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Preface

Welcome to APLAS 2013, the 11th Asian Symposium on Programming
Languages and Systems! APLAS aims to stimulate programming language re-
search by providing a forum for foundational and practical issues in programming
languages and systems. APLAS is based in Asia and sponsored by the Asian
Association for Foundation of Software (AAFS), but it serves the worldwide
programming language community. This latest APLAS was held in Melbourne,
Australia, during December 9–11, 2013, after ten successful symposia and, before
them, three informal workshops.

Our call for papers this year attracted 57 submissions from all around the
globe. Each submission was reviewed by at least three ProgramCommittee mem-
bers, with the help of external reviewers. A total of 185 reviews were produced.
The Program Committee then discussed the submissions during a 10-day elec-
tronic meeting. In the end, we accepted 20 regular research papers and three
system and tool papers. (One of the papers was initially accepted on condition
of being revised to address certain concerns. The final version of the paper was
discussed and checked by a shepherd before being accepted.)

As usual, we rounded off the program with three invited talks:

– Nick Benton (Microsoft Research), “The proof assistant as an integrated
development environment”

– Cristina Cifuentes (Oracle Labs Australia), “Internal deployment of the Par-
fait static code analysis tool at Oracle”

– Alexandra Silva (Radboud University Nijmegen), “Brzozowski’s and up-to
algorithms for must testing”

I am grateful to everyone who submitted to the symposium. Thanks also to all
the Program Committee members and external reviewers, for their helpful re-
views and thoughtful discussion. The EasyChair conference management system
enabled the reviewing process as well as proceedings preparation. Thanks to the
AAFS executive committee for their support, especially Kazunori Ueda for his
sage advice. Finally, thanks to the general chair Peter Schachte and the poster
chair Shin-ya Katsumata.

September 2013 Chung-chieh Shan
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Brzozowski’s and Up-To Algorithms

for Must Testing

Filippo Bonchi1, Georgiana Caltais2, Damien Pous1, and Alexandra Silva3,�

1 ENS Lyon, U. de Lyon, CNRS, INRIA, UCBL
2 Reykjavik University

3 Radboud University Nijmegen

Abstract. Checking language equivalence (or inclusion) of finite au-
tomata is a classical problem in Computer Science, which has recently
received a renewed interest and found novel and more effective solu-
tions, such as approaches based on antichains or bisimulations up-to.
Several notions of equivalence (or preorder) have been proposed for the
analysis of concurrent systems. Usually, the problem of checking these
equivalences is reduced to checking bisimilarity. In this paper, we take a
different approach and propose to adapt algorithms for language equiva-
lence to check one prime equivalence in concurrency theory, must testing
semantics. To achieve this transfer of technology from language to must
semantics, we take a coalgebraic outlook at the problem.

1 Introduction

Determining whether two systems exhibit the same behavior under a given no-
tion of equivalence is a recurring problem in different areas from Computer
Science, from compiler analysis, to program verification, to concurrency theory.
A widely accepted notion of equivalence is that two systems are equivalent if
they behave the same when placed in the same context.

We will focus on the equivalence problem in the context of concurrency theory
and process calculi. Systems are processes and contexts will be given by sets
of tests a process should obey. This leads us to consider standard behavioural
equivalences and preorders for process calculi, in particularmust testing [14]: two
systems are equivalent if they pass exactly the same tests, in all their executions.

The problem of automatically checking such testing equivalences is usually
reduced to the problem of checking bisimilarity, as proposed in [12] and imple-
mented in several tools [13,10]. In a nutshell, equivalence is checked as follows.
Two processes are considered, given by their labeled transition systems (LTS’s).
Then, the given LTS’s are first transformed into “acceptance graphs”, using a
construction which is reminiscent of the determinization of non-deterministic
automata (NDA). Finally, bisimilarity is checked via the partition refinement

� Also affiliated to Centrum Wiskunde & Informatica (Amsterdam, The Netherlands)
and HASLab / INESC TEC, Universidade do Minho (Braga, Portugal).

C.-c. Shan (Ed.): APLAS 2013, LNCS 8301, pp. 1–16, 2013.
c© Springer International Publishing Switzerland 2013



2 F. Bonchi et al.

algorithm [17,22]. And one can answer the question of testing equivalence be-
cause gladly bisimilarity in acceptance graphs coincides with testing equivalence
in the original LTS’s.

The partition refinement algorithm, which is the best-known for minimizing
LTS’s w.r.t. bisimilarity, is analogous to Hopcroft’s algorithm [16] for minimiz-
ing deterministic automatata (DA) w.r.t. language equivalence. In both cases,
a partition of the state space is iteratively refined until a fixpoint is reached.
Thus, the above procedure for checking testing semantics [12] is in essence the
same as the classical procedure for checking language equivalence of NDA: first
determinize and then compute a (largest) fixpoint.

In this work, we propose to transfer other algorithms for language equivalence,
which are not available for bisimilarity, to the world of testing semantics. In order
to achieve this, we take a coalgebraic perspective at the problem in hand, which
allows us to study the constructions and the semantics in a uniform fashion. The
abstract framework of coalgebras makes it possible to study different kinds of
state based systems in a uniform way [26]. In particular, both the determinization
of NDA’s and the construction of acceptance graphs in [12] are instances of the
generalized powerset construction [28,20,11]. This is the key observation of this
work, which enables us to devise the presented algorithms.

First, we consider Brzozowski’s algorithm [9] which transforms an NDA into
the minimal deterministic automaton accepting the same language in a rather
magical way: the input automaton is reversed (by swapping final and initial
states and reversing its transitions), determinized, reversed and determinized
once more. This somewhat intriguing algorithm can be explained in terms of
duality and coalgebras [4,2]. The coalgebraic outlook in [4] has several general-
ization of Brzozowski’s algorithm to other types of transition systems, including
Moore machines. This paves the way to adapt Brzozowski’s algorithm for check-
ing must semantics, which we will do in this paper.

Next, we consider several more efficient algorithms that have been recently in-
troduced in a series of papers [32,1,7]. These algorithms rely on different kinds of
(bi)simulations up-to, which are proof techniques originally proposed for process
calculi [21,27]. From these algorithms, we choose the one in [7] (HKC) which has
been introduced by a subset of the authors and which, as we will show, can be
adapted to must testing using a coalgebraic characterization of must equivalence,
which we will also introduce.

Comparing these three families of algorithms (partition refinement [12], Brzo-
zowski and bisimulations up-to) is not a simple task: both the problems of check-
ing language and must equivalence are PSPACE-complete [17] but, in both cases,
the theoretical complexity appears not to be problematic in practice, so that
an empirical evaluation is more desirable. In [31,29], experiments have shown
that Brzozowski’s algorithm performs better than Hopcroft for “high-density”
NDA’s, while Hopcroft is more efficient for generic NDA’s. Both algorithms ap-
pear to be rather inefficient compared to those of the new generation [32,1,7].
It is out of the scope of this paper to present an experimental comparison of
these algorithms and we confine our work to showing concrete examples where
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HKC and Brzozowski’s algorithm are exponentially more efficient than the other
approaches.

Contributions. The main contributions of this work are:

– The coalgebraic treatment of must semantics (preorder and equivalence).
– The adaptation of HKC and Brzozowski’s algorithm for must semantics. For

the latter, this includes an optimization which avoids an expensive deter-
minization step.

– The evidence that the coalgebraic analysis of systems yields not only a good
mathematical theory of their semantics but also a rich playground to devise
algorithms.

– An interactive applet allowing one to experiment with these algorithms [6].

The full version of this paper [5] contains further optimizations for the algo-
rithms, their proofs of correctness, the formal connections with the work in [12]
and the results of experiments checking the equivalence of an ideal and a dis-
tributed multiway synchronisation protocol [23].

Related Work. Another coalgebraic outlook on must is presented in [8] which
introduces a fully abstract semantics for CSP. The main difference with our work
consists in the fact that [8] builds a coalgebra from the syntactic terms of CSP,
while here we build a coalgebra starting from LTS’s via the generalized power-
set construction [28]. Our approach puts in evidence the underlying semilattice
structure which is needed for defining bisimulations up-to and HKC. As a further
coalgebraic approach to testing, it is worth mentioning test-suites [18], which
however do not tackle must testing. A coalgebraic characterization of other se-
mantics of the linear time/branching time spectrum is given in [3].

Notation. We denote sets by capital letters X,Y, S, T . . . and functions by lower
case letters f, g, . . . Given sets X and Y , X × Y is the Cartesian product of X
and Y , X + Y is the disjoint union and XY is the set of functions f : Y → X .
The collection of finite subsets of X is denoted by P(X) (or just PX). These
operations, defined on sets, can analogously be defined on functions [26], yielding
(bi-)functors on Set, the category of sets and functions. For a set of symbols A,
A∗ denotes the set of all finite words over A; ε the empty word; and w1 · w2

(or w1w2) the concatenation of words w1, w2 ∈ A∗. We use 2 to denote the set
{0, 1} and 2A

∗
to denote the set of all formal languages over A. A semilattice with

bottom (X,�, 0) consists of a set X and a binary operation � : X×X → X that
is associative, commutative, idempotent (ACI) and has 0 ∈ X (the bottom) as
identity. A homomorphism (of semilattices with bottom) is a function preserving
� and 0. Every semilattice induces a partial order defined as x � y iff x� y = y.
The set 2 is a semilattice when taking � to be the ordinary Boolean disjunction.
Also the set of all languages 2A

∗
carries a semilattice structure where � is the

union of languages and 0 is the empty language. More generally, for any set S,
P(S) is a semilattice where � is the union of sets and 0 is the empty set. In the
rest of the paper we will indiscriminately use 0 to denote the element 0 ∈ 2, the
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empty language in 2A
∗
and the empty set in P(S). Analogously, � will denote

the “Boolean or” in 2, the union of languages in 2A
∗
and the union of sets in

P(S).

Acknowledgments. This work was supported by the LABEX MILYON (ANR-10-
LABX-0070) of Université de Lyon, within the program Investissements dAvenir
(ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).
In addition, Filippo Bonchi was partially supported by the projects PEPS-CNRS
CoGIP, ANR-09-BLAN-0169-01, and ANR 12IS02001 PACE. Georgiana Caltais
has been partially supported by the project ‘Meta-theory of Algebraic Process
Theories’ (nr. 100014021) of the Icelandic Research Fund. Damien Pous was par-
tially supported by the PiCoq project, ANR-10-BLAN-0305. Alexandra Silva was
partially supported by the ERDF through the Programme COMPETE and by
the Portuguese Government through FCT - Foundation for Science and Tech-
nology, project ref. FCOMP-01-0124-FEDER-020537 and SFRH/BPD/71956/2010.

2 Background

The core of this paper is about the problem of checking whether two states in a
transition system are testing equivalent by reducing it to the classical problem
of checking language equivalence. We will consider different types of transition
systems, deterministic and non-deterministic, which we will formally describe
next, together with their language semantics.

A deterministic automaton (DA) over the alphabet A is a pair (S, 〈o, t〉), where
S is a set of states and 〈o, t〉 : S → 2 × SA is a function with two components:
o, the output function, determines whether a state x is final (o(x) = 1) or not
(o(x) = 0); and t, the transition function, returns for each state and each input
letter, the next state. From any DA, there exists a function [[−]] : S → 2A

∗

mapping states to languages, defined for all x ∈ S as follows:

[[x]](ε) = o(x) [[x]](a · w) = [[t(x)(a)]](w) (1)

The language [[x]] is called the language accepted by x. Given an automaton
(S, 〈o, t〉), the states x, y ∈ S are said to be language equivalent iff they accept
they same language.

A non-deterministic automaton (NDA) is similar to a DA but the transition
function returns a set of next-states instead of a single state. Thus, an NDA
over the input alphabet A is a pair (S, 〈o, t〉), where S is a set of states and
〈o, t〉 : S → 2×(P(S))A. An example is depicted below (final states are overlined,
labeled edges represent transitions).

x

a

��za��
a ��

y
a

�� u
a ��

a

��w
a

�� va�� (2)

Classically, in order to recover language semantics of NDA, one uses the sub-
set (or powerset) construction, transforming every NDA (S, 〈o, t〉) into the DA
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(P(S), 〈o�, t�〉) where o� : P(S) → 2 and t� : P(S) → P(S)A are defined for all
X ∈ P(S) as

o�(X) =
⊔
x∈X

o(x) t�(X)(a) =
⊔
x∈X

t(x)(a) .

For instance with the NDA from (2), o�({x, y}) = 0�1 = 1 (i.e., the state {x, y}
is final) and t�({x, y})(a) = {y} � {z} = {y, z} (i.e., {x, y} a→ {y, z}).

Since (P(S), 〈o�, t�〉) is a deterministic automaton, we can now apply (1),
yielding a function [[−]] : P(S)→ 2A

∗
mapping sets of states to languages. Given

two states x and y, we say that they are language equivalent iff [[{x}]] = [[{y}]].
More generally, for two sets of states X,Y ⊆ S, we say that X and Y are
language equivalent iff [[X ]] = [[Y ]].

In order to introduce the algorithms in full generality, it is important to remark
here that the sets 2, P(S), P(S)A, 2 × P(S)A and 2A

∗
carry semilattices with

bottom and that the functions 〈o�, t�〉 : P(S)→ 2×P(S)A and [[−]] : P(S)→ 2A
∗

are homomorphisms.

2.1 Checking Language Equivalence via Bisimulation Up-To

We recall the algorithm HKC from [7]. We first define a notion of bisimulation on
sets of states. We make explicit the underlying notion of progression.

Definition 1 (Progression, Bisimulation). Let (S, 〈o, t〉) be an NDA. Given
two relations R,R′ ⊆ P(S) × P(S), R progresses to R′, denoted R � R′, if
whenever X R Y then

1. o�(X) = o�(Y ) and 2. for all a ∈ A, t�(X)(a) R′ t�(Y )(a).

A bisimulation is a relation R such that R � R.

This definition considers the states, the transitions and the outputs of the de-
terminized NDA. For this reason, the bisimulation proof technique is sound and
complete for language equivalence rather than for the standard notion of bisim-
ilarity by Milner and Park [21].

Proposition 1 (Coinduction [7]). For all X,Y ∈ P(S), [[X ]] = [[Y ]] iff there
exists a bisimulation that relates X and Y .

For an example, we want to check the equivalence of {x} and {u} of the NDA
in (2). The part of the determinized NDA that is reachable from {x} and {u} is
depicted below. The relation consisting of dashed and dotted lines is a bisimu-
lation which proves that [[{x}]] = [[{u}]].

{x} a ��

1 �
�
�

{y} a ��

2 �

�
{z} a ��

3 �
�
�

{x, y} a �� {y, z} a �� {x, y, z}

a

		

{u}
a
�� {v, w}

a
�� {u,w}

a
�� {u, v, w} a



(3)
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The dashed lines (numbered by 1, 2, 3) form a smaller relation which is not a
bisimulation, but a bisimulation up-to congruence: the equivalence of {x, y} and
{u, v, w} can be immediately deduced from the fact that {x} is related to {u} and
{y} to {v, w}. In order to formally introduce bisimulations up-to congruence, we
need to define first the congruence closure c(R) of a relation R ⊆ P(S)×P(S).
This is done inductively, by the following rules:

X R Y

X c(R) Y X c(R) X

X c(R) Y

Y c(R) X (4)

X c(R) Y Y c(R) Z

X c(R) Z

X1 c(R) Y1 X2 c(R) Y2

X1 �X2 c(R) Y1 � Y2

Note that the term “congruence” here is intended w.r.t. the semilattice structure
carried by the state space P(S) of the determinized automaton. Intuitively, c(R)
is the smallest equivalence relation containing R and which is closed w.r.t �.
Definition 2 (Bisimulation up-to congruence). A relation R ⊆ P(S) ×
P(S) is a bisimulation up-to c if R � c(R), i.e., whenever X R Y then

1. o�(X) = o�(Y ) and 2. for all a ∈ A, t�(X)(a) c(R) t�(Y )(a).

Theorem 1 ([7]). Any bisimulation up-to c is contained in a bisimulation.

The corresponding algorithm (HKC) is given in Figure 1 (top). Starting from an
NDA (S, 〈o, t〉) and considering the determinized automaton (P(S), 〈o�, t�〉), it
can be used to check language equivalence of two sets of states X and Y . Starting
from the pair (X,Y ), the algorithm builds a relation R that, in case of success,
is a bisimulation up-to congruence. In order to do that, it employs the set todo
which, intuitively, at any step of the execution, contains the pairs (X ′, Y ′) that
must be checked: if (X ′, Y ′) already belongs to c(R ∪ todo), then it does not
need to be checked. Otherwise, the algorithm checks if X ′ and Y ′ have the same
outputs. If o�(X ′) 
= o�(Y ′) then X and Y are different, otherwise the algorithm
inserts (X ′, Y ′) in R and, for all a ∈ A, the pairs (t�(X ′)(a), t�(Y ′)(a)) in todo.
The check (X ′, Y ′) ∈ c(R∪todo) at step 2.2 is done with the rewriting algorithm
of [7, Section 3.4].

Proposition 2. For all X,Y ∈ P(S), [[X ]] = [[Y ]] iff HKC(X,Y ).

The iterations corresponding to the execution of HKC({x}, {u}) on the NDA
in (2) are concisely described by the numbered dashed lines in (3). Observe that
only a small portion of the determinized automaton is explored; this fact usually
makes HKC more efficient than the algorithms based on minimization, that need
to build the whole reachable part of the determinized automaton.

2.2 Checking Language Equivalence via Brzozowski’s Algorithm

The problem of checking language equivalence of two sets of states X and Y
of a non-deterministic finite automaton can be reduced to that of building the
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minimal DA for [[X ]] and [[Y ]] and checking whether they are the same (up to
isomorphism). The most well-known procedure consists in first determinizing
the NDA and then minimizing it with the Hopcroft algorithm [16]. Another
interesting solution is Brzozowski’s algorithm [9].

To explain the latter, it is convenient to consider a set of initial states I. Given
an NDA (S, 〈o, t〉) and a set of states I, Brzozowski’s algorithm computes the
minimal automaton for the language [[I]] by performing the 4 steps in Figure 1
(bottom).

The operation reverse and determinize takes as input an NDA (S, 〈o, t〉)
and returns a DA (P(S), 〈oR, tR〉) where the functions oR : P(S) → 2 and
tR : P(S) → P(S)A are defined for all X ∈ P(S) as oR(X) = 1 iff X ∩ I 
= 0
and tR(X)(a) = {x ∈ S | t(x)(a) ∩ X 
= 0}. The new initial state is the set of
accepting states of the original NDA: IR = {x | o(x) = 1}. The second step
consists in taking the part of (P(S), 〈oR, tR〉) which is reachable from IR. The
third and the fourth steps perform this procedure once more.

As an example, consider the NDA in (2) with the set of initial states I = {x}.
Brzozowski’s algorithm builds the minimal DA accepting [[{x}]] as follows. After
the first two steps, it returns the following DA where the initial state is {y}.

{y} a �� {x, z} a �� {z, y} a �� {x, y, z} a��

After steps 3 and 4, it returns the DA below with initial state {{x, z}{x, y, z}}.

{{x, z}{x, y, z}} a �� {{y}{z, y}{x, y, z}} a �� {{x, z}{z, y}{x, y, z}}
a
��

{{y}{x, z}{z, y}{x, y, z}} a
��

Computing the minimal NDA in (2) with the set of initial states I = {u} results
in an isomorphic automaton, showing the equivalence of x and u.

2.3 Generalized Powerset Construction

The notions introduced above can be easily described using coalgebras. Given
a functor F : Set → Set, an F -coalgebra is a pair (S, f) where S is a set of
states and f : S → F (S) is its transition structure. F intuitively determines the
“type” of the transitions. An F -homomorphism from an F -coalgebra (S, f) to an
F -coalgebra (T, g) is a function h : S → T preserving the transition structure,
i.e., g ◦ h = F (h) ◦ f . An F -coalgebra (Ω,ω) is said to be final if for any F -
coalgebra (S, f) there exists a unique F -homomorphism [[−]] : S → Ω. Intuitively,
Ω represents the universe of “F -behaviours” and [[−]] represents the semantic
map associating states to their behaviours. Two states x, y ∈ X are said F -
behaviourally equivalent iff [[x]] = [[y]]. Such equivalence can be proved using
F -bisimulations [26]. For lack of space, we refer the reader to [25] for their
categorical definitions. Given a behaviour b ∈ Ω, the minimal coalgebra realizing
b is the part of (Ω,ω) that is reachable from b.



8 F. Bonchi et al.

Let us exemplify for DA’s how these abstract notions yield the expected con-
crete notions. DA’s are coalgebras for the functor F (S) = 2×SA. The final coal-
gebra of this functor is the set 2A

∗
of formal languages over A, or more precisely,

the pair (2A
∗
, 〈ε, (−)a〉) where 〈ε, (−)a〉, given a language L, determines whether

or not the empty word is in the language (ε(L) = 1 or ε(L) = 0, resp.) and, for
each input letter a, returns the a-derivative of L: La = {w ∈ A∗ | aw ∈ L}. The
unique map [[−]] into the final coalgebra 2A

∗
is precisely the map which assigns

to each state the language that it recognizes. For any language L ∈ 2A
∗
, the

minimal automaton for L is the part of (2A
∗
, 〈ε, (−)a〉) that is reachable from L.

In Section 3, we will use Moore machines which are coalgebras for the functor
F (S) = B × SA. These are like DA’s, but with outputs in a fixed set B. The
unique F -homomorphism to the final coalgebra [[−]] : S → BA∗

is defined exactly
as for DA’s by the equations in (1). Note that the behaviours of Moore machines
are functions ϕ : A∗ → B, rather than subsets of A∗. For each behaviour ϕ ∈
BA∗

, there exists a minimal Moore machine realizing it.
Recall that an NDA is a pair (S, 〈o, t〉), where 〈o, t〉 : S → 2 × (P(S))A. As

explained above, to recover language semantics one needs to use the subset
construction, which transforms an NDA into a DA. More abstractly, this can
be captured by observing that the type functor of NDA’s – 2 × P(−)A – is
a composition of the functor F (S) = 2 × SA (that is the functor for DA’s)
and the monad T (S) = P(S). P-algebras are exactly semilattices with bottom
and P-algebra morphisms are the ones of semilattices with bottom. Now note
that (a) the F -coalgebra (P(S), 〈o�, t�〉) resulting of the powerset construction
is a morphism of semilattices, (b) 2A

∗
carries a semilattice structure and (c)

[[−]] : P(S) → 2A
∗
is a morphism of semilattices. This is summarized by the

following commuting diagram:

S

〈o,t〉
��

{−}
�� P(S)

〈o�,t�〉���
���

���
���

��
[[−]]

���������� 2A
∗

〈ε,(−)a〉
��

2× P(S)A id2×[[−]]A������ �������� 2× (2A
∗
)A

In the diagram above, one can replace 2 × −A and P by arbitrary F and T
as long as FT (S) carries a T -algebra structure. In fact, given an FT -coalgebra,
that is (S, f : S → FT (S)), if FT (S) carries a T -algebra structure h, then (a)
one can define an F -coalgebra (T (S), f � = h ◦ Tf) where f � : T (S)→ FT (S) is
a T -algebra morphism (b) the final F -coalgebra (Ω,ω) carries a T -algebra and
(c) the F -homomorphism [[−]] : T (S)→ Ω is a T -algebra morphism.

The F -coalgebra (T (S), f �) is (together with the multiplication μ : TT (S)→
T (S)) a bialgebra for some distributive law λ : FT ⇒ TF (we refer the reader
to [19] for a nice introduction on this topic). The behavioural equivalence of
bialgebras can be proved either via bisimulation, or, like in Section 2.1, via
bisimulation up-to congruence [20,25]: the result that justifies HKC (Theorem 1)
generalises to this setting – the congruence being taken w.r.t. the algebraic struc-
ture μ. This is what allows us to move to must semantics.
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HKC(X, Y ):

(1) R is empty; todo is {(X ′, Y ′)};
(2) while todo is not empty, do

(2.1) extract (X ′, Y ′) from todo;
(2.2) if (X ′, Y ′) ∈ c(R ∪ todo) then continue;

(2.3) if o�(X ′) �= o�(Y ′) then return false;
(2.4) for all a ∈ A,

insert (t�(X ′)(a), t�(Y ′)(a)) in todo;
(2.5) insert (X ′, Y ′) in R;

(3) return true;

Brzozowski:

(1) reverse and determinize;

(2) take the reachable part;

(3) reverse and determinize;

(4) take the reachable part.

Fig. 1. Top: Generic HKC algorithm, parametric on o�, t� and c. Bottom: Generic Br-
zozowski’s algorithm, parametric on reverse and determinize. Instantiations to lan-
guage and must equivalence in Sections 2 and 3.

3 Must Semantics

The operational semantics of concurrent systems is usually given by labelled tran-
sition systems (LTS’s), labelled by actions that are either visible to an external
observer or internal actions (usually denoted by a special symbol τ). Different
kinds of semantics can be defined on these structures (e.g., linear or branching
time, strong or weak semantics). In this paper we consider must semantics [14]
which, intuitively, equates those systems that pass exactly the same tests, in all
their executions.

Before formally introducing must semantics as in [12], we fix some notations:
ε
=⇒ denotes

τ−→
∗
the reflexive and transitive closure of

τ−→ and, for a ∈ A,
a
=⇒

denotes
τ−→

∗ a−→ τ−→
∗
. For w ∈ A∗, w

=⇒ is defined inductively, in the obvious way.
The acceptance set of x after w is A(x,w) = {{a ∈ A | x′ a−→} | x w

=⇒ x′ ∧ x′ 
 τ−→}.
Intuitively, it represents the set of actions that can be fired after “maximal”
executions of w from x, those that cannot be extended by some τ -labelled tran-
sitions. The possibility of executing τ -actions forever is referred to as divergence.
We write x 
↓ whenever x diverges. Dually, the convergence relation x ↓ w for a
state x and a word w ∈ A∗ is inductively defined as follows: x ↓ ε iff x does not
diverge and x ↓ aw′ iff (a) x ↓ ε and (b) if x

a
=⇒ x′, then x′ ↓ w′. Given two sets

B,C ∈ PP(A), we write B ⊂⊂ C iff for all Bi ∈ B, there exists Ci ∈ C such
that Ci ⊆ Bi. With these ingredients, it is possible to introduce must preorder
and equivalence.
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Definition 3 (Must semantics [12]). Let x and y be two states of an LTS.
We write x �mst y iff for all words w ∈ A∗, if x ↓ w then y ↓ w and A(y, w) ⊂⊂
A(x,w). We say that x and y are must-equivalent (x ∼mst y) iff x �mst y and
y �mst x.

As an example, consider the LTS depicted below. States x4, x5 and y1 are diver-
gent. All the other states diverge for words containing the letter b and converge
for words on a∗. For these words and states x, x1, x2, x3 and y, the corresponding
acceptance sets are {{a, b}}. In particular, note that A(x2, ε) is {{a, b}} and not
{{b}, {a, b}}. It is therefore easy to conclude that x, x1, x2, x3 and y are all must
equivalent.

x
b

��a ��

a
��

x2

τ
��

b �� x4 τ
��

x1

a
		

b

��x3
a�� b �� x5

τ
��

ya
�� b �� y1 τ

��
(5)

3.1 A Coalgebraic Characterization of Must Semantics

In what follows we show how �mst can be captured in terms of coalgebras. This
will further allow adapting the algorithms introduced in Section 2 for checking
∼mst and �mst.

First, we model LTS’s in terms of coalgebras (S, t : S → (1 + P(S))A), where
1 = {�} is the singleton set, and for x ∈ S,

t(x)(a) = �, if x 
↓ a t(x)(a) = {y | x a
=⇒ y}, otherwise.

Intuitively, a state x ∈ S that displays divergent behaviour with respect to an
action a ∈ A is mapped to �. Otherwise t computes the set of states that
can be reached from x through a (by possibly performing a finite number of
τ -transitions). At this point we need some additional definitions: for a function
ϕ : A → P(S), I(ϕ) denotes the set of all labels “enabled” by ϕ, given by I(ϕ) =
{a ∈ A | ϕ(a) 
= 0}, while Fail(ϕ) denotes the set {Z ⊆ A | Z ∩ I(ϕ) = 0}.
With these definitions, we decorate the states of an LTS by means of an output
function o : S → 1 + P(P(A)) defined as follows:

o(x) = �, if x 
↓ o(x) =
⋃

x
τ−→x′

o(x′) if x τ−→, o(x) = Fail (t(x)), otherwise.

Note that (S, 〈o, t〉) is an FT -coalgebra for the functor F (S) = (1+PPA)×SA

and the monad T (S) = 1 + P(S). Algebras for such monad T are semilattices
with bottom and an extra element � acting as top (i.e., such that x�� = � for
all x). For any set U , 1+P(U) carries a semilattice with bottom and top: bottom
is the empty set; top is the element � ∈ 1; X � Y is defined as the union for
arbitrary subsets X,Y ∈ P(U) and as � otherwise. Consequently, 1 + P(PA),
1 + P(S), (1 + P(S))A and FT (S) carry a T -algebra structure as well. This
enables the application of the generalized powerset construction (Section 2.3)
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associating to each FT -coalgebra (S, 〈o, t〉) the F -coalgebra (1 + P(S), 〈o�, t�〉)
defined for all X ∈ 1 + P(S) as expected:

o�(X) =

{
� if X = �⊔

x∈X o(x) if X ∈ P(S) t�(X)(a) =

{
� if X = �⊔

x∈X t(x)(a) if X ∈ P(S)

Note that in the above definitions, � is not simply the union of subsets, but it
is the join operation in 1 + PPA and 1 + P(S). Moreover, (1 + PS, 〈o�, t�)〉 is
a Moore machine with output in 1 + PPA and, therefore, the equations in (1)
induce a function [[−]] : (1+P(S))→ (1+PPA)A

∗
. The semilattice structure of

1 + PPA can be easily lifted to (1 + PPA)A
∗
: bottom, top and � are defined

pointwise on A∗. If �M represents the preorder on (1+PPA)A
∗
induced by this

semilattice, then the following theorem holds.

Theorem 2. x �mst y iff [[{y}]] �M [[{x}]] and x ∼mst y iff [[{x}]] = [[{y}]].

Note that according to the definition of �M, [[{y}]] �M [[{x}]] iff [[{y}]]� [[{x}]] =
[[{x}]], and since [[−]] is a T -homomorphism (namely it preserves bottom, top
and �), the latter equality holds iff [[{y, x}]] = [[{x}]]. Summarizing,

x �mst y iff [[{x, y}]] = [[{x}]].

Consider, once more, the LTS in (5). The part of the Moore machine (1 +
P(S), 〈o�, t�〉) which is reachable from {x} and {y} is depicted below (the output
function o� maps � to � and the other states to {0}). The relation consisting of
dashed and dotted lines is a bisimulation proving that [[{x}]] = [[{y}]], i.e., that
x ∼mst y.

�

a,b

��

{x}b�� a �� {x1, x2, x3}

� � � �

b
�� a �� {x, x1}

b

�� a �� {x, x1, x2, x3}

b

��

a

��

�

a,b

�� {y}

a

��b
��

(6)

Our construction is closely related to the one in [12], that transforms LTS’s into
(deterministic) acceptance graphs. We refer the interested reader to a detailed
comparison provided in the full version of this paper [5]. There we also show an
optimization for representing outputs by means of I(t(x)) rather Fail(t(x)).

3.2 HKC for Must Semantics

The coalgebraic characterization discussed in the previous section guarantees
soundness and completeness of bisimulation up-to congruence for must equiv-
alence. Bisimulations are now relations R ⊆ (1 + P(S)) × (1 + P(S)) on the
state space 1 + P(S) where o� and t� are defined as in Section 3.1. Now, the
congruence closure c(R) of a relation R ⊆ (1 + P(S)) × (1 + P(S)) is defined
by the rules in (4) where � is the join in (1 + P(S)) (rather than the union in
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P(S)). By simply redefining o�, t� and c(R), the algorithm in Figure 1 can be
used to check must equivalence and preorder (the detailed proof can be found in
the full version of the paper [5]). In particular, note that the check at step 2.1

can be done with the same algorithm as in [7, Section 3.4].
Suppose, for example, that we want to check whether the states x and y of the

LTS in (5) are must equivalent. The relation R = {({x}, {y}), ({x1, x2, x3}, {y})}
depicted by the dashed lines in (6) is not a bisimulation, but a bisimulation up-to
congruence, since both (�,�) ∈ c(R) and ({x, x1}, {y}) ∈ c(R). For the latter,
observe that

{x, x1} c(R) {y, x1} c(R) {x1, x2, x3} c(R) {y}.

It is important to remark here that HKC computes this relation without the need
of exploring all the reachable part of the Moore machine (1 +P(S), 〈o�, t�〉). So,
amongst all the states in (6), HKC only explores {x}, {y} and {x1, x2, x3}.

3.3 Brzozowski’s Algorithm for Must Semantics

A variation of the Brzozowski algorithm for Moore machines is given in [4]. We
could apply such algorithm to the Moore machine (1 + P(S), 〈o�, t�〉) which is
induced by the coalgebra (S, 〈o, t〉) introduced in Section 3.1. Here, we propose
a more efficient variation that skips the first determinization from (S, 〈o, t〉) to
(1 + P(S), 〈o�, t�〉).

The novel algorithm consists of the four steps described in Section 2.2, where
the procedure reverse and determinize is modified as follows: (S, 〈o, t〉) with
the set of initial states I is transformed into ((1 + PP(A))S , 〈oR, tR〉) where
oR : (1+PPA)S → 1+PPA and tR : (1+PPA)S → ((1+PPA)S)A are defined
for all functions ψ ∈ (1 + PPA)S as

oR(ψ) =
⊔
x∈I

ψ(x) tR(ψ)(a)(x) =

{
� if t(x)(a) = �⊔

y∈t(x)(a) ψ(y) otherwise

and the new initial state is IR = o.
Note that the result of this procedure is a Moore machine. Brzozowski’s al-

gorithm in Section 2.2 transforms an NDA (S, 〈o, t〉) with initial state I into
the minimal DA for [[I]]. Analogously, our algorithm transforms an LTS into the
minimal Moore machine for [[I]].

Let us illustrate the minimization procedure by means of an example. Take
the alphabet A = {a, b, c} and the LTS depicted below on the left.

q u o(p) = {0} o(s) = {0}
pa
��

b ��

c
��

a ��
s

a
��

b �����������

c �����
����

�� o(q) = P(A) o(u) = P(A)

r v o(r) = P(A) o(v) = P(A)

Since there are no τ transitions, the function t : S → (1 + P(S))A is defined as
on the left, and the function o : S → (1 + PPA) (given on the right) assigns to
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each state x the set Fail(t(x)). Suppose we want to build the minimal Moore
machine for the behaviour [[{p}]] : A∗ → 1 + PPA, which is the function

[[{p}]] : a∗ �→ {0}, a∗b �→ P(A), a∗c �→ P(A), �→ 0

where denotes all the words different from a∗, a∗b and a∗c. By applying our
algorithm to the coalgebra (S, 〈o, t〉), we first obtain the intermediate Moore
machine on the left below, where a double arrow ψ ⇒ Z means that the output
of ψ is the set Z. The initial state is ψ1 : S → 1 + PPA which, by definition, is
the output function o above. The explicit definitions of the other functions ψi

can be computed according to the definition of tR.

{0} ψ1
a ��

b,c

��

�� ψ2

b,c

��

a

��
�� {0}

P(A) ψ3

a

�� b,c
���� ψ4

a,b,c

��
�� 0

α1a
��

b,c
��

��
α2

a,b,c
��

��
α3 a,b,c

��

��
{0} P(A) 0

Observe that [[ψ1]] is the “reversed” of [[{p}]]. For instance, triggering ba∗ from
ψ1 leads to ψ3 with output P(A); this is the same output we get by executing
a∗b from p, according to [[{p}]]. Executing reverse and determinize once more
(step 3) and taking the reachable part (step 4), we obtain the minimal Moore
machine on the right, with initial state α1.

We have proved the correctness of this algorithm in the full version of this
paper [5]; it builds on the coalgebraic perspective on Brzozowski’s algorithm
given in [4].

4 A Family of Examples

As discussed in the introduction, the problem of checking must equivalence is
PSPACE-complete [17]. Hence, a theoretical comparison of HKC, Brzozowski
(BRZ) and the partition refinement (PR) of [12] will be less informative than
a thorough experimental analysis. Designing adequate experiments is out of the
scope of this paper. We will instead just show the reader some concrete exam-
ples. It is possible to show some concrete cases where (a) HKC takes polynomial
time while BRZ and PR exponential time and (b) (BRZ) polynomial time while
HKC and PR exponential time. There are also examples where (c) PR is polyno-
mial and BRZ is exponential, but it is impossible to have PR polynomial and HKC

exponential. Indeed, cycle 2 of HKC is repeated at most 1 + |A|·|R| times where
|A| is the size of the alphabet and |R| is the size of the produced relation R.
Such relation always contains at most n pairs of states, for n being the size of
the reachable part of the determinised system. Therefore, if HKC takes exponen-
tial time, then also PR takes exponential time since it always needs to build the
reachable part of the determinised LTS.
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In this section we show an example for (a). Examples for (b) and (c) can be
found in the full version of this paper [5].

Consider the following LTS, where n is an arbitrary natural number. After
the determinization, {x} can reach all the states of the shape {x} ∪XN , where

XN = {xi | i ∈ N} for any N ⊆ {1, . . . , n}. For instance for n = 2, {x} aa→ {x},
{x} ab→ {x, x1}, {x} ba→ {x, x2} and {x} bb→ {x, x1, x2}. All those states are
distinguished by must and, therefore, the minimal Moore machine for [[{x}]] has
at least 2n states.

xa,b
�� b �� x1

a,b
�� . . .

a,b
�� xn

b �� u τ
��

ya,b
�� b ��

a,b ��

y1
a,b

�� . . .
a,b

�� yn
b �� v τ

��

z
a

��
b

��

One can prove that x and y are must equivalent by showing that relation

R = {({x}, {y}), ({x}, {y, z}), (�,�)}
∪ {({x} ∪XN , {y, z} ∪ YN ) | N ⊆ {1, . . . , n}}

is a bisimulation (here YN = {yi | i ∈ N}). Note that R contains 2n + 2 pairs.
In order to check [[{x}]]=[[{y}]], HKC builds the following relation,

R′ = {({x}, {y}), ({x}, {y, z})}∪ {({x, xi}, {y, z, yi}) | i ∈ {1, . . . , n}}

which is a bisimulation up-to and which contains only n + 2 pairs. It is worth
to observe that R′ is like a “basis” of R: all the pairs (X,Y ) ∈ R can be gen-
erated by those in R′ by iteratively applying the rules in (4). Therefore, HKC
proves [[{x}]]=[[{y}]] in polynomial time, while minimization-based algorithms
(such as [12] or Brzozowski’s algorithm) require exponential time.

5 Conclusions and Future Work

We have introduced a coalgebraic characterization of must testing semantics by
means of the generalized powerset construction [28]. This allowed us to adapt
proof techniques and algorithms that have been developed for language equiva-
lence to must semantics. In particular, we showed that bisimulations up-to con-
gruence (that was recently introduced in [7] for NDA’s) are sound also for must
semantics. This fact guarantees the correctness of a generalization of HKC [7] for
checking must equivalence and preorder and suggests that the antichains-based
algorithms [32,1] can be adapted in a similar way. We have also proposed a vari-
ation of Brzozowski’s algorithm [9] to check must semantics, by exploiting the
abstract theory in [4]. Our contribution is not a simple instantiation of [4], but
developing our algorithm has required some ingenuity to avoid the preliminary
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determinization that would be needed to directly apply [4]. We implemented
these algorithms together with an interactive applet available online [6].

We focused on must testing semantics because it is challenging to compute,
but our considerations hold also for may testing and for several decorated trace
semantics of the linear time/branching time spectrum [30] (namely, those that
have been studied in [3]). Adapting these algorithms to check fair testing [24]
seems to be more complicated: while it is possible to coalgebraically capture
failure trees, we do not know how to model fair testing equivalence. We believe
that this is a challenging topic to investigate in the future. Moreover, since coal-
gebras can easily model probabilistic systems, it is worth to investigate whether
our approach can be extended to the testing semantics of probabilistic and non-
deterministic processes (e.g. [15]).
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Abstract. Higher-order (HO) model checking is the problem of deciding
whether the tree generated by a higher-order recursion scheme (HORS)
is accepted by an alternating parity tree automaton (APT). HO model
checking has been shown to be decidable by Ong and recently applied
to automated program verification. Practical HO model checkers have
been, however, developed only for subclasses of APT such as trivial tree
automata and weak APT. In this paper, we develop a practical model
checking algorithm for the full class of APT, and implement an APT
model checker for HORS. To our knowledge, this is the first model checker
for HORS that can deal with the full class of APT. We also discuss its
applications to program verification.

1 Introduction

The model checking of higher-order recursion schemes (HORS) has recently
been drawing attention and applied to fully-automated verification of functional
programs [8,11,10,12,17]. A HORS is a higher-order tree grammar for generating
a single, possibly infinite tree, which can also be viewed as a term of the
simply-typed call-by-name λ-calculus with recursion and tree constructors (but
not destructors). Given a HORS G and an alternating parity tree automaton
(APT) A, the model checking of HORS [16] asks whether the tree generated by
G is accepted by A. Although the model checking problem is k-EXPTIME
complete (for order-k HORS) [16], practical model checkers, which do not
immediately suffer from the k-EXPTIME bottleneck, have been developed for
subclasses of the APT model checking of HORS [8,12,7,15].

The previous studies on practical model checking algorithms for HORS and
their applications have, however, not exploited the full power of APT model
checking of HORS. Most of them [8,7,15] restricted tree automata (for expressing
tree properties) to Aehlig’s trivial tree automata [1], which can only express
safety properties. Accordingly, applications have also been limited to verification
of safety properties (that bad events will never happen). The only exception is
the work of Lester et al.’s [12], who implemented a model checker for a larger
subclass of APT called weak alternating tree automata [14], and applied it to
verification of some liveness properties.

C.-c. Shan (Ed.): APLAS 2013, LNCS 8301, pp. 17–32, 2013.
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The goal of the present paper is to develop a model checker for HORS that
can deal with the full class of APT, and apply it to automated verification
of functional programs. To this end, we propose a new APT model checking
algorithm, which combines Kobayashi and Ong’s reduction from APT model
checking of HORS to a typability problem [9], and Kobayashi’s algorithm
for trivial automata model checking [8]. We use an extension of Kobayashi’s
algorithm to collect type candidates and decide whether a given HORS is typable
under Kobayashi and Ong’s type system. As the naive implementation of the
algorithm suffers from the explosion of the number of type candidates, we also
introduce a novel subtyping relation on Kobayashi and Ong’s intersection types,
and apply optimizations. To demonstrate the usefulness of the full APT model
checking of HORS, we also discuss extensions of the two previous applications
to program verification: resource usage verification and HMTT verification
(verification of tree-processing programs) [8,11]. Thanks to the power of the full
APT model checking, we can verify more elaborate properties of programs, like
“does a program eventually close a file as long as the end of the file is eventually
read?” and “does a tree-processing program generate a finite tree as long as the
input tree is finite?”

Our contributions are: (i) the first practical, full APT model checking
algorithm for HORS and its implementation. To our knowledge, ours is the first
implementation of an APT model checker for HORS. (ii) Optimization based on
a novel subtyping relation that respects priorities of APT. (iii) Applications to
program verification, which take advantage of the full APT model checking.

In the rest of the paper, we first review basic definitions in Section 2. Sections 3
and 4 discuss our APT model checking algorithm and its optimizations. Section 5
discusses applications and Section 6 reports experiments. Section 7 discusses
related work and Section 8 concludes the paper. A longer version of this paper
is available from the first author’s web page.

2 Preliminaries

We write dom(f) and codom(f) for the domain and codomain of a map f . A
ranked alphabet Σ is a map from a finite set of symbols to non-negative integers
(called arities). We write ar (Σ) for the largest arity of symbols in Σ. Let Pos
be the set of positive integers. An L-labeled tree is a partial map T from Pos∗ to
L, such that ∀π ∈ Pos∗.∀i ∈ Pos.(πi ∈ dom(T ) =⇒ {π} ∪ {πj | 1 ≤ j ≤ i} ⊆
dom(T )). For a ranked alphabet Σ, a Σ-labeled ranked tree is a dom(Σ)-labeled
tree T such that ∀π ∈ Pos∗.{i | πi ∈ dom(T )} = {i | 1 ≤ i ≤ Σ(T (π))}.

HORS. The sets of sorts and terms are defined by:

κ (sorts) ::= o | κ1 → κ2 t (terms) ::= a | x | t1t2 | λx : κ.t.

Here, meta-variables a and x range over dom(Σ) and a set of variables
respectively. We call a term t an applicative term if it does not contain
λ-abstractions. We often omit the sort annotation and write λx.t for λx : κ.t.
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Intuitively, o describes a tree, and κ1 → κ2 describes a function that takes
a value of sort κ1 and returns a value of sort κ2. The sort assignment relation
K �Σ t : κ is defined by the following standard typing rules.

K �Σ a : o→ · · · o︸ ︷︷ ︸
Σ(a)

→ o K, x : κ �Σ x : κ

K �Σ t1 : κ′ → κ K �Σ t2 : κ′

K �Σ t1t2 : κ

K, x : κ′ �Σ t : κ

K �Σ λx : κ′.t : κ′ → κ

The order and arity of a sort is defined by: ord(o) = ar (o) = 0, ord(κ1 →
κ2) = max(1 + ord(κ1), ord(κ2)), and ar(κ1 → κ2) = ar(κ2) + 1.

Definition 1. A higher-order recursion scheme (HORS) G is a quadruple
(Σ,N ,R, S), where: (i) Σ is a ranked alphabet. (ii) N is a map from a finite set
of symbols called non-terminals to sorts. (iii) R is a map from non-terminals
to expressions of the form λx1. . . . .x�.t where t is an applicative term, and
N �Σ R(F ) : N (F ) for every F ∈ dom(N ). (iv) S is a non-terminal called
the start symbol, with N (S) = o. The order of a HORS G is the maximum order
of the non-terminals.

Intuitively, a HORS G = (Σ,N ,R, S) is a tree-generating program that consists
of a system of top-level function definitions {F1 = R(F1), . . . , Fn = R(Fn)} with
the “main” function S ∈ {F1, . . . , Fn}. We define the reduction relation −→G by:
(i) F s1 · · · s� −→G [s1/x1, . . . , s�/x�]t if R(F ) = λx1 . . . λx�.t. (ii) If ti −→G t′i,
then a t1 . . . t� −→G a t1 . . . ti−1 t′i ti+1 . . . t�.

For an applicative term t of sort o, we write t⊥ for the (Σ{⊥ �→ 0})-labeled
ranked tree defined inductively by: (i) (Fs1 . . . sn)

⊥ = ⊥ and (ii) (as1 . . . sn)
⊥ =

a(s1
⊥) . . . (sn⊥) (where n ≥ 0). We define the binary relation � on (Σ{⊥ �→

0})-labeled ranked trees by: t1 � t2 iff (i) dom(t1) ⊆ dom(t2) and (ii) ∀π ∈
dom(t1).t1(π) = t2(π) ∨ t1(π) = ⊥. The value tree of G, written [[G]], is the least
upper-bound of the set {t⊥ | S −→∗

G t} with respect to �.

Example 1.

Consider HORS G1 = (Σ,N ,R, S) where:

Σ = {a �→ 2, b �→ 1, c �→ 0} N = {S �→ o,F �→ o→ o}
R = {S �→ F c, F �→ λx.a x (F (b x))}.

S is reduced as follows.

S −→G1 F c −→G1 a c (F (b c)) −→G1 · · · .

The tree [[G1]] is shown on the righthand side.

a

c a

b

c

a

b

b

c

· · ·

Alternating Parity Tree Automata (APT). Given a finite set X , the set
B+(X) of positive Boolean formulas over X is given by (x ranges over X):

B+(X) � ψ ::= true | false | x | ψ1 ∧ ψ2 | ψ1 ∨ ψ2
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For a set Y ⊆ X and a formula ψ ∈ B+(X), sat(Y, ψ) is defined by:

sat(Y, true) = true sat(Y, false) = false sat(Y, x) =

{
true (x ∈ Y )

false (otherwise)

sat(Y, ψ1 ∧ ψ2) = sat(Y, ψ1) ∧ sat(Y, ψ2) sat(Y, ψ1 ∨ ψ2) = sat(Y, ψ1) ∨ sat(Y, ψ2)

Definition 2. An alternating parity tree automaton (APT for short) [3] is a
5-tuple (Σ,Q, δ, qI , Ω) where: (i) Σ is a ranked alphabet. (ii) Q is a finite set
of states. (iii) δ is a map from Q × dom(Σ) to B+({1, ..., ar(Σ)} × Q), where
δ(q, a) ∈ B+({1, . . . , Σ(a)} × Q) for each a ∈ Σ and q ∈ Q. (iv) qI ∈ Q is
an initial state. (v) Ω is a map from Q to natural numbers called priorities. A
run-tree of an APT over a Σ-labeled tree T is a (dom(T ) × Q)-labeled tree R
satisfying (i) ε ∈ dom(R) and R(ε) = (ε, qI), and (ii) for every β ∈ dom(R)
with R(β) = (α, q) and sat({(i, q′) | ∃j.R(βj) = (αi, q′)}, δ(q, T (α))) = true.
A run-tree R is accepting if, for every infinite path of R, the largest priority
of automaton states occurring infinitely often on the path is even. An APT A
accepts T if there exists an accepting run-tree of A over T .

Example 2. Consider APT A1 = (Σ = {a �→ 2, b �→ 1, c �→ 0}, {q0, q1}, δ, q0, Ω)
where: δ(q0, a) = δ(q1, a) = (1, q0) ∧ (2, q0) δ(q0, b) = δ(q1, b) = (1, q1)

δ(q0, c) = δ(q1, c) = true Ω(q0) = 0 Ω(q1) = 1
A1 accepts a Σ-labeled ranked tree T if and only if every path of T
contains only finitely many b. This property cannot be expressed by any
non-deterministic Büchi tree automaton [20] or weak APT; note that the class
of languages accepted by weak APT is a proper subclass of those accepted by
non-deterministic Büchi automata [13].

APT Model Checking and Kobayashi and Ong’s Type System
The APT model checking problem of HORS is, given a HORS G and an APT
A, the problem of checking whether A accepts [[G]]. Following [16], we assume
(without loss of generality) that [[G]] does not contain ⊥.

Kobayashi and Ong [9] reduced the APT model checking problem above to
a type checking problem (or, a type derivation game). We briefly review their
reduction. See [9] for more details. We fix an APT A = (Σ,Q, δ, q0, Ω) below.

Definition 3. Let q and m range over the set Q of states and the set of priorities
(i.e., codom(Ω)). The set of types is defined by:

θ (types) ::= q | σ → θ σ (intersections) ::=
∧
{(θ1,m1), ..., (θk,mk)}

The binary relation θ :: κ is defined by:

q :: o

θ :: κ2 ∀i ∈ {1, . . . , k}.θi :: κ1

(
∧
{(θ1,m1), ..., (θk,mk)} → θ) :: (κ1 → κ2)

Intuitively, the type q describes a tree that is accepted by A from state q. The
type

∧
{(θ1,m1), ..., (θk,mk)} → θ describes a function that takes an argument
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of types θ1, . . . , θk and returns a value of type θ. The priority mi represents the
largest priority in the path from the root of the tree generated by the return value
to the position where the argument is used as a value of type θi. We often write∧

i∈{1,...,k}(θi,mi) for
∧
{(θ1,m1), ..., (θk,mk)}. We extend the priority function

Ω on states to that on types by: Ω(σ → θ) = Ω(θ).
The type judgment relation Γ �A t : θ is defined by:

x : (θ,Ω(θ)) �A x : θ

sat({(i, qij) | i ∈ {1, ..., n}, j ∈ Ji}, δ(q, a)) = true
mij = max(Ω(qij), Ω(q)) for each i, j

∅ �A a :
∧

j∈J1
(q1j ,m1j)→ ... →

∧
j∈Jn

(qnj ,mnj)→ q

Γ0 �A t0 :
∧

i∈I(θi,mi) → θ
Γi �A t1 : θi for each i ∈ I

Γ0 ∪
⋃

i∈I(Γi ⇑ mi) �A t0t1 : θ

Γ, x :
∧

i∈I(θi,mi) �A t : θ
I ⊆ J θi :: κ

Γ �A (λx : κ.t) :
∧

i∈J (θi,mi) → θ

Here, Γ is a set of type bindings of the form x : (θ,m) (where non-terminals are
treated as variables). The operation Γ ⇑ m is defined by:

Γ ⇑ m := {F : (θ,max(m,m′)) | F : (θ,m′) ∈ Γ}.

The type judgment relation above induces the following parity game. A parity
game [3] is a two-player game between a player ∃ and an opponent ∀ where each
position of the game is associated with a priority, and the player wins an infinite
play if the largest priority visited infinitely often is even. The edges E∃ and E∀
below represents the possible moves of the player and the opponent respectively.

Definition 4. For a HORS G = (Σ,N ,R, S) and an APT A, the parity game
PGG,A is (V ∀, V∃, v0, E∀ ∪ E∃, Ω), where v0 = (S, qI , Ω(qI)) and:

V∃ = {(F, θ,m) |F ∈ dom(N ), θ :: N (F ),m ∈ dom(Ω)}
V∀ = {Γ | dom(Γ ) ⊆ dom(N ), ∀F : (θ,m) ∈ Γ. θ :: N (F )}
E∃ = {((F, θ,m), Γ ) |Γ �A R(F ) : θ} E∀ = {(Γ, (F, θ,m)) |F : (θ,m) ∈ Γ}

We write �A G if Player ∃ has a winning strategy for PGG,A.

In the game above, Player ∃ tries to show that the start symbol S has type qI ,
and Opponent ∀ tries to disprove it. In the position (F, θ,m), the player must
show why F has type θ by providing Γ such that Γ � R(F ) : θ.

The model checking problem for HORS is reduced to the parity game above.

Theorem 1. [9] [[G]] is accepted by A if and only if �A G.

Example 3. Recall G1 in Example 1 and A1 in Example 2. Assume that the
parity game is (V∃, V∀, E, v0, Ω). One memoryless winning strategy for player
∃ is a (partial) map from V∃ to V∀, {(S, q0, p) �→ Γ, (F, θ, p) �→ Γ} where θ =
(q0, 0) ∧ (q1, 1) → q0 and Γ = {F : (θ, 0)}. Player ∃ wins because the game
continues indefinitely and the maximum priority is 0.
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3 Practical APT Model Checking Algorithm

Our algorithm is an extension of Kobayashi’s algorithm for (deterministic) trivial
automata model checking [8] that has been successfully used in the state-of-
the-art model checker TRecS [8]. We extract candidates of types needed for
constructing a winning strategy for the parity gamePGG,A, by partially reducing
HORS and checking how each non-terminal is used in the partial reduction
sequence. We then check whether a winning strategy can be constructed by
using the type candidates. The type extraction phase is based on Kobayashi’s
algorithm [8], but has been extended to deal with priorities and alternations of
the transition function. (Deterministic trivial automata are subclasses of APT,
where every state has priority 0 and the image of the transition function is
restricted to a formula of the form (1, qi1) ∧ · · · (k, qik).)

The overall structure of the (semi-)algorithm is given in Figure 1, which takes
a HORS G and APT A, and returns true if �A G holds, and diverges otherwise.
The whole algorithm runs two instances of the semi-algorithm concurrently, one
for the input (G,A) and the other for (G,A) where A is an APT that accepts the
complement of the tree language accepted by A. Each step is described below.

C ⇐
initial configuration tree

loop
C ⇐ Expand(C)
Δ ⇐ TypeCands(C)
J ⇐ EnumJudgments(Δ)
P ⇐ ConstructPG(J )
if there is a winning
strategy for player ∃ for P

return true
end loop

Fig. 1. Pseudo code for the
algorithm

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

Fig. 2. A configuration tree for G1 and A1. l1 =
〈ε, 1, 1〉, l2 = 〈(2, q0), 3, 1〉

Construction of Configuration Trees. We introduce configuration trees,
which describe how the start symbol S can be reduced to generate a tree, and how
the (partially) generated tree can be accepted by the automaton. A configuration
tree is a labeled tree consisting of nodes of the form (β, �, t, q, b) where: (i) β is
a sequence of pairs consisting of a natural number and a state of A; (ii) � is
a natural number; (iii) t is a term of sort o; (iv) q is a state of A; and (v) b
is a boolean value that represents whether the node has been expanded (b =
true) or not (b = false). We write 〈β, �, t, q〉 and [β, �, t, q] for (β, �, t, q, false)
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and (β, �, t, q, true) and call them open nodes and closed nodes respectively.
Intuitively, the label (β, �, t, q, b) means that t is expected to generate a tree
accepted from state q. The elements β and � are used to uniquely identify a
node of a configuration tree.

The initial configuration tree is the singleton tree 〈ε, 0, S, q0〉, which represents
the fact that S is expected to generate a tree that is accepted by A from q0.

The sub-procedure Expand (on the third line in Figure 1) applies the following
reduction rules in a finite number of steps (in a fair manner, so that every open
node is eventually reduced in some iteration of the loop).

R(F ) = λx1. · · ·λxk.s

E[〈β, �, F t1 · · · tk, q〉]�
E[[β, �, F t1 · · · tk, q]〈β, � + 1, [t

〈β,�,k〉
1 /x1, . . . , t

〈β,�,1〉
k /xk]s, q〉]

Atoms(δ(q, a)) = {(1, q1,1), . . . , (1, q1,n1), . . . , (k, qk,1), . . . , (k, qk,nk
)}

E[〈β, �, a t1 · · · tk, q〉] � E[[β, �, a t1 · · · tk, q]
〈β(1, q1,1), �+ 1, t

〈β,�,k〉
1 , q1,1〉 · · · 〈β(1, q1,n1), �+ 1, t

〈β,�,k〉
1 , q1,n1〉

. . . 〈β(k, qk,1), �+ 1, t
〈β,�,1〉
k , qk,1〉 · · · 〈β(k, qk,nk

), � + 1, t
〈β,�,1〉
k , qk,nk

〉]

E denotes a tree context, defined by: E ::= [ ] | a C1 · · · Ci−1 E Ci+1 · · · Cn.
Atoms(δ(q, a)) denotes the set of atomic formulas of the form (i, q′) in δ(q, a).
Each term is annotated with labels of the form 〈β, �, k〉, which represent the
origin of the term. For example, s〈β,�,k〉 means that s occurred as the k-th
rightmost argument of the term in a node [β, �, t, q]. We often omit unimportant
labels, so we may just write t〈β,�,i〉 for ((t〈β

′,�′,i′〉)〈β,�,i〉)〈β
′′,�′′,i′′〉. In the second

rule, a child node is created for every (i, q′) ∈ Atoms(δ(q, a)), irrespectively of
the shape of the formula. For example, if δ(q, a) = ((1, q1) ∧ (2, q2)) ∨ ((1, q1) ∧
(2, q3)), then a child node is created for each of (1, q1), (2, q2), and (2, q3). The
shape of the formula δ(q, a) is taken into account in the type extraction phase.
This design makes the construction of configuration trees deterministic up to
the choice of expanded nodes, and postpones the treatment of non-determinism
incurred by the transition function δ to the type extraction phase.

For example, a configuration tree for G1 and A1, obtained by reducing the
initial configuration tree in 8 steps, is shown in Figure 2.

Extraction of Type Candidates. (procedure TypeCands) For each node N =
(βN , �N , tN , qN , bN ) of C, we define the set ΞN of sets of type bindings of the
form 〈β′, �′, i〉 : (θ,m) or 〈β′, �′, i〉 : α by:

Ξ ′′
N =

⎧⎪⎪⎨
⎪⎪⎩
{〈β′, �′, i〉 : α | s〈β′,�′,i〉 occurs in tN} if bN = false
ΞN ′ if tN = F s1 · · · sn and N ′ is the (unique) child node of N
δ(q, a)[ΞN1/(i1, qj1), . . . , ΞNk

/(ik, qjk)] if bN = true and
if tN = a s1 · · · sn and Atoms(δ(q, a)) = {(i1, qj1), . . . , (ik, qjk)}
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Ξ ′
N =

{Δ ∪ {〈β′, �′, i〉 : (σ1 → · · · → σk → q,Ω(q)) | tN = s〈β
′,�′,i〉u1 · · ·uk and

σi = Δ(〈βN , �N , k + 1− i〉) for each i ∈ {1, . . . , k}} | Δ ∈ Ξ ′′
N ⇑Ω(q)}

ΞN = {{〈β′, �′, i〉 : (θ,m) ∈ Δ | �′ occurs in N} | Δ ∈ Ξ ′
N}

Intuitively, 〈β′, �′, i〉 : (θ,m) ∈ ΞN means that the term labeled by 〈β′, �′, i〉 (i.e.,
the term that occurs in the i-th rightmost argument of the term in the node
indexed by (β′, �′)) is used as a value of type θ in the subtree rooted by N , and
that m is the largest priority in the path from the node (β′, �′) to the node where
the term is used as a value of type θ. In the definition above, Ξ ⇑m = {Δ ⇑m |
Δ ∈ Ξ}, where Δ ⇑m = {〈β, �, i〉 : (θ,max(m,m′)) | 〈β, �, i〉 : (θ,m′) ∈ Δ}. The
expression δ(q, a)[ΞN1/(i1, qj1), . . . , ΞNk

/(ik, qjk)] represents the set obtained by
replacing each atomic formula (im, qjm) with ΞNm . Here, the formula consisting
of ΞN is interpreted as a set of sets of type bindings by:

[[true]] = {∅} [[false]] = ∅ [[Ξ1 ∨ Ξ2]] = [[Ξ1]] ∪ [[Ξ2]]
[[Ξ1 ∧ Ξ2]] = {Δ1 ∪Δ2 | Δ1 ∈ [[Ξ1]], Δ2 ∈ [[Ξ2]]}

Ξ ′′
N describes type bindings inherited from child nodes, and Ξ ′

N describes those
obtained by adding information on how head terms in the current node is used.
ΞN is obtained from Ξ ′

N by filtering out irrelevant type bindings.
Finally, TypeCands(C) returns:

{F : θ | σi = ΞN (〈β, �, k + 1− i〉), θ′ = σ1 → · · · → σk → q, and θ ∈ Erase(θ′)
for some N = (β, �, F u1 · · · uk, q, b) and for each i ∈ {1, · · · , k} }

Here, Erase(θ) [8] is the function to remove type variables, given by:

Erase(q) = {q}
Erase((τ1,m1) ∧ · · · ∧ (τk,mk) → τ) = Erase((τ1,m1) ∧ · · · ∧ (τk,mk) ∧ α → τ)
= {(θ1,m1) ∧ · · · ∧ (θk,mk)→ θ | θi ∈ Erase ′(τi), θ ∈ Erase(τ)}

Erase ′(τ) =
{
Erase(τ) ∪ {�} if τ contains a type variable
Erase(τ) otherwise

Example 4. Let C be the configuration tree in Figure 2. For each N , ΞN is given
as follows.1

ΞN9 = {{l2 : α, l1 : α}} ΞN8 = {{l1 : (q1, 1)}} ΞN7 = {{l2 : (q0, 0), l1 : (q1, 1)}}
ΞN6 = ΞN5 = {{l2 : (q0, 0), l1 : (q1, 1), l2 : α, l1 : α}}
ΞN4 = {{l1 : (q0, 0)}} ΞN3 = {{l1 : (q1, 1), l1 : α, l1 : (q0, 0)}}
ΞN2 = {{l1 : (q1, 1), l1 : α, l1 : (q0, 0)}} ΞN1 = {{}}

From N1, N2, N5 and N9, we obtain type candidates:

TypeCands(C) = {S : q0, F : � → q0, F : (q0, 0)→ q0, F : (q0, 0)∧(q1, 1)→ q0}

1 Each ΞN is a singleton set because A1 is deterministic.
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Construction of the Parity Game. The procedure ConstructPG(Δ)
constructs the subgame (denoted by PGG,A,Δ) of the parity game PGG,A,
obtained by replacing E∃ with:

E′
∃ = {((F, θ,m), Γ ) |Γ �A R(F ) : θ ∧ ∀(F : (θ,m′) ∈ Γ ).F : θ ∈ Δ}

We can use a standard algorithm [6,19] to check the existence of a winning
strategy for the parity game.

Example 5. Let Δ be the set of type candidates in Example 4. We obtain the
following type judgments from Δ:

F : (� → q0, 0) � R(S) : q0 F : ((q0, 0)→ q0, 0) � R(S) : q0
F : ((q0, 0) ∧ (q1, 1)→ q0, 0) � R(S) : q0
F : ((q0, 0) ∧ (q1, 1)→ q0, 0) � R(F ) : (q0, 0) ∧ (q1, 1)→ q0

Then, from these type judgments, we obtain the following parity game.

 

 

  

) 

 

 

Here, rounded rectangles show Player’s positions, and ordinary rectangles show
Opponent’s positions. The position (S, q0, 0) is the initial position and the thick
arrows show a winning strategy of Player. ��

Our algorithm is sound and complete in the following sense.

Theorem 2. The procedure in Figure 1 eventually terminates and outputs true
if and only if [[G]] is accepted by A.

4 Optimization

The basic algorithm described in Section 3 still suffers from the blow-up of the
size of the parity game PGG,A,Δ. In this section, we introduce a novel subtype
relation based on priorities, and then discuss two optimizations based on it.

Definition 5 (sub-priority and subtype relations). The sub-priority
relation ≤P and the subtype relation ≤ are defined by (where ≤N is the standard
inequality relation on natural numbers):

p ≤N p′

2p ≤P 2p′
p ≤N p′

2p′ + 1 ≤P 2p+ 1 2p+ 1 ≤P 2p′

q ≤ q
θ ≤ θ′ ∀i ∈ I.∃j ∈ J.(θ′j ≤ θi ∧ p′j ≤P pi)∧

i∈I(θi, pi)→ θ ≤
∧

j∈J (θ
′
j , p

′
j) → θ′
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For priorities, · · · ≤P 3 ≤P 1 ≤P 0 ≤P 2 ≤P 4 ≤P · · · holds. Intuitively, p ≤P p′

means that the priority p′ is more beneficial than p for the player of the parity
game. The subtype relation is standard except for the condition on priorities.
The relation θ ≤ θ′ means that a value of type θ may be safely regarded as a
value of type θ′. For example, (q1, 2)→ q0 ≤ (q1, 0)→ q0 holds, since (q1, p)→ q0
means that an argument is used as a value of type q1 when the largest priority
visited is p, and it is safe to assume that p is 0 when p is actually 2, in the
sense that if the largest priority in an infinite path is even under the assumption
that p = 0, then that is also the case under the assumption that p = 2. The
converse does not hold: for example, consider an infinite sequence of priorities
(p 1)ω = p 1 p 1 · · ·. The largest priority is even if p is assumed to be 2, but that
is odd (and the player loses) if p is actually 0.

We write Γ �≤
A t : θ if it is derivable from the rules for Γ �A t : θ (with �A

replaced by �≤
A) and the following subsumption rule:

Γ �≤
A t : θ′ θ′ ≤ θ

Γ �≤
A t : θ

We extend the subtype relation to the relation on type environments by:

Γ ≤ Γ ′ ⇐⇒ ∀x : (θ′, p′) ∈ Γ ′.∃x : (θ, p) ∈ Γ.(θ ≤ θ′ ∧ p ≤P p′).

We also write (θ, p) ≤ (θ′, p′) if θ ≤ θ′ and p ≤P p′.
We write PG≤

G,A for the parity game obtained by by replacing �A in the

definition of PGG,A (Definition 4) with �≤
A, and write �≤

A G if there is a winning

strategy for PG≤
G,A. The following theorem states the soundness of our notion

of subtyping. The proof is almost the same as the proof of the soundness of
Kobayashi and Ong’s type system (without subtyping) [9]: By using the winning

strategy for PG≤
G,A, we can construct an accepting run-tree of A over [[G]].

Theorem 3. If �≤
A G, then [[G]] is accepted by A.

We discuss two optimizations below.

Type Normalization Optimization optTN. A type
∧

i∈{1,...,n}(θi, pi) → θ

is normalized if for each i, there is no j 
= i such that (θj , pj) ≤ (θi, pi). The
function normalize on types is defined by:

nf (θ) =

⎧⎪⎪⎨⎪⎪⎩
q if θ = q∧{(θi, mi) ∈ S′ |

¬∃(θj ,mj) ∈ S′.(θj ,mj) ≤ (θi,mi) ∧ (θi,mi) �≤ (θj ,mj)} → nf (θ0)
if θ =

∧
S → θ0 and S′ = {(nf (θi),m) | (θi,m) ∈ S}

We extend the normalization operation nf pointwise to that on type
environments by nf (Δ) = {(F : nf (θ) | (F : θ) ∈ Δ} and nf (Γ ) = {(F :
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(nf (θ), p) | (F : (θ, p)) ∈ Γ}. Now, the optimized algorithm optTN is obtained by
replacing the edge set E′

∃ of PGG,A,Δ in Section 3 with:

E′′
∃ = {((F, θ,m), Γ ) |Γ �≤

A R(F ) : θ ∧ ∀(F : (θ,m′) ∈ Γ ).F : θ ∈ nf (Δ)}.

We write PG≤
G,A,Δ for the resulting parity game.

Type Environment Reduction Optimization optER. We remove weaker
moves of the player from the parity game PG≤

G,A,Δ. For example, if there are two

judgments F ′ : (q0, 0) �≤
A R(F ) : θ and F ′ : (q0, 2) �≤

A R(F ) : θ, and the player
must provide a witness for F having type θ, then choosing the environment
F ′ : (q0, 2) is more advantageous since it has a larger even priority (so that it is
more likely that the largest priority becomes even). Based on this observation,

we define the reduced parity game PGR≤
G,A,Δ by replacing E′′

∃ with:

E′′
∃ = {((F, θ,m), Γ ) | Γ is maximal with respect to ≤ among those that satisfy

Γ �≤
A R(F ) : θ and ∀(F : (θ,m′) ∈ Γ ).F : θ ∈ nf (Δ)}.

5 Applications

We discuss two applications of the full APT model checking (that cannot
be handled by trivial automata or weak APT) to automated verification of
functional programs.

Resource Usage Verification. The goal of resource usage verification [5,8] is
to check that a given program accesses external resources (like files, networks,
etc.) in a valid manner. For file-manipulating programs, a typical goal is to check
that a file is eventually closed, and that no more access occurs afterwards. For
example, consider the following OCaml-like (call-by-value) program.

let rec f x = let c = read x in if c=EOF then close x else f x

in f (open_in "foo")

It first defines a recursive function f, which takes a file pointer x as an argument,
reads x, and depending on the character read, either closes x or recursively calls
itself. The program then opens the file “foo” and calls f. For this program, the
goal of resource usage verification would be to check that the file (pointer) is
indeed used as a read-only file: the file is eventually closed, it is only read before
being closed, and it is never accessed after being closed.

Kobayashi [8] presented a reduction from resource usage verification to a
model checking problem for HORS. The idea was to transform a program into
a HORS that generates a tree representing all the possible resource access
sequences. For example, the above program can be transformed to the following
HORS Gfile.

S → F end F k → r (br (c k) (F k))
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Here, the second rule corresponds to the recursive definition
of f. The parameter k is a kind of continuation parameter,
which represents how the file “foo” is accessed after
the function returns. The non-terminal symbols r and
c represent read and close operations respectively, br

represents a non-deterministic branch, and end represents
program termination. The branch “if c=EOF then ...

else ...” has been replaced by the non-deterministic
branch (represented by br). The tree generated by the
HORS Gfile is shown on the righthand side.

r

br

c

end

r

br

c

end

· · ·

As expected, the tree represents the possible sequences of events (including
read/write operations, branches, and termination) of the source program. By
applying the trivial automata model checking to the HORS [8], one can verify
the following properties of the source program: (i) The file is only read before
a close operation (which corresponds to the property on the tree: “Only r and
br may occur above c”). (ii) No file access occurs after the close operation.
(iii) The file is closed before the program terminates. With the combination of
the transformation above and trivial automata model checking, however, one
cannot verify that the program eventually closes the file and terminates, for two
reasons: First, to ensure that, one needs to make the assumption that the end of
file (EOF) is eventually reached. Secondly, it is a liveness property, which cannot
be verified by using trivial automata model checking. To address the first issue,
we refine the transformation into HORS as follows.

S → F d end F x k → call (Read (C x k))
C x k b → b (c k) (F x k)) Read k → br (r eof (k True)) (r (k False))
True x y → x False x y → y

The read operation is now represented as the function
Read , which returns whether EOF is read (through the
continuation k), and at the same time records it by creating
a node r eof or r. The function F calls Read , passing to
it the continuation C x k. We have also added a terminal
symbol call to the rule of F to detect possible divergence
involving no read operations. The tree generated by the
refined HORS G′

file is shown on the righthand side.
Now, in order to verify “As long as it is impossible to read
a file infinitely often without reading the end of the file,
the program eventually closes the file and terminates”, it
suffices to check “in any path of the tree, either r occurs
infinitely often or both c and end occur”, which can be
performed by the APT model checking.

call

br

r eof

c

end

r

call

br

r eof

c

end

r

· · ·

Remark 1. Lester et al. [12] also discussed resource usage verification as an
application of the weak APT model checking of HORS. The property checked by
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their method was not convincing enough: when applied to the above example,
they only check that c occurs eventually if the branches of br are chosen in a
fair manner.

HMTT Verification. An HMTT (higher-order, multi-parameter tree
transducer) [11] is a tree-processing, higher-order functional program. The aim
of HMTT verification [11,22] is to check that a given HMTT satisfies a given
input/output specification. The idea of their method [11,22] was to transform
a given HMTT to a HORS that generates a tree that contains all the possible
outputs of the HMTT, and to check that the tree contains only valid outputs.
Since their method used trivial automata model checking, however, they could
not check properties like “Given a finite input, does the HMTT always produces
a finite output tree?” and “Is the HMTT productive, in the sense that it never
diverges without producing any ouptut?” By using APT model checking and
modifying the transformation of HMTT into HORS accordingly (so that we
can talk about the finiteness of inputs), we can verify the properties mentioned
above.

6 Experiments

We have implemented a full APT model checker based on the algorithm and
optimizations in Sections 3 and 4. The implementation is still naive and we have
not yet applied some of the optimizations (for trivial automata model checking)
reported in [8], but we have confirmed that our algorithm works at least for small
inputs (note that even for them, the naive algorithm [9] is not runnable at all).

Table 1 shows selected experimental results. The experiments were conducted
under Ubuntu Linux 12.10 on a machine with Intel(R) Xeon(R) 3.30 GHz CPU
and 16 GB memory. The columns O, P , and R describe the order of HORS, the
number of priorities of APT, and the expected output. The column “no-opt”
shows the result for the plain algorithm in Section 3. The columns optTN,
optER, and optTN&optER show the results for the two optimizations and their
combination (for optER, nf (Δ) in the definition of E′′

∃ in Section 4 has been
replaced by Δ). The subcolumns J and T show the number of type judgments
(i.e., the number of possible moves of the player) and the running time (in
seconds) of the model checker.

We used four categories of benchmarks (separated by double lines). The first
category is from Lester et al.’s benchmark programs; they can be expressed by
weak APT. The second category contains applications to the resource usage
verification, which have been obtained by modifying the benchmark programs in
[8] to check liveness properties, according to Section 5. The third category comes
from those to the HMTT verification [11,22] discussed in Section 5. Finally, the
fourth category contains benchmarks for a larger number of priorities.

With the two optimizations, the model checker successfully terminated. It
should be noted that our model checker terminates for loop-dj-2, which uses 5
priorities. For the first category of benchmarks, our model checker seems still
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slower than Lester et al.’ model checker THORS [12].2 We expect that this
inefficiency is due to the naive implementation of the type extraction phase,
rather than the extra overhead to deal with priorities.

The comparison between the columns “no-opt” and “optTN” show the
effectiveness of the first optimization. In particular, the performance for
imperative, intercept, var-dwt, and loop-dj-2 have been drastically improved.
On the other hand, the effectiveness of optER has not been confirmed in the
experiments. This may be because the size of inputs and the number of priorities
are too small in the benchmark programs, and larger experiments are required
to check the effectiveness of optER.

Table 1. Benchmark results

no-opt optTN optER optTN& optER

name O P R J T J T J T J T

imperative 3 2 yes 268 10.780 28 0.220 262 10.69 26 0.96
intercept 4 2 yes - TO 37 22.73 - TO 37 25.2
lock1 2 1 yes 63 0.080 24 0.027 35 0.089 23 0.04
var-dwt 5 2 yes - TO 266 44.24 - TO 74 44.0

file 2 2 yes 7 0.044 7 0.044 7 0.044 7 0.06
twofiles 4 2 yes 39 0.272 39 0.260 39 0.272 39 0.62
twofilexn 4 2 no 18 2.692 18 2.496 18 2.608 18 2.55

reverse 2 2 yes 9 0.020 9 0.016 9 0.024 9 0.24
bsort 2 2 yes 5 0.012 5 0.016 5 0.016 5 0.24
merge 1 2 yes 34 0.116 34 0.088 34 0.100 34 0.86
homrep 4 2 yes 84 0.284 58 0.108 84 0.369 58 0.98

gcalloc 2 3 yes 10 0.141 8 0.096 10 0.180 8 0.065
loop-dj-2 5 5 no - TO 82 0.201 - TO 78 0.306

7 Related Work

Previous algorithms for APT model checking of HORS [16,4,9,18] have been
developed for the purpose of showing the decidability and/or discussing the
complexity of the model checking, and have been only of theoretical interest. As
already mentioned, previous practical model checking algorithms for HORS have
focused on trivial automata [8,7,15] or weak APT [12]. Broadbent et al. [2] also
introduced a model-checking algorithm for collapsible pushdown systems, but
they also considered only trivial automata. Our algorithm extends Kobayashi’s
algorithm [8] used in the state-of-the-art model checker TRecS. Lester et al.’s

2 As the source code of THORS is not available, we cannot perform detailed
comparison.
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algorithm [12] also works in a similar manner. The extension of Kobayashi’s
algorithm based on Kobayashi and Ong’s type system [9] as described in Section 3
may be considered a folklore, but we are the first to actually implement a
practical APT model checker for HORS. That required a non-trivial notion of
subtyping based on priorities, as discussed in Section 4.

Applications of trivial automata model checking of HORS to safety
property verification of functional programs have been well studied
recently [8,11,10,17,21]. There were however few studies of applications of APT
model checking of HORS to liveness property verification, probably partly
because of the lack of practical model checkers. The only exception was the
work of Lester et al. [12], who discussed an application of the weak APT model
checking of HORS to resource usage verification. As mentioned in Remark 1,
the properties they considered (like “a liveness property is guaranteed if the left
branch of br is eventually taken”) were not satisfactory.

8 Conclusion

We have proposed a practical algorithm for the full APT model checking of
HORS, and implemented a model checker. To our knowledge, this is the first
practical APT model checker for HORS. In order to achieve the practical
performance, we have introduced optimizations based on a novel subtyping
relation that respects priorities. Experimental results suggest that our model
checker works reasonably well for typical small inputs. We have also proposed
applications of the APT model checking of HORS to automated verification
of functional programs. Further optimization of our implementation is left for
future work.
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6. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg
(2000)

7. Kobayashi, N.: A practical linear time algorithm for trivial automata model
checking of higher-order recursion schemes. In: Hofmann, M. (ed.) FOSSACS 2011.
LNCS, vol. 6604, pp. 260–274. Springer, Heidelberg (2011)

8. Kobayashi, N.: Model checking higher-order programs. JACM 60(3) (2013)
9. Kobayashi, N., Ong, C.-H.L.: A type system equivalent to the modal mu-

calculus model checking of higher-order recursion schemes. Summary appeared
in Proceedings of LICS 2009 (2013) Available from the last author’s web page

10. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Proc. of PLDI, pp. 222–233 (2011)

11. Kobayashi, N., Tabuchi, N., Unno, H.: Higher-order multi-parameter tree
transducers and recursion schemes for program verification. In: Proc. of POPL,
pp. 495–508 (2010)

12. Lester, M.M., Neatherway, R.P., Ong, C.-H.L., Ramsay, S.J.: Model checking
liveness properties of higher-order functional programs. In: Proceedings of ML
Workshop (2011)

13. Muller, D.E., Saoudi, A., Schupp, P.E.: Alternating automata. the weak monadic
theory of the tree, and its complexity. In: Kott, L. (ed.) ICALP 1986. LNCS,
vol. 226, pp. 275–283. Springer, Heidelberg (1986)

14. Muller, D.E., Saoudi, A., Schupp, P.E.: Alternating automata, the weak monadic
theory of trees and its complexity. Theor. Comput. Sci. 97(2), 233–244 (1992)

15. Neatherway, R.P., Ramsay, S.J., Ong, C.-H.L.: A traversal-based algorithm for
higher-order model checking. In: ACM SIGPLAN International Conference on
Functional Programming (ICFP 2012), pp. 353–364 (2012)

16. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion
schemes. In: LICS 2006, pp. 81–90. IEEE Computer Society Press (2006)

17. Ong, C.-H.L., Ramsay, S.: Verifying higher-order programs with pattern-matching
algebraic data types. In: Proc. of POPL, pp. 587–598 (2011)

18. Salvati, S., Walukiewicz, I.: Krivine machines and higher-order schemes. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp.
162–173. Springer, Heidelberg (2011)

19. Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)

20. Thomas, W.: Languages, automata, and logic. In: Handbook of formal languages,
vol. 3, pp. 389–455 (1997)

21. Tobita, Y., Tsukada, T., Kobayashi, N.: Exact flow analysis by higher-order model
checking. In: Schrijvers, T., Thiemann, P. (eds.) FLOPS 2012. LNCS, vol. 7294,
pp. 275–289. Springer, Heidelberg (2012)

22. Unno, H., Tabuchi, N., Kobayashi, N.: Verification of tree-processing programs via
higher-order model checking. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461,
pp. 312–327. Springer, Heidelberg (2010)



Model Checking Dynamic Pushdown Networks�

Fu Song1 and Tayssir Touili2

1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University
fsong@sei.ecnu.edu.cn

2 Liafa, CNRS and Université Paris Diderot
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Abstract. A Dynamic Pushdown Network (DPN) is a set of pushdown systems
(PDSs) where each process can dynamically create new instances of PDSs. DPNs
are a natural model of multi-threaded programs with (possibly recursive) pro-
cedure calls and thread creation. Thus, it is important to have model-checking
algorithms for DPNs. We consider in this work model-checking DPNs against
single-indexed LTL and CTL properties of the form

∧
fi s.t. fi is a LTL/CTL

formula over the PDS i. We consider the model-checking problems w.r.t. simple
valuations (i.e, whether a configuration satisfies an atomic proposition depends
only on its control location) and w.r.t. regular valuations (i.e., the set of the con-
figurations satisfying an atomic proposition is a regular set of configurations). We
show that these model-checking problems are decidable. We propose automata-
based approaches for computing the set of configurations of a DPN that satisfy
the corresponding single-indexed LTL/CTL formula.

1 Introduction

Multithreading is a commonly used technique for modern software. However, mul-
tithreaded programs are known to be error prone and difficult to analyze. Dynamic
Pushdown Networks (DPN) [4] are a natural model of multi-threaded programs with
(possibly recursive) procedure calls and thread creation. A DPN consists of a finite set
of pushdown systems (PDSs), each of them models a sequential program (process) that
can dynamically create new instances of PDSs. Therefore, it is important to investi-
gate automated methods for verifying DPNs. While existing works concentrate on the
reachability problem of DPNs [4,18,17,9,15,24], model checking for the Linear Tem-
poral Logic (LTL) and the Computation Tree Logic (CTL) which can describe more
interesting properties of program behaviors has not been tackled yet for DPNs.

In general, the model checking problem is undecidable for double-indexed proper-
ties, i.e., properties where atomic propositions are interpreted over the control states
of two or more threads [11]. This undecidability holds for pushdown networks even
without thread creation. To obtain decidable results, in this paper, we consider single-
indexed LTL and CTL model checking for DPNs, where a single-index LTL or CTL
formula is a formula of the form

∧
fi such that fi is a LTL/CTL formula over the PDS i.
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A DPN satisfies
∧

fi iff every PDS i that runs in the network satisfies the subformula fi.
We first consider LTL model-checking for DPNs with simple valuations where whether
a configuration of a PDS i satisfies an atomic proposition depends only on the control
state of the configuration. Then, we consider LTL model-checking for DPNs with regu-
lar valuations where the set of configurations of a PDS satisfying an atomic proposition
is a regular set of configurations. Finally, we consider CTL model-checking for DPNs
with simple and regular valuations. We show that these model-checking problems are
decidable. We propose automata-based approaches for computing the set of configura-
tions of a DPN that satisfy the corresponding single-indexed LTL/CTL formula.

It is non-trivial to do LTL/CTL model checking for DPNs, since the number of in-
stances of PDSs can be unbounded. Checking independently whether all the different
PDSs satisfy the corresponding subformula fi is not correct. Indeed, we do not need
to check whether an instance of a PDS j satisfies f j if this instance is not created dur-
ing a run. To solve this problem, we extend the automata-based approach for standard
LTL/CTL model-checking for PDSs [2,8,7,20]. For every process i, we compute a finite
automatonAi recognizing all the configurations from which there exists a run σ of the
process i that satisfies fi. Ai also memorizes the set of all the initial configurations of
the instances of PDSs that are dynamically created during the run σ. Then, to check
whether a DPN satisfies a single-indexed LTL/CTL formula, it is sufficient to check
whether the initial configurations of the processes are recognized by the corresponding
finite automata and whether the set of generated instances of PDSs that are stored in the
automata also satisfy the formula. This condition is recursive. To solve it, we compute
the largest setD f p of the dynamically created initial configurations that satisfy the for-
mula f . Then, to check whether a DPN satisfies f , it is sufficient to check whether the
initial configurations of the different processes are recognized by the corresponding fi-
nite automata and whether the dynamically created initial configurations that are stored
in the automata are inD f p.

To compute the finite automata Ai s, we extend the automata-based approaches for
standard LTL [2,7,8] and CTL [20] model-checking for PDSs. For every i, 1 ≤ i ≤ n,
we construct a Büchi Dynamic PDS (resp. alternating Büchi Dynamic PDS) which is a
synchronization of the PDS i and the LTL (resp. CTL) formula fi. Büchi Dynamic PDS
(resp. alternating Büchi Dynamic PDS) is an extension of Büchi PDS (resp. alternating
Büchi PDS) with the ability to create new instances of PDSs during the run. The finite
automataAi s we are looking for correspond to the languages accepted by these Büchi
Dynamic PDSs (resp. alternating Büchi Dynamic PDSs). Then, we show how to solve
these language problems and compute the finite automataAi s.

Related Work. The DPN model was introduced in [4]. Several other works use DPN
and its extensions to model multi-threaded programs [4,9,17,18,24]. All these works
only consider reachability issues. Ground Tree Rewrite Systems [10] and process
rewrite systems [5,19] are two models of multi-threaded programs with procedure calls
and threads creation. However, [19] only considers reachability problem and [10,5] only
consider subclasses of LTL. We consider LTL and CTL model checking problems.

Pushdown networks with communication between processes are studied in
[3,6,1,22]. These works consider systems with a fixed number of threads. [15,16] use
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parallel flow graphs to model multi-threaded programs. However, all these works only
consider reachability. [25] considers safety properties of multi-threaded programs.

[11,12,13] study single-index LTL/CTL and double-indexed LTL model
checking problems for networks of pushdown systems that synchro-
nize via a finite set of nested locks. [14] considers model-checking on
properties that are expressed in a kind of finite automata for such net-
works of pushdown systems. These works don’t consider dynamic threads
creation.

Outline. Section 2 gives the basic definitions. Section 3 and Section 4 show LTL and
CTL model-checking for DPNs, respectively. Due to lack of space, proofs are omitted
and can be found in the full version of this paper [21].

2 Preliminaries

2.1 Dynamic Pushdown Networks

Definition 1. A Dynamic Pushdown Network (DPN) M is a set {P1, ...,Pn} s.t. for
every i, 1 ≤ i ≤ n, Pi = (Pi, Γi, Δi) is a dynamic pushdown system (DPDS), where Pi

is a finite set of control locations s.t. Pk ∩ Pi = ∅ for k � i, Γi is the stack alphabet,
and Δi is a finite set of transition rules in the following forms: (a) qγ ↪→ p1ω1 or (b)
qγ ↪→ p1ω1�p2ω2 s.t. q, p1 ∈ Pi, γ ∈ Γi, ω1 ∈ Γ∗i , p2ω2 ∈ P j×Γ∗j for some j, 1 ≤ j ≤ n.

A global configuration ofM is a multiset G over
⋃n

i=1 Pi × Γ∗i . Each element qω ∈
Pi×Γ∗i ∩G denotes that an instance ofPi running in parallel in the network is at the local
configuration qω, i.e., Pi is at the control location q and its stack content is ω. If ω = γu
for γ ∈ Γi and there is in Δi a transition (a) qγ ↪→ p1ω1 or (b) qγ ↪→ p1ω1 � p2ω2 s.t.
p2ω2 ∈ P j × Γ j, then the instance of Pi can move from qω to the control location p1

and replace γ by ω1 at the top of its stack, i.e., Pi moves to p1ω1u. The other instances
in parallel in the network stay at the same local configurations. In addition, transition
(b) will create a new instance of P j starting from p2ω2. Formally, a DPDS Pi induces
an immediate successor relation =⇒i as follows: for every ω ∈ Γ∗i , if qγ ↪→ p1ω1 ∈ Δi,
then qγω =⇒i p1ω1ω; if qγ ↪→ p1ω1 � p2ω2 ∈ Δi, then qγω =⇒i p1ω1ω � {p2ω2}. To
unify the presentation, if qγω =⇒i p1ω1ω, we sometimes write qγω =⇒i p1ω1ω � ∅
instead. The transitive and reflexive closure of =⇒i is denoted by =⇒∗i . Formally, for
every pω ∈ Pi×Γ∗i , pω =⇒∗i pω�∅; and if pω =⇒i p1ω1�D1 and p1ω1 =⇒∗i p2ω2�D2,
then pω =⇒∗i p2ω2 � D1 ∪ D2. =⇒+i is defined as usual.

A DPDS Pi can be seen as a pushdown system (PDS) with the ability of dynami-
cally creating new instances of PDSs. The initial local configuration of a newly created
instance is called DCLIC (for Dynamically Created Local Initial Configuration).

A local run of an instance of Pi from a local configuration c0 is a sequence of local
configurations c0c1... over Pi × Γ∗i s.t. for every j ≥ 0, c j =⇒i c j+1 � D for some D. A
global run ρ ofM from a global configuration G is a (potentially infinite) set of local
runs. Initially, ρ contains exactly the local runs starting from the local configurations
in G. Whenever a DCLIC c is created by some local run of ρ, a new local run starting
from c is added into ρ. For every i, 1 ≤ i ≤ n, let ℘(σ) = i iff σ is a local run of an
instance of Pi, and ℘(pω) = ℘(p) = i iff p ∈ Pi. LetDi = {p2ω2 ∈ ⋃n

i=1 Pi ×Γ∗i | qγ ↪→
p1ω1 � p2ω2 ∈ Δi} be the set of potential DCLICs of the DPDS Pi.
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2.2 LTL and Büchi Automata

From now on, we fix a set of atomic propositions AP.

Definition 2. The set of LTL formulas is given by (where a ∈ AP):
ψ ::= a | ¬ψ | ψ ∧ ψ | Xψ | ψUψ.

Given an ω-word η = α0α1... over 2AP, let η(k) denote αk, and ηk denote the suffix
of η starting from αk. η |= ψ (η satisfies ψ) is inductively defined as follows: η |= a iff
a ∈ η(0); η |= ¬ψ iff η |= ψ; η |= ψ1 ∧ ψ2 iff η |= ψ1 and η |= ψ2; η |= Xψ iff η1 |= ψ;
η |= ψ1Uψ2 iff there exists k ≥ 0 such that ηk |= ψ2 and for every j, 1 ≤ j < k, η j |= ψ1.

Definition 3. A Büchi automaton (BA) B is a tuple (G, Σ, θ, g0, F) where G is a finite
set of states, Σ is the input alphabet, θ ⊆ G × Σ ×G is a finite set of transitions, g0 ∈ G
is the initial state and F ⊆ G is a finite set of accepting states.

A run of B over an ω-word α0α1... is a sequence of states q0q1... s.t. q0 = g0 and
(qi, αi, qi+1) ∈ θ for every i ≥ 0. A run is accepting iff it infinitely often visits some
states in F.

It is well-known that given a LTL formula f , one can construct a BA B f s.t. Σ = 2AP

recognizing all the ω-words that satisfy f [23].

2.3 Single-Indexed LTL for DPNs

LetM = {P1, ...,Pn} be a DPN. A single-indexed LTL formula is a formula f of the
form

∧n
i=1 fi s.t. for every i, 1 ≤ i ≤ n, fi is a LTL formula in which the validity of

the atomic propositions depends only on the DPDS Pi. Let λ : AP −→ 2
⋃n

i=1 Pi×Γ∗i be
a valuation which assigns to each atomic proposition a set of local configurations. A
local run p0ω0 p1ω1... of Pi satisfies fi iff the ω-word α0α1... where for every j ≥ 0,
α j = {a ∈ AP | p jω j ∈ λ(a)}, satisfies fi. A local configuration c of Pi satisfies fi iff
Pi has a local run σ from c that satisfies fi. If D is the set of DCLICs created during
the run σ, we write c |=D fi.M satisfies f iff it has a global run ρ such that for every i,
1 ≤ i ≤ n, each local run of Pi in ρ satisfies the formula fi.

2.4 Multi-automata and Predecessors

From now on, we fix a DPN M = {P1, ...,Pn} where for every i, 1 ≤ i ≤ n,
Pi = (Pi, Γi, Δi), and a single-indexed LTL formula f =

∧n
i=1 fi. To check whether

M satisfies f is non-trivial. Indeed, it is not correct to check independently whether
each Pi satisfies fi. Instead, we need to check whether there exists a global run ρ from
a global configuration G s.t. an instance of Pi satisfies the formula fi only if it is an
instance in G or it is dynamically created during the run ρ. Thus, it is important to
memorize the set of DCLICs that are created during a run. To this aim, we introduce the
function prePi : 2Pi×Γ∗i ×2Di −→ 2Pi×Γ∗i ×2Di as follows. prePi (U) = {(c,D1 ∪ D2) | ∃c′ ∈
Pi × Γ∗i , s.t. c =⇒i c′ � D1 and (c′,D2) ∈ U}. Intuitively, if Pi moves from c to c′ and
generates the DCLIC D1 and (c′,D2) ∈ U, then (c,D1 ∪ D2) ∈ prePi(U). The transitive
and reflexive closure of prePi is denoted by pre∗Pi

. Formally, pre∗Pi
(U) = {(c,D1 ∪D2) |

∃c′ ∈ Pi × Γ∗i , s.t. c =⇒∗i c′ � D1 and (c′,D2) ∈ U}. Let pre+Pi
(U) = pre∗Pi

(prePi (U)).
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To finitely represent (infinite) sets of local configurations of DPDSs and DCLICs
generated by DPDSs, we use Multi-automata and Alternating Multi-automata.

Definition 4. An Alternating Multi-automaton (AMA) is a tuple Ai =

(Qi, Γi, δi, Ii, Acci), where Qi is a finite set of states, Ii ⊆ Pi is a finite set of ini-
tial states corresponding to the control locations of the DPDS Pi, Acci ⊆ Qi is a finite
set of final states, δi ⊆ (Qi × Γi) × 2Di × 2Qi is a finite set of transition rules.
A MA is a AMAAi s.t. δi ⊆ (Qi × Γi) × 2Di × Qi.

We write p
γ/D−−−−→i {q1, ..., qm} instead of (p, γ,D, {q1, ..., qm}) ∈ δi, where D is a set of

DCLICs. We define the relation−→∗i⊆ (Qi×Γ∗i )×2Di×2Qi as the smallest relation s.t.: (1)

q ε/∅−−−→∗i {q} for every q ∈ Qi, (2) if q
γ/D−−−−→i {q1, ..., qm} and qk

ω/Dk−−−−→∗i S k for k, 1 ≤ k ≤ m,

then q
γω/D∪⋃m

k=1 Dk−−−−−−−−−−−→∗i ⋃m
k=1 S k. Let L(Ai) be the set of tuples (pω,D) ∈ Pi × Γ∗i × 2Di

s.t. p ω/D−−−→∗i S for some S ⊆ Acci. A set W ⊆ Pi × Γ∗i × 2Di is regular iff there exists an
AMAAi s.t. L(Ai) = W. A set of local configurations C ⊆ Pi ×Γ∗i is regular iff C × {∅}
is a regular set.

Given a DPDS Pi and a regular set W ⊆ Pi × Γ∗i × 2Di accepted by a MA

Ai = (Qi, Γi, δi, Ii, Acci), we can construct a MA Apre∗
i = (Qi, Γi, δ

′
i , Ii, Acci) that exactly

accepts pre∗Pi
(W). W.l.o.g., we assume that Ai has no transition leading to an initial state

and that Pi = Ii. Apre∗
i is constructed by the following saturation procedure (an adaption

of the saturation procedure of [2]).

– For every pγ ↪→ p1ω1 ∈ Δi and p1
ω1/D−−−−→∗i q, add a new rule p

γ/D−−−−→i q;

– For every pγ ↪→ p1ω1�p2ω2 ∈ Δi and p1
ω1/D−−−−→∗i q, add a new rule p

γ/D∪{p2ω2}−−−−−−−−−−→i q.

The procedure adds only new transitions to Ai. Since the number of states is fixed,
the number of possible new transitions is finite. Thus, the saturation procedure always
terminates. We can show that each transition can be processed only once. Thus, the
number of transition rules added into Apre∗

i is at most O(|Δi| · |Qi|2 · 2|Di|). The intuition
behind this procedure is that, for every ω′ ∈ Γ∗i : suppose pγ ↪→ p1ω1 � p2ω2 ∈ Δi and

the tuple (p1ω1ω
′,D) is accepted by the automaton, i.e., p1

ω1/D1−−−−−→∗i q ω′/D2−−−−−→∗i g for some

g ∈ Acci and D = D1 ∪ D2. Then, we add the new transition rule p
γ/D1∪{p2ω2}−−−−−−−−−−−→i q that

allows the automaton to accept (pγω′,D∪ {p2ω2}), i.e., p
γ/D1∪{p2ω2}−−−−−−−−−−−→i q ω′/D2−−−−−→∗i g. The

case pγ ↪→ p1ω1 ∈ Δi is similar. Thus, we obtain the following theorem.

Theorem 1. Given a MA Ai recognizing a regular set W of the DPDS Pi, we can con-
struct a MA Apre∗

i recognizing pre∗Pi
(W) in time O(|Δi| · |Qi|2 · 2|Di|).

3 Single-Indexed LTL Model-Checking for DPNs

In this section, we consider LTL model checking w.r.t. a labeling function l :
⋃n

i=1 Pi −→ 2AP assigning to each control location a set of atomic propositions. In this
case, the valuation λl (called simple valuation) is defined as follows: for every a ∈ AP,
λl(a) = {pω ∈ ⋃n

i=1 Pi×Γ∗i | a ∈ l(p)}. A global configurationG satisfies f =
∧

fi iffM
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has a global run ρ from G s.t. every local run σ of ρ satisfies f℘(σ) where ℘(σ) denotes
the index of the DPDS which corresponds to the local run σ. Checking whether G sat-
isfies f is non-trivial since the number of local runs of ρ can be unbounded. We cannot
check all the different instances of the DPDSs independently. Indeed, we don’t have to
check whether an instance of Pi (for some i, 1 ≤ i ≤ n) satisfies fi if this instance is
not created during the execution. We can solve this problem in a naive way as follows:
Given an initial global configuration G, we can guess the set of DCLICs D ⊆ ⋃n

i=1Di

which are created in a global run from G such that the global run satisfies f . Then, it is
sufficient to check that every local configuration c ∈ G ∪ D satisfies the LTL formula
f℘(c) when disallowing the transition rules which create a DCLIC outside of D and dis-
carding the DCLICs inside of D. Checking whether c satisfies f℘(c) could be solved by
LTL model-checking for PDSs [2,7] if we discard the DCLICs of the DPDS. However,
this naive technique is very complicated as it necessitates an exponential number of
calls to the LTL model checking algorithm of PDSs. Moreover, it is very complex. We
have to consider all the possible sets of DCLICs whose number is at most O(2|

⋃n
i=1Di |),

and for each set D of DCLICs, we have to perform at most O(|⋃n
i=1Di|) times of LTL

model-checking algorithm for PDSs, where LTL model-checking for PDSs is in time
O(|P℘(d)|2 · |Δ℘(d)| · 2| f℘(d)|) [2,7]. Thus, the complexity of checking whether G satisfies f
or not will be O(2|

⋃n
i=1Di | ·∑d∈⋃n

i=1Di∪G(|P℘(d)|2 · |Δ℘(d)| · 2| f℘(d)|)).
To overcome these problems, we propose in this section a direct algorithm. We com-

pute for every i, 1 ≤ i ≤ n, a MA Ai such that (c,D) ∈ L(Ai), where c is a local
configuration of Pi and D ⊆ Di is a set of DCLICs, iff Pi has a local run σ from c
that satisfies fi such that D is the set of DCLICs created during the local run σ. Then, a
global configuration G satisfies f =

∧
fi iff for every configuration c ∈ G, there exists

a set of DCLICs Dc s.t. (c,Dc) ∈ L(A℘(c)) and every d ∈ Dc satisfies f . This condition
is recursive. However, it can be effectively checked since there is only a finite number
of DCLICs. Checking this condition naively is not efficient. To obtain a more efficient
procedure, we compute the largest setD f p ⊆ ⋃n

i=1Di of DCLICs such that d ∈ D f p iff
d is a DCLIC and there exists a global run ofM starting from d that satisfies f . Then,
to check whether a global configuration G satisfies f , it is sufficient to check for every
c ∈ G whether there exists Dc ⊆ D f p s.t. (c,Dc) ∈ L(A℘(c)).

3.1 Computing the MAsAi

To compute the MAs Ai, for i, 1 ≤ i ≤ n, we extend the automata-based approach
for standard LTL model-checking for PDSs [2,7]. We first compute a Büchi automaton
(BA) Bi that corresponds to the formula fi, for i, 1 ≤ i ≤ n. Then, we synchronize
the BAs with the DPDSs to obtain Büchi DPDSs. The MAs Ai we are looking for
correspond to the languages accepted by these Büchi DPDSs.

Definition 5. A Büchi DPDS (BDPDS) is a tuple BPi = (Pi, Γi, Δi, Fi), where
(Pi, Γi, Δi) is a DPDS and Fi ⊆ Pi is a finite set of accepting control locations.

A BDPDS is a kind of DPDS with a Büchi acceptance condition Fi. Runs of a BDPDS
are defined as local runs for DPDSs. A run σ of BPi is accepting iff σ infinitely often
visits some control locations in Fi. Let L(BPi) be the set of all the pairs (c,D) ∈ Pi ×
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Γ∗i × 2Di s.t. BPi has an accepting run from c and the run generates the set of DCLICs
D.

Let Bi = (Gi, 2AP, θi, g0
i , Fi) be the BA recognizing all theω-words that satisfy fi. We

compute a BDPDS BPi such that Pi has a local run from pω that satisfies fi and gener-
ates a set of DCLICs D iff ([p, g0

i ]ω,D) ∈ L(BPi). We define BPi = (Pi ×Gi, Γi, Δ
′
i , F
′
i )

as follows: for every p ∈ Pi, [p, g] ∈ F′i iff g ∈ Fi; and for every (g1, l(p), g2) ∈ θi, we
have:

1. [p, g1]γ ↪→ [p1, g2]ω1 ∈ Δ′i iff pγ ↪→ p1ω1 ∈ Δi;
2. [p, g1]γ ↪→ [p1, g2]ω1 � D ∈ Δ′i iff pγ ↪→ p1ω1 � D ∈ Δi.

Intuitively,BPi is a product of Pi and the BA Bi. Bi has an accepting run g0g1... over an
ω-word l(p0)l(p1)... that corresponds to a local runσ = p0ω0 p1ω1... ofPi iffBPi has an
accepting run σ′ = [p0, g0]ω0 [p1, g1]ω1..., and D is the set of DCLICs created during
the runσ iff D is the set of DCLICs created during the runσ′. Suppose the run ofPi is at
p jω j, then the run ofBi can move from g j to g j+1 iff (g j, l(p j), g j+1) ∈ θi. This is ensured
by Items 1 and 2 expressing that BPi can move from [p j, g j]ω j to [p j+1, g j+1]ω j+1 iff
(g j, l(p j), g j+1) ∈ θi. The accepting control locations F′i = {[p, g] | p ∈ Pi, g ∈ Fi}
ensures that the run ofBi visits infinitely often some states in Fi iff the run of BPi visits
infinitely often some control locations F′i . Item 2 ensures that the run of Pi creates a
DCLIC p2ω2 iff the run of BPi creates this DCLIC. Thus, we obtain the following
theorem.

Lemma 1. Pi has a local run from pω that satisfies fi and creates a set of DCLICs D
iff ([p, g0

i ]ω,D) ∈ L(BPi), where BPi can be constructed in time O(|Δi| · 2| fi|).

The complexity follows from the fact that the number of transition rules of BPi is at
most O(|Δi| · 2| fi|).
Computing L(BPi): Let us fix an index i, 1 ≤ i ≤ n. We show that computing L(BPi)
boils down to pre∗Pi

computations.

Proposition 1. Let BPi = (Pi, Γi, Δi, Fi) be a BDPDS, BPi has an accepting run from
c ∈ Pi ×Γ∗i and D is the set of DCLICs created during this run iff ∃D1,D2,D3 ⊆ Di s.t.
D = D1 ∪ D2 ∪ D3, and

(α1) : c =⇒∗i pγω � D1 for some ω ∈ Γ∗i ;
(α2) : pγ =⇒+i gu � D2 and gu =⇒∗i pγv � D3, for some g ∈ Fi, v ∈ Γ∗i .

Intuitively, an accepting run from c will reach a configuration pγω (Item α1) fol-
lowed by a repeatedly executed cycle (Item α2) which is a sequence of configurations
with an accepting location g. The execution of the cycle returns to the control location
p with the same symbol γ at the top of the stack. The rest of the stack will never be
popped during this cycle. Repeatedly executing the cycle yields an accepting run (since
g ∈ Fi) and the set of DCLICs generated during this cycle is D2 ∪ D3. Thus, the set
of DCLICs created by the accepting run starting from c is D1 ∪ D2 ∪ D3. To compute
L(BPi), we reformulate the above conditions as follows:
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Proposition 2. Let BPi = (Pi, Γi, Δi, Fi) be a BDPDS, BPi has an accepting run from
c ∈ Pi × Γ∗i and D is the set of DCLICs created during this run iff ∃D1,D′2 ⊆ Di s.t.
D = D1 ∪ D′2, and

(β1) : (c,D1) ∈ pre∗Pi
({p} × γΓ∗i × {∅});

(β2) : (pγ,D′2) ∈ pre+Pi
((Fi×Γ∗i ×2Di )∩pre∗Pi

({p}×γΓ∗i ×{∅})) (note that D′2 = D2∪D3).

Intuitively, items β1 and β2 are reformulations of items α1 and α2, respectively.
By Proposition 2, we can get that L(BPi) = {(c,D1 ∪ D′2) ∈ Pi × Γi × 2Di |
Items β1 and β2 hold}. Since Fi × Γ∗i × 2Di and {p} × γΓ∗i × {∅} are regular sets, us-

ing Theorem 1, we can construct two MAs A′ and A′′ accepting pre+Pi
((Fi ×Γ∗i × 2Di)∩

pre∗Pi
({p} × γΓ∗i × {∅})) and pre∗Pi

({p} × γΓ∗i × {∅}). The intersection (Fi × Γ∗i × 2Di ) ∩
pre∗Pi

({p} × γΓ∗i × {∅}) is easy to compute. Since Fi ×Γ∗i × 2Di denotes all the configura-
tions whose control locations are accepting, we only need to let the initial states of A′′
be the states of Fi. Since the set Pi × Γi × 2Di is finite, we can determine all the tuples
(pγ,D′2) ∈ Pi × Γi × 2Di s.t. Item β2 holds. The set of pairs (c,D1) is the union of all
the sets pre∗Pi

({p} × γΓ∗i × {∅}). Thus, we can get L(BPi). For every BDPDS Pi and MA

Ai, pre∗Pi
(L(Ai)) and pre+Pi

(L(Ai)) can be computed in time O(|Δi| · |Qi|2 · 2|Di|), where
|Qi| = O(|Pi|). Thus, we get that:

Lemma 2. For every BDPDS BPi = (Pi, Γi, Δi, Fi), we can construct a MA Ai in time
O(|Δi| · |Γi| · |Pi|3 · 2|Di|) such that L(Ai) = L(BPi).

From Lemma 1 and Lemma 2, we get:

Theorem 2. Given a DPNM = {P1, ...,Pn}, a single-indexed LTL formula f =
∧n

i=1 fi
and a labelling function l, we can compute MAs A1, ...,An in time O(

∑n
i=1(|Δi| · 2| fi| ·

|Γi| · |Pi|3 · 2|Di|)) s.t. for every i, 1 ≤ i ≤ n, every pω ∈ Pi × Γ∗i and D ⊆ Di, pω |=D fi
iff ([p, g0

i ]ω,D) ∈ L(Ai).

3.2 Single-Indexed LTL Model-Checking for DPNs with Simple Valuations

Given a DPNM = {P1, ...,Pn} and a single-indexed LTL formula f =
∧n

i=1 fi, by The-
orem 2, we can construct a set of MAs {A1, ...,An} s.t. for every i, 1 ≤ i ≤ n, and every
local configuration pω ∈ Pi × Γ∗i , pω |=D fi iff ([p, g0

i ]ω,D) ∈ L(Ai). Then, to check
whether a global configuration G satisfies f , we need to check whether for every local
configuration c ∈ G, there exists a set of DCLICs Dc s.t. (c,Dc) ∈ L(A℘(c)) and every
DCLIC d ∈ Dc satisfies f , i.e., there exists a set of DCLICs Dd s.t. (d,Dd) ∈ L(A℘(d)),
etc. This condition is recursive. It can be solved, because the number of DCLICs is
finite. To obtain a more efficient procedure, we compute the maximal set of DCLICs
D f p s.t. for every d ∈ ⋃n

i=1Di, d satisfies f iff d ∈ D f p. Then, to check whether G
satisfies f , it is sufficient to check whether for every c ∈ G, there exists Dc ⊆ D f p s.t.
(c,Dc) ∈ L(A℘(c)).

Let {A1, ...,An}, s.t. for every i, 1 ≤ i ≤ n, Ai = (Qi, Γi, δi, Ii, Acci), be
the set of the computed MAs. Intuitively, D f p should be equal to the set of lo-
cal configurations pω ∈ ⋃n

i=1Di s.t. there exists D ⊆ D f p s.t. pω |=D f℘(p), i.e.,
([p, g0

℘(p)]ω,D) ∈ L(A℘(p)). Thus, D f p can be defined as the greatest fixpoint of the
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function F(X) = {pω ∈ DI | ∃D ⊆ X s.t. ([p, g0
℘(p)]ω,D) ∈ L(A℘(p))}. This set

can then be computed iteratively as follows: D f p =
⋂

j≥0 D j, where D0 = DI and
D j+1 = {pω ∈ DI | ∃D ⊆ D j, ([p, g0

℘(p)]ω,D) ∈ L(A℘(p))} for every j ≥ 0. Since
⋃n

i=1Di is a finite set, and for every j ≥ 0, D j+1 is a subset of D j, there always exists a
fixpoint m ≥ 0 such that Dm = Dm+1. Then, we can get thatD f p = Dm.

For every pω ∈ ⋃n
i=1Di and D ⊆ D℘(p), to avoid checking whether ([p, g0

℘(p)]ω,D) ∈
L(A℘(p)) at each step when computing D0,D1, ..., we can compute all these tuples that
satisfy this condition once and store them in a hash table. We can show that whether or
not ([p, g0

℘(p)]ω,D) ∈ L(A℘(p)) can be decided in time O(|ω| · |δ℘(p)| · |Q℘(p)| · 2|D℘(p)|).
Thus, we can get the hash table in time O(

∑
pω∈⋃n

i=1Di
(|ω| · |δ℘(p)| · |Q℘(p)| ·2|D℘(p)|)). Given

D j and the hash table, we can compute D j+1 in time O(
∑

pω∈⋃n
i=1Di

2|D℘(p)|). Thus we can
getD f p in time O(

∑
pω∈DI

(|ω| · |δ℘(p)| · |Q℘(p)| · 2|DI |) + |DI |2 · 2|DI |).

Theorem 3. We can compute D f p in time O(
∑

pω∈⋃n
i=1Di

(|ω| · |δ℘(p)| · |Q℘(p)| · 2|D℘(p)|+
|⋃n

i=1Di| · 2|D℘(p)|)) s.t. for every c ∈ ⋃n
i=1Di, c satisfies the single-indexed LTL formula

f iff c ∈ D f p.

Then, from Theorem 3 and Theorem 2, we get the following theorem.

Theorem 4. Given a DPNM = {P1, ...,Pn}, a single-indexed LTL formula f =
∧n

i=1 fi
and a labelling function l, we can compute MAs A1, ...,An in time O(

∑n
i=1(|Δi| · 2| fi| ·

|Γi| · |Pi|3 · 2|Di|)) s.t. for every global configurationG, G satisfies f iff for every pω ∈ G,
there exists D ⊆ D f p s.t. ([p, g0

℘(p)]ω,D) ∈ L(A℘(p)).

You can see that the complexity of our technique is better than the one of the naive
approach given at the beginning of Section 3.

3.3 Single-Indexed LTL Model-Checking with Regular Valuations

We generalize single-indexed LTL model checking for DPNs w.r.t. simple valuations
to a more general model checking problem where the set of configurations in which
an atomic proposition holds is a regular set of local configurations. Formally, a regular
valuation is a function λ : AP −→ 2

⋃n
i=1 Pi×Γ∗i s.t. for every a ∈ AP, λ(a) is a regular

set of local configurations of Pi for i, 1 ≤ i ≤ n. The previous construction can be
extended to deal with this case. For this, we follow the approach of [8]. We compute,
for i, 1 ≤ i ≤ n, a new DPDSP′i , which is a kind of synchronization of the DPDS Pi and
the deterministic finite automata corresponding to the regular valuations. This allows to
determine whether atomic propositions hold at a given step by looking only at the top
of the stack of P′i , for every i, 1 ≤ i ≤ n. By doing this, we can reduce single-indexed
LTL model checking for DPNs with regular valuations to single-indexed LTL model
checking for DPNs with simple valuations. Due to lack of space, we omit the details.
They can be found in the full version of this paper [21].

Theorem 5. Given a DPNM = {P1, ...,Pn}, a single-indexed LTL formula f =
∧n

i=1 fi
and a regular valuation λ, we can compute MAs A1, ...,An in time O(

∑n
i=1(|Δi| · 2| fi| ·

|Γi| · |S tatesi| · |Pi|3 ·2|Di|)) s.t. for every global configurationG, G satisfies f iff for every
pω ∈ G, there exists D ⊆ D f p s.t. ([p, g0

℘(p)]ω,D) ∈ L(A℘(p)), where |S tatesi| denotes
the number of states of the automata corresponding to the regular valuation λ.
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4 Single-Indexed CTL Model Checking for DPNs

In this section, we consider single-indexed CTL model-checking for DPNs with regular
valuations. Single-indexed CTL model-checking for DPNs with simple valuations is a
special case.

4.1 Single-Indexed CTL

For technical reasons, we suppose that CTL formulas are given in positive normal form,
i.e., only atomic propositions are negated. Indeed, any CTL formula can be translated
into positive normal form by pushing the negations inside. Moreover, we use the re-
lease operator R as the dual of the until operator U. Let AP be a finite set of atomic
propositions. The set of CTL formulas is given by (where a ∈ AP):

ψ ::= a | ¬a | ψ ∧ ψ | ψ ∨ ψ | AXψ | EXψ | A[ψUψ] | E[ψUψ] | A[ψRψ] | E[ψRψ].

The other standard CTL operators can be expressed by the above operators. E.g., EFψ =
E[trueUψ], AFψ = A[trueUψ], EGψ = E[ f alseRψ] and AGψ = A[ f alseRψ]. The
closure cl(ψ) of ψ is the set of all the subformulas of ψ including ψ. Let At(ψ) = {a ∈
AP | a ∈ cl(ψ)} and clR(ψ) = {φ ∈ cl(ψ) | φ = E[ψ1Rψ2] or φ = A[ψ1Rψ2]}.

Let λ : AP → 2
⋃n

i=1 Pi×Γ∗i a regular valuation assigning to each atomic proposition a
regular set of local configurations. A local configuration c satisfies a CTL formula fi,
(denoted c |=λ fi), iff there exists D ⊆ Di s.t. c |=λD fi holds, where |=λD is inductively
defined in Figure 1. Intuitively, c |=λD fi means that c satisfies fi and the executions
that made c satisfy fi create the set of DCLICs D, i.e., when a transition rule qγ ↪→
p1ω1 � p2ω2 is used to make fi satisfied, p2ω2 is in D. We write c |=D fi instead of
c |=λD fi when λ is clear from the context.

A single-indexed CTL formula f is a formula of the form
∧

fi s.t. for every i, 1 ≤
i ≤ n, fi is a CTL formula in which the validity of the atomic propositions depends only
on the DPDS Pi. A global configuration G satisfies f =

∧
fi iff for every c ∈ G, there

exists a set of DCLICs D ⊆ D℘(c) s.t. c |=D f℘(c) and for every d ∈ D, d also satisfies f .

4.2 Alternating BDPDSs

Definition 6. An Alternating BDPDS (ABDPDS) is a tuple BP′i = (P′i , Γi, Δ
′
i , Fi),

where P′i is a finite set of control locations, Γi is the stack alphabet, Fi ⊆ P′i is a
set of accepting control locations, Δ′i is a finite set of transition rules in the form of
pγ ↪→ {p1ω1, ..., phωh} � {q1u1, ..., qkuk} s.t. pγ ∈ P′i × Γi, {p1ω1, ..., phωh} ⊆ P′i × Γ∗i
and {q1u1, ..., qkuk} ⊆ Di.

An ABDPDS BP′i induces a relation �→i ⊆ (P′i × Γ∗i ) × (2P′i×Γ∗ × 2Di ) defined as
follows: for every ω ∈ Γ∗i , if pγ ↪→ {p1ω1, ..., phωh} � {q1u1, ..., qkuk} ∈ Δi, then
pγω �→i {p1ω1ω, ..., phωhω} � {q1u1, ..., qkuk}. Intuitively, if BP′i is at the configura-
tion pγω, it can fork into h copies in the configurations p1ω1ω, ..., phωhω and creates k
new instances of ABDPDSs starting from the DCLICs q1u1, ..., qkuk, respectively. We
sometimes write pγ ↪→ {p1ω1, ..., phωh} if pγ ↪→ {p1ω1, ..., phωh} � ∅ ∈ Δi.
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c|=λ∅a ⇐⇒ c ∈ λ(a);
c|=λ∅¬a ⇐⇒ c � λ(a);
c|=λDψ1 ∧ ψ2 ⇐⇒ ∃D1,D2 ⊆ ⋃n

i=1 Di s.t. D = D1 ∪ D2, c|=λD1
ψ1 and c|=λD2

ψ2;
c|=λDψ1 ∨ ψ2 ⇐⇒ c|=λDψ1 or c|=λDψ2;
c|=λDAX ψ ⇐⇒ For every c1, ..., cm ∈ Pi × Γ∗i s.t. for j , 1 ≤ j ≤ m,∃Dj,D′

j ⊆
⋃n

i=1 Di, c =⇒i c j � D′
j, c j|=λD j

ψ

and D =
⋃m

j=1(Dj ∪ D′
j);

c|=λDEX ψ ⇐⇒ There exist c′ ∈ Pi × Γ∗i , D′,D′′ ⊆ ⋃n
i=1 Di s.t. c=⇒i c′ � D′′, c′|=λD′ψ and D = D′ ∪ D′′;

c|=λDA[ψ1Uψ2] ⇐⇒ For every path σ = c0c1... with c0 = c, for every m ≥ 1,∃D′
m ⊆
⋃n

i=1 Di, s.t. cm−1 =⇒ cm � D′
m,

and ∃k ≥ 0, s.t. ∃Dk ⊆ ⋃n
i=1 Di, ck |=λDk

ψ2,∀ j, 0 ≤ j < k, c j|=λD j
ψ1 and D =

⋃
σ(
⋃k

j=1 D′
j ∪
⋃k

j=0 Dj);
c|=λDE[ψ1Uψ2] ⇐⇒ There exists a path σ = c0c1... with c0 = c, for every m ≥ 1, ∃D′

m ⊆
⋃n

i=1 Di, such that
cm−1 =⇒ cm � D′

m, and ∃k ≥ 0, s.t. ∃Dk ⊆ ⋃n
i=1 Di, ck |=λDk

ψ2,∀ j, 0 ≤ j < k, c j|=λD j
ψ1,

and D =
⋃k

j=1 D′
j ∪
⋃k

j=0 Dj;
c|=λDA[ψ1Rψ2] ⇐⇒ For every path σ = c0c1... with c0 = c, for every m ≥ 1, ∃D′

m ⊆
⋃n

i=1 Di, such that
cm−1 =⇒ cm � D′

m, and either ∀ j ≥ 0,∃Dj ⊆ ⋃n
i=1 Di, c j|=λD j

ψ2 and Dσ =
⋃

j≥1 D′
j ∪
⋃

j≥0 Dj,

or ∃k ≥ 0, ∃D′′
k ⊆
⋃n

i=1 Di s.t. ck |=λD′′k ψ1 and ∀ j, 0 ≤ j ≤ k, ∃Dj ⊆ ⋃n
i=1 Di, c j|=λD j

ψ2,

Dσ =
⋃k

j=0 Dj ∪ D′′
k ∪
⋃k

j=1 D′
j.D =

⋃
σ Dσ;

c|=λDE[ψ1Rψ2] ⇐⇒ There exists a path σ = c0c1... with c0 = c, for every m ≥ 1,∃D′
m ⊆
⋃n

i=1 Di, such that
cm−1 =⇒ cm � D′

m, and either ∀ j ≥ 0, ∃Dj ⊆ ⋃n
i=1 Di, c j|=λD j

ψ2 and D =
⋃

j≥1 D′
j ∪
⋃

j≥0 Dj,

or ∃k ≥ 0,∃D′′
k ⊆
⋃n

i=1 Di s.t. ck |=λD′′k ψ1 and ∀ j, 0 ≤ j ≤ k,∃Dj ⊆ ⋃n
i=1 Di, c j|=λD j

ψ2, and

D =
⋃k

j=0 Dj ∪ D′′
k ∪
⋃k

j=1 D′
j.

Fig. 1. Semantics of CTL

A run of BP′i from a configuration pω ∈ P′i × Γ∗i is a tree rooted by pω, the other
nodes are labeled by elements of P′i ×Γ∗i . If a node is labelled by qu whose children are
p1ω1, ..., pmωm, then, necessarily, qu �→ {p1ω1, ..., pmωm}�D for some D ⊆ Di. The run
is accepting iff each branch of this run infinitely often visits some control locations in
Fi. Let L(BP′i ) be the set of all the pairs (c,D) ∈ P′i ×Γ∗i ×2Di s.t. BP′i has an accepting
run from c and that creates the set of DCLICs D.

4.3 Computing Corresponding Alternating BDPDSs

To perform single-indexed CTL model-checking for DPNs with regular valuations, we
follow the approach for LTL model-checking for DPNs. But, in this case, we need alter-
nating MAs and Alternating BDPDSs, since CTL formulas can be translated to alternat-
ing Büchi automata. We compute a set of AMAsA′1, ...,A′n s.t. for every i, 1 ≤ i ≤ n and
every local configuration pω of Pi, pω |=D fi iff ([p, fi]ω,D) ∈ L(A′i). Later, we com-
pute the largest set of DCLICs D′f p such that a DCLIC d satisfies f iff d ∈ D′f p. Then,
to check whether a global configuration G satisfies f , it is sufficient to check whether
for every pω ∈ G, there exists D ⊆ D′f p s.t. ([p, f℘(p)]ω,D) ∈ L(A′℘(p)). To compute
the AMAs, we construct a set of alternating BDPDSs BP′i which are synchronizations
of the DPDSs Pi with formulas fi s.t. the AMAs we are looking for correspond to the
languages accepted by these alternating BDPDSs BP′i s. We first show how to compute
the alternating BDPDSs BP′i . Then, we show how to compute the languages of these
alternating BDPDSs BPi s, i.e. the AMAs.

We fix an index i, 1 ≤ i ≤ n. We construct an ABDPDS BP′i s.t. for every pω ∈
P′i × Γ∗i , pω |=D fi iff ([p, fi]ω,D) ∈ L(BP′i). We suppose w.l.o.g. that the DPDS Pi has
a bottom-of-stack � which is never popped from the stack. For every a ∈ At( fi), since
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λ(a) is a regular set of local configurations of Pi, let Ma = (Qa, Γi, δa, Ia, Acca) be a
MA s.t. L(Ma) = λ(a) × {∅}, and M¬a = (Q¬a, Γi, δ¬a, I¬a, Acc¬a) a MA s.t. L(M¬a) =
(Pi×Γ∗i \λ(a))×{∅}, i.e., the set of configurations where a does not hold. To distinguish
between all the initial states p in Ma and M¬a, we write pa and p¬a instead. W.l.o.g., we
assume that the set of states Qas, and Q¬as are disjoint for every a ∈ At( fi).

Let BP′i = (P′i , Γi, Δ
′
i , Fi) be the ABDPDS such that P′i = Pi × cl( fi) ∪⋃a∈At( fi)(Qa ∪

Q¬a); Fi = Pi × clR( fi)∪⋃a∈At( fi)(Acca ∪ Acc¬a); and Δ′i is the smallest set of transition
rules s.t. for every control location p ∈ Pi, every subformulaψ ∈ cl( fi) and every γ ∈ Γi,
we have:

1. if ψ = a or ψ = ¬a, where a ∈ At( fi); [p, ψ]γ ↪→ {pψγ} ∈ Δ′i ;
2. if ψ = ψ1 ∧ ψ2; [p, ψ]γ ↪→ {[p, ψ1]γ, [p, ψ2]γ} ∈ Δ′i ;
3. if ψ = ψ1 ∨ ψ2; [p, ψ]γ ↪→ {[p, ψ1]γ} ∈ Δ′i and [p, ψ]γ ↪→ {[p, ψ2]γ} ∈ Δ′i ;
4. if ψ = EXψ1; [p, ψ]γ ↪→ {[p′, ψ1]ω} � {p′′ω′} ∈ Δ′i if pγ ↪→ p′ω � p′′ω′ ∈ Δi;

[p, ψ]γ ↪→ {[p′, ψ1]ω} ∈ Δ′i if pγ ↪→ p′ω ∈ Δi;
5. if ψ = AXψ1; [p, ψ]γ ↪→ {[p′, ψ1]ω | pγ ↪→ p′ω � p′′ω′ ∈ Δi} � {p′′ω′ | pγ ↪→

p′ω � p′′ω′ ∈ Δi} ∈ Δ′i ;
6. if ψ = E[ψ1Uψ2]; [p, ψ]γ ↪→ {[p, ψ2]γ} ∈ Δ′i , and [p, ψ]γ ↪→ {[p, ψ1]γ, [p′, ψ]ω} �
{p′′ω′} ∈ Δ′i if pγ ↪→ p′ω � p′′ω′ ∈ Δi, [p, ψ]γ ↪→ {[p, ψ1]γ, [p′, ψ]ω} ∈ Δ′i if
pγ ↪→ p′ω ∈ Δi;

7. if ψ = A[ψ1Uψ2]; [p, ψ]γ ↪→ {[p, ψ2]γ} ∈ Δ′i and [p, ψ]γ ↪→ {[p, ψ1]γ, [p′, ψ]ω |
pγ ↪→ p′ω � p′′ω′ ∈ Δi} � {p′′ω′ | pγ ↪→ p′ω � p′′ω′ ∈ Δi} ∈ Δ′i ;

8. if ψ = E[ψ1Rψ2]; [p, ψ]γ ↪→ {[p, ψ2]γ, [p, ψ1]γ} ∈ Δ′i , and [p, ψ]γ ↪→ {[p, ψ2]γ,
[p′, ψ]ω}� {p′′ω′} ∈ Δ′i if pγ ↪→ p′ω� p′′ω′ ∈ Δi, [p, ψ]γ ↪→ {[p, ψ2]γ, [p′, ψ]ω} ∈
Δ′i if pγ ↪→ p′ω ∈ Δi;

9. if ψ = A[ψ1Rψ2]; [p, ψ]γ ↪→ {[p, ψ2]γ, [p, ψ1]γ} ∈ Δ′i and [p, ψ]γ ↪→ {[p, ψ2]γ,
[p′, ψ]ω | pγ ↪→ p′ω � p′′ω′ ∈ Δi} � {p′′ω′ | pγ ↪→ p′ω � p′′ω′ ∈ Δi} ∈ Δ′i .

10. for every transition (q1, γ, q2) in
⋃

a∈At( fi)(δa ∪ δ¬a); q1γ ↪→ {q2ε} ∈ Δ′i ,
11. for every q ∈ ⋃a∈At( fi)(Acca ∪ Acc¬a); q� ↪→ {q�} ∈ Δ′i .

For every pω ∈ P′i × Γ∗i , BP′i has an accepting run σ from [p, fi]ω and D is the set
of DCLICs created by σ iff pω |=D fi. The intuition behind each rule is explained as
follows.

If ψ = a ∈ At( fi), for every pω ∈ P′i ×Γ∗i , pω satisfies ψ iff BP′i has an accepting run
from [p, a]ω. To check this, BP′i moves to the initial state corresponding to p in Ma (i.e.
pa) by Item 1 allowing to check whether Ma accepts ω. Then the run of BP′i from paω
mimics the run of Ma from the initial state p. Checking whether Ma acceptsω is ensured

by Item 10. IfBP′i is at state q1 with γ on the top of the stack and q1
γ−→ q2 is a transition

of Ma, then BP′i pops γ from the stack and moves the control location from q1 to q2.
Popping γ from the stack allows to check the rest of the stack content. The configuration
pω is accepted by Ma iff the run of Ma reaches a final state q ∈ Acca, i.e., the run of
BP′i from pω reaches the control location q with the empty stack, i.e., the stack only
contains �. Thus, BP′i should have an infinite run from q� which infinitely often visits
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some control locations in Fi. This is ensured by adding a loop on the configuration q�
(Item 11) and adding q into Fi. The case ψ = ¬a s.t. a ∈ At( fi) is similar.

If ψ = ψ1 ∧ ψ2, then, for every pω ∈ P′i × Γ∗i , pω satisfies ψ iff pω satisfies ψ1 and
ψ2. This is ensured by Item 2 stating that BP′i has an accepting run from [p, ψ1 ∧ ψ2]ω
iff BP′i has an accepting run from [p, ψ1]ω and [p, ψ2]ω. Item 3 is similar to Item 2.

Item 4 expresses that if ψ = EXψ1, then, for every pγu ∈ P′i × Γ∗i s.t. γ ∈ Γi, pγu
satisfies ψ iff there exists a transition t1 = pγ ↪→ p′ω ∈ Δi or t2 = pγ ↪→ p′ω � p′′ω′ ∈
Δi such that p′ωu satisfies ψ1. Thus, BP′i should have an accepting run from [p, ψ]γu
iff BP′i has an accepting run from [p′, ψ1]ωu. Moreover, if t2 is the fired transition rule,
the created DCLIC p′′ω′ should also be created by BP′i . Item 5 is analogous.

If ψ = E[ψ1Uψ2], then, for every pγu ∈ P′i × Γ∗i s.t. γ ∈ Γi, pγu satisfies ψ iff either
it satisfies ψ2, or it satisfies ψ1 and there exists a transition t1 = pγ ↪→ p′ω ∈ Δi or
t2 = pγ ↪→ p′ω � p′′ω′ ∈ Δi such that p′ωu satisfies ψ. Thus, BP′i has an accepting
run from [p, ψ]γu iff either BP′i has an accepting run from [p, ψ2]γu or BP′i has an
accepting run from [p, ψ1]γu and [p′, ψ]ωu. This is ensured by Item 6. Moreover, if t2
is the fired transition rule, the created DCLIC p′′ω′ should also be created by BP′i . The
case ψ = A[ψ1Uψ2] is analogous.

Item 8 expresses that if ψ = E[ψ1Rψ2], then, for every pγu ∈ P′i × Γ∗i s.t. γ ∈ Γi,
pγu satisfies ψ iff it satisfies ψ2, and either it satisfies also ψ1, or there exists a transition
t1 = pγ ↪→ p′ω ∈ Δi or t2 = pγ ↪→ p′ω � p′′ω′ ∈ Δi such that p′ωu satisfies ψ.
This guarantees that ψ2 holds either always, or until both ψ1 and ψ2 hold. The fact that
the state [p, ψ] is in Fi ensures that paths where ψ2 always hold are accepting. If t2 is
the fired transition rule, the created DCLIC p′′ω′ should also be created by BP′i . The
intuition behind Item 9 is analogous to Item 8. Then, we obtain the following lemma.

Lemma 3. For every i, 1 ≤ i ≤ n, we can compute an ABDPDS BP′i with O(|Pi| · | fi| +∑
a∈At( fi)(|Qa|+ |Q¬a|)) states and O

(
(|Pi| · |Γi|+ |Δi|)| fi|+∑a∈At( fi)(|δa|+ |δ¬a|)) transition

rules such that for every (pω,D) ∈ Pi × Γ∗i × 2Di , pω |=D fi iff ([p, fi]ω,D) ∈ L(BP′i ).

4.4 Computing L(BP′
i
)

Let us fix an index i, 1 ≤ i ≤ n, the AMAA′i we are looking for corresponds to L(BP′i).
To compute this language, it is insufficient to simply compute the set of configura-
tions from which BP′i has an accepting run, since we also need to memorize the set
of DCLICs created during the run of BP′i . To this aim, we follow the automata-based
approach for CTL model-checking of PDSs presented in [20]. We first characterize the
set L(BP′i ), then we compute the AMAA′i such that L(A′i ) = L(BP′i).
Characterizing L(BP′i): To characterize L(BP′i), we introduce the function preBP′i :

2P′i×Γ∗i ×2Di −→ 2P′i×Γ∗i ×2Di as follows: preBP′i (U) = {(c,D) | c �→i {c1, ..., cm} � D0, ∀ j :
1 ≤ j ≤ m, (c j,D j) ∈ U, and D =

⋃m
j=0 D j}. The transitive and reflexive clo-

sure of preBP′i is denoted by pre∗BP′i . Formally, pre∗BP′i (U) = {(c,D) | (c,D) ∈
U or there exist c1, ..., cm s.t. c �→i {c1, ..., cm} � D0, ∀ j : 1 ≤ j ≤ m, (c j,D j) ∈
pre∗BP′i (U), and D =

⋃m
j=0 D j}. Let pre+BP′i (U) = pre∗BP′i (preBP′i (U)).

Let YBP′i =
⋂

j≥1 Y j where Y0 = P′i × Γ∗i × {∅}, Y j+1 = pre+BP′i (Y j ∩ Fi × Γ∗i × 2Di)

for every j ≥ 0. Intuitively, (c,D) ∈ Y1 iff BP′i has a run from c s.t. each path of this
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Algorithm 1. Computation of YBP′i .
Input : An ABDPDS BP′i = (P′i , Γi, Δ

′
i , Fi);

Output: An AMAA′i = (Qi, Γi, δi, Ii, {qf }) s.t. L(A′i) = YBP′i ;
1 Let k := 0, δi := {(qf , γ, ∅, {qf }) for every γ ∈ Γi}, and ∀p ∈ P′i , p0 := qf ;
2 repeat we call this loop loop1

3 k := k + 1;

4 Add a new transition rule pk ε/∅−→i {pk−1} in δi for every p ∈ Fi;
5 repeat we call this loop loop2

6 For every pγ ↪→ {p1ω1, ..., phωh} � D in Δ′i ,

7 and every case pk
j

ω j/D j−−−−−→∗i R j for all j, 1 ≤ j ≤ h;

8 pk
γ/D∪⋃h

j=1 D j−−−−−−−−−−−→i
⋃h

j=1 Rj in δi

9 until No new transition rule can be added;

10 Remove from δi the transition rules pk ε/∅−−−→i {pk−1}, ∀p ∈ Fi;

11 Replace in δi transition rule pk γ/D−−−−→i R by pk γ/D−−−−→i π
k(R), ∀p ∈ P′i , γ ∈ Γi,R ⊆ Qi;

12 until k > 1 and ∀p ∈ P′i , γ ∈ Γi,R ⊆ P′i × {k} ∪ {qf },D ⊆ Di , pk γ/D−→i R ∈ δi iff

pk−1 γ/D−→i π
−1(R) ∈ δi;

run visits accepting control locations at least once and D is the set of DCLICs created
during this run. (c,D) ∈ Y j iff BP′i has a run from c s.t. each path of this run visits some
control locations in Fi at least j times and D is the set of DCLICs created during this
run. Since YBP′i =

⋂
j≥1 Y j, for every (c,D) ∈ YBP′i , BP′i has a run from c s.t. each path

visits some control locations in Fi infinitely often and D is the set of all the DCLICs
created during this run. Thus, we get:

Proposition 3. L(BP′i) = YBP′i .

Computing YBP′i : We show that YBP′i can be represented by an AMA A′i =
(Qi, Γi, δi, Ii,
Acci) where Qi ⊆ P′i × N ∪ {q f } and q f is the unique final state, i.e., Acci = {q f }. Let
qk denote (q, k) ∈ P′i × N. Intuitively, to compute YBP′i , we will compute iteratively the
different Y js. The iterative procedure computes different AMAs. To force termination,
we use an acceleration based on the projection functions π−1 and πk: for every S ⊆ Qi,

π−1(S ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

{qk | qk+1 ∈ S } ∪ {q f } if q f ∈ S or ∃q1 ∈ S ,

{qk | qk+1 ∈ S } else.

πk(S ) = {qk | ∃ j, 1 ≤ j ≤ k s.t. q j ∈ S } ∪ {q f | q f ∈ S }.
Algorithm 1 computes an AMA A′i recognizing YBP′i . Let us explain the intuition be-
hind the different lines of this algorithm. Let A0 be the automaton obtained after the
initialization (Line 1). It is clear that A0 accepts Y0. Let Ak be the AMA obtained at step
k (a step starts at Line 3). For every p ∈ P′i , state pk denotes state p at step k, i.e., Ak

recognizes a tuple (pω,D) iff pk ω/D−−−→∗i {q f }. Suppose the algorithm is at the beginning
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of the kth step (loop1). Line 4 adds the ε-transition pk ε/∅−−−−→i {pk−1} for every p ∈ Fi.
Then, we obtain L(Ak−1) ∩ Fi × Γ∗i × 2Di . loop2 (Lines 5-9) is the saturation proce-
dure that computes pre∗BP′i (L(Ak−1) ∩ Fi × Γ∗i × 2Di). Line 10 removes the ε-transition

pk ε/∅−−−−→i {pk−1} for every p ∈ Fi. After this, we obtain pre+BP′i (L(Ak−1)∩ Fi × Γ∗i × 2Di).
Thus, in case of termination, the algorithm outputs YBP′i . The substitution at Line 11 is
used to force termination. Thus, we can show the following theorem.

Theorem 6. Algorithm 1 always terminates and produces YBP′i .

Proof Sketch. The proof follows the proof of [20]. Algorithm 1 follows the idea of
the algorithm of [20]. computing an AMA recognizing the language of an ABDPDS
when transition rules are in the form of pγ ↪→ {p1ω1, ..., phωh}, i.e.,Di = ∅ . The main
differences are:

To compute pre∗BP′i (L(Ak−1)∩Fi×Γ∗i ×2Di), instead of using the following saturation
procedure given in [2] that computes reachable configurations of Alternating PDSs:

If pγ ↪→ {p1ω1, ..., pmωm} ∈ Δ′i and pk
j
ω j/∅−−−−→∗i R j, for j, 1 ≤ j ≤ m, add pk γ/∅−→i

∪m
j=1R j in δi.
We use the following saturation procedure:

If pγ ↪→ {p1ω1, ..., phωh} � D ∈ Δ′i and pk
j
ω j/Dj−−−−−→∗i R j for j, 1 ≤ j ≤ h, add

pk γ/D∪⋃h
j=1 Dj−−−−−−−−−−−→ ∪h

j=1 R j in δi.
The idea behind our saturation procedure is the following: suppose pγ ↪→

{p1ω1, ..., phωh} � D ∈ Δ′i and for every j, 1 ≤ j ≤ h, (p jω jω
′,D j) is in L(A′k−1) ∩

Fi×Γ∗i ×2Di (i.e., pk
j

ω j/D′j−−−−−→∗i R j
ω′/D′′j−−−−−→∗i {q f } and D j = D′j∪D′′j ). Then, Lines 3-6 add the

new transition rule pk
γ(D∪⋃h

j=1 D′j)−−−−−−−−−−−→i
⋃h

j=1 R j that allows to accept (pγω′,D∪⋃h
j=1 D j),

i.e., (pγω′,D ∪⋃h
j=1 D j) ∈ pre∗BP′i ({(p1ω1ω

′,D1), ..., (p jω jω
′,D j)}). �

Complexity. Following [20], we can show that loop2 can be done in time O(|P′i | · |Δ′i | ·
24|P′i |+|Di|). The substitution (Line 11) and termination condition (Line 12) can be done
in time O(|Γi| · |P′i | · 22|P′i |+|Di|) and O(|Γi| · |P′i | · 2|P

′
i |+|Di|), respectively. Putting all these

estimations together, the global complexity of Algorithm 1 is O(|P′i |2 · |Δ′i | · |Γi| ·25|P′i |+|Di|).

By Proposition 3 and Theorem 6, we get:

Lemma 4. Given an ABDPDS BP′i , we can construct an AMA A′i with O(|Γi| · |P′i | ·
2|P′i |+|Di|) transitions and O(|P′i |) states in time O(|P′i |2 · |Δ′i | · |Γi| · 25|P′i |+|Di|) s.t. L(BP′i) =
L(A′i ).

From Lemma 4 and Lemma 3, we get:

Lemma 5. We can compute AMAsA′1, ...,A′n in time O(
∑n

i=1((|Pi| · | fi|+k)2 · ((|Pi| · |Γi|+
|Δi|)| fi| + d) · |Γi| · 25(|Pi |·| fi|+k)+|Di|)) s.t. for every i, 1 ≤ i ≤ n, pω ∈ Pi × Γ∗i , pω |=D fi iff
([p, fi],D) ∈ L(A′i ), where k =

∑
a∈At( fi)(|Qa| + |Q¬a|) and d =

∑
a∈At( fi)(|δa| + |δ¬a|).

4.5 CTL Model-Checking For DPNs with Regular Valuations

By Lemma 5, we obtain a set of AMAs {A′1, ...,A′n} s.t. for every i, 1 ≤ i ≤ n and
every local configuration pω ∈ Pi × Γ∗i , pω |=D fi iff ([p, fi]ω,D) ∈ L(A′i ). Following
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the approach for single-indexed LTL model-checking for DPNs, to obtain an efficient
procedure, we compute the largest set D′f p of DCLICs s.t. for every d ∈ ⋃n

i=1Di, d
satisfies f iff d ∈ D′f p. Then, to check whether a global configurationG satisfies f , it is
sufficient to check whether for every pω ∈ G, there exists D ⊆ D′f p s.t. ([p, f℘(p)]ω,D) ∈
L(A′℘(p)).D′f p can be computed as done in Section 3.2. We can show that:

Theorem 7. We can compute AMAs A′1, ...,A′n in time O(
∑n

i=1((|Pi| · | fi| + k)2 · ((|Pi| ·
|Γi|+ |Δi|)| fi|+d) · |Γi| ·25(|Pi|·| fi|+k)+|Di|)) s.t. for every global configurationG, G satisfies f
iff for every pω ∈ G, there exists D ⊆ D′f p such that ([p, f℘(p)]ω,D) ∈ L(A′℘(p)), where
k =
∑

a∈At( fi)(|Qa| + |Q¬a|) and d =
∑

a∈At( fi)(|δa| + |δ¬a|).
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Abstract. A desirable property of control systems is robustness to in-
puts, when small perturbations of the inputs of a system will cause only
small perturbations on outputs. This property should be maintained at
the implementation level, where close inputs can lead to different ex-
ecution paths. The problem becomes crucial for finite precision imple-
mentations, where any elementary computation is affected by an error.
In this context, almost every test is potentially unstable, that is, for a
given input, the finite precision and real numbers paths may differ. Still,
state-of-the-art error analyses rely on the stable test hypothesis, yielding
unsound error bounds when the conditional block is not robust to uncer-
tainties. We propose a new abstract-interpretation based error analysis
of finite precision implementations, which is sound in presence of unsta-
ble tests, by bounding the discontinuity error for path divergences. This
gives a tractable analysis implemented in the FLUCTUAT analyzer.

1 Introduction

In the analysis of numerical programs, a recurrent difficulty when we want to
assess the influence of finite precision on an implementation, is the possibility
for a test to be unstable: when, for a given input, the finite precision control
flow can differ from the control flow that would be taken by the same execution
in real numbers. Not taking this possibility into account may be unsound if the
difference of paths leads to a discontinuity in the computation, while taking it
into account without special care soon leads to large over-approximations.

This unstable test problem is thus closely related to the notion of continu-
ity/discontinuity in programs, first introduced in [13]. Basically, a program is
continuous if, when its inputs are slightly perturbed, its output is also only
slightly perturbed, very similarly to the concept of a continuous function. Dis-
continuity in itself can be a symptom of a major bug in some critical systems,
such as the one where a F22 Raptor military aircraft almost crashed after cross-
ing the international date line in 2007, due to a discontinuity in the treatment of
dates. We thus want to automatically characterize conditional blocks that per-
form a continuous treatment of inputs, and are thus robust, and those that do
not. Consider the program presented on the left hand side of Figure 1, where in-
put x takes its real value in [1, 3], with an error 0 < u << 1, that can come from

C.-c. Shan (Ed.): APLAS 2013, LNCS 8301, pp. 50–57, 2013.
c© Springer International Publishing Switzerland 2013
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previous finite precision computations or from any uncertainty such as sensor
imperfection. The test is potentially unstable: for instance, if the real value of x
at control point [1] is rx[1] = 2, then its floating-point value is fx

[1] = 2 + u. Thus
the execution in real numbers would take the then branch and lead at control
point [2] to ry[2] = rx[1] + 2 = 4, whereas the floating-point execution would take

the else branch and lead to fy
[4] = fx

[1] = 2 + u. The test is not only unstable,

but also introduces a discontinuity around the test condition (x == 2). Indeed,
for rx[1] = 2, there is an error due to discontinuity of fy

[4] − ry[2] = −2 + u.

In the rest of the paper, we propose a new analysis, that enhances earlier
work by the authors [11], by computing and propagating bounds on those dis-
continuity errors. This previous work characterized the computation error due to
the implementation in finite precision, by comparing the computations in real-
numbers with the same computations in the floating-point semantics, relying on
the stable test assumption: the floating-point number control flow does not di-
verge from the real number control flow. When this assumption is not satisfied,
the comparison between the two semantics (the error bounds) could be unsound.
This issue appears in all other (static or dynamic) existing analyzes of numerical
error propagation; the expression unstable test is actually taken from CADNA
[4], a stochastic arithmetic instrumentation of programs, to assert their numer-
ical quality. In Hoare provers dealing with both real number and floating-point
number semantics, e.g. [1] this issue has to be sorted out by the user, through
suitable assertions and lemmas.

Here as in previous work, we rely on the relational abstractions of real num-
ber and floating numbers semantics using affine sets (concretized as zonotopes)
[9,10,5,6,11]. But we now also, using these abstractions, compute and solve con-
straints on inputs such that the execution potentially leads to unstable tests,
and thus accurately bound the discontinuity errors, computed as the difference
of the floating-point value in one branch and the real value in another, when the
test distinguishing these two branches can be unstable.

x := [1,3] + u; // [1]
/* r̂x[1] = 2 + εr1; ê

x
[1] = u */

if (x ≤ 2)
y = x+2; // [2]
/* r̂y[2] = 4 + εr1;
êy[2] = u+ δεe2 */

else
y = x; // [3]
/* r̂y[4] = 2 + εr1;
/* êy[4] = u */

// [4] /* r̂y[4] = r̂y[2]  r̂y[4]
êy[4] = êy[2]  êy[3] + dy[4] */

εr1

-1 0−u 1

y

0

1

2

3

4

5

Φr:

Φf :

[then]: εr1 ≤ 0 [else]: εr1 > 0

[then]: εr1 ≤ −u [else]: εr1 > −u
Φr ∩ Φf : [unstable]: −u < εr1 ≤ 0

r̂y[2]

f̂y
[2] f̂y

[3]

r̂y[3]

Fig. 1. Running example
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Related Work. In [2], the authors introduce a continuity analysis of programs.
This approach is pursued in particular in [3], where several refinements of the
notion of continuity or robustness of programs are proposed, another one being
introduced in [14]. In [14], the algorithm proposed by the authors symbolically
traverses program paths and collects constraints on input and output variables.
Then for each pair of program paths, the algorithm determines values of input
variables that cause the program to follow these two paths and for which the
difference in values of the output variable is maximized. One difference between
the approaches is that we give extra information concerning the finite precision
flow divergence with respect to the real number control flow, potentially exhibit-
ing flawed behaviors. Also, their path-sensitive analysis can exhibit witnesses for
worst discontinuity errors, but at the expense of a much bigger combinatorial
complexity. Robustness has also been discussed in the context of synthesis and
validation of control systems, for instance in [16]. Indeed, robustness has long
been central in numerical mathematics, in particular in control theory. The field
of robust control is actually concerned in proving stability of controlled systems
where parameters are only known in range.

Contents. Our main contribution is a tractable analysis that generalizes both
the abstract domain of [11] and the continuity or robustness analyses: it ensures
the finite precision error analysis is now sound even in the presence of unstable
tests, by computing and propagating discontinuity error bounds for these tests.
More details on this analysis and further experiments are available in [12].

2 Preliminaries: Affine Sets for Real Valued Analysis

We sketch here some basics on the abstract domains based on affine sets for the
abstraction of real number semantics, necessary to understand the robustness
analysis presented here. We refer to [8,9,10,5,6] for more details.

Affine arithmetic is a more accurate extension of interval arithmetic, that takes
into account affine correlations between variables. An affine form is a formal sum

over a set of noise symbols εi, x̂
def
= αx

0 +
∑n

i=1 α
x
i εi, with αx

i ∈ R for all i. Each
noise symbol εi stands for an independent component of the total uncertainty
on the quantity x̂, its value is unknown but bounded in [-1,1]. The same noise
symbol can be shared by several quantities, indicating correlations among them.
The result of linear operations on affine forms is an affine form, and is thus
interpreted exactly. For non affine operations, an approximate linear resulting
form is computed, and bounds for the error committed using this approximate
form are used to define a new noise term that makes the resulting form a sound
over-approximation.

We use matrix notations to handle affine sets, that is tuples of affine forms. We
noteM(n, p) the space of matrices with n lines and p columns of real coefficients.
A tuple of affine forms expressing the set of values taken by p variables over n
noise symbols εi, 1 ≤ i ≤ n, is represented by a matrix A ∈M(n+ 1, p).
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Constrained Affine Sets. As described in [6], tests are interpreted by leaving
affine sets unchanged and adding some constraints on the εi noise symbols, in-
stead of having them vary freely into [-1,1]: we restrain ourselves to executions
(or inputs) that can take the considered branch. These constraints can be ab-
stracted in any abstract domain, the simplest being intervals. We note A for this
abstract domain, and use γ : A → ℘(Rn) for the concretisation operator, and
α : ℘(Rn)→ A for some abstraction operator.

This means that abstract values X are now composed of a zonotope identified
with its matrix RX ∈ M(n + 1, p), together with an abstraction ΦX of the con-
straints on the noise symbols, X = (RX , ΦX). The concretisation of such con-
strained zonotopes or affine sets is γ(X) =

{
tCXε | ε ∈ γ(ΦX)

}
. For ΦX ∈ A, and

x̂ an affine form, we note ΦX(x̂) the interval [infε∈γ(ΦX) x̂(ε), supε∈γ(ΦX) x̂(ε)].

Example 1. On the running example from Figure 1, the real value of input x,
given in [1, 3], will be abstracted by the affine form r̂x[1] = 2 + εr1, where εr1 is a

symbolic variable with values in [−1, 1]. We associate the abstract value X with
RX = (2 1), i.e. x̂ = 2 + ε1, and γ(ΦX) = γ(ε1) = [−1, 1].

Note the functional abstraction: affine forms represent a function from inputs
to variable values. We will use this to interpret tests, and in particular to compute
unstable tests conditions. Here, the interpretation of the test if (x<=2) in the
then branch is translated into constraint 2+εr1 ≤ 2, that is εr1 ≤ 0, thus γ(ΦX) =
[−1, 0]. Then, the interval concretisation of x̂ is γ(x̂) = [2− 1, 2] = [1, 2].

We also need an upper bound operator to combine abstract values coming
from different branches. The computation of upper bounds (and if possible min-
imal ones) on constrained affine sets is a difficult task, already discussed in several
papers [9,10,6,7], and orthogonal to the robustness analysis presented here. We
will thus consider we have an upper bound operator on constrained affine sets
we note �, and focus on the additional term due to discontinuity in tests.

3 Robustness Analysis of Finite Precision Computations

We now introduce an analysis of finite precision computations, based on an ab-
straction similar to some previous work [11], but refined to be sound in presence
of unstable tests, and to exhibit the potential discontinuity errors due to these
tests. For more concision, we insist here on what is directly linked to an accurate
treatment of these discontinuities, and rely as much as possible on [11].

Floating-point computation is considered as a perturbation of the same com-
putation in real numbers, and we use zonotopic abstractions of real computations
and errors (introducing respectively noise symbols εri and εej), from which we get
an abstraction of floating point computations. But we make here no assumptions
on control flows in tests and will compute branch conditions independently on
the real value and the floating-point value. For each branch, we thus get two sets
of constraints: εr = (εr1, . . . , ε

r
n) ∈ ΦX

r for the real control flow (test computed
on real values RX), and (εr, εe) = (εr1, . . . , ε

r
n, ε

e
1, . . . , ε

e
m) ∈ ΦX

f for the finite

precision control flow (test computed on float values RX + EX).
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Definition 1. An abstract value X, defined at a given control point, for a pro-
gram with p variables x1, . . . , xp, is thus a tuple X = (RX , EX , DX , ΦX

r , ΦX
f )

composed of the following affine sets and constraints, for all k = 1, . . . , p:⎧⎪⎪⎨
⎪⎪⎩

RX : r̂Xk = rX0,k +
∑n

i=1 r
X
i,k εri where εr ∈ ΦX

r

EX : êXk = eX0,k +
∑n

i=1 e
X
i,k εri +

∑m
j=1 e

X
n+j,k εej where (εr, εe) ∈ ΦX

f

DX : d̂Xk = dX0,k +
∑o

i=1 d
X
i,k εdi

f̂X
k = r̂Xk + êXk where (εr, εe) ∈ ΦX

f

where RX ∈M(n+1, p) defines the real values of variables, and r̂Xk giving the real
value of xk is defined on the εri ; E

X ∈ M(n+m+1, p) defines the rounding errors
(or initial uncertainties) and their propagation through computations using the
εri which handle the uncertainty on the real value and the εei which handle the
uncertainty on the rounding errors; DX ∈ M(o+ 1, p) defines the discontinuity
errors, using noise symbols εdi ; Φ

X
r abstracts the set of constraints such that the

real control flow reaches the control point, εr ∈ ΦX
r , and ΦX

f abstracts the set of

constraints for the finite precision control flow, (εr, εe) ∈ ΦX
f .

Example 2. Let us consider the running example. We already saw that the real
value of input x is abstracted by the affine form r̂x[1] = 2+ εr1. Its error is êx[1] = u

and its finite precision value is f̂x
[1] = r̂x[1] + êx[1] = 2 + εr1 + u.

Test Interpretation. A test e1 op e2, where e1 and e2 are two arithmetic
expressions, and op an operator among≤, <,≥, >,=, 
=, is interpreted as z op 0,
where z is the abstraction of expression e1 - e2 with affine sets. We interpret
this test independently for real and floating-point value, relying on the test
interpretation on constrained affine sets introduced in [6]:

Definition 2. Let X = (RX , EX , DX , ΦX
r , ΦX

f ) a constrained affine set. We

define Z = ([[xk op 0]]X by⎧⎪⎨⎪⎩
(RZ , EZ , DZ) = (RX , EX , DX)
ΦZ

r = ΦX
r

⋂
α
(
εr | rX0,k +

∑n
i=1 r

X
i,kε

r
i op 0

)
ΦZ

f = ΦX
f

⋂
α
(
(εr, εe) | rX0,k + eX0,k +

∑n
i=1(r

X
i,k + eXi,k)ε

r
i +

∑m
j=1 e

X
n+j,kε

e
j op 0

)
Example 3. Consider the running example. We start with r̂x[1] = 2+ εr1, ê

x
[1] = u.

The condition for the real control flow to take the then branch is r̂x[1] = 2+εr1 ≤ 2,

thus Φr is εr1 ∈ [−1, 0]. The condition for the finite precision control flow to take

the then branch is f̂x
[1] = r̂x[1] + êx[1] = 2 + εr1 + u ≤ 2, thus Φf is εr1 ∈ [−1,−u].

Thus, the unstable test condition being that for the same input the real and float
control flow are different, this amounts to intersecting these two conditions on
εr1, and yields −u < εr1 ≤ 0. These constraints are illustrated on Figure 1, with
u = 0.2: Φr denotes the constraints on the real value, Φf , the constraints on the
finite precision value, and Φr ∩ Φf , the unstable test condition. For the other
possibility for an unstable test, that is the execution in real numbers takes the
else branch while the float execution takes the then branch, the constraints are
εr1 < 0 and εr1 ≤ −u, which are incompatible. This possibility is thus excluded.
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Interval Concretisation. The interval concretisation of the value of program
variable xk defined by the abstract value X = (RX , EX , DX , ΦX

r , ΦX
f ), is, with

the notations of Section 2:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γr(r̂
X
k ) = ΦX

r (rX0,k +
∑n

i=1 r
X
i,k εri )

γe(ê
X
k ) = ΦX

f (eX0,k +
∑n

i=1 e
X
i,k εri +

∑m
j=1 e

x
n+j,k εej)

γd(d̂
X
k ) = ΦX

f (dX0,k +
∑o

l=1 d
x
l,k εdl )

γf (f̂
X
k ) = ΦX

f (rX0,k + eX0,k +
∑n

i=1(r
X
i,k + eXi,k) ε

r
i +

∑m
j=1 e

x
n+j,k εej)

Example 4. Take variable y in the running example. In the then branch, its
real value is r̂y[2] = r̂x[1] + 2 = 4 + εr1, the error êy[2] = êx[1] + δεe2, where δ is the

bound on the elementary rounding error on y, due to the addition, we deduce
f̂y
[2] = r̂y[2] + êy[2]. In the else branch, the real value is r̂y[3] = r̂x[1] = 2 + εr1,

the error êy[3] = êx[1], and we deduce f̂y
[3] = r̂y[3] + êy[3]. In Figure 1, we represent

in solid lines the real value of y and in dashed lines its finite precision value.
The interval concretisation of its real value on ΦX

r , is γr(r̂
y
[3]) = ΦX

r (2 + εr1) =

2 + [0, 1] = [2, 3]. The interval concretisation of its floating-point value on ΦX
f ,

is γf (f̂
y
[3]) = ΦX

f (r̂y[3] + u) = 2 + [−u, 1] + u = [2, 3 + u]. Actually, r̂y[3] is defined

on ΦX
r ∪ ΦX

f , as illustrated on Figure 1, because it is both used to abstract the
real value, or, perturbed by an error term, to abstract the finite precision value.

Join. If the test distinguishing two branches can be unstable, then when we
join abstract values X and Y coming from the two branches, the difference
between the floating-point value of X and the real value of Y , (RX +EX)−RY ,
and the difference between the floating-point value of X and the real value of Y ,
(RY +EY )−RX , are also errors due to finite precision. The join of all error terms
can then be expressed as EZ +DZ , where EZ = EX �EY is the propagation of
classical rounding errors, and DZ expresses the discontinuity errors.

A key point for an accurate computation of these discontinuity terms, is to
express the unstable tests conditions as an intersection of constraints on the εri
noise symbols, yielding a restriction of the sets of inputs (or equivalently the εri ).
It is thus crucial that these εri are shared by affine sets for real and float values.

Definition 3. We join two abstract values X and Y by Z = X � Y defined as
Z = (RZ , EZ , DZ , ΦX

r ∪ ΦY
r , ΦX

f ∪ ΦY
f ) where⎧⎨

⎩
(RZ , ΦZ

r ∪ ΦZ
f ) = (RX , ΦX

r ∪ ΦX
f ) � (RY , ΦY

r ∪ ΦY
f )

(EZ , ΦZ
f ) = (EX , ΦX

f ) � (EY , ΦY
f )

DZ = DX �DY � (RX −RY , ΦX
f � ΦY

r ) � (RY −RX , ΦY
f � ΦX

r )

Example 5. Consider variable y in the example. We join X = (r̂y[2] = 4+εr1, ê
y
[2] =

u + δεe2, 0, ε
r
1 ∈ [−1, 0], (εr1, ε

e
2) ∈ [−1,−u]× [−1, 1]) from the then branch with

Y = (r̂y[3] = 2 + εr1, ê
y
[3] = u, 0, εr1 ∈ [0, 1], εr1 ∈ [−u, 1]) from the else branch.

With the analysis of [11] that makes the stable test assumption, we get when
joining branches at control point [4], r̂y[4] = r̂y[2] � r̂y[3] = 3 + εr4 ∈ [2, 4] with new
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noise symbol εr4 (we do not detail here the upper bound operator on affine forms),

êy[4] = êy[2] � êy[3] = u+ δεe2 ∈ [u− δ, u+ δ], and f̂y
[4] = r̂y[4] + êy[4] = 3+ u+ εr4+ δεe2.

This is sound for the real and float values r̂y[4] and f̂y
[4], but unsound for the error.

The new analysis also computes bounds for discontinuity errors. The discon-
tinuity due to the first possible unstable test, when the real takes the then

branch and float takes the else branch is: r̂y[3] − r̂y[2] = 2 + εr1 − 4 + εr1 = −2,

for εr1 ∈ ΦY
f ∩ ΦX

r = [−u, 1] ∩ [−1, 0] = [−u, 0]. As already seen, the other

possibility of an unstable test is excluded. The error is now êy[4] + dy[4] where

dy[4] = −2χ[−u,0](ε1) and χ[a,b](x) equals 1 if x is in [a, b] and 0 otherwise.

4 Experiments

We experimented some small examples inspired by industrial codes, using our
implementation of this abstraction in our static analyzer FLUCTUAT. More
experiments are described in [12].

A Simple Interpolator. The following example implements an interpolator, affine
by sub-intervals, as classically found in critical embedded software. It is a ro-
bust implementation indeed. In the code below, we used the FLUCTUAT asser-
tion FREAL WITH ERROR(a,b,c,d) to denote an abstract value (of resulting type
float), whose corresponding real values are x ∈ [a, b], and whose corresponding
floating-point values are of the form x+ e, with e ∈ [c, d].

f loat R1 [ 3 ] , E, r e s ;
R1 [ 0 ] = 0 ; R1 [ 1 ] = 5 ∗ 2 . 2 5 ; R1 [ 2 ] = R1 [ 1 ] + 20 ∗ 1 . 1 ;
E = FREAL WITH ERROR(0 . 0 , 1 00 . 0 , - 0 . 00001 ,0 . 00001 ) ;
i f (E < 5)

r e s = E∗2.25 + R1 [ 0 ] ;
e lse i f (E < 25)

r e s = (E-5 )∗1 .1 + R1 [ 1 ] ;
e lse

r e s = R1 [ 2 ] ;
return r e s ;

The analysis proves res in [-2.25e-5,33.2], with an error in [-3.5e-5,2.4e-5], thus
of the order of magnitude of the input error, despite unstable tests.

A Simple Square Root Function. This example is a rewrite in some particular
case, of an actual implementation of a square root function, in an industrial
context:

double s q rt2 = 1.414213538169860839843750 ;
double S , I ; I = DREAL WITH ERROR(1 , 2 , 0 ,0 . 00 1 ) ;
i f ( I>=2)

S = sqrt2 ∗(1+( I /2-1 )∗ ( . 5 -0 .125∗ ( I /2- 1 ) ) ) ;
el se
S = 1+( I-1)∗(.5+( I -1)∗( -.125+( I - 1 )∗ . 0 62 5 ) ) ;

With the former type of analysis within FLUCTUAT, we get the unsound re-
sult that S is proven in the real number semantics to be in [1,1.4531] with
a global error in [-0.0005312,0.00008592]. The function does not exhibit a big
discontinuity, but still larger than these bounds. For I=2 for instance, the then

branch computes sqrt2 which is approximately 1.4142, whereas the else branch
computes 1+0.5-0.125+0.0625=1.4375. With our present analysis, FLUCTUAT
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proves that S in the real number semantics is in [1,1.4531] with an error in [-
0.0394,0.0389], the test discontinuity accounting for most of it ([-0.0389,0.0389],
coherent with the above rough estimate of 0.0233).

5 Conclusion

We have proposed an abstract interpretation based static analysis of the robust-
ness of finite precision implementations, as a generalization of both software ro-
bustness or continuity analysis and finite precision error analysis, by abstracting
the impact of finite precision in numerical computations and control flow diver-
gences. Future work includes going along the lines of [15] and resorting to more
sophisticated constraint solving: indeed our analysis can generate constraints on
noise symbols, which we only partially use for the time being.
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Abstract. We study a Hoare Logic to reason about GPU kernels, which
are parallel programs executed on GPUs. We consider the SIMT (Sin-
gle Instruction Multiple Threads) execution model, in which multiple
threads execute in lockstep (that is, execute the same instruction at a
time). When control branches both branches are executed sequentially
but during the execution of each branch only those threads that take it
are enabled; after the control converges, all threads are enabled and exe-
cute in lockstep again. In this paper we adapt Hoare Logic to the SIMT
setting, by adding an extra component representing the set of enabled
threads to the usual Hoare triples. It turns out that soundness and rel-
ative completeness do not hold for all programs; a difficulty arises from
the fact that one thread can invalidate the loop termination condition
of another thread through shared memory. We overcome this difficulty
by identifying an appropriate class of programs for which soundness and
relative completeness hold.

1 Introduction

General purpose computing on graphics processing units (GPGPU) has recently
become widely available even to end-users, enabling us to utilize computational
power of GPUs for solving problems other than graphics processing. Application
areas include physics simulation, signal and image processing, etc. [1]. However,
writing and optimizing GPU kernels, which are parallel programs executed on
GPUs, is still a hard task and error-prone. For example, in programming in
CUDA, a parallel computing platform and programming model on GPU [2],
we have to care about synchronization and data races so that many threads
cooperate correctly. Moreover, to obtain the best performance, we usually have
to take into account more low-level mechanisms, to optimize memory access
pattern, increase occupancy, etc.

Much effort has recently been made to develop automated verification tools
for GPU kernels [3–11]. These tools try to automate detections of synchroniza-
tion errors, data races, and inefficiency, as well as checking functional correctness
and generating test cases. They, although automation is a great advantage, tend
to suffer false positives/negatives because of approximation, as well as combina-
torial explosion.

Another approach to formal verification is deductive verification, in which
the correctness of a program is verified by formally proving (using a fixed set

C.-c. Shan (Ed.): APLAS 2013, LNCS 8301, pp. 58–73, 2013.
c© Springer International Publishing Switzerland 2013
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of deduction rules) that it is indeed correct. The relative completeness of the
inference rules guarantee that all correct programs can be proved to be correct,
although much effort is often required to complete the correctness proof. Deduc-
tive approach has been implemented as tools that can be applied to real-world
programs (Why31, for example). However, in the context of GPU programming,
this approach is not extensively studied yet (at the time of writing, we are only
aware of the ongoing work using separation logic by Huisman and Mihelčić [12]).

In this work, we study a deductive verification method for GPU programs. We
focus on the SIMT execution model (described in Section 1.1), and demonstrate
that Hoare Logic, one of the traditional approaches to deductive verification, can
be applied to GPU kernels with few modifications. Our contributions are (1) an
extension of Hoare Logic to GPU kernels, and (2) proofs of its soundness and
relative completeness for a large class of GPU kernels.

Generally speaking, reasoning about parallel programs requires much more
sophisticated techniques than the sequential ones, because threads can interfere
with each other through shared resources [13]. Although existing techniques
could be applied to GPU kernels, we take advantage of the so-called lockstep
semantics of SIMT to obtain simpler inference rules. In fact, our inference rules
are similar to the usual Hoare Logic, and the soundness and relative completeness
hold under a very mild restriction.

In the rest of this section we describe how SIMT works, and how we can
extend Hoare Logic to the SIMT setting.

1.1 Overview of the SIMT Execution Model

SIMT (Single Instruction Multiple Threads) is a parallel execution model of
GPUs employed by CUDA. A CUDA program is written in CUDA C, an ex-
tension of C language, and run on GPUs as specified in the SIMT execution
model. In the SIMT execution model, multiple (typically thousands of) threads
are launched and execute in lockstep, i.e., execute the same instruction at a time.

When a conditional branch is encountered during the lockstep execution,
and the decisions on which branch to be taken vary among threads, then both
branches are executed sequentially. During the execution of each branch, only
those threads that take it are enabled. After all branches are completed, all
threads are enabled and executed in lockstep again.

Therefore, in SIMT, some statements actually may be executed by only some
of the threads, depending on the branching. We say that a thread is active if it is
currently enabled, and inactive otherwise. A mask is a piece of data (typically a
bit mask) that describe which thread is active. The state of a mask may change
during execution, and the result of executing a statement may depend on a mask.

As an example, let us consider the following program.

k = tid; while (k < n) { c[k] = a[k] + b[k]; k = k + ntid; }

1 http://why3.lri.fr/

http://why3.lri.fr/
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Here we assume that k is a thread local variable, a, b, and c are shared arrays
of length n, and ntid is a constant whose value is the number of threads. The
constant tid represents the thread identifier, ranging from 0 to ntid - 1. Let us
suppose that this program is launched with 4 threads, and n equals 6. In the first
iteration, the condition k < n holds in all threads, so the mask is {0, 1, 2, 3}, and
all threads execute the loop body. In the second iteration, however, the values
of k in threads 0, 1, 2, 3 are 4, 5, 6, 7 respectively, so the condition k < n does
not hold in threads 2 and 3. Therefore these threads are deactivated, and the
loop body is executed with mask {0, 1}. After that all threads exit the loop, and
program terminates. The final value of c is the sum of a and b.

Although the way SIMT executes threads looks similar to SIMD (Single In-
struction Multiple Data) in that a single instruction operates on multiple data,
they are different in that parallel operations on vectors are explicitly specified in
SIMD while it is not the case for SIMT. Indeed, when programming in CUDA
C we only specify a behavior of a single scalar thread, like a usual sequential
program written C or C++.

1.2 Extending Hoare Logic

Next we consider a Hoare Logic for the SIMT execution model. The programs
we are going to reason about is a single GPU kernel, like the example above.

Actually, we can employ many of the inference rules from the ordinary Hoare
Logic without significant changes, although Hoare triples have to be changed.
As explained above, in SIMT the effect of the execution of a statement depends
on the mask. Since the usual Hoare triple {ϕ}P {ψ} does not contain the infor-
mation about a mask, it cannot fully specify a program. Therefore we augment
the usual Hoare triple with another piece of information, and consider a Hoare
quadruple of the form {ϕ}m | P {ψ}, where m denotes a mask. Intuitively this
quadruple means that “if an initial state satisfies ϕ, and we execute a program
P with a mask denoted by m, then after termination the state satisfies ψ.”

However, a difficulty arises from while loops. We found that, in some corner
cases, it is difficult to reason about while loops correctly. Although it would be
possible to modify the inference rule so that we can handle all programs soundly,
we decided to keep simplicity by making some assumption on the program we
deal with. As a result we consider a certain class of programs, which we call
regular programs, and obtain the soundness and relative completeness for regular
programs. However, this is not a serious restriction because any program can be
transformed into a regular one without changing the behavior (with respect to
our operational semantics).

Interestingly, the resulting Hoare Logic is quite similar to the ordinary one,
despite the parallel nature of GPU programs. It seems that this simplicity is a
result of the fact that in SIMT dependency between threads is relatively weak.
Threads basically work independently, and only at synchronization points they
have to wait for each other. As a result the execution of a SIMT program is very
similar to a sequential program.
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1.3 Organization of the Paper

The rest of the paper is organized as follows. In Section 2 we formalize the SIMT
execution model by extending the usual while-language. Section 3 describes our
Hoare Logic. Section 4 introduces the notion of regular programs, and prove
soundness and relative completeness of our Hoare Logic for regular programs.
In Section 5 we discuss some variants of our system. Section 6 mentions related
work and Section 7 concludes the paper.

We omit the detailed proofs for brevity. They are available in the full version
of the paper (http://www.fos.kuis.kyoto-u.ac.jp/~kozima/hl-simt-full.
pdf).

2 SIMT Execution Model

In this section we formalize SIMT execution model. Our formalization is based
on Habermaier and Knapp [14], but there are some differences. First, we omit
break, function calls, and return. Second, we include arrays, which is almost
always used in CUDA programs, and barrier synchronization.

In the semantics formalized here, the execution is in complete lockstep, but
the actual GPU program is not necessarily executed in this manner. Possible
approaches to filling this gap will be discussed in Section 7.

2.1 Formal Syntax

We assume countable, disjoint sets of variables LV n and SV n for each nonnega-
tive integer n. Elements of LV n and SV n are thread local and shared variables of
arrays of dimension n respectively (when n = 0 they are considered as scalars).
We also fix the set of n-ary operations Opn for each n. We assume that the
standard arithmetic and logical operations such as +, <, && and ! are included
in the language.

Well-formed expressions e and programs P are defined as follows:

e ::= tid | ntid | xn[ē] | fn(ē)
P ::= xn[ē] := e | skip | sync | P ; P ′ | if e thenP elseP ′ | while e doP

where xn and fn range over LV n ∪SV n and Opn, respectively, and ē stands for
the sequence e1, . . . , en.

Expressions include special constants tid, thread identifier, and ntid, the
number of threads2. If a variable x is of dimension 0, we write x instead of x[].

xn[e1, ... , en] := e is an assignment, which is performed by all active threads
in parallel. skip is a statement that has no effect. sync is a barrier, typically
used to avoid data races in CUDA. Although in our formalization a barrier does

2 The name of this constant is taken from a special register in PTX [15]. In our
formalization this is the same as the number of threads, although this is not always
the case for PTX.

http://www.fos.kuis.kyoto-u.ac.jp/~kozima/hl-simt-full.pdf
http://www.fos.kuis.kyoto-u.ac.jp/~kozima/hl-simt-full.pdf
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not play a significant role, we include it so that we can reason about dead-
locks (sometimes called barrier divergence) caused by a barrier. The remaining
constructs are the same as the usual while-language. Note that we do not have
boolean expressions, so we use integer expressions for conditions of if and while

statements, and regard any nonzero value as true.

2.2 Operational Semantics

Next we define a formal semantics of SIMT. For simplicity, arrays are represented
simply by total maps from tuples of integers to integers, so we do not care about
array bounds, and negative indices are also allowed. Our operational semantics
basically follows the standard evaluation rules, but one of the main differences
is that it is nondeterministic because multiple threads may try to write into the
same shared variables simultaneously.

Below we fix a positive integer N which is the number of threads, and there-
fore is an interpretation of the constant ntid. We also assume for each n-ary
operation fn, a map from Zn to Z (also denoted by fn) is assigned. We denote
the set of threads {0, 1, . . . , N − 1} by T.

Definition 1. A state σ consists of a map σ(x) : T → Zn → Z for each x ∈
LV n, and σ(y) : Zn → Z for each y ∈ SV n.

Given a state σ, we naturally interpret σ(x) as the value of x.
The denotation of an expression e under a state σ is a map σ �e� : T → Z

defined by:

σ �tid� (i) = i σ �ntid� (i) = N

σ �x[e1, ... , en]� (i) =

{
σ(x)(i)(σ �e1� (i), . . . , σ �en� (i)) if x is local
σ(x)(σ �e1� (i), . . . , σ �en� (i)) if x is shared

σ �f (e1, ... , en)� (i) = f(σ �e1� (i), . . . , σ �en� (i))

Notation 1. For a state σ, we define σ[x �→ a] to be the state σ′ such that:
σ′(x) = a and σ′(y) = σ(y) for each y 
= x.

When an expression is used as a predicate (e.g. the condition part of an if-
statement), we regard σ �e� as a set of threads satisfying the condition e, that is,
the set {i ∈ T | σ �e� (i) 
= 0}. We also use the notation σ �e� to denote this set,
when no confusion arises.

The execution of a program is defined as a relation of the form

P, μ, σ ⇓ σ′,

where P is a program, μ ⊆ T, and σ, σ′ are states. This relation means that “if
P is executed with mask μ and initial state σ, then the resulting state is σ′.”

Evaluation rules are listed in Figure 1. The rule E-Inactive means that, if
there is no active thread, the execution has no effect. A barrier synchronization
succeeds only if all threads are active (or no thread is active, in which case
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P, ∅, σ ⇓ σ (E-Inactive) skip, μ, σ ⇓ σ (E-Skip) sync,T, σ ⇓ σ (E-Sync)

x is local σ′(y) = σ(y) for each variable y �= x
σ′(x)(i) = σ(x)(i) for each i /∈ μ

σ′(x)(i) = σ(x)(i) [σ �ē� (i) �→ σ �e� (i)] for each i ∈ μ

x[ē] := e, μ, σ ⇓ σ′ (E-LAssign)

x is shared σ′(y) = σ(y) for each variable y �= x
if ∀i ∈ μ.σ �ē� (i) �= n̄, then σ′(x)(n̄) = σ(x)(n̄)

otherwise ∃i ∈ μ.σ �ē� (i) = n̄ and σ′(x)(n̄) = σ �e� (i)

x[ē] := e, μ, σ ⇓ σ′ (E-SAssign)

P, μ, σ ⇓ σ′ Q,μ, σ′ ⇓ σ′′

P ; Q , μ, σ ⇓ σ′′ (E-Seq)

P, μ ∩ σ �e� , σ ⇓ σ′ Q,μ \ σ �e� , σ′ ⇓ σ′′

if e thenP elseQ , μ, σ ⇓ σ′′ (E-If)

P, μ ∩ σ �e� , σ ⇓ σ′ while e doP , μ ∩ σ �e� , σ′ ⇓ σ′′

while e doP , μ, σ ⇓ σ′′ (E-While)

Fig. 1. Operational semantics of SIMT programs

E-Inactive is applicable), hence the set of active thread should be T in the rule
E-Sync. A synchronization does not change the state.

Nondeterministic behavior can arise from E-SAssign; there can be more than
one choice of σ′, in case of a data race. More precisely, by a data race here
we mean a situation that there exist two (or more) distinct active threads i
and j where the index ē takes the same value on i and j, while e does not
(formally, σ �ē� (i) = σ �ē� (j) and σ �e� (i) 
= σ �e� (j)). In such a case, following
Habermaier and Knapp [14], we allow to choose either σ �e� (i) or σ �e� (j), and
set its value to x[ē]. As discussed in Section 5.1, it is possible to define a
semantics which raises an error in such cases.

3 Reasoning about SIMT Programs

In this section we describe how to extend Hoare Logic to the SIMT setting
formalized in the previous section.

3.1 Assertion Language

Our assertion language is based on first-order logic with function variables. We
assume as many n-ary variables as we want for each nonnegative integer n.
Formally, the syntax is as follows:

terms t ::= c | fn(t1, ..., tn) | xn(t1, ..., tn)

formulas ϕ ::= pn(t1, ..., tn) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ¬ϕ | ∀x.ϕ | ∃x.ϕ
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Here c ranges over constant symbols, and fn, xn, and pn range over n-ary func-
tion symbols, variables, and predicate symbols, respectively.

We assume our assertion language contain N (the number of threads) as
a constant symbol, and each operation f ∈ Opn as an n-ary function symbol.
Extra constants and function symbols are allowed. We also assume that standard
predicates on integers such as ≤ are included.

We associate a unique variable to each program variable. A variable that is not
associated to any program variable is called a specification variable. We denote
the variable corresponding to a program variable x again by x. Each x ∈ SV n is
n-ary, and each x ∈ LV n is (n + 1)-ary. This is because a local variable’s value
varies among threads, so has to receive one extra argument as thread identifier
to determine its value. The first argument of a local variable represents a thread
identifier.

An assertion is just a formula of the first-order logic. We briefly describe
how to interpret it. First, we fix a model M of our first-order signature, with
domain Z, such that the interpretation of ntid is N that we fixed above, and
the interpretation of each fn ∈ Opn also equals the function used to define the
denotation of an expression. An assignment, ranged over by ρ, is a map which
assigns to (both program and specification) variables of arity n a map Zn → Z.
The satisfaction relation ρ |= ϕ for each assignment ρ and a formula ϕ is defined
as usual.

By abuse of notation we write P, μ, ρ ⇓ ρ′ if and only if there exists σ′ such
that P, μ, σ ⇓ σ′, where σ is the restriction of ρ and ρ′ equals σ′ on program
variables and ρ on specification variables. We also use the notation ρ �e� for the
set {i ∈ T | ρ �e� (i) 
= 0}.

Definition 2. A Hoare quadruple is of the form {ϕ}m | P {ψ}, where P is a
program, m is a term built from specification variables, and ϕ and ψ are formulas.
Note that no variable occurring in m occurs in P .

Definition 3. A Hoare quadruple {ϕ}m | P {ψ} is valid if, for every assign-
ment ρ satisfying ϕ and every ρ′ such that P, ρ �m� , ρ ⇓ ρ′, it holds that ρ′ |= ψ.

Precisely speaking we have to distinguish states σ and assignments ρ but for
brevity we will not distinguish them, if no confusion arises.

Definition 4. For an expression e and a term t, we define a term e@t as follows:

tid@t = t ntid@t = N

(x[e1, ... , en])@t =

{
x(t, e1@t, . . . , en@t) if x is local
x(e1@t, . . . , en@t) if x is shared

(f (e1, ... , en))@t = f(e1@t, . . . , en@t)

The intended meaning of e@t is the value of e at thread t.

Notation 2. We occasionally use T in place of m when m is an expression
always nonzero in all threads (1, for example).
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Definition 5. We use the following abbreviations.

– all (e) := (∀i.0 ≤ i < N → e@i 
= 0)
– none(e) := (∀i.0 ≤ i < N → e@i = 0)
– i ∈ m := (m@i 
= 0)
– ∀i ∈ m.ϕ := (∀i.0 ≤ i < N → m@i 
= 0 → ϕ). Similarly for ∃ and other

variants.
– If x is a shared variable, assign(x′,m, x, ē, e) is defined to be

∀n̄. ((∀i ∈ m.ē@i 
= n̄) ∧ x′(n̄) = x(n̄)) ∨ (∃i ∈ m.ē@i = n̄ ∧ x′(n̄) = e@i) ,

and if x is local,

∀n̄, i. (i /∈ m ∨ ē@i 
= n̄ → x′(i, n̄) = x(i, n̄)) ∧
(i ∈ m ∧ ē@i = n̄ → x′(i, n̄) = e@i) .

The last one of the definitions above would require some explanation. Intuitively,
assign(x′,m, x, ē, e) is true when x′ is (one of) the result(s) of executing x[ē] := e
with mask m. If x is shared this is the case if for each index n̄, either

– no thread modifies x(n̄) and x′(n̄) equals the the original value x(n̄), or
– some (possibly multiple) threads try to modify x(n̄), and x′(n̄) equals a value

written by one of these threads.

The description is complicated because of possible data races. The case x is local
is similar, but the situation is simpler because there is no data race.

We can state the meaning of assign formally as follows:

Lemma 1. x[ē] := e, σ �m� , σ ⇓ σ′ holds if and only if there exists a such that
σ′ = σ[x �→ a], and σ[x′ �→ a] |= assign(x′,m, x, ē, e).

3.2 Inference Rules

Inference rules are listed in Figure 2. We write � {ϕ}m | P {ψ} if the quadru-
ple {ϕ}m | P {ψ} is provable from the rules in Figure 2. The variables x′ in
H-Assign and z in H-If and H-While are fresh specification variables of an
appropriate arity. The expression e = z appearing in H-If and H-While is
shorthand for ∀i ∈ T.e@i = z@i.

Rules H-Conseq, H-Skip and H-Seq are standard.H-Assign looks different
from the standard assignment rule of Hoare Logic, but in view of Lemma 1 this
would be natural. H-Sync is also understood in a similar way.

Rules H-If and H-While are more interesting. Since an if statement exe-
cutes both then- and else-branches sequentially, the precondition of the second
premise is ψ (the postcondition of the first), not ϕ. In both rules, we have to
remember the initial value of e into a fresh variable z (see Remark 1 below).
Since the threads in which the condition is false do not execute the body, the
mask part of the premises has to be m && z (or m && ! z ).
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{ϕ}m | skip {ϕ} (H-Skip)

{all(m) ∨ none(m)→ ϕ}m | sync {ϕ} (H-Sync)

|= ϕ′ → ϕ {ϕ}m | P {ψ} |= ψ → ψ′

{ϕ′}m | P {ψ′} (H-Conseq)

{ϕ}m | P {ψ} {ψ}m | Q {χ}
{ϕ}m | P ; Q {χ} (H-Seq)

{∀x′.assign(x′,m, x, ē, e)→ ϕ[x′/x]}m | x[ē] := e {ϕ} (H-Assign)

{ϕ ∧ e = z}m && z | P {ψ} {ψ}m && ! z | Q {χ}
{ϕ}m | if e thenP elseQ {χ} (H-If)

{ϕ ∧ e = z}m && z | P {ϕ}
{ϕ}m | while e doP {ϕ ∧ none(m && e)} (H-While)

Fig. 2. Inference rules

Remark 1. We introduce a fresh variable z in rules H-If and H-While. To
see that this is indeed necessary, suppose the rule were of the following form
(although this is actually ill-formed because the mask part contain a program
variable).

{ϕ}m && e | P {ψ} {ψ}m && ! e | Q {χ}
{ϕ}m | if e thenP elseQ {χ}

Let x and y be shared variables and e = (x > 0), P = (x := 0; y := 1), and
Q = skip. Then the following is valid:

{x@0 > 0}T | if e thenP elseQ {y@0 = 1} .

To prove this by using the above rule, we try to prove

{x@0 > 0} x > 0 | P {y@0 = 1}

but this is impossible because the verification condition would be

x@0 > 0 → ∀x′.assign(x′, x > 0, x, ·, 0)→ ∀y′.assign(y′, x ′ > 0, y, ·, 1)→ y′@0 = 1

which is not true: x@0 > 0 implies x′@0 = 0, but we can prove y′@0 = 1 only if
x′@0 > 0.

The problem is that, when executing y := 1, the actual mask is represented
by x > 0, whereas in the above verification condition it is incorrectly replaced by
x ′ > 0. This does not happen in the actual rule H-If because instead of directly
evaluating e the value of e at the point of the execution branch is referenced
through a fresh variable z.

3.3 Examples

Vector Addition. Let us consider the program having appeared in Section 1.1.
When this program is called with N threads, each thread i writes a[k] + b[k]
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into c[k] for k = i, N + i, 2N + i, . . . until k exceeds the length n of the arrays.
Therefore after this program terminates, the value of c should be the sum of a
and b. More precisely, letting P be the above program, the following holds:

{}T | P {∀i.0 ≤ i < n → c(i) = a(i) + b(i)} .

Note that in the postcondition we have to write c(i), not c@i, because c is a
shared variable and i is the index specified in the program (and similarly for a
and b). We can prove this quadruple using the following loop invariant:

∀i ∈ T.∃l.k@i = lN + i ∧ ∀l′.0 ≤ l′ < l → c(l′N + i) = a(l′N + i) + b(l′N + i).

This formula asserts that at the beginning and the end of each iteration, the value
of k at thread i is of the form lN + i, and all elements of indices i, N + i, . . . , (l−
1)N+i are processed correctly. Here l is actually the number of iterations having
been performed by thread i.

Array Sum. For simplicity we assume the number of threads N is a power of
2, and a is an array of length n = 2N . Consider the following program P :

s = n / 2;

while (s > 0) {

if (tid < s) a[i] = a[i] + a[i + s];

s = s / 2;

sync;

}

After executing this program the value of a[0] is the sum of all values in the
original array a. Intuitively, this program implements the following algorithm.
In each iteration, we split a given array into two arrays of equal lengths (s in the
program), say a1 and a2. Then, compute the sum a1 + a2, and store the result
into a1. Continue this process until the length of the array becomes 1. The final
value of 0-th element is the answer.

The following is an invariant:

∃l ≥ 0.
(
∀i ∈ T.s@i = 2l/2

)
∧ ∀j.

(
0 ≤ j < 2l → a(j) =

∑
k a0(j + 2lk)

)
.

Here a0 denotes the initial value of a, and the variable k in
∑

k a0(i + 2lk)
ranges over all nonnegative integers such that i + 2lk < n. The expression 2l/2
is interpreted to be 0 when l = 0. We can verify that{

n = 2N = 2t+1 ∧ a = a0
}
T | P

{
a(0) =

∑n−1
m=0 a0(m)

}
.

4 Soundness and Relative Completeness

We are going to prove soundness and relative completeness. Unfortunately, how-
ever, they do not hold for all programs. We first describe how soundness fails,
and introduce the notion of regular programs, being based on this observation.
After that we prove soundness and relative completeness for regular programs.
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4.1 Regular Programs

As a counterexample for the soundness, let us consider the program

e = x[tid] == tid, P = while e do (x[0] := 1; x[1] := 1),

where x is a shared variable and the assertion

ϕ = (∃i ∈ T.x(i) = i).

It can be verified that ϕ is an invariant:

{ϕ ∧ z = e} z | x[0] := 1; x[1] := 1 {ϕ} ,

and therefore we can prove {ϕ}T | P {ϕ ∧ none(e)} . However, this is not a valid
quadruple. Suppose that the initial value of x is x[0] = x[1] = 0. Starting
from such a state, it is easy to see that P terminates with some state, say σ′.
If the quadruple above is valid, it means that σ′ satisfies ϕ ∧ none(e). However,
this formula is inconsistent, so this is a contradiction. It follows that the rule
H-While is not sound for this example.

The problem is that initially the condition e is false in thread 1, but after the
body is executed by thread 0, it becomes true at thread 1. In general, a difficulty
arises when

– thread i has already exited the loop,
– another active thread j modifies some shared variable, and
– as a result the condition e becomes true at thread i.

Actually, this is the only obstacle to proving soundness and relative complete-
ness. We will restrict our attention to programs that do not cause this situation.

First we define the notion of a stable expression under a given program. We
say that e is stable under P , if the value of e at thread i does not change by
executing P with i being disabled. More precisely:

Definition 6. Let P be a program and e an expression. We say that e is stable
under P if for all μ, σ and σ′ such that P, μ, σ ⇓ σ′, it holds that σ �e� (i) =
σ′ �e� (i) for all i /∈ μ.

If e is stable under P , the above difficulty would not arise during the execution
of the loop whilee doP . Formally this is stated as follows:

Lemma 2. Suppose e is stable under P . Then for all μ, σ and σ′ such that
P, μ ∩ σ �e� , σ ⇓ σ′, it holds that μ ∩ σ′ �e� ⊆ μ ∩ σ �e�.

Definition 7. Let us say a loop while e doP is regular if e is stable under P .
A program is said to be regular if any while-loop contained in it is regular.

The following lemma gives a reasonable sufficient condition for the regularity.

Lemma 3. Let P be a program and e an expression. Suppose that any shared
variable occurring in e does not occur on the left-hand side of any assignment
in P . Then e is stable under P .
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Proof. It suffices to show that if P, μ, σ ⇓ σ′ then

– σ(x)(i) = σ′(x)(i) for all local x and i /∈ μ, and
– σ(x) = σ′(x) for all shared x not occurring on the left-hand side of any

assignment in P .

This is done by induction on the derivation of P, μ, σ ⇓ σ′.

Lemma 4. Let P be a program, and assume that for any subprogram of the form
while e doQ, e and Q satisfy the condition of Lemma 3. Then P is regular.

Below we consider regular programs. However, this is not actually a problem
because it is possible to transform a program into a regular one, which is equiv-
alent (in the sense that if they are executed under the same state with the same
mask, then the set of resulting states are also the same).

To do this, given a program, replace its subprograms of the form while e doP
with z := e; while z do (P ; z := e), where z is a fresh local variable. The program
obtained by this transformation satisfies the condition of Lemma 4.

4.2 Soundness and Relative Completeness for Regular Programs

After restricting our attention to regular programs, we can prove the soundness
by verifying that each rule preserves validity. H-While can be checked by in-
duction on the number of iterations (more precisely, the height of the derivation
tree of the execution relation ⇓).

Theorem 1 (Soundness). If P is a regular program and {ϕ}m | P {ψ} is
derivable from the rules in Figure 2, then it is valid.

Next we consider relative completeness. The statement and proof strategy is
mostly standard, except that masks are involved in the weakest preconditions.

Definition 8 (Weakest Liberal Precondition). The weakest liberal precon-
dition wlp(m,P, ϕ) is defined as follows:

wlp(m,P, ϕ) = {σ | ∀σ′.P, σ(m), σ ⇓ σ′ =⇒ σ′ |= ϕ} .

If this set is definable in the assertion language, we also use wlp(m,P, ϕ) to
denote a formula defining this set.

To prove the relative completeness, by the standard argument it suffices
to show that � {wlp(m,P, ϕ)}m | P {ϕ}. We can prove this by induction
on P . When P is a while-statement, we can use the formula ∃z.e = z ∧
wlp(m && z , P, ϕ) as an invariant.

Theorem 2 (Relative Completeness). Suppose that the weakest liberal pre-
conditions are definable in the assertion language. If P is a regular program and
{ϕ}m | P {ψ} is valid, then it is derivable.



70 K. Kojima and A. Igarashi

5 Extensions

In GPU programs, there are two kinds of errors that are intensively studied:
data race and barrier divergence. In the above development we did not consider
these errors explicitly. Below we discuss how our framework can be modified to
detect these errors.

5.1 A Variant of the Assignment Rule

In rule E-SAssign, conflicting writes on a shared variable result in a nondeter-
ministic behavior. Although this is consistent with NVIDIA’s specification [15],
such a conflict is often unintended. Thus it would be useful to regard such a sit-
uation as an error, so that a Hoare Logic can detect this data race. One of such
semantics has been considered by Betts et al. [3]. (Below, we limit our attention
to a data race of this type, although other types of data races may arise when
lockstep execution is not assumed.)

Let us consider the following variant of E-SAssign:

x is shared σ′(y) = σ(y) for each variable y 
= x
(∀i ∈ μ.σ �ē� (i) 
= n̄) =⇒ σ′(x)(n̄) = σ(x)(n̄)
∀i ∈ μ.(σ �ē� (i) = n̄ =⇒ σ′(x)(n̄) = σ �e� (i))

x[ē] := e, μ, σ ⇓ σ′ (E-SAssign’)

If we employ this rule, the execution gets stuck when there are conflicting writes.
Indeed, if σ �ē� (i) = n̄ holds for multiple i’s, with σ �e� (i) being distinct, then
no σ′ satisfy the last line of the premises. In other words, the premises require
that all values being written into a certain location must be the same.

If we replace E-SAssign with E-SAssign’, then the definition of assign in
H-Assign has to be modified accordingly. The definition would be as follows
(here, we show the definition for shared variables):

assign ′(x′,m, x, ē, e) = ∀n̄. ((∀i ∈ m.ē@i 
= n̄) ∧ x′(n̄) = x(n̄)) ∨
(∀i ∈ m.ē@i = n̄ → x′(n̄) = e@i) .

If there exist distinct active threads i, j such that ē@i = ē@j(= n̄) and e@i 
=
e@j (that is, if two threads are trying to write different values to the same
location), then there does not exist x′ satisfying this formula. For example, if
x := tid is executed with mask T, then assign ′(x′,T, x, ·, tid) implies ∀i ∈ T.x′ =
i which is a contradiction (unless N = 1).

5.2 Treatment of Erroneous Situations

In the proof rules considered above (including E-SAssign’ above), any postcon-
dition can be proved if a program gets stuck. It may be desirable if the rules
prevent us from proving such a consequence when a program may get stuck.

To handle such a situation explicitly, we can introduce a special state rep-
resenting an error, denoted by ⊥. We extend |= so that ⊥ do not satisfy any
specification; in other words, ⊥ 
|= ϕ for all ϕ.
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Consider the following rule, which treats a data race as an error.

x is shared i, j ∈ μ
σ �ē� (i) = σ �ē� (j) σ �e� (i) 
= σ �e� (j)

x[ē] := e, μ, σ ⇓ ⊥
(E-SAssignRace)

The following axiom would replace the original H-Assign.

{∃x′.assign ′(x′,m, x, ē, e) ∧ ϕ[x′/x]}m | x[ē] := e {ϕ}
Here we use assign ′ defined in Section 5.1. The precondition of this rule requires
that there exists a result of the assignment, so if a program causes a data race,
then the precondition becomes inconsistent. Therefore this rule prevents us from
proving {ϕ}m | x[ē] := e {ψ}, whenever there can be a data race, without ϕ
being inconsistent. Also note that replacing ∀x′ in H-Assign with ∃x′ does not
cause a problem, because E-SAssignRace excludes nondeterminism (there is
at most one x′ that has to be considered).

Similarly we can treat a so-called barrier divergence (a failure of synchroniza-
tion) by modifying H-Sync. In the original rule H-Sync, similarly to H-Assign,
the precondition is vacuously true for any state σ and a mask m such that
σ �m� 
= ∅,T (that is, a barrier divergence).

We add the following evaluation rule

μ 
= ∅,T
sync, μ, σ ⇓ ⊥

(E-SyncDiv)

and replace H-Sync with

{(all (m) ∨ none(m)) ∧ ϕ}m | sync{ϕ} .
Then, we can prove {ϕ}m | sync{ψ} only if ϕ implies all (m) ∨ none(m).

6 Related Work

Semantics of GPU Programs. Habermaier and Knapp [14] formalized both SIMT
and interleaved multi-thread semantics, and discussed relationships between
them. In particular, they proved that their SIMT semantics can be simulated by
the interleaved semantics with an appropriate scheduling. Collingbourne et al.
considered a lockstep execution of an unstructured programs based on control-
flow graph [4]. They defined both interleaving and lockstep semantics, and proved
that two semantics are equivalent in a certain sense under the assumption of
race-freedom and termination. Betts et al. [3] defined another semantics, called
synchronous, delayed visibility (SDV) semantics. The major difference from ours
is that, in SDV semantics, a conflicting write results in an error, while in our
semantics it is not. They developed a verification tool GPUVerify that detects
race condition and barrier divergence, based on their SDV semantics.

Verification Tools. Verification tools for GPU programs are developed by sev-
eral authors. Tripakis, Stergiou and Lublinerman developed a method to check
determinism and equivalence of SPMD programs based on non-interference [16].
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Collingbourne, Cadar and Kelly proposed a method of symbolic execution of
SIMD programs based on KLEE symbolic execution tool [5, 6]. Li and Gopalakr-
ishnan developed an SMT-based verification tools PUG [7] and PUGpara [8].
They first transform a CUDA program into a first-order formula, and detect
assertion failures, barrier divergence and date races by using an SMT solver. Li
et al. developed a concolic verification and test generation tool for GPU pro-
grams, called GKLEE [9]. Further optimizations and extensions of GKLEE are
also considered [10, 11].

Deductive Verification. Huisman and Mihelčić suggest permission-based separa-
tion logic [12] for deductive verification of GPU programs. They demonstrated
how they can verify race-freedom and functional correctness by separation logic.
They consider an assignment of resources to threads, and use it to prove race-
freedom. As discussed in Section 5, our approach can also be used to detect data
races, although we did not consider explicit resource assignments. This is because
in our language there is no pointers, and no two arrays can ovarlap. Moreover,
in our semantics the execution is in lockstep, which implies that there is no data
races between different instructions. Under these assumptions, absence of data
races can be expressed without introducing a new construct like points-to re-
lation in separation logic. Since Huisman and Mihelčić do not assume lockstep
execution, the same method would not apply to their setting.

7 Conclusions and Future Work

We have formalized the SIMT execution model for while-language extended with
arrays and SIMT constructs, and defined a Hoare Logic for this language. We
also proved that the inference rules are sound and relatively complete for a
regular program. This restriction is, as discussed above, not significant, because
it is always possible to transform a given program into a regular one without
changing the meaning of the program.

In our semantics, each program is executed in all threads in complete lockstep.
However, actual execution on GPUs do not necessarily proceed in such a way.
For example, CUDA has a thread hierarchy in its programming model, and the
execution of threads may be interleaved [2]. One possible future direction would
be to extend our framework so that it can handle this thread hierarchy.

However, there is another possible approach to fill the gap. Even if the actual
thread execution is interleaved, if we restrict our attention to programs that
are scheduling independent (that is, programs that produce the same result
regardless of which scheduling is selected), it would be sound to assume that
programs are executed in complete lockstep. So under such an assumption, our
method can be applied to a more realistic programs such as CUDA without
significant changes. Since, as far as we know, many GPU programs are intended
to be scheduling independent, a detailed investigation is left for future work.
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Abstract. Verification by static analysis often hinges on the inference of
relational numeric information. In real-world programs, the set of active
variables is often not fixed for a given program point due to, for instance,
heap-allocated cells or recursive function calls. For these program points,
an invariant has to summarize values for traces E where a variable x
exists and values for traces N where x does not exist. Non-relational
domains solve this problem by copying all information on x in traces E
to those in N . Relational domains face the challenge that the relations
in traces E between x and other variables cannot simply be replicated
for the traces N . This work illustrates this problem and proposes a gen-
eral solution in form of a co-fibered abstract domain that forwards each
domain operation to operations on a child domain. By tracking which
variables are undefined, it transparently stores suitable values in the child
domain thus minimizing the loss of relational information. We present
applications in heap abstractions and function summaries.

1 Introduction

Static analyses that are based on relational numeric domains are often restricted
to programs with limited dynamic memory allocation and without recursive
functions [2]. Analyses that explicitly target heap manipulating programs often
represent their state using a logic formula, e.g. separation logic [7] or three-valued
logic analysis (TVLA) [8]. Combining them with relational numeric domains is
not straightforward. In particular, problems occur when the numeric domain
has to track a changing number of memory cells or when it has to deal with
uninitialized variables. The following examples illustrate these problems.

Non-Existing Memory Regions. In the C program in Fig. 1, a region x is allocated
in one conditional branch but not in the other. When this program is analyzed
using some abstract domain, the resulting abstract state of the then-branch has
to be merged with that of the else-branch. The desired invariant is that x is
initialized to 3 if p points to x. When using the Intervals domain, at least the
fact that x = 3 can be inferred by allowing x to be mapped to an explicit empty
interval ⊥. Specifically, by using this bottom value ⊥ as the value of x in the else-
branch as shown in the first row of the table, the join of the branches retains
� This work was supported by DFG Emmy Noether programme SI 1579/1.
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if (rnd()) {
p = malloc(4);
*p = 3;

} else {
p = NULL;

}

Intervals {p = 1 ·&x, x = 3}  {p = 0 ·&x, x = ⊥}
= {p ∈ {0, 1} ·&x, x = 3 }

Polyhedra {p = 1 ·&x, x = 3}  {p = 0 ·&x, x = �}
= {p ∈ {0, 1} ·&x, x = �}

Polyhedra as
Undefined child

{p = 1 ·&x, x = 3, fx = 1}
 {p = 0 ·&x, x = 3, fx = 0}

= {p = fx ·&x, x = 3, fx ∈ {0, 1}}

Fig. 1. Non-existing regions

if (rnd()) {
x = 1;
y = 2;

} else {
x = 0;

}

Polyhedra/
Intervals

{x = 1, y = 2}  {x = 0, y = �}
= {x ∈ {0, 1}, y = �}

Polyhedra as
Undefined child

{x = 1, fx = 1, y = 2, fy = 1}
 {x = 0, fx = 1, y = 2, fy = 0}

= {x ∈ {0, 1}, fx = 1, y = 2, fy = x}

Fig. 2. Non-initialized variables

the information that x can only contain value 3. However, relational numeric
domains typically model smash products, i.e. they do not allow assigning the
“empty” value ⊥ to individual variables since this always implies an empty set of
relations and, thus, a domain state that is ⊥. Thus, in contrast to non-relational
domains, x must map to a value. Consider choosing x = �. In this case the second
table row shows that the relational Polyhedra domain [4] loses the information
that x = 3 in the else-branch. In order to retain as much information as possible,
we propose a copy-and-paste operation that can be used to add missing variables
with values that are more precise than �, so that x = 3 is retained in the join.

Non-Initialized Variables. Now we consider a precision loss that occurs in the
C program in Fig. 2. Here, one conditional branch initializes variables x and y,
whereas the other branch only initializes variable x, leaving y undefined. When
the resulting states are joined, y has to be introduced in the latter state with an
unrestricted value �, giving the joined state {x = 1, y = 2} ∪ {x = 0, y = �}.
However, introducing variables with value � can lead to loss of precision. In
particular, the implication x = 1 ⇒ y = 2 is lost in domains whose state is
a convex set. For instance, when using the relational Polyhedra domain, the
joined state {x ∈ {0, 1}, y = �} (shown in the first row of the table) is only as
precise as the join over the intervals, in that any relation between x and y is lost.

As a solution to these two problems of non-existing regions and of non-
initialized variables, we propose a dedicated abstract domain called the Un-
defined domain which is parameterized over another numeric domain, that we
call the child domain. The child can be an arbitrary numeric domain. We re-
quire that non-initialized and non-existent variables are introduced as �. The
Undefined domain then transparently inserts placeholder values using a so-
called copy-and-paste operation. It additionally tracks a flag fx that indicates if
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variable x is defined, thereby enabling the child domain to infer relations with
this flag, e.g. “x is defined iff p points to x”. In order to introduce the Undefined
domain, we now exemplify how it can be employed to analyze the examples.

We illustrate the Undefined domain by performing an abstract interpretation
of the program in Fig. 1. The resulting state of the then-branch is represented
by the child state st = {p = &x, x = 3, fx = 1}, where x is the content of
region x and fx is a flag that indicates whether x is defined or not. Since flag fx
has value 1, variable x is defined and it has value 3 stored in the child domain.
Furthermore, the state in the else-branch {p = 0} does not contain the variable
x, so that it has to be added with x = �. The Undefined domain observes this
undefined value of x and replaces it by a copy of x from st, yielding the child
state se = {p = 0, x = 3, fx = 0}. Note here that the Undefined domain has
added fx = 0, indicating that x is not defined, and the value of x that is stored
in the child domain has to be ignored. As shown in the second row of the table,
joining both states results in the child state {p = fx · &x, x = 3, fx ∈ {0, 1}},
where p can only point to x if fx has value 1, which means that x is defined. The
Undefined domain has retained the information that region x can only contain
value 3, although the undefined value of x is modeled by � instead of ⊥.

Now consider analyzing the program in Fig. 2 using the Undefined domain
with the Polyhedra domain as its child. The resulting state of the then-branch
is represented by the child state {x = 1, fx = 1, y = 2, fy = 1}. Here, flags fx
and fy have value 1, indicating that x and y are defined. The resulting state of
the else-branch is modeled by the child state {x = 0, fx = 1, y = 2, fy = 0}. Flag
fy has value 0, indicating that y appears to have the value � at the interface of
the Undefined domain. As before, the Undefined domain has used the value of
y from the then-branch as a placeholder value. As shown in the second row of
the table, the joined child state {x ∈ {0, 1}, fx = 1, y = 2, fy = x} now indicates
that x = 1 implies fy = 1 and thus y = 2, an invariant that is retained although
the state is approximated by the Polyhedra domain.

As shown in the examples, existing numeric domains can be wrapped by
the Undefined domain. The resulting domain is a drop-in replacement for the
original numeric domain. The Undefined domain transparently manages flags
for all variables that may be undefined, thereby ensuring that all operations on
the domain are sound even if some of the variables mentioned in the operations
are undefined. We provide an implementation of the Undefined domain that
partitions the flags into groups of flags with equal valuations. By collapsing each
group into one single flag, it minimizes the required number of flag variables. In
summary, this paper makes the following contributions:

– We describe how existing numeric domains can be enabled to incorporate
program states of different size in one abstract state.

– We define the Undefined abstract domain that translates domain operations
to operations on a child domain such that relational information can be
inferred in these situations.

– We illustrate the precision of our approach by presenting examples that
perform dynamic heap allocation and summarize calls to procedures.
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After providing a formal basis, Sect. 3 defines the Undefined domain. Its
utility for common analysis tasks is shown in Sect. 4 before Sect. 5 presents our
experimental evaluation. Section 6 discusses related work and Sect. 7 concludes.

2 The Undefined Domain

Numeric domains may provide operations that change the support set of a nu-
meric state, that is, the set of variables for which the domain holds numeric
valuations. Joining and comparing states with different support sets is often
preceeded by a process that makes their support sets equal. We follow [11]
and describe domains with non-fixed support sets as co-fibered domains. This
construction allows to systematically derive variants of the compare and join
operations that adjust the support sets themselves. We first give a definition
of numeric domains before we introduce the Undefined domain as an abstract
numeric domain.

Definition 1 (Numeric Domain). A numeric domain is given by a tuple
(D, �D, �D, TD) where D is the set of states, �D is a pre-order, �D is a
binary function, such that s �D s �D t and t �D s �D t for all s, t ∈ D, and
T ⊆ DD is a set of monotonic transfer functions.

Let X be the set of program variables. In this work, we assume that each numeric
state s ∈ D has a support set χ(s) ⊆ X that represents the set of variables for
which state s holds valuations. Then each state s ∈ D represents a set of vectors
of dimension |χ(s)|. Since program variables may be introduced and removed
during a program run, the numeric domain must provide operations that add
or remove variables to and from the support set. Removing a variable x from a
state s ∈ D with x ∈ χ(s) is denoted by a function dropD,x : D → D. Adding an
unrestricted variable x to a state s ∈ D with x 
∈ χ(s) is denoted by a function
addD,x : D → D. These functions are lifted to sets of variables by repeated
application of add and drop operations, that is, addD,X := ©x∈XaddD,x and
dropD,X := ©x∈XdropD,x with © denoting function composition.

Comparing and joining two states s ∈ D and t ∈ D with different support
sets requires to add missing variables to s and t beforehand. Following [11], we
capture this behaviour by requiring that the pre-ordered set (D,�D) together
with the morphisms addD,X , dropD,X for X ⊆ X forms a co-fibered domain.
Specifically, we require the following equivalence:

s �D t ⇔ addD,χ(t)\χ(s)(s) �D addD,χ(s)\χ(t)(t).

For the sake of a generic presentation, we assume that all other transfer functions
are divided into assignments [[y := f(x1, . . . , xn)]]D and tests [[f(x1, . . . , xn) ≤ 0]]D
with program variables x1, . . . , xn, y ∈ X and an n-ary function f .

Example 1 (Concrete Domain). The concrete domain (C, �C , �C , TC) models
exact sets of vectors over Z, that is, C =

⋃
n∈N

℘(Zn). The join s �C t of two
states s and t with χ(s) = χ(t) is just the set union s ∪ t. Analogously, for
χ(s) = χ(t) the comparison s �C t is just s ⊆ t.
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An abstract numeric domain over-approximates the state of another domain. Its
semantics is determined by a concretization function γ that takes an abstract
state to a concrete state.

Definition 2 (Abstract Domain). A domain (A, �A, �A, TA) abstracts a
domain (D, �D, �D, TD) if there is a concretization function γ : A → D, such
that s �A t ⇒ γ(s) �D γ(t) and γ(s) �D γ(t) �D γ(s �A t) for every s, t ∈ A
and for every τD ∈ TD exists a τA ∈ TA, such that τD ◦ γ �D γ ◦ τA.

This definition ensures that every domain operation of the abstract domain over-
approximates the corresponding operation of the concrete domain.

Example 2. The previously mentioned domain of closed convex Polyhedra [4]
abstracts the concrete domain C by over-approximating a set of vectors by the
topological closure of their convex hull.

In Sect. 4 we will detail how the Undefined domain can improve the precision
of the Polyhedra domain. In the remainder of this section, we assume an ab-
stract domain (A, �A, �A, TA) without making further assumptions about this
domain.

2.1 The Undefined Domain

The Undefined domain is a functor domain [3]: Each state holds a state of a
child domain, and domain operations are forwarded to domain operations on
this child domain. Here, for each variable x of the Undefined domain, its child
domain holds a variable x and a flag fx. When fx = 1 in the child domain,
the value of x is given by the value of x in the child domain. When fx = 0,
variable x is unrestricted and the value stored for x in the child domain is just a
placeholder. As a consequence, every numeric state of dimension n is modelled by
a child state of dimension 2n. We later detail how fewer dimensions suffice. We
denote an Undefined domain that transforms a child domain (D, �D, �D, TD)
by (U(D), �U(D), �U(D), TU(D)). An element of the Undefined domain that has
a child state s ∈ D is denoted by u�s where u denotes the mapping from each x
to its flag fx. We fix the semantics of U(D) by defining functions γ̃D that relate
states of U(D) to states of D.

Definition 3. For every domain (D, �D, �D, TD), function γ̃D : U(D) → D
is given by γ̃D(u � s) := (©x∈χ(s)γ̃D,x)(s) where γ̃D,x : D → D is defined by
γ̃D,x(s) := dropD,fx([[fx = 1]]s�D (addD,x ◦dropD,x)([[fx = 0]]s)) for each x ∈ X.

Adding and Removing Dimensions. Removing a variable x from a state u� s ∈
U(D) consists of straightforwardly removing variable x and the correspond-
ing flag fx from the child state. Thus, we define dropU(D),x(u � s) := u �

dropD,{x,fx}(s). Adding a variable x to a state u � s ∈ U(D) can be done in
two different ways: One way is to simply add an unrestricted variable x and
the corresponding flag fx with value one to the child state s. Another way is to
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add x with an arbitrary value and flag fx with value zero to the child domain,
indicating that x is undefined and the value held for x in the child domain has to
be ignored. However, for abstract domains the chosen placeholder value of x can
influence the precision of subsequent domain operations, namely join operations.
In order to characterize the functions that may be used to introduce placeholder
values for x, we first introduce the notion of X-Adders.

Definition 4. A function ϕ : D → D is an X-Adder iff χ(ϕ(d)) = χ(d) ∪ X
and dropD,X(ϕ(d)) = d for all sets of variables X ⊆ X and states d ∈ D with
χ(d) ∩X = ∅.
The intuition of an X-Adder ϕ is that it extends a state with new dimensions
X that are bound to placeholder values. Given an X-Adder ϕ for domain D
and variable set x1, . . . , xn, we define operation addϕ

U(D),{x1,...,xn}(u � s) :=

u � [[fx1 = · · · = fxn = 0]]ϕ(addD,fx1 ,...,fxn
(s)). It remains to show that every

operation addD,X on domain D has a corresponding operation on domain U(D).
Indeed, for every domain D and variable set X function addD,X itself is an X-
Adder, and so add

addD,X

U(D),X corresponds to addD,X .

Joining, Widening and Comparing States. Two states u�s and u� t with equal
support sets χ(s) = χ(t) are compared, joined or widened by simply performing
these operations on their child states s and t. For states u � s and u � t with
different support sets χ(s) 
= χ(t), their support sets are made equal by perform-
ing addϕ operations on s and t before they can be compared, joined or widened.
This allows for a degree of freedom, since an arbitrary X-Adder ϕ can be chosen
for each addϕ operation. In the next section we will show how the precision of
the Undefined domain can be improved by introducing an X-Addder that retains
relational information between the variables X .

It is worth noting that the ordering given by this comparison operation
slightly deviates from the pre-order obtained from constructing the co-fibered
domain. There, the relation u � s � u � t holds for two states u � s and u � t
with different support sets whenever two X-Adders ϕ and ψ exist, such that
addϕ

D,χ(t)\χ(s)(s) �D addψ
D,χ(s)\χ(t)(t), whereas the comparison operation only

detects subset relations that can be established by a previously chosen pair of
X-Adders. In fixpoint computations, this may lead to extra iterations, although
termination is still guaranteed by widening. Consider, for example, the child
states s := {x = 1, y = 1, fy = 0} and t := {x = 1}. Clearly, s and t describe the
same state, but the comparison operation might obscure this by adjusting state
t to {x = 1, y = 2, fy = 0}, thereby necessitating one more fixpoint iteration.

Transfer Functions. An assignment y := f(x1, . . . , xn) is directly executed on the
child domain. Since the resulting value y is only valid if all variables x1, . . . , xn

are defined (that is, if all fi = 1), the flag fy is set to the conjunction
∧n

i=1 fxi .
A test f(x1, . . . , xn) ≤ 0 is performed by first splitting the state into one state
where all fi = 1 and one state where fi = 0 for some i. The test is then performed
on the former state, while the latter state remains unchanged. After that, both
states are joined. Figure 3 shows the transfer functions for tests and assignments.
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[[y := f(x1, . . . , xn)]]U(D)u� s

:= u� [[y := f(x1, . . . , xn); fy :=
n∧

i=1

fxi ]]Ds

[[f(x1, . . . , xn) ≤ 0]]U(D)u� s

:= u� [[f(x1, . . . , xn) ≤ 0;

n∧
i=1

fxi = 1]]Ds D [[

n∨
i=1

fxi = 0]]Ds

Fig. 3. Transfer functions for unary operations
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��
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γ̃C �� C

Fig. 4. Abstract domains and their concretizations

2.2 Correctness of the Undefined Domain

In order to verify that domain U(A) is indeed an abstraction of domain C, we
first show that U(A) is an abstraction of domain U(C), and then we show that
U(C) is an abstraction of C. As sketched in Fig. 4, it follows immediately that
domain U(A) is also an abstraction of domain C. In the first step, we observe
that domain U(A) is an abstraction of U(C).

Lemma 1. If domain A abstracts domain C, then U(A) abstracts U(C).

Proof. Given an concretization function γ : A → C, a concretization function
γU : U(A) → U(C) is given by γU (u� s) := u� γ(s).

In the second step, we observe that the domain U(C) is an abstraction of C.

Lemma 2. Domain U(C) abstracts domain C.

Proof. For every Domain (D, �D, �D, TD) and every x ∈ X, function γ̃Dx is a
concretization function. In particular, every function addϕ

U(D),x abstracts func-
tion addD,x. As a composition of such functions, function γ̃C also is.

The following theorem states the desired property that domain U(A) is an
abstraction of the concrete domain C: all operations on domain U(A) over-
aproximate the corresponding operations on the concrete domain C.

Theorem 1. Domain U(A) abstracts domain C.

Proof. Since γU and γ̃C are concretization functions by Lemma 1 and 2, their
composition γ̃C ◦ γU : U(A)→ C also is.
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The given semantics of the Undefined domain is still impractical, as it stores
one additional flag variable for each variable in the child state, and it is incom-
plete, as it does not fully specify how missing variables are added. The next
section describes how the number of flag variables can be reduced and suggests
an X-Adder copyAndPaste that adds missing variables in a clever way: it copies
relations between those variables that are missing in the respective other domain.

3 Practical Implementation of the Undefined Domain

In this section we propose an implementation of the Undefined domain that is
practical in following two senses: firstly, it associates a flag with a set of variables
rather than with each variable, thus yielding a scalable domain; secondly, it uses
a copy-and-paste operation that transfers the valuations of whole sets of variables
to another domain, thereby allowing for retaining relational information between
variables of a partition. After some definitions, we consider each aspect in turn.

3.1 Definition of the Domain

Let X ⊆ X denote the program variables and F ⊆ X \ X denote the variables
used as flags. A state of the undefined domain U(A) is given by u � a with
child state a ∈ A and a partial mapping u : X ��� F . This mapping takes each
variable in the state’s support set to a flag that tracks whether this variable is
defined. Thus, the support set of child state a is χ(a) = dom(u) ∪ img(u) where
dom(u) denotes the domain of u and img(u) denotes the image of u. We allow
several program variables to map to the same flag variable, thereby inducing a
partitioning of program variables. For each mapping u this partitioning is given
by Π(u) := {u−1(f) | f ∈ img(u)}), where u−1 : F → ℘(X ) is the reverse
relation of u. For better legibility, we sometimes denote u by its reverse relation.
Thus, for u = [x0 �→ f0, x1 �→ f1, x2 �→ f0, x3 �→ f1] we write [f0 �→ {x0, x2},
f1 �→ {x1, x3}]. We now detail how to manage flags when partitions change.

3.2 Making Partitions Compatible

Whenever two states u1 � a1 and u2 � a2 are compared or joined, their par-
titionings Π(u1) and Π(u2) must agree. To this end, the coarsest partitioning
P := {p1 ∩ p2 | p1 ∈ Π(u1), p2 ∈ Π(u2)} whose partitions can be merged to
give either Π(u1) or Π(u2) is calculated. We then associate each partition p ∈ P
with a fresh flag fp, thereby obtaining a new state u12 =

⋃
p∈P [fp �→ p]. Let

u12 = common(u1, u2) abbreviate this operation. Since u12 associates different
(and possibly more) flags with its partitions than u1 and u2, the flags stored in
a1 and a2 have to be adjusted. Thus, let transu12

ui
(f) := {u12(x) | x ∈ u−1

i (f)}
denote the flags of those partitions in u12 whose union is associated with f in
ui. We transfer the value of f to the flags {f1, . . . , fn} ∈ transu12

ui
(f) using the

assignment adjOneu12
ui

(f) := [[f1 := f ]] · · · [[fn := f ]]. The assignment for all par-
titions is then given by the composition adjustu12

ui
:= ©f∈img(ui)adjOneu12

ui
(f).
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x ∈ X x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

u1(x) f1 f1 f1 f1 f2 f2 f2 f2 f3 f3
u2(x) f4 f4 f5 f5 f5 f5 f6 f6 f7 f7
u12(x) f8 f8 f9 f9 f10 f10 f11 f11 f12 f12

Fig. 5. Partition u12 = common(u1, u2) of Example 3

Making two child states a1 and a2 compatible with u12 requires that the flags
img(u12) are introduced, the renaming adjustu12

ui
is applied, and that the now

stale flags img(ui) are removed. These operations are aggregated by the function
compatu12

ui
= dropimg(ui) ◦ adjust

u12
ui

◦ add img(u12).

Example 3. Consider the task of making two domains, u1� a1 and u2� a2 com-
patible where u1 and u2 are given by the first two rows in Fig. 5. First, the new
partition u12 = common(u1, u2) is calculated as shown in the last line of Fig. 5. In
order to adjust, a1 to be compatible with u12, we compute a′1 = compatu12

u1
(a1) =

drop{f1,f2,f3}(adjust
u12
u1

(add{f8,...f12}(a1))). The function adjustu12
u1

expands to
adjOneu12

u1
(f1) · · · adjOneu12

u1
(f3)=[[f8=f1, f9=f1]]·[[f10=f2, f11=f2]]·[[f12=f3]].

Computing a′2 = compatu12
u2

(a2) analogously suffices to perform any operation
that requires χ(a′1) = χ(a′2), such as (u1�a1)�U(A) (u2�a2) = u12�(a′1 �A a′2).

This concludes the process of making domains compatible which allows us to
associate a flag with a partition rather than a single variable. While tracking
fewer flags improves performance, we now detail how precision can be improved.

3.3 Rescuing Relational Information

Tracking whether a set of variables is undefined is only useful if the content of
undefined variables is replaced by other values that lead to less precision loss.
In order to distinguish variables that are always undefined, we use a special flag
fundef whose value is always zero in the child domain. The variables u−1(fundef)
associated with fundef are omitted from the child domain. Due to this, computing
the join of two states (u1 � a1)�U(A) (u2 � a2) requires that the variables X12 =

u−1
1 (fundef) \ u−1

2 (fundef) that are undefined in a1 but not in a2 are added to
a1 before the child states ai can be joined (and vice-versa). To this end, define
a function copyAndPasteD,X : D × D → D with r = copyAndPasteD,X(s, a)
such that variables X are copied from s into a, yielding r where X ⊆ χ(s),
χ(a)∩X = ∅ and χ(r) = χ(a)∪X . We illustrate copyAndPaste with an example:

Example 4. Suppose the following modified version of the introductory example
is given where rnd(0,10) returns a number between 0 and 10:

1 int x,y;
2 if (rnd()) {
3 x = rnd(0,10);
4 y = x;
5 }
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(u1 � a1)�U(A) (u2 � a2) = let for i = 1, 2 (1)

Xi = u−1
i (fundef)

u′
i = ui[x �→ fi]x∈Xi\X3−i

where fi fresh

u12 = common(u′
1, u

′
2)

a′
i = copyAndPasteA,X3−i\Xi

(a3−i, ai)

in u12 � (compatu12
u1

(a′
1)�A compatu12

u2
(a′

2))

addx(u� a) = u[x �→ fundef]� a (2)
dropx(u� a) = if u(x) = fundef then (u \ x)� a else (3)

if |{y ∈ dom(u) | u(x) = u(y)}| > 1

then (u \ x)� dropA,x(a)

else (u \ x)� dropA,{x,u(x)}(a) (4)

[[y := f(x1, . . . , xn)]]U(A)u� a = let Φ := {u(x1), . . . u(xn)} in (5)
if fundef ∈ Φ then addU(A),y(dropU(A),y(u� a)) else
if Φ = {f} then u[y �→ f ]� [[y := f(x1, . . . , xn);]]Aa

else let fy fresh and u′ = u[y �→ fy] in (6)

u′
� [[y := f(x1, . . . , xn); fy :=

∑
f∈Φ

f = |Φ|]]Aa (7)

[[f(x1, . . . , xn) ≤ 0]]U(A)u� a = let Φ := {u(x1), . . . u(xn)} and ψ =
∑
f∈Φ

f in (8)

u� [[f(x1, . . . , xn) ≤ 0;ψ = |Φ|]]Aa A [[ψ < |Φ|]]Aa
Fig. 6. Transfer functions for binary operations � = ,�,∇, and unary operations

Consider analyzing this program with a state u1�a1 where u1 = [fundef �→ {x, y}]
and a1 = {fundef = 0} is a convex polyhedron. Note that χ(a1) = {fundef}
since the variables x, y ∈ u−1

1 (fundef) are not stored in a1 as explained above.
The state at line 5 becomes u2 � a2 where u2 = [fdef �→ {x, y}] and a2 =
{x = y, x ∈ [0, 10], fdef = 1}. The benefit of not storing x, y in a1 is that
they can be introduced using a′1 = copyAndPasteA,{x,y}(a2, a1) = {x = y, x ∈
[0, 10], fundef = 0} that extracts all information over x, y in a2 and adds it to
a1. In order to state that these variables are now explicitly stored in a′1, we
rename fundef to a new flag fxy, yielding u′

2 � a′2 with u′
2 = [fxy �→ {x, y}] and

a′2 = {x = y, x ∈ [0, 10], fxy = 0}. Now the state after line 5 can be computed as
(u1�a1)�U(A)(u

′
2�a′2) = u12�a′1 �A a′2 where u12 = u′

2 and a′2 is a2 in which fdef
is renamed to fxy. The result a′1�A a′2 = {x = y, x ∈ [0, 10], 0 ≤ fxy ≤ 1} retains
the equality x = y, thereby improving the precision over copying intervals.

Figure 6 illustrates the implementation of the � = �,�,∇ functions that
use copyAndPaste on the child domain of type A. Here, we assume that r =
copyAndPasteD,X(s, a) is defined as r = s �D dropD,χ(a)\X(a) where �D is a
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greatest lower bound on two abstract states that adds missing dimensions as
needed. The idea is to remove all dimensions from a that should not be copied
before merging the remaining relations over X into s using the meet �D. For
each binary operation �, Eq. 1 shows how the states are made compatible as
described above before applying � on the child domains.

Figure 6 also defines other transfer functions of the Undefined domain. Adding
an unrestricted dimension x using add merely adds a mapping fundef �→ x to the
undefined mapping (Eq. 2). Removing a variable x using drop needs to check if
x is not stored in a (Eq. 3), or if it was the last variable in its partition (Eq. 4).
Assigning to a variable y computes the set of flags Ψ that must be one to make
the result defined (Eq. 5). If fundef ∈ Ψ then y is always undefined and executing
the assignment on the child is not necessary. If a single flag f suffices to make
y defined, y is added to the partition of f . In the general case, a new flag fy is
created (Eq. 6) that represents the validity of the new partition {y} (Eq. 7).

Applying a test (Eq. 8) partitions the child state a into one where all variables
occurring in the test are defined (ψ = |Φ|) and one where they are possibly
undefined (ψ < |Φ|). Only in the former case, the test is applied.

Analogously to Lemma 2, the following lemma states that with the concrete
domain C as its child domain, the Undefined domain is an abstraction of C.

Lemma 3. With the proposed implementation, domain U(C) is an abstraction
of the concrete domain C.

Proof. Beneath the choice of function copyAndPaste for adding variables, the
implementation only differs from the semantics given in the last section by the
more efficient, but otherwise equivalent handling of flags. It remains to show that
adding dimensions via function copyAndPaste is valid, which holds because for
each domain D, state a and set of variables X , function λs.copyAndPasteD,X(s, a)
is an X-Adder since dropX(copyAndPasteX(s, a)) = a.

The following theorem states that the given implementation of the Undefined
domain is indeed a sound approximation of the concrete domain.

Theorem 2. Let A be an abstraction of the concrete domain C. Then, with the
proposed implementation, domain U(A) is an abstraction of C.

Proof. Analogously to Theorem 1, the claim follows from Lemma 3.

4 Applications of the Undefined Domain

We now illustrate the utility of the Undefined domain by using examples from
the analysis of function calls and of heap-allocated memory.

4.1 Merging Calls to Functions

For the sake of limiting the memory consumption of an analyzer, it is desirable
to merge the states of certain call sites of a function f into one. To this end,
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main() {
a(0);
b(1);

}

a(int x) {
f(x);

}

b(int y) {
f(y);

}

f(int z) {
...

}

Fig. 7. Function calls example

fam ffa

fbm ffb

fam ffa

fbm ffb

main a f

main b f

main

a

b

f

a)

b)

c)

Fig. 8. Combining several call sites into one state

we use a stack functor domain G(S) (with child state S) that manages a set of
stack frames. Here, G tracks one dedicated active stack frame that represents
the currently executed function f. In order to track to which stack frame the
analysis has to return to when leaving the current function, the state g ∈ G
is a directed graph with stack frames as nodes, where the more recently called
function points to its caller. Consider for example the program in Fig. 7. Here,
function f is called twice. First, it is called by function a, which in turn is called
from main. Figure 8a) shows how the first call path via a forms a linked list of
stack frames, say ga. Figure 8b) shows the graph of stack frames for the second
call to f via b, say gb.

In order to combine two graphs ga and gb, we follow [10] in qualifying the
graph edges by numeric flags, that is, numeric variables that can take on the
values 0 or 1. Let ga � sa with sa = {x = z = 0, ffa = 1, fam = 1} ∈ S denote
the abstract state (here sa ∈ S are convex polyhedra [4]) on entry to f for the
path in Fig. 8a). In sa, the flag ffa has value one, indicating that the node (stack
frame) of a is the predecessor of the node (stack frame) of f. Analogous for fam
that qualifies the edge between the stack frame of f and of main. Symmetrically,
for the path shown in Fig. 8b) the state is sb = {y = z = 1, ffb = 1, fbm = 1}.

The two graphs ga and gb are merged into the combined graph of stack frames
g in Fig. 8c). In order to capture that the b node is not a predecessor of f in ga, we
add the flag ffb = 0 to sa and analogously we add fbm = 0, yielding s′a = {x =
z = 0, ffa = 1, ffb = 0, fam = 1, fbm = 0}. Symmetrically, we enrich sb to s′b =
{y = z = 1, ffa = 0, ffb = 1, fam = 0, fbm = 1}. Overall, we obtain the state g�
s′a �S s′b = g � {x = �, y = �, 0 ≤ z ≤ 1, z = fbm = ffb = 1− fam = 1− ffa}.

Note that all information within the stack frames, namely x and y is lost. The
Undefined domain can improve this situation: we re-analyze the example using
the domain G(U(S)). The net effect is that in the last step, instead of g�s′a �S s′b
we compute g � (u� s′a) �U(S) (u � s′b) where u ∈ U is the empty mapping
(all variables are defined). By the definition of �U(S) the missing variable x is
added to u � s′b giving ub � s′b with ub = [x �→ fundef] and, analogously, the
left argument becomes ua � s′a with ua = [y �→ fundef]. Computing the join
ua � s′a �U(S) ub � s′b makes the two undefined states ua and ub compatible to
u = [x �→ fx, y �→ fy]. The numeric state s′a is modified by adding fx = 1, fy = 0
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a)

main() {
int *p;
if (rnd()) {
p = malloc(4);
*p = 3;

} else
p = NULL;

if (p != NULL)
assert *p == 3;

return 0;
}

b)

struct point {int x; int y;} *p;
int n = rnd(0, 100);
for (int i=0; i<n; i++) {
if (p == NULL)
p = malloc(sizeof (*p));

p->x = i;
p->y = i;

}
if (p != NULL)
assert p->x == p->y;

Fig. 9. Heap allocation examples

and copying y = 1 from s′b whereas s′b is modified by adding fx = 0, fy = 1
and copying x = 0 from s′a. The state that f is analyzed with is thus g �

u� {x=0, y=1, 0 ≤ z ≤ 1, z = fx=fbm = ffb = 1− fy = 1− fam = 1− ffa}.
The benefit of the Undefined domain is thus that, upon returning from f,

the content of the predecessor stack frames is still available since x = 0, y = 1
is retained in the join of the two call sites. Our analysis infers more intricate
invariants if pointers are passed, since the flags of the Undefined domain form
an equality relation with the points-to flags, as detailed in the next section.

4.2 Application to Heap Analysis

We now detail how the Undefined domain can improve precision in the analy-
sis of programs that use dynamically allocated memory. To this end, consider
the program in Fig. 9a) that contains the conditional statement of Fig. 1 of
the introduction. After executing the then-branch of the first conditional, the
state consists of a dynamically allocated memory region x that contains a single
memory cell of value 3 and a variable p that holds a pointer to region x. We
model pointer expressions as linear combinations of abstract addresses where
the coefficients are numeric flags. For example, the expression c ·&x is a pointer
to l-value x if c = 1 and a NULL pointer if c = 0 holds [10]. Thus, the state is
S1 := {p = c · &x, c = 1, x = 3}. Analogously, after executing the else-branch,
the numeric state is just S2 := {p = 0}.

In order to join the resulting states S1 and S2 of both branches, they are made
compatible by extending state S2: the numeric variable x is introduced and the
pointer expression stored for p is extended with c ·&x with flag c = 0, resulting
in state S′

2 := {p = c ·&x, c = 0, x ∈ Z}. Approximating the join S1 � S′
2 in the

Polyhedra domain yields a state {p = c · &x, c ∈ [0, 1], x ∈ Z}, thus losing the
information that c = 1 implies x = 3.

Using the Undefined domain, the state after the then-branch is ∅ � S1 with
child state S1 and an empty mapping from program variables to flags. Similarly,
the state after the else-branch is ∅�S2. When both states are made compatible,
a new flag f is introduced in both states that indicates whether variable x is
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U instructions time memory variables undef. flags warnings
heap 1 ✓ 12 19 19.0 14 1 0

✗ 12 18 17.8 13 – 1
heap 2 ✓ 24 35 23.2 23 2 0

✗ 24 32 21.7 21 – 1
call stack 1 ✓ 114 450 42.0 50 2 0

✗ 76 377 41.9 48 – 7
call stack 2 ✓ 254 641 42.0 74 2 0

✗ 178 416 42.6 72 – 7
call stack 3 ✓ 153 718 42.4 66 4 0

✗ 76 422 41.9 48 – 7
call stack 4 ✓ 128 702 42.2 54 2 0

✗ 88 920 42.5 52 – 8
call stack 5 ✓ 173 1455 47.3 75 4 0

✗ 90 709 42.0 54 – 8

Fig. 10. Evaluation of our implementation

defined. The value of x is copied from S1 to S2 by the copyAndPaste operation.
The joined state is now {f �→ {x}}� {p = c ·&x, c = f, f ∈ [0, 1], x = 3}. Since
the child domain expresses the invariant f = c, the information that c = 1
implies x = 3 is maintained. Analogously, c = 0 implies that *p is unbounded,
reflecting the fact that an uninitialized memory location can hold any value and
thereby guaranteeing that the analysis is still sound.

Figure 9b) shows a similar scenario where the Undefined domain is able to
preserve the relation between the contents of a possibly nonexisting memory
region during a fixpoint computation. There, a struct is allocated on the heap
inside a loop and the variables in the struct are assigned the same value. After
the loop, if the pointer to the struct exists, the program tests that the equality
between the struct members still holds.

5 Implementation and Experimental Results

We evaluated the Undefined domain in our analyzer for machine code [9], using
a domain stack G(U(P (A(C(I))))) where G maintains stack frames and dynam-
ically allocated memory, U is the Undefined domain as described in Sect. 3, and
P tracks points-to sets of variables. The remaining domains are numeric; they
track affine equalities A, congruences C and intervals I. In order to estimate
the performance of the Undefined domain, we also evaluated the examples with
domain stack G(P (A(C(I))), that is, without domain U .

Our tool analyzes Intel assembler programs and translates each x86 instruc-
tion into a sequence of instructions over an intermediate representation (IR)
[9]. The stack domain G recognizes function boundaries by observing the stack
pointer whenever the control flow changes through a jump, call or return instruc-
tion. An x86 return instruction is translated into a read access to the previous
stack frame in order to retrieve the return address and a jump to this address.
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The Undefined domain is thereby key to infer a precise address since, for Fig. 8,
stack frames a and b are both read and joined before the jump is executed.

Figure 10 shows the experimental results. Column U indicates whether the
Undefined domain is used, followed by the number of machine instructions in
the program that were analyzed; columns time and memory show the runtime in
milliseconds and the memory consumption in megabytes, averaged over several
runs on a 3.2 GHz Core i7 Linux machine. The next column shows the total
number of variables tracked, followed by the number of flag variables used by
the Undefined domain and the number of warnings emitted by the analyzer.

The first two lines show the heap example from Fig. 9a) that has been dis-
cussed in Sect. 4.2. Our implementation using the Undefined domain is able to
verify the assertion in the program. Without the Undefined domain it raises a
warning as the value of the heap allocated variable is lost. The next two lines
show the heap example from Fig. 9b) where our analysis is able to verify an as-
sertion in the program only when using the Undefined domain as the relational
information between the struct members is lost otherwise.

Next follows the call stack example of Sect. 4.1, followed by variations with
more functions and call paths. Call stack examples 4 and 5 differ in that they
use pointers to stack variables to pass parameter values. Note that the call stack
examples exhibited shorter runtimes without the Undefined domain, because
precision loss made it impossible to resolve the return addresses, so that the
examples could only partially be analyzed. This is reflected in the number of
analyzed instructions. For the same reason the number of total variables in the
call stack of example 3 and 5 without the domain are much lower than with the
Undefined domain. The examples show that the additional variables that are
necessary as flags for the Undefined domain are only few compared to the total
number of variables in the program.

6 Related Work

We addressed the challenge of tracking the content of memory that does not
exist in all traces. Many existing analyses use some ad-hoc methods to approxi-
mate what we have put on a sound mathematical basis: the ability to store both,
precise and undefined values for variables in a single state. For instance, recency
abstraction [1] implicitly retains the defined value when the state is joined. When
a purely logic description is used [7,8], the distinction between defined and unde-
fined content is simply expressed using disjunction. In Astrée [2], disjunction is
expressed using the decision tree domain that tracks two separate child domains
depending on the value of a flag. The effect is similar to standard path-sensitive
analyses in that tracking two states duplicates analysis time. More sophisticated
analyses merge states on different paths if a finite abstraction determines that
they are similar [5]. Future work will determine whether this technique can be
implemented as a combinator in our domain stack.

The Undefined domain partially allows the encoding of conditional invariants.
While this problem has been studied for logical domains [6], we provide a solution
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that enables existing numeric domains to infer certain conditional invariants,
e.g. those guarded by the existence of objects. For overly complex invariants,
our approach exploits the ability of numeric domains to gradually lose precision.

7 Conclusion

We addressed the task of storing a single state in cases where a piece of memory is
non-existent in some of the traces. We introduced a generic functor domain that
generalizes this approach to existent memory regions with undefined content. We
illustrated the power of this domain by defining a specific instance, namely the
Undefined domain, that improves precision in common program analysis tasks.
Its novel copy-and-paste operation even retains relational information.
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Abstract. Logical reasoning about program behaviours often requires
dealing with heap structures as well as scalar data types. Advances in Sat-
isfiability Modulo Theories (SMT) offer efficient procedures for dealing
with scalar values, yet they lack expressive support for dealing with heap
structures. In this paper, we present an approach that integrates separa-
tion logic—a prominent logic for reasoning about linked data structures
on the heap—and existing SMT solving technology. Our model-based
approach communicates heap aliasing information between theory and
separation logic reasoning, providing an efficient decision procedure for
discharging verification conditions in program analysis and verification.

1 Introduction

Satisfiability Modulo Theory (SMT) solvers play an important role in the con-
struction of abstract interpretation tools [11, 12]. They efficiently reason about
various scalar data types, e.g., bit-vectors and numbers, as well as uninterpreted
functions and arrays [1,7,14,15,18]. Today’s SMT solvers, however, lack support
for dealing with dynamically allocated heap data structures. Thus, a combina-
tion of theory reasoning with separation logic [25]—a successful logical formalism
of resource allocation—has the potential to boost a wide range of program anal-
ysis systems: manual/tool assisted proof development [17, 21], extended static
checking [5, 16], and automatic inference of heap shapes [2, 8].

In this paper we develop a method to augment an SMT solver with separation
logic reasoning for linked list segments and their length. Our method decides the
validity of entailments of the form Π ∧ Σ → Π ′ ∧ Σ′, where Π , Π ′ are arbitrary
theory assertions decided by the SMT solver, while Σ, Σ′ symbolically describe
a spatial conjunction of pointers and acyclic list segments. In contrast, existing
decision procedures combine list segments with conjunctions of equality and dise-
quality predicates only. Moreover, the length information on list segments allows
our techniques to prove properties where a tight interaction between program
data and the shape of heap structures is needed.

The crux of our method lies in an interaction of the model-based approach
to theory combination [13] and a so-called match function that derives logical
implication between pairs of spatial conjunctions. Models of Π , called stacks,
guide the process of showing that all heaps satisfying Σ also satisfy Σ′. The
match function produces an assertion describing a set of stacks for which the
current derivation is applicable. This assertion is used to prune the search space
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and find more stacks for which the entailment has not been proved yet. Our
method thus benefits from the efficiency of SMT solvers to maintain a logical
representation of the search space already explored.

In summary, we present an efficient SMT-based decision procedure for sepa-
ration logic with acyclic list segments with length. Our main contribution is the
entailment checking algorithm for separation logic in combination with decidable
theories, together with its formal proof of correctness.

Related Work. Our approach improves upon a previous separation logic prov-
ing method [22], which relied on paramodulation for equality reasoning [23] and
provided improvements of several orders of magnitude on efficiency with respect
to existing systems at the time. The current work extends this method, which
only dealt with pure equalities, to support arbitrary theory expressions in both
pure and spatial parts of the entailment. Our new match function generalises pre-
vious unfolding inference rules—in turn based on inferences from [3,4]—and runs
in linear time avoiding case reasoning as performed by most other systems. The
logic context of an SMT solver, rather than literals in a clausal representation,
maintains the explored search space. Doing so we remove a technical limitation
from the approach in [22]: spatial reasoning no longer requires access to equality
reasoning steps, and off-the-shelf SMT solvers become directly applicable.

Separation logic entailment checking in the fragment limited to list segments
and pure equalities was shown to be decidable in polynomial time [10], and a tool
exploiting this result has been developed [19]. Although we are mainly interested
in reasoning about rich theory assertions describing stacks, exploration of this
polynomial time result is an interesting direction for future work. In the opposite
direction, work such as that from Botinc̆an et al. [6] and Chin et al. [9] develop
techniques for dealing with more general user-specified predicates beyond simple
list segments. The former work, moreover, also relies on SMT for pure reasoning.
The cost of this increased expressivity, however, is that such procedures become
incomplete. Our logic is more restrictive, allowing us to develop a more efficient,
sound, terminating and complete procedure for entailment checking.

Piskac et al. [24] also developed a decision procedure for the list segment
fragment. Their approach translates entailments to an intermediate logic which,
given suitable axioms, is then decided by an SMT solver. The technique works as
well for slightly more general structures, such as sorted list segments and doubly
linked lists, but further generalisations probably require changes and extensions
in the intermediate logic. We believe that generalisations to our approach are
more straightforward, since to support other predicates we only need to define a
suitable subtract operator, as we discuss for the case of linked list segments with
length later in Section 4 of this paper.

Finally, Iosif et al. [20] have recently proved a decidability result for a large
class of separation logic formulas with recursive predicate definitions. Their re-
sult, which without a doubt represents a major advance in the theory of sepa-
ration logic, is based on a monadic second order logic encoding where formulas
with a bounded tree width are known to be decidable. Although their fragment
considered still has a few limitations—unlike our algorithm, their decidability
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result does not apply for structures with dangling data pointers—these theoret-
ical results have opened up exciting directions for future research.

2 Illustration

To motivate our work, we illustrate how our algorithm discharges a verification
condition produced in the analysis of a program. Consider the following C++

snippet that retrieves data associated with the k-th element of a linked list.

struct node { int data; node* next };
node* get(node* p, int k) { /* assume: ∃n. 0 ≤ k < n ∧ lseg(p, nil, n) */

node* q = p;
for (int i = 0; i < k; i++) q = q->next;
return q->data;

}

The implementation is memory safe only if the value of k is less than the length
of the list rooted at p, as made explicit by the assumption at the beginning of the
function. The lseg(p, nil, n) predicate denotes that, starting from the location p
in the heap and following an acyclic chain of exactly n next-pointers, we reach
the end of the list, i.e., nil. When the start/finish locations are equal, and thus
necessarily n = 0, the list is empty and no nodes are allocated.

We remark that, due to the crucial mix of arithmetic and spatial reasoning
involved—on how indices relate to the length of chains of dynamic pointers—the
automated verification of even such simple code is often beyond the capabilities
of existing program analysers. An analyser would symbolically execute the code,
producing a series of verification conditions to be discharged. At some point, for
example, the analyser needs to establish the validity of the entailment

Π
︷ ︸︸ ︷

i � i′ + 1 ∧
Σ

︷ ︸︸ ︷

lseg(p, q′, i′) ∗ next(q′, q) ∗ lseg(q, nil, n − i′ − 1)
→ lseg(p, q, i) ∗ lseg(q, nil, n − i)

︸ ︷︷ ︸

Σ′

,

explicating changes in the program state—respectively denoted by primed and
regular variables—before and after the execution of each loop iteration. Note
the use of ‘�’ for equality in the formal language, distinguished from ‘=’ in the
meta language. The star connective ‘∗’ states that memory cells allocated by the
heap predicates are necessarily disjoint or separated from each other in memory;
while next(q′, q) represents a heap portion of exactly one node allocated at q′

(the value of q before the loop execution) whose next pointer has the same value
as q (after executing the loop).

Proving this entailment—which still involves a mix of arithmetic and spatial
reasoning—shows that lseg(p, q, i) ∗ lseg(q, nil, n − i) is a loop invariant. To this
end, the algorithm performs the following key steps: First it enumerates pure
models, assignments to program variables, that allow satisfying both Π and Σ in
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the antecedent. For each pure model s, the algorithm attempts to (symbolically)
prove that every heap h satisfying the antecedent, s, h |= Π ∧Σ, also satisfies the
consequence, s, h |= Σ′. The assignment is generalised as an assertion M pruning
models of Π that lead to similar reasoning steps as with s. The entailment is
valid if and only if all models of the antecedent are successfully considered.

So, we first build a constraint characterising the satisfiability of the spatial
part of the antecedent. This constraint requires each spatial predicate in Σ to
be sound, e.g. list lengths are non-negative, and each pair of predicates to be
separated from each other. In particular, if two predicates start at the same
heap location, necessarily one of them must be an empty heap with no allocated
nodes. For our example entailment, the soundness of lseg(p, q′, i′) requires that
the length of the list segment is non-negative, i.e. 0 ≤ i′, and the start/finish
locations coincide if and only if the length of the list is zero, i.e. p � q′ ↔ i′ � 0.
The soundness condition of lseg(q, nil, n − i′ − 1) is similarly determined.

soundness of . . .
0 ≤ i′ ∧ (p � q′ ↔ i′ � 0) lseg(p, q′, i′)
0 ≤ n − i′ − 1 ∧ (q � nil ↔ n − i′ − 1 � 0) lseg(q, nil, n − i′ − 1)

Additionally, say, for the pair of predicates lseg(p, q′, i′) and lseg(q, nil, n − i′ − 1)
their separation condition is represented as p � q → (p � q′ ∨ q � nil), i.e., if
the start location p of the first predicate is equal to the start location q of the
second predicate then either one of them must represent an empty segment. The
separation condition for each pair of predicates in Σ is similarly computed.

separation of . . .
p � q′ → p � q′ lseg(p, q′, i′) and next(q′, q)
p � q → (p � q′ ∨ q � nil) lseg(p, q′, i′) and lseg(q, nil, n − i′ − 1)
q′ � q → q � nil next(q′, q) and lseg(q, nil, n − i′ − 1)

Finally, to make sure that nothing is allocated at the nil location we have to
assert, say for lseg(p, q′, i′), that if the start location p is nil then necessarily the
finish location q′ is also nil. For the case of next(q′, q) we simply assert that q′ is
not nil. We thus obtain three additional assertions.

nil is not allocated by . . .
p � nil → q′ � nil lseg(p, q′, i′)
q′ 	� nil next(q′, q)
q � nil → nil � nil lseg(q, nil, n − i′ − 1)

We refer to the conjunction of all above assertions as well-formed(Σ).
Crucially, these assertions do not contain spatial predicates any more, so an

SMT solver is used to search for models of Π ∧well-formed(Σ). If no such model
exists the entailment is vacuously true. In our example, however, the solver finds
the model s = {p 
→ 42, q′ 
→ 47, q 
→ 29, i′ 
→ 1, i 
→ 2, n 
→ 3}. To show that,
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with respect to this assignment s, every heap h model of Σ is also a model of Σ′,
we try to establish a match between Σ and Σ′. Specifically for each predicate
in Σ′ we seek a matching ‘chain’ of predicates in Σ such that the finish and start
location of adjacent predicates is equal with respect to s.

So, we first search for a match for lseg(p, q, i) ∈ Σ′ connecting p to q in i steps
within the antecedent Σ. Trivially, since s(p) = s(p), the chain must begin with
lseg(p, q′, i′) leaving us yet to connect q′ with q in i − i′ steps. This issues a
new request to match lseg(q′, q, i − i′) against the remaining predicates from Σ,
namely, next(q′, q) ∗ lseg(q, nil, n − i′ − 1). Similarly, the chain must now continue
with next(q′, q) and a new request to match lseg(q, q, i − i′ − 1) is issued. This
time, however, s |= i − i′ − 1 � 0 so the match is completed. In the same vein,
we search for a match for lseg(q, nil, n − i) ∈ Σ′ against the only remaining
lseg(q, nil, n − i′ − 1) in Σ. Luckily, since s |= n − i � n − i′ − 1, both connect q
to nil in the same number of steps and the match quickly succeeds. Since all
predicates of Σ′ are matched, and all predicates in Σ were used in a match, we
conclude that Σ and Σ′ have match exactly with respect to the current s.

The algorithm keeps track of the assertions required on s for the match to
succeed, namely M = (i − i′ − 1 � 0 ∧ n − i � n − i′ − 1). The matching
proof obtained for this particular assignment s is thus generalised to all models
satisfying M , and we may continue the enumeration of models for the antecedent
excluding those where M is true.

A second call to the SMT solver reveals that Π ∧well-formed(Σ)∧¬M is now
unsatisfiable. Although our spatial reasoning procedure is unaware of this fact,
the arithmetic capabilities of the SMT solver easily figure out that the hypothesis
Π = (i � i′ + 1) forces M to be always true. Since matching is possible for all
models of the antecedent, we thus conclude that the entailment is valid.

3 Preliminaries

We write f : X → Y to denote a function with domain X = dom f and range Y ;
and f : X ⇀ Y to denote a finite partial function with dom f ⊆ X . We write
f1 ∗ · · · ∗ fn to simultaneously assert the disjointness of the domains of n func-
tions, namely dom fi ∩ dom fj = ∅ when i 	= j, and denote the, therefore, well
defined function f = f1 ∪· · · ∪fn. We sometimes describe functions by explicitly
enumerating their elements; for example f = {a 
→ b, b 
→ c} is the function such
that dom f = {a, b}, f(a) = b, and f(b) = c.

Satisfiability Modulo Theories. We assume a first-order many-sorted lan-
guage where each function symbol f of arity n has a signature f : τ1×· · ·×τn → τ ,
i.e. the symbol f takes n arguments of respective sorts τi and produces an ex-
pression of sort τ . A constant symbol is a 0-ary function symbol. Constant and
function symbols are combined respecting their sorts to build syntactically valid
expressions. We use x : τ to denote an expression x of sort τ . Each sort τ is associ-
ated with a set of values, for convenience also denoted τ . In particular we assume
that booleans and integers, namely B = {true, false} and Z = {. . . , −1, 0, 1, . . .},
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are among the available sorts. We refer to a function symbol of boolean sort as
a predicate symbol, and a boolean expression as a formula.

Some symbols have fixed predefined theory interpretations. For example the
predicate � : τ × τ → B tests equality between two expressions of the same sort;
while theory symbols from the boolean domain, i.e. conjunction (∧), disjunc-
tion (∨), negation (¬), truth (�), falsity (⊥), entailment (→), boolean equiva-
lence (↔), and first-order quantifiers (∀, ∃), have their standard interpretations.
We similarly assume theory symbols for integer arithmetic with their usual in-
terpretation and use nil as an alias for the integer constant 0.

Some function symbols are also left uninterpreted. A variable, in particular,
is an uninterpreted constant symbol. Interpretations map uninterpreted symbols
to values of the appropriate sort. We write s(x) to denote the result of evaluating
the expression x under the interpretation s. For example, if s = {n 
→ 2} then
s(1 + n) = 3. A formula F is satisfiable if there is an s such that s(F ) = true;
in such case we also write s |= F and say that s is a model of F . A formula is
valid if it is satisfied by all interpretations. The job of an SMT solver is, given a
formula F , to find a model such that s |= F or prove that none exists.

Separation Logic. On top of the theories already supported by the SMT solver,
we define spatial symbols to build expressions to describe properties about heaps.
We thus introduce the spatial predicate symbols emp : B, next : Z × Z → B,
lseg : Z×Z×Z → B, and ∗ : B×B → B for, respectively, the empty heap, a points-
to relation, an acyclic list segment with length, and the spatial conjunction. A
spatial formula is one that may include spatial symbols, and a pure formula is
one where no spatial symbols occur.

A stack is an interpretation for pure expressions, mapping uninterpreted sym-
bols to suitable values. A heap is a partial finite map h : Z ⇀ Z that connects
memory locations, represented as integers, and gives meaning to spatial sym-
bols. Given a stack s, a heap h, and a spatial formula F we inductively define
the spatial satisfaction relation s, h |= F as s, h |= Π if Π is pure and s |= Π ,
s, h |= emp if h = ∅, s, h |= next(x, y) if h = {s(x) 
→ s(y)}, s, h |= F1 ∗ F2 if
h = h1 ∗ h2 for some h1 and h2 such that s, h1 |= F1 and s, h2 |= F2. The acyclic
list segment with length is inductively defined by

lseg(x, z, n) = (x � z ∧ n � 0 ∧ emp)
∨ (x 	� z ∧ n > 0 ∧ ∃y. next(x, y) ∗ lseg(y, z, n − 1)) .

For example, given that s = {x 
→ 3, y 
→ 2, n 
→ 1} and h = {3 
→ 5, 5 
→ 2}, it
follows that s, h |= lseg(x, y, n + 1). As with pure formulas, we say that a spatial
formula F is satisfiable if there is a pair (s, h) such that s, h |= F ; and valid if it
is satisfied by every stack-heap pair. In particular the entailment F → G is valid
if and only if every model of F is also a model of G. For a spatial formula F , we
write s |= F to denote that s, h |= F for all heaps h.

We remark that this definition does not treat nil in any special way. To regain
its expected behaviour, i.e. on a spatial formula F nothing may be allocated at
the nil location, it is enough to consider F ∗ next(nil, nil) instead. Furthermore,
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function prove(Π ∧ Σ → Π ′ ∧ Σ′)
1: Γ := Π ∧ well-formed(Σ)
2: Δ := alloc(Σ)
3: if satisfiable Γ ∧ ¬Π ′ return invalid
4: while exists s such that s |= Γ do
5: M := match(s, Δ, Σ, Σ′)
6: if s �|= M return invalid
7: Γ := Γ ∧ ¬M

8: return valid

function match(s, Δ, Σ, Σ′)
9: if exists S ∈ Σ such that s |= empty(S)

10: return empty(S) ∧ match(s, Δ, Σ \ S, Σ′)
11: if exists S′ ∈ Σ′ such that s |= empty(S′)
12: return empty(S′) ∧ match(s, Δ, Σ, Σ′ \ S′)
13: if exists S ∈ Σ and S′ ∈ Σ′ such that s �|= separated(S, S′)
14: (S′′, D) := subtract(Δ, S′, S)
15: if s |= sound(S′′) ∧ D return ¬separated(S, S′) ∧ sound(S′′)

∧ D ∧ match(s, Δ, Σ \ S, (Σ′ \ S′) ∗ S′′)
16: if Σ = ∅ and Σ′ = ∅ return 
 else return ⊥

Fig. 1. Model-driven entailment checker

although the language allows spatial conjunctions of arbitrary boolean formulas,
we focus on the fragment where such conjuncts are restricted to spatial pred-
icates. In the following when we say “a spatial conjunction” what we actually
mean is “a spatial conjunction of spatial predicates”. Also for convenience, a spa-
tial conjunction Σ = S1 ∗ · · ·∗ Sn is often treated in the meta level as a multi-set
of boolean spatial predicates where |Σ| = n is the number of conjuncts. We use
set theory symbols, which are always to be interpreted as multi-set operations,
to describe relations among spatial predicates and conjunctions. For example:

next(y, z) ∈ lseg(x, y) ∗ next(y, z) next(x, y) ∗ next(x, y) 	⊆ next(x, y)
emp ∗ emp ∗ emp \ emp = emp ∗ emp .

4 Decision Procedure for List Segments and Theories

We begin this section describing the building blocks that, when put together
as shown in the prove and match functions of Figure 1, constitute a decision
procedure for entailment checking. The procedure works for entailments of the
form Π ∧ Σ → Π ′ ∧ Σ′, where both Π and Π ′ are pure formulas, with respect
to any background theory supported by the SMT solver, while both Σ and Σ′

are spatial conjunctions.
To abstract away the specific details of individual spatial predicates, we first

define addr(S), sound(S), and empty(S)—respectively the address, soundness,
and emptiness condition of a spatial predicate S—as follows:
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S addr(S) sound(S) empty(S)
emp nil � �

next(x, y) x � ⊥
lseg(x, y, n) x 0 ≤ n ∧ (x � y ↔ n = 0) x � y

The soundness condition is a formula that must be satisfied by any model of
the spatial predicate, formally: if s, h |= S then s |= sound(S). If, furthermore,
the emptiness condition is also true, then its corresponding heap model must
be empty. Conversely, if the emptiness condition is false then the address of the
predicate must necessarily occur in the domain of any heap satisfying the spatial
predicate. Formally: given s |= sound(S) ∧ empty(S) it follows s, h |= S if and
only if h = ∅; and if s, h |= ¬empty(S)∧S then, necessarily, s(addr (S)) ∈ dom h.

Separation. We begin defining the notion of separation which is used, in par-
ticular, at lines 13 and 15 of the algorithm in Figure 1. Given any two spatial
predicates S and S′, the formula

separated(S, S′) = addr (S) � addr(S′) → empty(S) ∨ empty(S′)

states that two predicates are separated if either their addresses are distinct or
one of the two predicates is empty. Otherwise, if both predicates are non-empty
and share the same address, the formula S ∗ S′ would not be satisfied. More
formally, if s, h |= S ∗ S′ then necessarily s |= separated(S, S′). We also say that
two spatial predicates S and S′ collide, with respect to the given stack s, if it is
the case that s 	|= separated(S, S′).

Well-Formedness. The well-formedness condition, found at line 1 in Figure 1,
is defined for a spatial conjunction Σ = S1 ∗ · · · ∗ Sn as the pure formula

well-formed(Σ) =
∧

1≤i≤n

sound(Si) ∧
∧

1≤i<j≤n

separated(Si, Sj) ,

which states that all predicates are sound and every pair is separated. The reader
might want to revisit the example in Section 2, where the well-formedness of
Σ = lseg(p, q′, i′) ∗ next(q′, q) ∗ lseg(q, nil, n − i′ − 1) is computed. In fact, since nil
is not special in our definition of the semantics, what we computed was the well-
formedness of Σ∗next(nil, nil), and the last three assertions for the non-allocation
of nil are just the separation conditions with respect to the added next(nil, nil).
The importance of the well-formedness condition comes from the fact that, as
the next theorem states, it characterises the satisfiability of spatial conjunctions.

Theorem 1. A spatial conjunction Σ is satisfiable if, and only if, the pure for-
mula well-formed(Σ) is satisfiable.
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Allocation. Given a stack s and a spatial conjunction Σ = S1 ∗ · · · ∗ Sn, the
allocated set alloc(Σ|s) =

{

s(addr(Si)) | s 	|= empty(Si)
}

is a set of locations
necessarily allocated by any heap h satisfying Σ. That is, for all h such that
s, h |= Σ it follows that alloc(Σ|s) ⊆ dom h.

The allocation function, found at line 2 in Figure 1, is defined without refer-
ence to any stack as

alloc(Σ) = λx.
∨

1≤i≤n

¬empty(Si) ∧ x � addr(Si) ,

mapping a given variable x to a formula symbolically testing whether x should
be allocated on heaps satisfying Σ. That is, if Δ = alloc(Σ) and s is any stack,
we have that s(x) ∈ alloc(Σ|s) if and only if s |= Δ(x). For instance, taking the
same example Σ as before,

Δ(x) = (p 	� q′ ∧ x = p) ∨ (x � q′) ∨ (q 	� nil ∧ x = q) ∨ (x � nil) .

Thus x is considered allocated if it is equal to q′ or nil; or if it is equal to the
start location, p or q, of a non-empty list segment.

Subtraction. We now proceed towards the introduction of the subtraction op-
eration, occurring at line 14 in Figure 1, which lies at the core of our matching
function. When trying to prove an entailment s |= Σ → Σ′, we want to show
that any heap model of Σ is also a model of Σ′. Thus, if we find a pair of col-
liding predicates S ∈ Σ and S′ ∈ Σ′, the portion of the heap that satisfies S
must overlap with the portion of the heap satisfying S′. In fact, it is not hard
to convince oneself—for the list segment predicates considered—that the heap
model of S′ should match exactly that of S plus some extra surplus.

Given two spatial predicates S, S′, and an allocation function Δ, the sub-
traction operation (S′′, D) := subtract(Δ, S′, S) returns a pair where S′′ is the
remainder of subtracting S from S′, and D is an additional side condition. Intu-
itively, if D is not satisfied, then there is a counterexample for the subtraction
(c.f. Proposition 2 later). Specifically, for each pair of predicates we have:

S′ S S′′ D
next(x′, z) next(x, y) emp y � z

lseg(x′, z, n) next(x, y) lseg(y, z, n − 1) �
next(x′, z) lseg(x, y, n) emp y � z ∧ n � 1

lseg(x′, z, n) lseg(x, y, m) lseg(y, z, n − m) y 	� z → Δ(z) ∨ m � 1

Formalising our stated intuition, the following proposition states how if S′′ is
obtained by subtracting S from S′ then, under suitable assumptions, the spatial
predicate S′ is equivalent to S ∗S′′. The validity of this statement, as well as the
following proposition, is easily verified by inspection of the relevant definitions.

Proposition 1. Let Σ be a spatial conjunction and S, S′ a pair of spatial pred-
icates. Let Δ = alloc(Σ), let (S′′, D) = subtract(Δ, S′, S), and let s be a stack
such that s |= ¬separated(S, S′)∧sound(S′′)∧D. Then the following claims hold.
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1. s, h |= Σ ∗ S ∗ S′′ → Σ ∗ S′ for every heap h.
2. if s, h |= Σ ∗ S′ and s, h1 |= S for some h1 ⊆ h then s, h |= Σ ∗ S ∗ S′′.

Conversely, the following proposition states that if S and S′ collide, but the
subtraction is not successful, i.e. D is not satisfied, then it is possible to build a
counterexample to the original entailment.

Proposition 2. Let Σ be a spatial conjunction and S, S′ a pair of spatial pred-
icates. Let Δ = alloc(Σ), let (S′′, D) = subtract(Δ, S′, S), and let s be a stack
such that s |= ¬separated(S, S′). If s 	|= sound(S′′) ∧ D then there is a h1 such
that s, h1 |= S, but for all h such that h1 ⊆ h we have s, h 	|= Σ ∗ S′.

As an example suppose we want to determine the validity of Σ ∗ S → S′,
where each Σ = lseg(y, z, m), S = lseg(x, y, n), and S′ = lseg(x, z, n + m). We
would then have that Δ = λv. (y 	� z ∧ v � y), S′′ = lseg(y, z, n + m − n), and
D = (y 	� z →Δ(z)∨n � 1) = (y 	� z →(y 	� z ∧z � y)∨n � 1). Assume a stack
s = {x 
→ 1, y 
→ 2, z, 
→ 3, n 
→ 2, m 
→ 1}. With respect to s, it is clear that S
and S′ collide, as they are both non-empty lists starting on the same location
s(x) = 1. However, s 	|= D, since s |= y 	� z but s 	|= Δ(z), because z is not
necessarily allocated in Σ, and s(n) = 2 	= 1. Proposition 2 asserts the existence
of a heap, in this case say h1 = {1 
→ 3, 3 
→ 2}, such that s, h1 |= lseg(x, y, n)
but cannot be extended into a model of lseg(x, z, n + m) as this would introduce
a cycle. In particular with the heap h = h1 ∗ {2 
→ 3} we have s, h 	|= Σ ∗ S → S′,
providing a counterexample for the original entailment. We end this section with
the remark that, in order to generalise our method to other inductive predicates,
it is enough to find a suitable subtract operator satisfying the conditions imposed
by Propositions 1 and 2.

Matching and Proving. To finalise the description of our decision procedure
for entailment checking we have only left to put all the ingredients together, as
shown in Figure 1, into the match and prove functions.

The match function tries to establish whether s |= Σ → Σ′, in a context
where Δ specifies heap locations that must be allocated. The function proceeds
by matching predicates in Σ with those in Σ′, reducing their number of conjuncts
as progress is made, and succeeding if eventually both Σ and Σ′ become empty.
Furthermore, when successful, the function returns an assertion M generalising
the matching proof to all stacks that, like s, also satisfy M .

The function begins by inspecting Σ and Σ′ to discard, at lines 10 and 12, any
predicates that are empty with respect to s, recursively calling itself to verify
the rest of the entailment. After removing all such empty predicates, if a pair of
colliding predicates S ∈ Σ and S′ ∈ Σ′ is found, on line 14 we then proceed to
compute subtract(Δ, S′, S) = (S′′, D). If the subtraction is successful, signalled
by the fact that s |= sound(S′′)∧D, we may replace S′ with S ∗S′′ in Σ′, before
removing S from both Σ and Σ′ and proceeding with the next recursive call.
Alternatively, we reach the bottom of the recursion at line 16, succeeding only if
both Σ and Σ′ have become empty. This behaviour is formalised in the following
theorem, proved later in Section 5.
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Theorem 2. Given three spatial conjunctions Σ̂, Σ, Σ′, let Δ = alloc(Σ̂ ∗ Σ),
and let s be a stack such that s |= well-formed(Σ̂ ∗ Σ). It follows that: 1) the
function match(s, Δ, Σ, Σ′) always terminates with a result M , 2) the execution
requires O(|Σ| + |Σ′|) recursive steps, 3) if s |= M then the entailment M ∧ Σ̂ ∗
Σ → Σ̂ ∗ Σ′ is valid, and 4) if s 	|= M then s 	|= Σ̂ ∗ Σ → Σ̂ ∗ Σ′.

The main prove function, which determines whether Π ∧Σ →Π ′ ∧Σ′ is valid,
begins computing with the pure formula Γ := Π ∧ well-formed(Σ) and the
allocation function Δ := alloc(Σ). An SMT solver is first used to test whether
there are any models for Γ ∧ ¬Π ′ since, if this is the case, then it is possible to
build a counterexample that satisfies the antecedent but not the consequence of
the entailment. Otherwise the function proceeds iteratively using the SMT solver
to find models of Γ to guide the search for a proof or a counterexample. Given one
such stack s, the match function is called to check the validity of the entailment
with respect to s. If successful, match returns a formula M generalising the
conditions in which the entailment is valid, so the search may continue for models
where M does not hold. Iterations proceed until either all models have been
checked or a counterexample is found in the process. Formally we state the
following theorem, whose proof is given in Section 5.

Theorem 3. Given an entailment Π ∧ Σ → Π ′ ∧ Σ′ we have: i) the function
prove(Π ∧ Σ → Π ′ ∧ Σ′) always terminates, and ii) the return value corresponds
to the validity of Π ∧ Σ → Π ′ ∧ Σ′.

5 Proofs of Correctness

This section presents the main technical contribution of the paper, the proof of
correctness of our entailment checking algorithm. The proof itself closely follows
the structure of the previous section, filling in the technical details required to as-
sert the statements of Theorem 1, on well-formedness, Theorem 2, on matching,
and finally Theorem 3 on entailment checking.

Well-Formedness. Soundness of the well-formed condition well-formed(Σ),
the first half of Theorem 1, is easily shown by noting that if a spatial con-
junction Σ is satisfiable with respect to some stack and a heap, the formula
well-formed(Σ) is also necessarily true with respect to the same stack.

Proposition 3. Given s, h |= Σ it follows s |= well-formed(Σ).

Proof. Let Σ = S1 ∗ · · · ∗ Sn. Since s, h |= Σ, there is a partition h = h1 ∗ · · · ∗ hn

such that each s, hi |= Si. From the soundness definition it immediately follows
that s, hi |= sound(Si) for each predicate. For every pair Si and Sj with i < j,
if either s |= empty(Si) or s |= empty(Sj), then trivially s |= separated(Si, Sj).
Assume otherwise that s |= ¬empty(Si) ∧ ¬empty(Sj). It then follows that both
s(addr(Si)) ∈ dom hi and s(addr(Sj)) ∈ dom hj . Since by construction hi and hj

have disjoint domains, we have s(addr(Si)) 	= s(addr (Sj)). This implies the fact
that s |= separated(Si, Sj). ��
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For completeness of well-formed , the second half of Theorem 1, we prove a
more general result. In particular if s |= well-formed(Σ) and R is a set of reserved
locations, disjoint from the necessarily allocated alloc(Σ|s), then we show how
to build a heap h such that s, h |= Σ and dom h ∩ R = ∅.

Proposition 4. Given a spatial conjunction Σ, a stack s |= well-formed(Σ),
and a finite set of locations R such that alloc(Σ|s) ∩ R = ∅, there is a heap h
such that s, h |= Σ and dom h ∩ R = ∅.

Proof. Let Σ = S1 ∗ · · · ∗ Sn. The proof is by induction on n and its base case,
when n = 0, is trivially satisfied by h = ∅.

For n > 1, let Σ′ = Σ \S1 = S2 ∗ · · ·∗Sn and let R′ = R∪alloc(S1|s). By con-
struction the formula well-formed(Σ)→well-formed(Σ′) is valid so, in particular,
we also have s |= well-formed(Σ′). Furthermore, since s |= separated(S1, Sj) for
all 2 ≤ j ≤ n, it follows that alloc(S1|s)∩alloc(Σ′|s) = ∅ and, moreover, we also
obtain that alloc(Σ′|s)∩R′ = ∅. Inductively applying the proposition on Σ′ and
the set R′ we obtain a heap h′ such that s, h′ |= Σ′ and dom h′ ∩ R′ = ∅. Let

h1 =

⎧

⎪
⎨

⎪
⎩

∅ if S1 = emp
{s(x) 
→ s(y)} if S1 = next(x, y)
{s(x) 
→ 	1, 	1 
→ 	2, . . . , 	s(n)−1 
→ s(y)} if S1 = lseg(x, y, n)

where, if needed, the set of locations {	1, . . . , 	s(n)−1} ∩ (R ∪ dom h′) = ∅; since
R∪dom h′ is finite but there are infinitely many locations, it is always possible to
find suitable values. It is clear that s, h1 |= S1 and, furthermore, dom h1 ∩dom h′

so h = h1 ∗ h′ is well defined. From these it follows that both s, h |= Σ and
dom h ∩ R = ∅. ��

Theorem 1 follows as a corollary of Propositions 3 and 4.

Matching and Proving. The following proposition is the main ingredient
required to establish the soundness and completeness of the match function
of Figure 1. The proof, although quite long and rather technical, follows the
intuitive description from Section 4 about the behaviour of match. Each of the
main cases in the proof corresponds, respectively, to the conditions on lines 10
and 12, when discarding empty predicates, line 14, when a either a successful or
unsuccessful subtraction is performed, and finally line 16, when the base case of
the recursion is reached.

The first three cases are further divided each in two sub-cases, one for the
situation when the recursive call is successful and a proof of validity is estab-
lished, and one for the situation when a counterexample is built. The final case,
the base of the recursion, is also divided into three sub-cases: when not all pred-
icates in Σ′ have been matched, when all predicates in Σ′ were consumed but
not all in Σ, and finally when both Σ and Σ′ have become empty.

Proof (of Theorem 2). Termination of the function follows since, at each recur-
sive call, the length of either Σ or Σ′ is reduced. This also establishes the fact
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that there are O(|Σ| + |Σ′|) recursive calls. Now, given that the function does
terminate, the proof is by induction on the recursive definition of match.

Note that, during the inductive proof, the spatial conjunction Σ̂ ∗ Σ always
remains invariant. When a predicate S is removed from Σ, we implicitly add
it to Σ̂, keeping track of the already matched fragment from the original an-
tecedent. This also keeps Δ = alloc(Σ̂ ∗ Σ) always invariant between calls.

– Suppose we reach line 10, with a predicate S ∈ Σ such that s |= empty(S).
Recursively let M ′ = match(s, Δ, Σ \ S, Σ′) and M = empty(S) ∧ M ′. Since
s |= empty(S) we have s |= M if and only if s |= M ′.

• if s |= M ′, by induction the entailment M ′ ∧ (Σ̂ ∗ S) ∗ (Σ \ S) → Σ̂ ∗ Σ′

is valid. Since M → M ′ then M ∧ Σ̂ ∗ Σ → Σ̂ ∗ Σ′ is also valid.
• if s 	|= M ′, by induction s 	|= (Σ̂ ∗ S) ∗ (Σ \ S) → Σ̂ ∗ Σ′, which is exactly

the same as s 	|= Σ̂ ∗ Σ → Σ̂ ∗ Σ′.
– Suppose we reach line 12 with a predicate S′ ∈ Σ such that s |= empty(S′).

Recursively let M ′ = match(s, Δ, Σ, Σ′ \ S′) and also M = empty(S′) ∧ M ′.
Again s |= M if and only if s |= M ′.

• if s |= M ′, by induction M ′ ∧ Σ̂ ∗ Σ → Σ̂ ∗ (Σ′ \ S′) is valid. To prove
that M ∧ Σ̂ ∗ Σ → Σ̂ ∗ Σ′ is also valid, take any pair s′, h |= M ∧ Σ̂ ∗ Σ.
From the inductive entailment we have s′, h |= Σ̂ ∗ (Σ′ \ S′) and from
the fact that s′ |= empty(S′) also s′, ∅ |= S′. Thus s′, h |= Σ̂ ∗ Σ′.

• if s 	|= M ′, by induction there is a heap h such that s, h |= Σ̂ ∗ Σ but
s, h 	|= Σ̂ ∗ (Σ′ \ S′). If it were the case that s, h |= Σ̂ ∗ Σ′, from the fact
that s |= empty(S′) it would follow that s, h |= Σ̂∗(Σ′\S′), contradicting
the information from the inductive step. Thus s, h 	|= Σ̂ ∗ Σ′.

– Suppose we reach line 13, with two of predicates S ∈ Σ and S′ ∈ Σ′, such
that s 	|= separated(S, S′). We compute (S′′, D) := subtract(Δ, S′, S), and
further suppose that s |= sound(S′′) ∧ D so that we reach the next recursive
call at line 15. Recursively let M ′ = match(s, Δ, (Σ \ S), (Σ′ \ S′) ∗ S′′) and
M = ¬separated(S, S′) ∧ sound(S′′) ∧ D ∧ M ′. As before we have s |= M if
and only if s |= M ′.

• if s |= M ′, by induction M ′ ∧(Σ̂ ∗S)∗(Σ \S)→(Σ̂ ∗S)∗((Σ′ \S′)∗S′′) is
valid. To prove that M ∧ Σ̂ ∗ Σ → Σ̂ ∗ Σ′ is also valid, now take any pair
s′, h |= M ∧ Σ̂ ∗ Σ. Since Σ̂ ∗ Σ = (Σ̂ ∗ S) ∗ (Σ \ S), from the inductive
entailment after some rearrangement s′, h |= Σ̂ ∗ (Σ′ \ S′) ∗ (S ∗ S′′) and
from Proposition 1 also s′, h |= Σ̂ ∗ (Σ′ \ S′) ∗ S′. Thus s′, h |= Σ̂ ∗ Σ′.

• if s 	|= M ′, by induction after some rearrangement there is a heap h such
that s, h |= Σ̂ ∗ Σ but s, h 	|= Σ̂ ∗ (Σ′ \ S′) ∗ (S ∗ S′′). Partition the heap
h = h1 ∗ h2 such that s, h1 |= S and s, h2 |= Σ̂ ∗ (Σ \ S). If it were the
case that s, h |= Σ̂ ∗ Σ′, from the second item on Proposition 1 it follows
that s, h |= Σ̂ ∗ (Σ′ \ S′) ∗ (S ∗ S′′), contradicting the inductive step. We
therefore have that s, h 	|= Σ̂ ∗ Σ′

– Suppose again we reach line 13, with two colliding predicates S and S′; we
compute (S′′, D) := subtract(Δ, S′, S); but this time s 	|= sound(S′′) ∧ D so
we reach line 16 with non-empty Σ and Σ′, returning M = ⊥. Since s 	|= M
we have to show that s 	|= Σ̂ ∗ Σ → Σ̂ ∗ Σ′.
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From Proposition 2 there is a heap h1 such that s, h1 |= S and for any
extension h, i.e. h1 ⊆ h, we have s, h 	|= Σ̂ ∗ (Σ′ \ S′) ∗ S′. Applying Propo-
sition 4 with R = dom h1, it is possible to obtain another heap h2 such that
s, h2 |= Σ̂ ∗ (Σ \ S) and dom h1 ∩ dom h2 = ∅. Let h = h1 ∗ h2, from this it
follows that s, h |= Σ̂ ∗ Σ, and we already knew that s, h 	|= Σ̂ ∗ Σ′.

– Finally suppose that we reach line 16, with no remaining pairs of colliding
predicates in Σ and Σ′. We may find ourselves in several situations:

• Σ′ 	= ∅, so there is a S′ ∈ Σ′ with s 	|= empty(S′), but it does not collide
with any S ∈ Σ, so the function returns M = ⊥ and we have to prove
that s 	|= Σ̂ ∗ Σ → Σ̂ ∗ Σ′. If S collides with some predicate in Σ̂, then
the consequence is immediately unsatisfiable and from Proposition 4 we
obtain a model for Σ̂ ∗ Σ. Otherwise let R = {s(addr(S′))}, since S′

does not collide with anything in Σ̂ ∗ Σ, we have R ∩ alloc(Σ̂ ∗ Σ|s) = ∅
and again from Proposition 4 there is a h such that s, h |= Σ̂ ∗ Σ and
s(addr (S′)) 	∈ dom h. Since s(addr (S′)) must be included, by necessity,
on any model of Σ̂ ∗ Σ′, it follows as we wanted that s, h 	|= Σ̂ ∗ Σ′.

• Σ′ = ∅ but Σ 	= ∅, so there is a S ∈ Σ with s 	|= empty(S), the function
returns M = ⊥ and thus we have to prove that s 	|= Σ̂ ∗ Σ → Σ̂. From
Proposition 4 with R = ∅ there is a h such that s, h |= Σ̂ ∗ Σ. Partition
the heap h = h1 ∗ h2 such that s, h1 |= Σ̂ and s, h2 |= Σ. Since there is
a non-empty S in Σ it must be the case that h2 	= ∅ and h1 ⊂ h is a
strict subset. Because all our considered spatial predicates are precise, it
therefore follows that s, h 	|= Σ̂.

• Both Σ′ = ∅ and Σ = ∅, so the function returns M = �. In this final
case it is trivial that s |= M and M ∧ Σ̂ → Σ̂ is valid. ��

We are now ready to prove the termination and correctness of the main prove
function as stated earlier in Theorem 3.

Proof (of Theorem 3). Termination is established since each iteration of the loop
at line 4 strictly reduces the number satisfying models of Γ . Since there is only a
finite number of distinct formulas that may be built by conjunctions of empty(S),
sound(S), ¬separated(S, S′) and the side condition of subtract(Δ, S′, S)—the
building blocks for the return value M of match—all combinations will be ex-
hausted at some point.

For correctness we first note that, starting from line 1, it is established that
the formula Γ →Π ∧well-formed(Σ) is valid and, since later only more conjuncts
are appended to Γ , this invariant is maintained throughout the execution.

If the formula Γ ∧ ¬Π ′ in line 3 is satisfiable, then there is a stack s such that
s |= Γ but s 	|= Π ′. From Proposition 4 there is a heap h such that s, h |= Π ∧ Σ
but, since it already fails on the pure part, s, h 	|= Π ′ ∧ Σ′ and the program
reports that the entailment is invalid. Otherwise, if Γ ∧ ¬Π ′ is unsatisfiable, it
follows that Π ∧ Σ → Π ′ is valid. In order to show this take any s′, h |= Π ∧ Σ,
from Proposition 3 we have that s′ |= Π ∧ well-formed(Σ). It therefore must be
the case that s′ |= Π ′ or s′ would be a model of the unsatisfiable Γ ∧ ¬Π ′.

To finalise we now prove that line 4 at the base of the loop always satisfies the
invariants that if Γ ∧Σ→Σ′ is valid then also Π ∧Σ→Σ′ is. Just before entering
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the loop we have Γ = Π ∧ well-formed(Σ). Assuming Γ ∧ Σ → Σ′ is valid take
any s′, h |= Π ∧ Σ, from Proposition 3 it follows that s′ |= well-formed(Σ) and
therefore, from our assumption, s′, h |= Π ′ ∧ Σ′.

If we enter the code of the loop we have s |= Γ and M = match(s, Δ, Σ, Σ′).
If s 	|= M from Theorem 2 there is a heap h such that s, h |= Π ∧ Σ but,
however, s, h 	|= Σ′, providing as required a counterexample for the entailment.
Alternatively, if s |= M , from Γ ∧ ¬M ∧ Σ → Σ′ we have to prove Π ∧ Σ → Σ′.
Take any s′, h |= Π ∧ Σ, if s′, h |= M then again from Theorem 2 the formula
M ∧ Σ → Σ′ is valid, and s′, h |= Σ′. Otherwise, if s′, h 	|= M , from our previous
assumption it would also follow that s′, h |= Σ′.

We reach the final line if Γ becomes unsatisfiable and, since Γ ∧Σ →Σ′ would
then be trivially valid, we prove as desired the validity of Π ∧ Σ → Σ′. ��

6 Experiments

We implemented our entailment checking algorithm in a tool called Aster*ıx us-
ing Z3 as the pure theory back-end. Due to the current lack of realistic bench-
marks making use of such theory features, we only report the running times of
our new implementation against already published benchmarks from [22].

These are benchmarks with a significant number of repeated spatial atoms
in the entailment, generated by “cloning” multiple copies of verification con-
ditions obtained when running Smallfoot [5] against its own benchmark suite.
They are particularly difficult for the unfolding implemented in slp [22] and the
match function in Aster*ıx. We observe a significant improvement, since our match
function collects constraints that are potentially useful for other applications of
match and relies on the efficiency of a highly optimised SMT solver.

Copies Smallfoot slp Aster*ıx
1 0.01 0.11 0.17
2 0.07 0.06 0.19
3 1.03 0.08 0.23
4 9.53 0.13 0.26
5 55.85 0.38 0.31
6 245.69 2.37 0.39
7 (64%) 20.83 0.54
8 (15%) 212.17 0.85
9 — — 1.49

10 — — 2.81
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Abstract. Separation logic is a state-of-the-art logic for dealing with the pro-
gram heap. Using its frame rule, initial works have strived towards automated
modular verification for heap-manipulating programs against user-supplied spec-
ifications. Since manually writing specifications is a tedious and error-prone engi-
neering process, the so-called bi-abduction (a combination of the frame rule and
abductive inference) is proposed to automatically infer pre/post specifications on
data structure shapes. However, it has omitted the inference of pure properties of
data structures such as their size, sum, height, content and minimum/maximum
value, which are needed to express a higher level of program correctness.

In this paper, we propose a novel approach, called pure bi-abduction, for in-
ferring pure information for pre/post specifications, using the result from a prior
shape analysis step. The power of our new bi-abductive entailment procedure is
significantly enhanced by its collection of proof obligations over uninterpreted
relations (functions). Additionally, we design a predicate extension mechanism
to systematically extend shape predicates with pure properties. We have imple-
mented our inference mechanism and evaluated its utility on a benchmark of pro-
grams. We show that pure properties are prerequisite to allow the correctness of
about 20% of analyzed procedures to be captured and verified.

Keywords: Specification Inference, Pure Bi-Abduction, Separation Logic,
Program Verification, Memory Safety, Functional Correctness.

1 Introduction

One of the challenging areas for software verification concerns programs using heap-
based data structures. To prove the correctness of such programs, in the last decade,
research methodologies based on separation logic have offered good solutions [1,13,3].

Separation logic [20,14], an extension of Hoare logic, is a state-of-the-art logic for
dealing with the program heap. Its assertion language can succinctly describe how data
structures are laid out in memory, by providing the separating conjunction operator that
splits the heap into disjoint regions: reasoning about each such region is independent
of the others. This local reasoning is captured by the frame rule of separation logic, a
proof rule that enables compositional verification of heap-manipulating programs.

Initial works [1,13] based on separation logic have strived towards automated mod-
ular verification against user-supplied specifications. However, manually writing speci-
fications is a tedious and error-prone engineering process. Thus, more recent separation
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logic-based shape analyses endeavor to automatically construct such specifications in
order to prove that programs do not commit pointer-safety errors (dereferencing a null
or dangling pointer, or leaking memory). One such leading shape analysis [3] proposes
bi-abduction to be able to scale up to millions lines of codes. Bi-abduction, a combina-
tion of the frame rule and abductive inference, is able to infer “frames” describing extra,
unneeded portions of state (via the frame rule) as well as the needed, missing portions
(via abductive inference). Consequently, it would automatically infer both precondi-
tions and postconditions on the shape of the data structures used by program codes,
enabling a compositional and scalable shape analysis.

Ex. 1. A method where pure properties of
its data structure are critical for proving
its memory safety.

1 data node {
2 int val; node next;}
3 node zip(node x,node y){
4 if (x==null) return y;
5 else {
6 node tmp =
7 zip(x.next,y.next);
8 x.next = y;
9 y.next = tmp;

10 return x;}}

However, bi-abduction in [3] presently
suffers from an inability to analyze for pure
(i.e., heap-independent) properties of data
structures, which are needed to express a
higher-level of program correctness. For il-
lustration, consider a simple C-style recursive
function in Ex. 1 that zips two lists of integers
into a single one. To reduce the performance
overhead of redundant null-checking, in the
zip method there is no null-checking for y.
As a result, the field access y.next at line 7
may not be memory-safe. In fact, it triggers
a null-dereferencing error whenever the list
pointed by x is longer than the list pointed by y. Naturally, to ensure memory safety, the
method’s precondition needs to capture the size of each list.

A direct solution to such limitation is to rely on numerical analyses. However, since
numerical static analyses are often unaware of the shape of a program’s heap, it becomes
difficult for them to capture pure properties of heap-based data structures.

In this paper, we propose a systematic methodology for inferring pure information
for pre/post specifications in the separation logic domain, using the result from a prior
shape analysis step. This pure information is not only critical for proving memory safety
but also helpful to express a higher-level of program correctness. We call our inference
methodology pure bi-abduction, and employ it for inferring pure properties of data
structures such as their size, height, sum, content and minimum/maximum value. Like
bi-abduction, pure bi-abduction is meant to combine the frame rule and abductive in-
ference, but focused on the problem of inferring specifications with both heap and pure
information. To achieve this, we have designed a new bi-abductive entailment proce-
dure. Its power will be significantly enhanced by the collection of proof obligations
over uninterpreted relations (functions).

Though the main novelty of our current work is a systematic inference of pure in-
formation for specifications of heap-manipulating programs, we have also devised a
predicate extension mechanism that can systematically transform shape predicates in
order to incorporate new pure properties. This technique is crucial for enhancing induc-
tive shape predicates with relevant pure properties.
Contributions. Our contributions include the following:
• We design a new bi-abductive entailment procedure for inferring pure information for
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specifications of heap-manipulating programs. We design a set of fundamental mech-
anisms for pure bi-abduction to help ensure succinct and precise specifications. Our
mechanisms include the inference of obligations and definitions for uninterpreted rela-
tions, prior to their synthesis via fixpoint analyses (Sections 4, 5, 6).
• We propose an extension mechanism for systematically enhancing inductive shape
predicates with a variety of pure properties (Section 7).
• We have implemented our approach and evaluated it on a benchmark of programs
(Section 8). We show that pure properties are prerequisite to allow the correctness of
about 20% of analyzed procedures to be captured and verified.

2 Overview and Motivation

Memory Safety. For the zip method, by using shape analysis techniques [3,6], we
could only obtain the following shape specification:

requires ll〈x〉 ∗ ll〈y〉
ensures ll〈res〉;

where pred ll〈root〉 ≡ (root=null) ∨ ∃ q·(root�→node〈 , q〉 ∗ ll〈q〉).
Although this specification cannot ensure memory safety for the y.next field access (at
lines 7 and 9), it still illustrates two important characteristics of separation logic. First,
by using separation logic, the assertion language can provide inductive spatial predi-
cates that describe the shape of unbounded linked data structures such as lists, trees,
etc. For instance, the ll predicate describes the shape of an acyclic singly-linked list
pointed by root. In its definition, the first disjunct corresponds to the case of an empty
list, while the second one separates the list into two parts: the head root �→node〈 , q〉,
where �→ is points-to operator, and the tail ll〈q〉. Second, the use of ∗ (separating con-
junction) operator guarantees that these two parts reside in disjoint memory regions. In
short, for the zip method, its precondition requires x and y point to linked lists (using
ll) that reside in disjoint memory regions (using ∗), while its postcondition ensures the
result also points to a linked list.

Generally speaking, we cannot obtain any valid pre/post specification (valid Hoare
triple) for the zip method by using only the shape domain. To prove memory safety, the
specification must also capture the size of each list.

Using predicate extension mechanism, we first inject the size property (captured by
n) into the ll predicate in order to derive the llN predicate as follows:

pred llN〈root, n〉 ≡ (root=null ∧ n=0)
∨ ∃ q, m·(root�→node〈 , q〉 ∗ llN〈q, m〉 ∧ n=m+1).

With the new llN predicate, we could then strengthen the specification to include unin-
terpreted relations: P(a, b) in the precondition and Q(r, a, b) in the postcondition. Their
purpose is to capture the relationship between newly-introduced variables (a, b, r) de-
noting size properties of linked lists. Uninterpreted relations in the precondition should
be as weak as possible, while ones in the postcondition should be as strong as possible.

infer [P, Q]
requires llN〈x, a〉 ∗ llN〈y, b〉 ∧ P(a, b)
ensures llN〈res, r〉 ∧ Q(r, a, b);
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Intuitively, it is meant to incorporate the inference capability (via infer) into a pair of
pre/post-condition (via requires/ensures). And the inference will be applied to speci-
fied second-order variables P, Q.

By forward reasoning on the zip code, our bi-abductive entailment procedure would
finally gather the following proof obligations on the two uninterpreted relations:

P(a, b) =⇒ b 
=0 ∨ a≤0,
P(a, b) ∧ a=ar+1 ∧ b=br+1 ∧ 0≤ar ∧ 0≤br=⇒ P(ar, br),
P(a, b) ∧ r=b ∧ a=0 ∧ 0≤b=⇒ Q(r, a, b),
P(a, b)∧rn=r−2∧bn=b−1∧an=a−1∧0≤bn, an, rn∧Q(rn, an, bn) =⇒ Q(r, a, b).

Using suitable fix-point analysis techniques, we can synthesize the approximations for
these unknowns, which would add a pre-condition a≤b to guarantee memory safety.
Specifically, we have P(a, b) ≡ a≤b, Q(r, a, b) ≡ r=a+b and a new specification:

requires llN〈x, a〉 ∗ llN〈y, b〉 ∧ a≤b
ensures llN〈res, r〉 ∧ r=a+b;

Program Termination. With inference of pure properties for specifications, we can go
beyond memory safety towards functional correctness and even total correctness. Total
correctness requires programs to be proven to terminate.

Program termination is typically proven with a well-founded decreasing measure.
Our inference mechanism can help discover suitable well-founded ranking functions
[16] to support termination proofs. For this task, we would introduce an uninterpreted
function F(a, b), as a possible measure, via the following termination-based specifica-
tion that is synthesized right after size inference. Note that size inference is crucial for
proving not only program safety but also program termination.

infer [F]
requires llN〈x, a〉 ∗ llN〈y, b〉 ∧ a≤b ∧ Term[F(a, b)]
ensures llN〈res, r〉 ∧ r=a+b;

Similarly, applying our pure bi-abduction technique, we can derive the following proof
obligations whose satisfaction would guarantee program termination.

a≥0 ∧ b≥0 ∧ a≤b=⇒ F(a, b)≥0
an=a−1 ∧ bn=b−1 ∧ a≤b ∧ an≥0=⇒ F(a, b)>F(an, bn)

Using suitable fixpoint analyses, we can synthesize F(a, b) ≡ a−1, thus capturing a well-
founded decreasing measure for our method. Though termination analysis of programs
has been extensively investigated before, we find it refreshing to re-consider it in the
context of pure property inference for pre/post specifications. For space reasons, we
shall not consider this aspect that uses uninterpreted functions in the rest of the paper.

3 Specification Language

In this section, we introduce the specification language used in pure bi-abduction (Fig-
ure 1). The language supports data type declarations datat (e.g. node), inductive shape
predicate definitions spred (e.g. ll) and method specifications spec. Each iterative loop
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is converted to an equivalent tail-recursive method, where mutations on parameters are
made visible to the caller via pass-by-reference.

Regarding each method’s specification, it is made up of a set of inferable variables
[v∗, v∗rel], a precondition Φpr and a postcondition Φpo. The intended meaning is whenever
the method is called in a state satisfying precondition Φpr and the method terminates,
the resulting state will satisfy the corresponding postcondition Φpo. The specification
inference process can be enabled by providing a specification with inferable variables. If
[v∗] is specified, suitable preconditions on these variables will be inferred while if [v∗rel]
is specified, suitable approximations for these uninterpreted relations will be inferred.

Program prog ::= tdecl∗ meth∗ tdecl ::= datat | spred | spec
Data declaration datat ::= data c { (t v)∗ }
Shape predicate spred ::= pred p〈v∗〉 ≡ Φ
Method spec spec ::= infer [ v∗, v∗rel ] requires Φpr ensures Φpo;
Formula Φ ::=

∨
(∃v∗·κ∧π)∗

Heap formula κ ::= κ1 ∗κ2 | p〈v∗〉 | v �→c〈u∗〉 | emp
Pure formula π ::= π∧ι | ι ι ::= vrel(v

∗) | α
α ::= γ | i | b | ϕ | α1∨α2 | α1∧α2 | ¬α | ∃v · α | ∀v · α

Linear arithmetic i ::= a1=a2 | a1≤a2

a ::= kint | v | kint×a | a1+a2 | −a | max(a1,a2) | min(a1,a2)
Boolean formula b ::= true | false | v | b1=b2

Bag constraint ϕ ::= v∈B | B1=B2 | B1�B2 | ∀v∈B·α | ∃v∈B·α
B ::= B1B2 | B1�B2 | B1−B2 | {} | {v}

Ptr. (dis)equality γ ::= v1=v2 | v=null | v1 �=v2 | v �=null

β ::= vrel(v
∗)→α | π→vrel(v

∗)
Δ ::= Δ1∨Δ2 |Δ1∗Δ2 | ∃v·Δ | κ∧π φ ::= π

Fig. 1. The Specification Language used in Pure Bi-Abduction

The Φ constraint is in disjunctive normal form. Each disjunct consists of a ∗-separated
heap constraint κ, referred to as heap part, and a heap free constraint π, referred to as
pure part. The pure part does not contain any heap nodes and is presently restricted
to uninterpreted relations vrel(v

∗), pointer (dis)equality γ, linear arithmetic i, boolean
constraints b and bag constraints ϕ. Internally, each uninterpreted relation is annotated
with @pr or @po, depending on whether it comes from the precondition or postcondition
resp. This information will be later used to synthesize the approximation for each unin-
terpreted relation in Sec. 6. The relational definitions and obligations defined in Sec. 4.4
are denoted as π→vrel(v

∗) and vrel(v
∗)→α resp. Lastly, Δ denotes a composite for-

mula that can be normalized into the Φ form, while φ represents a pure formula.

4 Principles of Pure Bi-Abduction

Initial works [1,13] are typically based on an entailment system of the form Δ1 � Δ2 �

Δr, which attempts to prove that the current state Δ1 entails an expected state Δ2 with
Δr as its frame (or residual) not required for proving Δ2.

To support shape analysis, bi-abduction [3] would allow both preconditions and post-
conditions on shape specification to be automatically inferred. Bi-abduction is based on
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a more general entailment of the form Δ1 � Δ2 � (Δp, Δr), whereby a precondition
Δp, the condition for the entailment proving to succeed, may be inferred.

In this paper, we propose pure bi-abduction technique to infer pure information for
pre/post specifications. To better exploit the expressiveness of separation logic, we inte-
grate inference mechanisms directly into it and propose to use an entailment system of
the following form [v1, .., vn] Δ1 � Δ2 � (φp, Δr, βc). Three new features are added
here to support inference on pure properties:
• We may specify a set of variables {v1, .., vn} for which inference is selectively ap-
plied. As a special case, when no variables are specified, the entailment system reduces
to forward verification without inference capability.
• We allow second-order variables, in the form of uninterpreted relations, to support
inference of pure properties for pre/post specifications.
• We then collect a set of constraints βc of the form φ1 =⇒ φ2, to provide interpreta-
tions for these second-order variables. This approach is critical for capturing inductive
definitions that can be refined via fix-point analyses.

We first highlight key principles employed by pure bi-abduction with examples.
Later in Sec. 5, we shall present the formalization for our proposed technique.

4.1 Selective Inference

Our first principle is based on the notion that pure bi-abduction is best done selectively.
Consider three entailments below with x�→node〈 , q〉 as a consequent:

[n] llN〈x, n〉 � x �→node〈 , q〉� (n>0, llN〈q, n−1〉, ∅)
[x] llN〈x, n〉 � x �→node〈 , q〉� (x 
=null, llN〈q, n−1〉, ∅)
[n, x] llN〈x, n〉 � x �→node〈 , q〉� (n>0∨x 
=null, llN〈q, n−1〉, ∅)

Predicate llN〈x, n〉 by itself does not entail a non-empty node. For the entailment prov-
ing to succeed, the current state would have to be strengthened with either x�=null or
n>0. Our procedure can decide on which pre-condition to return, depending on the set
of variables for which pre-conditions are built from. The selectivity is important since
we only consider a subset of variables (e.g. a, b, r), which are introduced to capture pure
properties of data structures. Note that this selectivity does not affect the automation of
pure bi-abduction technique, since the variables of interest can be generated automati-
cally right after applying predicate extension mechanism in Sec. 7.

4.2 Never Inferring false

Another principle that we strive in our selective inference is that we never infer any cu-
mulative precondition that is equivalent to false , since such a precondition would not
be provable for any satisfiable program state. As an example, consider [x] true � x>x.
Though we could have inferred x>x, we refrain from doing so, since it is only provable
under dead code scenarios.

4.3 Antecedent Contradiction

The problem of traditional abduction is to find an explanatory hypothesis such that
it is satisfiable with the antecedent. Our purpose here is different in the sense that
we aim to find a sufficient precondition that would allow an entailment to succeed.
Considering [v∗] Δ1 � Δ2, if a contradiction is detected between Δ1 and Δ2, the
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only precondition (over variables v∗) that would allow such an entailment to suc-
ceed is one that contradicts the antecedent Δ1. Although we disallow false to be
inferred, we allow above precondition if it is not equivalent to false . For example,
with [n] x=null∧n=0 � x�=null, we have a contradiction between x=null∧n=0 and
x�=null. To allow this entailment to succeed, we infer n�=0 as its precondition over just
the selected variable [n].

4.4 Uninterpreted Relations

Our inference deals with uninterpreted relations that may appear in either preconditions
or postconditions. We refer to the former as pre-relations and the latter as post-relations.
Pre-relations should be as weak as possible, while post-relations should be as strong as
possible. Our inference mechanism respects this principle, and would use it to derive
the weakest pre-relations and strongest post-relations, where possible.

To provide definitions for these uninterpreted relations, such as R(v∗), we infer two
kinds of relational constraints. The first kind, called relational obligation, is of the form
π∧R(v∗)→ c, where the consequent c is a known constraint and unknown R(v∗) is
present in the antecedent. The second kind, called relational definition, is of the form
π→R(v∗), where the unknown relation is in the consequent instead.

Relational Obligations. They are useful in two ways. For pre-relations, they act as
initial preconditions for (recursive) methods. For post-relations, they denote proof obli-
gations that post-relations must also satisfy. We will check these obligations after we
have synthesized post-relations.

As an example, consider the entailment extracted from the motivating example:
[P] a≥1∧b=0∧P(a, b) � b�=0. We infer P(a, b)→a≤0∨b�=0, which will denote an ini-
tial precondition for P. More generally, with [P] α1∧P(v∗) � α2 where α1 and α2

denote known constraints, we first selectively infer precondition φ over selected vari-
ables v∗ and then collect P(v∗)→ φ as our relational obligation. To obtain succinct
pre-conditions, we filter out constraints that contradict the current program state.

Relational Definitions. They are typically used to form definitions for fixpoint analy-
ses. For post-relations, we should infer the strongest definitions. After gathering the re-
lational definitions (both base and inductive cases), we would apply a least fixpoint pro-
cedure [17] to discover suitable closed-form definitions for post-relations. For
pre-relations, while it may be possible to compute a greatest fixpoint to discover the
weakest pre-relations that can satisfy all relational constraints, we have designed two
simpler techniques for inferring pre-relations. After finding the interpretations for post-
relations, we attempt to extract conditions on input variables from them. If the extracted
conditions can satisfy all relational constraints for pre-relations, we simply use them as
the approximations for our pre-relations. If not, we proceed with a second technique to
first construct a recursive invariant which relates the parameters of an arbitrary call (e.g.
RECa, RECb) to those of the first one (e.g. a, b) using top-down fixpoint [18]. For example,
a recursive invariant rec inv for zip method is RECa≥0∧a≥1+RECa∧RECa+b=RECb+a.
Next, since parameters of an arbitrary call must also satisfy relevant relational obli-
gations, the precondition pre rec is then ∀RECa, RECb· rec inv→pre fst(RECa, RECb),
where pre fst(a, b)=a≤0∨b�=0 is the initial condition. Finally, the precondition for all
method invocations is pre fst∧pre rec∧a≥0∧b≥0=0≤a≤b. This approach allows us
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to avoid greatest fix-point analyses, whose important operators (i.e. narrowing) are sup-
ported in restricted domains, and is sufficient for all practical examples evaluated.

5 Formalization of Pure Bi-Abduction

Recall that our bi-abductive entailment proving procedure has the following form:

[v∗] Δ1 � Δ2 � (φ3, Δ3, β3).

This new entailment procedure serves two key roles:
• For our forward verification, its goal is to reduce the entailment between separation
formulas to the entailment between pure formulas by successively matching up aliased
heap nodes between the antecedent and the consequent through folding, unfolding and
matching [13]. When this happens, the heap formula in the antecedent is soundly ap-
proximated by returning a pure approximation of the form

∨
(∃v∗·π)∗ for each given

heap formula κ (using XPure function as in [13]).
• For our inference, its goal is to infer a precondition φ3 and gather a set of constraints
β3 over specified uninterpreted relations. Along with the inferred frame Δ3, we should
be able to finally construct relevant preconditions and postconditions for each method.

The focus of the current work is on the second category. From this perspective, the
scenario of interest is when both the antecedent and the consequent are heap free, and
the rules in Figure 2 can in turn apply. Take note that these rules are applied in a top-
down and left-to-right order.

[INF−[AND]]
[v∗] π1 � π2 � (φ2,Δ2, β2) [v∗] π1 � π3 � (φ3,Δ3, β3)

[v∗] π1 � π2∧π3 � (φ2∧φ3, Δ2∧Δ3, β2∪β3)

[INF−[UNSAT]]
UNSAT(α1)

[v∗] α1 � α2 � (true , false , ∅)

[INF−[VALID]]
α1 ⇒ α2

[v∗] α1 � α2 � (true , α1, ∅)
[INF−[LHS−CONTRA]]

φ = ∀(FV(α1)−v∗) · ¬α1

UNSAT(α1∧α2) φ �=false

[v∗] α1 � α2 � (φ, false , ∅)

[INF−[PRE−DERIVE]]
φ=∀(FV(α1, α2)−v∗) · (¬α1∨α2)

φ �=false

[v∗] α1 � α2 � (φ,α1∧φ, ∅)
[INF−[REL−DEFN]]

[v∗, vrel] π � vrel(u
∗) � (true , true , {π→vrel(u

∗)})
[INF−[REL−OBLG]]

[u∗] α1 � α2 � (φ1,Δ1, ∅) [v∗] α1 � α2 � (φ2, Δ2, ∅)
[v∗, vrel] α1∧vrel(u∗) � α2 � (φ2,Δ1∧Δ2, {vrel(u∗)→φ1})

Fig. 2. Pure Bi-Abduction Rules

• Rule [INF−[AND]] breaks the conjunctive consequent into smaller components.
• Rules [INF−[UNSAT]] and [INF−[VALID]] infer true precondition whenever the
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entailment already succeeds. Specifically, rule [INF−[UNSAT]] applies when the an-
tecedent α1 of the entailment is unsatisfiable, whereas rule [INF−[VALID]] is used if
[INF−[UNSAT]] cannot be applied, meaning that the antecedent is satisfiable.
• The pure precondition inference is captured by two rules [INF−[LHS−CONTRA]]

and [INF−[PRE−DERIVE]]. While the first rule handles antecedent contradiction, the
second one infers the missing information from the antecedent required for proving the
consequent. Specifically, whenever a contradiction is detected between the antecedent
α1 and the consequent α2, then rule [INF−[LHS−CONTRA]] applies and the precon-
dition ∀(FV(α1)−v∗) · ¬α1 contradicting the antecedent is being inferred. Note that
FV(·) returns the set of free variables from its argument(s), while v∗ is a shorthand
notation for v1, .., vn

1. On the other hand, if no contradiction is detected, then rule
[INF−[PRE−DERIVE]] infers a sufficient precondition to prove the consequent. In or-
der to not contradict the principle stated in Sec. 4.2, both aforementioned rules check
that the inferred precondition is not equivalent to false .
• The last two rules [INF−[REL−DEFN]] and [INF−[REL−OBLG]] are used to gather
definitions and obligations respectively, for the uninterpreted relation vrel(u

∗). For sim-
plicity, in rule [INF−[REL−OBLG]], we just formalize the case when there is only one
uninterpreted relation in the antecedent.

6 Inference via Hoare-Style Rules

Code verification is typically formulated as a Hoare triple of the form: � {Δ1} c {Δ2},
with a precondition Δ1 and a postcondition Δ2. This verification could either be con-
ducted forwards or backwards for the specified properties to be successfully verified, in
accordance with the rules of Hoare logic. In separation logic, the predominant mode of
verification is forward. Specifically, given an initial state Δ1 and a program code c, such
a Hoare-style verification rule is expected to compute a best possible postcondition Δ2

satisfying the inference rules of Hoare logic. If the best possible postcondition cannot be
calculated, it is always sound and often sufficient to compute a suitable approximation.

To support pure bi-abduction, we extend this Hoare-style forward rule to the form:
[v∗] � {Δ1} c {φ2, Δ2, β2} with three additional features (i) a set of variables [v∗] (ii)
an extra precondition φ2 that must be added (iii) a set of definitions and obligations β2

on the specified uninterpreted relations. The selectivity criterion will help ensure that φ2

and β2 come from only the specified set of variables, namely {v∗}. If this set is empty,
our new rule is simply the case that performs verification, without any inference.

Figure 3 captures a set of our Hoare rules with pure bi-abduction. Rule [INF−[SEQ]]
shows how sequential composition e1; e2 is handled. The two inferred preconditions are
conjunctively combined as φ2 ∧ φ3. Rule [INF−[IF]] deals with conditional expression.
Our core language allows only boolean variables (e.g. w) in each conditional test. We
use a primed notation whereby w denotes the old value, and w′ denotes the latest value
of each variable w. The conditions w′ and ¬w′ are asserted for each of the two con-
ditional branches. Since the two preconditions φ2, φ3 come from two branches, both
of them must hold for soundness; thus they are combined conjunctively in a conser-
vative manner. Rule [INF−[ASSIGN]] handles assignment statement. We first define a

1 If there is no ambiguity, we can use v∗ instead of {v∗}.
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composition with update operator. Given a state Δ1, a state change Δ2, and a set of
variables to be updated X= {x1, . . . , xn}, the composition operator opX is defined as:

Δ1 opX Δ2
def
= ∃ r1..rn · (ρ1Δ1) op (ρ2Δ2), where r1, . . . , rn are fresh variables and

ρ1 = [ri/x
′
i]
n
i=1, ρ2 = [ri/xi]

n
i=1. Note that ρ1 and ρ2 are substitutions that link each

latest value of x′
i in Δ1 with the corresponding initial value xi in Δ2 via a fresh vari-

able ri. The binary operator op is either ∧ or ∗. Instances of this operator will be used in
the inference rules [INF−[ASSIGN]] and [INF−[CALL]]. As illustrated in [INF−[CALL]],
for each method call, we must ensure that its precondition is satisfied, and then add the
expected postcondition into its residual state. Here, (ti vi)

m−1
i=1 are pass-by-reference pa-

rameters, that are marked with ref, while the pass-by-value parameters V are equated
to their initial values through the nochange function, as their updated values are not
visible to the method’s callers. Note that inference may occur during the entailment
proving for the method’s precondition.

[INF−[SEQ]]
[v∗] � {Δ} e1 {φ2,Δ2, β2} [v∗] � {Δ2} e2 {φ3,Δ3, β3}

[v∗] � {Δ} e1; e2 {φ2∧φ3,Δ3, β2∪β3}

[INF−[IF]]
[v∗] � {Δ∧w′} e1 {φ2,Δ2, β2} [v∗] � {Δ∧¬w′} e2 {φ3,Δ3, β3}

[v∗] � {Δ} if w then e1 else e2 {φ2∧φ3,Δ2∨Δ3, β2∪β3}
[INF−[ASSIGN]]

[v∗] � {Δ} e {φ2,Δ2, β2} Δ3=∃res · (Δ2 ∧u u′=res)

[v∗] � {Δ} u:=e {φ2,Δ3, β2}
[INF−[CALL]]

t0 mn (ref (ti vi)
m−1
i=1 , (tj vj)

n
j=m) Φpr Φpo {c} ∈ Prog

ρ=[v′k/vk]
n
k=1 Φ′

pr = ρ(Φpr) W={v1, . . . , vm−1} V={vm, . . . , vn}
[v∗] Δ �Φ′

pr � (φ2,Δ2, β2) Δ3=(Δ2 ∧ nochange(V )) ∗V ∪W Φpo

[v∗] � {Δ} mn(v1, . . . , vm−1, vm, ...vn) {φ2,Δ3, β2}
[INF−[METH]]

[v∗, v∗rel] � {Φpr∧
∧
(u′=u)∗} c {φ2,Δ2, β2} [v∗, v∗rel] Δ2 �Φpo � (φ3,Δ3, β3)

ρ1 = infer pre(β2∪β3) ρ2 = infer post(β2∪β3)
Φn

pr = ρ1(Φpr∧φ2∧φ3) Φn
po = ρ2(Φpo∗Δ3)

� t0 mn ((t u)∗) infer [v∗, v∗rel] Φpr Φpo {c}� Φn
pr Φ

n
po

Fig. 3. Hoare Rules with Pure Bi-Abduction

Lastly, we discuss the rule [INF−[METH]] for handling each method declaration. At
the program level, our inference rules will be applied to each set of mutually recursive
methods in a bottom-up order in accordance with the call hierarchy. This allows us to
gather the entire set β of definitions and obligations for each uninterpreted relation.
From this set β we infer the pre- and post-relations via two techniques described below.
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defpo(β) = {πk
i →vreli(v

∗
i ) | (πk

i →vreli@po(v∗i )) ∈ β}
oblpo(β) = {vreli(v∗i )→αj | (vreli@po(v∗i )→αj) ∈ β}
defpr(β) = {πk

i →vreli(v
∗
i ) | (πk

i →vreli@pr(v∗i )) ∈ β}
oblpr(β) = {vreli(v∗i )→αj | (vreli@pr(v∗i )→αj) ∈ β}

Take note that, given the entire set β, we retrieve the set of definitions and obligations
for post-relations through functions defpo and oblpo respectively, while we use functions
defpr and oblpr for pre-relations.
• For post-relations, function infer post applies a least fixed point analysis to the set
of collected relational definitions defpo(β). To compute the least fixed point over two
domains used to instantiate the current framework, namely the numerical domain and
the set/bag domain, we utilize FIXCALC [17] and FIXBAG [15], respectively. The call to
the fixed point analysis is denoted as LFP(defpo(β)). It takes as inputs the set of relational
definitions, while returning a set of closed form constraints of the form αi→vreli(v

∗
i ),

where each constraint corresponds to uninterpreted relation vreli(v
∗
i ). Given that our aim

is to infer the strongest post-relations, we further consider each post-relation vreli(v
∗
i ) to

be equal to αi. Finally, infer post returns a set of substitutions, whereby each unknown
relation is substituted by the inferred formula, provided that this formula satisfies all the
corresponding relational obligations from oblpo(β).

infer post(β)={αi/vreli(v
∗
i ) | (αi→vreli(v

∗
i ))∈LFP(defpo(β))

∧ ∀(vreli(v∗i )→αj)∈oblpo(β)·αi⇒αj}
• For pre-relations, we initially infer two kinds of precondition: one for base cases, the
other for recursive calls. For base cases, we calculate the conjunction of all its obliga-
tions from oblpr(β) to obtain sufficient precondition pre basei for each uninterpreted
relation vreli(v

∗
i ). For recursive calls, we first derive the recursive invariant rec invi to

relate the parameters of an arbitrary call to those of the first one. This can be achieved
via a top-down fixed point analysis [18]. Because the parameters of an arbitrary call
must also satisfy relevant relational obligations (e.g. pre basei), we will then be able
to construct a precondition pre reci for each relation. An acceptable approximation
αi for each relation vreli(v

∗
i ) must satisfy simultaneously the precondition for base

calls (pre basei), for an arbitrary recursive call (pre reci) and the invariant INV (e.g.
a≥0∧b≥0 as in Sec. 4.4). The last step is to check the quality of candidate substitutions
to keep the ones that satisfy not only the obligations but also definitions of each relation.

pre basei = {∧jαj | (vreli(v∗i )→αj)∈oblpr(β)}
rec invi = TDFP(defpr(β))

pre reci = ∀(FV(rec invi)−v∗i ) · (¬rec invi ∨ pre basei)
αi = pre basei ∧ pre reci ∧ INV

infer pre(β) = sanity checking({αi/vreli(v
∗
i )}, oblpr(β), defpr(β))

With the help of functions infer pre and infer post, we can finally define the rule for
deriving the pre- and postconditions, Φn

pr and Φn
po, of a method mn. Note that v∗rel de-

notes the set of uninterpreted relations to be inferred, while ρ1 and ρ2 represent the
substitutions obtained for pre- and post-relations, respectively.

Soundness. Soundness of inference is given in the extended version of this paper [22].
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7 Enhancing Predicates with Pure Properties

Since the user may encounter various kinds of inductive spatial predicates (from a shape
analysis step), such as linked lists, doubly-linked lists, trees, etc. and there may be
different pure properties to enrich shape predicates such as size, height, sum, head,
min/max, set of values/addresses (and their combinations), we need to use a predicate
extension mechanism to systematically incorporate pure properties into heap predicates.

Our mechanism is generic in the sense that each specified property can be applied
to a broad range of recursive data structures, whose underlying structures can be quite
different (see [22]). We can define these pure properties of data structures in the form
of parameterized inductive definitions such as:

prop defn HEAD[@V]〈v〉 ≡ v=V
prop defn SIZE[@R]〈n〉 ≡ n=0 ∨ SIZE〈R, m〉∧n=1+m

prop defn HEIGHT[@R]〈n〉 ≡ n=0 ∨ HEIGHT〈R, m〉∧n=1+max(m)
prop defn SUM[@V,@R]〈s〉 ≡ s=0 ∨ SUM〈R, r〉∧s=V+r
prop defn SET[@V,@R]〈S〉 ≡ S={} ∨ SET〈R, S2〉∧S={V}�S2
prop defn SETADDR[@R]〈S〉 ≡ S={} ∨ SETADDR〈R, S2〉∧S={root}�S2
prop defn MINP[@V,@R]〈mi〉 ≡ mi=min(V) ∨ MINP〈R, mi2〉∧mi=min(V, mi2)
prop defn MAXP[@V,@R]〈mx〉 ≡ mx=max(V) ∨ MAXP〈R, mx2〉∧mx=max(V, mx2),

where V, R are values extracted from parameters @V,@R resp. For example, to determine
if n is the size of some data structure whose recursive pointer is annotated as @REC,
SIZE[@REC]〈n〉 would check the satisfiability of the base case (e.g. n=0) and the induc-
tive case (via recursive pointer REC).

Using such definition, one can use the following command to incorporate size prop-
erty directly to a linked-list predicate definition. Below, the annotations @VAL,@REC are
hardwired to two fields of the underlying heap structure node:

pred llN〈root, n〉= extend ll〈root〉 with SIZE[@REC]〈n〉
data node {int val@VAL; node next@REC; }

Based on these commands and the definitions of pure properties, our system first con-
structs an entry (in a dictionary) for each targeting predicate. For example, there is one
entry (llN〈root, n〉, (F1, F2, BC, IC)), where list of all value field annotations F1=[ ], list
of all recursive pointer annotations F2=[@REC], base case BC=\[ ] → n=0 and induc-
tive case IC=\[mREC ] → n=mREC+1 (mREC is the size property of corresponding recursive
pointer REC of the linked-list). Using the dictionary, we can transform the base case and
inductive case of original spatial predicate ll as follows:

root=null #Dict�root=null∧n=0

∃q·(root �→node〈 , q〉∗ll〈q〉) #Dict�∃q, m·(root�→node〈 , q〉∗llN〈q, m〉∧n=m+1)

Finally, we can synthesize llN predicate as previously shown in Sec. 2.
In short, the technique we present in this section aims at a systematic way to enrich

spatial predicates with interesting pure properties. For space reasons, more complicated
cases (i.e. when handling data structures with multiple links such as tree) can be found
in [22]. While property extensions are user customizable, their use within our pure in-
ference sub-system can be completely automated, as we can automatically construct
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predicate derivation commands and systematically apply them after shape analysis. We
then replace each heap predicate with its derived counterpart, followed by the introduc-
tion of uninterpreted pre- and post-relations before applying Hoare-style verification
rules with pure bi-abductive inference.

8 Experimental Results

We have implemented our pure bi-abduction technique into an automated program ver-
ification system for separation logic, giving us a new version with inference capability,
called SPECINFER. We then have conducted three case studies in order to examine (i)
the quality of inferred specifications, (ii) the feasibility of our technique in dealing with
a variety of data structures and pure properties to be inferred, and (iii) the applicability
of our tool in real programs.

Ex. 2. A method where the content of its
data structure is helpful to ensure its
functional correctness

1 node del_val(node x,int a)
{

2 if (x == null) return x;
3 else if (x.val == a) {
4 node tmp = x.next;
5 free(x);
6 return tmp; }
7 else {
8 x.next =
9 del_val(x.next, a);

10 return x; } }

Small Examples. To highlight the qual-
ity of inferred specifications, we summa-
rize sufficient specifications that our tool
can infer for some well-known recursive
examples. Details can be found in the ex-
tended version of this paper [22]. Though
codes for these examples are not too com-
plicated, they illustrate the treatment of re-
cursion (thus, the inter-procedural aspect).
Therefore, the preconditions and postcon-
ditions derived can be quite intricate and
would require considerable human efforts if
they were constructed manually.2

One interesting thing to note is that each
example may require different pure proper-
ties for its correctness to be captured and
verified. Using our pure bi-abduction technique, we can derive more expressive spec-
ifications, which can help ensure a higher-level correctness of programs. For instance,
the size property is not enough to capture the functional correctness of del val method,
whose source code is given in Ex. 2. Method del val deletes the first node with value
a from the linked-list pointed by x. Since the behavior of this method depends on the
content of its list, SPECINFER needs to derive llNB predicate that also captures a bag B

of values stored in the list:

pred llNB〈root, n, B〉 ≡ (root=null ∧ n=0 ∧ B={}) ∨
∃ s, q, m, B0 · (root�→node〈s, q〉 ∗ llNB〈q, m, B0〉 ∧ n=m+1 ∧ B=B0�{s}).

Finally, our tool infers the following specification that guarantees the functional cor-
rectness of del val method:

requires llNB〈x, n, B1〉
ensures llNB〈res, m, B2〉 ∧ ((a/∈B1 ∧ B2=B1) ∨ B1=B2�{a});

where res denotes the method’s result.
2 The source code of all examples can be found in our website [22].
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Medium Examples. We tested our tool on a set of challenging programs that use a
variety of data structures. The results are shown in Table 1 (the first eight rows), where
the first column contains tested program sets: LList (singly-linked list), SoLList (sorted
singly-linked list), DLList (doubly-linked list), CBTree (complete binary tree), Heaps
(priority queue), AVLTree (AVL tree), BSTree (binary search tree) and RBTree (red-black
tree). The second and third columns denote the number of lines of code (LOC) and the
number of procedures (P#) respectively.

For each test, we start with shape specifications that are obtained from the prior shape
analysis step. The number of procedures with valid specifications (valid Hoare triples)
is reported in the V# column while the percentage of these over all analyzed procedures
is in the % column. In the next two phases, we incrementally add new pure properties
(to be inferred) to the existing specifications. These additional properties are listed in
the Add.Properties columns. While phase 2 only focuses on quantitative properties
such as size (number of nodes) and height (for trees), phase 3 aims at other functional
properties. We also measure the time (in seconds) taken for verification with inference,
in the Time column.

In addition to illustrating the applicability of SPECINFER in dealing with different
data structures and pure properties, Table 1 reaffirms the need of pure properties for
capturing program correctness. Specifically, for procedures that SPECINFER cannot in-
fer any valid specifications, we do construct the specifications manually. However due
to the restriction of properties the resulting specification can capture, we fail to do so
for these procedures. For illustration, we cannot construct any valid specification for
about 18% of procedures in phase 1 (using shape domain only). Even in phase 2, there
is still one example, delete max method in Heaps test, for which we cannot obtain any
valid specification. This method is used to delete the root of a heap tree, thus it requires
the information of the maximum element.

Table 1. Specification Inference with Pure Properties for a Variety of Data Structures

Shape Shape + Quan Shape + Quan + Func
Program LOC P# V# % Add.Properties V# % Time Add.Properties V# % Time
LList 287 29 23 79 Size 29 100 1.53 Bag of values 29 100 3.09
SoLList 237 28 22 79 Size 28 100 0.93 Sortedness 28 100 1.62
DLList 313 29 23 79 Size 29 100 1.69 Bag of values 29 100 4.19
Heaps 179 5 2 40 Size 4 80 2.14 Max. element 5 100 6.63
CBTree 115 7 7 100 Size & Height 7 100 2.76 Bag of values 7 100 98.81
AVLTree 313 11 9 82 Size & Height 11 100 8.85 Balance factor 11 100 10.66
BSTree 177 9 9 100 Size & Height 9 100 1.76 Sortedness 9 100 2.75
RBTree 407 19 18 95 Size & Height 19 100 5.97 Color 19 100 6.01

schedule 512 18 13 72 Size 18 100 6.86
schedule2 474 16 5 31 Size 16 100 10.58
pcidriver 1036 29 29 100 Size 29 100 17.72

Larger Examples. The last three rows from Table 1 demonstrate the applicability
of SPECINFER on larger programs. The first two programs used to perform process
scheduling are adopted from the Siemens test suite [8] while the last one is pci driver.c
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file from Linux Device Driver. Note that for this case study we enrich shape specifica-
tions with size property only. For Linux file, although it is sufficient to use only shape
property to prove memory safety, size property is still useful for proving termination.

9 Related Works

Specification inference makes program verification more practical by minimizing on
the need for manual provision of specifications. It can also be used to support formal
software documentation.

One research direction in the area of specification inference is concerned with in-
ferring shapes of data structures. SLAyer [2] is an automatic program analysis tool
designed to prove the absence of memory safety errors such as dangling pointer deref-
erences, double frees, and memory leaks. The footprint analysis described in [4] infers
descriptions of data structures without requiring a given precondition. Furthermore, in
[3], Calcagno et al. propose a compositional shape analysis. Both aforementioned anal-
yses use an abstract domain based on a limited fragment of separation logic, centered
on some common heap predicates. Abductor [3] is a tool implementing a composi-
tional shape analysis based on bi-abduction, which was used to check memory safety
of large open source codebases [5]. A recent work [23] attempts to infer partial anno-
tations required in a separation-logic based verifier, called Verifast. It can infer annota-
tions related to unfold/fold steps, and also shape analysis when pre-condition is given.
Our current proposal is complementary to the aforesaid works, as it is focused on in-
ferring the more varied pure properties. We support it with a set of fundamental pure
bi-abduction techniques, together with a general predicate extension mechanism. Our
aim is to provide systematic machinery for deriving formal specifications with more
precise correctness properties.

A closely related research direction to ours concerns the inference of both shape and
numerical properties. In [11], the authors combine shape analysis based on separation
logic with an external numeric-based program analysis in order to verify properties such
as memory safety and absence of memory leaks. Their method was tested on a number
of programs where memory safety depends on relationships between the lengths of the
lists involved. In the same category, Thor [12] is a tool for reasoning about a combi-
nation of list reasoning and arithmetic by using two separate analyses. The arithmetic
support added by Thor includes stack-based integers, integers in the heap and lengths of
lists. However, these current works are limited to handling list segments together with
its length as property, and does not cover other pure properties, such as min/max or set.
In addition, they require two separate analysis, as opposed to our integrated analysis (or
entailment procedure) that can handle both heap and pure properties simultaneously.
A recent work [19] focuses on refining partial specifications, using a semi-automatic
approach whereby predicate definitions are manually provided. This work did not take
advantage of prior shape analysis, nor did it focus on the fundamental mechanisms for
bi-abduction with pure properties. Our paper addresses these issues by designing a new
pure bi-abduction entailment procedure, together with the handling of uninterpreted
functions and relations. To utilize shape analyses’ results, we also propose a predicate
extension mechanism for systematically enhancing predicates with new pure properties.



122 M.-T. Trinh et al.

Another recent work [7] aims to automatically construct verification tools that imple-
ment various input proof rules for reachability and termination properties in the form
of Horn(-like) clauses. Also, on the type system side, the authors of [21,9,10] require
templates in order to infer dependent types precise enough to prove a variety of safety
properties such as the safety of array accesses. However, in both of these works, mu-
table data structures are not supported. Compared to above works, our proposal can be
considered fundamental, as we seek to incorporate pure property inference directly into
the entailment proving process for the underlying logics, as opposed to building more
complex analyses techniques.

Acknowledgements. We would like to thank Duc-Hiep Chu for his useful comments.
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Abstract. We propose a set of algebraic laws for reasoning with se-
quential imperative programs that use object references like in Java. The
theory is based on previous work by adding laws to cope with object ref-
erences. The incrementality of the algebraic method is fundamental; with
a few exceptions, existing laws for copy semantics are entirely reused, as
they are not affected by the proposed laws for reference semantics. As
an evidence of relative completeness, we show that any program can
be transformed, through the use of our laws, to a normal form which
simulates it using an explicit heap with copy semantics.

1 Introduction

The inherent difficulty of reasoning with pointers has been successfully addressed
using different techniques for describing spatial separation of pointers, see for
example [19,7,13,3]. However, there have been few initiatives using algebraic
approaches [12,20], despite its well known advantages. Transformations are used
in compilers, but these rely on context conditions presented algorithmically or by
means of logic (as discussed in [4]); in many cases they apply only to intermediate
representations. No comprehensive set of algebraic laws has been proposed to
support transformations of source programs involving references.

In [10], Hoare and Staden highlight, among other advantages, the incremen-
tality of the algebraic method. When a new programming language concept or
design pattern is added, new axioms can be introduced, keeping intact at least
some axioms and theorems of the existing theory of the language. Even when
the new language features have an impact on the original ones, this tends to
be controllable, affecting only a few laws. On the other hand, a pure algebraic
presentation is based on postulating algebraic laws, which raises the questions
of consistency and completeness of the proposed set of laws.

In this paper, we explore the incrementality of algebra to extend with object
references a simple non-deterministic imperative language similar to that given
in the seminal “Laws of Programming” by Hoare et al [9] (LoP for short). Our
∗
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language deals with references in the same way as in Java, i.e., aliasing (sharing)
may only occur for fields of objects since the only operations with references are
field access to read and write. There is no arithmetic on references nor operations
returning addresses of variables.

Based on LoP, we generalize some laws to deal with references, in particular
those related to assignments to object fields. The main difficulties are due to
aliasing. We tackle them using techniques inspired in works of Morris [17] and
Bornat [7] on program logic. We also propose new laws to deal with object
creation and manipulation of assertions. Dynamic allocation poses challenges
in semantic modeling, and thus in semantic notions of completeness [21]. As in
LoP, we address the completeness of the laws by showing that any program can
be transformed, by using the laws, to a normal form. Soundness of the laws is
tackled in an extended report [15] by proving the validity of the laws with respect
to a naive denotational semantics (which suffices because we only consider first
order programs).

Our work is in a wider context of defining algebraic theories for reasoning
about object-oriented programs. Previous work [6,8] defines theories for object-
orientation useful to prove transformations of programs such as refactorings.
However, the language used in these works has copy semantics, lacking the con-
cept of reference and, thus, restricting the refactorings that can be characterized.
By “copy semantics” we mean that it is only simple variables that are mutable;
objects are immutable records (i.e., functional maps with update by copy) so
aliasing cannot occur.

Our laws are intended to support program transformation and verification.
They can be used, for instance, in the design of correct compilers and optimizers.
Together with laws of object-orientation established in previous works, which are
also valid in the context of references, they can be applied to a wider collection
of refactorings and patterns which depend on the concept of reference.

In the next Section we show the abstract syntax of the language and briefly
explain its constructions. Section 3 discusses how aliasing complicates the al-
gebraic reasoning with programs and describes a substitution mechanism that
deals with it. The laws are given in Section 4 and a notion of relative complete-
ness for the proposed set of laws is shown in Section 5. Section 6 presents final
considerations, including other notions of completeness, and discusses related
and future works. Proofs and further details appear in the long version of this
paper [15].

2 The Language

The programming language we consider is sequential and imperative. It extends
that in LoP by including object references as values and assignments to ob-
ject fields. The language is statically typed, thus each variable and field has a
statically declared type. Formalization of types is routine and omitted.

The abstract syntax is in Figure 1. In this grammar x , X , f , and K range
over given sets representing names for variables, recursive commands, fields of
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c ::= x ← newK | le := e | new instance, simultaneous assignment
⊥ | [e] | skip | c ; c | abort, assertion, skip, sequence
c � e � c | c ∪ c | e ∗ c | conditional, non-determinism, while
μX • c | X recursion, recursive call

le ::= x | null.f | le.f | le � e � le variable, field, conditional
e ::= e op e | e � e � e | binary operator (e.g. ==), conditional

x | e.f | null | false | 0 | 1 | . . . variable, field access, constants, others
cd ::= class K {f : T} class declaration
T ::= K | bool | int types
prog ::= cd • c program

Fig. 1. The Syntax of the Language

objects, and classes, respectively. The non terminal symbols cd , T , c, le and e are
used for class declarations, types, commands, left expressions and expressions,
respectively. As a convention, a line above syntactic elements denotes a list of
them. Thus, for example, we use e to abbreviate a list e1, e2, . . . en of expressions,
for some n. But the identifier e has no relation with the identifier e which
represents any single expression not necessarily in e. The empty list is written
as “()”.

A class declaration defines a named record type, i.e., class K {f : T} declares
a class with name K and fields f : T . There are no methods and all the fields in
the class are public. In our laws of commands, we assume there is a fixed set of
class declarations which may be mutually recursive.

Like in Java, variables or fields of primitive types, bool and int, store values
of the corresponding types. On the other hand, any variable or field having some
K as its declared type does not store an object instance of K but a reference to
it. This is the main difference of our language with respect to [6,8] where a copy
semantics is adopted and variables/fields hold full objects.

The expression null.f is allowed, though it always aborts, because it may arise
from the application of laws.

The language has all the programming commands given in LoP, extended
with commands for creation of objects, assertions and richer left expressions for
assignments to fields. We omit specification constructs like angelical choice. We
use the same syntax as in LoP, e.g., b�e �c and e ∗c are conditional and iteration
commands corresponding to the if and while of Java, respectively. In both cases
e is the guard condition. For recursion we use the notation μX • c, which binds
X and defines a command where recursive calls can happen within c. The while
command can be defined in terms of the μ construct: e∗c =̂ μX • c; X �e�skip.

The non-deterministic command b ∪ c denotes the demonic choice between
b and c. The command ⊥, also known as abort, represents the behaviour of
a failing program. It is the most non-deterministic program since its execution
may result in any state or may even fail to terminate.

The simultaneous assignment le := e requires the same size for both lists, and,
of course, the same type for each corresponding left and right expression. The
assignment is executed by evaluating all the expressions in e and then assigning
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each resulting value to the corresponding left expression in le. The assignment
command in our language differs from that of LoP in some important aspects.
First, it is allowed to have empty lists at each side of “:=”. Indeed, we can define
skip as () := (), whose execution always ends successfully without performing
any change. Second, left expressions are richer than those in LoP where only
variables are allowed. Here, left expressions can also be fields of objects or even
conditional left expressions.

Notably, it is allowed to have repeated left expressions on the left-hand side list
of “ :=”. When this happens, the execution is non-deterministic. For example, the
execution of x , x := 1, 2 assigns either 1 or 2 to x . This kind of non-determinism
can happen even with syntactically distinct left expressions when the left-hand
side list includes aliased fields, so we may as well allow it for variables as well.

The command x ← newK creates in the heap a new instance of the class K
and assigns its reference to x . The fields of the new instance are initialized by
default with 0 for int, false for bool and null for objects.

Assertions are denoted by [e], where e is a boolean expression. [e] is a com-
mand that behaves like skip when e evaluates to true and like ⊥ otherwise. Our
assertions use only program expressions and can be defined in terms of more ba-
sic operators: [e] =̂ skip�e�⊥. However, assertions may refer to a distinguished
variable, alloc, which in any state holds the set of currently allocated references.
This device has been used in some program logics (e.g., [3]).

As usual we model input and output by the global variables of the main
program. These global variables are assumed to have implicit type declarations.

We use a, b, c to stand for commands, d , e for expressions, f , g, k for field
names, m for case lists (defined in Subsection 3.2), p, q, r stand for left expres-
sions, x , y, z stand for variables, K stands for class names and T stands for type
names, i.e. primitive types and classes.

3 Aliasing and Substitution

A fundamental idea behind algebra of programs [9,16,1], as well as in Hoare
Logic and many other formalisms, is that variable substitution can capture the
effects that assignments produce on expressions. However, when the language has
references, several obstacles emerge. The main difficulty resides in the possibility
of aliasing, which happens when two or more expressions or left expressions point
to a single object field.

3.1 The Problem of Aliasing

Consider the following law, as originally presented in LoP, where aliasing is not
possible. It combines two sequential assignments into a single one. The notation
dx
e denotes a simultaneous substitution on d where each variable in the list x is

replaced by the corresponding expression in e. This law captures the behavior
of the first assignment in the sequence through syntactic substitution.

(x := e ; x := d) = x := d
x

e �De �⊥ (*)
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Just like in LoP, we assume that for every expression e there is an expression De
for checking if e is defined. We assume that De is always defined. For example,
D(x/y) is given by y 
= 0. Considering the left-hand side of the equation (*)
above, if e is undefined it will behave as ⊥. This justifies the checking for de-
finedness on the right-hand side.

Under the conditions given in LoP, where the left-hand side x is a list of
variables without duplicates, the law is valid. But our language allows duplicates
on left-hand sides. Obviously, in this case the law does not make sense since the
substitution d

x

e will not be well defined.
Moreover, because of the possibility of aliasing, we get in trouble if we apply

the law to assignments with fields as left expressions. Note that a variable always
denotes the same memory cell both in the first and in the second assignment on
the left-hand side of the law. This is not true with fields. For example, in the
command x , x .f := a, b; x , x .f := x , x .f +1, the left expression x .f in the second
assignment may be referring to a different cell from that in the first since x may
have changed to reference an object referenced by a.

It is well known that, with pointers or array, such a law is not valid if naive
substitution is used for left expressions. For example, for the command p.f :=
p.f + 1; p.f := p.f + q.f , a naive substitution (p.f + q.f )p.fp.f+1 will give always
(p.f + 1) + q.f , ignoring the possibility of aliasing between p.f and q.f .

In order to generalize law (*) above for our language, we prefix a guard as-
serting that the left expressions of the first assignment are pairwise disjoint and,
furthermore, that the left expressions of both assignments refer to the same cells.
Also, we need to use a substitution mechanism that deals with aliasing and si-
multaneous assignments. In the following subsection we give a precise definition
of substitution. We give the generalization of law (*) in Section 4 – see law (33).

Like in Java, aliasing may only occur for fields of objects. More precisely,
field accesses as p.f and p.g, where f and g are different field names, can never
have the same lvalues, i.e, will never be aliased. On the other hand, p.f and q.f
are aliased if and only if p == q, meaning that p and q hold the same value
(object address). For simplicity we consider field names to be globally unique,
i.e., distinct classes use distinct field names.

We define a state predicate alias [p, q] that is true if and only if p and q are
aliased. For convenience, we consider that any left expression is aliased with
itself. We are using square brackets to stress that the arguments of alias are not
semantic values but syntactic elements. Note however that the aliasing checking
is state dependent. By recursion on structure we define

alias [x , x ] =̂ true

alias [x , y] =̂ false

alias [x , p.f ] =̂ false

alias [p.f , q.f ] =̂ p == q

alias [p.f , q.g] =̂ false

alias [p � e � q, r ] =̂ alias [p, r ] � e � alias [q, r ]

alias [p, q] =̂ alias [q, p], otherwise

where x 
≡ y and f 
≡ g. We write ≡ to mean syntactically the same.
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3.2 Substitution

For substitution we borrow ideas from Bornat [7] who defines a field substitution
operator for languages that treat references like in Java, as our language does.
Like we do in this paper, he also assumes that distinct types of objects use
distinct field names, which is useful to simplify the definition. We write ef{f :p �→d}
to denote the expression obtained by syntactically replacing occurrences of the
field name f by the conditional field {f : p �→ d}. A conditional field access
e1.{f : p �→ d} is interpreted as being d � e1 == p � e1.f .

As an illustrative example, consider the effect caused by the assignment
x .f := e on the expression x .f + y.g + z .f . This effect is given by the follow-
ing field substitution

(x .f+ y.g + z .f )f{f :x �→e} = (def. of substitution)

x .{f : x �→ e} + y.g + z .{f : x �→ e} = (desugaring)
(e � x == x � x .f ) + y.g + (e � x == z � z .f ) = (x == x is true)
e + y.g + (e � x == z � z .f )

As expected, observe that, contrasting to the initial expression, in the resulting
expression x .f was replaced by e and z .f by a conditional indicating that if x .f
and z .f are aliased, z .f also will be replaced by e, but if there is no such aliasing
z .f will be kept intact.

Field substitution also works for expressions containing nested accesses to
fields. For example, it is easy to see that

(x .f .f )f{f :y �→e} = e � (e � x == y � x .f ) == y � (e � x == y � x .f ).f

Because our language has simultaneous assignments, we need to extend Bor-
nat’s operator to work with simultaneous substitutions of fields and variables.
We start by defining a syntax sugar. A case expression is defined by

case e of e1 → d1, . . . , en → dn else dn+1 =̂
d1 � e == e1 � (. . . (dn � e == en � dn+1) . . .)

Note that the order of the items in the case list is important, since it is chosen
the first ith branch such that e == ei .

We use m to represent case list like e1 → d1, . . . , en → dn . We then extend
the notion of conditional field by allowing case lists and define

e.{f : m} =̂ case e of m else e.f

Consider a list xf containing variable names and field names, and a cor-
responding list em containing expressions and conditional fields. Suppose the
list xf has no repeated variable or field names, each variable in xf corresponds
positionally to an expression in em, and each field f in xf corresponds to a con-
ditional field {f : m} in em. We denote with exfem the simultaneous substitution
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on e of each element in xf by the corresponding element in em. For example,
ex ,f ,yd1,{f :m},d2

represents the simultaneous substitution on e of x by d1, f by {f : m}
and y by d2.

We relax the notation to allow duplication of fields, but not variables, in xf . In
this case we interpret that the corresponding conditional fields are concatenated
into a single one. For example, ex ,f ,y,f ,gd1,{f :m1},d2,{f :m2},{g:m3} (with f 
≡ g) can be

written as ex ,f ,y,gd1,{f :m1,m2},d2,{g:m3}. Note that in the conditional field {f : m1,m2}
the cases on m1 have priority over those in m2, since the order in a case list is
relevant. Our simultaneous substitution prioritizes the first listed field substitu-
tions, which may appear arbitrary. However, in our laws all uses of simultaneous
substitutions will be for disjoint assignments, i.e., guarded by assertions that
ensures that the left expressions reference distinct locations.

Field substitution can also be applied to left expressions. However, we need a
slightly different notion because left values and right values need to be treated
differently. We use le

/f
{f :m} to denote a field substitution on the left expression.

The idea is that a field substitution applied on a left expression like x .f1.f2 . . . fn
always ignores the last field, keeping it in the result, i.e.,

(le.g)
/f
{f :m} =̂ lef{f :m}.g

even when f and g are the same name field. The field substitution on the right
side of the equation is that described above for expressions.

4 The Laws

In this section we give an algebraic presentation for our imperative language.
In general, our laws are either the same or generalizations of those in LoP.
Furthermore, as one might expect, the only laws to be generalized are those
related to assignment. Also, we establish a few orthogonal laws only related to
references, for example one that allows to exchange a left expression by another
aliased with it.

Our laws can be proved sound in a simple denotational model like that de-
scribed in LoP. The main difference is that our program states include the heap
as well as valuation of the variables in scope. A command denotes a relation from
initial states to outcomes, where an outcome is an ordinary state or the fictitious
state ⊥ that represents both divergence and runtime error. For any initial state s ,
if the related outcomes include ⊥ then s must also relate to all states; otherwise,
the image of s is finite and non-empty. In this semantics, refinement is simply in-
clusion of relations, and equations mean equality of denotations. The semantics
is parameterized on an arbitrary allocator that, for any state, returns a finite
non-empty set of unused references (so new is boundedly non-deterministic).

A shortcoming of this simple semantics is that it does not validate laws
like x ← newK = x ← newK ; x ← newK for which equality of heaps is too
strong. An appropriate notion of program equality considers heaps up to bijec-
tive renaming of references (as in [2]). In this paper, we do not need such laws
because the normal form reduction preserves allocation order.
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p, q , r := e1, e2, e3 =
q , p, r := e2, e1, e3 (1)

p := (e1 � d � e2) =
(p := e1) � d � (p := e2) (2)

μX • F (X ) = F (μX • F (X )) (3)
F (Y ) � Y ⇒ μX • F (X ) � Y (4)

b � false � c = c = c � true � b (5)
b � d ⇒ e � c =

(b � e � c) � d � b (6)
c � e � c = c �De �⊥ (7)

(b � e � c) �De �⊥ = b � e � c (8)
(a � e � b) ; c =

(a ; c) � e � (b ; c) (9)

Fig. 2. Selected laws kept intact from LoP [9]

Figure 2 lists some laws given in LoP that do not depend on references and
therefore remain intact. For lack of space, we do not explain in detail these laws
here. Readers not familiar with them are referred to [9].

The refinement relation, �, is defined by b � c =̂ (b ∪ c) = b. The set of pro-
grams with � is a semi-lattice, where ∪ is the meet and ⊥ the bottom, and
all the command constructions are monotonic (indeed, continuous). Law (3) on
recursion says that μX .F (X ) is a fixed point and law (4) that it is the least
fixed point.

4.1 Laws for Assertions

We will be especially concerned with assertions that enable reasoning about
aliasing. In Figure 3 we provide a set of laws that allow to decorate commands
with assertions. Some of these laws add information brought from the conditions
of conditional and while commands. Others spread assertions forward in the
commands deducing them from some already known assertions at the beginning.
Assertions are defined as syntax sugar, and all these laws are derived except for
law (22) which is proved directly in the semantics using the definition of alias .

Laws (10)–(21) for assertions should be familiar. Law (22) enables to replace
one alias by another. The hypothesis for laws (23) and (24) may be better un-
derstood if we interpret it through partial correctness assertions (triples) from
Hoare logic. Observe that when an equation [e1]; c = [e1]; c; [e2] holds, if and
when the execution of [e1]; c finishes, [e2] must be equivalent to skip, which is
the same as saying that e2 must hold. That is exactly the same meaning intended
for a triple {e1}c{e2} from Hoare logic (cf. [14]). Laws (23) and (24) state that
any invariant is satisfied at the beginning of each iteration and at the end of the
loop.

We give an additional law for assertions that expresses the axiom for assign-
ment in Hoare logic. For this we need some definitions. A path is a left expression
that does not use conditionals, i.e., a path is a variable x , or a sequence of field
accesses using the dot notation like e.f .g, for example. Given an assignment on
paths p := e, we define functions vf and em to build a corresponding substi-
tution. Define vf [x ] = x if x is a variable, vf [p.f ] = f and vf [p] is obtained
applying vf to every element of p. Also, for each ei in e, we define em[ei ] = ei ,
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[e]; c = c � e �⊥ (10)
[d ∧ e] = [d ]; [e] (11)

b � e � c = ([De]; b) � e � c (12)
b � e � c = b � e � ([De]; c) (13)
b � e � c = ([e]; b) � e � c (14)
b � e � c = b � e � ([not e]; c) (15)

[e]; (b � d � c) = (16)
([e]; b) � d � ([e]; c)

[e]; (b ∪ c) = ([e]; b) ∪ ([e]; c) (17)

e ∗ c = e ∗ ([De]; c) (18)
e ∗ c = (e ∗ c); [De] (19)
e ∗ c = e ∗ ([e]; c) (20)
e ∗ c = (e ∗ c); [not e] (21)

[alias[q , r ]]; p, q := e, d =
[alias[q , r ]]; p, r := e, d

(22)

If [d ∧ e]; c = [d ∧ e]; c; [d ] then

[d ]; e ∗ c = [d ]; e ∗ ([d ]; c) (23)
[d ]; e ∗ c = [d ]; (e ∗ c); [d ] (24)

Fig. 3. Laws for assertions

if the corresponding vf [pi ] is a variable, and em[ei ] = {f : pi �→ ei} if vf [pi ] = f .
Finally, em[e] is obtained applying em to each element of e.

Let p be a list of paths (p1, p2, . . . , pn). Define the disjointness state predicate

disj [p] =̂ ∀ i , j • i 
= j ⇒ not alias [pi , pj ]

using “∀” as shorthand for conjunction. We have the law

[disj [p]]; [d
vf [p]
em[e]]; p := e = [disj [p]]; p := e; [d ] (25)

The assertion at the beginning of both sides of the equation ensures that the
substitution d

vf [p]
em[e] is well defined. The law states that if d is a post-condition of

the assignment p := e then d
vf [p]
em[e] must be a precondition.

4.2 Laws for Assignment

Many of the laws for assignment (Figure 4) are guarded by assertions that say
the assigned locations are disjoint.

Law (26) stipulates that attempting to evaluate the right-hand side outside
its domain has a behaviour wholly arbitrary. We express that by prefixing the
assertion [De] on the assignment. Because left expressions also may be undefined,
we also have law (27). The definition of Dp is straightforward if, for this purpose,
we consider left expressions as being expressions. In Section 4.3 we determine
when a field access e.f is defined.

Law (28) characterizes the behaviour of simultaneous assignments to repeated
left expressions as being non-deterministic. In a simultaneous assignment, if the
same left expression q receives simultaneously the values of expressions d1 and
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p := e = [De]; p := e (26)
p := e = [Dp]; p := e (27)

p, q , q := e, d1, d2 = p, q := e, d1 ∪ p, q := e, d2 (28)
[∀ i • not alias[pi , q ]]; p, q := e, q = [Dq ∧ ∀ i • not alias[pi , q ]]; p := e (29)

skip = () := () (30)
p, (q � d � r) := e, e = (p, q := e, e) � d � (p, r := e, e) (31)

Let p be a list of paths (p1, p2, . . . , pn ), then we have

[disj [p]]; p := e; (b � d � c) = [disj [p]]; ( p := e; b � d
vf [p]

em[e]
� p := e; c ) (32)(

[disj [p] ∧ alias[p, q
/vf [p]

em[e] ] ];

p := e; q := d

)
=

(
[disj [p] ∧ alias[p, q

/vf [p]
em[e] ] ∧ De ];

p := d
vf [p]
em[e]

)
(33)

Fig. 4. Laws for Assignment

d2, there will occur a non-deterministic choice between both values and one of
them will be assigned to q.

Law (29) is a generalization of a similar one given in LoP, but it is conceived
to deal with non-determinism. It establishes that a simple assignment of the
value of a left expression back to itself has no effect, when the expression is
defined. We can add (or eliminate) such a dummy assignment to a simultaneous
assignment whenever no non-determinism is introduced (eliminated). Note that
if p, q is composed only by non-repeated variables then the assertion will be
trivially true, and thus law (29) becomes the same established in LoP.

Law (31), when used from left to right, eliminates conditionals in left expres-
sions. If we have a conditional left expression, we can pass the responsibility for
checking the condition to a conditional command. This law resembles assign-
ment law (2) in Figure 2 in that it behaves the same but for expressions on the
right-hand side of assignments.

Law (34) below can be used together with (31) for transforming any assign-
ment in an equivalent one where left expressions have no conditional. This trans-
formation can be useful to enable the use of law (25).

(p � e � q).f = p.k � e � q.f (34)

Law (32) states that when we have a disjoint assignment to paths followed by
a conditional command, the assignment can be distributed rightward through
the conditional, but changing occurrences of the assigned paths in the condition
to reflect the effects of the assignment. Note that the assertion ensures that the
assignment is disjoint, and therefore the substitution applied on the condition d
is well defined.
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x ← newK = x ← newK ; x .f := default(f ) (35)
[y == alloc]; x ← newK =

[y == alloc]; x ← newK ; [x �= null ∧ x �∈ y ∧ alloc == y ∪ {x}] (36)

if x does not occur in p, e, then
x ← newK ; p := e = p := e; x ← newK (37)

if x does not occur in d , then
x ← newK ; (b � d � c) = (x ← newK ; b) � d � (x ← newK ; c) (38)

Fig. 5. Laws for new

Law (33) is our version for the law (*) already discussed in Subsection 3.1. This
law permits merging two successive assignments to the same locations (variables
or fields). The first conjunct in the assertion guarantees that the first assignment
is disjoint, thus the substitutions q

/vf [p]
em[e] and d

vf [p]

em[e] will be well defined. In par-

ticular, note that q/vf [p]em[e] and d
vf [p]

em[e] denote the left value of q and the value of d ,
respectively, after the execution of the assignment p := e. The second conjunct
in the assertion states that the left expressions p and q are referring to same
locations, and thus the assignments can be combined into a single one.

4.3 Laws for the new Command

The new construction in our language is a command. It cannot be handled as an
expression because it alters the state of the program and our approach assumes
side-effect-free expressions. The laws for new are given in Figure 5. Recall that
there is a distinguished variable alloc which does not occur in commands except
in assertions; its value is always the set of allocated references. Any attempt
to access a field of a non allocated reference will be undefined. Thus, we have
as definition that De.f =̂ De ∧ e ∈ alloc ∧ f ∈ fields(e), where fields(e) =
fields(type(e)) and type(e) returns the class name of e. Recall that our laws
are in an implicit context cd of class declarations and context Γ for types of
variables; so the type of e is statically determined.

Law (35) determines that any field of a new object will be initialized with the
default value. The value of default(f ) is 0, false or null depending on the type
of f declared in K . Law (36) establishes that x ← newK assigns to x a fresh
reference of type K and adds it to alloc. Law (37) allows to exchange the order
of a new followed by an assignment, if the assignment does not depends on the
created new object. Finally, law (38) distributes a new command to the right,
inside a conditional, if the condition does not depend on the created new object.
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5 Completeness

Our main result says that any command can be reduced to an equivalent one
that simulates the original command by using a temporary variable representing
explicitly the heap through copy semantics. The simulating program never ac-
cesses fields in the heap, neither for writing nor for reading. Instead, it just uses
the explicit heap where any update is done by means of copy semantics. Reduc-
tion of a program to this form is used as a measure of the comprehensiveness of
the proposed set of laws.

The explicit representation of the heap is given by a mapping from
references to explicit objects and, in turn, every explicit object is represented
by a mapping from field names to values. We assume there is a type, Object ,
of all object references, and a type, Value, of all primitive values (including
null) and elements of Object . We also assume the existence of a type Heap
whose values are mappings with the signature Object → (FieldName → Value).
FieldName is another primitive type whose values are names of fields. We as-
sume the expression language includes functional updates of finite maps; we use
Z notation so h ⊕ {x �→ e} denotes the map like h but with x mapped to the
value of e.

The reduction is made in two stages. In the first stage, an arbitrary command
is transformed (using the laws) into an equivalent one whose assignments are all
disjoint and with paths as left expressions.

Theorem 1. For any command c there is a provably equivalent one such that
each assignment in it is prefixed by an assertion and follows the form [dis ]; p := e
where p is a list of paths and dis ensures that there is no pair of aliased paths
in p.

The proof uses the following ideas. In order to have just paths on left expres-
sions, we can use systematically assignment laws (34) and (31) for eliminating
conditionals. For example, it is easy to prove

x .f , (y � e1 � y.g).f := e2, e3 = x .f , y.f := e2, e3 � e1 � x .f , y.g.f := e2, e3 (†)

After the elimination of conditionals, we can use systematically the derived law
stated below to transform all the assignments to disjoint ones.

p, q, r := d , e1, e2 = p, q := d , e1 ∪ p, q := d , e2
�alias [q, r ]�

[not alias [q, r ]]; p, q, r := d , e1, e2

(‡)

To illustrate the use of our laws, we give the proof of this derived law.
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( p, q := d , e1 ∪ p, q := d , e2 ) � alias[q , r ] � [not alias[q , r ]]; p, q , r := d , e1, e2

= by assert. (15)

( p, q := d , e1 ∪ p, q := d , e2 ) � alias[q , r ] � p, q , r := d , e1, e2

= by assign. (28)

p, q , q := d , e1, e2 � alias[q , r ] � p, q , r := d , e1, e2

= by assert. (14)

[alias[q , r ]]; p, q , q := d , e1, e2 � alias[q , r ] � p, q , r := d , e1, e2

= by assert. (22)

[alias[q , r ]]; p, q , r := d , e1, e2 � alias[q , r ] � p, q , r := d , e1, e2

= by assert (14) & LoP (7)

p, q , r := d , e1, e2 �Dalias[q , r ] � ⊥
= by D(p, q , r)⇒ Dalias[q , r ] & LoP (6,8)

p, q , r := d , e1, e2.

Continuing the example (†), using repeatedly law (‡), we obtain the following
program where all assignments are disjoint.

=

⎛
⎜⎜⎜⎝

x .f := e2 ∪ x .f := e3

�x == y� [x 
= y]; x .f , y.f := e2, e3

�e1� x .f := e2 ∪ x .f := e3

�x == y.g� [x 
= y.g]; x .f , y.g.f := e2, e3

⎞
⎟⎟⎟⎠

Roughly speaking, the second stage of the reduction is to transform the com-
mand in the intermediate form (obtained from the first stage, with disjoint as-
signments) to an equivalent one that first loads the implicit heap into an explicit
heap h : Heap, then simulates the original command always using h instead of
object fields and finally, when it finishes, restores back the contents of h to the
implicit heap, i.e, updates all the object fields accordingly as they are repre-
sented in h. The domain of h will be the entire set of allocated references, i.e.
alloc. To keep this domain we use variables mirroring alloc before and after the
transformed command.

Following our example, suppose that e2 is z + x .f . The assignment x .f := e2
will be simulated using the explicit heap h by

h := h ⊕ {x �→ {h(x )⊕ {f �→ z + h(x )(f )}}

where h is updated by copying a new mapping equal to the original except for
the value of h(x ), which is updated accordingly. Note that h(x ) represents the
object referenced by x , h(x )(f ) represents the value of the field f of this object.

For any c, we will define a command S [c][h, al ] that simulates c using the
explicit heap h and the alloc mirror al . We will also define command load [h, al ]
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that loads the contents of the objects into the explicit heap h, and store[h, al ]
that restores back h into the objects. In these terms we can state our main result.

Theorem 2. For any command c in the intermediate form and where h, al0
and al1 do not occur free we have that

[al0 == alloc]; c; [al1 == alloc]; load [h, al1]; al0 := al1 =
[al0 == alloc]; load [h, al0 ]; S [c][h, al0]; [al1 == alloc]; store[h, al1]

Because the variable h is free on the right-hand side, we need the load [h, al1 ]
after c on the left-hand side. That is according to the standard interpretation
that free variables are the input and output of commands. al0 and al1 can be
interpreted as variables that bring the value of alloc at the points of the asser-
tions. An alternative would be to introduce h, al0 and al1 on the right-hand side
as local variables; then the assertions could be removed from both sides. But,
for brevity in this paper, we omit local variable blocks.

The formal definitions of load and store are given by

load [h, al ] =̂ h := {r �→ {f �→ r .f | f ∈ fields(r)} | r ∈ al}
store[h, al ] =̂ r .f :=

(r ,f )∈al×fields(r)
h(r)(f )

Here, fields(r) = fields(type(r)) where type(r) returns the class name of r .
We use an indexed multiple assignment r .f :=

(r ,f )∈al×fields(r)
h(r)(f ). This is

an abuse of notation since the index set al ×fields(r) depends on the value of al
which is determined at runtime (but is finite). This, and similar constructions
in the definition of load and in (43) and (44), could be avoided using loops; but
that would complicate the normal form proof with little benefit.

The definition for the simulation S [c][h, al ] for commands is sketched in Fig-
ure 6. The operator � used in (43) is similar to map overriding (⊕) with the
difference that the right operand is an uncurried map. We also define the simu-
lation R[e][h] for expressions. The proof of theorem 2 is by induction on c.

6 Conclusions and Related Work

We established a comprehensive algebraic presentation for programs that deal
with references in the way Java does. Taking as a basis the classical work in
LoP [9], we explored the incrementality of algebra by generalizing laws of as-
signment and formulating others. Our normal form theorem gives a sense in
which the laws are complete. Perhaps a more standard notion of completeness is
whether every semantically true equation is provable. What we know is that our
denotational model is not fully abstract with respect to contextual equivalence,
owing to the missing laws about new mentioned in Section 4. For our first order
language those laws can be validated by quotienting modulo renaming, e.g., by
using FM-sets, though for higher order programs that would be unsatisfactory
[21].
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R[x ][h] =̂ x (39)
R[p.f ][h] =̂ h(R[p][h])(f ) (40)

R[e1 � d � e2][h] =̂ R[e1][h] � R[d ][h] �R[e2][h] (41)
S [⊥][h, a] =̂ ⊥ (42)

S [x , p := e, d ][h, al ] =̂

x , h := R[e][h], h � {(R[pi ][h], fi) �→ R[di ][h]} | pi .fi ∈ p ∧ di ∈ d} (43)
S [x ← newK ][h, al ] =̂ x ← newK ; al := al ∪ {x};

h := h ⊕ {x �→ {f �→ default(f ) | f ∈ fields(K )}
(44)

S [c1 � d � c2][h, al ] =̂ S [c1][h, al ] �R[d ][h] � S [c2][h, al ] (45)

Fig. 6. The simulations R and S using explicit heap (selected cases)

In [20] some laws are presented as an initial attempt to characterize references.
However, they are not comprehensive; the law for combining assignments does not
consider the possibility of aliasing on left expressions. Furthermore, the laws de-
pend on provisos that are hard to verify statically. Other initiatives like abstract
separation algebras [11] do not deal with a concrete notation for manipulation of
fields. Transformations used in compilers are conditioned on alias analyses that are
not expressed algebraically. Staton proves Hilbert-Post completeness for a equa-
tional theory of ML-style references. The language lacks field update and null (and
includes higher order functions and an unusual operator refn). The laws capture
commutativity of allocations and aspects of locality, but the step from this work
to handling refactorings in object-oriented programs is big.

A fundamental notion for our laws is field substitution. Inspired by the works
of Bornat [7] and Morris [17] on program correctness, we adapt Bornat’s defini-
tion for our language by extending it to deal with simultaneous assignments.

The problem approached in this paper is related with the difficulties for defin-
ing algebraic theories like those in [9,16,1] for a language with references. Like
in [7], we only tackle the problem of pointer aliasing. Other kinds of aliasing,
like parameter aliasing or aliasing through higher order references, are out of the
scope of our work. For higher order programs, more complicated machinery is
needed, e.g., content quantification as proposed in [5].

Another difficulty not addressed in this paper is caused by aliasing in combina-
tion with recursive data structures. This usually requires dealing with assertions
with inductive formulas, and reasoning with substitution and aliasing can ex-
plode into numerous conditionals [7]. Note, however, that assertions in our laws
use no inductive predicates, only boolean expressions involving pointer equal-
ities. We intend to provide mechanisms for local reasoning as those proposed
in [19,7,13,3] in an extension of our theory when dealing with a more expressive
object-oriented language. In particular, we would like to connect the present
work with that of Silva et al [18] where denotational semantics is used to prove
refactoring laws from which others are derived. The goal is algebraic proof of
refactoring laws based ultimately on basic laws like our extension of LoP, just
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as the works [6,8] do for object-oriented progams with copy semantics. In future
work we will explore other laws for new, seeking to avoid the use of the implicit
variable alloc in assertions.
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Abstract. Object-oriented languages allow any object to point to any
other object, limited only by type. The resultant possible aliasing makes
programs hard to verify and maintain.

Much research has been done on alias protection schemes to restrict
aliasing. However, existing schemes are either informal (design-pattern-
like) or static type-like systems. The former are hard to verify, while the
latter tend to be inflexible (e.g. shared ownership is problematic).

We introduce aliasing contracts: a novel, dynamic alias protection
scheme which is highly flexible. We present JaCon, a prototype imple-
mentation of aliasing contracts for Java, and use it to quantify their
runtime performance overheads. Results show that aliasing contracts
perform comparably to existing debugging tools, demonstrating prac-
tical feasibility.

1 Introduction

In typical object-oriented (OO) programming languages, object variables do not
contain objects directly, but references to (addresses of) other objects. Multiple
variables can contain the same address and thus point to the same object at the
same time; this is known as aliasing.

Aliasing is an important feature of OO because it allows sharing of objects
between different parts of a program; this is essential for the efficient implemen-
tation of important programming idioms, including iterators over collections.
However, aliasing reduces modularity and encapsulation; an aliased object can
be accessed and modified through any of the references pointing to it, without
the knowledge of the others; this can create bugs which are difficult to trace.

Many modern OO programming languages provide access modifiers such as
private, protected and public. These modifiers limit the scope of the variable,
but do not protect the object to which the variable points.

For example, consider the program in Listing 1. Class Person provides a getter
method getName for its myName field, which returns a reference to the object in
myName. Although myName is declared to be private, any client can call getName,
obtain an alias for the object in myName and modify it without the knowledge of
the Person, for example by calling setLastName.

C.-c. Shan (Ed.): APLAS 2013, LNCS 8301, pp. 140–155, 2013.
© Springer International Publishing Switzerland 2013
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public class Person { Person p = new Person();

private Name myName; Name n = p.getName();

public Name getName() { n.setLastName("Smith");

return myName;

}
}

Listing 1. Access modifiers protect only the variable, not the object

A number of alias protection schemes have been proposed to avoid situations
like this and protect the object rather than just the variable from unwanted
accesses. However, they tend to be too inflexible and restrictive in practice and
have not yet been widely adopted by the programming community.

The contributions of this paper are two-fold: firstly, in Section 3 we introduce
a novel, dynamic alias protection scheme called aliasing contracts which aims
to be flexible and expressive, while at the same time remaining conceptually
simple. Secondly, in Section 4 we present JaCon, a prototype implementation
of aliasing contracts in Java; measurements of the runtime overhead caused by
the dynamic checks of aliasing contracts demonstrate their practical feasibility.

The name contract comes from work on software contracts [11] which allow the
specification of preconditions and postconditions for methods. Aliasing contracts
allow developers to annotate a variable with assumptions about which parts of
the system should be able to access the object to which the variable points; these
assumptions are checked at runtime. In this way, aliasing contracts prevent the
use of unintentionally leaked references, as the reference in the example above,
making them particularly valuable during the testing phase of a project.

Aliasing contracts also provide a unifying model of alias protection; aliasing
contracts can model existing alias protection schemes, giving us a framework for
expressing and comparing many different aliasing policies.

Our dynamic approach to alias control has similar advantages and disadvan-
tages as dynamic type checking. It is more flexible and can cover conditions
which cannot be checked statically; for example, static alias protection schemes
struggle with design patterns like iterators and observers, which require sharing
of objects, but they can easily be implemented with aliasing contracts. Dynamic
schemes also tend to be conceptually simpler; static schemes often require more
artifacts to compensate for the restrictions os static checking. On the other hand,
the runtime checks required by dynamic schemes cause performance overheads.
In addition, problems will only be discovered when (and if) the affected code is
executed.

The timing of validity checks is also different in static and dynamic checking.
Like dynamic type checking, we check the validity of an object access directly
before the access is made at runtime. Static alias protection schemes instead
restrict assignments so that references cannot be leaked in the first place.
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2 Background

The literature on aliasing and its control is huge; see [5] for a detailed description.
Here, we summarise the main strands of research for completeness.

The overall idea of alias control is to construct software engineering “design
patterns”—or more formal programming language structures—to discipline pro-
grammer use of aliasing; a key concept is encapsulation whereby usage of some
objects (“rep” objects) is restricted to certain other objects (the “owners”).
Early conceptual designs include Hogg’s islands [9] and Almeida’s balloons [1].
They implement full encapsulation: each object is either encapsulated within an-
other object or shared; any object reachable through an encapsulated object is
also encapsulated. To increase flexibility (though at the cost of soundness) Hogg
and Almeida restrict only pointers from fields of other objects (“static alias-
ing”) but allow pointers from local variables and method parameters (“dynamic
aliasing”)—the latter being more transient and easier to track.

Clarke-style ownership types [6] added significantly to the subject area by
showing a type-like system could capture aliasing restrictions (later known as
owners-as-dominators) and that these could be checked statically.

Clarke-style ownership types require each object to have a single owner and
also do not allow ownership of an object to be transferred at runtime; this
makes them too inflexible to deal with common idioms such as iterators. Follow-
up work partially addressed these shortcomings, introducing multiple ownership
types [10], ownership with inner classes [2], gradual ownership types [15], and
Universe types (owners-as-modifiers) [12].

There has also been some work on dynamic ownership. Gordon et al. [7]
propose a system where ownership information is checked at runtime. Like our
dynamic aliasing contracts, dynamic ownership types do not directly restrict
aliasing itself, but allow any references to exist; instead, they limit how these ref-
erences can be used. Gorden-style dynamic ownership types differ from our work
since they support only one particular aliasing policy (owners-as-dominators),
while aliasing contracts support many different ones.

Another approach to alias protection is that of capabilities [4, 8] and permis-
sions [3,19]. Capabilities and permissions associate access rights with each object
reference, specifying whether the reference is allowed to, for example, read, write
or check the identity of an object. This can be used to model various aliasing
conditions, such as uniqueness and borrowing.

Throughout the vast literature on alias protection schemes, there is no uni-
fying framework which can be used to embed and compare them. Boyland
et al.’s [4] capabilities do this to some extent, but at a relatively low level
where there is a large semantic gap to be bridged between them and high-
level constructs like owners-as-dominators. Aliasing contracts provide a unify-
ing, language-level framework which can be used to express and compare existing
alias protection schemes.
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3 Aliasing Contracts

This work proposes aliasing contracts which express and enforce restrictions
about the circumstances under which an object can be accessed. Here, we give
a basic overview of aliasing contracts; [18] presents aliasing contracts in more
detail and proposes a syntax operational semantics. More detail also appears in
the first author’s forthcoming PhD thesis.

An aliasing contract consists of two boolean expressions, er and ew, attached
to a variable declaration. (Note that in this paper we use the term variable to
refer to fields, local variables and method parameters.) An access to an object is
permitted only if the contracts of all variables currently pointing to the object
are satisfied; contracts thus essentially specify dynamically determined, conjunc-
tive preconditions for object accesses. The expression er specifies preconditions
for read accesses, while ew concerns write accesses. Where the read and write
contract expressions are the same, one can be omitted for convenience; we call
such a contract a rw-contract (read-write-contract).

The distinction between read and write accesses requires a similar distinction
between pure and impure methods: pure methods do not modify any state and
may be called with read access permissions, while impure methods require both
read and write access permissions.

For each contract, we call the nearest enclosing object the contract’s declaring
object. When the contract is evaluated, evaluation takes place in the context of
its declaring object; that is this points to the declaring object. We can regard
a contract as a boolean method of the class which declares it (and this is how
we implement it in Section 4).

A contract may be any valid, side-effect-free boolean condition. Contracts
have access to two special variables, in addition to this: accessed points to the
object being accessed and accessor points to the object whose method is making
the access. The value of accessor is determined immediately prior to contract
evaluation; for a single contract, accessor varies between evaluations. Thus,
an alternative view of a contract is a method which takes an object parameter
(accessor) and returns a boolean value.

Listing 1 gave a program which leaks a reference from the private variable
myName, thus making the object accessible and modifiable by any client. To ad-
dress this problem, we instead annotate myName with the rw-contract “accessor
== this || accessor == accessed” to enforce encapsulation:

Name myName {accessor == this || accessor == accessed};

This contract signifies that only the enclosing Person object and the Name

object itself will be able to access the object in myName. The contract is evaluated
in the context of the declaring object, the enclosing Person object; it will only
evaluate to true if accessor is equal to this or if accessor and accessed

are the same object; that is, if the access comes from the Person or from the
Name itself. If a client now obtains a reference to the object in myName by calling
getName, it will not be allowed to use it to read or write the object.
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Alternatively, we could loosen the contract slightly to “true, accessor ==

this || accessor == accessed”. This contract corresponds to an owners-as-
modifiers approach [12]; it would allow any client to read the Name object (the
read contract is “true”) but would continue to prohibit write accesses.

Aliasing contracts are very flexible since their evaluation depends on the cur-
rent state and aliasing structure of the program. If a client in the example above
obtains a reference to a Name object by calling getName in a Person object, it
cannot initially access it due to the contract on myName. Aliasing contracts do
not restrict aliasing itself, but object accesses: obtaining the reference in this
situation is legal but using it is not. If the myName field in the Person object is
then pointed to a new Name object, the Name object referenced by the client will
become accessible; the myName field’s contract no longer applies to it.

Since aliasing contracts depend on the dynamic aliasing structure of a program
at the time an access to an object is made, they cannot in general be verified
statically. Instead, they need to be checked at runtime; when a contract violation
is detected, an error is reported (cf. static and dynamic type checking).

Contract checks need to be performed for each object access, including field
accesses, field updates and method calls. Reads and writes to local variables
and parameters do not trigger contract evaluations; they represent accesses and
modifications to the unaliased stack. Similarly, constructor calls do not change
existing heap objects of themselves and thus do not require contract checks.

For each object access, we first retrieve all contracts which currently apply to
the accessed object and evaluate them. Thus we track, for each object, which
variables currently point to it. The conjunctive nature of contract evaluation
means that if any contract evaluates to false, the entire evaluation fails.

Note that if there are multiple contracts to evaluate, the order in which they
are evaluated is irrelevant. Expressions in contracts may not have side-effects;
this means that a contract can change neither the state of the program nor its
aliasing structure and therefore cannot affect other contract evaluations.

Although similar to assertions in spirit, aliasing contracts are significantly
more expressive; the contracts which are evaluated depend on the aliasing struc-
ture of the program. An implementation must track references to determine
exactly which contracts apply to an object. Alising contracts also have advanced
features (briefly discussed in Section 6) which allow the expression of complex
conditions that cannot be described using standard Java boolean expressions.

Extensions for Real-life OO Languages. Our theory of aliasing contracts
is clean and simple—every object access causes a contract check—but real pro-
gramming languages have more complex features that we need to address.

In particular, staticmethods do not fit well with our object-based approach.
In accesses from staticmethods, there is no accessor object; in calls to static
methods, there is no accessed object.

We address this problem by always allowing calls to static methods, since
no accessed object means that there are no contracts to consider. In accesses
from static methods, we set accessor to null; this causes contracts such as
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“accessor == this” to fail, while contracts which do not use accessor (such
as “true” or “false”) behave as expected.

Many modern OO languages include variables of primitive types, which store
values instead of references to objects; values cannot be aliased and therefore
accessessing them does not require contract checks.

Other language features, on the other hand, do not require special treatment
due to the dynamic nature of aliasing contracts. Inheritance, for example, fits
naturally and objects of inner classes can be treated just like other objects. Fields
are inherited by subclasses, along with their contracts, but cannot be overridden;
to fit with existing inheritance semantics, we similarly disallow the overriding of
contracts in subclasses.

4 JaCon: Practical Aliasing Contracts for Java

We have implemented a prototype, JaCon, which supports the definition of
aliasing contracts in Java programs and performs contract evaluations at run-
time. The prototype consists of a modified Java compiler and a runtime library
(which we call the contract library below). The compiler injects calls to the con-
tract library into the source code, allowing it to monitor contracts at runtime.
The code for our contract library is avaliable at www.cl.cam.ac.uk/~jv323/

contractlibrary.
We chose Java as our base programming language since it is the most pop-

ular object-oriented programming language [17] and is used in a large number
of open-source systems. However, Java is a relatively complex language with
many different features, making the prototype implementation non-trivial. For
example, Java’s non-linear execution flow, caused by exceptions and break and
continue statements, complicates the tracking of contracts.

For our prototype implementation, we modified the compiler javac of the
OpenJDK 6 [14] to inject calls to the contract library.

Contracts are parsed and converted into anonymous inner classes extending
our abstract Contract class; one such Contract class is created for each syn-
tactically distinct contract expression in a class. Each of these Contract classes
overrides the method checkContract, which can be called by the contract li-
brary to evaluate the contract. The checkContract method takes two param-
eters, accessor and accessed, both of type Object; the contract expression
becomes the method’s return statement. For example, the contract “accessor
== this || accessor == accessed” of the myName field of Person from our
example in Section 3 is transformed into

public Contract _contractPerson42 = new Contract() {

public boolean checkContract(Object accessor, Object accessed) {

return accessor == Person.this || accessor == accessed;

}

};

We note that any references to this in the contract expression must be
transformed to OuterClass.this in order to refer not to the Contract
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object but to the contract’s enclosing object; in the example above, this be-
comes Person.this.

The contract library tracks the Contracts which apply to each object and
invokes their checkContract methods when they need to be evaluated.

Contracts are registered and de-registered when an assignment occurs; myName
= newName points myName away from the object it currently points to and to the
object currently also pointed to by newName. This change of aliasing requires
modification of the set of contracts associated with these two objects; to this end,
JaCon inserts two calls to the contract library, one to de-register the contract
of variable myName before the assignment and one to register the contract after
the assignment. The assignment myName = newName becomes

ContractLibrary.removeContract(myName, _contractPerson42);

myName = newName;

ContractLibrary.addContract(myName, _contractPerson42);

Registration and de-registration of contracts is complicated by Java’s non-
linear flow of execution caused by, for example, exceptions. Contracts of local
variables have to be removed at the end of the block in which they are de-
clared; after this the variables are no longer available and their contracts should
not persist. Exceptions are problematic because an exception causes execution
to leave a block prematurely. We therefore wrap each block in a try-finally
statement and remove local variable contracts in the finally block to ensure
correct contract de-registration even when an exception is thrown.

Contract de-registration also takes place when an object is garbage collected;
at this point, finalisation causes all of its Contracts to be deallocated and thus
removed from the objects to which they applied. We discuss the implications of
garbage collection in more detail in Section 6.

Registration and de-registration as explained above allow us to track which
contracts apply to each object at any point in the program’s execution. This
tracking of contracts is equivalent to tracking of references for each object, which
in itself is potentially useful; it means that JaCon could also be used to inves-
tigate the topology of the heap, independent of aliasing contracts.

Calls to the contract library to check contracts are inserted before any accesses
and updates to fields. As explained above, accesses and updates to local variables
do not require contract checks. For example, the assignment x.f = y.g contains
a write access to x and a read access to y; it becomes

ContractLibrary.checkWriteContracts(x);

ContractLibrary.checkReadContracts(y);

x.f = y.g;

Methods may be declared pure or impure; if no method purity is given, Ja-
Con automatically determines its purity. Calls to pure methods require read
contract checks to be performed, while calls to impure methods need to trigger
both read and write contract checks. Appropriate contract checks are inserted
at the entry to the method bodies (rather than in the caller).
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Finally, the contract library needs to keep track of which object is currently
executing a method; this gives the value of accessor for contract evaluations.
For this purpose, it maintains a call stack of the objects; calls to notify the
contract library of context changes are inserted around each method body:

public void foo() {

ContractLibrary.enterContext(this);

...

ContractLibrary.leaveContext();

}

Our contract library implementation tracks and evaluates contracts correctly
in the presence of concurrency. For example, accesses to the contract stores are
synchronised and separate call stacks are maintained for each thread.

Optimisations. A naive implementation of aliasing contracts, as described
above, performs many unnecessary contract checks; we have implemented op-
timisations to avoid such checks and improve the performance of JaCon.

A common contract is “true”, meaning that there are no restrictions on object
access. Since this contract obviously always evaluates to true, there is no need
to store or evaluate it.

Evaluating all contracts every time an object is accessed is inefficient. JaCon
includes an optimisation which allows it to skip many contract evaluations; it
divides contracts into three categories:

– Contracts whose result does not change for different accessor objects and
is not affected by changes to variables. Such contracts, for example, include
the contracts “true” and “false”. They need to be evaluated only once.

– Contracts whose result changes for different accessor objects but which
are not affected by changes to fields. This includes the contract “accessor
== accessed”. These contracts need to be evaluated only once for each
distinct accessor object. The contract “accessor == this” also falls into
this category, as the value of this never changes for a given object.

– Contracts which depend on values of fields or call methods, for example
“accessor == this.f” or “accessor == getFoo()”. These contracts need
to be evaluated every time an access is made, since the value of fields and
return value of methods may have changed since the previous evaluation.

JaCon’s contract library classifies contracts as above and uses this informa-
tion to track which contracts need to be evaluated when an object is accessed
and which contracts can be skipped.

5 Performance Evaluation

One of the main problems with aliasing contracts is the runtime performance
overhead they cause; each assignment causes contracts to be added and removed,
every object access triggers a contract check.
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class SimpleExample { class Foo {
public void run() public Bar bar {<contract >};

Bar b = new Bar(); }
Foo[] foos = new Foo[NUM OBJ];

for(int i = 0; i < NUM OBJ; i++){ class Bar {
Foo f = new Foo(); // Primitive types do not

foos[i] = f; // have contracts.

f.bar = b; public int num;

b.num = i; // †[here] }
}

}
}

Listing 2. A simple program measuring object access time at †[here]

Using JaCon, we try to quantify this performance overhead. First, we in-
vestigate how the number of contracts for an object impacts the time taken
to perform a single object access with contract checks. We also estimate the
performance of real-world software using four open-source programs.

Performance measurements were made on a Windows laptop with 8GB of
RAM and a 2.5GHz Intel Core i5 processor. All values stated below are averages
of at least five separate measurements.

Performance for a Single Object Access. Whenever an object access is
made, all contracts associated with the object must be checked. The time re-
quired for the object access thus increases with the number of contracts, assum-
ing that all contracts need to be evaluated. If we assume that each contract is
a simple boolean condition which can be evaluated in constant time, contract
checking time increases linearly with the number of contracts of the object.

To measure object-access time, we construct a simple test program, shown
in Listing 2. The program executes a loop, adding one reference (and hence
contract) to an object b of type Bar per iteration. The assignment b.num = i

performs a write access to the Bar object in b, causing all contracts associated
with it to be checked. By measuring the time taken for this access on every
iteration, we can measure how the object access time varies with the number of
contracts.

We also vary the expressions of the contracts (marked as <contract> in
Listing 2) to see how different contract expressions influence object access time.

Table 1 presents the results of our measurements; it shows the number of
milliseconds required for a single object access depending on the number of
contracts associated with the accessed object. The table shows results for three
different contracts, highlighting the huge difference in performance they cause.

The contracts alwaysTrue() and alwaysFalse() call a method which always
returns true or false respectively. JaCon cannot optimise evaluation, since the
contracts involve a method call; they needs to be re-evaluated for each object
access. For the contract alwaysTrue(), contract checking time thus increases
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Table 1. Time in milliseconds per object access for varying number n of contracts
associated with the accessed object and varying contract expressions

n alwaysTrue() alwaysFalse() accessor==this||accessor==accessed

(always succeeds) (always fails) (always succeeds in this example)

0 0 0 0
5,000 0.84 0.0099 0.011
15,000 3.93 0.0038 0.0032
25,000 6.82 0.00084 0.00074
35,000 8.93 0.00060 0.00038
65,000 15.11 0.00040 0.00068
95,000 19.37 0.00054 0.00056

with the number of contracts, adding around two milliseconds for every 10,000
contracts. However, for the contract alwaysFalse() the very first contract eval-
uates to false, making it unnecessary to check the remaining contracts. Thus,
the time required for each object access is very low and does not change as the
number of contracts for the object increases.

The contract accessor == this || accessor == accessed always evalu-
ates to true in the example given (but not in the general case). The contract
depends on the value of accessor but is not affected by changes to fields; thus,
it needs to be evaluated only once per accessor. Since accessor is always the
same (the SimpleExample object running the loop), each contract needs to be
evaluated exactly once; this means that for every iteration, only one contract
is evaluated—the newly added contract. Time taken to access the object there-
fore matches the alwaysFalse() case and does not change as the number of
contracts for the object increases.

Our measurements for the above example show that the time taken to access
an object increases linearly with the number of contracts, for contracts whose
evaluation is not optimised. Nevertheless, contract evaluation continues to ap-
pear feasible in this case, as long as the number of contracts remains low; we
believe it is unlikely to have more than 10,000 references pointing to the same
object at once, even in a large program.

We further suggest that even if there are many references to a single object,
the performance presented above is unlikely to occur. In practice, it is difficult
to construct a case where all contracts evaluate to true but none of them can be
optimised. All of the contracts which we expect to be most commonly used, in-
cluding “true”, “false”, “accessor == this”, “accessor == accessed” and
“accessor instanceof Foo” can be optimised by JaCon as outlined above
and only need to be evaluated either once or once for each distinct accessor.
This significantly cuts the number of required contract evaluations, making eval-
uation efficient even when many contracts are associated with a single object.

Case Studies. To study the performance of real-world software using alias-
ing contracts, we selected four open-source programs written in Java: JGraphT
(http://jgrapht.org), JUnit (http://junit.org/), NekoHTML (http://
nekohtml.sourceforge.net) and Trove (http://trove.starlight-systems.

http://jgrapht.org
http://junit.org/
http://nekohtml.sourceforge.net
http://nekohtml.sourceforge.net
http://trove.starlight-systems.com


150 J. Voigt and A. Mycroft

Table 2. Version, size measurements and number of test cases of the test programs

Program Version Date Source Files Classes Lines of Code Test Cases

JGraphT 0.8.3 19/01/2012 188 270 34,266 152
JUnit 4.10 29/09/2011 168 281 13,276 524
NekoHTML 1.9.18 27/02/2013 32 60 13,262 222
Trove 3.0.3 15/02/2013 697 1,603 240,555 548

Table 3. Compilation Performance

Compilation time Bytecode size Compilation time Bytecode size
Program (javac0) (javac0) (javac1) (javac1)

JGraphT 4.3 s 667 kB 7.3 s 1,182 kB
JUnit 2.3 s 524 kB 4.2 s 886 kB
NekoHTML 17.5 s 264 kB 29.7 s 444 kB
Trove 18.8 s 5,153 kB 31.2 s 8,797 kB

Table 4. Runtime Performance

Time Time Ratio Time Ratio
Program (javac0) (javac1) (javac1) (ref tracking only) (ref tracking only)

JGraphT 4.7 s 99.2 s 20.8 53.4 s 11.2
JUnit 13.1 s 21.0 s 1.6 16.4 s 1.4
NekoHTML 1.9 s 3.5 s 1.8 2.6 s 1.4
Trove 5.6 s 62.5 s 11.3 21.2 s 3.7

com). Table 2 shows version, size measurements and number of test cases for
these programs.

We selected four programs from different domains. JGraphT is a graph li-
brary which implements various graph data structures and associated graph al-
gorithms. It involves complex data structures likely to lead to interesting aliasing
properties and runs algorithms with high asymptotic complexities; this means
that its performance with aliasing contracts is likely to be particularly bad.

The Trove library provides high performance collections for Java. Again, the
data structures it builds are likely to lead to interesting aliasing properties.

NekoHTML is an HTML scanner and tag balancer. As parsing involves a lot of
comparatively slow input and output, we expect the performance of NekoHTML
to be less strongly influenced by the presence of aliasing contracts.

JUnit is a well-known program to support unit testing for Java. It does not
involve large data structures and complex algorithms and we therefore expect
JUnit’s performance to degrade only slightly when using aliasing contracts.

All four programs have been updated in the last two years. They include
extensive unit test suites, making them suitable for performance evaluation.

Our test programs include thousands of lines of code, making it impossible
for us to manually annotate them with contracts. Instead, we use default con-
tracts for all variables. To get realistic results, we selected the contracts which
we believe would be most common in practice: “true” for local variables and

http://trove.starlight-systems.com
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method parameters, as well as public fields, and “true, accessor == this

|| accessor == accessed” for non-public fields. These contracts are based on
the assumption that objects stored in non-public fields are intended to be en-
capsulated and should be readable but not be modifiable from the outside. This
corresponds to an owners-as-modifiers [12] approach.

These default contracts caused relatively few contract violations, indicating
that they give a good approximation of the encapsulation used in the programs
(and therefore of any manually added aliasing contracts). In Trove, we recorded
the lowest rate of contract violation, at 9.3 percent (783,351 of 8,453,603 contract
evaluations). NekoHTML had a highest rate of contract violation at 22.2 percent
(17,612 of 79,295), while in JUnit and JGraphT the violation rates were 13.3
and 18.0 percent respectively.

We compiled each of the programs twice, first using the standard compiler
(called javac0 below) and then using our the modified compiler (javac1 below).
For both compilations, we noted the time taken by the compiler as well as the
size of the generated Java byte code in bytes.

Table 3 shows the results of these measurements; they show that compiling a
program with javac1 takes between 1.6 and 2.0 times longer than using the stan-
dard compiler; this closely corresponds to the amount of byte-code generated,
which is around 1.6 to 1.8 times larger using javac1.

We also measured the time taken to execute the test suites when compiled with
both of the compilers. In addition, we measured performance when contracts
were only tracked by the contract library but not evaluated; this is equivalent to
tracking of references for each object, for example for investigating the topology
of the heap. Table 4 shows the measurement results.

The runtime measurements show that JGraphT runs 21 times more slowly
with aliasing contracts than usual. While this is a significant decrease in per-
formance, it is caused by a small number of test cases; 44 of 51 test suites run
less than 10 times more slowly with contracts; the remaining 7 execute between
14 and 91 times more slowly. The situation is similar in Trove: only 5 of 26 test
suites are slowed down by more than a factor of 10 in the presence of contracts.

For example, the worst-performing test suite in JGraphT is called
FibonacciHeapTest, running 91 times more slowly with than without contracts.
It builds up a fibonacci heap, performing 20,000 insertions followed by 10,000
removals. Building such a large and complex data structure requires numerous
object accesses and assignments (leading to a lot of contract checks, additions
and removals), explaining the observed performance overhead.

Trove runs around 11 times more slowly with aliasing contracts than normally.
NekoHTML, as expected, is less affected by the presence of aliasing contracts due
to the amount of input and output involved in its test cases; it runs 1.8 times
more slowly with aliasing contracts. JUnit’s performance is also only slightly
affected by contracts, slowing down by a factor of 1.6.

Merely tracking contracts but not evaluating them roughly halved the per-
formance overhead; this effect was particularly marked in Trove, which ran al-
most 4 times faster when only tracking references. This shows that the contract
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library spends roughly half of the time evaluating contracts and the other half
tracking them. These results also show the feasibility of using JaCon as a tool
for tracking references to objects independently of aliasing contracts.

Java’s garbage collection statistics indicate the impact of aliasing contracts
on memory usage. We observed a significant increase in heap size for JGraphT
and Trove, the two programs whose performance was most strongly affected by
aliasing contracts. For JGraphT, the maximum heap size recorded in the pres-
ence of aliasing contracts was 722kB, compared to 53 kB without contracts. This
result is consistent with both the large increase in execution time for JGraphT,
as well as the number of contract additions performed by JGraphT, more than
200 million. Similarly, Trove triggered around 12 million contract additions and
showed an increase in maximum heap size of around 200kB. For the remaining
programs, maximum heap size increased by less than 35 kB, reflecting signif-
icantly lower number of contract additions they perform (around 210,000 for
NekoHTML and 430,000 for JUnit).

6 Discussion

Aliasing contracts are a novel approach to alias protection. They gain much of
their flexibility by using dynamic rather than static checking; this allows the def-
inition of complex encapsulation policies. Below, we highlight and discuss some
important considerations about aliasing contracts.

Runtime Performance. The case studies we conducted using four open-source
Java programs show that aliasing contracts can cause significant performance
overheads. However, we observed a wide range of behaviour; some programs,
including JUnit and NekoHTML, were barely affected by aliasing contracts
and would remain fully usable in the presence of contracts; others, including
JGraphT, experienced severe decrease in performance, rendering the programs
difficult to use in practice.

We argue that the effects of aliasing contracts vary depending on certain pro-
gram attributes. The main performance issue occurs when many variables refer
to the same object and re-assignment of variables is frequent. These conditions
occur, for example, in programs building complex data structures, involving
many assignments to build the data structure and many object accesses to visit
it. We can see this effect in the performance of JGraphT’s unit tests and in the
example program in Listing 2.

Although unacceptable in release versions of a program, the performance over-
head we measured is not a significant issue during the testing phase of a project.
Executing the unit tests of our test programs in the presence of aliasing con-
tracts is feasible, given the performance we recorded. This demonstrates that it
is indeed possible to use aliasing contracts as a testing and debugging tool. Our
results show that the performance of aliasing contracts is comparable to existing
debugging tools such as Valgrind [13]; for Valgrind, some programs run up to 58
times more slowly using Valgrind, although the slow-down factor is below 20 for
most programs.
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Our case studies have also demonstrated JaCon’s robustness and ability to
handle real-world software; we used it to generate more than 400,000 lines of
code and execute multiple large test cases. This demonstrates its robustness and
ability to handle real-world software.

Contract registration and de-registration (via hash tables) and contract evalu-
ation are ‘sensible’ implementations which have only been optimised in terms of
whether repeated evaluation is necessary. JaCon was built as proof-of-concept;
we suspect more attention to low-level implementation would expose further
performance improvement of 2–5 times in contract tracking and evaluation.

Garbage Collection. In Java, objects persist until there are no more references
to them and they are eventually garbage collected (at an unspecified time). This
inherent uncertainty about how long objects exist significantly influences the
semantics of aliasing contracts and indeed Java finalisation itself.

An object’s fields (and the references they store) persist in memory until final-
isation. But when should the associated contracts be removed? This is connected
to the somewhat philosophical question about how long an object exists; does
the object “die” when it becomes unreachable or when it is garbage collected?

We could remove the contracts of an object’s fields when it is no longer reach-
able. However, this is complex to implement, requiring sophisticated tracking of
references beyond simple reference counting. Alternatively, the contracts could
persist (along with the object’s references) until the object is garbage collected.

We take the second approach in our implementation for practical reasons and
because it fits better with Java’s approach to references; an object’s fields and
the references they store remain in memory until garbage collection, and so do
their contracts. This means that the contract of an object waiting to be garbage
collected can cause contract violation; garbage collection can remove contract
violations but never introduce them.

Advanced Features of Aliasing Contracts. We have presented only the ba-
sic aspects of aliasing contracts; more detail is available in [18]. Two powerful
features which were not discussed here are encapsulation groups and contract pa-
rameters. Encapsulation groups allow objects to be grouped, making it possible
to refer to a whole group in a contract rather than just single objects. Encap-
sulation groups can also be specified recursively, enabling deep and transitive
contract specifications. The power of encapsulation groups lies in the fact that
they can contain an unlimited of objects, which may vary at runtime. This, for
example, makes it possible to group all nodes in a linked list, without knowing
exactly how many nodes will be in the list at runtime:

class LinkedList { class Node {
Node head; Node next;

group allNodes = {head, group nextNodes = {next,
head.nextNodes}; next.nextNodes};

} }
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The encapsulation group nextNodes in Node contains all subsequent nodes in
the list: next and all nodes following it (next.nextNodes). The group allNodes

in LinkedList contains all nodes in the list, head and all nodes following it
(head.nextNodes). At runtime, JaCon evaluates these groups by resolving all
paths in the group definitions to objects.

Groups can be referenced in contracts using the in operator; for example,
the contract “accessor in list.allNodes” checks if accessor is in the set of
objects described by list.allNodes, that is if it is a node of list. Using this
contract, we can, for example, express the condition that all nodes in a linked
list should have mutual access to each other. This example demonstrates how
encapsulation groups can be used to specify transitive aliasing conditions.

Contract parameters make it possible for different instances of the same class
to exhibit different aliasing behaviour. A class can take contract parameters
which must be instantiated when an object of the class is created; the parameters
can be used as contracts in the class, changing aliasing behaviour of objects of
the class depending on the contract instantiations provided.

With encapsulation groups and contract parameters aliasing contracts can
directly express the aliasing policies enforced by existing static alias protection
schemes, including Clarke-style ownership types [6] and universe types [12]. They
can also express many aliasing conditions not expressible with existing schemes.

7 Conclusions and Further Work

We have presented a novel, dynamic approach to alias protection called aliasing
contracts. They are a general and flexible scheme, able to model a wide variety
of different aliasing policies, including those already enforced by static schemes.

We have developed a prototype implementation for aliasing contracts in Java,
JaCon; by running JaCon on open-source programs, we have demonstrated the
practical feasibility of aliasing contracts, for example during the testing phase
of a project. Our tests have shown that JaCon can handle significant programs
and that its performance is comparable to existing debugging tools like Valgrind.

We are currently developing a static checker to check many common aliasing
contracts at compile-time. This would allow us to eliminate some contracts dur-
ing the compilation process, leaving only the more complex ones to be checked
at runtime; combining the static verifier with JaCon will significantly improve
performance. Combining static and dynamic checking of contracts is analogous
to gradual typing [16], which combines static and dynamic type checking to gain
the advantages of both.

We are also working on allowing temporary suspension of contracts; this can
be used to model borrowing [4], where access to an object is granted temporarily,
for example for the duration of a method call.
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Abstract. Object-oriented languages with multiple dispatch and multiple inheri-
tance provide rich expressiveness but statically and modularly checking programs
in such languages to guarantee that no ambiguous calls can occur at run time
has been a difficult problem. We present a core calculus for Fortress, which pro-
vides various language features—notably functional methods and components—
and solves the problem. Functional methods are declared within traits and may
be inherited but are invoked by ordinary function calls, and therefore compete in
overloading resolution with ordinary function declarations. A novel component
system governs “visibility” of types and functions, and allows fine-grained con-
trol over the import of overloaded functions. We formally define the type system
of Fortress with a set of static rules to guarantee no ambiguous calls at run time,
and mechanize the calculus and its type safety proof in COQ.

1 Introduction

A longstanding problem for systems that support multiple inheritance is what to do
when a method is invoked on an object that inherits that method from multiple par-
ents: which inherited method should be executed? More generally, when a method or a
function (collectively called functional) is overloaded—that is, there are multiple dec-
larations of the same name—which declaration should be used when the functional is
invoked? Intuitively, we want to use the most specific declaration that is applicable to
the call. But there might not be a unique most-specific declaration: There may be two (or
more) applicable declarations that are more specific than any of the other declarations
but incomparable with each other. In this case, we say the invocation is ambiguous.
Guaranteeing that there will be no ambiguous calls at run time is difficult in object-
oriented languages because some declarations that are applicable at run time might not
be applicable statically.

Castagna et al. [4] address this problem by requiring that the signatures (i.e., the pa-
rameter types) of overloaded functional declarations form a meet-bounded lattice. This
approach has been taken by several languages that support multiple dispatch and mul-
tiple inheritance, such as MultiJava [7], Cecil [5], and Dubious [14]. We have followed
this approach in the Fortress programming language [1], in which this requirement is
called the Meet Rule, and our experience is that it feels natural in practice, and that
checking it statically helps expose programming errors.

C.-c. Shan (Ed.): APLAS 2013, LNCS 8301, pp. 156–171, 2013.
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However, checking this condition statically is complicated by modularity: Fortress
programs are partitioned into modules, each of which must import functionality from
other modules that it wants to use. Fortress allows fine-grained control over the im-
port of not only type declarations but also overloaded functional declarations, so that
different modules may see different sets of declarations for a given functional. Thus,
calls with the exact same arguments but from different components to dispatch to dif-
ferent functionals. In contrast, prior languages avoid this complication by sacrificing
fine-control over importing functional declarations: in these languages, either all or
none of the overloaded declarations of a functional is visible in any given program
scope [2,3,5,7,11].

Fortress provides a novel solution to the “operator method problem”: functional
methods [2]. A functional method may designate any argument, not just the textually
leftmost, to be treated as the “dispatch target” or “receiver” so that it can enjoy a func-
tion call syntax. Functional methods are inherited like conventional dotted methods
but have the visibility of top-level functions (i.e., they are in the top-level scope of a
module). Thus, they can (and must) be imported to be used in a different module, giv-
ing programmers the same fine-grained control for functional methods as for top-level
functions. (For this reason, we often find ourselves preferring functional methods to
dotted methods in Fortress.) However, the expressive power of functional methods does
not come for free. Allowing a functional method to designate any argument as the re-
ceiver enlarges the set of overloaded declarations among which the most specific one
is chosen. Selectively importing operator (functional method) declarations requires that
functional methods be overloaded with top-level functions, which adds complexity to
the static checks to guarantee the existence of the single most specific one among them.

In this paper, we extend the state of the art in statically typed object-oriented lan-
guages with symmetric multiple dispatch and multiple inheritance by allowing each set
of overloaded functional declarations to have its own visibility via fine-grained imports.
We present a core calculus of Fortress in which a program can be divided into compo-
nents that can be modularly type-checked, such that the components provide complete
namespace control over all top-level names; names of not only types, but also over-
loaded functions and functional methods, may be selectively imported. The Meet Rule
makes possible a modular static checking of multimethod dispatch that enables sepa-
rate compilation. We used COQ [8] to mechanize the calculus to prove the soundness
of its type system, guaranteeing that there are no ambiguous calls at run time. Our COQ

mechanization of the calculus and type soundness proof is publicly available [10].

2 Fortress Language Features

In this section, we describe the language features of Fortress relevant to overloading,
dispatch and fine-grained namespace control, and the rules that enable modular type
checking.

2.1 Traits and Objects for Multiple Inheritance

Fortress organizes objects into a multiple-inheritance hierarchy based on traits [19].
It may be helpful to think of a Fortress trait as a Java interface that can also contain
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concrete method declarations, and to think of a Fortress object declaration as a Java final
class. Fortress objects inherit only from traits, not other objects, and fields are not inher-
ited. Both traits and objects may contain method declarations, and may inherit method
declarations from multiple supertraits (traits that they extend). Thus all traits and objects
form a multiple inheritance hierarchy, a partial order defined by the extends relation-
ship, in which all objects are at the leaves as in Sather [22]. By separating types into
traits and objects, Fortress supports multiple inheritance without suffering from con-
flicts between inherited fields. As in Java and similar statically typed object-oriented
languages, the name of a trait or object serves as the name of a type, which is the set of
all objects at or below the named position in the trait hierarchy.

2.2 Three Kinds of Functionals for Multiple Dispatch

We consider three kinds of functionals in Fortress: i) traditional dotted methods associ-
ated with objects, ii) top-level functions not associated with any objects as in C++ [21],
and iii) functional methods. As in Java, dotted methods are invoked with a dotted
method call of the form “e.m(e1, . . . , en)” while top-level functions and functional
methods are invoked with a functional call of the form “m(e1, . . . , en)” without any
dot. Dotted methods and functional methods are collectively called methods; top-level
functions and functional methods are collectively called functions.

Functionals may be overloaded; that is, several methods within an object, and sev-
eral functions declared in the same scope, may have the same name. This raises the
issue of overload resolution: at run time, we must resolve the overloading to determine
what code to execute for each functional call. Typically, overloading is resolved by
dispatching to the most specific functional declaration from among those declarations
that are accessible and applicable, where declarations are compared by their parameter
types. With symmetric multiple dispatch, the types of all the parameters of a functional
declaration are considered equally in this comparison.

In an early report [2], we considered a restriction of Fortress in which top-level func-
tions and functional methods could not be overloaded. Removing this restriction intro-
duced some new issues, which we address in this paper. (Fortress does not allow dotted
methods to be overloaded with functional methods or top-level functions, so we do not
consider this case in this paper. However, if, within the body of a trait or object, dotted
methods could be invoked by functional calls and overloaded with top-level functions
and/or functional methods, we can handle this case by considering every dotted method
declaration to also declare a function whose parameters do not include the receiver,
and include this function in the set of candidates that must satisfy the overloading rules
described in Section 2.4.)

2.3 Components and Selective Imports for Modularity

A program can be divided into modules that can be compiled separately, and provide
a form of namespace control. In Fortress, these modules are called components, which
can contain declarations of top-level functions, traits, and objects; trait and object dec-
larations may contain dotted methods and functional methods. A component may selec-
tively import type names and function names from other components. One of the main
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component IntegerToString

trait Int

asString() = “-” ‖ (− self).asString()

end

trait Nat extends Int

asString() =

if self < 10

then “0123456789”[ self : self ]
else

q = self÷ 10

r = self− 10 q

q.asString() ‖ r.asString()
end

end

end IntegerToString

component IntegerToStringFunction

trait Int end

trait Nat extends Int end

asString(x: Int) =

“-” ‖ asString(−x)
asString(x:Nat) =

if x < 10

then “0123456789”[x :x ]

else

q = x÷ 10

r = x− 10 q

asString(q) ‖ asString(r)
end

end IntegerToStringFunction

Fig. 1. Overloaded dotted methods (left) and top-level functions (right)

contributions of this paper is to explain how the overloading checks and the overloading
resolution safely interact with the namespace control imposed by components.

Let Int and Nat name the types whose members consist of the integers and nat-
ural numbers (i.e., nonnegative integers) respectively. Thus, Nat is a subtype of Int .
Then they may be implemented in the component IntegerToString as illustrated in
the left side of Figure 1 (shown only in part; they might define other methods) where
‖ denotes string concatenation, self denotes the receiver object (like this in Java),
and “0123456789”[ self : self ] denotes indexing of the string, a linear sequence
of characters, with a range of size 1. Note the members of Int are the members of Nat
plus all the negative integers. The method asString is implemented as an overloaded
method: if the receiver object is nonnegative, then the declaration in Nat is used be-
cause it is more specific, but if the receiver object is negative, then the declaration in
Int is used because the one in Nat is not applicable. Both declarations are part of the
intended algorithm for converting a value of type Int to a string.

Now consider the same example using top-level functions rather than dotted methods
as in the right side of Figure 1. When another component M imports the component,
every function declaration and every method declaration is, in effect, required to defer
(that is, possibly dispatch) to other functions or methods that are accessible within com-
ponent M , applicable to the arguments received, and more specific than the function or
method declaration.

Finally, the example in Figure 2 uses functional methods rather than dotted meth-
ods or top-level functions. Functional methods are inherited like dotted methods—most
importantly, abstract functional methods, carrying the obligation to provide concrete
implementations, are inherited like abstract dotted methods. But they are overloaded
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component IntegerToStringFunctionalMethod

trait Int

asString(self) = “-” ‖ asString(− self)

end

trait Nat extends Int

asString(self) =

if self < 10 then “0123456789”[ self : self ]
else

q = self÷ 10

r = self− 10 q

asString(q) ‖ asString(r)
end

end

end IntegerToStringFunctionalMethod

Fig. 2. Overloaded functional methods

component MyProgram

import IntegerToStringFunctionalMethod.{ asString }
asString(x : Boolean): String = if x then “true” else “false” end

run() = println (asString (42))

end MyProgram

Fig. 3. Main component importing overloaded functional methods

in the same per-component namespace as top-level functions, and the dispatch model
that works for top-level functions while preserving component modularity also works
for functional methods. Thus, we often find ourselves preferring functional methods to
other functionals in Fortress.

We might then have another component that can be run as a “main program”,
which imports only the asString functional method from
IntegerToStringFunctionalMethod as shown in Figure 3. Note that the imported
asString functional method is overloaded with the top-level asString function in the
importing component. As the example shows, fine-grained imports of functionals affect
which functional to invoke at run time.

2.4 Static Overloading Rules

To guarantee type safety in the presence of all the features described so far, we place
static restrictions on overloaded functional declarations. We require every pair of over-
loaded functional declarations to satisfy the following two properties:
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1. The Subtype Rule
Whenever the parameter type of one is a subtype of the parameter type of the other,
the return type of the first must also be a subtype of the return type of the second.

2. The Meet Rule
Whenever the parameter types of the two declarations have a common lower bound
(i.e., a common subtype), there is a unique declaration for the same functional
whose parameter type is the greatest lower bound of the parameter types of the two
declarations.

The flip side of the Meet Rule is this:

3. The Exclusion Rule
Whenever the parameter types of two declarations are disjoint, the pair is a valid
overloading.

Based on our experience with Fortress, these rules are not difficult to obey, especially
because the compiler gives useful feedback.

While the Subtype Rule and the Meet Rule are necessary for type soundness, the
Exclusion Rule enlarges a set of valid overloading. Fortress allows programmers to de-
clare that two traits exclude each other (that is, no object can belong to both traits) and
it also provides structural exclusion relationships. Each object type implicitly excludes
every other object type because no object can extend them; an object type implicitly
excludes types that are not its ancestors in the trait hierarchy. Also, a type of one pa-
rameter list excludes a type of another parameter list, if the sizes of the parameter lists
are different, or any of their constituent types at the same position exclude each other.
For simplicity, we consider only structural exclusion relationships rather than declared
exclusion relationships in this paper. For details of a type system that handles declared
exclusion relationships, see [3].

Checking the overloading rules consists of two parts: the overloaded methods in a
trait are checked for validity, and overloaded top-level functions and functional meth-
ods in a component are checked for validity. In earlier work, we proposed an informal
description of such overloading rules only for top-level functions and functional meth-
ods where top-level functions and functional methods may not be overloaded [2], and
we proved that the overloading rules guarantee no ambiguous calls at run time [11]. In
this paper, we present a system which allows overloading between top-level functions
and functional methods, and fine-grained namespace control via modules and selective
imports in Section 3, and we mechanize the system and the proof of its type soundness
property in COQ in Section 4.

3 Calculus: MFFMM

We now define MFFMM (Modular Featherweight Fortress with Multiple dispatch and
Multiple inheritance), a core calculus for Fortress. Due to space limitations, we describe
only its central parts in prose in this section. The full syntax and semantics of MFFMM
are available in our companion report [12].
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p ::= comp importM.{i} d e

comp ::= componentM importM.{i} d end

i ::= C | m
d ::= td | od | fd

td ::= trait T extends {T}md end

od ::= object O(f : C) extends {T} md end

fd ::= m(x: C): C= e

md ::= m(x: C self? x: C): C= e

e ::= x | self | OM (e) | e.f | e.m(e) | mM(e)

Fig. 4. Syntax of MFFMM

3.1 Syntax and Adjustments for Components

The syntax of MFFMM is shown in Figure 4. The metavariables M ranges over com-
ponent names; T ranges over trait names; O ranges over object names; C ranges over
trait and object names; m ranges over function and method names; f ranges over field
names; and x ranges over method and function parameter names. We write x as short-
hand for a possibly empty sequence x1, · · · , xn.

A program p is a sequence of component declarations followed by a designated
“main” component. A component declaration consists of its name M , a sequence of
import statements, and a sequence of top-level declarations. The main component is
different from the other components in that it does not specify a name and it has a
top-level expression denoting the “run ” function of the program. For simplicity, we
assume that the name of the main component isMc, and it must not be the name of any
other component. An import statement may import a set of imported items; an imported
item is either a type name C or a (possibly overloaded) function name m. A top-level
declaration may be a trait declaration, an object declaration, or a function declaration.

A trait or object declaration may extend multiple supertraits; it inherits the methods
provided by its extended traits. It may include method declarations; a method declara-
tion is either a dotted method declaration or a functional method declaration depending
on the absence or presence of self in its parameter list. An object declaration may
include field declarations as its value parameters. Traits and objects are collectively
called types. While dotted methods in a type may be overloaded with only other dotted
methods in the same type, functional methods in a type may be overloaded with not
only other functional methods in the same type but also other functional methods and
top-level functions in the component textually enclosing the type. Note that a dotted
method may not be overloaded with a functional method nor with a top-level function.

An expression is either a variable reference, an object construction, a field access, a
method invocation, or a function call. A variable reference is either a parameter name x
or self . Note that the object name in an object construction and the function name in a
function call are annotated by a component name M . As we discuss below, evaluation of
a program consists of evaluation of expressions in various components, and evaluating
an expression requires the component name textually enclosing the expression.
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component MatrixLibrary

trait Matrix extends {Object} end
object UnitMatrix() extends {Matrix} end

end

component MyMatrixLibrary

import MatrixLibrary.{Matrix}
object UnitMatrix() extends {Matrix} end
object GenUnitMatrix() extends {Object}
gen(): UnitMatrix = UnitMatrix()

end

end

import MatrixLibrary.{Matrix,UnitMatrix}
import MyMatrixLibrary.{GenUnitMatrix}
asString(x:Matrix): String = “Matrix”
asString(x:UnitMatrix): String = “UnitMatrix”

asString
(
GenUnitMatrix().gen()

)
Fig. 5. MFFMM program before the annotation phase

To support the component system with selective imports, MFFMM uses: i) anno-
tations of enclosing component names on function calls and object constructions and
ii) actualTyp(M,C), a pair of the type C appearing in M and its defining compo-
nent, rather than C to take into account the component M in which the type C is de-
fined. When a program consists of multiple components, evaluation of the program
may require evaluation of the expressions in other components than the main compo-
nent. Consider the example in Figure 5 where the object UnitMatrix in the compo-
nent MatrixLibrary and the object UnitMatrix in the componentMyMatrixLibrary
are distinct types. The main component includes asString

(
GenUnitMatrix().gen()

)
which evaluates to asString

(
UnitMatrix()

)
. Note that UnitMatrix here is the object

defined in MyMatrixLibrary rather than in MatrixLibrary while the imported type
UnitMatrix is imported from MatrixLibrary rather than from MyMatrixLibrary .

In order to evaluate the function call correctly, we need two pieces of information.
First, we need to know in which component the function call of asString textually ap-
pears to collect a set of accessible (or visible) function declarations for the function call
to decide which function to call. Secondly, we need to know in which component the
object construction GenUnitMatrix() textually appears to know the argument type
of the function call to decide which function to call. Such information is syntactically
available and a simple preprocessing phase can annotate each function call and object
construction with its textually enclosing component name. The annotated component
names on function calls and object constructions denote the actual use sites of the func-
tions and objects. For example, the preprocessing phase rewrites the gen method dec-
laration in the object GenUnitMatrix as follows:

gen(): UnitMatrix = UnitMatrixMyMatrixLibrary()
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and the function call in the main component as follows:

asStringMc
(
GenUnitMatrixMc().gen()

)
At run time, one step evaluation of the call would lead to the following:

asStringMc
(
UnitMatrixMyMatrixLibrary()

)
which allows to select the correct function declaration to call:

asString(x: Matrix): String = “Matrix”

and evaluates to “Matrix ” as desired.
As the example shows, MFFMM allows programmers to define types with the same

name if they are in different components. While they do not produce any name conflicts
syntactically, they may lead to name conflicts during type checking; types that are not
defined nor imported by a component may not be explicitly used by the programmer
but they may be implicitly available during type checking. For example, even though
UnitMatrix inMyMatrixLibrary is not explicitly imported by the main component, it
is available for type checking GenUnitMatrixMc().gen() . Thus, type names are not
enough for identifying types but a pair of a type name and its defining component name
can serve as a true identity for a type.

3.2 Static Semantics and Overloading Rules

In this section, we describe only the key rules of the static semantics especially for
checking valid overloading; the full semantics is available in our companion report [12].
Type checking a program consists of checking its constituent component declarations
and checking import statements, top-level declarations, overloaded functions, and the
top-level expression of the main component. Checking function declarations consists
of three parts: checking every pair of distinct declarations between top-level functions,
between top-level functions and functional methods, and between functional methods.

Two top-level function declarations are valid if they satisfy any of the overloading
rules: if their parameter types are disjoint, if one parameter type is more specific than
the other, or if there exists a tie-breaking declaration between them.

A top-level function declaration and a functional method declaration in the same
component may be a valid overloading if their parameter types are disjoint or the func-
tional method declaration is more specific than the top-level function declaration. In
other words, there must not be any top-level function whose signature is more specific
than that of an overloaded functional method. The reason for this additional restriction
is that for functional methods (unlike for top-level functions), we cannot statically deter-
mine all the declarations that are dynamically applicable. (Indeed, this is the reason the
overloading rules are defined as they are, rejecting some sets of overloaded declarations
even though there is no static ambiguity.)

For example:

componentMoreSpecificTopLevel

trait Matrix extends {Object}
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multiply(self, z:Object) = “In Matrix”
end

object SparseMatrix() extends {Matrix}
multiply(self, z:Z) = “In SparseMatrix”

end

multiply(m:Matrix, z:Z) = “At Top-Level”
double(m:Matrix) = multiply (m, 2)

run() = double (SparseMatrix())

end MoreSpecificTopLevel

the signatures of the functional declarations above are as follows:

multiply(m: Matrix, z:Object) // functional method from Matrix

multiply(m: SparseMatrix, z:Z) // functional method from SparseMatrix

multiply(m: Matrix, z:Z) // top-level function

Because the static type of the first argument m of the function call multiply (m, 2) is
Matrix, the functional method declared in SparseMatrix is not statically applicable to
the call. Among the other two applicable declarations, the top-level function is the most
specific statically applicable one. However, at run time, because m is SparseMatrix,
the functional method declared in SparseMatrix is also applicable to the call and it
is even the most specific one. Therefore, if we allow top-level functions to be more
specific than their overloaded functional methods, we need to consider not only the top-
level functions but also the functional methods and more specific functional methods
overriding them at run time, which burdens the performance of dynamic dispatch.

Instead, if we require functional method declarations be more specific than the over-
loaded top-level function declarations, the overloaded declarations in the above example
are invalid. Let us consider the slightly revised example:

component LessSpecificTopLevel

trait Matrix extends {Object}
multiply(self, z:Z) = “In Matrix”

end

object SparseMatrix() extends {Matrix}
multiply(self, z:Z) = “In SparseMatrix”

end

multiply(m:Matrix, z:Object) = “At Top-Level”
double(m:Matrix) = multiply (m, 2)

run() = double (SparseMatrix())

end LessSpecificTopLevel

Now the signatures of the overloaded declarations are as follows:

multiply(m: Matrix, z:Z) // functional method from Matrix

multiply(m: SparseMatrix, z:Z) // functional method from SparseMatrix

multiply(m: Matrix, z:Object) // top-level function
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Among the applicable declarations to the call multiply (m, 2) , the functional method
declared in Matrix is the most specific statically applicable one. Because we restrict
top-level functions from being more specific than any overloaded functional method,
for any call to which both a top-level function and a functional method are applica-
ble (statically or dynamically), the top-level function will never be the most specific
dynamically applicable declaration: there will always be some dynamically applicable
functional method declaration that is more specific (because of the Meet Rule). Thus,
at run time, we need to consider only the functional method and the more specific func-
tional methods overriding it without considering any top-level functions, which largely
reduces the set of the candidate methods to investigate.

Finally, two functional methods in a component which may be defined in different
types are valid if the parameter types of them are disjoint or they have self in the same
position of their parameter lists. When types A and B provide a functional method with
the same name and self in the same position, and another type C extends both A and
B inheriting both functional methods, then C itself should provide a disambiguating
definition, and this is checked by the overloading rules when compiling C, because at
that point, the declarations in both A and B are visible (since C extends both A and B).

To see why we need this requirement for the self position, consider the following
Matrix and Vector example:

trait Matrix extends {Object}
multiply(self, y: Vector) = “In Matrix”

end

trait Vector extends {Object}
multiply(x: Matrix, self) = “In Vector”

end

Since both functional method declarations have the same signature, any call to multiply
with two arguments of types Matrix and Vector is ambiguous. For example:

object MatrixVector extends {Matrix, Vector} end
because MatrixVector is both Matrix and Vector , the following call is ambiguous:

multiply(MatrixVector,MatrixVector)

because both functional method declarations from Matrix and Vector are accessible,
applicable, and equally specific. With the restriction of the same position for self ,
all the functional method declarations in a valid overloading set whose parameter types
are not disjoint have the self parameter in the same position and the type of self

is its enclosing trait. Therefore, we can guarantee that a functional method declaration
chosen with more specific argument types is defined in a subtype of the owner of a
functional method declaration chosen with less specific argument types.

3.3 Dynamic Semantics and Functional Dispatch

Evaluation of a method invocation OM (v).m(v′) is conventional except that we first
find the component M ′ that defines O by actualTyp(M,O), which effectively com-
putes visibility from M . Among a set of visible dotted methods in O defined in M ′,
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we collect a set of applicable methods to the call using the dynamic types of the argu-
ments, and select the most specific one from the set.

Due to the unique characteristic of functional methods, evaluation of a function call
mM (v) requires an additional step to find the most specific functional declaration.
Among a set of visible functionals in M , we first collect a set of applicable functionals
to the call using the dynamic types of the arguments, just like for the method invocation
case. Then, if the candidate set consists of only top-level functions, we simply select
the most specific one from the set. However, if the candidate set includes any functional
method declaration, we collect yet another set of visible functional method declarations
from the enclosing trait of the functional method declaration. We then perform the sec-
ond dispatch by collecting a set of applicable functional method declarations from the
set and selecting the most specific one from the set.

Let us revisit the multiply example in Section 3.2 one more time. For the func-
tion call multiply (m, 2) , the static types of the arguments are (Matrix,Z) and the
dynamic types of the arguments are (SparseMatrix,Z) . While the signatures of the
statically applicable declarations are as follows:

multiply(m: Matrix, z:Z) // functional method from Matrix

multiply(m: Matrix, z:Object) // top-level function

the signatures of the dynamically applicable declarations include the following as well:

multiply(m: SparseMatrix, z:Z) // functional method from SparseMatrix

Because the dynamically applicable declarations include functional method declara-
tions, we collect a set of visible functional method declarations from Matrix and
SparseMatrix so that we do not miss any functional method declarations that are not
visible at compile time but are visible at run time. Because we collect visible func-
tional method declarations from static types at compile time and from dynamic types at
run time, and because run-time types are more specific than compile-time types, more
functional method declarations may be visible at run time. Then, we perform the second
dispatch by collecting a set of applicable functional method declarations from the set
and selecting the most specific one from the set.

This dispatch mechanism always selects the unique most specific function to each
call. First, if the applicable functional set for a function call has no functional meth-
ods, all the candidates in the set are top-level functions, and the validity of top-level
function overloading guarantees that there always exists the most specific function for
the call. Secondly, if the applicable functional set for a function call has more than one
functional methods, the functional methods are more specific than any of the top-level
functions in the set and the most specific one from the set is a functional method. Note
that because the static semantics guarantees that the overloaded top-level functions are
less specific than the overloaded functional methods, we do not need to consider top-
level functions here, which makes this second dispatch more efficient. Finally, because
all the functional methods in the visible functional set have self in the same position
in their parameter declarations unless their parameter types are disjoint, and the type
of self is the owner type of each functional method, the dynamic type of the argu-
ment corresponding to self provides all the applicable functional methods to the call
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including the ones in a supertype of the dynamic type. Given all these conditions, the
dispatch mechanism always selects the unique dynamically most specific function to a
call.

4 Properties and COQ Mechanization

We fully mechanized MFFMM and its type safety proof in COQ. Our mechanization
is based on the metatheory library developed by De Fraine et al. [9]. The COQ

mechanization is very close to MFFMM so that one can easily find the corresponding
declarations and rules between them. The few differences between them are mostly
COQ-specific implementation details, which we omit in this paper.

We proved two traditional theorems for type safety of MFFMM:

Theorem 1 (Progress). Suppose that p is well typed. If an expression e in p has type
(M,C), then e is a value or there exists some e′ such that e evaluates to e′.

Theorem 2 (Preservation). Suppose that p is well typed. If an expression e in p has
type (M,C) and e evaluates to e′, then e′ has type (M ′, C′) where (M ′, C′) is a subtype
of (M,C).

To prove the type safety of MFFMM, we also proved that every functional call in a well-
typed program is uniquely dispatched. Due to space limitations, we refer the interested
readers to our companion report [12].

While Fortress provides separate compilation by components and APIs where inter-
faces between components are described by APIs, we omit APIs for simplicity in this
paper. Note that our formalization captures separate compilation even without APIs
because components must import declarations from other components to make them
visible, and validity judgments are applied only to visible declarations. This is unlike
Java, for example, in which importing only enables the use of unqualified names. Thus,
each component can be checked separately with references only to those declarations
from components that it explicitly imports.

As we discussed in Section 3.1, the key aspects of MFFMM to support components,
which are essential in proving the type safety, are to annotate textually enclosing com-
ponent names to function calls and object constructions and to use actualTyp(M,C)
to denote a type C defined in a component M . Because evaluating an expression in a
component may require evaluation of other expressions in different components, eval-
uation rules may keep track of the component where the current evaluation occurs and
the component that the control goes back to when the current evaluation normally fin-
ishes. Because small-step operational semantics such as our dynamic semantics are
not well suited for keeping track of such surrounding information, we use the anno-
tations of textually enclosing component names to represent such information. Also,
actualTyp(M,C) explicitly denotes the true identities of types that are necessary to
distinguish between types of the same name from different components.

The COQ mechanization of MFFMM is based on our previous work [11] on FFMM,
but we did not reuse much of the FFMM COQ code mainly because the design of
FFMM lacks extensibility. We organized the syntax and semantics of MFFMM in a
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modular way so that the new features such as functional methods and components are
represented seamlessly and possible future changes in the calculus can be integrated
smoothly. The COQ mechanization is approximately 9,000 lines and it is available on-
line [10].

5 Related Work

Millstein and Chambers introduce the Dubious language [14], which provides symmet-
ric dynamic multimethod dispatch while allowing a program to be divided into modules
that can be separately type-checked statically. Our work differs from Dubious in these
respects: Dubious is a classless (prototype-oriented) object system, whereas Fortress
traits are classes in this sense; Dubious has only explicitly declared objects, whereas
our work supports dynamically created objects and state; Dubious does not provide
disjoint relations between types and it requires every multimethod to have a principal
type1, thus it cannot support multimethods that take different numbers of arguments
or otherwise do not have a principal type, nor can it allow the position of the owner
to vary, whereas Fortress enlarges a set of valid overloadings thanks to disjoint type
relations; and importing a Dubious module is an all-or-nothing proposition, (though
the cited paper does sketch a possible way to introduce a private keyword to shield
some objects in a module), whereas Fortress import statements allow fine-grained se-
lective import of any parts of a component—in particular, it is possible to import only
selected functional methods of a trait, rather than all methods. Other languages from the
same research group that are similarly closely related to the present work are Cecil [5],
EML [13], MultiJava [7], and Relaxed MultiJava [15]. A block-structured variant of
Cecil, BeCecil [6], supports multimethod declarations in a nested scope, limiting their
visibility to the scope. However, BeCecil does not support a module system, thus it does
not support modular type checking.

Odersky, Wadler and Wehr’s System O [17] supports overloaded declarations with
completely different type signatures, and is modular in the sense that it has the Hind-
ley/Milner type system. The system ensures no ambiguities by putting a simple restric-
tion on type classes, but it requires that overloaded functions should be dispatched on
the first parameter while Fortress allows multiple dispatch.

Scala provides a way to omit some arguments at a method call if they are bound to
implicit parameters [18]. Selecting the most specific implicit parameter that applies in
the method call is similar to overloading resolution in Fortress. While Fortress prohibits
any possibilities of ambiguous calls at functional declaration sites, Scala statically re-
jects ambiguous calls at method use sites.

In Haskell typeclasses [23], overloaded functions must be contained in some type
class, and their signatures must vary in exactly the same structural position. Typeclasses
are ill-suited for functions lacking uniform variance in the domain and range, for exam-
ple. Such behavior is consistent with the static, type-based dispatch of Haskell, but it
would lead to irreconcilable ambiguity in the dynamic, value-based dispatch of Fortress.
While Fortress supports fine-grained imports of overloaded declarations, all instance

1 The parameter and return types of any declaration for a multimethod must be subtypes of their
corresponding types in the principal type.
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declarations in Haskell are globally visible, and each declaration should check that it
does not overlap with any of the others.

Type safety proofs for several programming languages are mechanized in various
proof assistant tools. Our previous work [11] mechanizes type safety proofs of core
calculi for Fortress in COQ, and the present work is an extension of them especially
with a component system, top-level functions, functional methods, and overloading be-
tween top-level functions and functional methods. Strniša et al. [20] introduce a formal
calculus for Java with a module system, and mechanize its type safety proof using
Isabelle/HOL [16]. The calculus does not provide overloading, and references across
module boundaries use fully qualified names, which amounts to requiring programmers
to use actual types. None of the calculi supports a module system, and the technique
requires a calculus to have placeholders for future extension.

6 Conclusion

Namespace control in object-oriented languages is tricky: On one hand, we want to
inherit method declarations implicitly and be able to override and overload them. On
the other hand, we want to control access to specific methods by controlling where their
names are in scope. Functional methods provide an effective solution: they are inherited
like conventional dotted methods, but their visibility is controlled by components with
selective imports that allow fine-grained namespace control, like top-level functions,
with which they can be overloaded.

Functional methods are an effective approach to solving the operator method prob-
lem. The advantage over dotted methods is that any argument position may serve as
the receiver; the advantage over ordinary functions is that a trait may declare a set
of overloaded operators with disjoint parameter types. Ensuring the existence of the
unique most specific functional declaration for a call in the presence of overloading be-
tween three kinds of functional declarations with symmetric multiple dispatch is tricky.
A component system with selective imports introduces yet another problem that we
should consider the hidden functional methods in traits when we select the most spe-
cific top-level function or functional method for a function call. We have shown how
these features work in a manner that interacts well with namespace control. To guaran-
tee that such features do not cause any undefined or ambiguous calls at run time, we
present a core calculus for Fortress and fully mechanize its type safety proof in COQ.

In the future, we plan to extend this framework to parametrically polymorphic types,
and more type relations such as explicit type exclusion and comprises relations [3].

Acknowledgments. This work is supported in part by Korea Ministry of Education,
Science and Technology(MEST) / National Research Foundation of Korea(NRF)
(Grants NRF-2011-0016139 and NRF-2008-0062609).
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Abstract. The term static code analysis is used these days to refer
to tools that find bugs and/or security vulnerabilities in source or exe-
cutable code by performing static analysis of the code. In the past years,
several static code analysis tools have transitioned from a research envi-
ronment onto production mode; examples include Coverity [1], SLAM [2]
and Goanna [3].

Parfait was developed as a research project at Sun Microsystems Lab-
oratories with the aim to look into precision and scalability of static bug-
detection analyses over millions of lines of source code (MLOC). The Or-
acle acquisition of Sun brought Parfait into a new playground where, in
the course of one year, a small team of researchers and students showed
“value for money” against codebases from “legacy” Oracle. Key to this
value proposition was not only showing that the tool reported real bugs
of interest to developers, but also that there was a high hit rate of reports
and that it scaled well, allowing for not only nightly integration but also
incremental, commit-time integration.

In this talk we summarise our experiences in the transitioning of Par-
fait from a research prototype at Oracle Labs, onto production mode
at Oracle, as well as its deployment throughout the company, where
it is used on a day-to-day basis by thousands of developers. We also
elaborate on our recent experiences on extending Parfait to support the
JavaTMlanguage, for the purposes of detecting vulnerabilities in the Java
Platform.

1 Introduction

The Parfait project started in 2007 with the aim of developing a static code
analysis tool for C that was precise yet scalable to millions of lines of source code
(MLOC). We were interested in checking systems code and used the core of the
OracleTM Solaris operating system, known as the “ON” (operating system and
networking) consolidation. ON had close to 6 MLOC of non-commented code. In
formulating our research goals, we focused on development organisations at Sun
Microsystems and their developers’ needs, as they related to static code analysis
tools. Key in their minds was the need for a low false positive rate, fast runtime
so that the tool could be run over their MLOC overnight as part of their nightly
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build, and ease in build integration. By 2010 the ON codebase was reaching 10
MLOC.

The 2010 acquisition of Sun by Oracle brought new challenges in terms of sizes
of codebases, as well as pleasant results when specialising our analyses to bugs
that were of interest by the new developers we met. In the course of one year
we were able to not only show proof-of-concept over the OracleTM Database,
the OracleTM TimesTen In-Memory Database, the OracleTM Essbase Analytics
Link for Hyperion Financial Management, and the OracleTM Linux operating
system, we were also able to get management commitment for funding of Parfait
as an internal product in 2012, in effect, transitioning the tool from our research
laboratories onto product development. The year in between was used to lift the
level of the research prototype into production code quality, as well as implement
enhancement requests and bug fixes.

2 Design and Research Contributions

The design of Parfait was focused around the drawbacks that developers were
seeing in the existing static analysis tools back in 2006/07, namely, long running
times over millions of lines of code, as well as high numbers of spurious reports
that were not true bugs in the user’s code. This led to a design that was highly
scalable while still providing good precision.

The research contributions of Parfait include

– its layered design [4],
– a scalable taint analysis algorithm [5],
– a demand-driven symbolic analysis for buffer overflow detection [6], that is

also used for integer overflow detection,
– a new formulation of points-to analysis that is an order of magnitude faster

than the state-of-the-art [7,8],
– an unpublished analysis we call “model-based analysis” that makes use of a

model checker in an unsound yet scalable fashion [9], and
– a framework and benchmarks for the benchmarking of static code analysis

tools [10].

The initial choice of bug types analysed in Parfait was driven by what we
perceived were the most common and useful bug types to address across differ-
ent organisations, namely, memory-related issues: buffer overflows, null pointer
dereference, use after free, etc.

Scalability was achieved by developing demand-driven algorithms for most of
the bug detection algorithms. Analyses such as points-to are used as a pre-pass
prior to an individual bug detection algorithm, and as such are implemented in
a global fashion.

At the core of Parfait there is a backwards flow, data flow framework, from
which a variety of different bug types can be instantiated. A symbolic analyser,
and a value flow data structure are also commonly used in other analyses. Other
abstractions and analyses that the research team is working on may, in due
course, become available in Parfait.
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3 Development and Deployment

Parfait consists of a translator and the analysis tool proper. Parfait proper is
built on top of the LLVM [11] infrastructure and makes use of the LLVM in-
termediate representation in the form of bitcode files. The Parfait translator
makes use of a heavily-modified Clang [12] to be able to parse C and C++
source code traditionally compiled with compilers such as Intel’s ICC, OracleTM

Solaris Studio, and GCC, into the LLVM bitcode representation.
For usability, Parfait was coupled with a graphical, web-based interface to

more easily illustrate to developers why the tool reported a particular bug report.
Integration into popular editors such as emacs was also provided.

For deployment, Parfait was coupled with a Server and a more extensive web-
based interface. The Server keeps track of historical nightly run results, marked
false positives or “won’t fix” results, and status of the report, as well as integrates
with the revision control and bug tracking systems used by the organisation.

Some of our experiences are summarised in [13]; we highlight the deployment
options used by different organisations:

– Nightly: most of the organisations perform a nightly integration, adding the
Parfait run as another test to be conducted in the nigthly regression. New
bug reports are pushed onto the Server and either triaged the next morning,
or, more commonly, pushed directly by the Server onto the relevant code
owners.

– Commit-time: a large percentage of the organisations that have performed a
nightly integration also integrate at commit-time. This allows for more timely
feedback to the developer. Parfait is run over the developer’s changeset (as
well as any dependencies on other code) and be Parfait-clean prior to the
commit being approved. This allows for bugs from being introduced into the
codebase.

– Ad-hoc: some organisations integrate Parfait on an ad-hoc schedule, e.g.,
run it once a month or run it prior to certain milestone or releases. These
runs are normally conducted by a QA team rather than being driven by the
developers themselves.

4 Extending Parfait with Java Support

The recent increase of new Java vulnerabilities led to interest into extending
Parfait to support the Java language, with an initial goal at detecting these
new types of vulnerabilities: unguarded caller sensitive methods, unsafe use of
doPrivileged, invalid serialisation of security-sensitive classes, trusted method
chaining, invalid deserialisation of classes, etc.

The Jaffa translator for Java code translates to the LLVM bitcode file repre-
sentation, including in it additional metadata to keep track of some Java lan-
guage specific semantics. Jaffa translates for analysis, rather than for execution
purposes. Based on the existing Parfait analysis infrastructure, new bug passes
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have been and are being developed for the abovementioned vulnerabilities. Al-
though static analysis cannot resolve all dynamic dependencies in a language
like Java, the analyses do find, nevertheless, a lot of useful results.

Acknowledgments. Many researchers, developers and interns have worked on
Parfait throughout the years, contributing to different aspects of the research
and the tool. Special thanks go to Curt Elsbernd, who is the champion for
deployment of Parfait within the Database Systems Technology organisation.
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Abstract. A fully abstract compilation scheme prevents the security
features of the high-level language from being bypassed by an attacker
operating at a particular lower level. This paper presents a fully ab-
stract compilation scheme from a realistic object-oriented language with
dynamic memory allocation, cross-package inheritance, exceptions and
inner classes to untyped machine code. Full abstraction of the compi-
lation scheme relies on enhancing the low-level machine model with a
fine-grained, program counter-based memory access control mechanism.
This paper contains the outline of a formal proof of full abstraction of
the compilation scheme. Measurements of the overhead introduced by
the compilation scheme indicate that it is negligible.

1 Introduction

Modern high-level languages such as ML, Java or Scala offer security features
to programmers in the form of type systems, module systems, or encapsulation
primitives. These mechanisms can be used as security building blocks to with-
stand the threat of attackers acting at the high level. For the software to be
secure, attackers acting at lower levels need to be considered as well. Thus it is
important that high-level security properties are preserved after the high-level
code is compiled to machine code. Such a security-preserving compilation scheme
is called fully abstract [1]. An implication of such a compilation scheme is that
the power of a low-level attacker is reduced to that of a high-level one. The no-
tion of fully abstract compilation is well suited for expressing the preservation
of security policies through compilation, as it preserves and reflects contextual
equivalence. Two programs are contextually equivalent if they cannot be dis-
tinguished by a third one. Contextual equivalence models security policies as
follows: saying that variable f of program C is confidential is equivalent to say-
ing that C is contextually equivalent to any program C′ that differs from C in
� This work has been supported in part by the Intel Lab’sUniversity Research Office.
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its value for f . A fully abstract compilation scheme does not eliminate high-level
security flaws. It is, in a sense, conservative, introducing no more vulnerabilities
at the low level than the ones already exploitable at the high level.

Fully abstract compilation of modern high-level languages is hard to achieve.
Compilation of Java to JVM or of C# to the .NET framework [12] are some of the
examples where compilation is not fully abstract. Recent techniques that achieve
fully abstract compilation rely on address space layout randomisation [2,9], type-
based invariants [4,7], and enhancing the low-level machine model with a fine-
grained program counter-based memory access control mechanism [3].

The threat model considered in this paper is that of an attacker with low-
level code execution privileges. Such an attacker can inject and execute mali-
cious code at machine level and violate the security properties of the machine
code generated by the compiler. In order to withstand such a low-level attacker,
high-level security features must be preserved in the code generated during com-
pilation. Agten et al. [3] were the first to show that fully abstract compilation
of a safe high-level programming language to untyped machine code is possible.
They achieved this by enhancing the low-level machine model with a fine-grained
program counter-based memory access control mechanism inspired by existing
systems [14,15,17,21,22] and recent industrial prototypes [16]. One limitation of
the work of Agten et al. is that it only considers a toy high-level language. The
main contribution of this paper is showing how essential programming language
features can be securely compiled to the same low-level machine model of Agten
et al. The adopted low-level model is similar to a modern processor, so the
compilation scheme handles subtleties such as flags and registers that an imple-
mentation would have to face. More precisely, this paper makes the following
contributions:

– a secure compilation scheme from a model object-oriented language with
dynamic memory allocation, cross-package inheritance, exceptions and inner
classes to low-level, untyped machine code;

– the outline of a formal proof of full abstraction for this compilation scheme;
– measurements of the run-time overhead introduced by the compilation

scheme.

The paper is organised as follows. Section 2 introduces background notions.
Section 3 presents a secure compilation scheme for a language with dynamic
memory allocation, cross-package inheritance, exceptions and inner classes.
Section 4 outlines the proof of full abstraction of the compilation scheme.
Section 5 presents benchmarks of the overhead introduced by the compilation
scheme. Section 6 discusses limitations of the compilation scheme. Section 7
presents related work. Section 8 discusses future work and concludes.

2 Background

This section describes the low-level protection mechanism and the secure compi-
lation scheme of Agten et al. [3], which is the starting point of this paper. Then
the high-level language targeted by the compilation scheme is presented.
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2.1 Low-Level Model

To model a realistic compilation scheme, the targeted low-level language should
be close to what is used by modern processors. For this reason this paper adopts
a low-level language that models a standard Von Neumann machine consisting
of a program counter, a registers file, a flags register and memory space [3].

In order to support full abstraction of the compilation scheme, the low-
level language is enhanced with a protection mechanism: a fine-grained, pro-
gram counter-based memory access control mechanism inspired by existing sys-
tems [14,15,17,21,22] and recent industrial prototypes [16]. We review this ad-
dition from the work of Agten et al. [3] and Strackx and Piessens [22]. This
mechanism assumes that the memory is logically divided into a protected and
an unprotected section. The protected section is further divided into a code and
a data section. The code section contains a variable number of entry points:
the only addresses to which instructions in unprotected memory can jump and
execute. The data section is accessible only from the protected section. The
size and location of each memory section are specified in a memory descriptor.
The table below summarises the access control model enforced by the protection
mechanism.

From\ To Protected Unprotected
Entry Point Code Data

Protected r x r x r w r w x
Unprotected x r w x

This protection mechanism provides a secure environment for code that needs
to be protected from a potentially malicious surrounding environment. It is ap-
pealing in the context of embedded systems, where kernel-level protection mech-
anisms are often lacking.

2.2 A Secure Compiler for a Simple Language

Agten et al. [3] presented a secure (fully abstract) compilation scheme for a
simple object based language. In an effort to be self-contained, this paper sum-
marises their key points.
General Notions. In the work of Agten et al., programs consist of a single
object with fields and methods declarations which are compiled to the protected
memory partition. Compiled programs must be indistinguishable from the size
point of view, thus a constant amount of space is reserved for each program,
independent of its implementation. All methods and fields are sorted alphabeti-
cally. Thus equivalent compiled programs cannot be distinguished based on the
ordering of low-level method calls. Methods and fields are given a unique index,
starting from 0, based on their order of occurrence. Those indexes serve as the
offset used to access methods and fields. Parameters and local variables are also
given method-local indexes to be used as above.

Registers r0 to r3 are used as working registers for low-level instructions and
registers r4 to r11 are used for parameters. The call stack is split into a protected
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and an unprotected part, the former is allocated in the protected memory par-
tition. A shadow stack pointer that points to the base of the protected stack is
introduced to implement stack switches. When entering the protected memory,
the protected stack is set as the active one; when leaving it, the unprotected
stack is set to be the active one. To prevent tampering with the control flow,
the base of the protected stack points to a procedure that writes 0 in r0 and
halts. For each method, a prologue and an epilogue are appended to the method
body. They allocate and deallocate activation records on the secure stack, The
program counter is initialised to a given address in unprotected memory.
Entry Points. For each method, an entry point in protected memory is created.
Additionally, in order to enable returnbacks (returns from callbacks, which are
calls to external code), a returnback entry point is created. Entry points act as
proxies to the actual method implementations and are extended with security
routines and checks.

These security routines reset unused registers and flags when leaving the pro-
tected memory to prevent them conveying unwanted information. For example,
a callback to a function with two arguments resets all registers but r4 and r5
since they are the only ones that carry desired information. Checks are made to
ensure that primitive-typed parameters have the right byte representation, e.g.
Unit-typed parameters must have value 0, the chosen value of Unit type.

2.3 High-Level Language

The high-level language targeted by this paper is Jeffrey and Rathke’s Java Jr.
[11]. Java Jr. is a strongly-typed, single-threaded, component-based, object-
oriented language that enforces private fields and public methods. Java Jr.
supports all the basic constructs one expects from a modern programming lan-
guage, including dynamic memory allocation. A program in Java Jr., called a
component, is a collection of sealed packages that communicate via interfaces and
public objects. Java Jr. enforces a partition of packages into import and export
ones. Import packages are analogous to the .h header file of a C program; they
define interfaces and externs, which are references to externally defined objects.
Export packages define classes and objects ; they provide an implementation of
an import package. Listing 1.1 illustrates the package system of Java Jr.

Listing 1.1 contains two package declarations: PI is an import package and
PE is an export package implementing PI. Object extAccount allocated in PE
provides an implementation for the extern with the same name defined in PI.

In Java Jr., primitive values, types and operations on them are assumed to
be provided by a System package, whose name is omitted for the sake of brevity.
The only primitive type is Unit, inhabited by unit. Since the focus of this paper
is security, we write access modifiers for methods and fields even though the
syntax of Java Jr. does not require them.

The security mechanism of Java Jr. is given by private fields. In Java Jr.,
classes are private to the package that contains their declarations. Objects are
allocated in the same package as the class they instantiate. Due to this package
system, for a package to be compiled it only needs the import packages of any
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1 package PI;
2 interface Account {
3 public createAccount() : Foo;
4 public getBalance() : Int;
5 }
6 extern extAccount : Account;
7
8 package PE;
9 class AccountClass implements PI.Account {

10 AccountClass() { counter = 0; }
11 public createAccount() : Account { return new PE.AccountClass(); }
12 public getBalance() : Int { return counter; }
13 private counter : Int;
14 }
15 object extAccount : AccountClass;

Listing 1.1. Example of the package system of Java Jr.

package it depends on. As a result, formal parameters in methods have interface
types, since classes that implement those interfaces are unknown. Additionally,
since constructors are not exposed in interfaces, cross-package object allocation
must be through factory methods. For example, the name of class AccountClass
from Listing 1.1 is not visible from outside package PE, thus expressions of the
form new PE.AccountClass() cannot be written outside PE.

Java Jr. was chosen since it provides a clear notion of encapsulation for a high-
level component, which makes for simpler reasoning about the secure compilation
scheme. This allows us to pinpoint what the key insights are to achieve secure
(fully abstract) compilation, so that they can be used when the language is
extended with cross-package inheritance, exceptions and inner classes.

3 Secure Compilation of Java Jr.

After a series of examples describing possible attacks on a naïve compilation
scheme, this section describes what is needed in order to provide a secure com-
piler for Java Jr., starting from the secure compiler described in Section 2.2, and
extend it to support cross-package inheritance, exceptions and inner classes.

The following examples use some standard assumptions about how objects
are compiled [6]. When an object is allocated, a word is reserved to indicate its
class, which is used to dynamically dispatch methods. Fields are accessed via
offsets and methods are dispatched based on offsets.

Example 1 (Type of the current object). Suppose the compiled program
includes two classes: Pair and Caesar. Class Pair implements pairs of Integer
values with two fields first and second, with getters and setters for them, method
getFirst() returns the value of field first. Class Caesar implements a caesar
cypher. It has a single Integer field key and a method encrypt(v:Int) that
returns value v encrypted with key. The key of the Caesar cypher is not accessible
outside the class (i.e. it is private).
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The key cannot be leaked at the high level, since high-level programs are
strongly typed, but it can be leaked to low-level programs. A low-level, external
program can perform a call to method getFirst() on an object of type Caesar;
this will return the key field, since fields are accessed by offset. As low-level code
is untyped, nothing prevents this attack from happening.

Example 2 (Type of the arguments). Similarly to Example 1, arguments of
methods can be exploited in order to mount a low-level attack. Extend the program
of Example 1 with another class ProxyPair with a method takeFirst(v:Pair)
that returns getFirst() on the Pair object v. At the high level, this code gives
rise to no attacks. At the low level, this code can be used to mount the following
attack: if an object of type Caesar is passed as argument to method takeFirst( ),
the code will leak the key.

Example 3 (Leakage of object references). Object references at the low-
level are the address where objects are allocated. The attacker can call methods on
objects it does not know of by guessing the address where an object is allocated.
Passing object addresses from a secure program to an external one can also
give away the allocation strategy of the compiler, as well as the size of allocated
objects. An attacker that learns this information can then use it to mount attacks
such as those presented in Example 1 and 2. From a technical point of view this
means that leaking object addresses and accepting guessed addresses breaks full
abstraction of the compilation scheme.

3.1 A Secure Compiler for Java Jr.

Before proposing countermeasures to the attacks just listed, this section lists the
modifications to the scheme of Section 2.2 that are needed in order to support
compilation of Java Jr. and, more generally, of object-oriented programs.
Compilation of OO Languages. Fig. 1 shows a graphical representation
of the protected memory section which is generated when securely compiling a
Java Jr. component. Only a single protected memory section is needed, and all
classes, objects and methods defined in the component are placed there. The
protected code section contains entry points, described below, method body
implementations, the procedure for object allocation and the dynamic dispatch.

Entry point for i1.m1

...
Entry point for ih.mn

Returnback entry point

Allocation function

Code for c1.m1

...
Code for ck.mn

Other methods

Dynamic dispatch

v-tables

Data structures

Secure stack

Secure heap

Objects o1 · · · oj
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Fig. 1. Graphical representation of a compiled program
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The protected data section contains the v-tables, support data structures, a
secure stack and a secure heap. The v-tables are data structures used to perform
the dynamic dispatch of method calls; they associate the address of the method
to be executed on an object based on its type and the method name. Data
structures are defined in the remainder of this section and in Section 3.3.

In order to specify how the component interacts with external code, assume
the component being compiled provides one import package without a corre-
sponding export one. Refer to this package as the distinguished import package
(DIP). The DIP contains interface and extern definitions, thus callbacks are
calls on methods defined in the DIP. Component code is assumed not to im-
plement interfaces defined in the DIP, while external code which provides an
implementation for the DIP can also implement interfaces defined in the compo-
nent. Assuming the calling convention with the outer world is known, dynamic
dispatch can easily take care of external objects whose classes implement inter-
faces defined in the component. Method call implementation adopted by external
code is more complex since function calls must jump to the correct entry point,
but it still can be achieved for example using object wrappers.

Finally, register r4 is used to identify the current object (this) in a method
call at the low level. Before a callback, r4 is stored in the secure stack so as to
be able to restore this to the right value once the callback returns.

Securing the Compilation. Following are the countermeasures added to
withstand the attacks described in the Examples above. Since the countermea-
sure to Example 3 affects the others, it is presented first.

Object Identity. To mask low-level object identities, a data structure O is added
to the data structures of Fig. 1. It is a map between low-level object identities
that have been passed to external code and natural numbers. Object identities
that are passed to external code are added to O right before they are passed.
The index in the data structure is then passed in place of the object identity, the
same index must be passed for an already recorded object. Indices in O are thus
passed in a deterministic order, based on the interaction between external and
internal code. Code at entry points is responsible for retrieving object identities
from O before the actual method call. As the only objects in the data structures
are the ones the attacker knows, it cannot guess object identities.

Entry Points. To support programming to an interface, the compilation scheme
creates method entry points in protected memory for all interface-declared meth-
ods. A single returnback entry point for returning after a callback is also needed.
Table 1 describes the code executed at those points.

Both entry points are logically divided in two parts. The first part performs
the checks described in the previous paragraph and then jumps either to the code
that performs the dynamic dispatch or to the callback. The second part returns
control to the location from which the entry point was called; call this the exit
point for method entry points and re-entry point for the returnback entry point.
For method calls to be well-typed, the code at entry points performs dynamic
typechecks. This checks that a method is invoked on objects of the right type (line
2), with parameters of the right type (line 4). Similar checks are executed when
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Table 1. Pseudo code executed at entry points. Loading means that a value is retrieved
from the memory, push and pop are operations on the secure stack.

Method p entry point Returnback entry point
1 Load current object v = O(R4) a Push current object v = R4, return
2 Check that v’s class defines method p address a and return type m
3 Load parameters v from O b Reset flags and unused registers
4 Dynamic typecheck c Replace object identities with index in O
5 Perform dynamic dispatch d Jump to callback address

Exit point (run method code) Re-entry point (run external code)
6 Reset flags and unused registers e Pop return type m and check it
7 Replace object identities f Dynamic typecheck

with index in O g Pop return address a, current object v
and resume execution

returning from a callback, in the returnback entry point (line f). These checks
are performed only on objects whose class is defined in the compiled component,
as they are allocated in protected memory; no control over externally allocated
objects can be assumed. If any check fails, all registers and flags are cleared and
the execution halts. Resetting flags and registers and Unit-typed value checks are
as in Section 2.2. Dynamic typecheck involves checking primitive-typed values.
These are needed for all primitive types inhabited by a finite number of values,
such as Unit and Bool. For example, bool-typed parameters must have either
value 1 or 0, which correspond to the high-level values true or false [7].
Insights. Following are the insights gained from developing a secure compilation
scheme for Java Jr.; they will be useful in the following sections.

– Internal objects that are passed to external code must be remembered; their
address must be masked.

– Strong typing of methods must be enforced with additional runtime checks.
– The low-level code must not introduce additional functionality (low-level

functions in entry points) that is not available at the high level.

3.2 Secure Compilation of Cross-Package Inheritance

Cross-package inheritance arises whenever class D from an export package PSUB
extends class C from a different export package PSUP, as in Listing 1.2. Cross-
package inheritance is not provided by Java Jr., as it would break the main result
proven in the Java Jr. paper [11]. In order to allow cross-package inheritance,
classes that can be extended must appear in import packages. Thus, given an
import package, entry points are created not only for interface-defined methods,
but also for class-defined ones and for constructors. Class D can optionally over-
ride methods of the super class C, as is the case with method m(). Within those
methods, calls to super can be used in order to call method m() of the super
class C. Alternatively, if a method is not overridden, such as method z(), calling
d.z() on an object d of type D executes method z() defined in the super class C.
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1 package PSUP;
2 class C { // called the super class
3 public m():Int { · · · }
4 public z(): Int { · · · }
5 }
6 package PSUB;
7 class D extends PSUP.C { // called the sub class
8 public m():Int{ super.m(); · · · }
9 }

Listing 1.2. Example of cross-package inheritance

If the normal compilation scheme were followed, at the low-level d is allocated
to a single memory area where fields from subobjects C and D are both allocated.
Example 4 highlights the problems that arise in this setting.

Example 4 (Allocation of d). Consider the case when C is protected and D
is not. If d is allocated outside the protected memory partition, private fields of
the C subobject become accessible to external code. If d is allocated inside the
protected memory partition, two options arise. The first one is placing untrusted
methods of D in the protected memory partition, violating the security of the
compilation scheme. Otherwise, if methods of D are placed in the unprotected
memory partition, they cannot access D’s fields via offset. Getters and setters
for fields of D could be exposed through entry points, but this would violate full
abstraction, as those methods are not available at the high level.

The problems just presented above also arise when C is not protected but D is,
thus compilation of cross-package inheritance cannot be achieved normally.

To allocate d securely, it is split in two sub-objects: dc, with fields of class C,
and dd, with fields of class D; the object identity of d is dd [23].

Consider firstly the case when C is protected and D is not. External code needs
to compile the expression d = new D() so that it calls new C() to create object
dc in the protected memory section. External code must then save the resulting
identifier for dc to perform super calls, since they are translated as method calls.
The additional checks inserted at entry points presented in Section 3.1 ensure
that super calls are always well-typed.

Consider then the case when C is not protected and D is. The secure compiler
needs to call new D() and save the returned object identity for dd in a memory
location, since super calls in this case are compiled as callbacks. When expression
d = new D() is compiled, the unprotected address dc is stored at the low-level,
right after the type of dd. The expression super.m() is compiled as dc.m().

The creation of two separate objects may seem to break full abstraction of the
compilation scheme in a way similar to what Abadi found out for inner classes [1].
In fact, low level external code is given the functionality to call dc.m(), which
is not explicitly possible in the high-level language. However, d.super.m() is an
implicit call to the m() method of C, functionality that the high-level language
already has. Handling of cross-package inheritance does not add functionality at
the low level, so it does not break full abstraction of the compilation scheme.
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3.3 Exceptions

Secure compilation of languages supporting exceptions must handle the difficul-
ties that result from the modification of the flow of execution of a program.
1 package P1;
2 class G {
3 public m():Void{
4 try{ new P2.H().e(); } catch (e : P3.MyException){ // handle e

} }
5 }
6 package P2;
7 class H {
8 public e():Void throws P3.MyException { throw new P3.MyException();

}
9 }

10 package P3;
11 class MyException implements Throwable {· · ·}

Listing 1.3. Example of exceptions usage

Exception handling can be securely implemented by modifying the runtime of
the language so that it knows where to dispatch a thrown exception. Activation
records are responsible for pointing to the exception handlers in order to prop-
agate a thrown exception to the right handler. In Listing 1.3, the catch block
of method m() in class G defines a handler for exceptions of type MyException.
When the activation record for m() is allocated, the handler is registered. When
an exception of type MyException is thrown, the stack is traversed to find the
closest handler for exceptions of type MyException. As activation records are
traversed and a handler is not found, those records are popped from the stack.

In the context of secure compilation, exception handlers are compiled in the
usual manner. In order to implement throwing an exception in secure code that
is caught in insecure code (or vice versa), throwing is compiled as callbacks
(or calls). Thus two additional entry points are created: the throw entry point
and the throwback entry point. These entry points forward calls to the secure
and insecure exception dispatchers, respectively. The secure exception dispatcher
traverses the secure stack looking for handlers for the thrown exception. After an
activation record has been inspected and deallocated, the exception is forwarded
to the external code through the throwback entry point. In order to prevent
exploits similar to those of Example 2, the throwback entry point must remember
internally allocated exceptions that are thrown to external code. So, a data
structure E , similar to O, is created to register leaked exceptions. This prevents
external code from passing a fake object identity to the secure exception handler
in place of the object identity of an exception, effectively throwing a non-existent
exception. External code can implement a wrapper around the exception object
identity in order to be able to associate it to its type and then be able to recognise
the type of the exception in the handler.

Fig. 2 presents a graphical overview of how exceptions are handled normally
(on the left) and in the presented compilation scheme (on the right). Lower case
letters indicate the allocation record for the corresponding function. A subscript
s indicates a secure function; the stack grows downward. The order in which
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exception handlers are searched is indicated on arrows. The throw and throwback
entry point split the same call in two parts.

Full abstraction of the compilation scheme is preserved since the low-level
is not extended with functionality that the high-level lacks. Only exceptions
of existing types can be thrown and handling exceptions follows the normal
course of the stack. The external code could replace an exception with a fake
one, but this is equivalent to the high-level language functionality to catching an
exception and throwing another one. Thus the low-level is not granted additional
functionality.

3.4 Secure Compilation of Inner Classes

Inner classes are classes that are defined inside another class, as in Listing 1.4.
Inner classes have access to private fields of the class they are defined within.

1 class AccountClass implements PI.Account {
2 AccountClass() { counter = 0; }
3 private counter : Int;
4
5 class Inner { // Inner has access to counter }
6 }

Listing 1.4. Example of an inner class

Inner classes of the secure component are compiled as normal classes in the
protected memory partition, in the usual fashion. To implement access from the
inner class to the private fields of the surrounding class, a getter and a setter for
each of its private fields are created. In the case of Listing 1.4, class AccountClass
is extended with getters and setters for the counter field when compiled. Access
from Inner to counter is compiled as method calls via the getter and setter.

This approach is inspired by Abadi [1], who shows that it breaks full abstrac-
tion of compilation in an early version of the JVM. In that setting, the additional
low-level methods are not available at the high level, thus other low-level code
other than the inner classes can call those methods, achieving something that
was not possible at the high level. In our secure compilation scheme, the addi-
tional methods are available in the surrounding class. However the additional
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methods are not made available through entry points, thus the external code
cannot invoke them. This means that the addition of inner classes to the secure
compilation scheme preserves the full abstraction property.

4 Full Abstraction of the Compilation Scheme

This section presents an outline of the proof of full abstraction of the compila-
tion scheme of Section 3. As mentioned in Section 1, a fully abstract compilation
scheme preserves and reflects contextual equivalence of high- and low-level pro-
grams. This paper does not argue about the choice of contextual equivalence for
modelling security properties [1,2,3,4,7,9,12].

Informally speaking, two programs C1 and C2 are contextually equivalent if
they behave the same for all possible evaluation contexts they interact with. An
evaluation context C can be thought of as a larger program with a hole. If the
hole is filled either with C1 or C2, the behaviour of the whole program does not
vary. Formally, contextual equivalence is defined as: C1 ) C2 � ∀C. C[C1]⇑ ⇐⇒
C[C2]⇑ , where ⇑ denotes divergence [20].

Denote the result of compiling a component C as C↓. Full abstraction of the
compilation scheme is formally expressed as: C1 ) C2 ⇐⇒ C↓

1 ) C↓
2 . The

co-implication is split in two cases. The direction C↓
1 ) C↓

2 ⇒ C1 ) C2 states
that the compiler outputs low-level programs that behave as the corresponding
source programs. This is what most compilers achieve, at times even certifying
the result [5,13]; we are not interested in this direction. This is thus assumed, the
consequences of this assumption are made explicit (Assumption 1 below). The
direction C1 ) C2 ⇒ C↓

1 ) C↓
2 states that high-level properties are preserved

through compilation to the low level. Proving this direction requires reasoning
about contexts, which is notoriously difficult [4]. This is even more so in this
setting, where low-level contexts are memories lacking any inductive structure.
To avoid working with contexts, we equip the low-level language with a trace
semantics that is equivalent to its operational semantics [18] (Proposition 1 be-
low) and prove the contrapositive: TracesL(C↓

1 ) 
= TracesL(C
↓
2 ) ⇒ C1)/ C2. This

proof is based on an algorithm that creates a high-level component, a “witness”
that differentiates C1 from C2, given that they have different low-level traces α1

and α2. This proof strategy is known [3,10], its complexity resides in handling
features of the high-level language such as typing or dynamic memory allocation.

This proof, as well as the formalisation of Java Jr. and the assembly language,
can be found in the companion report [19]. To further support the validity of
this proof, the algorithm has been implemented in Scala, and it outputs Java
components that adhere to the Java Jr. formalisation.1

Assumption 1 (Compiler preserves behaviour). The compiler is assumed
to output low-level programs that behave as the corresponding input program.

1 Available at http://people.cs.kuleuven.be/~marco.patrignani/Publications.

html

http://people.cs.kuleuven.be/~marco.patrignani/Publications.html
http://people.cs.kuleuven.be/~marco.patrignani/Publications.html
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Thus a high-level expression is translated into a list of low-level instructions that
preserve the behaviour. By this, we mean that the following properties hold:

– C↓
1 ) C↓

2 ⇒ C1 ) C2.
– There exists an equivalence relation between high-level states and low-level

states, such that:
• The initial high- and low-level states are equivalent.
• Given two equivalent states and two corresponding internal transitions,

the states these transitions lead to are equivalent. Moreover, given two
equivalent states and two equivalent actions, the states these transitions
lead to are equivalent.

Proposition 1 (Trace semantics is equivalent to operational seman-
tics [18]). For any two low-level components C↓

1 and C↓
2 obtained from com-

piling Java Jr. components C1 and C2 with the secure compilation scheme, we
have that: TracesL(C↓

1 ) = TracesL(C
↓
2 ) ⇐⇒ C↓

1 ) C↓
2 .

Theorem 1 (Differentiation of components). Any two high-level compo-
nents C1 and C2 that exhibit two different low-level trace semantics are not
contextually equivalent. Formally: TracesL(C↓

1 ) 
= TracesL(C
↓
2 ) ⇒ C1)/ C2.

Theorem 2 (Full abstraction of the compilation scheme). For any two
high-level components C1 and C2, we have (assuming there is no overflow of the
secure stack or of the secure heap): C1 ) C2 ⇐⇒ C↓

1 ) C↓
2 .

5 Benchmarks

This section presents benchmarking of the overhead of the secure compiler, which
is proportional to the amount of boundaries crossing.

As a target low-level architecture we chose Fides [3,22]. The Fides architecture
implements precisely the protection mechanism described in Section 2.1 in a very
reduced TCB: ∼7000 lines of code. Fides consists of a hypervisor that runs two
virtual machines: one handles the secure memory partition and one handles the
other [22]. One consequence is that switching between the two virtual machines
of Fides (performing calls and callbacks) is a costly operation.

For the benchmarks, we implemented a secure runtime in C. The secure run-
time adds the checks presented in Section 3 to calls, callbacks (both with differ-
ent number of parameters, ranging from one to eight), returns and returnbacks.
These operations are executed on stub objects. A stub objects is a data structure
that models the low-level representation of objects; it has an integer field that
indicates the class of the object followed by the fields of the object. The secure
runtime also contains the data structure O and functions that mask object ref-
erences through it. Each operation was tested 1000 times on a MacBook Pro
with a 2.3 GHz Intel Core i5 processor and 4GB 1333MHz DDR3 RAM. The
overhead introduced for each operation ranged from 0.09% to 7.89%, averaging
a 3.25% overhead. Details of the measurements can be found in the companion
report [19].
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6 Limitations
This section presents limitations of the compilation scheme of Section 3 and
discusses garbage collection when part of the program is compiled securely.

Like many model languages [2,9], Java Jr. lacks features that real-world pro-
gramming languages have, such as multithreading, foreign-function interfaces
and garbage collection. A thorough investigation of the changes needed in order
to support secure compilation of languages with those features is left for future
work. Let us now informally discuss how garbage collection can be achieved in
concert with a secure compiler.

Garbage collection is a runtime addition that handles whole programs. Firstly,
assume that the external code is well-behaved and it does not disrupt the garbage
collector, such as by introducing fake pointers. To perform garbage collection
when part of the whole program is securely compiled, a part of the garbage
collector must be trusted and allocated in the protected memory partition so
that it can access O. In this way the garbage collector can traverse the whole
object graph and identify the location of a reference that is an index of O.

Assume now that external code can disrupt the functionality of the garbage
collector. The classical notion of garbage collection becomes void. In this setting
the securely compiled component can be extended with a secure memory man-
ager in charge of the secure memory partition. Here, an arguable safe method-
ology is to not deallocate a reference that is passed from the secure component
to external code, a fact that creates problems when the allocated object is large
or when many objects are passed out. In order to provide a solution to part of
the problem, the compiler can introduce leasing [8]; this gives objects that are
leaked a lifetime duration which, upon expiration, causes object deallocation.
Alternatively, the caretaker pattern can be introduced. Instead of leaking an
object reference o, the reference is wrapped in a proxy p (the caretaker) and the
reference to p is leaked. In addition to method proxies for methods of o, p has a
method to set the reference to o to null, allowing the secure memory manager to
free o’s memory. The problem that arises now is a breach in full abstraction: the
caretaker pattern must be lifted to the high level to preserve full abstraction.

7 Related Work
This paper extends the work of Agten et al. [3], where the same result is achieved,
but for a simpler, object-based, high-level language. This work adopts an object-
oriented language with dynamic object allocation, cross-package inheritance, ex-
ceptions and inner classes, which makes the result significantly harder to achieve.

Secure compilation through full abstraction was pioneered by Abadi [1], where,
alongside a result in the π-calculus setting, Java bytecode compilation in the
early JVM is shown to expose methods used to access private fields by private
inner classes. Kennedy [12] listed six full abstraction failures in the compilation
to .NET, half of which have been fixed in modern C# implementations.

Address space layout randomisation has been adopted by Abadi and Plotkin [2]
and subsequently by Jagadeesan et al. [9] to guarantee probabilistic full abstrac-
tion of a compilation scheme. In both works the low-level language is more
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high-level than ours and the protection mechanism is different. Compilation
does not necessarily need to target machine code, as Fournet et al. [7] show
by providing a fully abstract compilation scheme from an ML dialect named
F∗ to JavaScript that relies on type-based invariants. Similarly, Ahmed and
Blume [4] prove full abstraction of a continuation-passing style translation from
simply-typed λ-calculus to System F. In both works, the low-level language is
typed and more high-level than ours. The checks introduced by our compilation
scheme seem simpler than the checks of Fournet et al.

A large amount of work on secure compilation applies to unsafe languages such
as C, as surveyed by Younan et al. [24]. That research is devoted to strengthening
the run-time of C and not on fully abstract compilation.

A different area of research provides security architectures with fine-grained
low-level protection mechanisms. Different security architectures with access
control mechanisms comparable to ours have been developed in recent years:
TrustVisor [14], Flicker [15], Nizza [21], SPMs [17,22]2 and the Intel SGX [16].
The existence of industrial prototypes underlines the feasibility of this approach
to bringing efficient, secure, low-level memory access control in commodity hard-
ware. No results comparable to ours were proven for these systems.

8 Conclusion and Future Work

This paper presented a fully abstract compilation scheme for a strongly-typed,
single-threaded, component-based, object-oriented programming language with
dynamic memory allocation, exceptions, cross-package inheritance and inner
classes to untyped machine code enhanced with a low-level protection mech-
anism. Full abstraction of the compilation scheme is proven correct, guaran-
teeing preservation and reflection of contextual equivalence between high-level
components and their compiled counterparts. From the security perspective this
ensures that low-level attackers are restricted to the same capabilities high-level
attackers have. To the best of our knowledge, this is the first result of its kind
for such an expressive high-level language and such a powerful low-level one.

Future work includes extending the results to a language with more real-world
programming language features such as concurrency and distribution.
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Abstract. The formalism of metric transition systems, as introduced by
de Alfaro, Faella and Stoelinga, is convenient for modeling systems and
properties with quantitative information, such as probabilities or time.
For a number of applications however, one needs other distances than
the point-wise (and possibly discounted) linear and branching distances
introduced by de Alfaro et.al. for analyzing quantitative behavior.

In this paper, we show a vast generalization of the setting of de Al-
faro et.al., to a framework where any of a large number of other use-
ful distances can be applied. Concrete instantiations of our framework
hence give e.g. limit-average, discounted-sum, or maximum-lead linear
and branching distances; in each instantiation, properties similar to the
ones of de Alfaro et.al. hold.

In the end, we achieve a framework which is not only suitable for
modeling different kinds of quantitative systems and properties, but also
for analyzing these by using different application-determined ways of
measuring quantitative behavior.

1 Introduction

During the last decade, formal verification has seen a trend towards modeling and
analyzing systems which contain quantitative information. This is motivated by
applications in real-time systems, hybrid systems, embedded systems and others.
Quantitative information can thus be a variety of things: probabilities, time, tank
pressure, energy intake, etc.

A number of quantitative models have hence been developed: probabilistic
automata [39], stochastic process algebras [30], timed automata [2], hybrid au-
tomata [1], continuous-time Markov chains [40], etc. Similarly, there is a number
of specification formalisms for expressing quantitative properties: timed compu-
tation tree logic [29], probabilistic computation tree logic [26], metric temporal
logic [31], stochastic continuous logic [3], etc.

Quantitative model checking, the verification of quantitative properties for
quantitative systems, has also seen rapid development: for probabilistic sys-
tems in PRISM [32] and PEPA [23], for real-time systems in UPPAAL [35]
and RED [46], and for hybrid systems in HyTech [27] and SpaceEx [22], to name
but a few.

Quantitative model checking has, however, a problem of robustness. When
the answers to model checking problems are Boolean—either a system meets its
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x := 0 close

x ≥ 60 train
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x := 0 close
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C

Fig. 1. Three timed automata modeling a train crossing

specification or it does not—then small perturbations in the system’s parameters
may invalidate the result. This means that, from a model checking point of view,
small, perhaps unimportant, deviations in quantities are indistinguishable from
larger ones which may be critical.

As an example, Fig. 1 shows three simple timed-automata models of a train
crossing, each modeling that once the gates are closed, some time will pass before
the train arrives. Now if the specification of the system is “The gates have to
be closed 60 seconds before the train arrives”, then model A does satisfy the
specification, and models B and C do not. What this does not tell us, however,
is that model C is dangerously far away from the specification, whereas model B
only violates it slightly (and may be acceptable from a practical point of view).

In order to address the robustness problem, one approach is to replace the
Boolean yes-no answers of standard verification with distances. That is, the
Boolean co-domain of model checking is replaced by the non-negative real num-
bers. In this setting, the Boolean true corresponds to a distance of zero and
false to the non-zero numbers, so that quantitative model checking can now
tell us not only that a specification is violated, but also how much it is violated,
or how far the system is from corresponding to its specification.

In our example, and depending on precisely how one wishes to measure dis-
tances, the distance from A to our specification is 0, whereas the distances from
B and C to the specification may be 2 and 59, respectively. Note that the precise
interpretation of distance values will be application-dependent; but in any case,
it is clear that C is much further away from the specification than B is.

The distance-based approach to quantitative verification has been developed
the furthest for probabilistic and stochastic systems, perhaps akin to the fact
that for these systems, the need for a truly quantitative verification is felt the
most urgent. Panangaden and Desharnais et.al. have worked with distances for
Markov processes e.g. in [4, 16, 34, 37], and van Breugel and Worrell et.al. have
developed distances for probabilistic transition systems e.g. in [44,45]. De Alfaro
and Stoelinga et.al. have worked on distances between probabilistic systems and
specifications in [13, 14] and other papers.
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For real-time and hybrid systems, some explicit work on distances is avail-
able in [28, 38]. Otherwise, distances have been used in approaches to robust
verification [8, 33], and Girard et.al. have developed a theory of approximate
bisimulation for robust control [25, 47].

Also general work on distances for quantitative systems where the precise
meaning of the quantities remains unspecified has been done. Van Breugel has
developed a general theory of behavioral pseudometrics, see e.g. [43], and Fahren-
berg and Legay et.al. have introduced linear and branching distances for such
systems in [5, 6, 21, 42]. Henzinger et.al. have employed distances in a software
engineering context in [9] and for abstraction refinement and synthesis in [10,11].

A different but related approach to quantitative verification is the theory
of weighted automata and quantitative languages developed by Droste et.al.
in [17–19] and by Henzinger and Chatterjee et.al. in [7, 12].

Common to all the above distance-based approaches is that they introduce
distances between systems, or between systems and specifications, and then em-
ploy these for approximate or quantitative verification. However, depending on
the application context, a plethora of different distances are being used. Conse-
quently, there is a need for a general theory of quantitative verification which
depends as little as possible on the concrete distances being used. This is a
point of view which is argued in [6, 10, 11, 21], and a number of the above pa-
pers [7, 17, 19, 37, 43] attempt to develop the theory at this general level.

To be more specific, most of the above approaches can be classified according
to the way they measure distances between executions, or system traces. The
perhaps easiest such way is the point-wise distance, which measures the greatest
individual distance between corresponding points in the traces. Theory for this
specific distance has been developed e.g. in [8,13–15,42]. Sometimes discounting
is applied to diminish the influence of individual distances far in the future,
e.g. in [13–15].

Another distance which has been used is the accumulating one, which sums
individual distances along executions. Two major types have been considered
here: the discounted accumulating distance e.g. in [5,9,42] and the limit-average
accumulating distance e.g. in [9]. For real-time systems, a useful distance is
the maximum-lead one of [28, 42] which measures the maximum difference be-
tween accumulated time delays along traces. For hybrid systems, things are more
complicated, as distances between hybrid traces have to take into account both
spatial and timing differences, see e.g. [24, 25, 38, 47].

It is our point of view that the differences between measuring distances be-
tween system traces are fundamental, in the sense that specifying one concrete
way of measuring such trace distances fixes the quantitative semantics to a con-
crete application. Any general theory of quantitative verification should, then,
be independent of the way one measures distances between traces.

In this paper we show how such a distance-independent theory of quantitative
verification may be attempted. Taking as our model of quantitative systems the
metric transition systems of [15] and starting out with an abstract distance on
traces, we define linear and branching distances and show that they have the
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expected properties. Our linear distances generalize trace inclusion and equiva-
lence to the general quantitative setting, and the branching distances generalize
simulation and bisimulation.

As a central technical tool in our developments, we assume that the trace
distance factors through a complete lattice, and that this lifted trace distance
has a recursive characterization. We show that this assumption holds for most
of the trace distances considered in the above-mentioned papers; specifically,
our theory can be instantiated with the point-wise (and possibly discounted)
distance, the accumulating distance (both discounted and limit-average), and
the maximum-lead distance.

This paper follows up on work in [21], where we develop a general quantitative
theory for weighted transition systems, using the theory of quantitative games.
Compared to this work, the present paper uses a different model for quantitative
systems (namely, the one from [15]), hence the linear and branching distances
have to be defined differently; also, no game theory is necessary for us here.

2 Metric Transition Systems

We recapitulate the setting and terminology of [15], adapting it slightly to our
needs.

A hemimetric on a set X is a function d : X × X → �≥0 ∪ {∞} which
satisfies d(x, x) = 0 and d(x, y) + d(y, z) ≥ d(x, z) (the triangle inequality)
for all x, y, z ∈ X . The hemimetric is said to be symmetric if also d(x, y) =
d(y, x) for all x, y ∈ X ; it is said to be separating if d(x, y) = 0 implies x =
y. The terms “pseudometric” for a symmetric hemimetric, “quasimetric” for a
separating hemimetric, and “metric” for a hemimetric which is both symmetric
and separating are also in use, but we will not use them here. The tuple (X, d)
is called a hemimetric space.

In [15], hemimetrics are called “directed metrics”, “undirected” is used in-
stead of “symmetric”, and “proper” instead of “separating”. Our choice of jargon
is driven by a wish to follow more-or-less established terminology; specifically,
the term “metric” has a standard meaning in mathematics, so that we find the
term “directed metric” for what should better be called a “directed quasimetric”
(or, “pseudometric”) unfortunate. Similarly, our use of “separating” instead of
“proper” is motivated by the use of this term in topology: the topology induced
by a (separating) metric has the T2 Hausdorff separation property, whereas the
one induced by a pseudometric does not.

Note that our hemimetrics are extended in that they can take the value ∞.
This is convenient for several reasons, cf. [36], one of them being that it allows
for a disjoint union, or coproduct, of hemimetric spaces: the disjoint union of
(X1, d1) and (X2, d2) is the hemimetric space (X1, d1)∪+(X1, d2) = (X1∪+X2, d)
where points from different components are infinitely far away from each other,
i.e. with d defined by
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s1u(a) = 0

u(a) = 3

u(a) = 11 u(a) = 5

t1 u(a) = 0

u(a) = 3 u(a) = 4

u(a) = 5 u(a) = 15

s2u(a) = 0

u(a) = 3

u(a) = 11 u(a) = 5

t2 u(a) = 0

u(a) = 3 u(a) = 4

u(a) = 5 u(a) = 15

Fig. 2. Example of a metric transition system

d(x, y) =

⎧⎪⎨
⎪⎩

d1(x, y) if x, y ∈ X1,

d2(x, y) if x, y ∈ X2,

∞ otherwise.

We will need to generalize hemimetrics to codomains other than �≥0 ∪ {∞}.
For a partially ordered monoid (M,�,�,�), an M -hemimetric on X is a function
d : X ×X → M which satisfies d(x, x) = � and d(x, y)� d(y, z) + d(x, z) for all
x, y, z ∈ X ; symmetry and separation are generalized in similar ways.

Let Σ be a set of atomic propositions and (X, d) a hemimetric space; these
will be fixed throughout this paper. A valuation on Σ is a mapping u : Σ → X ;
the set of all valuations on Σ is denoted U [Σ]. Note that in the setting of [15],
each proposition a takes values in a separate hemimetric space Xa. Using ex-
tended hemimetrics allows us to unite all these spaces into one. The propo-
sitional distance [15] is the mapping pd : U [Σ] × U [Σ] → �≥0 defined by
pd(u, v) = supa∈Σ d(u(a), v(a)).

A metric transition system (MTS) S = (S, T, [·]) consists of sets S of states
and T ⊆ S × S of transitions, together with a state valuation mapping [·] : S →
U [Σ]. For s, t ∈ S, we write s → t iff (s, t) ∈ T . Fig. 2 shows a simple example
of a MTS over Σ = {a} which we will use later.

A path in S is a (finite or infinite) sequence π = (π0, π1, . . . ) of states πi ∈ S
in which πi → πi+1 for all i. Note that, extending [15], we also handle finite
paths instead of only infinite ones.
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A trace in Σ is a (finite or infinite) sequence σ = (σ0, σ1, . . . ) of valuations
σi ∈ U [Σ]. The set of such traces is denoted U [Σ]∞. For a path π in S, its
induced trace is [π] = ([π0], [π1], . . . ). For a state s ∈ S, we let Tr(s) = {[π] |
π0 = s} denote the set of traces emanating from s. We introduce some convenient
notation for traces: ε denotes the empty trace, u.σ the concatenation of u ∈ U [Σ]
with σ ∈ U [Σ]∞, and len(σ) the length (finite or ∞) of σ.

As usual, a relation R ⊆ S × S is called a simulation (on S) if it holds that
[s] = [t] for all (s, t) ∈ S and

– for all s → s′ there is t → t′ such that (s′, t′) ∈ R.
R is called a bisimulation if, additionally,

– for all t → t′ there is s → s′ such that (s′, t′) ∈ R.
We write s , t if there is a simulation R with (s, t) ∈ R, and s ≈ t if there is a
bisimulation R with (s, t) ∈ R.

3 Examples of Trace Distances

We can now give concrete examples of trace distances which have been used in
the literature.

The point-wise trace distance is tdpw : U [Σ]∞×U [Σ]∞ → �≥0 ∪{∞} defined
by

tdpw(σ, τ) =

{
∞ if len(σ) 
= len(τ),
supi pd(σi, τi) otherwise.

This distance has been employed in [8, 13–15,42].
Using a discount factor λ ∈ �≥0 with λ < 1, one may discount the influence of

individual distances which occur further along the traces. The discounted point-
wise trace distance, which has been used in [13–15], is thus tdpw,λ : U [Σ]∞ ×
U [Σ]∞ → �≥0 ∪ {∞} defined by

tdpw,λ(σ, τ) =

{
∞ if len(σ) 
= len(τ),
supi λ

ipd(σi, τi) otherwise.

The accumulating trace distance is tdacc : U [Σ]∞ × U [Σ]∞ → �≥0 ∪ {∞}
defined by

tdacc(σ, τ) =

{
∞ if len(σ) 
= len(τ),∑

i pd(σi, τi) otherwise.

This distance is typically used with discounting or limit-averaging:
Using again a discount factor λ ∈ �≥0 with λ < 1, the discounted accumulat-

ing trace distance is tdacc,λ : U [Σ]∞ × U [Σ]∞ → �≥0 ∪ {∞} defined by

tdacc,λ(σ, τ) =

{
∞ if len(σ) 
= len(τ),∑

i λ
ipd(σi, τi) otherwise.
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This distance has been used in [5, 9, 42].
The limit-average trace distance, which has been used in [9], is tdlimavg :

U [Σ]∞ × U [Σ]∞ → �≥0 ∪ {∞} defined by

tdlimavg(σ, τ) =

{
∞ if len(σ) 
= len(τ),
lim infj

1
j+1

∑j
i=0 pd(σi, τi) otherwise.

This is generally defined only for infinite traces. If one wants it defined also for
finite traces σ, τ (of equal length N), one can patch σ and τ so that pd(σi, τi) = 0
for i > N ; then tdlimavg(σ, τ) = 0 in this case.

Both the discounted accumulating and limit-average trace distances are well-
known from the theory of discounted and mean-payoff games [20, 48].

The maximum-lead trace distance tdmaxlead : U [Σ]∞ × U [Σ]∞ → �≥0 ∪ {∞}
from [28,42] is only defined for the case where the valuation space is X = �. It
is given by

tdmaxlead(σ, τ) =

{
∞ if len(σ) 
= len(τ),
supj supa∈Σ

∣∣∑j
i=0 σi(a)−

∑j
i=0 τi(a)

∣∣ otherwise.

4 Linear Distances

To generalize the examples of the previous section, we define a trace distance to
be a general hemimetric on traces which specializes to the propositional distance
on individual valuations and is finite only for traces of equal length:

Definition 1. A trace distance is a hemimetric td : U [Σ]∞ × U [Σ]∞ → �≥0 ∪
{∞} for which td(u, v) = pd(u, v) for all u, v ∈ U [Σ] and td(σ, τ) =∞ whenever
len(σ) 
= len(τ).

We note that in case pd is separating, then also all example trace distances
from Section 3 are separating, except for the limit-average distance. For the
latter, tdlimavg(σ, τ) = 0 iff either σ = τ are finite traces, or there exists an index
k such that σi = τi for all i ≥ k. Also, the maximum-lead trace distance is
symmetric; the others are symmetric iff pd is symmetric.

For any given trace distance, we can define the linear distance between states
in S as the (asymmetric) Hausdorff distance between the corresponding sets of
traces:

Definition 2. For a given trace distance td, the linear distance induced by td is
ld : S × S → �≥0 ∪ {∞} given by

ld(s, t) = sup
σ∈Tr(s)

inf
τ∈Tr(t)

td(σ, τ).

The symmetric linear distance induced by td is ld : S × S → �≥0 ∪ {∞} given
by ld(s, t) = max(ld(s, t), ld(t, s)).
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Continuing the example from Fig. 2, we compute the linear distances ld(s1, t1)
and ld(s2, t2) induced by all our example trace distances, using the usual metric
on � for valuations and a discount factor of λ = .9 where applicable:

ldpw(s1, t1) = 4 ldpw(s2, t2) = 4

ldpw,λ(s1, t1) = 3.24 ldpw(s2, t2) = 3.24

ldacc(s1, t1) = 5 ldacc(s2, t2) = ∞
ldacc,λ(s1, t1) = 4.14 ldacc,λ(s2, t2) = 33.3

ldlimavg(s1, t2) = 0 ldlimavg(s2, t2) = 4

ldmaxlead(s1, t1) = 5 ldmaxlead(s2, t2) = ∞

Our first theorem shows that for separating trace distances on finite transition
systems, trace inclusion is the kernel of ld and trace equivalence the kernel of ld:

Theorem 1. Let S be finite and td separating. For all s, t ∈ S, Tr(s) ⊆ Tr(t)
iff ld(s, t) = 0 and Tr(s) = Tr(t) iff ld(s, t) = 0.

Proof. It is clear that Tr(s) ⊆ Tr(t) implies ld(s, t) = 0. For the opposite di-
rection, assume ld(s, t) = 0 and let σ ∈ Tr(s). For every i ∈ �+, there exists
τi ∈ Tr(t) for which td(σ, τi) < 1

i . Because S is finite, there is an index N such
that τi = τN for all i ≥ N . Then td(σ, τN ) = 0 and thus, as td is separating,
σ = τN . The second bi-implication is now clear. ��

Note that we have also shown the statement that, whether td is separating
or not, ld(s, t) = 0 implies that for every σ ∈ Tr(s), there exists τ ∈ Tr(t) with
td(σ, τ) = 0. An example in [15] shows that precisely this statement may fail in
case S is not finite.

5 Branching Distances

We have seen in Theorem 1 that the linear distances of the previous section are
generalizations of trace inclusion and trace equivalence. In order to generalize
simulation and bisimulation in a similar manner, we define branching distances.

To be able to introduce these branching distances, we need to assume that
our trace distance td factors through a complete lattice, and that the lifted trace
distance has a recursive characterization as given below. We will see in Section 6
that this is the case for all the example trace distances of Section 3.

For any set M , let �M = (�≥0 ∪ {∞})M be the set of functions from M to
�≥0∪{∞}. Then �M is a complete lattice with partial order � given by α � β
iff α(x) ≤ β(x) for all x ∈ M , and with an addition � given by (α � β)(x) =
α(x) + β(x). The bottom element of �M is also the zero of � and given by
⊥(x) = 0, and the top element is �(x) = ∞.

Definition 3. A recursive specification of a trace distance td consists of a set
M , a lattice homomorphism eval : �M → �≥0 ∪ {∞} and an �M -hemimetric



200 U. Fahrenberg and A. Legay

td� : U [Σ]∞×U [Σ]∞ → �M which together satisfy td = eval◦td�, and a function
F : U [Σ] × U [Σ] × �M → �M . F must be monotone in the third coordinate,
i.e. F (u, v, ·) : �M → �M is monotone for all u, v ∈ U [Σ], have F (u, u,⊥) =
⊥ for all u ∈ U [Σ], and satisfy, for all u, v ∈ U [Σ] and σ, τ ∈ U [Σ]∞, that
td�(u.σ, v.τ) = F (u, v, td�(σ, τ)).

Now if td is recursively specified as above, then we can use the recursion
to introduce branching distances sd and bd which generalize simulation and
bisimulation:

Definition 4. For a recursively specified trace distance td, let sd�, bd� : S×S →
�M be the respective least fixed points to the equations

sd�(s, t) = sup
s→s′

inf
t→t′

F ([s], [t], sd�(s′, t′)), (1)

bd�(s, t) = max

⎧⎨
⎩

sup
s→s′

inf
t→t′

F ([s], [t], bd�(s′, t′)),

sup
t→t′

inf
s→s′

F ([s], [t], bd�(s′, t′)).
(2)

The simulation distance induced by td is sd : S × S → �≥0 ∪ {∞} given by
sd = eval◦sd�; the bisimulation distance induced by td is bd : S×S → �≥0∪{∞}
given by bd = eval ◦ bd�.

Note that we define the distances using least fixed points, as opposed to
the greatest fixed point definition of standard (bi)simulation. Informally, this is
because our order is reversed: we are not interested in maximizing (bi)simulation
relations, but in minimizing (bi)simulation distance.

Lemma 1. The mappings sd and bd are well-defined hemimetrics on S.

Proof. We show the proof for sd; for bd it is similar. Let �S = �MS×S be the
lattice of functions from S×S to �M , then �S is complete because �M is. Let
I : �S → �S be defined by

I(f)(s, t) = sup
s→s′

inf
t→t′

F ([s], [t], f(s′, t′)),

similarly to (1). Because F ([s], [t], ·) : �M → �M is monotone for all s, t ∈ S,
I is monotone. Using Tarski’s fixed-point theorem, we can hence conclude that
I has a unique minimal fixed point, which is sd�. Clearly sd�(s, s) = ⊥ for all
s ∈ S, and by induction one can show that sd�(s, t) � sd�(t, u) + sd�(s, u) for
all s, t, u ∈ S. Hence sd� is an �M -hemimetric and sd is a hemimetric. ��

In order to show, similarly to Theorem 1, that simulation is the kernel of
simulation distance, we need a condition on the recursive F which mimics the
separation condition for hemimetrics. We say that a recursively specified trace
distance td is recursively separating if F : U [Σ] × U [Σ] × �M → �M satisfies
the condition that whenever F (u, v, x) = ⊥, then u = v and x = ⊥. Note that
this condition implies that td� is separating.
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Theorem 2. Let S be finite and td recursively specified and recursively separat-
ing. For all s, t ∈ S, s , t iff sd�(s, t) = ⊥ and s ≈ t iff bd�(s, t) = ⊥.

Proof. It is clear that s , t implies sd�(s, t) = ⊥. For the other direction, let
R = {(s′, t′) | sd�(s′, t′) = ⊥} ⊆ S × S. Then (s, t) ∈ R. Let (s′, t′) ∈ R, then
sups′→s′′ inft′→t′′ F ([s′], [t′], sd�(s′′, t′′)) = ⊥. As S is finite, this implies that for
all s′ → s′′, there exists t′ → t′′ with F ([s′], [t′], sd�(s′′, t′′)) = ⊥. By recursive
separation, we hence have [s′] = [t′] and sd�(s′′, t′′) = ⊥. We have shown that
R is a simulation on S. The proof that s ≈ t iff bd�(s, t) = ⊥ is similar. ��

The next theorem gives the relations between the different distances we have
introduced. Also these relations generalize the situation in the Boolean setting:
in light of Theorems 1 and 2, they are quantitative analogues to the facts that
simulation implies trace inclusion and that bisimulation implies simulation and
trace equivalence.

Theorem 3. Let td be recursively specified. For all s, t ∈ S, ld(s, t) ≤ sd(s, t) ≤
bd(s, t) and ld(s, t) ≤ bd(s, t).

Proof. The proof is best understood in a setting of quantitative games, cf. [21]. In
this setting, the standard simulation and bisimulation games [41] are generalized
to games with quantitative objectives. One can then see that the linear distances
can be computed by similar games, and that the only differences between these
games are given by certain restrictions on the strategies available to the first
player. The result follows from inclusions on these sets of restricted strategies.

We can, however, also give a direct proof of the fact that ld(s, t) ≤ sd(s, t)
without resorting to games (and similar proofs may be given for the other in-
equalities). To do so, we need to lift ld to the lattice �M : for s, t ∈ S, define

ld�(s, t) = sup
σ∈Tr(s)

inf
τ∈Tr(t)

td�(σ, τ),

then ld = eval ◦ ld� because eval is monotone. We show that ld�(s, t) � sd�(s, t)
for all s, t ∈ S, which will imply the result.

Let s, t ∈ S. We have

ld�(s, t) = sup
σ∈Tr(s)

inf
τ∈Tr(t)

td�(σ, τ)

= sup
s→s′

sup
σ′∈Tr(s′)

inf
t→t′

inf
τ ′∈Tr(t′)

td�([s].σ′, [t].τ ′)

= sup
s→s′

sup
σ′∈Tr(s′)

inf
t→t′

inf
τ ′∈Tr(t′)

F ([s], [t], td�(σ′, τ ′))

� sup
s→s′

inf
t→t′

sup
σ′∈Tr(s′)

inf
τ ′∈Tr(t′)

F ([s], [t], td�(σ′, τ ′))

= sup
s→s′

inf
t→t′

F ([s], [t], sup
σ′∈Tr(s′)

inf
τ ′∈Tr(t′)

td�(σ′, τ ′))

= sup
s→s′

inf
t→t′

F ([s], [t], ld�(s′, t′)),

and the statement now follows by induction. ��
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6 Examples Revisited

We can now apply the constructions of Section 5 to the example trace distances
from Section 3. We give recursive specifications for all distances and deduce the
corresponding branching distances. For ease of exposition, we will only consider
ourselves with the simulation distances here, but similar things can be said about
the bisimulation distances.

For the point-wise trace distance tdpw, a recursive specification is given as
follows (where {∗} denotes the one-point set; hence �M is isomorphic to �≥0 ∪
{∞}):

M = {∗} eval(x) = x

td�(σ, τ) = supi pd(σi, τi)

F (u, v, x) = max(pd(u, v), x)

Using Definition 4, the corresponding simulation distance sdpw = sd�pw is the
least fixed point to the equations

sdpw(s, t) = sup
s→s′

inf
t→t′

max(pd([s], [t]), sdpw(s
′, t′)).

This is similar to the formulation given in [14,15]. Note that if pd is separating,
then F is recursively separating, hence Theorem 2 applies.

For the discounted point-wise trace distance tdpw,λ the recursive specification
is similar:

M = {∗} eval(x) = x

td�(σ, τ) = supi λ
ipd(σi, τi)

F (u, v, x) = max(pd(u, v), λx)

The corresponding simulation distance is hence the least fixed point to the
equations

sdpw,λ(s, t) = sup
s→s′

inf
t→t′

max(pd([s], [t]), λsdpw,λ(s
′, t′)),

which is similar to what is in [14, 15]. Note again that if pd is separating, then
F is recursively separating, hence also here Theorem 2 applies.

Also the accumulating trace distance tdacc has a simple recursive specification
with �M isomorphic to �≥0 ∪ {∞}:

M = {∗} eval(x) = x

td�(σ, τ) =
∑

i pd(σi, τi)

F (u, v, x) = pd(u, v) + x

The corresponding simulation distance is hence the least fixed point to the
equations

sdacc(s, t) = sup
s→s′

inf
t→t′

(pd([s], [t]) + sdacc(s
′, t′)).
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Again, if pd is separating, then F is recursively separating, hence Theorem 2
applies.

A recursive specification for the discounted accumulating trace distance is
given as follows:

M = {∗} eval(x) = x

td�(σ, τ) =
∑

i λ
ipd(σi, τi)

F (u, v, x) = pd(u, v) + λx

The corresponding simulation distance is then the least fixed point to the
equations

sdacc,λ(s, t) = sup
s→s′

inf
t→t′

pd([s], [t]) + λsdacc,λ(s
′, t′),

similarly to what is in [9]. If pd is separating, then F is recursively separating,
hence Theorem 2 applies also in this case.

To obtain a recursive specification of the limit-average trace distance, we need
a richer lattice:

M = � eval(x) = lim infj x(j)

td�(σ, τ)(j) = 1
j+1

∑j
i=0 pd(σi, τi)

F (u, v, x)(j) = 1
j+1pd(u, v) +

j
j+1x(j − 1)

Using Definition 4, we obtain the corresponding lifted simulation distance as the
least fixed point to the equations

sd�limavg(s, t)(j) = sup
s→s′

inf
t→t′

(
1

j+1pd([s], [t]) +
j

j+1 sd
�

limavg(s
′, t′)(j − 1)

)
.

The limit-average simulation distance is then

sdlimavg(s, t) = lim infj sd�limavg(s, t)(j).

To the best of our knowledge, this formulation of limit-average simulation dis-
tance is new. We again remark that if pd is separating, then F is recursively
separating, hence Theorem 2 applies.

For the maximum-lead trace distance, we need a lattice which maps leads to
maximum leads. A recursive specification is as follows:

M = � eval(x) = x(0)

td�(σ, τ)(δ) = max(|δ|, supj supa∈Σ |δ +
∑j

i=0 σi(a)−
∑j

i=0 τi(a)|)
F (u, v, x)(δ) = supa∈Σ max(|δ + u(a)− v(a)|, x(δ + u(a)− v(a)))

The lifted simulation distance is then the least fixed point to the equations

sd�maxlead(s, t)(δ) = sup
s→s′

inf
t→t′

sup
a∈Σ

max

{
|δ + [s](a)− [t](a)|,
sd�maxlead(s

′, t′)(δ + [s](a)− [t](a)),
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cf. [28], and maximum-lead simulation distance is

sdmaxlead(s, t) = sd�maxlead(s, t)(0).

Also here it holds that if pd is separating, then F is recursively separating, hence
Theorem 2 applies.

Finishing the example from Fig. 2, we compute the simulation distances
sd(s1, t1) and sd(s2, t2) induced by all our example trace distances, using the
usual metric on � for valuations and a discount factor of λ = .9 where
applicable:

sdpw(s1, t1) = 6 sdpw(s2, t2) = 6

sdpw,λ(s1, t1) = 5.46 sdpw,λ(s2, t2) = 5.46

sdacc(s1, t1) = 6 sdacc(s2, t2) = ∞
sdacc,λ(s1, t1) = 5.46 sdacc,λ(s2, t2) = 54

sdlimavg(s1, t2) = 0 sdlimavg(s2, t2) = 6

sdmaxlead(s1, t1) = 6 sdmaxlead(s2, t2) = ∞

7 A Note on Robustness

In [15] it is shown that with respect to the point-wise linear and branching dis-
tances, metric transition systems are robust to perturbations in the state valua-
tions. To be precise, let [·]1, [·]2 : S → U [Σ] be two different state valuations on a
MTS S and define their valuation distance by vd([·]1, [·]2) = sups∈S pd([s]1, [s]2).
This measures how close the state valuations are to each other.

Now write ldipw and sdipw (with i ∈ {1, 2}) for the point-wise linear and simu-
lation distances with respect to the valuation [·]i. It is shown in [15] that for all
s, t ∈ S,

|ld1pw(s, t)− ld2pw(s, t)| ≤ vd([·]1, [·]2) + vd([·]2, [·]1),
|sd1pw(s, t)− sd2pw(s, t)| ≤ vd([·]1, [·]2) + vd([·]2, [·]1).

This is, hence, a robustness result: given that the two valuations are close to
each other, also the linear and branching distances will be.

Similar results can easily be seen to hold also for the symmetric linear and the
bisimulation distances, and also for the discounted point-wise versions of these
distances. A result similar in spirit, also for the point-wise distance, is reported
for robustness of timed automata in [8].

Using almost the same arguments as in [15], one can show that for the dis-
counted accumulating distances,

|ld1acc,λ(s, t)− ld2acc,λ(s, t)| ≤ 1
1−λ (vd([·]1, [·]2) + vd([·]2, [·]1)),

|sd1acc,λ(s, t)− sd2acc,λ(s, t)| ≤ 1
1−λ (vd([·]1, [·]2) + vd([·]2, [·]1)).

Hence MTS are also robust with respect to the discounted accumulating dis-
tances. In the proof, one uses the convergence of the geometric series: after the ith
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s t

u1(a) = 0 u1(a) = 0
s t

u2(a) = 0 u2(a) = 1

Fig. 3. Example of a MTS with two different state valuations

step, distances are discounted by λi, so no more than λi(vd([·]1, [·]2)+vd([·]2, [·]1))
can be added to the total distance. Hence the distance is bounded above by
(vd([·]1, [·]2) + vd([·]2, [·]1))

∑∞
i=0 λ

i = 1
1−λ(vd([·]1, [·]2) + vd([·]2, [·]1)).

Unfortunately, no general robustness results are available, and our other ex-
ample distances do not have similar properties. This is shown by the example
in Fig. 3. Here, vd([·]1, [·]2) = vd([·]2, [·]1) = 1, and the linear distances are as
follows, with the usual metric on � and λ = .9 where applicable:

ld1pw(s, t) = 0 ld2pw(s, t) = 1 ld1pw(t, s) = 0 ld2pw(t, s) = 1

ld1pw,λ(s, t) = 0 ld2pw,λ(s, t) = 1 ld1pw,λ(t, s) = 0 ld2pw,λ(t, s) = 1

ld1acc(s, t) = 0 ld2acc(s, t) =∞ ld1acc(t, s) = 0 ld2acc(t, s) = ∞
ld1acc,λ(s, t) = 0 ld2acc,λ(s, t) = 10 ld1acc,λ(t, s) = 0 ld2acc,λ(t, s) = 10

ld1limavg(s, t) = 0 ld2limavg(s, t) =∞ ld1limavg(t, s) = 0 ld2limavg(t, s) = ∞
ld1maxlead(s, t) = 0 ld2maxlead(s, t) =∞ ld1maxlead(t, s) = 0 ld2maxlead(t, s) = ∞

(The branching distances are equal to the linear distances in all cases.)

8 Conclusion

We have shown how the model of metric transition systems from [15] can be
embedded in a general quantitative framework which allows quantitative veri-
fication using a large number of different system distances. As these distances
are an essential part of quantitative verification and, at the same time, typically
depend on what precise application one has in mind, it is important to develop
a general quantitative theory of systems which is independent of the employed
distances. This is what we have done here.

Assuming an abstract trace distance as input, we have developed corresponding
linear and branching distances. What we have not done, however, is to compare
linear and branching distances which arise from different trace distances. One im-
portant question is, for example, whether the linear and branching distances one
obtains from two Lipschitz equivalent, or topologically equivalent, trace distances
will again be Lipschitz or topologically equivalent. This would be a crucial step in
a classification of system distances and is part of our ongoing research.

Another issue which we have not treated here is the logical side of quantitative
verification. In [15], the authors introduce a quantitative variant of LTL which
characterizes the point-wise linear distance, and a quantitative μ-calculus which
characterizes the point-wise simulation and bisimulation distances. We plan to
work on similar logics for our general setting.
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Abstract. The static analysis of executable programs has gained impor-
tance due to the need to audit larger and larger programs for security
vulnerabilities or safety violations. The basis for analyzing executables is
the decoding of byte sequences into assembler instructions and giving a
semantics to them. We illustrate how our domain specific language GDSL
facilitates this task by specifying Intel x86 semantics. In particular, we
show how simple optimizations of the generated code can drastically re-
duce its size. Since these optimizations are also written in GDSL they
can be re-used with other processor front-ends. Hence, analyses based on
our toolkit can be adapted to several architectures with little change.

1 Introduction

The static analysis of executable programs has gained increasing importance in
the last decade. Reasons are the need to audit larger and larger programs for se-
curity vulnerabilities, the online detection of malware in virus scanners, and the
need to verify software in the presence of binary third-party libraries, inline as-
sembler, and compiler-induced semantics. The basis for analyzing executables is
the decoding of byte sequences into assembler instructions and giving a semantics
to them. The challenge here is one of scalability: a single line in a high-level lan-
guage is translated into several assembler (or “native”) instructions. Each native
instruction, in turn, is translated into several semantic primitives. These seman-
tic primitives are usually given as an intermediate representation (IR) and are
later evaluated over an abstract domain [3] tracking intervals, value sets, taints,
etc. In order to make the evaluation of the semantic primitives more efficient,
a transformer-specification language (TSL) was recently proposed that compiles
the specification of each native instruction directly into operations (transform-
ers) over the abstract domain [6], thus skipping the generation of an IR. These
tailored transformers are then optimized by a standard compiler. Our toolkit
follows the more traditional approach of generating an IR that an analysis later
interprets over the abstract domains. In contrast to the TSL approach, we per-
form optimizations on the IR program that represents a complete basic block
rather than on a single native instruction. We show that the semantics of instruc-
tions can be simplified considerably when taking the surrounding instructions
into account which highlights the optimization potential of using an IR.
1 This work was supported by DFG Emmy Noether programme SI 1579/1.
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stmts ::= ε | stmt ; stmts
stmt ::= var = : int expr

| var = : int [ addr ]

| [ addr ] = : int expr
| if ( sexpr ) { stmts } else { stmts }
| while ( sexpr ) { stmts }
| cbranch sexpr ? addr : addr
| branch ( jump | call | ret )addr
| (var : int )∗ = " id " ( linear : int )∗

cmp ::= ≤s | ≤u | <s | <u | = | �=

var ::= id | id . int
addr ::= linear : int
linear ::= int · var + linear | int
sexpr ::= linear | arbitrary

| linear cmp : int linear
expr ::= sexpr

| linear bin linear
| sign-extend linear : int
| zero-extend linear : int

bin ::= and | or | xor | shr | . . .

Fig. 1. The syntax of our RReil (Relational Reverse Engineering Language) IR. The
construct “ : int ” denotes the size in bits whereas “ . int ” in the var rule denotes a bit
offset. The statements are: assignment, read from address, write to address, conditional,
loop (both only used to express the semantics within a native instruction), conditional
branch, unconditional branch with a hint of where it originated, and a primitive "id".

2 RReil Intermediate Representation

Many intermediate representations for giving semantics to assembler instructions
exist, each having its own design goals such as minimality [1,4], mechanical
verifiability [5], reversibility [7], or expressivity [1,9]. Our own RReil IR [9],
presented in Fig. 1, was designed to allow for a precise numeric interpretation. For
instance, comparisons are implemented with special tests rather than expressed
at the level of bits which is common in other IRs [4,5,6].

3 The Generic Decoder Specification Language (GDSL)

We developed a domain specific language called GDSL [8] that is best described
as a functional language with ML-like syntax. It features bespoke pattern match-
ing syntax for specifying instruction decoders. Dependability of GDSL programs
is increased by a sophisticated type inference [10] that eliminates the need of
specifying any types. The algebraic data types and a special infix syntax facili-
tates the specification of instruction semantics and program optimizations.

The GDSL toolkit contains a compiler for GDSL as well as decoders, seman-
tic translations and optimizations written in GDSL. The benefit of specifying
optimizations in GDSL is that they can be re-used for any input architecture
since they operate only on RReil. Besides a few instruction decoders for 8-bit
processors, the toolkit provides an Intel x86 decoder for 32- and 64-bit mode
that handles all 897 Intel instructions. In terms of translations into RReil, we
provide semantics for 457 instructions. Of the 440 undefined instructions, 228
are floating point instructions that we currently do not handle since our own
analyzer cannot handle floating point computations. Many of the remaining un-
defined instructions would have to be treated as primitives as they modify or
query the internal CPU state or because they perform computations whose RReil
semantics is too cumbersome to be useful (e.g. encryption instructions).



GDSL: A Universal Toolkit for Giving Semantics to Machine Language 211

a) 1 val sem-cmovcc insn cond = do
2 size <- sizeof insn.opnd1;
3 dst <- lval size insn.opnd1;
4 dst-old <- rval size insn.opnd1;
5 src <- rval size insn.opnd2;
6
7 temp <- mktemp;
8 mov size temp dst-old;
9

10 _if cond _then
11 mov size temp src;
12
13 write size dst (var temp)
14 end

b) 1 t0 =:32 B
2 if (ZF) {
3 t0 =:32 A
4 } else {
5 }
6 B =:32 t0
7 B.32 =:32 0

Fig. 2. The translator function a) and a translation result b)

4 Writing Semantics Using GDSL

As a pure, functional language with algebraic data types and a state monad,
GDSL lends itself for writing translators in a concise way as illustrated next.

4.1 An Example Intel Instruction

The following GDSL example shows the translation of the Intel instruction
cmov. The instruction copies the contents of its source operand to its destination
operand if a given condition is met. The instruction contains a condition (which
is part of the opcode) and two operands, one of which can be a memory location.
The translation of the instruction instance cmovz ebx, eax (using the Intel x86
architecture with the 64 bit extension) into RReil is shown in Fig. 2b). In or-
der to illustrate the translation, we first detail the output of the GDSL decoder
which is a value of the algebraic data type insn that is defined as follows:

type insn = # an x86 instruction
CMOVZ of {opnd1: opnd, opnd2: opnd}

| ... # other instruction definitions omitted

Thus, the CMOVZ constructor carries a record with two fields as payload. Both
fields are of type opnd which, for instance, carry a register or a memory location:

type opnd = # an x86 operand
REG of register

| MEM of memory
| ... # immediates, scaled operands and operands with offsets omitted

Note that all variants (here REG and MEM) implicitly contain information about
the access size. In the example above, the instruction cmovz ebx, eax is repre-
sented by CMOVZ {opnd1 = REG EBX, opnd2 = REG EAX} where EAX is 32-bits. The
following section details helper functions that operate on opnd values.
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4.2 Generating RReil Statements Using GDSL Monadic Functions

Each semantic translator function generates a sequence of RReil statements.
The sequence is stored inside the state of a monad. An RReil statement is added
to the sequence by calling a GDSL monadic function which builds the abstract
syntax tree of the statement. In order to explain the example in Fig. 2 we detail
the GDSL functions for assignment, called mov, and conditional:

• mov sz dst src
The mov function generates the RReil assignment statement dst =:sz src
that copies the RReil expression src to the RReil variable dst.

• _if cond _then stmts
This function generates the RReil statement if (cond) { stmts } else {}.
The special mix-fix notation _if cond _then stmts is a call to a mix-fix
function whose name _if _then is a sequence of identifiers that each com-
mence with an underscore. It is defined as follows:

val _if c _then a = do
... # add if ( c ) { a } else { } to statement list

end

We further require the following functions that operate on x86 operands of
type opnd. They are necessary to translate x86 registers, memory locations, or
immediate values, that are encoded in the x86 operand, into RReil:

• sizeof x86-operand
Returns the size of an x86 operand in bits; here, sizeof (REG EBX) = 32.

• lval size x86-operand
The lval function turns an x86 operand into an RReil left hand side expres-
sion, that is, either var or [addr]. Here, lval 32 (REG EBX) yields the RReil
register B that contains the 32 bits of the Intel EBX register.

• rval size x86-operand
The rval function turns an x86 operand into an RReil expr . In the exam-
ple, rval 32 (REG EAX) yields the RReil register A.

• write size destination source
The write function emits all statements necessary to write to an x86
operand. The operand is specified using the destination parameter; it is
the return value of an associated call to lval. In Fig. 2b) lines 6 through 7
originate from the call to write.

Finally, the mktemp function is used to allocate a temporary variable.

4.3 The Translator

The translator function for cmovz ebx, eax is shown in Fig. 2a). The do ... end
notation surrounding the function body is used to execute each of the enclosed
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t0 =:32 A - B
CF =:1 A <u:32 B
CForZF =:1 A ≤u:32 B
SFxorOF =:1 A <s:32 B
SFxorOForZF =:1 A ≤s:32 B
ZF =:1 A =:32 B
SF =:1 t0 <s:32 0
OF =:1 SFxorOF xor SF
cbranch SFxorOF ? nxt : tgt

⇒
dead-code
elimination

SFxorOF =:1 A <s:32 B
cbranch SFxorOF ? nxt : tgt

⇓ forward
expression
substitution

cbranch A <s:32 B ? nxt : tgt

Fig. 3. Translation of the native Intel instructions cmp eax, ebx; jl tgt into RReil
and applying optimizations. Here, CForZF, SFxorOF, SFxorOForZF are virtual flags, that
is, translation-specific variables whose value reflect what their names suggest [9]. Note
that this example is idealized since the removed flags may not actually be dead.

monadic functions in turn. The decoded Intel instruction is passed-in using the
insn parameter; the condition is determined by the caller depending on the
actual mnemonic. The condition is an one-bit RReil expression. In the cmovz
ebx, eax example, it is ZF which corresponds to the zero-flag.

The translation itself starts with a code block that is very common in instruc-
tion semantics: The operation’s size is determined by looking at the size of one
operand (line 2) and the respective operands are prepared for reading (using the
rval monadic function) and writing (using the lval monadic function). Next,
a new temporary RReil register is allocated and initialized to the current value
of the destination operand (lines 7 and 8). This completes all preparations; the
actual semantics of the instruction is implemented by the code lines 10 through
11. The condition is tested and, if it evaluates to true, the source operand is
copied to the destination operand. It is important to note that the conditional is
not evaluated at translation time, but that it is part of the emitted code. Finally,
the (possibly) updated value of the temporary RReil register is written to the
corresponding Intel register by code line 13.

One might think that the instruction pointlessly reads the source operand
and writes the destination operand in case the condition evaluates to false. It is,
however, necessary since the writeback can also cause further side effects that
still need to occur, even if no data is copied. This is exemplified in Fig. 2b):
since the instruction uses a 32 bit register in 64 bit mode, the upper 32 bits of
the register are zeroed even if the lower 32 bits are unchanged (see line 7). The
additional code is emitted by the write function.

5 Optimizing the RReil Code

The design of RReil also allows for an effective optimization of the IR [9] which is
illustrated in Fig. 3. The example shows the typical code bloat when translating
two native instructions where the first sets many flags of which the second only
evaluates one. Implementing these optimizations in GDSL is not only concise
but also avoids the need to re-implement them in the individual analyses. The
next sections consider two optimizations, one of which is currently implemented.
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5.1 Liveness Analysis and Dead Code Elimination

The optimization strategy we implement is a dead-code elimination using a back-
wards analysis on the RReil code. To this end, we first need to obtain a set of
live variables to start with. A simple approach assumes that all variables are live
at the end of the block. This has the drawback that assignments to variables
that are always overwritten in the succeeding blocks cannot be removed. We
address this problem by refining the live-set for basic blocks that do not jump
to computed addresses: Specifically, we infer the live variable set of the imme-
diately succeeding blocks and use this live set as start set, thereby removing
many more assignments to dead variables. We perform a true liveness analysis,
that is, we refrain from marking a variable as live if it is used in the right-hand
side of an assignment to a dead variable. For the body of while loops, however,
this approach would require the calculation of a fixpoint. Since while loops are
used rarely by our translator and since their bodies show little potential for op-
timization, a more conservative notion of liveness is used that does not require
a fixpoint computation. This approach marks a variable as live even if it used in
an assignment to a dead variable. With this strategy, the dead code elimination
takes linear time in the size of the basic block.

5.2 Forward Expression Substitution

In the future, we plan to also perform forward substitution and simplifica-
tion. These optimizations become important for architectures like ARM where
most instructions may be executed conditionally, depending on a processor flag.
Compilers use this feature to translate small bodies of conditionals without
jumps. Consider a conditional whose body translates to two native instructions
i1; i2 that are executed if f holds. These are translated into the RReil state-
ments if f then [[i1]] else ; ; if f then [[i2]] else ; which ideally should be simplified to
if f then [[i1]]; [[i2]] else ;. Without this optimization, a static analysis will compute
a join of the unrelated states of the then - and else -branches of the first if -
statement. The thereby incurred loss of precision is particularly problematic for
the TSL approach since each instruction is executed on a single domain that, in
general, will not be able to join two states without loss of precision.

6 Empirical Evaluation

We measured the impact of our dead-code elimination on a linear-sweep dis-
assembly of standard Unix programs. Each basic block, that is, a sequence of
Intel instructions up to the next jump, is translated into semantics. Figure 4
presents our experimental results where the ‘fac’ column denotes the size of the
RReil code (in 1000 lines of code, ‘kloc’) in relation to the native x86 disassem-
bly (‘nat. kloc’). Here, column ‘translation’ shows that, without optimizations,
about six RReil instructions are generated for each Intel instruction. The colums
‘single’, ‘intra’, and ‘inter’ show how the size of the RReil code reduces due to
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prog. nat. translation single intra inter
kloc kloc time fac kloc time red fac kloc time red fac kloc time red fac

bash 144 907 1.0s 6.3 778 5.1s 14% 5.4 640 3.7s 30% 4.4 454 9.1s 50% 3.2
cat 7 39 0.0s 5.9 34 0.2s 15% 5.0 28 0.2s 30% 4.1 21 0.4s 46% 3.2
echo 3 15 0.0s 5.6 13 0.1s 14% 4.8 11 0.1s 29% 4.0 8 0.1s 46% 3.0
less 21 152 0.1s 7.3 131 0.7s 14% 6.3 105 0.6s 31% 5.1 61 1.4s 60% 2.9
ls 15 106 0.1s 6.9 90 0.5s 16% 5.8 66 0.4s 38% 4.3 49 1.0s 54% 3.2
mkdir 7 45 0.0s 6.5 37 0.2s 16% 5.4 29 0.2s 35% 4.2 21 0.4s 53% 3.1
netstat 15 86 0.1s 5.6 75 0.4s 12% 4.9 63 0.3s 26% 4.2 53 0.7s 39% 3.5
ps 13 68 0.1s 5.3 57 0.4s 16% 4.5 45 0.3s 33% 3.5 40 0.6s 41% 3.1
pwd 3 19 0.0s 5.6 16 0.1s 14% 4.8 14 0.1s 27% 4.1 11 0.2s 43% 3.2
rm 8 47 0.0s 6.0 41 0.2s 14% 5.2 33 0.2s 30% 4.2 25 0.4s 47% 3.2
sed 9 54 0.1s 6.3 45 0.3s 16% 5.3 37 0.2s 31% 4.3 28 0.5s 49% 3.2
tar 50 317 0.3s 6.4 270 1.6s 15% 5.4 215 1.3s 32% 4.3 161 3.1s 49% 3.2
touch 8 47 0.0s 6.3 41 0.2s 14% 5.4 31 0.2s 34% 4.1 23 0.5s 51% 3.1
uname 3 15 0.0s 5.6 13 0.1s 14% 4.8 11 0.1s 28% 4.1 8 0.1s 45% 3.1
Xorg 346 2080 2.3s 6.0 1803 10.6s 13% 5.2 1408 8.4s 32% 4.1 1067 20.9s 49% 3.1

Fig. 4. Evaluating the reduction of the RReil code size due to dead-code optimization.
The overall running time is the sum of the translation time plus the time for one of the
optimizations. All measurements were obtained on an Intel Core i7 running at 3.40Ghz.

our optimizations and the time required to do so. Performing liveness analy-
sis and dead code elimination on the semantics of a single instruction reduces
the size by about 14% (column ‘single’). Applying these optimizations on basic
blocks reduces the size by about one third (column ‘intra’). The ‘inter’ column
shows the result of the optimizations as per Sect. 5.1: for basic blocks ending in
a direct jump, the (one or two) blocks that are branched-to are translated and
their set of live variables is computed. Using this refined liveness set, the dead
code elimination removes between 40% and 60% of the RReil code relative to the
non-optimized translation. Thus, with the information of the neighboring basic
blocks, our RReil semantics is roughly 3 times larger than the x86 disassembly.

In order to compare our translation into RReil with the TSL approach [6]
where a bespoke abstract transformer is generated for each native instruction,
again consider column ‘single’ of Fig. 4. Since this column shows the reduction
when considering the semantics of a single instruction, it provides an estimate of
how many abstract transformers in a TSL translation a standard compiler can
remove due to dead code elimination. While the TSL translations are optimized
in other ways, it is questionable if this can rival the effect of removing not 14%,
but around 50% of instructions, as our inter-basic block analysis does.

The GDSL compiler emits C code that closely resembles handwritten C pro-
grams. As a consequence, the resulting C code is easy to debug and allows the
GDSL compiler to rely on the optimizations implemented by off-the-shelf C
compilers. Indeed, the optimizations should be fast enough to re-apply them on-
the-fly each time a basic block is analyzed. Even then, future work will address
the elimination of bottlenecks in both, the GDSL compiler and optimizations
written in GDSL.
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Given these benefits, we hope that our open-source1 GDSL toolkit becomes
an attractive front-end for any analysis targeting executable programs.

7 Future Work

Future work will extend our toolkit with decoders and translations for other
architectures. In particular, it would be interesting to mechanically translate
the verified bit-level ARM semantics [5] into RReil. Moreover, given that an
analysis that features a GDSL front-end can handle any architecture specified
in GDSL, we hope for contributions from the community to further extend the
range of architectures that GDSL offers. GDSL would also lend itself for defining
semantics besides the RReil value semantics, namely energy or timing semantics.

In the long run, we hope that the GDSL toolkit will become the preferred
choice for analyzing machine code, thereby replacing proprietary decoders (such
as the popular xed2 decoder from Intel’s PIN toolkit [2]) that are often equipped
with a minimal, application-specific semantics covering only a few instructions.
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Abstract. Conventional security policies for software applications are adequate
for managing concerns on the level of access control. But standard abstraction
mechanisms of mainstream programming languages are not sufficient to express
how information is allowed to flow between resources once access to them has
been obtained. In practice we believe that such control - information flow control
- is needed to manage the end-to-end security properties of applications.

In this paper we present Paragon, a Java-based language with first-class sup-
port for static checking of information flow control policies. Paragon policies are
specified in a logic-based policy language. By virtue of their explicitly stateful
nature, these policies appear to be more expressive and flexible than those used
in previous languages with information-flow support.

Our contribution is to present the design and implementation of Paragon,
which smoothly integrates the policy language with Java’s object-oriented set-
ting, and reaps the benefits of the marriage with a fully fledged programming
language.

Keywords: information flow, static enforcement.

1 Introduction

The general goal of this work is to construct innovative design methods for the con-
struction of secure systems that put security requirements at the heart of the construc-
tion process, namely security by design. To do this we must (i) understand how we can
unambiguously formulate the policy aims for secure systems, and (ii) develop technol-
ogy to integrate these goals into design mechanisms and technologies that enable an
efficient construction or verification of systems with respect to those policies.

We address this challenge using a programming language-centric approach, present-
ing a full-fledged security-typed programming language that allows the programmer to
specify how data may be used in the system. These security policies are then enforced
by compile-time type checking, thus requiring little run-time overhead. Through this
we can guarantee that well-typed programs are secure by construction.

But which security policies might we want for our data, and why do we need spe-
cial support to express them? Certain security policies, for example access control, are
relatively easy to express in many modern programming languages. This is because
limiting access to resources is something that good programming language abstraction
mechanisms are designed to handle. However, access control mechanisms are often a
poor tool to express the intended end-to-end security properties that we wish to impose
on our applications.
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Consider a travel planner “app” which permits you to plan a bus journey, and even
add your planned trip to your calendar1. In order to function, the app must have access
to the network to fetch the latest bus times, and must have access to your calendar in
order to add or remove schedules. But an app with these permissions can, for example,
send your whole calendar to anywhere on the net.

What we want is to grant necessary access, but limit the information flows. In this
case we want to at least limit the information flows from the calendar to the network
while retaining the app’s ability to read and write to both.

Research on controlling these information flows has progressed over the last decades.
In this paper we identify three generations of security properties and control mecha-
nisms for information-flow:

Information-Flow Control. In the 70’s, Denning & Denning pioneered the idea of cer-
tifying programs for compliance with information flow policies based on military-style
secrecy classifications [7,8]. They used program analysis to validate that information
labelled with a given clearance level could never influence output at any levels lower in
the hierarchy – so for example a certified program could never leak top-secret informa-
tion over a channel labelled as public.

The language FlowCAML [24], a variant of ML with information-flow types and
type inference, represents the state-of-the-art in support for static Denning-style confi-
dentiality policies.

Beyond Mandatory Information Flow Control. Although a rigid, static hierarchy of
security levels may be appropriate in a military message-passing scenario, it became
quickly apparent that such a strict and static information flow policy is too rigid for
modern software requirements. In practice we need a finer-grained and more dynamic
view of information flow.

The concept of declassification – the act of deliberately releasing (or leaking) sensi-
tive information – is an important example of such a requirement. Without a possibility
to leak secrets, some systems would be of no practical use.

For example an information purchase protocol reveals the secret information once a
condition (such as “payment transferred”) has been fulfilled. Yet another example is a
password checking program that inevitably leaks some information: even when a login
attempt fails the attacker learns that the guess is not the password.

With this in mind, the Jif programming language [17,20] can be seen as the next
milestone after the pure Denning-style approach. Jif is a subset of Java extended with
information flow labels.

As well as implementing an important distributed view of data ownership, the so-
called Decentralised label model [18,19], Jif included the possibility of declassifica-
tion, which provides a liberal information flow escape hatch for programs which would
otherwise be rejected.

1 The example is based on a family of actual Android apps
(e.g. de.hafas.android.vasttrafik).
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Paragon, a Third-Generation IF Language. Declassification, in many shapes and
forms, has been widely studied in the research community in recent years [23]. The
large variety of declassification concepts is testament to the fact that there is simply no
single right way to control the flow of information that goes against the grain. Moreover,
it is not always natural to view information flow policies as consisting of “good flows
plus exceptional cases” at all; in some situations there is no obvious base-line policy,
and the flows which are deemed acceptable may depend on the state of the system at
any given moment.

In earlier work [5] we introduced a new highly versatile policy language, Paralocks,
based around the idea of Flow Locks. We demonstrated its ability to model a wide
variety of policy paradigms, from classical Denning-style policies to Jif’s decentralised
label model, as well as the capability to model stateful information flow policies. But
the idea of using Paralocks as types in a statically-checked programming language was
only demonstrated for a toy language. The question whether a Flow Locks-based policy
language could feasibly scale to inclusion in a full-fledged programming language, to
allow practical programming with information flow control, was left open.

The main contribution of this paper is to answer that question with an emphatic yes.
We present the new programming language Paragon, which extends the Java program-
ming language with information flow policy specifications based on an object-oriented
generalisation of Paralocks. Not only does it turn out to be feasible, but the marriage
of our stateful policy mechanism and Java’s encapsulation facilities yields a whole that
is greater than the sum of its parts: it allows for the creation of complex policy mecha-
nisms as libraries, giving even stronger control over flows and declassification than the
policy language alone.

The remainder of the paper is structured as follows. Section 2 presents the language
Paragon: its policy language and integration in Java; followed by a simple showcase of
Paragon in Section 3. In Section 4 we give an overview of the enforcement mechanism
and details of our implementation. Section 5 discusses our experience from two larger
case studies. Related work in Section 6 and conclusions in Section 7 round out the
paper.

2 The Language Paragon

Paragon is largely an extension to the Java language and type system. Our choice for
Java is motivated by its relatively clear semantics and the wide adoption of Java in
both commercial and academical settings. In addition, it allows us to reuse existing
ideas from, and simultaneously compare Paragon with, Jif [17,20], the only (other) java-
based full-fledged security-typed programming language to date. We discuss Paragon’s
relation to Jif in more detail in § 6. We do not, however, rely on any particular features of
Java for the integration of our policy language to work, and posit that it would be equally
feasible to do this for other statically typed languages with safe memory management,
e.g. ML or Scala.

In this section we give a high-level overview of Paragon and its various components,
leaving more technical features, such as extending Java Generics, to the technical report
version of this paper [1].
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2.1 The Paragon Policy Language

The subjects of Paragon policies are the information-flow relevant entities, which we
refer to as actors. An actor could be a user, a resource, a system component, an infor-
mation source or sink, etc.; any entity that has an information-flow concern.

In Paragon, these entities are represented by object references. For instance, the code
fragment below creates regular instances of the User and File class, where alice and
f1 can play a dual role; both as program variables, and as actors in Paragon policies.

User alice = new User();
User bob = new User();
File f1 = new File();
File f2 = new File();

A paragon policy is used to label information containers in the program (fields, local
variables), and specifies to which actors the information in that container is allowed to
flow. A policy consists of a set of clauses, each specifying one particular actor, or one
group of actors of a particular type.

For example, the policy p1 states that information may flow to the specific users
Alice and Bob, while the policy p2 states that information may flow to any file:

policy p1 = { alice: ; bob: };
policy p2 = { File f: };

This makes the policy { Object o: } the most permissive, and the policy with no
clauses (denoted {:}) the most restrictive paragon policy.

A clause may have a body that constrains the states in which the information may
flow to the actors specified in the head. These constraints come in the form of locks;
typed predicates representing the policy-relevant state of the system.

A lock can be opened or closed for given actor arguments. Viewing a lock as a
predicate, opening a lock corresponds to assigning it the value true. Below we define
two locks, one for modelling the ownership of files, and another for the organisational
hierarchy among users.

lock Owns(File, User);
lock ActsFor(User, User);
policy p3 = { File f: Owns(f, alice) } ;
policy p4 = { (User u) File f: Owns(f, u), ActsFor(u, alice) };

The policy p3 expresses that information can flow to any file owned by Alice, while
the policy p4 states that u ranges over users, and that information having this policy
may flow to any file f for which f is owned by some u such that u acts for alice.
Note that variables that are mentioned in the head of a clause are universally quantified,
whereas those only appearing in the body are existentially quantified.

A lock can be declared to have properties. A property specifies conditions under
which some locks are implicitly open. For example, we might want to express that the
acts-for relation is transitive and reflexive.

This requirement can be stated at the point of declaration by replacing line 2 in the
above with:
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lock ActsFor(User, User)
{ (User x) ActsFor(x,x):
; (User x y z) ActsFor(x,y): ActsFor(x,z), ActsFor(z,y) }

Transitivity and reflexivity properties (as well as symmetry) are a common pattern, so
Paragon provides syntactic sugar for these:

reflexive transitive lock ActsFor(User, User);

The Paragon Policy Language is an object-based generalisation of Paralocks [5,29],
and is described in more detail in the technical report [1].

2.2 Information-Flow Policies in Paragon

The various flows of information that need to be controlled in Paragon are essentially
the same as the ones occurring in Java. As is common in information-flow analysis we
make a distinction between direct and indirect information flows.

Direct Flows. The typical direct flow is an assignment, where information flows di-
rectly from one location to another. Direct flows also happen at method calls (arguments
flow to parameters), returns (the return value flows to the caller) and exception throws
(an exception value flows to its enclosing catch clause).

Continuing in the style of the examples from the previous section, let x be a variable
with the policy {File f:Owns(f, alice)} and y a variable with the policy {f1:}

in the assignment y = x;. Whether or not the assignment will be flagged as an error
by the Paragon compiler depends on the lock state in which the direct flow occurs.

If the Owns(f1,alice) lock is statically determined to be closed the compiler raises
an error, since the information stored in x, according to its policy, should only flow into
file f1 when the file is owned by Alice, whereas the information in y can always flow
to f1. In other words, the assignment has insecure information flow because it moves
information to a place where it becomes visible to more actors than its policy declares.
If, however, the lock is determined to be open, i.e. declaring that alice owns f1, the
assignment occurs in a state where f1 can already read the information in x, and so the
program compiles successfully.

Indirect Flows. An indirect flow is one where the effect of evaluating one term reveals
information about a completely different term that was evaluated previously. The typ-
ical indirect flow is a side-effect happening in a branch that reveals which branch was
chosen, which in turn reveals the value of the conditional expression that was branched
on. Indirect flows also arise from other control flow constructions (including loops and
exceptions), and field updates or instance method-calls (possibly revealing the object
they belonged to).

Due to the delayed nature of these information flows, the lock state in effect at the
time of the indirect flow might be different to that in effect at the point at which it is
revealed. Therefore, indirect flows are handled conservatively, by not allowing the lock
state to affect which of these flows are considered secure.
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2.3 Policy Annotations

When integrating the policy language into Java, the two core design issues are (i) how
policies are to be associated to data, and (ii) how the lock state is specified, updated,
and queried.

Policies as Modifiers. In Paragon every information container (field, variable, param-
eter, lock) has a policy detailing how the information contained therein may be used.
Every expression has an effective policy which is (an upper bound on) the conjunction
of all policies on all containers whose contents affect its resulting value – we refer to
this as the expression’s read effect.

Paragon separates policies from base (Java) types syntactically by having all policy
annotations as modifiers. A modifier ?pol denotes a policy on an information container,
and the read effect of accessing that container. When used on a method we refer to it
as the return policy, as it is the read effect on the value returned by the method. Using
modifiers for policies allows for a clean separation of concerns, allowing us to analyse
base types and policies separately.

Similarly, every expression (and statement) has a write effect, which is (a lower
bound on) the disjunction of all policies on all containers whose contents are modi-
fied by the expression. Write effects allow us to control implicit information flows, by
limiting the contexts in which expressions with side-effects may occur. A modifier !pol
denotes a write effect, and is used to annotate methods.

Policy modifiers are also placed on exceptions declared to be thrown by a method.
A read effect modifier on an exception denotes the read effect of inspecting the thrown
and caught exception object. More interesting is the write effect modifier, which serves
two purposes in relation to indirect flows. First, it restricts the contexts in which the
exception may be thrown within the method. Second, it imposes a restriction of its own
on all subsequent side-effects until the point where the exception has been caught and
handled. Together, these two restrictions ensure that no information leaks can occur by
observing whether or not an exception has been thrown.

All exceptions in Paragon must be checked, i.e. declared to be thrown by methods
that may terminate with such exceptions. This implies the need for analyses that can
rule out the possibility of exceptions, in particular for null pointers, to avoid a massive
blow-up in the number of potential exceptions that must be declared. Paragon adds the
modifier notnull for fields, variables and method parameters that may never be null,
to aid the null-pointer analysis.

To reduce the burden on the programmer to put in policy annotations, Paragon at-
tempts either to infer, or to supply clever defaults for, policies on variables, fields and
methods. We omit the details of policy defaulting, and discuss the inference mechanism
in § 4.

Lock State Analysis. Manipulation of the lock state is done programmatically through
the use of the Paragon-specific statements open and close. The compiler performs a
lock state analysis which conservatively approximates the set of locks guaranteed to be
open at any given program point.

In cases where we cannot know statically that a lock is open, we allow runtime lock
queries to guide the analysis: A lock can be used syntactically as an expression of type
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boolean, with the value true if the lock is currently open. If a lock query appears
as the condition to e.g. an if statement, the analysis can include the knowledge of the
lock’s status when checking the respective branches.

To facilitate modularity, Paragon introduces three modifiers, used on methods and
constructors, to specify their interaction with the lock state:

• +locks says that the annotated method will open the specified lock(s), for every
execution in which the method returns normally. We call this the opens modifier.

• -locks, dubbed the closes modifier, says that the method may close the specified
lock(s), for some execution.

• ˜locks, the expects modifier, says that the specified lock(s) must be open whenever
the method is called.

The opens and closes modifiers are also used to annotate each exception type thrown
by a method, to signal to the analysis what changes to the lock state can be assumed if
the method terminates by throwing an exception of that type.

As a middleground between private and public locks, Paragon introduces the modi-
fier readonly for locks, indicating that outside the class the lock can be queried, but
not opened or closed.

3 Brief Example

To illustrate the language features of Paragon we present the scenario of a simple social
network. In the network, users can befriend each other and share messages in the form
of posts that can be read by their friends. The scenario contains two information flow
policies that we want Paragon to enforce.

First, posts can only be read by a direct friend of the poster or, if the poster so
indicates, by friends of friends of the poster. A user can decide, per post, whether it
should be shared with friends-of-friends or not. Paragon should thus enforce that the
network properly checks the friendship relations before allowing a user to read a post.

Second, to prevent injection or scripting attacks, a message should be properly sani-
tised before it is stored in the network. That is, we want to enforce the policy that all
posted messages first pass through a sanitising function.

The Paragon implementation of this network is shown in Figure 1. Some policy
annotations are omitted in the implementation, since Paragon provides default policies
in these cases. For example, all fields that do not specify a read effect automatically get
the least restrictive policy {Object x:}.

To establish the first policy we define the Friend lock to model friendships. Sim-
ilarly we create a lock FoFriend to model friend-of-friend relations. Since the User

class does not explicitly open or close this lock and exports it as readonly we know
that it models a purely derived property of the Friend lock, and thus one that will
evolve correctly as the friendship status changes over time.

With the locks in place we can now create the desired policy as messagePol, which
we use for the read-effect on a post’s content. We assume that the correct Friend
instances are opened elsewhere in the program. Turning sharing with friends-of-friends
on per post is handled in the post method by opening the ShareFoF lock for that post.



224 N. Broberg, B. van Delft, and D. Sands

1 public class User {
2 public reflexive symmetric lock Friend(User, User);
3 public readonly lock FoFriend(User, User)
4 { (User x y z) FoFriend(x,y) : Friend(x,z), Friend(z,y) };
5 public void receive(?{this:} String data) {
6 ... // User receives provided data
7 }
8 }
9

10
11 public class Post {
12 public lock ShareFoF(Post);
13 public final User poster;
14 public static final policy messagePol =
15 { User x : User.Friend(x, poster)
16 ; User x : User.FoFriend(x, poster), ShareFoF(this) };
17 public final ?messagePol String message;
18 public Post(?{Object x:} User p, ?messagePol String m) {
19 this.poster = p;
20 this.message = m;
21 }
22 }
23
24
25 public class Sanitiser {
26 private lock Sanitised;
27 public static final policy unsanitised = {Object x : Sanitised};
28 public static ?{Object x:} String sanitise (?unsanitised String s) {
29 open Sanitised {
30 return /* Sanitised string */ ;
31 }
32 }
33 }
34
35
36 public class Network {
37 private static Post[] posts = new Post[10]; // Shifting list of posts
38 private static int index = 0; // Where to place the next post
39
40 !{Object x:} static void post( ?{Object x:} User user
41 , ?Sanitiser.unsanitised String message
42 , ?{Object x:} boolean shareFoF ) {
43 String sM = Sanitiser.sanitise(message);
44 Post p = new Post(user, sM);
45 if (shareFoF)
46 open Post.ShareFoF(p);
47 posts[index] = p;
48 index = (index + 1) % posts.length; // Next time overwrite oldest post
49 }
50
51 static void read(?{Object x:} User user, ?{Object x:} int i) {
52 ?{user:} String res = null;
53 Post p = posts[i];
54 if (p != null) {
55 if (User.Friend(user, p.poster))
56 res = p.message;
57 if (Post.ShareFoF(p))
58 if (User.FoFriend(user, p.poster))
59 res = p.message;
60 }
61 user.receive(res);
62 }
63 }

Fig. 1. A simple social network application written in Paragon
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As an effect of calling this method the array posts is changed (among others). Any
observer that may notice this change (i.e. of level {Object x:} and above) may thus
notice that this method has been called. To prevent this method from being called in a
context where these side-effects result in implicit flows, we are required to annotate the
method with the corresponding write effect.

The user’s receive method lets the user read the provided information, therefore
arguments to this method should be allowed to flow to that user. All combined, we
get Paragon’s enforcement ensuring that the policy-relevant state is properly checked
before sharing a post with another user.

Leveraging on Java’s encapsulation mechanism we are able to provide the ingredi-
ents for the sanitisation policy entirely as a separate library. The lock Sanitised is
private to the class, meaning that no code outside the class is able to open, close or even
mention the lock. Therefore, any data labelled with the unsanitised policy cannot
lose its Sanitised constraint, other than by actually sanitising the data by calling the
exported sanitise method. With this library we can thus easily enforce our second
policy by labelling each newly incoming message as unsanitised.

The example demonstrates the three different generations of information-flow con-
trol policies and how Paragon models them.

As per traditional non-interference, some flows are never allowed in the network. For
example, Paragon enforces that a posted message can only flow to users in the network,
and not to any other channel. We see an example of the exceptional information declas-
sification pattern in the sanitiser library: the sanitise function serves as a declassifier,
deliberately allowing the provided argument to flow to more actors. Finally, the locks
used to model friendships exemplify third-generation information-flow policies. There
is no explicit declassification of information, rather flows are allowed or not depending
on the state of the system – in this case the state of the social network.

4 Enforcement of Paragon Policies

Enforcement of information flow policies in Paragon is no small task, and presenting the
information flow type system in its entirety is beyond the scope of this paper. Instead,
we sketch a high-level overview of the most important analyses involved, presented as a
sequence of phases, and focus on the last phase in which information flows are tracked.

Phase 1: Type Checking. The first phase roughly corresponds to ordinary Java type
checking, albeit with some additions for Paragon-specific constructs. Particularly, we
must assure that arguments to locks are type correct, and that policy expressions used
in modifiers are indeed of type policy. This phase also checks that potential (runtime)
exceptions are properly handled.

Phase 2: Policy Type Evaluation. Locks, policies, and object references all play a
dual role, both as type-level and value-level entities. In this phase the values of each
of these entities are statically approximated. For locks we ensure that, whenever a lock
is queried, the information in the query is propagated to the respective branch (or loop
body).
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For fields and variables holding actors, i.e. object references, approximating their
runtime values means performing an alias analysis. Our present analysis is simple but
has performed well enough in practice. However, work is in progress to improve its
precision by adapting the work by Whaley and Rinard [30].

Since policies can be used as values at runtime, and dynamically hoisted to the type
level, our analysis needs to approximate policies as singleton types, similar to the anal-
ysis of actors. For each field or variable storing a policy, and for each policy expression
appearing in a modifier, we thus calculate upper and lower bounds on the policy held
by that variable at runtime.

Further, we need ways to relate policies that are not known statically to other (static
or dynamic) policies, to improve precision. Similar to runtime lock queries, we thus let
our policy analysis be guided by inequality constraints between policies appearing as
the condition in if statements and conditional ?: expressions. This problem has been
studied by Zheng and Myers in the context of Jif [32], and our solution closely follows
theirs.

Phase 3: Lock State Evaluation. The next sub-phase approximates the lock state, i.e.
it calculates the set of locks which we can statically know to be open, at each program
point. This amounts to a dataflow analysis over the control flow graph, to properly
capture the influence of method calls and exceptions, and to handle loops. Each program
point where a direct flow takes place is annotated with the lock state in effect at that
point.

Phase 4: Policy Constraint Generation. The constraint generation phase will result
in a set of constraints on the form p �LS q where p and q are policy expressions and
LS is the lock state (calculated in Phase 3) at the program point where the constraint
was generated (omitted if empty). As argued in §2.2 the lock state is only taken into
account for direct flows. Policy expressions possibly contain meta-variables, for which
the constraint solving phase then solves.

Phase 5: Policy Constraint Solving. The last phase solves the generated constraints,
on a per-method basis. A solution to a set of constraints is an assignment of policies to
constraint variables that satisfies all the policy comparison constraints. The algorithm
needs only determine whether there exists a solution, and does not need to actually
produce one. The constraint solver is based on the algorithm presented by Rehof and
Mogensen [21].

4.1 Paragon Implementation

We have implemented Paragon in a compiler that performs type checking for policies,
and compiles policy-compliant programs into vanilla Java code. Once we know that a
given program satisfies the intended information flow properties, we can safely remove
all Paragon-specific type-level aspects of policies, locks and actors.

We must still retain the runtime aspects, such as querying the lock state and perform-
ing inequality comparisons between policies. The Paragon runtime library provides Java
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implementations for locks and properties, including operations for opening, closing and
querying locks to which the Paragon open, close and query statements are compiled.
Similarly, the library provides Java implementations for policies and operations for per-
forming runtime inequality comparisons between them.

Compiler Statistics. Our Paragon compiler is written in Haskell and comprises roughly
16k lines of code, including comments. Approximately half of that code is due to our
policy type checker, and only a small fraction, just over 600 lines of code, deals with
generation of Java code and the Paragon interface files needed for modular compilation.
On top of that, some 1500 lines of Java code are written for our runtime representations
of Paragon entites. The compiler can be downloaded from our Paragon website [1], or
from the central Haskell “hackage” repository using the command cabal install

paragon.

Runtime Overhead. Supporting lock queries and policy comparisons at runtime yields
a negligible overhead on Paragon programs. Most of the additional generated code han-
dles the initalisation of policies and locks upon class or object instantiation, as well
as the opening and closing of locks, which should not give any significant perfor-
mance penalty. More involved are the lock queries and policy comparisons themselves
since they resemble essentialy Datalog program evaluation and respectively contain-
ment [29]. However, our experience shows that clause bodies consist of just a few
atoms, and have yet to find an example involving locks with arity higher than two,
so in practice we posit that this overhead is negligible as well.

5 Case Studies

We put the compiler to the test with two case studies, both based on applications written
in the Jif programming language, to which we further relate in §6.

Mental Poker. In [3], a non-trivial cryptographic protocol for playing online poker
without a trusted third party is implemented in Jif. During the distribution of the cards,
players communicate cards encrypted with a per-player, per-game symmetric key. That
is, the receiving player cannot decrypt the received card. At the end of the game the
players reveal their symmetric key such that the other player may verify the outcome
of the card distribution. For the purpose of non-repudiation each player signs outgoing
messages with her private key.

From an information-flow perspective we desire an implementation of this protocol
to satisfy various policies. The public key of a player is visible to everyone, as it is
used to verify the player’s signatures, but the private key should never leave the player’s
client. The cards to be communicated should not be sent before they are encypted with
the symmetric key and then signed. The symmetric key should remain confidential to
the player until the end of the game.

The value of the symmetric key leaks partially when performing encryption. In our
Paragon implementation (6.5k lines) this leak is controlled by a lock private to the class
performing the encryption, similar to the approach taken in the sanitiser class from the
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example in §3. That is, the class ensures that only the result of the operation is released
and not the value of the key involved. The symmetric key is protected with a policy
guarded by this private lock. A similar approach is used to protect the private key, to
only reveal the outcome of the signing operation in which it was involved. The cards to
be encrypted are protected with both the private locks of the encryption and the signing
operation, indicating that they have to go through both declassifiers before they can be
sent to the other player. The symmetric key is also allowed to be released when the
EndGame lock is open. That is, this lock is used to represent a policy-relevant state of
the application.

By constrast, Jif uses owner-based policies. The Jif policies here can simply state
whether the data is owned by a given player or not, and cannot, in an obvious way,
express anything beyond that. The fact that a Jif program has access to exactly one de-
classification mechanism prevents it from distinguishing or controlling different forms
of declassification. In this case study it cannot make a distinction between declassifi-
cations that are allowed due to encryption, and those due to signing. In addition, Jif
does not provide a means to write temporal policies and needs to rely on programming
patterns to prevent declassifications occuring in a state where they are not supposed to
be allowed.

JPMail. The second case study implements a functional e-mail client based on JPMail
[11]. In JPMail the user can specify a mail-policy file, partly dictating the information-
flow policies that the mail client has to enforce.

JPMail ensures that an e-mail is only sent if its body has been encrypted under an
algorithm that is trusted by the receiver of the e-mail. Which encryption algorithms
are trusted by what JPMail users is specified in the mail-policy file. In addition JPMail
needs to enforce more static policies, e.g. preventing the login credentials from flowing
anywhere else than to the e-mail server.

In the Paragon implementation (2.6k lines) these latter, static policies are easily mod-
elled as specifying only the e-mail server as a receiving actor. The partly dynamic policy
on the e-mail body is represented by a set of clauses of the form:

(User u) server: Receiver(mail, u), AESEncrypted(mail), TrustsAES(u)

That is, the e-mail can be sent to the mail server only if it has been encrypted un-
der AES and the receiver of that e-mail trusts AES encryption. The TrustsAES and
similar locks representing the user-specific policies are opened after parsing the mail-
policy file, during initialisation of the client. The Receiver lock is opened based on
the To-field information, and the AESEncrypted lock is encapsulated analogous to the
encryption / signing locks of the previous case study.

The issues for the Jif implementation in the mental poker case study show up in the
JPMail example [11] as well. Moreover, stateful policies are central to this example and
are challenging to model in Jif; Hicks et al’s solution involves generating the policy part
of the Jif source code from the mail-policy file, hardcoding the user-specific policies
in the client. This implies that if a mail-policy file changes, the only way for the Jif
solution to handle it is by recompilation of the code. By contrast, Paragon handles
policy change mechanisms naturally (by opening and closing locks) without stopping
the code or recompiling.
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6 Related Work

In this section we consider the related work on languages and language support for ex-
pressive information flow policies. We focus on actual systems rather than theoretical
studies on policy mechanisms and formalisms. We note, however, that there are several
policy languages in the access control and authorisation area which have some superfi-
cial similarity with the Paragon Policy Language, since they are based on datalog-like
clauses to express properties like delegation and roles, see e.g. [4,9,13,14]. Key differ-
ences are (i) the information flow semantics that lies at the heart of Paragon, and (ii) the
fact that the principal operation in Paragon is comparison and combination of policies,
whereas in the aforementioned works the only operation of interest is querying of rules.

Languages with Explicit Information-Flow Tracking. Two “real-sized” languages
stand out as providing information-flow primitives as types, namely FlowCAML and
Jif – as discussed in the introduction.

Comparing Paragon to Jif is inevitable, being at the same time a competitor and
a source of inspiration. Due to the unique position Jif has enjoyed in the domain of
information flow research over many years, much research has been done using Jif for
context and examples. It is thus natural to ask how research done on or with Jif can
carry over to Paragon.

The main advantage of Paragon over Jif is undoubtedly the flexibility of the con-
cept of locks, including their stateful nature. Where Jif has a single declassify con-
struct, Paragon can provide different declassifying methods to work on different data,
as needed by the domain at hand, and relate that declassification to the state of the pro-
gram. Jif rigidly builds in some stateful aspects in the form of authority and delegations,
which in Paragon would just be special cases of working with locks.

In many aspects, our work on Paragon has greatly benefitted from Jif’s trailblazing,
as well as research done in the context of Jif. Policy defaulting mechanisms, handling
of runtime policies, and having all exceptions checked, are all features where we have
been able to adopt Jif’s solution directly.

In separate work, as of yet unpublished, we have conducted a complete and in-depth
comparison between the two languages and all their features, including a Paragon li-
brary that gives a complete implementation of Jif, but the full details of that comparison
are out of scope for this paper.

Compilers Performing IF Tracking. Information flow tracking can be performed in
a language which has no inherent security policies, lattice-based or otherwise. In such
a setting one tracks the way that information flows from e.g. method parameters to
outputs. Examples of tools performing such analysis are the Spark Examiner operating
over a safety-critical subset of Ada [6], and Hammer and Snelting [10] explain how
state-of-the-art program slicing methods can support a more accurate analysis of such
information flows in Java (e.g. both flow sensitive and object sensitive).

Dynamic Information Flow Tracking with Expressive Policies. Runtime informa-
tion flow tracking systems have experienced a recent surge of interest. The most rele-
vant examples from the perspective of the present paper are those which perform full



230 N. Broberg, B. van Delft, and D. Sands

information flow tracking (rather than the semantically incomplete “taint analysis”),
and employ expressive policies. The first example is Stefan et al’s embedding of in-
formation flow in Haskell [25]. In principle one could also use Paralocks in a dynamic
context, and we are currently investigating a stateful extension of their LIO framework
which could be instantiated with the generalised Paralocks described in this work.

Yang et al’s Jeeves language [31] focusses on confidentiality properties of data ex-
pressed as context-dependent data visibility policies. The Jeeves approach is notewor-
thy in it’s novel implementation techniques and greater emphasis on the separation of
policy and code.

Encoding Information Flow Policies with Existing Type Systems. With suitably
expressive type systems and abstraction mechanisms, static information flow constraints
can be expressed via a library [15,16,22].

A number of recent expressive languages are aimed at expressing a variety of rich
security policies, but do not have information flow control as a primitive notion (as
Paragon or Jif) [12,28]. F* [27], a full-fledged implementation of a dependently typed
programming ML-stye programming language, is perhaps the most successful in this
class, with a large number of examples showing how security properties can be encoded
and verified by typing.

Typestate. The way that Paragon tracks locks is related to the concept of typestate [26].
Typestate acknowledges that the runtime state of e.g. an object often determines which
methods are safe to call. For example, for a Java File object, the method read() can
only be called if the file has first been opened with the open() method. Systems with
typestate, such as Plaid [2], support formal specification of typestate properties, and
enforce that programs correctly follow the specifications. In Paragon, typestate prop-
erties can be specified through the use of lock state modifiers. Paragon cannot express
features that depend on Plaid’s first-class states, e.g. “an array of open files”, but can
otherwise express solutions to their motivating examples.

7 Conclusions and Further Work

It is our expectation that one day programming languages with built-in support for ex-
pressing and enforcing information-flow concerns become widely deployed. Paragon’s
strong integration with Java and its relatively natural yet expressive policy specification
language lowers the threshold for adopting information-flow aware programming out-
side the research community. Still, much work is left to be done before Paragon can
become a serious competitor to existing programming.

One notable direction for future work in the Paragon language is concurrency sup-
port. This direction requires both theoretical and practical work, in particular if de-
classification mechanisms are shared among threads. Another planned direction is to
present a more substantial formalisation of Paragon’s type system, including a proof of
soundness with respect to information flow security.
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Abstract. We propose ThisJava, an extension of Java-like programming lan-
guages with exact class types and This types, to support more useful methods
with more precise types. To realize the proposed approach, we provide an open-
source prototype implementation of the language and show its practicality and
backward compatibility. We believe that our system elucidates the long pursuit of
an object-oriented language with “This types.”

1 Introduction

Objects in object-oriented programming often provide methods whose signatures in-
clude the object types themselves. The type of a receiver e of a method invocation
“e.m(e′)” is always the enclosing object type that defines or inherits the method m,
which we call the method’s owner type. In addition, many useful methods have their
owner types in their parameter types or return types. In this paper, we call such meth-
ods with their owner types in their signatures This-typed methods.

Researchers have proposed various approaches to support This-typed methods.
While the traditional This type denotes the “declared” type of a receiver, the This
type in this paper denotes the “run-time” type of a receiver. Because run-time types of
method receivers are mostly not available at compile time due to subtyping, the existing
This types denote inexact compile-time types. To precisely capture the exact run-time
type at compile time, our type system generates fresh type variables for the unknown
run-time types at type checking time. This new notion of This types serves an essential
role in the safe coexistence of recursive types and subtyping-by-inheritance.

To realize the proposed approach in a programming language, we extend Java with
exact class types and This types. To support more methods with This-typed formal
parameters, we enhance the type system with named wildcards and exact type inference,
and we also introduce exact class type matching. To support more methods with This-
typed results, we provide virtual constructors. We implemented our extension of Java,
ThisJava, using JastAddJ [5] and made it open to the public:

http://plrg.kaist.ac.kr/research/software

We describe how the new features are compiled to Java bytecode, and how the new
features interact with the existing Java features.

C.-c. Shan (Ed.): APLAS 2013, LNCS 8301, pp. 233–240, 2013.
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2 Main Features of ThisJava

We extend Java with new typing features and language constructs to support more uses
of exact types by allowing more This-typed methods. Due to space limitations, we
briefly summarize the main features here and refer the interested reader to our earlier
work [10,9].

We introduce exact class types of the form #C (read as “exact C”) for a class C to
represent run-time exact types of objects, and a type variable implicitly declared in the
definition of C, This. In ThisJava, a This type appearing in the definition of a
class (or interface) C denotes the run-time type of the special variable this (whereas
the traditional This types denote its declared type).

To describe the relationships between exact types, ThisJava provides a type anno-
tation of the form </X/>, called named wildcards. Using named wildcards, program-
mers can state that two formal parameter types or the result type and a formal param-
eter type are the same run-time types. Also, ThisJava performs a type-flow analysis
called exact type inference to collect more equality relationships between exact types.
Exact type inference lessens the programmers’ burden of using exact type annotations
such as exact class types and named wildcards. Exact type inference traces the flows of
run-time types through the chains of def-use pairs. In particular, it infers exact types in
a flow-sensitive manner to make more precise judgements on the run-time type matches
of expressions.

To enhance the expressive power taking advantage of This types, ThisJava pro-
vides virtual constructors to represent “generic factory methods,” methods that have the
This type as their return type, and generates and returns an object of the same run-time
type as its receiver, even when it is inherited by a subclass. In addition to generic factory
methods, virtual constructors are useful to reduce code duplication by implementing
common tasks for object generation in a superclass and allowing subclasses to inherit
or override them, unlike ordinary constructors. An invocation of a virtual constructor
is dynamically dispatched based on the run-time type of the receiver and generates an
object of the same run-time type as the receiver.

While the This type in this paper allows more This-typed methods than traditional
This types because it denotes run-time exact types rather than compile-time inexact
types, purely static approaches to typing invocations of This-typed methods may re-
quire more relaxation. To allow more This-typed methods, ThisJava provides a
language construct, classesmatch, to compare run-time types:

classesmatch (x,y) { /* then-block */ ... }
else { /* else-block */ ... }

At run time, it checks whether the run-time types of two variables are identical or not.
If they are, the execution continues to evaluate then-block, otherwise the execution
continues to evaluate else-block. Because the semantics of classesmatch guar-
antees that the run-time types of two variables are the same in then-block, it allows
This-typed method invocations on the variables in then-block. Because program-
mers use (inexact) class types in most cases to enjoy subtype polymorphism, checking
exact class types by run-time tests with classesmatchwould provide full flexibility
in using This-typed methods.
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3 Compilation of ThisJava

The ThisJava compiler generates class files that can run on JVMs [8]. In this section,
we describe how the compiler translates new language features into Java bytecode.

Exact Types Because JVM does not support exact types, the ThisJava compiler con-
verts exact types to class types that JVM can understand. We call this process inexacti-
zation, which is very similar to type erasure [7, Section 4.6] in Java. The inexactization
process converts most of the exact types to class types as follows:

1. A This type in a class C definition is converted to C.
2. For a class D and a named wildcard X, types #D and D</X/> are converted to D.

The only exception to the rule 1 is to support overriding a method or a virtual construc-
tor that has a This-typed formal parameter as follows:

1′. When the declared parameter type of a method or a virtual constructor is This,
the This type is converted to Object and appropriate type casting is applied
to the formal parameter so that the generated class files can pass the verification
process [8, Section 4.9].

Virtual Constructors. The ThisJava compiler converts a virtual constructor defini-
tion into an ordinary constructor definition and two stub method definitions. The or-
dinary constructor definition has the same signature and body as the original virtual
constructor except that any exact types are converted to class types as described above.
The first stub method, vcStub0, has the same list of formal parameters as the origi-
nal virtual constructor, packs the parameters into an array of Objects, and invokes the
second stub method. Unless the class defining the virtual constructor is abstract, the sec-
ond stub method, vcStub1, unpacks the packed parameters and invokes the ordinary
constructor discussed above. Any virtual constructor invocation in the original source
code is converted to the invocation of a vcStub0 method. For example, the following:

class C {
int fi; Point fp;
This(int i, Point p) { fi = i; fp = p; }
This copy() { return new This(fi,fp); }

}

is converted to the following:
class C {
int fi; Point fp;
C(int i, Point p) { fi = i; fp = p; }
C vcStub0(int i, Point p) {

Object[] pack = new Object[] {Integer.valueOf(i), p};
return vcStub1(pack);

}
C vcStub1(Object[] pack) {

int i = ((Integer)pack[0]).intValue();
Point p = (Point)pack[1];
return new C(i,p);

}
C copy() { return vcStub0(fi,fp); }

}
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If the class defining a virtual constructor is abstract, the generated vcStub1method is
also abstract. When a class inherits a virtual constructor, the code conversion adds to the
class an ordinary constructor which has the same signature as the inherited constructor
and just calls its super-constructor. If the class is not abstract, the code conversion also
redefines (overrides) the vcStub1method so that it calls the added constructor. Under
our compilation strategy for virtual constructors, the vcStub1 methods always have
the same signature vcStub1(Object[]) to simulate overriding of virtual construc-
tors by overriding the vcStub1 methods. Packing and unpacking of parameters are
necessary to keep the uniform signature of the vcStub1 methods.

Compilation of virtual constructor definitions actually require more strategies than
discussed above to properly handle inner classes [3, Chapter 5] in Java. When a class
defining or inheriting a virtual constructor is an inner class or a subclass of an inner
class, the code conversion has to take enclosing objects [3, Section 5.2] and variables
in an enclosing scope [3, Section 5.3] into account so that they can be correctly passed
to the generated constructor and stub methods at run time. We omit the details of such
compilation, but our ThisJava compiler implementation is publicly available.

Type Testing and Casting with Exact Types. ThisJava supports type testing and cast-
ing with exact class types:

... (o instanceof #Point) ... // (1)

... (#Point) o ... // (2)

Because #Point is an exact class type, when o has a ColorPoint object, a subclass
of Point, at run time (1) should produce false and (2) should produce an excep-
tion. Thus, the bytecode generated for (1) is similar to the bytecode generated for the
following:

... (o == null ? false : o.getClass() == Point.class) ...

and the bytecode generated for (2) is similar to the one generated for the following:1

... (o == null || o.getClass() == Point.class ? (Point) o
: throw new ClassCastException()) ...

ThisJava does not support type testing and casting with This types and types
with named wildcards because they can be expressed by the classesmatch con-
struct. For example, the following example is illegal in ThisJava:

Object o; ...
if (o instanceof This) {
This t = (This) o; /* do something with t */ ...

}

but the following is legal and does what the above intends:

Object o; ...
classesmatch (o, this) { /* do it with o */ ... }

1 Note that it is not legal Java code but pseudo code for explanation. The throw statement is
syntactically illegal.
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4 Interactions with Existing Features of Java

4.1 Overloading

Java supports overloading [3, Section 2.8], which allows two or more methods visible
in a scope to have the same name if they have different signatures. For an invocation
of overloaded methods, the types of the actual arguments to the invocation may be
compatible with two or more signatures of the overloaded methods. In such cases, a
Java compiler chooses the most specific method among the applicable ones, if any.
Otherwise, it signals an ambiguous invocation error at compile time.
ThisJava extends the Java rule for selecting the most specific method because

This types and types with named wildcards may put additional run-time type match
constraints on some of the arguments to a method invocation. The ThisJava compiler
selects the most specific method for a method invocation as follows:

1. For every occurrence of This type, if any, in the signatures of applicable methods,
replace it as follows:

– if the declared type of the receiver is This, replace the This type with the
class enclosing the method invocation;

– if the declared type of the receiver is C</X/> for a class C and a named wild-
card X, replace the This type with C; and

– otherwise, replace the This type with the declared type of the receiver.
2. For every type with a named wildcard C</X/>, if any, in the signatures of appli-

cable methods, replace it with C;
3. Among the applicable methods with the modified signatures by the above steps 1

and 2, select the most specific one by using the Java rule for selecting the most
specific method [7, Section 15.12.2.5] extended with exact class types.

4. If the most specific method is determined, we are done. Otherwise, compare the
run-time type match constraints of applicable methods as follows:

– for two run-time type match constraints A and B, A is more specific than B if
A is not equal to B and A includes every constraint in B.

5. If the most specific method is determined, we are done. Otherwise, the method
invocation is ambiguous.

If a method has formal parameters declared with exact types, the ThisJava compiler
mangles the method’s name when it generates a class file to avoid possible conflicts
between overloaded method signatures.

4.2 Arrays

ThisJava allows exact array types such as #C[], This[][], and C</X/>[], but
with some limitations. Subtyping with exact array types is different from subtyping with
Java array types. While Java array types are covariant in the sense that D[] is a subtype
of C[] if D is a subtype of C, exact array types in ThisJava are not covariant; while
the This type in the definition of C, C</X/>, and #C are subtypes of C, This[],
C</X/>[], and #C[] are not subtypes of C[]. In general, covariant array types are
unsound and JVM checks every assignment to an array at run time [13, Section 15.5].
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ThisJava supports array creation of exact class types but not the other exact types,
and it does not allow the root class Object to define a virtual constructor. While
ThisJava supports ‘new #C[10]’, for example, and inexactizes it as discussed in
Section 3, ‘new This[10]’ and ‘new C</X/>[10]’ are not allowed because they
should produce arrays of different types depending on the run-time type of an object.
Similarly, because any array type is a subtype of Object, if Object defines a virtual
constructor then array types should inherit the virtual constructor, which should create
arrays of different types depending on the run-time type of an object.

4.3 Generics and Wildcards

Since J2SE 5.0, Java supports type-parameterized classes and methods, known as gener-
ics, and it allows type wildcards (denoted by the question mark “?”) to serve as type
arguments for parameterized types [3, Chapter 11]. The new features of ThisJava
work well with generics and wildcards of Java, but there are some restrictions on mixed
uses of ThisJava’s exact types and Java’s generics and wildcards.

First, ThisJava does not allow an exact type as the declared upper bound of a type
variable or a type wildcard. For example, all the following upper bounds are illegal:

class C<X extends #Point> { ... // illegal
class I<Y extends This> {...} // illegal
void m(Point</E/> p) {

class L<Z extends Point</E/>> {...} ... // illegal
}

}

Even if ThisJava allowed the above example, because no exact type has a proper
subtype, the type variables X, Y and Z may be instantiated only by their respective
upper bounds. Therefore, the above is nothing more than the following:

class C { /* #Point instead of X */ ...
class I { /* C.This instead of Y */ ...}
void m(Point</E/> p) {

class L { /* Point</E/> instead of Z */ ...} ...
}

}

Similarly,List<? extends #Point> denotes the same type as List<#Point>.
Unlike type variables, type wildcards may have lower bounds in Java. ThisJava

allows This types and exact class types as lower bounds of type wildcards, but it does
not allow types with named wildcards as lower bounds of type wildcards. For example,
the following use of Point</X/> is not allowed:
class C { void mth(List<? super Point</X/>> l) {...} // illegal}

because there may exist multiple run-time types for the named wildcard. For example,
if the above definition was allowed in ThisJava, in the following invocation of mth:
class C { void mth2(C c, List<Point> l) { ... c.mth(l); ... }}

Point</X/> may be #Point or #ColorPoint. Instead, the following definition:
class C { void mth2(C</X/> c, List<? super Point</X/>> l) {...}}

is legal because for any invocation of mth2, the named wildcard X is singly determined
to the run-time type of the first argument of the invocation.
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4.4 Type Checking Existing Java Programs

To see the backward compatibility of our ThisJava implementation, we compiled
7637 Java source files that comprise most of the standard class library from the Open-
JDK 1.6 source code [12] using the ThisJava compiler. We found only one case that
requires a user annotation to be compiled by the ThisJava compiler, but consider-
ing the diversity of the test files that we used, we believe that all valid Java programs
(possibly with some annotations described below) are valid ThisJava programs.

The following example shows the exceptional case that needs a user annotation:

List<C> l = Arrays.asList(new C(...));

where the asList static method defined in the utility class java.util.Arrays
takes a variable number of arguments of type T for a type variable T and returns a list
of type List<T>. Because the invocation of asList does not explicitly provide a
type to instantiate the type argument T, a compiler should infer it from the type of the
actual argument new C(...), which is C. Then, the type of the right-hand side of the
assignment is List<C>which is the declared type of the left-hand side, l. However, in
ThisJava, the type of new C(...) is #C, which makes the type of the right-hand
side List<#C>, which is not a subtype of the declared type of l. Thus, the assignment
expression is not well typed in ThisJava. However, ThisJava can accept it with an
explicit type instantiation rather than depending on the type inference as follows:

List<C> l = Arrays.<C>asList(new C(...));

5 Related Work

One may use F-bounded polymorphism [4] to define binary methods. In a class (or
interface) definition of C<X>, the type variable X acts like a This type because it
denotes a concrete class that extends C<X>. However, unlike This types, X is not the
type of the special variable this; the type of this is C<X> which is not a subtype of
X. Therefore, when programmers need an object of type X, they may need to declare an
abstract method to use instead of this, as Altherr and Cremet [2] described.

An abstract type in Scala [1], which is a type member of a class (or trait) whose com-
plete definition is deferred to its subclasses, may act like a This type. However, Scala
still has the code duplication problem because it does not have virtual constructors, and
the classes should declare and define the abstract type explicitly while the ThisJava
classes do not declare or define a This type.

In Jx [11], a value-dependent type x.class denotes the exact type of an immutable
variablex. Jx’s this.class and x.class appear to be the same as ourThis and X,
respectively, when x is declared with C</X/> for some C in our mechanism. Thus, Jx’s
type system and ours have comparable expressiveness in handling exact types. But Jx’s
constraint that the variable x in x.class should be immutable may be too restrictive.

In Rupiah [6], Foster introduced ThisClass constructors. However, while a sub-
class in ThisJava may inherit its superclass’ virtual constructor, a subclass in Rupiah
should always override its superclass’ ThisClass constructor. Similarly, Saito and
Igarashi [14] propose nonheritable methods, which may not be inherited but should
always be overridden by subclasses. In the definition of a nonheritable method whose
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return type is This, the This type is considered as a supertype of the enclosing class
so that the method can use an ordinary constructor to generate a return value. On the
contrary, by allowing inheritance of a superclass’ virtual constructor, ThisJava re-
duces code duplication of virtual constructors.

6 Conclusion

We have presented ThisJava, an extension of Java with exact types, virtual construc-
tors, and run-time type matches, to support more useful methods with more precise
types than the traditional object-oriented languages with This types. We describe the
compilation strategies and the interaction between the new features and existing features
such as overloading, covariant array types, and generics. We believe that ThisJava
elucidates the long pursuit of an object-oriented language with This types by provid-
ing a flexible type system and language features and a practical open-source prototype
implementation. Our future work includes rewriting of the standard class library using
This types to experiment its practicality and usability.
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Abstract. For a simple probabilistic language we present a semantics
based on linear operators on infinite dimensional Hilbert spaces. We show
the equivalence of this semantics with a standard operational one and
we discuss its relationship with the well-known denotational semantics
introduced by Kozen. For probabilistic programs, it is typical to use
Banach spaces and their norm topology to model the properties to be
analysed (observables). We discuss the advantages in considering instead
Hilbert spaces as denotational domains, and we present a weak limit
construction of the semantics of probabilistic programs which is based
on the inner product structure of this space, i.e. the duality between
states and observables.

1 Introduction

The formal analysis of probabilistic systems is gaining increasing importance
for its recognised benefits in various areas such as distributed systems, where
randomised schemes are used to enhance efficiency, and in general to the de-
sign of systems with unreliable and unpredictable behaviour, where probability
provides a means to make predictions based on the evaluation of performance
characteristics (see e.g. [1] and the references therein). A recent trend in system
design is highlighting the need for formal analysis techniques that are able to
provide quantitative estimates of a system property and mathematical tools for
cost optimisation. Several of our own recent works have shown how probabilistic
static analysis can serve this purpose (see e.g. [2, 3]).

In order to have a sound basis for such an analysis we need a formal semantics
of probabilistic programs. A popular choice for this is the denotational seman-
tics introduced by Kozen in [4]. Despite its mathematical simplicity and clarity
this semantics presents some limitations when used for program analysis. One
problem is that it is mainly concerned with I/O behaviours, i.e. it only takes into
account the final results of a program execution. This implies the identification
of a number of behaviours and consequently a loss of precision of any static anal-
yses based on it. Another limitation is that it does not provide a good basis for
a relational analysis as correlations between program variables and properties
are not made explicit.

We will investigate in this paper an alternative approach to probabilistic se-
mantics which we argue is better suited for probabilistic program analysis. It

C.-c. Shan (Ed.): APLAS 2013, LNCS 8301, pp. 241–256, 2013.
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essentially constructs the generator of a Discrete Time Markov Chain (DTMC)
in a syntax-driven way similarly to the collecting semantics in classical program
analysis [5]. The topological aspects of the resulting so-called Linear Operator
Semantics (LOS) stem from the theory of infinite-dimensional Hilbert spaces.
The choice of Hilbert spaces instead of the Banach spaces used in [4] is mainly
motivated by the presence of an inner product. More precisely, the notion of an
observable as a functional in the dual space of the state space coincides here
with the notion of a state (i.e. a probability distribution) as Hilbert spaces are
self-dual. We will show that this allows us to define a semantics based on a notion
of equivalence which is finer than I/O semantics.

An additional aspect of our construction is an explicit consideration of pro-
gram labels which are used on one hand to identify particular intermediate ex-
ecution points but which also allow us to investigate the control flow within
a program explicitly. The importance of considering labels has been discussed
recently, for example, in the context of program obfuscation [6]. The removal
of label information makes it more difficult to de-obfuscate programs via static
program analysis, even if one can develop ways to reconstruct such information
later. We compare in Section 4 the LOS semantics with Kozen’s approach which
does not consider program labels.

The main drawback of the construction of semantical operators on infinite-
dimensional Hilbert spaces is the fact that even for simple programs, e.g. a
constant assignment, it leads to unbounded operators, making it problematic the
construction of a well-defined semantics for the program. Ideally, for semantical
purposes one would like to consider only operators which are bounded as this
requirement is equivalent to continuity of set-theoretical structures.

In order to overcome this problem we replace the notion of norm limit used in
[4] by a weaker one, namely the weak limit, where convergence is defined directly
in terms of inner product. Using weak limit constructions we can approximate
the object we are interested in (i.e. the semantics T(P ) of a program P ) even
though it is not in the semantical domain by considering the effects of its finite
dimensional (and thus bounded) approximations on the state space. The classi-
cal concept which this approach resembles is the theory of generalised function
(developed by Schwartz, Sobolev, et.al.), in particular Dirac’s δ “function” which
is not a function and yet can be modelled as the weak, more precisely weak−∗,
limit of functions [7, 8].

As already mentioned, the weak limit semantics we introduce in this paper
is intended to provide a sound mathematical basis for program analysis and in
particular for probabilistic abstract interpretation [9–11]. This technique allows
us to obtain a simplified semantics via an abstraction A and its corresponding
concretisation A† defined by the so-called Moore-Penrose pseudo-inverse. The
abstract semantics for a program P is then obtained as T#(P ) = A†T(P )A
and can be constructed compositionally thanks to the properties of the tensor
product operation and of the particular notion of generalised inverse we use for
the abstraction on infinite-dimensional Hilbert space. In fact, these properties
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allow us to construct both concrete and abstract semantics by combining (via
the tensor product) the effects of individual statements and their local effects.

Mathematical Background and Notation. For the mathematical notions and no-
tation used in this paper we refer to the standard literature and, in particular, to
the recent monograph by Kubrusly [12] for the functional analytical and operator
algebraic concepts and to the presentation in [13] for themeasure theoretic notions.

2 The Language

We will discuss our approach by referring to a probabilistic language which is a
simplified version of the language in [10] and essentially the same as the one used
[4]. In this section we introduce both the syntax and the operational semantics
for this language, which we call pWhile.

Syntax. In a style typical of static analysis [5], we introduce labels in the syntax
of the language. Labels are used to identify the programs points and are crucial
for defining a formal semantics that is suitable for static analysis.

S ::= [skip]� | [x := e]� | [x ?= ρ]� | S1; S2

| if [b]� then S1 else S2 fi | while [b]� do S od

We denote by Stmt the set of all pWhile statements S and assume a unique
labelling (by numbers � ∈ Lab).

The statement skip does not have any operational effect but can be used, for
example, as a placeholder in conditional statements. We have the usual (deter-
ministic) assignment x := e, sometimes also in the form x := f(x1, . . . , xn).

In the random assignment x ?= ρ, the value of a variable x is set to a value
according to some random distribution ρ. In [4] it is left open how to define
or specify distributions ρ in detail. We will use occasionally an ad-hoc notation
as sets of tuples {(vi, pi)} expressing the fact that value vi will be selected with
probability pi; or just as a set {vi} assuming a uniform distribution on the values
vi. It might be useful to assume that the random number generator or scheduler
which implements this construct can only implement choices over finite ranges,
but in principle we can also use distributions with infinite support.

For the rest we have the usual sequential composition, conditional statement
and loop. We leave the detailed syntax of functions f or expressions e open as
well as for boolean expressions or test b in conditionals and loop statements.

SOS Semantics. The operational semantics of pWhile is defined in the SOS
style [14] by means of a probabilistic transition system on the set Conf of
configurations 〈S, s〉, where S is a pWhile program and s a classical state
s : Var → Value. The transition rules are given in Table 1. We assume an
evaluation function E : Expr → (State → Value) for expressions defined in the
usual way (assuming that Value contains e.g. integers as well as booleans true
and false).
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Table 1. The rules of the SOS semantics of pWhile

R0 〈stop, s〉−→1〈stop, s〉
R1 〈skip, s〉−→1〈stop, s〉
R2 〈v := e, s〉−→1〈stop, s[v �→ E(e)s]〉
R3 〈v ?= ρ, s〉−→ρ(r)〈stop, s[v �→ r]〉

R41
〈S1, s〉−→p〈S′

1, s
′〉

〈S1;S2, s〉−→p〈S′
1;S2, s

′〉
R42

〈S1, s〉−→p〈stop, s′〉
〈S1;S2, s〉−→p〈S2, s

′〉
R51 〈if b then S1 else S2 fi, s〉−→1〈S1, s〉 if E(b)s = true

R52 〈if b then S1 else S2 fi, s〉−→1〈S2, s〉 if E(b)s = false

R61 〈while b do S od, s〉−→1〈S; while b do S od, s〉 if E(b)s = true

R62 〈while b do S od, s〉−→1〈stop, s〉 if E(b)s = false

Our aim is to identify the execution (process) of a program P according to
the SOS rules as the realisation of a Discrete Time Markov Chain (DTMC)
[15]. Markov chains are essentially transition systems where the successor state
of a state is chosen according to a probability distribution. This probability
distribution only depends on the current state, so that the system evolution is
independent of the history. This is known as the memoryless property. The name
Discrete Time Markov Chain refers to the fact that Markov chains are used as a
time-abstract model (like transition systems): each transition is assumed to take
a single time unit.

DTMC are non-terminating processes: it is assumed that there is always a
next state and the process goes on forever. In order to reflect this property in
our semantics, we introduce a terminal statement stop which indicates success-
ful termination. Then the termination with a state s in the classical setting is
represented here by reaching the final configuration 〈stop, s〉 which then ‘loops’
forever after. This means that we implicitly extend a statement S to construct
full programs of the form P ≡ S; [stop]�

∗
.

The probabilistic transition system defined in Table 1 is indeed describing a
DTMC, as we obviously have a memoryless process: the transitions in Rules R0
to R6 depend only on the current configuration and not on the sequence of the
configurations that preceded it. It is well-known that the matrix of transition
probabilities of a DTMC on a countable state space is a stochastic matrix, i.e. a
square (possibly infinite) matrix P = (pij) whose elements are real numbers in
the closed interval [0, 1], for which

∑
j pij = 1 for all i [15, 16]. We can therefore

represent the SOS semantics for a pWhile program P by the stochastic matrix
on the vector space over the setConf of all configurations of a program P defined
by the rules in Table 1.

3 Linear Operator Semantics

The SOS semantics introduced in Section 2 specifies effectively the generator of a
DTMC representing all executions of the program. However, the representation
of this operator as a single unstructured matrix is not a convenient one for a
denotational approach as it is not compositional (it stems from the SOS).
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The labelled version of the syntax introduced in Section 2 allows us to use
labels as a kind of program counter. Labels in Lab can therefore be used as
delimiters of those relevant parts of the program that effectively correspond to
the application of each language constructor. Moreover, they allow us to track the
computational progress through the program execution, so yielding a semantics
which is not only concerned with the I/O behaviour of the program but can also
capture some finer notions of observables.

In the following we will present a semantics that we call Linear Operator
Semantics (LOS), as it is the composition of different linear operators on the
Hilbert space �2(Conf) over configurations, each expressing a particular opera-
tion, and contributing to the overall behaviour of the program. More precisely,
the LOS is constructed compositionally by means of the operators representing
each block of the program. The resulting operator T(P ) is represented by an
infinite matrix which we will show to be equivalent to the SOS matrix from
Section 2. Moreover, we will show how this can be constructed as the weak limit
of a sequence of finite approximations.

States and Observables. We assume that variables occurring in a pWhile
program can take values in some countable set X that might be finite (e.g.
Booleans) or infinite (typically Z or N). We will refer to an implicitly given enu-
meration ξ : X → N of X (e.g. ξ = id for X = N). For high-order languages or
languages with e.g. real-valued variables one might need to work with uncount-
able sets (e.g. X = Z → Z or X = R). However, for imperative languages like
the one we consider in this paper a finite or countable infinite value space will
do. We can nevertheless extend our framework also to deal with the uncountable
case.

The classical state is defined as a map s : Var → X. For a set of v variables
Var = {x1, . . . , xv} we can identify the classical state space with the v-fold
cartesian product Xv = X×. . .×X. Concretely, the classical state [x1 �→ v1, x2 �→
v2, . . . xv �→ vv] corresponds to the v-tuple (v1, v2, . . . , vv).

In our model probabilistic states σ are vectors of a Hilbert space, i.e. an inner
product space that is complete under the metric induced by the inner product,
[17, 12]. We recall that an inner product space H (over the reals R) is a vector
space H together with an inner product 〈·, ·〉 : H × H → R, that is a function
that is linear and continuous in both its arguments. An inner product induces a
norm on H defined by ‖x‖ =

√
〈x, x〉.

The concrete Hilbert space we will consider is �2(X), i.e. the space of all
sequences x = (xi)i∈X for which

∑
i |xi|2 < ∞ holds [18, Def 1.14]. In fact,

all Hilbert spaces with a countable infinite base are isomorphic to �2(N) = �2

[17, Thm 2.2.12]. With the 2-norm ‖x‖2 = ‖(xi)‖2 =
(∑

i∈X
|xi|2

) 1
2 this is

a Hilbert space as its norm ‖x‖2 =
√
〈x, x〉 is induced by the inner product

〈(xi), (yi)〉 =
∑

i xiyi. It contains as a dense sub-space the Banach space �1(X)
which is equipped with the 1-norm ‖x‖1 = ‖(xi)‖1 =

∑
i∈X

|xi| < ∞ [18, Exer-
cise 1.14]. We can represent the state of several variables x1, . . . , xv by a vector
in the tensor product �2(X)⊗ . . .⊗ �2(X) = �2(X

v).
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Table 2. The control flow

flow([skip]�) = flow([v := e]�) = flow([v ?= e]�) = ∅
flow(S1;S2) = flow(S1) ∪ flow(S2) ∪ {(�, init(S2)) | � ∈ final(S1)}

flow(if [b]� then S1 else S2 fi) = flow(S1) ∪ flow(S2) ∪ {(�, init(S1)), (�, init(S2))}
flow(while [b]� do S od) = flow(S) ∪ {(�, init(S))} ∪ {(�′, �) | �′ ∈ final(S)}

The tensor product is an essential element of the description of probabilistic
states. This tensor product – more precisely, the Kronecker product, i.e. the coor-
dinate based version of the abstract concept of a tensor product – of two vectors
(x1, . . . , xn) and (y1, . . . , ym) is given by (x1y1, . . . , x1ym, . . . , xny1, . . . , xnym)
an nm dimensional vector. For an n × m matrix A = (Aij) and an n′ × m′

matrix B = (Bkl) we construct similarly an nn′×mm′ matrix A⊗B = (AijB),
i.e. each entry Aij in A is multiplied with a copy of the matrix or block B. The
tensor product of two vector spaces V ⊗W can be defined as the formal linear
combinations of the tensor products vi ⊗ wj with vi and wj base vectors in V
and W , respectively. For further details we refer e.g to [19, Chap. 14] and for a
detailed discussion of tensor products of Hilbert spaces to [17, Sect.2.6].

The notions of semantic states and observables – which are typically both
identified with the subsets of some appropriate cpo in the standard approach to
nondeterministic semantics – are in the probabilistic case two distinct geomet-
rical aspects that are dual to each other in the sense that they belong to dual
spaces. The dual space of a normed space X , denoted X ∗, is the normed space
of all continuous linear functionals on X . If X is a Hilbert spaces then its dual is
again a Hilbert space. Thus, as �2(X)

∗ = �2(X), we have for states y ∈ �2(X) that
observables x are also in �2(X). They are related to each other by the notion of
expected value, E(x, y), which represents the probability that we will observe a
certain property x when the state of the system is described by y. In �2(X) we
can take E(x, y) = 〈x, y〉. Duality is more involved for general Banach spaces,
where for example the dual, �1(X)

∗, of the space �1(X) is �∞(X), i.e. the space
of all sequences with ‖(xi)‖∞ = sup(xi) < ∞.

The Control Flow. For the definition of the control flow of a programwe follow
the presentation in [5]. It is based on two auxiliary operations init : Stmt→ Lab
and final : Stmt → P(Lab) which return the initial and the final labels of a
statement. The control flow in a statement S is then defined by the function flow :
Stmt→ P(Lab×Lab) which maps statements to sets of pairs which represent
the control flow graph. It is defined in Table 2. This only records that a certain
control flow step is possible. For tests b in conditionals and loops we indicate
the branch corresponding to the case when the test succeeds by underlining it.
As our semantics is ultimately modelling the semantics of a program via the
generator of a DTMC we are also confronted with the fact that such processes
never terminate. This can be fixed by adding an additional label �∗ to the set
of labels and define the flow of a program P as F(P ) = flow(P ) ∪ {(�, �∗) | � ∈
final(P )} ∪ {(�∗, �∗)}.
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Infinite Generator Matrix. Given a program P , our aim is to define com-
positionally an infinite matrix representing the program behaviour as a DTMC.
The domain of the associated linear operator T(P ) is the space of probabilis-
tic configurations, that is distributions over classical configurations, defined by
Dist(Conf) = Dist(Xv ×Lab) ⊆ �2(X

v ×Lab), where we identify a statement
with its label or, more precisely, an SOS configuration 〈S, s〉 ∈ Conf with the
pair 〈s, init(S)〉 ∈ Xv × Lab.

Among the building blocks of the construction of T(P ) are the identity matrix
I and thematrix units Eij containing only a single non zero entry (Eij)ij = 1 and
zero otherwise. We denote by ei the unit vector with (ei)i = 1 and zero otherwise.
As we represent distributions by row vectors we use post-multiplication, i.e.
T(x) = x ·T.

A basic operator is the update matrix U(c) which implements state changes.
The intention is that from an initial probabilistic state σ, e.g. a distribution over
classical states, we get a new probabilistic state σ′ by the product σ′ = σ ·U.
The matrix U(c) implements the deterministic update of a variable to a constant
c via (U(c))ij = 1 if ξ(c) = j and 0 otherwise, with ξ : X → N the underlying
enumeration of values in X. In other words, this is a (possibly infinite) matrix
which has only one column (corresponding to c) containing 1s while all other
entries are 0. Whatever the value of a variable is, after applying U(c) to the state
vector describing the current situation we get a point distribution expressing the
fact that the value of our variable is now c.

We also define for any Boolean expression b on X a diagonal projection matrix
P with (P(b))ii = 1 if b(c) holds and ξ(c) = i and 0 otherwise. The purpose of
this diagonal matrix is to “filter out” only those states which fulfil the condition
b. If we want to apply an operator with matrix representation T only if a certain
condition b is fulfilled then pre-multiplying this P(b) ·T achieves this effect.

In Table 3 we first define a multi-variable versions of the test matrices and
the update matrices via the tensor product ‘⊗’. We define with P(s) an operator
which tests if the current state is the same as the (classical) state s: Given the
state s = [xi �→ s(xi)] we test for each variable xi with i = 1, . . . , v if it has the
same value as specified in s by applying P(s) in each factor of the tensor product,
i.e. P(s(xi)) = P(xi = s(xi)). If we apply P(s) to a probabilistic state σ then
P(s) filters out the probabilities that each variable has exactly the value specified
by the state s. The operator P(e = c) tests in a similar way if the current state is
such that the expression e evaluates to the constant c. In order to accommodate
for general expressions e (not just constants) we collect (sum up) the matrices for
which E(e)s = e. The update operator U(xk ← c) assigns a definitive constant
value c to variable xk, all other variables remain unchanged (which is expressed
by the fact that the factors corresponding to the other variables in the tensor
product are all the identity I). Finally, the operator U(xk ← e) assigns the value
of an expression e to xk. This is achieved by testing whether in the current state
e evaluates to any of the possible constants c, and if so to assign c to xk.

With the help of the auxiliary matrices we can now define for every program P
the matrix T(P ) of the DTMC representing the program executions as the sum
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Table 3. Elementary Operators

P(s) =

v⊗
i=1

P(s(xi))

P(e = c) =
∑

E(e)s=c

P(s)

U(xk ← c) =
k−1⊗
i=1

I⊗U(c)⊗
v⊗

i=k+1

I

U(xk ← e) =
∑
c

P(e = c)U(xk ← c)

Table 4. Elements of the LOS

[[[x := e]�]]] = U(x← e) [[[v ?= ρ]�]] =
∑

c∈X
ρ(c)U(x← c)

[[[b]�]] = P(b = false) [[[b]�]] = P(b = true)

[[[skip]�]] = [[[skip]�]] = [[[x := e]�]]] = [[[v ?= ρ]�]] = I

of the effects of the individual control flow steps. For each individual control flow
step it is of the form [[[B]�]]⊗E�,�′ or [[[B]�]]⊗E�,�′, where (�, �

′) or (�, �′) ∈ F(P )

and [[[B]�]] represents the semantics of the block B labelled by �. The matrix
E�,�′ represents the control flow from label � to �′; it is a finite l × l matrix,
where l is the number of (unique) distinct labels in P .

The definitions of [[[B]�]] and [[[B]�]] are given in Table 4. The semantics of an
assignment block is obviously given by U(x← e). For the random assignment we
simply take the linear combination of assignments to all possible values, weighted
by the corresponding probability given by the distribution ρ. The semantics of
a test block [b]� is given by its positive and its negative part, both are test
operators P(b = true) and P(b = false) as described before. The meaning of
[[[B]�]] is non-trivial only for tests b while it is the identity for all the other blocks.
The positive and negative semantics of all blocks is independent of the context
and can be studied and analysed in isolation from the rest of the program P .

Based on the local (forward) semantics of each labelled block, i.e. [[[B]�]] and
[[[B]�]], in P we can define the LOS semantics of P as:

T(P ) =
∑

(�,�′)∈F(P )

[[[B]�]]⊗E�,�′ +
∑

(�,�′)∈F(P )

[[[B]�]]⊗E�,�′

A minor adjustment is required to make our semantics conform to the DTMC
model. As paths in a DTMC aremaximal (i.e. infinite) in the underlying directed
graph, we will add a single final loop via a virtual label �∗ as discussed in
Section 2. This corresponds to adding to T(P ) the factor I⊗E�∗,�∗ .

Correspondence between SOS and LOS. AsT(P ) operates onDist(Conf),
we can index the entries in its matrix representation by pairs of classical states
s and program labels �. We can show that these entries are in a one-to-one cor-
respondence with the generator matrix of the operational semantics in Table 1.
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Proposition 1. Let P be a pWhile program and T(P ) its LOS operator. We
have that if init(P ) = � and init(P ′) = �′ and s, s′ are classical states, then
〈P, s〉 −→p 〈P ′, s′〉if and only if (T(P ))(s,�)(s′,�′) = p.

The Weak Limit of T(P ). In the standard denotational approach to the
semantics of programming languages continuity is an essential requirement for
the semantical functions: it guarantees the existence of fixpoints and therefore
that the semantics is well-defined. For linear operators the concept of continuity
is equivalent to the concept of boundedness. This is a basic result in functional
analysis and operator theory (see, e.g. [12, Thm. 4.14]). We recall that a linear
operator T : X → Y between two normed vector spaces X and Y is bounded if
‖T‖ = sup ‖T(x)‖/‖x‖ < ∞.

One feature of Markov chains is that, due to their memoryless property, we
can obtain the future of an initial situation x = x(0) (a given distribution)
by iterating the generator matrix. The distribution at time t is simply x(t) =
x(0)Tt.This can be extended to infinity, i.e. we can compute the limit state
distribution as x(∞) = limt→∞ x(0)Tt. The question is therefore: does this limit
exist for T(P ) for all P and input x(0) ∈ �2(X)? The answer obviously depends
on the notion of limit we have in mind. If we refer to the norm limit then the
question boils down to whether T(P ) is a bounded operator on �2(X) and the
answer is negative as the following example shows.

Example 1. The operator represented by the matrix U(x ← e) is in general not
bounded on �2(X). To see this, consider x = (xi)

∞
i=0 = (1, 1

2 ,
1
3 , . . .). Then calcu-

lating the 2-norm, ‖x‖2, gives rise to a well-known convergent series1, whereas
‖U(x ← 1)‖2 = ‖x‖1 corresponds to the harmonic series which is a well-known
divergent infinite series.

However, in our setting it makes sense to consider a particular notion of limit,
namely the weak limit, which allows us to look at the computation as the physical
process of measuring an observable by means of successive approximations each
constructed as the inner product between the observable and an approximation
of its dual state.

Definition 1 (Weak Limit [12, Sect 5.11]). A sequence of vectors {xn}n in

a Hilbert space H converges weakly to x ∈ H, denoted by xn
w→ x or w- limn xn =

x, iff for all y ∈ H we have limn→∞ 〈xn, y〉 = 〈x, y〉.
With respect to this notion of limit we can show that the LOS operator T(P )

converges weakly for any initial state and any observable (specified as vector
distributions in �2(Conf)).

Definition 2 (Weak Limit of Operators[12, Sect 5.11]). A sequence of
linear operators An on a Hilbert space H is said to converge weakly to a linear
operator A, denoted by An

w→ A iff for all x ∈ H we have An(x)
w→ A(x).

1 The problem of finding the closed form of the infinite series 1+ 1
22

+ 1
32

+ 1
42

+ . . ., aka
the Basel problem, was solved by Euler who showed that the series is approximately
equal to 1.644934.
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We first need to introduce the following definition of finite approximations
(or sections) of a matrix. Let Pn be the orthogonal projection onto the spaces
spanned by the first n base vectors; then its matrix representation is given by
Pn = diag(1, . . . , 1, 0, 0, . . .), i.e. a diagonal matrix with only the first n diagonal
entries being one and the rest all zero. For any infinite matrix T representing
a bounded or unbounded operator, we can define its finite approximations as
Tn = PnTPn, that is the effect of T only on the sub-space spanned by the the
first n dimensions.

We will show that the numerical series obtained by calculating the inner
products between the n-th approximation vector x · (T(P ))n and an observable
y always converges in R, and we will take this limit to define 〈x ·T(P ), y〉.

Proposition 2. Given a program P and its LOS operator T(P ), we have that
for all x, y ∈ Dist(Conf) ⊂ �2(Conf) converges, limn→∞ 〈x ·T(P )n, y〉 < ∞.

Proof. Let xn = x · T(P )n and y ∈ Dist(Conf) ⊂ �1(Conf) ⊂ �2(Conf). We
need to show that 〈xn, y〉 =

∑∞
k=1(xn)k ·yk converges in R. Since the T(P )n are

(sub-)stochastic matrices and x is a distribution with ‖x‖1 = 1, we have that
‖xn‖1 ≤ 1 and 〈xn, y〉 ≤ 〈xn+1, y〉, i.e. monotone. Moreover, by the Cauchy-
Schwarz inequality (e.g. [17, Prop. 2.1.1]) we have 〈xn, y〉 ≤ ‖xn‖2‖y‖2, Thus, as
in general ‖v‖2 ≤ ‖v‖1 holds for all v(cf. [18, Exercise 1.14]), we have 〈xn, y〉 ≤
‖xn‖2‖y‖2 ≤ ‖xn‖1‖y‖1 ≤ 1, i.e. 〈xn, y〉 is a bounded, monotone sequence of
real numbers. ��

Example 2. Consider T = U(x ← 1), a distribution s = (si) as input and
observables represented by the base vectors ei. Then we have

lim
n→∞ 〈s ·Tn, ei〉 =

{
1 for i = 1
0 otherwise

In fact, we have that limn→∞ 〈s ·Tn, e1〉 = limn→∞
∑n

i=1 si = 1, while for ei
with i 
= 1 it is either always zero or converges towards zero. The probability of
observing [x �→ 1] after executing x := 1 is 1 and 0 for all other possible values.

Based on the weak limit we can also assert the adequacy of the LOS.

Proposition 3. Given programs P and P ′ with init(P ) = � and init(P ′) = �′,
if 〈P, s〉 −→p 〈P ′, s′〉 then limn→∞ 〈(s⊗ e�) ·Tn, (s

′ ⊗ e�′)〉 = p.

The weak limit construction also allows us to work with measures on X which
are not representable by distributions. This is important as it is a well known
problem that not all semantically interesting probabilistic behaviours (even on
countable infinite spaces) can be described by distributions.

Example 3. Consider the program fragment P ≡ x := 2x. Its LOS operator
is given by a bounded operator T(P ) = U(x ← 2x). If we are interested in
the probability of obtaining any even number as the result of executing P on
an initial distribution x then we can test it on an elementary observable, i.e.
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Table 5. Kozen’s semantics

[[skip]] = I
[[x := f(x1, . . . , xn)]] = U(x← f(x1, . . . , xn))
[[x ?= ρ]] = (

∑
c ρ(c)U(x← c))

[[S1;S2]] = ([[S1]][[S2]])
[[if b then S1 else S2 fi]] = (P(b)[[S1]] +P(¬b)[[S2]])
[[while b do S od]] = (P(b)[[S]][[while b do S od]] +P(¬b))

a test which can return only ‘yes’ or ‘no’. This implements a kind of uniform
measure over all even numbers. Strictly speaking, no measure can exists on Z

which would give equal probability to each even number and 1
2 to the set of

all evens. Such a uniform measure μev cannot be represented by a distribution.
However, we can approximate it by considering the distributions evn over the
first n even numbers, i.e. ev1 = (1, 0, 0, . . .), ev2 = (12 , 0,

1
2 , 0, . . .), . . .. Then we

get limn→∞ 〈x ·T(P ), evn〉 = 1 for any initial distribution x – as expected. In
other words, μev = w- lim evn.

By measure on Z we usually mean a measure based on the σ-algebra P(Z) of
all subsets of Z. On this σ-algebra it is obviously impossible to define an atomic
measure – i.e. one which is generated by the point measures μ({n}) of singletons
n ∈ Z – which reflects the fact that half of all numbers are even and half are odd.
However, it is possible to define such a measure on the (non-standard) σ-algebra
{∅, E,O,Z} with E and O the set of all even and odd numbers, respectively. In
fact, on this σ-algebra we can introduce the measure μ(E) = μ(O) = 1

2 . Thus, the
weak limit construction can simulate this measure. This appears to be consistent
with classical results in measure theory like the Portemanteau theorem, e.g. [13,
Thm 13.16], which allows the representation of certain measures as weak limits.

4 Comparison with Kozen’s Semantics

In this section we develop a comparison with the well-known probabilistic seman-
tics defined in [4]. We consider here the formulation which in the original paper
is referred to as Semantics 2 and which is based on an iterative construction
of the fixed point in the style of Knaster-Tarski [20]. Contrary to the LOS we
introduced before, which describes the stepwise behaviour of a program, Kozen’s
semantics captures the I/O behaviour of a program by means of the probability
measure reached after termination (possibly after an infinite number of steps).

Kozen’s semantics 2 is defined as the fixed point of a bounded operator on a
Banach space which fulfils the recursive equations in Table 5.

There are several features of Kozen’s semantics which are in striking contrast
with LOS. The first one consists in the fact that all probabilistic choices are
assumed to be made before the program execution starts rather than during the
execution as in the LOS. This seems to prevent any (non-terminating) program
with infinitely many probabilistic assignments (e.g. while true do x ?= {0, 1} od)
from ever starting. A second issue is the fact that it treats all execution paths
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which do not terminate in the same way, namely as the zero operator Not least
in the context of program analysis this seems to be rather imprecise as it might
well be interesting what happens during an infinite execution path, e.g. if a non-
terminating program such as an operating system will cause a variable overflow
or not, c.f. while true do x := x+1 od. Another difference is related to the fact
that Kozen’s semantics does not explicitly refer to relational aspects, e.g. the
fact that the values of two variables might be correlated. The LOS semantics on
the other hand is essentially constructed using a tensor product which models
conditional probabilities in a compositional way.

It might be worth noting that in later work [21] Kozen also presents a back-
ward semantics [21, p165] which is concerned with how measurable functions,
which represent observables, need to be transformed in order to define the se-
mantics of a program S. This is intuitively the reverse of the measure transformer
semantics in [4]. This backward semantics also appears to be strongly related to
the weakest pre-condition calculus. In our self-dual setting the backward seman-
tics is easily identified as the adjoint operator of [[S]] via the conditions

〈x · [[S]], f〉 = 〈x, f · [[S]]∗〉

for a state x and an observable f in �2(Conf).

Recovering Kozen’s Semantics. We can use the LOS to reconstruct the
semantics of Kozen by simply taking the limit of T(S)n(s0) for n → ∞ for all
initial states s0. The limit state T(S)n(s0) still contains too much information in
relation to Kozen’s semantics; in fact we only need the probability distributions
on the possible values of the variables at the final label.

In order to extract information about the probability that variables have
certain values at a certain label, i.e. program point �, we can use the operator
I⊗. . .⊗I⊗E�,�. In particular, for extracting the information about a probabilistic
state we will use S� = I ⊗ . . . ⊗ I ⊗ e� which forgets about all distributions at
other labels than �. In particular we use Sf = S�∗ for the final looping stop

statement and Si for the initial label init(P ) of the program. We denote by e0
the base vector in Rl which expresses the fact that we are in the initial label,
i.e. e0 = einit(P ).

Proposition 4. Given a program P and an initial state s0 as a distribution over
the program variables, then (s0⊗e0)T(P )nSf corresponds to the distribution over
all states on which P terminates in n or less computational steps.

We can now show that the effect of the operator we obtain as solution to
Kozen’s fixed-point equations agrees with the “output” limn→∞(s0 ⊗ e0)T

nSf

we get via the LOS. Essentially, both semantics define the same I/O operator,
provided we supply them with the appropriate input. However, the LOS also
provides information about internal labels and reflects the relation between dif-
ferent variables via the tensor product representation. It is therefore not possible
to reconstruct the LOS from Kozen’s semantics.
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Proposition 5. Given a program P and an initial probabilistic state s0 as a
distribution over the program variables, let [[P ]] be Kozen’s semantics of P and
T(P ) the LOS. Then (s0 ⊗ e0)(limn→∞ Tn)Sf = s0[[P ]].

The proof follows by induction.

5 Semantics-Based Analysis

Although the LOS semantics we presented here is of interest in itself its main
motivation is to provide a basis for a semantics based program analysis. Clas-
sically the correctness of a program analysis is asserted with respect to the
semantics in terms of a correctness relation. The theory of Abstract Interpre-
tation allows for constructing analyses that are automatically correct without
having to prove it a posteriori [22, 23]. The main applications of this theory
are for the analysis of safety-critical systems as it guarantees correct answers
at the cost of precision. For probabilistic systems or the probabilistic analysis
of (non-)deterministic ones, the theory of Probabilistic Abstract Interpretation
(PAI) allows for the construction of analyses that are possibly unsafe but maxi-
mally precise [9, 11]. Its main applications are therefore in fields like speculative
optimisation and the analysis of trade-offs. PAI has been used for the defini-
tion of various analyses based on the LOS (see e.g. [3, 24, 25] and all involving
finite-dimensional spaces.

PAI relies on the notion of generalised (or pseudo-)inverse. This notion is well-
established in mathematics where it is used for finding approximate, so-called
least-square solutions (cf. e.g. [26]).

Definition 3. Let H1 and H2 be two Hilbert spaces and A : H1 �→ H2 a linear
map between them. A linear map A† = G : H2 �→ H1 is the Moore-Penrose
pseudo-inverse of A iff A ◦ G = PA and G ◦ A = PG, where PA and PG

denote orthogonal projections onto the ranges of A and G.

A linear operator P : H → H is an orthogonal projection if P∗ = P2 = P,
where (.)

∗
denotes the adjoint. The adjoint is defined implicitly via the condition

〈x ·P, y〉 = 〈x, y ·P∗〉 for all x, y ∈ H. For real matrices the adjoint correspond
simply to the transpose matrix P∗ = Pt [19, Ch 10].

If C an D are two Hilbert spaces, and A : C → D and G : D → C are linear
operators between C and D, such that G is the Moore-Penrose pseudo-inverse
of A, then we say that (C,A,D,G) forms a probabilistic abstract interpretation,
with C the concrete domain and D the abstract one.

Important for the applicability of PAI is the fact that it possesses some nice
compositionality properties. These allow us to construct the abstract seman-
tics T(P )# by abstracting the single blocks of the concrete semantics T(P ) as
follows:

T(P )# = A†T(P )A = A†(
∑

(�,�′)∈F(P )

[[[B]�]]⊗E��′)A =

=
∑

(�,�′)∈F(P )

(A†[[[B]�]]A)⊗E��′ =
∑

(�,�′)∈F(P )

[[[B]�]]# ⊗E��′ ,
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where, for simplicity, we do not distinguish between the positive and negative
semantics of blocks, and we assume that A does not abstract E��′ . The fact that
we can work with the abstract semantics of individual blocks instead of the full
operator obviously reduces the complexity of the analysis substantially.

Another important fact is that the Moore-Penrose pseudo-inverse of a tensor
product can be computed as (A1 ⊗ A2 ⊗ . . . ⊗ Av)

† = A†
1 ⊗ A†

2 ⊗ . . . ⊗ A†
v

[26, 2.1,Ex 3]. We can therefore abstract properties of individual variables and
then combine them in the global abstraction. This is also made possible by the
definition of the concrete LOS semantics which is heavily based on the use of
tensor product. Typically we have [[[B]�]] = (

⊗v
i=1 Ti�) ⊗ E��′ or a sum of a

few of such terms. The Ti� represents the effect of T(S), and in particular of
[[[B]�]], on variable i at label � (both labels and variables only form a finite
set). For example, we can define an abstraction A for one variable and apply
it individually to all variables (e.g. extracting their even/odd property), or use
different abstractions for different variables (maybe even forgetting about some
of them by using Af = (1, 1, . . .)t) and define A =

⊗v
i=1 Ai such that A† =⊗v

i=1 A
†
i in order to get an analysis on the full state space.

Clearly, for (countably) infinite value spaces X the abstraction maps which we
use in the construction of Probabilistic Abstract Interpretations are often also
represented by unbounded operators (similar to the U(c) of Example 1). The use
of weak limits will again help us in order to construct the Moore-Penrose pseudo-
inverse A†. Fortunately, the approximations by finite dimensional abstractions
An and A†

n converge weakly for closed operators and in particular if the range
of the abstraction is finite dimensional, i.e. if A : �2(X) → Rn. Various general
results of operator theory and linear algebra as found, for example in [27–29] offer
a rigorous support for extending PAI to infinite-dimensional Hilbert spaces. We
have dedicated a companion paper to a full treatment of this infinite case [30].

6 Conclusions

We have introduced a linear operator semantics (LOS) for probabilistic programs
based on infinite-dimensional Hilbert space. We have shown how weak limits can
be used to guarantee the existence of observable program properties, even for
unbounded operators. In contrast with the norm limit on Banach spaces used in
the work by Kozen, we are able to capture properties of the intermediate states
of a program execution. This is important for program analysis. In fact, the
aim of the work presented here is to provide a mathematically sound framework
for probabilistic program analysis. The two main elements for this are (i) a
compositionally defined semantics, i.e. LOS, and (ii) a way to reduce the concrete
semantics in order to obtain a more manageable abstract one via PAI. The
concepts of a linear operator semantics and probabilistic abstract interpretation
have been used before in the setting of finite domains in [3, 24, 31, 25] for the
analysis of programs and security properties. This paper extends LOS to infinite
(concrete and abstract) domains and informally shows how PAI can be extended
accordingly.
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The LOS is closely related to various models used in Performance Analysis,
like Stochastic Automata Networks (SAN) [32, 33]. As performance models are
often based on Continuous Time Markov Chains (CTMC) it would be interesting
to develop a continuous time version of the LOS which might help to establish
a bridge between performance and program analysis.

From a semantical point of view one important feature of LOS is the no-
tion of duality between states and observables and a weak limit construction to
overcome problems with unboundedness. For a more direct approach it would
be interesting to investigate which programs lead directly to bounded operators
in the LOS approach. It seems that this issue is related to reversibility and fi-
nite branching of the reverse computation: for infinite (un-oriented) graphs it
is known that the adjacency operator represents a bounded operator on �2 if
and only if it is finitely branching [34, Thm. 3.1]. Similarly, it is also possible to
model reversible Markov Chains, e.g. [16], via bounded Hilbert space operators.
We aim to explore these aspects further in future work.
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Abstract. GADTs, short for Generalized Algebraic DataTypes, which allow
constructors of algebraic datatypes to be non-surjective, have many useful ap-
plications. However, pattern matching on GADTs introduces local type equal-
ity assumptions, which are a source of ambiguities that may destroy principal
types—and must be resolved by type annotations. We introduce ambivalent types
to tighten the definition of ambiguities and better confine them, so that type infer-
ence has principal types, remains monotonic, and requires fewer type annotations.

1 Introduction

GADTs, short for Generalized Algebraic DataTypes, extend usual algebraic datatypes
with a form of dependent typing by enabling type refinements in pattern-matching
branches [2,16,1]. They can express many useful invariants of data-structures, provide
safer typing, and allow for more polymorphism [13]. They have already been available
in some Haskell implementations (in particular GHC) for many years and now appear
as a natural addition to strongly typed functional programming languages.

However, this addition is by no means trivial. In their presence, full type infer-
ence seems undecidable in general, even in the restricted setting of ML-style poly-
morphism [12]. Moreover, many well-typed programs lack a most general type. Using
explicit type annotations solves both problems. Unfortunately, while it is relatively easy
to design a sound typing algorithm for a language with GADTs, it is surprisingly dif-
ficult to keep principal types without requesting full type annotations on every case
analysis.

Repeatedly writing full type annotations being cumbersome, a first approach to a
stronger type inference algorithm is to propagate annotations. This comes from the
basic remark that, in many cases, the type of a function contains enough information to
determine the type of its inner case analyses. A simple way to do this is to use program
transformations, pushing type annotations inside the body of expressions.

Stratified type inference for GADTs [11] goes further in that direction, converting
from an external language where type annotations are optional to an internal language
where the scrutinee of case analysis and all coercions between equivalent types must be
annotated. This conversion is an elaboration phase that collects all typing information
—not only type annotations— and propagates it where it is needed. The internal lan-
guage allows for straightforward type inference and it has the principal type property.
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It also enjoys monotonicity: strengthening the type of a free variable by making it more
general preserves well-typedness. As expected, principality does not hold in general in
the external type system (a program may be typable but have no principal type), but it
does hold if we restrict ourselves to those programs whose elaboration in the internal
language is typable. However, since elaboration extracts information from the typing
context, monotonicity is lost: strengthening the type of a free variable by making it
more general before elaboration can reduce the amount of type information available
on the elaborated program and make it ill-typed. Monotonicity is a property that has
often been underestimated, because it usually (but not always) holds in languages with
principal types. However, losing monotonicity can be worse for the programmer than
losing principal types. It reveals a lack of modularity in the language, since some simple
program transformations such as simplifying the body of a function may end up infer-
ring more general types, which may subsequently break type inference. Propagating
only type annotations would preserve monotonicity, but it is much weaker.

GHC 7 follows a similar strategy, called OutsideIn [15], using constraint solving
rather than elaboration to extract all typing information from the outer context. As a re-
sult, propagation and inference are interleaved. That is, the typing information obtained
by solving constraints on the outer context enclosing a GADT case analysis is directly
used to determine the types of both the scrutinee and the result in this case analysis.
Type inference can then be performed in the body of the case analysis. By allowing
information to flow only from the outside to the inside, principality is preserved when
inference succeeds. Yet, as for stratified type inference [11], it lacks monotonicity.

While previous approaches have mostly attempted to propagate types to GADT case
analyses, we aim in the opposite direction at reducing the need for type information
in case analysis. This aspect is orthogonal to propagation and improving either one
improves type inference as a whole. Actually, OutsideIn already goes one step in that
direction, by allowing type information to flow out of a pattern-matching case when no
type equation was added. But it stops there, because if type equations were added, they
could have been used and consequently the type of the branch is flagged ambiguous.

This led us to focus our attention on the definition of ambiguity. Type equations
are introduced inside a pattern-matching branch, but with a local scope: the equation
is not valid outside of the branch. This becomes a source of ambiguities. Indeed, a
type equation allows implicit type conversions, i.e. there are several inter-convertible
forms for types that we need not distinguish while in the scope of the equation, but they
become nonconvertible—hence ambiguous—when leaving its scope, as the equation
can no longer be used. Ambiguity depends both on the equations available, and on
the types that leak outside of the branch: if removing the equation does not impair
convertibility for a type, either because it was not convertible to start with, or because
other equations are available, it need not be seen as ambiguous.

Since ambiguities must generally be solved by adding type annotations, a more pre-
cise definition and better detection of ambiguities become essential to reduce the need
for explicit type information. By defining ambiguity inside the type system, we are able
to restrict the set of valid typings. In this paper we present a type system such that
among the valid typings there is always a principal one (i.e. subsuming all of them) and
we provide a type inference algorithm that returns the principal solution when it exists.
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Moreover, our type system keeps the usual properties of ML, including monotonicity.
This detection of ambiguity is now part of OCaml [8].

Since propagating type information and reducing the amount of type information
needed by case analysis are orthogonal issues, our handling of ambiguity could be
combined with existing type inference algorithms to further reduce the need for type
annotations. As less type information is needed, it becomes possible to use a weaker
propagation algorithm that preserves monotonicity. This is achieved in OCaml by rely-
ing on the approach previously developed for first-class polymorphism [5].

The rest of this paper is organized as follows. We give an overview of our solution
in §2. We present our system formally and state its soundness in §3. We state principality
and monotonicity in §4; by lack of space, we leave out some technical developments,
all proofs, and the description of the type inference algorithm, which can all be found
in the accompanying technical report [6]. Finally, we compare with related works in §5.

2 An Overview of Our Solution

The standard notion of ambiguity is so general that it may just encompass too many
cases. Consider the following program.1

type (_,_) eq = Eq : (α,α) eq

let f (type a) (x : (a,int) eq) = match x with Eq -> 1

Type eq is the classical equality witness. It is a GADT with two index parameters,
denoted by the two underscores, and a single case Eq, for which the indices are the
same type variable α . Thus, a value of type (a,b) eq can be seen as a witness of the
equality between types a and b.

In the definition of f, we first introduce an explicit universal variable a, called a
rigid variable, treated in a special way in OCaml as it can be refined by GADT pattern
matching. By constraining the type of x to be (a,int) eq, we are able to refine a when
pattern-matching x against the constructor Eq: the equation a = int becomes available
in the corresponding branch, i.e. when typechecking the expression 1, which can be
assigned either type a or int. As a result, f can be given either type (α,int) eq→ int
or (α,int) eq→ α . This fulfills the standard definition of ambiguity and so should
be rejected. But should we really reject it? Consider these two slight variations in the
definition of f:

let f1 (type a) (x : (a,int) eq) = match x with Eq -> true

let f2 (type a) (x : (a,int) eq) (y : a) = match x with Eq -> (y > 0)

In f1, we just return true, which has the type bool, unrelated to the equation. In f2, we
actually use the equation to turn y into an int but eventually return a boolean. These
variants are not ambiguous. How do they differ from the original f? The only reason
we have deemed f to be ambiguous is that 1 could potentially have type a by using the
equation. However, nothing forces us to use this equation, and, if we do not use it, the
only possible type is int. It looks even more innocuous than f2, where we indirectly
need the equation to infer the type of the body.

So, what would be a truly ambiguous type? We obtain one by mixing a’s and int’s
in the returned value (the left-margin vertical rules indicate failure):

1 Examples in this section use OCaml syntax [8]. Letter α stands for a flexible variable as usual
while letter a stands for a rigid variable that cannot be instantiated. This will be detailed later.
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let g (type a) (x : (a,int) eq) (y : a) =

match x with Eq -> if y > 0 then y else 0

Here, the then branch has type a while the else branch has type int, so choosing
either one would be ambiguous.

How can we capture this refined notion of ambiguity? The idea is to track whether
such mixed types are escaping from their scope. Intuitively, we may do so by disallow-
ing the expression to have either type and instead viewing it with an ambivalent type
a≈int, which we just see syntactically as a set of types.

An ambivalent type must still be coherent, i.e. all the types it contains must be prov-
ably equal under the equations available in the current scope. Hence, although a≈int

can be interpreted as an intersection type, it is not more expressive than choosing either
representation (since by equations this would be convertible to the other type), but more
precise: it retains the information that the equivalence of a and int has been assumed
to give the expression the type a or int.

Since coherence depends on the typing context, a coherent ambivalent type may sud-
denly become incoherent when leaving the scope of an equation. This is where ambi-
guity appears. Hence, while an ambivalent type is a set of types that have been assumed
interchangeable, an ambiguity arises only when an ambivalent type becomes incoherent
by escaping the scope of an equation it depends on.

Ambiguous programs are to be rejected. Fortunately, ambiguities can be eliminated
by using type annotations. Intuitively, in an expression (e : τ), the expressions e and
(e : τ) have sets of types ψ1 and ψ2 that may differ, but such that τ is included in both,
ensuring soundness of the change of view. In particular, while the inner view, e.g. ψ1,
may be large and a potential source of ambiguities, the outer view, e.g. ψ2, may contain
fewer types and remain coherent; this way the ambivalence of the inner view does not
leak outside and does not create ambiguities. Consider, for example the program:

let g1 (type a) (x : (a,int) eq) y =

match x with Eq -> (if (y : a) > 0 then (y : a) else 0 : a)

Type annotations on y and the conditional let them have unique outer types, which are
thus unambiguous when leaving the scope of the equation. More precisely, (y : a) and
0 can be both assigned type a≈int, which is also that of the conditional if ... else

0, while the annotation (if ... else 0 : a) and variable y both have the singleton
type a. (Note that the type of the annotated expression is the inner view for y but the
outer view for the conditional.)

Of course, it would be quite verbose to write annotations everywhere, so in a real
language we shall let annotations on parameters propagate to their uses and annotations
on results propagate inside pattern-matching branches. The function g1 may be written
more concisely as follows—but we will ignore this aspect in this work:

let g2 (type a) (x : (a,int) eq) (y : a) : a =

match x with Eq -> if y > 0 then y else 0

A natural question at this point is why not just require that the type of the result of
pattern-matching a GADT be fully known from annotations? This would avoid the need
for this new notion of ambiguity. This is perhaps good enough if we only consider small
functions: as shown for g2, we may write the function type in one piece and still get
the full type information. However, the situation degrades with local let bindings:

let p (type a) (x : (a,int) eq) : int =
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let y = (match x with Eq -> 1) in y * 2

The return type int only applies to y*2, so we cannot propagate it automatically as
an annotation for the definition of y. Basically, one would have to explicitly annotate
all let bindings whose definitions use pattern-matching on GADTs. This may easily
become a burden, especially when the type is completely unrelated to the GADTs (or
accidentally related as in the definition of f, above).

We believe that our notion of ambiguity is simple enough to be understood easily by
users, avoids an important number of seemingly redundant type annotations, and pro-
vides an interesting alternative to non-monotonic approaches (see §5 for comparison).

3 Formal Presentation

Since our interest is type inference, we may assume without loss of generality that there
is a unique predefined (binary) GADT eq(·, ·) with a unique constructorEq of type ∀(α)
eq(α,α). The type eq(τ1,τ2) denotes a witness of the equality of τ1 and τ2 and Eq is the
unique value of type eq(τ1,τ2). For conciseness, we specialize pattern matching to this
unique constructor and just write use M1 : τ in M2 for match M1 : τ with Eq -> M2.

Types occurring in the source program are simple types:

τ ::= α | a | τ → τ | eq(τ,τ) | int
Type variables are split into two different syntactic classes: flexible type variables, writ-
ten α , and rigid type variables, written a. As usual, flexible type variable are meant to
be instantiated by any type—either during type inference or after their generalization.
Conversely, rigid variables stand for some unknown type and thus are not meant to be
instantiated by an arbitrary type. They behave like skolem constants. We write V , V f ,
and Vr for the set of variables, flexible variables, and rigid variables.

Terms are expressions of the λ -calculus with constants (written c), the datatype Eq,
pattern matching use M1 : τ in M2, the introduction of a rigid variable ν(a)M or a type
annotation (τ), i.e. the usual annotation (M : τ) is seen as the application (τ) M:

M ::= x | c | M1 M2 | λ (x)M | let x = M1 in M2

| Eq | use M1 : τ in M2 | ν(a)M | (τ)
Although type annotations in source programs are simple types, their flexible type vari-
ables are interpreted as universally quantified in the type of the annotation (see §3.5).

Besides, we use—and infer—ambivalent types internally to keep track of the use of
typing equations and detect ambiguities more accurately.

3.1 Ambivalent Types

Intuitively, ambivalent types are sets of types. Technically, they refine simple types to
express certain type equivalences within the structure of types. Every node becomes a
set of type expressions instead of a single type expression and is labeled with a flexible
type variable. More precisely, ambivalent types, written ζ , are recursively defined as:

ρ ::= a | ζ → ζ | eq(ζ ,ζ ) | int ψ ::= ε | ρ ≈ψ ζ ::= ψα σ ::= ∀(ᾱ) ζ
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A raw type ρ is a rigid type variable a, an arrow type ζ → ζ , an equality type eq(ζ ,ζ ),
or the base type int. A proper raw type is one that is not a rigid type variable. An
(ambivalent) type ζ is a pair ψα of a set ψ of raw types ρ labeled with a flexible type
variable α . We use ≈ to separate the elements of sets of raw types: it is associative
commutative, has the empty set ε for neutral element, and satisfies the idempotence
axiom (ψ ≈ψ) = ψ . An ambivalent type ζ is always of the form ψα and we write /ζ0
for ψ . When ψ is empty ζ is a leaf of the form εα , which corresponds to a type variable
in simple types, hence we may just write α instead of εα , as in the examples above.

Type schemes σ are defined as usual, by generalizing zero or more flexible type
variables. Rigid type variables may only be used free and cannot be quantified over.
We introduce them in the typing environment but turn them into flexible type variables
before quantifying over them, so they never appear as bound variables in type schemes.

In our representation, every node is labeled by a flexible type variable. This is essen-
tial to make type inference modular, as it is needed for incremental instantiation.

To see this, consider a context that contains a rigid type variable a, an equation
a

.
= int, and a variable x of type a, under which we apply a function choice of type

α → α → α to x and 1. We first reason in the absence of labels on inner nodes. The
partial application choice x has type a → a. To further apply it to 1, we must use the
equation to convert both 1 of type int and the domain of the partial application to the
ambivalent type int≈ a. The type of the full application is then a. However, if we
inverted the order of arguments, it would be int. Something must be wrong. In fact, if
we notice in advance that both types a and int will eventually have to be converted to
int≈a, we may see both x and 1 with type int≈a before performing the applications.
In this case, we get yet another result int≈a, which happens to be the right one.

What is still wrong is that as soon as we instantiate α , we lose the information that all
occurrences of α must be synchronized. The role of labels on inner nodes is to preserve
this information. Revisiting the example, the partial application now has type aα → aα

(we still temporarily omit the annotation on arrow types, as they do not play a role in
this example). This is saying that the type is currently a → a but remembering that the
domain and codomain must be kept synchronized. Then, the integer 1 of type intγ

can also be seen with type (int≈ a)γ and unified with the domain of the function aα ,
with the effect of replacing all occurrences of aα and of intγ by (int≈ a)α . Thus, the
function has type (int≈ a)α → (int≈ a)α and the result of the application has type
(int≈a)α —the correct one. We now obtain the same result whatever the scenario.

This result type may still be unified with some other rigid variable a′, as long as this
is allowed by having some equation a′

.
= int or a′

.
= a in the context, and refine its

type to (int≈ a≈ a′)α . Since we cannot tell in advance which type constructors will
eventually be mixed with other ones, all nodes must keep their label when substituted.

Replaying the example with full label annotations, choice has type ∀(α,γ,γ ′) (α →
(α → α)γ)γ ′ and its partial application to x has type ∀(α,γ) (aα → aα)γ after general-
ization. Observe that this is less general than ∀(α,α ′,γ) (aα → aα ′

)γ but more general
than ∀(α,γ) ((int≈a)α → (int≈a)α)γ .

Type Variables. Type variables are either rigid variables a or flexible variables α . We
write frv(ζ ) for the set of rigid variables that are free in ζ and ffv(ζ ) for the set of
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flexible variables that are free in ζ . These definitions are standard. For example, free
flexible variables are defined as:

ffv(ψα) = {α}∪ffv(ψ)
ffv(ε) = /0

ffv(ρ ≈ψ) = ffv(ρ)∪ffv(ψ)
ffv(∀(α) σ) = ffv(σ)\ {α}

ffv(a) = /0
ffv(int) = /0

ffv(ζ1 → ζ2) = ffv(ζ1)∪ffv(ζ2)
ffv(eq(ζ1,ζ2)) = ffv(ζ1)∪ffv(ζ2)

The definition is analogous for free rigid variables, except that frv(ψα) is equal to
frv(ψ) and frv(a) is equal to {a}. We write ftv(ζ ) the subset of ffv(ζ ) of variables
that appear as leaves, i.e. labeling empty nodes and fnv(ζ ) the subset of ffv(ζ ) that are
labeling nonempty nodes. In well-formed types these two sets are disjoint, i.e. ffv(ζ ) is
the disjoint union of ftv(ζ ) and fnv(ζ ).

Rigid type variables lie between flexible type variables and type constructors. A rigid
variable a stands for explicit polymorphism: it behaves like a nullary type constructor
and clashes, by default, with any type constructor and any other rigid variable but itself.
However, pattern matching a GADT may introduce type equations in the typing context
while type checking the body of the corresponding branch, which may allow a rigid
type variable to be compatible with another type. Type equations are used to verify that
all ambivalent types occurring in the type derivation are well-formed, which requires in
particular that all types of a same node can be proved equal.

Interpretation of Types. Ambivalent types may be interpreted as sets of simple types by
unfolding ambivalent nodes as follows:

[[εα ]] = {α}
[[(ρ1≈ψ)α ]] =

⋃
ρ∈ρ1≈ψ [[ρ ]]

[[a]] = a

[[int]] = int

[[ζ1 → ζ2]] = {τ1 → τ2 | τ1 ∈ [[ζ1]],τ2 ∈ [[ζ2]]}
[[eq(ζ1,ζ2)]] = {eq(τ1,τ2) | τ1 ∈ [[ζ1]],τ2 ∈ [[ζ2]]}

The interpretation ignores labels of inner nodes. It is used below for checking coherence
of ambivalent types, which is a semantic issue and does not care about sharing of inner
nodes. For example, types (int≈ a)α → (int≈ a)α and (int≈ a)α1 → (int≈ a)α2

are interpreted in the same way, namely as {int→ int,a → a,a→ int,int→ a}.
A type ζ is said truly ambivalent if its interpretation is not a singleton. Notice that

ψ may be a singleton ρ even though ψα is truly ambivalent, since ambivalence may be
buried deeper inside ρ , as in ((int≈a)α → (int≈a)α)α0 .

Converting a Simple Type to an Ambivalent Type. Given a simple type τ , we may build
a (not truly) ambivalent type ζ such that [[ζ ]] = {τ}. This introduces new variables γ̄
that are in fnv(ζ ), while the variables of ftv(ζ ) come from τ . We write �τ� for the
most general type scheme of the form ∀(γ̄) ζ , which is obtained by labeling all inner
nodes of τ with different labels and quantifying over these fresh labels. For example,
�int→ int� is ∀(γ0,γ1,γ2) (int

γ1 → intγ2)γ0 and �α → α� is ∀(γ0) (εα → εα )α0 .
Notice that free type variables of τ remain free in �τ�.

3.2 Typing Contexts

Typing contexts Γ bind program variables to types, and introduce rigid type variables
a, type equations τ1

.
= τ2, and node descriptions α :: ψ :

Γ ::= /0 | Γ ,x : σ | Γ ,a | Γ ,τ1
.
= τ2 | Γ ,α :: ψ
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WF-CTX-EQUAL

� Γ Γ � τ1
.
= τ2

� Γ ,τ1
.
= τ2

WF-TYPE-EQUAL

Γ � τ1 Γ � τ2 ftv(τ1) = ftv(τ2) = /0

Γ � τ1
.
= τ2

WF-TYPE-FLEX
� Γ α :: ψ ∈ Γ

Γ � ψα

WF-CTX-FLEX
� Γ Γ � ψ α /∈ dom(Γ )

� Γ ,α :: ψ

WF-TYPE-AMBIVALENT
(Γ � ρ)ρ∈ψ Γ 	 ψ |ψ \Vr | ≤ 1

Γ � ψ

Fig. 1. Well-formedness of contexts and types (excerpt)

Both flexible and rigid type variables are explicitly introduced in typing contexts. Hence,
well-formedness of types is defined relatively to some typing context.

In addition to routine checks, well-formedness judgments also ensure soundness of
ambivalent types and coherent use of type variables.

Well-formedness of contexts � Γ is recursively defined with the well-formedness of
types Γ � ρ and type schemes Γ �σ . Characteristic rules are in Figure 1. It also uses the
entailment judgment Γ 	ψ , which means, intuitively, that all raw types appearing in the
set ψ can be proved equal from the equations in Γ (see §3.3). The last premise of Rule
WF-TYPE-AMBIVALENT ensures that ambivalent types contain at most one raw-type that
is not a rigid variable. As usual well-formedness of contexts ensures that type variables
are introduced before being used and that types are well-formed. It also ensures coherent
use of type variables: alias constraints α :: ψ in the context Γ define a mapping that
provides evidence that α is used coherently in the type σ . This is an essential feature of
our system so that refining ambivalence earlier or later commutes, as explained above.

3.3 Entailment

Typing contexts may contain type equations. Type equations are used to express equali-
ties between types that are known to hold when the evaluation of a program has reached
a given program point. Type equations are added to the typing context while typecheck-
ing the expression at the current program point.

The set of equations in the context defines an equivalence between types. Rule
WF-TYPE-AMBIVALENT shows that ambivalent types can only be formed between equiv-
alent types: the well-formedness of the judgment Γ � ψ requires Γ 	 ψ , i.e. that all
types in ψ are provably equal under the equations in Γ , which is critical for type sound-
ness; the rightmost premise requires that at most one type in ψ is not a rigid variable.
For example, the ambivalent types int≈ (intγ → intγ) and (intγ → intγ)≈ (aγ → aγ)
are ill-formed. This is however not restrictive as the former would be unsound in any
consistent context while the later could instead be written (int≈a)γ → (int≈a)γ .

Well-formedness of a type environment requires that its equations do not contain free
type variables. Equalities in Γ may thus be seen as unification problems where rigid
variables are the unknowns. If they admit a principal solution, it is a substitution of the
form (ai �→ τi)

i∈I ; then, the set of equations (ai
.
= τ ′i )i∈I is equivalent to the equations in

Γ . If the unification problem fails, then the equations are inconsistent—in the standard
model where type constructors cannot be equated2. This is acceptable and it just means

2 This is not always true for ML abstract types, as type constructors may be compatible in
another context, but we do not address this problem here.
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(ψαi)θ = ζi
(ψγ )θ = (ψθ )γ

(ρ i∈I
i )θ = (ρiθ )i∈I

(∀(α) ζ )θ = ∀(α) ζ (θ \{α})

(a)θ = a
(int)θ = int

(ζ1 → ζ2)θ = ζ1θ → ζ2θ
(eq(ζ1,ζ2))θ = eq(ζ1θ ,ζ2θ )

Fig. 2. Application of substitution θ equal to [αi ← ζi]
i∈I

that the current program point cannot be reached. Therefore, any ambivalent type is
admissible in an inconsistent context.

The semantic judgment Γ 	 ψ means by definition that any ground instance of Γ
that satisfies the equations in Γ makes all types in the semantics of ψ equal. Formally:

Definition 1 (Entailment). Let Γ be a typing environment. A ground substitution θ
from rigid variables to simple types models Γ if θ (τ1) and θ (τ2) are equal for each
equation τ1

.
= τ2 in Γ . We say that Γ entails ψ and write Γ 	 ψ if θ ([[ψ ]]) is a singleton

for any ground substitution θ that models Γ .

This gives a simple algorithm to check for entailment: compute the most general unifier
θ of Γ ; then Γ 	 ψ holds if and only if θ ([[ψ ]]) is a singleton or θ does not exist.

3.4 Substitution

In our setting, substitutions operate on ambivalent types where type variables are used
to label inner nodes of types and not just their leaves. They allow the replacement of
an ambivalent node ψα by a “more ambivalent” one ψ ≈ψ ′α , using the substitution
[α ← (ψ≈ψ ′)α ]; or merging two ambivalent nodes ψα1

1 and ψα2
2 using the substitution

[α1,α2 ← ψ1≈ψ2
α1 ]. To capture all these cases with the same operation, we define in

Figure 2 a general form of substitution [αi ← ζi]
i∈I that may graft arbitrary nodes ζi at

every occurrence of a label αi, written [α ← ζ ];
As a result of this generality, substitutions are purely syntactic and may replace an

ambivalent node with a less ambivalent one—or even prune types replacing a whole
subtree by a leaf. Of course, we should only apply substitutions to types when they
preserve (or increase) ambivalence.

Definition 2. A substitution θ preserves ambivalence in a type ζ if and only if, for any
α in dom(θ ) and any node ψα in ζ , we have ψθ ⊆ /(ψα)θ0.

As a particular case, an atomic substitution [α ← ζ0] preserves ambivalence in ζ if for
any node ψα in ζ , we have ψ ⊆ /ζ00—since well-formedness of ψα implies that α
may not occur free in ψ , hence ψθ is just ψ .

3.5 Typing Rules

Typing judgments are of the form Γ � M : σ as in ML. However, typing rules, defined
in Figure 3, differ from the traditional presentation of ML typing rules in two ways.
On the one hand, we use a constraint framework where Γ carries node descriptions
α :: ψ to enforce their sharing within different types. On the other hand, typing rules
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M-VAR
� Γ x : σ ∈ Γ

Γ � x : σ

M-INST
Γ � M : ∀(α) (σ [α ← ψα

0 ]) ψ0 ⊆ ψ Γ � ψγ

Γ � M : σ [α ← ψγ ]

M-GEN
Γ ,α :: ψ � M : σ
Γ � M : ∀(α) σ

M-NEW
Γ, a,α :: a � M : σ Γ � ∀(α) σ [α ← εα ]

Γ � ν(a)M : ∀(α) σ [α ← εα ]

M-FUN
Γ ,x : ζ0 � M : ζ

Γ � λ (x)M : ∀(γ) (ζ0 → ζ )γ

M-APP
Γ � M1 : ((ζ2 → ζ )≈ψ)α Γ � M2 : ζ2

Γ � M1 M2 : ζ
M-LET
Γ � M1 : σ1 Γ ,x : σ1 � M2 : ζ2

Γ � let x = M1 in M2 : ζ2

M-ANN
Γ � ∀(ftv(τ)) τ

Γ � (τ) : ∀(ftv(τ)) �τ → τ�

M-WITNESS
� Γ

Γ � Eq : ∀(α,γ) eq(α,α)γ

M-USE
Γ � (eq(τ1,τ2)) M1 : ζ1 Γ ,τ1

.
= τ2 � M2 : ζ2

Γ � use M1 : eq(τ1,τ2) in M2 : ζ2

Fig. 3. Typing rules

also carry type equations τ1
.
= τ2 in typing contexts that are used to show the coherence

of ambivalent types via direct or indirect uses of well-formedness judgments.
All axioms require well-formedness of Γ so that whenever a judgment Γ � M : σ

holds, we have � Γ . Rule M-INST instantiates the outermost variable of a type scheme.
It is unusual in two ways. First, we write σ [α ←ψα

0 ] rather than just σ in the quantified
type. This trick ensures that all nodes labeled with α were indeed ψα

0 and overcomes
the absence of ψ0 in the binder. Intuitively, the instantiated type should be σ [α ←
ψα

0 ][α ← ψγ ], but this happens to be equal to σ [α ← ψγ ]. Second, we require ψ0 ⊆ ψ
to ensure preservation of ambivalence, as explained in the previous subsection. Finally,
the premise Γ � ψγ ensures that the resulting type is well-formed.

Rule M-GEN introduces polymorphism implicitly, as in ML: variables that do not
appear in the context can be generalized. The following rule is derivable from M-GEN

and M-INST, and can be used as a shortcut when variable α does not appear in ψγ :
M-BIND

Γ ,α :: ψ1 � M : ψγ α 
= γ
Γ � M : ψγ

Rule M-NEW enables explicit polymorphism (and explicit type equations using wit-
nesses). For that purpose, it introduces a rigid type variable a in the typing context
that may be used inside M—typically for introducing type annotations. However, poly-
morphism becomes implicit in the conclusion by turning the rigid type variable a into a
quantified flexible type variable α when exiting the scope of the ν-form. Polymorphism
can then be eliminated implicitly3 as regular polymorphism in ML. The second premise
ensures that the rigid type variable a does not appear anywhere else but in aα .

Our version of Rule M-FUN generalizes the type γ introduced for annotating the arrow
type, which avoids introducing γ :: ζ0 → ζ in the premise. Rule M-APP differs from the
standard application rule in two ways: a minor difference is that the arrow type has a

3 This is why we write this ν(a)M rather than Λa M.
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label as in Rule M-FUN; a major difference is that the type of M1 may be ambivalent—as
long as it contains an arrow (raw) type of the form ζ2 → ζ . In particular, the premise
Γ �M1 : ((ζ2 → ζ )≈ψ)α does not, in general, imply Γ �M1 : (ζ2 → ζ )α , as this could
lose sharing. Hence, we have to read the arrow structure directly from the ambivalent
type. Rule M-LET is as usual.

Rule M-ANN allows explicit loss of sharing via type annotations. It is presented as a
retyping function of type scheme (τ), i.e. a function that changes the labeling of the type
of its argument without changing its behavior. The types of the argument and the result
need not be exactly τ but consistent instances of τ—see the definition of �τ�, above.
Annotations are typically meant to be used in expressions such as (τ) M, which forces
M to have a type that is an instance of τ . While this is the only effect it would have
in ML, here it also duplicates the polymorphic skeleton of M, which allows different
labeling of inner nodes in the type of M passed to the annotation and its type after the
annotation. By contrast, free type variables of τ remain shared between both types. The
example below illustrates how type annotations can be used to remove ambivalence.

Rule M-WITNESS says that the Eq type constructor can be used to witness an equal-
ity between equal types as eq(ζ ,ζ )γ , for any type ζ . Conversely, an equality type
eq(ζ1,ζ2)

γ , can only have been built from the Eq type constructor.
Rule M-USE uses this fact to learn and add the equation τ1

.
= τ2 in the typing context

while typechecking the body of M2; the witness M1 must be typable as an instance of
the type eq(τ1,τ2) up to sharing of inner nodes. Since the equation is only available
while typechecking M2, it is not present in the typing context of the conclusion. Hence,
the type ζ2 must be well-formed in Γ . But this is a direct consequence of the second
premise: it implies Γ ,τ1

.
= τ2 � ζ2, which in turn requires that all labels of ζ2 (which

contain no quantifiers) have node descriptions in Γ , so that they cannot depend on
τ1

.
= τ2. Typically, ambivalent types needed for the typing of M2 are introduced using

rule M-BIND, which means that they cannot remain inside ζ2, so that there is no way to
keep an ambiguous type. Notice that the well-formedness of Γ ,τ1

.
= τ2 implies that τ1

and τ2 contain no flexible type variables (rules WF-TYPE-EQUAL and WF-CTX-EQUAL).
We now illustrate the typing rules on an example. Assume that (if then else ) is

given as a primitive with type scheme ∀(γb,γ2,γ1,γ0) ∀(α) (boolγb → (α → (α →
α)γ2)γ1)γ0 . Let Γ be Γa,Δ ,Δ ′,y : (int≈ a)α where Γa is a,a

.
= int and Δ is α ::

int,γ2 :: α → α,γ1 :: α → (α → α)γ2 and Δ ′ is γb :: bool,γ0 :: γb → (α → (α →
α)γ2)γ1 . Using M-VAR for premises, we have:

M-APP
Γ � if then else : (boolγb → (α → (α → α)γ2)γ1)γ0 Γ � true : γb

Γ � if true then else : (α → (α → α)γ2)γ1

We also have Γ � 1 : (int≈a)α and Γ � y : (int≈a)α by M-INST and M-VAR. Hence,
we have Γ � if true then 1 else y : (int≈a)α by M-APP. This leads to:

M-FUN
Γ � if true then 1 else y : (int≈a)α

M-INST
Γa,Δ ,Δ ′ � λ (y) if true then 1 else y : ∀(γ) ((int≈a)α → (int≈a)α)γ

M-BIND
Γa,Δ ,Δ ′ � M : ((int≈a)α → (int≈a)α)γ2

M-GEN
Γa,Δ � M : ((int≈a)α → (int≈a)α)γ2

Γa � M : ∀(α,γ) ((int≈a)α → (int≈ a)α)γ
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where M is λ (y) if true then 1 else y. Rule M-BIND is used for variables γb and γ0 in
Δ ′ that are no longer used (we omitted the other premises), while Rule M-GEN is used
for variables α and γ2 in Δ . Notice that neither Γa � M : ∀(α,α ′,γ) ((int≈ a)α →
int≈ aα ′

)γ nor Γa � M : ∀(α,γ) (intα → intα)γ are derivable. It is a key feature of
our system that sharing and ambivalence can only be increased implicitly. Still, it is
sound to decrease them explicitly, using a type annotation, as in Γa � (a → int) M :
∀(α,α ′,γ) (aα → intα ′

)γ . This is obtained by applying the coercion (a → int) of
type �(a → int)→ (a → int)�, i.e.

∀(α1,α2,α ′
1,α

′
2,γ,γ

′,γ0)
(
(aα1 → intα2)γ → (aα ′

1 → intα ′
2)γ ′)γ0

to M. The expression M0 equal to use x : eq(a,int) in (a → int) M is not ambiguous
thanks to the annotation around M. Hence, we have:

M-USE*
Γ ′ � (eq(a,int))x : ζ1 Γ ′, a

.
= int � (a → int)M : �a → int�

M-APP*

M-NEW

M-FUN*
Δ ′′,a,Δ ′′′,x : eq(aγ1 ,intγ2)γ � M0 : �a → int�

Δ ′′,a,α :: a � λ (x)M0 : �eq(a,int)→ a → int�

Δ ′′ � ν(a)λ (x)M0 : ∀(α) �eq(α,int)→ α → int� Δ ′′ � Eq : . . .

� (ν(a)λ (x)M0) Eq : �int→ int�

for some well-chosen Δ ′′, Δ ′′′ and Γ ′, where R∗ means R preceded and followed by a
sequence of M-INST, M-BIND, and M-GEN. The rigid variable a is turned into the poly-
morphic variable α which is then instantiated to intα before the application to Eq.

4 Properties

By lack of space, we omit formal statements and their proofs, as well as a description
of type inference, and we refer the reader to the accompanying technical report [6].

Type Soundness. Type soundness is established by seeing our system as a subset of
HMG(X) [14]. Formally, we exhibit a translation from our language to HMG(X) that
preserves typing judgments. The key is that well-formed ambivalent types are such that
all simple types in their interpretation are provably equal in the current context, i.e.
under the equations introduced by use expressions. Ambivalent types are only used for
type inference and are dropped during the translation.

Monotonicity. Let Γ � σ ′ ≺ σ be the instantiation relation, which says that any
monomorphic instance of σ well-formed in Γ is also a monomorphic instance of σ ′.
This relation is extended point-wise to typing contexts: Γ ′ ≺ Γ if for any term variable
x in dom(Γ ), Γ � Γ ′(x) ≺ Γ (x), all other components of Γ and Γ ′ being identical. We
may now state monotonicity: in our system, if Γ � M : ζ and Γ ′ ≺ Γ , then Γ ′ � M : ζ .

Existence of Principal Solutions to Type Inference Problems. This is our main result.
A typing problem is a typing judgment skeleton Γ � M : ζ , where Γ omits all node
descriptions α :: ψ (hence, Γ is usually not well-formed, but can be extended into a
well-formed environment by interleaving the appropriate node descriptions with bind-
ings in Γ ). A solution to a typing problem is a pair of a substitution θ that preserves
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ambivalence for the types in Γ and ζ , together with a context Δ that contains only node
descriptions, such that Γ θ and Δ can be interleaved to produce a well-formed typing
context, written Γ θ | Δ , and the judgment Γ θ | Δ � M : ζθ holds.

For any typing problem, the set of solutions is stable by substitution and is either
empty or has a principal solution (Δ ,θ ), i.e. one such that any other solution (Δ ′,θ ′)
is of the form θ ′ = θ ′′ ◦ θ for some substitution θ ′′ that preserves well-formedness in
Γ θ | Δ , i.e. for any type ζ ′ such that Γ θ | Δ � ζ ′, we have Γ θ ′ | Δ ′ � ζ ′θ ′′.

Sound and Complete Type Inference. Principality of type inference is proved as usual
by exhibiting a concrete type inference algorithm. This algorithm (presented in the
extended version) relies on a variant of the standard unification algorithm that works
on ambivalent types and preserves their sharing. It uses a typing constraint approach,
which converts typing problems to unification problems, while also ensuring that in-
ferred types are well-formed, i.e. coherent, properly scoped, and acyclic. The use of
constraints here is however just a convenience: since the ambivalence information is
contained in types themselves, constraints can always be solved prior to type general-
ization so that we do not need constrained type schemes. That is, constraints are just
a way to describe the algorithmic steps without getting into implementation details:
OCaml itself uses a variant of Milner’s algorithm J [10].

5 Related Works

While GADTs have been an active research area for about 10 years, early works usually
focused on their type checking and expressiveness, ignoring ML-style type inference.
Typically, they rely on an explicitly typed core language and use local type inference
techniques to leave some type information implicit. Other recent works with rich de-
pendent type systems also fit in this category and are only loosely related to ours.

Relatively few papers are dedicated to principal type inference for GADTs. The ten-
sion between ambiguity and principality is so strong that it has been assumed that the
only way to reach principality is to know exactly the external type of each GADT match
case. As a result, research has not been so much focused on finding a type system with
principal types, but rather on clever propagation of type information so that programs
have enough type annotations after propagation to admit principal types—or are re-
jected otherwise. Hence, some existing approaches always return principal solutions,
but do not have a clear specification of when they will succeed, because this depends
on the propagation algorithm (or some idealized version of it) which does not have a
compositional specification.

OutsideIn improves on this by using uses constraint solving in place of directional
annotation propagation, which greatly reduces the need for annotations. Stratified type
inference [11] is another interesting approach to type inference for GADTs that uses
several sophisticated passes to propagate local typing constraints (and not just type
annotations) progressively to the rest of the program.
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The following table summarizes the typability of the programs given in the overview,
for our approach (including simple syntactic propagation of type annotations), Out-
sideIn4, and stratified type inference [11].

Program f f1 f2 g g1 g2 p p1

Ambivalent
√ √ √

−
√ √ √

−
OutsideIn − − − − −

√ √ √

Stratified −
√ √

− −
√

− −

The results for f are unsurprising: this example is not even principal in the naive
type system: without an internal notion of ambivalence, a type system is unable to tell
that the equality between two types is only accidental and should not be considered as
a source of ambiguity. The results for f1 and f2 are more interesting. While OutsideIn
requires an external type annotation in both cases, stratified type inference accepts to
infer the type of the branch from its body. More precisely, the propagation algorithm
operates in a bi-directional way and is able to extract non-ambiguous information from
GADT pattern-matching branches. The exported information is pruned so that it re-
mains compatible with any interpretation of the internal information, even in a context
with fewer type equations. Thus, the type of the result is pruned in function f, but it can
be propagated for f1 and f2. This corresponds exactly to the naive notion of ambiguity.

Typing of g fails in all three systems, as it is fundamentally ambiguous, whichever
definition is chosen. The results for g1 may look surprising: while it contains many type
annotations, both OutsideIn and stratified type inference still fail on it. The reason is that
type annotations are inside the branch: in both systems, only type annotations outside
of a branch can disambiguate types for which an equation has been introduced. We find
this behavior counter-intuitive. The freedom of where to add type annotations stands as
a clear advantage of ambivalent types. By contrast, g2 provides full type annotations
in a standard style, so that all systems succeed—although ambivalent types need some
(simple) propagation mechanism to push annotations inside.

Programs p and p1 demonstrate the power of OutsideIn. The program p1 is the fol-
lowing variant of p, which we deem ambiguous:

let p1 (type a) (x : (a,int) eq) (y : a) =

let z = (match x with Eq -> if y>0 then y else 0) in z + 1

Indeed, the match expression in p1 would have to be given the ambivalent type a≈int,
which is not allowed outside the scope of the equation a = int. Both p and p1 are ac-
cepted by OutsideIn, since type information can be propagated upward, even for local
let definitions. This comes at a cost, though: local let-definitions are monomorphic by
default (but can be made polymorphic by adding a type annotation). While local poly-
morphic definitions are relatively rare, so that this change of behavior appears as a good
compromise for Haskell, they are still frequent enough, and their corresponding type
annotations large enough, so that we prefer to keep local polymorphism in OCaml [4].
Moreover, local polymorphism is critical to the annotation propagation mechanism used
by OCaml, originally for polymorphic methods, and now for GADTs too.

4 Results differ for GHC 7.6, as it slightly departs from OutsideIn allowing some biased choices,
but next versions of GHC should strictly comply with OutsideIn.
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All examples above are specifically chosen to illustrate the mechanisms underlying
ambivalence and do not cover all uses of GADTs. Thus, they do not mean that our
approach always outperforms other ones, but they emphasize the relevance of ambiva-
lence. The question is not whichever approach taken alone performs better, but rather
how ambivalence can be used to improve type inference with GADTs. Indeed, ambiva-
lence could be added to other existing approaches to improve them as well.

Besides this comparison on examples, the main advantage of ambivalent types is to
preserve principal type inference and monotonicity, so that type inference and program
refactoring are less surprising.

An interesting proposal by Lin and Sheard [9], called point-wise type inference, is
also tackling type inference à la ML, but restricting the expressiveness of the system—
some uses of GADT will be rejected—so that more aggressive type propagation can be
done in a principal way. Point-wise type inference is hard to compare to our approach,
as many programs have to be modified. For instance, it rejects all our examples, because
equality witnesses can only be matched on if they relate two rigid type variables. To be
accepted, we could replace eq by a specialized version, type t = Int : int t.

Ambivalent types borrow ideas from earlier works. The use of sharing to track known
type information was already present in our work on semi-explicit first-class polymor-
phism [5]. There, we only tracked sharing on a special category of nodes containing
explicitly polymorphic types. Here, we need to track sharing on all nodes, as any type
can become ambivalent. In our type inference algorithm, we also reuse the same defini-
tion style, describing type inference as a constraint resolution process, but introducing
some points where constraints have to be solved before continuing.

The formalization itself borrows a lot from previous work on structural polymor-
phism for polymorphic variant and record types [3]. In particular, unification of am-
bivalent types, which merges sets of rigid variables and requires checking coherence
constraints, can be seen as an instance of the unification of structurally polymorphic
nodes. The difference is again that all nodes are potentially ambivalent in our case,
while structural polymorphism only cares about variant and record types.

6 Conclusion

Ambivalent types are a refinement of ML types, which represents within types them-
selves ambiguities resulting from the use of local equations. They permit a more accu-
rate definition of ambiguity, which in turn reduces the need for type annotations while
preserving both the principal type property and monotonicity.

This approach has been implemented in OCaml. We have not addressed propagation
of type information in this work, although this is quite useful in practice. A simple
propagation mechanism based on polymorphism, similar to that used for semi-explicit
first-class polymorphism, as already in use in OCaml, seems sufficient to alleviate the
need for most local type annotations, while preserving principality of type inference.

The notion of ambivalence is orthogonal to previous techniques used for GADT
type inference. Therefore, it should also benefit other approaches such as OutsideIn
or stratified type inference. Hopefully, ambivalent types might be transferable to MLF

[7], as the techniques underlying both ambivalent types and semi-explicit first-class
polymorphism have many similarities.
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5. Garrigue, J., Rémy, D.: Semi-explicit first-class polymorphism for ML. Information and
Computation 155, 134–171 (1999)
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Abstract. 1 We investigate how to use specification mining techniques
for program anomaly analysis. We assume the input of positive traces
(with- out execution anomalies) and negative traces (with execution
anomalies). We then partition the traces into the following clusters: a
positive cluster that contains all positive traces and some negative clus-
ters according to the characteristics of trace anomalies. We present tech-
niques for learn- ing temporal properties in Linear Temporal Logic with
finite trace se- mantics (FLTL). We propose to mine FLTL properties
that distinguish the negative clusters from the positive cluster. We ex-
periment with 5 Android applications from Google Code and Google Play
with traces of GUI events and crashes as the target anomaly. The report
of FLTL properties with high support or confidence reveal the temporal
patterns in GUI traces that cause the crashes. The performance data also
shows that the clustering of negative traces indeed enhances the accuracy
in mining meaningful temporal properties for test verdict prediction.

Keywords: Specification mining, FLTL, Clustering, Program trace,
Android.

1 Introduction

Nowadays, many software programs are developed with rapid life-cycles. For
example, various applications running on mobile devices emerge with billion
times of monthly downloads. Most of these applications keep frequent bug fixing,
performance improvement, and feature enhancement during their life cycles. As
a result, to keep a correct and up-to-date specification of such an application of
a non-trivial size has become a daunting challenge. One promising technology to
address this problem is specification mining [2,11,20] that extracts specifications
from program execution traces collected via program code instrumentation. In
this work, we investigate how to mine temporal specifications for the diagnosis
of anomalies in traces.

1 The work is partially supported by NSC, IIS and Academia Sinica.
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Our work assumes a test oracle that issues verdicts to execution traces. A trace
is positive if it is labeled with the verdict of no anomaly; otherwise, it is negative.
A specification property is positive if it is expected of a correct implementation;
otherwise, it is negative. Previous work in specification mining focuses on mining
positive properties from all traces. To help in diagnosis, we need consider the
following issues.

• There are usually more than one anomaly with different root causes exhibited
in the traces. Thus the behavior patterns of an anomaly may not be shared by
all the negative traces and could be mined with low support. To counter this
problem, we propose to partition the negative traces to clus- ters according
to trace characteristics related to anomalies. Our experiment shows that
mining the individual clusters of the negative traces indeed helped us in
mining useful and meaningful negative specification properties.

• To help in diagnosis, we need to consider what patterns can be typical of
anomalies in traces. Since most bugs are reported as program traces, we
adopt linear temporal logic with finite trace semantics (FLTL) as our specifi-
cation language for behavior patterns of traces. Moreover, we identified five
types of FLTL formulas that are typical of trace anomalies. In our experi-
ment, the five types helped in mining FLTL properties for recognizing trace
anomalies.

• Finally, we want to avoid mining effective FLTL properties shared by both
negative and positive traces. This is easily done by subtracting the mined
properties of the positive traces from those of the negative ones.

We have implemented our ideas and experimented with 5 Android applications
from Google Code and Google Play. The preliminary experiment data shows the
promise of our techniques.

The organization of this paper is structured as follows. Section 2 compares
this work with related work in the literature. Section 3 reviews the background
knowledge. Section 4 respectively present our diagnosis property mining frame-
work and the five types of FLTL properties that we target to mine. Section 6
explains our mining algorithms for the five types of FLTL properties. In Section
7, we explain our implementation on the Android platform. Section 8 reports
our experiment with five benchmarks. Section 9 is the conclusion.

2 Related Work

Several approaches about specification mining have been proposed in the litera-
tures. Ernst et al. developed a tool, Daikon, for automatic deduction of likely in-
variants involving program variables from dynamic traces [4]. Specifically, Daikon
mines arithmetic relationships, such as x ≥ y, that hold at specific statements.
Our work is for mining FLTL properties that relate several program states.

Ammons et al. introduced an automata learning framework to learn nondeter-
ministic finite-state automata (NFSA) from program traces [2]. The programs
traces are collected from an instrumented program that is well-debugged to
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reveal strong hints of correct behaviors. In our work, we do not assume such a
golden program.

Dallmeier et al. proposed an incremental approach to mine normal program
behaviors [3]. Starting with a set of program traces, they construct an initial
automata and generate more test cases based on this automata to explore more
execution space. These test cases either end in a legal state or raise an exception.
The test case execution leads to repetitive enrichment to the automata. This
procedure repeats until no further test cases can be generated.

Lorenzoli et al. presented a technique to automatically generate extended
finite-state machines from program traces [14]. By labelling transitions with con-
ditions on data values, an extended finite-state machine can model the interplay
between data values and component interactions.

In contrast to the work on mining automata, we focus on mining FLTL prop-
erties which are more appropriate in expressing behavior patterns relating events
far apart and in expressing liveness properties than automata.

Yang et al. developed a tool, Perracotta, to discover temporal properties be-
tween only two events in traces about application program interface [20].

Lo et al. proposed several approaches to mine program specifications from
execution traces [13,12]. In [13], they mined universal Live Sequence Chart which
captures the inter-object behaviors of multiple events in arbitrary length. In [9],
they mined recurrent rules in the form of ”whenever a series of precedent events
occurs, eventually a series of consequent event occurs”. These are similar to one
type of FLTL properties that we target to mine. In our experiment, we found
that other types of properties are also important in anomaly diagnosis. In [12],
they mined past-time temporal rules while our TLTL templates express future
time temporal properties.

Since the target SUT may suffer from different anomalies, mining directly from
the collected program negative traces may be ineffective due to the interference
of different anomalies. Lo et al. clustered program traces by their similarity
between pairs of data item [10]. Our works cluster negative traces by the program
subroutines of topmost exception call stack frame.

3 Preliminaries

3.1 Model of Finite Program Execution Traces

A trace is intuitively a finite linear sequence of events. For convenience, we use
|θ| to denote the length of a trace θ. Rigorously, a trace θ is a function from
[0, |θ| − 1] to a set of events. For any integer i and j with 0 ≤ i ≤ j ≤ |θ|, we let
θ[i...j] = θ(i)θ(i + 1)θ(i + 2)...θ(j). We also use θi to denote the ith suffix of θ,
i.e., θi = θ(i)θ(i + 1)θ(i + 2)...θ(|θ| − 1).

3.2 Linear Temporal Logic with Semantics on Finite Trace

In 1977, Pnueli proposed linear temporal logic (LTL) as a formal language for
expressing and reasoning about the behavioral properties of parallel programs
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and reactive systems[15]. In this work, we focus on the analysis of finite-length
program traces. Therefore we adopt FLTL [6,18,7]. FLTL formulae (ranged over
by ϕ, ψ, ...) on a finite set P of events are of the following syntax.

ϕ ::= true | e | ¬ϕ | ϕ ∧ ψ | Xϕ | ϕUψ

Here e ∈ P is an event in a program trace. Operators ¬ and ∧ are Boolean
negation and conjunction respectively. X and U are temporal operators next
and until respectively.

Boolean connectives such as ∨,→ and↔ are derived operators from ¬ and ∧.
Other useful shorthands include false ≡ ¬true, Fϕ ≡ trueUϕ (the eventually
operator), and Gϕ ≡ ¬(trueU¬ϕ) (the always operator).

The satisfaction of an FLTL formula ϕ by a finite program trace θ, written
θ |= ϕ, is defined inductively as follows.

θ |= true iff true
θ |= e iff |θ| > 0 ∧ θ(0) = e
θ |= ¬ϕ iff θ 
|= ϕ
θ |= ϕ ∧ ψ iff θ |= ϕ ∧ θ |= ψ
θ |= Xϕ iff |θ| > 0 ∧ θ1 |= ϕ
θ |= ϕUψ iff ∃k ≤ |θ|, (θk |= ψ ∧ ∀j ∈ [0, k − 1], θj |= ϕ)

Intuitively, Xϕ says that ϕ is true in the next position. A formula ϕUψ
means that ψ is true either now or in the future and ϕ holds since now until
that moment.

Example 1. A program trace θ = s0e0s1e1s0e2s2e3s0 would satisfy property
ϕ = G((s0 ∧Xe2) → XXs2). This property can be interpreted as that state s0
with input e2 will always transit to state s2. ��

3.3 Association Rule Mining

In the field of data mining, association rule mining is one of the most important
and well researched techniques[8,21]. It was first introduced by Agrawal [1] and
aims to extract interesting correlations, associations, frequent patterns among
sets of items in a dataset. Since then, it has been widely used in various areas,
such as telecommunication networks, market and risk management, inventory
control etc. Given a set I of items of a record, an association rule is of the form
X �→ Y , where X,Y ⊂ I and X ∩ Y = ∅, that specifies that the occurrences
of all items in X implies that the occurrences of all items in Y is also likely to
occur.

Example 2. In daily supermarket transactions, a transaction could consist of
buying tomatoes, cheeses, noodles, eggs, etc. The rule {tomatoes, noodles} �→
{eggs}mined from transactions would indicate that if a customer buys tomatoes
and noodles together, he is likely to also buy eggs. ��

There are two important basic measures to evaluate how likely an association
rule is. They are support and confidence. Support is the statistical significance
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of an association rule. It is defined as the percentage/fraction of records that
contain all items in X ∪ Y to the total number of records in the dataset, i.e.,

support(X �→ Y ) =
Number of records in dataset with all items in X ∪ Y

Total number of records in dataset

Intuitively, a high support value is an evidence that the related rule is significant.
Users can specify a support value as a threshold for mining significant rules. Only
association rules with supports higher than the threshold are then reported.

However, sometimes an association rule with low supports could also be in-
teresting. For example, in the supermarket case mentioned above, transactions
with high price items could be rare. But association rules related to these ex-
pensive items are also important to the retailer. Therefore, another measure,
confidence, has also been used to deal with this situation. Confidence is a mea-
sure of strength of the association rules. It is defined as the percentage/fraction
of the number of records that contain X ∪Y to the total number of records that
contain X . Formally, confidence is calculated by the following formula:

confidence(X �→ Y ) =
Number of records in dataset with all items in X ∪ Y

Number of records in dataset with all items in X

If the confidence of the association rule X �→ Y is 80%, it means that 80% of
the records that contain X also contain Y . Similarly, users can also prescribe a
confidence threshold to ensure that only interesting rules are reported.

4 Anomaly Specification Mining Framework

In order to mine FLTL properties from the negative traces, we propose the frame-
work showed in Figure 1. At the top-left corner, we accept program execution
traces. After normalization, we may change the traces to a format suitable for
efficient and accurate processing. Specifically, we only keep the last state event
in a sequence of consecutive state events so that all normalized traces are strict
alternations of state and input events.

We assume that there is a test oracle (module verdict) that issues verdicts
to the normalized traces. The test oracle can be a human engineer or can be
a program that checks the traces against a formal specification. Traces without
anomalies are labeled ‘pass’ and treated as positive traces. The other traces are
labeled ‘fail’ and treated as negative traces. For example, in our experiment, we
target system exceptions as anomalies. If there is a system exception during the
trace execution, the trace will be labelled as a fail trace.

Since we use data mining technic to extract FLTL properties from fail traces,
we want to make sure that the bug-trigger behaviors come into the miner’s
notice. For this reason, we try to class the fail traces into different clusters ac-
cording to the bugs they triggered, automatically. After that, the cause of a
bug should appear overwhelmingly in the cluster it belongs. In this work, the
fail (negative) traces are partitioned (by module cluster) into clusters, say C1

through Ck, according to trace characteristics related to anomalies. For example,
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Fig. 1. The anomaly specification mining framework

in our experiment, since we view system exceptions as evidences of trace anoma-
lies, we use the contents of the exception call stack to partition the negative
traces. That is negative traces are partitioned into the same cluster, if the top-
most stack frames issued by the SUT are with the same subroutine. Ideally, each
cluster should contain negative traces with anomalies of the same root cause.

For convenience, we assume that the set of positive traces is in cluster C0.
Then we apply our FLTL property mining algorithm to cluster C0 through Ck

and get FLTL property sets R0 through Rk respectively. If the mining algorithm
works well, then for each i ∈ [1, k], Ri should contain FLTL properties that
sufficiently recognize the anomalies of the root cause for Ci.

Finally, to avoid producing diagnosis properties also satisfied by the posi-
tive traces, we only output R1\R0 (screened C1 property set) through Rk\R0

(screened Ck property set), i.e., the set subtraction of R1 through Rk by R0.

5 Target FLTL Templates

For this work, we applied our techniques to the graphical user-interface (GUI)
event traces of Android applications. There are 2 types of events in the execution
traces we collected from Android applications. The first type, called state events,
consists of durational events representing values of screen attributes. The sec-
ond type, called input events, consists of instantaneous user input via the GUI
components on the screen. For example, the display of a button on the screen
is a state event. A finger stroke on the screen is an input event. We use E to
denote the set of input events while S to denote the set of state events.
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Traditional mining techniques are usually bottom-up and deduce complex
properties from simple formulas. Such an approach is not guided and is usually
drowned in the sea of small properties without any hope for mining larger and
complex properties. For example, we may mine property φA as a positive evi-
dence and φB as a negative evidence of a cluster respectively. Then together, this
cluster may satisfy ¬(φA → φB) with high confidence. If φA and φB are already
complex FLTL properties, then it is not likely that we can mine ¬(φA → φB) in
a bottom-up style without proper guidance. In this work, we propose to guide
the mining procedure via property templates whose logical combinations can
capture some complex and maybe interesting properties. Considering most bugs
in Android applications can be triggered by a series of screen touch behaviors or
by a screen touch under certain system conditions, we defined five target FLTL
templates that, we believe, have good opportunity to find the root cause of bugs.

In the following, we explain the detail of the five types of FLTL properties.
Please be reminded that these five types have been used effectively in our ex-
periment for our purpose. It is certainly possible that in the future, more types
are designed for other experiments.

5.1 Γ1: Nested Eventuality Properties

In previous work, temporal properties with very restricted syntax are mined to
contain the search space for mined properties [4,11,20]. Such approaches usu-
ally can deduce piecewise behavior patterns of the positive traces. In contrast,
a negative trace in a bug report may contain a long sequence of events lead-
ing to the exhibition of an anomaly. Specifically, for GUI event traces, a trace
anomaly usually is triggered by an interleaved sequence of state events and in-
put events. Thus, intuitively, a sequence of interleaved events naturally matches
nested FLTL eventually properties. For example, the following FLTL property
specifies the anomaly of the tapping of the “next” button at screen Page1 fol-
lowed by the tapping of “yes” button at screen Page2 that leads to screen Page3.

F (Page1 ∧X(next ∧XF (Page2 ∧X(yes ∧XF (Page3)))))

In general, a trace anomaly of this type can extend to any depth of nesting.
Specifically, we can use the following syntax to define this type.

ϕ ::= F (s) | F (s ∧X(e ∧Xϕ))

Here s ∈ S and e ∈ E. We let Γ1 be the set of FLTL properties of this type.

5.2 Γ2: Nested Conditional Next Properties

Sometimes, a strict sequence of events must happen for the setup of certain
procedures. In such a procedure, if one step is wrong, an anomaly may occur.
For example, we may want to say that after the query for password, if the user
taps either button ‘cancel’ or button ‘prev’ (for previous page), the login should
not be successful. This can be expressed with the following two properties.
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G(login display → X(cancel→ X(login succ)))
G(login display → X(prev→ X(login succ)))

Here login display is a state event for the screen of the login page that queries
an account name and a password. State event login succ flags the success of the
login procedure. As can be seen, several properties of this type together may be
used to express the ‘or’ concept in detecting events. For example, the following
two traces both satisfy the two properties.

login display cancel login succ logout login display prev login succ
login display prev login succ logout login display cancel login succ

Here we use logout to denote the input event for logging out.
In general, a trace anomaly of this type can extend to any depth of nesting.

Specifically, a property ϕ of this type is of the following syntax.

ϕ ::= G(s → X(e → X(ψ)))
ψ ::= s | s → X(e → X(ψ))

Here s ∈ S and e ∈ E. We let Γ2 be the set of FLTL properties of this type.

5.3 Γ3: Nested Conditional Eventuality Properties

In Γ2, the strict sequence is in lock-steps and one event in the sequence must be
followed by another in the sequence. Sometimes, especially for multi-thread or
distributed programs, there could be some irrelevant events from other threads
or applications in the traces. Thus, by replacing the ‘X’ operators before the
state events with the XF operators (eventuality), we can rewrite properties in
Γ2 for more flexibility in the sequence. In general, a trace anomaly of this type
can extend to any depth of nesting. Specifically, a property ϕ of this type is of
the following syntax.

ϕ ::= G(s → X(e → XF (ψ)))
ψ ::= s | s → X(e → XF (ψ))

Here s ∈ S and e ∈ E. We let Γ3 be the set of FLTL properties of this type.

5.4 Γ4: For Uninitialization Anomaly

We also considered the anomalies with improper initializations. For example,
program may access an object before it is instantiated. Such an anomaly can be
specified as: (¬new)Uread. The syntax of such properties is the following.

ϕ ::= (¬s0)U(s1 ∧Xe1) | (¬e0)U(s1 ∧Xe1)

Here s0, s1 ∈ S and e0, e1 ∈ E. We use Γ4 to denote the set of all such properties.
There is no expansion to such properties in this work.
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Algorithm 1. Expand(ϕ, d)

1: if d is greater than the prescribed expansion depth then
2: Return.
3: end if
4: for each e ∈ E and s ∈ S do
5: if |{θ|θ∈C,θ|=ϕ+e+s}|

|C| ≥ t then

6: Report ϕ+ e+ s and call Expand(ϕ+ e+ s, d+ 1)
7: end if
8: end for

5.5 Γ5: For Nested Starvation Anomaly

Some anomalies exhibit the denial of services after some event sequences have
been observed. For example, an anomaly that two consecutive reads to a page
make the page no longer readable can be specified with the following property.

G(page loaded→ X(read→ X(page loaded→ X(read→ X(G¬page loaded)))))

The syntax of such a property ϕ is of the following.

ϕ ::= G(s → X(e → X(ψ)))
ψ ::= G¬s | G¬e | s → X(e → X(ψ))

Here s ∈ S and e ∈ E. We let Γ5 be the set of FLTL properties of this type.

6 Mining Algorithms

In the following, we first define how to expand properties of a type and then use
the expansion operator to explore the space of FLTL properties up to a limit
of nesting of the templates prescribed by the users. We assume that the users
have prescribed a threshold t of both support and confidence. Only properties
with support (or confidence) no less than t will be reported and used for further
expansion. In the following, we assume that we are given a trace cluster C.

6.1 Mining Algorithm for Γ1 Properties

Given a ϕ ∈ Γ1 of the form ϕ = F (s1 ∧ X(e1 ∧ XF (. . .XF (sn) . . .))), we let
ϕ+ e+ s denote the expansion of ϕ with one more nesting of the eventuality of
an input e followed by a state s. Specifically, ϕ+ e + s represents

F (s1 ∧X(e1 ∧XF (. . .XF (sn ∧X(e ∧XF (s))) . . .))).

Given a state event s and an input event e, we only use the support of ϕ+e+s,

defined as |{θ|θ∈C,θ|=ϕ+e+s}|
|C| , to evaluate the property. Then we use algorithm 1

to recursively expand the properties of a type. The mining algorithm starts by
calling Expand(F (s ∧X(e ∧XF (s′))), 0) for all s, s′ ∈ S and e ∈ E.
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6.2 Mining Algorithm for Γ2 Properties

Given a ϕ ∈ Γ2 of the form: ϕ = G(s1 → X(e1 → X(. . .X(sn) . . .))), we let
ϕ+ e+ s denote the expansion of ϕ with one more nesting of the eventuality of
an input e followed by a state s. Specifically, ϕ+ e + s represents

G(s1 → X(e1 → X(. . . X(sn → X(e → X(s))) . . .))).

According to the literature, there can be many different granularities in defining
the confidence of such properties. Here we want to use a granularity smaller than
traces. That is, we want to count how many times a property in Γ2 is honored
in a trace. For this purpose, we need to define the following concepts. Given a
property ϕ ∈ Γ2, we let �(ϕ) be the sequence of events in ϕ listed in the order
that they appear in ϕ. For example, �(G(a → X(b → X(c)))) = abc.

Given a property ϕ ∈ Γ2, a state event s, and an input event e, we only use
the confidence of properties of this type to evaluate them. The confidence of

ϕ+e+s is defined as |{(θ,i,j)|θ∈C,0≤i≤j<|θ|,θ[i...j]=�(ϕ)es}|
|{(θ,i,j)|θ∈C,0≤i≤j<|θ|,θ[i...j]=�(ϕ)e}| . The mining algorithm

is basically Algorithm 1 except that line (5) is replaced with

if |{(θ,i)|θ∈C,0≤i≤j<|θ|,θ[i...j]=�(ϕ)es}|
|{(θ,i)|θ∈C,0≤i≤j<|θ|,θ[i...j]=�(ϕ))e}| ≥ t

The mining algorithm starts by calling Expand(G(s → X(e → X(s′))), 0) for all
s, s′ ∈ S and e ∈ E.

6.3 Mining Algorithm for Γ3 Properties

Given a ϕ ∈ Γ3 of the form: ϕ = G(s1 → X(e1 → XF (. . . XF (sn) . . .))), we also
let ϕ+ e+ s denote the expansion of ϕ with one more nesting of the eventuality
of an input e followed by a state s. Specifically, ϕ+ e+ s represents

G(s1 → X(e1 → XF (. . .XF (sn → X(e → XF (s))) . . .))).

We also let 
(ϕ) be the regular language:

s1e2(S ∪ E)∗s2e2(S ∪ E)∗ . . . (S ∪ E)∗sn−1en−1(S ∪E)∗sn.

Here (S ∪ E)∗ represents the set of sequences with only zero or more events in
S ∪ E. That is, 
(ϕ) is obtained from �(ϕ) by inserting (S ∪ E)∗ before every
state event except the first one. For example,


(G(a → X(b → XF (c)))) = ab(S ∪E)∗c

We use 〈L〉 to denote the set of strings in a regular language L.
Given a property ϕ ∈ Γ3, a state event s, and an input event e, we only use

the confidence of properties of this type to evaluate them. The confidence of

ϕ + e + s is defined as |{(θ,i,j)|θ∈C,0≤i≤j<|θ|,θ[i...j]∈〈�(ϕ)e(S∪E)∗s〉}|
|{(θ,i,j)|θ∈C,0≤i≤j<|θ|,θ[i...j]∈〈�(ϕ)e〉}| . The mining

algorithm is basically Algorithm 1 except that line (5) is replaced with

if |{(θ,i,j)|θ∈C,0≤i≤j<|θ|,θ[i...j]∈〈�(ϕ)e(S∪E)∗s〉}|
|{(θ,i,j)|θ∈C,0≤i≤j<|θ|,θ[i...j]∈〈�(ϕ)e〉}| ≥ t

The mining algorithm starts by calling Expand(G(s → X(e → XF (s′))), 0) for
all s, s′ ∈ S and e ∈ E.
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Fig. 2. The implementation

6.4 Mining Algorithm for Γ4 Properties

This mining algorithm is pretty much Algorithm 1. We also use the support to
evaluate such properties as in line (5) of algorithm 1. Due to the straightfor-
wardness, we omit the explanation.

6.5 Mining Algorithm for Γ5 Properties

Given a ϕ ∈ Γ5 of the form: ϕ = G(s1 → X(e1 → X(. . .X(sn → X(en →
X(G¬s))) . . . ))) , we let ϕ+ sn+1 + en+1 denote the expansion of ϕ as

G(s1 → X(e1 → X(. . . X(sn → X(en → X(sn+1 → X(en+1 → X(G¬s))))) . . . ))).
We also let �(ϕ) be the sequence of events s0e0 . . . snen and �(ϕ) be the regular
language s0e0 . . . snen(S∪E\s)∗. Given a property ϕ ∈ Γ5, a state s and an event

e, we define the confidence of ϕ+ e+ s as |{(θ,i)|θ∈C,0≤i<|θ|,θ[i...|θ|)∈〈�(ϕ+s+e)〉}|
|{(θ,i,j)|θ∈C,0≤i≤j<|θ|,θ[i...j]=�(ϕ+s+e)}| .

The mining algorithm is basically Algorithm 1 except that line (5) is replaced
with

if |{(θ,i)|θ∈C,0≤i<|θ|,θ[i...|θ|)∈〈�(ϕ+s+e)〉}|
|{(θ,i,j)|θ∈C,0≤i≤j<|θ|,θ[i...j]=�(ϕ+s+e)}| ≥ t

The mining algorithm starts by calling Expand(G(¬s),0) for all s ∈ S.

7 Implementation

We have implemented our mining tool for Android applications. As showed in
Figure 2, we first instrumented Android source code of Ice Cream Sandwich
4.0.3 version with Intelligent Test Oracle Library (InTOL) [19] to intercept GUI
state events and input events, such as onTouch, onKeyDown, onKeyUp, etc.
Then we use Monkey, a pseudo-random stream of user events generator, from
Android SDK to automatically exercise an android application under test to
collect the execution traces. Then through the framework proposed in Section 4,
the temporal properties for each cluster are mined from the normalized traces.
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The components in Figure 2 are explained as follows:

• Android Debug Bridge (ADB) comes with Google Android SDK. It is a
command-line tool that communicates with an Android virtual device or
connected Android mobile device. It can manage the state of the Android
system, run shell commands, copy files to or from a device, and etc.

• Monkey also comes with Android SDK. It generates pseudo-random events,
such as click-buttons, touches, gestures, and system-level events. Through
ADB, Monkey can feed input sequences of specific lengths to the applications
under test.

• Intelligent Test Oracle Library (InTOL) [19] is a tool library for the conve-
nient and flexible collection of program traces. It can record the input events
and system GUI states in traces. In addition, when the system crashes, In-
TOL can also log the crash event and mark the trace with ‘fail.’

We also implemented a procedure that normalizes identifiers of the events and
UI components in the traces. For trace-specific identifiers, we normalize them ac-
cording to their order of occurrence. For process and platform-specific identifiers,
we change them to constants according to our knowledge of Android.

8 Experiment

The experiment is deployed on a Samsung Galaxy Nexus i9025 running An-
droid Ice-cream Sandwich 4.0.3 and a PC running ubuntu 10.04. Program traces
are collected on the Galaxy Nexus and analyzed on the PC. In collecting the
traces, we use Monkey to exercise each benchmark 3000 times with 300 input
stimulus per exercising. To simulate a normal user’s pace in operating an An-
droid application, Monkey injects 10 events per second. If an application crashes
in an exercising, the trace will be ended immediately with a fail verdict. Each
benchmark takes approximately 20 hours on average to collect 3000 traces.

We use expansion depth of 6 in all mining processes. In the following, we first
introduce our benchmarks. Then we report the performance of our techniques
when used for test verdict prediction. Finally we examine an example property
mined via our tool and argue for their values.

8.1 Benchmarks

We have five Android applications from Google Code and Google Play as our
benchmarks. The five benchmarks are chosen because the provided services are
common in modern smartphones and suffer from anomalies exhibited by Mon-
key. Each benchmark has several versions and we arbitrarily selected one. Brief
descriptions of these benchmarks are listed below:

• AtPak (version 1.1.0) is a social-platform photo browser, which allows users
to manage local photo galleries and upload photos to QQ.com.

• SMS Bomber (version 1.1) is an SMS text editor. Users can bomb a receiver
by sending lots of messages in a short time.
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• AnkiDroid (version 2.0 beta18) is a flashcard learning application. It helps
users to manage vocabulary cards on the cloud and reminds them to review
vocabulary in a desirable period. It also supports multiple languages and
speech synthesis from texts.

• Surround (version 1.2) is a music player that allows for music sharing among
nearby mobile devices.

• Taskcatapp (version 2011090101) is a memoir application which helps users
to easily create, navigate, and search through memoirs.

8.2 Evaluation of Mined Temporal Properties

To measure the preciseness of the mined temporal properties, we also collect
another 500 traces for each benchmark as the testing trace set to verify the
accuracy of our miners. We designed a predicting mechanism to label these 500
traces as pass or fail according to the mined FLTL properties. If the prediction
is with high accuracy, we can imply these mined properties are representive.
Similar idea can be found in [9] which mined a classifier from execution traces
to classify software behaviors.

The most difficult part of the predicting mechanism is to decide the im-
portance of each property. In this work, for each cluster, we decide a set of
weights(each one for a template) and a threshold by applying cross-validation[5]
technique on the original 3000 traces. Cross-validation is a common technique
in data mining for assessing how the result of statistical analysis will generalize
to an independent data set.

By giving a new trace θ and the weights and the threshold of each cluster,
the predicting mechanism works in the following procedures:

1. For each cluster, we sum up all the weights of properties which can be sat-
isfied by θ(properties from the same template won’t be count repeatedly).
If the summation is higher than the threshold, then label θ as a potential
member of the cluster.

2. If θ is not a potential member of any cluster, then θ is predicted as pass.
Otherwise it is predicted as fail.

To measure the quality of our predicting mechanism, we compare the predict-
ing result to the real execution result of these 500 traces and use 4 measures
accuracy, precision, recall and F-score [16,17] to quantify the effectiveness of our
implementation in test verdict prediction. To proceed, we first need the following
concepts.

• A trace is a true positive if it is a ‘fail’ trace with test verdict correctly issued
by our tool. Let TP be the number of true positives in the given trace set.

• A trace is a true negative if it is a ‘pass’ trace with test verdict correctly issued
by our tool. labelled as fail. We let TN be the number of true negatives.

• A trace is a false positive (false alarm) if it is a ‘pass’ trace to which our tool
issues a ‘fail’ verdict. We let FP be the number of false positives.

• A trace is a false negative if it is a ‘fail’ trace to which our tool issues a ‘pass’
verdict. Let FN be the number of false negatives.
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Table 1. Accuracy of Clustered and no Clustered Mined Properties

#Pass
Traces

#Fail
Traces

#Cluster
Fail

TP TN FP FN Acc. Prec. Rec. F-score

ATPak
458 42

1 5 433 25 37 87.6% 0.16 0.11 0.126
ATPak (Clustered) 2 38 424 34 4 92.4% 0.52 0.90 0.791

SMSBomber
473 27

1 22 401 72 5 84.6% 0.23 0.81 0.544
SMSBomber (Clustered) 2 27 418 55 0 89% 0.32 1 0.71

Taskcatapp
481 19

1 11 374 107 8 77% 0.09 0.57 0.283
Taskcatapp (Clustered) 2 13 453 28 6 93.2% 0.31 0.68 0.555

Surround
475 25

1 21 411 64 4 86.4% 0.24 0.84 0.567
Surround (Clustered) 3 20 451 24 5 94.2% 0.45 0.8 0.694

AnkiDroid
461 39

1 39 333 128 0 74.4% 0.23 1 0.603
AnkiDroid (Clustered) 3 33 461 0 6 98.8% 1 0.84 0.873

Table 2. Weights and Threshold Learned by Cross Validation

Cluster
Index

W1 W2 W3 W4 W5 Threshold

ATPak
1 1 1 1 1 6 8
2 1 1 3 0 5 7

SMSBomber
1 1 0 0 1 8 1
2 6 1 1 1 1 8

Taskcatapp
1 2 2 1 1 4 6
2 3 0 1 5 1 7

Surround
1 3 1 4 1 1 8
2 3 1 1 1 4 8
3 3 2 2 1 2 8

AnkiDroid
1 1 2 2 1 4 7
2 2 2 2 1 3 5
3 3 2 2 1 2 8

Note that Fscoreβ is the harmonic mean of Precision and Recall, in our work
we let β = 2 which means we weight Recall higher than Precision. We show the
definitions of these metrics as follows:

Accuracy = TP+TN
TP+TN+FP+FN Precision = TP

TP+FP

Recall = TP
TP+FN Fscoreβ = (1 + β · β) · Precision·Recall

β·β·Precision+Recall

The performance of our mining algorithms is measured on these five bench-
marks with clustered and unclustered fail traces. Table 1 shows the result while
Table 2 shows the weights and the threshold learned by cross validation(and used
in the prediction). The result shows that properties mined via clustered traces
can predict with higher accuracy and precision to the new 500 traces than those
via unclustered. This might show clustering can effectively reduce the interfer-
ence among the behavior patterns of different negative clusters. Note that the
weight in Table 2 shows that each template has been the most representitive
one in some bugs(if we view each cluster represents an individual bug). This
denotes the trigger behaviors of bugs are different and require different property
templates to describe. When user want to find the root cause of a bug, he can
start by viewing the properties with highest weight.
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Fig. 3. State transition on AnkiDroid

8.3 Example of Mined Properties and Anomaly Analysis

We use one FLTL property mined via our tool to argue why our techniques can
also be useful in diagnosis of anomalies exhibited in traces. The screen shots
in Figure 3 demonstrate an anomaly existed in AnkiDroid. One Γ2 property
mined by our implementation is G(state1 → X(onTouch view10 → X(state2 →
X(onTouch view42 → X(state3→ X(onTouch view17))))). This property shows
an operation sequence leading to the exception with high confidence. Without
this property, developers may only be aware of the existence of the anomaly
but unaware of its reason. For example, bug reports from Google to an Android
application developer only show the call stacks when a crash or freeze happens.
Such a temporal property with high confidence could serve as a starting clue for
root-causing the anomaly.

9 Conclusion and Future Works

In this work, we present an automated mining approach for detecting and di-
agnosing software defects. We have implemented our mining tool for Android
applications. We chose five actively developing applications from Google Code
and Google Play as benchmarks to test our approach. For diagnosis, we pro-
pose more types of temporal properties as mining target than previous approach
did. To enhance the performance, we also propose to cluster the fail traces. By
subtracting the mined temporal properties of pass traces from negative traces,
the outcome temporal properties can effectively issue correct verdicts for each
benchmark. The experiment data shows the effectiveness of our techniques.

In the future, we plan to mine more target types of temporal properties. Also,
we expect to extend the framework from diagnosis to run-time monitoring and
deploy our implementation on scalable industrial projects.
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Abstract. Many safety properties in program analysis, such as many
memory safety and information flow problems, can be formulated as
source-sink problems. While there are many existing techniques for check-
ing source-sink properties, the soundness of these techniques relies on all
relevant source code being available for analysis. Unfortunately, many
programs make use of libraries whose source code is either not avail-
able or not amenable to precise static analysis. This paper addresses this
limitation of source-sink verifiers through a technique for inferring ex-
actly those library specifications that are needed for verifying the client
program. We have applied the proposed technique for tracking explicit
information flow in Android applications, and we show that our method
effectively identifies the needed specifications of the Android SDK.

1 Introduction

Many safety properties of interest in program analysis can be formulated in
terms of verifying the absence of source-sink errors. Such an error arises if a value
constructed at a location designated as a source reaches a location designated
as a sink. Examples of source-sink problems include the following:

– Confidential information (source) cannot be sent to an untrusted party (sink).
– A pointer assigned to null (source) should not reach a dereference (sink).
– A closed file f (source) should not be read or written (sink).

Over the last decade, there has been much progress in verifying the absence
of source-sink errors [1–3]. Given a value v constructed at source location l1, and
a value w consumed at sink location l2, source-sink checkers determine if there
exists a feasible execution path from l1 to l2 on which v and w are equal. As an
example, consider the following Java-like code:

1. Data d = new Data();

2. Location x = null;

3. if(R) x = getGPSLocation();

4. d.loc = x ;

5. if(R) send(d.loc, "http://xue.com/stealmyloc.php");
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Here, we want to determine whether confidential data can be sent over the
network. The method getGPSLocation is a source since it returns the user’s
confidential GPS location. In contrast, the method send(x,y) called at line 5 is
a sink because it sends data x to URL y. Assuming predicate R can be true, the
above code snippet has a source-sink error because there is a feasible execution
path from the source to the sink in which x and d.loc are aliases.

While automated source-sink checkers have improved substantially in terms
of precision and scalability over the last decade, they typically make two as-
sumptions to guarantee soundness: First, they require sources and sinks to be
specified by the user. Second, they require all relevant source code to be avail-
able for analysis. The first requirement is often not too cumbersome because
there are typically few kinds of sources and sinks, and there has been recent
progress on automating source and sink inference [4]. On the other hand, the
second assumption is more problematic because modern software uses of many
layers of complex libraries. While calls to library methods can –and often do–
affect source-to-sink flows, it is often impractical to analyze library code together
with the client, for example, because library code may be unavailable or may be
written in a different language. Furthermore, even when library code is available,
its implementation is typically much larger and much lower-level than the client,
making it undesirable to analyze the library’s implementation for verifying the
client. Existing source-sink checkers deal with this difficulty in one of three ways:

1. Assume an angelic environment by treating library calls as no-ops. Unfortu-
nately, this amounts to the optimistic but unsound assumption that library
methods do not introduce flows from sources to sinks.

2. Assume a demonic environment by making worst-case assumptions about
library methods, which means that a library method m may introduce a
flow between any pair of locations reachable in m.

3. Require the user to write flow specifications of library methods, which de-
scribe whether input x may transitively reach output y.

Unfortunately, all of these options have serious drawbacks. The first option
is unsound and yields many false negatives. The second option is sound but
grossly imprecise, yielding many false positives. Finally, the third alternative is
extremely cumbersome for users: In modern software, there are typically many
calls to library functions, each of which could require several flow annotations. In
principle, not all of these flow specifications are relevant for verifying the absence
of source-sink errors, but it is very difficult for humans to reliably identify which
specifications are needed to guarantee soundness of the analysis.

In this paper, we address this limitation of source-sink checkers by automat-
ing the inference of library specifications that are needed for soundness. Given a
client program A, our technique infers a smallest set of must-not-flow require-
ments on library functions that are sufficient to ensure that A is free of source-
sink errors. Since our technique only analyzes implementations of clients but not
libraries, specifications inferred by our technique must be checked against either
the documentation or the implementation of the library. However, as we show
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Fig. 1. A schematic illustration of our approach

experimentally, the number of must-not-flow requirements inferred by our tech-
nique are only a small fraction of the possible flow relations that are possible;
hence, our technique minimizes the effort required to guarantee soundness.

1.1 Overview

The high-level architecture of our approach is shown in Figure 1. Given a client
application A, our technique first analyzes A to generate a verification condition
(VC) φ. This VC is parametrized over the possible flows that can be introduced
due to library calls and its validity guarantees the absence of source-sink errors
in A. Given such a VC φ and a formula χ encoding known partial specifications
of library methods, our technique enters a refinement loop with the “Abduction”
component at its core. The formula χ is initially just true, meaning there are no
known specifications of library methods, but becomes logically stronger as the
refinement process continues.

At every step of the refinement loop, we use an inference technique known as
abduction to speculate a candidate specification ψ, which asserts a minimal set of
must-not-flow requirements on library methods that are sufficient to guarantee
program A’s correctness. Since our technique does not analyze library imple-
mentations, each must-not-flow requirement in ψ must be externally validated
by an oracle. This oracle can be a user who can consult the documentation of the
library or a different technique for analyzing the library’s source code or binary.
In either case, since we want to minimize the amount of work to be performed by
the oracle, our inferred candidate specification ψ should be as small as possible.

Given the candidate specification ψ, we then ask the oracle to confirm or refute
each must-not-flow requirement li in ψ. If the oracle can confirm each li ∈ ψ,
we have found a correct and minimal specification sufficient to verify A. In this
case, the refinement loop terminates with ψ ⇒ φ as a proof of correctness of A.
On the other hand, if the oracle cannot certify some must-not-flow relation li
from α to β in ψ, this means there is a may-flow relation from α to β. Therefore,
the negation of li is added to the set of known specifications χ, and abduction is
used again to infer a different candidate specification ψ′. This process continues
until either we find a correct specification sufficient to verify A or until we prove
that there is no correct must-not-flow specification of the library sufficient to
discharge the VC φ. We now give a brief overview of the two key components
underlying our technique, illustrated as “VC Gen” and “Abduction” in Figure 1.
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VC Generation. Our approach to generating VCs is based on the following in-
sight: Rather than making purely angelic or purely demonic assumptions, we in-
troduce constraints describing the possible effects of library methods. These con-
straints are composed of boolean flow variables fl1 �→l2 , which describe whether
the value in location l1 may flow to location l2 in library function f . As an
example, consider the statement x = f(y) where f is a library method. Here, if y
was tainted before the call, our analysis will taint x under the constraint fa1 �→ret,
where the boolean variable fa1 �→ret represents whether f ’s first argument may
(transitively) flow to its return value.

Now, when we encounter a sink, we generate a VC that is parametric over
these flow variables. Specifically, if a variable x used at a sink has value v under
constraint ϕ, then the generated VC asserts that ϕ implies that v is not tainted.
Since the value constraints ϕ are parametrized over possible flow relations, the
validity of the VC therefore depends on the truth assignment to flow variables.

The advantage of this strategy is that the generated VC captures the full
range of possible assumptions on the library in between the angelic and demonic
ones. On one extreme, if the VC is valid, the client application can be verified
even under demonic assumptions. On the other hand, if the VC is unsatisfiable,
the client application cannot be verified even with angelic assumptions about
library calls. However, if the formula is contingent, the VC still contains useful
information about flow specifications needed to discharge the source-sink flow.

Abductive Inference. The second insight underlying our technique is that
logical abduction can be used to infer a minimal set of must-not-flow requirements
that are needed to guarantee the absence of source-sink errors in the client
application. Specifically, given two formulas φ and χ, logical abduction is the
problem of finding an explanatory hypothesis ψ such that:

(1) χ ∧ ψ |= φ and (2) SAT(χ ∧ ψ)

In our setting, φ corresponds to the VC generated for the client, and χ corre-
sponds to the known assumptions on library methods. Therefore, the first con-
dition says that, together with known specifications χ, the solution ψ to the in-
ference problem should imply the verification condition φ. The second condition
says that the abductive solution ψ should not contradict known specifications χ.

In addition to these two requirements, we want our solution ψ to be the small-
est conjunction of flow literals satisfying the above conditions. This requirement
is important since we want to minimize the number of assumptions to be exter-
nally validated by an oracle. For this purpose, our technique uses minimum-size
prime implicants of boolean formulas to compute the desired abductive solutions.

1.2 Organization and Contributions

The rest of this paper is organized as follows: Section 2 gives the syntax and
semantics of a small language used for our formalization. Section 3 describes
a sound static analysis for generating VCs parametric over flow variables, and
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Program P := m f∗

Client m := def m = {κ}
Library function f := def f(α1, . . . , αn) = {ς; χf ← v}
Client stmt κ := v ← S | check(v) | a | κ1; κ2 | if(�) then κ1 else κ2 | v ←ρ f(v1, . . . , vn)
Library stmt ς := a | ς1; ς2 | if(�) then ς1 else ς2
Assignment a := v ← c | v1 ← v2
Constant c := C1 | . . . | Ck

Fig. 2. Language used for formal development

Section 4 describes our inference algorithm based on minimum-size prime impli-
cants. Sections 5 and 6 describe important extensions and our implementation.
Finally, Sections 7, 8, 9 describe experimental results, related work, and future
directions. To summarize, this paper makes the following key contributions:

– We present a novel technique for inferring flow specifications of libraries for
source-sink property verification.

– We show how to generate verification conditions that are parametric over
the unknown behavior of library methods.

– We formulate the minimum flow specification inference problem as an in-
stance of logical abduction and give an algorithm based on minimum-size
prime implicants for solving the generated inference problems.

– We apply the proposed technique for verifying confidentiality of Android
applications that heavily use unanalyzed library methods. Experimentally,
we show that our method is effective at identifying a small set of relevant
flow specifications that are needed for analyzing the client.

2 Language and Concrete Semantics

Figure 2 defines an imperative call-by-value language used for our formalization.
In this language, a program consists of one client application m and zero or
more library functions f . The client m has body κ, and our goal is to verify m
without analyzing libraries called by m. While our technique will not analyze
library functions f , we give their syntax and semantics in order to precisely
define what we mean by their flow specifications.

In this language, the special constant S denotes a source; hence, the assign-
ment v ← S taints variable v. The statement check(v) is a sink : It evaluates to
false if v is tainted (i.e., value of v is S); otherwise, it evaluates to true. If the
check statement check(v) evaluates to false, we say that the check fails.

In client m, statements are sources, sinks, assignments, sequencing, condition-
als, and calls to library functions, which are annotated with a unique label ρ.
Library functions f can take any number of arguments α1, . . . , αn and consist
of a body ς and a statement χf ← v, where χf denotes the return value of f .
Statements ς used in library functions are the same as those used in the client
except that they cannot be sources or sinks, since we assume library methods
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(1)
Γ ′ = Γ [v �→ c]

Π, Γ � v ← c : Γ ′, true
(2)

Γ (v2) = c
Γ ′ = Γ [v1 �→ c]

Π,Γ � v1 ← v2 : Γ ′, true
(3)

Π,Γ � s1 : Γ1, b1
Π, Γ1 � s2 : Γ2, b2

Π, Γ � s1; s2 : Γ2, b1 ∧ b2

(4a)
Γ (v) = c c �= S

Π,Γ � check(v) : Γ, true
(4b)

Γ (v) = c c = S
Π,Γ � check(v) : Γ, false

(5a)

(s1 ⊕ s2) = s1
Π,Γ � s1 : Γ1, b1

Π,Γ � if(�) then s1 else s2 : Γ1, b1
(5b)

(s1 ⊕ s2) = s2
Π,Γ � s2 : Γ2

Π,Γ � if(�) then s1 else s2 : Γ2, b2

(6)

Π(f) = λα1, . . . , αn.{s;χf ← v}
Γ (v1) = c1 . . . Γ (vn) = cn

Π, [α1 �→ c1, . . . , αn �→ cn] � {s;χf ← v} : Γ ′

Γ ′(χf ) = c

Π, Γ � v ←ρ f(v1, . . . , vn) : Γ [v �→ c, πρ �→ c], true

Fig. 3. Operational semantics

corresponding to sources and sinks are annotated. Hence, while library functions
can propagate taint, they neither generate nor leak tainted values.

To focus on the novel ideas underlying our technique, our formal development
intentionally omits pointers. Section 5 will explain how the proposed technique
can reason about flows between objects in the heap.

2.1 Operational Semantics

To allow providing a soundness proof of our approach, Figure 3 presents a large-
step operational semantics of the language from Figure 2. The operational se-
mantics are described using judgments of the form Π,Γ � s : Γ ′, b. Here, Π
maps each function name to its definition, and the store Γ maps each variable
to its value at run-time. A new store Γ ′ is obtained by executing statement s
starting with store Γ , and the boolean value b indicates whether there is a fail-
ing check statement in s. Therefore, rules (4a) and (4b) for check(v) statements
produce true or false depending on whether v is S. In rules (5a) and (5b) for if
statements, the notation s1 ⊕ s2 non-deterministically chooses either s1 or s2.

Rule (6) in Figure 3 gives the semantics of calls to library methods. Since this
language has call-by-value semantics, only the value of variable v can change in
the client code as a result of the call v ←ρ f(v1, . . . , vn). Specifically, since χf

denotes function f ’s return value, v is assigned to c whenever χf evaluates to
c. The variable πρ used in rule (6) is an instrumentation variable and is only
introduced to facilitate the soundness proof of our abstract semantics.

Definition 1. A concrete execution of a program P has a source-sink error if
and only if P evaluates to false.

2.2 Flows in Concrete Executions

Since our technique will infer flow specifications of library functions, we first
formally define what we mean by a flow in a concrete execution. In this section,
we represent a concrete execution of a program by a trace σ = s1, s2, . . . , sn
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consisting of the sequential execution of instructions s1 through sn. Instructions
can be assignments, check statements, function invocations, or function returns.
We write callρ f(v1, . . . , vn) to denote the invocation of function f with actuals
v1, . . . , vn at a call site v ←ρ f(v1, . . . , vn), and we write returnρ f �→ v to
indicate f ’s return and the assignment of its return value to variable v.

Given a trace σ = s1, s2, . . . , sn, we write s+i and s−i to represent the control
points right after and right before the execution of instruction si respectively.
Observe that this implies s+i = s−i+1. We can now define a one-step flow relation
� between variables u, v on a concrete execution σ:

Definition 2. Let σ = s1, s2, . . . , sn be an execution trace. We define the one-
step flow relation � to be the smallest relation satisfying the following conditions:

– (u, s−i ) � (u, s+i ) if si 
= (u ← . . .)
– (u, s−i ) � (v, s+i ) if si = (v ← u)

The first condition here states that (u, s−i ) � (u, s+i ) if si does not reassign u.
The second condition says that (u, s−i ) � (v, s+i ) if instruction si is an assign-
ment from u to v. Thus, intuitively, the one-step flow relation (u, s−i ) � (v, s+i )
encodes whether the value of variable u flows to variable v in instruction si.
Using the relation �, we now define a multi-step flow relation �∗ as follows:

Definition 3. The multi-step flow relation �∗ is the smallest relation satisfying
the following conditions:

– (u, s−i ) �∗ (v, s+j ) if (u, s
−
i ) � (v, s+j )

– (u, s−i ) �∗ (w, s+k ) if (u, s
−
i ) �∗ (v, s+j ) and (v, s−j+1) �∗ (w, s+k )

– (vk, s
−
i ) �∗ (v, s+j ) if si = callρf(v1, . . . vn) and sj = returnρf �→ v and

(αk, s
−
i+1) �∗ (χf , s

+
j−1)

If (u, s−i ) �∗ (v, s+j ), we say that u at si flows to v at sj . The first two
conditions in Definition 3 state that �∗ includes the transitive closure of �.
The third condition deals with flows that are introduced due to calls to library
functions. Specifically, consider a pair (si, sj) of matching function call/return
instructions where si = callρ f(v1, . . . , vn) and sj = returnρf �→ v. Observe that
the sub-trace given by si+1, si+2, . . . , sj−1 corresponds to the execution of f ’s
body. According to the third rule of Definition 3, if the k’th argument of f flows
to the return value of f between si+1 and sj−1, then the value of the actual vk
before instruction si also flows to variable v after instruction sj .

Example 1. Consider the following trace σ:

s1 : u ← S
s5 : χf ← x

s2 : v ← u
s6 : returnρf �→ w

s3 : callρf(v)
s7 : z ← w

s4 : x ← α1

s8 : check(z)

Here, (α1, s
−
4 ) �∗ (χf , s

+
5 ) because f ’s first argument is transitively assigned

to its return value. Due to the call between s3 and s6, (v, s
−
3 ) �∗ (w, s+6 ). Finally,

since (u, s+1 ) �∗ (v, s−3 ) and (w, s+6 ) �∗ (z, s−8 ), we have (u, s+1 ) �∗ (z, s−8 ).
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Since we will use flow specifications of library functions to determine the
absence of source-sink errors, it is helpful to give the following alternate charac-
terization of source-sink errors in terms of flows:

Proposition 1. Trace σ = s1, s2, . . . , sn has a source-sink error iff there exists
some si, sj ∈ σ such that si : (u ← S) and sj : check(v) and (u, s+i ) �∗ (v, s−j ).
Example 2. The trace from Example 1 has a source-sink error because (u, s+1 ) �∗

(z, s−8 ) and s1 is u ← S and s8 is check(z).

3 Analysis and VC Generation

This section describe a static analysis for generating verification conditions that,
if valid, imply the absence of source-sink errors. As mentioned earlier, the VCs
generated by our analysis are parametrized over boolean flow variables, which
soundly model the unknown effects of calls to library functions.

The VC generation procedure is described as inference rules shown in Fig-
ure 4. These rules use an environment Ω, which is the abstract counterpart of
the concrete store Γ from the operational semantics. The abstract store Ω maps
each program variable to a guarded value set θ, consisting of value, constraint
pairs. Values A in the analysis include sources S, constants C1, . . . , Cn, and spe-
cial variables π which are used to model the unknown return values of library
functions. If (Ai, φi) ∈ Ω(v), this means v may be equal to Ai if constraint φi is
satisfied. Constraints φ are formed according to the following grammar:

φ := true | false | A 
= S | fi | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ⇒ φ2

Hence, constraints are boolean combinations of flow variables fi and disequality
constraints A 
= S. As expected, (S 
= S) ≡ false and (Ci 
= S) ≡ true for any
Ci. Given an interpretation σ mapping each flow variable to a boolean constant
and each π variable to a constant Ci or S, σ(φ) evaluates to true or false.

Figure 4 presents the analysis using judgments of the form Ω � s : Ω′, φ.
The meaning of this judgment is that, given an abstract store Ω, the analysis of
statement s yields a new abstract store Ω′ and a verification condition φ.

Rules (1) and (2) in Figure 4 describe the analysis of assignments and are
straightforward analogues of the concrete semantics. For example, rule (2) for
assignments (v1 ← v2) says that if v2 has guarded value set θ in Ω, then Ω′ also
maps v1 to θ. For both rules, the resulting VC is just true since these statements
do not contain sinks. Rule (3) for sequencing also closely parallels the concrete
semantics. The resulting VC is φ1 ∧ φ2 because the VCs of both s1 and s2 must
hold to ensure that the program is error-free.

Rule (4) generates the VC for check statements. In this rule, we first retrieve
the guarded value set θ of variable v. For each pair, (Ai, φi) ∈ θ, we must check
that Ai is not equal to S under constraint φi, which is a necessary condition for
v to have value Ai. Thus, the generated verification condition is the conjunction
of constraints φi ⇒ (Ai 
= S) for each (Ai, φi) ∈ θ.

Rule (5) describes the analysis of conditionals. Since the analysis must account
for the possibility that either branch may execute, the resulting store Ω′ is
obtained by taking the join of Ω1 and Ω2:
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(1)
Ω′ = Ω[v �→ (c, true)]

Ω � v ← c : Ω′, true
(2)

Ω(v2) = θ Ω′ = Ω[v1 �→ θ]

Ω � v1 ← v2 : Ω′, true

(3)

Ω � s1 : Ω1, φ1

Ω1 � s2 : Ω2, φ2

Ω � s1;ρ s2 : Ω2, φ1 ∧ φ2
(4)

Ω(v) = θ
φ =

∧
(Ai,φi)∈θ

φi ⇒ (Ai �= S)

Ω � check(v) : Ω,φ

(5)

Ω � s1 : Ω1, φ1

Ω � s2 : Ω2, φ2

Ω � if(�) then s1 else s2 : Ω1 Ω2, φ1 ∧ φ2

(6)

θi = {(Aij , φij ∧ fi) | (Aij , φij) ∈ Ω(vi)}
θ = (

⋃
1≤i<n

θi) ∪ (πρ, πρ �= S)

Ω � v ←ρ f(v1, . . . , vn) : Ω[v �→ θ, πρ �→ (πρ, true)], true

Fig. 4. VC Generation rules

Definition 4. Given two abstract stores Ω1 and Ω2, Ω1 �Ω2 is defined as fol-
lows:

(A, φ) ∈ Ω1(v) ∧ (A, φ′) ∈ Ω2(v)⇒ (A, φ ∨ φ′) ∈ (Ω1  Ω2)(v)
(A, φ) ∈ Ωi(v) ∧ (A, ) �∈ Ωj(v)⇒ (A, φ) ∈ (Ω1 Ω2)(v)

The VC we generate in rule (5) is φ1 ∧ φ2 because the VCs of both branches
must hold to guarantee that any execution of the program is error-free.

The last rule (6) describes the analysis of calls to library methods. Since library
methods do not contain sinks, the VC here is just true. The more interesting part
of this rule is the computation of the new guarded value set θ. To account for
the possibility that f ’s i’th argument may flow to its return value, we introduce
a propositional flow variable fi representing whether or not there is such a flow.
Specifically, if (Aij , φij) ∈ Ω(vi), then (Aij , φij ∧ fi) ∈ Ω′(vi), where Ω′ is the
abstract store after analyzing the function call. Now, in addition, to account for
the possibility that f may return a fresh value, v’s value set in Ω′ also contains
a variable πρ, which represents an unknown value produced in f . However, since
sources are disallowed in library methods, the guard πρ 
= S for v in θ stipulates
that πρ is not a source.

Example 3. Consider the following code snippet:

1. x ← S; y ← C2; if(!) then z ← x else z ← y;
2. a ←1 f(z); b ←2 g(y); c ←3 f(x);
3. if(!) then d ←4 m(a) else d ←5 h(b, c);
4. check(d)

Here, after line 2, we have:

Ω(x) = {(S , true)} Ω(y) = {(C2, true)}
Ω(z) = {(S , true), (C2, true)} Ω(a) = {(S , f1), (C2, f1), (π1, π1 �= S)}
Ω(b) = {(C2, g1), (π2, π2 �= S)} Ω(c) = {(S , f1), (π3, π3 �= S)}
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Here, f1, g1 are flow variables indicating whether f and g’s first arguments may
flow to their return value. After analyzing the if statement at line 3, we have:

(S, (f1 ∧m1) ∨ (f1 ∧ h2)) ∈ Ω(d)

This means that d is tainted at line 4 under constraint (f1 ∧ m1) ∨ (f1 ∧ h2).
Here, the first disjunct (f1∧m1) comes from the then branch of the if statement,
while the second disjunct, (f1 ∧ h2) comes from the else branch. Specifically, in
the then branch, d is tainted if a is tainted and m’s first argument flows to its
return value. Since a is tainted under guard f1, d is tainted under guard f1 ∧m1

where m1 is a flow variable for function m. Similarly, in the else branch, d is
tainted if either (i) b is tainted and h’s first argument flows to its return value,
or (ii) c is tainted and h’s second argument flows to its return value. Since S
is not in the value set for b, it is not tainted, and the first condition is false.
Since c is tainted under constraint f1, the second condition is f1 ∧ h2. Thus,
in the else branch, d is tainted under constraint f1 ∧ h2. Finally, when we take
the join of the two value sets for d, we obtain that d is tainted under the guard
(f1 ∧m1)∨ (f1 ∧ h2) after line 4. Finally, after analyzing the check statement at
line 5, the (simplified) VC is given by ((f1 ∧m1) ∨ (f1 ∧ h2))⇒ false.

4 Inference of Flow Specifications

Given a program P and its VC φ, our goal is now to infer a smallest set candidate
flow specifications ψ such that ψ is sufficient to prove the validity of φ. At a
technical level, we define flow specifications as follows:

Definition 5. A flow specification for a library function f is an assignment
from a flow variable fi to a boolean constant.

A flow specification for a function f is said to be correct if it assigns fi to false
only if there is no possible execution σ = {s1, . . . , sn} of f where (αi, s

−
1 ) �∗

(χf , s
+
n ). In the rest of this section, we assume there is an oracle which can

confirm or refute the correctness of a candidate flow specification. This oracle
may be a human who can consult the documentation of the library or some other
sound analysis capable of analyzing the library code or binary. Since our goal is
to minimize the number of queries to the oracle, we are interested in inferring a
minimal specification sufficient for the verification task.

4.1 Computing Minimal Candidate Flow Specifications

We formulate the minimal specification inference problem in terms of abduction
in logic. Specifically, given a VC φ for a source-sink problem, and a formula χ
representing known flow specifications, we want to infer a formula ψ such that:

(1) χ ∧ ψ |= φ (2) SAT(χ ∧ ψ)

Here, (1) says the candidate specification ψ, together with known specifications
χ, should be sufficient to discharge the VC φ, and (2) says the candidate spec-
ification ψ should not contradict known specifications χ, since such a solution
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ψ cannot be correct. The inference of a formula ψ satisfying the above require-
ments is an abduction problem in logic. However, in addition to being a solution
to the abduction problem, we require ψ to satisfy two additional requirements:

– First, since ψ represents a set of flow specifications, it should be a conjunction
of literals, where each literal is either a flow variable fi or its negation.

– Second, since we want a minimal specification, ψ should contain as few
literals as possible. Since each literal in ψ corresponds to a query to the
oracle, this minimizes the number of queries needed to verify the client.

Our insight is that we can compute a solution ψ satisfying these two require-
ments using minimum-size prime implicants (MPI) defined as follows:

Definition 6 (Minimum-size prime implicant). A minimum-size prime im-
plicant (MPI) of a boolean formula ϕ is a set S of literals such that

∧
li∈S li |= ϕ

and for any other set S′ such that |S′| < |S|,
∧

l′i∈S′ l′i 
|= ϕ.

Practical algorithms for computing MPIs of boolean formulas have been stud-
ied, for example, in [5, 6]. To see how MPIs are useful for solving our abduc-
tion problem, observe that the first requirement χ ∧ ψ |= φ can be written as
ψ |= χ ⇒ φ. Since we want ψ to be a smallest conjunction of literals that implies
χ ⇒ φ, a solution to the abduction problem is an MPI of χ ⇒ φ that does
not contradict χ. The algorithm given in [6] can be used to compute an MPI of
χ ⇒ φ consistent with χ, which yields the solution ψ to our abduction problem.

Example 4. Consider again the code from Example 3. Recall that we computed
the VC for this program as φ : ((f1∧m1)∨(f1∧h2)) ⇒ false. Assuming χ = true,
an MPI for χ ⇒ φ is ¬f1. Hence, the program is free of source-sink errors if there
is no flow from the first argument of f to its return value.

4.2 Computing Correct Minimal Flow Specifications

The solution ψ to the abduction problem from Section 4.1 yields a minimal can-
didate specification sufficient to verify the client. However, since ψ is effectively
a speculation, it does not have to be correct. This section describes a refinement
algorithm that interacts with the oracle until a correct specification is found.
The FindSpec algorithm used for this purpose is shown in Figure 5. It takes as
input the VC φ and returns a set of correct flow specifications that are sufficient
to discharge the error. If no such specification exists, it returns false.

The idea behind FindSpec is the following: First, at line (3), it computes a set
I = {l1, . . . , ln} of candidate flow specifications as discussed in Section 4.1 using
minimum prime implicants. In the inner loop of FindSpec, we use an oracle to
certify each flow specification li ∈ I. If the oracle can certify each li ∈ I, then
we are done. However, if the oracle cannot validate some candidate specification
li ∈ I, this means I may not be correct, and we therefore backtrack from this
choice by breaking out of the inner loop (line 9). In each iteration of the outer
while loop, we compute a new candidate specification I using abduction. To
ensure that the current solution I is distinct from previous ones, we maintain a
formula χ which represents previous answers given by the oracle. This formula
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Procedure FindSpec
input: verification condition φ
output: inferred specification χ
(1) χ := true
(2) while true do
(3) I := MinPrimeImp(χ⇒ φ, χ)
(4) if I = ∅ then return false
(5) proven := false
(6) for each li ∈ I
(7) proven := CertifiedByOracle(li)
(8) if proven then χ := χ ∧ li
(9) else (χ := χ ∧ ¬li; break)
(10) if proven then return χ

Fig. 5. Algorithm for finding correct flow specifications

χ is initially true, but becomes stronger after every query to the oracle: If the
oracle certifies specification li, we conjoin li with χ; otherwise, we conjoin ¬li.
This strategy ensures that we do not obtain inferences containing literal li in
the future. This process continues until we either find a valid proof or conclude
that the program cannot be verified relative to the oracle.

Theorem 1. The FindSpec algorithm is guaranteed to terminate.

Theorem 2. If there exists a set of correct flow specifications sufficient to dis-
charge φ, then FindSpec will not return false assuming completeness of the oracle.

Example 5. Consider again the code from Example 3 and its corresponding VC
φ : ((f1∧m1)∨(f1∧h2))⇒ false. FindSpec first computes an MPI of φ, which is
¬f1 as discussed in Example 4. Thus, I starts out as {¬f1}. If the oracle certifies
that f ’s first argument never flows to its return value, the program is verified.
Otherwise, we conjoin f1 with χ (true). In the next iteration, the solution to
the abduction problem is {¬m1,¬h2}. Now, we ask the oracle to certify ¬m1. If
the oracle cannot do so, the algorithm terminates because m1 is conjoined with
χ, and there is no abductive solution consistent with f1 ∧m1. If the oracle can
certify m1, the program can be verified iff the oracle can also certify ¬h2.

5 Tracking Flows in the Heap

While the language used in the formalization did not allow pointers, our im-
plementation targets Java, where method calls can introduce flows between any
pair of heap objects reachable in the called method. Therefore, to soundly handle
flows through the heap, we introduce one flow variable for any ordered pair of
abstract memory locations (l1, l2) for which the value in l2 may flow to l1. That
is, a flow variable fl1,l2 expresses that there is a flow in f from some concrete
memory location represented by l1 to a concrete location represented by l2. Since
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Java is type-safe, we consider a flow between two heap locations l1 and l2 feasible
if the static type of l1 is a subtype of that of l2 or vice versa. If these types are
class types and field declarations in the library are visible, we also consider their
nested fields with their respective types. 1 As an example, consider the following
Java code, where library definitions and client code are shown:

/* Library Definitions */

class Name { private String name; };

class Phone { private String phone; }

class Contact { private Name n; private Phone p; };

/* Client Code */

String str = TAINTED; Name n = new Name ("John Smith");

Phone p = new Phone(str); Contact c = new Contact(n, p);

Network.send(n);

Here, assume TAINTED is a secret value and Network.send is a sink. Since
p.phone and str are type compatible, a boolean variable Phonearg0,ret.phone
expresses a possible flow from the first argument of the Phone constructor
to the phone field of its return value. Similarly, since the name and phone

fields of heap locations p and n are type compatible, the boolean variables
Contactarg1.phone,arg0.name and Contactarg0.name,arg1.phone express potential
flows from p.phone to n.name and vice versa. Therefore, for this example, our
technique generates the VC: ¬Contactarg1.phone,arg0.name∨¬Phonearg0,ret.phone.

6 Implementation

We have implemented a tool for tracking explicit information flow properties of
Android smart phone applications. Android applications are developed in the
Java programming language, but make extensive use of the Android software
development kit (SDK). Since the Android SDK is many orders of magnitude
larger than the typical client application and since it is written in a variety of
languages besides Java, it is impractical to perform a precise static analysis of the
framework code along with the application code. Therefore, our implementation
uses the technique described in this paper to reason about calls to the Android
framework when analyzing a given smart phone application.

While the language from Section 2 does not contain many of the standard
features of Java, such as pointers and virtual method calls, our implementation
handles the full Java language (except some uses of reflection). For reasoning
about the heap, we use a flow- and context-sensitive pointer analysis that we
introduced in our previous work (see [7]). Since our pointer analysis also does
not analyze the Android framework code, we deal with calls to the Android
framework methods as outlined in Section 5.

1 If library declarations are not visible, we conservatively introduce a flow variable for
any pair of locations (l1, l2) where l2 is an instance of a library-defined class.
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App LOC lib calls possible flows time queries queries
possible SSF actual SSF demonic

ContentProvider 342 26 27 0.9s 2 7.41% 1 3
ContactManager 1017 206 319 5.2s 2 0.63% 1 4
TUIOdroid 1612 437 646 16.4s 2 0.31% 1 24
eu.domob.angulo 1748 141 163 5.0s 1 0.61% 1 22
RemoteDroid 3781 505 680 33.9s 4 0.59% 3 48
tomdroid 10316 1515 2853 126.3s 4 0.14% 2 31
net.rocrail.android 13499 1940 3281 214.0s 4 0.12% 0 103
org.yaaic 18099 1517 2800 96.7s 9 0.32% 1 92

Average 6302 786 1346 62.3s 3.5 0.26% 1.25 40.9

Fig. 6. Experimental Results. The column labeled “SSF actual” shows the number of
actual source-sink flows, while “SSF demonic” shows the number of source-sink flows
reported when making conservative assumptions about library methods.

7 Experiments

We used the proposed technique for verifying confidentiality in Android applica-
tions. Specifically, we targeted explicit information flow properties where sources
correspond to private user data and sinks are methods that send data. Since the
proposed technique is not meant for inferring sources and sinks, we manually
annotated a total of six different sources and sinks found in these applications.
Sources include phone contacts, GPS location, call records, and IMEI number,
while sinks include methods that send data over the network and methods for
sending SMS messages.

In our experimental evaluation, we chose to focus on Android applications
because they are programmed against the complex Android SDK library. While
individual Android applications are typically a few thousand or ten thousand
lines of code, the size of the entire Android library stack is several millions of
lines of code, containing a mix of Java, C, and C++ code. Therefore, Android
applications are good examples of software for which it is neither feasible nor
desirable to analyze implementations of libraries in order to verify the client.

The eight applications we analyzed range from 342 to 18,099 lines of code
and include an instant messaging client, a miniature train controller, an angle
measurement software, two remote control programs, a note-taking software,
and two small Android developer example applications. With the exception of
the miniature train control (net.rocrail.android), all applications contain some
source-sink flows. However, many of these flows are necessary for the application
to perform its functionality and do not show malicious intent.

The first four columns in Figure 6 give details about the experimental bench-
marks. As indicated by the column “lib calls”, the number of calls to library
methods range from 26 to 1940 calls per application. On average, there are 786
calls to unanalyzed library methods. The column labeled “possible flows” shows
the total number of flows that could be introduced due to calls to library meth-
ods. On average, there are 1346 possible flows that could arise from library calls.

The next five columns in Figure 6 present analysis results. As shown in the
column labeled “time”, the analysis takes an average of 62.3 seconds for analyzing
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an average of 6302 lines of code. The next column labeled “queries” shows the
number of queries made to the oracle. As shown in the “queries” column, the
number of queries to the oracle range from one to nine, with an average of
3.5 queries across all benchmarks. In our experimental setup, all queries to the
oracle were answered by one of the authors who consulted the documentation
of the library methods in the Android SDK. Observe that the number of flow
specifications that must be confirmed by the user is a very small percentage of
the possible flows that could be introduced due to calls to library methods. The
column labeled “queries/possible” shows the percentage of flow specifications
that must be confirmed by the user relative to all possible flows that could be
introduced due to library calls. As the table shows, this percentage is very small;
on average, the user only needs to examine 0.26% of all the possible flows.

The next column labeled “SSF actual” in Figure 6 shows the number of
source-sink flows identified by our analysis. On these benchmarks, our analy-
sis identifies zero to three possible source-sink flows. We manually inspected all
of these flows and found that none of them are spurious. We believe the absence
of false positives indicates that the may-flow abstraction is sufficiently precise
for summarizing the behavior of libraries for source-sink property verification.

Finally, the last column labeled “SSF demonic” shows the number of source-
sink errors identified by the analysis when we make demonic (i.e., conservative)
assumptions about flows that could be introduced due to library calls. As shown
in Figure 6, there are an average of 40.9 source-sink flows identified by the
analysis when we make conservative assumptions about library calls. On aver-
age, this is 33 times larger than the number of actual source-sink flows found
in these applications and shows that making conservative assumptions about
library method behavior results in a very high number of false alarms.

8 Related Work

Specification Inference. Existing work for specification inference [8–10, 4, 11–
14] can be classified as static vs. dynamic and library-side vs. client-side. Our
technique is client-side and static, but differs from previous work in several ways:
First, our technique infers flow specifications for source-sink problems, which is
not addressed by existing work. Second, our approach uses a novel form of VC
generation and minimum prime implicants to identify the required specifications.
Third, our goal is not to infer as many facts as possible about the library, but
rather to identify exactly those specifications needed to verify a given client.
Specifications for Source-Sink Properties. Other work for specification in-
ference, such as [4, 15], also target source-sink problems. In particular, Merlin [4]
infers sources, sinks, and sanitizers for explicit information flow problems using
probabilistic inference. We believe our proposed technique and [4] are comple-
mentary since we assume that sources and sinks are known, whereas [4] does
not infer specifications of methods that propagate taint, but that are neither
sources nor sinks. The recent work presented in [15] addresses taint analysis of
framework-based web applications and gives a specification language for anno-
tating taint-related framework behavior.
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Other Source-Sink Checkers.Many techniques have been proposed for check-
ing source-sink properties [16–19]. Many of these tools focus on taint analysis in
the context of SQL injection attacks [20, 17, 16], where it is important to con-
sider sanitizers in addition to sources and sinks. While we have not considered
sanitizers in the technical development, our technique can be easily extended to
infer flow specifications in the presence of sanitizers. However, we assume that
sources, sinks, and sanitizers are known and infer specifications regarding taint
propagation rather than taint introduction, removal, or consumption.

Use of Abduction in Static Analysis. Several other approaches have used
abductive inference in the context of program verification [21–23]. Among these,
[22] also uses abduction for inferring specifications of unknown procedures but
differs from this work in several ways: First, here, our goal is to verify the absence
of source-sink errors whereas [22] addresses verifying pointer safety. The second
difference is that we consider an algorithmic approach to performing abduction
in propositional logic whereas [22, 21] use a rule-based approach in separation
logic. Third, while [22] generates a single abductive solution and fails if the
candidate specification is wrong, our technique iteratively refines the candidate
specification until the program is verified.

Our own previous work uses abductive inference for helping users diagnose
warnings generated by static analysis [24]. However, that technique is not useful
for inferring flow specifications because the generated constraints do not express
possible input-output dependencies due to unknown method calls. Furthermore,
the abduction algorithm used here is different: Here, we are interested in conjunc-
tive propositional formulas over flow variables whereas [24] generates possibly
disjunctive solutions of Presburger arithmetic formulas.

9 Conclusions and Future Work

We have presented a new technique for source-sink property verification of open
programs that call unanalyzed library methods. We have applied the proposed
technique to checking confidentiality in Android applications and show that our
method can effectively identify the necessary specifications required for ruling
out a large number of potential source-sink flows. A promising direction for
future research is to combine the proposed technique with dynamic symbolic
execution which can rule out many spurious must-not-flow assumptions inferred
by our technique.
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Abstract. We discuss the potential of doing program development, code
generation, application-specific modelling, and verification entirely within
a proof assistant.

Managing the interaction between programming and proving creates challeng-
ing problems in the design of languages, logics and user interfaces. Almost in-
dependent from the deep research problems associated with designing reasoning
methods for programs, it is not clear what a ‘ideal’ environment or tool-chain
for producing verified software might even look like.

Many automated verification tools start with conventional languages, com-
pilers and development environments, which are extended to allow Hoare-style
assertions and invariants to be added as annotations, for example as structured
comments. Assertions are verified behind the scenes, for example by an SMT
solver, and failures reported by ‘red squigglies’ and textual error messages, just
like conventional syntax and type errors. This comfortably familiar approach is
minimally disruptive to development practices and can work very well, particu-
larly for comparatively simple or specific properties. But there are limitations.

Firstly, when the automation fails (which is the common case), the program-
mer has to change the program, change the specification, or add further annota-
tions as hints to the prover. Making such changes can be hard: the programmer
is, at least morally, interacting with the prover to try to construct a proof, with-
out any direct feedback of what the proof looks like and only one mechanism
– stating new lemmas – to guide its construction. The alternative of generat-
ing verification conditions for residual obligations and shipping them to a proof
assistant allows some interactivity, but often generates large, incomprehensible
goals, with no clear link back to the original program. Accurately relating the
annotation language, prover language, proof assistant language and, in the case
of interesting properties, the semantics of the programming language is chal-
lenging. Even arranging to persist the VC proofs along with the program isn’t
entirely trival.

Secondly, the idea of just marking up a conventional program with a few well-
chosen pre/postconditions and invariants and then pressing a magic button only
gets one so far. There are simple syntactic limitations on what one can say if
specification level constructs must align with programming language ones (e.g.
insisting that each procedure has a single specification, or disallowing quantifica-
tion scoped over more than one procedure). More fundamentally, to verify ‘deep’
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functional correctness properties one needs a rich logic just to write the speci-
fications. Really verifying a compiler, linear algebra library, crypto protocol or
video decoder involves a model of the desired behaviour that can only be formally
captured in a language that is powerful enough to express, essentially, arbitrary
mathematics, especially if we want the specifications to be comprehensible and
modular. The necessary reasoning about such models is not generally fully au-
tomatable, so some form of explicit representation of proofs seems unavoidable.1

As the amount of text involved in defining the model, proving properties of it,
writing specifications and establishing that they hold of the program (even with
the help of some automation) can easily be at least as great as that associated
with the actual program (and almost always takes at least as long to write), an
environment’s support for convenient proving is arguably more important than
its support for programming.

An attractive alternative to Hoare-style verification is to write one’s software
in a dependently-typed language, such as Coq or Agda, in the first place. De-
pendent type theories do have the power to express the mathematically rich
specifications one needs for full functional correctness (as well as a full range of
simpler ones, of course). And dependently typed languages provide an elegant
integration of programming and proving, such that programs can be said to be
‘correct by construction’ (even if achieving correctness requires a more elaborate
construction). There are actually two slightly different styles of writing verified
software in dependently-typed systems: one one can either use the full power of
dependency to capture specifications directly in the types of functions, or write
conventionally-typed programs about which one separately, though still all in
the same system, proves correctness theorems. The latter style is common in
Coq – e.g. for CompCert [12] – as there is good tactical support for proving,
strongly-dependent programming is trickier than it should be, and because ex-
traction of the computationally relevant parts of a program to OCaml for actual
execution is thereby more straightforward.

Beautiful though it often is, programming directly in type theory comes with
its own trade-offs. Firstly, one must program in a rather fundamentalist pure
functional language, in which only provably total functions can be written. Such
a language is not obviously the most natural choice for writing all the kinds of
software component one might wish to verify. Secondly, compilation is typically
via extraction/translation to a more conventional functional language, such as
OCaml or Haskell. This is convenient both for reusing existing infrastructure
(optimising compilation, runtime systems, etc.) and for interfacing verified and
unverified code, for example to add impure IO and UI code to a verified al-
gorithmic core. But if we insist on a very high level assurance (which we of-
ten don’t), then we might have reservations about including a sophisticated

1 For particular applications, such as cryptography, or forms of property, such as
memory safety, one can usefully use an interactive prover to verify the metatheory
associated with specialized automation, but in the general case it is impossible to
insulate the developer of seriously verified software from thinking about proofs.
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compiler, its runtime system and libraries in our trusted computing base.2 And
if the theorems we really want to prove make non-trivial statements about the
IO behaviour of our program, that behaviour really needs to be brought within
the scope of our formal reasoning.

An popular alternative approach is to use a proof assistant to reason about a
program written in a conventional language, such as C or ML. Given a formalized
semantics for the programming language and a representation of the program
code as an object in the prover’s internal language, one can prove program prop-
erties by many methods, including Hoare-style reasoning, with the soundness of
the reasoning principles being formally justified in terms of the semantics of the
specific language, which may be high or low level, pure or impure. Actual exe-
cutable code is generated by running the textual version of the program through
a conventional compiler. This approach is particularly appropriate for verifying
low-level code and has been successfully used in many significant projects, such
as the sel4 verification [9]. As with program extraction, an external compiler
becomes part of the TCB, though in both cases that concern can be removed by
a separate formal verification of the compiler itself.3 The state of the art here
is the Verified Software Toolchain [1], which builds provably sound separation
logic reasoning (and other program analysis tools) for a version of C on top of
the CompCert semantics and compiler.

As previously mentioned, interactive verification of programs written in stan-
dard programming languages has huge advantages. In many practical situations,
it will, clearly, be the only kind of verification that is acceptable. And yet, as
well as the potential weakening of the guarantees that are obtained if one does
not also use a verified compiler, it is inherently a little clumsy. One’s workflow
involves tools to translate between the programming language syntax and that
of whatever representation is chosen in the prover’s language. Naive representa-
tion choices (of the sort that would mesh well with a compiler correctness proof
and are much more acceptable in metatheoretic work) lead to theorems being
proved about objects that are rather more unwieldy than the original source,
such as abstract syntax trees with their own encoded representations of defini-
tions, scope, etc. Even slightly more idiomatic translations (that, for example,
map definitions in the language to definitions in the prover) make it trickier to
verify formally the correctness of the workflow as a whole. There are numerous
complexities, from differences in identifier naming rules, through dealing with
preprocessors to linking, build scripts, code generation, and keeping the program
and proof in sync.

Now, proof assistants are powerful tools, verification researchers are smart,
and code is malleable stuff. Many ingenious strategies for reducing the pain

2 And whilst the story about the relation between Coq semantics and OCaml semantics
might be reasonably clear for whole programs, it seems less so for components, as the
OCaml type system can’t express the purity constraints assumed by Coq functions.

3 Or alleviated by testing, though even that really ought to be strongly connected with
the formalized semantics. One reason for verifying programs written in an existing
language is to be able to use existing tools.
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of impedence matching have been devised, including the circular verification
of the F* typechecker [20] and Myreen et al.’s automatic extraction of HOL
functions, together with correspondence proofs, from low-level programs [16,15].
But ultimately, a proof assistant like Coq is in many respects simply a better
programming language than most conventional ones. Ideally, we’d like to keep
the expressive structuring and integration between programming and proving
that we get from programming in type theory and also have high assurance
compilation down to the machine, the ability to do low-level programming, and
effects, including general recursion.

Various projects have involved writing imperative (or other non-purely-func-
tional) programs directly in a proof assistant. But this is often just to do exam-
ples for papers on metatheoretic work: a small program is coded up as a term in
an AST type, or directly into some more semantic representation, and something
interesting is proved about it, but it is not often suggested that this is a way of
writing programs one would ever want to actually run. A notable exception is
Ynot: an ML-like, higher-order, imperative language, with Hoare-style assertions
in types [17]. Ynot is built as a library in Coq, from which it inherits structuring
and proving mechanisms. The model of effectful programs is axiomatised rather
than formally verified in Coq, and programs are run via extraction to OCaml, so
Ynot may not quite achieve the highest level of assurance, but the programming
model of ‘type theory with effects’ is an attractive one. Verified programs that
have been written in Ynot include web services [21] and a simple database [13].

Over the last few years, Andrew Kennedy and I, together with a number of
collaborators, have been investigating formally verified compilation and reason-
ing principles for low-level level languages. Like many others, we aim to verify
systems-level code right down to the hardware and so, having done several bits
of work involving very idealized assembly code and abstract machines, we em-
barked on constructing a Coq model of (a sequential subset of) x86 machine
code. The model is foundational in style: starting from bits, bytes and words,
on top of which we model the machine architecture, instruction encoding and
decoding, and the operational semantics.

The scientifically ‘deep’ part of the project involves the design and semantics
of a separation logic for unstructured machine code, supporting both first- and
higher-order frame rules, a full range of intuitionistic connectives and a ‘later’
modality, all with good logical properties [7]. Along the way, however, we also
discovered that Coq was not such a bad system for actually writing the pro-
grams we wanted to verify. Being based on type theory, Coq can do more than
contemplate eternal verities: it can actually compute. We implemented an as-
sembler in Coq which, thanks to user-defined notations (including custom bind-
ing forms), is syntactically compatible with existing assemblers. The assembler
has been proved correct, but also actually runs inside Coq: we can extract a
bootable binary image or a runnable .exe file from Coq, with no other external
dependencies.4

4 Well, apart from hex2bin and a small bootloader borrowed from Singularity.
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Moreover, Coq’s powerful abstraction mechanisms allow us to define conve-
niently parameterized higher-level programming constructs, including control
structures and a variety of calling conventions, as macros. These macros also
come with their own verified specifications, allowing one to move up the abstrac-
tion hierarchy in both programming and proving [8]. Chlipala’s Bedrock system
[5] takes a similar approach, allowing imperative programs to be written within
Coq using very conventional-looking macro syntax that incorporates pre/post
conditions and invariants and supports a very high degree of Coq automation
for producing foundational proofs about the generated (machine-independent)
low-level code.

One could keep going up until one had recreated most of the features of a
general-purpose high-level language, but we are more excited about the prospect
of producing verified code via much more explicit orchestration of staging and
metaprogramming within the prover, combining general purpose programming
abstractions with the use of embedded domain-specific languages; sharing pieces,
but each with their own metatheory and code generation strategies. As a small
example of the kind of thing we have in mind, we implemented a verified compiler
for regular expressions that builds on an existing third-party formalization [4]
of the theory of Kleene algebras – not merely at the specification level, but
reusing a verified and computable function from regular languages to finite state
machines as part of the compilation process.

Such an approach is not universally applicable, but for producing, say, a small,
foundationally verified operating system kernel, the use of a conventional lan-
guage seems eminently avoidable. Indeed, combining domain-specific compilers
specialized to packet processing, scheduling, protocol definitions, event process-
ing, policy checking, and so on, and able to describe those domains and their
theory declaratively, using the full power of type theory, rather than indirectly
through an implementation of some aspect of them in a general-purpose, low-
level programming language, is very appealing. There is much talk about ‘model-
driven’ software engineering, but it would be good to do it for real, using tools
that can both actually build meaningful models and generate code that provably
implements them. Mixing up different programming and specification paradigms
might seem (or even be) a recipe for chaos, but the need to verify composed sys-
tems at least keeps us honest, and not only were we going to have to think
carefully about the specifications of boundaries in any case, but those specifica-
tions provide guidance for designing the combination.

Even for unverified software, there is a trend towards integrating special pur-
pose sub-languages into mainstream, general-purpose ones. C# has been extended
with (amongst other things) asynchronous concurrency, reactive programming,
database queries and parallelism. Trying to make such a range of features fit
together into a single coherent language design is challenging, to say the least,
and conventional type systems are often not up to the job of expressing domain-
specific invariants (e.g. noninterference between parallel tasks). If we are going
to verify multiparadigm programs, we do have to capture those invariants in
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our specification language, so perhaps that could take the place of, or augment,
types at the programming stage too.

Furthermore, the potential performance advantages of metaprogramming and
domain-specific code generation are considerable. Serious software (presumably
the only kind on which one would spend the effort of verification) already often
makes use of code generation techniques, from parser generators and template
metaprogramming to the custom approach of, for example, FFTW. Composing
code generators, rather than working with a monolithic compiler, would allow
many optimizations (such as smoothly combining manual memory management
and garbage collection), limited only by the effort one is willing to put into
establishing their safety.

Of course, there are many obstacles, both large and enormous, to be overcome
before the rather utopian vision of UNCOL-with-extra-maths [6] can be realized:
Computation within Coq is comparatively slow, and naive definitions often don’t
compute at all. Despite much research, it is still hard to work comfortably with
object languages with binding. Interfacing different styles of specification may
prove impossibly hard. It’s not really clear how to factor definitions to allow shar-
ing of important optimizations like register allocation, or to get the right degree
of machine-independence. We’ve given no thought to debugging or profiling. And
so on. Nevertheless, for a restricted range of high-assurance verification tasks,
multiparadigm code generation directly from a proof assistant is an exciting and
promising research direction.

More broadly, programming languages have, in a sense, lost control of their
environments. However good we are at compiling and verifying individual lan-
guages, modern software components increasingly live in a complex, heteroge-
nous world, with rich interfaces to other components, libraries and services.
Building genuinely trustworthy systems means that the scope of specification
and verification has to extend beyond closed programs written in a single lan-
guage. Modern proof assistants are simply the only tools we have in which all the
artefacts in which we are interested (programs, languages, models, specifications,
proofs, compilers . . . ) can coexist and be formally related.

The research community is beginning to build up quite a collection of machine
formalizations of important artefacts, including network protocols [3], machine
architectures, languages, logics, and programming-related theory [2]. These are
expensive to construct, and it is a shame that many are abandoned after a couple
of papers. However, there are encouraging signs that reuse is not only possible,
but is really happening: VST [1] builds on CompCert [12], Bedrock [5] on XCAP
[18], and the CakeML compiler [11] on components also used in other projects,
including a (tested) model of x86-64 [19,14] and (a translation of) a formalization
of Parsing Expression Grammars [10]. As such formalizations mature, it should
be possible to integrate them into the process of software development, rather
than just post-hoc verification.

A mature high assurance development environment will probably look more
like Visual Studio than an Emacs buffer with blue highlights. But the underlying
technology that ties it all together should be logic and type theory.
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Abstract. A discriminator partitions values associated with keys into
groups listed in ascending order. Discriminators can be defined generi-
cally by structural recursion on representations of ordering relations. Em-
ploying type-indexed families we demonstrate how tries with an optimal-
time lookup function can be constructed generically in worst-case linear
time. We provide generic implementations of comparison, sorting, dis-
crimination and trie building functions and give equational proofs of
correctness that highlight core relations between these algorithms.

1 Introduction

Sorting and searching are some of the most fundamental topics in computer
science. In this paper we define generic functions for solving sorting and searching
problems, based on distributive, that is “radix-sort-like”, techniques rather than
comparison-based techniques. The functions are indexed by representations of
ordering relations on keys of type K. In each case the input is an association
list of key-value pairs, and the values are treated as satellite data, that is, the
functions are parametric in the value type V. Intuitively, this means values are
pointers that are not dereferenced during execution of these functions [1]. We
identify a hierarchy of operations:1

sort :: Order k → [k× v]→ [v]
discr :: Order k → [k× v]→ [ [v] ]
trie :: Order k → [k× v]→ Trie k [v]

The sorting function, sort, outputs the value components according to the given
order on K without, however, returning the key component. For example,

5 sort (OList OChar) [("ab", 1), ("ba", 2), ("abc", 3), ("ba", 4)]
[1, 3, 2, 4] ,

1 Executable code is rendered in Haskell, which requires lower-case identifiers for type
variables. We use the corresponding upper-case identifiers in the running text and
in program calculations.

C.-c. Shan (Ed.): APLAS 2013, LNCS 8301, pp. 315–332, 2013.
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where OList OChar denotes the standard lexicographic order on strings. We re-
quire that sort be stable in the sense that the relative order of values with equiv-
alent keys is preserved. Discarding the keys may seem surprising and restrictive
at first. Nothing is lost, however, since parametricity allows us to arrange it so
that the keys are also returned. We simply associate the keys with themselves.

 sort (OList OChar) [("ab", "ab"), ("ba", "ba"), ("abc", "abc"), ("ba", "ba")]
["ab", "abc", "ba", "ba" ]

The discriminator, discr, outputs the value components grouped into runs of
values associated with equivalent keys. For example,

5 discr (OList OChar) [("ab", 1), ("ba", 2), ("abc", 3), ("ba", 4)]
[[1], [3], [2, 4]] .

The trie constructor, trie, outputs a trie that can subsequently be efficiently
searched for values associated to a particular key. The type of trie constructed
depends on the type of the keys. For example,

5 let t = trie (OList OChar) [("ab", 1), ("ba", 2), ("abc", 3), ("ba", 4)]
5 lookup t "ba"
Just [2, 4] .

The function discr was introduced by Henglein [2,3] (originally called sdisc).
It provides a framework for bootstrapping any base sorting algorithm for a finite
type, such as bucket sort, to a large class of user-definable orders on first-order
and recursive types. To this end it employs a strategy corresponding to most-
significant-digit (MSD) in radix sorting.

The functions sort and trie are novel. Algorithmically, sort does the same
as discr, but employing a least-significant-digit (LSD) strategy. Drawing on the
informal correspondence of MSD radix sort with tries [4, p. 3], trie generalizes
discr and generates the generalized tries introduced by Hinze [5]. It subsumes
discr (which in turn subsumes sort) in the sense that it executes in the same
time (usually linear in the size of the input keys), but additionally facilitates
efficient search for values associated with any key.

In this paper we make the following novel contributions:

– We show that a function of type [K×V ] → [V ] is a stable sorting function
if and only if it is strongly natural in V, preserves singleton lists, and sorts
lists of length 2 correctly. A function is strongly natural if it commutes with
filtering, that is, the removal of elements from a list.

– We give new generic definitions of: sort, which generalizes least-significant-
digit (LSD) radix sort to arbitrary types and orders definable by an expres-
sive language of order representations ; and trie, which generalizes discr to
construct efficiently key-searchable tries. Both run in worst-case linear time
for a large class of orders.

– We provide equational proofs for sort o being a stable sorting function and
show that sort o = concat · discr o and discr o = flatten · trie o for all
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inductively defined order representations o, where concat is list concatenation
and flatten lists the values stored in a trie in ascending key order. The first
equality is nontrivial as discr and sort have different underlying algorithmic
strategies for product types: MSD versus LSD. The proof highlights the
strong naturality properties of sort and discr.

– We offer preliminary benchmark results of our generic distributive sort-
ing functions, which are surprisingly promising when compared to Haskell’s
built-in comparison-based sorting function.

The paper focuses on and highlights the core relations between these algo-
rithms, notably the role of strong naturality. Here we limit ourselves to a re-
stricted class of orders and leave asymptotic analysis, performance engineering,
and a proper empirical performance analysis for future work. But certainly some
benchmarks are not amiss to whet the appetite. The task is to sort the words of
Project Gutenberg’s The Bible, King James Version (5218802 characters, 824337
words). We compare Haskell’s built-in sortBy called with Haskell’s own compare
and our generically defined comparison function cmp o, to generic sorting and
generic discrimination, and to sorting via generic tries.

0 1 2 3 4 5

sortBy compare
sortBy (cmp o)

sort o
concat · discr o

concat · flatten · trie o

4.01

5.1

2.34

1.16

1.68

time (seconds)

We assume familiarity with the programming language GHC Haskell and basic
notions of category theory. Unless noted otherwise, we work in Set, the category
of sets and total functions.

2 Order Representations

Comparison-based sorting and searching methods are attractive because they
easily generalize to arbitrary orders: simply parameterize the program code for,
say, Quicksort [6] over its comparison function, and apply it to a user-defined
ordering leq :: T → T → �. An analogous approach works for searching on T
using, say, red-black trees [7,8]. While maximally expressive, specifying orders
via such “black-box” binary comparisons, has two disadvantages:

1. Deliberately or erroneously, leq may not implement a total preorder.
2. Both sorting and searching are subject to lower bounds on their performance:

sorting requires Ω(n log n) comparisons, and searching for a key requires
Ω(log n), where n is the number of keys in the input.

However, theoretically and practically faster distributive methods are known for
certain orders, notably radix sorting and tries.
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As shown by Henglein [3], many orders can be denoted by order representa-
tions, constructors for building new orders from old:

data Order :: ∗ → ∗ where
OUnit :: Order ()
OSum :: Order k1 → Order k2 → Order (k1 + k2)
OProd :: Order k1 → Order k2 → Order (k1 × k2)
OMap :: (k1 → k2) → (Order k2 → Order k1)
OChar :: Order Char -- 7 bit ASCII .

Here OUnit denotes the trivial order on the unit type. OSum o1 o2 represents the
lexicographic order on tagged values such that Inl-tagged values are less than Inr-
tagged values, and values with the same tag are ordered by o1 or o2, depending
on the tag. OProd o1 o2 denotes the lexicographic order on pairs, ordering pairs
according to their first component, where pairs with equivalent first component
are ordered according to their second component. OMap f o orders the domain
of f according to the order o on its codomain. Note that OMap is contravariant.
Finally, OChar denotes the standard order on 7-bit ASCII characters.

The OMap-constructor adds considerable expressiveness. For example,

rprod :: Order k1 → Order k2 → Order (k1 × k2)
rprod o1 o2 = OMap (λ(a, b) → (b, a)) (OProd o2 o1)

specifies the lexicographic order on pairs based on the second component as the
dominant one. Similarly, rsum can be specified, which orders Inr-tagged values
as less than Inl-tagged ones.

Order representations are terms that can be treated inductively as finite trees
or coinductively as potentially infinite trees.

The coinductive approach permits definition of orders for recursive data types
by guarded recursion. For example,

olist :: Order k → Order [k]
olist o = os where os = OMap out (OSum OUnit (OProd o os))
out :: [a]→ () + a× [a]
out [ ] = Inl ()
out (a : as) = Inr (a, as)

defines the standard lexicographic order on lists, based on the element order o.
Henglein [3] takes the coinductive approach with additional order constructors
for inverse, multiset and set orders.

In the inductive approach we can add new constructors explicitly:

OList :: Order k → Order [k]

or, more generally, employ an explicit fixed point operator [2].
The expressiveness of order representations is orthogonal to the aims of this

paper. For simplicity we assume the inductive approach and concentrate on sums
and products.
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3 Generic Comparison

We require order representations to denote total preorders.

leq :: Order k → (k → k → �)
leq OUnit a b = True
leq (OSum o1 o2) a b = case (a, b) of

(Inl a1, Inl a2 )→ leq o1 a1 a2
(Inl , Inr )→ True
(Inr , Inl )→ False
(Inr b1, Inr b2)→ leq o2 b1 b2

leq (OProd o1 o2) a b = leq o1 (fst a) (fst b) ∧
(leq o1 (fst b) (fst a) =⇒ leq o2 (snd a) (snd b))

leq (OMap g o) a b = leq o (g a) (g b)
leq (OChar) a b = a  b

leq o is indeed a total preorder; it is transitive and total, leq o x y ∨ leq o y x.
Because of totality the case for OProd can also be written as

leq (OProd o1 o2) a b = if leq o2 (snd a) (snd b) then leq o1 (fst a) (fst b)
else ¬ (leq o1 (fst b) (fst a))

This variant is strict (leq o1 and leq o2 are called), but it calls leq o1 only once.
The first variant is lazy (leq o2 is not necessarily called), but possibly calls leq o1
twice.

The function leq implements a two-way comparison; a more useful function is
cmp::Order k → (k → k → Ordering), which implements a three-way comparison
and avoids the double traversal in the product case.

4 Generic Distributive Sorting

Generic sorting takes a list of key-value pairs and returns the values in non-
decreasing order of their associated keys. The keys are discarded in the course
of this process. The idea is that, barring OMap in order representations, each
component of each key is touched exactly once. Consequently, the running time
of sort is proportional to the total size of the keys (again, ignoring OMap).

sort :: Order k → [k× v]→ [v]
sort o [ ] = [ ]
sort (OUnit) rel = map val rel
sort (OSum o1 o2) rel = sort o1 (filter froml rel) ++ sort o2 (filter fromr rel)
sort (OProd o1 o2) rel = sort o1 (sort o2 (map curryr rel))
sort (OMap g o) rel = sort o (map (g× id) rel)
sort (OChar) rel = bucketSort (’\NUL’, ’\DEL’) rel

Like generic comparison, sort is indexed by order representations. It is further-
more parametric in the type of values. Let us discuss each case in turn.



320 F. Henglein and R. Hinze

The first equation is vital for the coinductive approach to recursive types. It
is necessary to ensure that for each recursive invocation of sort the total size of
the keys is strictly decreasing.

For the unit type there is little to do: we simply discard the keys using val
defined val (k, v) = v.

The case for sums takes an approach à la Quicksort: the input list is parti-
tioned into a list whose keys are of the form Inl k1 and a second list whose keys
are of the form Inr k2. The constructors are discarded, the sub-lists are sorted
recursively using the appropriate orders, and the final results are concatenated.
(As an aside, in the partitioning phase we touch the keys actually twice, but this
is easily avoided by combining the two sweeps into a single one.) The function
filter::(a → Maybe b) → ([a]→ [b]), called mapMaybe elsewhere, combines map-
ping and filtering: if the argument function returns a value of the form Just b,
then b is included in the output list. If the result is Nothing, well, nothing is
added. (Don’t confuse our filter with Haskell’s filter :: (a → �)→ ([a ]→ [a ])).

filter :: (a → Maybe b) → ([a] → [b])
filter p xs = [y | x ← xs, Just y ← [p x ] ]

The function froml ::(k1+k2×v)→ Maybe (k1×v) maps (Inl k1, v) to Just (k1, v),
and (Inr k2, v) to Nothing. The function fromr is defined analogously.

The most interesting case is the one for products. The natural isomorphism
curryr : (K1 × K2) × V ∼= K2 × (K1 × V) shifts the more significant part of
the key into the value component. Then sort is called twice: the first invocation
sorts according to o2 discarding the K2 part, the second sorts according to o1
discarding the K1 component. For this to be correct, sort o1 had better be stable;
we shall return to this point below. Furthermore, sort relies on polymorphic
recursion: the first call to sort instantiates V to K1 ×V.

For OMap we simply apply the key transformation using map (g × id) and
then sort the transformed keys-value pairs.

Characters are sorted using bucket sort, which can be seen as a specialization
of sort (actually of discr introduced in Section 5) for enumeration types.

bucketSort :: (Bounded i, Ix i)⇒ (i, i) → [(i, v)]→ [v]
bucketSort bs rel = concat (elems (accumArray (λws w → ws ++ [w]) [ ] bs rel))

(Here ++ is used for clarity; in our implementation it is replaced by a constant-
time operation.) Any other algorithm for sorting characters or, for that matter,
other primitive types could be used. The particular algorithm invoked can even
be made data dependent ; for small rel we might choose insertion sort instead
of bucket sort to avoid sparse bucket table traversals. The key point is that
sort reduces a sorting problem to basic sorting on finite domains. Conversely, it
extends distributive sorting from their restricted domains such as small integers
and character strings to arbitrary orders definable by order representations.

Let us now turn to the correctness of sort. Its implementation builds upon
standard components, except perhaps the case for sums, which relies on the func-
tion filter. Note that filter takes a partial function as an argument, represented
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by a total function of type A → Maybe B, an arrow in the Kleisli category in-
duced by the monad Maybe. For the proofs it will be convenient to actually work
in this Kleisli category (but only for the arguments of filter). In the calculations,
we signal these steps by the hint “Kleisli:”. A few remarks are in order.

Working in the Kleisli category has the advantage that the notation is fairly
light-weight: we write id rather than η, and we write p · q for the Kleisli com-
position of p and q rather than μ · Maybe p · q. We also silently embed total
functions into the Kleisli category: filter f really means filter (η · f). In any case,
there is little room for confusion since we let f, g . . . range over total functions
and p, q over partial functions. The product × can be lifted to a binary functor ⊗
over the Kleisli category, which is, however, not a categorical product. Rather,
⊗ is a so-called tensor product, a binary functor which is coherently associative
and commutative. We overload × to denote both the product in the underlying
category and the tensor product.

A partial function that we will use time and again is inl◦, the left-inverse of
inl. The partial function froml can be neatly expressed in terms of inl◦: we have
froml = inl◦ ⊗ id, or just inl◦ × id. Likewise, fromr = inr◦ ⊗ id.

The function filter satisfies a variety of properties. First and foremost, it is a
monoid homomorphism:

filter p [ ] = [ ] , (4.1a)
filter p (xs ++ ys) = filter p xs ++ filter p ys . (4.1b)

Furthermore, filter is functorial, taking Kleisli arrows to arrows in the underlying
category. Formally, filter is the arrow part of the functor Filter :Kleisli→ Set,
whose object part is defined Filter A = List A. In other words, filter preserves
identity and composition.

filter id = id (4.2a)
filter (p · q) = filter p · filter q (4.2b)

Moreover, if its first argument is a total function, then filter f is just List f.
Most of the following proofs will be conducted in a point-free style. For refer-

ence, here is a suitably reworked version of sort.

sort (OUnit) = List val
sort (OSum o1 o2) = sort o1 · filter (inl◦ × id) ++ sort o2 · filter (inr◦ × id)
sort (OProd o1 o2) = sort o1 · sort o2 · List curryr

The sum case uses a lifted variant of append, (f ++ g) x = f x ++ g x, overloading
the operator ++ to denote both the lifted and the unlifted version.

4.1 Naturality

A vital property of sort o is that it is natural in the type of values, sort o : List ◦
(K× ) →̇ List, that is

List f · sort o = sort o · List (id× f) , (4.3)

for all f : A → B.
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Because of naturality it is sufficient to show that the instance sort o:[K×� ]→
[� ] works correctly. (Recall that values can be seen as pointers; natural numbers
are like unique pointers.) Formally, sort o is fully determined by this instance:

sort o [(k1, v1), . . . , (kn, vn)]
= { let ix : �→ V be an indexing function so that ix i = ki }

sort o (List (id× ix) [(k1, 1), . . . , (kn, n)])
= { sort is natural (4.3) }

List ix (sort o [(k1, 1), . . . , (kn, n)]) .

In the last equation sort o is used at instance �.
Of course, the statement that sort o is natural requires proof. Actually, sort

satisfies a much stronger property, which we discuss next.

4.2 Strong Naturality

Property (4.3) remains valid if we replace List by filter:

filter p · sort o = sort o · filter (id× p) , (4.4)

for all p : A → Maybe B. It does not matter whether we filter before or after an
invocation of sort o, as long as filter only refers to the values, and not the keys.

Now, since filter is the arrow part of a functor between the Kleisli category of
Maybe and the underlying category, (4.4) also amounts to a naturality property,
sort o : Filter ◦ (K ⊗ ) →̇ Filter. A simple consequence of what we call strong
naturality (4.4) is that sort preserves the empty list.

Turning to the proof of (4.4), we proceed by induction over the structure of
order representations.
Case o = OUnit:

filter p · sort OUnit
= { definition of sort }

filter p · List val
= { Kleisli: p · val = val · (id × p) }

List val · filter (id × p)
= { definition of sort }

sort OUnit · filter (id × p)

Recall that × aka ⊗ is not a categorical product in the Kleisli category, we have
val · (id× p) = p · val, but not key · (id × p) = id · key where key (k, v) = k.
Case o = OSum o1 o2: the central step is the fourth one, where we swap two
filters, one that acts on the keys and a second that acts on the values.

filter p · sort (OSum o1 o2)
= { definition of sort }

filter p · (sort o1 · filter (inl◦ × id) ++ . . .)
= { filter is a monoid homomorphism (4.1b) }

filter p · sort o1 · filter (inl◦ × id) ++ . . .
= { ex hypothesi }
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sort o1 · filter ((id + id)× p) · filter (inl◦ × id) ++ . . .
= { Kleisli: × is a binary functor }

sort o1 · filter (inl◦ × id) · filter ((id + id)× p) ++ . . .
= { fusion: f · h ++ g · h = (f ++ g) · h }

(sort o1 · filter (inl◦ × id) ++ . . .) · filter ((id + id)× p)
= { definition of sort }

sort (OSum o1 o2) · filter ((id + id)× p)

Note that the lifting of + is a categorical coproduct in the Kleisli category.
Case o = OProd o1 o2: note that Property (4.4) is universally quantified over
all p. This is essential as sort relies on polymorphic recursion: the second use of
the induction hypothesis (∗) instantiates p to id× p.

filter p · sort (OProd o1 o2)
= { definition of sort }

filter p · sort o1 · sort o2 · List curryr
= { ex hypothesi }

sort o1 · filter (id× p) · sort o2 · List curryr
= { ex hypothesi (∗) }

sort o1 · sort o2 · filter (id × (id × p)) · List curryr
= { Kleisli: (q× (p× r)) · curryr = curryr · ((p× q)× r) }

sort o1 · sort o2 · List curryr · filter ((id × id)× p)
= { definition of sort }

sort (OProd o1 o2) · filter ((id × id)× p)

The natural isomorphisms val:1×K ∼= K and curryr:(K1×K2)×V ∼= K2×(K1×V)
are also natural isomorphisms in the Kleisli category.

4.3 Correctness: Permutation

Our first goal is to show that sort o produces a permutation of the input values.
Perhaps surprisingly, it suffices to show that sort o permutes one-element lists!
We already know that it is sufficient to show the correctness of a particular
instance: sort o [(k1, 1), . . . , (kn, n)]. Now, let �i� be the partial function that
maps i to i and is undefined otherwise. Let 1  i  n, then

filter �i� (sort o [(k1, 1), . . . , (kn, n)])
= { sort is strongly natural (4.4) }

sort o (filter (id× �i�) [(k1, 1), . . . , (kn, n)])
= { filter (id × �i�) [(k1, 1), . . . , (kn, n)] = [(ki, i)] }

sort o [(ki, i)]
= { proof obligation: sort permutes 1-element lists (4.5) }

[i] .

Thus, sort o outputs each index exactly once; in other words, it permutes the
input list. The proof obligation (recall that return a = [a])

sort o · return = return · val (4.5)

is easy to discharge and left as an instructive exercise to the reader.
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4.4 Correctness: Ordered

Our second task is to show that the values are output in non-decreasing order
of their associated keys. We aim to show

sort o [ . . . , (ki, i), . . . , (kj, j), . . . ] = [ . . . , i, . . . , j, . . . ] ⇐⇒ leq o ki kj .

Due to strong naturality, it suffices to show that sort o works correctly on two-
element lists! Let �i, j� be the partial function that maps i to i and j to j and is
undefined otherwise. Let 1  i, j  n, then

filter �i, j� (sort o [(k1, 1), . . . , (kn, n)]) = [i, j]
⇐⇒ { sort is strongly natural (4.4) }

sort o (filter (id × �i, j�) [(k1, 1), . . . , (kn, n)]) = [i, j]
⇐⇒ { filter (id × �i, j�) [(k1, 1), . . . , (kn, n)] = [(ki, i), (kj, j)] }

sort o [(ki, i), (kj, j)] = [i, j ]
⇐⇒ { proof obligation: sort sorts 2-element lists (4.6) }

leq o ki kj .

Thus, sort o outputs i before j if and only if leq o ki kj. Since we already know
that sort o permutes its input, this implies the correctness of sort o.

It remains to show that sort treats 2-element lists correctly: let i 
 j, then

sort o [(a, i), (b, j)] = [i, j] ⇐⇒ leq o a b . (4.6)

Since only a small finite number of cases have to be considered, this is a simple
exercise, which we relegate to Appendix A.

5 Generic Discrimination

A discriminator returns a list of non-empty lists of values, where the inner lists
group values whose keys are equivalent. Again, the keys are discarded in the
process, but, barring OMap in order representations, this time each component
of each key is touched at most once.

discr :: Order k→ [k× v ]→ [[v ]]
discr o [ ] = [ ]
discr o [(k, v)] = [[v ]]
discr OUnit rel = [map val rel ]
discr (OSum o1 o2) rel = discr o1 (filter froml rel) ++ discr o2 (filter fromr rel)
discr (OProd o1 o2) rel = concat (map (discr o2) (discr o1 (map curryl rel)))
discr (OMap g o) rel = discr o (map (g× id) rel)
discr (OChar) rel = bucketDiscr (’\NUL’, ’\DEL’) rel

In the unit case we have identified a group of key-value pairs whose keys are
equivalent, even identical. This group is returned as a singleton list. The sum case
is the same as for sort. The most interesting case is again the one for products.
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The natural isomorphism curryl : (K1 × K2) × V ∼= K1 × (K2 × V) also known
as assoc shifts the least significant part of the key into the value component.
The resulting list is discriminated according to o1, each of the resulting groups
is discriminated according to o2, and finally the nested groups are flattened. The
definition of discr has an additional base case for the singleton list. This may
improve the performance dramatically since the key component in the argument
need not be traversed. For lexicographic string sorting this specializes to the
property of MSD radix sort, which only traverses the minimum distinguishing
prefixes of the strings, which may be substantially fewer characters than their
total number. Finally, characters are sorted using bucket sort—this time we
simply return the list of non-empty buckets.

bucketDiscr :: (Bounded i, Ix i)⇒ (i, i)→ [i× v ]→ [ [v] ]
bucketDiscr bs rel

= [xs | xs ← elems (accumArray (λws w → ws ++ [w]) [ ] bs rel),¬ (null xs)]

As for sort, any other base type discriminator could be plugged in.

5.1 Correctness

If we concatenate the groups returned by a generic discriminator, we obtain
generic sorting.

concat · discr o = sort o (5.1)

The proof is straightforward for units and sums, the interesting case is again the
one for products. For products discrimination works from left to right, whereas
sorting proceeds right to left. This means we have to be able to swap operations:

concat · discr (OProd o1 o2)
= { definition of discr }

concat · concat · List (discr o2) · discr o1 · List curryl
= { monad law }

concat · List concat · List (discr o2) · discr o1 · List curryl
= { ex hypothesi }

concat · List (sort o2) · discr o1 · List curryl
= { proof obligation: see below }

concat · discr o1 · sort o2 · List curryr
= { ex hypothesi }

sort o1 · sort o2 · List curryr
= { definition of sort }

sort (OProd o1 o2) .

The property used in the central step, being able to swap sort o2 and discr o1,
is actually not specific to sort. Our generic discriminators commute with every
strong natural transformation. Let discr o:[K×V]→ [ [V ] ] and π:[A×V]→ [V ].
If π is strongly natural, filter p · π = π · filter (id× p), then

List π · discr o = discr o · π · List swap , (5.2)
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where swap : K1 × (K2 ×V) ∼= K2 × (K1 ×V). Note that swap · curryl = curryr.
Case o = OUnit:

List π · discr OUnit : [1× (A×V)]→ [ [V ] ]
= { definition of discr }

List π · return · List val
= { return is natural: List f · return = return · f }

return · π · List val
= { Kleisli: val = (id × val) · swap }

return · π · List (id × val) · List swap
= { assumption: π is (strongly) natural }

return · List val · π · List swap
= { definition of discr }

discr OUnit · π · List swap

Case o = OSum o1 o2:

List π · discr (OSum o1 o2) : [(K1 + K2)× (A×V)]→ [ [V ] ]
= { definition of discr }

List π · (discr o1 · filter (inl◦ × id) ++ . . .)
= { List π is a monoid homomorphism }

List π · discr o1 · filter (inl◦ × id) ++ . . .
= { ex hypothesi }

discr o1 · π · List swap · filter (inl◦ × id) ++ . . .
= { Kleisli: swap · (p× (q× r)) = (q× (p× r)) · swap }

discr o1 · π · filter (id × (inl◦ × id)) · List swap ++ . . .
= { assumption: π is strongly natural }

discr o1 · filter (inl◦ × id) · π · List swap ++ . . .
= { fusion: f · h ++ g · h = (f ++ g) · h }

(discr o1 · filter (inl◦ × id) ++ . . .) · π · List swap
= { definition of discr }

discr (OSum o1 o2) · π · List swap

Case o = OProd o1 o2:

List π · discr (OProd o1 o2) : [(K1 ×K2)× (A×V)]→ [ [V ] ]
= { definition of discr }

List π · concat · List (discr o2) · discr o1 · List curryl
= { concat is natural: List f · concat = concat · List (List f) }

concat · List (List π · discr o2) · discr o1 · List curryl
= { ex hypothesi }

concat · List (discr o2 · π · List swap) · discr o1 · List curryl
= { discr o is natural: List (List f) · discr o = discr o1 · List (id × f) }

concat · List (discr o2 · π) · discr o1 · List ((id × swap) · curryl)
= { ex hypothesi }

concat · List (discr o2) · discr o1 · π · List (swap · (id × swap) · curryl)
= { Kleisli: swap · (id × swap) · curryl = (id × curryl) · swap }
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concat · List (discr o2) · discr o1 · π · List ((id × curryl) · swap)
= { assumption: π is (strongly) natural }

concat · List (discr o2) · discr o1 · List curryl · π · List swap
= { definition of discr }

discr (OProd o1 o2) · π · List swap

Of course, discr o itself is also strongly natural:

List (filter p) · discr o = discr o · filter (id × p) , (5.3)

for all p : A → Maybe B. The proof is similar to the one for sort.

6 Generic Distributive Searching

Let us now turn to distributive searching using tries. In this paper we concentrate
on bulk operations such as trie and flatten. One-at-a-time operations such as
lookup and insert have been described elsewhere [5]. It turns out that trie is
very similar to discr—we essentially replace ++ and concat by trie constructors.
This move retains more of the original information, which is vital for supporting
subsequent efficient random access to the values associated with a key. By storing
the keys together with the values in the trie, we can even recreate all of the
original keys. (If OMap’s key transformations are injective this can even be done
without explicitly storing the keys.)

For every order representation there is a corresponding trie constructor. Ad-
ditionally, we have an empty trie, which is important for efficiency reasons [5].

data Trie :: ∗ → ∗ → ∗ where
TEmpty :: Trie k v
TUnit :: v → Trie () v
TSum :: Trie k1 v → Trie k2 v → Trie (k1 + k2) v
TProd :: Trie k1 (Trie k2 v)→ Trie (k1, k2) v
TMap :: (k1 → k2) → (Trie k2 v → Trie k1 v)
TChar :: Char.Trie v → Trie Char v

A trie of type Trie K V represents a finite mapping from K to V, sometimes
written VK. The cases for unit, sums, and products are based on the law of
exponentials: V1 ∼= V, VK1+K2 ∼= VK1 × VK2 , and VK1×K2 ∼= (VK2)K1 . The
second but last case is interesting: the counterpart of OMap is TMap, which
retains the key transformation. This is necessary when searching for a key that is
subject to an OMap-order. Finally, we assume the existence of a suitable library,
Char, implementing finite maps with character keys; for instance, character-
indexed arrays, simple lists, binary trees (the basis of ternary tries). Indeed,
depending on the actual data encountered, multiple data structures may even
be mixed.

A trie for a given key type is a functor.

instance Functor (Trie k) where
fmap f (TEmpty) = TEmpty
fmap f (TUnit v) = TUnit (f v)



328 F. Henglein and R. Hinze

fmap f (TSum t1 t2) = TSum (fmap f t1) (fmap f t2)
fmap f (TProd t) = TProd (fmap (fmap f) t)
fmap f (TMap g t) = TMap g (fmap f t)
fmap f (TChar t) = TChar (fmap f t)

The operation flatten lists the values stored in a trie.

flatten :: Trie k v → [v]
flatten (TEmpty) = [ ]
flatten (TUnit v) = [v]
flatten (TSum t1 t2) = flatten t1 ++ flatten t2
flatten (TProd t) = concatMap flatten (flatten t)
flatten (TMap g t) = flatten t
flatten (TChar t) = Char.flatten t

It is natural in V, that is, flatten : Trie K →̇ List.
The operation trie turns a finite relation, represented by an association list

of type [K × V ], into a finite list-valued map, represented by a trie of type
Trie K [V ].

trie :: Order k → [k× v]→ Trie k [v]
trie o [ ] = TEmpty
trie OUnit rel = TUnit (map val rel)
trie (OSum o1 o2) rel = TSum (trie o1 (filter froml rel)) (trie o2 (filter fromr rel))
trie (OProd o1 o2) rel = TProd (fmap (trie o2) (trie o1 (map curryl rel)))
trie (OMap g o) rel = TMap g (trie o (map (g× id) rel))
trie (OChar) rel = TChar (Char.trie rel)

As we have noted before, trie arises out of discr by replacing ++, concat etc by
the appropriate trie constructors.

Indeed, if we ‘undo’ the transformation using flatten, we obtain the generic
discriminator.

discr o = flatten · trie o (6.1)

The straightforward proof can be found in Appendix B.

7 Related Work

Drawing on the algorithmic techniques termed multiset discrimination developed
by Paige and others [9], Henglein [2,3] has shown how to make MSD distributive
sorting generic by introducing generic discriminators, which have linear-time
performance over a rich class of orders.

Building on the work of Connelly and Morris [10], Hinze [5] pioneered the
type-indexed tries we produce. Here they are extended to support orders defined
with OMap. The generic LSD distributive sorting and trie building functions
developed here are also new. In particular, trie constructs a trie in bulk without
incurring the substantial update costs of one-by-one insertion.
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Wadler [11] derives as a “free theorem” that any function parametric in bi-
nary comparison  commutes with map f if the function f is an order embedding,
f x ′ f y ⇐⇒ x  y; this includes all comparison-based sorting algorithms. As
shown by Day et al. [12], Knuth’s 0-1 principle for sorting networks [13] can
also be seen as a free theorem for sorting networks formulated as comparator-
parametrized functions. These properties correspond to naturality, respectively
parametricity properties on the keys; they are different from our naturality prop-
erty 4.3 since the latter applies to the value components and leaves the key
components invariant.

Our strong naturality property 4.4, coupled with preserving singletons and
correct sorting of two-element lists, corresponds to Henglein’s consistent permu-
tativity, which characterizes stable sorting functions [14]. It is, however, a more
general and a more elegant formulation supporting equational reasoning. In par-
ticular, it highlights the semantic benefits of adopting a formulation for sorting
based on key-value pairs rather than keys alone.

Gibbons [15] shows how an LSD radix sort for lists can be derived from a stable
MSD radix sort that first builds an explicit trie and then flattens it into the result
list. Since MSD radix sort, even with explicit tries, is sometimes preferable to
LSD radix sort (to avoid sparse bucket table traversal [16] and for large data
sets [17]), the derivation makes sense in both directions. Our development can
be seen as a generalization of Gibbons’ work: it works for arbitrary denotable
orders over any type; we decompose MSD sorting into discrimination followed
by concatenation, without the need for a trie (though it can be achieved by
way of trie); and our commutativity property 5.2 holds for any strong natural
transformation, not just for sorting functions.

8 Conclusion

Comparison-based sorting algorithms and search trees are easily made generic,
that is, applicable to user-defined orders, by abstraction over the comparison
function. This has arguably contributed to their popularity even though dis-
tributive (radix/trie) and hashing techniques often have superior performance
for special types, such as machine integers and character strings.

We have shown how to construct generic comparison, sorting, discrimination
and trie building operations by induction over a class of orders including standard
orders on primitive types; lexicographic orders on sums, products and lists; and
orders defined as the inverse image of a given order under an arbitrary function.

We have identified strong naturality—commutativity with filtering—as a pow-
erful property of stable sorting functions, and shown discrimination to commute
with any strongly natural transformation, including, but not limited to, stable
sorting functions.

The trie building operation yields a data structure that is not only asymptot-
ically as efficient as discrimination but also supports efficient key-based random
access, without incurring a one-at-a-time insertion overhead during construction.
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Future work consists of extending equational reasoning and calculational cor-
rectness proofs to coinductive order representations; investigating data-dependent
variations of our generic functions and staged execution for our data-independent
generic functions by compile-time specialization (partial evaluation) and ex-
ploiting parallelism at word, multicore, and manycore/GPU levels; and eventu-
ally providing architecture-independent frameworks encapsulating distributive
sorting and searching methods as semantically (obeying representation inde-
pendence) and computationally (exhibiting superior performance) well-behaved
alternatives to comparison-based methods.
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A Proof of Property (4.6)

The cases for unit and sums are straightforward. We only consider the product
case, which is actually instructive.
Case o = OProd o1 o2: again, we make use of naturality to be able to apply the
induction assumption.

sort (OProd o1 o2) [((a1, a2), i), ((b1, b2), j)] = [i, j]
⇐⇒ { definition of sort }

sort o1 (sort o2 (List curryr [((a1, a2), i), ((b1, b2), j)])) = [i, j]
⇐⇒ { definition of curryr }

sort o1 (sort o2 [(a2, (a1, i)), (b2, (b1, j))]) = [i, j]
⇐⇒ { let re i = (a1, i) and re j = (b1, j) }

sort o1 (sort o2 (List (id × re) [(a2, i), (b2, j)]) = [i, j]
⇐⇒ { sort is natural (4.3) }

sort o1 (List re (sort o2 [(a2, i), (b2, j)]) = [i, j]

The strict version of leq suggests to conduct a case analysis on leq o2 a2 b2.

Case leq o2 a2 b2:

⇐⇒ { ex hypothesi }
sort o1 (List re [i, j ]) = [i, j ]

⇐⇒ { definition of re }
sort o1 [(a1, i), (b1, j)] = [i, j ]

⇐⇒ { ex hypothesi }
leq o1 a1 b1

⇐⇒ { definition of leq }
leq (OProd o1 o2) (a1, a2) (b1, b2)

Case ¬ (leq o2 a2 b2):

⇐⇒ { ex hypothesi }
sort o1 (List re [j, i ]) = [i, j ]

⇐⇒ { definition of re }
sort o1 [(b1, j), (a1, i)] = [i, j ]

⇐⇒ { ex hypothesi }
¬ (leq o1 b1 a1)

⇐⇒ { definition of leq }
leq (OProd o1 o2) (a1, a2) (b1, b2)
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B Proof of discr o = flatten · trie o (6.1)

Case o = OUnit:

flatten · trie OUnit
= { definition of trie }

flatten · TUnit · map val
= { definition of flatten }

return · map val
= { definition of discr }

discr OUnit

Case o = OSum o1 o2:

flatten · trie (OSum o1 o2)
= { definition of trie }

flatten · TSum · (trie o1 · filter (inl◦ × id) � . . .)
= { definition of flatten }

(flatten · outl ++ . . .) · (trie o1 · filter (inl◦ × id)� . . .)
= { fusion and computation }

flatten · trie o1 · filter (inl◦ × id) ++ . . .
= { ex hypothesi }

discr o1 · filter (inl◦ × id) ++ . . .
= { definition of discr }

discr (OSum o1 o2)

Case o = OProd o1 o2: here we make essential use of the fact that Trie K is a
functor and that flatten is natural in V.

flatten · trie (OProd o1 o2)
= { definition of trie }

flatten · TProd · Trie K1 (trie o2) · trie o1 · List curryl
= { definition of flatten }

concat · List flatten · flatten · Trie K1 (trie o2) · trie o1 · List curryl
= { flatten is natural: List f · flatten = flatten · Trie K f }

concat · List flatten · List (trie o2) · flatten · trie o1 · List curryl
= { ex hypothesi, twice }

concat · List (discr o2) · discr o1 · List curryl
= { definition of discr }

discr (OProd o1 o2) .
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Abstract. We present a theory of environmental bisimilarity for the
delimited-control operators shift and reset. We consider two different no-
tions of contextual equivalence: one that does not require the presence of
a top-level control delimiter when executing tested terms, and another
one, fully compatible with the original CPS semantics of shift and reset,
that does. For each of them, we develop sound and complete environ-
mental bisimilarities, and we discuss up-to techniques.

1 Introduction

Control operators for delimited continuations [8,10] provide elegant means for ex-
pressing advanced control mechanisms [8,12]. Moreover, they play a fundamental
role in the semantics of computational effects [11], normalization by evaluation [2]
and as a crucial refinement of abortive control operators such as callcc [10,21]. Of
special interest are the control operators shift and reset [8] due to their origins
in continuation-passing style (CPS) and their connection with computational
monads – as demonstrated by Filinski [11], shift and reset can express in direct
style arbitrary computational effects, such as mutable state, exceptions, etc. Op-
erationally, the control delimiter reset delimits the current continuation and the
control operator shift abstracts the current delimited continuation as a first class
value that when resumed is composed with the then-current continuation.

Because of the complex nature of control effects, it can be difficult to deter-
mine if two programs that use shift and reset are equivalent (i.e., behave in the
same way) or not. Contextual equivalence [17] is widely considered as the most
natural equivalence on terms in languages similar to the λ-calculus. Roughly, two
terms are contextually equivalent if we cannot tell them apart when they are
executed within any context. The latter quantification over contexts makes this
relation hard to use in practice, so we usually look for simpler characterizations
of contextual equivalence, such as coinductively defined bisimilarities.

In our previous work, we defined applicative [4] and normal form [5] bisimilar-
ities for shift and reset. Applicative bisimilarity characterizes contextual equiva-
lence, but still quantifies over some contexts to relate terms (e.g., λ-abstractions
are applied to the same arbitrary argument). As a result, some equivalences
remain quite difficult to prove. In contrast, normal form bisimilarity does not
contain any quantification over contexts or arguments in its definition: the tested
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terms are reduced to normal forms, which are then decomposed in bisimilar sub-
terms. Consequently, proofs of equivalence are usually simpler than with applica-
tive bisimilarity, and they can be simplified even further with up-to techniques.
However, normal form bisimilarity is not complete, i.e., there exist contextually
equivalent terms which are not normal form bisimilar.

Environmental bisimilarity [19] is a different kind of behavioral equivalence
which in terms of strength and practicality can be situated in between applica-
tive and normal form bisimilarities. It has originally been proposed in [23] and
has been since defined in various higher-order languages (see, e.g., [20,22,18]).
Like applicative bisimilarity, it uses some particular contexts to test terms, ex-
cept that the testing contexts are built from an environment, which represents
the knowledge built so far by an outside observer. Environmental bisimilarity
usually characterizes contextual equivalence, but is harder to establish than ap-
plicative bisimilarity. Nonetheless, like with normal form bisimilarity, one can
define powerful up-to techniques [19] to simplify the equivalence proofs. Besides,
the authors of [15] argue that the additional complexity of environmental bisimi-
larity is necessary to handle more realistic features, like local state or exceptions.

In the quest for a powerful enough (i.e., as discriminative as contextual equiv-
alence) yet easy-to-use equivalence for delimited control, we study in this paper
the environmental theory of a calculus with shift and reset. More precisely, we
consider two semantics for shift and reset: the original one [3], where terms are
executed within a top-level reset, and a more relaxed semantics where this re-
quirement is lifted. The latter is commonly used in implementations of shift and
reset [9,11] as well as in some studies of these operators [1,13], including our
previous work [4,5]. So far, the behavioral theory of shift and reset with the
original semantics has not been studied. Firstly, we define environmental bisim-
ilarity for the relaxed semantics and study its properties; especially we discuss
the problems raised by delimited control for the definition of bisimulation up to
context, one of the most powerful up-to techniques. Secondly, we propose the
first behavioral theory for the original semantics, and we pinpoint the differ-
ences between the equivalences of the two semantics. In particular, we show that
the environmental bisimilarity for the original semantics is complete w.r.t. the
axiomatization of shift and reset of [14], which is not the case for the relaxed
semantics, as already proved in [4] for applicative bisimilarity.

In summary, we make the following contributions in this paper.

– We show that environmental bisimilarity can be defined for a calculus with
delimited control, for which we consider two different semantics. In each case,
the defined bisimilarity equals contextual equivalence.

– For the relaxed semantics, we explain how to handle stuck terms, i.e., terms
where a capture cannot go through because of the lack of an outermost reset.

– We discuss the limits of the usual up-to techniques in the case of delimited
control.

– For the original semantics, we define a contextual equivalence, and a cor-
responding environmental bisimilarity. Proving soundness of the bisimilar-
ity w.r.t. contextual equivalence requires significant changes from the usual
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soundness proof scheme. We discuss how environmental bisimilarity is easier
to adapt than applicative bisimilarity.

– We give examples illustrating the differences between the two semantics.

The rest of the paper is organized as follows: in Section 2, we present the calcu-
lus λS used in this paper, and recall some results, including the axiomatization
of [14]. We develop an environmental theory for the relaxed semantics in Sec-
tion 3, and for the original semantics in Section 4. We conclude in Section 5. An
extended version of this article [6] contains most of the omitted proofs.

2 The Calculus λS

2.1 Syntax

The language λS extends the call-by-value λ-calculus with the delimited-control
operators shift and reset [8]. We assume we have a set of term variables, ranged
over by x, y, z, and k. We use k for term variables representing a continuation
(e.g., when bound with a shift), while x, y, and z stand for any values; we believe
such distinction helps to understand examples and reduction rules. The syntax
of terms is given by the following grammar:

Terms: t ::= x | λx.t | t t | Sk.t | 〈t〉

Values, ranged over by v, are terms of the form λx.t. The operator shift (Sk.t)
is a capture operator, the extent of which is determined by the delimiter reset
(〈·〉). A λ-abstraction λx.t binds x in t and a shift construct Sk.t binds k in t;
terms are equated up to α-conversion of their bound variables. The set of free
variables of t is written fv(t); a term t is closed if fv(t) = ∅.

We distinguish several kinds of contexts, represented outside-in, as follows:

Pure contexts: E ::= � | v E | E t

Evaluation contexts: F ::= � | v F | F t | 〈F 〉
Contexts: C ::= � | λx.C | t C | C t | Sk.C | 〈C 〉

Regular contexts are ranged over by C . The pure evaluation contexts1 (abbrevi-
ated as pure contexts), ranged over by E , represent delimited continuations and
can be captured by shift. The call-by-value evaluation contexts, ranged over by
F , represent arbitrary continuations and encode the chosen reduction strategy.
Filling a context C (respectively E , F ) with a term t produces a term, writ-
ten C [t] (respectively E [t], F [t]); the free variables of t may be captured in the
process. We extend the notion of free variables to contexts (with fv(�) = ∅),
and we say a context C (respectively E , F ) is closed if fv(C ) = ∅ (respectively
fv(E ) = ∅, fv(F ) = ∅).
1 This terminology comes from Kameyama (e.g., in [14]).



336 D. Biernacki and S. Lenglet

2.2 Reduction Semantics

The call-by-value reduction semantics of λS is defined as follows, where t{v/x}
is the usual capture-avoiding substitution of v for x in t:

(βv) F [(λx.t) v]→v F [t{v/x}]
(shift) F [〈E [Sk.t]〉]→v F [〈t{λx.〈E [x]〉/k}〉] with x /∈ fv(E )

(reset) F [〈v〉] →v F [v]

The term (λx.t) v is the usual call-by-value redex for β-reduction (rule (βv)).
The operator Sk.t captures its surrounding context E up to the dynamically
nearest enclosing reset, and substitutes λx.〈E [x]〉 for k in t (rule (shift)). If a
reset is enclosing a value, then it has no purpose as a delimiter for a potential
capture, and it can be safely removed (rule (reset)). All these reductions may
occur within a metalevel context F , so the reduction rules specify both the notion
of reduction and the chosen call-by-value evaluation strategy that is encoded in
the grammar of the evaluation contexts. Furthermore, the reduction relation→v

is compatible with evaluation contexts F , i.e., F [t] →v F [t′] whenever t →v t′.
There exist terms which are not values and which cannot be reduced any

further; these are called stuck terms.

Definition 1. A term t is stuck if t is not a value and t 
→v.

For example, the term E [Sk.t] is stuck because there is no enclosing reset; the
capture of E by the shift operator cannot be triggered.

Lemma 1. A closed term t is stuck iff t = E [Sk.t′] for some E, k, and t′.

Definition 2. A term t is a normal form if t is a value or a stuck term.

We call redexes (ranged over by r) terms of the form (λx.t) v, 〈E [Sk.t]〉,
and 〈v〉. Thanks to the following unique-decomposition property, the reduction
relation →v is deterministic.

Lemma 2. For all closed terms t, either t is a normal form, or there exist a
unique redex r and a unique context F such that t = F [r].

Finally, we write →∗
v for the transitive and reflexive closure of →v, and we

define the evaluation relation of λS as follows.

Definition 3. We write t ⇓v t′ if t →∗
v t′ and t′ 
→v.

The result of the evaluation of a closed term, if it exists, is a normal form. If a
term t admits an infinite reduction sequence, we say it diverges, written t ⇑v.
Henceforth, we use Ω = (λx.x x) (λx.x x) as an example of such a term.

2.3 CPS Equivalence

In [14], the authors propose an equational theory of shift and reset based on
CPS [8]. The idea is to relate terms that have βη-convertible CPS translations.
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Definition 4. Terms t0 and t1 are CPS equivalent, written t0 ≡ t1, if their CPS
translations are βη-convertible.

Kameyama and Hasegawa propose eight axioms in [14] to characterize CPS
equivalence: two terms are CPS equivalent iff one can derive their equality us-
ing the equations below. Note that the axioms are defined on open terms, and
suppose variables as values.

(λx.t) v =KH t{v/x} (λx.E [x]) t =KH E [t] if x /∈ fv(E )

〈E [Sk.t]〉 =KH 〈t{λx.〈E [x]〉/k}〉 〈(λx.t0) 〈t1〉〉 =KH (λx.〈t0〉) 〈t1〉
〈v〉 =KH v Sk.〈t〉 =KH Sk.t

λx.v x =KH v if x /∈ fv(v) Sk.k t =KH t if k /∈ fv(t)

We use the above relations as examples throughout the paper. Of particular
interest is the axiom (λx.E [x]) t =KH E [t] (if x /∈ fv(E )), called βΩ in [14], which
can be difficult to prove with bisimilarities [4].

2.4 Context Closures

Given a relationR on terms, we define two context closures that generate respec-
tively terms and evaluation contexts. The term generating closure R̂ is defined
inductively as the smallest relation satisfying the following rules:

t R t′

t R̂ t′
x R̂ x

t R̂ t′

λx.t R̂ λx.t′
t0 R̂ t′0 t1 R̂ t′1

t0 t1 R̂ t′0 t′1

t R̂ t′

Sk.t R̂ Sk.t′
t R̂ t′

〈t〉 R̂ 〈t′〉

Even if R is defined only on closed terms, R̂ is defined on open terms. In this
paper, we consider the restriction of R̂ to closed terms unless stated otherwise.
The context generating closure R̃ of a relation R is defined inductively as the
smallest relation satisfying the following rules:

� R̃ �
F0 R̃ F1 v0 R̂ v1

v0 F0 R̃ v1 F1

F0 R̃ F1 t0 R̂ t1

F0 t0 R̃ F1 t1

F0 R̃ F1

〈F0 〉 R̃ 〈F1 〉

Again, we consider only the restriction of R̃ to closed contexts.

3 Environmental Relations for the Relaxed Semantics

In this section, we define an environmental bisimilarity which characterizes the
contextual equivalence of [4,5], where stuck terms can be observed.
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3.1 Contextual Equivalence

We recall the definition of contextual equivalence ≈c for the relaxed semantics
(given in [4]).

Definition 5. For all t0, t1 be terms. We write t0 ≈c t1 if for all C such that
C [t0] and C [t1] are closed, the following hold:

– C [t0] ⇓v v0 implies C [t1] ⇓v v1;
– C [t0] ⇓v t′0, where t′0 is stuck, implies C [t1] ⇓v t′1, with t′1 stuck as well;

and conversely for C [t1].

The definition is simpler when using the following context lemma [16] (for a
proof see Section 3.4 in [4]). Instead of testing with general, closing contexts, we
can close the terms with values and then put them in evaluation contexts.

Lemma 3 (Context Lemma). We have t0 ≈c t1 iff for all closed contexts F
and for all substitutions σ (mapping variables to closed values) such that t0σ and
t1σ are closed, the following hold:

– F [t0σ] ⇓v v0 implies F [t1σ] ⇓v v1;
– F [t0σ] ⇓v t′0, where t′0 is stuck, implies F [t1σ] ⇓v t′1, with t′1 stuck as well;

and conversely for F [t1σ].

In [4], we prove that ≈c satisfies all the axioms of CPS equivalence except for
Sk.k t =KH t (provided k /∈ fv(t)): indeed, Sk.k t is stuck, but t may evaluate to
a value. Conversely, some contextually equivalent terms are not CPS equivalent,
like Turing’s and Church’s call-by-value fixed point combinators. Similarly, two
arbitrary diverging terms are related by ≈c, but not necessarily by ≡.

3.2 Definition of Environmental Bisimulation and Basic Properties

Environmental bisimulations use an environment E to accumulate knowledge
about two tested terms. For the λ-calculus [19], E records the values (v0, v1) the
tested terms reduce to, if they exist. We can then compare v0 and v1 at any time
by passing them arguments built from E . In λS , we have to consider stuck terms
as well; therefore, environments may also contain pairs of stuck terms, and we
can test those by building pure contexts from E .

Formally, an environment E is a relation on closed normal forms which relates
values with values and stuck terms with stuck terms; e.g., the identity environ-
ment I is {(t, t) | t is a normal form}. An environmental relation X is a set
of environments E , and triples (E , t0, t1), where t0 and t1 are closed. We write
t0 XE t1 as a shorthand for (E , t0, t1) ∈ X ; roughly, it means that we test t0 and
t1 with the knowledge E . The open extension of X , written X ◦, is defined as
follows: if −→x = fv(t0) ∪ fv(t1)

2, then we write t0 XE◦ t1 if λ−→x .t0 XE λ−→x .t1.

2 Given a metavariable m, we write −→m for a set of entities denoted by m.
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Definition 6. A relation X is an environmental bisimulation if

1. t0 XE t1 implies:
(a) if t0 →v t′0, then t1 →∗

v t′1 and t′0 XE t′1;
(b) if t0 = v0, then t1 →∗

v v1 and E ∪ {(v0, v1)} ∈ X ;
(c) if t0 is stuck, then t1 →∗

v t′1 with t′1 stuck, and E ∪ {(t0, t′1)} ∈ X ;
(d) the converse of the above conditions on t1;

2. E ∈ X implies:
(a) if λx.t0 E λx.t1 and v0 Ê v1, then t0{v0/x} XE t1{v1/x};
(b) if E0 [Sk.t0] E E1 [Sk.t1] and E ′

0 Ẽ E ′
1, then 〈t0{λx.〈E ′

0[E0 [x]]〉/k}〉 XE
〈t1{λx.〈E ′

1[E1 [x]]〉/k}〉 for a fresh x.

Environmental bisimilarity, written ≈, is the largest environmental bisimula-
tion. To prove that two terms t0 and t1 are equivalent, we want to relate them
without any predefined knowledge, i.e., we want to prove that t0 ≈∅ t1 holds; we
also write ) for ≈∅.

The first part of the definition makes the bisimulation game explicit for t0,
t1, while the second part focuses on environments E . If t0 is a normal form,
then t1 has to evaluate to a normal form of the same kind, and we extend
the environment with the newly acquired knowledge. We then compare values
in E (clause (2a)) by applying them to arguments built from E , as in the λ-
calculus [19]. Similarly, we test stuck terms in E by putting them within contexts
〈E ′

0〉, 〈E ′
1〉 built from E (clause (2b)) to trigger the capture. This reminds the

way we test values and stuck terms with applicative bisimilarity [4], except that
applicative bisimilarity tests both values or stuck terms with the same argument
or context. Using different entities (as in Definition 6) makes bisimulation proofs
harder, but it simplifies the proof of congruence of the environmental bisimilarity.

Example 1. We have 〈(λx.t0) 〈t1〉〉 ) (λx.〈t0〉) 〈t1〉, because the relation X =
{(∅, 〈(λx.t) 〈t′〉〉, (λx.〈t〉)〈t′〉), (∅, 〈(λx.t) v〉, (λx.〈t〉)v)}∪{(E , t, t) | E ⊆ I}∪{E |
E ⊆ I} is a bisimulation. Indeed, if 〈t′〉 evaluates to v, then 〈(λx.t) 〈t′〉〉 →∗

v

〈(λx.t) v〉 and (λx.〈t〉) 〈t′〉 →∗
v (λx.〈t〉) v, which both reduce to 〈t{v/x}〉.

As usual with environmental relations, the candidate relation X in the above
example could be made simpler with the help of up-to techniques.

Definition 6 is written in the small-step style, because each reduction step
from t0 has to be matched by t1. In the big-step style, we are concerned only
with evaluations to normal forms.

Definition 7. A relation X is a big-step environmental bisimulation if t0 XE t1
implies:

1. t0 XE t1 implies:
(a) if t0 →∗

v v0, then t1 →∗
v v1 and E ∪ {(v0, v1)} ∈ X ;

(b) if t0 →∗
v t′0 with t′0 stuck, then t1 →∗

v t′1, t
′
1 stuck, and E ∪ {(t′0, t′1)} ∈ X ;

(c) the converse of the above conditions on t1;
2. E ∈ X implies:

(a) if λx.t0 E λx.t1 and v0 Ê v1, then t0{v0/x} XE t1{v1/x};
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(b) if E0 [Sk.t0] E E1 [Sk.t1] and E ′
0 Ẽ E ′

1, then 〈t0{λx.〈E ′
0[E0 [x]]〉/k}〉 XE

〈t1{λx.〈E ′
1[E1 [x]]〉/k}〉 for a fresh x.

Lemma 4. If X is a big-step environmental bisimulation, then X ⊆ ≈.

Big-step relations can be more convenient to use when we know the result of the
evaluation, as in Example 1, or as in the following one.

Example 2. We have 〈〈t〉〉 ) 〈t〉. Indeed, we can show that 〈〈t〉〉 →∗
v v iff 〈t〉 →∗

v

v, therefore {(∅, 〈〈t〉〉, 〈t〉)} ∪ {(E , t, t) | E ⊆ I} ∪ {E | E ⊆ I} is a big-step
environmental bisimulation.

We use the following results in the rest of the paper.

Lemma 5 (Weakening). If t0 ≈E t1 and E ′ ⊆ E then t0 ≈E′ t1.

A smaller environment is a weaker constraint, because we can build less ar-
guments and contexts to test the normal forms in E . The proof is as in [19].
Lemma 6 states that reduction (and therefore, evaluation) is included in ).

Lemma 6. If t0 →v t′0, then t0 ) t′0.

3.3 Soundness and Completeness

We now prove soundness and completeness of ) w.r.t. contextual equivalence.
Because the proofs follow the same steps as for the λ-calculus [19], we only
give here the main lemmas and sketch their proofs. The complete proofs can
be found in [6]. First, we need some basic up-to techniques, namely up-to en-
vironment (which allows bigger environments in the bisimulation clauses) and
up-to bisimilarity (which allows for limited uses of ) in the bisimulation clauses),
whose definitions and proofs of soundness are classic [19].

With these tools, we can prove that ) is sound and complete w.r.t. contextual
equivalence. For a relation R on terms, we write R nf for its restriction to closed
normal forms. The first step consists in proving congruence for normal forms,
and also for any terms but only w.r.t. evaluation contexts.

Lemma 7. Let t0, t1 be normal forms. If t0 ≈E t1, then C [t0] ≈E C [t1].

Lemma 8. If t0 ≈E t1, then F [t0] ≈E F [t1].

Lemmas 7 and 8 are proved simultaneously by showing that, for any environ-
mental bisimulation Y, the relation

X = {(Ê
nf
,F0 [t0],F1 [t1]) | t0 YE t1,F0 Ẽ F1}

∪ {(Ê
nf
, t0, t1) | E ∈ Y , t0 Ê t1} ∪ {Ê

nf
| E ∈ Y}

is a bisimulation up-to environment. Informally, the elements of the first set of
X reduce to elements of the second set of X , and we then prove the bisimulation
property for these elements by induction on t0 Ê t1. We can then prove the main
congruence lemma.
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Lemma 9. t0 ) t1 implies C [t0] ≈�̂ nf C [t1].

We show that {()̂ nf
, t0, t1) | t0 )̂ t1}∪{)̂nf} is a bisimulation up-to bisimilarity

by induction on t0 )̂ t1. By weakening (Lemma 5), we can deduce from Lemma
9 that ) is a congruence, and therefore is sound w.r.t. ≈c.

Corollary 1 (Soundness). We have ) ⊆ ≈c.

The relation ) is also complete w.r.t. contextual equivalence.

Theorem 1 (Completeness). We have ≈c ⊆ ).

The proof is by showing that {(≈c
nf , t0, t1) | t0 ≈c t1} ∪ {≈c

nf} is a big-step
bisimulation, using Lemma 3 as an alternate definition for ≈c.

3.4 Bisimulation Up to Context

Equivalence proofs based on environmental bisimilarity can be simplified by
using up-to techniques, such as up to reduction, up to expansion, and up to
context [19]. We only discuss the last, since the first two can be defined and
proved sound in λS without issues. Bisimulations up to context may factor out a
common context from the tested terms. Formally, we define the context closure
of X , written X , as follows: we have t0 XE t1 if

– either t0 = F0 [t
′
0], t1 = F1 [t

′
1], t

′
0 XE t′1, and F0 Ẽ F1 ;

– or t0 Ê t1.

Note that terms t′0 and t′1 (related by XE) can be put into evaluation contexts
only, while normal forms (related by E) can be put in any contexts. This restric-
tion to evaluation contexts in the first case is usual in the definition of up-to
context techniques for environmental relations [19,22,20,18].

Definition 8. A relation X is an environmental bisimulation up to context if

1. t0 XE t1 implies:

(a) if t0 →v t′0, then t1 →∗
v t′1 and t′0 XE t′1;

(b) if t0 = v0, then t1 →∗
v v1 and E ∪ {(v0, v1)} ⊆ Ê ′ nf for some E ′ ∈ X ;

(c) if t0 is stuck, then t1 →∗
v t′1 with t′1 stuck, and E ∪ {(t0, t′1)} ⊆ Ê ′ nf for

some E ′ ∈ X ;

(d) the converse of the above conditions on t1;

2. E ∈ X implies:

(a) if λx.t0 E λx.t1 and v0 Ê v1, then t0{v0/x} XE t1{v1/x};
(b) if E0 [Sk.t0] E E1 [Sk.t1] and E ′

0 Ẽ E ′
1, then 〈t0{λx.〈E ′

0[E0 [x]]〉/k}〉 XE
〈t1{λx.〈E ′

1[E1 [x]]〉/k}〉 for a fresh x.

Lemma 10. If X is an environmental bisimulation up to context, then X ⊆ ≈.
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The soundness proof is the same as in [19]. While this definition is enough to
simplify proofs in the λ-calculus case, it is not that helpful in λS , because of the
restriction to evaluation contexts (first item of the definition of X ). In the λ-
calculus, when a term t reduces within an evaluation context, the context is not
affected, hence Definition 8 is enough to help proving interesting equivalences.
It is not the case in λS , as (a part of) the evaluation context can be captured.

Indeed, suppose we want to construct a candidate relation X to prove the
βΩ axiom, i.e., E [t] is equivalent to (λx.E [x]) t, assuming x /∈ fv(E ). The
problematic case is when t is a stuck term E0 [Sk.t0]; we have to add the
stuck terms (λx.E [x]) E0 [Sk.t0] and E [E0 [Sk.t0]] to an environment E of X .

For X to be a bisimulation, we then have to prove that for all E1 Ẽ E2 ,
we have 〈t0{λy.〈E1 [(λx.E [x]) E0 [y]]〉/k}〉 XE 〈t0{λy.〈E2 [E [E0 [y]]]〉/k}〉. At this
point, we would like to use the up-to context technique, because the subterms
(λx.E [x])E0 [y] and E [E0 [y]] are similar to the terms we want to relate (they can
be written (λx.E [x]) t′′ and E [t′′] with t′′ = E0 [y]). However, we have at best

〈t0{λy.〈E1 [(λx.E [x]) E0 [y]]〉/k}〉 X̂E◦ 〈t0{λy.〈E2 [E [E0 [y]]]〉/k}〉 (and not XE),
because (i) (λx.E [x]) E0 [y] and E [E0 [y]] are open terms, and (ii) t0 can be any
term, so (λx.E [x])E0 [y] and E [E0 [y]] can be put in any context, not necessarily
in an evaluation one. Therefore, Definition 8 cannot help there.

Problem (ii) could be somewhat dealt with in the particular case of the βΩ

axiom by changing clause (2b) of Definition 8 into

(b) if E0 [Sk.t0] E E1 [Sk.t1] and E ′
0 X̃E E ′

1, then 〈t0{λx.〈E ′
0[E0 [x]]〉/k}〉 X̂E

〈t1{λx.〈E ′
1[E1 [x]]〉/k}〉 for a fresh x.

and similarly for clause (2a). In plain text, we build the testing contexts E ′
0,

E ′
1 from XE (instead of E), and the resulting terms have to be in X̂E (without

any evaluation context restriction). The resulting notion of bisimulation up to
context is sound. The new clause would be more difficult to establish in general
than the original one (of Definition 8), because it tests more pairs of contexts.

However, for the βΩ axiom, we would have to prove that for all E1 X̂E E2 ,
〈t0{λy.〈E1 [(λx.E [x]) E0 [y]]〉/k}〉 X̂E 〈t0{λy.〈E2 [E [E0 [y]]]〉/k}〉 holds; it would
be easy, except (λx.E [x]) E0 [y] and E [E0 [y]] are open terms (problem (i)).

Problem (i) seems harder to fix, because for (λx.E [x]) E0 [y] XE◦ E [E0 [y]] to

hold, we must have (λx.E [x]) E0 [v0] XE E [E0 [v1]] for all v0 Ê v1. Because E0

can be anything, it means that we must have (λx.E [x]) t′0 XE E [t′1] with t′0 Ê t′1;
t′0 and t′1 are plugged in different contexts, therefore bisimulation up to context
(which factors out only a common context) cannot help us there; a new kind of
up-to technique is required.

The βΩ axiom example suggests that we need more powerful up-to techniques
for environmental bisimilarity for delimited control; we leave these potential
improvements as a future work. Note that we do not have such issues with up-to
techniques for normal form bisimilarity: it relates open terms without having to
replace their free variables, and normal form bisimulation up to context is not
restricted to evaluation contexts only. But even if environmental bisimulation
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up to context is not as helpful as wished, it still simplifies equivalence proofs, as
we can see with the next example.

Example 3. In [7], a variant of Turing’s call-by-value fixed point combinators
using shift and reset has been proposed. Let θ = λxy.y (λz.x x y z). We prove
that t0 = θ θ is bisimilar to its variant t1 = 〈θ Sk.k k〉. Let θ′ = λx.〈θ x〉,
v0 = λy.y (λz.θ θ y z), and v1 = λy.y (λz.θ′ θ′ y z). We define E inductively

such that v0 E v1, and if v′0 Ê v′1, then λz.θ θ v′0 z E λz.θ′ θ′ v′1 z. Then X =
{(E , t0, t1), (E , t0, θ′ θ′), E} is a (big-step) bisimulation up to context. Indeed, we
have t0 ⇓v v0, t1 ⇓v v1, and θ′ θ′ ⇓v v1, therefore clause (1b) of Definition 8 is

checked for both pairs. We now check clause (2a), first for v0 E v1. For all v
′
0 Ê v′1,

we have v′0 (λz.θ θ v′0 z) Ê v′1 (λz.θ
′ θ′ v′1 z) (because λz.θ θ v′0 z E λz.θ′ θ′ v′1 z),

hence the result holds. Next, let λz.θ θ v′0 z E λz.θ′ θ′ v′1 z (with v′0 Ê v′1), and let

v′′0 Ê v′′1 . We have to check that θ θ v′0 v′′0 XE θ′ θ′ v′1 v′′1 , which is true, because

θ θ XE θ′ θ′, and � v′0 v′′0 Ẽ � v′1 v′′1 .

4 Environmental Relations for the Original Semantics

The original CPS semantics for shift and reset [8] as well as the corresponding
reduction semantics [3] assume that terms can be considered as programs to be
executed, only when surrounded by a top-level reset. In this section, we present a
CPS-compatible bisimulation theory that takes such a requirement into account.
Henceforth, we call programs, ranged over by p, terms of the form 〈t〉.

4.1 Contextual Equivalence

To reflect the fact that terms are executed within an enclosing reset, the con-
textual equivalence we consider in this section tests terms in contexts of the
form 〈C 〉 only. Because programs cannot reduce to stuck terms, the only pos-
sible observable action is evaluation to values. We therefore define contextual
equivalence for programs as follows.

Definition 9. Let t0, t1 be terms. We write t0
.≈c t1 if for all C such that 〈C [t0]〉

and 〈C [t1]〉 are closed, 〈C [t0]〉 ⇓v v0 implies 〈C [t1]〉 ⇓v v1, and conversely for
〈C [t1]〉.
Note that

.≈c is defined on all terms, not just programs. It is easy to check that
≈c is more discriminative than

.≈c. We will see in Section 4.4 that this inclusion
is in fact strict.

Lemma 11. We have ≈c ⊆
.≈c.

4.2 Definition and Properties

We now propose a definition of environmental bisimulation adapted to programs
(but defined on all terms, like

.≈c). Because stuck terms are no longer observed,
environments E henceforth relate only values. Similarly, we write R v for the
restriction of a relation R on terms to pairs of closed values.
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Definition 10. A relation X is an environmental bisimulation for programs if

1. if t0 XE t1 and t0 and t1 are not both programs, then for all E0 Ẽ E1 , we
have 〈E0 [t0]〉 XE 〈E1 [t1]〉;

2. if p0 XE p1
(a) if p0 →v p′0, then p1 →∗

v p′1 and p′0 XE p′1;
(b) if p0 →v v0, then p1 →∗

v v1, and {(v0, v1)} ∪ E ∈ X ;
(c) the converse of the above conditions on p1;

3. for all E ∈ X , if λx.t0 E λx.t1 and v0 Ê v1, then t0{v0/x} XE t1{v1/x}.

Environmental bisimilarity for programs, written
.≈, is the largest environmental

bisimulation for programs. As before, the relation
.≈∅, also written

.), is candidate
to characterize

.≈c.
Clauses (2) and (3) of Definition 10 deal with programs and environment in

a classical way (as in plain λ-calculus). The problematic case is when relating
terms t0 and t1 that are not both programs (clause (1)). Indeed, one of them may
be stuck, and therefore we have to test them within some contexts 〈E0 〉, 〈E1 〉
(built from E) to potentially trigger a capture that otherwise would not happen.
We cannot require both terms to be stuck, as in clause (2b) of Definition 6,
because a stuck term can be equivalent to a term free from control effect. E.g.,
we will see that v

.) Sk.k v, provided that k /∈ fv(v).

Example 4. Suppose we want to prove 〈(λx.t0) 〈t1〉〉
.) (λx.〈t0〉) 〈t1〉 (as in Ex-

ample 1). Because (λx.〈t0〉)〈t1〉 is not a program, we have to put both terms into
a context first: we have to change the candidate relation of Example 1 into X =
{(∅, 〈(λx.t0) 〈t1〉〉, (λx.〈t0〉) 〈t1〉)}∪{(∅, 〈E [〈(λx.t0) 〈t1〉〉]〉, 〈E [(λx.〈t0〉) 〈t1〉]〉)}∪
{(∅, 〈E [〈(λx.t0) v〉]〉, 〈E [(λx.〈t0〉) v]〉)} ∪ {(E , t, t) | E ⊆ I} ∪ {E | E ⊆ I}. In
contrast, to prove 〈〈t〉〉 .) 〈t〉, we do not have to change the candidate relation
of Example 2, since both terms are programs.

We can give a definition of big-step bisimulation by removing clause (2a) and
changing →v into →∗

v in clause (2b). Lemmas 5 and 6 can also be extended to
.≈ and

.). The next lemma shows that ) is more discriminative than
.).

Lemma 12. We have ) ⊆ .).

A consequence of Lemma 12 is that we can use Definition 6 as a proof
technique for

.). E.g., we have directly 〈(λx.t0) 〈t1〉〉
.) (λx.〈t0〉) 〈t1〉, because

〈(λx.t0) 〈t1〉〉 ) (λx.〈t0〉) 〈t1〉.

4.3 Soundness and Completeness

We sketch the proofs of soundness and completeness of
.) w.r.t.

.≈c; see [6] for the
complete proofs. The soundness proof follows the same scheme as in Section 3.3,
with some necessary adjustments. As before, we need up-to environment and
up-to bisimilarity techniques to prove the following lemmas.

Lemma 13. If v0
.≈E v1, then C [v0]

.≈E C [v1].
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Lemma 14. If t0
.≈E t1, then F [t0]

.≈E F [t1].

We prove Lemmas 13 and 14 by showing that a relation similar to the re-
lation X defined in Section 3.3 is a bisimulation up to environment. We then
want to prove the main congruence lemma, akin to Lemma 9, by showing that

Y ={( .̂)
v

, t0, t1) | t0
.̂) t1}∪{

.̂)
v

} is a bisimulation up to bisimilarity. However,

we can no longer proceed by induction on t0
.̂) t1, as for Lemma 9. Indeed, if

p0 = 〈t0〉, p1 = 〈t1〉 with t0
.̂) t1, and if t0 is a stuck term, then p0 reduces to

some term, but the induction hypothesis does not tell us anything about t1. To
circumvent this, we decompose related programs into related subcomponents.

Lemma 15. If p0
.̂) p1, then either p0

.) p1, or one of the following holds:

– p0 = 〈v0〉;
– p0 = F0 [〈E0 [t0]〉], p1 = F1 [〈E1 [t1]〉] , F0

.̃) F1 , E0
.̃) E1 , t0

.) t1 and
t0 →v t′0 or t0 is stuck;

– p0 = F0 [〈E0 [r0]〉], p1 = F1 [〈E1 [t1]〉] , F0
.̃) F1 , E0

.̃) E1 , r0
.̂) t1 but

r0 

.) t1.

Lemma 15 generalizes Lemma 2 to related programs: we know p0 can be decom-
posed into contexts F , 〈E 〉, and a redex r, and we relate these subterms to p1.
We can then prove that Y (defined above) is a bisimulation up to bisimilarity,
by showing that, in each case described by Lemma 15, p0 and p1 reduce to terms
related by Y. From this, we deduce

.) is a congruence, and is sound w.r.t.
.≈c.

Lemma 16. t0
.) t1 implies C [t0]

.≈ .̂� v C [t1].

Corollary 2 (Soundness). We have
.) ⊆ .≈c.

Remark 1. Following the ideas behind Definition 10, one can define an applica-
tive bisimilarity B for programs. However, proving that B is sound seems more
complex than for

.). We remind that the soundness proof of an applicative
bisimilarity consists in showing that a relation called the Howe’s closure B• is
an applicative bisimulation. To this end, we need a version of Lemma 15 for B•.
However, B• is inductively defined as the smallest congruence which contains
B and satisfies B•B ⊆ B• (1), and condition (1) makes it difficult to write a
decomposition lemma for B• similar to Lemma 15.

We prove completeness of
.) by showing that the relation ≈̈c, defined below,

coincides with
.≈c and

.). By doing so, we also prove a context lemma for
.≈c.

Definition 11. Let t0, t1 be closed terms. We write t0 ≈̈c t1 if for all closed F ,
〈F [t0]〉 ⇓v v0 implies 〈F [t1]〉 ⇓v v1, and conversely for 〈F [t1]〉.
By definition, we have

.≈c ⊆ ≈̈c. With the same proof technique as in Section 3.3,
we prove the following lemma.

Lemma 17 (Completeness). We have ≈̈c ⊆
.).

With Lemma 17 and Corollary 2, we have
.≈c ⊆ ≈̈c ⊆

.) ⊆ .≈c. Defining up-to
context for programs is possible, with the same limitations as in Section 3.4.
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4.4 Examples

We illustrate the differences between ) and
.), by giving some examples of terms

related by
.), but not by ). First, note that

.) relates non-terminating terms
with stuck non-terminating terms.

Lemma 18. We have Ω
.) Sk.Ω.

The relation {(∅, Ω,Sk.Ω), (∅, 〈E [Ω]〉, 〈E [Sk.Ω]〉), (∅, 〈E [Ω]〉, 〈Ω〉)} is a bisimu-
lation for programs. Lemma 18 does not hold with ) because Ω is not stuck.

As wished,
.) satisfies the only axiom of [14] not satisfied by ).

Lemma 19. If k /∈ fv(t), then t
.)◦ Sk.k t.

We sketch the proof for t closed; for the general case, see [6]. We prove that
{(∅, t,Sk.k t), (∅, 〈E [t]〉, 〈E [Sk.k t]〉)}∪ ) is a bisimulation for programs. Indeed,
we have 〈E [Sk.k t]〉 →v 〈(λx.〈E [x]〉) t〉, and because ) verifies the βΩ axiom ()
is complete, and ≈c verifies the βΩ axiom [4]), we know that 〈(λx.〈E [x]〉) t〉 )
〈〈E [t]〉〉 holds. From Example 2, we have 〈〈E [t]〉〉 ) 〈E [t]〉, therefore we have
〈E [Sk.k t]〉 ) 〈E [t]〉.

Consequently,
.)◦

is complete w.r.t. ≡.

Corollary 3. We have ≡ ⊆ .)◦
.

As a result, we can use ≡ (restricted to closed terms) as a proof technique for
.).

E.g., the following equivalence can be derived from the axioms [14].

Lemma 20. If k /∈ fv(t1), then (λx.Sk.t0) t1
.) Sk.((λx.t0) t1).

This equivalence does not hold with ), because the term on the right is stuck, but
the term on the left may not evaluate to a stuck term (if t1 does not terminate).
We can generalize this result as follows, again by using ≡.

Lemma 21. If k /∈ fv(t1) and x /∈ fv(E ), then we have (λx.E [Sk.t0]) t1
.)

E [Sk.((λx.t0) t1)].

Proving Lemma 19 without the βΩ axiom and Lemmas 20 and 21 without ≡
requires complex candidate relations (see the proof of Lemma 20 in [6]), because
of the lack of powerful enough up-to techniques.

5 Conclusion

We propose sound and complete environmental bisimilarities for two variants of
the semantics of λS . For the semantics of Section 3, we now have several bisi-
milarities, each with its own merit. Normal form bisimilarity [5] (and its up-to
techniques) leads to minimal proof obligations, however it is not complete, and
distinguishes very simple equivalent terms (see Proposition 1 in [5]). Applicative
bisimilarity [4] is complete but sometimes requires complex bisimulation proofs
(e.g., for the βΩ axiom). Environmental bisimilarity ) (Definition 6) is also
complete, can be difficult to use, but this difficulty can be mitigated with up-to
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techniques. However, bisimulation up to context is not as helpful as we could
hope (see Section 3.4), because we have to manipulate open terms (problem (i)),
and the context closure of an environmental relation is restricted to evaluation
contexts (problem (ii)). As a result, proving the βΩ axiom is more difficult with
environmental than with applicative bisimilarity. We believe dealing with prob-
lem (i) requires new up-to techniques to be developed, and lifting the evaluation
context restriction (problem (ii)) would benefit not only for λS , but also for
process calculi with passivation [18]; we leave this as a future work.

In contrast, we do not have as many options when considering the semantics
of Section 4 (where terms are evaluated within a top-level reset). The environ-
mental bisimilarity of this paper

.) (Definition 10) is the first to be sound and
complete w.r.t. Definition 9. As argued in [5] (Section 3.2), normal form bisimi-
larity cannot be defined on programs without introducing extra quantifications
(which defeats the purpose of normal form bisimilarity). Applicative bisimilarity
could be defined for programs, but proving its soundness would require a new
technique, since the usual one (Howe’s method) does not seem to apply (see
Remark 1). This confirms that environmental bisimilarity is more flexible than
applicative bisimilarity [15]. However, we would like to simplify the quantifica-
tion over contexts in clause (1) of Definition 10, so we look for sub-classes of
terms where this quantification is not mandatory.

Other future works include the study of the behavioral theory of other delim-
ited control operators, like the dynamic ones (e.g., control and prompt [10] or
shift0 and reset0 [7]), but also of abortive control operators, such as callcc, for
which no sound and complete bisimilarity has been defined so far.

Acknowledgments. We thank Ma�lgorzata Biernacka and the anonymous ref-
erees for many helpful comments on the presentation of this work.
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Abstract. We show how Modified Bar-Recursion, a variant of Spector’s
Bar-Recursion due to Berger and Oliva can be used to realize the Ax-
iom of Countable Choice in Parigot’s Lambda-Mu-calculus, a direct-style
language for the representation and evaluation of classical proofs.

We rely on Hyland-Ong innocent games. They provide a model for
the instances of the axiom of choice usually used in the realization of
classical choice with Bar-Recursion, and where, moreover, the standard
datatype of natural numbers is in the image of a CPS-translation.

1 Introduction

Peano’s Arithmetic in all finite types (PAω) is a multisorted version of first-
order Peano’s Arithmetic, with one sort for each simple type, together with the
constants of Gödel’s System T and their defining equations. When augmenting
PAω with the Axiom of Countable Choice (CAC), we obtain a system known to
contain large parts of classical analysis (see e.g. [9, 16]). A similar system can be
obtained by extending Peano’s Arithmetic to Second-Order Logic (see e.g. [16]).

We are interested here in the realizability interpretation of PAω +CAC. Real-
izability is a mathematical tool, part of the Curry-Howard correspondence, used
to extract computational content from formal proofs.

The usual route to get a computational interpretation of (some extension of)
PAω is to apply a negative translation, yielding proofs in (some extension of)
Heyting’s Arithmetic in all finite types (HAω, the intuitionist variant of PAω, see
e.g. [19]), followed by a computational interpretation of the translated proofs.
Realizability for HAω can be obtained in simply-typed settings, typically using
Gödel’s System T. In this way, CAC is translated to a formula which can be
realized by combining a realizer of the Intuitionistic Axiom of Choice (IAC) with
a realizer of the Double Negation Shift (DNS, see Sect. 3). Intuitionistic choice
is easily realizable, and realizers of DNS can be obtained by adapting Spector’s
Bar-Recursion to realizability [3, 4].

We are interested here in a computational interpretation of PAω +CAC based
on a realizability interpretation directly for classical proofs. It has been noted by
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Griffin [6] that the control operator call/cc of the functional language Scheme
can be typed using Peirce’s Law, which gives full Classical Logic when added
to Intuitionistic Logic. Since then, there have been much work on calculi for
Classical Logic, starting from Parigot’s λμ-calculus [14]. Moreover, Krivine has
developed a notion of Classical Realizability for Second-Order Peano’s Arith-
metic which relies on Girard’s System F [10] (see also [13, 12]).

In this paper, we investigate a version of Spector’s Bar-Recursion in a classical
realizability setting for PAω, obtained by adapting Krivine’s Realizability to
a simply-typed extension of Parigot’s λμ-calculus. Handling Bar-Recursion in
realizability (typically to show that it realizes DNS) usualy involves some form of
the axiom of choice (typically bar-induction). Suitable instances of bar-induction
can be applied to some programming language extended with infinite terms, as
in [3]. Another possibility, as done in [4], is to internalize realizability in the logic,
reason within the logic on finite terms using bar-induction, and provide a suitable
model (typically a model of PCF). Similarly to [3] and contrary to [4], our notion
of realizability is not internalized in the logic. For extraction of programs from
proofs, our approach is similar to [4]: we separate the programming language
from the model in which the realizability argument is made.

Most non-degenerate models and operational semantics for the λμ-calculus
rely on CPS translations (see e.g. [15]). We work here with the call-by-name
translation of Lafont-Reus-Streicher (see e.g. [18, 15]). In the coproduct com-
pletion of the innocent unbracketed Hyland-Ong game model of PCF [8, 11],
the usual flat game arena of natural numbers is in the image of such a CPS
translation (this was observed in [11]).

We define a notion of classical realizability in this game model. Our main
result is that the usual realizer of classical choice obtained by combining a real-
izer of IAC with Berger-Oliva’s variant of Bar-Recursion [4], is indeed a realizer
of classical countable choice in our framework. We then obtain an extraction
result for the λμ-terms by a logical relation argument (see e.g. [2]), relating the
operational semantics and the model.

The paper is organized as follows: We begin by presenting PAω in Sect. 2. We
then briefly discuss the usual computational interpretation of CAC by negative
translation in Sect. 3. In Sect. 4, we present the bare minimum we need on
Hyland-Ong games. Parigot’s λμ-calculus, as well as its game interpretation and
its operational semantics are discussed in Sect. 5. We then devise our notion of
realizability in Sect. 6 and discuss the realization of CAC in Sect. 7.

2 Peano’s Arithmetic in All Finite Types

In this section, we briefly discuss the logical system on which we work in this
paper, namely PAω (Peano’s Arithmetic in all finite types), as well as its exten-
sion with the axiom of countable choice. We build on usual versions of HAω (see
e.g. [19, 9]), with ideas of [14, 10] for classical logic.

Language. The language of PAω is multisorted, with one sort for each simple
type. We use the following syntax of simple types, where ι is intended to be the
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base type of natural numbers:

σ, τ ∈ T ::= ι | σ → τ | σ × τ

We assume given, for each simple type τ , a countable set Vτ = {xτ , yτ , . . . } of
individual variables of type τ . Individuals are simply-typed terms

a, b ∈ I ::= xτ | ab | c

where (ab)τ provided aσ→τ , bσ for some σ, and c ranges over the constants

0ι, Sι→ι, Recτ→(ι→τ→τ)→ι→τ , Pairσ→τ→σ×τ , Pτ1×τ2→τi
i (i = 1, 2), kσ→τ→σ and

s(ρ→σ→τ)→(ρ→σ)→ρ→τ . Let I0 be the set of closed individuals and Iτ
0 be the set

of closed individuals of type τ .
Formulas are defined as follows:

A,B ∈ F ::= (aτ 
=τ bτ ) | ⊥ | A ⇒ B | A ∧B | ∀xτA

Note the atomic inequality ( 
=τ ). It is inspired from Krivine’s work [10] and
will greatly ease our realizability interpretation (see Sect. 6).

We use the following abbreviations:

¬A := A ⇒ ⊥ ∃xτA := ¬∀xτ¬A
(a =τ b) := ¬(a 
=τ b) A ∨B := ¬(¬A ∧ ¬B)

Deduction. We consider the following deduction system (see e.g. [14]). It is
parametrized by a set Ax of axioms (containing only closed formulas).

Γ,A � A |Δ Γ � A |Δ (A ∈ Ax)
Γ � ⊥ |Δ

Γ � aτ 
=τ bτ |Δ

Γ,A � B |Δ
Γ � A ⇒ B |Δ

Γ � A ⇒ B |Δ Γ � A |Δ
Γ � B |Δ

Γ � A |Δ Γ � B |Δ
Γ � A ∧B |Δ

Γ � A1 ∧ A2 |Δ
Γ � Ai |Δ

(i = 1, 2)

Γ � A |Δ
Γ � ∀xτA |Δ (x /∈ FV(Γ,Δ))

Γ � ∀xτA |Δ
Γ � A[aτ/x] |Δ

Γ � A |Δ,A

(Γ � Δ,A)

(Γ � Δ,A)

Γ � A |Δ
This system is chosen so as to have a direct extraction of realizers in Parigot’s
λμ-calculus (see Sect. 5 and 6).

Note that the Ex Falso rule is restricted to atomic formulas. For each formula
A one can easily derive Γ � A | Δ from Γ � ⊥ | Δ. The introduction rules for
existential quantification and disjunction are easy to derive:

Γ � A |Δ
Γ � A ∨B |Δ

Γ � A[aτ/x] |Δ
Γ � ∃xτA |Δ
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One can also derive Peirce’s Law and Double Negation Elimination (see e.g. [14]):

Γ � ((A ⇒ B) ⇒ A)⇒ A |Δ Γ � ((A ⇒ ⊥)⇒ ⊥)⇒ A |Δ

as well as the elimination rules of disjunction and existential quantification:
Γ � C |Δ provided Γ � A∨B |Δ, Γ,A � C |Δ and Γ,B � C |Δ; and Γ � C |Δ
provided Γ � ∃xτA |Δ and Γ,A � C |Δ with x not free in Γ,C,Δ.

Axioms for Equality and Arithmetic. The axioms of PAω are the universal
closures of the following formulas:

– Equality axioms are reflexivity ∀xτ (x =τ x) and Leibniz’s scheme:

for all formula A, ∀xτyτ (A[x/z] ⇒ ¬A[y/z] ⇒ x 
=τ y)

Note that the usual version of Leibniz’s scheme is derivable:

∀xτyτ (x =τ y ⇒ A[x/z] ⇒ A[y/z])

– Equational axioms (with variables of the appropriate types):

k x y =τ x sx y z =τ x z (y z) Pi (Pair x1 x2) =τi xi (i = 1, 2)

Recx y 0 =τ x Recx y (S z) =τ y z (Recx y z)

– Arithmetic axioms are ∀xι(Sx 
=ι 0) and the Induction scheme:

for all formula A, A[0/x] ⇒ ∀xι(A ⇒ A[Sx/x]) ⇒ ∀xιA

We write PAω � A if � A| is derivable using the axioms of PAω.

Axiom of Countable Choice. Given τ ∈ T , we write CACι,τ for the following
version of the axiom (scheme) of countable choice:

for all formula A, (∀xι∃yτA) ⇒ ∃f ι→τ∀xιA[fx/y]

Note that this unfolds to

∀xι(∀yτ (A ⇒ ⊥)⇒ ⊥) ⇒ ∀f ι→τ (∀xιA[fx/y]⇒ ⊥) ⇒ ⊥

We write PAω + CACι, for provability in PAω using any CACι,τ for τ ∈ T .

3 Intuitionistic Modified Realizability and Bar-Recursion

In this section, we briefly and informally recall the realization of CAC via negative
translation to HAω + DNS, and discuss some aspects of our realization of CAC.

HAω can be obtained from our presentation of PAω by restricting deduction
to intuitionistic sequents, i.e. sequents of the form Γ � A|. One also has to
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take a primitive notion of equality (instead of our primitive ( 
=τ )), and
primitive existential quantification (disjunction can be coded). Gödel’s negative
translation maps PAω to HAω: let ( )¬ commute over the connectives of PAω

(remember that there is no ∨, ∃ in F), and put ¬¬ in front of atomic formulas,
after having replaced (a 
=τ b) by ¬(a =τ b). It is equivalent to leave⊥ unchanged
and map (a 
=τ b) to ¬(a =τ b).

Let us briefly discuss Modified Realizability. To each closed formula A is
associated a simple type A∗ of potential realizers of A. Actual realizers of A are
closed terms of type A∗ satisfying a property, usually written t 	 A, defined by
induction on A. Typical clauses are:

tι 	 ⊥ := ⊥ tι 	 (a =τ b) := (a =τ b)
t 	 (A ⇒ B) := ∀u(u 	 A ⇒ tu 	 B) t 	 ∀xτA := ∀xτ (tx 	 A)
t 	 (A ∧B) := (P1t 	 A ∧ P2t 	 B) t 	 ∃xτA := (P2t 	 A[P1t/x])

Note that this provides a realizer, written tIAC, of intuitionistic choice (IAC
σ,τ )1:

λz.Pair (λx.P1(zx)) (λx.P2(zx)) 	 (∀xσ∃yτA) ⇒ ∃fσ→τ∀xσA[fx/y]

A proof in PAω of a formula A can be mapped to a realizer of the negative
translation A¬ of A2. For CACι,τ , this leads (modulo the intuitionistic equiva-
lence ¬∀¬ ←→ ¬¬∃) to find a realizer of

∀xι¬¬∃yτA¬ ⇒ ¬¬∃f ι→τ∀xιA¬[fx/y]

It is well-known (see e.g. [3, 4, 9]) that such a realizer can be obtained by
combining a realizer of IACι,τ with a realizer of the Double Negation Shift

(∀xι¬¬B) ⇒ ¬¬∀xιB (DNS)

for the instance B := ∃yτA. Assuming Ψ realizes this instance of DNS, we get

λz.λk.Ψz(λa.k(tIACa)) 	 ∀xι¬¬∃yτA¬ ⇒ ¬¬∃f ι→τ∀xιA¬[fx/y]

The reader can check that we obtain the following realizer of CAC:

tCAC := λz.λc.Ψ(t¬¬∃z)(λa.c(λx.P1(ax))(λx.P2(ax)) 	
∀xι(∀yτ (A ⇒ ⊥)⇒ ⊥) ⇒ ∀f ι→τ(∀xιA[fx/y]⇒ ⊥) ⇒ ⊥

with t¬¬∃ := λa.λx.λk.ax(λy.λz.k(Pair y z)) 	 ∀xι¬∀yτ¬A ⇒ ∀xι¬¬∃yτA
Realizers Ψ of DNS can be obtained by adapting Spector’s Bar-Recursion to
realizability [3, 4].

The purpose of this paper is to realize CAC using Bar-Recursion, directly in a
language for classical proofs. We show that (the interpretation in a suitable model

1 We use the λ-notation for individual terms in I.
2 To get extraction for Π0

2 -formulas, one can adapt Friedman’s trick by defining (tι 	
⊥) as ⊥⊥(t), where ⊥⊥ is a given predicate, see e.g. [4] and also Sect. 6.



354 V. Blot and C. Riba

of) tCAC realizes CACι,τ , for a notion of realizability defined for (the interpretation
in a suitable model of) an extension of Parigot’s λμ-calculus [14].

Most non-degenerate models and operational semantics for the λμ-calculus
rely on CPS translations (see e.g. [15]). If we CPS-translate Bar-Recursion we
obtain a term of type

(ι¬ → (τ → ι¬) → ι¬)→ ((ι¬ → τ) → ι¬)→ ι¬

with ι¬ := (ι → R) → R. Obvious choices for R besides (a model of) ι, e.g.
a one-point object, tend to give degenerated results: typically, in domains (and
even predomains [18]), taking R = {⊥} (R = ∅) gives a unique inhabitant in ι¬.
We use the fact, observed in [11], that in the coproduct completion (given by
the Fam construction, see e.g. [1]) of Hyland-Ong innocent unbracketed games
for PCF, the basic type of natural numbers is of the form (�N� → R) → R, for
the one-move game R and the countable family of empty games �N� (see Sect. 4).
We then reason using the usual argument [4, 3].

4 The Model of Hyland-Ong Games

In this section, we present the bare minimum we need on Hyland-Ong games.
We use innocent unbracketed games, combined with the coproduct completion
provided by the Fam construction. Details can be found in e.g. [8, 7, 11, 1].

4.1 Arenas and Strategies

Definition 4.1 (Arena). An arena is a countable forest of moves. Each move
is given a polarity O (for Opponent) or P (for Player or Proponent):

– A root is of polarity O.
– A move which is not a root has the inverse polarity of that of his parent.

A root of an arena is also called an initial move. We will often identify an arena
with its set of moves.

Definition 4.2 (Justified sequence). Given an arena A, we define a justified
sequence on A to be a finite word s on A together with a partial justifying
function f : |s| ⇀ |s| such that:

– If f(i) is undefined, then si is an initial move.
– If f(i) is defined, then f(i) < i and si is a child of sf(i).

We denote the empty justified sequence by ε. Remark here that by definition of
the polarity, if f(i) is undefined (si is initial), then si is of polarity O, and if
f(i) is defined, then si and sf(i) are of opposite polarities. Also, f(0) is never
defined, and so s0 is always an initial O-move. A justified sequence is represented
for example as:

a b c d e f g h i j
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If A is an arena, X is a subset of A and s is a justified sequence on A, then s|X
is the subsequence of s consisting of the moves of s which are in X .

Definition 4.3 (Play). A play s on A is an even and alternating justified
sequence of A, i.e., for any i, s2i is a O-move and s2i+1 is a P -move. We
denote the set of plays of A by PA.

A play on an arena is the trace of an interaction between a program and a
context, each one performing an action alternatively.

Definition 4.4 (Strategy). A strategy σ on A is a non-empty even-prefix-
closed set of finite plays on A such that:

– σ is deterministic

– σ is innocent

The definitions of determinism and innocence are standard and can be found for
example in [7, 8].

Cartesian Closed Structure. The constructions we use will sometimes con-
tain multiple copies of the same arena (for example A → A), so we distinguish
the instances with superscripts (for example A(1) → A(2)).

Let U be the empty arena and V be the arena with only one (opponent) move.
If A and B are arenas consisting of the trees A1 . . .Ap and B1 . . .Bq, then the
arenas A → B and A× B can be represented as follows:

A → B : A× B :

B1

A(1)
1

· · · A(1)
p

· · · Bq

A(q)
1

· · · A(q)
p

A1 · · · Ap B1 · · · Bq

The constructions described here define a cartesian closed category whose objects
are arenas and morphisms are innocent strategies. Details of the construction
can be found in [7, 8]. In the following this category will be denoted as G.

4.2 The Fam Construction

Our model is built as a continuation category [18]. In order to make explicit the
double negation translation of the base types, we base the model on the category
of continuations RFam(G), where Fam(G) is a variant of the coproduct completion
described in [1] applied to the category G defined in Sect. 4.1.

Definition 4.5 (Fam(G)). The objects of Fam(G) are families of objects of G
indexed by at most countable sets, and a morphism from {Ai | i ∈ I} to {Bj | j ∈
J} is a function f : I → J together with a family of morphisms of G from Ai to
Bf(i), for i ∈ I.
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See [5] for details on the differences with [1]. Note that Fam(G) is a distributive
category with finite products and coproducts, and has exponentials of all sin-
gleton families. The empty product and terminal object is the singleton family
{U}, the empty sum and initial object is the empty family {}, and:

{Ai | i ∈ I} × {Bj | j ∈ J} := {Ai ×Bj | (i, j) ∈ I × J}

{Ai | i ∈ I}+ {Bj | j ∈ J} := {Ck | k ∈ I 6 J} where Ck :=

{
Ak if k ∈ I
Bk if k ∈ J

{B0}{Ai | i∈I} := {Πi∈IB
Ai
0 }

We fix once and for all:

R := {V}

which is an object of Fam(G) as a singleton family. R has all exponentials as

stated above. Note that the canonical morphism δA : A → R(R
A) is a mono.

The category of continuations RFam(G) is the full subcategory of Fam(G) con-
sisting of the objects of the form RA. The objects of RFam(G) are singleton families,
and RFam(G) is isomorphic to G. We will consider that objects and morphisms of
RFam(G) are arenas and strategies and we will use the vocabulary defined at the
end of Sect. 4.1 on RFam(G) also.

4.3 The Type Structure

We use the lambda notation in RFam(G), i.e. we build simply-typed λ-terms with
constants in RFam(G). We write them using bold symbols (such as λ, 〈 , 〉 etc) in
order make no confusion with the syntactic λμ-terms of Section 5.

Interpretation of Simple Types. Let �N� be the object {Un | n ∈ N} of
Fam(G). We use the interpretation of simple types proposed in [18] (see also [15]).
Given a simple type τ ∈ T , we associate two objects of RFam(G): the object [τ ] of
programs of type τ , and the object �τ� of continuations of type τ . We let

�ι� := R�N� �σ → τ� := R�σ�×�τ� �σ×τ� := �σ�+�τ� [τ ] := R�τ�

Note that �σ → τ� = [σ]× �τ�, and moreover

[σ → τ ] = R[σ]×�τ� ) R�τ�R
�σ�

and [σ × τ ] ) R�σ� × R�τ�

Representation of Arithmetic Constants. In Fam(G) a morphism from the
terminal object {U} to �N� = {Un | n ∈ N} is given by a function from the
singleton set to N together with a strategy from U to U . Since there is only one
such strategy, such a morphism is given by a natural number. We will call this
morphism ñ. Similarly a morphism from �N� to �N� is given by a function from
N to N. This leads to a morphism s̃ucc : �N� → �N� for the successor function
on �N�.
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Moreover, given a : [τ ] (officially, a : {U} → [τ ] in Fam(G)), and b : �N� →
[τ ] → [τ ], we can define by induction on n ∈ N a morphism r̃a,b : �N� → [τ ] such

that r̃a,b0̃ = a and r̃a,b(ñ+ 1) = bñ(r̃a,b(ñ)). This leads to r̃ec := λa.λb.r̃a,b in
[τ ] → (�N� → [τ ] → [τ ]) → �N� → [τ ].

We now discuss the object of RFam(G) associated to the base type ι. We have:

[ι] := RR
�N�

= RR
{Un | n∈N} ) RΠn∈NR ) {VΠn∈NV}

Note that this is the usual flat arena of natural numbers:

q
				

	 







��������
�������

0 · · · n · · ·

It is easy to see that λk.kñ corresponds to the strategy answering n to the initial
opponent question q. Moreover, the only inhabitants of [ι] are the empty strategy
⊥[ι] and the strategies λk.kñ for n ∈ N.

The arithmetical constants of System T will be interpreted in RFam(G) using
succ : [ι] → [ι] defined as succ := λn.λk.n(λx.k(s̃uccx)) and rec : [τ ] → [ι →
τ → τ ] → [ι] → [τ ] with rec := λu.λv.λn.λk.n(λx.r̃ecu(λy.v•(λk.ky))xk),
where v• := λx.λy.λz.v〈x, y, z〉 (see [5] for details).

It is convenient to use the notations ( )• and ( )◦ for resp. curryfication and
uncurryfication. Note that as with v• above, the amount to which an expression
is curryfied/uncurryfied depends on the context, and moreover that in G, ( )•
and ( )◦ are the identity.

5 Lambda-Mu-Calculus

We present here an extension of Parigot’s λμ-calculus [14] that we will use as
a programming language for our realizers. We begin by a basic language, which
essentially adds pairs and products to the original calculus. We then present
an extension with the arithmetic constants of Gödel’s System T, which will be
used for the realization of PAω. Finally, we discuss the interpretation, along the
lines of [15], of the calculus in the model RFam(G), and present an operational
semantics using an abstract machine adapted from [18].

Syntax and Typing. We assume given two countable sets Var = {x, y, z, . . .}
and CVar = {α, β, γ, . . . } of respectively term and continuation variables. The
λμ-terms are defined as follows:

t, u ∈ Λ ::= x | λx.t | tu | μα.v | 〈t, u〉 | p1(t) | p2(t)
where v is a named term: v ::= [α]t
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They are typed by extending Parigot’s system [14] with rules for product types:

Γ, x : τ � x : τ |Δ
Γ � t : τ |Δ,α : τ

[α]t : (Γ � Δ,α : τ)

v : (Γ � Δ,α : τ)

Γ � μα.v : τ |Δ

Γ, x : τ � t : σ |Δ
Γ � λx.t : τ → σ |Δ

Γ � t : σ → τ |Δ Γ � u : σ |Δ
Γ � tu : τ |Δ

Γ � t : τ |Δ Γ � u : σ |Δ
Γ � 〈t, u〉 : τ × σ |Δ

Γ � t : τ1 × τ2 |Δ
Γ � pi(t) : τi |Δ

(i = 1, 2)

Extension with Arithmetic Constants. We write ΛT for the set of λμ-terms
obtained by extending the grammar of Λ with the following productions:

t, u ::= . . . | n | succ | rec(t, u)

where n ∈ N. We extend the typing rules of Λ with the following ones:

Γ � n : ι |Δ Γ � succ : ι → ι |Δ
Γ � t : τ |Δ Γ � u : ι → τ → τ |Δ

Γ � rec(t, u) : ι → τ |Δ

Interpretation in RFam(G). The interpretation of ΛT in RFam(G) follows the
lines of [15]. A term � t : τ | is interpreted by [t] ∈ [τ ]. To make the presentation
simpler, we use λ-expressions in RFam(G) build from the variables of ΛT with the
following convention: a term variable x of type τ (resp. a continuation variable
α of type σ) in ΛT becomes a variable x of type [τ ] (resp. a variable α of type
�σ�) in the λ-calculus of RFam(G):

[x] := x [n] := λk.kñ [μα.[β]t] := λα.[t]β
[λx.t] := λ〈x, k〉.[t]k
[tu] := λk.[t]〈[u], k〉

[succ] := λ〈n, k〉. succ n k

[〈t, u〉] := λk.casek{[t], [u]}
[pi(t)] := λk.[t](inik)

[rec(t, u)] := λ〈n, k〉.rec [t][u]n k

Operational Semantics. We now present an operational semantics for ΛT

using an abstract machine. The machine is derived from the interpretation of ΛT

in RFam(G), following the method of [18]. Our machine is actually an adaptation
of the machine of [18] to a typed language with arithmetic constants.

The machine evaluates triples of the form (t, e, π), where t is a λμ-term, e is an
environment and π is a stack. Environments map term variables to closures and
continuation variables to stacks. Stacks, closures and environments are defined
by mutual induction as usual:

Env. e ∈ E ::= ε | (x, c) :: e | (α, π) :: e
Closures c ∈ C ::= (t, e)
Stacks π ∈ Π ::= ! | 〈c, π〉 | kpi(π) | ksucc(π) | krec(t, u, c, π)
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We let e(x) := c if (x, c) is the first occurrence of the form (x, c′) in e, and define
e(α) similarly. Let dom(e) be the domain of the partial map e( ).

The evaluation rules are the following:

(x, e, π) 7 (t, e′, π) if e(x) = (t, e′)

(tu, e, π) 7 (t, e, 〈(u, e), π〉)
(λx.t, e, 〈c, π〉) 7 (t, (x, c) :: e, π)

(μα.[β]t, e, π) 7 (t, (α, π) :: e, π′) if ((α, π) :: e)(β) = π′

(pi(t), e, π) 7 (t, e, kpi(π)) i = 1, 2
(〈t1, t2〉, e, kpi(π)) 7 (ti, e, π) i = 1, 2

(succ, e, 〈(t, e′), π〉) 7 (t, e′, ksucc(π))
(n, e, ksucc(π)) 7 (n+ 1, e, π)

(rec(t, u), e, 〈(v, e′), π〉) 7 (v, e′, krec(t, u, e, π))
(0, e, krec(t, u, e′, π)) 7 (t, e′, π)

(n+ 1, e, krec(t, u, e′, π)) 7 (u, e′, 〈(n, e), 〈(rec(t, u)n, e′), π〉〉)

The correctness of the machine (i.e. reduction preserves semantics) can be
proved as usual3 (see e.g. [18]). For extraction, we actually only need the property
stated in Prop. 7.3, to be discussed in presence of Bar-Recursion.

6 Classical Realizability

In this section, we present our notion of realizability. It is highly inspired from
Krivine’s Realizability [10], but adapted to the simply-typed model RFam(G).

The main idea, adapting Krivine’s ideas to the typed continuation category
RFam(G), would be to fix a Pole ⊥⊥ ⊆ {[n] | n ∈ N}, and then associate to each
formula A a type A∗ and a set A ⊆ �A∗� defined by induction on A. Realizers
would then be strategies in A⊥⊥ ⊆ [A∗], the Orthogonal of A.

We choose to have ⊥⊥ ⊆ [ι] to get extraction (see Prop. 7.4). This causes
difficulties since [ι] = R�ι� is not a base type in RFam(G). Roughly speaking, our
choice for ⊥⊥ leads to ⊥∗ := ι, but there are not enough contexts in �ι� = {⊥�ι�},
since applying ⊥�ι� to a numeral [n] gives the empty strategy on R. A solution
is to add some space in the interpretations, and have A ⊆ �ι� → �A∗� and
A⊥⊥ ⊆ �ι� → [A∗] for a formula A. For instance, we can then have λk.k as a
basic context “at type” �ι� (actually �ι� → �ι�).

The definition of realizability involves two additional translations, that we
present now. First, to each formula A, we associate the simple type A∗:

(aτ 
=τ bτ )∗ := ι ⊥∗ := ι (∀xτA)∗ := τ → A∗

(A ⇒ B)∗ := A∗ → B∗ (A ∧B)∗ := A∗ ×B∗

3 Since the model RFam(G) is typed, this would involve typing rules for environments
and stacks.
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Moreover, we map each individual term a ∈ I to a λμ-term a† ∈ ΛT :

xτ † := x (ab)† := a†b† s† := λxyz.xz(yz)

k† := λxy.x 0† := 0 S† := succ

Rec† := λxy.rec(x, y) Pair† := λxy.〈x, y〉 Pi
† := λx.pi(x)

The Realizability Construction. To a formula A, we will associate two sets
||A|| ⊆ �ι� → �A∗� and |A| ⊆ �ι� → [A∗]. These sets will only be defined for
closed formulas. It is convenient (and necessary to deal with CAC in Sect. 7) to
allow parameters in RFam(G). In order to realize the induction axiom, we must
restrict to the total elements of RFam(G). For a simple type τ , the set τt ⊆ [τ ] of
its total elements is defined by induction on τ . Let ιt := {[n] | n ∈ N}, and
using curryfied notation:

(σ → τ)
t

:= {a | ∀b ∈ σt, ab ∈ τt}
(σ × τ)t := {a | p1(a) ∈ σt & p2(a) ∈ τt}

Lemma 6.1. For all a ∈ Iτ
0 , [a

†] ∈ τt.

We now only consider closed formulas with parameters of the appropriate
type in τt (τ ∈ T ). Let ⊥⊥ ⊆ ιt.

First, given A ⊆ �ι� → �A∗�, we define A⊥⊥ ⊆ �ι� → [A∗] as

A⊥⊥ := {a ∈ �ι� → [A∗] | ∀b ∈ A, λk.ak(bk) ∈ ⊥⊥}

If moreover B ⊆ �ι� → �B∗�, we let

A⊥⊥ · B := {λk.〈ak, bk〉 ∈ �ι� → [A∗]× �B∗� | a ∈ A⊥⊥ & b ∈ B}

We now define the sets |A| ⊆ �ι� → [A∗] and ||A|| ⊆ �ι� → �A∗� for a formula A.

We let |A| ⊆ �ι� → [A∗] be ||A||⊥⊥, and define ||A|| ⊆ �ι� → �A∗� by induction
on A as follows:

||⊥|| := {λk.k} ||A ⇒ B|| := |A| · ||B||

||a 
=τ b|| :=

{
∅ if [a†] 
= [b†]
{λk.k} otherwise

||A ∧B|| := {λk.in1(ak) | a ∈ ||A||} ∪ {λk.in2(bk) | b ∈ ||B||}
||∀xτA|| :=

⋃
a∈τ t{λk.〈a, bk〉 | b ∈ ||A[a/x]||}

Realization of Equality and Arithmetic Axioms. We now discuss the
realization of the axioms of PAω.

First, it is easy to see that all equational axioms (including reflexivity) are
realized by the identity:

Lemma 6.2. We have λk.[λx.x] ∈ |a =τ a|. Moreover,

λk.[λx.x] ∈ |k a b =τ a| λk.[λx.x] ∈ |s a b c =τ ac(bc)|
λk.[λx.x] ∈ |Rec a b 0 =τ a| λk.[λx.x] ∈ |Reca b (S c) =τ bc(Reca b c)|

where in each case, individuals a, b, c are in the appropriate τt, σt, ρt.
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The realization of our version of Leibniz’s scheme is obtained by applying
realizers of the first premise to realizers of the second premise.

Lemma 6.3. λk.[λx.λy.yx] ∈ |A[aτ/zτ ] ⇒ ¬A[bτ/zτ ] ⇒ aτ 
=τ bτ |.

For the Arithmetic axioms, it is easy to see that (Sa 
=ι 0) is realized by any
natural number. As expected, the recursor rec( , ) realizes induction.

Lemma 6.4. (i) For all n ∈ N and all a ∈ ιt, we have λk.[n] ∈ |Sa 
=ι 0|.
(ii) λk.[λx.λy.rec(x, y)] ∈ |A[0/x] ⇒ ∀xι(A ⇒ A[Sx/x]) ⇒ ∀xιA|.

Adequacy for Classical Proofs. Adequacy of the realizability interpretation
is proved as usual.

Theorem 6.5. Let Γ,A,Δ with Γ = A1, . . . , An, Δ = B1, . . . , Bm, and such
that FV(Γ,A,Δ) ⊆ {xτ1

1 , . . . , xτk
k }.

From a proof of Γ � A |Δ in PAω one can build a term

x1 : τ1, . . . , xk : τk, y1 : A1
∗, . . . , yn : An

∗ � t : A∗ | α1 : B1
∗, . . . , αm : Bm

∗

such that for all c1 ∈ τ1
t, . . . , ck ∈ τk

t, all a1 ∈ |A1[c/x]|, . . . , an ∈ |An[c/x]|,
and all b1 ∈ ||B1[c/x]||, . . . , bm ∈ ||Bm[c/x]||, we have

λk.[t][c/x][a1k/y1, . . . , ank/yn, b1k/α1, . . . , bmk/αm] ∈ |A[c/x]|

In particular, from a proof of � A| in PAω with A closed, one can build a term
� t : A∗| such that λk.[t] ∈ |A|.

Extraction. Extraction of witnessing programs from realizable (and hence from
provable) Π0

2 statements is performed as usual. We come back on this point in
Sect. 7 (Prop. 7.4) in presence of CAC and Bar-Recursion.

7 Realization of Classical Countable Choice

In this section we discuss the realization of the classical axiom of countable
choice CACι, . Our realizer is based on Berger & Oliva’s variant of Spector’s
Bar-Recursion [4].

Extension of the λμ-Calculus with Bar-Recursion. We extend the set
ΛT with constants for bar-recursion: t, u ∈ ΛΨ ::= . . . | Ψτ (t, u)〈s0, . . . , sn〉,
where n ∈ N and τ ∈ T .

These constants are typed as follows: Γ � Ψτ (t, u)〈s0, . . . , sn〉 : ι |Δ whenever
Γ � t : ι → (τ → ι) → ι |Δ, Γ � u : (ι → τ) → ι | Δ and Γ � si : τ | Δ for all
0 ≤ i ≤ n.

The operational semantics uses some auxiliary terms. We define by induction
on τ the terms � exτ : ι → τ |. Let exι := λx.x, exτ→σ := λx.λ .exσx and
exτ×σ := λx.〈exτx, exσx〉.
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Moreover, given n ∈ N, s0, . . . , sn, t ∈ ΛΨ , we let 〈s0, . . . , sn〉@t be a term
(written using rec) such that for all e, e′ ∈ E, π ∈ Π and m ∈ N,

(〈s0, . . . , sn〉@t, e, 〈(m, e′), π〉) 7
{
(sm, e, π) if m ≤ n

(t, e, 〈(m− (n+ 1), e′), π〉) otherwise

The operational semantics of Ψτ (t, u)〈s1, . . . , sn〉 is given by:

(Ψτ (t, u)〈s0, . . . , sn〉, e, π) 7
(u, e, 〈(〈s0, . . . , sn〉@λ .exτ (t n+ 1λx.Ψτ (t, u)〈s0, . . . , sn, x〉), e), π〉)

The Bar-Recursor in RFam(G). We now define the strategies interpreting Ψτ

in RFam(G). Fix τ ∈ T . First, given a0, . . . , an ∈ [τ ], and b ∈ [ι → τ ], let

〈a0, . . . , an〉@b := [〈x0, . . . , xn〉@y][a0/x0, . . . , an/xn, b/y]

For each m ∈ N, we will define by induction on m a family of strategies (Ψ̃m
n )n∈N.

Each Ψ̃m
n will be in [τ ]n → τ̃Ψ , where [τ ]0 := {U}, [τ ]n+1 := [τ ]× [τ ]n and

τ̃Ψ := [ι → (τ → ι) → ι] → [(ι → τ) → ι]→ [ι]

We let Ψ̃0
n := λ〈x1, . . . , xn〉.⊥τ̃Ψ and

Ψ̃m+1
n := λ〈x1, . . . , xn〉.λb.λc.c•(〈x1, . . . , xn〉@

λ .[exτ ]
•(b• [n+ 1] (λx.Ψ̃m

n 〈x1, . . . , xn, x〉 b c)
◦
))

Given a0, . . . , an ∈ [τ ], we now define a strategy Ψ̃ τ
〈a0,...,an〉 using the CPO struc-

ture on G (and hence on Fam(G)). Note that the family (Ψ̃m
n+1〈a0, . . . , an〉)m∈N

is directed. We let Ψ̃ τ
〈a0,...,an〉 :=

∨
m∈N

Ψ̃m
n+1〈a0, . . . , an〉

and [Ψτ (t, u)〈s0, . . . , sn〉] := Ψ̃ τ
〈[s0],...,[sn]〉[t][u].

Realization of CACι, . We discuss here the realization of CACι,τ using (the
interpretation in ΛΨ ) of the term tCAC build in Sect. 3, where we take suitable
instances of Ψτ ( , )〈. . . 〉 for Bar-Recursion. We let

tτ,ACAC := λz.λc.Ψτ×A∗(t¬¬∃z, λa.c(λx.p1(ax))(λx.p2(ax)))〈〉
where t¬¬∃ := λa.λx.λk.ax(λy.λz.k〈y, z〉)

Proposition 7.1. λk.[tτ,ACAC] ∈
|∀xι(∀yτ (A ⇒ ⊥)⇒ ⊥) ⇒ ∀f ι→τ (∀xιA[fx/y]⇒ ⊥) ⇒ ⊥|.

Contrary to e.g. [3, 4], we do not use the decomposition of CAC as IAC+DNS
discussed in Sect. 3. Rather, we show directly that Bar-Recursion realizes a form
of choice.
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The main point is to decompose the notion of realizability proposed in Sect. 6
w.r.t. the relativization of quantifiers. We first extend the formulas:

A,B ::= . . . | ∀̃xτA | (rτ (a
τ )×A)⇒ B

Hence, in extended formulas, the construction (rτ (a) × A) is only allowed to
appear to the left of an implication. Realizability is extended as follows:

||∀̃xτA|| :=
⋃

a∈τ t ||A[a/x]||
||(rτ (c)×A)⇒ B|| := {λk.〈λk′.casek′{c, ak}, bk〉 | a ∈ |A| & b ∈ ||B||}

Extended formulas and their realizability interpretation rely on ideas introduced
in Krivine’s Realizability [10] (see also [12]). We also extend the mapping ( )

∗
:

(∀̃xτA)
∗
:= A∗ and ((rτ (a)×A) ⇒ B)∗ := τ × A∗ → B∗. The following is the

key for Prop. 7.1. It is shown as usual, see e.g. [3, 4].

Lemma 7.2. Let B such that (B ⇒ ⊥) is an extended formula.
Assume b ∈ |∀xι(∀̃yτ (B ⇒ ⊥)⇒ ⊥)| and c ∈ |∀̃f ι→τ (∀xιB[fx/y]⇒ ⊥)|.
Then λk.Ψ̃B∗

〈〉 (bk)(ck) ∈ |⊥|.

Computational Adequacy and Extraction. For extraction, we rely on the
following property relating the evaluation of λμ-terms with their interpretation
in RFam(G).

Proposition 7.3. (i) If � t : ι| in ΛΨ , then for all n ∈ N we have (t, ε, !) 7
(n, e, !) if [t] = [n].

(ii) Let � t : ι → ι in ΛΨ . For all n,m ∈ N, if λk.[t]〈[n], k〉 = [m] then
(tn, ε, !) 7 (m, e, !).

Extraction of witnessing programs from realizable (and hence from provable)
Π0

2 statements is performed as usual:

Proposition 7.4. From a proof of PAω + CACι, � ∀xι∃yι(a =ι 0) (where
FV(a) ⊆ {x, y}), we can extract a term � t : ι → ι| such that for all n ∈ N, there
is m ∈ N such that (tn, ε, !) 7 (m, e, !) and [a†][[n]/x, [m]/y] = [0].

Proof (sketch). By adequacy, we get u s.t. λk.[u] ∈ |∀xι¬∀yι(a 
=ι 0)|. Let n ∈ N

and fix ⊥⊥ := {[m] | [a†][[n]/x, [m]/y] = [0]}. We thus have λk.[un(λx.x)] ∈ |⊥|.
This implies [un(λx.x)] = [m] with [m] ∈ ⊥⊥. We conclude by Prop. 7.3.(ii). ��

8 Conclusion

We presented a notion of classical realizability for PAω +CAC based on Hyland-
Ong innocent unbracketed games for a simply-typed extension of Parigot’s λμ-
calculus. For PAω, these realizers seem to CPS translate to the same realizers
as obtained by a negative translation from PAω to HAω followed by Friedman’s
translation and a realizability interpretation, as devised in Sect. 3 It is not clear
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whether this extends to the decomposition of CAC as IAC+DNS, because of the
interaction of the CPS translation with Friedman’s trick.

Further works will concern this question, a comparison with [17], where Bar-
Recursion is used in an untyped Classical Realizablity model, as well as trying
to extend the result to non-innocent games (along the lines of [5]), known to
raise problems with Bar-Recursion [3].
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Proofs, Upside Down
A Functional Correspondence

between Natural Deduction and the Sequent Calculus

Matthias Puech

Department of Computer Science, Aarhus University, Denmark�

Abstract. It is well known in proof theory that sequent-calculus proofs
differ from natural deduction proofs by “reversing” elimination rules up-
side down into left introduction rules. It is also well known that to
each recursive, functional program corresponds an equivalent iterative,
accumulator-passing program, where the accumulator stores the contin-
uation of the iteration, in “reversed” order. Here, we compose these re-
marks and show that a restriction of the intuitionistic sequent calculus,
LJT, is exactly an accumulator-passing version of intuitionistic natural
deduction NJ. More precisely, we obtain this correspondence by applying
a series of off-the-shelf program transformations à la Danvy et al. on a
type checker for the bidirectional λ-calculus, and get a type checker for
the λ̄-calculus, the proof term assignment of LJT. This functional cor-
respondence revisits the relationship between natural deduction and the
sequent calculus by systematically deriving the rules of the latter from
the former, and allows us to derive new sequent calculus rules from the
introduction and elimination rules of new logical connectives.

1 Introduction

A typical introductory course to proof theory starts by presenting the two calculi
introduced by Gentzen [9]: first natural deduction, that defines the meaning of
each logical connective by its introduction and elimination rules, and then the
sequent calculus, an equivalent refinement of the latter that makes it easier to
search for proofs. Natural deductions admit a bidirectional reading: introduction
rules are read bottom-up, from the conclusion, and elimination rules are read
top-down, from the hypotheses. Sequent calculus is then presented as a response
to this cumbersome bidirectionality, by turning all elimination subproofs upside
down (fig. 1): introductions are renamed “right rules”, upside-down eliminations
become “left rules”, and they operate directly on formulae in the environment Γ ,
instead of operating on the goal of their premises.

This kind of inversion of control is performed routinely by functional program-
mers: a piece of data traversed recursively might be turned upside down to be
� This work was carried out while the author was at Univ Paris Diderot, Sorbonne
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[Γ ]⏐⏐�E

�⏐⏐I

� A

(a) natural deduction

Id

L

�⏐⏐⏐⏐
Γ

�⏐⏐⏐⏐R

� A

(b) sequent calculus

Fig. 1. From natural deductions to sequent-calculus proofs

traversed iteratively. For instance, a recursive function computing the exponent
tower of a list (fig. 2) can be transformed in a tail-recursive function carrying
an accumulator; only, in this case, the list must be reversed first (because expo-
nentiation is not commutative) and the value for the base case, here 1, must be
passed at the top level. Not only are these two programs equivalent, but one can
always derive the second from the first.

The analogy is even clearer from the other side of the Curry-Howard looking
glass. It is well known since Herbelin’s work [10,11] that a restriction of intu-
itionistic sequent calculus LJ named LJT can be viewed as a type system for the
λ̄- or spine-calculus, a language in which consecutive eliminations are reversed
with respect to the usual λ-calculus, the variable case being accessible at the
top level. Recently, Espírito Santo lifted the restriction [7], and presented two
isomorphic calculi corresponding to full LJ. Both authors posed a pair of calculi,
respectively in natural-deduction and sequent-calculus style, and showed how to
translate a given term from one to the other.

We propose here a method to systematically derive, not a particular proof,
but the inference system of an intuitionistic sequent calculus itself from the rules
of an intuitionistic natural deduction, by means of only off-the-shelf program
transformations, in the style of Danvy and colleagues [1]: take NJ, presented as
a recursive type-checking program for the bidirectional λ-calculus, turn it into
an equivalent accumulator-passing style program, and you will get a type checker
for λ̄-terms, which are notations for LJT proofs. In other words, we show that
LJT is precisely to NJ what tower_acc is to tower_rec. We conclude that, in
the light of functional-programming techniques, we can reinterpret Gentzen’s
discovery of sequent calculus as a “compilation” of natural deduction.

let rec tower_rec = function
| [] → 1
| x :: xs → x ∗∗ tower_rec xs

let tower xs = tower_rec xs

(a) a recursive function

let rec tower_acc acc = function
| [] → acc

| x :: xs → tower_acc (x ∗∗ acc) xs
let tower xs = tower_acc 1 (List.rev xs)

(b) in accumulator-passing style

Fig. 2. From a recursive function to its accumulator-passing equivalent
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In section 2, we present this transformation step-by-step, in OCaml:

– CPS transformation, showing that eliminations are head recursive,
– lightweight defunctionalization, reifying the continuations into spines,
– reforestation, decoupling the checking of a term from its reversal, and intro-

ducing an intermediate data structure: λ̄-terms.

For the sake of conciseness, this transformation is performed in NJ with a re-
stricted set of connectives; in section 3, we show that it is modular, i.e., that it
applies to richer situations, by exhibiting example extensions.

2 The Transformation

2.1 NJ and the Bidirectional λ-Calculus

The starting point of our transformation is a standard type checking algorithm
for NJ proofs of propositions built out of the following connectives (this choice
is discussed in the next section):

A,B ::= A ⊃ B
∣∣ A ∨B

∣∣ A ∧B
∣∣ p

The terms we assign to NJ proofs are not however those of the usual λ-calculus,
but of a bidirectional extension of it [16,3] (fig. 3). Bidirectional typing was
devised initially as a method for partial type inference. The idea is to judge
differently two classes of λ-terms, those checkable (whose type is supposed to be
an input of the type-checking algorithm) and those inferable (whose type can be
synthesized by the algorithm).

This distinction can be reflected back syntactically by stratifying the syntax of
terms (as in, e.g., [14]) into two categories: general terms M , N , whose checking
requires to know their type, and atomic terms R, whose type can be synthesized.
An atomic term is a term, since if we can infer its type, we can check that it
is equal to a given type, hence the coercion from M to R and rule Atom.1
Dually, every term can be made atomic provided we are given its expected type,
hence the typing annotation construct (M : A) and rule Annot. Variables are
inferable since their type can be read off the environment. Eliminations are too,
provided their principal premise is inferable, and its conclusion is a subterm of
it; all other constructs are “only” general terms. Since the λ-abstractions are
checked, they do not require type annotations (rule Lam; this omission was the
original motivation of bidirectional type checking).

This stratification has another interpretation: one can see the bidirectional
calculus as a reorganization of the syntax of the λ-calculus concentrating on
redexes. In the λ-calculus, redexes are the combination of matching introduc-
tions and eliminations. Here, we restrict principal premises of eliminations to

1 Often, you will find this rule restricted to atomic types, e.g., in [3], which ensures
η-long canonicity. We are not concerned by this restriction here.
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M,N ::= λx .M
∣∣ inl(M)

∣∣ inr(M)
∣∣ 〈M,N〉 ∣∣ case R of 〈x .M | x .M〉 ∣∣ R

R ::= R M
∣∣ π1(R)

∣∣ π2(R)
∣∣ x ∣∣ (M : A)

Γ �M ⇐ A Checking

Lam
Γ , x : A �M ⇐ B

Γ � λx .M ⇐ A ⊃ B

Inl
Γ �M ⇐ A

Γ � inl(M)⇐ A ∨ B

Inr
Γ �M ⇐ A

Γ � inr(M)⇐ A ∨ B

Pair
Γ �M ⇐ A Γ � N ⇐ B

Γ � 〈M,N〉 ⇐ A ∧B

Atom
Γ � R⇒ C
Γ � R⇐ C

Case
Γ � R⇒ A ∨ B Γ , x : A �M ⇐ C Γ, y : B � N ⇐ C

Γ � case R of 〈x .M | y . N〉 ⇐ C

Γ � R⇒ A Inference

Var
x : A ∈ Γ
Γ � x ⇒ A

Pil
Γ � R⇒ A ∧B
Γ � π1(R)⇒ A

Pir
Γ � R⇒ A ∧B
Γ � π2(R)⇒ B

App
Γ � R⇒ A ⊃ B Γ �M ⇐ A

Γ � R M ⇒ B

Annot
Γ �M ⇐ A

Γ � (M : A)⇒ A

Fig. 3. The bidirectional NJ/λ-calculus

be other eliminations or variables, creating no redexes, or type annotation.2
Consequently, to construct a bidirectional term with a redex, we must use the
annotation, for instance (λx .M : A → B) N . Conversely, a term that does not
use this construct is canonical; such a term can be seen as a notation for inter-
calations [19]. Note that there are more non-canonical bidirectional terms than
there are equivalent λ-terms [6], since we can always add type annotations, e.g.,
(x M : A ⊃ B) N instead of x M N . Note also that an atomic term has no
more than one direct atomic subterm, since an elimination has no more than
one principal premise; hence, we will sometimes call them chains of elimina-
tions. A (general) term which has a direct atomic subterm, i.e., a coercion R or
an elimination case R of 〈x .M | y . N〉, will be called a full chain.

Figure 4 is a transliteration of this algorithm into OCaml, a metalanguage more
suitable for program transformations. For concision, we use pattern-matching
failure to signal a typing error. Function infer is written in lambda-dropped
2 Note that ∨-eliminations are not allowed as principal subterms of an elimination,

since they could “hide” a redex (a commutative cut). The same remark would apply
to e.g., ⊥ or ∃.
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type a = At | Imp of a × a | And of a × a | Or of a × a
type var = string

type env = (var × a) list
type m = Lam of var × m | Pair of m × m | Inl of m | Inr of m
| Case of r × var × m × var × m | Atom of r
and r = App of r × m | Pil of r | Pir of r | Var of var | Annot of m × a

let rec check env c : m → unit =
let rec infer : r → a = function
| Var x → List.assoc x env

| Annot (m, a) → check env a m; a
| App (r, m) → let (Imp (a, b)) = infer r in check env a m; b
| Pil r → let (And (a, _)) = infer r in a

| Pir r → let (And (_, b)) = infer r in b

in fun m → match m, c with
| Lam (x, m), Imp (a, b) → check ((x, a) :: env) b m

| Pair (m, n), And (a, b) → check env a m; check env b n

| Inl m, Or (a, _) → check env a m

| Inr n, Or (_, b) → check env b n

| Case (r, x, m, y, n), c → let (Or (a, b)) = infer r in
check ((x, a) :: env) c m; check ((y, b) :: env) c n

| Atom r, c → match infer r with c’ when c=c’ → ()

Fig. 4. Initial program, i.e., fig. 3 in OCaml (module Initial)

form, to emphasize that its recursive calls are in the scope of the same environ-
ment env and expected type c. It is only called in non tail-recursive position: its
code begins by recursively descending all the way to the bottom of a chain of
eliminations. Only then does it synthesize the type of the atomic term, “on the
way back”. Alternatively, we could traverse this chain in reverse order, accumu-
lating the synthesized types. It is precisely what we embark on doing.

2.2 CPS Transformation

The first two steps of our transformation could be considered a unique, com-
pound one called “algebraic CPS transform” since its popularization by Danvy
et al. [5,1]. Its goal is to turn the recursive program above—it needs a stack,
implicit in the metalanguage, to store intermediate results—into a deterministic
state transition system, a simpler metalanguage where this stack is reified. Here
however, we only perform this transformation selectively, on function infer but
not on check, since we are only interested in reversing atomic terms.

The first step is to turn every call to infer into a tail-recursive one, by
applying Plotkin’s standard call-by-value CPS transformation [17] (we show only
the modified lines).

let rec check env c : m → unit =
let rec infer : r → (a → unit) → unit = fun r s → match r with
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| Var x → s (List.assoc x env)
| Annot (m, a) → check env a m; s a

| App (r, m) → infer r (fun (Imp (a, b)) → check env a m; s b)
| Pil r → infer r (fun (And (a, _)) → s a)
| Pir r → infer r (fun (And (_, b)) → s b)
in fun m → (* ... *)
| Case (r, x, m, y, n), c → infer r (fun (Or (a, b)) →

check ((x, a) :: env) c m; check ((y, b) :: env) c n)
| Atom r, c → infer r (function c’ when c=c’ → ())

We add an extra functional argument s to infer, which is called with its
result; recursive calls “chain up” the computation to be done at return time.
Consequently, all calls to infer are tail calls. Note the answer type of infer:
it is fixed by the return type of check, which is unit. All calls to infer are
done directly after pattern-matching: the function is head recursive (doing all
the work “on the way back”).

The CPS transformation trades one feature of the metalanguage—the ability
to store intermediate results on a stack—into another—the ability to have func-
tions as first-class values. Yet, in what follows, we map back such a higher-order
program into a first-order one.

2.3 Lightweight Defunctionalization

The second step is a variant of defunctionalization, as showcased by Danvy
and Nielsen [5], which takes a program with first-class functions and returns
an equivalent one where these functions have been reified into purely first-order
data. The idea is to replace every such inner function by a unique identifier
(a type constructor in our case), and all application of a functional variable f

by apply f, where apply is a “dictionary” mapping identifiers to the function
they stand for. Each inner function can have free variables, so each constructor
needs to be parameterized by the values of these free variables. Lightweight
defunctionalization [2] restricts this set of parameters: free variables that are
in scope of both introduction and elimination of functions do not need to be
parameters. In our case, both env and c are “constant” throughout all recursive
calls to infer, and need not be saved in constructors.

We thus introduce the type s of spines3: we call SCase, SAtom, SApp, SPil and
SPir the respective continuations of the previous program. Then we transform
our program accordingly, introducing function apply:

type s =
| SAtom
| SPil of s
| SPir of s
| SCase of var × m × var × m
| SApp of m × s

3 We motivate the choice of this name in section 2.5.
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let rec check env c : m → unit =
let rec apply : s × a → unit = function
| SApp (m, s), Imp (a, b) → check env a m; apply (s, b)
| SPil s, And (a, _) → apply (s, a)
| SPir s, And (_, b) → apply (s, b)
| SCase (x, m, y, n), Or (a, b) →
check ((x, a) :: env) c m; check ((y, b) :: env) c n

| SAtom, c’ when c=c’ → () in
let rec infer : r → s → unit = fun r s → match r with
| Var x → apply (s, List.assoc x env)
| Annot (m, a) → check env a m; apply (s, a)
| App (r, m) → infer r (SApp (m, s))
| Pil r → infer r (SPil s)
| Pir r → infer r (SPir s)

in fun m → (* ... *)
| Case (r, x, m, y, n), c → infer r (SCase (x, m, y, n))
| Atom r, c → infer r SAtom

We uncurried apply on-the-fly for legibility. Note that defunctionalization pre-
serves tail calls: function infer is still tail-recursive.

Because all inner functions transformed stemmed from CPS, s is the type of
reified continuations. Because the original type checker traverses the whole term
structure, these can be seen as the type of zippers [12] or contexts of atomic terms:
a pair (r, s) : r × s determines uniquely an atomic position inside an atomic
term S[R]. CPS and defunctionalization decomposed the recursive process in
two parts: what is done “on the way down” of an atomic term traversal (function
infer), accumulating a continuation s, and what is done “on the way back”,
(function apply), reading off this continuation in reverse order. Since infer was
head recursive, our transformed infer is a simple reversal function that takes an
atom to a spine, and eventually calls apply with this spine. Function apply now
actually performs the type synthesis; the impatient reader can already interpret
this function as the second judgment of fig. 7, but a final step is needed to reach
our target.

2.4 Reforestation

This type checker is a strange hybrid: given a term m, it checks its type until
arriving to a full chain (check), which it reverses into a spine s (infer), which in
turn is type-checked (apply). In the last step, we decouple completely reversal
and checking so that, given a term m, we can first reverse it completely, and
only then check its type. The transformation comprises two reforestation steps.
Reforestation is the inverse of Wadler’s deforestation [20]: instead of eliminating
intermediate data structure for efficiency by “chaining up” function calls, we
reintroduce an intermediate data structure of reversed terms from “chained up”
function calls.
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The first reforestation concerns infer: it “lifts up” the computation done in
its base cases (Var and Annot) outside it, at its call sites. To this end, infer
needs to return an intermediate data structure, that we call a head h, repre-
senting algebraically the computation to be done in these two base cases, each
parameterized by their free variables:

type h =
| HVar of var × s
| HAnnot of m × a × s

A new head function is introduced, that plays the same role as apply in the
defunctionalization step: it maps an “algebraic base case” h to the computation
it stands for. Previous call sites to infer now perform the composition of the
new infer and head functions. It reads:

(* ... *)
let head : h → unit = function
| HVar (x, s) → apply (s, List.assoc x env)
| HAnnot (m, a, s) → check env a m; apply (s, a) in

let rec infer : r → s → h = fun r s → match r with
| Var x → HVar (x, s)
| Annot (m, a) → HAnnot (m, a, s)

(* ... *) in fun m → (* ... *)
| Case (r, x, m, y, n), c → head (infer r (SCase (x, m, y, n)))
| Atom r, c → head (infer r SAtom)

In Wadler’s words, this program is not in “treeless form”, because of these
function compositions. Applying deforestation to it, we would get back the pro-
gram of the last section. The type h of heads represents reversed full chains:
if we were to construct a full chain out of thread and pearls (fig. 5), reversing
it would amount to hold it, not by its top-level node (a Case or an Atom) but
by its bottom node (a Var or an Annot) and letting all nodes hang loose un-
derneath; the whole atomic spine would be reversed, top-level nodes becoming
bottom nodes (SCase and SAtom) and bottom nodes becoming top-level nodes
(HVar and HAnnot).

Interleaved checking and reversal are still not completely decoupled, so we
perform one final reforestation, on function check. Again, we “lift up” the calls
to infer in the base cases (Case and Atom) outside of check, at the top level.
To this end, we introduce the intermediate data structure v of reversed terms,
on the model of m but replacing constructors Case and Atom by a unique VHead
constructor. Since check, head and spine are mutually recursive, so are the final
types v, h and s. Function check is decomposed in two passes, one taking an m

to an intermediate v (rev), and one actually checking the resulting v (check).
The resulting code is shown on fig. 6. For better readability, we renamed infer

into rev_spine, and apply into spine. Again, if we deforest this program, the
intermediate data structure v vanishes, and both passes are merged into one and
we get back the previous type checker.
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Fig. 5. Reversing a full chain into a head

The transformation is now over, and our goal is achieved: the resulting pro-
gram check is the composition of reversal rev and checking check. Checking
is more space-efficient than the original one, because we made function infer

tail-recursive, with an accumulator storing the synthesized type. The top-level
function is observationally equivalent to the original program: we traded stack
space for an intermediate data structure of “reversed” terms.

Theorem 1. Initial.check env c m is defined iff Final.check env c m is defined.

Proof. By composition of the soundness of the transformations.

However, decoupling these two phases offers the opportunity to study the
intermediate data structure unveiled.

2.5 LJT and the λ̄-Calculus

Let us transliterate back data structures v, h and s and functions check, head
and spine into BNF syntax and inference rules, a metalanguage more suitable
for logical interpretation. fig. 7 presents this system4. It is precisely the λ̄-calculus
of Herbelin [10,11], a proof term assignment for LJT. LJT is a restriction of the
sequent calculus LJ, with features of focusing [13].

Reversed terms V contain all introductions, and two “structural” constructs:
variables and type annotations, both attached to a spine S of eliminations.
This spine is terminated by a · (“nil”), or a case construct. When restricted
to its implicative fragment, this calculus is sometimes called a spine calcu-
lus [3]: applications can be viewed as n-ary5, i.e., applied to a list of arguments
4 With two small differences: we inlined type h and function head for compactness,

and lambda-lifted all inner functions.
5 Note that partial application is still possible, since the length of this list can vary

and the return type C in SAtom can be an arrow.
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type v = VLam of var × v | VPair of v × v | VInl of v | VInr of v | VHead of h
and h = HVar of var × s | HAnnot of v × a × s
and s = SApp of v × s | SPil of s | SPir of s | SAtom | SCase of var × v × var × v

let check env c : m → unit =
let rec rev_spine : r → s → h = fun r s → match r with
| Var x → HVar (x, s)
| Annot (m, a) → HAnnot (rev m, a, s)
| App (r, m) → rev_spine r (SApp (rev m, s))
| Pil r → rev_spine r (SPil s)
| Pir r → rev_spine r (SPir s)

and rev : m → v = function
| Lam (x, m) → VLam (x, rev m)
| Pair (m, n) → VPair (rev m, rev n)
| Inl m → VInl (rev m)
| Inr n → VInr (rev n)
| Case (r, x, m, y, n) → VHead (rev_spine r (SCase (x, rev m, y, rev n)))
| Atom r → VHead (rev_spine r SAtom) in

let rec check env c : v → unit =
let rec spine : s × a→ unit = function
| SApp (m, s), Imp (a, b)→ check env a m; spine (s, b)
| SPil s, And (a, _)→ spine (s, a)
| SPir s, And (_, b)→ spine (s, b)
| SCase (x, m, y, n), Or (a, b)→ check ((x, a) :: env) c m; check ((y, b) :: env) c n

| SAtom, c’ when c=c’→ () in
let head : h → unit = function
| HVar (x, s) → spine (s, List.assoc x env)
| HAnnot (m, a, s) → check env a m; spine (s, a) in

fun v → match v, c with
| VLam (x, v), Imp (a, b) → check ((x, a) :: env) b v

| VPair (v, w), And (a, b) → check env a v; check env b w

| VInl v, Or (a, _) → check env a v

| VInr w, Or (_, b) → check env b w

| VHead h, c → head h

in fun m → check env c (rev m)

Fig. 6. Final program, i.e., fig. 7 in OCaml (module Final)

f (M1,M2, . . . ,Mn, ·), in contrast with the usual (((f M1) M2) . . . ) Mn of NJ.
Espiríto Santo [7] speaks of a difference of associativity of application. Generaliz-
ing to our extended fragment, the situation is more subtle: an elimination chain
is piled up in reverse order, and its head construct, a variable or an annotated
term that was buried under eliminations, is brought back at the top level. For
example, the full chain case π1(f x ) of 〈x1 .M1 | x2 .M2〉 is now written with
the head variable f first: f (x (·), π1, case〈x1 .M1 | x2 .M2〉, ·).

As promised, the typing rules are in Curry-Howard correspondence with a
sequent calculus-like system. Like the rules of fig. 3, they come in two judgments;
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V ,W ::= λx . V
∣∣ 〈V ,W 〉 ∣∣ inl(V )

∣∣ inr(V )
∣∣ x (S)

∣∣ (M : A) (S)

S ::= V , S
∣∣ π1, S

∣∣ π2, S
∣∣ case〈x . V | y .W 〉 ∣∣ ·

Γ � V ⇐ A Right rules

VLam
Γ, x : A �M ⇐ B

Γ � λx .M ⇐ A ⊃ B

VPair
Γ �M ⇐ A Γ � N ⇐ B

Γ � 〈M,N〉 ⇐ A ∧B

VInl
Γ �M ⇐ A

Γ � inl(M)⇐ A ∨B

VInr
Γ �M ⇐ B

Γ � inr(M)⇐ A ∨B

HVar
x : A ∈ Γ Γ | A � S ⇐ C

Γ � x (S)⇐ C

HAnnot
Γ �M ⇐ A Γ | A � S ⇐ C

Γ � (M : A) (S)⇐ C

Γ | A � S ⇐ C Focused left rules

SApp
Γ � V ⇐ A Γ | B � S ⇐ C

Γ | A ⊃ B � V , S ⇐ C

SPil
Γ | A � S ⇐ C

Γ | A ∧B � π1, S ⇐ C

SPir
Γ | B � S ⇐ C

Γ | A ∧B � π1, S ⇐ C

SCase
Γ , x : A � V ⇐ C Γ, y : B � W ⇐ C

Γ | A ∨B � case〈x . V | y .W 〉 ⇐ C

SAtom

Γ | C � · ⇐ C

Fig. 7. The LJT/λ̄-calculus [10]

unlike them, no judgment infers a type: both are in checking mode. This fact
is a notable difference with the usual definition of spine-form calculi [3]: their
restriction to negative connectives makes possible to infer the types of spines,
which is impossible when extended with e.g., disjunction. The right rules are
unchanged with respect to fig. 3, except for two new rules: HVar, sometimes
called Focus, which focuses on a particular premise (variable) and checks the
attached spine, and HAnnot, which corresponds to the usual Cut rule. In
“focused mode”, all rules act on a distinguished premise A (the stoup) hence their
names: left rules. Once focused on a premise, these rules oblige us to continue
working on it until we can either close the branch by SAtom (usually called Init)
or by a “polarity switch”, i.e., here when the stoup contains a disjunction. Tracing
the stoup back through the transformations, it corresponds to the accumulator
threaded in spine on fig. 6, which was the returned type of function infer on
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fig. 4. In other words, the focused hypothesis of a left rule in LJT corresponds
to the principal premise of an elimination in NJ.

3 Extensions

Although we chose to start with a reduced set of logical connectives (∧, ∨, ⊃),
the same scheme extends to all connectives of intuitionistic predicate logic: �,
⊥, ∀, ∃, as well as variants of these and related systems.

3.1 Multiplicative Connectives

For instance, taking the multiplicative definition of the conjunction via the
unique elimination:

� A ∧B

[� A] [� B]
...

� C ConjE’� C

leads to the following normal term assignment (showing only the ∧, ⊃ fragment):

M,N ::= λx .M
∣∣ 〈M,N〉

∣∣ let 〈x , y〉 = R in M
∣∣ R

R ::= x
∣∣ (M : A)

∣∣ R M

Note that the let construct is a general term, for the same reason the case
construct was in section 2.1. Applying the same transform, we get the following
term assignment:

V ::= λx . V
∣∣ 〈V , V 〉

∣∣ x (S)
∣∣ (M : A) (S)

∣∣ R
S ::= ·

∣∣ M,S
∣∣ 〈x , y〉.M

where the top-level let gets buried under the chain of eliminations, and the
corresponding checking rule:

ConjL’
Γ , x : A, y : B � M ⇐ C

Γ | A ∧B � 〈x , y〉.M ⇐ C

which is the usual left rule of the multiplicative conjunction. Note that the
premise loses the focus on the hypothesis, just like for disjunction. The same
system was proposed by Herbelin in his PhD thesis [11].

3.2 Modal Logic of Necessity

Pfenning and Davies [15] propose a reconstruction of modal logic in terms of
the Gentzen apparatus. They present the necessity modality �A (denoting the
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necessity for A to be true under no hypotheses) as a connective defined by the
following introduction and elimination rules:

BoxI
Δ; · � A

Δ;Γ � �A

BoxE
Δ;Γ � �A Δ,A;Γ � C

Δ;Γ � C

The environment is split in two sets: Γ and Δ, resp. the true and the necessarily
true assumptions. To use a necessary hypothesis, we add rule:

Meta
A ∈ Δ

Δ;Γ � A

The authors also propose a term assignment for these rules, that we easily make
bidirectional by stratification (again, the ⊃, � fragment):

M ::= λx .M
∣∣ box(M)

∣∣ let box X = R in M
∣∣ R

R ::= (M : A)
∣∣ x ∣∣ X ∣∣ R M

Note the new set of metavariables X referring to necessary hypotheses. Again,
applying our transformation, we get the following reversed syntax:

V ::= λx . V
∣∣ box(V )

∣∣ x (S)
∣∣ X (S) ∣∣ (M : A) (S)

∣∣ R
S ::= ·

∣∣ M,S
∣∣ X.M

The associated rules for the new syntactic constructs are the left and right rules
for necessity, and a focus rule for necessary hypotheses:

BoxR
Δ; · � M : A

Δ;Γ � box(M) : �A

BoxL
Δ, X : A;Γ � M : C

Δ;Γ | �A � X.M : C

FocusM
X : A ∈ Δ Δ;Γ | A � S : C

Δ;Γ � X (S) : C

Seeing the stoup as a non-necessary hypothesis, and erasing all term information,
this system is the sequent calculus proposed by the authors [15].

3.3 Full Sequent Calculus

As we noted previously, LJT is a focused system: it is equivalent to LJ in terms of
provability but not all LJ proofs are represented. Espírito Santo [7] proposes two
term assignments λGtz and λNat for resp. full LJ (without the focusing restriction)
and its corresponding natural deduction. This pair constitutes an interesting test
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bed for the transformation. Let us start from λNat (restricted to the ⊃ fragment,
but easily extensible):

M ::= x
∣∣ λx .M ∣∣ M [x/R]

R ::= (M : A)
∣∣ R M

It generalizes the previous bidirectional calculus by replacing the coercion from
M to R by a substitution M [x/R].6 This construct corresponds to the cut rule:

Cut
Γ � R ⇒ A Γ, x : A � M ⇐ B

Γ � M [x/R]⇐ B

Annot
Γ � M ⇐ A

Γ � (M : A) ⇒ A

Transforming the corresponding type checker amounts to turn eliminations R
upside down, putting annotation nodes at the top level and substitution nodes
at the bottom:

V ::= x
∣∣ λx . V ∣∣ (V : A) (S)

S ::= V , S
∣∣ x . V

Like in λ̄, the annotation (M : A) becomes a “focusing cut ” (V : A) (S); its “nil”
construct · however is replaced by a new binder x .M that allows losing the focus
on the stoup:

HAnnot
Γ � V ⇐ A Γ | A � S ⇐ B

Γ � (V : A) (S)⇐ B

Unfocus
Γ, x : A � M ⇐ B

Γ | A � x .M ⇐ B

It is precisely the calculus λGtz of Espírito Santo.

4 Conclusion

We presented a modular, semantics-preserving program transformation turning
a logical system presented in natural-deduction style into one in sequent-calculus
style. It achieves the systematic and simultaneous derivation of the “reversed”
term structure, the type checker (and thus the sequent rules) and the translation
function from one to the other. In particular, starting from a bidirectional pre-
sentation of the λ-calculus, we ended up with the composition of a reversal func-
tion, taking λ-terms to λ̄-terms, and a type checker for λ̄-terms, in accumulator-
passing style. The accumulator corresponds to the stoup, and is used to check
spines. Spines are contexts of atomic terms, which are checked contrarily to pre-
vious presentations, and were evidenced by CPS and defunctionalization. These
two steps can be seen as a form of (partial) compilation, since the computation
6 Also, a variable is a general, checked term, and not an atom as before; this shallow

difference only forces to put more type annotations to make it a bidirectional checking
algorithm.
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on spines is more direct than on atomic terms. Reforestation showed how spines
“plug into” reversed terms, and evidenced the final structure of λ̄-terms.

Composing CPS and defunctionalization has many well-documented applica-
tions: it turns evaluation functions into abstract machines [1], and exhibits the
zipper [12], or one-hole context of a traversal [5]. Combined with deforestation,
it turns small-step into big-step semantics [4]. This scheme was recently used to
check types “by reduction” [18], but without the purpose of proof-theoretic inter-
pretation. To the best of our knowledge, the present work is the first application
of these techniques to proof theory.

One could rightfully argue that our starting point, the bidirectional λ-calculus,
is only a notation for an extension of NJ, and is already an important step toward
LJ. Indeed, it would be desirable to explain this extension similarly in terms of a
systematic program transformation. Besides, we showcased the behavior of our
transformation on a few known pairs of calculi; a natural continuation of this
work will be to apply it to other logics, in particular to get a better understand-
ing of focusing [13]. For instance, LJQ [11] is dual to LJT in that its focus is
biased toward the conclusion, and not the hypotheses, and features a call-by-
value semantics where LJT reduces in call-by-name. Still, we do not know what
natural-deduction style calculus corresponds to LJQ 7; applying our transforma-
tion backwards could help finding out. Finally, another interesting application
concerns classical logic. In natural deduction it usually takes the form of a control
operators (call/cc), whereas it appears as a facility to switch between multiple
conclusions in sequent calculus. Will our transformation turn one presentation
into the other? Answering these questions will require an analysis of bidirectional
and canonical forms in these logics, that we leave for further investigation.
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