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Abstract. Over the last decade we have witnessed the rapid prolifera-
tion of online networks and Internet activity. Such activity is considered
as a blessing but it brings with it a large increase in risk of computer mal-
ware — malignant software that actively spreads from one computer to
another. To date, the majority of existing models of malware spread use
stochastic behavior, when the set of neighbors infected from the current
set of infected nodes is chosen obliviously. In this work, we initiate the
study of adversarial infection strategies which can decide intelligently
which neighbors of infected nodes to infect next in order to maximize
their spread, while maintaining a similar “signature” as the oblivious
stochastic infection strategy as not to be discovered. We first establish
that computing an optimal and near-optimal adversarial strategies is
computationally hard. We then identify necessary and sufficient condi-
tions in terms of network structure and edge infection probabilities such
that the adversarial process can infect polynomially more nodes than
the stochastic process while maintaining a similar “signature” as the
oblivious stochastic infection strategy. Among our results is a surpris-
ing connection between an additional structural quantity of interest in
a network, the network toughness, and adversarial infections. Based on
the network toughness, we characterize networks where existence of ad-
versarial strategies that are pandemic (infect all nodes) is guaranteed, as
well as efficiently computable.

1 Introduction

Over the last decade we have witnessed the rapid proliferation of online net-
works and Internet activity. While such a proliferation is considered by many as
a blessing, it brings with it an increase in risk of computer malware — malig-
nant software that actively spreads from one computer to another. Indeed, a long
thread of research has been devoted to understanding the spread of malicious
malware such as computer viruses, computer worms and other malignant forms
of computer infection cf. [3, 16, 17, 19, 21]. However, such work has, so far,
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only considered oblivious malware propagation, where the spreading malware
does not behave strategically in its choice of which nodes to spread to. What
now is a standard way of containing the spread of malware is the control of the
amount of information that spreads from one computer to others [3, 19]. This
is also known as throttling. Under rate control, a malware that does not want
to get detected spreads obliviously to a small set of neighbors while abiding by
the rate constraint. Inspired by this fact, in this work we initiate the study of
intelligent malware propagation, where the spreading malware can strategically
decide which neighboring nodes to infect under rate constraints, in order to max-
imize the total number of infections over time. Each edge (u, v) is equipped with
an edge weight p(u, v) representing the amount of a typical and normal com-
munication between the two nodes u and v. Typical examples of such networks
include email networks, instant messaging networks, and online social networks,
among others. Under the rate constraint, a malware spreading from an infected
node u can infect at most a number of nodes that is not more than the typical
“signature” of communication, namely,⎡

⎢⎢⎢
∑

{v neighbor of u}
p(u, v)

⎤
⎥⎥⎥
.

More generally, we will demand that for any subset X , the malware must not
infect more nodes than the amount of traffic involving X permits it to, namely,⎡

⎢⎢⎢
∑
u∈X

∑

{v neighbor of u}
p(u, v)

⎤
⎥⎥⎥
.

In particular, such malware can use the structure of the network in order to
choose which of the neighboring computers to infect from a newly infected node.
We initiate a detailed comparison of the behavior of an adversarial infection,
that can use the network structure, to that of an oblivious stochastic one, that
spreads according to the standard Independent Cascades diffusion model. In
order to defend against future malware it is of primary importance to first analyse
the adversarial infections strategy and to contrast its behavior with that of the
oblivious stochastic strategy.

We would like to further emphasize the need to understand the behavior of
adversarial infections with the following example, comparing the behavior of a
well-planned adversarial infection to that of a simple heuristic. Consider a path
connected at one of its ends to the root of a two level binary tree. Set all edge
weights to 1/2. A greedy strategy may consist, for each newly infected node
u, to infect its ru neighbors of highest degree, where ru is the rate constraint
of u. However, such a strategy would miss the path altogether. In contrast, an
adversary with a global knowledge of the graph can plan ahead and infect the
whole path, by starting from the root of the tree but spending its budget to
infect the next node on the path (and the extra budget to infect part of tree).
While greedy would infect only O(1) nodes, a well-planned adversary would
infect n−O(1) nodes.
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1.1 Our Results

We first show that the problem of computing an optimal and near-optimal ad-
versarial strategies under typical constraints is computationally hard. We then
identify necessary and sufficient conditions in terms of network structure and
edge infection probabilities such that the adversarial process can infect poly-
nomially more nodes than the stochastic process while maintaining a similar
“signature” as the oblivious stochastic infection strategy. Our first set of results
show that when the minimum weighted graph cut value is Ω(logn) (on a network
with n nodes), the standard oblivious stochastic infection strategy can essentially
infect all nodes. Thus the interesting regime to analyze is when the minimum
weighted cut value is o(log n). In this regime we demonstrate that the optimal
adversarial infection can be pandemic (namely infect all nodes) while the obliv-
ious stochastic strategy infects, in expectation, a constant number of nodes. We
then identify a surprising connection between an additional structural quantity
of interest in a network, the network toughness, and adversarial infections. Based
on the network toughness, we characterize conditions guaranteeing the existence
of a pandemic adversarial strategy as well as its efficient computation.

1.2 Related Work

Most work on computer malware has been focused on virus and worm propaga-
tion [17, 19]. The vast majority of the literature has focused on modelling and
simulations of the behavior of a stochastic malware which spreads according to
the Independent Cascades model or its extension to repeated infection attempts,
the Susceptible-Infected model [7, 19–22]. However, none of these papers con-
sider intelligently-designed malware that can choose which nodes to infect based
on some prior computation or knowledge of the network.

Another line of research that we would like to mention is the one devoted to
error and attack tolerance in online networks; see the seminal work of [1] and
its long line of follow-up research such as [9]. The main thread of research is
devoted to understanding how attacking and removing, in an unweighted graph,
nodes of high-degree results in more parts of the network becoming disconnected
than attacking and removing the same number of nodes, obliviously at random.
In contrast to this work, we are interested in analyzing cascading effects that
spread through the network, rather than a single attack and removal of nodes
(and edges). Furthermore, our main interest is in coordinated attacks that are
strategically designed, and so the type of node first targeted is chosen as to
maximize a global effect in a provable way (resulting in infecting as many nodes
as possible) rather than based on local heuristics (choosing high degree nodes).

1.3 Outline

In section 2 we provide a detailed definition of what comprises an adversarial
infection and the description of the behavior of the oblivious stochastic infection
strategy. In section 3 we discuss the computational complexity of computing an
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optimal, as well as near optimal, adversarial infection strategies. In section 4 we
provide necessary conditions in terms of the network cuts such that the adver-
sarial process can infect polynomially more nodes than the stochastic process.
In section 5 we provide necessary and sufficient conditions for the existence of
a pandemic adversarial infection strategy and provide efficient algorithms for
computing such a strategy. Finally, in section 6 we summarize our contributions
and list several intriguing directions for future research.

2 Model and Preliminaries

The Input Network. We are given an undirected, edge-weighted network G =
(V,E, p) on |V | = n nodes, |E| = m edges and an edge weight function p : E →
(0, 1]. We think of the weight p(u, v) as the average amount of communication
between neighbors u and v over a typical period of time. We will be particularly
interested in the behavior of adversarial infections and the independent cascade
model on the input network.

Adversarial Diffusion. An adversary strategy A is a rooted tree TA, rooted at its
seed node of choice (namely, the source of infection), that spans some arbitrary
subset S of nodes. Each node u in TA is responsible for infecting its children in
TA. For any subset X of nodes in TA, let

infect(A,X) = {v ∈ TA: v’s parent in TA belongs to X}.
We say that an adversary strategy A (with its rooted tree TA) infects a set S
of nodes, while obeying the first order constraints, if its rooted tree TA spans S
such that for every subset X ⊆ S of nodes we have,

|infect(A,X)| ≤
⎡
⎢⎢⎢
∑
u∈X

∑
v:(u,v)∈E

p(u, v)

⎤
⎥⎥⎥
.

Namely, the number of node infections attributed to X is constrained by the
ceiling of the total weight adjacent to the set X .

In this paper we only consider adversarial infections that obey the first-order
constraints; unless stated explicitly otherwise, an adversary would be assumed
to obey the first-order constraints. We will call the problem of finding a first-
order constrained adversarial infection that maximizes number of infections the
adversarial infection problem1. An adversarial strategy will be called pandemic
if it infects all nodes.

Independent Cascades Diffusion Model. The Independent Cascades (IC) model
of diffusion was formalized by Kempe et al. [13] and is by now a standard
model to describe infection propagation in social and other contact networks [10].

1 It is not hard to see that the optimal adversary is deterministic: any stochastic
adversary is a convex combination of trees so one can take the best one w.l.o.g.
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The IC model can be thought of as a discrete version of the known Susceptible-
Infected-Removed (SIR) model. The IC diffusion spreads via a random process,
beginning at its seed node of choice from V . The process proceeds in rounds. In
each round, a node u that got infected in the previous round gets a chance to
subsequently infect each healthy neighbor v, with probability equal to the weight
of the edge (u, v), namely p(u, v). The node u becomes then recovered and does
not spread the virus any further. If multiple nodes try to infect a new node in
the current round, then each succeeds, independently, according to the corre-
sponding edge weight. In this paper, we will focus on the the IC process only on
undirected graphs. Throughout the text, we shall also refer to the stochastic in-
fection strategy, as defined by the IC process, as the oblivious stochastic strategy
or sometime as the stochastic diffusion.

Quantities of Interest. All graphs considered in the paper are undirected graphs.
Throughout our analysis we will frequently refer to the minimum weighted cut
value and maximum weighted cut value in the weighted input graph: the mini-

mum (resp. maximum) weighted cut value, denoted Φmin
G (resp. Φmax

G ), is the
value of the cut (S, S) that minimizes (resp. maximizes) the sum

ΦG(S) :=
∑

{u∈S,v∈S,(u,v)∈E}
p(u, v) .

When the identity of G is clear, we will often omit the subscript G.
We denote by |S| the size of a set S. We denote the degree of a node u in a

graph G by dG(u).
All logarithms in the paper are in base 2.

3 Hardness of Maximizing Adversarial Infection

In this section, we show that in general, the adversarial infection problem is hard
to approximate under first order constraints.

Theorem 1. The adversarial maximization problem is 2(log
1−ε n−1)-hard to ap-

proximate, for any ε > 0, unless NP ⊆ DTIME(2O(log1/ε n)).

Proof. The proof is by reduction from the longest path problem on undirected
graphs. Let G(V,E) be the input graph for the longest path problem. We create
an instance of the adversarial infection problem from G as follows. Starting with
the graphG, we attach (n−dG(u)) auxiliary vertices to each vertex u ∈ V . Assign
a weight of 1/n to each edge in the resulting graph. Let H be the resulting graph.

Note that any infection strategy in H obeying the first-order constraints must
be a path, since the total incident weight on any node in H is at most 1 (and
is exactly 1 for nodes from G). If the path length is � in H it translates to a
path of length at least � − 2 in G (which is at least �/2 for � ≥ 4), and a path
of length � in G translates to an infection strategy following a path of length �
in H . The longest path problem is 2(log

1−ε n)-hard to approximate in undirected

graphs, unless NP ⊆ DTIME(2O(log1/ε n)) [12], and the result easily follows.
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We next show that the problem remains hard to approximate to within any
constant factor even when the input instances are restricted to regular graphs
with uniform infection probabilities.

Theorem 2. The adversarial maximization problem does not admit a constant
factor approximation in undirected regular graphs with uniform edge weights,
unless P = NP.

Proof. Let G be an undirected k-regular graph, k ≥ 2 with uniform infection
probability of 1/k on edges. Now the problem of finding a good strategy obeying
first-order constraints becomes exactly the problem of finding a long path in
the graph. Thus the problem of maximizing adversarial infection is as hard to
approximate as the longest path on regular graphs. Even in 3-regular Hamilto-
nian graphs, the longest-path problem is known not to have any constant factor
approximation, unless P = NP [5].

4 A Cut-Based Analysis

We next proceed to exploring networks where an adversarial infection can infect
polynomially more nodes than the oblivious stochastic strategy. We will show
that two important parameters in understanding this goal is the value of the
minimum weighted cut, Φmin

G , and the value of maximum weighted cut, Φmax
G , in

the input graph G.
We first show that if Φmin

G is at least logarithmically large the oblivious
stochastic strategy is essentially pandemic.

Theorem 3 (Theorem 1 of [2]). Let G = (V,E, p). For every positive constant
b, there exists a constant c = c(b) > 0 so that if Φmin

G ≥ c log(n), then the
probability that a realization of G is disconnected, where each edge (u, v) ∈ E is
kept with probably p(u, v), is at most 1

nb .

By the theorem we conclude,

Corollary 1. For c large enough, the oblivious stochastic strategy would infect
at least n− o(1) nodes in expectation.

Thus in this parameter regime, an improvement using adversarial infection strate-
gies would be non-significant over the oblivious stochastic strategy. We note,
however, that having a logarithmically large minimum cut is a quite stringent
condition; in particular, any graph that has even one node with degree of size
o(log(n)) would violate the minimum cut condition. It is thus of high interest
to analyze the regimes when this condition is violated. For this purpose we next
show that no adversarial strategy can infect more than Θ(Φmax

G ) nodes, and
that when Φmax

G is large enough, a polynomial gap between the adversary to the
oblivious stochastic strategy is feasible.

Theorem 4. For any graph G no adversarial infection strategy obeying first-
order constraint, as well as the oblivious stochastic strategy, can infect more
than Θ(Φmax

G ) nodes.
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On the other hand, for any value n there exists a graph G on n nodes with
Φmax
G = Θ(n) such that the optimal adversarial strategy obeying first order con-

straint infects Θ(Φmax
G ) nodes while the oblivious stochastic strategy infects only

O(1) nodes in expectation. Moreover, the gap result holds on graphs where the
edge infection probability is uniform and a constant (independent of n).

Proof. To prove the first part we make use of the following known fact that can
be easily proven using the probabilistic method.

Fact 1. For any weighted undirected graph G = (V,E, p),

Φmax
G ≥ 1/2

∑
(u,v)∈E

p(u, v) .

Now consider any adversarial infection strategy A, and let TA be its tree of
infections; let S be the set of nodes infected. Ignoring the root of TA, either the
total number of nodes at the odd levels of TA must be at least (|S|− 1)/2 or the
total number of nodes at the even levels of TA must be at least (|S|−1)/2. Since
all infections at odd levels have to be attributed to nodes at the even levels (and
vice versa), if the tree TA conforms to first-order constraints, then we must have

(|S| − 1)/2 ≤ �2Φmax
G �.

Since this holds for any choice of tree TA (and hence any adversarial strategy),
the claim follows for any adversary. A simple argument shows the claim for the
oblivious stochastic process: any node u can infect at most

∑
v:(u,v)∈E p(u, v) new

nodes in expectation, and thus the total number of infections is, in expectation,
at most ∑

u∈V

∑
v:(u,v)∈E

p(u, v) = Θ(Φmax
G ).

We now prove the other part of the theorem. To show this we need to provide
a graph G on n nodes such that the optimal adversary can infect Φmax

G = Θ(n)
nodes while the oblivious stochastic strategy infects O(1) in expectation.

For simplicity of exposition assume that n is even. Take a cycle on n/2 nodes
and set each edge probability on the cycle to be 1/2. Now attach to each node
ui on the cycle, an auxiliary nodes vi using also an edge of probability 1/2. Note
that by fact 1, the value of the maximum weighted cut Φmax

G is Ω(n). Clearly,
Φmax
G ≤ |E| = n+ 1 and so Φmax

G = Θ(n), as required.
The adversary chooses all n nodes on the cycle (infection tree is a path), and

no auxiliary nodes. This satisfies first-order constraints because each node ui has
an infection budget of at least 1 and it needs to infect exactly one node.

However, for any choice of the seed vertex, a stochastic strategy obtains only
O(1) nodes in expectation. To see this note that the infection survives for k steps
on the cycle with probability at most 2/2k and so it can infect, in expectation,
at most

∑
k 8k/2

k = 16 = O(1) nodes.
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5 Pandemic Infections

In this section, we further explore the setting where the value of the minimum
weighted cut is o(logn). As we have seen earlier, in this setting the gap between
an adversarial infection (obeying first-order constraints) and oblivious stochastic
diffusion can be as large as Ω(n). We obtain here sufficient and necessary condi-
tions for an adversarial infection to become pandemic (i.e., infect all nodes) by
relating existence of such strategies to the notion of toughness of the graph.

The notion of graph toughness was first introduced in order to study condi-
tions for the existence of Hamiltonian cycles in graphs, see [4]. Given an undi-
rected graph G = (V,E) and a subset of nodes S, let |S| be the size of S and
cG(S) be the number of connected components in the graph induced on V \ S
obtained from G by deleting all nodes in the set S. The toughness of the graph
G, where G is not the complete graph, denoted by τ(G) is defined as follows

τ(G) = min
S⊂V, cG(S)>1

|S|
cG(S)

. (1)

The toughness of the complete graph is defined to be infinity. Toughness of a
cycle, on the other hand, is 1 since by deleting any subset of k nodes, we can
create at most k connected components, and removing two nodes with no edge
between creates exactly two components. As another example, it is easy to verify
that the toughness of a tree with maximum degree Δ (and at least three nodes)
is 1/Δ. It is also easy to verify that the toughness of a graph is positive if and
only if the graph is connected.

There is a vast literature on the connections between graph toughness and
spanning trees; for a recent survey see [15]. In what follows, we will show a close
connection between existence and algorithms for adversarial infections that are
pandemic to the toughness of the underlying connections graph.

We start by developing sufficient conditions under which there exists a span-
ning tree that can be exploited by an adversary obeying the first-order con-
straints.

Theorem 5. For any connected, weighted undirected graph G = (V,E, p) such
that

∀u ∈ V,
∑

v:(u,v)∈E

p(u, v) ≥
⌈

1

τ(G)
+ 1

⌉
(2)

there is an adversary strategy that infects all nodes in G and obeys the first-order
constraints. Moreover, assume that

∀u ∈ V,
∑

v:(u,v)∈E

p(u, v) ≥
⌈

1

τ(G)
+ 2

⌉
. (3)

Then, there is a polynomial-time computable adversary strategy that infects all
nodes in G and obeys the first-order constraints.
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Proof. By Win’s Theorem [18], every undirected graph G with toughness τ(G)
has a spanning tree with maximum degree bounded by d = �(1/τ(G) + 2)�. Let
T be such a tree. Root this tree at a leaf node s and let this node be the seed.
The adversary strategy is to infect all nodes of G, starting with node s, by using
the edges of T . Now no node is responsible for infecting more than d−1 children
and so the first-order constraints are obeyed: for each node u, its degree minus
one is at most �(1/τ(G)+2)�−1 = �(1/τ(G)+1)� ≤ ∑

v:(u,v)∈E p(u, v). To show
the other part of the theorem we make use of an algorithmic result by Fürer and
Raghavachari [11] that states that if there exists a spanning tree of degree at
most Δ than one can construct in polynomial time a spanning tree of degree at
most Δ+ 1. The assertion of the theorem then follows similarly to the previous
case, where now for each node u, �1/τ(G) + 2� ≤ ∑

v:(u,v)∈E p(u, v).

Example 1. To illustrate the theorem, consider the following example. Take a
random graph G ∈ G(n, p) with p ≥ 2 logn/n. With probability of 1 − o(1),
G contains a Hamiltonian cycle (see for instance [14]). So τ(G) ≥ 1, and thus
to apply Theorem 5, all we need is that for every node u,

∑
v:(u,v)∈E p(u, v) is

at least 2. By the Chernoff bound, all vertex degrees in G are at least pn/2
with high probability. Hence by setting p(u, v) = 4/pn on each edge (u, v), we
satisfy the conditions of Theorem 5, and can conclude existence of an adversarial
strategy that leads to pandemic infection. Note that as network degrees increase
in this example, smaller and smaller edge infection probabilities suffice to get
adversarial pandemic infection.

Discussion:
We note that if we slightly weaken the condition stated in Theorem 5, the result
no longer holds. Specifically, if we allow just O(1) nodes to violate condition
(2) by only a slack of 1, that is, allow O(1) nodes u with

∑
u:(u,v)∈E p(u, v) =

�(1/τ(G)�, then for infinitely many toughness values there will exist infinitely
many networks such that the optimal adversarial strategy is not pandemic
(namely, infects all nodes). To see this, let k ≥ 2 be an integer and consider
the following family of graphs Hn,k, where n ≥ 3k(k + 3) + 3 is integral. Take
three nodes v1, v2, v3 as connect them as a clique. In addition create 3k vertex-
isolated cliques, indexed C(i, j) for 1 ≤ i ≤ 3, 1 ≤ j ≤ k, each on (n − 3)/3k
nodes. To complete the construction connect each node vi to some node in each
clique C(i, j) (“a representative”), where 1 ≤ j ≤ k. Thus the degree of each
node vi in the construction is k + 2, in addition to being connected to k repre-
sentatives it is also connected to the other vi nodes. Set all edge weights to 1,
except for each i the edges connecting vi to the cliques C(i, 1) and C(i, 2); the
weight on each of these edges is set to 1/2.

We now observe a few simple facts about the graph Hn,k. First, its toughness
is 1/(k+1). Second, it has a spanning tree (tree spanning all graph nodes). Third,
in each of its spanning trees each vi must be connected to a representative from
each C(i, j) for 1 ≤ j ≤ k. In addition, one of the vis must be connected to the
two other vis (otherwise the spanning tree is disconnected), and so its degree in
the spanning tree must be k+2. Last, except for the three vis, the sum of edge-
weights touching any node is at least k + 2 (as n−3

3k ≥ k + 3 condition (2) holds
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for all clique nodes). However, the sum of edge-weights touching a vi, namely∑
u:(vi,u)∈E p(vi, u), is 2+ k− 2+ 1/2 · 2 = k+1. Thus the degree of each of the

vis in a tree representing an adversarial infection can be at most k+1, which is
strictly smaller than k+2, and so any such adversary cannot infect all nodes in
the graph. In fact, a constant fraction of the graph nodes will not be infected —
all the nodes belonging to one of the cliques C(i, j). 
�

We now show that for a given value of the toughness τ , there exist infinitely
many graphs such that the stochastic diffusion can only infect O(τ) nodes, for
τ ≥ 4. In light of theorem 5, on such graphs the gap between the stochastic
diffusion and the adversarial diffusion is large.

Theorem 6. For any value of the toughness τ ≥ 4 and positive integer � ≥ 3,
there exists a weighted undirected graph G = (V,E, p) on n = τ� nodes and
toughness τ , such that condition (2) is satisfied (hence the adversarial process
can infect all n nodes), yet the stochastic diffusion infects only O(τ) nodes in
expectation.

Proof. Take a cycle with � nodes, say, v0, v1, ..., v�−1. Now replace each vi by a
clique Ci on τ ≥ 4 nodes. Now for each i, connect vertices in clique Ci to vertices
in Ci+1 by a complete bipartite graph. Note that the total number of nodes n
equals τ�. Also, one can verify that the toughness of this modified cycle is τ ,
since the toughness of a simple cycle is 1.

Assign a probability of 1 to edges inside each Ci, and probability 1
2τ2 to

edges between the cliques. Note that the probability that any edge between two
adjacent cliques gets realized is less than 1/2. Indeed, the probability that no
edge between two adjacent cliques gets realized is

(1 − 1/(2τ2))τ ≥ 1− 1

2τ
> 1/2 ,

where we used the inequality (1+ x)r ≥ 1+ rx, for x ≥ −1 and r ∈ R \ (0, 1). In
particular, the behavior of the stochastic diffusion on this network is essentially
as it is on a cycle with edge probability less than 1/2 that was analyzed in the
proof of Theorem 4; the only difference is that now each node on the cycle infects
as well all the nodes in its clique. Thus the stochastic diffusion infects at most
O(τ) nodes in expectation. Finally, condition (2) trivially holds since τ ≥ 4 and
so each vertex has a probability mass of at least 3 incident on it, while 1/τ ≤ 1.

6 Conclusions and Future Work

In this work we initiated the study of adversarial infection strategies which can
decide intelligently which nodes to infect next in order to maximize their spread,
while obeying first-order constraints as to not get discovered. We have demon-
strated that a well-planned adversarial infection can substantially increase the
number of nodes infected with respect to the standard Independent Cascades
infection strategy. We designed necessary and sufficient conditions to under-
stand when this is possible. Based on novel connection to the network toughness,
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we characterize networks where existence of adversarial strategies that are pan-
demic (infect all nodes) is guaranteed, as well as efficiently computable.

Our results have focused on first order constraints: keeping the traffic involving
any set X lower than the ceiling of its expected value, namely,

⎡
⎢⎢⎢
∑
u∈X

∑
v:(u,v)∈E

p(u, v)

⎤
⎥⎥⎥
.

An interesting future direction is to consider flow constraints where the number
of infections caused by any set X is at most the flow leaving X , namely,

⎡
⎢⎢⎢
∑
u∈X

∑
v �∈X:(u,v)∈E

p(u, v)

⎤
⎥⎥⎥
.

Moreover, it would be interesting to consider directed graphs as well.
Another interesting avenue for further exploration is to analyze the effective-

ness of vaccination strategies designed for controlling stochastic epidemics in
limiting the spreading of the adversarial epidemic. In particular, one could con-
sider immunization strategies such as immunizing high degree nodes or acquain-
tance immunization based on the immunization of a small fraction of random
neighbors of randomly selected nodes. Such strategies are known to be effective
at controlling stochastic epidemics [6, 8] but might be ineffective containing the
first-order constrained adversarial infection. To demonstrate this, let us go back
to the example of the introduction, namely a path connected at one of its ends
to the root of a two-level binary tree. Consider vaccinating the node with the
highest weighted degree, which is in this example the root of tree. Vaccinating
the root of the tree will not help in containing adversarial infections, which would
still infect n − O(1) nodes (the path nodes). Yet vaccinating the middle node
of the path is much better for containment — yielding at most n/2 + O(1) in-
fected nodes by an adversarial epidemic. It is therefore interesting to understand
and develop vaccination schemes that aim to minimize the number of infections
under the adversarial setting.
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