is parent f pf is file type s pf t is current role s p r
default type r = InheritPatentType (r, t, Write) ∈ permissions

granted s (CreateFile p f)

We check whether pf is the parent file (directory) of f and check whether the type of
pf is t. We also need to fetch the role r of the process that seeks to get permission for
creating the file. If the default type of this role r states that the type of the newly created
file will be inherited from the parent file type, then we only need to check that the policy
states that r has permission to write into the directory pf.

The situation is different if the default type of role r is some normal type, like text-
file or executable. In such cases we want that the process creates some predetermined
type of files. Therefore in the rule we have to check whether the role is allowed to create
a file of that type, and also check whether the role is allowed to write any new file into
the parent file (directory). The corresponding rule is as follows.

is parent f pf
is file type s pf t is current role s p r default type r = NormalFileType t ′

(r, t, Write) ∈ permissions (r, t ′, Create) ∈ permissions

granted s (CreateFile p f)

Interestingly, the type-information in the RC-model is also used for processes, for ex-
ample when they need to change their owner. For this we have the rule

is current role s p r is process type s p t (r, t, ChangeOwner) ∈ permissions

granted s (ChangeOwner p u)

whereby we have to obtain both the role and type of the process p, and then check
whether the policy allows a ChangeOwner-event for that role and type.

Overall we have 13 rules for the admissibility check by the operating system and 14
rules for the granted check by the RC-Model. They are used to characterise when an
event e is valid to occur in a state s. This can be inductively defined as the set of valid
states.

A Formal Model and Correctness Proof for an Access Control Policy Framework 299

valid []

valid s admissible s e granted s e

valid (e::s)

4 The Tainted Relation

The novel notion we introduce in this paper is the tainted relation. It characterises how
a system can become infected when a file in the system contains, for example, a virus.
We assume that the initial state contains some tainted objects (we call them seeds).
Therefore in the initial state [] an object is tainted, if it is an element in seeds.

obj ∈ seeds

obj ∈ tainted []

Let us first assume such a tainted object is a file f. If a process reads or executes a
tainted file, then this process becomes tainted (in the state where the corresponding
event occurs).

f ∈ tainted s valid (Execute p f ::s)

p ∈ tainted (Execute p f ::s)

f ∈ tainted s valid (ReadFile p f ::s)

p ∈ tainted (ReadFile p f ::s)

We have a similar rule for a tainted IPC, namely

i ∈ tainted s valid (Recv p i::s)

p ∈ tainted (Recv p i::s)

which means if we receive anything from a tainted IPC, then the process becomes
tainted. A process is also tainted when it is a produced by a Clone-event.

p ∈ tainted s valid (Clone p p ′::s)

p ′∈ tainted (Clone p p ′::s)

However, the tainting relationship must also work in the “other” direction, meaning if
a process is tainted, then every file that is written or created will be tainted. This is
captured by the four rules:

p ∈ tainted s valid (CreateFile p f ::s)

f ∈ tainted (CreateFile p f ::s)

p ∈ tainted s valid (WriteFile p f ::s)

f ∈ tainted (WriteFile p f ::s)

p ∈ tainted s valid (CreateIPC p i::s)

i ∈ tainted (CreateIPC p i::s)

p ∈ tainted s valid (Send p i::s)

i ∈ tainted (Send p i::s)

Finally, we have three rules that state whenever an object is tainted in a state s, then it
will be still tainted in the next state e::s, provided the object is still alive in that state.
We have such a rule for each kind of objects, for example for files the rule is:

f ∈ tainted s valid (e::s) f ∈ current files (e::s)

f ∈ tainted (e::s)

300 C. Wu, X. Zhang, and C. Urban

Similarly for alive processes and IPCs (then respectively with premises p∈ current procs
(e::s) and i∈ current ipcs (e::s)). When an object present in the initial state can be tainted
in some state (system run), we say it is taintable:

taintable obj
def
= obj ∈ init ∧ ∃ s. obj ∈ tainted s

Before we can describe our static check deciding when a file is taintable, we need
to describe the notions deleted and undeletable for objects. The former characterises
whether there is an event that deletes these objects (files, processes or IPCs). For this
we have the following four rules:

deleted p ′ (Kill p p ′::s)

deleted f (DeleteFile p f ::s)

deleted i (DeleteIPC p i::s)

deleted obj s

deleted obj (e::s)

Note that an object cannot be deleted in the initial state []. An object is then said to be
undeletable provided it did exist in the initial state and there does not exists a valid state
in which the object is deleted:

undeletable obj
def
= obj ∈ init ∧ ¬ (∃ s. valid s ∧ deleted obj s)

The point of this definition is that our static taintable check will only be complete for
undeletable objects. But these are the ones system administrators are typically interested
in (for example system files).

It should be clear that we cannot hope for a meaningful check by just trying out
all possible valid states in our dynamic model. The reason is that there are potentially
infinitely many of them and therefore the search space would be infinite. For example
starting from an initial state containing a process p and a file pf, we can create files f 1,
f 2, ... via CreateFile-events. This can be pictured roughly as follows:

Initial state:
{p, pf} =⇒

CreateFile p (f 1::pf)

{p, pf , f 1::pf} =⇒
CreateFile p (f 2::f 1::pf)

{p, pf , f 1::pf , f 2::f 1::pf} ...

Instead, the idea of our static check is to use the policies of the RC-model for generating
an answer, since they provide always a finite “description of the system”. As we will
see in the next section, this needs some care, however.

5 Our Static Check

Assume there is a tainted file in the system and suppose we face the problem of finding
out whether this file can affect other files, IPCs or processes? One idea is to work
on the level of policies only, and check which operations are permitted by the role

A Formal Model and Correctness Proof for an Access Control Policy Framework 301

and type of this file. Then one builds the “transitive closure” of this information and
checks for example whether the role root has become affected, in which case the whole
system is compromised. This is indeed the solution investigated in [3] in the context of
information flow and SELinux.

Unfortunately, restricting the calculations to only use policies is too simplistic for
obtaining a check that is sound and complete—it over-approximates the dynamic tainted
relation defined in the previous section. To see the problem consider the case where the
tainted file has, say, the type bin. If the RC-policy contains a role r that can both read
and write bin-files, we would conclude that all bin-files can potentially be tainted. That
is indeed the case, if there is a process having this role r running in the system. But if
there is not, then the tainted file cannot “spread”. A similar problem arises in case there
are two processes having the same role r, and this role is restricted to read files only.
Now if one of the processes is tainted, then the simple check involving only policies
would incorrectly infer that all processes involving that role are tainted. But since the
policy for r is restricted to be read-only, there is in fact no danger that both processes
can become tainted.

The main idea of our sound and complete check is to find a “middle” ground between
the potentially infinite dynamic model and the too coarse information contained in the
RC-policies. Our solution is to define a “static” version of the tainted relation, called
tainteds, that records relatively precisely the information about the initial state of the
system (the one in which an object might be a seed and therefore tainted). However, we
are less precise about the objects created in every subsequent state. The result is that we
can avoid the potential infinity of the dynamic model. For the tainteds-relation we will
consider the following three kinds of items recording the information we need about
processes, files and IPCs, respectively:

Recorded information:

Processes: P(r, dr, t, u)po

Files: F(t, a)fo

IPCs: I(t)io

For a process we record its role r, its default role dr (used to determine the role when
executing a file or changing the owner of a process), its type t and its owner u. For a
file we record just the type t and its anchor a (we define this notion shortly). For IPCs
we only record its type t. Note the superscripts po, fo and io in each item. They are
optional arguments and depend on whether the corresponding object is present in the
initial state or not. If it is, then for processes and IPCs we will record Some id, where id
is the natural number that uniquely identifies a process or IPC; for files we just record
their path Some f. If the object is not present in the initial state, that is newly created,
then we just have None as superscript. Let us illustrate the different superscripts with
the following example where the initial state contains a process p and a file (directory)
pf. Then this process creates a file via a CreateFile-event and after that reads the created
file via a Read-event:

Initial state:
{p, pf} =⇒

CreateFile p (f ::pf)
{p, pf , f ::pf} =⇒

ReadFile p (f ::pf)
{p, pf , f ::pf}

302 C. Wu, X. Zhang, and C. Urban

For the two objects in the initial state our static check records the information P(r, dr, t,
u)Some p and F(t ′, a)Some pf (assuming r, t and so on are the corresponding roles, types
etc). In both cases we have the superscript Some(...) since they are objects present in the
initial state. For the file f ::pf created by the CreateFile-event, we record F(t ′, a ′)None,
since it is a newly created file. The ReadFile-event does not change the set of objects,
therefore no new information needs to be recorded. The problem we are avoiding with
this setup of recording the precise information for the initial state is where two processes
have the same role and type information, but only one is tainted in the initial state, but
the other is not. The recorded unique process ID allows us to distinguish between both
processes. For all newly created objects, on the other hand, we do not care. This is
crucial, because otherwise exploring all possible “reachable” objects can lead to the
potential infinity like in the dynamic model.

An anchor for a file is the “nearest” directory that is present in the initial state and
has not been deleted in a state s. Its definition is the recursive function

anchor s []
def
= if ¬ deleted [] s then Some [] else None

anchor s (f ::pf)
def
= if f ::pf ∈ init files ∧ ¬ deleted (f ::pf) s

then Some (f ::pf) else anchor s pf

generating an optional value. The first clause states that the root-directory is always its
own anchor unless it has been deleted. If a file is present in the initial state and not
deleted in s, then it is also its own anchor, otherwise the anchor will be the anchor of
the parent directory. For example if we have a directory pf in the initial state, then its
anchor is Some pf (assuming it is not deleted). If we create a new file in this directory,
say f ::pf, then its anchor will also be Some pf. The purpose of anchor is to determine the
role information when a file is executed, because the role of the corresponding process,
according to the RC-model, is determined by the role information of the anchor of the
file to be executed.

There is one last problem we have to solve before we can give the rules of our
tainteds-check. Suppose an RC-policy includes the rule (r, foo, Write) ∈ permissions,
that is a process of role r is allowed to write files of type foo. If there is a tainted
process with this role, we would conclude that also every file of that type can potentially
become tainted. However, that is not the case if the initial state does not contain any
file with type foo and the RC-policy does not allow the creation of such files, that is
does not contain an access rule (r, foo, Create) ∈ permissions. In a sense the original
(r, foo, Write) is “useless” and should not contribute to the relation characterising the
objects that are tainted. To exclude such “useless” access rules, we define a relation
reachables restricting our search space to only configurations that correspond to states
in our dynamic model. We first have a rule for reachable items of the form F(t, f)Some f

where the file f with type t is present in the initial state.

f ∈ init files is file type [] f t

F(t, f)Some f ∈ reachables

We have similar reachability rules for processes and IPCs that are part of the initial
state. Next is the reachability rule in case a file is created

A Formal Model and Correctness Proof for an Access Control Policy Framework 303

F(t, a)fo ∈ reachables

P(r, dr, pt, u)po ∈ reachables default type r = NormalFileType t ′

(r, t, Write) ∈ permissions (r, t ′, Create) ∈ permissions

F(t ′, a)None ∈ reachables

where we require that we have a reachable parent directory, recorded as F(t, a)fo, and
also a process that can create the file, recorded as P(r, dr, pt, u)po. As can be seen, we
also require that we have both (r, t, Write) and (r, t ′, Create) in the permissions set for
this rule to apply. If we did not impose this requirement about the RC-policy, then there
would be no way to create a file with NormalFileType t ′ according to our “dynamic”
model. However in case we want to create a file of type InheritPatentType, then we only
need the access-rule (r, t, Write):

F(t, a)fo ∈ reachables P(r, dr, pt, u)po ∈ reachables

default type r = InheritPatentType (r, t, Write) ∈ permissions

F(t, a)None ∈ reachables

We also have reachability rules for processes executing files, and for changing their
roles and owners, for example

P(r, dr, t, u)po ∈ reachables r ′∈ compatible r

P(r ′, dr, t, u)po ∈ reachables

which states that when we have a process with role r, and the role r ′ is in the corre-
sponding role-compatibility set, then also a process with role r ′ is reachable.

The crucial difference between between the “dynamic” notion of validity and the
“static” notion of reachables is that there can be infinitely many valid states, but as-
suming the initial state contains only finitely many objects, then also reachables will
be finite. To see the difference, consider the infinite “chain” of events just cloning a
process p0:

Initial state:
{p0} =⇒

Clone p0 p1

{p0, p1} =⇒
Clone p0 p2

{p0, p1, p2} ...

The corresponding reachable objects are

{P(r, dr, t, u)Some (p0)} =⇒ {P(r, dr, t, u)Some (p0), P(r, dr, t, u)None}

where no further progress can be made because the information recorded about p2, p3

and so on is just the same as for p1, namely P(r, dr, t, u)None. Indeed we can prove the
lemma:

Lemma 1. If finite init, then finite reachables.

This fact of reachables being finite enables us to design a decidable tainted-check. For
this we introduce inductive rules defining the set tainteds. Like in the “dynamic” version
of tainted, if an object is element of seeds, then it is tainteds.

304 C. Wu, X. Zhang, and C. Urban

obj ∈ seeds

[[obj]] ∈ tainteds

The function [[]] extracts the static information from an object. For example for a pro-
cess it extracts the role, default role, type and user; for a file the type and the anchor. If
a process is tainted and creates a file with a normal type t ′ then also the created file is
tainted. The corresponding rule is

P(r, dr, pt, u)po ∈ tainteds

F(t, a)fo ∈ reachables default type r = NormalFileType t ′

(r, t, Write) ∈ permissions (r, t ′, Create) ∈ permissions

F(t ′, a)None ∈ tainteds

If a tainted process creates a file that inherits the type of the directory, then the file will
also be tainted:

P(r, dr, pt, u)po ∈ tainteds F(t, a)fo ∈ reachables

default type r = InheritPatentType (r, t, Write) ∈ permissions

F(t, a)None ∈ tainteds

If a tainted process changes its role, then also with this changed role it will be tainted:

P(r, dr, t, u)po ∈ tainteds r ′∈ compatible r

P(r ′, dr, t, u)po ∈ tainteds

Similarly when a process changes its owner. If a file is tainted, and a process has read-
permission to that type of files, then the process becomes tainted. The corresponding
rule is

F(t, a)fo ∈ tainteds P(r, dr, pt, u)po ∈ reachables (r, t, Read) ∈ permissions

P(r, dr, pt, u)po ∈ tainteds

If a process is tainted and it has write-permission for files of type t, then these files will
be tainted:

P(r, dr, pt, u)po ∈ tainteds F(t, a)fo ∈ reachables (r, t, Write) ∈ permissions

F(t, a)fo ∈ tainteds

We omit the remaining rules for executing a file, cloning a process and rules involving
IPCs, which are similar. A simple consequence of our definitions is that every tainted
object is also reachable:

Lemma 2. tainteds ⊆ reachables

which in turn means that the set of tainteds items is finite by Lemma 1.
Returning to our original question about whether tainted objects can spread in the

system. To answer this question, we take these tainted objects as seeds and calculate the

A Formal Model and Correctness Proof for an Access Control Policy Framework 305

set of items that are tainteds. We proved this set is finite and can be enumerated using
the rules for tainteds. However, this set is about items, not about whether objects are
tainted or not. Assuming an item in tainteds arises from an object present in the initial
state, we have recorded enough information to translate items back into objects via the
function | |:

|P(r, dr, t, u)po| def
= po

|F(t, a)fo| def
= fo

|I(t)io| def
= io

Using this function, we can define when an object is taintables in terms of an item being
tainteds, namely

taintables obj
def
= ∃ item. item ∈ tainteds ∧ |item| = Some obj

Note that taintables is only about objects that are present in the initial state, because for
all other items | | returns None.

With these definitions in place, we can state our theorem about the soundness of our
static taintables-check for objects.

Theorem 1 (Soundness). If taintables obj then taintable obj.

The proof of this theorem generates for every object that is “flagged” as taintables by
our check, a sequence of events which shows how the object can become tainted in the
dynamic model. We can also state a completeness theorem for our taintables-check.

Theorem 2 (Completeness). If undeletable obj and taintable obj then taintables obj.

This completeness theorem however needs to be restricted to undeletebale objects. The
reason is that a tainted process can be killed by another process, and after that can
be “recreated” by a cloning event from an untainted process—remember we have no
control over which process ID a process will be assigned with. Clearly, in this case the
cloned process should be considered untainted, and indeed our dynamic tainted relation
is defined in this way. The problem is that a static test cannot know about a process
being killed and then recreated. Therefore the static test will not be able to “detect”
the difference. Therefore we solve this problem by considering only objects that are
present in the initial state and cannot be deleted. By the latter we mean that the RC-
policy stipulates an object cannot be deleted (for example it has been created by root
in single-user mode, but in the everyday running of the system the RC-policy forbids
to delete an object belonging to root). Like taintables, we also have a static check for
when a file is undeletable according to an RC-policy.

This restriction to undeletable objects might be seen as a great weakness of our re-
sult, but in practice this seems to cover the interesting scenarios encountered by system
administrators. They want to know whether a virus-infected file introduced by a user
can affect the core system files. Our test allows the system administrator to find this out
provided the RC-policy makes the core system files undeletable. We assume that this
proviso is already part of best practice rule for running a system.

306 C. Wu, X. Zhang, and C. Urban

We envisage our test to be useful in two kind of situations: First, if there was a break-
in into a system, then, clearly, the system administrator can find out whether the existing
access policy was strong enough to contain the break-in, or whether core system files
could have been affected. In the first case, the system administrator can just plug the
hole and forget about the break-in; in the other case the system administrator is wise
to completely reinstall the system. Second, the system administrator can proactively
check whether an RC-policy is strong enough to withstand serious break-ins. To do so
one has to identify the set of “core” system files that the policy should protect and mark
every possible entry point for an attacker as tainted (they are the seeds of the tainteds

relation). Then the test will reveal whether the policy is strong enough or needs to be
redesigned. For this redesign, the sequence of events our check generates should be
informative.

6 Conclusion and Related Works

We have presented the first completely formalised dynamic model of the Role-Compa-
tibility Model. This is a framework, introduced by Ott [5], in which role-based access
control policies can be formulated and is used in practice, for example, for securing
Apache servers. Previously, the RC-Model was presented as a collection of rules partly
given in “English”, partly given as formulas. During the formalisation we uncovered
an inconsistency in the semantics of the special role InheritParentRole in the existing
works about the RC-Model [5,7]. By proving the soundness and completeness of our
static taintables-check, we have formally related the dynamic behaviour of the operat-
ing system implementing access control and the static behaviour of the access policies
of the RC-Model. The crucial idea in our static check is to record precisely the infor-
mation available about the initial state (in which some resources might be tainted), but
be less precise about the subsequent states. The former fact essentially gives us the
soundness of our check, while the latter results in a finite search space.

The two most closely related works are by Archer et al and by Guttman et al [1,3].
The first describes a formalisation of the dynamic behaviour of SELinux carried out in
the theorem prover PVS. However, they cannot use their formalisation in order to prove
any “deep” properties about access control rules [1, Page 167]. The second analyses
access control policies in the context of information flow. Since this work is completely
on the level of policies, it does not lead to a sound and complete check for files being
taintable (a dynamic notion defined in terms of operations performed by the operating
system). While our results concern the RC-Model, we expect that they equally apply
to the access control model of SELinux. In fact, we expect that the formalisation is
simpler for SELinux, since its rules governing roles are much simpler than in the RC-
Model. The definition of our admissibility rules can be copied verbatim for SELinux;
we would need to modify our granted rules and slightly adapt our static check. We
leave this as future work. Another direction of future work could be to reason formally
about confidentiality in access control models. This would, of course, need the explicit
assumption about the absence of any covert channels in systems.

A Formal Model and Correctness Proof for an Access Control Policy Framework 307

Our formalisation is carried out in the Isabelle/HOL theorem prover. It uses Paulson’s
inductive method for reasoning about sequences of events [8]. We have approximately
1000 lines of code for definitions and 6000 lines of code for proofs. Our formalisation is
available from the Mercurial repository at http://www.dcs.kcl.ac.uk/staff
/urbanc/cgi-bin/repos.cgi/rc/.

References

1. Archer, M., Leonard, E.I., Pradella, M.: Analyzing Security-Enhanced Linux Policy Specifi-
cations. In: Proc. of the 4th IEEE International Workshop on Policies for Distributed Systems
and Networks (POLICY), pp. 158–169 (2003)

2. Bugliesi, M., Calzavara, S., Focardi, R., Squarcina, M.: Gran: Model Checking Grsecurity
RBAC Policies. In: Proc. of the 25th IEEE Computer Security Foundations Symposium
(CSF), pp. 126–138 (2012)

3. Guttman, J.D., Herzog, A.L., Ramsdell, J.D., Skorupka, C.W.: Verifying Information Flow
Goals in Security-Enhanced Linux. Journal of Computer Security 13(1), 115–134 (2005)

4. Jha, S., Li, N., Tripunitara, M.V., Wang, Q., Winsborough, W.H.: Towards Formal Verifi-
cation of Role-Based Access Control Policies. IEEE Transactions Dependable and Secure
Computing 5(4), 242–255 (2008)

5. Ott, A.: The Role Compatibility Security Model. In: Proc. of the 7th Nordic Workshop on
Secure IT Systems, NordSec (2002)

6. Ott, A.: Mandatory Rule Set Based Access Control in Linux: A Multi-Policy Security Frame-
work and Role Model Solution for Access Control in Networked Linux Systems. PhD thesis,
University of Hamburg (2007)

7. Ott, A., Fischer-Hübner, S.: A Role-Compatibility Model for Secure System Administration,
http://www.rsbac.org/doc/media/rc-paper.php

8. Paulson, L.C.: The Inductive Approach to Verifying Cryptographic Protocols. Journal of
Computer Security 6(1-2), 85–128 (1998)

9. Sarna-Starosta, B., Stoller, S.D.: Policy Analysis for Security-Enhanced Linux. In: Proc. of
the 2004 Workshop on Issues in the Theory of Security (WITS), pp. 1–12 (2004)

10. Uzun, E., Atluri, V., Sural, S., Vaidya, J., Parlato, G., Ferrara, A.L., Madhusudan, P.: Ana-
lyzing Temporal Role Based Access Control Models. In: Proc. of the 17th ACM Symposium
on Access Control Models and Technologies (SACMAT), pp. 177–186 (2012)

11. Zhang, X., Urban, C., Wu, C.: Priority Inheritance Protocol Proved Correct. In: Beringer, L.,
Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 217–232. Springer, Heidelberg (2012)

http://www.dcs.kcl.ac.uk/staff/urbanc/cgi-bin/repos.cgi/rc/
http://www.dcs.kcl.ac.uk/staff/urbanc/cgi-bin/repos.cgi/rc/
http://www.rsbac.org/doc/media/rc-paper.php

Author Index

Appel, Andrew W. 17
Asperti, Andrea 163

Bell, Christian J. 227
Brunerie, Guillaume 1

Cohen, Cyril 147
Curello, Gregorio 66

Dam, Mads 276
Dénès, Maxime 147
Doczkal, Christian 82
Dodds, Josiah 17

Firsov, Denis 98

Hölzl, Johannes 259
Huang, Daniel 211
Huffman, Brian 131

Kaiser, Jan-Oliver 82
Khakpour, Narges 276
Krebbers, Robbert 50
Kunčar, Ondřej 131

Licata, Daniel R. 1

Miller, Dale 194
Monnier, Stefan 243
Morrisett, Greg 211
Mörtberg, Anders 147
Myreen, Magnus O. 66

Nipkow, Tobias 259

Pientka, Brigitte 243
Popescu, Andrei 114, 259

Savary-Belanger, Olivier 243
Schropp, Andreas 114
Schwarz, Oliver 276
Smolka, Gert 82
Sternagel, Christian 178
Stewart, Gordon 33

Tiu, Alwen 194

Urban, Christian 292
Uustalu, Tarmo 98

Wu, Chunhan 292

Zhang, Xingyuan 292

	Preface
	Organization
	Table of Contents
	Invited Lectures
	πn(Sn) in Homotopy Type Theory
	1 Introduction
	2 Overview of the Proof
	2.1 Definition of the Spheres
	2.2 Calculation of πn(Sn)
	2.3 The Encode-Decode Argument
	2.4 Loop Space Library

	3 Formalization
	4 Conclusion
	References

	Session 1: Code Verification
	Mostly Sound Type System Improves a Foundational Program Verifier
	1 Introduction
	2 Example
	3 Expression Evaluation
	4 CLight
	5 Type Context
	6 Keeping it Real
	7 Typechecker
	8 Soundness
	9 ATactical Proof
	10 Related Work
	11 Conclusion
	References

	Computational Verification of Network Programs in Coq
	1 Introduction
	2 Software-defined Networking
	3 Verification
	4 Reachability
	5 Network Address Translation
	6 Measurements
	7 Related Work
	8 Conclusions
	References

	Aliasing Restrictions of C11 Formalized in Coq
	1 Introduction
	2 Types
	3 Integer Arithmetic
	4 Bits, Bytes and Memory Values
	5 Abstract Values
	6 TheMemory
	7 Formalization in Coq
	8 Conclusion
	References

	Session 2: Elegant Proofs
	Proof Pearl: A Verified Bignum Implementation in x86-64 Machine Code
	1 Introduction
	2 Method
	3 Algorithm Specification and Verification
	3.1 Abstract Representation of Bignums
	3.2 Algorithm Specifications
	3.3 Algorithm Verification

	4 Instantiation of Proof Tools for Arrays
	4.1 Hoare Logic for Machine Code
	4.2 Proof-Producing Decompiler and Compiler
	4.3 Array Support in the Compiler

	5 Construction of Verified Machine Code
	5.1 Verification of Hand-Written Assembly
	5.2 Using Inlined Assembly in Compilations
	5.3 Verification of the Generated Machine Code

	6 Results
	6.1 Top-Level Theorem
	6.2 In Numbers

	7 Related Work
	8 Summary
	References

	A Constructive Theory of Regular Languages in Coq
	1 Introduction
	1.1 Related Work
	1.2 Outline

	2 Preliminaries
	3 Decidable Languages and Regular Expressions
	4 Kleene’s Theorem
	4.1 Regular Expressions to Finite Automata
	4.2 Finite Automata to Regular Expressions

	5 Minimization
	6 Myhill-Nerode Theorem
	7 Closure under Homomorphisms
	8 Proving Languages Non-regular
	9 Conclusion
	References

	Certified Parsing of Regular Languages
	1 Introduction
	2 Regular Expressions
	3 AMatrix Library
	3.1 Matrices and Matrix Operations
	3.2 Block Operations
	3.3 Properties of Block Operations

	4 NFAs and Parsing with NFAs
	4.1 Nondeterministic Finite Automata
	4.2 Running an NFA
	4.3 Converting Regular Expressions to NFAs (Parsers)
	4.4 Correctness
	4.5 Parsing

	5 Related Work
	6 Conclusion
	References

	Session 3: Proof Libraries
	Nonfree Datatypes in Isabelle/HOL Animating a Many-Sorted Metatheory
	1 Introduction
	2 The Package in Action
	2.1 Bags
	2.2 Algebra
	2.3 λ-Terms Modulo α-Equivalence

	3 Automated Constructions
	4 Formalized Metatheory
	4.1 Horn Clause Syntax
	4.2 Signatures
	4.3 Models
	4.4 The Initial Model of a Horn Theory

	5 Animation of the Metatheory
	5.1 Instantiation of the Metatheory
	5.2 Isomorphic Transfer
	5.3 General Animation Infrastructure

	6 Conclusions and RelatedWork
	References

	Lifting and Transfer: A Modular Design for Quotients in Isabelle/HOL
	1 Introduction
	1.1 RelatedWork
	1.2 Limitations of the Quotient Package
	1.3 Overview

	2 Transfer Package
	2.1 Types as Relations
	2.2 Transfer Algorithm
	2.3 Parameterized Transfer Relations
	2.4 Transfer Rules with Side Conditions
	2.5 Proving Implications Instead of Equivalences

	3 Lifting Package
	3.1 General Case
	3.2 Implementation
	3.3 Code Equations

	4 Conclusion
	References

	Refinements for Free!
	1 Introduction
	2 Data Refinements
	2.1 Refinement Relations
	2.2 Comparison with the Previous Approach
	2.3 Indexing and Using Refinements

	3 Generic Programming
	4 Parametricity
	4.1 Splitting Refinement Relations
	4.2 Parametricity for Refinements
	4.3 Generating the Parametricity Lemma

	5 Example: Strassen’s Matrix Product
	6 Related Work
	7 Conclusions and Future Work
	References

	Session 4: Mathematics
	A Formal Proof of Borodin-Trakhtenbrot’s Gap Theorem
	1 Introduction
	2 Borodin’s Proof of the Gap Theorem
	2.1 Discussion

	3 Preliminaries
	3.1 Bounded Quantification
	3.2 Big Operators and Minimization
	3.3 Iteration
	3.4 A Bit of Combinatorics

	4 Kleene’s Predicate
	5 The Proof of the Gap Theorem
	5.1 The Gap Operator
	5.2 An Upper Bound

	6 Conclusions
	References

	Certified Kruskal’s Tree Theorem
	1 Introduction
	2 Preliminaries
	3 Nash-Williams’ Proof
	4 Dickson’s Lemma
	5 Minimal Bad Sequences
	6 Higman’s Lemma
	7 The Tree Theorem
	8 Conclusions and Related Work
	References

	Extracting Proofs from Tabled Proof Search
	1 Introduction
	1.1 Model Checking as Proof Search
	1.2 Four Tabling Strategies

	2 Backgrounds
	3 Tabled Deduction Presented as a Proof System
	4 Constructing Post-Fixed Point from Tables
	5 Co-inductive Tabling Modulo Theories
	6 Compositions of Up-to Functions
	7 Conclusion and Future Work
	References

	Session 5: Certified Transformations
	Formalizing the SAFECode Type System
	1 Introduction
	2 Overview of SAFECode
	3 Language and Operational Semantics
	3.1 Language
	3.2 Representation of Run-Time Values
	3.3 Abstract Machine
	3.4 Memory Model and Memory Management
	3.5 Operational Semantics

	4 Type System
	4.1 Typing Rules
	4.2 Type Soundness

	5 Evaluation
	5.1 Experimental Results

	6 Related and Future Work
	References

	Certifiably Sound Parallelizing Transformations
	1 Introduction
	2 A Simple Parallelizing Transformation
	3 CCS-Seq
	3.1 The Parallelization Transformation

	4 Pursuing Symmetry: Contrasimulation is a Congruence
	5 Delayed Observations
	6 Proof of Parallelization
	6.1 Preliminary Definitions
	6.2 Proof

	7 Related Work
	8 Conclusion
	References

	Programming Type-Safe Transformations Using Higher-Order Abstract Syntax
	1 Introduction
	2 Source Language: Simply Typed Lambda-Calculus
	3 Closure Conversion
	3.1 Target Language
	3.2 Closure Conversion Algorithm
	3.3 Representation of Target Language in LF
	3.4 Type-Preserving Closure Conversion in Beluga: An Overview
	3.5 Implementation of Auxiliary Lemmas
	3.6 Closure Conversion: Top-Level Function

	4 Hoisting
	4.1 Source and Target Languages - Revisited
	Auxiliary lemmas:
	– Append function environments
	– Function environment weakening (1)
	– Function environment weakening (2)
	Theorem 2.
	4.2 Auxiliary Functions
	4.3 The Main Function

	5 Related Work
	6 Conclusion
	References

	Session 6: Security
	Formalizing Probabilistic Noninterference
	1 Introduction
	2 The Programming Language
	2.1 Syntax
	2.2 Semantics

	3 Noninterference
	3.1 Resumption-Based Noninterference
	3.2 Compositionality
	3.3 Syntactic Criteria
	3.4 Trace-Based Noninterference

	4 Overview and Statistics
	5 Conclusions and RelatedWork
	References

	Machine Assisted Proof of ARMv7 Instruction Level Isolation Properties
	1 Introduction
	2 The Formal Specification of ARM
	3 Memory Management
	4 Security Properties
	4.1 Non-infiltration
	4.2 Non-exfiltration
	4.3 Switching to Privileged Modes
	4.4 Link Register Contents in Supervisor Mode
	4.5 Safe User Mode Execution

	5 The Logic Framework
	6 Implementation and Evaluation
	7 Related Work
	8 Conclusion
	References

	A Formal Model and Correctness Proof for an Access Control Policy Framework
	1 Introduction
	2 Preliminaries about the RC-Model
	3 Dynamic Model of System Calls
	4 The Tainted Relation
	5 Our Static Check
	6 Conclusion and RelatedWorks
	References

	Author Index

