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Abstract. The Internet has emerged as perhaps the most important
network in modern computing, but rather miraculously, it was created
through the individual actions of a multitude of agents rather than by a
central planning authority. This motivates the game theoretic study of
network formation, and our paper considers one of the most-well studied
models, originally proposed by Fabrikant et al. In it, each of n agents
corresponds to a vertex, which can create edges to other vertices at a cost
of α each, for some parameter α. Every edge can be freely used by every
vertex, regardless of who paid the creation cost. To reflect the desire to
be close to other vertices, each agent’s cost function is further augmented
by the sum total of all (graph theoretic) distances to all other vertices.

Previous research proved that for many regimes of the (α, n) param-
eter space, the total social cost (sum of all agents’ costs) of every Nash
equilibrium is bounded by at most a constant multiple of the optimal
social cost. In algorithmic game theoretic nomenclature, this approxima-
tion ratio is called the price of anarchy. In our paper, we significantly
sharpen some of those results, proving that for all constant non-integral
α > 2, the price of anarchy is in fact 1+ o(1), i.e., not only is it bounded
by a constant, but it tends to 1 as n → ∞. For constant integral α ≥ 2,
we show that the price of anarchy is bounded away from 1. We provide
quantitative estimates on the rates of convergence for both results.

Keywords: Network creation, price of anarchy, algorithmic game
theory.

1 Introduction

Networks are of fundamental importance in modern computing, and substantial
research has been invested in network design and optimization. However, one of
the most significant networks, the Internet, was not created “top-down” by a
central planning authority. Instead, it was constructed through the cumulative
actions of countless agents, many of whom built connections to optimize their
individual objectives. To understand the dynamics of the resulting system, and
to answer the important question of how much inefficiency is introduced through
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the selfish actions of the agents, it is therefore natural to study it through the
lens of game theory.

In this paper, we focus on a well-studied game-theoretic model of network
creation, which was formulated by Fabrikant et al. in [1]. There are n agents,
each corresponding to a vertex. They form a network (graph) by laying down
connections (edges) between pairs of vertices. For this, each agent v has an
individual strategy, which consists of a subset Sv of the rest of the vertices that
it will connect to. The resulting network is the disjoint union of all (undirected)
edges between vertices v and vertices in their Sv. Note that in this formulation,
an edge may appear twice, if v lays a connection to w and w lays a connection to
v. Let α be an arbitrary real parameter, which represents the cost of making a
connection. In order to incorporate each agent’s desire to be near other vertices,
the total cost to each agent is defined to be:

cost(v) = α|Sv|+
∑

w

dist(v, w) ,

where the sum is over all vertices in the graph, and dist(v, w) is the number of
edges in the shortest path between v and w in the graph, or infinity if v and w
are disconnected. The social cost is defined as the total of the individual costs
incurred by each agent. This cost function summarizes the fact that v must pay
the construction cost for the connections that it initiates, but v also prefers to
be graph-theoretically close to the other nodes in the network. This model also
encapsulates the fact that, just as in the Internet, once a connection is made, it
can be shared by all agents regardless of who paid the construction cost.

The application of approaches from algorithmic game theory to the study of
networks is not new. The works [2–7] all consider network design issues such as
load balancing, routing, etc. Numerous papers, including [8–14] and the surveys
[15, 16], have considered network formation itself, by formulating and studying
network creation games. From a game-theoretic perspective, a (pure) Nash equi-
librium is a tuple of deterministic strategies Sv (one per agent) under which no
individual agent can strictly reduce its cost by unilaterally changing its strategy
assuming all other agents maintain their strategies. If every unilateral deviation
strictly increases the deviating agent’s cost, then the Nash equilibrium is strict.

To quantify the cumulative losses incurred by the lack of coordination, the
key ratio is called the price of anarchy, a term coined by Koutsoupias and Pa-
padimitriou [17]. It is defined as the maximum social cost incurred by any Nash
equilibrium, divided by the minimum possible social cost incurred by any tuple
of strategies. Note that the minimizer, also known as the social optimum, is not
necessarily a Nash equilibrium itself. The central questions in this area are thus
to understand the price of anarchy, and to characterize the Nash equilibria.

1.1 Previous Work

To streamline our discussion, we will represent a tuple of strategies with a di-
rected graph, whose underlying undirected graph is the resulting network, and
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where each edge vw is oriented from v to w if it was constructed by v’s strategy
(w ∈ Sv). This is well-defined because it is clear that the social optimum and all
Nash equilibria will avoid multiple edges, and so each edge is either not present
at all, or present with a single orientation.

The problem is trivial for α < 1, because all Nash equilibria produce complete
graphs, as does the social optimum, and therefore the price of anarchy is 1 in this
range. For α ≥ 1, a new Nash equilibrium arises: the star with all edges oriented
away from the central vertex. Indeed, the central vertex has no incentive to
disconnect any of the edges which it constructed, as its individual cost function
would rise to infinity, and no other vertex has incentive to add more connections,
because a new connection would cost an additional α ≥ 1, and reduce at most one
of the pairwise distances by 1. Yet, as observed in the original paper of Fabrikant
et al. [1], when α < 2, the social optimum is a clique, and they calculate the
price of anarchy to be 4

2+α + o(1), where the error term tends to 0 as n → ∞.

This ranges from 4
3 to 1 as α varies in that interval.

For α ≥ 2, the social optimum is the star. Various bounds on the price of
anarchy were achieved, with particular interest in constant bounds, which were
derived in many ranges of the parameter space. From the point of view of ap-
proximation algorithms, these show that in those ranges of α, the Nash equilibria
that arise from the framework of selfish agents still are able to approximate the
optimal social cost to within a constant factor. The current best bounds are
summarized in Table 1.

Table 1. Previous upper bounds on the price of anarchy. The last bound above is due
to Mihalák et al. [14], and the other bounds are due to Demaine et al. [13].

Regime Upper bound on price of anarchy

General α 2O(
√
log n)

2 ≤ α < 3
√

n/2 4
3
√

n/2 ≤ α <
√

n/2 6
α = O(n1−ε) O(1)
α > 273n O(1)

1.2 Our Contribution

Much work had been done to achieve constant upper bounds on the price of
anarchy in various regimes of α, because those imply the satisfying conclusion
that selfish agents fare at most a constant factor worse than optimally coordi-
nated agents. Perhaps surprisingly (or perhaps reassuringly), it turns out that
the price of anarchy is actually 1 + o(1) for most constant values of α. In other
words, the lack of coordination has negligible effect on the social cost as n grows.

Theorem 1. For non-integral α > 2, and n > α3, the price of anarchy is at
most

1 +
150α6

(α− �α�)2
√

logn

n
= 1 + o(1) .
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On the other hand, for each integer α ≥ 2, the price of anarchy is at least

3

2
− 3

4α
+ o(1) ,

and it is achieved by the following construction. Start with an arbitrary orienta-
tion of the complete graph on k vertices. For each vertex v of the complete graph,
add α− 1 new vertices, each with a single edge oriented from v.

2 Proof for Non-integral α

Suppose that α > 2 is fixed, and is not an integer. Assume that we are given a
Nash equilibrium. In this section, we prove that its total social cost is bounded
by 1 + o(1) times the social optimum, as stated in Theorem 1. Throughout this
proof, we impose a structure on the graph as follows: select a vertex v, and
partition the remainder of the graph into sets based on their distance from v.
Let N1 denote the set of vertices at distance 1 from v, let N2 denote the set of
vertices at distance 2 from v, etc., as diagrammed in Figure 1. Since the graph
in every Nash equilibrium is obviously connected, every vertex falls into one of
these sets.

v

N1

N2

N3

Fig. 1. Partitioning the graph into sets

Consider any vertex vi ∈ Ni where i ≥ 3. Since the graph is connected, we
can always find a path vivi−1vi−2 . . . v2v1v, where vj ∈ Nj for all 1 ≤ j ≤ i. In
this case, we will call vi a child of v2. (Note that vi may be a child of more than
one vertex, but is always a child of at least one vertex.) This is diagrammed in
Figure 2.

Lemma 1. No matter which vertex is used as v to construct the vertex partition,
every vertex in N2 has at most �α− 1� children.
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v

N1

N2

N3 N4

a

b

c

d

e

f

Fig. 2. Here, d and e are children of b; c is a child of a, but not a child of b; and f is a
child of both a and b

Proof. Suppose w ∈ N2 has more than α − 1 children. Consider what happens
if v buys an edge to w. Although v pays α for the edge, it gets one step closer
to w and all of its children, and so the distance component of v’s cost function
reduces by more than 1+(α−1) = α. Therefore, buying the edge is a net positive
gain for v. But we assumed the graph was a Nash equilibrium—contradiction.
Therefore, w has at most α− 1 children, and since its number of children is an
integer, we may round the bound down as in the statement of the lemma.

Lemma 2. Regardless of the choice of v, the resulting parts Ni satisfy:

|N1|+ |N2|+ 1 ≥ n

α
.

Proof. Since every vertex in N3 ∪N4 ∪ . . . is a child of at least one vertex of N2,
but Lemma 1 bounds the number of children per N2-vertex by α − 1, we must
have

(α− 1)|N2| ≥ |N3 ∪N4 ∪ . . . | = (n− 1− |N1| − |N2|)
α|N2|+ |N1|+ 1 ≥ n ,

which implies the desired result.

Lemma 3. If x has degree at least α, then every vertex is at most distance 3
from it.

Proof. If some vertex w is distance at least 4 from x, then w can buy an edge
to x. Vertex w will pay α for the edge, and get 3 steps closer to x, as well as at
least 1 step closer to all of x’s immediate neighbors, for a net gain. Hence this
cannot appear in a Nash equilibrium.
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Corollary 1. If n is sufficiently large (n > α3), then the graph has diameter at
most 4.

Proof. Consider an arbitrary pair of vertices v, w. Lemma 2 implies that for n
sufficiently large (n > α3 suffices), either v has degree at least α, or one of v’s
neighbors has degree at least α. In either case, we can travel from v to a vertex
with degree at least α in at most one step, and then by Lemma 3, travel to w
in at most 3 more steps. Therefore, v and w are at distance at most 4.

Remark. From now on, we will assume n > α3, and so for any initial choice of
v, the resulting partition will only have N1, N2, N3, and N4.

Lemma 4. Consider the partition constructed from an arbitrary initial vertex
v. Select any w ∈ N2, and let d be the number of edges w pays for which connect
to other vertices in N2. Then d ≤ |N1| · α

α−�α� .

Proof. Consider the following strategy for w: disconnect those d edges, and in-
stead connect to every vertex in N1. We will carefully tally up the potential gain
for this amendment.

– Paying for edges: w saves at least (d − |N1|)α in terms of paying for
edges. (The “at least” is because w might already be connected to some
vertices in N1.)

– Connectedness to v and N1: w obviously can’t get farther away from v or
any vertices in N1.

– Connectedness within N2: w gets farther away from all d vertices it discon-
nected from, but remains at distance 2 from all of N2, since every vertex in
N2 is connected to some vertex in N1. This results in a maximum increased
cost of d in terms of distances to other vertices within N2.

– Connectedness to N3 and N4: When disconnecting from a vertex x ∈ N2,
w might get farther away from all of x’s children in N3 and N4. However,
remember that w is still distance 2 from all of N2. Hence, w is still distance 3
from all of N3 and distance 4 from all of N4. Therefore, w can only get 1 step
farther from x’s children, and doesn’t get any farther from vertices in N3

and N4 that aren’t x’s children. By Lemma 1, every N2-vertex has at most
�α − 1� children. Therefore, in disconnecting from d vertices, w gets 1 step
farther from at most d�α − 1� vertices in N3 and N4, for a cost increase
of at most d�α − 1�.

Adding, w’s net cost savings total to at least (d−|N1|)α−d−d�α−1�, which
must be ≤ 0 since we are at a Nash equilibrium. Rearranging, d ≤ |N1| · α

α−�α� ,
as desired.

Lemma 5. If |N1| is o(n), then so is |N3 ∪ N4|. Quantitatively, |N3 ∪ N4| <
|N1| · 5α3

α−�α� .

Proof. Let P be the number of pairs of vertices (x, y), such that x ∈ N3 ∪ N4

and y is at most distance 2 from x. We will bound this number in two ways.
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First, Lemma 2 tells us that for any vertex in the graph, the number of vertices
at most distance 2 from it is at least n

α . Therefore, P ≥ |N3 ∪N4| · n
α .

For the second way, we will find an upper bound for the number of ways to
start at a vertex x ∈ N3 ∪N4, and then travel along at most two edges in some
way. This is an overcount for P , so it will give an upper bound. To count the
number of these paths, we do casework on the various ways to start at a vertex
in N3 ∪N4 and then travel along at most two edges.

Case 1: The path stays inside N3∪N4. Any vertex in N3∪N4 can be connected
to at most α−1 other vertices inN3∪N4 (otherwise v would gain from connecting
to it directly), so the number of paths for us to count for each starting vertex
is at most 1 + (α− 1) + (α − 1)2 ≤ α2. Therefore, the total number of paths of
this type is at most |N3 ∪ N4|α2.

Case 2: The path travels from N3 ∪ N4 to N3 to N2, or is a length 1 path
traveling from N3 to N2. We count these backwards, starting from N2. The
number of edges from N2 to N3 is at most α|N2| by Lemma 1, and again, every
vertex in N3 is connected to at most α vertices in |N3 ∪N4|, if including itself.
Therefore, the number of paths here is at most α2|N2|.

Case 3: The path travels from N3 to N2 to N3. We can count these by looking
at the vertex in N2 first, and then picking 2 of its children in N3. Thus, the
number of such paths is at most |N2|α2.

Case 4: The path travels from N3 to N2 to N1. Similarly to Case 2, the number
of such paths is at most α|N2||N1|.

Case 5: The path travels from N3 to N2 to N2. By Lemma 4, the number of
edges inside N2 is at most |N2||N1| α

α−�α� . Each such path consists of one of these

edges, together with an edge to N3 from one of its two endpoints. Therefore, the

number of paths for us to count is at most |N2||N1| 2α2

α−�α� .

Total: summing over all cases, we have:

P ≤ |N3 ∪N4|α2 + 2α2|N2|+ |N1||N2|α+ |N1||N2| 2α2

α− �α�
< 2α2n+ |N1|n

(
α+

2α2

α− �α�
)

< |N1|n
(

5α2

α− �α�
)

.

But P ≥ |N3 ∪N4|nα from above, so:

|N3 ∪N4|n
α

< |N1|n
(

5α2

α− �α�
)

|N3 ∪N4| < |N1| · 5α3

α− �α� .
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Lemma 6. If every vertex has degree more than
√
n logn, then the graph is

asymptotically socially optimal: the total social cost is at most 2n2+αn3/2
√
logn.

Proof. Suppose we have a Nash equilibrium where all vertices have degree greater
than

√
n logn. We give a strategy for an arbitrary vertex to achieve an individual

cost of at most α
√
n logn + 2n, by changing only its own behavior. Since this

is a Nash equilibrium, we will then be able to conclude that every vertex must
have had individual cost at most α

√
n logn+ 2n, proving this claim.

Specifically, we show that for any vertex w, the strategy “undo all edges you
are currently paying for, and connect to

√
n logn vertices at random” has a

positive probability of bringing it within distance ≤ 2 from every other vertex
in the graph. Indeed, if w does this, then for any other vertex x,

P [x is now distance > 2 from w]

≤ P [w didn’t choose any of x’s neighbors]

≤
(
1−

√
n logn

n

)√
n logn

≤ e− logn =
1

n
.

Since there are only n−1 other vertices x �= w to consider, a union bound shows
that the probability of failure is at most (n − 1) 1n < 1, and therefore there is a
way for w to attain an individual cost of at most α

√
n logn+ 2n, as desired.

Lemma 7. Even if there is a vertex of degree at most
√
n logn, the graph is still

asymptotically socially optimal: the total social cost is at most 2n2+n3/2
√
logn ·

290α6

(α−�α�)2 .

Proof. Let v be a vertex of degree at most
√
n logn, and construct the vertex

partition N1, N2, N3, N4. We already know |N1| is at most
√
n logn = o(n), so by

Lemma 5, |N3 ∪N4| is at most
√
n logn · 5α3

α−�α� = o(n). By Lemma 4, the total

number of edges inside N2 is at most |N2||N1| α
α−�α� ≤ n3/2

√
logn · α

α−�α� =

o(n2). Also, the total number of edges not completely inside N2 is at most

n · (1 + |N1| + |N3 ∪ N4|) ≤ n3/2
√
logn · 6α3

α−�α� = o(n2). Therefore, the total

number of edges is the whole graph is at most n3/2
√
log n · 7α3

α−�α� = o(n2).

Next, we calculate a bound on the total sum of distances in the graph. Using
Lemma 5 on every vertex in the graph, and the fact that all distances are at
most 4 (Corollary 1), we get:

[total sum of distances in the graph]

≤ 2n2 + 4[# of distances in the graph that are 3 or 4]

= 2n2 + 4
∑

w

[# of vertices at distance 3 or 4 from w]

< 2n2 + 4
∑

w

deg(w) · 5α3

α− �α� .
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The degree sum is precisely twice the total number of edges in the graph, a
quantity which we just bounded above. Putting everything together, the total
sum of distances is at most:

2n2 + 8n3/2
√
logn · 7α3

α− �α� · 5α3

α− �α� = 2n2 + n3/2
√
logn · 280α6

(α− �α�)2 .

Adding α times the number of edges to compute the total social cost, we obtain
the desired bound.

Lemmas 6 and 7 cover complementary cases, so we now conclude that the total
social cost of every Nash equilibrium is at most the bound obtained in Lemma
7. As was observed by previous authors [1], the social optimum for α ≥ 2 is the
star, achieving a social cost of at least 2n(n−1). Dividing, we find that the price
of anarchy is at most

1 +
150α6

(α− �α�)2
√

logn

n
= 1 + o(1) ,

proving the first part of Theorem 1.

3 Integral α

There is one catch in our bound above. Namely, when α is only slightly greater
than an integer (e.g. 4.0001), the terms of the form �

α−�α� all blow up, giving

the final o(n2) terms for our bound a large constant factor. Even worse, when α
is an exact integer, the proof fails completely. Perhaps surprisingly, this is not
an artifact of the proof. In this section, we construct a counterexample when α
is an integer. Let v1, v2, . . . , vk be a large clique with edges oriented arbitrarily.
In addition, each vertex vi in the clique also pays for edges to α − 1 separate
leaves li:1, li:2, . . . , li:α−1. This graph also appears in [9], as an example of a
Nash equilibrium which does not correspond to a tree, but its social cost is not
calculated there.

Lemma 8. In this graph, no single vertex has a better strategy than the one it
is currently using.

Proof. First, consider any leaf, say l1:1. This leaf is not currently paying for any
edges, so its only option is to pay for some set of edges. Notice that purely
choosing some set of edges to pay for, without being able to delete any edges,
is an instance of convex optimization. Therefore, by convexity, if any vertex in
any graph can improve its station purely by adding some set of edges S, then it
can also do this by adding some single edge s ∈ S. By observation, the leaf can
only break even by adding one edge, so it can only break even overall.

Next, consider a members of the clique, say v1. This vertex cannot delete its
connections to its leaves, because that would disconnect the graph, making the
distance component of its cost infinite. If v1 remains neighbors with vi and also
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buys an edge to some leaf li:j , then this is suboptimal: the edge to li:j costs α
but only gets v closer to one vertex. If v1 deletes its edge to vi but buys an
edge to some leaf li:j , this is unnecessary: v1 can move the edge from li:j to
vi, switching its distances to those two vertices and not increasing the distance
to any other vertex. Therefore, it is unnecessary for v1 to consider strategies
involving connecting to other vertices’ leaves.

Thus, similarly to the previous case, v1 only needs to consider strategies in-
volving purely deleting edges. Again, by convexity, this reduces to considering
strategies involving deleting a single edge. But again, v1 can only break even by
deleting an edge, so it can only break even overall.

Therefore, the graph is indeed a weak Nash equilibrium. Let n be the number
of vertices in the graph. The size of the clique is k = n

α , and so the cost of all of
the edges is

α

[(
k

2

)
+ (α− 1)k

]
= α

[
(1 + o(1))

n2

2α2
+

α− 1

α
n

]
= (1 + o(1))

n2

2α
.

Every clique vertex is distance 1 from the rest of the clique, as well as its leaves,
and distance 2 from every other vertex; therefore, each clique vertex sees a
distance sum of

(1 + o(1))n

(
2− 1

α

)
.

Since there are n
α clique vertices, these contribute a total of

(1 + o(1))n2

(
2

α
− 1

α2

)
.

Every leaf vertex is distance 2 from almost all of the clique, and distance 3 from
almost all of the leaves, and so it sees a distance sum of

(1 + o(1))n

(
3− 1

α

)
.

Since there are n(1− 1
α ) leaves, these contribute a total distance sum of

(1 + o(1))n2

(
3− 4

α
+

1

α2

)
.

Putting everything together, we find that this graph has a total social cost of

(1 + o(1))n2

(
3− 3

2α

)
,

giving a price of anarchy at least 3
2 − 3

4α + o(1), as claimed in the second part of
Theorem 1.
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4 Concluding Remarks

It is interesting that the price of anarchy converges to 1 for non-integral α > 2,
but is bounded away from 1 for integer α ≥ 2. Our convergence rate is non-
uniform in the sense that it slows down substantially when α is slightly more
than an integer. On the other hand, when α is slightly less than an integer, the
convergence rate is still relatively rapid. It would be nice to prove a uniform
convergence rate for all non-integral α.
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