
Dynamic Alias Protection

with Aliasing Contracts

Janina Voigt and Alan Mycroft

Computer Laboratory, University of Cambridge
JJ Thomson Avenue, Cambridge CB3 0FD, UK

Firstname.Lastname@cl.cam.ac.uk

Abstract. Object-oriented languages allow any object to point to any
other object, limited only by type. The resultant possible aliasing makes
programs hard to verify and maintain.

Much research has been done on alias protection schemes to restrict
aliasing. However, existing schemes are either informal (design-pattern-
like) or static type-like systems. The former are hard to verify, while the
latter tend to be inflexible (e.g. shared ownership is problematic).

We introduce aliasing contracts: a novel, dynamic alias protection
scheme which is highly flexible. We present JaCon, a prototype imple-
mentation of aliasing contracts for Java, and use it to quantify their
runtime performance overheads. Results show that aliasing contracts
perform comparably to existing debugging tools, demonstrating prac-
tical feasibility.

1 Introduction

In typical object-oriented (OO) programming languages, object variables do not
contain objects directly, but references to (addresses of) other objects. Multiple
variables can contain the same address and thus point to the same object at the
same time; this is known as aliasing.

Aliasing is an important feature of OO because it allows sharing of objects
between different parts of a program; this is essential for the efficient implemen-
tation of important programming idioms, including iterators over collections.
However, aliasing reduces modularity and encapsulation; an aliased object can
be accessed and modified through any of the references pointing to it, without
the knowledge of the others; this can create bugs which are difficult to trace.

Many modern OO programming languages provide access modifiers such as
private, protected and public. These modifiers limit the scope of the variable,
but do not protect the object to which the variable points.

For example, consider the program in Listing 1. Class Person provides a getter
method getName for its myName field, which returns a reference to the object in
myName. Although myName is declared to be private, any client can call getName,
obtain an alias for the object in myName and modify it without the knowledge of
the Person, for example by calling setLastName.

C.-c. Shan (Ed.): APLAS 2013, LNCS 8301, pp. 140–155, 2013.
© Springer International Publishing Switzerland 2013

Dynamic Alias Protection with Aliasing Contracts 141

public class Person { Person p = new Person();

private Name myName; Name n = p.getName();

public Name getName() { n.setLastName("Smith");

return myName;

}
}

Listing 1. Access modifiers protect only the variable, not the object

A number of alias protection schemes have been proposed to avoid situations
like this and protect the object rather than just the variable from unwanted
accesses. However, they tend to be too inflexible and restrictive in practice and
have not yet been widely adopted by the programming community.

The contributions of this paper are two-fold: firstly, in Section 3 we introduce
a novel, dynamic alias protection scheme called aliasing contracts which aims
to be flexible and expressive, while at the same time remaining conceptually
simple. Secondly, in Section 4 we present JaCon, a prototype implementation
of aliasing contracts in Java; measurements of the runtime overhead caused by
the dynamic checks of aliasing contracts demonstrate their practical feasibility.

The name contract comes from work on software contracts [11] which allow the
specification of preconditions and postconditions for methods. Aliasing contracts
allow developers to annotate a variable with assumptions about which parts of
the system should be able to access the object to which the variable points; these
assumptions are checked at runtime. In this way, aliasing contracts prevent the
use of unintentionally leaked references, as the reference in the example above,
making them particularly valuable during the testing phase of a project.

Aliasing contracts also provide a unifying model of alias protection; aliasing
contracts can model existing alias protection schemes, giving us a framework for
expressing and comparing many different aliasing policies.

Our dynamic approach to alias control has similar advantages and disadvan-
tages as dynamic type checking. It is more flexible and can cover conditions
which cannot be checked statically; for example, static alias protection schemes
struggle with design patterns like iterators and observers, which require sharing
of objects, but they can easily be implemented with aliasing contracts. Dynamic
schemes also tend to be conceptually simpler; static schemes often require more
artifacts to compensate for the restrictions os static checking. On the other hand,
the runtime checks required by dynamic schemes cause performance overheads.
In addition, problems will only be discovered when (and if) the affected code is
executed.

The timing of validity checks is also different in static and dynamic checking.
Like dynamic type checking, we check the validity of an object access directly
before the access is made at runtime. Static alias protection schemes instead
restrict assignments so that references cannot be leaked in the first place.

142 J. Voigt and A. Mycroft

2 Background

The literature on aliasing and its control is huge; see [5] for a detailed description.
Here, we summarise the main strands of research for completeness.

The overall idea of alias control is to construct software engineering “design
patterns”—or more formal programming language structures—to discipline pro-
grammer use of aliasing; a key concept is encapsulation whereby usage of some
objects (“rep” objects) is restricted to certain other objects (the “owners”).
Early conceptual designs include Hogg’s islands [9] and Almeida’s balloons [1].
They implement full encapsulation: each object is either encapsulated within an-
other object or shared; any object reachable through an encapsulated object is
also encapsulated. To increase flexibility (though at the cost of soundness) Hogg
and Almeida restrict only pointers from fields of other objects (“static alias-
ing”) but allow pointers from local variables and method parameters (“dynamic
aliasing”)—the latter being more transient and easier to track.

Clarke-style ownership types [6] added significantly to the subject area by
showing a type-like system could capture aliasing restrictions (later known as
owners-as-dominators) and that these could be checked statically.

Clarke-style ownership types require each object to have a single owner and
also do not allow ownership of an object to be transferred at runtime; this
makes them too inflexible to deal with common idioms such as iterators. Follow-
up work partially addressed these shortcomings, introducing multiple ownership
types [10], ownership with inner classes [2], gradual ownership types [15], and
Universe types (owners-as-modifiers) [12].

There has also been some work on dynamic ownership. Gordon et al. [7]
propose a system where ownership information is checked at runtime. Like our
dynamic aliasing contracts, dynamic ownership types do not directly restrict
aliasing itself, but allow any references to exist; instead, they limit how these ref-
erences can be used. Gorden-style dynamic ownership types differ from our work
since they support only one particular aliasing policy (owners-as-dominators),
while aliasing contracts support many different ones.

Another approach to alias protection is that of capabilities [4, 8] and permis-
sions [3,19]. Capabilities and permissions associate access rights with each object
reference, specifying whether the reference is allowed to, for example, read, write
or check the identity of an object. This can be used to model various aliasing
conditions, such as uniqueness and borrowing.

Throughout the vast literature on alias protection schemes, there is no uni-
fying framework which can be used to embed and compare them. Boyland
et al.’s [4] capabilities do this to some extent, but at a relatively low level
where there is a large semantic gap to be bridged between them and high-
level constructs like owners-as-dominators. Aliasing contracts provide a unify-
ing, language-level framework which can be used to express and compare existing
alias protection schemes.

Dynamic Alias Protection with Aliasing Contracts 143

3 Aliasing Contracts

This work proposes aliasing contracts which express and enforce restrictions
about the circumstances under which an object can be accessed. Here, we give
a basic overview of aliasing contracts; [18] presents aliasing contracts in more
detail and proposes a syntax operational semantics. More detail also appears in
the first author’s forthcoming PhD thesis.

An aliasing contract consists of two boolean expressions, er and ew, attached
to a variable declaration. (Note that in this paper we use the term variable to
refer to fields, local variables and method parameters.) An access to an object is
permitted only if the contracts of all variables currently pointing to the object
are satisfied; contracts thus essentially specify dynamically determined, conjunc-
tive preconditions for object accesses. The expression er specifies preconditions
for read accesses, while ew concerns write accesses. Where the read and write
contract expressions are the same, one can be omitted for convenience; we call
such a contract a rw-contract (read-write-contract).

The distinction between read and write accesses requires a similar distinction
between pure and impure methods: pure methods do not modify any state and
may be called with read access permissions, while impure methods require both
read and write access permissions.

For each contract, we call the nearest enclosing object the contract’s declaring
object. When the contract is evaluated, evaluation takes place in the context of
its declaring object; that is this points to the declaring object. We can regard
a contract as a boolean method of the class which declares it (and this is how
we implement it in Section 4).

A contract may be any valid, side-effect-free boolean condition. Contracts
have access to two special variables, in addition to this: accessed points to the
object being accessed and accessor points to the object whose method is making
the access. The value of accessor is determined immediately prior to contract
evaluation; for a single contract, accessor varies between evaluations. Thus,
an alternative view of a contract is a method which takes an object parameter
(accessor) and returns a boolean value.

Listing 1 gave a program which leaks a reference from the private variable
myName, thus making the object accessible and modifiable by any client. To ad-
dress this problem, we instead annotate myName with the rw-contract “accessor
== this || accessor == accessed” to enforce encapsulation:

Name myName {accessor == this || accessor == accessed};

This contract signifies that only the enclosing Person object and the Name

object itself will be able to access the object in myName. The contract is evaluated
in the context of the declaring object, the enclosing Person object; it will only
evaluate to true if accessor is equal to this or if accessor and accessed

are the same object; that is, if the access comes from the Person or from the
Name itself. If a client now obtains a reference to the object in myName by calling
getName, it will not be allowed to use it to read or write the object.

144 J. Voigt and A. Mycroft

Alternatively, we could loosen the contract slightly to “true, accessor ==

this || accessor == accessed”. This contract corresponds to an owners-as-
modifiers approach [12]; it would allow any client to read the Name object (the
read contract is “true”) but would continue to prohibit write accesses.

Aliasing contracts are very flexible since their evaluation depends on the cur-
rent state and aliasing structure of the program. If a client in the example above
obtains a reference to a Name object by calling getName in a Person object, it
cannot initially access it due to the contract on myName. Aliasing contracts do
not restrict aliasing itself, but object accesses: obtaining the reference in this
situation is legal but using it is not. If the myName field in the Person object is
then pointed to a new Name object, the Name object referenced by the client will
become accessible; the myName field’s contract no longer applies to it.

Since aliasing contracts depend on the dynamic aliasing structure of a program
at the time an access to an object is made, they cannot in general be verified
statically. Instead, they need to be checked at runtime; when a contract violation
is detected, an error is reported (cf. static and dynamic type checking).

Contract checks need to be performed for each object access, including field
accesses, field updates and method calls. Reads and writes to local variables
and parameters do not trigger contract evaluations; they represent accesses and
modifications to the unaliased stack. Similarly, constructor calls do not change
existing heap objects of themselves and thus do not require contract checks.

For each object access, we first retrieve all contracts which currently apply to
the accessed object and evaluate them. Thus we track, for each object, which
variables currently point to it. The conjunctive nature of contract evaluation
means that if any contract evaluates to false, the entire evaluation fails.

Note that if there are multiple contracts to evaluate, the order in which they
are evaluated is irrelevant. Expressions in contracts may not have side-effects;
this means that a contract can change neither the state of the program nor its
aliasing structure and therefore cannot affect other contract evaluations.

Although similar to assertions in spirit, aliasing contracts are significantly
more expressive; the contracts which are evaluated depend on the aliasing struc-
ture of the program. An implementation must track references to determine
exactly which contracts apply to an object. Alising contracts also have advanced
features (briefly discussed in Section 6) which allow the expression of complex
conditions that cannot be described using standard Java boolean expressions.

Extensions for Real-life OO Languages. Our theory of aliasing contracts
is clean and simple—every object access causes a contract check—but real pro-
gramming languages have more complex features that we need to address.

In particular, staticmethods do not fit well with our object-based approach.
In accesses from staticmethods, there is no accessor object; in calls to static
methods, there is no accessed object.

We address this problem by always allowing calls to static methods, since
no accessed object means that there are no contracts to consider. In accesses
from static methods, we set accessor to null; this causes contracts such as

Dynamic Alias Protection with Aliasing Contracts 145

“accessor == this” to fail, while contracts which do not use accessor (such
as “true” or “false”) behave as expected.

Many modern OO languages include variables of primitive types, which store
values instead of references to objects; values cannot be aliased and therefore
accessessing them does not require contract checks.

Other language features, on the other hand, do not require special treatment
due to the dynamic nature of aliasing contracts. Inheritance, for example, fits
naturally and objects of inner classes can be treated just like other objects. Fields
are inherited by subclasses, along with their contracts, but cannot be overridden;
to fit with existing inheritance semantics, we similarly disallow the overriding of
contracts in subclasses.

4 JaCon: Practical Aliasing Contracts for Java

We have implemented a prototype, JaCon, which supports the definition of
aliasing contracts in Java programs and performs contract evaluations at run-
time. The prototype consists of a modified Java compiler and a runtime library
(which we call the contract library below). The compiler injects calls to the con-
tract library into the source code, allowing it to monitor contracts at runtime.
The code for our contract library is avaliable at www.cl.cam.ac.uk/~jv323/

contractlibrary.
We chose Java as our base programming language since it is the most pop-

ular object-oriented programming language [17] and is used in a large number
of open-source systems. However, Java is a relatively complex language with
many different features, making the prototype implementation non-trivial. For
example, Java’s non-linear execution flow, caused by exceptions and break and
continue statements, complicates the tracking of contracts.

For our prototype implementation, we modified the compiler javac of the
OpenJDK 6 [14] to inject calls to the contract library.

Contracts are parsed and converted into anonymous inner classes extending
our abstract Contract class; one such Contract class is created for each syn-
tactically distinct contract expression in a class. Each of these Contract classes
overrides the method checkContract, which can be called by the contract li-
brary to evaluate the contract. The checkContract method takes two param-
eters, accessor and accessed, both of type Object; the contract expression
becomes the method’s return statement. For example, the contract “accessor
== this || accessor == accessed” of the myName field of Person from our
example in Section 3 is transformed into

public Contract _contractPerson42 = new Contract() {

public boolean checkContract(Object accessor, Object accessed) {

return accessor == Person.this || accessor == accessed;

}

};

We note that any references to this in the contract expression must be
transformed to OuterClass.this in order to refer not to the Contract

146 J. Voigt and A. Mycroft

object but to the contract’s enclosing object; in the example above, this be-
comes Person.this.

The contract library tracks the Contracts which apply to each object and
invokes their checkContract methods when they need to be evaluated.

Contracts are registered and de-registered when an assignment occurs; myName
= newName points myName away from the object it currently points to and to the
object currently also pointed to by newName. This change of aliasing requires
modification of the set of contracts associated with these two objects; to this end,
JaCon inserts two calls to the contract library, one to de-register the contract
of variable myName before the assignment and one to register the contract after
the assignment. The assignment myName = newName becomes

ContractLibrary.removeContract(myName, _contractPerson42);

myName = newName;

ContractLibrary.addContract(myName, _contractPerson42);

Registration and de-registration of contracts is complicated by Java’s non-
linear flow of execution caused by, for example, exceptions. Contracts of local
variables have to be removed at the end of the block in which they are de-
clared; after this the variables are no longer available and their contracts should
not persist. Exceptions are problematic because an exception causes execution
to leave a block prematurely. We therefore wrap each block in a try-finally
statement and remove local variable contracts in the finally block to ensure
correct contract de-registration even when an exception is thrown.

Contract de-registration also takes place when an object is garbage collected;
at this point, finalisation causes all of its Contracts to be deallocated and thus
removed from the objects to which they applied. We discuss the implications of
garbage collection in more detail in Section 6.

Registration and de-registration as explained above allow us to track which
contracts apply to each object at any point in the program’s execution. This
tracking of contracts is equivalent to tracking of references for each object, which
in itself is potentially useful; it means that JaCon could also be used to inves-
tigate the topology of the heap, independent of aliasing contracts.

Calls to the contract library to check contracts are inserted before any accesses
and updates to fields. As explained above, accesses and updates to local variables
do not require contract checks. For example, the assignment x.f = y.g contains
a write access to x and a read access to y; it becomes

ContractLibrary.checkWriteContracts(x);

ContractLibrary.checkReadContracts(y);

x.f = y.g;

Methods may be declared pure or impure; if no method purity is given, Ja-
Con automatically determines its purity. Calls to pure methods require read
contract checks to be performed, while calls to impure methods need to trigger
both read and write contract checks. Appropriate contract checks are inserted
at the entry to the method bodies (rather than in the caller).

Dynamic Alias Protection with Aliasing Contracts 147

Finally, the contract library needs to keep track of which object is currently
executing a method; this gives the value of accessor for contract evaluations.
For this purpose, it maintains a call stack of the objects; calls to notify the
contract library of context changes are inserted around each method body:

public void foo() {

ContractLibrary.enterContext(this);

...

ContractLibrary.leaveContext();

}

Our contract library implementation tracks and evaluates contracts correctly
in the presence of concurrency. For example, accesses to the contract stores are
synchronised and separate call stacks are maintained for each thread.

Optimisations. A naive implementation of aliasing contracts, as described
above, performs many unnecessary contract checks; we have implemented op-
timisations to avoid such checks and improve the performance of JaCon.

A common contract is “true”, meaning that there are no restrictions on object
access. Since this contract obviously always evaluates to true, there is no need
to store or evaluate it.

Evaluating all contracts every time an object is accessed is inefficient. JaCon
includes an optimisation which allows it to skip many contract evaluations; it
divides contracts into three categories:

– Contracts whose result does not change for different accessor objects and
is not affected by changes to variables. Such contracts, for example, include
the contracts “true” and “false”. They need to be evaluated only once.

– Contracts whose result changes for different accessor objects but which
are not affected by changes to fields. This includes the contract “accessor
== accessed”. These contracts need to be evaluated only once for each
distinct accessor object. The contract “accessor == this” also falls into
this category, as the value of this never changes for a given object.

– Contracts which depend on values of fields or call methods, for example
“accessor == this.f” or “accessor == getFoo()”. These contracts need
to be evaluated every time an access is made, since the value of fields and
return value of methods may have changed since the previous evaluation.

JaCon’s contract library classifies contracts as above and uses this informa-
tion to track which contracts need to be evaluated when an object is accessed
and which contracts can be skipped.

5 Performance Evaluation

One of the main problems with aliasing contracts is the runtime performance
overhead they cause; each assignment causes contracts to be added and removed,
every object access triggers a contract check.

148 J. Voigt and A. Mycroft

class SimpleExample { class Foo {
public void run() public Bar bar {<contract >};

Bar b = new Bar(); }
Foo[] foos = new Foo[NUM OBJ];

for(int i = 0; i < NUM OBJ; i++){ class Bar {
Foo f = new Foo(); // Primitive types do not

foos[i] = f; // have contracts.

f.bar = b; public int num;

b.num = i; // †[here] }
}

}
}

Listing 2. A simple program measuring object access time at †[here]

Using JaCon, we try to quantify this performance overhead. First, we in-
vestigate how the number of contracts for an object impacts the time taken
to perform a single object access with contract checks. We also estimate the
performance of real-world software using four open-source programs.

Performance measurements were made on a Windows laptop with 8GB of
RAM and a 2.5GHz Intel Core i5 processor. All values stated below are averages
of at least five separate measurements.

Performance for a Single Object Access. Whenever an object access is
made, all contracts associated with the object must be checked. The time re-
quired for the object access thus increases with the number of contracts, assum-
ing that all contracts need to be evaluated. If we assume that each contract is
a simple boolean condition which can be evaluated in constant time, contract
checking time increases linearly with the number of contracts of the object.

To measure object-access time, we construct a simple test program, shown
in Listing 2. The program executes a loop, adding one reference (and hence
contract) to an object b of type Bar per iteration. The assignment b.num = i

performs a write access to the Bar object in b, causing all contracts associated
with it to be checked. By measuring the time taken for this access on every
iteration, we can measure how the object access time varies with the number of
contracts.

We also vary the expressions of the contracts (marked as <contract> in
Listing 2) to see how different contract expressions influence object access time.

Table 1 presents the results of our measurements; it shows the number of
milliseconds required for a single object access depending on the number of
contracts associated with the accessed object. The table shows results for three
different contracts, highlighting the huge difference in performance they cause.

The contracts alwaysTrue() and alwaysFalse() call a method which always
returns true or false respectively. JaCon cannot optimise evaluation, since the
contracts involve a method call; they needs to be re-evaluated for each object
access. For the contract alwaysTrue(), contract checking time thus increases

Dynamic Alias Protection with Aliasing Contracts 149

Table 1. Time in milliseconds per object access for varying number n of contracts
associated with the accessed object and varying contract expressions

n alwaysTrue() alwaysFalse() accessor==this||accessor==accessed

(always succeeds) (always fails) (always succeeds in this example)

0 0 0 0
5,000 0.84 0.0099 0.011
15,000 3.93 0.0038 0.0032
25,000 6.82 0.00084 0.00074
35,000 8.93 0.00060 0.00038
65,000 15.11 0.00040 0.00068
95,000 19.37 0.00054 0.00056

with the number of contracts, adding around two milliseconds for every 10,000
contracts. However, for the contract alwaysFalse() the very first contract eval-
uates to false, making it unnecessary to check the remaining contracts. Thus,
the time required for each object access is very low and does not change as the
number of contracts for the object increases.

The contract accessor == this || accessor == accessed always evalu-
ates to true in the example given (but not in the general case). The contract
depends on the value of accessor but is not affected by changes to fields; thus,
it needs to be evaluated only once per accessor. Since accessor is always the
same (the SimpleExample object running the loop), each contract needs to be
evaluated exactly once; this means that for every iteration, only one contract
is evaluated—the newly added contract. Time taken to access the object there-
fore matches the alwaysFalse() case and does not change as the number of
contracts for the object increases.

Our measurements for the above example show that the time taken to access
an object increases linearly with the number of contracts, for contracts whose
evaluation is not optimised. Nevertheless, contract evaluation continues to ap-
pear feasible in this case, as long as the number of contracts remains low; we
believe it is unlikely to have more than 10,000 references pointing to the same
object at once, even in a large program.

We further suggest that even if there are many references to a single object,
the performance presented above is unlikely to occur. In practice, it is difficult
to construct a case where all contracts evaluate to true but none of them can be
optimised. All of the contracts which we expect to be most commonly used, in-
cluding “true”, “false”, “accessor == this”, “accessor == accessed” and
“accessor instanceof Foo” can be optimised by JaCon as outlined above
and only need to be evaluated either once or once for each distinct accessor.
This significantly cuts the number of required contract evaluations, making eval-
uation efficient even when many contracts are associated with a single object.

Case Studies. To study the performance of real-world software using alias-
ing contracts, we selected four open-source programs written in Java: JGraphT
(http://jgrapht.org), JUnit (http://junit.org/), NekoHTML (http://
nekohtml.sourceforge.net) and Trove (http://trove.starlight-systems.

http://jgrapht.org
http://junit.org/
http://nekohtml.sourceforge.net
http://nekohtml.sourceforge.net
http://trove.starlight-systems.com

150 J. Voigt and A. Mycroft

Table 2. Version, size measurements and number of test cases of the test programs

Program Version Date Source Files Classes Lines of Code Test Cases

JGraphT 0.8.3 19/01/2012 188 270 34,266 152
JUnit 4.10 29/09/2011 168 281 13,276 524
NekoHTML 1.9.18 27/02/2013 32 60 13,262 222
Trove 3.0.3 15/02/2013 697 1,603 240,555 548

Table 3. Compilation Performance

Compilation time Bytecode size Compilation time Bytecode size
Program (javac0) (javac0) (javac1) (javac1)

JGraphT 4.3 s 667 kB 7.3 s 1,182 kB
JUnit 2.3 s 524 kB 4.2 s 886 kB
NekoHTML 17.5 s 264 kB 29.7 s 444 kB
Trove 18.8 s 5,153 kB 31.2 s 8,797 kB

Table 4. Runtime Performance

Time Time Ratio Time Ratio
Program (javac0) (javac1) (javac1) (ref tracking only) (ref tracking only)

JGraphT 4.7 s 99.2 s 20.8 53.4 s 11.2
JUnit 13.1 s 21.0 s 1.6 16.4 s 1.4
NekoHTML 1.9 s 3.5 s 1.8 2.6 s 1.4
Trove 5.6 s 62.5 s 11.3 21.2 s 3.7

com). Table 2 shows version, size measurements and number of test cases for
these programs.

We selected four programs from different domains. JGraphT is a graph li-
brary which implements various graph data structures and associated graph al-
gorithms. It involves complex data structures likely to lead to interesting aliasing
properties and runs algorithms with high asymptotic complexities; this means
that its performance with aliasing contracts is likely to be particularly bad.

The Trove library provides high performance collections for Java. Again, the
data structures it builds are likely to lead to interesting aliasing properties.

NekoHTML is an HTML scanner and tag balancer. As parsing involves a lot of
comparatively slow input and output, we expect the performance of NekoHTML
to be less strongly influenced by the presence of aliasing contracts.

JUnit is a well-known program to support unit testing for Java. It does not
involve large data structures and complex algorithms and we therefore expect
JUnit’s performance to degrade only slightly when using aliasing contracts.

All four programs have been updated in the last two years. They include
extensive unit test suites, making them suitable for performance evaluation.

Our test programs include thousands of lines of code, making it impossible
for us to manually annotate them with contracts. Instead, we use default con-
tracts for all variables. To get realistic results, we selected the contracts which
we believe would be most common in practice: “true” for local variables and

http://trove.starlight-systems.com

Dynamic Alias Protection with Aliasing Contracts 151

method parameters, as well as public fields, and “true, accessor == this

|| accessor == accessed” for non-public fields. These contracts are based on
the assumption that objects stored in non-public fields are intended to be en-
capsulated and should be readable but not be modifiable from the outside. This
corresponds to an owners-as-modifiers [12] approach.

These default contracts caused relatively few contract violations, indicating
that they give a good approximation of the encapsulation used in the programs
(and therefore of any manually added aliasing contracts). In Trove, we recorded
the lowest rate of contract violation, at 9.3 percent (783,351 of 8,453,603 contract
evaluations). NekoHTML had a highest rate of contract violation at 22.2 percent
(17,612 of 79,295), while in JUnit and JGraphT the violation rates were 13.3
and 18.0 percent respectively.

We compiled each of the programs twice, first using the standard compiler
(called javac0 below) and then using our the modified compiler (javac1 below).
For both compilations, we noted the time taken by the compiler as well as the
size of the generated Java byte code in bytes.

Table 3 shows the results of these measurements; they show that compiling a
program with javac1 takes between 1.6 and 2.0 times longer than using the stan-
dard compiler; this closely corresponds to the amount of byte-code generated,
which is around 1.6 to 1.8 times larger using javac1.

We also measured the time taken to execute the test suites when compiled with
both of the compilers. In addition, we measured performance when contracts
were only tracked by the contract library but not evaluated; this is equivalent to
tracking of references for each object, for example for investigating the topology
of the heap. Table 4 shows the measurement results.

The runtime measurements show that JGraphT runs 21 times more slowly
with aliasing contracts than usual. While this is a significant decrease in per-
formance, it is caused by a small number of test cases; 44 of 51 test suites run
less than 10 times more slowly with contracts; the remaining 7 execute between
14 and 91 times more slowly. The situation is similar in Trove: only 5 of 26 test
suites are slowed down by more than a factor of 10 in the presence of contracts.

For example, the worst-performing test suite in JGraphT is called
FibonacciHeapTest, running 91 times more slowly with than without contracts.
It builds up a fibonacci heap, performing 20,000 insertions followed by 10,000
removals. Building such a large and complex data structure requires numerous
object accesses and assignments (leading to a lot of contract checks, additions
and removals), explaining the observed performance overhead.

Trove runs around 11 times more slowly with aliasing contracts than normally.
NekoHTML, as expected, is less affected by the presence of aliasing contracts due
to the amount of input and output involved in its test cases; it runs 1.8 times
more slowly with aliasing contracts. JUnit’s performance is also only slightly
affected by contracts, slowing down by a factor of 1.6.

Merely tracking contracts but not evaluating them roughly halved the per-
formance overhead; this effect was particularly marked in Trove, which ran al-
most 4 times faster when only tracking references. This shows that the contract

152 J. Voigt and A. Mycroft

library spends roughly half of the time evaluating contracts and the other half
tracking them. These results also show the feasibility of using JaCon as a tool
for tracking references to objects independently of aliasing contracts.

Java’s garbage collection statistics indicate the impact of aliasing contracts
on memory usage. We observed a significant increase in heap size for JGraphT
and Trove, the two programs whose performance was most strongly affected by
aliasing contracts. For JGraphT, the maximum heap size recorded in the pres-
ence of aliasing contracts was 722kB, compared to 53 kB without contracts. This
result is consistent with both the large increase in execution time for JGraphT,
as well as the number of contract additions performed by JGraphT, more than
200 million. Similarly, Trove triggered around 12 million contract additions and
showed an increase in maximum heap size of around 200kB. For the remaining
programs, maximum heap size increased by less than 35 kB, reflecting signif-
icantly lower number of contract additions they perform (around 210,000 for
NekoHTML and 430,000 for JUnit).

6 Discussion

Aliasing contracts are a novel approach to alias protection. They gain much of
their flexibility by using dynamic rather than static checking; this allows the def-
inition of complex encapsulation policies. Below, we highlight and discuss some
important considerations about aliasing contracts.

Runtime Performance. The case studies we conducted using four open-source
Java programs show that aliasing contracts can cause significant performance
overheads. However, we observed a wide range of behaviour; some programs,
including JUnit and NekoHTML, were barely affected by aliasing contracts
and would remain fully usable in the presence of contracts; others, including
JGraphT, experienced severe decrease in performance, rendering the programs
difficult to use in practice.

We argue that the effects of aliasing contracts vary depending on certain pro-
gram attributes. The main performance issue occurs when many variables refer
to the same object and re-assignment of variables is frequent. These conditions
occur, for example, in programs building complex data structures, involving
many assignments to build the data structure and many object accesses to visit
it. We can see this effect in the performance of JGraphT’s unit tests and in the
example program in Listing 2.

Although unacceptable in release versions of a program, the performance over-
head we measured is not a significant issue during the testing phase of a project.
Executing the unit tests of our test programs in the presence of aliasing con-
tracts is feasible, given the performance we recorded. This demonstrates that it
is indeed possible to use aliasing contracts as a testing and debugging tool. Our
results show that the performance of aliasing contracts is comparable to existing
debugging tools such as Valgrind [13]; for Valgrind, some programs run up to 58
times more slowly using Valgrind, although the slow-down factor is below 20 for
most programs.

Dynamic Alias Protection with Aliasing Contracts 153

Our case studies have also demonstrated JaCon’s robustness and ability to
handle real-world software; we used it to generate more than 400,000 lines of
code and execute multiple large test cases. This demonstrates its robustness and
ability to handle real-world software.

Contract registration and de-registration (via hash tables) and contract evalu-
ation are ‘sensible’ implementations which have only been optimised in terms of
whether repeated evaluation is necessary. JaCon was built as proof-of-concept;
we suspect more attention to low-level implementation would expose further
performance improvement of 2–5 times in contract tracking and evaluation.

Garbage Collection. In Java, objects persist until there are no more references
to them and they are eventually garbage collected (at an unspecified time). This
inherent uncertainty about how long objects exist significantly influences the
semantics of aliasing contracts and indeed Java finalisation itself.

An object’s fields (and the references they store) persist in memory until final-
isation. But when should the associated contracts be removed? This is connected
to the somewhat philosophical question about how long an object exists; does
the object “die” when it becomes unreachable or when it is garbage collected?

We could remove the contracts of an object’s fields when it is no longer reach-
able. However, this is complex to implement, requiring sophisticated tracking of
references beyond simple reference counting. Alternatively, the contracts could
persist (along with the object’s references) until the object is garbage collected.

We take the second approach in our implementation for practical reasons and
because it fits better with Java’s approach to references; an object’s fields and
the references they store remain in memory until garbage collection, and so do
their contracts. This means that the contract of an object waiting to be garbage
collected can cause contract violation; garbage collection can remove contract
violations but never introduce them.

Advanced Features of Aliasing Contracts. We have presented only the ba-
sic aspects of aliasing contracts; more detail is available in [18]. Two powerful
features which were not discussed here are encapsulation groups and contract pa-
rameters. Encapsulation groups allow objects to be grouped, making it possible
to refer to a whole group in a contract rather than just single objects. Encap-
sulation groups can also be specified recursively, enabling deep and transitive
contract specifications. The power of encapsulation groups lies in the fact that
they can contain an unlimited of objects, which may vary at runtime. This, for
example, makes it possible to group all nodes in a linked list, without knowing
exactly how many nodes will be in the list at runtime:

class LinkedList { class Node {
Node head; Node next;

group allNodes = {head, group nextNodes = {next,
head.nextNodes}; next.nextNodes};

} }

154 J. Voigt and A. Mycroft

The encapsulation group nextNodes in Node contains all subsequent nodes in
the list: next and all nodes following it (next.nextNodes). The group allNodes

in LinkedList contains all nodes in the list, head and all nodes following it
(head.nextNodes). At runtime, JaCon evaluates these groups by resolving all
paths in the group definitions to objects.

Groups can be referenced in contracts using the in operator; for example,
the contract “accessor in list.allNodes” checks if accessor is in the set of
objects described by list.allNodes, that is if it is a node of list. Using this
contract, we can, for example, express the condition that all nodes in a linked
list should have mutual access to each other. This example demonstrates how
encapsulation groups can be used to specify transitive aliasing conditions.

Contract parameters make it possible for different instances of the same class
to exhibit different aliasing behaviour. A class can take contract parameters
which must be instantiated when an object of the class is created; the parameters
can be used as contracts in the class, changing aliasing behaviour of objects of
the class depending on the contract instantiations provided.

With encapsulation groups and contract parameters aliasing contracts can
directly express the aliasing policies enforced by existing static alias protection
schemes, including Clarke-style ownership types [6] and universe types [12]. They
can also express many aliasing conditions not expressible with existing schemes.

7 Conclusions and Further Work

We have presented a novel, dynamic approach to alias protection called aliasing
contracts. They are a general and flexible scheme, able to model a wide variety
of different aliasing policies, including those already enforced by static schemes.

We have developed a prototype implementation for aliasing contracts in Java,
JaCon; by running JaCon on open-source programs, we have demonstrated the
practical feasibility of aliasing contracts, for example during the testing phase
of a project. Our tests have shown that JaCon can handle significant programs
and that its performance is comparable to existing debugging tools like Valgrind.

We are currently developing a static checker to check many common aliasing
contracts at compile-time. This would allow us to eliminate some contracts dur-
ing the compilation process, leaving only the more complex ones to be checked
at runtime; combining the static verifier with JaCon will significantly improve
performance. Combining static and dynamic checking of contracts is analogous
to gradual typing [16], which combines static and dynamic type checking to gain
the advantages of both.

We are also working on allowing temporary suspension of contracts; this can
be used to model borrowing [4], where access to an object is granted temporarily,
for example for the duration of a method call.

Acknowledgements. The authors thank the Rutherford Foundation of the
Royal Society of New Zealand for the scholarship which supported this work,
and the anonymous referees for their helpful suggestions.

Dynamic Alias Protection with Aliasing Contracts 155

References

1. Almeida, P.: Balloon types: Controlling sharing of state in data types. In: Akşit, M.,
Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 32–59. Springer, Heidelberg
(1997)

2. Boyapati, C., Liskov, B., Shrira, L.: Ownership types for object encapsulation. In:
POPL, pp. 213–223. ACM (2003)

3. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

4. Boyland, J., Noble, J., Retert, W.: Capabilities for sharing: A generalisation of
uniqueness and read-only. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS,
vol. 2072, pp. 2–7. Springer, Heidelberg (2001)

5. Clarke, D., Östlund, J., Sergey, I., Wrigstad, T.: Ownership types: A survey. In:
Clarke, D., Noble, J., Wrigstad, T. (eds.) Aliasing in Object-Oriented Program-
ming. LNCS, vol. 7850, pp. 15–58. Springer, Heidelberg (2013)

6. Clarke, D., Potter, J.M., Noble, J.: Ownership types for flexible alias protection.
ACM SIGPLAN Notices 33, 48–64 (1998)

7. Gordon, D., Noble, J.: Dynamic ownership in a dynamic language. In: DLS: Dy-
namic Languages Symposium, pp. 41–52. ACM (2007)

8. Haller, P., Odersky, M.: Capabilities for uniqueness and borrowing. In: D’Hondt,
T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 354–378. Springer, Heidelberg (2010)

9. Hogg, J.: Islands: aliasing protection in object-oriented languages. In: OOPSLA,
pp. 271–285. ACM (1991)

10. Li, P., Cameron, N., Noble, J.: Mojojojo - more ownership for multiple owners. In:
FOOL (2010)

11. Meyer, B.: Writing correct software with Eiffel. Dr. Dobb’s Journal 14(12), 48–60
(1989)

12. Müller, P., Poetzsch-Heffter, A.: Universes: A type system for controlling represen-
tation exposure. In: Poetzsch-Heffter, A., Meyer, J. (eds.) Programming Languages
and Fundamentals of Programming (1999)

13. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: PLDI, pp. 89–100 (2007)

14. Oracle Corporation: OpenJDK (2013), http://openjdk.java.net
15. Sergey, I., Clarke, D.: Gradual ownership types. In: Seidl, H. (ed.) Programming

Languages and Systems. LNCS, vol. 7211, pp. 579–599. Springer, Heidelberg (2012)
16. Siek, J., Taha, W.: Gradual typing for functional languages. In: Scheme and Func-

tional Programming Workshop (September 2006)
17. TIOBE software: TIOBE programming community index for (May 2013),

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

18. Voigt, J., Mycroft, A.: Aliasing contracts: a dynamic approach to alias protection.
Technical Report UCAM-CL-TR-836, University of Cambridge, Computer Labo-
ratory (June 2013)

19. Westbrook, E., Zhao, J., Budimlić, Z., Sarkar, V.: Practical permissions for race-
free parallelism. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 614–639.
Springer, Heidelberg (2012)

http://openjdk.java.net
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

	Dynamic Alias Protection with Aliasing Contracts
	1 Introduction
	2 Background
	3 Aliasing Contracts
	4 JACON: Practical Aliasing Contracts for Java
	5 Performance Evaluation
	6 Discussion
	7 Conclusions and Further Work
	References

