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Abstract. In the network creation game with n vertices, every vertex
(a player) buys a set of adjacent edges, each at a fixed amount α > 0. It
has been conjectured that for α ≥ n, every Nash equilibrium is a tree,
and has been confirmed for every α ≥ 273 · n. We improve upon this
bound and show that this is true for every α ≥ 65 · n. To show this, we
provide new and improved results on the local structure of Nash equilib-
ria. Technically, we show that if there is a cycle in a Nash equilibrium,
then α < 65 ·n. Proving this, we only consider relatively simple strategy
changes of the players involved in the cycle. We further show that this
simple approach cannot be used to show the desired upper bound α < n
(for which a cycle may exist), but conjecture that a slightly worse bound
α < 1.3 · n can be achieved with this approach. Towards this conjec-
ture, we show that if a Nash equilibrium has a cycle of length at most
10, then indeed α < 1.3 · n. We further provide experimental evidence
suggesting that when the girth of a Nash equilibrium is increasing, the
upper bound on α obtained by the simple strategy changes is not increas-
ing. To the end, we investigate the approach for a coalitional variant of
Nash equilibrium, where coalitions of two players cannot collectively im-
prove, and show that if α ≥ 41 ·n, then every such Nash equilibrium is a
tree.

1 Introduction

Network creation game has been introduced by Fabrikant et al. [8] as a formal
model to study the effects of strategic decisions of economically motivated agents
in decentralized networks such as the Internet. In such networks, local decisions
including those about infrastructure are decided by autonomous systems. Au-
tonomous systems follow their own interest, and as a result, their decisions may
be sub-optimal for the whole society. Network creation games allow to formally
study the structure of networks created in such a manner, and to compare them
with potentially optimal networks (optimal with respect to the whole society).

In the network creation game, there are n players V = {1, . . . , n}, each repre-
senting a vertex of an undirected graph. The strategy si of a player i is to create
(or buy) a set of adjacent edges, each at a fixed amount α > 0. The played
strategies s = (s1, . . . , sn) collectively define an edge-set Es, and thus a graph
Gs = (V,Es). The goal of every player is to minimize its cost ci, which is the
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amount paid for the edges (creation cost), plus the total distances of the player
to every other node of the resulting network G (usage cost), i.e.,

ci(s) = α · |si|+
n∑

j=1

dist(i, j),

where dist(i, j) denotes the distance between i and j in the resulting network G.
A strategy vector s = (s1, . . . , sn) is a Nash equilibrium if no player i can

change the set si of created edges to another set s′i and improve its cost ci.
Abusing the definition, the resulting graph Gs itself is called a Nash equilibrium,
too, and we define its (social) cost c(G) to be the cost c(s), i.e., the cost of the
corresponding strategy vector s. The social cost c(s) of strategy vector s is the
sum of the individual costs, i.e., c(s) =

∑n
i=1 ci(s). It is a trivial observation to

see that in any Nash equilibrium Gs, no edge is bought more than once. From
now on, we only consider such strategy vectors, and observe then that

c(s) :=
n∑

i=1

ci(s) = α · |Es|+
n∑

i=1

n∑

j=1

d(i, j).

A graph G = (V,E) can be created by many strategy vectors s (precisely
in 2|E| many ways, because every edge in E can be bought by exactly one of
its endpoints), but each of such realizations has the same social cost. Graph
G∗ = (V,E) is an optimum graph, if it minimizes the social cost c(s) (for any
strategy vector s for which Gs = G).

Let N denote the set of all Nash equilibria of a network creation game on n
vertices and edge-price α. The price of anarchy (PoA) of the network creation
game is the ratio

PoA = max
s∈N

c(Gs)

c(G∗)
.

Price of anarchy expresses the (worst-case) loss of the quality of a network that
the society could achieve.

In a series of papers [8,1,6,9] it has been shown that the price of anarchy of
the network creation game is O(1), i.e., a constant independent of both n and
α, for every value α > 0 with the exception of the range n1−ε < α < 273 · n,
where ε = Ω( 1

log n ). For the value of α with n1−ε < α < 273 · n, an upper

bound of 2
n
√
logn on the price of anarchy is known (while no Nash equilibrium

with considerably large social cost is known). It is conjectured, however, that
the price of anarchy is constant also in this range of α. It remains a major open
problem to confirm or disprove this conjecture. It is certainly of interest to note
that there are several variants of the network creation game (see, e.g., [2,4,7,3]),
but in none of these, with the exception of [5], the price of anarchy could be
shown to be constant.

Understanding the structure of Nash equilibria has proven to be important
in bounding the price of anarchy. Fabrikant et al. [8] showed that the social cost
of any tree G in Nash equilibrium is upper-bounded by O(1) · c(G∗). Therefore,
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the price of anarchy is O(1) for all values of α for which every Nash equilibrium
is a tree. It has been shown that every Nash equilibrium is a tree for all values
of α greater than n2, 12n logn, and 273n, respectively, in [8],[1], and [9]. It
has been conjectured that every Nash equilibrium is a tree for every α ≥ n.
Since for α = n/2, non-tree Nash equilibria are known, this tree conjecture is
asymptotically tight.

In this paper, we make steps in the direction of resolving the tree conjecture.
We first tighten the tree conjecture and provide a construction of a non-tree
Nash equilibrium for every α = n − 3 (thus, showing that, asymptotically, one
cannot hope to show that every Nash equilibrium is a tree for some value α < n).
We then apply a “linear-programming-like” approach to show that for α ≥ 65n,
every Nash equilibrium is a tree. To show this, we obtain new structural results
on Nash equilibria and combine them with the previous approach of [9]. Towards
the end, we make further steps towards the conjecture. We show that if α ≥ n,
then there is no non-tree Nash equilibrium containing exactly one cycle. We then
apply the “linear-programming-like” approach again to show that the girth of
every non-tree Nash equilibrium (for any α ≥ n) is at least 6. Using the same
ideas, we show that if a non-tree Nash equilibrium has girth at most 10, then
α ≤ 1.3n. By further experimental results, we conjecture that this holds for any
girth, i.e., that non-tree Nash equilibria can appear only for α ≤ 1.3n.

2 Preliminaries

In the following, we will often denote the considered Nash equilibrium graph
Gs = (V,Es) of a network creation game with α > 0 simply as G = (V,E). Even
though the graph Gs is undirected, we will often direct the edges to express the
identity of the player which bought the edge in s; An edge {u, v} directed from
u to v denotes the fact that u bought/created the edge in s.

Every non-tree G contains a cycle. Let c be the length of a shortest cycle C in
G, and let a0, a1, . . . , ac−1 be the players that form one such shortest cycle, and
where {ai, ai+1} ∈ E for every i = 0, 1, . . . , c−1 (where indices on vertices of the
cycle are in the whole paper to be understood modulo c). Observe the crucial
property of a shortest cycle C: the distance between ai and aj in the graph G is
equal to the distance between ai and aj on the cycle C.

We will consider the players on the cycle C and their strategy-changes that
involve only the c edges of the cycle. For each strategy-change s′ai

of player ai, we
obtain an inequality ci(s) ≤ ci(s1, . . . , s

′
ai
, . . . , sn) stating simply the fact that in

a Nash equilibrium s, player ai cannot improve by changing its strategy. We will
often express such an inequality in the form of “SAVINGS” ≤ “INCREASE”,
where “SAVINGS” denotes the parts of ci(s) that decreased their value in ci(s

′),
and “INCREASE” denotes the parts of ci(s) that increased their value in ci(s

′).
For example, assume that ai buys the edge e = {ai, ai+1} (i.e., e ∈ si), and let
us consider the strategy change where ai deletes the edge e (i.e., s′i = si \ {e}).
Recall that ci(s) = α · |si| +

∑
j d(i, j). Then, in such a strategy change, the

“SAVINGS” are clearly on the edge-creation side, i.e., the player ai saves α for
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s-1 s-1

Fig. 1. Non-tree Nash equilibrium for n = 2s + 3 players and α = n − 3. An edge
directed from a node u to a node v denotes that u buys the edge.

not paying for the edge e. At the same time, some distances of player i may have
increased – the distance to a vertex v increases, if in Gs every shortest path from
ai to v uses the deleted edge e. But the distance to v could have increased by
at most c− 2 (as before, ai needed to go to vertex ai+1 but now the vertex ai+1

can be reached “around” the cycle). Because of the Nash equilibrium property
of s, we have “SAVINGS” ≤ “INCREASE”, which implies α ≤ (c − 2)(n − 1)
(as the distance to at most n− 1 vertices could have increased).

In the following, we will use slightly more involved forms of the just described
inequalities. For that reason, we will partition the vertices according to their
distances to the vertices from the cycle. Let us fix a vertex v ∈ V . Let G \C be
the graph G without the c edges of the cycle C. Let us denote the distances of v
to the vertices a0, a1, . . . , ac−1 in G \ C by the vector d(v) = (d0, d1, . . . , dc−1),
respectively, where di = ∞ if ai and v are disconnected in G \ C. We call di
the outer distance of v to ai in the Nash equilibrium G, and d the vector of
outer distances of v in G. We now partition the vertices of V by this vector
of outer distances. We will coarsen the partition in the following way. Observe
that ds(ai, v) in Gs is now equal to minj(ds(ai, aj) + dj), because there always
is a shortest path from ai to v that first uses a part of the cycle C (until vertex
aj), leaves C and never comes back to C. Therefore, minj dj ≤ ds(ai, v) ≤
(c− 1)+minj dj). Moreover, for any strategy change s′i of player ai which leaves
ai connected by an edge to a vertex of C, we still have minj dj ≤ ds′(ai, v) ≤
(c−1)+minj dj (because there is a path from ai to the vertex aj of smallest entry
dj using the edge and the remaining of the cycle). Because we are interested in the
changes of the distances from ai, i.e., in the value ofΔ := ds′(ai, v)−ds(ai, v), we
can normalize the vector d(v) by subtracting minj dj from each of the elements
d0, d1, . . . , dc−1 (which does not change the value of Δ). Observe that after the
normalization, there is an entry di equal to zero. We will “normalize” the entries
further more. Since we are interested in the value Δ, we can handle all entries
dj ≥ c − 1 in the same way: they do not have any influence on Δ at all (no
shortest path from vertex ai, i �= j, will ever use aj to reach vertex v). We will
therefore further modify the vector d by substituting every entry dj ≥ c−1 with
the value c− 1.

This gives partition of all vertices into groups Vd, where each group has as-
sociated vector of “normalized” outer distances d = (d0, · · · , dc−1), one of the
distances is necessarily equal to 0 and all the distances are upper bounded by
c−1. Vertices which have vector of outer distances d′ containing numbers greater
than c − 1 are associated with the group having a vector d′′ obtained from d′
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where all entries greater than c− 1 are changed to c− 1. In this way, there are
t = cc − (c− 1)c groups. We denote the set of all “normalized” distance vectors
by D. Trivially, as Vd, d ∈ D, form a partition of V ,

∑
d∈D |Vd| = n.

3 Bounds on α for Existence of Cycles

We first give in Fig. 1 a construction of a non-tree Nash equilibrium graph for
n = 2s+3 vertices, and α = 2s = n− 3, for any integer s. This thus shows that
the conjecture “for α ≥ n, all Nash equilibria are trees” cannot be improved to
“for α ≥ (1 − ε)n, all Nash equilibria are trees”. We now proceed and give a
lower bound on the length of a shortest cycle in any Nash equilibrium.

Theorem 1. The length c of a shortest cycle C in any Nash equilibrium is at
least 2α

n + 2.

Proof. We distinguish two cases. First, assume that there is a player, which
buys both its adjacent edges on the cycle C. Without loss of generality assume
that this player is a0. Consider the strategy change where a0 deletes both these
edges {a0, a1} and {a0, ac−1} and buys an edge towards player ai on the cycle,
i = 2, . . . , c − 2. The player cannot improve by such a change, and therefore
“SAVINGS” ≤ “INCREASE”. Here, the player saves at least α (by buying one
edge less). Let us denote the increase of distances of player a0 to the players of
the group Vd by ci,d. Then we get that α ≤ ∑

d∈D δi,d|Vd|. Summing up all the

c− 3 inequalities, one for every i, we get (c− 3)α ≤ ∑c−2
i=2

∑
d δi,d|Vd|.

We now show that for every d, the coefficient
∑

i δi,d at |Vd| is at most (c −
2)(c − 3)/2. Consider arbitrary d = (d0, d1, . . . , dc−1) of the outer distances of
the vertices in Vd. Clearly, the strategy change of a0 increases its distances to Vd

iff every shortest path from a0 to Vd goes through the deleted edges. Thus, we
can assume (for the worst-case) that d0 = c− 1. Assume that one shortest path
(in Gs) leaves the cycle at ae, e ∈ {1, . . . , c− 2}. In the new graph Gs′ , player a0
can always use the new edge {a0, ai} and then go to ae on the remainder of the
cycle C. Thus, the increase of distances δi,d is at most (1 + |i− e|)− 1 = |i− e|.
In total, we obtain

∑c−2
i=2 δi,d ≤ ∑

i |i − e| ≤ ∑
i(i − 1) = (c − 3)(c − 2)/2, as

claimed. Now, since
∑

d∈D |Vd| = n, we finally get that α ≤ (c−2)
2 n, which gives

the claimed c ≥ 2α
n + 2.

Consider now the second case where no player buys two of its adjacent edges
in C, i.e., every player buys exactly one edge. Without loss of generality assume
that every player ai buys the edge {ai, ai+1}. For each player i, we consider the
strategy change of deleting the edge {ai, ai+1}. Similarly to the previous case, we

obtain α ≤ ∑
d∈D δi,d|Vd|. Summing for every i, we get cα ≤ ∑c−1

i=0

∑
d δi,d|Vd|.

We show this time that
∑c−1

i=0 δi,d, the coefficient at |Vd|, is upper bounded by
1+2+· · ·+(c−2) = (c−2)(c−1)/2. Consider an arbitrary d = (d0, . . . , dc−1) ∈ D,
and assume without loss of generality that d0 = 0. For every player ai, δi,d is at
most i− 1, because the worst-case increase in a distance of player ai to vertices
Vd happens when all shortest paths from ai used the deleted edge {ai, ai+1}.
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Fig. 2. The 5-Neighborhood N5(u) of vertex u

But because after the deletion, there is an alternative path from ai to Vd using
a0, the increase is at most i− 1. Thus, summing over all i, the total increase in
distances to Vd is at most 0+ 1+2+ · · ·+(c− 2) = (c− 2)(c− 1)/2 as claimed.
Plugging this into our inequality, cα ≤ ∑

i

∑
d δi,d|Vd| and using the fact that∑

d |Vd| = n, we obtain that c > 2α
n + 2. ��

Let H be a non-trivial biconnected component of a non-tree Nash equilibrium,
i.e., an induced subgraph of H of at least three vertices containing no bridge.
For any vertex v ∈ H , let S(v) be the set of vertices which do not belong to H ,
and which have v as the closest vertex among all vertices in H . For any vertex
u ∈ H , we define degH(u) to be the degree of vertex u in the graph induced by
H . Furthermore, we define Nk(u) to be the k-th neighborhood of u in H , i.e.,
Nk(u) := {w ∈ H | d(u,w) ≤ k}. The following lemma has been shown in [9].
We will use it to prove the subsequent lemma.

Lemma 1 ([9]). If u, v ∈ V (H) are two vertices in H with d(u, v) ≥ 3 such
that u buys the edge to its adjacent vertex x in a shortest u− v-path and v buys
the edge to its adjacent vertex y in that path, then degH(x) ≥ 3 or degH(y) ≥ 3.

Lemma 2. If H is a biconnected component of G, then for any vertex u, its
neighborhood N5(u) in H contains a vertex v with degH(v) ≥ 3.

Proof. Assume that this is not true. Then the 5-neighborhood N5(u) of vertex
u is formed by two disjoint paths. (The case that the 5-neighborhood forms a
cycle is excluded by Proposition 1 stating that no Nash equilibrium for α > n
contains exactly one cycle). We consider two cases. First, we will assume that at
least one of the two paths starting at u is directed away from u (see Fig. 2(a)).
In the second case, in each of the two paths, there has to be a vertex which buys
an edge towards u. It follows from Lemma 1 that these two vertices are the two
neighbors of u in N5(u) (see Fig. 2(b)).

In the first case, there is a sequence of five edges directed away from u, with
the naming like in Fig. 2(a)). Let su := |S(u)|, si = |S(i)| for 0 ≤ i ≤ 4. Then,

s0 ≥ s1 + s2 + s3 + s4, s1 ≥ s2 + s3 + s4, s2 ≥ s3 + s4, s3 ≥ s4, s4 ≥ k, (1)
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where k is the number of vertices which are descendants of vertex 5 in the
breadth-first-search (BFS) tree rooted at vertex 3. We can obtain these in-
equalities by considering the following strategy changes of the players u and
i, 0 ≤ i ≤ 3: delete the edge directed away from u, and buy a new edge to the
next vertex in the sequence; now simply apply the “SAVINGS” ≤ “INCREASE”
principle.

We first assume that vertex 5, the neighbor of vertex 4 in H , has degree at
least 3 in H (i.e., it has at least two children in the BFS tree rooted at vertex
3). The case when the degree-3 vertex appears later along the path is easier and
will be discussed later. We now distinguish two cases. First, we assume that one
of the children of vertex 5 in the considered BFS tree buys an edge to vertex 5.
Let us call it vertex 6. The other case is when vertex 5 buys all the edges to its
children.

Consider the following strategy change: vertex 6 deletes an edge towards ver-
tex 5 and buys new edge towards vertex u. This decreases its distance cost at least
to vertices in S(0) by 4, and to vertices in S(1) by 2, whilst increases distances
to vertices in the set of descendants of 5 in the BFS tree rooted at 3 by at most
6, to the vertices in S(4) by 4 and to the vertices in S(3) by two. By this strat-
egy change distance from vertex 6 to any other vertex is not increased, because
vertex u is located deeper than vertex 6 in the BFS tree rooted at vertex 3. But
then according to the chain of inequalities (1) we get 4s0+2s1 > 6k+4s4+2s3,
and thus the player 6 can improve, a contradiction.

In the case where vertex 5 buys all edges towards its children, consider the
following strategy change of vertex 5: delete all the edges to its children (in the
considered BFS tree) and buy one edge to vertex u. By this, the “SAVINGS” are
at least α. Furthermore, since H is biconnected, the graph remains connected.
Distances from vertex 5 are increased only to vertices in the setK – the set of the
vertices which are descendants of vertex 5 in the BFS tree rooted at vertex 3. This
“INCREASE” is at most 2 · diam(H), where diam(H) is the diameter of H . By
the “SAVINGS” ≤ “INCREASE” principle, we get that α ≤ 2 ·diam(h)k. At the
same time, α ≥ (rad(H)− 1)s0, where rad(H) is the radius of H , as otherwise a
vertex at distance rad(H) from vertex 0 could buy an edge towards vertex 0 and
decrease its cost. Combining these two inequalities with the inequality s0 ≥ 8k,
which is obtained from (1), we get that 8(rad(H) − 1)k ≤ 2 · diam(H)k ≤
4 · rad(H)k, which is a contradiction.

The second case depicted in Fig. 2(b) is analyzed in the very same way, the
only change is that now the heaviest component is S(u). The chain of inequalities
is similar to (1):

su ≥ s0 + s1 + s2 + s3, s1 ≥ s2 + s3 + s4, s2 ≥ s3 + s4, s3 ≥ s4, s4 ≥ k, (2)

where the notation is the same as in the first case. We obtain that su ≥ 7k,
and subsequently, arguing about the vertex at distance rad(H) from u, the
contradiction 7(rad(H) − 1)k ≤ 2 · diam(H)k ≤ 4rad(H)k.

Finally, if there is a longer sequence of vertices with degree 2 than the con-
sidered sequence of length 5 of edges directed away from u, then we can only
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Fig. 3. The 3-Neighborhood N3(u) of vertex u

consider the last 5 edges (all directed away from u) and apply the very same
reasoning. ��

We can strengthen the result if we consider stronger version of a Nash equilib-
rium in which no coalition of two players can change their strategies and improve
their overall cost. We call such an equilibrium a 2-coalitional Nash equilibrium.

Lemma 3. The 3-neighborhood N3(u) of any vertex u of a biconnected compo-
nent H of a 2-coalitional Nash equilibrium has a vertex of degree at least 3.

Proof. Assume the converse. Similarly to the proof of Lemma 2, there are two
different cases of how the neighborhood of vertex u looks like (see Fig. 3(a)
and (b); notation is also the same as in Lemma 2). In both cases consider the
coalition of players 0 and 2. Consider the following strategy changes: player 0
deletes edge (0, 1) and instead buys edge (0, 3), whilst player 2 deletes edge (2, 3)
and buys edge (2, 0). This strategy change does not change the player coalition’s
creation cost (in terms of α). Among the vertices S(0), S(1), S(2) and S(u) this
strategy change decreases coalition’s usage cost by su + s0+ s2 and increases by
s1. Other vertices are partitioned by their shortest distances to vertices 0 and
2, lets assume that for any vertex v which does not belong to S(0), S(1), S(2)
or S(u) shortest distance to vertex 0 is x and shortest distance to vertex 2 is
y. Obviously |x − y| ≤ 2. If |x − y| > 0 then there is no increase in the usage
cost of coalition towards vertex v by this strategy change. The only possibility
of increase is when x = y, but in that case v is the descendant of vertex 3 in
the BFS tree rooted at vertex 1. Similarly to Lemma 2, we denote k to be the
number of vertices which are descendants of vertex 3 in the BFS tree rooted at
vertex 1. Analogously to the proof of Lemma 2, the following inequalities hold
for the case depicted in Fig. 3(a): s0 ≥ s1 + s2, s1 ≥ s2 and s2 ≥ k, whilst for
the case depicted in Fig. 3(b), we have su ≥ s0+s1+s2, s1 ≥ s2, s2 ≥ k. In both
cases su + s0 + s2 > s1 + k, which results in a contradiction. ��

The following two lemmas are crucial for proving the main result of the paper.
The first lemma has been proven in [9]. The second lemma strengthens a similar
lemma from [9]. Its proof uses the result of Theorem 1.

Lemma 4 ([9]). If the t-neighborhood of every vertex of a biconnected compo-
nent H of a Nash equilibrium contains a vertex of degree at least 3, then the
average degree of H is at least 2 + 1

3t+1 .
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Lemma 5. If α > n, then the average degree of a biconnected component H of
a Nash equilibrium graph is at most 2 + 4n

α−n .

Proof. Among all vertices of the equilibrium graph G, consider a vertex with the
smallest usage cost and let this vertex be v. Consider a BFS tree T rooted in v.

Let T ′=T∩H . Then the average degree ofH is deg(H)= 2|E(T ′)|+2|E(H)\E(T ′)|
|V (T ′)| ≤

2+ 2|E(H)\E(T ′)|
|V (T ′)| . We now bound |E(H) \E(T ′)|. We consider vertices that buy

an edge in E(H)\E(T ′) and call them shopping vertices. It is easy to see that no
shopping vertex buys more than 1 edge, because if any of them buys two or more
edges, it is better for it to delete all of the edges and buy 1 new edge towards v:
this decreases its creation cost by at least α, whilst increases its usage cost by at
most n. It is thus enough to bound the number of shopping vertices. For this, we
prove that the distance in the tree T ′ between any two shopping vertices is lower
bounded by α−n

n , which then implies that there can not be too many shopping

vertices. Namely, the number of shopping vertices is at most 2nV (T ′)
α−n . Assigning

every node from H to the closest shopping vertex according to the distance in T ′

forms a partition of H , where every part contains exactly one shopping vertex.
As the distance in T ′ between shopping vertices is at least α−n

n , the size of every
part is at least α−n

2n .
We assume for contradiction that there is a pair of shopping vertices u1 and

u2 such that dT ′(u1, u2) <
α−n
n . Let u1 = x1, · · · , xk = u2 be the unique path

from u1 to u2 in T ′, and (u1, v1) and (u2, v2) be the edges bought by u1 and u2

in E(H) \ E(T ′). Observe first that vertices v1 and v2 are not descendants of
any vertex xi, otherwise paths vj −xi and xi−uj together with an edge (uj, vj)
form a cycle of length at most 2(dT ′(u1, u2) + 1) < 2α

n + 2 which contradicts
Theorem 1. Thus, x0 := v1, x1, . . . , xk, xk+1 := v2 is a path. Since x1 buys edge
(x0, x1) and xk buys edge (xk, xk+1), there is a vertex xi such that xi buys both
of its adjacent edges (xi−1, xi) and (xi, xi+1). Consider the following strategy
change for player xi: delete the two adjacent edges and buy a new edge to vertex
v. In this way xi decreases its creation cost by α.

We now show that Unew(xi), the usage cost of xi in the new graph, is less than
UG(xi), the usage cost in the original graph, plus α, which gives a contradiction.
It is easy to observe that Unew(xi) ≤ n+Unew(v), since xi can always go through
v in the new strategy to any vertex. We now consider Unew(v). Note that only the
vertices in the path u1−u2 and their descendants can increase their distance to v
by the strategy change of xi. Let y be any such vertex. If the closest ancestor of y
on the path is xi, then dnew(v, y) ≤ dG(v, y), so there is no increase. We assume,
without loss of generality, that the closest ancestor (of y) xj has an index less
than i, i.e., j < i. Then the following chain of inequalities and equalities hold:
dnew(v, y) ≤ dnew(v, x0) + dnew(x0, xj) + dnew(xj , y) = dG(v, x0) + dG(x0, xj) +
dG(xj , y) (the inequality is a triangle inequality, whilst the equality holds because
x0 is not a descendant of any vertex on the path in the new graph). Since
dG(v, y) = dG(v, xj)+dG(xj , y), the difference between new and initial distances
is dnew(v, y) − dG(v, y) = dG(v, x0) + dG(x0, xj) − dG(v, xj) ≤ 2dG(x0, xj) ≤
dG(u1, u2) ≤ 2 · dT ′(u1, u2) ≤ 2(α−n)

n (where the latter inequality is implied by
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our assumption). We need to bound the number of possible y’s. Path u1 − u2

does not go through vertex v, so the number of possible y’s is bounded by the
size of the subtree of T of a child of v that contains this path. We prove that
the size of any subtree of a child of v in T ′ is at most n

2 .
Consider any child t of v in T , and consider the subtree of T rooted in t. Let

the b be the number of vertices in the subtree, and let a be the number of other
vertices of T . Let c1 be the usage cost of t in the subtree, and let c2 be the usage
cost of v (!!) in the other part of the tree T . Then the usage cost of t in G is upper
bounded by c1 + a + c2, whilst the usage cost of v is exactly b + c1 + c2. Since
v is the vertex with the minimal usage cost, we have c1 + a+ c2 ≥ b + c1 + c2.
Since a+ b = n, we get that b ≤ n

2 .
Since y was chosen arbitrarily, the increase of the usage cost for v is less than

n
2
2(α−n)

n = α−n, and therefore Unew(v) < UG(v)+α−n which is a contradiction.
��

Combining Lemmas 2 and 3 with Lemmas 4 and 5 gives the main result.

Theorem 2. For α ≥ 65n every Nash equilibrium graph is a tree.

Theorem 3. For α ≥ 41n every 2-coalitional Nash equilibrium graph is a tree.

4 Small Cycles and Experimental Results

In this section we consider equilibrium graphs that have small girth c, and show
that they exist only for small values of α. We start with an observation that
limits the girth of equilibrium graphs containing exactly one cycle.

Proposition 1. Let G be a Nash equilibrium graph containing a k-cycle C =
{v0, v1, . . . , vk−1}, and F the graph where the edges of C are removed from G. If
F consists of k connected components, then k < 6.

Proof. Assume for contradiction that k ≥ 6. For 0 ≤ i < k let si > 0 denote the
number of vertices in the connected component of F which contains vi. If the
edge (v0, vk−1) is bought by the player v0, then she could replace (v0, vk−1) by
(v0, vk−2). By doing this, her creation cost will remain the same, her distances
to sk−3 + sk−2 vertices decrease by 1, but her distances to sk−1 vertices increase
by 1. If the edge (v0, vk−1) is bought by the player vk−1, this player could re-
place (vk−1, v0) by (vk−1, v1). By this change of her strategy, her distances to s0
vertices would increase, but she could decrease her distances to s1 + s2 vertices.

Since we consider a Nash equilibrium, we deduce that sk−3 + sk−2 ≤ sk−1

ors0 ≥ s1 + s2. Applying this reasoning for every edge of C, we get that for
every i,

si−3 + si−2 ≥ si−1 or si ≥ si+1 + si+2, (3)

where 0 ≤ i < k (recall that indexes are considered modulo c). The two inequal-
ities si ≥ si+1 + si+2 and si−1 + si ≤ si+1 cannot hold simultaneously. Yet, 3
forces one of the inequalities si−1 + si ≤ si+1 and si+2 ≥ si+3 + si+4 to be true,
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so we have that inequality si ≥ si+1 + si+2 implies si+2 ≥ si+3 + si+4 for any
0 ≤ i < k. Without loss of generality we can assume that the edge (vk−1, v0)
was bought by v0. Then we get the chain of inequalities s2i ≥ s2i+1 + s2i+2 for
every i, which is obviously a contradiction. ��

We now describe our computer-aided approach for upper-bounding α in case
of an existence of small cycles in Nash equilibrium graphs. In our approach, we
consider a non-tree Nash equilibrium whose smallest cycle has a fixed length c,
and we construct a linear program asking for a maximum α, whilst satisfying
inequalities of the type “SAVINGS” ≤ “INCREASE”, which we create by con-
sidering various strategy changes of the players of the cycle. The partition of
vertices of a Nash equilibrium graph into vertices Vd, d ∈ D, gives a variable |Vd|
for every d. The number of variables is t = cc − (c− 1)c. We enumerate over all
possible (meaningful) directions of the edges on the considered cycle, and solve
the linear program, which gives us an upper bounds on α for every direction of
edges. The largest such value is then obviously an upper bound on α for any
direction, and thus for any Nash equilibrium containing a cycle of the fixed size.

The number of all possible directions is equal to 2c, but this number can be
decreased to at most 2c−3+2 by simple observations that all hold without loss of
generality. We can assume that the number of right edges is at least the number
of left edges, where an edge (vi, vi+1) is called a right edge, and (vi+1, vi) is called
a left edge. Furthermore, we can also assume that the edge (v0, v1) is a right edge.
If c is even, every considered cycle can be made (by renaming arguments) to fall
into one of the following three classes: (1) the edges along the cycle alternate
between right and left, or (2) all edges are right edges, or (3) the first two edges
are right edges and the last edge is a left edge. The same holds when c is odd,
with the exception of the alternating edges.

Our linear program contains all inequalities implied by the strategy changes
described in Theorem 1. We furthermore add inequalities for strategy changes
of buying one extra edge, and for swapping an edge of the cycle with a new
edge towards an vertex of the cycle. We add the equality

∑
d∈D |Vd| = 1 (which

expresses the fact that the variables should sum up to n). Then, the value of a
variable |Vd| expresses the fraction of all vertices (instead of the absolute number
of vertices).

We used the GUROBI linear-programming solver to maximize α for every
generated linear program. The largest such value thus gives an upper bound on
α for which a cycle of size c can exist. Due to the huge number of variables,
we could not solve the linear program for c > 7, because already for c = 8,
the number of variables was more than 107, while the number of constraints is
Θ(c2). We have made further tweaks to the code, which allowed us to speed up
the computation. We observed that many variables had the same coefficients in
every generated constraint, and thus at most one such variable is relevant for
obtaining the solution of the linear program. We have considered the variables
one by one, and added only those having unique coefficients in the considered
constraints. To check for uniqueness, we used hashing, as otherwise just creating
the matrix of the linear program was too slow. The obtained compression of the



Tree Nash Equilibria in the Network Creation Game 129

number of variables was huge: for c = 10, instead of nearly 1010 variables we
obtained only around 105.

The obtained upper bounds on α are quite close to n. For girth c ≤ 7, we
obtain α ≤ 1, which corresponds to α ≤ n if we required that

∑
d∈D |Vd| = n

(instead of
∑

d∈D |Vd| = 1). For girth c = 8, α is upper bounded by 191
185 , for girth

c = 9, α is upper bounded by 13
12 , whilst for girth c = 10, α is bounded by 1.2.

We have performed further experiments with larger values of c, but did not
consider all orientations of edges (as this was out of our computational power).
Furthermore, since the number of variables is increasing super-exponentially,
instead of considering all variables, for larger values of c we have considered only
variables |Vd| that have only 0’s and (c − 1)’s as distances in vector d, that is,
we have considered 2c variables. Additionally, we have taken extra 2c random
variables. We have all values of c up to 15. Upper bounds for α obtained using
only these variables are very close to the real bounds for c ≤ 10 (the difference for
k ≤ 10 is between 0 and 0.01). The largest upper bound of 1.3n on α appears for
c = 13, and then only decreases, which is why we conjecture: the upper-bound
of α ≤ 1.3n can be proved by the considered strategy changes.
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