
Anthony Bonato
Michael Mitzenmacher
Paweł Prałat (Eds.)

 123

LN
CS

 8
30

5

10th International Workshop, WAW 2013
Cambridge, MA, USA, December 2013
Proceedings

Algorithms and Models
for the Web Graph

Lecture Notes in Computer Science 8305
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Anthony Bonato Michael Mitzenmacher
Paweł Prałat (Eds.)

Algorithms and Models
for the Web Graph
10th International Workshop, WAW 2013
Cambridge, MA, USA, December 14-15, 2013
Proceedings

13

Volume Editors

Anthony Bonato
Paweł Prałat
Ryerson University
Department of Mathematics
Toronto, ON, Canada
E-mail: {abonato, pralat}@ryerson.ca

Michael Mitzenmacher
Harvard University
School of Engineering and Applied Sciences
Cambridge, MA, USA
E-mail: michaelm@eecs.harvard.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-03535-2 e-ISBN 978-3-319-03536-9
DOI 10.1007/978-3-319-03536-9
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013952734

CR Subject Classification (1998): F.2, G.2, H.3, H.2.8, I.2.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 10th Workshop on Algorithms and Models for the Web Graph (WAW 2013)
took place at Harvard University in Cambridge, MA, USA, December 14–15,
2013. This is an annual meeting, which is traditionally co-located with another,
related, conference. WAW 2013 was co-located with the 9th Conference on Web
and Internet Economics (WINE 2013). Co-location of the workshop and con-
ference provided opportunities for researchers in two different but interrelated
areas to interact and to exchange research ideas. It was an effective venue for
the dissemination of new results and for fostering research collaboration.

The World Wide Web has become part of our everyday life, and information
retrieval and data mining on the Web are now of enormous practical interest.
The algorithms supporting these activities combine the view of the Web as a
text repository and as a graph, induced in various ways by links among pages,
hosts, and users. The aim of the workshop was to further the understanding
of graphs that arise from the Web and various user activities on the Web, and
stimulate the development of high-performance algorithms and applications that
exploit these graphs. The workshop gathered the researchers who are working on
graph-theoretic and algorithmic aspects of related complex networks, including
citation networks, social networks, biological networks, molecular networks, and
other networks arising from the Internet.

This volume contains the papers presented during the workshop. Each sub-
mission was reviewed by Program Committee members. Papers were submitted
and reviewed using the EasyChair online system. The committee members de-
cided to accept 17 papers.

December 2013 Anthony Bonato
Michael Mitzenmacher

Pawe�l Pra�lat

Organization

General Chairs

Andrei Z. Broder Google Research
Fan Chung Graham University of California San Diego, USA

Organizing Committee

Anthony Bonato Ryerson University, Canada
Michael Mitzenmacher Harvard University, USA
Pawe�l Pra�lat Ryerson University, Canada

Sponsoring Institutions

Google
Internet Mathematics
Microsoft Research New England
National Science Foundation
Ryerson University

Program Committee

Dimitris Achlioptas UC Santa Cruz, USA
Konstantin Avratchenkov Inria, France
Paolo Boldi University of Milano, Italy
Anthony Bonato Ryerson University, Canada
Milan Bradonjic Bell Laboratories, USA
Fan Chung Graham UC San Diego, USA
Colin Cooper King’s College, UK
Anirban Dasgupta Yahoo! Research
Luca de Alfaro UC Santa Cruz, USA
Raissa D’Souza UC Davis, USA
Alan Frieze Carnegie Mellon University, USA
David Gleich Purdue University, USA
Adam Henry University of Arizona, USA
Paul Horn Harvard University, USA
Jeannette Janssen Dalhousie University, Canada
Ravi Kumar Google Research
Stefano Leonardi University of Rome, Italy
Nelly Litvak University of Twente, The Netherlands

VIII Organization

Lincoln Lu University of South Carolina, USA
Oliver Mason National University of Ireland
Michael Mitzenmacher Harvard University, USA
Peter Morters University of Bath, UK
Mariana Olvera-Cravioto Columbia University, USA
Allon Percus Claremont Graduate University, USA
Pawel Pralat Ryerson University, Canada
D. Sivakumar Google Research
Stephen Young University of Louisville, USA

Table of Contents

Asymmetric Distribution of Nodes in the Spatial Preferred Attachment
Model . 1

Jeannette Janssen, Pawe�l Pra�lat, and Rory Wilson

A Spatial Preferential Attachment Model with Local Clustering 14
Emmanuel Jacob and Peter Mörters

A Local Clustering Algorithm for Connection Graphs 26
Fan Chung and Mark Kempton

On the Power of Adversarial Infections in Networks 44
Michael Brautbar, Moez Draief, and Sanjeev Khanna

On the Choice of Kernel and Labelled Data in Semi-supervised
Learning Methods . 56

Konstantin Avrachenkov, Paulo Gonçalves, and Marina Sokol

A Nearly-Sublinear Method for Approximating a Column of the Matrix
Exponential for Matrices from Large, Sparse Networks 68

Kyle Kloster and David F. Gleich

Evolution of the Media Web . 80
Damien Lefortier, Liudmila Ostroumova, and Egor Samosvat

Random Intersection Graph Process . 93
Mindaugas Bloznelis and Micha�l Karoński

Alpha Current Flow Betweenness Centrality . 106
Konstantin Avrachenkov, Nelly Litvak, Vasily Medyanikov, and
Marina Sokol

Tree Nash Equilibria in the Network Creation Game 118
Akaki Mamageishvili, Matúš Mihalák, and Dominik Müller

Fast Low-Cost Estimation of Network Properties Using Random
Walks . 130

Colin Cooper, Tomasz Radzik, and Yiannis Siantos

An Lp Norm Relaxation Approach to Positive Influence Maximization
in Social Network under the Deterministic Linear Threshold Model 144

Rupei Xu

X Table of Contents

Fast Algorithms for the Maximum Clique Problem on Massive Sparse
Graphs . 156

Bharath Pattabiraman, Md. Mostofa Ali Patwary,
Assefaw H. Gebremedhin, Wei-keng Liao, and Alok Choudhary

A Faster Algorithm to Update Betweenness Centrality after Node
Alteration . 170

Keshav Goel, Rishi Ranjan Singh, Sudarshan Iyengar, and Sukrit

Generalized Preferential Attachment: Tunable Power-Law Degree
Distribution and Clustering Coefficient . 185

Liudmila Ostroumova, Alexander Ryabchenko, and Egor Samosvat

Solving Linear Systems with Boundary Conditions Using Heat Kernel
Pagerank . 203

Fan Chung and Olivia Simpson

Anarchy Is Free in Network Creation . 220
Ronald Graham, Linus Hamilton, Ariel Levavi, and Po-Shen Loh

Author Index . 233

Asymmetric Distribution of Nodes in the Spatial

Preferred Attachment Model

Jeannette Janssen1, Pawe�l Pra�lat2, and Rory Wilson1

1 Dalhousie University, Halifax, Canada
{jeannette.janssen,rory.ross.wilson}@dal.ca

2 Ryerson University, Toronto, Canada
pralat@ryerson.ca

Abstract. In this paper, a spatial preferential attachment model for
complex networks in which there is non-uniform distribution of the nodes
in the metric space is studied. In this model, the metric layout represents
hidden information about the similarity and community structure of the
nodes. It is found that, for density functions that are locally constant, the
graph properties can be well approximated by considering the graph as a
union of graphs from uniform density spatial models corresponding to the
regions of different densities. Moreover, methods from the uniform case
can be used to extract information about the metric layout. Specifically,
through link and co-citation analysis the density of a node’s region can be
estimated and the pairwise distances for certain nodes can be recovered
with good accuracy.

Keywords: Spatial Random Graphs, Spatial Preferred Attachment
Model, Preferential Attachment, Complex Networks, Web Graph, Co-
citation, Common Neighbours.

1 Introduction

There has been a great deal of recent interest in modelling complex networks,
a result of the increasing connectedness of our world. The hyperlinked structure
of the Web, citation patterns, friendship relationships, infectious disease spread,
these are seemingly disparate collections of entities which have fundamentally
very similar natures.

Many models of complex networks—such as copy models and preferential
attachment models—have a common weakness: the ‘uniformity’ of the nodes;
other than link structure there is no way to distinguish the nodes. One family of
models which overcomes this deficiency is spatial (or geometric) models, wherein
the nodes are embedded in a metric space. A node’s position—especially in
relation to the others—has real-world meaning: the character of the node is
encoded in its location. Similar nodes are closer in the space than dissimilar
nodes. This distance has many potential meanings: in communication networks,
perhaps physical distance; in a friendship graph, an interest space; in the World
Wide Web, a topic space. As an illustration, a node representing a webpage on

A. Bonato, M. Mitzenmacher, and P. Pra�lat (Eds.): WAW 2013, LNCS 8305, pp. 1–13, 2013.
c© Springer International Publishing Switzerland 2013

2 J. Janssen, P. Pra�lat, and R. Wilson

pet food would be closer in the metric space to one on general pet care than to
one on travel.

The Spatial Preferred Attachment Model [1], designed as a model for the
World Wide Web, is one such spatial model. Indeed, as its name suggests, the
SPA Model combines geometry and preferential attachment. Setting the SPA
Model apart is the incorporation of ‘spheres of influence’ to accomplish prefer-
ential attachment: the greater the degree of the node, the larger its sphere of
influence, and hence the higher the likelihood of the node gaining more neigh-
bours. The SPA model produces scale-free networks, which exhibit many of the
characteristics of real-life networks (see [1,4]). In [9], it was shown that the SPA
model gave the best fit, in terms of graph structure, for a series of social networks
derived from Facebook.

As the motivation behind spatial models is the ‘second layer of meaning’—the
character of the nodes as represented by their positions in the metric space—
we hope to uncover this layer through examination of the link structure. In
particular, estimating the distance between nodes in the metric space forms the
basis for two important link mining tasks: finding entities that are similar—
represented by nodes that are close together in the metric space—and finding
communities—represented by spatial clusters of nodes in the metric space. We
show how a theoretical analysis of a spatial model can lead to reliable tools to
extract the ‘second layer of meaning’.

The majority of the spatial models to this point have used uniform random
distribution of nodes in the space. However, considering the real-world networks
these models represent, this concept is impractical: indeed, on a basic level, if
the metric space represents actual physical space, and the nodes people, then we
note that people cluster in cities and towns, rather than being uniformly spread
across the land. More abstractly, there are more webpages on a popular topic,
corresponding to a small area of our metric space, than for a more obscure topic.
The development of spatial network models naturally then begins to incorporate
varying densities of node distribution: both ‘clumps’ of higher/lower density, as
well as gradually changing densities, are both possibilities.

Of the more important goals is that of community recognition: the discovery
and quantification of characteristically (semantically) similar nodes.

In this work we generalize the SPA model to non-homogeneous distribution
of nodes within the space. We assume very distinct regions of different densities,
‘clusters’. We find they behave almost as independent SPA Models of parameters
derived from the densities. Many earlier results from the SPA Model then trans-
late easily to this asymmetric version and we begin the process of uncovering
the geometry using link analysis.

1.1 Background and Related Work

Efforts to extract node information through link analysis began with a heuristic
quantification of entity similarity: numerical values, obtained from the graph
structure, indicating the relatedness of two nodes. Early simple measures of
entity similarity, such as the Jaccard coefficient [12], gave way to iterative graph

Asymmetric SPA Model 3

theoretic measures, in which two objects are similar if they are related to similar
objects, such as SimRank [10]. Many such measures also incorporate co-citation,
the number of common neighbours of two nodes, as proposed in the paper by
Small [13].

The development of graph models, in particular spatial models—as explored
in [3] using thresholds, in combination with protean graphs [2] and with preferen-
tial attachment [5,7]—added another dimension to node information extraction.
For example, in [6], the authors make inferences on the social space for nodes
in a social network, using Bayesian methods and maximum likelihood. But in
particular, the authors’ previous paper, [8], used common neighbours in a spa-
tial model of the World Wide Web [1] to explore the underlying geometry and
quantify node similarity based on distance in the space. In this paper, we draw
heavily from [4], which includes further results on the SPA model, and in partic-
ular from [8] and extend its results to a generalization that allows us to overcome
the reliance on uniform random distribution of nodes in the space. Non-uniform
distributions have also been explored in [11, 14], as we move to more realistic
models.

1.2 The Asymmetric SPA Model

We begin with a brief description of our Asymmetric SPA model. The model
presented here is a generalization of the SPA model introduced in [1], the main
difference being that we allow for an inhomogeneous distribution of nodes in the
space.

Let S be the unit hypercube in R
m, equipped with the torus metric derived

from the Euclidean norm, or any equivalent metric. The nodes {vt}nt=1 of the
graphs produced by the SPA model are points in S chosen via an m-dimensional
point process. Most generally, the process is given by a probability density func-
tion ρ; ρ is a measurable function such that

∫
S ρdμ = 1. Precisely, for any

measurable set A ⊆ S and any t such that 1 ≤ t ≤ n, P(vt ∈ A) =
∫
A
ρdμ.

In fact, we will restrict ourselves to probability functions that are locally
constant. Precisely, we assume that the space S = [0, 1)m is divided into km equal
sized hypercubes, where k is a constant natural number. Each hypercube is of
the form Ij1 ×Ij2 ×· · ·×Ijm (0 ≤ j1, j2, . . . , jm < k), where Ij = [j/k, (j+1)/k).
Note that any density function ρ can be approximated by such a locally constant
function, so that this restriction is justified.

To keep notation as simple as possible, we assume that each hypercube is
labelled R�, 1 ≤ � ≤ km. Let ρ� be the density of R�, so the density function
has value ρ� on R�. For any node v, let R(v) be the hypercube containing v,
and let ρ(v) be the density of R(v). Clearly, every hypercube has volume k−m.
Then the probability that a node vt, introduced at time t, falls in R� equals
q� = ρ�k

−m, and the expected number of points in R� equals ρ�k
−mn. It is

easy to see that
∑

� q� = 1. Thus we model the point process as follows: at each
time step t, one of the regions is chosen as the destination of vt; region R� is
chosen with probability q�. Then, a location for vt is chosen uniformly at random
from R�.

4 J. Janssen, P. Pra�lat, and R. Wilson

The SPA model generates stochastic sequences for graphs (Gt : t ≥ 0) with
edge set Et and node set Vt ⊆ S. The in-degree of a node v at time t is given by
deg−(v, t). Likewise the out-degree is given by deg+(v, t). The sphere of influence
of a node v at time t is defined as the ball, centred at v, with total volume

|S(v, t)| =
A1 deg−(v, t) + A2

t
,

where A1, A2 > 0 are given parameters. If (A1 deg−(v, t) + A2)/t ≥ 1, then
S(v, t) = S and so |S(v, t)| = 1. We impose the additional restriction that
pA1 maxj ρj < 1; this avoids regions becoming too dense. This property will be
always assumed. The generation of a SPA model graph begins at time t = 0 with
G0 being the null graph. At each time step t ≥ 1 (defined to be the transition
from Gt−1 to Gt), a node vt is chosen from S according to the given spatial
distribution, and added to Vt−1 to form Vt. Next, independently, for each node
u ∈ Vt−1 such that vt ∈ S(u, t − 1), a directed link (vt, u) is created with
probability p, p ∈ (0, 1) being another parameter of the model.

Let δ(v) be the distance from v to the boundary of R(v). Let r(v, t) be the
radius of the sphere of influence of node v at time t. So if r(v, t) ≤ δ(v), then
S(v, t) is completely contained in R(v) at time t. We see that

r(v, t) = (|S(v, t)|/cm)
1/m

=

(
A1 deg−(v, t) + A2

cmt

)1/m

,

where cm is the volume of the unit ball; for example, in 2-dimensions with the
Euclidean metric, c2 = π.

Our goal is to investigate typical properties of a graph Gn on n nodes, and
to use these to infer the spatial layout of the nodes. As typical in random graph
theory, we shall consider only asymptotic properties of Gn as n → ∞. We say
that an event in a probability space holds asymptotically almost surely (a.a.s.)
if its probability tends to one as n goes to infinity.

2 Graph Properties of the SPA Model

In the Asymmetric SPA model with a locally constant density function, the
probability of an edge forming from a new node vt to an existing node v at time
t equals

P((vt, v) ∈ E(Gn)) = p

∫
S(v,t)

ρdμ = p
∑
�

ρ� |S(v, t) ∩R�|.

Thus, the stochastic process of edge formation in the Asymmetric SPA model
is bounded below by the process in which the edge probability is governed by
pρmin, and bounded above by that with pρmax, where ρmin and ρmax are, re-
spectively, the smallest and the largest densities occurring. The bounds on the
link probability P((vt, v) ∈ E(Gn)) lead to bounds on the expected value of the
degree.

Asymmetric SPA Model 5

Theorem 1. Let ω = ω(n) be any function tending to infinity together with n.
The expected in-degree at time t of a node vi born at time i ≥ ω is given by

(1+o(1))
A2

A1

(
t

i

)pρminA1

−A2

A1
≤ E(deg−(vi, t)) ≤ (1+o(1))

A2

A1

(
t

i

)pρmaxA1

−A2

A1
.

In the analysis of the original SPA model, we find that nodes born quite early
have their spheres of influence typically shrinking rapidly, and nodes born late
start with small spheres of influence. A node would have to be quite close to the
boundary of its region with another for the effect of any other region to be felt.
It seems reasonable to expect that the graph formed by nodes in a region R�

with local density ρ� behaves like an independent SPA model of density ρ�.
To be specific, assume that nodes in the SPA model do not arrive at fixed

time instances t, but instead arrive according to a homogeneous Poisson process
with rate 1. (This will not significantly change the analysis.) Then, the process
inside a region R with density ρ will behave like a SPA model with the same
parameters A1, A2 and p, but with points arriving according to a Poisson process
with rate ρ. This means that in each time interval we expect ρ points to arrive,
and the expected time interval between arrivals equals 1/ρ. If we use vt to denote
the t-th node arriving, then the arrival time a(t) of vt is approximately t/ρ, and
thus the volume of the sphere of influence of an existing node v at the time that
vt is born equals

|S(v, a(t))| =
A1 deg−(v, a(t)) + A2

a(t)
≈ ρA1 deg−(v, a(t)) + ρA2

t
.

Thus, in the analysis of the degree of an individual node, we expect a node v
in the asymmetric SPA model to behave like a node in the original SPA model
with parameters ρ(v)A1, ρ(v)A2 instead of A1, A2, where the degree of node v
at time t in the Asymmetric SPA model corresponds to the degree of a node at
time a(t) in the corresponding SPA model. The following theorems show that
this is indeed the case.

Theorem 2. Let ω = ω(n) be any function tending to infinity together with
n. The expected in-degree at time t of a node vi born at time i ≥ ω logn, with
δ(v)
 (logn/i)1/m is given by

E(deg−(vi, t)) = (1 + o(1))
A2

A1

(
t

i

)pρ(v)A1

− A2

A1
.

Theorem 3. Let ω = ω(n) be any function tending to infinity together with n,
and let ε > 0. The following holds a.a.s. For every node v for which deg−(v, n) =
k = k(n) ≥ ω logn and for which

δ(v) ≥ (1 + ε)

(
A1k + A2

cmn

)1/m

,

6 J. Janssen, P. Pra�lat, and R. Wilson

it holds that for all values of t such that max{tv, Tv} ≤ t ≤ n,

deg−(v, t) = (1 + o(1))k

(
t

n

)pρ(v)A1

.

Times Tv and tv are defined as follows:

Tv = n

(
ω logn

k

)pρ(v)A1

, tv = (1 + ε)

(
A1k

δmcmnpρ(v)A1

) 1
1−pρA1

.

The statement of the theorem is rather technical, so we lay it out conceptually:

– the condition on δ(v) ensures that at time n, S(v, n) is completely contained
in R(v) (the factor of (1 + ε) gives some extra room for argument),

– time Tv is the time node v has ω logn neighbours, provided that the process
behaves as we expect,

– time tv is the time when the sphere of influence has shrunk to the point where
it became completely contained in R(v), provided the process behaves well
(again, with extra room due to the factor (1+ε)). This occurs at the moment
when the expected radius of the sphere of influence is smaller than δ(v).

The implication of this theorem is that once a node accumulates ω logn neigh-
bours and its sphere of influence has shrunk so that it does not intersect neigh-
bouring regions, its behaviour can be predicted with high probability until the
end of the process, and is completely governed by its region, and no others.

We note that if max{Tv, tv} = tv for a node v, then at time Tv—the time v
first reaches in-degree ω logn—its sphere of influence extends beyond the region
of v. However, since a.a.s. no node has degree ω logn at time O(ω logn), it must
be that Tv
 ω logn. Thus at time Tv the radius of the sphere of influence of v

is O
(

(ω log n/Tv)
1/m

)
= o(1). The implication is that, in order for max{Tv, tv}

to be equal to tv, a node would have to be very close to the border, that is,
δ(v) = o(1). So for most nodes under consideration, max{Tv, tv} = Tv, and
they behave like in a uniform SPA model of density ρ(v) as soon as their degree
reaches ω logn. Further, of these nodes, those with deg(v, n) ≥ ω2 logn reach
degree ω logn at time o(n), and so have o(deg(v, n)) neighbours outside R(v).

We can use the results on the degree to show that each graph induced by one
of the regions R� has a power law degree distribution. Let Ni(j, n) denote the
number of nodes of degree j at time n in the region Ri and let jf = jf (n) =(
n/ log8 n

) pρmaxA1
4pρmaxA1+2 .

Theorem 4. A.a.s. the graph induced by the nodes in region R� has a power
law degree distribution with coefficient 1 + 1/pρiA1. Precisely, a.a.s. for any
1 ≤ i ≤ km there exists a constant ci such that for any 1 � j ≤ jf ,

Ni(j, n) = (1 + o(1))cij
−(1+ 1

pρiA1
)
qin.

Moreover, a.a.s. the entire graph generated by the Asymmetric SPA model has a
degree distribution whose tail follows a power law with coefficient 1+1/pρmaxA1.

Asymmetric SPA Model 7

The number of edges also validates our hypothesis that a region of a certain
density behaves almost as a uniform SPA model with adjusted parameters. In
the SPA model with parameters ρ�A1, ρ�A2 and p, the average out-degree is ap-
proximately pρ�A2

1−pρ�A1
, as per [1, Theorem 1.3]. The following theorem shows that

the subgraph induced by one of the regions has the equivalent expected number
of edges, and most edges have both endpoints in the same region. Moreover, this
result shows why we need the condition pρmaxA1 < 1. In fact, if pρmaxA1 ≥ 1,
then the number of edges will grow superlinearly.

Theorem 5. For a region R� of density ρ�, a.a.s. |V (Gn)∩R�| = (1+o(1))q�n.
Moreover,

E({(u, v) ∈ E(Gn) |u, v ∈ R�}|) = (1 + o(1))
pρ�A2

1 − pρ�A1
q�n.

Furthermore, a.a.s.

|{(u, v) ∈ E(Gn) : R(u) �= R(v)}| = o(n),

i.e. the number of edges that cross the boundary of R� is of smaller order than
the number of edges completely contained in the region.

Our ultimate goal is to derive the pairwise distances between the nodes in the
metric space through an analysis of the graph. The following theorem, obtained
using the approach of [8], provides an important tool. Namely, it links the number
of common in-neighbours of a pair of nodes to their (metric) distance. Using
this theorem, we can then infer the distance from the number of common in-
neighbours. Let cn(u, v) denote the number of common in-neighbours of two
nodes u and v.

The theorem distinguishes three cases. If u and v are relatively far from each
other, then a.a.s. they will have no common neighbours. If the nodes are very
close, then the number of common neighbours is approximately equal to a frac-
tion p of the degree of the node of smallest degree. The third case provides a
‘sweet spot’ where the number of common neighbours is a direct function of the
metric distance and the degrees of the nodes. For any two nodes u and v, let
cn(u, v, t) denote the number of common in-neighbours of u and v at time t.

Theorem 6. Let ω = ω(n) be any function tending to infinity together with n,
and let ε > 0. The following holds a.a.s. Let u and v be nodes of final degrees
deg(u, n) = k and deg(v, n) = j such that R(u) = R(v), and k ≥ j ≥ ω2 logn.

Let ρ = ρ(v) and let Tv = n (ω logn/j)
pρA1 , and assume that

δ(v)m ≥ cj and δ(u)m ≥ ck, where c = (1 + ε)

(
A1

cmnpρA1T 1−pρA1
v

)
.

Let d(u, v) be the distance between u and v in the metric space. Then, we have
the following result about the number of common in-neighbours of u and v:

8 J. Janssen, P. Pra�lat, and R. Wilson

Case 1. If for some ε > 0

d(u, v) ≥ ε

(
ω logn(k/j)

Tv

)1/m

then cn(u, v, n) = O(ω logn).

Case 2. If k ≥ (1 + ε)j for some ε > 0 and

d(u, v) ≤
(
A1k + A2

cmn

)1/m

−
(
A1j + A2

cmn

)1/m

= O

((
k

n

)1/m
)
,

then cn(u, v, n) = (1 + o(1))pj. If k = (1 + o(1))j and d(u, v)m �
(k/n) = (1 + o(1))(j/n), then cn(u, v, n) = (1 + o(1))pj as well.

Case 3. If k ≥ (1 + ε)j for some ε > 0 and(
A1k + A2

cmn

)1/m

−
(
A1j + A2

cmn

)1/m

< d(u, v) �
(
ω logn(k/j)

Tv

)1/m

,

then

cn(u, v, n) = Ci
− (pρA1)2

1−pρA1

k i−pρA1

j d(u, v)−
mpρA1
1−pρA1

(
1 + O

((
ik
ij

)pρA1/m
))

,

(1)

where ik = n
(

A1

A2
k
)− 1

pρA1
and ij = n

(
A1

A2
j
)− 1

pρA1
,

and C = pA−1
1 A

1
1−pρA1
2 c

− pρA1
1−pρA1

m . If k = (1 + o(1))j and ε(k/n)1/m <
d(u, v) � (ω logn/Tv)1/m for some ε > 0, then

cn(u, v, n) = Θ

(
i
− (pρA1)2

1−pρA1

k i−pρA1

j d(u, v)−
mpρA1
1−pρA1

)
.

3 Reconstruction of Geometry

We set out to discover the character of nodes in a network purely through link
structure, and to quantify the similarities. Spatial models allow us a convenient
definition of similarity: distances between nodes. In examining the SPA model,
the number of common neighbours allows us to uncover pairwise distances, a
first step in the reconstruction of the geometry.

Description of Model Used. For simulations, we use an Asymmetric SPA model
we call the diagonal layout, which has 4 ‘clusters’ of identical high density, with
m = 2. In the diagonal layout, k = 4 and the 4 regions (x, x), 1 ≤ x ≤ 4, are
dense, with the others sparse. We will use ‘dense region’ and ‘sparse region’ to
denote the union of all regions with densities ρd and ρs, respectively. For ease
of notation, we note that ρs = 4/3 − ρd/3 so it is enough to provide the value

Asymmetric SPA Model 9

Fig. 1. Left: diagonal layout, n = 1, 000, p = 0.6, ρd = 1.6, A1 = 0.7, A2 = 2.0; Right:
degree distribution n = 1, 000, 000, p = 0.7, ρd = 1.2, A1 = 0.7, A2 = 1.0

of ρd only. In Figure 1 we see an example of the diagonal layout with nodes and
edges, and we also see evidence that the densest region does dominate the power
law degree distribution.

First we assume uniform density and apply the original estimator (Equation 7
from [8]) to our diagonal layout; the results are shown in the left in Figure 2. We
eliminate those pairs we assume are in Case 1 (too close) and those in Case 2
(too far), by limiting our pairs to those with more than 10 common neighbours
and fewer than p/2 deg(v, n). This leaves 2270 pairs. The figure shows that the
approach fails, and that it leads to a consistent overestimate of the distance
for the nodes. This is somewhat counterintuitive, but the trouble lies with the
estimator for a node’s age based on in-degree: a node in Rd is thought to be
much older than it actually is and confounds the distance estimator.

Fig. 2. SPA model, n = 100, 000, diagonal layout, p = 0.7, ρd = 1.6, A1 = 0.7, A2 =
2.0, actual vs. estimated distances for pairs of nodes; Left: using original estimator;
Right: using new estimator, density known

More precision is needed to take into account the varying densities. Examining
Theorem 6, we note that for Case 3, equation (1) can be used to obtain an

estimate d̂ of the distance between a pair of nodes. For a pair of nodes u, v
which are both in a region of density ρ, and their distance is such that Case 3
applies, this estimate is given by:

10 J. Janssen, P. Pra�lat, and R. Wilson

d̂(u, v) = C1(cn(u, v))
− (1−pρA1)

mpρA1 k1/mj
(1−pρA1)
pρA1m (2)

where C1 = (ncm)−1/mp
(1−pρ(v1))A1)

mpρ(v1)A1 A
1/m
1 and k = deg(u, n) and j = deg(v, n),

with k ≥ j.
Using the same simulation results, we compare the estimated distance using

Equation 2 vs. actual node distance. Note we use our calculated density for each
node to determine their estimated ages, but use the calculated density of the
node of higher degree in the distance formula. The results seen on the right in
Figure 2 indicate that our new estimator is quite accurate in predicting distances
for some pairs of nodes, given all the parameters of the model, except for the
cross-border pairs.

3.1 Estimating the Density

In real-world situations, we cannot assume to know the density of the region
containing a given node. In fact, the density of the region containing a node is
an important part of the ‘second layer of meaning’ which we aim to extract from
the graph. Therefore, in order to use our estimator for the distances between the
nodes, we need to be able to use the graph structure to estimate the densities.

Using the theoretical results obtained from the previous section, we see that
we can use the out-degrees of the in-neighbours of v to estimate the density of
R(v). As per Theorem 5, the average out-degree in R� is approximately pρ�A2

1−pρ�A1
.

Simulations confirm this expected value. Running sets of parameters 10 times
each, we observe that if pρmaxA1 ≤ 0.75, the number of edges per region are
within 90% of the expected value, on average. For 0.75 < pρmaxA1 ≤ 0.8, the
number of edges is within 75% of expected. For pρmaxA1 > 0.8 we start to
see deviation, as our expression for the expected number of edge in the densest
region becomes ‘unbounded’, i.e. the denominator starts to approach 0. The
number of edges that cross the border from sparse to dense, or between clusters,
is consistently seen to be much smaller in order than the edges within each
region.

Thus, if we have a large enough set of nodes from the same region, then we
can use the formula above to estimate the density of the region. Consider a node
v, and make two assumptions: (i) almost all neighbours of v are contained in
R(v), and (ii) the neighbours of v form a representative sample of all nodes
of R(v). Simulations show that these assumptions are justified and allow us to
make an estimate for ρ(v).

Set deg
+

(N−(v)) to be the average out-degree of the in-neighbours of v. As-
suming the in-neighbours of v are also in R(v) (a fair assumption, given our
earlier theorems), an estimator for the density can be derived from the average
out-degree:

ˆρ(v) =
deg

+
(N−(v))

pA2 + pA1deg
+

(N−(v))
.

Asymmetric SPA Model 11

We see in the histograms in Figure 3 (Left and Center) that the average out-
degree of a node’s in-neighbours in the dense region of the diagonal layout is
quite accurate, but for the sparse region, the average out-degree is higher than
expected. Displayed are the results for nodes with deg−(v) ≥ 10. The calculated
theoretical value for the average out-degree of in-neighbours for a node in the
dense region is 5.85, and in the sparse, 1.45. This translates in ρd = 1.6 and
ρs = 0.8. We see peaks that are quite accurate for the dense region, but translated
to the right for the sparse region. Likely, those are sparse region nodes located
close to the border; our condition on the minimum degree favours the ‘rich’
sparse region nodes.

Fig. 3. Diagonal layout, n = 100, 000, ρd = 1.6, A1 = 0.7, A2 = 2.0; Left: p =
0.6, average out-degree of the in-neighbours; Center: p = 0.6, calculated density from
average out-degree; Right: p = 0.7, using estimated density from the node of greater
final degree, all other parameters known

Finally, we use ρ̂, and knowing all other parameters, to calculate the distance
between the nodes based on number of common neighbours, Equation 2, using
the same simulation results as earlier. Again note we use our calculated density
for each node to determine their estimated ages, but use the calculated density
of the node of higher degree in the distance formula. Using the lower degree node
gives similar results. The results are seen in Figure 3 (Right). We obtain very
good agreement between calculated and estimated densities.

4 Conclusion

Our analysis of a SPA model with non-uniform random distribution of nodes
reveals almost independent clusters of nodes. Expected degree, degree distribu-
tion and number of edges behave as they would in localized SPA models with
‘adjusted’ parameters. It is not examined here, but it is suspected that these
adjusted parameters extend to other existing results on the SPA Model such as
the small world property and spectral properties: this is a goal of future work.
The main result of the paper is that, by using the average out-degree of the in-
neighbours of a node, an estimate of its region’s density can be obtained. With
this density in hand, the examination of common neighbours for pairs of nodes
allows us to find their distances in the metric space. Currently, the number of

12 J. Janssen, P. Pra�lat, and R. Wilson

pairs of nodes for which we have distances is quite limited due to the nature
of the spheres of influence: that they either start small or shrink rapidly results
in only those pairs that are very close having a significant number of common
neighbours. Attempts to increase our information could include the use of path
lengths, second neighbourhoods, etc.

Although the theoretical results are interesting in and of themselves, further
work can be done in examining their validity in the context of real networks, i.e.
recovering meaningful distances for pairs of nodes. Early results using machine
learning and graphlets show that the SPA Model can be an accurate represen-
tation of social networks [9]; it would be ideal to extend our knowledge of the
accuracy of the SPA Model, in particular the Asymmetric SPA Model, to other
complex networks. In the context of real networks we may be able to further
examine potentially ’anomalous nodes, such as those with shifting positions, or
those with dual identities.

Our ultimate goal is reverse engineering: given the link structure of a graph,
and assuming it could be modelled by the SPA model, we would be able to
completely reconstruct the underlying spatial reality, a method of profound ap-
plication. For example, knowing the hyperlink structure of a part of the Web,
and assuming that it is well represented by the SPA model, we will be able to
use this information to create a topic map of the pages. We will have developed a
very powerful tool for prediction in the Web, with both economic and sociological
benefits, such as improved web search and the discovery of cyber-communities.

References

1. Aiello, W., Bonato, A., Cooper, C., Janssen, J., Pra�lat, P.: A spatial web graph
model with local influence regions. Internet Mathematics 5(1-2), 175–196 (2008)

2. Bonato, A., Janssen, J., Pra�lat, P.: Geometric protean graphs. Internet Mathemat-
ics 8(1-2), 2–28 (2012)

3. Bradonjić, M., Hagberg, A., Percus, A.G.: Giant component and connectivity in
geographical threshold graphs. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007.
LNCS, vol. 4863, pp. 209–216. Springer, Heidelberg (2007)

4. Cooper, C., Frieze, A.M., Pra�lat, P.: Some typical properties of the spatial preferred
attachment model. In: Bonato, A., Janssen, J. (eds.) WAW 2012. LNCS, vol. 7323,
pp. 29–40. Springer, Heidelberg (2012)

5. Flaxman, A.D., Frieze, A.M., Vera, J.: A geometric preferential attachment model
of networks. In: Leonardi, S. (ed.) WAW 2004. LNCS, vol. 3243, pp. 44–55.
Springer, Heidelberg (2004)

6. Hoff, P., Raftery, A., Handcock, M.: Latent space approaches to social network
analysis. Journal of the American Statistical Association 97, 1090–1098 (2001)

7. Jacob, E., Mörters, P.: Spatial preferential attachment networks: Power laws and
clustering coefficients. ArXiv e-prints (October 2012)

8. Janssen, J., Pra�lat, P., Wilson, R.: Geometric graph properties of the spatial pre-
ferred attachment model. Advances in Applied Mathematics 50(2), 243–267 (2013)

9. Janssen, J., Hurshman, M., Kalyaniwalla, N.: Model selection for social networks
using graphlets. Internet Math. 8(4), 338–363 (2012)

10. Jeh, G., Widom, J.: SimRank: a measure of structural-context similarity. In: Knowl-
edge Discovery and Data Mining, pp. 538–543 (2002)

Asymmetric SPA Model 13

11. Jordan, J.: Geometric preferential attachment in non-uniform metric spaces. ArXiv
e-prints (August 2012)

12. Kobayakawa, M., Kinjo, S., Hoshi, M., Ohmori, T., Yamamoto, A.: Fast computa-
tion of similarity based on jaccard coefficient for composition-based image retrieval.
In: Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X.
(eds.) PCM 2009. LNCS, vol. 5879, pp. 949–955. Springer, Heidelberg (2009)

13. Small, H.: Co-citation in the scientific literature: A new measure of the relation-
ship between two documents. Journal of the American Society for Information
Science 24(4), 265–269 (1973)

14. Zhang, J.: Growing Random Geometric Graph Models of Super-linear Scaling Law.
ArXiv e-prints (December 2012)

A Spatial Preferential Attachment Model

with Local Clustering

Emmanuel Jacob1 and Peter Mörters2

1 École Normale Supérieure de Lyon
2 University of Bath

Abstract. A class of growing networks is introduced in which new nodes
are given a spatial position and are connected to existing nodes with a
probability mechanism favouring short distances and high degrees. The
competition of preferential attachment and spatial clustering gives this
model a range of interesting properties. Most notably, empirical degree
distributions converge to a limit law, which can be a power law with
any exponent τ > 2, and the average clustering coefficient converges to
a positive limit. Our main tool to show these and other results is a weak
law of large numbers in the spirit of Penrose and Yukich, which can be
applied thanks to a novel rescaling idea. We also conjecture that the
networks have a robust giant component if τ is sufficiently small.

Keywords: Scale-free network, Barabasi-Albert model, preferential at-
tachment, dynamical random graph, geometric random graph, power
law, degree distribution, edge length distribution, clustering coefficient.

1 Introduction

Many of the phenomena in the complex world in which we live have a rough
description as a large network of interacting components. It is therefore a funda-
mental problem to derive the global structure of such networks from basic local
principles. A well established principle is the preferential attachment paradigm
which suggests that networks are built by adding nodes and links successively,
in such a way that new nodes prefer to be connected to existing nodes if they
have a high degree [3]. The preferential attachment paradigm offers, for example,
a credible explanation of the observation that many real networks have degree
distributions following a power law behaviour. On the global scale preferential
attachment networks are robust under random attack if the power law expo-
nent is sufficiently small, and have logarithmic or doubly logarithmic diameters
depending on the power law exponent. These features, together with a reason-
able degree of mathematical tractability, have all contributed to the enormous
popularity of these models. Unfortunately, the local structure of preferential at-
tachment networks significantly deviates from that observed in real networks. In
preferential attachment models the neighbourhoods of typical nodes have a tree-
like topology [11], [4], which is a crucial feature for their mathematical analysis,
but is not in line with the behaviour of many real world networks.

A. Bonato, M. Mitzenmacher, and P. Pra�lat (Eds.): WAW 2013, LNCS 8305, pp. 14–25, 2013.
c© Springer International Publishing Switzerland 2013

Spatial Preferential Attachment Networks 15

The most popular quantity to measure the local clustering of networks are the
clustering coefficients, which are measured to be positive in most real networks,
but which invariably vanish in preferential attachment models that do not incor-
porate further effects [2], [6]. A possible reason for the clustering of real networks
is the presence of a hidden variable assigned to the nodes, such that similarity
of values is a further incentive to form links. For the class of protean graphs this
idea has allowed Bonato et al. in [7] to generate power law networks with spatial
clustering. Several authors have also proposed models combining preferential
attachment with spatial features. Among the mathematically sound attempts
in this direction are the papers of Flaxman et al. [12], [13], Jordan [16], Aiello
et al. [1] and Cooper et al. [8]. These papers show that combining preferential
attachment and spatial dependence can retain the global power law behaviour
while changing the local topology of the network, for example by showing that
the resulting graphs have small separators [12], [13]. None of these papers dis-
cusses clustering by analysing the clustering coefficients.

In this paper, we study a generalisation and variant of the spatial preferred
attachment (SPA) model introduced in Aiello et al. [1] and further studied in
Janssen et al. [15] and Cooper et al. [8]. The original model is based on the idea
that a vertex at position x has a ball of influence centred in x. A new vertex can
only be connected to it, if it falls within this ball, in which case it does so with a
given probability p0. The preferential attachment effect is modelled through the
fact that the size of the ball depends on the degree of the vertex. In our model,
this ball of influence is replaced by a profile, rotationally symmetric around x,
with the probability of a connection given by the height of the profile. This allows
us to relax the spatial rigidity of the model, so that for example two vertices
always have a positive probability of being connected, whatever their positions.
This generalisation induces a richer phenomenology, in particular when it comes
to more complex statistics such as the edge length distribution or the existence
of a giant component.

Our analysis of this model is using methods developed originally for the study
of random geometric graphs, see Penrose and Yukich [19] for a seminal paper
in this area and [18] for an exhibition. Our approach is based on a rescaling
which transforms the growth in time into a growth in space. This transforma-
tion stabilises the neighbourhoods of a typical vertex and allows us to observe
convergence of the local neighbourhoods of typical vertices in the graph to an
infinite graph. This infinite graph, which is not a tree, is locally finite and can
be described by means of a Poisson point process. We establish a weak law of
large numbers, similar to the one given in [19], which allows us to deduce conver-
gence results for a large class of functionals of the graph. For example, we show
that the average clustering coefficient always converges to a positive constant for
the scale-free networks given by SPA models. We also observe interesting phase
transitions in the behaviour of the global clustering coefficient and the empirical
edge length distribution. Finally, we informally discuss the existence of a robust
giant component, one of the key features of preferential attachment networks
which we would like to see retained in our model.

16 E. Jacob and P. Mörters

2 The Model

The generalized SPA model may be defined in a variety of metric spaces S. In
this paper, we work in dimension d ≥ 1, and we choose a distance d on Rd derived
from any of the lp norms. Similarly as in [8], [15] we let S be the unit hypercube
in Rd, centred at 0, equipped with its own torus metric d1, i.e. for any two points
(x, y) ∈ S, we set d1(x, y) = min{d(x, y + u) : u ∈ {−1, 0, 1}d}. Note that S
equipped with the torus metric has no boundary and is spatially homogeneous,
which avoids some technical difficulties. Let X denote a Poisson point process of
unit intensity on S × (0,∞). A point x = (x, s) in X is a vertex x, born at time
s and placed at position x. Observe that, almost surely, two points of X neither
have the same birth time nor the same position. We say that (x, s) is older than
(y, t) if s < t. An edge is always oriented from the younger to the older vertex.
For t > 0, write Xt for X ∩ (S × (0, t]), the set of vertices already born at time
t. We construct a growing sequence of graphs (Gt)t>0, starting from the empty
graph, and adding successively the vertices in X when they are born (so that
the vertex set of Gt is Xt), and connecting them to some of the older vertices.
The rule is as follows:

Construction Rule: Given the graph Gt− and y = (y, t) ∈ X , we
add the vertex y and, independently for each vertex x = (x, s) in
Gt−, we insert the edge (y,x), independently of X , with probability

ϕ

(
t1/dd1(x, y)

f(deg−(x, t−))1/d

)
. (1)

The resulting graph is denoted by Gt.

Here the following definitions and conventions apply:

(i) deg−(x, t−) (resp. deg−(x, t)) denotes the indegree of vertex x at time t−
(respectively t), that is, the total number of incoming edges for the vertex x
in Gt− (resp. Gt). Similarly, we denote by deg+(y) the outdegree of vertex
y, which remains the same at all times u ≥ t.

(ii) f :N ∪ {0} → (0,∞) is the attachment rule. Informally, f(k) quantifies the
preferential ‘strength’ of a vertex of current indegree k, or likelihood of
attracting new links. For simplicity, we suppose

f(k) = γk + β, γ ∈ (0, 1), β > 0,

just as in [1], [8], but most of the results hold unchanged if f is only supposed
to be increasing with asymptotic slope limk→∞ f(k)/k = γ.

(iii) ϕ: [0,∞)→ [0, 1] is the profile function. It is non-increasing and satisfies∫
Rd

ϕ
(
d(0, y)

)
dy = 1. (2)

Informally, the profile function describes the spatial dependence of the prob-
ability that the newborn vertex y is linked to the existing vertex x.

Spatial Preferential Attachment Networks 17

Loosely speaking, this form of the construction rule is the only one that ensures
that we have a genuine interaction of the spatial and the preferential attachment
effects, as a vertex is likely to be connected to a finite number of vertices within
distance of order t−1/d and indegree of order 1, as well as to a finite number
of vertices at distance
 t−1/d and indegree
 1. If ϕ is integrable, the condi-
tion (2) is no loss of generality, as otherwise one can modify ϕ and f without
changing the construction rule. Under (2) one can see that the interesting range
of f (leading to degree distributions following an approximate power law) is char-
acterised by asymptotic linearity. If γ = pA1, β = pA2 and ϕ = p�[0,r], where
r is chosen so that (2) is satisfied, we essentially get the original SPA model of
[1], with the slight modification that we work in continuous time with random
birth times. With this choice of profile function, the model can be interpreted as
follows: Each vertex x is surrounded by a ball of influence, a ball centered at x
and of volume f(deg−(x, t−))/(pt). If the new vertex y falls within this ball of
influence, then y and x are connected with probability p, otherwise they cannot
be connected.

A general profile function can be seen as a mixture of indicator functions,
where any values p ∈ (0, 1] are allowed. We are particularly interested in the
case of profile functions ϕ with support the whole R+, in which case two vertices
x and y always have a positive probability of being connected. In particular, we
will discuss the choice of a polynomially decaying profile function, that is

ϕ(x) � (1 + x)−δ , δ > d,

where g � h is the commonly used notation for g/h bounded away from zero
and infinity. The condition δ > d is needed for the integrability condition to be
satisfied.

We now illustrate the connection between non-spatial preferential and spatial
attachment models. Suppose the graph Gt− is given, and a vertex is born at
time t, but we do not know its position, which is therefore uniform on S1. Then,
for each vertex x = (x, s) ∈ Gt−, the probability that it is linked to the newborn
vertex is equal to∫

S1

ϕ (Kd1(x, y)) dy = K−d

∫
(−K

2 ,K2]d
ϕ(d(0, y)) dy,

where we have written K = t1/d/(f(deg−(x, t−))1/d). As a consequence, the
indegree evolution process (deg−(x, t))t≥s is a time-inhomogeneous pure birth
process, starting from 0 and jumping at time t from state k to state k + 1 with
intensity

f(k)

t

∫(
− t1/d

2f(k)1/d
, t1/d

2f(k)1/d

]d ϕ(d(0, y)) dy.

We can show that (deg−(x, t))t≥s grows roughly like tγ , so that the integral
is asymptotically 1. Hence the jumping intensity of our process is the same as
in the Barabási-Albert model of preferential attachment [3], [20], or its variant
studied by Dereich and Mörters [9], [10], [11].

18 E. Jacob and P. Mörters

As soon as one deepens the study of the graph further than the first moment
calculations, the essential difference with the non-spatial models appears. The
presence of edges is now strongly correlated through the spatial positions of the
vertices. These correlations both make the model much harder to study, and
allow the network to enjoy interesting clustering properties. These are the main
concern of this paper.

3 Rescaling the Graph

This section has been simplified from the full-version of this article, see [14]. The
interested reader will find in [14] all the details, and the proof of Proposition 1
and Theorem 1 in the one-dimensional case. Everything holds mutatis mutandis
in the higher dimensional cases

3.1 The Rescaled Picture

In the graph sequence (Gt)t>0, the degree of any given vertex goes almost surely
to +∞. In this section we introduce a different graph sequence (Gt)t>0 such that
for every fixed t the graphs Gt and Gt have the same law. The new sequence has
a different dynamics in which growth in time is replaced by growth in space, and
the degrees of fixed vertices remain finite. Loosely speaking the sequence (Gt)t>0

represents the graphs as seen from a typical vertex in the original graph sequence
(Gt)t>0, and hence a fixed point in (Gt)t>0 does not age whereas a fixed point in
(Gt)t>0 does. The graph sequence (Gt)t>0 will be easier to analyse, in particular
it will converge and this goes along with convergence results for a large class of
statistics derived from (Gt)t>0.

To be more precise, let Y be a Poisson point process with intensity 1 on
Rd × (0, 1]. We interpret the first coordinate as space and the second as time,
which is now restricted to the unit interval. For t > 0, we define St to be the
hypercube

St =

(
− t1/d

2
,
t1/d

2

]d
of volume t. It is seen as a subspace of Rd but it is endowed with its own torus
distance dt. Observe that for any x and y of Rd, for t large enough, x and y will
be in St and satisfy dt(x, y) = d(x, y). For t > 0, define Yt = Y ∩ (St × (0, 1]),
and construct a graph Gt on Yt with the same construction rule as before, with
the new understanding that time now belongs to (0, 1], and the distance is now
replaced by dt in (1). It is easily seen that the graphs Gt and the original graph
Gt have the same law. Just multiply the time coordinate by t−1, the space
coordinates by t1/d, and observe that the point process is still a Poisson point
process of intensity 1, while the construction rule (1) is unchanged. It will turn
out that there is a limiting graph G∞ = limGt, which can be obtained directly
by applying our construction to the point set Y endowed with the distances in Rd

in the construction rule (1).

Spatial Preferential Attachment Networks 19

3.2 Convergence

Proposition 1.

(i) The graph G∞ is almost surely a well-defined locally finite graph, in the sense
that each vertex has finite degree.

(ii) Almost surely, the graph Gt converges locally to G∞, in the sense that for
each x ∈ Y, for sufficiently large t, the neighbours of x in Gt and in G∞

coincide.

The proposition states local convergence of Gt to G∞ around any given vertex
x ∈ Rd × (0, 1]. Its proof is based on a study of the indegree evolution process
and bounds on the probability that a vertex has an exceptionally high indegree,
or outdegree, or connects to an exceptionally distant vertex.

The following theorem completes Proposition 1 by describing the local struc-
ture of Gt around a randomly chosen vertex x ∈ Gt. It is also the key to proving
global results for the graphs Gt, see the following sections. It can be seen as a ge-
ometric law of large numbers in the spirit of Yukich and Penrose, the proof using
that distant regions of space are asymptotically independent. For t ∈ (0,∞] let U
be uniform on (0, 1] and Gt(U) be the graph obtained by adding the point (0, U)
to Y before the construction of the graph Gt. Let ξ(x, G) be a ‘local’ function
on a graph G around a distinguished point x. For the purpose of this article, we
can simply define such a local function to be a function on the neighbourhood
of x up to graph distance a given finite value.

Theorem 1 (Weak law of large numbers). Suppose, for some a > 1, the
following uniform moment condition holds,

sup
t>0

E[ξ((0, U), Gt(U))a] <∞.

Then the following convergence in probability is satisfied,

1

|Yt|
∑
x∈Yt

ξ(x, Gt) −→ E[ξ((0, U), G∞(U))]. (3)

In other words, the law of the local structure of the graph Gt around a randomly
chosen vertex is the same as the law of the local structure of the infinite graph
G∞, conditioned1 to have a vertex with position 0 and birth time U uniform
in (0, 1], around this vertex. The next sections provide various applications to
Proposition 1 and Theorem 1.

4 Results

Indegree. Denote by μ the law of the indegree of (0, U) in G∞(U) defined by

μ(k) = P(deg−((0, U), G∞(U)) = k).

1 We recall here that for a Poisson point process, adding a point at (0, U) is equivalent
to conditioning the Poisson point process on having a point at (0, U).

20 E. Jacob and P. Mörters

The local finiteness of G∞(U) ensures that it is a probability law on N ∪ {0}.
Applying the law of large numbers to the functionals ξk(x, G) = �{deg−(x, G) =
k}, we get that the empirical indegree distribution of Gt, defined by

μt(k) =
1

|Xt|
∑
x∈Xt

�{deg−(x, Gt) = k},

converges to μ in probability. Given the construction of G∞(U), it is remarkable
that the law of the indegree μ can be calculated explicitly. It relies on the study
of the indegree evolution process, which we omit here. We find

μ(k) =
1

γ

Γ (k + β
γ)Γ (β+1

γ)

Γ (k + β+γ+1
γ)Γ (βγ)

∼ Γ (β+1
γ)

γΓ (βγ)
k−(1+1/γ) as k ↑ ∞,

which is in line with Theorem 1.1 of [1], and verifies the scale-free property of
the network with power law exponent τ = 1 + 1/γ ∈ (2,∞).

Actually, we can prove a stronger convergence result:

Theorem 2. For any nondecreasing function g:N ∪ {0} → [0,∞), we have the
following convergence in probability, as t→∞,∑

μt(k)g(k) −→
∑

μ(k)g(k).

Applying this result with g(k) = k, we get that the total number of edges
is always asymptotically of the same order as the number of vertices. More
interestingly, applying it with g(k) = k2, we get that

1

|Xt|
∑
x∈Xt

deg−(x, Gt)
2

converges to a finite constant if γ < 1/2 and to infinity if γ ≥ 1/2.

Outdegree and Total Degree. Similarly to the empirical indegree distribution
we define the empirical outdegree distribution νt of Gt, and let ν the law of
the outdegree of (0, U) in G∞(U). As before, Theorem 1 yields convergence in
probability of νt to ν. We do not have an explicit expression for ν, in particular it
is not a Poisson distribution as in the model of Dereich-Mörters [9]. By a study
of the infinite picture, we can however prove that ν is light-tailed and get the
following theorem.

Theorem 3. For any 0 < α < 1− γ, we have

ν([k,+∞)) = o(e−kα

).

Moreover, for any function g:N ∪ {0} → R satisfying g(k) = o(ek
α

) for some
0 < α < 1− γ, we have the following convergence in probability, as t→∞,∑

νt(k)g(k) −→
∑

ν(k)g(k).

Spatial Preferential Attachment Networks 21

These results complete Theorem 1.5 in [1], which controls the maximum degree
in Gt. Further, it is not hard to see that the law of the outdegree of (0, u) in
G∞(u) is independent of u, and that the law of the total degree of (0, U) in
G∞(U) is the convolution μ ∗ ν. Hence, the empirical total degree distribution
in Gt converges to μ ∗ ν, which is also decaying polynomially with parameter τ .
We can check that the mean degree is∑

k μ ∗ ν(k) = 2
∑

kν(k) = 2
∑

kμ(k) =
2β

1− γ
.

Clustering. In this section, we forget the orientation of the edges of Gt to
define its clustering coefficients. These coefficients are based on the number of
triangles and open triangles in the graph. An open triangle of Gt with tip x is
simply a subgraph of the form ({x,y, z}, {{x,y}, {x, z}}), where y and z could
either be connected in Gt and hence form a triangle, or not. Note that every
triangle in G contributes three open triangles.

The global clustering coefficient of G is defined as

cglob(Gt) := 3
Number of triangles included in Gt

Number of open triangles included in Gt
.

Note that always cglob(Gt) ∈ [0, 1]. The local clustering coefficient of Gt at a
vertex x with degree at least two is defined by

cloc
x (Gt) :=

Number of triangles included in Gt containing vertex x

Number of open triangles with tip x included in Gt
,

which is also an element of [0, 1]. Finally, the average clustering coefficient is
defined as

cav(G) :=
1

|V2|
∑
x∈V2

cloc
x (G),

where V2 ⊂ V is the set of vertices with degree at least two in G. The global and
average clustering coefficients have the following probabilistic interpretation:

– Pick a vertex uniformly at random and condition on the event that this vertex
has degree at least two. Pick two of its neighbours, uniformly at random. Then
the probability that these two vertices are linked is equal to cav(Gt).

– Pick two edges sharing a vertex, uniformly from all such pairs of edges in
the graph. Then the probability that the two other vertices bounding the edges
are connected is equal to cglob(Gt).

Theorem 4.

(i) The average clustering coefficient of Gt converges in probability to a strictly
positive number cav∞.

(ii) The global clustering coefficient of Gt converges in probability to nonnegative
number cglob

∞ , which is nonzero if and only if γ < 1/2.

22 E. Jacob and P. Mörters

The first part of this theorem is easy to prove by considering the functional
which, to a vertex, associates its local clustering coefficient. It is clear that the
expected local clustering coefficient of (0, U) in G∞(U) belongs to (0, 1), and
there is nothing more to argue. For the second part, we estimate both the number
of triangles and the number of open triangles in Gt thanks to two applications
of Theorem 1. We choose to count the triangles from their youngest vertex and
consider the functional which associates to a vertex x the number of triangles
containing x and having x as youngest vertex. The light-tail of the outdegree
distribution ensures that this functional satisfies the uniform moment condition.
We can apply Theorem 1 and deduce that the number of triangles is always
asymptotically proportional to the number of vertices, that is of order t. To
estimate the number of open triangles, we should in particular estimate the
number of open triangles with tip in x the oldest vertex. But this number is
simply ∑

x∈Xt

deg−(x, Gt)(deg−(x, Gt)− 1),

and we know, thanks to the work on the indegree, that it is linear if γ < 1/2 and
superlinear if γ ≥ 1/2. This discussion is almost enough to prove Theorem 4.

An interesting extension, suggested by an anonymous referee, is to look at the
average local clustering coefficient of vertices with a fixed degree k. Our methods
are expected to show that this quantity converges to a deterministic limit, which
decays of order 1/k, as k→∞. Details will be discussed elsewhere.

The phase transition in the global clustering coefficient has been observed in a
similar form for random intersection graphs [5]. The behaviour of the clustering
coefficients in the case γ ≥ 1/2 matches the behaviour expected in the world
wide web: if you pick a webpage at random, and click on two hyperlinks, it is
likely that the two pages you get have actually a direct hyperlink. However, if
you pick two webpages which both have a hyperlink to the Google homepage, it
is not likely that these two pages have a direct link.

Edge Length Distribution. In the rescaled graphs G∞ or in Gt, we expect
a typical edge to have geometric length (in Rd or in St) of order 1. Therefore,
in the original graph Gt, we expect edges to have length of order t−1/d. Write
E(Gt) for the set of the edges of the graph Gt. Define λ, the (rescaled) empirical
edge length distribution, by

λt =
1

|E(Gt)|
∑

(x,y)∈E(Gt)

δt1/dd1(x,y).

Similarly, write E(G∞(U)) for the set of the edges of the graph G∞(U), and
define a probability distribution λ on R by

λ(A) =
1− γ

2β
E

⎡⎣ ∑
((0,U),(x,s))∈E(G∞(U))

δd(0,x)(A)

⎤⎦ .

Spatial Preferential Attachment Networks 23

Another application of Theorem 1 enables us to prove convergence of λt to λ, in
probability. It is of course not possible to have an explicit expression for λ. How-
ever, we can estimate its tail behaviour in the case of a polynomially decaying
profile function.

Theorem 5. Suppose that there exists δ > d such that the profile function sat-
isfies ϕ(x) � (1 + x)−δ. Then

λ([K,+∞)) � (1 + K)−η,

where η ∈ (0, d] is the smallest of the three constants d, d(1
γ − 1) and δ − d.

The proof is the most technical of our work and is omitted here. Note that if
d = 1 or if γ ≥ d

1+d or if δ ≤ d + 1, then λ does not have a first moment, and
the mean edge length is not of order t−1/d. The heavy tails of the empirical edge
length distribution highlight the nature of our networks as small worlds.

The empirical edge length distribution for the original SPA model, corre-
sponding roughly to the case δ = ∞, is also studied in Janssen et al. [15]. They
show that if γ > 1

2 and 3γ+2
4γ+2 < α < 1, then∣∣{edges of length longer than t−α/d

}∣∣ ∼ C t(2−α)+ 1
γ (α−1)

for an explicit constant C > 0. Our result uses a different order of limits, but
leads to the same order of growth for the comparable quantity tλ[t(1−α)/d,∞).
Note that the general form of the profile functions allows for a genuinely richer
phenomenology in our case.

5 Further Work

In [8], the authors find small separators for the SPA model. They deduce that
the spectral gap of the normalised Laplacian of the graph Gt converges to 1,
yielding bad expansion properties for Gt. The separators they found are simply
obtained by cutting the hypercube in half. We expect that the same strategy
would yield similar results for our generalised model, with the slight difference
that the separators will not be as small, depending on the tail of the profile
function ϕ.

Existence of a Giant Component. Let us forget about the orientation of
the edges of Gt, and simply consider it as an unoriented graph. Note that, as
μ ∗ ν(0) > 0, the graph has a number of isolated vertices growing linearly in
time, and is therefore not connected. Before using Gt as a model for the world
wide web, we would like to ensure the existence of a giant component of Gt, i.e.
a connected component of linear size. Moreover, we would be interested in the
robustness of a giant component under random attack. Robustness is defined by
the existence, for every positive value of p, of a giant component in the graph
obtained by removing every edge independently with probability 1− p.

24 E. Jacob and P. Mörters

Proposition 1 suggests that the existence of a giant component for Gt should
be related to percolation in G∞, that is, the existence of an infinite connected
component in G∞. As the construction of the graph G∞ is based (at least in
the case of an indicator profile functions) on balls with random positions and
random sizes, it resembles the construction of random geometric graphs, and
so it seems plausible to use methods from this field as surveyed, for example,
in Meester and Roy [17]. Just like in continuum percolation, we cannot really
hope for a precise criterion deciding whether there is or is no percolation in
G∞ for any attachment rule f and any profile function ϕ. However, we hope
to identify the domain of existence of a robust giant component. At this point
we conjecture the following results, based on preliminary calculations, which
highlight interesting phase transitions not occurring for non-spatial models, and
show the crucial role of the tail of the profile function (at least in dimension 1).
The phase corresponding to our first conjecture seems the best candidate for
a model of the world wide web. In (1) and (3) we assume the profile function
satisfies

ϕ(x) � (1 + x)−δ.

(1) There is always a robust giant component if γ > 1− 1
1+δ/d .

In this case, the shortest paths between two typical vertices in the giant
component is doubly logarithmic in the number of nodes. Similarly to the
non-spatial models there is a ‘core’ of old vertices connected to each other in
no more than a finite number of steps. Short paths between remote vertices
typically connect via this core. The condition on γ, and in particular a finite
value of δ, is necessary for the formation of a core.

(2) There is never a robust giant component if γ < 1/2.

This conjecture is based on the corresponding result for non-spatial prefer-
ential attachment networks, and the idea that the spatial correlations of the
model cannot help the construction of a giant component.

(3) There is never a robust giant component if d = 1 and γ < 1− 1/δ.

Here we have a strong concentration of the length of vertices around the typ-
ical value, which give the network some characteristics of geometric random
graphs.

All the other cases seem to be even tougher open questions. It would be
interesting if we could get a robust giant component in a case not covered by
our first conjecture, as this giant component would then have a very different
topology from the one in the non-spatial models.

Acknowledgments. We gratefully acknowledge support of this project by the
European Science Foundation through the research network Random Geometry
of Large Interacting Systems and Statistical Physics (RGLIS).

Spatial Preferential Attachment Networks 25

References

1. Aiello, W., Bonato, A., Cooper, C., Janssen, J., Pra�lat, P.: A spatial web graph
model with local influence regions. Internet Mathematics 5, 175–196 (2009)

2. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod-
ern Phys. 74, 47–97 (2002)

3. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

4. Berger, N., Borgs, C., Chayes, J., Saberi, A.: Asymptotic behavior and distribu-
tional limits of preferential attachment graphs. Ann. Prob. (to appear, 2013)

5. Bloznelis, M.: Degree and clustering coefficient in sparse random intersection
graphs. Ann. Appl. Prob. 23, 1254–1289 (2013)

6. Bollobás, B., Riordan, O.M.: Mathematical results on scale-free random graphs.
In: Handbook of Graphs and Networks, pp. 1–34. Wiley-VCH, Weinheim (2003)

7. Bonato, A., Janssen, J., Pralat, P.: Geometric protean graphs. Internet Mathemat-
ics 8, 2–28 (2012)

8. Cooper, C., Frieze, A., Pra�lat, P.: Some typical properties of the spatial preferred
attachment model. In: Bonato, A., Janssen, J. (eds.) WAW 2012. LNCS, vol. 7323,
pp. 29–40. Springer, Heidelberg (2012)

9. Dereich, S., Mörters, P.: Random networks with sublinear preferential attachment:
degree evolutions. Electron. J. Probab. 14(43), 1222–1267 (2009)

10. Dereich, S., Mörters, P.: Random networks with concave preferential attachment
rule. Jahresber. Dtsch. Math.-Ver. 113, 21–40 (2011)

11. Dereich, S., Mörters, P.: Random networks with sublinear preferential attachment:
the giant component. Ann. Prob. 41, 329–384 (2013)

12. Flaxman, A.D., Frieze, A.M., Vera, J.: A geometric preferential attachment model
of networks. Internet Math. 3, 187–205 (2006)

13. Flaxman, A.D., Frieze, A.M., Vera, J.: A geometric preferential attachment model
of networks II. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863,
pp. 41–55. Springer, Heidelberg (2007)

14. Jacob, E., Mörters, P.: Spatial preferential attachment networks: Power laws and
clustering coefficients. arXiv:1210.3830 (2012)

15. Janssen, J., Pralat, P., Wilson, R.: Geometric graph properties of the spatial pre-
ferred attachment model. Adv. Appl. Math. 50, 243–267 (2013)

16. Jordan, J.: Degree sequences of geometric preferential attachment graphs. Adv. in
Appl. Probab. 42, 319–330 (2010)

17. Meester, R., Roy, R.: Continuum percolation. Cambridge Tracts in Mathematics,
vol. 119. Cambridge University Press, Cambridge (1996)

18. Penrose, M.: Random geometric graphs. Oxford Studies in Probability, vol. 5. Ox-
ford University Press, Oxford (2003)

19. Penrose, M.D., Yukich, J.E.: Weak laws of large numbers in geometric probability.
Ann. Appl. Probab. 13, 277–303 (2003)

20. Rudas, A., Tóth, B., Valkó, B.: Random trees and general branching processes.
Random Structures Algorithms 31, 186–202 (2007)

A Local Clustering Algorithm

for Connection Graphs

Fan Chung and Mark Kempton

Department of Mathematics,
University of California, San Diego

{fan,mkempton}@ucsd.edu

Abstract. We give a clustering algorithm for connection graphs, that
is, weighted graphs in which each edge is associated with a d-dimensional
rotation. The problem of interest is to identify subsets of small Cheeger
ratio and which have a high level of consistency, i.e. that have small edge
boundary and the rotations along any distinct paths joining two vertices
are the same or within some small error factor. We use PageRank vectors
as well as tools related to the Cheeger constant to give a clustering
algorithm that runs in nearly linear time.

1 Introduction

In this paper, we study connection graphs, which are generalizations of weighted
graphs in which each edge is associated with both a positive scalar weight and a
d-dimensional rotation matrix for some fixed positive integer d. The Laplacian of
a connection graphs are higher dimensional versions of the normalized Laplacian
matrix, which are linear operators acting on the space of vector-valued functions
(instead of the usual real-valued functions).

Connection graphs arise in applications involving high dimensional data sets
where some data points are related by rotation matrices. Some early usage of
connection graphs can be traced back to work in graph gauge theory for com-
puting the vibrational spectra of molecules and examining spins associated with
vibrations [9]. There have been more recent developments of related research in
principal component analysis [13], cryo-electron microscopy [11,15], angular syn-
chronization of eigenvectors [10,14], and vector diffusion maps [16]. In computer
vision, there has been a great deal of work dealing with the many photos that
are available on the web, in which information networks of photos can be built.
The edges of the associated connection graphs correspond to the rotations de-
termined by the angles and positions of the cameras used [1]. Recently, related
work has been done on a synchronization problem, for which the connection
Laplacian acts on the space of functions which assign an orthogonal matrix to
each vertex [4].

For high dimensional data sets, a central problem is to uncover lower dimen-
sional structures in spite of possible errors or noises. An approach for reducing
the effect of errors is to consider the notion of inconsistency, which quantifies the

A. Bonato, M. Mitzenmacher, and P. Pra�lat (Eds.): WAW 2013, LNCS 8305, pp. 26–43, 2013.
c© Springer International Publishing Switzerland 2013

A Local Clustering Algorithm for Connection Graphs 27

difference of accumulated rotations while traveling along distinct paths between
two vertices. In many applications, it is desirable to identify edges causing the
inconsistencies, or to identify portions of the graph that have relatively small in-
consistency. In [8], an algorithm is given, utilizing a version of effective resistance
from electrical network theory, that deletes edges of a connection graph in such
a way that reduces inconsistencies. In this paper, rather than deleting edges, our
focus is on identifying subsets of a connection graph with small inconsistency.
The notion of ε-consistency of a subset of the vertex set of a connection graph
will be introduced, which quantifies the amount of inconsistency for the subset
to within an error ε. This can be viewed as a generalization of the notion of
consistency.

One of the major problems in computing is to design efficient clustering al-
gorithms for finding a good cut in a graph. That is, it is desirable to identify
a subset of the graph with small edge boundary in comparison to the overall
volume of the subset. Many clustering algorithms have been derived including
some with quantitative analysis (e.g., [2,3]). As we are looking for ε-consistent
subsets, it is natural that that clustering and the Cheeger ratio should arise in
examining local subsets of a graph. In this paper, we will combine the cluster-
ing problem and the problem of identifying ε-consistent subsets. In particular,
we will give an algorithm that uses PageRank vectors to identify a subset of a
connection graph which both has a small cut, and is ε-consistent.

The notion of PageRank was first introduced by Brin and Page [5] in 1998 for
Google’s web search algorithms. It has since proven useful in graph theory for
quantifying relationships between vertices in a graph. Algorithms from [2] and
[3] utilize PageRank vectors to locally identify good cuts and cluster in a graph.
In [8], a vectorized version of PageRank is given for connection graphs. Here we
use these connection PageRank vectors in a manner similar to [3] to find good
cuts which are ε-consistent.

A Summary of the Results. The results in this paper can be summarized as
follows:

– We define the notion of ε-consistency and establish several inequalities relat-
ing ε-consistency with the smallest eigenvalue of the connection Laplacian
and the Cheeger ratio of subsets of a connection graph.

– We define connection PageRank vectors and establish several inequalities
relating the sharp drops in the connection PageRank vectors to the Cheeger
ratio and the ε-consistency of the subsets.

– We give an algorithm that outputs a subset of the vertices (if one exists)
which is a good cut and is ε-consistent. The run time of the algorithm is

O
(
d2x log2 m

φ2

)
, where m is the number of edges, d is the dimension of the

rotations, φ is the target Cheeger ratio, and x is the target volume.

The remainder of the paper is organized as follows: In Section 2, we give
some of the basic definitions of a connection graph, the connection Laplacian,
and the notion of consistency, as well as some useful facts on consistency from [8].

28 F. Chung and M. Kempton

In Section 3 we introduce the notion of ε-consistency which generalizes the notion
of consistency, and gives some results relating ε-consistency of a connection graph
to the spectrum of the normalized connection Laplacian. In Section 4 we examine
subsets of a connection graph that are ε-consistent, and relate the spectrum of
the normalized Laplacian to the Cheeger ratio of such subsets. In Section 5,
we utilize connection PageRank vectors in the study of ε-consistent subsets,
and present a local partition algorithm for a connection graph, completed with
complexity analysis.

2 Preliminaries

2.1 The Normalized Connection Laplacian

Suppose G = (V,E,w) is an undirected graph with vertex set V , edge set E,
and edge weights wuv = wvu > 0 for edges (u, v) in E. Let F(V,R) denote the
space of all functions f : V → R. The usual adjacency matrix A, combinatorial
Laplacian matrix L, and normalized Laplacian L, are all operators on the space
F(V,R). (See, for example, [6] for definitions of A, L, and L.) For undefined
terminology, the reader is referred to [8].

Now suppose each oriented edge (u, v) is also associated with a rotation matrix
Ouv ∈ SO (d) satisfying OuvOvu = Id×d. Here SO (d) denotes the special orthog-
onal group of dimension d, namely, the group of all d × d matrices S satisfying
S−1 = ST and det(S) = 1. Let O denote the set of rotations associated with all
oriented edges in G. The connection graph, denoted by G = (V,E,O,w), has G
as the underlying graph. The connection adjacency matrix A of G is defined by:

A(u, v) =

{
wuvOuv if (u, v) ∈ E,

0d×d if (u, v) �∈ E

where 0d×d is the zero matrix of size d× d. We view A as a block matrix where
each block is either a d × d rotation matrix Ouv multiplied by a scalar weight
wuv, or a d×d zero matrix. The matrix A is an operator on the space F(V,Rd) =
{f : V → Rd}. The matrix A is symmetric as OT

uv = Ovu and wuv = wvu.
The connection Laplacian L of a graph G is defined by

L = D− A

where D is the diagonal matrix defined by the diagonal blocks D(u, u) = duId×d

for u ∈ V . Here du is the weighted degree of u in G, i.e., du =
∑

(u,v)∈E wuv. The

connection Laplacian is an operator on F(V,Rd), where its action on a function
f : V → Rd is given by

Lf(v) =
∑
u∼v

wuv (f(v)− f(u)Ouv) .

(The elements of F(V,Rd) is sometimes viewed as a row vector so that f(u)Ouv

is the product of matrix multiplication of f(u) and Ouv.)

A Local Clustering Algorithm for Connection Graphs 29

Recall that for any orientation of edges of the underlying graph G on n vertices
and m edges, the combinatorial Laplacian L can be written as L = BTWB where
W is a m×m diagonal matrix with We,e = we, and B is the edge-vertex incident
matrix of size m × n such that B(e, v) = 1 if v is e’s head; B(e, v) = −1 if v
is e’s tail; and B(e, v) = 0 otherwise. A useful observation for the connection
Laplacian is the fact that it can be written in a similar form. Let B be the
md× nd block matrix given by

B(e, v) =

⎧⎪⎨⎪⎩
Ouv v is e’s head,

−Id×d v is e’s tail,

0d×d otherwise.

Let the block matrix W denote the diagonal block matrix given by W(e, e) =
weId×d where W is actually of size md ×md. Then it can be verified by direct
computation that, given an orientation of the edges, the connection Laplacian
also can alternatively be defined as

L = BTWB.

We define the normalized connection Laplacian L̂ to be the operator on
F(V,Rd) given by

L̂ = D−1/2LD−1/2 = Ind×nd − D−1/2AD−1/2.

We remark that L and L̂ are symmetric, positive semi-definite matrices. Using
the Courant-Fischer Theorem (see, for example, [12]), we can investigate the
eigenvalues of L̂ by examining the Rayleigh quotient

R(g) =
gL̂gT
ggT

where g : V → Rd is thought of as a 1 × nd row vector. Defining f = gD−1/2,
we see that

R(g) =
fLfT

fDfT
=

∑
(u,v)∈E

wuv ‖f(u)Ouv − f(v)‖2
2∑

v∈V

dv ‖f(v)‖2
2

.

In particular, letting 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λnd denote the eigenvalues of L̂. It is
not hard to see that R(f) ≤ 2 which implies λk ≤ 2 for all k.

2.2 Consistency

For a connection graph G = (V,E,O,w), we say that G is consistent if

inf
f :V →Rd

f �=0

∑
(u,v)∈E

wuv‖f(u)Ouv − f(v)‖2
2 = 0.

30 F. Chung and M. Kempton

An equivalent definition for consistency is an assignment of a vector f(u) ∈ Rd

to each vertex u ∈ V such that for all vertices v adjacent to u, f(v) = f(u)Ouv.
Therefore for any two vertices u, v in a consistent graph, any two distinct paths
starting and ending at u and v, P1 = (u = u1, u2, ..., uk = v) and P2 = (u =
v1, v2, ..., vl = v), then the product of rotations along either path is the same.
That is,

k−1∏
i=1

Ouiui+1 =
l−1∏
j=1

Ovjvj+1 .

For any cycle C = (v1, v2, ..., vk, vk+1 = v1) of the underlying graph, the product

of rotations along the cycle C is the identity, i.e.
∏k

i=1 Ovivi+1 = Id×d.
For ease of notation, given a cycle C = (v1, v2, ..., vk, vk+1 = v1), define OC =∏k
i=1 Ovivi+1 , and for a path joining distinct vertices u and v, Puv = (u =

v1, v2, ..., vk = v), define OPuv =
∏k−1

i=1 Ovivi+1 . Therefore consistency can be
characterized by saying OC = Id×d for any cycle C, or given any two vertices u
and v of G, then OPuv = OP ′

uv
for any two paths Puv, P ′

uv connecting u and v.
In [8], a spectral characterization of consistency for a connection graph is

given in terms of the eigenvalues of the connection Laplacian L. We note that
an easy modification of the argument in [8] yields the similar statements for
the normalized connection Laplacian. Namely, let L̂ be the normalized connec-
tion Laplacian of the connection graph G, let L be the normalized Laplacian
of the underlying graph G. For a connected connection graph G, the following
statements are equivalent:

(i) G is consistent.
(ii) The normalized connection Laplacian L̂ of G has eigenvalue 0.
(iii) The eigenvalues of L̂ are the n eigenvalues of L, each of multiplicity d.
(iv) For each vertex u in G, we can find Ou ∈ SO(d) such that for any edge

(u, v) with rotation Ouv, we have Ouv = O−1
u Ov.

2.3 The Cheeger Ratio

Given a subset of the vertex set, S ⊂ V , we define E(S, S̄) to be the set of all
edges having one endpoint in S and the other endpoint outside of S. We define
the volume of S, denoted vol(S), by vol(S) =

∑
v∈S dv. We define the Cheeger

ratio of S, denoted hG(S), by

hG(S) =
|E(S, S̄)|

vol(S)
.

The Cheeger constant (sometimes called the conductance) of a graph G is

hG = min

{
h(S) : S ⊂ V, vol(S) ≤ 1

2
vol(G)

}
.

Determining the Cheeger constant of a graph can be thought of as a discrete
version of the classical isoperimetric problem from geometry. One of the classic

A Local Clustering Algorithm for Connection Graphs 31

results in spectral graph theory (see, for example, [6]) is the Cheeger Inequality,
which relates the Cheeger constant of a graph to the eigenvalues of its normalized
Laplacian. Given a graph G with normalized Laplacian L with eigenvalues 0 =
λ1 ≤ λ2 ≤ · · · ≤ λn, the Cheeger Inequality states that

h2
G

2
≤ λ2 ≤ 2hG.

We will be giving results analogous to the Cheeger inequality for ε-consistent
connection graphs, and the Cheeger ratio will play a critical role in our algorithm
and its analysis in Section 5.

3 ε-Consistency

We say a connection graph G is ε-consistent if, for every simple cycle C =
(v1, v2, ..., vk, vk+1 = v1) of the underlying graph G, we have ‖OC − Id×d‖2 ≤ ε

where OC =
∏k

i=1 Ovivi+1 . That is, the product of rotations along any cycle
is within ε of the identity in the 2-norm. An equivalent formulation is as fol-
lows. Given vertices u and v, and two distinct paths from u to v, P1 = (v1 =

u, v2,, vk = v) and P2 = (u1 = u, u2, ..., ul = v), define OP1 =
∏k−1

i=1 Ovivi+1

and OP2 =
∏l−1

i=1 Ouiui+1 . Then G is ε-consistent if and only if ‖OP1 −OP2‖2 ≤ ε.

This follows from the observation that OC = OP1O
−1
P2

= OP1O
T
P2

and the fact
that the 2-norm of a rotation matrix is 1.

We observe that the triangle inequality implies that any connection graph is 2-
consistent, and that a consistent connection graph is 0-consistent. We generalize
the first part of the above mentioned result from [8] with the following theorem,
which bounds the d smallest eigenvalues of the normalized connection Laplacian
for an ε-consistent connection graph.

Theorem 1. Let G be an ε-consistent connection graph whose underlying graph
is connected. Let L̂ be the normalized connection Laplacian and let 0 ≤ λ1 ≤
· · · ≤ λnd be the eigenvalues of L̂. Then for i = 1, ..., d,

λi <
ε2

2
.

The proof can be found in the appendix.
The following result concerns the second block of d eigenvalues of L̂ for an

ε-consistent connection graph, and gives an analog to the upper bound in the
Cheeger inequality.

Theorem 2. Let L̂ be the normalized connection Laplacian of the connection
graph G, with eigenvalues λ1 ≤ · · · ≤ λnd, and let hG denote the Cheeger constant
of the underlying graph. Then for i = d + 1, ..., 2d,

λi ≤ 2hG +
ε2

2
.

The proof of this result is also in the appendix.

32 F. Chung and M. Kempton

4 Consistent and ε-Consistent Subsets

In this section, we will consider the case where a connection graph has been
created in which some subset of the data is error-free (or close to it), leading
to a consistent or ε-consistent induced subgraph. We will define functions on
the vertex set in such a way that the Rayleigh quotient will keep track of the
edges leaving the consistent subset. In this way, we will obtain bounds on the
spectrum of the normalized connection Laplacian involving the Cheeger ratio of
such subsets.

Theorem 3. Let G be a connection graph of dimension d with normalized con-
nection Laplacian L̂, and S ⊂ V a subset of the vertex set that is ε-consistent
for given ε ≥ 0. Then for i = 1, ..., d,

λi(L̂) ≤ ε2

2
+ hG(S).

Proof. Fix a spanning tree T of the subgraph induced by S. Define f as follows.
For a fixed vertex u of S, define f(u) = x where ||x|| = 1, and for v ∈ S,
define f to be consistent with the subtree T . For v �∈ S, define f(v) = 0.
Fix an edge uv ∈ E and note that for u, v �∈ S, ||f(u)Ouv − f(v)|| = 0, for
u, v ∈ S, ||f(u)Ouv − f(v)|| = ||f(v) (OPvuOuv − I) || < ε, and for u ∈ S, v �∈ S,
||f(u)Ouv − f(v)|| = 1. Therefore

R(f) =

∑
(u,v)∈E

wuv||f(u)Ouv − f(v)||2∑
v
dv||f(v)||2

<

∑
uv∈E
u,v∈S

wuvε
2

vol(S)
+

∑
uv∈E

u∈S,v �∈S

wuv

vol(S)

≤ ε2

2
+ hG(S).

There are d orthogonal choices for the initial choice of x leading to d orthogonal
vectors satisfying this bound, so by the Courant-Fisher Theorem, the result
follows.

In the next result, we consider the situation where most of the edges are is
close to being consistent except for some edges in the edge boundary of a subset.

Theorem 4. Suppose G is an ε1-consistent graph for some ε1 > 0, and suppose
that S ⊂ V is a set such that the subgraphs induced by S and S̄ are ε2-consistent,
with 0 ≤ ε2 < ε1, and vol(S) ≤ 1

2 vol(G). Let L̂ be the normalized connection
Laplacian. Then for i = 1, ..., d,

λi(L̂) <
ε2
2

2
+

ε2
1

2
hG(S)

A Local Clustering Algorithm for Connection Graphs 33

Proof. We will construct a function f : V → Rd whose Rayleigh quotient will
bound λ1. Fix a spanning tree T of S and T ′ of S̄, and fix a vector w ∈ S.
Choose a unit vector x ∈ Rd, and assign f(w) = x. For v ∈ S, assign f(v) for
each vertex v ∈ S such that f(v) = f(u)Ouv moving along edges uv of T . Now
choose an arbitrary edge e = yz ∈ E(S, S̄) such that y ∈ S and z ∈ S̄. Assign
f(z) = f(y)Oyz. Assign the remaining vertices of S̄ so that f(v) = f(u)Ouv

moving along edges uv of T ′. Note that f is consistent with both T and T ′.
Let us examine the Dirichlet sum

∑
uv∈E wuv||f(u)Ouv − f(v)||2. Consider

an edge f = uv ∈ E(S, S̄), f �= e. We may, without loss of generality, assume
that both S and S̄ are connected. (If one or both is not, then we may alter
our definition of f to be consistent along even more edges). Therefore, there
is a cycle, C = v1v2...vkv1 where v1 = u, vk = v, C contains the edges e and
f , and all other edges have endpoints lying in either S or S̄. By construction,
f(v) = f(u)OPuv , so by the ε-consistency condition, we have

||f(u)Ouv − f(v)|| = ‖f(v)OPvuOuv − f(v)‖

=

∥∥∥∥∥f(v)

(
k−1∏
i=1

Ovivi+1Ovkv1 − I

)∥∥∥∥∥
≤ ε1||f(v)|| = ε1.

In a similar manner, we have that ||f(u)Ouv − f(v)|| ≤ ε2 for each edge uv
with both u and v in S or both in S̄.

Therefore

λ1 ≤ R(f) =

∑
(u,v)∈E

wuv||f(u)Ouv − f(v)||2∑
v
dv||f(v)||2

≤

∑
(u,v)∈E

wuvε
2
2∑

v
dv

+

∑
u∼v

u∈S,v∈S̄

wuvε
2
1∑

v
dv

≤ ε2
2|E(G)|
vol(G)

+
ε2
1|E(S, S̄)|
2 vol(S)

=
ε2
2

2
+

ε2
1

2
hG(S).

We have d orthogonal choices for the initial assignment of x, which leads to d
orthogonal vectors satisfying this inequality. Therefore λ1, ..., λd all satisfy this
bound.

5 Identifying Subsets

In this section, we follow ideas from [2] and [3] to relate connection PageR-
ank vectors to the Cheeger ratio of ε-consistent subsets of a connection graph.

34 F. Chung and M. Kempton

We will give an algorithm, which runs in time nearly linear in the size of the
vertex set, which outputs a subset of the vertex set (if one exists) which has
small Cheeger ratio and is ε-consistent.

5.1 PageRank Vectors and ε-Consistent Subsets

We define, for S ⊂ V , f(S) =
∑

v∈S ||f(v)||2. Given a vertex v of G, define a
connection characteristic function χv to be any vector satisfying ||χv(v)||2 = 1
and χv(u) = 0 for u �= v. Likewise, for a subset S of V , define a characteristic
function χS to be a function such that ||χS(v)||2 = 1 for v ∈ S, and χS(v) = 0
for v �∈ S.

Recall the definition of connection pagerank given a seed vector ŝ : V → Rd

is the vector p̂r(α, ŝ) : V → Rd that satisfies

p̂r(α, ŝ) = αŝ + (1− α) p̂r(α, ŝ)Z

where Z is the matrix for the random walk. Define Rα = α(I − (1 − α)Z)−1 =
α
∑∞

t=0(1− α)tZt and note that p̂r(α, ŝ) = ŝRα.

Lemma 1. Let S ⊂ V be a subset of the vertex set of a connection graph, and
let χS be a characteristic function for S. Then

‖χSDRα(v)‖2 ≤ dv

for all v ∈ V

Proof. First, we will show that∥∥χSDZ
k(v)

∥∥
2
≤ dv

for all k by induction. For k = 1,

‖χSDP(v)‖2 = ‖χSA(v)‖2 ≤
∑
u∈S
u∼v

wuv‖χS(u)Ouv‖2 ≤ dv.

By the induction hypothesis

∥∥χSDP
k+1(v)

∥∥
2

=
∥∥χSDP

kP(v)
∥∥

2
=

∥∥∥∥∥∑
u∈V

χSDP
k(u)P(u, v)

∥∥∥∥∥
2

≤
∑
u∈V

∥∥χSDP
k(u)

∥∥
2
‖P(u, v)‖2

≤
∑
u∈V

du

∥∥∥∥1

du
wuvOuv

∥∥∥∥
2

=
∑
u∈V

wuv = dv

so this claim follows by induction.
Then from this claim,

‖χSDRα(v)‖2 =

∥∥∥∥∥χSDα
∞∑
k=0

(1− α)kPk

∥∥∥∥∥
2

≤ α

∞∑
k=0

(1− α)k
∥∥χSDP

k(v)
∥∥

2
≤ dv.

A Local Clustering Algorithm for Connection Graphs 35

Lemma 2. Let S ⊂ V be a subset of the vertices such that the subgraph of G
induced by S is ε-consistent. Let χS be some connection characteristic function
for S that is consistent with some spanning subtree T of S. Define f̂S by f̂S(v) =

dv

vol(S)χS(v). The function f̂S is the expected value for a characteristic function

χu when a vertex u is chosen from S at random with probability du/ vol(S). Then

p̂r(α, f̂S)(S) ≥ 1− 1− α

α
(h(S) + ε).

Proof. We have

p̂r(α, f̂S)(S) =
∑
v∈S

|| p̂r(α, f̂S)(v)||2 =
∑
v∈S

|| p̂r(α, f̂S)(v)||2 ||χS(v)||2

≥
∑
v∈S

p̂r(α, f̂S)(v)χS (v)
T

= p̂r(α, f̂S)χ
T
S = f̂SRαχ

T
S

= f̂S

(
I −

(1 − α)(I − Z)

I − (1 − α)Z

)
χ
T
S = 1 −

(
f̂S

(1 − α)(I − Z)

I − (1 − α)Z

)
χ
T
S

= 1 −
(

(1 − α)χSD

α vol(S)

αI

I − (1 − α)Z
(I − Z)

)
χ
T
S

= 1 −
1 − α

α vol(S)

(
χSDRαD

−1 (D − A)

2

)
χ
T
S

= 1 −
1 − α

2α vol(S)

∑
u∼v

wuv

(
χSDRαD

−1
(u)Ouv − χSDRαD

−1
(v)

)
((χS (u)Ouv)

T − χS(v)
T

).

Note that χS is a characteristic function, so all the terms in the sum corre-
sponding to u, v �∈ S are 0, for v ∈ S and u �∈ S we are left with just χs(v), and
for u, v ∈ S, since S is ε-consistent and χS was chosen to be consistent with a
spanning subtree of S, then we have χS(u)Ouv − χS(v) has norm less than ε.
Applying this, the Cauchy-Schwarz Inequality, and the triangle inequality to the
above, we have

p̂r(α, f̂S)(S) ≥1− 1− α

2α vol(S)

(∑
u∼v

v∈S,u∈S̄

wuv

∥∥χSDRαD
−1(u)Ouv − χSDRαD

−1(v)
∥∥
2

+
∑
u∼v

u,v∈S

wuv

∥∥χSDRαD
−1(u)Ouv−χSDRαD

−1(v)
∥∥
2
‖χS(u)Ouv−χS(v)‖2

)

≥1− 1− α

2α vol(S)

(∑
u∼v

v∈S,u∈S̄

wuv

(||χSDRαD
−1(u)Ouv||+ ||χSDRαD

−1(v)||)
+

∑
u∼v

u,v∈S

wuv

(||χSDRαD
−1(u)Ouv ||+ ||χSDRαD

−1(v)||) ε).
Using Lemma 1 we can conclude that

p̂r(α, f̂S)(S) ≥ 1− 1− α

α vol(S)
(|∂S|+ ε|E(S, S)|) ≥ 1− 1− α

α
(h(S) + ε).

Theorem 5. Let S ⊂ V be a subset of the vertex set such that the subgraph
induced by S is ε-consistent. Let χS be some connection characteristic function

36 F. Chung and M. Kempton

for S that is consistent with some spanning subtree T of S. For each vertex
v ∈ S, define χv : V → Rd by χv(v) = χS(v) and χv(u) = 0 for u �= v. Then for
any α ∈ (0, 1], there is a subset Sα ⊂ S with volume vol(Sα) ≥ vol(S)/2 such
that for any vertex v ∈ Sα, the PageRank vector p̂r(α, χv) satisfies

p̂r(α, χv)(S) ≥ 1− 2(h(S) + ε)

α
.

Proof. Let v be a vertex of S chosen randomly from the distribution given by
f̂S of the previous result. Define the random variable X = p̂r(α, χv)(S̄) and
note that the definition of PageRank and linearity of expectation implies that
E[X] = p̂r(α, f̂S). Therefore, by the preceding result,

E[X] = p̂r(α, f̂S)(S̄) ≤ 1− α

α vol(S)
(h(S) + ε) ≤ h(S) + ε

α
.

Then Markov’s inequality implies

Pr[v �∈ Sα] ≤ Pr[X > 2E[X]] ≤ 1

2
.

Therefore Pr[v ∈ Sα] ≥ 1
2 , so vol(Sα) ≥ 1

2 vol(S).

5.2 A Local Partitioning Algorithm

We will follow ideas from [3] to produce an analogue of the Sharp Drop Lemma.
Given any function p : V → Rd, define q(p) : V → Rd by q(p)(u) = p(u)/du
for all u ∈ V . Order the vertices such that q(p)(v1) ≥ q(p)(v2) ≥ · · · ≥ q(p)(vn).
Define Sj = {v1, ..., vj}. The following lemma will be the basis of our algorithm,
whose proof we will present in the appendix.

Lemma 3 (Sharp Drop Lemma). Let v ∈ V (G) and let p = p̂r(α, χv) for
some α ∈ (0, 1), let q = q(p) and let φ ∈ (0, 1) be a real number. Then for any
index j ∈ [1, n], either the edges of Sj satisfy

h(Sj) < 2φ,

or there exists some index k > j such that

vol(Sk) ≥ vol(Sj)(1 + φ) and ‖q(vk)‖ ≥ ‖q(vj)‖ − 2α

φ vol(Sj)
.

For our algorithm, we will employ an efficient algorithm for computing an
approximate connection PageRank vector called ApproximatePR. The specifics
of the algorithm as well as its run-time analysis can be found in [7] and a version
for connection graphs is found in [17]. We will state the relevant result from [17]
as the following:

A Local Clustering Algorithm for Connection Graphs 37

Theorem 6. For α, ε ∈ (0, 1) and v ∈ V , the algorithm ApproximatePR(v, α, ε)
outputs a vector p̂ = p̂r(α, χv − r̂) such that

‖r̂(v)‖2

dv
≤ ε

for all vertices v. The running time of the algorithm is O
(

d2

εα

)
.

We note that ‖p̂(u)‖
du

≥ ‖ p̂r(α, χv)(u)‖
du

− ε

for all u.
We are now ready to present the algorithm ConnectionPartition that utilizes

PageRank vectors to come up with an ε-consistent subset of small Cheeger ratio.

ConnectionPartition(v, φ, x):

The input into the algorithm is a vertex v ∈ V , a target Cheeger ratio φ ∈ (0, 1), and a target volume

x ∈ [0, 2m].

1. Set γ = 1
8

+
∑2m

k=1
1
k

where m is the number of edges, α =
φ2

8γ
, and δ = 1

16γx
.

2. Compute p = ApproximatePR(v, α, δ) (which approximates p̂r(α, χv)).
Set q(u) = p(u)/du for each u and order the vertices v1, ..., vn so that ‖q(v1)‖ ≥ ‖q(v2)‖ ≥ · · · ≥ ‖q(vn)‖
and for each j ∈ [1, n] define Sj = {v1, ..., vj}.

3. Choose a starting index k0 such that ‖q(vk0)‖ ≥ 1
γ vol(Sk0

)
.

If no such starting vertex exists, output Fail: No starting vertex.
4. While the algorithm is running:

(a) If (1 + φ) vol(Ski
) > vol(G), output Fail: No cut found.

(b) Otherwise, let ki+1 be the smallest index such that vol(Ski+1
) ≥ (1 + φ) vol(Ski

).

(c) If ‖q(vki+1
)‖ ≤ ‖q(vki)‖ − 2α/φ vol(Ski

), then output S = Ski
and quit.

Otherwise repeat the loop.

Theorem 7. Suppose G is a connection graph with a subset C such that vol(C) ≤
1
2 vol(G), andh(C) ≤ α/64γ withα as chosen in the algorithm. Assume further that

C is ε-consistent for some ε < h(C). LetCα =
{
v ∈ C : p̂r(α, χv)(C̄) ≤ 2(h(C)+ε)

α

}
.

Then for v ∈ Cα, φ < 1/2, and x ≥ vol(C), the algorithm ConnectionPartition
outputs a set S satisfying the following properties:

1. h(S) ≤ 2φ.
2. vol(S) ≤ (2/3) vol(G).
3. vol(S ∩C) ≥ (3/4) vol(S).

Proof. Claim. There exist an index j such that ‖q(vj)‖ ≥ 1
γ vol(Sj) .

Proof. Suppose that ‖q(vj)‖ < 1
γ vol(Sj) for every index j. Since v ∈ Cα, ε <

h(C), and h(C) ≤ α/64γ then we know that

p(C) ≥ p̂r(α, χv)(C) − δ vol(C) ≥ 1 − 2(h(C) + ε)

α
− 1

16γx
vol(C) ≥ 1 − 1

16γ
− 1

16γ
= 1 − 1

8γ

since x ≥ vol(C).

38 F. Chung and M. Kempton

On the other hand, under our assumption,

p(C) ≤ p(V) =

n∑
i=1

‖p(vi)‖ =

n∑
i=1

‖q(vi)‖dvi

<

n∑
i=1

dvi
γ vol(Sj)

≤ 1

γ

2m∑
k=1

1

k
.

Putting these together, we have

1− 1

8γ
<

1

γ

2m∑
k=1

1

k
.

With the choice of γ = 1
8 +

∑2m
k=1

1
k as in the algorithm, this yields a contradic-

tion. Therefore there exists some index j with ‖q(vj)‖ ≥ 1
γ vol(Sj) and the claim

is proved.

It follows from Claim 5.2, that the algorithm will not fail to find a starting
vertex.

Let kf be the final vertex considered by the algorithm.

Claim. If k0, ..., kf is a sequence of vertices satisfying both

– ‖q(vki+1)‖ ≥ ‖q(vki)‖ − 2α
φ vol(Ski

)

– vol(Ski+1) ≥ (1 + φ) vol(Ski)

then

‖q(kf)‖ ≥ ‖q(k0)‖ − 4α

φ2 vol(Sk0)
.

Proof. We note that vol(Ski+1) ≥ (1 + φ)i vol(Sk0), and so we have

‖q(kf)‖ ≥ ‖q(k0)‖ − 2α

φ vol(Sk0)
− 2α

φ vol(Sk1)
− · · · − 2α

φ vol(Skf−1
)

≥ ‖q(k0)‖ − 2α

φ vol(Sk0)

(
1 +

1

1 + φ
+ · · ·+ 1

(1 + φ)f−1

)
≥ ‖q(k0)‖ − 2α

φ vol(Sk0)

1 + φ

φ

≥ ‖q(k0)‖ − 4α

φ2 vol(Sk0)

and the claim follows.

A Local Clustering Algorithm for Connection Graphs 39

Now we will use this claim, the choice of α = φ2/8γ, and the condition on the
starting vertex ‖q(k0)‖ ≥ 1/γ vol(Sk0) to obtain a lower bound on ‖q(kf)‖,

‖q(kf)‖ ≥ ‖q(k0)‖ − 4α

φ2 vol(Sk0)

≥ 1

γ vol(Sk0)
− 1

2γ vol(Sk0)

≥ 1

2γ vol(Sk0)
.

As in the proof of Claim 5.2, we have that p(C) ≥ 1 − 1
8γ , and therefore

p(C̄) ≤ 1
8γ .

Now observe that vol(Skf
∩C̄) ≤ p(C̄)

‖q(kf)‖ . This follows since ‖q(kf)‖ vol(Skf
∩

C̄) =
∑

v∈Skf
∩C̄ ‖q(kf)‖dv ≤

∑
v∈Skf

∩C̄ ‖q(v)‖dv ≤
∑

v∈C̄ ‖p(v)‖ = p(C̄). Thus

vol(Skf
∩ C̄) ≤ p(C̄)

‖q(kf)‖

≤ 2γ vol(Skf
)

8γ

=
1

4
vol(Skf

).

Therefore vol(Skf
) ≤ vol(C)+vol(Skf

∩ C̄) ≤ vol(C)+ 1
4 vol(Skf

), implying that
vol(Skf

) ≤ 4
3 vol(C). Using that fact that vol(C) ≤ 1

2 vol(G),

vol(Skf
) ≤ 4

3
vol(C) ≤ 2

3
vol(G) ≤ vol(G)

1 + φ
.

This last step follows under the assumption that φ ≤ 1/2. We can do this
without loss of generality since the guarantee on h(S) in the theorem is trivial
for φ > 1/2.

The above shows that the algorithm will not experience a failure due to the
volume becoming too large, and we have seen that conditions (2) and (3) will
be satisfied by the output.

Finally, to show condition (1), we apply the Sharp Drop Lemma. We know that
kf is the smallest index such that vol(Skf+1) ≥ (1+φ) vol(Skf

), and ‖q(vkf+1)‖ ≤
‖q(vkf

)‖ − 2α/φ vol(Ski). Therefore the Sharp Drop Lemma guarantees that
h(Skf

) < 2φ, and the proof is complete.

Theorem 8. The running time for the algorithm ConnectionPartition is

O

(
d2x

log2 m

φ2

)
.

Proof. The running time is dominated by the computation of the PageRank

vector. According to Theorem 6, the running time for this is O
(

d2

δα

)
. In the

40 F. Chung and M. Kempton

algorithm, we have α = φ2

8γ , δ = 1
16γx , and γ = 1

8 +
∑2m

k=1
1
k = Θ(logm).

Therefore α = O(φ2

logm) and δ = O(1
x logm). Therefore the running time is as

claimed.

References

1. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in
a Day. In: Proceedings of the 12th IEEE International Conference on Computer
Vision, pp. 72–79 (2009)

2. Andersen, R., Chung, F., Lang, K.: Using PageRank to locally partition a graph.
Internet Math. 4(1), 35–64 (2007)

3. Andersen, R., Chung, F.: Detecting sharp drops in PageRank and a simplified local
partitioning algorithm. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007.
LNCS, vol. 4484, pp. 1–12. Springer, Heidelberg (2007)

4. Bandeira, A.S., Singer, A., Spielman, D.A.: A Cheeger Inequality for the Graph
Connection Laplacian (2012), http://arxiv.org/pdf/1204.3873v1.pdf

5. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)

6. Chung, F.: Spectral Graph Theory. AMS Publications (1997)
7. Chung, F., Zhao, W.: A sharp PageRank algorithm with applications to edge rank-

ing and graph sparsification. In: Kumar, R., Sivakumar, D. (eds.) WAW 2010.
LNCS, vol. 6516, pp. 2–14. Springer, Heidelberg (2010)

8. Chung, F., Kempton, M., Zhao, W.: Ranking and sparsifying a connection graph.
Internet Mathematics (2013)

9. Chung, F., Sternberg, S.: Laplacian and vibrational spectra for homogeneous
graphs. J. Graph Theory 16, 605–627 (1992)

10. Cucuringu, M., Lipman, Y., Singer, A.: Sensor network localization by eigenvec-
tor synchronization over the Euclidean group. ACM Transactions on Sensor Net-
works 8(3), No. 19 (2012)

11. Hadani, R., Singer, A.: Representation theoretic patterns in three dimensional cryo-
electron microscopy I - the intrinsic reconstitution algorithm. Annals of Mathemat-
ics 174(2), 1219–1241 (2011)

12. Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press (1985)
13. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer Series in Statistics

(2002)
14. Singer, A.: Angular synchronization by eigenvectors and semidefinite programming.

Applied and Computational Harmonic Analysis 30(1), 20–36 (2011)
15. Singer, A., Zhao, Z., Shkolnisky, Y., Hadani, R.: Viewing angle classification of

cryo-electron microscopy images using eigenvectors. SIAM Journal on Imaging Sci-
ences 4(2), 723–759 (2011)

16. Singer, A., Wu, H.-T.: Vector Diffusion Maps and the Connection Laplacian. Com-
munications on Pure and Applied Mathematics 65(8), 1067–1144 (2012)

17. Zhao, W.: Ranking and sparsifying edges of a graph. Ph.D. Thesis, University of
California, San Diego (2012)

http://arxiv.org/pdf/1204.3873v1.pdf

A Local Clustering Algorithm for Connection Graphs 41

Appendix

Proof of Theorem 1

Proof. We will define a function f : V → Rd whose Rayleigh quotient will bound
the smallest eigenvalue. For a fixed vertex z ∈ V , we assign f(z) = x, where x
is a unit vector in Rd. Fix a spanning tree T of G, and define f to be consistent
with T . That is, for any vertex v of G assign f(v) as follows. Let Pzv = (z =
v1v2...vk = v) be the path from z to v in T . Then let f(v) = f(z)OPzv . Notice
that ‖f(v)‖ = 1 for all v ∈ V . We will examine the Rayleigh quotient of this
function. Notice that for uv an edge of T , we have

‖f(u)Ouv − f(v)‖ = ‖f(v)− f(v)‖ = 0

by construction. For any other edge uv of G, consider the cycle obtained by
taking the path Pvu = (v = v1v2...vk = u) in T , and adding in the edge uv.
Then by construction of f and the ε-consistency condition, we have

‖f(u)Ouv − f(v)‖ = ‖f(v)OPvuOuv − f(v)‖

=

∥∥∥∥∥f(v)

(
k−1∏
i=1

Ovivi+1Ovkv1 − I

)∥∥∥∥∥
≤ ε ‖f(v)‖ = ε.

Therefore

λ1 ≤ R(f) =

∑
(u,v)∈E

wuv||f(u)Ouv − f(v)||2∑
v
dv||f(v)||2

<

∑
(u,v)∈E

wuvε
2

∑
v
dv

=
ε2

2
.

The initial choice of the unit vector x ∈ Rd in the construction of f was arbitrary.
We thus have d orthogonal choices for the initial assignment of x, which leads
to d orthogonal functions satisfying this inequality. Therefore, by the Courant-
Fischer Theorem, λ1, ..., λd all satisfy this bound.

Proof of Theorem 2

Proof. Let f1, ..., fd be the orthogonal set of vectors defined in the proof of
Theorem 1, each with R(f) ≤ ε2/2. Then ‖f(v)‖2 = 1 for all v. Given A ⊂ V
and B = Ā, define gi : V → Rd by

gi(v) =

{
1

vol Afi(v) for v ∈ A

− 1
volB fi(v) for v ∈ B

42 F. Chung and M. Kempton

For ease of notation we will simply write g and f for gi and fi. Note that if both

u, v ∈ A, then ‖g(u)Ouv − g(v)‖2 =
∥∥ 1

vol Af(u)Ouv − 1
volAf(v)

∥∥2 ≤ 1
(vol A)2 ε

2.

Similarly, if both u, v ∈ B, ‖g(u)Ouv−g(v)‖2 ≤ 1
(vol B)2 ε

2. For u ∈ A and v ∈ B,

we have ‖g(u)Ouv − g(v)‖2 =
∥∥ 1

vol Af(u)Ouv + 1
volB f(v)

∥∥2 ≤ (
1

vol A + 1
volB

)2
by

the triangle inequality.
Therefore

R(g) =

∑
(u,v)∈E

wuv‖g(u)Ouv − g(v)‖2
2∑

v∈V

‖g(v)‖2dv

≤
1
2 volA 1

(vol A)2 ε
2 + 1

2 volB 1
(vol B)2 ε

2 +
(

1
vol A + 1

volB

)2 |E(A,B)|∑
v∈A

1
(volA)2 dv +

∑
v∈B

1
(vol B)2 dv

=
1
2ε

2
(

1
vol A + 1

volB

)
+
(

1
volA + 1

vol B

)2 |E(A,B)|
1

volA + 1
vol B

≤ 1

2
ε2 + 2hG(A).

Therefore we have d orthogonal vectors g1, ..., gd satisfying this bound, each
orthogonal to f1, ..., fd which clearly satisfy the bound, so the result follows.

Proof of Lemma 3

Proof. Let S ⊂ V be a subset of the vertex set that contains v. We have

pZ(S) =
∑

u∈S

‖pZ(u)‖ =
∑

u∈S

∥∥∥∥ 1

2
p(u) +

1

2
qA(u)

∥∥∥∥ ≤
1

2

⎛⎝ ∑
u∈S

‖p(u)‖ +
∑

u∈S

∥∥∥∥∥ ∑
v∼u

q(v)Ouv

∥∥∥∥∥
⎞⎠

≤
1

2

⎛⎝ ∑
u∈S

‖p(u)‖ +
∑

u∈S

∑
v∼u

‖q(v)‖
⎞⎠ =

1

2

⎛⎜⎝2
∑

u∈S

‖p(u)‖ −
∑

(u,v)∈E(S,S̄)

(‖q(u)‖ − ‖q(v)‖)

⎞⎟⎠
= p(S) −

1

2

∑
(u,v)∈E(S,S̄)

(‖q(u)‖ − ‖q(v)‖) .

Since p = p̂r(α, χv), we have that p satisfies pZ = αχv + (1− α)pZ, therefore

‖pZ(u)‖ =
1

1− α
‖p(u)− αχv(u)‖ ≥ ‖p(u)‖ − α‖χv(u)‖

for any u. Therefore
pZ(S) ≥ p(S)− α.

Combining these, we see that∑
(u,v)∈E(S,S̄)

(‖q(u)‖ − ‖q(v)‖) ≤ 2α. (1)

Now we will consider Sj . If vol(Sj)(1 + φ) > vol(G), then

|E(Sj , S̄j)| ≤ vol(S̄j) ≤ vol(G)

(
1 +

1

1 + φ

)
≤ φ vol(Sj)

A Local Clustering Algorithm for Connection Graphs 43

and the result holds. Assume vol(Sj)(1+φ) ≤ vol(G). Then there exists a unique
index k > j such that

vol(Sk−1) ≤ vol(Sj)(1 + φ) ≤ vol(Sk).

If e(Sj , S̄j) < 2φ vol(Sj), then we are done. If e(Sj , S̄j) ≥ 2φ vol(Sj), then we
note that we can also get a lower bound on e(Sj , S̄k−1), namely

e(Sj , S̄k−1) ≥ e(Sj, S̄j)− vol(Sk−1 \ Sj) ≥ 2φ vol(Sj)− φ vol(Sj) = φ vol(Sj).

Therefore, by Equation 1

2α ≥
∑

(u,v)∈E(Sj ,S̄j)

(‖q(u)‖ − ‖q(v)‖)
∑

(u,v)∈E(Sj,S̄k−1)

(‖q(u)‖ − ‖q(v)‖)

≥ e(Sj , S̄k−1)(‖q(vj)‖ − ‖q(vk)‖)
≥ φ vol(Sj)(‖q(vj)‖ − ‖q(vk)‖).

This implies that ‖q(vj)‖ − ‖q(vk)‖ ≤ 2α/φ vol(Sj), and the result follows.

On the Power of Adversarial Infections

in Networks

Michael Brautbar1,�, Moez Draief2, and Sanjeev Khanna1

1 Computer and Information Science, University of Pennsylvania
{brautbar,sanjeev}@cis.upenn.edu

2 Electrical and Electronic Engineering, Imperial College London
m.draief@imperial.ac.uk

Abstract. Over the last decade we have witnessed the rapid prolifera-
tion of online networks and Internet activity. Such activity is considered
as a blessing but it brings with it a large increase in risk of computer mal-
ware — malignant software that actively spreads from one computer to
another. To date, the majority of existing models of malware spread use
stochastic behavior, when the set of neighbors infected from the current
set of infected nodes is chosen obliviously. In this work, we initiate the
study of adversarial infection strategies which can decide intelligently
which neighbors of infected nodes to infect next in order to maximize
their spread, while maintaining a similar “signature” as the oblivious
stochastic infection strategy as not to be discovered. We first establish
that computing an optimal and near-optimal adversarial strategies is
computationally hard. We then identify necessary and sufficient condi-
tions in terms of network structure and edge infection probabilities such
that the adversarial process can infect polynomially more nodes than
the stochastic process while maintaining a similar “signature” as the
oblivious stochastic infection strategy. Among our results is a surpris-
ing connection between an additional structural quantity of interest in
a network, the network toughness, and adversarial infections. Based on
the network toughness, we characterize networks where existence of ad-
versarial strategies that are pandemic (infect all nodes) is guaranteed, as
well as efficiently computable.

1 Introduction

Over the last decade we have witnessed the rapid proliferation of online net-
works and Internet activity. While such a proliferation is considered by many as
a blessing, it brings with it an increase in risk of computer malware — malig-
nant software that actively spreads from one computer to another. Indeed, a long
thread of research has been devoted to understanding the spread of malicious
malware such as computer viruses, computer worms and other malignant forms
of computer infection cf. [3, 16, 17, 19, 21]. However, such work has, so far,

� Now in The Laboratory for Information and Decision Systems, Massachusetts Insti-
tute of Technology, brautbar@mit.edu.

A. Bonato, M. Mitzenmacher, and P. Pra�lat (Eds.): WAW 2013, LNCS 8305, pp. 44–55, 2013.
c© Springer International Publishing Switzerland 2013

On the Power of Adversarial Infections in Networks 45

only considered oblivious malware propagation, where the spreading malware
does not behave strategically in its choice of which nodes to spread to. What
now is a standard way of containing the spread of malware is the control of the
amount of information that spreads from one computer to others [3, 19]. This
is also known as throttling. Under rate control, a malware that does not want
to get detected spreads obliviously to a small set of neighbors while abiding by
the rate constraint. Inspired by this fact, in this work we initiate the study of
intelligent malware propagation, where the spreading malware can strategically
decide which neighboring nodes to infect under rate constraints, in order to max-
imize the total number of infections over time. Each edge (u, v) is equipped with
an edge weight p(u, v) representing the amount of a typical and normal com-
munication between the two nodes u and v. Typical examples of such networks
include email networks, instant messaging networks, and online social networks,
among others. Under the rate constraint, a malware spreading from an infected
node u can infect at most a number of nodes that is not more than the typical
“signature” of communication, namely,⎡⎢⎢⎢

∑
{v neighbor of u}

p(u, v)

⎤⎥⎥⎥ .

More generally, we will demand that for any subset X , the malware must not
infect more nodes than the amount of traffic involving X permits it to, namely,⎡⎢⎢⎢

∑
u∈X

∑
{v neighbor of u}

p(u, v)

⎤⎥⎥⎥ .

In particular, such malware can use the structure of the network in order to
choose which of the neighboring computers to infect from a newly infected node.
We initiate a detailed comparison of the behavior of an adversarial infection,
that can use the network structure, to that of an oblivious stochastic one, that
spreads according to the standard Independent Cascades diffusion model. In
order to defend against future malware it is of primary importance to first analyse
the adversarial infections strategy and to contrast its behavior with that of the
oblivious stochastic strategy.

We would like to further emphasize the need to understand the behavior of
adversarial infections with the following example, comparing the behavior of a
well-planned adversarial infection to that of a simple heuristic. Consider a path
connected at one of its ends to the root of a two level binary tree. Set all edge
weights to 1/2. A greedy strategy may consist, for each newly infected node
u, to infect its ru neighbors of highest degree, where ru is the rate constraint
of u. However, such a strategy would miss the path altogether. In contrast, an
adversary with a global knowledge of the graph can plan ahead and infect the
whole path, by starting from the root of the tree but spending its budget to
infect the next node on the path (and the extra budget to infect part of tree).
While greedy would infect only O(1) nodes, a well-planned adversary would
infect n−O(1) nodes.

46 M. Brautbar, M. Draief, and S. Khanna

1.1 Our Results

We first show that the problem of computing an optimal and near-optimal ad-
versarial strategies under typical constraints is computationally hard. We then
identify necessary and sufficient conditions in terms of network structure and
edge infection probabilities such that the adversarial process can infect poly-
nomially more nodes than the stochastic process while maintaining a similar
“signature” as the oblivious stochastic infection strategy. Our first set of results
show that when the minimum weighted graph cut value is Ω(logn) (on a network
with n nodes), the standard oblivious stochastic infection strategy can essentially
infect all nodes. Thus the interesting regime to analyze is when the minimum
weighted cut value is o(log n). In this regime we demonstrate that the optimal
adversarial infection can be pandemic (namely infect all nodes) while the obliv-
ious stochastic strategy infects, in expectation, a constant number of nodes. We
then identify a surprising connection between an additional structural quantity
of interest in a network, the network toughness, and adversarial infections. Based
on the network toughness, we characterize conditions guaranteeing the existence
of a pandemic adversarial strategy as well as its efficient computation.

1.2 Related Work

Most work on computer malware has been focused on virus and worm propaga-
tion [17, 19]. The vast majority of the literature has focused on modelling and
simulations of the behavior of a stochastic malware which spreads according to
the Independent Cascades model or its extension to repeated infection attempts,
the Susceptible-Infected model [7, 19–22]. However, none of these papers con-
sider intelligently-designed malware that can choose which nodes to infect based
on some prior computation or knowledge of the network.

Another line of research that we would like to mention is the one devoted to
error and attack tolerance in online networks; see the seminal work of [1] and
its long line of follow-up research such as [9]. The main thread of research is
devoted to understanding how attacking and removing, in an unweighted graph,
nodes of high-degree results in more parts of the network becoming disconnected
than attacking and removing the same number of nodes, obliviously at random.
In contrast to this work, we are interested in analyzing cascading effects that
spread through the network, rather than a single attack and removal of nodes
(and edges). Furthermore, our main interest is in coordinated attacks that are
strategically designed, and so the type of node first targeted is chosen as to
maximize a global effect in a provable way (resulting in infecting as many nodes
as possible) rather than based on local heuristics (choosing high degree nodes).

1.3 Outline

In section 2 we provide a detailed definition of what comprises an adversarial
infection and the description of the behavior of the oblivious stochastic infection
strategy. In section 3 we discuss the computational complexity of computing an

On the Power of Adversarial Infections in Networks 47

optimal, as well as near optimal, adversarial infection strategies. In section 4 we
provide necessary conditions in terms of the network cuts such that the adver-
sarial process can infect polynomially more nodes than the stochastic process.
In section 5 we provide necessary and sufficient conditions for the existence of
a pandemic adversarial infection strategy and provide efficient algorithms for
computing such a strategy. Finally, in section 6 we summarize our contributions
and list several intriguing directions for future research.

2 Model and Preliminaries

The Input Network. We are given an undirected, edge-weighted network G =
(V,E, p) on |V | = n nodes, |E| = m edges and an edge weight function p : E →
(0, 1]. We think of the weight p(u, v) as the average amount of communication
between neighbors u and v over a typical period of time. We will be particularly
interested in the behavior of adversarial infections and the independent cascade
model on the input network.

Adversarial Diffusion. An adversary strategy A is a rooted tree TA, rooted at its
seed node of choice (namely, the source of infection), that spans some arbitrary
subset S of nodes. Each node u in TA is responsible for infecting its children in
TA. For any subset X of nodes in TA, let

infect(A,X) = {v ∈ TA: v’s parent in TA belongs to X}.
We say that an adversary strategy A (with its rooted tree TA) infects a set S
of nodes, while obeying the first order constraints, if its rooted tree TA spans S
such that for every subset X ⊆ S of nodes we have,

|infect(A,X)| ≤
⎡⎢⎢⎢
∑
u∈X

∑
v:(u,v)∈E

p(u, v)

⎤⎥⎥⎥ .

Namely, the number of node infections attributed to X is constrained by the
ceiling of the total weight adjacent to the set X .

In this paper we only consider adversarial infections that obey the first-order
constraints; unless stated explicitly otherwise, an adversary would be assumed
to obey the first-order constraints. We will call the problem of finding a first-
order constrained adversarial infection that maximizes number of infections the
adversarial infection problem1. An adversarial strategy will be called pandemic
if it infects all nodes.

Independent Cascades Diffusion Model. The Independent Cascades (IC) model
of diffusion was formalized by Kempe et al. [13] and is by now a standard
model to describe infection propagation in social and other contact networks [10].

1 It is not hard to see that the optimal adversary is deterministic: any stochastic
adversary is a convex combination of trees so one can take the best one w.l.o.g.

48 M. Brautbar, M. Draief, and S. Khanna

The IC model can be thought of as a discrete version of the known Susceptible-
Infected-Removed (SIR) model. The IC diffusion spreads via a random process,
beginning at its seed node of choice from V . The process proceeds in rounds. In
each round, a node u that got infected in the previous round gets a chance to
subsequently infect each healthy neighbor v, with probability equal to the weight
of the edge (u, v), namely p(u, v). The node u becomes then recovered and does
not spread the virus any further. If multiple nodes try to infect a new node in
the current round, then each succeeds, independently, according to the corre-
sponding edge weight. In this paper, we will focus on the the IC process only on
undirected graphs. Throughout the text, we shall also refer to the stochastic in-
fection strategy, as defined by the IC process, as the oblivious stochastic strategy
or sometime as the stochastic diffusion.

Quantities of Interest. All graphs considered in the paper are undirected graphs.
Throughout our analysis we will frequently refer to the minimum weighted cut
value and maximum weighted cut value in the weighted input graph: the mini-

mum (resp. maximum) weighted cut value, denoted Φmin
G (resp. Φmax

G), is the
value of the cut (S, S) that minimizes (resp. maximizes) the sum

ΦG(S) :=
∑

{u∈S,v∈S,(u,v)∈E}
p(u, v) .

When the identity of G is clear, we will often omit the subscript G.
We denote by |S| the size of a set S. We denote the degree of a node u in a

graph G by dG(u).
All logarithms in the paper are in base 2.

3 Hardness of Maximizing Adversarial Infection

In this section, we show that in general, the adversarial infection problem is hard
to approximate under first order constraints.

Theorem 1. The adversarial maximization problem is 2(log1−ε n−1)-hard to ap-

proximate, for any ε > 0, unless NP ⊆ DTIME(2O(log1/ε n)).

Proof. The proof is by reduction from the longest path problem on undirected
graphs. Let G(V,E) be the input graph for the longest path problem. We create
an instance of the adversarial infection problem from G as follows. Starting with
the graph G, we attach (n−dG(u)) auxiliary vertices to each vertex u ∈ V . Assign
a weight of 1/n to each edge in the resulting graph. Let H be the resulting graph.

Note that any infection strategy in H obeying the first-order constraints must
be a path, since the total incident weight on any node in H is at most 1 (and
is exactly 1 for nodes from G). If the path length is � in H it translates to a
path of length at least � − 2 in G (which is at least �/2 for � ≥ 4), and a path
of length � in G translates to an infection strategy following a path of length �
in H . The longest path problem is 2(log1−ε n)-hard to approximate in undirected

graphs, unless NP ⊆ DTIME(2O(log1/ε n)) [12], and the result easily follows.

On the Power of Adversarial Infections in Networks 49

We next show that the problem remains hard to approximate to within any
constant factor even when the input instances are restricted to regular graphs
with uniform infection probabilities.

Theorem 2. The adversarial maximization problem does not admit a constant
factor approximation in undirected regular graphs with uniform edge weights,
unless P = NP.

Proof. Let G be an undirected k-regular graph, k ≥ 2 with uniform infection
probability of 1/k on edges. Now the problem of finding a good strategy obeying
first-order constraints becomes exactly the problem of finding a long path in
the graph. Thus the problem of maximizing adversarial infection is as hard to
approximate as the longest path on regular graphs. Even in 3-regular Hamilto-
nian graphs, the longest-path problem is known not to have any constant factor
approximation, unless P = NP [5].

4 A Cut-Based Analysis

We next proceed to exploring networks where an adversarial infection can infect
polynomially more nodes than the oblivious stochastic strategy. We will show
that two important parameters in understanding this goal is the value of the
minimum weighted cut, Φmin

G , and the value of maximum weighted cut, Φmax
G , in

the input graph G.
We first show that if Φmin

G is at least logarithmically large the oblivious
stochastic strategy is essentially pandemic.

Theorem 3 (Theorem 1 of [2]). Let G = (V,E, p). For every positive constant
b, there exists a constant c = c(b) > 0 so that if Φmin

G ≥ c log(n), then the
probability that a realization of G is disconnected, where each edge (u, v) ∈ E is
kept with probably p(u, v), is at most 1

nb .

By the theorem we conclude,

Corollary 1. For c large enough, the oblivious stochastic strategy would infect
at least n− o(1) nodes in expectation.

Thus in this parameter regime, an improvement using adversarial infection strate-
gies would be non-significant over the oblivious stochastic strategy. We note,
however, that having a logarithmically large minimum cut is a quite stringent
condition; in particular, any graph that has even one node with degree of size
o(log(n)) would violate the minimum cut condition. It is thus of high interest
to analyze the regimes when this condition is violated. For this purpose we next
show that no adversarial strategy can infect more than Θ(Φmax

G) nodes, and
that when Φmax

G is large enough, a polynomial gap between the adversary to the
oblivious stochastic strategy is feasible.

Theorem 4. For any graph G no adversarial infection strategy obeying first-
order constraint, as well as the oblivious stochastic strategy, can infect more
than Θ(Φmax

G) nodes.

50 M. Brautbar, M. Draief, and S. Khanna

On the other hand, for any value n there exists a graph G on n nodes with
Φmax
G = Θ(n) such that the optimal adversarial strategy obeying first order con-

straint infects Θ(Φmax
G) nodes while the oblivious stochastic strategy infects only

O(1) nodes in expectation. Moreover, the gap result holds on graphs where the
edge infection probability is uniform and a constant (independent of n).

Proof. To prove the first part we make use of the following known fact that can
be easily proven using the probabilistic method.

Fact 1. For any weighted undirected graph G = (V,E, p),

Φmax
G ≥ 1/2

∑
(u,v)∈E

p(u, v) .

Now consider any adversarial infection strategy A, and let TA be its tree of
infections; let S be the set of nodes infected. Ignoring the root of TA, either the
total number of nodes at the odd levels of TA must be at least (|S|− 1)/2 or the
total number of nodes at the even levels of TA must be at least (|S|−1)/2. Since
all infections at odd levels have to be attributed to nodes at the even levels (and
vice versa), if the tree TA conforms to first-order constraints, then we must have

(|S| − 1)/2 ≤ �2Φmax
G �.

Since this holds for any choice of tree TA (and hence any adversarial strategy),
the claim follows for any adversary. A simple argument shows the claim for the
oblivious stochastic process: any node u can infect at most

∑
v:(u,v)∈E p(u, v) new

nodes in expectation, and thus the total number of infections is, in expectation,
at most ∑

u∈V

∑
v:(u,v)∈E

p(u, v) = Θ(Φmax
G).

We now prove the other part of the theorem. To show this we need to provide
a graph G on n nodes such that the optimal adversary can infect Φmax

G = Θ(n)
nodes while the oblivious stochastic strategy infects O(1) in expectation.

For simplicity of exposition assume that n is even. Take a cycle on n/2 nodes
and set each edge probability on the cycle to be 1/2. Now attach to each node
ui on the cycle, an auxiliary nodes vi using also an edge of probability 1/2. Note
that by fact 1, the value of the maximum weighted cut Φmax

G is Ω(n). Clearly,
Φmax
G ≤ |E| = n + 1 and so Φmax

G = Θ(n), as required.
The adversary chooses all n nodes on the cycle (infection tree is a path), and

no auxiliary nodes. This satisfies first-order constraints because each node ui has
an infection budget of at least 1 and it needs to infect exactly one node.

However, for any choice of the seed vertex, a stochastic strategy obtains only
O(1) nodes in expectation. To see this note that the infection survives for k steps
on the cycle with probability at most 2/2k and so it can infect, in expectation,
at most

∑
k 8k/2k = 16 = O(1) nodes.

On the Power of Adversarial Infections in Networks 51

5 Pandemic Infections

In this section, we further explore the setting where the value of the minimum
weighted cut is o(logn). As we have seen earlier, in this setting the gap between
an adversarial infection (obeying first-order constraints) and oblivious stochastic
diffusion can be as large as Ω(n). We obtain here sufficient and necessary condi-
tions for an adversarial infection to become pandemic (i.e., infect all nodes) by
relating existence of such strategies to the notion of toughness of the graph.

The notion of graph toughness was first introduced in order to study condi-
tions for the existence of Hamiltonian cycles in graphs, see [4]. Given an undi-
rected graph G = (V,E) and a subset of nodes S, let |S| be the size of S and
cG(S) be the number of connected components in the graph induced on V \ S
obtained from G by deleting all nodes in the set S. The toughness of the graph
G, where G is not the complete graph, denoted by τ(G) is defined as follows

τ(G) = min
S⊂V, cG(S)>1

|S|
cG(S)

. (1)

The toughness of the complete graph is defined to be infinity. Toughness of a
cycle, on the other hand, is 1 since by deleting any subset of k nodes, we can
create at most k connected components, and removing two nodes with no edge
between creates exactly two components. As another example, it is easy to verify
that the toughness of a tree with maximum degree Δ (and at least three nodes)
is 1/Δ. It is also easy to verify that the toughness of a graph is positive if and
only if the graph is connected.

There is a vast literature on the connections between graph toughness and
spanning trees; for a recent survey see [15]. In what follows, we will show a close
connection between existence and algorithms for adversarial infections that are
pandemic to the toughness of the underlying connections graph.

We start by developing sufficient conditions under which there exists a span-
ning tree that can be exploited by an adversary obeying the first-order con-
straints.

Theorem 5. For any connected, weighted undirected graph G = (V,E, p) such
that

∀u ∈ V,
∑

v:(u,v)∈E

p(u, v) ≥
⌈

1

τ(G)
+ 1

⌉
(2)

there is an adversary strategy that infects all nodes in G and obeys the first-order
constraints. Moreover, assume that

∀u ∈ V,
∑

v:(u,v)∈E

p(u, v) ≥
⌈

1

τ(G)
+ 2

⌉
. (3)

Then, there is a polynomial-time computable adversary strategy that infects all
nodes in G and obeys the first-order constraints.

52 M. Brautbar, M. Draief, and S. Khanna

Proof. By Win’s Theorem [18], every undirected graph G with toughness τ(G)
has a spanning tree with maximum degree bounded by d = �(1/τ(G) + 2)�. Let
T be such a tree. Root this tree at a leaf node s and let this node be the seed.
The adversary strategy is to infect all nodes of G, starting with node s, by using
the edges of T . Now no node is responsible for infecting more than d−1 children
and so the first-order constraints are obeyed: for each node u, its degree minus
one is at most �(1/τ(G)+2)�−1 = �(1/τ(G)+1)� ≤∑

v:(u,v)∈E p(u, v). To show
the other part of the theorem we make use of an algorithmic result by Fürer and
Raghavachari [11] that states that if there exists a spanning tree of degree at
most Δ than one can construct in polynomial time a spanning tree of degree at
most Δ + 1. The assertion of the theorem then follows similarly to the previous
case, where now for each node u, �1/τ(G) + 2� ≤∑

v:(u,v)∈E p(u, v).

Example 1. To illustrate the theorem, consider the following example. Take a
random graph G ∈ G(n, p) with p ≥ 2 logn/n. With probability of 1 − o(1),
G contains a Hamiltonian cycle (see for instance [14]). So τ(G) ≥ 1, and thus
to apply Theorem 5, all we need is that for every node u,

∑
v:(u,v)∈E p(u, v) is

at least 2. By the Chernoff bound, all vertex degrees in G are at least pn/2
with high probability. Hence by setting p(u, v) = 4/pn on each edge (u, v), we
satisfy the conditions of Theorem 5, and can conclude existence of an adversarial
strategy that leads to pandemic infection. Note that as network degrees increase
in this example, smaller and smaller edge infection probabilities suffice to get
adversarial pandemic infection.

Discussion:
We note that if we slightly weaken the condition stated in Theorem 5, the result
no longer holds. Specifically, if we allow just O(1) nodes to violate condition
(2) by only a slack of 1, that is, allow O(1) nodes u with

∑
u:(u,v)∈E p(u, v) =

�(1/τ(G)�, then for infinitely many toughness values there will exist infinitely
many networks such that the optimal adversarial strategy is not pandemic
(namely, infects all nodes). To see this, let k ≥ 2 be an integer and consider
the following family of graphs Hn,k, where n ≥ 3k(k + 3) + 3 is integral. Take
three nodes v1, v2, v3 as connect them as a clique. In addition create 3k vertex-
isolated cliques, indexed C(i, j) for 1 ≤ i ≤ 3, 1 ≤ j ≤ k, each on (n − 3)/3k
nodes. To complete the construction connect each node vi to some node in each
clique C(i, j) (“a representative”), where 1 ≤ j ≤ k. Thus the degree of each
node vi in the construction is k + 2, in addition to being connected to k repre-
sentatives it is also connected to the other vi nodes. Set all edge weights to 1,
except for each i the edges connecting vi to the cliques C(i, 1) and C(i, 2); the
weight on each of these edges is set to 1/2.

We now observe a few simple facts about the graph Hn,k. First, its toughness
is 1/(k+1). Second, it has a spanning tree (tree spanning all graph nodes). Third,
in each of its spanning trees each vi must be connected to a representative from
each C(i, j) for 1 ≤ j ≤ k. In addition, one of the vis must be connected to the
two other vis (otherwise the spanning tree is disconnected), and so its degree in
the spanning tree must be k+ 2. Last, except for the three vis, the sum of edge-
weights touching any node is at least k + 2 (as n−3

3k ≥ k + 3 condition (2) holds

On the Power of Adversarial Infections in Networks 53

for all clique nodes). However, the sum of edge-weights touching a vi, namely∑
u:(vi,u)∈E p(vi, u), is 2 + k− 2 + 1/2 · 2 = k + 1. Thus the degree of each of the

vis in a tree representing an adversarial infection can be at most k + 1, which is
strictly smaller than k + 2, and so any such adversary cannot infect all nodes in
the graph. In fact, a constant fraction of the graph nodes will not be infected —
all the nodes belonging to one of the cliques C(i, j). ��

We now show that for a given value of the toughness τ , there exist infinitely
many graphs such that the stochastic diffusion can only infect O(τ) nodes, for
τ ≥ 4. In light of theorem 5, on such graphs the gap between the stochastic
diffusion and the adversarial diffusion is large.

Theorem 6. For any value of the toughness τ ≥ 4 and positive integer � ≥ 3,
there exists a weighted undirected graph G = (V,E, p) on n = τ� nodes and
toughness τ , such that condition (2) is satisfied (hence the adversarial process
can infect all n nodes), yet the stochastic diffusion infects only O(τ) nodes in
expectation.

Proof. Take a cycle with � nodes, say, v0, v1, ..., v�−1. Now replace each vi by a
clique Ci on τ ≥ 4 nodes. Now for each i, connect vertices in clique Ci to vertices
in Ci+1 by a complete bipartite graph. Note that the total number of nodes n
equals τ�. Also, one can verify that the toughness of this modified cycle is τ ,
since the toughness of a simple cycle is 1.

Assign a probability of 1 to edges inside each Ci, and probability 1
2τ2 to

edges between the cliques. Note that the probability that any edge between two
adjacent cliques gets realized is less than 1/2. Indeed, the probability that no
edge between two adjacent cliques gets realized is

(1 − 1/(2τ2))τ ≥ 1− 1

2τ
> 1/2 ,

where we used the inequality (1 + x)r ≥ 1 + rx, for x ≥ −1 and r ∈ R \ (0, 1). In
particular, the behavior of the stochastic diffusion on this network is essentially
as it is on a cycle with edge probability less than 1/2 that was analyzed in the
proof of Theorem 4; the only difference is that now each node on the cycle infects
as well all the nodes in its clique. Thus the stochastic diffusion infects at most
O(τ) nodes in expectation. Finally, condition (2) trivially holds since τ ≥ 4 and
so each vertex has a probability mass of at least 3 incident on it, while 1/τ ≤ 1.

6 Conclusions and Future Work

In this work we initiated the study of adversarial infection strategies which can
decide intelligently which nodes to infect next in order to maximize their spread,
while obeying first-order constraints as to not get discovered. We have demon-
strated that a well-planned adversarial infection can substantially increase the
number of nodes infected with respect to the standard Independent Cascades
infection strategy. We designed necessary and sufficient conditions to under-
stand when this is possible. Based on novel connection to the network toughness,

54 M. Brautbar, M. Draief, and S. Khanna

we characterize networks where existence of adversarial strategies that are pan-
demic (infect all nodes) is guaranteed, as well as efficiently computable.

Our results have focused on first order constraints: keeping the traffic involving
any set X lower than the ceiling of its expected value, namely,⎡⎢⎢⎢

∑
u∈X

∑
v:(u,v)∈E

p(u, v)

⎤⎥⎥⎥ .

An interesting future direction is to consider flow constraints where the number
of infections caused by any set X is at most the flow leaving X , namely,⎡⎢⎢⎢

∑
u∈X

∑
v �∈X:(u,v)∈E

p(u, v)

⎤⎥⎥⎥ .

Moreover, it would be interesting to consider directed graphs as well.
Another interesting avenue for further exploration is to analyze the effective-

ness of vaccination strategies designed for controlling stochastic epidemics in
limiting the spreading of the adversarial epidemic. In particular, one could con-
sider immunization strategies such as immunizing high degree nodes or acquain-
tance immunization based on the immunization of a small fraction of random
neighbors of randomly selected nodes. Such strategies are known to be effective
at controlling stochastic epidemics [6, 8] but might be ineffective containing the
first-order constrained adversarial infection. To demonstrate this, let us go back
to the example of the introduction, namely a path connected at one of its ends
to the root of a two-level binary tree. Consider vaccinating the node with the
highest weighted degree, which is in this example the root of tree. Vaccinating
the root of the tree will not help in containing adversarial infections, which would
still infect n − O(1) nodes (the path nodes). Yet vaccinating the middle node
of the path is much better for containment — yielding at most n/2 + O(1) in-
fected nodes by an adversarial epidemic. It is therefore interesting to understand
and develop vaccination schemes that aim to minimize the number of infections
under the adversarial setting.

Acknowledgements. We would like to thank the anonymous reviewers for
their helpful comments.

Moez Draief was supported by QNRF grant NPRP-09-1150-2-448.
Sanjeev Khanna was supported in part by the National Science Foundation

grants CCF-1116961 and IIS-0904314.

References

1. Albert, R., Jeong, H., Barabasi, A.-L.: Error and attack tolerance of complex net-
works. Nature 406(6794), 378–382 (2000)

2. Alon, N.: A note on network reliability. In: Discrete Probability and Algorithms,
pp. 11–14. Springer (1995)

On the Power of Adversarial Infections in Networks 55

3. Balthrop, J., Forrest, S., Newman, M.E.J., Williamson, M.M.: Technological net-
works and the spread of computer viruses. Science 304(5670), 527–529 (2004)

4. Bauer, D., Broersma, H., Schmeichel, E.F.: Toughness in graphs - a survey. Graphs
and Combinatorics 22(1), 1–35 (2006)

5. Bazgan, C., Santha, M., Tuza, Z.: On the approximation of finding a(nother)
Hamiltonian cycle in cubic Hamiltonian graphs. J. Algorithms 31(1), 249–268
(1999)

6. Britton, T., Janson, S., Martin-Löf, A.: Graphs with specified degree distributions,
simple epidemics, and local vaccination strategies. Advances in Applied Probabil-
ity 39(4), 922–948 (2007)

7. Chen, Z., Chen, C., Ji, C.: Understanding localized-scanning worms. In: IPCCC,
pp. 186–193 (2007)

8. Cohen, R., Havlin, S., Ben-Avraham, D.: Efficiency immunization strategies for
computer networks and populations. Physical Review Letters 91(24), 247901-1–
247901-4 (2003)

9. Crucitti, P., Latora, V., Marchiori, M., Rapisarda, A.: Efficiency of scale-free net-
works: Error and attack tolerance. Physica A 320(642), 622–642 (2003)

10. Easley, D.A., Kleinberg, J.M.: Networks, Crowds, and Markets - Reasoning About
a Highly Connected World. Cambridge University Press (2010)

11. Fürer, M., Raghavachari, B.: Approximating the minimum-degree Steiner tree to
within one of optimal. J. Algorithms 17(3), 409–423 (1994)

12. Karger, D.R., Motwani, R., Ramkumar, G.D.S.: On approximating the longest
path in a graph. Algorithmica 18(1), 82–98 (1997)

13. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence
through a social network. In: KDD, pp. 137–146 (2003)

14. Komlós, J., Szemerédi, E.: Limit distributions for the existence of Hamiltonian
circuits in a random graph. Discrete Mathematics (43), 55–63 (1983)

15. Ozeki, K., Yamashita, T.: Spanning trees: A survey. Graphs and Combina-
torics 27(1), 1–26 (2011)

16. Serazzi, G., Zanero, S.: Computer virus propagation models. In: Calzarossa, M.C.,
Gelenbe, E. (eds.) MASCOTS 2003. LNCS, vol. 2965, pp. 26–50. Springer, Heidel-
berg (2004)

17. Weaver, N., Paxson, V., Staniford, S., Cunningham, R.: A taxonomy of computer
worms. In: WORM, pp. 11–18 (2003)

18. Win, S.: On a connection between the existence of k-trees and the toughness of a
graph. Graphs and Combinatorics 5(1), 201–205 (1989)

19. Yan, G., Chen, G., Eidenbenz, S., Li, N.: Malware propagation in online social
networks: nature, dynamics, and defense implications. In: ASIACCS, pp. 196–206
(2011)

20. Zou, C.C., Towsley, D.F., Gong, W.: Email worms modeling and defense. In:
ICCCN, pp. 409–414 (2004)

21. Zou, C.C., Towsley, D.F., Gong, W.: On the performance of internet worm scanning
strategies. Perform. Eval. 63(7), 700–723 (2006)

22. Zou, C.C., Towsley, D.F., Gong, W., Cai, S.: Routing worm: A fast, selective attack
worm based on IP address information. In: PADS, pp. 199–206 (2005)

On the Choice of Kernel and Labelled Data

in Semi-supervised Learning Methods

Konstantin Avrachenkov1, Paulo Gonçalves2, and Marina Sokol1

1 Inria Sophia Antipolis, 2004 Route des Lucioles, Sophia-Antipolis, France
2 Inria Rhone-Alpes and ENS Lyon, 46 Allée Italie, Lyon, France

Abstract. Semi-supervised learning methods constitute a category of
machine learning methods which use labelled points together with unla-
belled data to tune the classifier. The main idea of the semi-supervised
methods is based on an assumption that the classification function should
change smoothly over a similarity graph, which represents relations among
data points. This idea can be expressed using kernels on graphs such as
graph Laplacian. Different semi-supervised learning methods have differ-
ent kernels which reflect how the underlying similarity graph influences
the classification results. In the present work, we analyse a general fam-
ily of semi-supervised methods, provide insights about the differences
among the methods and give recommendations for the choice of the ker-
nel parameters and labelled points. In particular, it appears that it is
preferable to choose a kernel based on the properties of the labelled
points. We illustrate our general theoretical conclusions with an analyti-
cally tractable characteristic example, clustered preferential attachment
model and classification of content in P2P networks.

1 Introduction

The first principal idea of the semi-supervised learning methods is to use few
labelled points (points with known classification) together with the unlabelled
data to tune the classifier. This drastically reduces the size of the training set.
The second principal idea of the semi-supervised learning methods is to use a
(weighted) similarity graph. If two data points are connected by an edge, this
indicates some similarity of these points. Then, the weight of the edge, if present,
reflects the degree of similarity. Later in the paper we show how the similarity
graph can be constructed in a specific application. Each class has a classifica-
tion function defined over all data points which gives a degree of relevance to
the class for each data point. The third principal idea of the semi-supervised
learning methods is that the classification function should change smoothly over
the similarity graph. Intuitively, nodes of the similarity graph that are closer
together in some sense are more likely to have the same label. This idea of clas-
sification function smoothness can be expressed using graph Laplacian or its
modification. In particular, the authors of [14] proposed transductive learning, a
semi-supervised learning method based on the Standard Laplacian. The authors
of [13] and [15] used the Normalized Laplacian (or diffusion kernel). And the

A. Bonato, M. Mitzenmacher, and P. Pra�lat (Eds.): WAW 2013, LNCS 8305, pp. 56–67, 2013.
c© Springer International Publishing Switzerland 2013

On the Choice of Kernel and Labelled Data 57

authors of [3] used the Markov kernel. We observe that if one takes the method
of [1] for detecting local cuts and takes seeds in [1] as the labelled data and con-
siders sweeps as classification functions, then because the degrees of data points
in different sweeps are the same, the resulting method will be equivalent to the
semi-supervised method proposed in [3]. Recently in [5], the authors proposed
a generalized optimization formulation which gives the above mentioned meth-
ods as particular cases. In the present work we provide more insights about the
differences among the semi-supervised methods based on random walk theory,
and give recommendations on how to choose the kernel and labelled points (of
course, when there is some freedom in the choice of labelled points). It appears
that the choice of labelled points influences the choice of kernel. In particular, we
show that if the labelled points are chosen uniformly at random, the PageRank
based method is the best choice for the semi-supervised kernel. On the other
hand, if one can choose labelled points with large degrees or we know that la-
belled points given to us have large degrees, the Standard Laplacian method is
the best choice.

The paper is organized as follows: In the next section we briefly describe the
graph-based semi-supervised learning methods. We refer readers interested in
more details on semi-supervised methods to several excellent surveys [8,16,17]. In
Section 3 we provide general theoretical insights about semi-supervised learning
methods and suggest how to choose the kernel and labelled points. Then, in
Section 4 we illustrate the theoretical conclusions on an analytically tractable
characteristic network example, on clustered preferential attachment model and
with application to P2P content classification. In particular, for this specific
application we show that with the right combination of labelled points and kernel
one can achieve 95% precision with as little as 50 points per class for several
hundred thousands unlabelled points. Finally, in Section 5 we give conclusions
and provide directions for future research.

2 Semi-supervised Learning Methods

Suppose we need to classify N data points into K classes and assume P data
points are labelled. That is, we know the class to which each labelled point
belongs. Denote by Vk, the set of labelled points in class k = 1, ...,K. Thus,
|V1|+ ... + |VK | = P .

The graph-based semi-supervised learning approach uses a weighted graph
connecting data points. The weight matrix, or similarity matrix, is denoted by
W . Here we assume that W is symmetric and the underlying graph is connected.
Each element wi,j represents the degree of similarity between data points i and
j. Denote by D a diagonal matrix with its (i, i)-element equal to the sum of the

i-th row of matrix W : di =
∑N

j=1 wi,j . Later in the paper we demonstrate how
to construct the similarity matrix for a specific application.

Define an N ×K matrix Y as

Yik =

{
1, if i ∈ Vk, i.e., point i is labelled as a class k point,

0, otherwise.

58 K. Avrachenkov, P. Gonçalves, and M. Sokol

We refer to each column Y∗k of matrix Y as a labeling function. Also define an
N ×K matrix F and call its columns F∗k classification functions. The general
idea of the graph-based semi-supervised learning is to find classification functions
so that on the one hand they will be close to the corresponding labeling function
and on the other hand they will change smoothly over the graph associated
with the similarity matrix. This general idea can be expressed by means of the
following optimization formulation [5]:

min
F
{

N∑
i=1

N∑
j=1

wij‖diσ−1Fi∗ − dj
σ−1Fj∗‖2 + μ

N∑
i=1

di
2σ−1‖Fi∗ − Yi∗‖2}, (1)

where μ is a regularization parameter. In fact, the parameter μ represents a
trade-off between the closeness of the classification function to the labeling func-
tion and its smoothness.

The first order optimality condition gives explicit expressions for the classifi-
cation functions

F∗k =
μ

2 + μ

(
I − 2

2 + μ
D−σWDσ−1

)−1

Y∗k, k = 1, ...,K. (2)

Once the classification functions are obtained, the points are classified according
to the rule

Fik > Fik′ , ∀k′ �= k ⇒ Point i is classified into class k.

The ties can be broken in arbitrary fashion. We would like to note that our
general scheme allows us to retrieve as particular cases:

– The Standard Laplacian method (σ = 1), [14]:

F∗k =
μ

2 + μ

(
I − 2

2 + μ
D−1W

)−1

Y∗k,

– The Normalized Laplacian method (σ = 1/2), [13]:

F∗k =
μ

2 + μ

(
I − 2

2 + μ
D− 1

2WD− 1
2

)−1

Y∗k,

– The PageRank based method (σ = 0), [3]:

F∗k =
μ

2 + μ

(
I − 2

2 + μ
WD−1

)−1

Y∗k.

In the present work we try to answer the questions: which kernel (or which
values of σ and μ) one needs to choose? and which points to label if we have some
freedom with respect to labelling points? It turns out that these questions are
not independent and one has to choose the kernel depending on the information
available while labelling the points.

On the Choice of Kernel and Labelled Data 59

3 General Theoretical Considerations

First, let us transform the expression (2) to a more convenient form.

F∗k =
μ

2 + μ

(
I − 2

2 + μ
D−σWDσ−1

)−1

Y∗k

=
μ

2 + μ

(
D−σ

(
I − 2

2 + μ
WD−1

)
Dσ

)−1

Y∗k

=
μ

2 + μ
D−σ

(
I − 2

2 + μ
WD−1

)−1

DσY∗k.

Denoting α = 2/(2 + μ), transposing and using the fact that W is symmetric,
we obtain

FT
∗k = (1− α)Y T

∗kD
σ
(
I − αD−1W

)−1
D−σ. (3)

Next we apply to the above expression the Blackwell series expansion [7,12]

(1− α)
(
I − αD−1W

)−1
= 1π + (1− α)H + o(1− α), (4)

where π is the stationary distribution of the standard random walk (πD−1W =
π), 1 is a vector of ones of appropriate dimension and H = (I − D−1W +
1π)−1 − 1π is the deviation matrix. We note that since the similarity matrix
W is symmetric, the random walk governed by the transition matrix D−1W is
time-reversible and its stationary distribution is given in the explicit form

π = (1TD1)−11TD. (5)

Combining (3), (4) and (5), we can write

FT
∗k = (1TD1)−1Y T

∗kD
σ11TD1−σ + (1 − α)Y T

∗kD
σHD−σ + o(1− α).

In particular, we have

Fik =
d1−σ
i∑N
j=1 dj

∑
p∈Vk

dσp + (1− α)d−σ
i

∑
p∈Vk

dσpHpi + o(1 − α), (6)

and, consequently, if
∑

p∈Vk
dσp �=

∑
p∈V ′

k
dσp for some k and k′, in the case when

the parameter α is close to 1 (equivalently when μ is close to 0), then all points
will be classified into the classes with the largest value of

∑
p∈Vk

dσp . An inter-
esting exception is the case when σ = 0 and |Vk| = const(k). In such a case,
the zero order terms in the Blackwell expansions for the classification functions
are the same for all classes and we need to compare the first order terms. Re-
call [10] that there is a connection between the mean first passage time of the
standard random walk from node i to node j, mij , and the elements of the de-
viation matrix, namely, mij = (δij + Hjj −Hij)/πj , where δij is the Kronecker

60 K. Avrachenkov, P. Gonçalves, and M. Sokol

delta. If σ = 0 and |Vk| = const(k), substituting (6) into Fik − Fik′ > 0 with
Hpi = Hii − πimpi for i �= p results in the condition∑

s∈Vk′

msi >
∑
p∈Vk

mpi.

This condition has a clear probabilistic interpretation: point i is classified into
class k if the sum of mean passage times from the labelled points to point i is
smallest for class k over all classes.

In addition to the standard random walk, it will also be helpful to consider
a random walk with absorption {St ∈ {1, ..., N}, t = 0, 1, ...}. At each step
with probability α the random walk chooses next node among its neighbours
uniformly and with probability 1− α goes into the absorbing state. The proba-
bilities of visiting nodes before absorption given the random walk starts at node
j, S0 = j, are provided by the distribution

ppr(j) = (1 − α)eTj
(
I − αD−1W

)−1
, (7)

which is the personalized PageRank vector with respect to seed node j [9]. Here
ej denotes the j-th element of the standard basis.

Now we are ready to formulate the first result explaining the classification by
the semi-supervised learning methods.

Theorem 1. Data point i is classified by the generalized semi-supervised learn-
ing method (1) into class k, if∑

p∈Vk

dσpqpi >
∑
s∈Vk′

dσs qsi, ∀k′ �= k, (8)

where qpi is the probability of reaching state i before absorption if S0 = p.

Proof: Since Y T
∗k =

∑
p∈Vk

eTp and Fik = FT
∗kei, from (3) we obtain

Fik =
∑
p∈Vk

dσp (1 − α)eTp
(
I − αD−1W

)−1
eid

−σ
i =

1

dσi

∑
p∈Vk

dσpppri(p). (9)

It has been shown in [6] that(
I − αD−1W

)−1

pi
= qpi

(
I − αD−1W

)−1

ii
,

where (·)−1
pi denotes the (p, i)-element of the inverse matrix. Multiplying the

above equation by (1 − α) yields

ppri(p) = qpippri(i). (10)

Thus, using relation (10) and equation (9), we conclude that for point i to be
classified into class k we need

Fik − Fik′ =
ppri(i)

dσi

⎛⎝∑
p∈Vk

dσpqpi −
∑
s∈Vk′

dσs qsi

⎞⎠ > 0, ∀k′ �= k,

or, equivalently (8). ��

On the Choice of Kernel and Labelled Data 61

Let us discuss the implications of Theorem 1. First, it is very interesting to
observe that, using (8), one can decouple the effects from the choice of α and σ. A
change in the value of α only influences the factor qpi and a change in the value of
σ only affects the factor dσp . Second, the results of Theorem 1 are consistent with
the conclusions obtained with the help of the Blackwell expansion. When α goes
to one, qpi goes to one and indeed classes with the largest value of

∑
p∈Vk

dσp
attract all points. Thus, the case of σ = 0 and |Vk| = const(k) is especially
interesting. In this case there is stability of classification even when α is close
to one. Third, if σ = 0 and |Vk| = const(k), one can expect that smaller classes
will attract a larger number of “border points” than larger classes. Suppose that
class k is smaller than class k′. Then, it is natural to expect that qpi > qsi with
p ∈ Vk and s ∈ Vk′ . This observation will be confirmed by examples in the next
section. This effect, if needed, can be compensated by increasing σ away from
zero. And finally, fourth, we have the following rather surprising conclusion.

Corollary 1. If labelled points have the same degree (dp = d, p ∈ Vk, k =
1, ...,K), all considered semi-supervised learning methods provide the same clas-
sification.

Now with the help of the following lemma, we can obtain another alternative
condition for semi-supervised learning classification.

Lemma 1. If the graph is undirected (WT = W), then the following relation
holds

pprj(i) =
dj
di

ppri(j). (11)

Proof: We can rewrite (7) as follows

ppr(i) = (1− α)eTi [D − αW]−1D,

and hence,

ppr(i)D−1 = (1− α)eTi [D − αW]−1.

Since matrix W is symmetric, [D − αW]−1 is also symmetric and we have

[ppr(i)D−1]j = (1−α)eTi [D−αW]−1ej = (1−α)eTj [D−αW]−1ei = [ppr(j)D−1]i.

Thus, pprj(i)/dj = ppri(j)/di, which completes the proof. ��

Theorem 2. Data point i is classified by the generalized semi-supervised learn-
ing method (1) into class k, if

∑
p∈Vk

pprp(i)

d1−σ
p

>
∑
s∈Vk′

pprs(i)

d1−σ
s

, ∀k′ �= k. (12)

62 K. Avrachenkov, P. Gonçalves, and M. Sokol

Proof: Follows from equation (9) and Lemma 1. ��
We note that in the statement of Theorem 2 the “reversed” PageRank is used

instead of the PageRank in (9). In particular, this provides another interesting
interpretation of the PageRank based method. If we set σ = 0 in (12), it appears
that we need to compare the reversed PageRanks divided by the degrees of the
labelled points. As already mentioned in the Introduction, if one considers the
sweeps from [1] as classification functions, then the degrees of the nodes to be
classified are cancelled in the sweeps. However, if we now view the PageRank
method in terms of the reversed PageRank, the division by the degree of the
PageRank values remains essential. This provides another interesting interpre-
tation of sweeps defined in [1].

4 Evaluation

Let us illustrate the theoretical results with the help of a characteristic network
example, clustered preferential attachment graph and application to P2P content
classification.

Characteristic Network Example: Let us first consider an analytically
tractable network example. Despite its simplicity, it clearly demonstrates ma-
jor properties of graph-based semi-supervised learning methods. There are two
classes, A and B with |A| = N1 and |B| = N2. Each class is represented by a
star network. The two classes are connected by a link connecting two leaves. The
graph of the model is given in Figure 2(a).

The central nodes with indices 1 and N1 + N2 are the obvious choice for
labelled points. In order to determine the classification functions analytically,
we need to calculate the matrix Z = [I − αD−1W]−1. It is easier to calculate
the symmetric matrix C = [D − αW]−1. Once the matrix C is calculated, we
can immediately retrieve the elements of matrix Z by the formula

Zij = Cijdj . (13)

Thus we need to solve a system of equations [D − αW]C∗,j = ej . Since we have
chosen the central nodes as labelled points and due to the symmetry of the
graph, we actually need to solve only one system for j = 1 of six equations

(N1 − 1)C1,1 − (N1 − 2)αC2,1 − αCN1,1 = 1
C2,1 = αC1,1

CN1−1,1 = αC1,1

−αC1,1 + 2CN1,1 − αCN1+1,1 = 0
−αCN1,1 + 2CN1+1,1 − αCN1+N2,1 = 0

CN1+2,1 = αCN1+N2,1

−αCN1+1,1 − (N2 − 2)αCN1+2,1 + (N2 − 1)CN1+N2,1 = 0

Solving the above system, in particular, we obtain

CN1,1 =
α(2N2 − 2− α2(2N2 − 3))

R
, (14)

On the Choice of Kernel and Labelled Data 63

CN1+1,1 =
α2(N2 − 1− α2(N2 − 2))

R
, (15)

with
R = (1− α2)(−2α4N2 − 2α4N1 + 4α4 + α4N2N1 − 9α2

+7α2N2 + 7α2N1 − 5N2α
2N1 + 4N2N1 + 4− 4N1 − 4N2).

Consider first the PageRank based method (σ = 0). According to the theoretical
consideration, it is very likely that some points will be misclassified into a smaller
class. Suppose that N1 < N2 and consider border points. The point N1 + 1 will
be classified into class B by the PageRank based method if and only if

Z1,N1+1

ZN1+N2,N1+1
=

C1,N1+1

CN1+N2,N1+1
< 1.

Using slightly more convenient notation ni = Ni− 1, i = 1, 2, we can rewrite the
above condition as follows:

α(n2 − α2(n2 − 1))

2n1 − α2(2n1 − 1)
< 1,

or, equivalently, (1− n2)α2 + (2n1 − n2)α + 2n1 > 0. If 2n1 + 1 > n2, the above
inequality holds for any α ∈ (0, 1). And consequently, for any α ∈ (0, 1) the point
N1 + 1 is classified into class B. However, if 2n1 + 1 < n2 (class A is significantly
smaller than class B), for α ∈ (ᾱ, 1) point N1 + 1 will be erroneously classified
into class A. The expression for ᾱ is given by

ᾱ =
−(n2 − 2n1) +

√
(2n1 + n2)2 − 8n1

2(n2 − 1)
.

If we fix the value of n1 and let n2 go to infinity, we get ᾱ→ 0. Thus, if the sizes
of A and B are very different, the point N1 + 1 will be misclassified for nearly
all values of the parameter α.

Now we analyse the performance of the Standard Laplacian method (σ =
1). According to the general theoretical considerations, the Standard Laplacian
method has a tendency to classify more points into a larger class. We consider
the classification of the point with index N1 (still assuming N1 < N2). It will be
classified correctly if and only if

ZN1,1

ZN1,N1+N2

> 1,

or, equivalently,
n1(2n2 − α2(2n2 − 1))

n2α(n1 − α2(n1 − 1))
> 1

which results in the following cubic inequality

α3n2(n1 − 1)− α2n1(2n2 − 1)− αn2n1 + 2n2n1 > 0.

64 K. Avrachenkov, P. Gonçalves, and M. Sokol

Consider a linear scaling n2 = Kn1,K > 1. Then, the above inequality can be
rewritten in the form

α3

(
1− 1

n1

)
− α2

(
2− 1

Kn1

)
− α + 2 > 0.

This inequality can be regarded as a regularly perturbed inequality with respect
to 1/n1 (see e.g., [2]). If we let n1 go to infinity, the limiting inequality can be
easily factored, i.e.,(1− α)(1 + α)(2− α) > 0. Since the perturbation is regular,
when n1 varies in the vicinity of infinity the roots change slightly. In particular,
using the implicit function theorem, we can find that the root near 1 changes as
follows:

¯̄α = 1− K − 1

2K

1

n1
+ o

(
1

n1

)
.

In particular, this means that if the sizes of classes are large, the Standard
Laplacian method performs well for nearly all values of α from the interval
(0, 1). This is in contrast with the PageRank based method.

We summarize and illustrate various considered cases by means of numerical
examples presented in Table 1. Our main conclusion from this characteristic
network model is that the PageRank based method is a safe choice as it can
misclassify at most one point in this particular example whereas with α close to
one the Standard Laplacian method can classify all points in the largest class. On
the other hand if parameter α is chosen appropriately, the Standard Laplacian
method gives a perfect classification for nearly all values of α, even when classes
have many points and very different sizes.

Table 1. Comparison between different methods in terms of classification errors

N1 N2 PR SL

20 100 vN1+1 �→ A if α ≥ ᾱ = 0.3849 vN1 �→ B if α ≥ ¯̄α = 0.9803, A �→ B if α ≥ 0.9931

20 200 vN1+1 �→ A if α ≥ ᾱ = 0.1911 vN1 �→ B if α ≥ ¯̄α = 0.9780, A �→ B if α ≥ 0.9923

200 2000 vN1+1 �→ A if α ≥ ᾱ = 0.1991 vN1 �→ B if α ≥ ¯̄α = 0.9978, A �→ B if α ≥ 0.9992

Clustered Preferential Attachment Model: Let us now consider a syn-
thetic graph generated according to the clustered preferential attachment model.
Our model has 5 unbalanced classes (1500 / 240 / 120 / 100 / 50). Once a node
is generated, it has two links which it attaches independently with probability
0.98 within its class and with probability 0.02 outside its class. In both cases
a link is attached to a node with probability proportional to the number of
existing links. First, we test the case of random labelled points. Five labelled
points were chosen randomly for each class and results are averaged over 100
realizations. The precision of classification for various values of σ and α is given
in Figure 1(a). Then, in each class we have chosen 5 labelled points with max-
imal degrees. The results of classification are given in Figure 1(b). We obtain

On the Choice of Kernel and Labelled Data 65

conclusions consistent with the characteristic network model. If no information
is available for assignment of the labelled points, the PageRank method is a safe
choice. If one can choose labelled points with large degrees, it is better to use
the Standard Laplacian method. There could be a significant gain in precision
(roughly from 70% to 95%). It can be observed that the Standard Laplacian
method is not too sensitive to the value of α if we stay well away from α = 1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

P
re

ci
si

on
(α

)

σ = 0.0

σ = 0.1

σ = 0.2

σ = 0.3

σ = 0.4

σ = 0.5

σ = 0.6

σ = 0.7

σ = 0.8

σ = 0.9

σ = 1.0

(a) Random Labelled Points

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

P
re

ci
si

on
(α

)

σ = 0.0

σ = 0.1

σ = 0.2

σ = 0.3

σ = 0.4

σ = 0.5

σ = 0.6

σ = 0.7

σ = 0.8

σ = 0.9

σ = 1.0

(b) Max Degree Labelled Points

Fig. 1. Clustered Preferential Attachment Model: Precision of classification

Application to P2P Content Classification: Finally, we would like to con-
clude the illustration with an application to P2P content classification. For lack
of space, here we just very briefly outline the experiment and the results. An
interested reader can find more details about this application in [4]. Using the
technology developed in [11] we had an access to all world-wide Torrents man-
aged by BitTorrents protocol. In particular, within one week we could observe
200413 different content files. Each file is a data point and we create an edge
between two data points i and j if the same user downloaded two files i and
j. By such a construction, graph has 50726946 edges. Consider an example of
classification of the content by language (e.g., language of a movie or language of
a book). Fortunately, a big portion of the content is tagged, so we can compare
with the ground truth for some content. We have chosen to classify the content
according to five major languages (English, French, Italian, Japanese, Spanish).
For each language we have chosen 50 labelled points with the maximal degree
within the ground truth points. Since we do not have ground truth for all the
points, it is assumed that choosing random points from the ground truth will not
be representative (popular content is more likely to be tagged). The precision of
classification for σ = 0.0; 0.5; 1.0 and various values of α is given in Figure 2(b).
The figure is consistent with Figure 1(b). In Tables 2 and 3 we provide cross-
validation matrices for the Standard Laplacian and PageRank based methods

66 K. Avrachenkov, P. Gonçalves, and M. Sokol

N − 1

1

2

N

N + 2
N + 3

N + N − 1

N + 11

1

1
1

2

1

1 N + N1 2

(a) Characteristic network model.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

P
re

ci
si

on
(α

)

σ = 0.0

σ = 0.5

σ = 1.0

(b) P2P Content Classification.

Fig. 2.

Table 2. σ = 1.0, Precision 93.43%

Classified as→ En Fr It Jp Sp

English 36097 22 134 53 159
French 903 909 7 1 4
Italian 308 1 2123 1 17

Japanese 583 7 4 120 6
Spanish 662 1 14 0 1804

Table 3. σ = 0.0, precision 65.85%

Classified as→ En Fr It Jp Sp

English 22276 3812 3095 6233 1049
French 87 1618 38 63 18
Italian 24 27 2329 40 30

Japanese 45 43 25 568 39
Spanish 124 78 83 52 2144

with α = 0.8. We can observe that as in the previous examples, the PageR-
ank method pulls elements from the largest class to the smaller classes and the
Standard Laplacian method does the opposite. Thus, in the case of unbalanced
classification, by choosing σ, one admits a trade off between precision and recall
for smaller classes.

5 Conclusion and Future Research

Using random walk theory, we provide insights about different graph-based semi-
supervised learning methods. We also suggest the following recommendations.
If possible, choose labelled points with large degrees. Then, adopt the Stan-
dard Laplacian method with α in the upper-middle range of the interval (0, 1).
If finding large degree points is not feasible or recall is more important than
precision for small classes, choose the PageRank based method. In our near fu-
ture research we plan to study in more detail the choice of the regularization
parameter.

Acknowledgements. This research is funded by Inria Alcatel-Lucent Joint
Lab. We also would like to thank P.G. Howlett, J.K. Sreedharan and anonymous
reviewers whose comments helped to improve the presentation of the results.

On the Choice of Kernel and Labelled Data 67

References

1. Andersen, R., Chung, F., Lang, K.: Using pagerank to locally partition a graph.
Internet Mathematics 4(1), 35–64 (2007)

2. Avrachenkov, K.: Analytic Perturbation Theory and its Applications, PhD Thesis.
University of South Australia, Adelaide, Australia (1999)

3. Avrachenkov, K., Dobrynin, V., Nemirovsky, D., Pham, S.K., Smirnova, E.: Pager-
ank based clustering of hypertext document collections. In: Proceedings of the 31st
Annual International ACM Conference on Research and Development in Informa-
tion Retrieval, SIGIR 2008, pp. 873–874. ACM (2008)

4. Avrachenkov, K., Gonçalves, P., Legout, A., Sokol, M.: Classification of content
and users in bittorrent by semi-supervised learning methods. In: 2012 8th Inter-
national Wireless Communications and Mobile Computing Conference (IWCMC),
Workshop on Traffic Analysis and Classification, pp. 625–630 (2012)

5. Avrachenkov, K., Gonçalves, P., Mishenin, A., Sokol, M.: Generalized optimiza-
tion framework for graph-based semi-supervised learning. In: Proceedings of SIAM
Conference on Data Mining (SDM 2012), 9 pages (2012)

6. Avrachenkov, K., Litvak, N.: The effect of new links on google pagerank. Stochastic
Models 22(2) (2006)

7. Blackwell, D.: Discrete dynamic programming. Ann. Math. Statist. 33, 719–726
(1962)

8. Guo, Z., Zhang, Z., Xing, E.P., Faloutsos, C.: Semi-supervised learning based on
semiparametric regularization. In: SDM 2008 Proceedings, pp. 132–142 (2008)

9. Haveliwala, T.H.: Topic-sensitive pagerank. In: Proceedings of the 11th Interna-
tional Conference on World Wide Web (WWW 2002), pp. 517–526 (2002)

10. Kemeny, J.G., Snell, J.L.: Finite Markov chains, 1st edn. Springer (1976)
11. Le Blond, S., Legout, A., Lefessant, F., Dabbous, W., Kaafar, M.A.: Spying the

world from your laptop: identifying and profiling content providers and big down-
loaders in bittorrent. In: Proceedings of the 3rd USENIX Conference on Large-Scale
Exploits and Emergent Threats: Botnets, Spyware, Worms, and More, LEET 2010,
p. 4. USENIX Association, Berkeley (2010)

12. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st edn. John Wiley & Sons, Inc., New York (1994)

13. Zhou, D., Bousquet, O., Navin Lal, T., Weston, J., Schölkopf, B.: Learning with lo-
cal and global consistency. In: Advances in Neural Information Processing Systems
16, pp. 321–328. MIT Press (2004)

14. Zhou, D., Burges, C.J.C.: Spectral clustering and transductive learning with multi-
ple views. In: Proceedings of the 24th International Conference on Machine Learn-
ing, ICML 2007, pp. 1159–1166. ACM (2007)

15. Zhou, D., Schölkopf, B.: A regularization framework for learning from graph data.
In: Proceedings of the Workshop on Statistical Relational Learning at Twenty-
First International Conference on Machine Learning (ICML 2004), Canada, 6 pages
(2004)

16. Zhu, X.: Semi-supervised learning literature survey. Technical report 1530, Depart-
ment of computer sciences, University of wisconsin, Madison (2005)

17. Zhu, X., Goldberg, A.B.: Introduction to semi-supervised learning. Synthesis Lec-
tures on Artificial Intelligence and Machine Learning 3(1), 1–130 (2009)

A Nearly-Sublinear Method for Approximating

a Column of the Matrix Exponential
for Matrices from Large, Sparse Networks

Kyle Kloster1,� and David F. Gleich2,�

1 Purdue University, Mathematics Department
2 Purdue University, Computer Science Department

{kkloste,dgleich}@purdue.edu

http://www.cs.purdue.edu/homes/dgleich/codes/nexpokit

Abstract. We consider random-walk transition matrices from large so-
cial and information networks. For these matrices, we describe and eval-
uate a fast method to estimate one column of the matrix exponential.
Our method runs in sublinear time on networks where the maximum
degree grows doubly logarithmic with respect to the number of nodes.
For collaboration networks with over 5 million edges, we find it runs in
less than a second on a standard desktop machine.

Keywords: Matrix exponential, Gauss-Southwell, local algorithms.

1 Introduction

The matrix exponential is a standard tool in network analysis. Its uses include
node centrality [9,11,10], link-prediction [15], graph kernels [14], and cluster-
ing [8]. For the particular problems of node centrality, graph kernels, and clus-
tering, what is most valuable is a coarse estimate of a column of the matrix
exponential. In this paper, we consider computing exp{P}ec where P is the
random-walk transition matrix for a directed or undirected graph and ec is the
cth column of the identity matrix. More precisely, and to establish some notation
for the paper, let G be an n × n adjacency matrix for a directed or undirected
graph, let e = [1, · · · , 1]T the vector (of appropriate dimensions) of all 1s, and
let D = diag(Ge) so that Dii = di is the degree of node i (and d = maxi{di}
is the maximum degree). We consider P = GD−1. This case suffices for many
of the problems studied in the literature and allows us to compute exponentials
of the negative normalized Laplacian −L̂ = D−1/2GD−1/2 − I as well. Observe
that

exp{D−1/2GD−1/2 − I}ec = e−1D−1/2exp{GD−1}D1/2ec

=
√
dce

−1D−1/2exp{GD−1}ec,
so computing a column of either −L̂ or P allows computation of the other at
the cost of scaling the solution vector.

� Supported by NSF CAREER award 1149756-CCF.

A. Bonato, M. Mitzenmacher, and P. Pra�lat (Eds.): WAW 2013, LNCS 8305, pp. 68–79, 2013.
© Springer International Publishing Switzerland 2013

http://www.cs.purdue.edu/homes/dgleich/codes/nexpokit

Nearly-Sublinear Columnwise Matrix Exponential 69

Computing accurate matrix exponentials has a lengthy and “dubious” his-
tory [17]. Let A be a general n × n matrix that is large and sparse and let b
be a general vector. A popular method for computing exp{A}b involves using
an m-step Krylov approximation of the matrix A yielding A ≈ VmHmVT

m. If
we use this form, we can approximate exp{A}b ≈ Vmexp{H}e1. For m � n,
the computation is reduced to the much smaller exp{H} at the cost of using
m matrix-vector products to generate Vm. Such an approximation works well
for computing both the entire exponential exp{A} and its action on a vector:
exp{A}b. This idea underlies the implementation of the Matlab package Ex-
poKit [21], which has been a standard for computing exp{A}b for some time.

While these algorithms are fast and accurate (see references [13], [12], and
[2], for the numerical analysis), they depend on matrix-vector products with
the matrix P and orthogonalization steps between successive vectors. When a
Krylov method approximates a sparse matrix arising from a graph with a small
diameter, then the vectors involved in the matrix-vector products become dense
after two or three steps, even if the vector starting the Krylov approximation
has only a single non-zero entry. Subsequent matrix-vector products take O(|E|)
work where |E| is the number of edges in the graph. For networks with billions
of edges, we want an alternative to Krylov-based methods that prioritizes speed
and sparsity over accuracy. In particular, we would like an algorithm to estimate
a column of the matrix exponential in less work than a single matrix-vector
product.

Local methods perform a computation by accessing a small region of a matrix
or graph. These are a practical alternative to Krylov methods for solving massive
linear systems from network problems that have sparse right hand sides; see, for
instance, references [3,7]. Rather than matrix-vector products, these procedures
use steps that access only a single row or column of the matrix. We design a local
algorithm for computing exp{P}ec by translating the problem of computing the
exponential into solving a linear system, and then using a local algorithm.

We present an algorithm that approximates a specified column of exp{P}
for column stochastic P (Section 4, Figure 1). The algorithm uses the Gauss-
Southwell method (Section 2) for solving a linear system to approximate a degree
N Taylor polynomial (Section 3). The error after l iterations of the algorithm is
bounded by 1

N !N + l−1/(2d) as shown in Theorem 2, and the runtime is O(ld +
ld log(ld)) (Section 5.3). Given an input error ε, the runtime to produce a solution
vector with error less than ε is sublinear in n for graphs with d ≤ O(log logn).
We acknowledge that this doubly logarithmic scaling of the maximum degree
is unrealistic for social and information networks where the maximum degree
typically scales almost linearly with n. Nevertheless, the existence of a bound
suggests that it may be possible to improve or establish a matching lower-bound.

2 Local Computations and the Gauss-Southwell Method

The Gauss-Southwell (GS) iteration is a classic stationary method for solving a
linear system related to the Gauss-Seidel and coordinate descent methods [16]. It
is especially efficient when the desired solution vector is sparse or localized [7,5]

70 K. Kloster and D.F. Gleich

and the goal is a coarse O(10−4) approximation. In these cases, GS produces
a sparse approximation that is accurate for only the largest entries. The coarse
nature of the GS approximation is acceptable because the primary use is to find
those nodes having the largest values in link-prediction or clustering problems.

The GS iteration is simple. Select the largest entry in the residual vector and
perform a coordinate descent step in that component of the solution. Let x(l)

and r(l) be the solution and residual iterates for Ax = b after l steps. In the

(l + 1)st step, pick q so that ml = r
(l)
q is the maximum magnitude entry of the

residual vector. Next update:

x(l+1) = x(l) + mleq

r(l+1) = r(l) −mlAeq.
(1)

The iteration consists of a single-entry update to x and a few updates to the
residual vector if A is sparse. This method converges for diagonally dominant
and symmetric positive definite linear systems [16].

Applied to a matrix from a graph, each iteration of GS requires at most
O(d log n) operations, where the logn term comes from heap updates to maintain
the largest residual entry. This procedure underlies Berkhin’s bookmark coloring
algorithm [5] for PageRank and a related method avoids the heap [3].

3 Exponentials via the Taylor Series Approximation

The GS method is most effective on sparse linear systems. We now design a large,
sparse linear system to compute a Taylor polynomial appromation of exp{P}ec.

3.1 The Truncated Taylor Series of the Exponential

The Taylor series for the matrix exp{A} is

exp{A} =

∞∑
k=0

1
k!A

k.

It converges for any matrix A. Truncating to N terms, we arrive at an algorithm.
If ‖A‖ is large with mixed sign then the summands Ak may be large and cancel
only in exact arithmetic, resulting in poor accuracy. However, a stochastic matrix
P is non-negative and has ‖P‖1 = 1, so the approximation converges quickly
and reliably (Lemma 1). Using an N -degree Taylor approximation to compute
the cth column results in a simple iteration. Let xN be the N -degree Taylor
approximation:

xN =

N∑
k=0

1
k!P

kec ≈ exp{P}ec.

Then

xN =

N∑
k=0

vk v0 = ec, v1 = Pv0, vk+1 = Pvk/k for k = 1, · · · , N.

Nearly-Sublinear Columnwise Matrix Exponential 71

If xtrue is the actual column of exp{P} we are trying to compute, note that
xN converges to xtrue as N tends to infinity. For practical purposes, we want to
ensure that ‖xN−xtrue‖1 is small so that our approximation of xN is near xtrue.
The next Lemma shows that N = 11 yields a 1-norm error of 2.3× 10−9. This is
sufficiently small for our purposes and from now on, we use N = 11 throughout.

Lemma 1. The degree N Taylor approximation satisfies ‖xtrue−xN‖1 ≤ 1
N !N .

Proof. The truncation results in a simple error analysis:

‖xtrue − xN‖1 =

∥∥∥∥∥
∞∑

k=N+1

Pk

k!
ec

∥∥∥∥∥
1

=

∞∑
k=N+1

1

k!
, (2)

which follows because P and ec are nonnegative and P is column stochastic. By

factoring out 1
(N+1)! and majorizing (N+1)!

(N+1+k)! ≤
(

1
N+1

)k

for k ≥ 0, we finish:

‖xtrue − xN‖1 ≤
(

1
(N+1)!

) ∞∑
k=0

(
1

N+1

)k

= 1
(N+1)!

N+1
N (3)

after substituting the limit for the convergent geometric series. �

3.2 Forming a Linear System

We now devise a linear system to compute the intermediate terms vk and xN .
From the identity vk+1 = P

k+1 · vk we see that the vk satisfy⎡⎢⎢⎢⎢⎢⎢⎣
I

−P/1 I

−P/2
. . .

. . . I
−P/N I

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
v0

v1

...

...
vN

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
ec
0
...
...
0

⎤⎥⎥⎥⎥⎥⎥⎦ . (4)

For convenience of notation, let SN+1 be the (N + 1)× (N + 1) zero matrix with
first subdiagonal [1

1 ,
1
2 , · · · , 1

N]. Let v = [v0; · · · ;vN]. Then we can rewrite (4):

(IN+1 ⊗ In − SN+1 ⊗P)v = e1 ⊗ ec. (5)

The left- and right-hand sides of (5) are sparse, making this linear system a
candidate for a Gauss-Southwell iteration. Note also that we need never form
this large block-wise system explicitly and can work with it implicitly. Each row
of the system is uniquely defined by a node index i and a step index k.

We now show that approximating v will help approximate xN . Let M =
IN+1 ⊗ In − SN+1 ⊗ P from (5). With an approximation v̂ to the solution v,

we can approximate xN by summing components of v̂: x̂N =
∑N

k=0 v̂k. Given
that our primary purpose is computing xN , we want to know how accurately
x̂N approximates xN . With that in mind, we state the following:

72 K. Kloster and D.F. Gleich

Lemma 2. If v̂ ≤ v component-wise, then ‖xN − x̂N‖1 = ‖v− v̂‖1.

Proof. The vector xN is the sum of the block-vectors composing v = [v0; · · · ;vN],
and similarly x̂N is the sum of the block-vectors of v̂. Thus, eTv = eTxN , and
eT v̂ = eT x̂N . Since v̂ approaches v from below (by assumption), we have that
‖xN − x̂N‖1 = eT (xN − x̂N) = eT (v − v̂) = ‖v − v̂‖1. �

4 Approximating the Taylor Polynomial with GS

We apply Gauss-Southwell (GS) to Mv = e1 ⊗ ec staring with x(0) = 0. The
block structure of M makes the solution and residual update simple. Recall that
q was the index of the largest entry in the residual and ml was the value of the
entry. Let eq = ek ⊗ ei where ek is a length N + 1 vector indicating the step
number and ei indicates the node number. By substituting this into (1), we find:

v(l+1) = v(l) + ml (ek ⊗ ei) (6)

r(l+1) = r(l) −mlM(ek ⊗ ei). (7)

Note that (6) simply adds mlei to the block of v corresponding to vk−1. How-
ever, since we intend to add together the vi at the end (to produce the full
Taylor approximation), in practice we simply add mlei directly to to our matrix-

exponential-column approximation vector x̂(l). Thus we satisfy the requirements
of Lemma 2. When k < N + 1 the residual update can also be adapted using

M(ek ⊗ ei) = ek ⊗ ei − (1
kek+1 ⊗ (Pei)) (8)

In the case that k = N + 1, then SN+1eN+1 = 0, so we have simply M(eN+1 ⊗
ei) = eN+1 ⊗ ei. Substituting (8) into the residual update in (7) gives

r(l+1) = r(l) −mlek ⊗ ei + ml

k (ek+1 ⊗Pei). (9)

Because the indices k and i are chosen so that the entry in the vector ek ⊗ ei
corresponds to the entry of r(l) that is largest, we have ml = (ek ⊗ ei)

T r(l).

Thus, (ek ⊗ ei)
T
r(l+1) = (ek ⊗ ei)

T
r(l) − ml (ek ⊗ ei)

T
ek ⊗ ei = 0, and this

iteration zeros out the largest entry of r(l) at each step. See Figure 1 for working
code.

5 Convergence Results for Gauss-Southwell

Our convergence analysis has two stages. First, we show that the algorithm in
Figure 1 produces a residual that converges to zero (Theorem 1). Second, we
establish the rate at which the error in the computed solution x̂N converges to
zero (Theorem 2). From this second bound, we arrive at a sublinear runtime
bound in the case of a slowly growing maximum degree.

Nearly-Sublinear Columnwise Matrix Exponential 73

function x = gexpm(P,c,tol)

n = size(P,1); N = 11; sumr=1;

r = zeros(n,N+1); r(c,1) = 1; x = zeros(n,1); % the residual and solution

while sumr >= tol % use max iteration too

[ml,q]=max(r(:)); i=mod(q-1,n)+1; k=ceil(q/n); % use a heap in practice for max

r(q) = 0; x(i) = x(i)+ml; sumr = sumr-ml;% zero the residual, add to solution

[nset,~,vals] = find(P(:,i)); ml=ml/k; % look up the neighbors of node i

for j=1:numel(nset) % for all neighbors

if k==N, x(nset(j)) = x(nset(j)) + vals(j)*ml; % add to solution

else, r(nset(j),k+1) = r(nset(j),k+1) + vals(j)*ml;% or add to next residual

sumr = sumr + vals(j)*ml;

end, end, end % end if, end for, end while

Fig. 1. Pseudo-code for our nearly sublinear time algorithm as Matlab code. In practice,
the solution vector x and residual r should be stored as hash-tables, and the entries
of the residual as a heap. Note that the command [nset,∼,vals] = find(P(:,i))

returns the neighbors of the ith node (nset) along with values of P for those neighbors.

5.1 Convergence of the Residual

Theorem 1. Let P be column-stochastic and v(0) = 0. (Nonnegativity) The
iterates and residuals are nonnegative: v(l) ≥ 0 and r(l) ≥ 0 for all l ≥ 0.
(Convergence) The residual satisfies the following bound and converges to 0:

‖r(l)‖1 ≤
l∏

k=1

(
1− 1

2dk

)
≤ l(−

1
2d) (10)

Proof. (Nonnegativity) Since v(0) = 0 we have r(0) = e1⊗ec−M·0 = e1⊗ec ≥ 0,
establishing both base cases. Now assume by way of induction that v(l) ≥ 0 and
r(l) ≥ 0. Then the GS update gives v(l+1) = v(l) + mlek ⊗ ei, and since ml ≥ 0
(because it is taken to be the largest entry in r(l), which we have assumed is
nonnegative) we have that v(l+1) ≥ 0.

From (9) we have r(l+1) = r(l) − mlek ⊗ ei + ml

k ek+1 ⊗ Pei, but we have

assumed P is stochastic, so ek+1⊗Pei ≥ 0. Then, note that r(l)−mlek⊗ei ≥ 0
because by the inductive hypothesis r(l) ≥ 0 and subtracting ml simply zeros
out that entry of r(l). Thus, r(l+1) ≥ 0, as desired.

(Convergence) Because the residual is always nonnegative, we can use the
identity ‖r(l)‖1 = eT r(l). Left multiplying by eT in (9) yields ‖r(l+1)‖1 =
‖r(l)‖1 −ml + ml

k

(
eTek+1 ⊗ eTPei

)
. Since we’ve assumed P is column stochas-

tic, eTPei = 1, and so this simplifies to ‖r(l+1)‖1 = ‖r(l)‖1 − ml + ml

k =

‖r(l)‖1 −ml

(
1− 1

k

)
.

Since ml is the largest entry in r(l), we know it must be at least as big as the
average value of an entry of r(l). After l iterations, the residual can have no more
than dl nonzero entries, because no more than d nonzeros can be added each

iteration. Hence we have ml ≥ ‖r(l)‖1

dl . After the first iteration, we know k ≥ 2

74 K. Kloster and D.F. Gleich

because the k = 1 block of r (denoted r0 in the notation of Section 3.2) is empty.

If we put these bounds together, we have: ‖r(l+1)‖1 ≤ ‖r(l)‖1− ‖r(l)‖1

dl

(
1− 1

2

)
=

‖r(l)‖1

(
1− 1

2dl

)
. Iterating this inequality yields the bound:

‖r(l)‖1 ≤
l∏

j=1

(1− 1
2dj) · ‖r(0)‖1, (11)

and since r(0) = e1 ⊗ ec we have ‖r(0)‖1 = 1, proving the first inequality.
The second inequality of (10) follows from using the facts (1 + x) ≤ ex (for

x > −1) and log(l) <
∑l

j=1
1
j to write

l∏
j=1

(1− 1
2dj) ≤ exp{− 1

2d

l∑
j=1

1
j } ≤ exp{− log l

2d } = l(−
1
2d). �

The inequality (1 + x) ≤ ex follows from the Taylor series ex = 1 + x + o(x2),

and the lowerbound for the partial harmonic sum
∑l

j=1
1
j follows from the left-

hand rule integral approximation log(l) =
∫ l

1
1
xdx ≤∑l

j=1
1
j .

5.2 Convergence of Error

Although the previous theorem establishes that GS will converge, we need a
more precise statement about the error to bound the runtime. We will first state
such a bound and use it to justify the claim of “nearly” sublinear runtime before
formally proving it.

Theorem 2. In the notation described above, the error of the approximation
from l iterations of GS satisfies

‖x̂(l) − xtrue‖1 ≤ 1
N !N + e · l− 1

2d where e = exp(1). (12)

Nearly Sublinear Runtime Given an input tolerance ε, Theorem 2 shows that
the number of iterations l required to produce x̂(l) satisfying ‖xtrue− x̂(l)‖1 < ε
depends on d alone (since we have control over N , and so can just choose N
such that 1

N !N < ε/2). For 1
N !N < ε

2 to hold, it suffices to take N = 2 log(1/ε)
because 1

N !N < e−N/2 = ε
2 for N > 5. So N = 2 log(1/ε).

Next, we need a value of l for which e · l− 1
2d < ε

2 holds. Taking logs and
exponentiating yields the bound

l > exp{2d(1 + log(2) + log(1/ε))}. (13)

If d = C log logn for a constant C, then the desired error is guaranteed by

l > (log n)2C(1+log(2)+log(1/ε)) (14)

which grows sublinearly in n.

Nearly-Sublinear Columnwise Matrix Exponential 75

Proof of Theorem 2 By the triangle inequality ‖xtrue− x̂(l)‖1 ≤ ‖xtrue−xN‖1 +

‖xN−x̂(l)‖1, so we can apply Lemma 1 to get ‖xtrue−x̂(l)‖1 ≤ 1
N !N +‖xN−x̂(l)‖1,

and then Lemma 2 to obtain

‖xtrue − x̂(l)‖1 ≤ 1
N !N + ‖v− v̂(l)‖1. (15)

Theorem 1 gives the residual of the GS solution vector after l iterations, v̂(l), but
we want the error, i.e. the difference between v̂(l) and v. To obtain this quantity,
we use a standard relationship between the residual and error specialized to our
system: ‖v − v̂(l)‖1 ≤ ‖M−1‖1‖r(l)‖1. To complete the proof of Theorem 2, it
suffices, then, to show that ‖M−1‖1 ≤ e and use Theorem 1. The next lemma
establishes this remaining bound. We suspect that the following result is already
known in the literature and regret the tedious proof.

Lemma 3. Matrices M of the form M = IN+1 ⊗ In − SN+1 ⊗ P for column-
stochastic P satisfy ‖M−1‖1 ≤ e .

Proof. Write M = I − SN+1 ⊗ P and note that, since SN+1
N+1 = 0 we have

(SN+1 ⊗P)N+1 = 0, i.e. SN+1⊗P is nilpotent, so M = I−SN+1⊗P has inverse

M−1 = I + (SN+1 ⊗P) + (SN+1 ⊗P)
2

+ · · ·+ (SN+1 ⊗P)
N
. (16)

To upperbound ‖M−1‖1 observe that each term (SN+1 ⊗P)j is nonnegative,
and so M−1 is itself nonnegative. Thus, ‖M−1‖1 is simply the largest column-
sum of M−1, i.e. maxk,i{eTM−1 (ek ⊗ ei)}. For convenience of notation, define
tk = eTM−1 (ek ⊗ ei) (we will show that this value, tk, is independent of i).
Multiplying (16) by eT and (ek ⊗ ei) and distributing produces

tk =
(
eT (ek ⊗ ei) + (eTSN+1ek)⊗ (eTPei) + · · ·+ (eTSN

N+1ek)⊗ (eTPNei)
)

(17)
but since eTPjei = 1 for all j, we end up with

tk = eTS0
N+1ek + eTS1

N+1ek + · · ·+ eTSN
N+1ek. (18)

This justifies the notation tk, since the value is seen to be independent of i here.
We set out to upperbound ‖M−1‖1, and we’ve now reduced the problem to

simply bounding the tk above. To do this, first note that SN+1ek = 1
kek+1 for all

1 ≤ k ≤ N . Repeatedly left multiplying by SN+1 establishes that for k+j > N+1

we have Sj
N+1ek = 0 if j ≥ 1, but for k+ j ≤ N we have Sj

N+1ek = (k−1)!
(k−1+j)!ek+j

for j = 0, · · · , N − k + 1 and k = 1, · · · , N . Using these we rewrite (18):

tk =
N+1−k∑

j=0

(k−1)!
(k−1+j)! . (19)

Observe that t1 =
∑N

j=0
1
j! ≤ e. The inequality tk+1 ≤ tk implies that tk ≤

t1 < e, and so to prove Lemma 3 it now suffices to prove this inequality. From

(19) we have tk =
∑N−k

j=0
(k−1)!

(k−1+j)! + (k−1)!
N ! and tk+1 =

∑N−k
j=0

k!
(k+j)! . The general

terms satisfy (k−1)!
(k−1+j)! ≥ k!

(k+j)! because multiplying both sides by (k−1+j)!
(k−1)! yields

1 ≥ k
k+j . Hence tk ≥ tk+1, and so the lemma follows. �

76 K. Kloster and D.F. Gleich

5.3 Complexity

Each iteration requires updating the residual for each adjacent node, which in
turn requires updating the residual heap. This step involves O(d log(ld)) work to
maintain the heap, since there are at most d entries added to r, and each update
of the heap requires O(log(ld)) work, where ld is an upperbound on the size of
the heap after l iterations. Since each vector add takes at most O(d) operations,
the total operation count for l iterations of the algorithm is O(ld+ ld log(ld)). If
we do not have a sublinear number of steps l, then note that heap updates never
take more than log(nN) work.

6 Experimental Results

We evaluate this method on a desktop computer with an Intel i7-990X, 3.47 GHz
CPU and 24 GB of RAM. As described below, we implement two variations of
our algorithm in C++ using the Matlab MEX interface. The graphs we use come
from a variety of sources and range between 103 and 107 nodes and edges. All are
undirected and connected. They include the dblp and flickr graphs [7], Newman’s
netscience, condmat-2003, and condmat-2005 graphs [18,19], and Arenas’s pgp
graph [6]. These results are representative of a larger collection. In the spirit of
reproducible research, we make our code available. See the URL in the title.

6.1 Notes on Implementation

We do not yet have a fully efficient implementation of our algorithm. In partic-
ular, we maintain full solution vectors and full residual vectors that take O(n)
and O(nN) work to initialize and store. In the future, we plan to use a hash
table for these vectors. For the current scale of our graphs – 500, 000 nodes – we
do not expect this change to make a large difference. We found that the runtime
of Gauss-Southwell varied widely due to our use of the heap structure (see the
TSGS line in Figure 3). To address this performance, we implemented an idea
inspired by Andersen et al.’s replacement of a heap with a queue [3]. Rather than
choose the largest element in the residual at each step, we pick an element from
a queue that stores all residual elements larger than τ/(nN). Note that once all
elements have been removed from the queue, the norm of the residual will be
less than τ . We have not conducted an error analysis to determine how many
steps are necessary to satisfy this condition, but empirically we find it performs
similarly. For the accuracy results below, we use the method with the queue.

6.2 Accuracy and Runtime

While we know that our method converges as the number of steps runs to infinity,
in Figure 2, we study the precision of approximate solutions. Recall that precision
is the size of the intersection of the set of indices of the k largest entries from
our approximation vector with the set of indices of the k largest entries from the

Nearly-Sublinear Columnwise Matrix Exponential 77

0

0.2

0.4

0.6

0.8

1

−2 −3 −4 −5 −6 −7
log10 of residual tolerance

P
re

ci
si

on
 a

t 1
00

pgp−cc

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

dblp−cc

Effective matrix−vector products
P

re
ci

si
on

to
l=

10
−

4

to
l=

10
−

5

@10

@25

@100

@1000

Fig. 2. At left, the precision of the top 100 for the largest entries in a column of the
matrix exponential of the pgp graph (without the node’s immediate neighbors). We
show a boxplot summarizing the results over 50 trials. The “+” marks indicate outliers
outside of the 75th percentile. At right, we vary the number of steps of the method and
find we get high precision for the top-25 set on the large dblp graph (226,413 nodes)
after 1% of the work involved in a matrix vector product. This second plot is indicative
of results we see for other choices of the column as well. Solving to tolerance 10−5 takes
33% of the work of a matrix-vector product.

true solution, divided by k. In the vector exp{P}ec the entry with index c and
the entries corresponding to neighbors of node c are always large in both the
true and the approximate solution vectors and so artificially inflate the scores.
Because of this, we ignore those entries in both solution vectors and instead look
at the indices of the next k largest entries (excluding node c and its neighbors).

We show results for the pgp network (10k nodes) with a boxplot representing
50 random columns. The plot suggests that a residual tolerance of 10−4 yields
useful results in the majority of cases. We note that this figure represents the
worst results we observed and many graphs showed no errors at low tolerances.
Next, for a larger graph, we show how the precision in the top-k sets evolves for
the dblp graph (226k nodes) as we perform additional steps. Based on both of
these results, we suggest a residual tolerance of 10−5.

Next, we compare the runtime of our method using a heap (TSGS) and using
a queue (TSGSQ) to the runtime of three other methods solved to tolerance
of 10−5. We present the results for all 6 graphs. Each runtime is an average of
50 randomly chosen columns. Both EXPV and MEXPV are from ExpoKit [21]
where MEXPV is a special routine for stochastic matrices. The Taylor method
simply computes �3 log2(n)� terms of the Taylor expansion. These results show
that TSGSQ is an order of magnitude faster than the other algorithms and this
performance difference persists over graphs spanning four orders of magnitude.

78 K. Kloster and D.F. Gleich

10
3

10
4

10
5

10
6

10
−4

10
−2

10
0

|E| + |V|

R
un

tim
e

(s
ec

s)
.

TSGS
TSGSQ
EXPV
MEXPV
TAYLOR

Fig. 3. We show the average runtime of our methods (TSGS, TSGSQ) for 50 columns
of the matrix exponential selected at random compared with the runtime of methods
from ExpoKit (EXPV and MEXPV) and a Taylor polynomial approximation. Our
method with a queue is an order of magnitude faster.

7 Related Work and Discussion

Virtually all recent work on computing exp{A}b or even a single element of
exp{A} involves a Krylov or Lanczos approximation [21,4,20,1]. These methods
all have runtimes that are O(|E|), or worse, when the matrix comes from a
graph. Given our strong assumption about the scaling of the maximum degree,
it is possible that these algorithms would also enjoy sublinear runtimes and
we are currently studying their analysis. We are also currently searching for
additional work that may be related to our current local method to approximate
the exponential.

As mentioned before, the doubly logarithmic bound on the maximum degree
is unrealistic for social and information networks. We are currently working to
improve the bound and believe that using a residual in a weighted ∞-norm,
as used by Andersen et al. [3], may succeed. We also note that this method
outperforms state of the art Krylov solvers on networks with nearly 10 million
nodes and edges. Thus, we believe it to be useful independently of the runtime
bound. We are currently working to extend the analysis to functions of scaled
stochastic matrices, exp{αP} with α < 1, and the adjacency matrix, exp{A},
for other link prediction methods.

References

1. Afanasjew, M., Eiermann, M., Ernst, O.G., Güttel, S.: Implementation of a
restarted Krylov subspace method for the evaluation of matrix functions. Linear
Algebra Appl. 429(10), 2293–2314 (2008)

2. Al-Mohy, A.H., Higham, N.J.: Computing the action of the matrix exponential, with
an application to exponential integrators. SIAM J. Sci. Comput. 33(2), 488–511
(2011)

Nearly-Sublinear Columnwise Matrix Exponential 79

3. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using PageRank vec-
tors. In: FOCS 2006 (2006)

4. Benzi, M., Boito, P.: Quadrature rule-based bounds for functions of adjacency
matrices. Linear Algebra and its Applications 433(3), 637–652 (2010)

5. Berkhin, P.: Bookmark-coloring algorithm for personalized PageRank computing.
Internet Mathematics 3(1), 41–62 (2007)

6. Boguñá, M., Pastor-Satorras, R., Dı́az-Guilera, A., Arenas, A.: Models of social
networks based on social distance attachment. Phys. Rev. E 70(5), 056122 (2004)

7. Bonchi, F., Esfandiar, P., Gleich, D.F., Greif, C., Lakshmanan, L.V.: Fast matrix
computations for pairwise and columnwise commute times and Katz scores. Inter-
net Mathematics 8(1-2), 73–112 (2012)

8. Chung, F.: The heat kernel as the PageRank of a graph. Proceedings of the National
Academy of Sciences 104(50), 19735–19740 (2007)

9. Estrada, E.: Characterization of 3d molecular structure. Chemical Physics Let-
ters 319(5-6), 713–718 (2000)

10. Estrada, E., Higham, D.J.: Network properties revealed through matrix functions.
SIAM Review 52(4), 696–714 (2010)

11. Farahat, A., LoFaro, T., Miller, J.C., Rae, G., Ward, L.A.: Authority rankings from
HITS, PageRank, and SALSA: Existence, uniqueness, and effect of initialization.
SIAM Journal on Scientific Computing 27(4), 1181–1201 (2006)

12. Gallopoulos, E., Saad, Y.: Efficient solution of parabolic equations by Krylov ap-
proximation methods. SIAM J. Sci. Stat. Comput. 13(5), 1236–1264 (1992)

13. Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix
exponential operator. SIAM J. Numer. Anal. 34(5), 1911–1925 (1997)

14. Kondor, R.I., Lafferty, J.D.: Diffusion kernels on graphs and other discrete input
spaces. In: ICML 2002, pp. 315–322 (2002)

15. Kunegis, J., Lommatzsch, A.: Learning spectral graph transformations for link pre-
diction. In: Proceedings of the 26th Annual International Conference on Machine
Learning, ICML 2009, pp. 561–568. ACM, New York (2009)

16. Luo, Z.Q., Tseng, P.: On the convergence of the coordinate descent method for
convex differentiable minimization. J. Optim. Theory Appl. 72(1), 7–35 (1992)

17. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later. SIAM Review 45(1), 3–49 (2003)

18. Newman, M.E.J.: The structure of scientific collaboration networks. Proceedings
of the National Academy of Sciences 98(2), 404–409 (2001)

19. Newman, M.E.J.: Finding community structure in networks using the eigenvectors
of matrices. Phys. Rev. E 74(3), 036104 (2006)

20. Orecchia, L., Sachdeva, S., Vishnoi, N.K.: Approximating the exponential, the
Lanczos method and an Õ(m)-time spectral algorithm for balanced separator. In:
STOC 2012, pp. 1141–1160 (2012)

21. Sidje, R.B.: ExpoKit: a software package for computing matrix exponentials. ACM
Trans. Math. Softw. 24, 130–156 (1998)

Evolution of the Media Web�

Damien Lefortier1, Liudmila Ostroumova1,2, and Egor Samosvat1,3

1 Yandex, Moscow, Russia
2 Moscow State University, Moscow, Russia

3 Moscow Institute of Physics and Technology, Moscow, Russia

Abstract. We present a detailed study of the part of the Web related
to media content, i.e., the Media Web. Using publicly available data, we
analyze the evolution of incoming and outgoing links from and to me-
dia pages. Based on our observations, we propose a new class of models
for the appearance of new media content on the Web where different
attractiveness functions of nodes are possible including ones taken from
well-known preferential attachment and fitness models. We analyze these
models theoretically and empirically and show which ones realistically
predict both the incoming degree distribution and the so-called recency
property of the Media Web, something that existing models did not cap-
ture well. Finally we compare these models by estimating the likelihood
of the real-world link graph from our data set given each model and
obtain that models we introduce are significantly more accurate than
previously proposed ones. One of the most surprising results is that in
the Media Web the probability for a post to be cited is determined, most
likely, by its quality rather than by its current popularity.

Keywords: Media Web, random graph models, recency.

1 Introduction

Numerous models have been suggested to reflect and predict the growth of the
Web [6,9,14]. The most well-known ones are preferential attachment models (see
Section 2 for a more thorough discussion about previous work). One of the main
drawbacks of these models is that they pay too much attention to old pages and
do not realistically explain how links pointing to newly-created pages appear (as
we discuss below). In this paper, we are interested in the Media Web, i.e., the
highly dynamic part of the Web related to media content where a lot of new
pages appear daily. We show that the Media Web has some specific properties
and should therefore be analyzed separately. Note that some other parts of the
Web have already been studied, for example in [17] a model for the Social Web
is suggested.

Most new media pages like news and blog posts are popular only for a short
period of time, i.e., such pages are mostly cited and visited for several days after
they appeared [15]. We analyze this thoroughly later in the paper and introduce

� The authors are given in alphabetical order.

A. Bonato, M. Mitzenmacher, and P. Pra�lat (Eds.): WAW 2013, LNCS 8305, pp. 80–92, 2013.
c© Springer International Publishing Switzerland 2013

Evolution of the Media Web 81

a recency property, which reflects the fact that new media pages tend to connect
to other media pages of similar age (see Section 3).

In this context, we propose a new class of models for the appearance of new
media content on the Web where different attractiveness functions of nodes are
possible including ones taken from well-known preferential attachment and fit-
ness models, but also new ones accounting for specificities of the Media Web.
We analyze these models theoretically and empirically using MemeTracker pub-
lic data set [1] and show which ones realistically predict both the distribution
of incoming degrees and the recency property of the Media Web, something that
existing models did not capture well. Finally we compare these models by esti-
mating the likelihood of the real-world link graph from this data set given each
model and obtain that models we introduce in this paper are significantly more
accurate than previously proposed ones. One of the most surprising results is
that in the Media Web the probability for a post to be cited is determined, most
likely, by its quality rather than by its current popularity.

The contributions of this paper are the following:

– We suggest a new class of models for the appearance of new media content
on the Web where different attractiveness functions of nodes are possible;

– We analyze these models theoretically and empirically and show which ones
realistically depict the behavior of the Media Web;

– We compare these models by estimating the likelihood of the real-world link
graph from our data set given each model.

The rest of the paper is organized as follows. In Sections 2 and 3, we discuss
related work and experimental results, which motivated this work. In Section 4,
based on the results of our experiments, we define our class of models. We analyze
theoretically some properties of these models in Section 5, while in Section 6 we
validate our models by computing the likelihood of the real-world link graph
from our data given each model.

2 Related Work

One of the first attempts to propose a realistic mathematical model of the Web
growth was made in [3]. The main idea is to start with the assumption that
new pages often link to old popular pages. Barabási and Albert defined a graph
construction stochastic process, which is a Markov chain of graphs, governed by
the preferential attachment. At each step in the process, a new node is added
to the graph and is joined to m different nodes already existing in the graph
that are chosen with probabilities proportional to their incoming degree (the
measure of popularity). This model successfully explained some properties of
the Web graph like its small diameter and power law distribution of incoming
degrees. Later, many modifications to the Barabási–Albert model have been
proposed, e.g., [11,13,12], in order to more accurately depict these but also other
properties (see [2,7] for details).

It was noted by Bianconi and Barabási in [5] that in real networks some nodes
are gaining new incoming links not only because of their incoming degree, but

82 D. Lefortier, L. Ostroumova, and E. Samosvat

also because of their own intrinsic properties. For example, new Web pages con-
taining some really popular content can acquire a large number of incoming links
in a short period of time and become more popular than older pages. Motivated
by this observation, Bianconi and Barabási extended preferential attachment
models with pages’ inherent quality or fitness of nodes. When a new node is
added to the graph, it is joined to some already existing nodes that are cho-
sen with probabilities proportional to the product of their fitness and incoming
degree. This model was theoretically analyzed in [10].

In the context of our research, the main drawback of these models is that, as
said, they pay too much attention to old pages and do not realistically explain
how links pointing to newly-created pages appear. Note also that highly dynamic
parts of the Web like social networks or weblogs exhibit a specific behavior and
should therefore be modeled separately (see Section 3). In [17], the evolution
of social networks, or the Social Web, was thoroughly investigated and, based
on their results, a model was suggested. In turn, we suggest a model for the
Media Web. The main idea is to combine preferential attachment and fitness
models with a recency factor. This means that pages are gaining incoming links
according to their attractiveness, which is determined by the incoming degree
of the page, its inherent popularity (some page-specific constant) and age (new
pages are gaining new links more rapidly).

3 Recency Property of the Media Web

In this section, we present experiments, which motivated us to propose a new
model for the Media Web. Our model is based on these experimental results.

3.1 Experimental Setup

We use MemeTracker public data set [1], which covers 9 months of Media Web
activity – quite a significant time period. Note that only outgoing links from the
content part of the post were extracted (no toolbar, sidebar links). See [16] for
details on how this data was collected.

From this data set we kept only links pointing to documents also in the data
set, i.e., links with known timestamps both for the source and the destination.
We assume that these timestamps correspond to the time when each document
was posted on the Web, and we also filtered out links for which the timestamp
of the destination is greater than for the source (impossible situation). This
can happen because timestamps are noisy and therefore not always reliable. We
finally obtained a data set of about 18M links and 6.5M documents that we use
in the following experiments.

3.2 Recency Property

Let us define the recency property for a graph evolving in time. Denote by e(T)
the fraction of edges connecting nodes whose age difference is greater than T .

Evolution of the Media Web 83

We analyze the behavior of e(T) and show that media pages tend to connect
to pages of similar age. We plotted e(T) for our dataset and noted that e(T) is
decreasing exponentially fast (see Figure 1), which is not the case for preferential
attachment model as we show later in this paper (Section 5.2).

Fig. 1. The recency property

4 Model

Suppose that we have a fixed set of hosts H1, . . . , Hn. Each host Hi has its own
rate of new pages appearance λi. At the beginning of the process, we have no
pages. We assume that new pages appear on a host Hi according to a Poisson
process with parameter λi. A Poisson process is often used to model a sequence
of random events that happen independently with a fixed rate over time.Poisson
processes for different hosts are independent.

When a new page p is created on a host i, it has mp mutually independent
outgoing links pointing to already existing media pages. The target page of each
link is determined as follows. First, the target host k is chosen with probability
ρik (

∑n
k=1 ρik = 1). Then, the probability of each page r on the host k to be

chosen is proportional to the attractiveness of r, which is some function of dr
(current incoming degree of r), qr (intrinsic quality of r), and ar (current age of
r). Different attractiveness functions are possible:

fτk(d, q, a) = (1 or q) · (1 or d) ·
(

1 or e
− a

τk

)
.

Where τk corresponds to the mean lifetime of the decaying attractiveness for
media pages on host k.

E.g., fτk(d, q, a) = d leads to preferential attachment, while fτk(d, q, a) = q · d
leads to fitness model. In this paper, we study different options and show which
ones best depict the behavior of the Media Web.

Let us denote by Ω(Hi) the set of pages, which belong to a host Hi. We
assume that the distributions of qp and mp for p ∈ Ω(Hi) are the properties of
Hi. The only thing we assume about these distributions is that qp and mp have
finite expectations.

84 D. Lefortier, L. Ostroumova, and E. Samosvat

5 Theoretical Analysis

5.1 Distribution of Incoming Degrees

In [5,8,11], models without recency factor (i.e., without the factor e
− a

τk in the
attractiveness function) have been analyzed. On the contrary, in this paper we
show that we need the recency factor to reflect some important properties of the
Media Web (see Section 5.2). Therefore we assume here that the attractiveness
function has such recency factor.

Denote by dp(qp, t, tp) the incoming degree at time t of a page p created at
time tp with intrinsic quality qp. Let us also define, for each host Hk, the average
attractiveness of its pages at time t:

Wk(t) = E
∑

p∈Ω(Hk)

fτk(dp(qp, t, tp), qp, t− tp) . (1)

We will show in this section that Wk(t) → Wk as t → ∞, where Wk are some
positive constants.

Let Mk be the average number of outgoing links of pages p ∈ Ω(Hk). Then
Nk =

∑
i λiMiρik is the average rate of new links pointing to host Hk appearance.

Theorem 1. Let p ∈ Ω(Sk) be a page with quality qp and time of creation tp.

(1) If fτk = q · d · e− a
τk , then dp(qp, t, tp) = e

Nkτkqp
Wk

(
1−e

tp−t

τk

)
,

(2) If fτk = q · e− a
τk , then dp(qp, t, tp) =

Nkτkqp
Wk

(
1− e

tp−t

τk

)
.

It follows from Theorem 1 that in the first case, in order to have a power law
distribution of dp, we need to have qp distributed exponentially. In this case, for

each host, the parameter of the power law distribution equals Nkτkμ
Wk

, where μ is
the parameter of exponential distribution. It is interesting to note that this latter
parameter cannot affect the parameter of the power law distribution. Indeed, if
we multiply μ by some constant, then Wk will also be multiplied by the same
constant (see (1)). Therefore, we can change the parameter of the power law
distribution only by varying Nk and τk. The problem is that the constant Wk

depends on Nk and τk (see equation (3) in the proof). Hence, it is impossible to
find analytical expressions for Nk and τk, which give us the desired parameter
of the power law distribution.

In the second case, a power law distribution of qp leads to a power law dis-
tribution of dp with the same constant. Therefore, it is easy to get a realistic
distribution of incoming degrees in this case.

In both cases, we cannot avoid the quality factor because if we do not have
it in the attractiveness function (i.e., if qp is constant for all media pages), then
the solution does not depend on qp and we do not have a power law for the
distribution of incoming degrees.

To illustrate the results of Theorem 1, we generated graphs according to our
model with different functions fτk . Obtained results are shown on Figure 2.

Evolution of the Media Web 85

Fig. 2. Distribution of incoming degrees for each model

Proof. In mean-field approximation, we have the following differential equation:

∂dp(qp, t, tp)

∂t
= Nk

fτp(dp(qp, t, tp), qp, t− tp)

Wk(t)
,

here p ∈ Ω(Hk).

In the case fτk(d, q, a) = q · d · e− a
τk we have:

∂dp(qp, t, tp)

∂t
= Nk

qp · dp(qp, t, tp) · e−
t−tp
τk

Wk(t)
(2)

Later in this section, we show that for each k, Wk(t) tends to some positive
constant Wk: limt→∞ Wk(t) = Wk.

We thus have the following solution of the equation (2):

dp = e

Nkτkqp
Wk

(
1−e

tp−t

τk

)
t→∞−−−→ e

Nkτkqp
Wk

In case fτk(d, q, a) = q · e− a
τk , by similar but even simpler calculations, we

obtain:

dp =
Nkτkqp
Wk

(
1− e

tp−t

τk

)
t→∞−−−→ Nkτkqp

Wk

Let us now check that limt→∞ Wk(t) is indeed a constant. Consider the case

fτk(d, q, a) = q · d · e− a
τk . Let ρk(q) be the probability density function of qp for

p ∈ Ω(Hk). Therefore:

Wk(t) =

∫ ∞

0

(∫ t

0

λkqρk(q)d(q, t, x) · e− t−x
τk dx

)
dq =

=

∫ ∞

0

(∫ t

0

λkqρk(q)e
Nkτkq

Wk

(
1−e

x−t
τk

)
· e x−t

τk dx

)
dq =

=

∫ ∞

0

λkWk

Nk

(
e

Nkτkq

S

(
1−e

−t
τk

)
− 1

)
ρk(q)dq .

86 D. Lefortier, L. Ostroumova, and E. Samosvat

Thus for Wk we finally have the following equation:

Wk = lim
t→∞Wk(t) =

λkWk

Nk

(∫ ∞

0

e
Nkτkq

Wk ρk(q)dq − 1

)
︸ ︷︷ ︸

Fk(Wk)

. (3)

There is a unique solution of the equation (3). To show this, we first check that
Fk(x) is monotone:

F ′
k(x) =

λk

Nk

(∫ ∞

0

e
Nkτkq

x

(
1− Nkτkq

x

)
ρk(q)dq − 1

)
≤ 0 ,

since:

e
Nkτkq

x

(
1− Nkτkq

x

)
≤ 1 and

∫ ∞

0

ρk(q)dq = 1.

Also Fk(x) → τkλkEp∈Ω(Sk)qp as x→∞ and Fk(x) →∞ as x→ 0. From these
observations, it follows that y = x and y = Fk(x) have a unique intersection. In
other words, x = Fk(x) has a unique solution.

Similarly, we can show that limt→∞ Wk(t) = Wk for the attractiveness func-

tion fτk = q · e− a
τk .

5.2 Recency Property

In this section, we show that we need a recency factor e
− a

τk in the formula for
the attractiveness function fτk . We prove that because of the recency factor,
the number of edges, which connect nodes with time difference greater than T
decreases exponentially in T . We prove the following theorem.

Theorem 2. For fτk = q · d · e− a
τk or fτk = q · e− a

τk we have

e(T) ∼
∑
k

NkCke
−T
τk ,

where Ck are some constants.

Fig. 3. Recency property in the model

Evolution of the Media Web 87

Due to space constraints, we move the proof of Theorem 2 to Appendix. To
illustrate the results obtained, we plot e(T) for different attractiveness functions
on Figure 3. Note that if we have a recency factor in the attractiveness function,
then e(T) approaches its upper bound exponentially fast. In contrast, if the at-
tractiveness function equals d (preferential attachment), then e(T) grows almost
linearly with a small rate.

6 Validation

The idea of using Maximum Likelihood in order to compare different graph mod-
els and estimate their parameters was suggested in [4]. Since then this method
was used for several models (see, e.g., [17,18]). Motivated by these works we also
use the idea of Maximum Likelihood in order to compare new models we suggest
in this paper with preferential attachment and fitness models.

6.1 Parameters Estimation

In order to do simulations, we first need to estimate all parameters of our models.
Note that we are not trying to find the best parameters here. Instead we propose
to use simple estimations, which are enough to show the improvements obtained
by using our new models.

Host-to-Host Probabilities. We estimated the matrix ρij by counting the
fraction of edges going from hosts Hi to Hj . Note that 74% of all edges are
host internal. We also add host to host probabilities to fitness and preferential
attachment models and, as we show later in Section 6.2, this assumption allows
to improve these models.

Estimation of τ . In order to estimate τk for each host Hk, we consider the
histogram of age difference of connected pages. Let xi (i ≥ 0) be the number of
links which connect pages with age difference greater than i but less than i + 1

days. If we assume an exponential decay, then for i < j we have xi

xj
= e

(i−j)T
τk ,

i.e., τk = (i−j)T

log
xi
xj

, where T is the time interval of one day. Therefore, we take:

τk =
∑

0≤i<j<10:
xi �=0,xj �=0

(i − j)T(
10
2

)
log xi

xj

.

We make a cut-off at 10 days because even though the tail of the histogram is
heavier than exponential, the most important for us is to have a good estimation
when pages are young, i.e. when most incoming links appear.

Estimation of Quality. Given the final incoming degree d of a node, we can

use Theorem 1 to find its quality, i.e., we have q = Wd
Nkτk

in the case of fτ = qe
−a
T

and q = W ln d
Nkτk

in the case of fτ = dqe
−a
T . Note that the factor W

Nkτk
is common

for all pages created on host Hk and can be cancelled so we finally used the
following estimations: q = d and q = ln d respectively.

88 D. Lefortier, L. Ostroumova, and E. Samosvat

6.2 Likelihood

In order to validate our model, we propose to use the data described in Section 3.1
and estimate the likelihood of the real-world link graph from this data set given
each model discussed in this paper. We do this as follows.

We add edges one by one according to their real temporal order and compute
their probability given the model under consideration. The sum of logarithms of
all obtained probabilities gives us the log-likelihood of our graph. We normalize
this sum by the number of edges and obtained results are presented in Table 1.

Table 1. Log-likelihood table: average logarithm of edge probability

d q e
−a
τ dq de

−a
τ qe

−a
τ dqe

−a
τ

-6.11 -5.56 -5.34 -6.08 -5.50 -5.17 -5.45

Fig. 4. Distribution of edges’ probabilities

Fig. 5. Distribution of edges’ probabilities relative to preferential attachment model

We see that the most likely model here is with fτ = qe
−a
τ . However, since

timestamps are noisy and therefore not always reliable (see Section 3.1), these
results might not be representative (for example, if the probability of one edge

Evolution of the Media Web 89

is very small, it can heavily affect the final likelihood). Hence, in addition to
this log-likelihood, which is strongly affected by outliers, we also performed the
analysis of edges’ probabilities, i.e. we try to understand which model is better
on a per-edge basis. We believe that such deeper analysis allows to reduce the
influence of outliers when validating our models. To the best of our knowledge,
this is the first time such analysis is made when using Maximum Likelihood in
order to compare different graph models.

Each edge has different probabilities according to different models and there
is one model M for which this probability is the largest. In this case, we say that
the model M wins on this edge (see Table 2). Also, for each pair of models M1

and M2, we computed the percentage of edges which have greater probability
according to M1 than according to M2 (see Table 3). It can be clearly seen from
both tables that the recency factor plays a very important role.

Table 2. Winner table: fraction of edges on which model wins all others

d q e
−a
τ dq de

−a
τ qe

−a
τ dqe

−a
τ

0.03 0.07 0.28 0.07 0.07 0.30 0.16

Table 3. Competition table: the value in (a,b) is the fraction of edges where a wins b

d q e
−a
τ dq de

−a
τ qe

−a
τ dqe

−a
τ

d - 0.22 0.30 0.43 0.18 0.22 0.19

q 0.78 - 0.38 0.76 0.41 0.23 0.40

e
−a
τ 0.70 0.62 - 0.69 0.54 0.40 0.53

dq 0.57 0.24 0.31 - 0.24 0.23 0.17

de
−a
τ 0.82 0.59 0.44 0.76 - 0.39 0.43

qe
−a
τ 0.78 0.77 0.60 0.77 0.61 - 0.62

dqe
−a
τ 0.81 0.60 0.47 0.83 0.57 0.38 -

Then, for each model, we sorted edges’ probabilities in decreasing order on
Figure 4. Furthermore, in order to more clearly visualize the differences between
models, we normalized the probability of each edge in all models by dividing it by
the corresponding probability in the sorted order of the preferential attachment

model (see Figure 5). One can see that the model with fτ = qe
−a
τ again shows

the best result in our tests. This means that in the Media Web the probability
for a post to be cited is determined, most likely, by its quality rather than by its
current popularity (i.e., incoming degree). Finally, the importance of host-to-host
probabilities ρij can be illustrated by Figure 6.

90 D. Lefortier, L. Ostroumova, and E. Samosvat

Fig. 6. The influence of host-to-host probabilities, e.g., on preferential attachment
model (PA)

7 Conclusion

In this paper, we presented a detailed study of the Media Web. We proposed a
new class of models for the appearance of new media content on the Web where
different attractiveness functions of nodes are possible including ones taken from
well-known preferential attachment and fitness models, but also new ones ac-
counting for specificities of this part of the Web. Our new models are based on
the observation that media pages tend to connect with other media pages of
similar age.

We analyzed these models theoretically and empirically using publicly avail-
able data and show which ones realistically predict both the distribution of in-
coming degrees and the so-called recency property of the Media Web, something
that existing models did not capture well.

Finally we compared these models by estimating the likelihood of the real-
world link graph from our data set given each model and obtained that new
models we introduce, with a recency factor, are significantly more accurate than
previously proposed ones. One of the most surprising results is that in the Media
Web the probability for a post to be cited is determined, most likely, by its quality
rather than by its current popularity.

References

1. http://www.memetracker.org/data.html

2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of
Modern Physics 74, 47–97 (2002)

3. Barabási, A.L., Albert, R.: Emergence of scaling in random network. Sci-
ence 286(5439), 509–512 (1999)

4. Bezáková, I., Kalai, A., Santhanam, R.: Graph model selection using maximum like-
lihood. In: Proceedings of the 23rd International Conference on Machine Learning,
ICML, pp. 105–112 (2006)

5. Bianconi, G., Barabási, A.L.: Bose-Einstein condensation in complex networks.
Physical Review Letters 86(24), 5632–5635 (2001)

http://www.memetracker.org/data.html

Evolution of the Media Web 91

6. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex net-
works: structure and dynamics. Physics Reports 424(45), 175–308 (2006)

7. Bollobás, B.: Mathematical results on scale-free random graphs. In: Handbook of
Graphs and Networks, pp. 1–34 (2003)

8. Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-
free random graph process. Random Structures and Algorithms 18(3), 279–290
(2001)

9. Bonato, A.: A Survey of models of the web graph. In: López-Ortiz, A., Hamel, A.M.
(eds.) CAAN 2004. LNCS, vol. 3405, pp. 159–172. Springer, Heidelberg (2005)

10. Borgs, C., Chayes, J., Daskalakis, C., Roch, S.: First to market is not everything:
an analysis of preferential attachment with fitness. In: Proceedings of the Thirty-
Ninth Annual ACM Symposium on Theory of Computing, pp. 135–144 (2007)

11. Buckley, P.G., Osthus, D.: Popularity based random graph models leading to a
scale-free degree sequence. Discrete Mathematics 282(1-3), 53–68 (2004)

12. Cooper, C., Frieze, A.: A general model of web graphs. Random Structures and
Algorithms 22(3), 311–335 (2003)

13. Holme, P., Kim, B.: Growing scale-free networks with tunable clustering. Physical
Review E 65(2) (2002)

14. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal,
E.: Web as a graph. In: Proceedings of the Nineteenth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pp. 1–10 (2000)

15. Lefortier, D., Ostroumova, L., Samosvat, E., Serdyukov, P.: Timely crawling of
high-quality ephemeral new content. arXiv preprint arXiv:1307.6080 (2013)

16. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the
news cycle, pp. 497–506 (2009)

17. Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of so-
cial networks. In: Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 462–470 (2008)

18. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kro-
necker Graphs: An Approach to Modeling Networks. The Journal of Machine
Learning Research 11, 985–1042 (2010)

92 D. Lefortier, L. Ostroumova, and E. Samosvat

Appendix: Proof of Theorem 2

To analyze the behavior of e(T), we need to estimate the average attractiveness
of all media pages created in the last T seconds at time t at a host k:

Wk(T, t) = E
∑

p∈Ω(Hk)
|t−tp|<T

fτk(dp(qp, t, tp), qp, t− tp).

We will show that if t > T , then this function does not depend on t.
We can analyze the function Wk(T, t) using the technique we used in Sec-

tion 5.1. Consider the case fτk(d, q, a) = q · d · e− a
τk :

Wk(T, t) =

=

∫ ∞

0

(∫ t

t−T

λkqρk(q)d(q, t, x) · e− t−x
τk dx

)
dq =

=

∫ ∞

0

(∫ t

t−T

λkqρk(q)e
Nkτkq

Wk

(
1−e

x−t
τk

)
· e x−t

τk dx

)
dq =

=
λkWk

Nk

∫ ∞

0

(
e

Nkτkq

Wk

(
1−e

−T
τk

)
− 1

)
ρk(q)dq .

We proved that Wk(T, t) does not depend on t and will use the notation
Wk(T) = Wk(T, t) from now on. Also

Wk −Wk(T) =

=
λkWk

Nk

∫ ∞

0

(
1− e

−Nkτkq

Wk
e

−T
τk

)
e

Nkτkq

Wk ρk(q)dq ∼

∼ λkWk

Nk
e

−T
τk

∫ ∞

0

Nkτkq

Wk
e

Nτkq

W ρk(q)dq ∼ Cke
−T
τk ,

where the constants Ck do not depend on T .
Note that the portion of links which point to the host Hk and have the age

difference less than T is Wk−Wk(T)
Wk

. Thus, using Nk, which is the average rate

of new links pointing to host Hk appearance (see Section 5.1), we can write the
following equation for e(T):

e(T) =
∑
k

Nk
Wk −Wk(T)

Wk
∼
∑
k

NkCk

Wk
e

−T
τk

The same analysis can be made for the case fτk(d, q, a) = q ·e− a
τk . In this case

we get:

Wk(T) =

∫ ∞

0

(∫ t

t−T

λkqρk(q) · e− t−x
τk dx

)
dq = λkτk

(
1− e

− T
τk

)
Ep∈Ω(Hk)qp ,

and further reasonings are the same.

Random Intersection Graph Process

Mindaugas Bloznelis1,� and Micha�l Karoński2

1 Faculty of Mathematics and Informatics,
Vilnius University, 03225 Vilnius, Lithuania

mindaugas.bloznelis@mif.vu.lt
2 Faculty of Mathematics and Computer Science,

Adam Mickiewicz University, 60769 Poznań, Poland

Abstract. We introduce a random intersection graph process aimed at
modeling sparse evolving affiliation networks. We establish the asymp-
totic degree distribution and provide explicit asymptotic formulas for
assortativity and clustering coefficients showing how these edge depen-
dence characteristics vary over time.

Keywords: random graph process, random intersection graph, degree
distribution, power law, clustering, assortativity.

1 Introduction

Given non-negative weights x = {xi}i≥1 and y = {yj}j≥1, and a non-decreasing
positive sequence {τ(t)}t≥1, satisfying limt→+∞ τ(t) = +∞, let Hx,y be the
random bipartite graph with bipartition V = {v1, v2, . . .} and W = {w1, w2, . . .},
where edges {wi, vj} are inserted independently and with probabilities

pij = min
{

1,
xiyj√
ij

}
I{aτ(j)≤i≤bτ(j)}. (1)

Here b > a > 0 are fixed numbers. Hx,y defines the graph Gx,y on the vertex set
V such that any u, v ∈ V are declared adjacent (denoted u ∼ v) whenever they
have a common neighbor in Hx,y.

Consider, for example, a library where items w1, w2, . . . are acquired one after
another, and where users v1, v2, . . . , vj , . . . are registered at times j = 1, 2,
User vj picks at random items from the ”contemporary literature collection”
[aτ(j), bτ(j)] = {wi : aτ(j) ≤ i ≤ bτ(j)} relevant to its arrival time j. An item
wi is picked with probability proportional to the activity yj of the user vj and
the attractiveness xi of the item wi, cf. (1). The realized bipartite graph Hx,y

represents “library” records, whereas realized Gx,y represents adjacency relations
between users in the resulting affiliation network.

Theoretical analysis of such a network becomes simpler if we impose some regu-
larity conditions on the weight sequences x and y. A convenient assumption is that
x and y are realized values of iid sequences X = {Xi}i≥1 and Y = {Yj}j≥1. In this

� Corresponding author.

A. Bonato, M. Mitzenmacher, and P. Pra�lat (Eds.): WAW 2013, LNCS 8305, pp. 93–105, 2013.
c© Springer International Publishing Switzerland 2013

94 M. Bloznelis and M. Karoński

way we obtain random graphs HX,Y and GX,Y . The parameters of the model are
the probability distributions of X1, Y1, function τ (the speed of item acquisition),
and cut-offs a < b, which together with τ(j) determine the interval [aτ(j), bτ(j)],
which we also interpret as the lifespan of a user vj .

Random graph GX,Y is aimed at modeling sparse affiliation networks that
evolve in time, such as, e.g., the actor network, where two actors are declared
adjacent whenever they have played in the same movie, a collaboration network
where two authors are declared adjacent if they have co-authored a paper. Such
networks display a natural bipartite structure: actors are linked to films, authors
are linked to papers. An underlying bipartite structure seems to be present in
many social networks: members of a network become acquainted because they
share some common interests, [11]. Furthermore, the bipartite structure is helpful
in explaining an important feature of social networks that they have a non-trivial
clustering (network transitivity), and a positive correlation between degrees of
adjacent vertices (network assortativity), [16], [19].

We note that each vertex of the graph GX,Y can be identified with the random
subset of W , consisting of items selected by that vertex, and two vertices are
adjacent in GX,Y whenever their subsets intersect. Graphs describing such adja-
cency relations between members of a finite family Vn = {v1, . . . , vn} of random
subsets of a given finite set Wm = {w1, . . . , wm} have been introduced in [13],
see also [9]. They are called random intersection graphs. We remark that random
intersection graphs reproduce empirically observed clustering properties of the
actor network with remarkable accuracy ([2], [5]). Unfortunately, they do not ac-
count for the evolving nature of the network (actors acting in 2013 are unlikely
to be adjacent to those that acted in 1913) and, therefore, can not explain how
various characteristic of an evolving network varies over time. This drawback
of the static model has motivated our interest in evolving random intersection
graph GX,Y . A related empirical study showing how various characteristics of
an evolving collaboration network had changed over a hundred year period is
presented in [14], see also [15].

The random graph GX,Y can be considered as a random process evolving in
time, where the vertex vt that arrived at time t can only establish adjacency rela-
tions with contemporaries vs such that the intervals [aτ(t), bτ(t)] and [aτ(s), bτ(s)]
(lifespans of vt and vs) intersect. We show that the random intersection graph pro-
cess admits an asymptotic power law distribution of the degree d(vt) of a vertex
vt as t→ +∞. Moreover, we give an explicit description of the asymptotic degree
distribution. Furthermore, we show that GX,Y admits a non-trivial clustering and
assortativity coefficients and calculate their first order asymptotics.

The intuition behind these results is explained as follows. We first observe
that choosing inhomogeneous weight sequences x and y one may expect to ob-
tain an inhomogeneous degree sequence of the graph Gx,y: vertices with larger
weights attract larger numbers of neighbors. Consequently, in the case where
the probability distributions of X1 and Y1 have heavy tails, we obtain a heavy
tailed asymptotic degree distribution. Secondly, we observe that if the set W (t)
of items selected by a user vt is (stochastically) bounded and the lifespans of two

Random Intersection Graph Process 95

neighbors of vt, say vs and vu, intersect, then with a non-vanishing probability
vs and vu share an item from W (t). Consequently, the conditional probability
αt|su = P(vs ∼ vu|vs ∼ vt, vt ∼ vu), called the clustering coefficient, is posi-
tive and bounded away from zero. In particular, the underlying bipartite graph
structure serves as a clustering mechanism. A similar argument applies to the
assortativity coefficient (Pearson’s correlation coefficient between degrees of ad-
jacent vertices)

rs,t =
Estd(vs)d(vt)−Estd(vs)Estdv(t)√

Varstd(vs)Varstd(vt)
. (2)

Here an item shared by adjacent vertices vs ∼ vt attracts a number of com-
mon neighbors of vs and vt. This makes the correlation coefficient positive and
bounded away from zero. Here Est denotes the conditional expectation given the
event vs ∼ vt and Varstd(vs) = Estd

2(vs)− (Estdv(s))2.
The rest of the paper is organized as follows. Results are stated in Sect. 2.

Proofs are given in Sect. 3.

2 Results

Degree. For τ(t) growing linearly in t we obtain a compound probability dis-
tribution in the limit. We remark that in this case GX,Y admits non-trivial
asymptotic clustering coefficients. For τ(t) growing faster than linearly in t, we
obtain a mixed Poisson asymptotic degree distribution. In this case clustering
coefficients vanish. We denote ak = EXk

1 and bk = EY k
1 .

Theorem 1. Let b > a > 0. Let τ(t) = t. Suppose that EX2
1 < ∞ and EY1 <

∞. For t → +∞ the random variable d(vt) converges in distribution to the
random variable

d∗ =

Λ1∑
j=1

κj , (3)

where κ1,κ2, . . . are independent and identically distributed random variables
independent of the random variable Λ1. They are distributed as follows. For
r = 0, 1, 2, . . ., we have

P(κ1 = r) =
r + 1

EΛ2
P(Λ2 = r+1), P(Λi = r) = E e−λi

λr
i

r!
, i = 1, 2. (4)

Here λ1 = 2(b1/2 − a1/2)a1Y1 and λ2 = 2(a−1/2 − b−1/2)b1X1.

We remark that the second moment condition EX2
1 <∞ of Theorem 1 seems

to be redundant and could perhaps be waived.

Theorem 2. Let b > a > 0 and ν > 1. Let τ(t) = tν , t = 1, 2 Suppose that
EX2

1 < ∞ and EY1 < ∞. For t → +∞ the random variable d(vt) converges in
distribution to the random variable Λ3 having the probability distribution

P(Λ3 = r) = E e−λ3
λr

3

r!
, r = 0, 1, 2, (5)

Here λ3 = γa2b1Y1 and γ = 4ν(b1/2ν − a1/2ν)(a−1/2ν − b−1/2ν).

96 M. Bloznelis and M. Karoński

Remark 1. The probability distributions Λi, i = 1, 2, 3, are Poisson mixtures.
One way to sample from the distribution of Λi is to generate random variable λi

and then, given λi, to generate Poisson random variable with the parameter λi.
In Theorem 1 we obtain a power law asymptotic degree distribution provided
that the heavier of the tails t → P(κ1 > t) and t → P(Λ1 > t) has a power
law, see [8]. In Theorem 2 we obtain a power law asymptotic degree distribution
provided that Y1 has a power law.

Remark 2. The result of Theorem 2 extends to a more general class of increasing
non-negative functions τ . In particular, assuming that

lim
t→+∞

t

τ(t)
= 0, sup

t>1

τ−1(2t)

τ−1(t)
<∞, (6)

and that there exists a finite limit

γ∗ = lim
t→+∞ t−1/2

∑
aτ(t)≤i≤bτ(i)

i−1
∑

j: aτ(j)≤i≤bτ(j)

j−1/2,

we obtain the convergence in distribution of d(vt) to Λ3 defined by (5) with
λ3 = γ∗a2b1Y1. Here τ−1 denotes the inverse of τ (i.e., τ(τ−1(t)) = t).

Remark 3. The function τ(t) = t ln t, which grows slower than any power tν ,
ν > 1, satisfies conditions of Remark 2 with γ∗ = 4(a−1/2 − b−1/2)(b1/2 − a1/2).

Furthermore, the functions τ1(t) = eln2 t and τ2(t) = et, that grow faster than
any power tν , satisfy conditions of Remark 2 with γ∗ = 0 and now the asymptotic
degree distribution is degenerate.

Clustering. Our next result, Theorem 3, provides explicit asymptotic formulas
for clustering coefficients. We note that for s < t < u the conditional probabilities
αs|tu, αt|su and αu|st are all different and, given 0 < a < b, they mainly depend
on the ratios s/t, s/u and t/u. Denote pΔ := pΔ(s, t, u) = P(vs ∼ vt, vs ∼
vu, vt ∼ vu) the probability that vs, vt, vu make up a triangle.

Theorem 3. Let b > a > 0. Let τ(t) = t. Suppose that EX3
1 < ∞ and EY 2

1 <
∞. Assume that s, t, u→ +∞ so that s < t < u and �au� ≤ �bs�. We have

pΔ =
a3b

3
1√

stu

(
2√
au
− 2√

bs

)
+ o(t−2), (7)

αt|su =
pΔ

pΔ + a2
2b

2
1b2t−1(su)−1/2δt|su

+ o(1), (8)

αs|tu =
pΔ

pΔ + a2
2b

2
1b2s−1(tu)−1/2δs|tu

+ o(1), (9)

αu|st =
pΔ

pΔ + a2
2b

2
1b2u−1(st)−1/2δu|st

+ o(1). (10)

Random Intersection Graph Process 97

Here we denote ai = EX i
1, i = 2, 3, and bj = EY j

1 , j = 1, 2, and

δt|su = ln(u/t) ln(t/s) + ln(u/t) ln(bs/au) + ln(t/s) ln(bs/au) + ln2(bs/au),

δs|tu = ln(u/t) ln(bs/au) + ln2(bs/au),

δu|st = ln(t/s) ln(bs/au) + ln2(bs/au).

We remark that the condition �au� ≤ �bs� of Theorem 3 excludes the trivial
case where pΔ ≡ 0. Indeed, for s < u, the converse inequality �au� > �bs�
means that the lifetimes of vs and vu do not intersect and, therefore, we have
P(vs ∼ vu) ≡ 0. In addition, the inequality �au� ≤ �bs� implies that positive
numbers δt|su, δs|tu, δu|st are bounded from above by a constant (only depending
on a and b).

Assortativity. Let us consider the sequence of random variables {d(vt)}t≥1.
We assume that τ(t) = t. From Theorem 1 we know about the possible limiting
distributions for d(vt). Moreover, from the fact that GX,Y is sparse we can
conclude that, for any given k, the random variables d(vt), d(vt+1), . . . , d(vt+k)
are asymptotically independent as t → +∞. An interesting question is about
the statistical dependence between d(vs) and d(vt) if we know, in addition, that
vertices vs and vt are adjacent in GX,Y . We assume that s < t and let s, t→ +∞
so that bs − at → +∞. Note that the latter condition ensures that the shared
lifetime of vs and vt tends to infinity as s, t→ +∞. In this case we obtain that
conditional moments

Estd(vs) = Estd(vt) + o(1) = δ1 + o(1), (11)

Estd
2(vs) = Estd

2(vt) + o(1) = δ2 + o(1),

Estd(vs)d(vt) = δ2 −Δ + o(1)

are asymptotically constant. Here Δ = h−1
1 (2h3 + 2h5 + 4(h6 − h7)) and

δ1 = 1 + h−1
1 (h2 + 2h3), δ2 = 1 + h−1

1 (3h2 + 6h3 + h4 + 6h5 + 4h6).

Furthermore, we denote

h1 = a2b
2
1, h2 = a3b

3
1γ̃, h3 = a2

2b
2
1b2γ̃(

√
b−√a), (12)

h4 = a4b
4
1γ̃

2, h5 = a2a3b
3
1b2γ̃

2(
√
b−√a),

h6 = a3
2b

3
1b3γ̃

2(
√
b−√a)2, h7 = a3

2b
2
1b

2
2γ̃

2(
√
b−√a)2,

and γ̃ = 2(a−1/2 − b−1/2). A sketch of the proof of (11) is given in Sect. 3.
From (2) and (11) we obtain that the assortativity coefficient

rst = 1− Δ

δ2 − δ2
1

+ o(1) (13)

is asymptotically constant.
Finally, we mention that the degree distribution of the typical vertex of finite

random intersection graphs have been studied by several authors, see, e.g., [2],
[7], [12], [17], the clustering properties have been studied in [2], [4] [7], [10].
Assortativity coefficient has been evaluated in [4].

98 M. Bloznelis and M. Karoński

Future Work. An interesting problem were to study the component structure
of GX,Y and that of the subgraph induced by the users contemporary to some
vt for large t. Furthermore, in the construction of GX,Y one can replace the
deterministic cut-offs a < b in (1) by random cut-offs Aj ≤ Bj (so that the
lifespan [Ajτ(j), Bjτ(j)] of a user vj were random). Similarly, abrupt cut-offs can
be replaced by some smooth cut-off functions. Another interesting question were
about incorporation of the preferred attachment principle, e.g., by increasing
the weight (attractiveness) of an item proportionally to the number of users
that have chosen this item, similarly to the preferred attachment model [1],
where the area of the influence sphere depends on the in-degree of a node.

3 Proofs

Here we give a sketch of the proofs of Theorems 1 and 2. Details can be found
in the extended version of the paper [6]. In the proof of Theorems 1, 2 we apply
the approach used in [3].

We start with some notation. The intervals

Tt = {k : aτ(t) ≤ k ≤ bτ(t)}, T ∗
k = {j : aτ(j) ≤ k ≤ bτ(j)} (14)

can be interpreted as lifetimes of the user vt and item wk, respectively. The
event ”edge {wk, vj} is present in HX,Y ” is denoted wk → vj . Introduce random
variables

Ikj = I{wk→vj}, uk =
∑

j∈T∗
k \{t}

Ikj , L =
∑
k∈Tt

Iktuk, λkt = XkYt/
√
kt.

Proof (of Theorem 1). We first approximate the random variable d(vt) by L,
using the simple bound P(d(vt) �= L) = o(1). Then we approximate L by L1 =∑

k∈Tt
ηkξk, where ηk, ξk, k ∈ Tt, are conditionally independent, given X,Y ,

Poisson random variables with the conditional mean values

E(ηk|X,Y) = λkt, E(ξk|X,Y) = 2(a−1/2 − b−1/2)Xkb1, k ∈ Tt. (15)

We note that L1 is obtained from L, by replacing Ikt and uk by the random vari-
ables ηk and ξk, respectively. In order to show that the error of this replacement
is negligible we apply the standard Poisson approximation error bound (see, e.g.,
[18]) conditionally, given X and Y .

Finally, we prove that L1 converges in distribution to d∗. Let Y� be a ran-
dom variable with the same distribution as Y1 and independent of X,Y . Given
X,Y, Y�, we generate independent Poisson random variables η�k, k ∈ Tt with
(conditional) mean values E(η�k|X,Y, Y�) = λk�, where λk� = XkY�(kt)−1/2. We
assume that, given X,Y, Y�, the family of random variables {η�k, k ∈ Tt} is con-
ditionally independent of {ξk, k ∈ Tt}. Define L� =

∑
k∈Tt

η�kξk, and let d� be

defined in the same way as d∗, but with λ1 replaced by λ� = 2(b1/2− a1/2)a1Y�.
We note that L1 has the same distribution as L�. Similarly, d∗ has the same dis-
tribution as d�. Therefore, it suffices to show that L� converges in distribution to

Random Intersection Graph Process 99

d� and for this purpose we prove the convergence of Fourier-Stieltjes transforms
EeizL� → Eeizd� . Here i denotes the imaginary unit, z is a real number. Denote
Δ�(z) = eizL� − eizd� We show that for any real z and any realized value Y�

lim sup
t

|E(Δ�(z)|Y�)| = o(1). (16)

This bound together with the simple inequality |Δ�(z)| ≤ 2 yields EΔ�(z)=o(1),
by Lebesgue’s dominated convergence theorem. Finally, the identity EΔ�(z)
= EeizL�−Eeizd� implies the desired convergence EeizL� → Eeizd� as t→ +∞.

In order to prove (16) we observe that, given Y�, the conditional distribution of
d� is the compound Poisson distribution with the characteristic function f(z) =
eλ�(fκ(z)−1), where fκ(z) = Eeizκ1 . Similarly, given X,Y, Y� and {ξk, k ∈ Tt},
the conditional distribution of L� is the compound Poisson distribution with the
characteristic function f̄(z) = eλ̄(f̄κ(z)−1), where

f̄κ(z) =
∑
r≥0

eizrp̄r, p̄r = λ̄−1
∑
k∈Tt

λk�I{ξk=r}, λ̄ =
∑
k∈Tt

λk�.

Finally, we obtain (16) from the convergence λ̄→ λ� and f̄κ(z)→ fκ(z). ��
Proof (of Theorem 2). Here we assume that τ(t) = tν , ν > 1. Denote

ζ =
∑
k∈Tt

λktζk, ζk = βkb1Xk, βk = 2
(
a−(2ν)−1 − b−(2ν)−1

)
k(1−ν)/(2ν),

and let ξk, k ∈ Tt be conditionally independent (given X,Y) Poisson random
variables with the conditional mean values E(ξk|X,Y) = ζk.

In the first step of the proof we proceed similarly as in the proof of Theorem
1. We approximate the random variable d(vt) by L and then we approximate
the distribution of L by that of the random variable L′ =

∑
k∈Tt

Ikξk. Here it is
assumed that the random variables Ik, ξk, k ∈ Tt are conditionally independent,
given X,Y . Next we observe that ξk = oP (1) for k ∈ Tt as t→ +∞ and replace
ξk by the random indicators Ĩk, k ∈ Tt, with success probabilities

P(̃Ik = 1|X,Y) = 1−P(̃Ik = 0|X,Y) = ζk.

It remains to show the asymptotic distribution of L′′ =
∑

k∈Tk
Ik Ĩk. Condi-

tionally, given X,Y , we approximate the sum L′′ of (conditionally) independent
indicators by the Poisson random variable having the mean value E(L′′|X,Y) =
ζ. Using the standard Poisson approximation error bounds [18] we show the
valid approximation of L′′ by the random variable L′′′, having the Poisson dis-
tribution with the random intensity parameter ζ. That is, conditionally, given
X,Y , the random variable L′′′ has the Poisson distribution with the mean value
E(L′′′|X,Y) = ζ. Finally we show that L′′′ converges in distribution to Λ3. For
this purpose we prove the convergence of the Fourier-Stieltjes transforms

EeizL
′′′ → EeizΛ3 . (17)

100 M. Bloznelis and M. Karoński

We write

EeizL
′′′

= EE(eizL
′′′ |X,Y) = Eeζ(eizt−1) and EeizΛ3 = EeYtb1a2γ(eiz−1)

and derive (17) from the convergence Ytb1a2γ − ζ → 0 in probability.
We remark that in this abbreviated version of the proof we have skipped the

truncation argument which helps to get the result under the minimal moment
conditions, see [6]. ��

Before the proof of Theorem 3 we state an auxiliary lemma.

Lemma 1. Denote Ixi = I{Xi>i1/2} and Iyj = I{Yj>j1/2}. We have

λij(1− Ixi − Iyj) ≤ min{1, λij} ≤ λij .

Proof (of Lemma 1). The inequality I{λij>1} ≤ Ixi + Iyj implies

λij(1− Ixi − Iyj) ≤ λij − (λij − 1)I{λij>1} = min{1, λij}.
Proof (of Theorem 3). We only prove (7) and (8). The proof of (9), (10) is similar
to that of (8).

Before the proof we introduce some notation. Denote

Tst = Ts ∩ Tt, Ttu = Tt ∩ Tu, Tstu = Ts ∩ Tt ∩ Tu, T = Ts ∪ Tt ∪ Tu.

An item wi is called witness of the edge vj ∼ vk whenever IijIik = 1. In this case
we say that wi realizes the edge vj ∼ vk. Let Δ1 = {∃i : IisIitIiu = 1} denote the
event that all edges of the triangle vs, vt, vu are realized by a common witness.
Let Δ2 denote the event that all edges are realized by different witnesses,

Δ2 = {∃ distinct i, j, k such that IisIit = 1, IjsIju = 1, IktIku = 1}.
Let Δ = {vs ∼ vt, vs ∼ vu, vt ∼ vu} denote the event that vertices vs, vt, vu
make up a triangle. Introduce events Ht = {vs ∼ vt, vt ∼ vu} and Kt = {∃i �=
j : IitIisIjtIju = 1}, and random variables

S =
∑

au≤k≤bs

IksIktIku, Q =
∑

au≤i<j≤bs

IisIitIiuIjsIjtIju,

St =
∑

(i,j)∈I

IitIisIjtIju, Qt =
∑

(i,j)∈I

∑
(k,r)∈I,(k,r) �=(i,j)

IisIitIjtIjuIktIksIrtIru.

Here I denote the set of all ordered pairs (i, j) ∈ T × T such that i �= j. We
remark that a pair (i, j) corresponds to the pair (wi, wj) of attributes that might
be witnesses of edges vs ∼ vt and vt ∼ vu respectively.

We note that t/s, u/t, u/s ∈ [1, b/a] for 0 < s < t < u satisfying �au� ≤ �bs�.
Hence the variables s, t, u→ +∞ are of the same order of magnitude.

Let us prove (7). We observe that Δ1 ⊂ Δ ⊂ Δ1 ∪Δ2. Hence

P(Δ1) ≤ P(Δ) ≤ P(Δ1) + P(Δ2). (18)

Random Intersection Graph Process 101

Next, by inclusion exclusion, we write S −Q ≤ IΔ1 ≤ S and estimate

ES −EQ ≤ P(Δ1) ≤ ES. (19)

Now, combining (18) and (19) with the relations

ES =
∑

au≤k≤bs

EX3
kYsYtYu

k3/2
√
stu

+ o(t−2) =
a3b

3
1√

stu

(
2√
au
− 2√

bs

)
+ o(t−2), (20)

EQ ≤
∑

au≤i<j≤bs

Eλisλitλiuλjsλjtλju ≤ a2
3b

3
2

stu

∑
au≤i<j≤bs

1

i3/2j3/2
= O(t−4),

P(Δ2) ≤ E
∑

i,j,k∈T, i�=j �=k

IisIitIjsIjuIktIku ≤ a3
2b

3
2

stu

(∑
i∈T

i−1

)3

= O(t−3) (21)

we obtain (7), since pΔ = P(Δ). In the first step of (20) we applied Lemma 1,
and in the last step of (21) we used

∑
i∈T i−1 ≤ c.

Let us prove (8). We observe that (8) follows from (7) and the relation

P(Ht) = P(Δ) + a2
2b

2
1b2

1

t
√
su

δt|su + o(t−2). (22)

It remains to show (22). We note that the identity Ht = Δ1 ∪ Kt implies

P(Ht) = P(Δ1) + P(Kt)−P(Δ1 ∩ Kt). (23)

Next, by inclusion exclusion, we write St −Qt ≤ IKt ≤ St and obtain

ESt −ESt(1− IDε)−EQtIDε ≤ EIKtIDε ≤ P(Kt) ≤ ESt, (24)

for any ε ∈ (0, 1). Here Dε denotes the event {Yt ≤ εt}. In the remaining part
of the proof we show that

ESt = a2
2b

2
1b2

1

t
√
su

δt|s,u + o(t−2), (25)

P(Δ1 ∩ Kt) = O(t−3), (26)

and that there exists c∗ > 0 which does not depend on s, t, u and ε such that,
for any ε ∈ (0, 1),

EQtIDε ≤ c∗εt−2 + O(t−3), ESt(1− IDε) = o(t−2). (27)

We observe that (22) follows from (23), (26) and the approximations P(Δ) ≈
P(Δ1) (see (18), (21)), and P(Kt) ≈ a2

2b
2
1b2

1
t
√
su
δt|s,u (see (24), (25), (27)).

Let us prove (25). Since the product p̄ij := pispitpjtpju is non zero whenever
i ∈ Tst and j ∈ Ttu, we have

ESt = E
∑

(i,j)∈I

p̄ij = E
∑

(i,j):i∈Tst,j∈Ttu, i�=j

p̄ij . (28)

102 M. Bloznelis and M. Karoński

We split the set {(i, j) : i ∈ Tst, j ∈ Ttu, i �= j} = T1 ∪ · · · ∪ T4, where

T1 = (Tst \ Tu)× Ttu, T2 = Tstu × (Ttu \ Ts),

T3 = {(i, j) : i, j ∈ Tstu, i < j}, T4 = {(i, j) : i, j ∈ Tstu, j < i},

and write (28) in the form

ESt = ESt1 + . . . + ESt4, Stk :=
∑

(i,j)∈Tk

p̄ij . (29)

Now (25) follows from (29) and the relations, for 1 ≤ k ≤ 4,

EStk = E
∑

(i,j)∈Tk

λisλitλjtλju + o(t−2) = a2
2b

2
1b2

1

t
√
su

∑
(i,j)∈Tk

1

ij
+ o(t−2) (30)

and ∑
1≤k≤4

∑
(i,j)∈Tk

1

ij
= δt|su + O(t−1).

In the first step of (30) we used Lemma 1.
Let us prove the first bound of (27). We split the collection of vectors(i, j, k, r)

Q =
{

(i, j, k, r) ∈ T 4 such that i �= j, k �= r and (i, j) �= (k, r)
}

into five non intersecting pieces Q = Q1 ∪ · · · ∪Q5, where

Q1 =
{

(i, j, k, r) : i = k
} ∩Q, Q2 =

{
(i, j, k, r) : i = r

} ∩Q,

Q3 =
{

(i, j, k, r) : j = k
} ∩Q, Q4 =

{
(i, j, k, r) : j = r

} ∩Q,

and Q5 =
{

(i, j, k, r) : all i, j, k, r are distinct
} ∩Q, and write

Qt =
∑

1≤z≤5

Qtz, Qtz =
∑

(i,j,k,r)∈Qz

IisIitIjtIjuIksIktIrtIru.

Denote Q̃ = {(i, j, r) ∈ T 3 : all i, j, r are distinct}. Observing that the typical
summand of the sum Qt1 is IisIitIjtIjuIrtIru (since i = k), we write

EQt1IDε ≤ E
∑

(i,j,r)∈Q̃

λisλitλjtλjuλrtλruIDε

≤ a3
2

s1/2t3/2u
EYsY

3
t Y

2
u IDε

(∑
i∈T

1

i

)3

≤ c3ε
a3

2

s1/2t1/2u
EYsY

2
t Y

2
u

≤ c′εt−2.

Random Intersection Graph Process 103

Here we used inequalities Ytt
−1IDε ≤ ε and

∑
i∈T

1
i ≤ c. Similarly, we prove the

inequality EQt4IDε ≤ c′εt−2. Furthermore, observing that the typical summand
of the sum Qt2 is IisIitIiuIjtIjuIksIkt (since i = r), we write

EQt2IDε ≤ E
∑

(i,j,k)∈Q̃

λisλitλiuλjtλjuλksλktIDε

≤ a3a
2
2

st3/2u
EY 2

s Y
3
t Y

2
u IDε

(∑
i∈T

1

i

)2 (∑
i∈T

1

i3/2

)

≤ c3 a3a
2
2

stu
EY 2

s Y
2
t Y

2
u .

In the last step we used inequalities Ytt
−1IDε ≤ 1 and

∑
i∈T

1
i3/2

≤ ct−1/2.
Hence, EQt2IDε = O(t−3). Similarly, we prove the bound EQt3IDε = O(t−3).
Finally, we estimate

EQt5IDε ≤ E
∑

(i,j,k,r)∈Q5

λisλisλjtλjuλksλktλrtλruIDε

≤ a4
2

st2u
EY 2

s Y
4
t Y

2
u IDε

(∑
i∈T

1

i

)4

≤ c′ε2t−2.

In the last step we used the inequality Y 2
t t

−2IDε ≤ ε2. Collecting these upper
bounds for EQtzIDε , 1 ≤ z ≤ 5, we obtain the first bound of (27).

The second bound of (27) follows from EY 2
t I{Yt≥εt} = o(1) and inequalities

ESt(1−IDε) ≤ E
∑

i,j∈T, i�=j

λisλitλjtλju(1−IDε) ≤ a2
2b

2
1

st
EY 2

t I{Yt≥εt}

(∑
i∈T

i−1

)2

.

Let us prove (26). The inequalities IKt ≤ St, IΔ1 ≤ S and S ≤ S̃, where
S̃ =

∑
k∈T I∗k and I∗k = IksIktIku, imply P(Δ1 ∩ Kt) = EIΔ1IKt ≤ EStS̃. We

shall show that EStS̃ = O(t−3). To this aim we split StS̃ = S̃1 + S̃2, where

S̃1 =
∑
i∈T

∑
j∈T\{i}

IisIitIjtIju(I∗i + I∗j), S̃2 =
∑

(i,j,k)∈Q̃

IisIitIjtIjuI
∗
k,

and estimate

ES̃1 ≤ E
∑
i∈T

∑
j∈T\{i}

λisλitλjtλju(λiu + λjs) = O(t−3),

ES̃2 ≤ ES̃′
2 ≤ E

∑
(i,j,k)∈Q̃

λisλitλjtλjuλksλku = O(t−3). (31)

Here S̃′
2 is defined in the same way as S̃2, but with I∗k replaced by I′k = IksIku.

��

104 M. Bloznelis and M. Karoński

Proof (of (11)). We only sketch the proof. For s < t such that �at� ≤ �bs�,

est =
∑

i∈Ts∩Tt

IisIit and qst =
∑

{i,j}⊂Ts∩Tt

IisIitIjsIjt

count witnesses and pairs of witnesses of the edge vs ∼ vt, respectively (wi ∈ W
is called a witness of the edge vs ∼ vt whenever wi is a common neighbor of vs
and vt in HX,Y). We write, by inclusion-exclusion,

est − qst ≤ I{vs∼vt} ≤ est

and note that the quadratic term qst is negligibly small. Hence, we approximate

I{vs∼vt} = est(1 + oP (1)), P(vs ∼ vt) = (1 + o(1))Eest. (32)

Given t and i, j ∈ Tt, we denote T ∗
it = T ∗

i \{t} and introduce random variables

uit =
∑
k∈T∗

it

Iik, zijt =
∑

k∈T∗
it∩T∗

jt

IikIjk, Lt =
∑
i∈Tt

Iituit, Qt =
∑

{i,j}⊂Tt

IitIjtzijt.

We remark that Lt counts pairs (vs ∼ vt;wi), where wi is a witness of the edge
vs ∼ vt in GX,Y , for some vs ∈ W \ {vt}. In particular, we have d(vt) ≤ Lt.
Similarly, Qt counts all triples (vs ∼ vt;wi, wj), where wi and wj are distinct
witnesses of an edge vs ∼ vt. Note that a neighbor vs of vt, which has k witnesses
of the edge {vs ∼ vt}, contributes 1 to the number d(vt) of neighbors of vt. It
contributes k to the sum Lt, and it contributes

(
k
2

)
to the sum Qt. Hence,

Lt −Qt ≤ d(vt) ≤ Lt.

Here the quadratic term Qt is negligibly small and we approximate d(vt) =
Lt(1 + oP (1)). Combining this approximation with (32) we obtain

Estd(vs)d(vt) = (Eest)
−1EestLsLt + o(1), (33)

Estd
r(vu) = (Eest)

−1EestL
r
u + o(1), (34)

for r = 1, 2 and u = s, t. Next we evaluate expectations in the right-hand sides
of (33), (34). A straightforward but tedious calculation shows that

Eest = Θ(1 + o(1))h1,

EestLs = EestLt + o(Θ) = Θ(1 + o(1))(h1 + h2 + 2h3),

EestL
2
s = EestL

2
t + o(Θ) = Θ(1 + o(1))(h1 + 3h2 + 6h3 + h4 + 6h5 + 4h6),

EestLsLt = Θ(1 + o(1))(h1 + 3h2 + 4h3 + h4 + 4h5 + 4h7).

Here we denote Θ = (st)−1/2 ln(bs/at). We recall that hi are defined in (12)
above. Now (11) follows from (33), (34). ��

Acknowledgement. M. Bloznelis acknowledges support from the Research
Council of Lithuania (grant MIP-053/2011).

Random Intersection Graph Process 105

References

1. Aiello, W., Bonato, A., Cooper, C., Janssen, J., Pra�lat, P.: A spatial web graph
model with local influence regions. In: Bonato, A., Chung, F.R.K. (eds.) WAW
2007. LNCS, vol. 4863, pp. 96–107. Springer, Heidelberg (2007)

2. Bloznelis, M.: Degree and clustering coefficient in sparse random intersection
graphs. The Annals of Applied Probability 23, 1254–1289 (2013)

3. Bloznelis, M., Damarackas, J.: Degree distribution of an inhomogeneous random
intersection graph. The Electronic Journal of Combinatorics 20(3), R3 (2013)

4. Bloznelis, M., Jaworski, J., Kurauskas, V.: Assortativity and clustering of sparse
random intersection graphs. Electronic Journal of Probability 18, R38 (2013)

5. Bloznelis, M., Kurauskas, V.: Clustering function: a measure of social influence,
http://arxiv.org/abs/1207.4941

6. Bloznelis, M., Karoński, M.: Random intersection graph process,
http://arxiv.org/abs/1301.5579

7. Deijfen, M., Kets, W.: Random intersection graphs with tunable degree distribution
and clustering. Probab. Engrg. Inform. Sci. 23, 661–674 (2009)

8. Foss, S., Korshunov, D., Zachary, S.: An Introduction to Heavy-Tailed and Subex-
ponential Distributions. ACM, New York (2011)

9. Godehardt, E., Jaworski, J.: Two models of random intersection graphs and their
applications. Electronic Notes in Discrete Mathematics 10, 129–132 (2001)

10. Godehardt, E., Jaworski, J., Rybarczyk, K.: Clustering coefficients of random in-
tersection graphs. Studies in Classification, Data Analysis and Knowledge Organi-
zation, pp. 243–253. Springer, Heidelberg (2012)

11. Guillaume, J.L., Latapy, M.: Bipartite structure of all complex networks. Inform.
Process. Lett. 90, 215–221 (2004)

12. Jaworski, J., Karoński, M., Stark, D.: The degree of a typical vertex in generalized
random intersection graph models. Discrete Mathematics 306, 2152–2165 (2006)

13. Karoński, M., Scheinerman, E.R., Singer-Cohen, K.B.: On random intersection
graphs: The subgraph problem. Combinatorics, Probability and Computing 8,
131–159 (1999)

14. Martin, T., Ball, B., Karrer, B., Newman, M.E.J.: Coauthorship and citation pat-
terns in the Physical Review. Phys. Rev. E 88, 012814 (2013)

15. Newman, M.E.J.: Clustering and preferential attachment in growing networks.
Physical Review E 64, 025102 (2001)

16. Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random graph models of social
networks. Proc. Natl. Acad. Sci. USA 99(suppl. 1), 2566–2572 (2002)

17. Stark, D.: The vertex degree distribution of random intersection graphs. Random
Structures and Algorithms 24, 249–258 (2004)

18. Steele, J.M.: Le Cam’s inequality and Poisson approximations. The American
Mathematical Monthly 101, 48–54 (1994)

19. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Na-
ture 393, 440–442 (1998)

http://arxiv.org/abs/1207.4941
http://arxiv.org/abs/1301.5579

Alpha Current Flow Betweenness Centrality�

Konstantin Avrachenkov1, Nelly Litvak2, Vasily Medyanikov3,
and Marina Sokol1

1 Inria Sophia Antipolis, 2004 Route des Lucioles, Sophia-Antipolis, France
2 University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands

3 St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, Russia

Abstract. A class of centrality measures called betweenness centralities
reflects degree of participation of edges or nodes in communication be-
tween different parts of the network. The original shortest-path between-
ness centrality is based on counting shortest paths which go through a
node or an edge. One of shortcomings of the shortest-path betweenness
centrality is that it ignores the paths that might be one or two hops longer
than the shortest paths, while the edges on such paths can be important
for communication processes in the network. To rectify this shortcom-
ing a current flow betweenness centrality has been proposed. Similarly
to the shortest-path betweenness, it has prohibitive complexity for large
size networks. In the present work we propose two regularizations of
the current flow betweenness centrality, α-current flow betweenness and
truncated α-current flow betweenness, which can be computed fast and
correlate well with the original current flow betweenness.

1 Introduction

A class of centrality measures called betweenness centralities reflects degree of
participation of edges or nodes in communication between different parts of the
network. The first notion of betweenness centrality was introduced by Freeman
[8]. Let s, t ∈ V be a pair of nodes in an undirected graph G = (V,E). (In
the present work we restrict our consideration to undirected graphs.) We denote
|V | = n, |E| = m, and let dv be the degree of node v. Let σs,t be the number
of shortest paths connecting nodes s and t and denote by σs,t(e) the number of
shortest paths connecting nodes s and t passing through edge e. Then between-
ness centrality of edge e is calculated as follows:

CB(e) =
1

n(n− 1)

∑
s,t∈V

σs,t(e)

σs,t
. (1)

Computational complexity of the best known algorithm for computing the be-
tweenness in (1) is O(mn) [4]. This limits its applicability for large graphs.

� This research is partially funded by Inria Alcatel-Lucent Joint Lab, by the European
Commission within the framework of the CONGAS project FP7-ICT-2011-8-317672,
see www.congas-project.eu, and by the EU-FET Open grant NADINE (288956).

A. Bonato, M. Mitzenmacher, and P. Pra�lat (Eds.): WAW 2013, LNCS 8305, pp. 106–117, 2013.
c© Springer International Publishing Switzerland 2013

www.congas-project.eu

Alpha Current Flow Betweenness Centrality 107

One of shortcomings of the betweenness centrality in (1) is that it takes into
accounts only the shortest paths, ignoring the paths that might be one or two
steps longer, while the edges on such paths can be important for communication
processes in the network. In order to take such paths into account, Newman [12]
and Brandes and Fleischer [5] introduced the current flow betweenness centrality
(CF-betweenness). In [12,5] the graph is regarded as an electrical network with
edges being unit resistances. The CF-betweenness of an edge is the amount of
current that flows through it, averaged over all source-destination pairs, when one
unit of current is induced at the source, and the destination (sink) is connected
to the ground. This exploits the well known relation between electrical networks
and reversible Markov chains, see e.g., [1,7].

The computational difficulty of Betweenness and the CF-betweenness is that
the computations must be done over the set of all source-destination pairs.
The best previously known computational complexity for the CF-betweenness
is O(I(n − 1) + mn logn) where I(n − 1) is the complexity of the inversion of
matrix of dimension n− 1.

In the present work we introduce new betweenness centrality measures: α-
current flow betweenness (α-CF betweenness) and its truncated version. The
main purpose of these new measures is to bring down the high cost of the CF-
betweenness computation. Our proposed measures are very close in performance
to the CF-betweenness, but they are comparable to the PageRank algorithm [6]
in their modest computational complexity. Our goal is to provide and analyze
efficient algorithms for computing α-CF betweenness and truncated α-CF be-
tweenness, and to compare the α-CF betweenness to other centrality measures.

2 Alpha Current Flow Betweenness

We view the graph G as an electrical network where each edge has resistance α−1,
and each node v is connected to ground node n + 1 by an edge with resistance
(1−α)−1d−1

v . This is in the spirit of PageRank. Indeed, the current (probability
flow) is inversely proportional to the resistance. Thus, the fraction α of the
current from node v flows to the network, while fraction (1 − α) of the current
is directed to the sink. Since the graph is undirected, we use a convention that
(v, w) and (w, v) represent the same arc in E, but depending on the chosen
direction the current along this arc is considered to be positive or negative.

Assume that a unit of current is supplied to a source node s ∈ V , and there

is a destination node t ∈ V connected to the ground. Let ϕ
(s,t)
v denote the

absolute potential of node v ∈ V , if s is the source and t is the destination.

Assume without loss of generality that s = 1 and t = n (ϕ
(1,n)
n = ϕ

(1,n)
n+1 = 0,

i.e., we set the ground potential to zero). The vector of absolute potentials of

the other nodes ϕ(1,n) = [ϕ
(1,n)
1 , ..., ϕ

(1,n)
n−1]T is a solution of the following system

of equations (Kirchhoff’s current law):

[D̃ − αÃ]ϕ(1,n) = b̃, (2)

108 K. Avrachenkov et al.

where D̃ and Ã are the degree and adjacency matrices of the graph without node
n and b̃ = [1, 0, ..., 0]T , see e.g., [5].

In the following theorem we demonstrate that we do not need to solve a
separate linear system for each source-destination pair, it suffies to invert the
coefficient matrix [D − αA].

Theorem 1. The voltage drop along the edge (v, w) is given by

ϕ(s,t)
v − ϕ(s,t)

w = (cs,v − cs,w) +
cs,t
ct,t

(ct,w − ct,v), (3)

where (cv,w)v,w∈V , are the elements of the matrix C = [D − αA]−1.

Proof: Assume again without loss of generality that s = 1 and t = n. The
matrix [D − αA] can be written in the following block structure

D − αA =

[
D̃ − αÃ −αã
−αãT dn

]
, with ã = [a1,n, a2,n, . . . , an−1,n]T .

Then, divide accordingly the elements of the inverse matrix

C = [D − αA]−1 =

[
C̃ c̃
c̃T cn,n

]
.

Writing the relation [D − αA]C = I in the block form yields

[D̃ − αÃ]C̃ − αãc̃T = I, (4)

[D̃ − αÃ]c̃− αãc̃n,n = 0. (5)

Premultiplying equation (4) by [D̃ − αÃ]−1, we obtain

[D̃ − αÃ]−1 = C̃ − α[D̃ − αÃ]−1ãc̃T . (6)

And premultiplying (5) by [D̃ − αÃ]−1, we obtain

α[D̃ − αÃ]−1ã =
1

cn,n
c̃. (7)

Combining both equations (6) and (7) gives

[D̃ − αÃ]−1 = C̃ − 1

cn,n
c̃c̃T ,

and hence ϕ(1,n) = [D̃ − αÃ]−1b̃ = C̃·,1 − c1,n
cn,n

c̃. Thus, we can write

ϕ(1,n)
v − ϕ(1,n)

w = (cv,1 − cw,1) +
c1,n

cn,n
(cw,n − cv,n)

Alpha Current Flow Betweenness Centrality 109

The above expression is symmetric and can be rewritten for any source-target
pair (s, t). That is,

ϕ(s,t)
v − ϕ(s,t)

w = (cv,s − cw,s) +
cs,t
ct,t

(cw,t − cv,t).

Furthermore, since matrix C is symmetric for undirected graphs, we can rewrite
the above equation as

ϕ(s,t)
v − ϕ(s,t)

w = (cs,v − cs,w) +
cs,t
ct,t

(ct,w − ct,v),

which completes the proof. �
The potentials ϕ

(s,t)
v , v, s, t ∈ V , have a clear probabilistic interpretation. Take

again s = 1 and t = n. Then from (2) we readily obtain

ϕ(1,n)
v = eTv [D̃ − αÃ]−1b̃ = eTv [I − αP̃]−1D̃−1b̃, (8)

where ev is a v-th standard basis column vector, and P̃ is the transition
probability matrix for a simple random walk on G with absorption in n. Com-
pare this to the well-known expression for the Personalized PageRank vec-
tor π(v) = (π1(v), . . . , πn(v)) with teleportation preference concentrated in v
and damping factor α: π(v) = (1 − α)eTv [I − αP]−1. Note that the vector
π̃(v) = (1 − α)eTv [I − αP̃]−1 is very similar to π(v), except it nullifies the con-
tribution of node n. Now, recall that b̃ = (1, 0, . . . , 0)T to obtain

ϕ(1,n)
v = (1 − α)−1π̃1(v)d−1

1 .

Furthermore, let 1 be a column vector of ones. Recall that the PageRank vector
with uniform teleportation can be written as π = 1−α

n 1T [I − αP]−1, and define

a similar vector π̃ = 1−α
n 1T [I − αP̃]−1. Then∑

v∈V

ϕ(1,n)
v = n(1− α)−1π̃1d

−1
1 .

It is well-known (see e.g., [9] and references therein) and is also confirmed by
our experiments that the PageRank of a node in an undirected graph is strongly
correlated to the degree of the node. Thus, with any choice of the source, the
sum of the potentials is of similar magnitude, except for the cases when the
destination node has a large contribution into the PageRank mass of the source.

Finally, we note that the source node has the highest potential, and from [1,
Chapter 3, Section 3] we find

ϕ
(1,n)
1 = [P (random walk returns to node 1 before absorption)]−1

= E(# returns to node 1 before absorption).

Now we are ready to define α-CF betweenness. The current I
(s,t)
e through

edge e = (v, w) is equal to α(ϕ
(s,t)
v − ϕ

(s,t)
w). Let

x(s,t)
e = |ϕ(s,t)

v − ϕ(s,t)
w |, (v, w) ∈ E,

110 K. Avrachenkov et al.

be the difference of potentials, that determines the absolute value of the current
on the edge. The α-CF betweenness of edge e is defined by

xα
e =

1

n(n− 1)

∑
s,t∈V,s�=t

x(s,t)
e , e ∈ E. (9)

Further, for each node v ∈ V its α-CF betweenness is defined as the sum of the
α-CF betweenness scores of its adjacent edges:

α-CF betweenness(v) =
∑

(v,w)∈E

xα
(v,w), v ∈ V. (10)

With this definition, the node is central if a relatively large amount of current
flows from this node to the network. This is in accordance to the original CF-
betweenness of [12,5], except we introduced the additional sink ground node n+1.
This mitigates the computational issues because the original CF-betweenness
requires the inversion of the ill-conditioned matrix [D̃− Ã], while for computing
α-CF betweenness we need to invert the matrix [D−αA], which is a well posed
problem, and has many efficient solutions (e.g., power iteration and Monte Carlo
methods). In fact, as we shall show below, we need to obtain just a few rows
of the inverse matrix [D − αA]−1. In the rest of the paper we will discuss the
computation and the properties of the α-CF betweenness.

3 Computation of α-CF Betweenness

Due to the presence of the auxiliary node n + 1, the value of x
(s,t)
e on the right-

hand side of (9) can be computed efficiently with high precision for any source-
destination pair. However, the summation over all n(n − 1) pairs is a problem
of prohibitive computational complexity even for graphs of modest size. The so-
lution is to perform the computations for sufficiently many source-destination
pairs. Since all source-destination pairs contribute equally in (9) we choose to
sample them uniformly at random. This results in the next algorithm for com-
puting the α-CF betweenness.

Algorithm 1.

1. Select a set of pairs of nodes (si, ti), i = 1, ..., N , uniformly at random;
2. For each si and ti, i = 1, ..., N compute the rows csi,·, cti,· (this can be done

either by power iteration or by Monte Carlo algorithm);
3. For each edge e = (v, w) and each pair (si, ti), use (3) to compute

x(si,ti)
e = |ϕ(si,ti)

v − ϕ(si,ti)
w |.

4. Average over source-destination pairs

x̄α
e =

1

N

N∑
i=1

x(si,ti)
e .

Alpha Current Flow Betweenness Centrality 111

Since we chose the pairs (si, ti) uniformly at random then for every edge
e, x̄α

e is just a sample average where all values are between zero and one. Then
using the standard approach for the analysis of the series of independent random
variables we have the following result.

Theorem 2. Algorithm 1 approximates the alpha current flow betweenness in
O(m log(n)ε−2 log(ε)/ log(α)) time to within an absolute error of ε with arbi-
trarily high fixed probability.

Proof: In addition to the proof of Theorem 3 in [5] we just need to note that we
can compute Personalized PageRank with precision ε in O(log(ε)/ log(α)) power
iterations. �

4 Truncated α-CF Betweenness

In the experiments we noticed that the values x
(s,t)
e have a high variance, which

results in poor precision when evaluating xα
e . A closer analysis revealed that

the edges adjacent to the source s receive large values of x
(s,t)
e , especially when

e = (v, s), where v has degree 1, so (v, s) is its only edge, and s has a large
degree. This can be explained using the random walk interpretation. Consider a
PageRank-type random walk on G. At each node, with probability α, the random
walk traverses a randomly chosen edge of this node, and with probability 1−α it
jumps to the sink, node n+ 1. Denote by TB the number of steps of the random
walk needed to hit set B. It follows from Proposition 10 of [1, Chapter 3] that

ϕ
(s,t)
v /ϕ

(s,t)
s = Pv(T{s} < T{t,n+1}), where Pv(·) is a conditional probability

given that the random walk starts at v. Hence, if s is the only neighbor of v

then ϕ
(s,t)
v /ϕ

(s,t)
s = α, the probability of no absorption before reaching s. Thus,

|ϕ(s,t)
s − ϕ

(s,t)
v | = (1 − α)ϕ

(s,t)
s , which can be large if e.g. α = 0.8 because ϕ

(s,t)
s

is the largest potential in the network. In contrast, the original CF-betweenness
corresponds to α = 1, implying that the current in (v, s) is zero.

This prompts us to introduce the truncated version of α-CF betweenness

where for each edge (v, w) we only take into account the scores x
(s,t)
(v,w) if v, w �= s.

In Fig. 1 we present log-linear plots of the empirical complementary distribu-

tion function of x
(s,t)
(v,w) over all pairs (s, t) (solid line), and its truncated version

(dashed line). The plots are given for two edges in the Dolphin social network
described in Section 5 below. Nodes 1 and 36 are central in the network, so the
high α-CF betweenness of (1,36) is expected. Node 60 has degree 1, so edge
(32,60) gains an unwanted high betweenness in the non-truncated version.

Since the truncated α-CF betweenness gives lower scores to the edges con-
nected to nodes of degree 1, one can expect that it has a higher correlation with
CF-betweenness, especially for middle-range values of α. This is confirmed below
in Fig. 2. Moreover, the truncated version removes outliers, and does not have
large spread in values, thus standard statistical procedures, based on the Central
Limit Theorem can be applied. Also, because of the smaller variance, Algorithm 1
achieves a desired precision with a smaller sample of source-destination pairs.

112 K. Avrachenkov et al.

Fig. 1. The number of pairs s, t with x
(s,t)
(v,w) > x over all pairs (s, t) (solid line) and

only pairs with v, w �= s (dashed line)

5 Datasets

We consider the four graphs described below.

Dolphin Social Network. This small graph represents a social network of
frequent associations between 62 dolphins in a community living off Doubtful
Sound, New Zealand [11].

Graph of VKontakte Social Network. We have collected data from a pop-
ular Russian social network VKontakte. We were considering subgraph repre-
senting one of the connected components of people who stated that they were
studying at Applied Mathematics - Control Processes Faculty at the St. Peters-
burg State University in different years. We ran the breadth-first search (BFS)
algorithm starting at one specific node of the network and then anonymized the
obtained users’ data leaving only information about connections between peo-
ple. Collected network consists of 2092 individuals out of total 8859 denoted the
specified faculty in the Education field.

Watts-Strogatz Model. As an artificial example, we used a random graph gen-
erated by the Watts-Strogatz model. We have chosen this model as it combines
high clustering and short average path length, thus different centrality measures
give very different results on this graph. For other random models considered
(Erdös-Rényi and Barabási-Albert) all measures are highly correlated and be-
have very similarly to each other.

Enron Graph. Enron email communication network is a well known test
dataset. It covers all the email communication within a dataset of around half
million emails between Enron’s employees. The nodes are e-mail addresses, and
an edge appears if an e-mail message was sent from one e-mail address to an-
other. Although this graph is small compared to, say, web or Twitter samples, it
is already prohibitively large for computing the CF-betweenness in its original
form.

6 Numerical Results for α-CF Betweenness

To begin with, we compare the two versions of α-CF betweenness (truncated
and without truncation) to the CF-betweenness scores defined as in [12,5].

Alpha Current Flow Betweenness Centrality 113

Table 1. Datasets characteristics

|V | |E| 〈deg(v)〉 diam(G) Cclustering 〈d(u, v)〉
Dolphin social network 62 159 5.13 8 0.259 3.357
VKontakte AMCP social graph 2092 14816 14.16 14 0.338 4.598
Watts-Strogatz 1000 6000 12.00 6 0.422 3.713
(n = 1000, k = 12, p = 0.150)
Enron 36692 183831 10.02 11 0.4970 ≈ 4.8

Fig. 2. Correlations between α-CF betweenness and truncated α-CF betweenness with
CF-betweenness as a function of α

Fig. 2 presents the results for the three smaller graphs, in which the latter
measure could be computed. As a correlation measure we use the Kendall tau
rank correlation. We observe that the truncated version is better correlated with
the CF-betweenness when α is not very close to one. As explained above, this
is because the high probability of absorption in the auxiliary node n + 1 results
in a relatively high current in the edges connected to the source, which is not
necessarily the case if absorption is only possible in the destination node.

Next, we demonstrate that we can compute α-CF betweenness in the Enron
graph, where the computation of CF-betweenness is infeasible (at least, with our
means). We have evaluated α-CF betweenness, non-truncated and truncated,
with α = 0.98. We have run Algorithm 1 using N = 20 · 106 source-destination
pairs. In Fig. 3 we plot the complementary distribution function in log-linear
scale, of the score x0.98

e across the edges.
Note that distribution over edges (the left plot in Fig. 3) does not have a large

spread of values, except one outlier edge that connects two most important hubs.
Since the weights of the edges are comparable, it is to be expected that in this
graph the nodes of large degrees are also the ones with highest betweenness.
Indeed, the Kendall’s tau correlation between α-CF betweenness and degree of

114 K. Avrachenkov et al.

Fig. 3. Distribution of α-CF betweenness scores in the Enron graph, truncated (dashed
line) and not truncated (solid line). Left: 104 · x0.98

e for edges e ∈ E. Right: α-CF
betweenness (v) for v ∈ V . On the x-axis are the values of α-CF betweenness, on the
y-axis the number of edges/nodes with the score larger than x.

the nodes turns out to be 0.808, which is higher than in the three smaller graphs.
The reason can be either the graph size or its structure. In future research we
will investigate how the CF-betweenness score, e.g. its maximum value across
the edges, scales with the graph size in graphs with power law degrees.

We further present correlations between our proposed measures and other
measures of betweenness. These are computed on smaller graphs where we could
obtain exact values of all presented measures, see Tables 2–4. For completeness,
we have also included PageRank (PR) computed with α = 0.85 and a distance-
base centrality measure – Closeness centrality:

CC(v) =
n− 1∑

w∈V,w �=v d(v, w)
,

where d(v, w) is the graph distance between v and w. Betweenness (Between.)
is computed as in (1).

Table 2. Kendall tau for centrality measures in Dolphin social network

Degree PR Closeness Between. CF αCF(0.8) αCF-tr(0.8) αCF(0.98)

Degree 1.000 0.930 0.548 0.665 0.737 0.864 0.855 0.769
PageRank 0.930 1.000 0.458 0.658 0.733 0.872 0.827 0.757
Closeness 0.548 0.458 1.000 0.578 0.575 0.515 0.573 0.591
Between. 0.665 0.658 0.578 1.000 0.829 0.749 0.759 0.828
CF 0.737 0.733 0.575 0.829 1.000 0.798 0.820 0.939
αCF(0.8) 0.864 0.872 0.515 0.749 0.798 1.000 0.925 0.838
αCF-tr(0.8) 0.855 0.827 0.573 0.759 0.820 0.925 1.000 0.876
αCF(0.98) 0.769 0.757 0.591 0.828 0.939 0.838 0.876 1.000

Note that α-CF betweenness is strongly correlated with CF-betweenness. The
Closeness Centrality does not agree well with the CF-betweenness, even the
PageRank and the degrees have a higher correlations with the CF-betweenness

Alpha Current Flow Betweenness Centrality 115

Table 3. Kendall tau for centrality measures in the social graph VKontakte AMCP

Degree PR Closeness Between. CF αCF(0.8) αCF-tr(0.8) αCF(0.98)

Degree 1.000 0.655 0.679 0.521 0.545 0.659 0.668 0.599
PageRank 0.655 1.000 0.375 0.662 0.717 0.833 0.811 0.766
Closeness 0.679 0.375 1.000 0.382 0.356 0.424 0.445 0.395
Between. 0.521 0.662 0.382 1.000 0.761 0.760 0.749 0.778
CF 0.545 0.717 0.356 0.761 1.000 0.812 0.833 0.917
αCF(0.8) 0.659 0.833 0.424 0.760 0.812 1.000 0.938 0.878
αCF-tr(0.8) 0.668 0.811 0.445 0.749 0.833 0.938 1.000 0.903
αCF(0.98) 0.599 0.766 0.395 0.778 0.917 0.878 0.903 1.000

Table 4. Kendall tau for centrality measures in the Watts-Strogatz graph (n=1000,
k=12, p=0.150)

Degree PR Closeness Between. CF αCF(0.8) αCF-tr(0.8) αCF(0.98)

Degree 1.000 0.891 0.462 0.526 0.610 0.643 0.581 0.612
PageRank 0.891 1.000 0.415 0.485 0.565 0.610 0.546 0.567
Closeness 0.462 0.415 1.000 0.655 0.613 0.647 0.666 0.628
Between. 0.526 0.485 0.655 1.000 0.853 0.819 0.852 0.857
CF 0.610 0.565 0.613 0.853 1.000 0.910 0.914 0.979
αCF(0.8) 0.643 0.610 0.647 0.819 0.910 1.000 0.935 0.923
αCF-tr(0.8) 0.581 0.546 0.666 0.852 0.914 0.935 1.000 0.930
αCF(0.98) 0.612 0.567 0.628 0.857 0.979 0.923 0.930 1.000

in real graphs. Recent paper [2] suggests more measures based on distance, and
efficient computation methods for such measures is presented in [3]. In future it
will be interesting to compare these new measures to α-CF betweenness.

7 Centrality Measures and Network Vulnerability

We now consider how well the CF-betweenness and α-CF betweenness can indi-
cate the nodes responsible for maintaining connectivity of a network. We follow
the methodology of [10]. As measures of connectivity we choose the average
inverse distance

< d−1 >=
1

n(n− 1)

∑
u,v∈V,u�=v

1

d(u, v)

and the size of the largest connected component. In the experiment, we remove
the top nodes one by one, according to different betweenness measures, and
observe how the connectivity of the network changes. In Fig. 4 the results are
presented for the inversed average distance.

The results for the social graph VKontakte are especially interesting, because
this network turns out to be less vulnerable to the removal of nodes with large de-
gree than nodes with large betweenness and its modifications (CF-betweenness,

116 K. Avrachenkov et al.

Fig. 4. Inverse average distance as a function of the fraction of removed top-nodes
according to different betweenness centrality measures

α-CF betweenness, and truncated α-CF betweenness). On the small Dolphin
social network there is no much difference in vulnerability with respect to dif-
ferent centrality measures. Finally, on the artificial Watts-Strogatz graph the
CF-betweenness and our proposed two versions of α-CF betweenness find the
nodes that are most essential for the network connectivity.

In Fig. 5 we plot the size of the largest connected components against the
fraction of removed top-nodes. We do not present the plot for the Watts-Strogatz
graph because it remains entirely connected, so the size of its largest connected
component equals to the number of remaining nodes irrespectively of which
nodes are removed first. For the two real graphs, the CF-betweenness is most
efficient in reducing the size of the giant component. On the Dolphin graph, α-
CF betweenness performs closely to CF-betweenness, except the interval when
13-18% of nodes are removed. On the graph VKontakte, α-CF betweenness and
its truncated version perform comparably to the CF-betweenness. Again, on this
graph, degree and Closeness centrality fail to reveal the nodes responsible for
good network connectivity. The α-CF betweenness with α = 0.98 appears to be
a better indicator for vulnerability than the truncated α-CF betweenness with
α = 0.8. The latter however also gives good results, and can be computed easier
on large graphs due to the faster convergence of the power iteration algorithm.

We conclude that both α-CF betweenness and truncated α-CF betweenness
provide an adequate measure for the role of a node in network’s connectivity.
Furthermore, their computational costs are lower than for known measures of
betweenness, and the computations can be done in parallel easily. Thus, α-CF
betweenness can be applied in large graphs, for which computation of other
measures of betweenness is merely infeasible.

Alpha Current Flow Betweenness Centrality 117

Fig. 5. The size of the largest connected component as a function of the fraction
of removed top-nodes according to different betweenness centrality measures. (same
legend as in Fig. 4).

References

1. Aldous, D., Fill, J.: Reversible Markov chains and random walks on graphs (1999)
2. Boldi, P., Vigna, S.: Axioms for centrality. arXiv:1308.2140
3. Boldi, P., Vigna, S.: In-core computation of geometric centralities with hyperball:

A hundred billion nodes and beyond. arXiv:1308.2144
4. Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathematical

Sociology 25(1994), 163–177 (2001)
5. Brandes, U., Fleischer, D.: Centrality measures based on current flow. In: Proceed-

ings of the 22nd Annual Conference on Theoretical Aspects of Computer Science,
pp. 533–544 (2005)

6. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and {ISDN} Systems 30(1-7), 107–117 (1998)

7. Doyle, P.G., Snell, J.L.: Random walks and electric networks. Mathematical Asso-
ciation of America (1984)

8. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry
(1977)

9. Grolmusz, V.: A note on the pagerank of undirected graphs. arXiv preprint
arXiv:1205.1960 (2012)

10. Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex
networks. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 65(5,
pt. 2), 056109 (2002)

11. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.:
The bottlenose dolphin community of Doubtful Sound features a large proportion
of long-lasting associations. Behavioral Ecology and Sociobiology 54(4), 396–405
(2003)

12. Newman, M.E.J.: A measure of betweenness centrality based on random walks.
Social Networks, 1–15 (2005)

Tree Nash Equilibria

in the Network Creation Game

Akaki Mamageishvili, Matúš Mihalák, and Dominik Müller

Institute of Theoretical Computer Science, ETH Zurich

Abstract. In the network creation game with n vertices, every vertex
(a player) buys a set of adjacent edges, each at a fixed amount α > 0. It
has been conjectured that for α ≥ n, every Nash equilibrium is a tree,
and has been confirmed for every α ≥ 273 · n. We improve upon this
bound and show that this is true for every α ≥ 65 · n. To show this, we
provide new and improved results on the local structure of Nash equilib-
ria. Technically, we show that if there is a cycle in a Nash equilibrium,
then α < 65 ·n. Proving this, we only consider relatively simple strategy
changes of the players involved in the cycle. We further show that this
simple approach cannot be used to show the desired upper bound α < n
(for which a cycle may exist), but conjecture that a slightly worse bound
α < 1.3 · n can be achieved with this approach. Towards this conjec-
ture, we show that if a Nash equilibrium has a cycle of length at most
10, then indeed α < 1.3 · n. We further provide experimental evidence
suggesting that when the girth of a Nash equilibrium is increasing, the
upper bound on α obtained by the simple strategy changes is not increas-
ing. To the end, we investigate the approach for a coalitional variant of
Nash equilibrium, where coalitions of two players cannot collectively im-
prove, and show that if α ≥ 41 ·n, then every such Nash equilibrium is a
tree.

1 Introduction

Network creation game has been introduced by Fabrikant et al. [8] as a formal
model to study the effects of strategic decisions of economically motivated agents
in decentralized networks such as the Internet. In such networks, local decisions
including those about infrastructure are decided by autonomous systems. Au-
tonomous systems follow their own interest, and as a result, their decisions may
be sub-optimal for the whole society. Network creation games allow to formally
study the structure of networks created in such a manner, and to compare them
with potentially optimal networks (optimal with respect to the whole society).

In the network creation game, there are n players V = {1, . . . , n}, each repre-
senting a vertex of an undirected graph. The strategy si of a player i is to create
(or buy) a set of adjacent edges, each at a fixed amount α > 0. The played
strategies s = (s1, . . . , sn) collectively define an edge-set Es, and thus a graph
Gs = (V,Es). The goal of every player is to minimize its cost ci, which is the

A. Bonato, M. Mitzenmacher, and P. Pra�lat (Eds.): WAW 2013, LNCS 8305, pp. 118–129, 2013.
c© Springer International Publishing Switzerland 2013

Tree Nash Equilibria in the Network Creation Game 119

amount paid for the edges (creation cost), plus the total distances of the player
to every other node of the resulting network G (usage cost), i.e.,

ci(s) = α · |si|+
n∑

j=1

dist(i, j),

where dist(i, j) denotes the distance between i and j in the resulting network G.
A strategy vector s = (s1, . . . , sn) is a Nash equilibrium if no player i can

change the set si of created edges to another set s′i and improve its cost ci.
Abusing the definition, the resulting graph Gs itself is called a Nash equilibrium,
too, and we define its (social) cost c(G) to be the cost c(s), i.e., the cost of the
corresponding strategy vector s. The social cost c(s) of strategy vector s is the
sum of the individual costs, i.e., c(s) =

∑n
i=1 ci(s). It is a trivial observation to

see that in any Nash equilibrium Gs, no edge is bought more than once. From
now on, we only consider such strategy vectors, and observe then that

c(s) :=
n∑

i=1

ci(s) = α · |Es|+
n∑

i=1

n∑
j=1

d(i, j).

A graph G = (V,E) can be created by many strategy vectors s (precisely
in 2|E| many ways, because every edge in E can be bought by exactly one of
its endpoints), but each of such realizations has the same social cost. Graph
G∗ = (V,E) is an optimum graph, if it minimizes the social cost c(s) (for any
strategy vector s for which Gs = G).

Let N denote the set of all Nash equilibria of a network creation game on n
vertices and edge-price α. The price of anarchy (PoA) of the network creation
game is the ratio

PoA = max
s∈N

c(Gs)

c(G∗)
.

Price of anarchy expresses the (worst-case) loss of the quality of a network that
the society could achieve.

In a series of papers [8,1,6,9] it has been shown that the price of anarchy of
the network creation game is O(1), i.e., a constant independent of both n and
α, for every value α > 0 with the exception of the range n1−ε < α < 273 · n,
where ε = Ω(1

log n). For the value of α with n1−ε < α < 273 · n, an upper

bound of 2
n
√

logn on the price of anarchy is known (while no Nash equilibrium
with considerably large social cost is known). It is conjectured, however, that
the price of anarchy is constant also in this range of α. It remains a major open
problem to confirm or disprove this conjecture. It is certainly of interest to note
that there are several variants of the network creation game (see, e.g., [2,4,7,3]),
but in none of these, with the exception of [5], the price of anarchy could be
shown to be constant.

Understanding the structure of Nash equilibria has proven to be important
in bounding the price of anarchy. Fabrikant et al. [8] showed that the social cost
of any tree G in Nash equilibrium is upper-bounded by O(1) · c(G∗). Therefore,

120 A. Mamageishvili, M. Mihalák, and D. Müller

the price of anarchy is O(1) for all values of α for which every Nash equilibrium
is a tree. It has been shown that every Nash equilibrium is a tree for all values
of α greater than n2, 12n logn, and 273n, respectively, in [8],[1], and [9]. It
has been conjectured that every Nash equilibrium is a tree for every α ≥ n.
Since for α = n/2, non-tree Nash equilibria are known, this tree conjecture is
asymptotically tight.

In this paper, we make steps in the direction of resolving the tree conjecture.
We first tighten the tree conjecture and provide a construction of a non-tree
Nash equilibrium for every α = n − 3 (thus, showing that, asymptotically, one
cannot hope to show that every Nash equilibrium is a tree for some value α < n).
We then apply a “linear-programming-like” approach to show that for α ≥ 65n,
every Nash equilibrium is a tree. To show this, we obtain new structural results
on Nash equilibria and combine them with the previous approach of [9]. Towards
the end, we make further steps towards the conjecture. We show that if α ≥ n,
then there is no non-tree Nash equilibrium containing exactly one cycle. We then
apply the “linear-programming-like” approach again to show that the girth of
every non-tree Nash equilibrium (for any α ≥ n) is at least 6. Using the same
ideas, we show that if a non-tree Nash equilibrium has girth at most 10, then
α ≤ 1.3n. By further experimental results, we conjecture that this holds for any
girth, i.e., that non-tree Nash equilibria can appear only for α ≤ 1.3n.

2 Preliminaries

In the following, we will often denote the considered Nash equilibrium graph
Gs = (V,Es) of a network creation game with α > 0 simply as G = (V,E). Even
though the graph Gs is undirected, we will often direct the edges to express the
identity of the player which bought the edge in s; An edge {u, v} directed from
u to v denotes the fact that u bought/created the edge in s.

Every non-tree G contains a cycle. Let c be the length of a shortest cycle C in
G, and let a0, a1, . . . , ac−1 be the players that form one such shortest cycle, and
where {ai, ai+1} ∈ E for every i = 0, 1, . . . , c−1 (where indices on vertices of the
cycle are in the whole paper to be understood modulo c). Observe the crucial
property of a shortest cycle C: the distance between ai and aj in the graph G is
equal to the distance between ai and aj on the cycle C.

We will consider the players on the cycle C and their strategy-changes that
involve only the c edges of the cycle. For each strategy-change s′ai

of player ai, we
obtain an inequality ci(s) ≤ ci(s1, . . . , s

′
ai
, . . . , sn) stating simply the fact that in

a Nash equilibrium s, player ai cannot improve by changing its strategy. We will
often express such an inequality in the form of “SAVINGS” ≤ “INCREASE”,
where “SAVINGS” denotes the parts of ci(s) that decreased their value in ci(s

′),
and “INCREASE” denotes the parts of ci(s) that increased their value in ci(s

′).
For example, assume that ai buys the edge e = {ai, ai+1} (i.e., e ∈ si), and let
us consider the strategy change where ai deletes the edge e (i.e., s′i = si \ {e}).
Recall that ci(s) = α · |si| +

∑
j d(i, j). Then, in such a strategy change, the

“SAVINGS” are clearly on the edge-creation side, i.e., the player ai saves α for

Tree Nash Equilibria in the Network Creation Game 121

s-1 s-1

Fig. 1. Non-tree Nash equilibrium for n = 2s + 3 players and α = n − 3. An edge
directed from a node u to a node v denotes that u buys the edge.

not paying for the edge e. At the same time, some distances of player i may have
increased – the distance to a vertex v increases, if in Gs every shortest path from
ai to v uses the deleted edge e. But the distance to v could have increased by
at most c− 2 (as before, ai needed to go to vertex ai+1 but now the vertex ai+1

can be reached “around” the cycle). Because of the Nash equilibrium property
of s, we have “SAVINGS” ≤ “INCREASE”, which implies α ≤ (c − 2)(n − 1)
(as the distance to at most n− 1 vertices could have increased).

In the following, we will use slightly more involved forms of the just described
inequalities. For that reason, we will partition the vertices according to their
distances to the vertices from the cycle. Let us fix a vertex v ∈ V . Let G \C be
the graph G without the c edges of the cycle C. Let us denote the distances of v
to the vertices a0, a1, . . . , ac−1 in G \ C by the vector d(v) = (d0, d1, . . . , dc−1),
respectively, where di = ∞ if ai and v are disconnected in G \ C. We call di
the outer distance of v to ai in the Nash equilibrium G, and d the vector of
outer distances of v in G. We now partition the vertices of V by this vector
of outer distances. We will coarsen the partition in the following way. Observe
that ds(ai, v) in Gs is now equal to minj(ds(ai, aj) + dj), because there always
is a shortest path from ai to v that first uses a part of the cycle C (until vertex
aj), leaves C and never comes back to C. Therefore, minj dj ≤ ds(ai, v) ≤
(c− 1) + minj dj). Moreover, for any strategy change s′i of player ai which leaves
ai connected by an edge to a vertex of C, we still have minj dj ≤ ds′(ai, v) ≤
(c−1)+minj dj (because there is a path from ai to the vertex aj of smallest entry
dj using the edge and the remaining of the cycle). Because we are interested in the
changes of the distances from ai, i.e., in the value of Δ := ds′(ai, v)−ds(ai, v), we
can normalize the vector d(v) by subtracting minj dj from each of the elements
d0, d1, . . . , dc−1 (which does not change the value of Δ). Observe that after the
normalization, there is an entry di equal to zero. We will “normalize” the entries
further more. Since we are interested in the value Δ, we can handle all entries
dj ≥ c − 1 in the same way: they do not have any influence on Δ at all (no
shortest path from vertex ai, i �= j, will ever use aj to reach vertex v). We will
therefore further modify the vector d by substituting every entry dj ≥ c−1 with
the value c− 1.

This gives partition of all vertices into groups Vd, where each group has as-
sociated vector of “normalized” outer distances d = (d0, · · · , dc−1), one of the
distances is necessarily equal to 0 and all the distances are upper bounded by
c−1. Vertices which have vector of outer distances d′ containing numbers greater
than c − 1 are associated with the group having a vector d′′ obtained from d′

122 A. Mamageishvili, M. Mihalák, and D. Müller

where all entries greater than c− 1 are changed to c− 1. In this way, there are
t = cc − (c− 1)c groups. We denote the set of all “normalized” distance vectors
by D. Trivially, as Vd, d ∈ D, form a partition of V ,

∑
d∈D |Vd| = n.

3 Bounds on α for Existence of Cycles

We first give in Fig. 1 a construction of a non-tree Nash equilibrium graph for
n = 2s + 3 vertices, and α = 2s = n− 3, for any integer s. This thus shows that
the conjecture “for α ≥ n, all Nash equilibria are trees” cannot be improved to
“for α ≥ (1 − ε)n, all Nash equilibria are trees”. We now proceed and give a
lower bound on the length of a shortest cycle in any Nash equilibrium.

Theorem 1. The length c of a shortest cycle C in any Nash equilibrium is at
least 2α

n + 2.

Proof. We distinguish two cases. First, assume that there is a player, which
buys both its adjacent edges on the cycle C. Without loss of generality assume
that this player is a0. Consider the strategy change where a0 deletes both these
edges {a0, a1} and {a0, ac−1} and buys an edge towards player ai on the cycle,
i = 2, . . . , c − 2. The player cannot improve by such a change, and therefore
“SAVINGS” ≤ “INCREASE”. Here, the player saves at least α (by buying one
edge less). Let us denote the increase of distances of player a0 to the players of
the group Vd by ci,d. Then we get that α ≤∑

d∈D δi,d|Vd|. Summing up all the

c− 3 inequalities, one for every i, we get (c− 3)α ≤∑c−2
i=2

∑
d δi,d|Vd|.

We now show that for every d, the coefficient
∑

i δi,d at |Vd| is at most (c −
2)(c − 3)/2. Consider arbitrary d = (d0, d1, . . . , dc−1) of the outer distances of
the vertices in Vd. Clearly, the strategy change of a0 increases its distances to Vd

iff every shortest path from a0 to Vd goes through the deleted edges. Thus, we
can assume (for the worst-case) that d0 = c− 1. Assume that one shortest path
(in Gs) leaves the cycle at ae, e ∈ {1, . . . , c− 2}. In the new graph Gs′ , player a0

can always use the new edge {a0, ai} and then go to ae on the remainder of the
cycle C. Thus, the increase of distances δi,d is at most (1 + |i− e|)− 1 = |i− e|.
In total, we obtain

∑c−2
i=2 δi,d ≤

∑
i |i − e| ≤ ∑

i(i − 1) = (c − 3)(c − 2)/2, as

claimed. Now, since
∑

d∈D |Vd| = n, we finally get that α ≤ (c−2)
2 n, which gives

the claimed c ≥ 2α
n + 2.

Consider now the second case where no player buys two of its adjacent edges
in C, i.e., every player buys exactly one edge. Without loss of generality assume
that every player ai buys the edge {ai, ai+1}. For each player i, we consider the
strategy change of deleting the edge {ai, ai+1}. Similarly to the previous case, we

obtain α ≤ ∑
d∈D δi,d|Vd|. Summing for every i, we get cα ≤∑c−1

i=0

∑
d δi,d|Vd|.

We show this time that
∑c−1

i=0 δi,d, the coefficient at |Vd|, is upper bounded by
1+2+· · ·+(c−2) = (c−2)(c−1)/2. Consider an arbitrary d = (d0, . . . , dc−1) ∈ D,
and assume without loss of generality that d0 = 0. For every player ai, δi,d is at
most i− 1, because the worst-case increase in a distance of player ai to vertices
Vd happens when all shortest paths from ai used the deleted edge {ai, ai+1}.

Tree Nash Equilibria in the Network Creation Game 123

u
0

1

2

3

4

5

u
0

1

2

3

4

5

S(0)

S(1)

S(2)

S(3)

S(4)

S(u) S(u)S(0)

S(1)

S(2)

S(3)

S(4)

6 6

(a) (b)

Fig. 2. The 5-Neighborhood N5(u) of vertex u

But because after the deletion, there is an alternative path from ai to Vd using
a0, the increase is at most i− 1. Thus, summing over all i, the total increase in
distances to Vd is at most 0 + 1 + 2 + · · ·+ (c− 2) = (c− 2)(c− 1)/2 as claimed.
Plugging this into our inequality, cα ≤ ∑

i

∑
d δi,d|Vd| and using the fact that∑

d |Vd| = n, we obtain that c > 2α
n + 2. ��

Let H be a non-trivial biconnected component of a non-tree Nash equilibrium,
i.e., an induced subgraph of H of at least three vertices containing no bridge.
For any vertex v ∈ H , let S(v) be the set of vertices which do not belong to H ,
and which have v as the closest vertex among all vertices in H . For any vertex
u ∈ H , we define degH(u) to be the degree of vertex u in the graph induced by
H . Furthermore, we define Nk(u) to be the k-th neighborhood of u in H , i.e.,
Nk(u) := {w ∈ H | d(u,w) ≤ k}. The following lemma has been shown in [9].
We will use it to prove the subsequent lemma.

Lemma 1 ([9]). If u, v ∈ V (H) are two vertices in H with d(u, v) ≥ 3 such
that u buys the edge to its adjacent vertex x in a shortest u− v-path and v buys
the edge to its adjacent vertex y in that path, then degH(x) ≥ 3 or degH(y) ≥ 3.

Lemma 2. If H is a biconnected component of G, then for any vertex u, its
neighborhood N5(u) in H contains a vertex v with degH(v) ≥ 3.

Proof. Assume that this is not true. Then the 5-neighborhood N5(u) of vertex
u is formed by two disjoint paths. (The case that the 5-neighborhood forms a
cycle is excluded by Proposition 1 stating that no Nash equilibrium for α > n
contains exactly one cycle). We consider two cases. First, we will assume that at
least one of the two paths starting at u is directed away from u (see Fig. 2(a)).
In the second case, in each of the two paths, there has to be a vertex which buys
an edge towards u. It follows from Lemma 1 that these two vertices are the two
neighbors of u in N5(u) (see Fig. 2(b)).

In the first case, there is a sequence of five edges directed away from u, with
the naming like in Fig. 2(a)). Let su := |S(u)|, si = |S(i)| for 0 ≤ i ≤ 4. Then,

s0 ≥ s1 + s2 + s3 + s4, s1 ≥ s2 + s3 + s4, s2 ≥ s3 + s4, s3 ≥ s4, s4 ≥ k, (1)

124 A. Mamageishvili, M. Mihalák, and D. Müller

where k is the number of vertices which are descendants of vertex 5 in the
breadth-first-search (BFS) tree rooted at vertex 3. We can obtain these in-
equalities by considering the following strategy changes of the players u and
i, 0 ≤ i ≤ 3: delete the edge directed away from u, and buy a new edge to the
next vertex in the sequence; now simply apply the “SAVINGS” ≤ “INCREASE”
principle.

We first assume that vertex 5, the neighbor of vertex 4 in H , has degree at
least 3 in H (i.e., it has at least two children in the BFS tree rooted at vertex
3). The case when the degree-3 vertex appears later along the path is easier and
will be discussed later. We now distinguish two cases. First, we assume that one
of the children of vertex 5 in the considered BFS tree buys an edge to vertex 5.
Let us call it vertex 6. The other case is when vertex 5 buys all the edges to its
children.

Consider the following strategy change: vertex 6 deletes an edge towards ver-
tex 5 and buys new edge towards vertex u. This decreases its distance cost at least
to vertices in S(0) by 4, and to vertices in S(1) by 2, whilst increases distances
to vertices in the set of descendants of 5 in the BFS tree rooted at 3 by at most
6, to the vertices in S(4) by 4 and to the vertices in S(3) by two. By this strat-
egy change distance from vertex 6 to any other vertex is not increased, because
vertex u is located deeper than vertex 6 in the BFS tree rooted at vertex 3. But
then according to the chain of inequalities (1) we get 4s0 + 2s1 > 6k+ 4s4 + 2s3,
and thus the player 6 can improve, a contradiction.

In the case where vertex 5 buys all edges towards its children, consider the
following strategy change of vertex 5: delete all the edges to its children (in the
considered BFS tree) and buy one edge to vertex u. By this, the “SAVINGS” are
at least α. Furthermore, since H is biconnected, the graph remains connected.
Distances from vertex 5 are increased only to vertices in the set K – the set of the
vertices which are descendants of vertex 5 in the BFS tree rooted at vertex 3. This
“INCREASE” is at most 2 · diam(H), where diam(H) is the diameter of H . By
the “SAVINGS” ≤ “INCREASE” principle, we get that α ≤ 2 ·diam(h)k. At the
same time, α ≥ (rad(H)− 1)s0, where rad(H) is the radius of H , as otherwise a
vertex at distance rad(H) from vertex 0 could buy an edge towards vertex 0 and
decrease its cost. Combining these two inequalities with the inequality s0 ≥ 8k,
which is obtained from (1), we get that 8(rad(H) − 1)k ≤ 2 · diam(H)k ≤
4 · rad(H)k, which is a contradiction.

The second case depicted in Fig. 2(b) is analyzed in the very same way, the
only change is that now the heaviest component is S(u). The chain of inequalities
is similar to (1):

su ≥ s0 + s1 + s2 + s3, s1 ≥ s2 + s3 + s4, s2 ≥ s3 + s4, s3 ≥ s4, s4 ≥ k, (2)

where the notation is the same as in the first case. We obtain that su ≥ 7k,
and subsequently, arguing about the vertex at distance rad(H) from u, the
contradiction 7(rad(H) − 1)k ≤ 2 · diam(H)k ≤ 4rad(H)k.

Finally, if there is a longer sequence of vertices with degree 2 than the con-
sidered sequence of length 5 of edges directed away from u, then we can only

Tree Nash Equilibria in the Network Creation Game 125

u

0

1

2

3

u

0

1

2

3

(a) (b)

Fig. 3. The 3-Neighborhood N3(u) of vertex u

consider the last 5 edges (all directed away from u) and apply the very same
reasoning. ��

We can strengthen the result if we consider stronger version of a Nash equilib-
rium in which no coalition of two players can change their strategies and improve
their overall cost. We call such an equilibrium a 2-coalitional Nash equilibrium.

Lemma 3. The 3-neighborhood N3(u) of any vertex u of a biconnected compo-
nent H of a 2-coalitional Nash equilibrium has a vertex of degree at least 3.

Proof. Assume the converse. Similarly to the proof of Lemma 2, there are two
different cases of how the neighborhood of vertex u looks like (see Fig. 3(a)
and (b); notation is also the same as in Lemma 2). In both cases consider the
coalition of players 0 and 2. Consider the following strategy changes: player 0
deletes edge (0, 1) and instead buys edge (0, 3), whilst player 2 deletes edge (2, 3)
and buys edge (2, 0). This strategy change does not change the player coalition’s
creation cost (in terms of α). Among the vertices S(0), S(1), S(2) and S(u) this
strategy change decreases coalition’s usage cost by su + s0 + s2 and increases by
s1. Other vertices are partitioned by their shortest distances to vertices 0 and
2, lets assume that for any vertex v which does not belong to S(0), S(1), S(2)
or S(u) shortest distance to vertex 0 is x and shortest distance to vertex 2 is
y. Obviously |x − y| ≤ 2. If |x − y| > 0 then there is no increase in the usage
cost of coalition towards vertex v by this strategy change. The only possibility
of increase is when x = y, but in that case v is the descendant of vertex 3 in
the BFS tree rooted at vertex 1. Similarly to Lemma 2, we denote k to be the
number of vertices which are descendants of vertex 3 in the BFS tree rooted at
vertex 1. Analogously to the proof of Lemma 2, the following inequalities hold
for the case depicted in Fig. 3(a): s0 ≥ s1 + s2, s1 ≥ s2 and s2 ≥ k, whilst for
the case depicted in Fig. 3(b), we have su ≥ s0 +s1 +s2, s1 ≥ s2, s2 ≥ k. In both
cases su + s0 + s2 > s1 + k, which results in a contradiction. ��

The following two lemmas are crucial for proving the main result of the paper.
The first lemma has been proven in [9]. The second lemma strengthens a similar
lemma from [9]. Its proof uses the result of Theorem 1.

Lemma 4 ([9]). If the t-neighborhood of every vertex of a biconnected compo-
nent H of a Nash equilibrium contains a vertex of degree at least 3, then the
average degree of H is at least 2 + 1

3t+1 .

126 A. Mamageishvili, M. Mihalák, and D. Müller

Lemma 5. If α > n, then the average degree of a biconnected component H of
a Nash equilibrium graph is at most 2 + 4n

α−n .

Proof. Among all vertices of the equilibrium graph G, consider a vertex with the
smallest usage cost and let this vertex be v. Consider a BFS tree T rooted in v.

Let T ′=T∩H . Then the average degree of H is deg(H)= 2|E(T ′)|+2|E(H)\E(T ′)|
|V (T ′)| ≤

2 + 2|E(H)\E(T ′)|
|V (T ′)| . We now bound |E(H) \E(T ′)|. We consider vertices that buy

an edge in E(H)\E(T ′) and call them shopping vertices. It is easy to see that no
shopping vertex buys more than 1 edge, because if any of them buys two or more
edges, it is better for it to delete all of the edges and buy 1 new edge towards v:
this decreases its creation cost by at least α, whilst increases its usage cost by at
most n. It is thus enough to bound the number of shopping vertices. For this, we
prove that the distance in the tree T ′ between any two shopping vertices is lower
bounded by α−n

n , which then implies that there can not be too many shopping

vertices. Namely, the number of shopping vertices is at most 2nV (T ′)
α−n . Assigning

every node from H to the closest shopping vertex according to the distance in T ′

forms a partition of H , where every part contains exactly one shopping vertex.
As the distance in T ′ between shopping vertices is at least α−n

n , the size of every
part is at least α−n

2n .
We assume for contradiction that there is a pair of shopping vertices u1 and

u2 such that dT ′(u1, u2) < α−n
n . Let u1 = x1, · · · , xk = u2 be the unique path

from u1 to u2 in T ′, and (u1, v1) and (u2, v2) be the edges bought by u1 and u2

in E(H) \ E(T ′). Observe first that vertices v1 and v2 are not descendants of
any vertex xi, otherwise paths vj −xi and xi−uj together with an edge (uj, vj)
form a cycle of length at most 2(dT ′(u1, u2) + 1) < 2α

n + 2 which contradicts
Theorem 1. Thus, x0 := v1, x1, . . . , xk, xk+1 := v2 is a path. Since x1 buys edge
(x0, x1) and xk buys edge (xk, xk+1), there is a vertex xi such that xi buys both
of its adjacent edges (xi−1, xi) and (xi, xi+1). Consider the following strategy
change for player xi: delete the two adjacent edges and buy a new edge to vertex
v. In this way xi decreases its creation cost by α.

We now show that Unew(xi), the usage cost of xi in the new graph, is less than
UG(xi), the usage cost in the original graph, plus α, which gives a contradiction.
It is easy to observe that Unew(xi) ≤ n+Unew(v), since xi can always go through
v in the new strategy to any vertex. We now consider Unew(v). Note that only the
vertices in the path u1−u2 and their descendants can increase their distance to v
by the strategy change of xi. Let y be any such vertex. If the closest ancestor of y
on the path is xi, then dnew(v, y) ≤ dG(v, y), so there is no increase. We assume,
without loss of generality, that the closest ancestor (of y) xj has an index less
than i, i.e., j < i. Then the following chain of inequalities and equalities hold:
dnew(v, y) ≤ dnew(v, x0) + dnew(x0, xj) + dnew(xj , y) = dG(v, x0) + dG(x0, xj) +
dG(xj , y) (the inequality is a triangle inequality, whilst the equality holds because
x0 is not a descendant of any vertex on the path in the new graph). Since
dG(v, y) = dG(v, xj)+dG(xj , y), the difference between new and initial distances
is dnew(v, y) − dG(v, y) = dG(v, x0) + dG(x0, xj) − dG(v, xj) ≤ 2dG(x0, xj) ≤
dG(u1, u2) ≤ 2 · dT ′(u1, u2) ≤ 2(α−n)

n (where the latter inequality is implied by

Tree Nash Equilibria in the Network Creation Game 127

our assumption). We need to bound the number of possible y’s. Path u1 − u2

does not go through vertex v, so the number of possible y’s is bounded by the
size of the subtree of T of a child of v that contains this path. We prove that
the size of any subtree of a child of v in T ′ is at most n

2 .
Consider any child t of v in T , and consider the subtree of T rooted in t. Let

the b be the number of vertices in the subtree, and let a be the number of other
vertices of T . Let c1 be the usage cost of t in the subtree, and let c2 be the usage
cost of v (!!) in the other part of the tree T . Then the usage cost of t in G is upper
bounded by c1 + a + c2, whilst the usage cost of v is exactly b + c1 + c2. Since
v is the vertex with the minimal usage cost, we have c1 + a + c2 ≥ b + c1 + c2.
Since a + b = n, we get that b ≤ n

2 .
Since y was chosen arbitrarily, the increase of the usage cost for v is less than

n
2

2(α−n)
n = α−n, and therefore Unew(v) < UG(v)+α−n which is a contradiction.

��
Combining Lemmas 2 and 3 with Lemmas 4 and 5 gives the main result.

Theorem 2. For α ≥ 65n every Nash equilibrium graph is a tree.

Theorem 3. For α ≥ 41n every 2-coalitional Nash equilibrium graph is a tree.

4 Small Cycles and Experimental Results

In this section we consider equilibrium graphs that have small girth c, and show
that they exist only for small values of α. We start with an observation that
limits the girth of equilibrium graphs containing exactly one cycle.

Proposition 1. Let G be a Nash equilibrium graph containing a k-cycle C =
{v0, v1, . . . , vk−1}, and F the graph where the edges of C are removed from G. If
F consists of k connected components, then k < 6.

Proof. Assume for contradiction that k ≥ 6. For 0 ≤ i < k let si > 0 denote the
number of vertices in the connected component of F which contains vi. If the
edge (v0, vk−1) is bought by the player v0, then she could replace (v0, vk−1) by
(v0, vk−2). By doing this, her creation cost will remain the same, her distances
to sk−3 + sk−2 vertices decrease by 1, but her distances to sk−1 vertices increase
by 1. If the edge (v0, vk−1) is bought by the player vk−1, this player could re-
place (vk−1, v0) by (vk−1, v1). By this change of her strategy, her distances to s0

vertices would increase, but she could decrease her distances to s1 + s2 vertices.
Since we consider a Nash equilibrium, we deduce that sk−3 + sk−2 ≤ sk−1

ors0 ≥ s1 + s2. Applying this reasoning for every edge of C, we get that for
every i,

si−3 + si−2 ≥ si−1 or si ≥ si+1 + si+2, (3)

where 0 ≤ i < k (recall that indexes are considered modulo c). The two inequal-
ities si ≥ si+1 + si+2 and si−1 + si ≤ si+1 cannot hold simultaneously. Yet, 3
forces one of the inequalities si−1 + si ≤ si+1 and si+2 ≥ si+3 + si+4 to be true,

128 A. Mamageishvili, M. Mihalák, and D. Müller

so we have that inequality si ≥ si+1 + si+2 implies si+2 ≥ si+3 + si+4 for any
0 ≤ i < k. Without loss of generality we can assume that the edge (vk−1, v0)
was bought by v0. Then we get the chain of inequalities s2i ≥ s2i+1 + s2i+2 for
every i, which is obviously a contradiction. ��

We now describe our computer-aided approach for upper-bounding α in case
of an existence of small cycles in Nash equilibrium graphs. In our approach, we
consider a non-tree Nash equilibrium whose smallest cycle has a fixed length c,
and we construct a linear program asking for a maximum α, whilst satisfying
inequalities of the type “SAVINGS” ≤ “INCREASE”, which we create by con-
sidering various strategy changes of the players of the cycle. The partition of
vertices of a Nash equilibrium graph into vertices Vd, d ∈ D, gives a variable |Vd|
for every d. The number of variables is t = cc − (c− 1)c. We enumerate over all
possible (meaningful) directions of the edges on the considered cycle, and solve
the linear program, which gives us an upper bounds on α for every direction of
edges. The largest such value is then obviously an upper bound on α for any
direction, and thus for any Nash equilibrium containing a cycle of the fixed size.

The number of all possible directions is equal to 2c, but this number can be
decreased to at most 2c−3 +2 by simple observations that all hold without loss of
generality. We can assume that the number of right edges is at least the number
of left edges, where an edge (vi, vi+1) is called a right edge, and (vi+1, vi) is called
a left edge. Furthermore, we can also assume that the edge (v0, v1) is a right edge.
If c is even, every considered cycle can be made (by renaming arguments) to fall
into one of the following three classes: (1) the edges along the cycle alternate
between right and left, or (2) all edges are right edges, or (3) the first two edges
are right edges and the last edge is a left edge. The same holds when c is odd,
with the exception of the alternating edges.

Our linear program contains all inequalities implied by the strategy changes
described in Theorem 1. We furthermore add inequalities for strategy changes
of buying one extra edge, and for swapping an edge of the cycle with a new
edge towards an vertex of the cycle. We add the equality

∑
d∈D |Vd| = 1 (which

expresses the fact that the variables should sum up to n). Then, the value of a
variable |Vd| expresses the fraction of all vertices (instead of the absolute number
of vertices).

We used the GUROBI linear-programming solver to maximize α for every
generated linear program. The largest such value thus gives an upper bound on
α for which a cycle of size c can exist. Due to the huge number of variables,
we could not solve the linear program for c > 7, because already for c = 8,
the number of variables was more than 107, while the number of constraints is
Θ(c2). We have made further tweaks to the code, which allowed us to speed up
the computation. We observed that many variables had the same coefficients in
every generated constraint, and thus at most one such variable is relevant for
obtaining the solution of the linear program. We have considered the variables
one by one, and added only those having unique coefficients in the considered
constraints. To check for uniqueness, we used hashing, as otherwise just creating
the matrix of the linear program was too slow. The obtained compression of the

Tree Nash Equilibria in the Network Creation Game 129

number of variables was huge: for c = 10, instead of nearly 1010 variables we
obtained only around 105.

The obtained upper bounds on α are quite close to n. For girth c ≤ 7, we
obtain α ≤ 1, which corresponds to α ≤ n if we required that

∑
d∈D |Vd| = n

(instead of
∑

d∈D |Vd| = 1). For girth c = 8, α is upper bounded by 191
185 , for girth

c = 9, α is upper bounded by 13
12 , whilst for girth c = 10, α is bounded by 1.2.

We have performed further experiments with larger values of c, but did not
consider all orientations of edges (as this was out of our computational power).
Furthermore, since the number of variables is increasing super-exponentially,
instead of considering all variables, for larger values of c we have considered only
variables |Vd| that have only 0’s and (c − 1)’s as distances in vector d, that is,
we have considered 2c variables. Additionally, we have taken extra 2c random
variables. We have all values of c up to 15. Upper bounds for α obtained using
only these variables are very close to the real bounds for c ≤ 10 (the difference for
k ≤ 10 is between 0 and 0.01). The largest upper bound of 1.3n on α appears for
c = 13, and then only decreases, which is why we conjecture: the upper-bound
of α ≤ 1.3n can be proved by the considered strategy changes.

Acknowledgements. This work has been partially supported by the Swiss
National Science Foundation (SNF) under the grant number 200021 143323/1.

References

1. Albers, S., Eilts, S., Even-Dar, E., Mansour, Y., Roditty, L.: On Nash equilibria
for a network creation game. In: Proc. 17th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 89–98. ACM, New York (2006)

2. Alon, N., Demaine, E.D., Hajiaghayi, M.T., Leighton, T.: Basic network creation
games. SIAM Journal on Discrete Mathematics 27(2), 656–668 (2013)

3. Bilò, D., Gualà, L., Proietti, G.: Bounded-distance network creation games. In:
Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 72–85. Springer, Heidelberg
(2012)

4. Brautbar, M., Kearns, M.: A clustering coefficient network formation game. In:
Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 224–235. Springer, Heidelberg
(2011)

5. Demaine, E.D., Zadimoghaddam, M.: Constant price of anarchy in network creation
games via public service advertising. In: Kumar, R., Sivakumar, D. (eds.) WAW
2010. LNCS, vol. 6516, pp. 122–131. Springer, Heidelberg (2010)

6. Demaine, E.D., Hajiaghayi, M., Mahini, H., Zadimoghaddam, M.: The price of an-
archy in network creation games. ACM Trans. Algorithms 8(2), 1–13 (2012)

7. Ehsani, S., Fazli, M., Mehrabian, A., Sadeghian Sadeghabad, S., Safari, M.,
Saghafian, M., ShokatFadaee, S.: On a bounded budget network creation game.
In: Proc. 23rd ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pp. 207–214 (2011)

8. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.H., Shenker, S.: On a net-
work creation game. In: Proc. 22nd Annual Symposium on Principles of Distributed
Computing (PODC), pp. 347–351. ACM, New York (2003)

9. Mihalák, M., Schlegel, J.C.: The price of anarchy in network creation games is
(mostly) constant. Theory Comput. Syst. 53(1), 53–72 (2013)

Fast Low-Cost Estimation of Network Properties

Using Random Walks�

Colin Cooper, Tomasz Radzik, and Yiannis Siantos

Department of Informatics, King’s College London, WC2R 2LS, UK

Abstract. We study the use of random walks as an efficient estimator
of global properties of large undirected graphs, for example the number
of edges, vertices, triangles, and generally, the number of small fixed
subgraphs. We consider two methods based on first returns of random
walks: the cycle formula of regenerative processes and weighted random
walks with edge weights defined by the property under investigation. We
review the theoretical foundations for these methods, and indicate how
they can be adapted for the general non-intrusive investigation of large
online networks.

The expected value and variance of first return time of a random walk
decrease with increasing vertex weight, so for a given time budget, re-
turns to high weight vertices should give the best property estimates. We
present theoretical and experimental results on the rate of convergence
of the estimates as a function of the number of returns of a random walk
to a given start vertex. We made experiments to estimate the number of
vertices, edges and triangles, for two test graphs.

1 Introduction

Recent developments in technology have allowed the creation of large networks,
available globally via personal computers, or more recently mobile phones. The
original and most outstanding examples of such networks are the www, and
the email network. Relatively recently, many On-Line Social Networks (olsn)
such as Twitter and Facebook, or online video repositories such as YouTube have
sprung up. The size, structure, and rate of growth of these networks is a question
of natural interest. As they are so large and our ability to access to them is often
limited by the provider, we need methods to investigate them which are fast
relative to the network size, are non-intrusive, and have low storage overheads.

We investigate how effective random walk based sampling methods are for
estimating structural properties of a connected undirected graph (a model of
a large network), such as the number of vertices, edges and small subgraphs.
We collect together existing theoretical facts which are useful in designing a
random walk based methods, and evaluate the performance of these methods
experimentally. The final application is practical, but we are guided by theory

� Research supported in part by EPSRC grant EP/J006300/1 and Samsung Global
Outreach Project “Fast low cost methods to learn structure of large networks.”

A. Bonato, M. Mitzenmacher, and P. Pra�lat (Eds.): WAW 2013, LNCS 8305, pp. 130–143, 2013.
c© Springer International Publishing Switzerland 2013

Estimation of Network Properties Using Random Walks 131

as far as possible. The methods we consider are based on randomized crawling
by downloading pages from the network under investigation. Our assumption is
that the network cannot be explored systematically by BFS, either because of
size or because the number of third party accesses to the network is restricted.

Let G = (V,E) be a connected (undirected) graph with |V | = n vertices and
|E| = m edges. The expected first return time T+

u of a random walk to a vertex u
is given by ET+

u = 1/πu, where πu is the stationary probability of vertex u. For
a simple random walk, ET+

u = 2m/d(u), where d(u) is the degree of u. If d(u)
is large, then ET+

u is small and we can quickly obtain an estimate for m. For
example, a graph generated by preferential attachment has m = cn edges, and
vertices u with degree as large as d(u) =

√
n. We can use a walk starting from

such a vertex to estimate m in 2m/d(u) = O(
√
n) expected steps.

An important idea is that for graphs in which there is variation in degree
sequence, it is possible to use a simple random walk to quickly and accurately
estimate the number of edges based on first returns to high degree vertices. If
the graph is near regular, ET+

u = Θ(n), for any start vertex u This is bad if we
want a quick answer. Such graphs may still exhibit variations in local structure
which we can exploit. For example the number of triangles at a vertex may vary
considerably. If so we could use a random walk with vertex weight proportional
to the number of triangles at the vertex. By starting from a high weight vertex we
should be able to exploit this structural variation to count properties efficiently.

We discuss the following ideas, both theoretically and experimentally.

1. Global properties of graphs can be estimated using first return times of
random walks. The general theory is given in Section 3 with respect to the
cycle formula of regenerative processes and weighted random walks. For a
given property, these approaches either keep a running total of the number
of structures (e.g. triangles) observed by each excursion of the walk (the
cycle-formula method), or use first return times of walks with edge weights
proportional to the number of structures containing the edge (the weight-
random-walk method).

2. The use of the cycle formula of regenerative processes is discussed in Section
3.1. The use of weighted random walks is developed in Section 3.2 with
respect to various examples such as the number of triangles, vertices and
arbitrary fixed subgraphs.

3. The quality of the methods depends on the distribution of first return times
to the start vertex. We review the theory relating to this in Section 3.3.
Vertices with high degree (or more generally, with high vertex weight) have
smaller expected value and (upper bound on) variance of return time, and
should estimate properties more effectively. This is also discussed in Sec-
tion 3.3.

4. Experimentally, as the walk proceeds, it naturally discovers high weight ver-
tices, and the estimates based on returns to these vertices are efficient after
a reasonable number of steps. The performance of random walks on suitable
test graphs is assessed in Section 4.

5. The expected value and variance of the first return time T+
v of a random

walk to a given vertex v are known quantities, given by ET+
v = 1/πv and

132 C. Cooper, T. Radzik, and Y. Siantos

Var T+
v = (2Zvv +πv−1)/π2

v respectively, where Zvv =
∑

t≥0(Pv(v, t)−πv)
and Pv(v, t) is the probability that a walk starting from v returns to v at step
t. It is difficult to evaluate Zvv directly, but we can bound Zvv, and hence the
variance of our estimates, using the eigenvalue gap of the transition matrix.
The variance of our estimates can also be estimated directly from the return
time data using a result of [5]. See Section 3.3 for details.

The aims of the paper are to collect together available information on ran-
dom walk based methods for estimating network properties and to compare and
develop the techniques. Our original contributions are in the design of weighted
random walks to estimate e.g. number of vertices, triangles and fixed motifs,
and to detect clustering (see Section 3.2). We also provide theoretical and ex-
perimental methods to bound and estimate the variance of the first return time
T+
v to the start vertex v (3.13); see methods M1, M2 in Section 3.3.
The complexity measures we use to present our results are somewhat crude,

as the processing load per walk step varies both locally and on the remote site for
the different walks we use. Our basic measures are the number of steps, and the
number of returns to the start vertex. By choosing a high weight start vertex the
expected first return time can be made sublinear (see 3, 4 above). The variance
of this quantity can also be bounded as outlined above.

2 Network Sampling Methods Based on Random Walks

The simplest way to study a network is to inspect it completely using e.g. breadth
first search. Failing this, a simple statistical method of sampling vertices uni-
formly at random (u.a.r) can be considered. In practice for large networks such
as the www or olsn’s, neither of these methods is feasible, but the network
can still be queried by some limited form of crawling or interaction with the
network through its API. Our assumption is that query results are held locally
on a single processor. The selection of the next vertex to visit (query) is based
on a random walk runs on the query data. The random walk is used as a ran-
domized algorithm to determine the next step in the query process. We measure
the computational complexity as the number of steps made by the walk, and
our aim is to obtain results in a number of steps sub-linear in the network size,
which is assumed unknown.

Methods to estimate network properties based on random walks can be di-
vided into two classes: estimates obtained by using a random walk as a surrogate
for uniform sampling (an outline of this is given next), and estimates based on
first return times of random walks (this is discussed in detail in Section 3).

Sampling the elements of a set uniformly at random with replacement can be
used to estimate the set size in sub-linear time by the method of sample and
collide. The use of this method to estimate network size is described by Bawa et
al. [3]. If we sample uniformly at random with replacement from a population
of size n, then, by the Birthday Paradox the expected number of trials required
for the first repetition is

√
2n. In general, the expected number of repetitions in

s samples is s(s− 1)/2n with variance (1− 1/n) s(s− 1)/2n. If R is the sample

Estimation of Network Properties Using Random Walks 133

size when the first repetition occurs, then an estimate of the network size is
n = R2/2.

The method of sample and collide requires u.a.r. samples from the population.
To obtain a uniform sample from a network using a random walk, we can do the
following. Run the walk for t ≥ T steps before sampling, where T is a suitable
mixing time. In this case the walk is in near-stationarity and Pu(Xt = x) ∼ πx,
where Xt is the position of the walk at step t, and πx is the stationary distribution
of the walk. For a simple random walk πx = d(x)/2m, where d(x) is degree of x,
and m is the number of edges. Thus, unless the graph is regular, the sample is
not uniform. To use a sample from the stationary distribution, we need to unbias
the walk. There are several ways to do this. One method is to use the approach
of Massoulie et al. [12], and Ganesh et al. [7], who use a continuous time random
walk, random waiting time at a vertex x which is negative exponential with
mean 1/d(x), and a fixed stopping time T . In this way, the obtained stationary
distribution is uniform. The discrete equivalent (re-weighted random walk) is to
walk for a fixed number of steps T , sample the vertex, and retain the sample with
probability 1/d(x). This gives a uniform sampling probability of 1/2m. Another
method is to use a Metropolis-Hastings random walk with target stationary
distribution πx = 1/n. One way to do this, is to use a transition probability
1/M where M ≥ Δ(G), the maximum degree of G. See [13] page 264 for more
details.

An alternative approach to uniform sampling is developed by Katzir et al [8].
A simple random walk is used in conjunction with the birthday paradox, and
the statistical bias arising from the non-uniform stationary distribution is ap-
proximately corrected.

3 Estimates Based on First Return Time of a Random
Walk

For a random walk starting at vertex v, the first return time to v is defined as

T+
v = min{t > 0 : Xt = v},

where Xt is the position of the walk at step t (X0 = v). If the walk is ergodic, it
has a well defined stationary distribution πv at any vertex v, and the expected
value of the first return time ET+

v is given by ET+
v = 1/πv.

We describe two methods to estimate properties of networks based on first
return times of random walks. The methods are in no sense mutually exclu-
sive, and can indeed be used together. The first method, the cycle formula of
regenerative processes, has typically been used with simple random walks (e.g.
[12]). The second method uses first return times of weighted random walks. Both
methods are equally viable to estimate a given property.

An important point for either method, is that high weight vertices perform
well as start vertices for random walk property estimators. For a simple random
walk, the weight of vertex u is the vertex degree d(u), and this feeds into the first
return time ET+

u = 2m/d(u). Thus in regular graphs, all vertices are equivalent

134 C. Cooper, T. Radzik, and Y. Siantos

start points. By re-weighting the walk we can artificially create high weight
vertices suitable for estimating a given property.

To give an example of this, consider a regular graph which contains many
triangles (copies of K3), distributed in non-uniform clusters. In a simple random
walk, as vertex weight is proportional to degree, this graph has no high weight
vertices. By weighting edges proportional to the number of triangles they are
contained in, vertices with many triangles assume a high weight. First returns
to these vertices can provide a good estimator for the total number of triangles.

For an (ergodic) weighted random walk, the expected value of the first return
time is equal to the reciprocal of the stationary probability, as in the case of the
simple un-weighted walk:

ET+
v =

1

πv
, (3.1)

but the stationary probability now is πv = w(v)/wG, where w(v) is the weight
of vertex v and wG is the total weight of the graph.

3.1 Estimates Based on the Cycle Formula of Regenerative
Processes

The cycle formula of regenerative processes can be summarized as follows. Con-
sider a random walk starting from vertex u and let f(Xt) be a vertex valued
function. Then

Eu

⎛⎝T+
u −1∑
t=0

f(Xt)

⎞⎠ = ET+
u

∑
v∈V

πvf(v). (3.2)

This identity is a consequence of the result (see e.g. [1] Chapter 2, Lemma 6)
that

Eu(number of visits to v before time T+
u) =

πv

πu
= ET+

u πv.

Identity (3.2) was used by Massoulié et al [12] to count network size using a
simple random walk. Putting f(v) = 1/d(v) removes the degree bias from πv so
that

∑
v∈V πvf(v) = n/2m, and the RHS of (3.2) equals n/d(u).

Following [12] we maintain the convention f(v) = φ(v)/w(v) when generaliz-
ing to weighted random walks, with πv = w(v)/wG. Denote by Ru the random

variable
∑T+

u −1
t=0 f(Xt), with expectation ERu given by (3.2). Let φ =

∑
v∈V φ(v)

be the quantity which we want to estimate. Then, as ET+
u = 1/πu,

ERu = ET+
u ×

∑
v∈V

πv
φv

w(v)
=

φ

w(u)
. (3.3)

An important point experimentally, is that φ obtained from (3.3) does not de-
pend on the total weight wG, but only on w(u) (a known quantity).

Estimation of Network Properties Using Random Walks 135

3.2 Estimates Based on Return Times of Weighted Random Walks

This technique generalizes the following observation. For a simple random walk,
the stationary distribution of vertex u is πu = d(u)/2m = 1/ET+

u . Thus the first
return time T+

u can be used to estimate the number of edges m of a graph. Let

Z(k) =
∑k

i=1 Zi be the time of the k-th return to vertex u. The random variable

m̂ =
Z(k)d(u)

2k
(3.4)

estimates the total number of edges m.
The basic idea is to design the stationary distribution to reveal the required

network property. To do this we fix the edge weights for the walk transitions
at any vertex in such a way that the required answer is contained in the graph
weight wG. The total weight wG can be obtained from the stationary distribution
πv = w(v)/wG of the start vertex v, which by (3.1) is the reciprocal of the
expected return time. The larger w(v), the smaller EvT

+
v , giving us more rapidly

k samples for (3.4).
The remainder of this section is arranged as follows. Firstly, we summarize

the properties of weighted random walks. Secondly we give examples of using
weighted random walks to estimate the total number of triangles t in the network,
(a litmus test for social networks), and to estimate the size n of the network.
Thirdly, we explain the general framework for estimating the number of small
fixed subgraphs (‘motifs’ like triangles, cliques, cycles, etc.), and for detecting
clustering within a given set of vertices S.

Weighted Random Walks. Given a graph G = (V,E) and a positive weight
function w(u, v) on edges {u, v} ∈ E, we can define a Markov chain with state
space S = V and a transition matrix with elements:

puv =

{
w(u,v)
w(u) , if {u, v} ∈ E,

0, otherwise,

where w(u) =
∑

{u,v}∈E w(u, v) is the weight of a vertex u, and wG =∑
u∈V w(u) = 2

∑
{u,v}∈E w(u, v), is the weight of the graph G. See [1] for de-

tails.
We refer to this chain as a weighted random walk on G. The stationary dis-

tribution is:

πu =
w(u)

wG
. (3.5)

A special, but important case of a weighted random walk is the simple random
walk, where w(u, v) = 1 for all {u, v} ∈ E. For this case:

puv =

{ 1
d(u) , {u, v} ∈ E

0, otherwise

πu =
d(u)

2|E| .

136 C. Cooper, T. Radzik, and Y. Siantos

Estimating the Number of Triangles. For each edge e we assign the weight
1 + t(e), where t(e) is the number of triangles containing e. Let t(v) be the
number of triangles containing v and t(G) the total number of triangles in G.
Then

πu =
w(u)

wG
=

d(u) + 2t(u)

2m + 6t(G)
.

Let Z(k) =
∑k

i=1 Zi be the time of the k-th return to vertex u. We estimate the
number of triangles t(G) by

t̂ = max

{
0,

Z(k)(d(u) + 2t(u))

6k
− m

3

}
, (3.6)

where m can be estimated by Equation (3.4).

Estimating the Network Size. We use now inversely degree biassed weighted
random walks, setting the edge weight w(u, v) = 1

d(u) + 1
d(v) . It can be shown

that wG = 2n, so the stationary distribution is:

πu =
w(u)

wG
=

1 +
∑

v∈N(u)
1

d(v)

2n
. (3.7)

Let Z(k) =
∑k

i=1 Zi be the time of the k-th return to vertex u, as before, and
let w(u) be as shown in Equation (3.7). We use the following estimator for the
number of vertices:

n̂ =
Z(k)w(u)

2k
. (3.8)

Estimating the Number of Occurrences of an Arbitrary Fixed Sub-
graph. Using a weighted random walk to estimate the number of edges m(G)
or triangles t(G) in a graph G are special cases of the following problem. Let
S be a set of unlabeled graphs. For each M ∈ S we want to count the number
of distinct labeled copies of M in the graph G. The cases edges and triangles
given above correspond to S = {K2} and S = {K2,K3} respectively. For each
e ∈ E(G) we put w(e) =

∑
M∈S N(M, e), where N(M, e) is the number of dis-

tinct subgraphs H isomorphic to M which contain e. The simplest case (after
S = {K2}) is S = {K2,M}, where M can be any connected subgraph, e.g. Kk,
Kk,�, a chordless cycle of length 4, or some specific (small) tree. In this case we
have the following:

wG = 2
∑
e

w(e) = 2
∑
e

(1 + N(M, e)) = 2m + 2νμ(G), (3.9)

where ν = |E(M)| and μ(G) is the number of distinct copies of M in G. As
πv = w(v)/wG, and w(v) and ν are known, we can use the method of first
returns to estimate μ(G).

As an experimental heuristic we can use weighted walks with edge weight

w(e) = 1 + cN(M, e). (3.10)

Estimation of Network Properties Using Random Walks 137

We have c = 1 in (3.9), but any value of c > 0 is valid. The parameter c can be
chosen smaller than 1 (e.g. c = 1/10) in order to stop large values of N(M, e)
distorting the eigenvalue gap, and hence mixing rate of the walk. We adopted
this approach with some success for counting triangles in the Google web graph
(see Section 4).

Detecting Edges within a Given Set S. This is intended as an experimental
measure of evidence for clustering. Let S ⊆ V be given. We use the following
edge weights, where c > 0 constant. For edge e = {u, v}, let w(e) = 1, if neither
vertex is in S, let w(e) = 1 + c if exactly one vertex is in S and let w(e) = 1 + 2c
if both vertices are in S. It follows that wG = 2m + 2cd(S), where d(S) is the
degree of S.

3.3 Distributional Properties of First Return Times

As stated earlier, the expected value of the first return time T+
v to a vertex v is

ET+
v = 1/πv; see e.g. [1]. The variance of T+

v is given by

Var T+
v =

2EπTv + 1

πv
− 1

π2
v

. (3.11)

Here EπTv is the expected hitting time of v from stationarity, i.e.:

EπTv =
∑
u∈V

πuEuTv,

where EuTv is the expected time to hit v starting from u. The quantity EπTv

can be expressed as EπTv = Zvv/πv where

Zvv =
∑
t≥0

(Pv(v, t)− πv), (3.12)

and Pv(v, t) is the probability that a walk starting from v returns to v at step t.
Thus

Var T+
v =

2Zvv + πv − 1

π2
v

. (3.13)

For rapidly mixing random walks (e.g. walks on expander graphs) Zvv is con-
stant C. Indeed it can be bounded by 1 ≤ Zvv ≤ 1/(1 − λ2) where 1 − λ2

is the eigenvalue gap of the transition matrix (see below for a proof of this).
As πv = w(v)/wG, both the expected first return time 1/πv and the variance
∼ (2C − 1)/π2

v of first return time decrease with increasing vertex weight w(v).
This implies that returns to high weight vertices should make the best estimators
for wG, and that they will return sample values more often and more reliably.

The quantity EπTv can be bounded in various ways, to give estimates of Zvv

and Var T+
v . We give two methods: (M1) an estimate based on eigenvalue gap,

and (M2) a direct estimate from the return time data. One standard deviation
of the sample mean for estimates of the number of edges was derived by these
methods. This is illustrated in Figure 1 (top part): the outer dashed curve is
obtained using method (M1) and the inner dashed curve using method (M2).
The graph used in those experiments is described in Section 4.

138 C. Cooper, T. Radzik, and Y. Siantos

M1. From (3.12) we have

Zvv =
∑
t≥0

(Pv(v, t)− πv) ≤
∑
t≥0

|Pv(v, t)− πv|

Using the result that |Pv(v, t)− πv| ≤ λt
2 (see e.g. [11]), gives

Zvv ≤ 1

1− λ2
. (3.14)

M2. We estimate Zvv directly from the first return time data. Let T be a mixing
time of a random walk on a graph G. The method described in [5] states (subject
to certain technical conditions) that for t > T the probability ρ(t) that a first
return to v has not occurred by t is of the form

ρ(t) ∼ exp
(−t/EπT

+
v

)
.

Replacing 1−ρ(t) by the proportion y(t) of returns at or before step t, estimates

Zvv. For the plot in Figure 1 (top part), an estimate of Ẑvv = 1.6 was obtained.

4 Evaluation of Random Walk Based Methods

Figures 1-3 show the convergence of our experiments as a function of the number
of returns k to the start vertex of the walk. The test networks included here are
a triangle closing preferential attachment graph, and a sample from the www
(the Google Web Sample).

The figures are presented as follows. The horizontal axis is k – the number of
returns to the start vertex. The vertical axis is the estimate of the property. The
data points plotted are based on 10 independent experiments. The underlying
data points appear close to each other because there can be several returns within
a short period, followed by a long wait for the next return. In all plots, the thick
line “Experiments Average” is our estimate – the sample mean as a function
of 10k (the k-th return in 10 experiments); the two dotted lines “Experiments
Deviation” show one standard deviation of the sample mean; and the horizontal
line through the middle of the plot area shows the true value of the property.
For the estimates based on first return times of weighted random walks, we plot
also the standard deviation of the sample mean estimated using method M2
(the dashed curves “Zvv Deviation”). Finally, for the estimates of the number of
edges, we also computed an upper bound on the standard deviation using method
M1. This bound is shown in Figure 1 (top part) by the two outer dashed curves
“Bound on Deviation,” but is outside of the visible area in the plot in Figure 2.

Hybrid Triangle Closing Model. We use a hybrid triangle closing model
which generates graphs as follows. At each step we add a new vertex v with r
edges to the existing graph. To add a vertex v, we first attach to an existing vertex
x chosen preferentially. The remaining r − 1 edges from v are added as follows.
With probability p we attach to a vertex chosen by preferential attachment, and

Estimation of Network Properties Using Random Walks 139

with probability 1−p we add an edge from v to a random neighbour of vertex x.
Using this approach we are able to control the number of triangles generated
while maintaining the power-law degree distribution to be asymptotic to 3.

We generated a graph using this model with n = 600, 000,m ∼ 1.8 ∗ 106 and
p = 0.6. At each step r = 3 edges were added. The total number of triangles was
550,499. The graph has a power law coefficient of 2.9. The second eigenvalue of
the transition matrix (simple random walk) is 0.88265, making the eigenvalue
gap 0.1733.

Figure 1 shows the convergence of the edge m̂, vertex n̂ and triangle t̂ estimates
computed using the weighted random walk method described in Section 3.2. The
random walks started at a vertex u of degree d(u) = 61824, and belonging to
t(u) = 70045 triangles. The weights of this vertex are: wSRW (u) = d(u) = 61824,
for the simple random walk used to estimate the number of edges; wTRW (u) =
d(u) + 2t(u) = 201914, for the weighted random walk used to estimate the
number of triangles; and wV RW (u) = 15201, for the weighted random walk used
to estimate the number of vertices. The expected first return times to vertex u
are 58, 34 and 79, respectively.

All 10 experiments gave reasonable estimates of all three parameters after
roughly 100 to 1000 returns to the start vertex, that is after at most n/10 sam-
ples (visits to a vertex). Figure 1, top part, shows good rate of convergence
of the edge estimate m̂, and a good match between the standard deviation of
the experimental data (the dotted ”Experiments Deviation” lines) and the stan-
dard deviation obtained by estimating the parameter Zvv (the “Zvv Deviation”
curves). The estimates using the cycle formula as described in Section 3.1 were
similar, so we omit the details.

Google Web Sample. We used a sample from the Google web graph which was
released for the purposes of the Google programming contest in 2002 [10]. This
data set consists of 855,802 vertices, 5,066,842 edges and 31,356,298 triangles.
The second eigenvalue of the transition matrix (simple random walk) is 0.99970,
making the eigenvalue gap 3 × 10−4. For this network the estimates converged
slower than in the generated test graphs, with much more variation around the
expected values. The structure of the graph is very inhomogeneous; presumably
this is why the data set is made available.

In our experiments random walks started at a vertex u of degree d(u) = 6353,
with t(u) = 53371 triangles. For the simple random walk, which is used for
estimating the number of edges, the expected first return time to the start vertex
u is equal to 1595. The computed estimates for the number of edges are given in
Figure 2 (top). The convergence is slow and the theoretical standard deviation
bound is outside the figure. We have to wait for about 1000 returns to the start
vertex to get a reasonable estimate, which means that the number of samples
(visits to a vertex) is roughly of the same order as the number of vertices n.

We compare the performance of the cycle-formula method and the weight-
random-walk method for estimating the number of vertices and the number
of triangles in the Google web graph. (Observe that these two methods are
exactly the same when used for estimating the number of edges: f(v) ≡ 1 for the

140 C. Cooper, T. Radzik, and Y. Siantos

Fig. 1. Triangle-closing preferential-attachment graph. Estimate of number of edges,
vertices and triangles. The key from the top plot applies to all plots.

Estimation of Network Properties Using Random Walks 141

Fig. 2. Google web graph. Estimate of the number of edges (top), the number of
vertices by cycle formula (middle), and the number of vertices by return times of
weighted random walks (bottom). The key is the same as in Figure 1.

142 C. Cooper, T. Radzik, and Y. Siantos

Fig. 3. Google web graph. Estimate of number of triangles: cycle formula (top), return
times of weighted random walks with the weight factor c = 1 (middle), and c = 0.1
(bottom). The key is the same as in Figure 1.

Estimation of Network Properties Using Random Walks 143

cycle-formula method and w(v, u) ≡ 1 for the weighted-random-walks method.)
For the weighted-random-walk method, the weights of the start vertex u are
wTRW (u) = d(u) + 2t(u) = 113095 and wV RW (u) = 855. The expected first
return times to vertex u are 1753 and 2002, respectively.

Figure 2 (parts 2 and 3) shows the estimates of the number of vertices com-
puted by the cycle-formula method and the weighted-random-walk method. The
top and middle parts of Figure 3 show the estimates of the number of triangles.
The convergence is slow for both methods, but the estimates given by the cycle
formula are more accurate, especially for the number of triangles.

To see if we can improve the performance of the weighted-random-walk method
for estimating the number of triangles, we varied the value of the parameter c in
the edge-weight fiormula (3.10) to avoid distorting the already small eigenvalue
gap even further. The edge weight is w(e) = 1+ct(e), the vertex weight is w(u) =
d(u) + 2ct(u), and the graph weight is 2m+ 6ct(G). To simplify the experiments,
we used the correct value of m. The plots for c = 1 and c = 1/10 are given in
the middle and bottom parts of Figure 3, respectively. The value c = 1/10 worked
quite well, giving clearly better results than the value c = 1, but not matching fully
the performance of the cycle-formula method. The value of c can be optimized by
further experiments.

References

1. Aldous, D., Fill, J.: Reversible Markov chains and random walks on graphs,
http://stat-www.berkeley.edu/pub/users/aldous/RWG/book.html

2. Barabasi, A., Albert, R.: Emergence of scaling in random networks. Sci-
ence 286(5439), 509–512 (1999)

3. Bawa, M., Garcia-Molina, H., Gionis, A., Motwani, R.: Estimating aggregates on
a peer-to-peer network. Technical Report, CS Dept, Stanford University (2003)

4. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., Wiener, J.: Graph structure in the web. Computer Networks 33,
309–320 (2000)

5. Cooper, C., Frieze, A.: The cover time of random regular graphs. SIAM Journal of
Discrete Mathematics 18(4), 728–740 (2005)

6. Cooper, C., Radzik, T., Siantos, Y.: Estimating Network Parameters Using Ran-
dom Walks. In: Proc. CASoN 2012 (2012)

7. Ganesh, A., Kermarrec, A.-M., Le Merrer, E., Massoulie, L.: Peer counting and
sampling in overlay networks based on random walks. Distrib. Comput. 20,
267–278 (2007)

8. Katzir, L., Liberty, E., Somekh, O.: Estimating sizes of social networks via biased
sampling. In: Proc. WWW 2011, pp. 597–606 (2011)

9. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I.
Wiley (1970)

10. Leskovec, J.: Stanford network analysis package (2009),
http://snap.stanford.edu/

11. Lovasz, L.: Random walks on graphs: A survey. Bolyai Society Mathematical Stud-
ies, 353–397 (1996)

12. Massoulie, L., Le Merrer, E., Kermarrec, A.-M., Ganesh, A.: Peer counting and sam-
pling in overlay networks: randomwalkmethods. In: PODC2006, pp. 123–132 (2006)

13. Mitzenmacher, M., Upfal, E.: Probability and Computing. CUP (2005)

http://stat-www.berkeley.edu/pub/users/aldous/RWG/book.html
http://snap.stanford.edu/

An Lp Norm Relaxation Approach to Positive

Influence Maximization in Social Network
under the Deterministic Linear Threshold Model

Rupei Xu�

Department of Computer Science
The University of Texas at Dallas

800 W. Campbell Road
Richardson, TX 75080, USA
Rupei.Xu@utdallas.edu

Abstract. In this paper, an Influence Maximization problem in Social
Network under the Deterministic Linear Threshold model is considered.
The objective is to minimize the number of eventually negatively opin-
ionated nodes in the network in a dynamic setting. The main ingredi-
ent of the new approach is the application of the sparse optimization
technique. In the presence of inequality constraints and nonlinear rela-
tionships, the standard convex relaxation method of the L1 relaxation
does not perform well in this context. Therefore we propose to apply
the Lp relaxation where 0 < p < 1. The resulting optimization model is
therefore non-convex. By means of an interior point method, the model
can be solved efficiently and stably, typically yielding robust and sparse
solutions in our numerical experiments with the simulated data.

Keywords: Social Network, Influence Maximization, Lp Relaxation,
Deterministic Linear Threshold, Interior Point Method.

1 Introduction

The developments of modern information technologies have clearly changed the
lifestyle and the social behaviors of people in a profound way that has never been
paralleled in human history. There are abundant studies in the literature in this
regard; we shall only name here for instance the practice of viral marketing
(see [1]). Notably, the popular online social network sites such as Facebook,
Myspace and Twitter have opened a new door for the viral marketing. Research
shows that people trust the information obtained from their close social circle far
more than the information obtained from general advertisement channels such
as TV, newspaper and online advertisement [2]. Many people believe that the
’word-of-mouth’ marketing is still the most effective marketing strategy [3] after
all. In new product adoption or new technology diffusion, people tend to follow
the opinions of their friends in the social circle.

� This research was done under the supervision of Professor Shuzhong Zhang.

A. Bonato, M. Mitzenmacher, and P. Pra�lat (Eds.): WAW 2013, LNCS 8305, pp. 144–155, 2013.
c© Springer International Publishing Switzerland 2013

An Lp Norm Relaxation Approach for Influence Maximization 145

Influence Maximization(IM) problem is to determine the initial seed set to
make the spread of the influence maximized in the social network. Given a seed
set, how to compute the total influence can be found in [4,5,6]. Domingos [1]
and Richardson [7] proposed the problem of node selection, in which they con-
sider the relation of individuals and proposed a probabilistic propagation model.
Kempe, Kleinberg, and Tardos [8] first formulate the Influence Maximization as
a discrete optimization problem. In [9], they further formulate the problem by
optimization with two different models: independent cascade model and linear
threshold model. The independent cascade model is first proposed by Golden-
berg et al. in [10] [11] and the linear threshold model is proposed by Granovetter
and Schelling in [12] and [13]. Kempe et al. [8] proved that the natural greedy
algorithm achieves a (1− 1/e)-approximation simply by showing that the in-
fluence spreads under both the two models are submodular. Later, Chen et al.
[4,5] showed that the problem of exactly computing the influence given a seed
set in both the independent cascade model and the linear threshold model are
� P-hard, which indicates that the greedy algorithm is not a polynomial time
approximation for the two models. Lu et al. [14] study the IM problem in deter-
ministic linear threshold model and show that in deterministic linear threshold
model, there can be no polynomial time n1−ε-approximation unless P = NP
even in the simple case that one person needs at most two active neighbors to
become active.

2 Problem Formulation

In this section we consider an influence maximization problem under the frame-
work of the so-called deterministic linear threshold model as proposed in [14].
Essentially, we consider a stable social network, through which the opinions
about (or influence of) an object (may be a brand name or even a certain polit-
ical position) evolve through the interactions modeled by a social network. We
further assume that one may invest (in terms of efforts) on the nodes over time,
so as to influence the opinions about the object. In the commercial world, this
effort maybe in the form of advertisements, or a promotion; in politics, the effort
can be the form of campaigning. In particular, we assume that the opinion of a
node can be influenced by its neighbors, and can also be influenced by a direct
effort.

Mathematically, a Social Network is modeled by a directed graph G (V,E,W),
which does not contain a self-loop. We consider a dynamic setting where the time
periods are denoted by k = 1, 2, ..., N ; the opinion of vi ∈ V is modeled by a
numerical value si, which can take any real value. Suppose that there are m
nodes on the network (|V | = m).

Let sk ∈ Rm be such that ski is the opinion of node vi at time k, with i =
1, 2, ...,m and k = 1, 2, ..., N . Let xk ∈ Rm

+ be the effort to be spent in time
period k, where its i-th component xk

i is the effort spent on node vi at time
period k. (In our setting xk is a decision vector, while sk is a state vector.) The
propagation dynamic process is governed by the equation

146 R. Xu

sk+1
j = skj +

∑
vi∈N (vj)

ski · wij + xk
j , (1)

where N (vj) indicates the set of nodes that are directed to vj ; i.e. N (vj) = {vi |
(vi, vj) ∈ E}. The weight wij measures the level of influence that vi has over vj .
For a node vi, if sNi > θi then we call the node positively opinionated through
the process; if sNi < θi we call it negatively opinionated; otherwise, we call it
neutrally opinionated. In the above expression, the parameter θi > 0 maybe
equal cross the nodes or maybe node-specific.

In the literature, mostly combinatorial/graphic methods and simulation meth-
ods are applied to solve optimization problems related to social network mod-
els. However, there are several benefits to a linear algebraic approach to graph
algorithms, such as the syntactic complexity, ease of implementation and per-
formance [15]. There are clearly benefits to apply continuous optimization ma-
chineries. In particular, we observe that there is a connection between the social
network models and the so-called sparse optimization models such as compressed
sensing. For example, in the social network, there are small-world [16] [17] and
scale free [18] [19] [20] [21] properties. To some extent, heavy tail distribution
refers to a sparsity structure for the data of big scale. For instance, about half
a billion users are registered on Facebook [22]. Some of the nodes of Twitter
corresponding to the celebrities such as Lady Gaga and Justin Bieber have de-
gree over ten million [23]. In such cases, exploring sparsity structure while using
continuous optimization relaxation can be advantageous. In many cases, sparsity
can also refers to the structure of a solution to some social network problems.
In the current paper, we set out to explore one such model, where the problem
is to optimally allocate some resources to influence through the social network
so as to minimize the cardinality of the eventual population who hold a negative
opinion about a given stand in question.

Let Aij = wij ∈ Rm×m. Suppose that the initial state of the nodes is s0. Then
the dynamic equation (1) can be written as

sk+1 = Ask + xk, k = 0, 1, 2, ..., N. (2)

In matrix notation, sN = b+Bx where b = ANs0 and B = [AN−1, AN−2, ..., A, I],
the decision vector x is obtained by stacking x1, x2,..., xN on top of each other.
Obviously, x being the amount of effort to be spent is naturally nonnegative,
while in our model s can take positive or negative values.

Now we assume that the total budget of the efforts spent over time is con-
strained to a total amount of unit 1. The objective is to find a way to allocate the
budget in such a way that the total number of negatively opinionated nodes will
be minimized. As a matter of notation, for vector s we denote s+ := max(s, 0)
to be the positive part of s and s− := −min(s, 0) be the negative part of s
(s = s+ − s−). Our influence maximization model is formulated as:

An Lp Norm Relaxation Approach for Influence Maximization 147

min f0(z) := ‖s−‖0 + ‖s+‖qq
s.t. s+ − s− = b + Bx− θ

eTx = 1
x ≥ 0
s+ ≥ 0
s− ≥ 0

(3)

A few words are in order here to further illustrate the model. The first
constraint in (3) is due to the dynamic equation (2) (keeping in mind that
s = s+− s−); the second constrain is due to the budget; and the last set of con-
straints are due to the nonnegativity of the decision variables. In the objective,
we have two different tasks to achieve. First of all, we wish to minimize the total
number of negatively opinionated nodes, which can be modeled by the L0-norm
of the vector representing the negatively opinionated nodes as a whole: ‖s−‖0.
The second task is to regulate and evenly distribute the positively opinionated
nodes (diffuse the investment to avoid the case that the total budget is wasted
on the extreme positive nodes). One way to achieve the regularization is to in-
troduce a convex measure on the vector s+. Our choice is to incorporate this
with the Lq norm. In fact, in our implementation later we shall simply set q = 2.

3 L1 Norm Relaxation

In view of computational complexity, problem (3) is essentially a sparse opti-
mization model (with L0 norm in the objective), and is NP-hard in general [24].
The recent intensive study on compressed sensing made a strong case for sparse
optimization. In the case of system of linear equations, the sparsest solution can
often be recovered by relaxing L0-norm to the convex L1-norm. Specially, in [25]
[26], it was shown that if a certain Restricted Isometry Property(RIP) condition
holds for B, then the solutions of Lp norm minimization for p = 0 and p = 1
are identical. However, note that the constraint set in (3) involves inequalities.
Therefore, the validity of the usual L1-convexification approach in compressed
sensing needs to be tested. In other words, we consider the following convexified
model as

min f1(z) := ‖s−‖1 + ‖s+‖qq
s.t. s+ − s− = b + Bx− θ

eTx = 1
x ≥ 0
s+ ≥ 0
s− ≥ 0

(4)

The numerical performance of the above L1-convexification approach will be
tested in Numerical Experiments Section.

148 R. Xu

4 Lp Norm Relaxation

In this part, we use Lp norm relaxation to approximate the L0 norm in the
objective function.

min fp(z) := ‖s−‖pp + ‖s+‖qq
s.t. s+ − s− = b + Bx− θ

eTx = 1
x ≥ 0
s+ ≥ 0
s− ≥ 0

(5)

The challenge now is that Model (5) is no longer convex. Nevertheless, the
feasible set of the model is still convex. In fact, as it turns out, the interior
point methods are very effective solution methods for solving such non-convex
model. Ge et al. [29] proposed an interior-point algorithm to solve the problem
of minimizing Lp norm (0 < p < 1) with inequality constraints, for which the
potential reduction and the affine scaling methodologies can be applied. The
interior-point algorithm is guaranteed to run in polynomial-time and will solve
the problem to an ε-optimal solution in some well-defined sense. Unfortunately,
the method of [29] cannot be directly applied in our context, because our model
only a part of the decision variables will need be sparse. The objective of this
problem is the combination of both convex and concave functions. Whether the
interior-point algorithm still works well? However, some modification will be
possible. In the next section, we shall present such an extension.

5 Interior-Point Algorithm

In this section, potential reduction algorithm [30] is reduced to solve this prob-
lem. Starting from an interior-point feasible solution such as the analytic center,
this algorithm follows an interior feasible path and finally converges to either a
global minimizer or a KKT point or local minimizer.

Let z = (x; s+; s−) be the overall decision vector for (5), and z is a lower
bound of the optimal value of (5). The potential function of this problem is
defined as:

φ (z) = ρ log
(
‖s−‖pp + ‖s+‖22 + eTx− z

)
−

mN∑
j=1

log xj −
m∑

j=1

log (s+)
2
j −

m∑
j=1

log (s−)pj ,

where the parameter ρ > mN + 2m. We may set z = 0 as an obvious lower
bound. Observe that

mN∑
j=1

xj +
m∑
j=1

(s+)2
j +

m∑
j=1

(s−)pj

mN + 2m
�

⎛⎝mN∏
j=1

xj

m∏
j=1

(s+)2
j

m∏
j=1

(s−)pj

⎞⎠1/(mN+2m)

.

An Lp Norm Relaxation Approach for Influence Maximization 149

Therefore,

(mN + 2m) log fp (z)−
mN∑
j=1

log xj −
m∑
j=1

log (s+)
2
j −

m∑
j=1

log (s−)
p
j

≥ (mN + 2m) log (mN + 2m) .

Thus, if

φ (z) ≤ (ρ− (mN + 2m)) log (ε) + (mN + 2m) log (mN + 2m) ,

then we have fp (z) ≤ ε, which implies that z must be an ε-global minimizer.
The remaining task is to investigate how the potential value can be reduced at

each iteration. Suppose for simplicity that the linear constraints can be expressed
as Hz = h and z ≥ 0. Consider now how one interior iteration proceeds from
z > 0 to z+ > 0.

We have

φ
(
z+

)− φ (z) = ρ
(
log

(∥∥s+−∥∥p

p
+

∥∥s++∥∥2

2
+ eTx+

)
− log

(
‖s−‖pp + ‖s+‖22 + eTx

))
+

(
−

mN∑
j=1

log x+
j −

m∑
j=1

log
(
s++

)2
j
−

m∑
j=1

log
(
s+−

)p
j

)

+

(
mN∑
j=1

log xj +

m∑
j=1

log (s+)
2
j +

m∑
j=1

log (s−)
p
j

)
.

Let dz be a vector such that Hdz = 0, and z+ = z + dz > 0. By the concavity
of log f (z)p, we have

log fp
(
z+

)− log fp (z) ≤ 1

fp(z)
∇ (fp (z))

T
dz .

By restricting
∥∥Z−1dz

∥∥ ≤ β < 1 where Z = Diag (z), we have z + dz > 0 and
also ⎛⎝−mN∑

j=1

log x+
j −

m∑
j=1

log
(
s+

+

)2

j
−

m∑
j=1

log
(
s+
−
)p
j

⎞⎠
+

⎛⎝mN∑
j=1

log xj +

m∑
j=1

log (s+)
2
j +

m∑
j=1

log (s−)
p
j

⎞⎠ ≤ −cTZ−1dz +
β2

(1− β)

where c = (e; 2; p) ∈ R(mN+2m)×1, e ∈ RmN×1, 2 ∈ Rm×1, p ∈ Rm×1 (see
Section 9.3 in [31] for more detailed), and

φ
(
z+

)− φ (z) ≤
(

ρ

fp (z)
�fp (z)T Z − cT

)
Z−1dz +

β2

(1− β)
.

150 R. Xu

Let d′ = Z−1dz. To achieve a potential reduction, one can minimize an affine-
scaled linear function subject to a ball constraint.(Readers can see Chapter 1
and 4 in [32] for more details.)

U (d′) := min (ρ
fp(z)�fp (z)

T
Z − cT)d′

s.t. HZd′ = 0

‖d′‖2 ≤ β2.

(6)

The solution for (6) is explicit:

U (d′) = −β ‖g (z)‖

with the optimal direction

d′ =
β

‖g (z)‖g (z)

where

g (z) = − (
I − ZHT (HZ2HT)−1HZ

)(ρ

fp (z)
Z∇fp (z)− c

)
.

We may also write the above solution as

g (z) = c− ρ

fp (z)
Z
(∇fp (z)−HT y

)
,

with

y =
(
HZ2HT

)−1
HZ

(
Diag (c)Zp − fp (z)

ρ
c

)
where Zp = Diag

((
x; (s+)

2
; (s−)

p
))

. If ‖g (z)‖ ≥ 1, then the optimal value of

(6) is less than −β, and so

φ
(
z+

)− φ (z) < −β +
β2

(1− β)
.

Thus, the potential value is reduced by a constant if we set β = 1/10. This case
could occur for at most

O ((ρ− (mN + 2m)) log (1/ε))

iterations before reaching an ε-global minimizer (cf. (6)).
On the other hand, if ‖g (z)‖ ≤ 1, then, since

g (z) = c− ρ

fp (z)
Z
(∇f (z)−HT y

)
,

we have
ρ

fp (z)
Z
(∇fp (z)−HT y

) ≥ 0,

An Lp Norm Relaxation Approach for Influence Maximization 151

and
ρ

fp (z)
Z
(∇fp (z)−HT y

) ≤ e + c, ∀j.

In other words, (∇fp (z)−HT y
)
j
≥ 0, (7)

and

zj
fp (z)

(∇fp (z)−HT y
)
j
≤ 2

ρ
, ∀j = 1, 2, ...,mN ; (8)

zj
fp (z)

(∇fp (z)−HT y
)
j
≤ 3

ρ
, ∀j = mN + 1, ...,mN + m; (9)

zj
fp (z)

(∇fp (z)−HT y
)
j
≤ 1 + p

ρ
, ∀j = mN + m + 1, ...,mN + 2m. (10)

The first condition (7) shows that the Lagrange multiplier y is feasible. For

the inequalities (8),(9),(10), by choosing ρ ≥ 3(mN+2m)
ε we have

1

fp (z)
zT

(∇fp (z)−HT y
) ≤ ε.

Therefore,
zT

(∇fp (z)−HT y
)

z − z
≤ zT

(∇fp (z)−HT y
)

fp (z)
≤ ε,

which implies that z is an ε-KKT point.
The above analysis leads to the following result:

Theorem 1. The interior-point algorithm returns an ε-KKT or ε-global solution
in no more than O

(
mN+2m

ε log 1
ε

)
iterations.

6 Numerical Experiments

The setup of our simulation tests is as follows.
First we use the ComplexNetworkPackage64bit.v14 [33] to produce a small

world network, where we use the parameters NumberOfNodes = 20 (Number
of nodes), Alpha = −2.2 (Alpha of the scale-free graph). Then assigh normal
distribution random numbers to each edges. After the two steps, we can get a
weighted directed graph as Figure 1. The graph is drawn by Gephi according
to the simulation data.

By the data in DBLP of April 6, 2013, the collaborative networks of Professor
shuzhong Zhang Figure 2 and Professor Zhiquan Tom Luo Figure 3 can be
obtained, which are two real world examples. Although they are all undirected
graphs, the directed networks can be created by this way that, each egde is drawn
according to the collaborative orders of the main author and his coauthors. For
example, in the DBLP dataset, Professor Zhiquan Tom Luo is before Jos F.
Sturm in the collaborative order of Professor Shuzhong Zhang, thus when we

152 R. Xu

Fig. 1. Small World Network

Fig. 2. Collaborative Network of Professor Shuzhong Zhang

Fig. 3. Collaborative Network of Professor Zhiquan Tom Luo

An Lp Norm Relaxation Approach for Influence Maximization 153

connect the two nodes of Professor Zhiquan Tom Luo and Jos F. Sturm, the
direction is from the first to the latter and the weight of that edge is the total
number of papers they have written together.

Then we resort to the software package CVX to solve the L1-norm (convex)
model, and we implement the affine scaling algorithm to solve the Lp-norm (non-
convex) model. We use α = 10−10 as the tolerance level for zeros: if (s−)j > α,
we count (s−)j as non-zero; otherwise, (s−)j is counted as zero.

Fig. 4. Cardinality of Negative Nodes in Small World Network

Fig. 5. Cardinality of Negative Nodes in Directed Collaborative Network of Professor
Shuzhong Zhang

The simulation results show that Lp-norm (0 < p < 1) non-convex relaxation
method performs much better than the L1-norm convex relaxation approach.
The former method has a much sparser solution of negative nodes s−. This
implies that if we implement the resource according to the solution of Lp-norm
relaxation model, then in the final stage the nodes with negative opinions are
much less than that of the L1-norm convex relaxation approach. Moreover, the
solutions of the Lp-norm model are far more robust and stable.

154 R. Xu

Fig. 6. Cardinality of Negative Nodes in Directed Collaborative Network of Professor
Zhiquan Tom Luo

References

1. Domingos, P., Richardson, M.: Mining the network value of customers. In: KDD,
pp. 57–66 (2001)

2. Nail, J.: The Consumer Advertising Backlash. Forrester Research and Intelliseek
Market Research Report (May 2004)

3. Misner, I.R.: The World’s Best Known Marketing Secret: Building Your Business
with Word-of-Mouth Marketing, 2nd edn. Bard Press (1999)

4. Chen, W., Yuan, Y., Zhang, L.: Scalable Influence Maximization in Social Networks
Under the Linear Threshold Model. In: The 2010 International Conference on Data
Mining (2010)

5. Chen, W., Wang, C., Wang, Y.: Scalable Influence Maximization for Prevalent Viral
Marketing in Large-Scale Social Networks. In: The 2010 ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (2010)

6. Schelling, T.: Micromotives and Macrobehavior. Norton (1978)
7. Richardson, M., Domingos, P.: Mining Knowledge-sharing Sites for Viral Mar-

keting. In: The 2002 International Conference on Knowledge Discovery and Data
Mining, pp. 61–70 (2002)

8. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing The Spread of Influence Through
a Social Network. In: The 2003 International Conference on Knowledge Discovery
and Data Mining, pp. 137–146 (2003)

9. Kempe, D., Kleinberg, J., Tardos, É.: Influential Nodes in a Diffusion Model for So-
cial Networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005)

10. Goldenberg, J., Libai, B., Muller, E.: Using Complex Systems Analysis to Advance
Marketing Theory Development. Academy of Marketing Science Review (2001)

11. Goldenberg, J., Libai, B., Muller, E.: Talk of the Network:A Complex Systems
Look at the Underlying Process of Word-of-Mouth. Marketing Letters 12(3), 211–
223 (2001)

12. Granovetter, M.: Threshold Models of Collective Behavior. American Journal of
Sociology 83(6), 1420–1443 (1978)

An Lp Norm Relaxation Approach for Influence Maximization 155

13. Zou, F., Willson, J., Wu, W.: Fast Information Propagation in Social Networks.
In: MDMAA (2010)

14. Lu, Z., Zhang, W., Wu, W., Fu, B., Du, D.Z.: Approximation and Inapproximation
for The Influence Maximization Problem in Social Networks under Deterministic
Linear Threshold Model. In: 2011 31st International Conference on Distributed
Computing Systems Workshops (2011)

15. Kepner, J., Gilbert, J.: Graph Algorithms in the Language of Linear Algebra, 1st
edn. SIAM (2011)

16. Watts, D.J., Strogatz, S.H.: Collective Danamics of ‘Small-World’ Networks 393,
440–442 (1998)

17. Kleieberg, J.: The Small-World Phenomenon: An Algorithmic Perspective. In: Pro-
ceedings of 32rd ACM Symposium on Theory of Computing (2000)

18. Barabási, A.L., Albert, R., Jeong, H.: Mean-Field Theory for Scale-Free Random
Networks. Physica A: Statistical Mechanics and its Applications 272(1), 173–187
(1999)

19. Romualdo, P.S., Vespignani, A.: Epidemic spreading in scale-free networks. Phys-
ical Review Letters 86(14), 3200–3203 (2001)

20. Bonato, A.: A Course on the Web Graph, Providence, Rhode Island. American
Mathematical Society Graduate Studies Series in Mathematics (2008)

21. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of on-line social net-
works. In: Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2006)

22. Facebook: statistics, http://www.facebook.com/press/info.php?statistics
(accessed September 1, 2011)

23. Twitaholic, http://twitaholic.com/ (accessed September 1, 2011)
24. Natarajan, B.K.: Sparse Approximate Solution to Linear Systems. SIAM Journal

on Computing 24, 227–234 (1995)
25. Candés, E.J., Tao, T.: Decoding by Linear Programming. IEEE Transaction of

Information Theory 51, 4203–4215 (2005)
26. Donoho, D.: For Most Large Underdetermined Systems of Linear Equations the

Minimal L1-norm Solution is Also the Sparsest Solution. Technical Report, Stan-
ford University (2004)

27. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of
equations to sparse modeling of signals and images. SIAM Review 51(1), 34–81
(2009)

28. Tropp, J.A., Wright, S.J.: Computational methods for sparse solution of linear
inverse problems. Proceedings of the IEEE 98(6), 948–958 (2010)

29. Ge, D., Jiang, X. and Ye, Y., A Note on the Complexity of Lp Minimization,
http://www.stanford.edu/~yyye/lpmin_v14.pdf

30. Ye, Y.: On the complexity of approximating a KKT point of quadratic program-
ming. Mathematical Programming 80, 195–211 (1998)

31. Bertsimas, D., Tsitsiklis, J.: Introduction to linear Optimization. Athena Scientific,
414 (1997)

32. Ye, Y.: Interior point algorithms: theory and analysis. John Wiley and Sons, Inc.,
New York (1997)

33. http://www.levmuchnik.net/Content/Networks/ComplexNetworksPackage.html

http://www.facebook.com/press/info.php?statistics
http://twitaholic.com/
http://www.stanford.edu/~yyye/lpmin_v14.pdf
http://www.levmuchnik.net/Content/Networks/ComplexNetworksPackage.html

Fast Algorithms for the Maximum Clique Problem
on Massive Sparse Graphs

Bharath Pattabiraman1,�, Md. Mostofa Ali Patwary1,�,
Assefaw H. Gebremedhin2, Wei-keng Liao1, and Alok Choudhary1

1 Northwestern University, Evanston, IL.
{bpa342,mpatwary,wkliao,choudhar}@eecs.northwestern.edu

2 Purdue University, West Lafayette, IN.
agebreme@purdue.edu

Abstract. The maximum clique problem is a well known NP-Hard problem with
applications in data mining, network analysis, information retrieval and many
other areas related to the World Wide Web. There exist several algorithms for
the problem with acceptable runtimes for certain classes of graphs, but many of
them are infeasible for massive graphs. We present a new exact algorithm that
employs novel pruning techniques and is able to quickly find maximum cliques
in large sparse graphs. Extensive experiments on different kinds of synthetic and
real-world graphs show that our new algorithm can be orders of magnitude faster
than existing algorithms. We also present a heuristic that runs orders of magnitude
faster than the exact algorithm while providing optimal or near-optimal solutions.

1 Introduction

A clique in an undirected graph is a subset of vertices in which every two vertices are
adjacent to each other. The maximum clique problem seeks to find a clique of the largest
possible size in a given graph.

The maximum clique problem, and the related maximal clique and clique enumera-
tion problems, find applications in a wide variety of domains, many intimately related
to the World Wide Web. A few examples include: information retrieval [2], community
detection in networks [15,29,33], spatial data mining [40], data mining in bioinformat-
ics [37], disease classification based on symptom correlation [7], pattern recognition
[31], analysis of financial networks [5], computer vision [19], and coding theory [8]. To
get a sense for how clique computation arises in the aforementioned contexts, consider
a generic data mining or information retrieval problem. A typical objective here is to
retrieve data that are considered similar based on some metric. Constructing a graph in
which vertices correspond to data items and edges connect similar items, a clique in the
graph would then give a cluster of similar data. More examples of application areas for
clique problems can be found in [18,30].

The maximum clique problem is NP-Hard [16]. Most exact algorithms for solving
it employ some form of branch-and-bound approach. While branching systematically
searches for all candidate solutions, bounding (also known as pruning) discards fruit-
less candidates based on a previously computed bound. The algorithm of Carraghan

� Authors contributed equally.

A. Bonato, M. Mitzenmacher, and P. Prałat (Eds.): WAW 2013, LNCS 8305, pp. 156–169, 2013.
c© Springer International Publishing Switzerland 2013

Fast Algorithms for the Maximum Clique Problem on Massive Sparse Graphs 157

and Pardalos [9] is an early example of a simple and effective branch-and-bound algo-
rithm for the maximum clique problem. More recently, Östergȧrd [28] introduced an
improved algorithm and demonstrated its relative advantages via computational exper-
iments. Tomita and Seki [35], and later, Konc and Janežič [21] use upper bounds com-
puted using vertex coloring to enhance the branch-and-bound approach. Other examples
of branch-and-bound algorithms for the clique problem include [6,34,3]. Prosser [32]
in a recent work compares various exact algorithms for the maximum clique problem.

In this paper, we present a new exact branch-and-bound algorithm for the maximum
clique problem that employs several new pruning strategies in addition to those used in
[9], [28], [35] and [21], making it suitable for massive graphs. We run our algorithms
on a large variety of test graphs and compare its performance with the algorithm of
Carraghan and Pardalos [9], the algorithm of Östergȧrd [28] and the algorithm of Konc
and Janežič [21]. We find our new exact algorithm to be up to orders of magnitude
faster on large, sparse graphs and of comparable runtime on denser graphs. We also
present a hew heuristic, which runs several orders of magnitude faster than the exact
algorithm while providing solutions that are optimal or near-optimal for most cases.
We have made our implementations publicly available1. Both the exact algorithm and
the heuristic are well-suited for parallelization.

2 Related Previous Algorithms

Given a simple undirected graph G, the maximum clique can clearly be obtained by
enumerating all of the cliques present in it and picking the largest of them. Carraghan
and Pardalos [9] introduced a simple-to-implement algorithm that avoids enumerating
all cliques and instead works with a significantly reduced partial enumeration. The re-
duction in enumeration is achieved via a pruning strategy which reduces the search
space tremendously. The algorithm works by performing at each step i, a depth first
search from vertex vi, where the goal is to find the largest clique containing the vertex
vi. At each depth of the search, the algorithm compares the number of remaining ver-
tices that could potentially constitute a clique containing vertex vi against the size of the
largest clique encountered thus far. If that number is found to be smaller, the algorithm
backtracks (search is pruned).

Östergȧrd [28] devised an algorithm that incorporated an additional pruning strategy
to the one by Carraghan and Pardalos. The opportunity for the new pruning strategy is
created by reversing the order in which the search is done by the Carraghan-Pardalos
algorithm. This allows for an additional pruning with the help of some auxiliary book-
keeping. Experimental results in [28] showed that the Östergȧrd algorithm is faster than
the Carraghan-Pardalos algorithm on random and DIMACS benchmark graphs [20].
However, the new pruning strategy used in this algorithm is intimately tied to the order
in which vertices are processed, introducing an inherent sequentiality into the algorithm.

A number of existing branch-and-bound algorithms for maximum clique also use
a vertex-coloring of the graph to obtain an upper bound on the maximum clique. A
popular and recent algorithm based on this idea is the algorithm of Tomita and Seiku
[35] (known as MCQ). More recently, Konc and Janežič [21] presented an improved

1 http://cucis.ece.northwestern.edu/projects/MAXCLIQUE/

http://cucis.ece.northwestern.edu/projects/MAXCLIQUE/

158 B. Pattabiraman et al.

version of MCQ, known as MaxCliqueDyn (MCQD and MCQD+CS), that involves the
use of tighter, computationally more expensive upper bounds applied on a fraction of
the search space.

3 The New Algorithms

We describe in this section new algorithms that overcome the shortcomings mentioned
earlier; the new algorithms use additional pruning strategies, maintain simplicity, and
avoid a sequential computational order. We begin by first introducing the following
notations. We identify the n vertices of the input graph G = (V,E) as {v1, v2, . . . , vn}.
The set of vertices adjacent to a vertex vi, the set of its neighbors, is denoted by N(vi).
And the degree of the vertex vi, the cardinality of N(vi), is denoted by d(vi).

3.1 The Exact Algorithm

Algorithm 1. Algorithm for finding the maximum clique
of a given graph. Input: Graph G = (V,E), lower bound
on clique lb (default, 0). Output: Size of maximum clique.

1: procedure MAXCLIQUE(G = (V,E), lb)
2: max ← lb
3: for i : 1 to n do
4: if d(vi) ≥ max then 	 Pruning 1
5: U ← ∅
6: for each vj ∈ N(vi) do
7: if j > i then 	 Pruning 2
8: if d(vj) ≥ max then 	 Pruning 3
9: U ← U ∪ {vj}

10: CLIQUE(G,U, 1)

– Subroutine

1: procedure CLIQUE(G = (V, E), U , size)
2: if U = ∅ then
3: if size > max then
4: max ← size
5: return
6: while |U | > 0 do
7: if size+ |U | ≤ max then 	 Pruning 4
8: return
9: Select any vertex u from U

10: U ← U \ {u}
11: N ′(u) := {w|w ∈ N(u) ∧ d(w) ≥ max} 	

Pruning 5
12: CLIQUE(G,U ∩N ′(u), size+ 1)

The maximum clique in a graph
can be found by computing the
largest clique containing each
vertex and picking the largest
among these. A key element of
our exact algorithm is that dur-
ing the search for the largest
clique containing a given vertex,
vertices that cannot form cliques
larger than the current maxi-
mum clique are pruned, in a hi-
erarchical fashion. The method
is outlined in detail in Algo-
rithm 1. Throughout, the vari-
able max stores the size of the
maximum clique found thus far.
Initially it is set to be equal to
the lower bound lb provided as
an input parameter. It gives the
maximum clique size when the
algorithm terminates.

To obtain the largest clique
containing a vertex vi, it is suffi-
cient to consider only the neigh-
bors of vi. The main routine
MAXCLIQUE thus generates for
each vertex vi ∈ V a set U ⊆
N(vi) (neighbors of vi that sur-
vive pruning) and calls the subroutine CLIQUE on U . The subroutine CLIQUE goes
through every relevant clique containing vi in a recursive fashion and returns the largest.
We use size to maintain the size of the clique found at any point through the recursion.

Fast Algorithms for the Maximum Clique Problem on Massive Sparse Graphs 159

Since we start with a clique of just one vertex, the value of size is set to one initially,
when CLIQUE is called (Line 10, MAXCLIQUE).

Our algorithm consists of several pruning steps. Pruning 1 (Line 4, MAXCLIQUE)
filters vertices having strictly fewer neighbors than the size of the maximum clique al-
ready computed. These vertices can be ignored, since even if a clique were to be found,
its size would not be larger than max. While forming the neighbor list U for a vertex
vi, we include only those of vi’s neighbors for which the largest clique containing them
has not been found (Pruning 2; Line 7, MAXCLIQUE), to avoid recomputing previously
found cliques. Pruning 3 (Line 8, MAXCLIQUE) excludes vertices vj ∈ N(vi) that have
degree less than the current value of max, since any such vertex could not form a clique
of size larger than max. Pruning 4 (Line 7, CLIQUE) checks for the case where even if
all vertices of U were added to get a clique, its size would not exceed that of the largest
clique encountered so far in the search, max. Pruning 5 (Line 11, CLIQUE) reduces the
number of comparisons needed to generate the intersection set in Line 12. Note that the
routine CLIQUE is similar to the Carraghan-Pardalos algorithm [9]; Pruning 5 accounts
for the main difference. Also, Pruning 4 is used in most existing algorithms, whereas
Prunings 1, 2, 3 and 5 are not.

3.2 The Heuristic

Algorithm 2. Heuristic for finding the maximum clique
in a graph. Input: Graph G = (V, E). Output: Approxi-
mate size of maximum clique.

1: procedure MAXCLIQUEHEU(G = (V,E))
2: for i : 1 to n do
3: if d(vi) ≥ max then
4: U ← ∅
5: for each vj ∈ N(vi) do
6: if d(vj) ≥ max then
7: U ← U ∪ {vj}
8: CLIQUEHEU(G,U, 1)

– Subroutine

1: procedure CLIQUEHEU(G = (V,E), U , size)
2: if U = ∅ then
3: if size > max then
4: max ← size
5: return
6: Select a vertex u ∈ U of maximum degree in G
7: U ← U \ {u}
8: N ′(u) := {w|w ∈ N(u) ∧ d(w) ≥ max}
9: CLIQUEHEU(G,U ∩N ′(u), size+ 1)

The exact algorithm examines
all relevant cliques contain-
ing every vertex. Our heuristic,
shown in Algorithm 2, considers
only the maximum degree neigh-
bor at each step instead of recur-
sively considering all neighbors
from the set U , and thus is much
faster.

3.3 Complexity

The exact algorithm, Algorithm
1, examines for every vertex vi
all candidate cliques containing
the vertex vi in its search for the
largest clique. Its time complex-
ity is exponential in the worst
case. The heuristic, Algorithm
2, loops over the n vertices, each
time possibly calling the subrou-
tine CLIQUEHEU, which effec-
tively is a loop that runs until the
set U is empty. Clearly, |U | is bounded by the max degree Δ in the graph. The subrou-
tine also includes the computation of a neighbor list, whose runtime is bounded by
O(Δ). Thus, the time complexity of the heuristic is bounded by O(n ·Δ2).

160 B. Pattabiraman et al.

Table 1. Overview of real-world graphs in the testbed and their origins

Graph Description

cond-mat-2003 [26] A collaboration network of scientists posting preprints on
the condensed matter archive at www.arxiv.org in the period

email-Enron [23] A communication network representing email exchanges.
dictionary28 [4] Pajek network of words.
Fault 639 [14] A structural problem discretizing a faulted gas reservoir with

tetrahedral Finite Elements and triangular Interface Elements.
audikw 1 [11] An automotive crankshaft model of TETRA elements.
bone010 [39] A detailed micro-finite element model of bones representing

the porous bone micro-architecture.
af shell [11] A sheet metal forming simulation network.
as-Skitter [23] An Internet topology graph from trace routes run daily in 2005.
roadNet-CA [23] A road network of California. Nodes represent intersections

and endpoints and edges represent the roads connecting them.
kkt power [11] An Optimal Power Flow (nonlinear optimization) network.

4 Experiments and Results

We present in this section results comparing the performance of our algorithm
with the algorithms of Carraghan-Pardalos [9], Östergȧrd algorithm [28], and Konc
and Janezik [21]. We implemented the algorithm of [9] ourselves. For the al-
gorithm of [28], we used the publicly available cliquer source code [27]. For
the algorithm of [21], we used the code MaxCliqueDyn (MCQD, available at
http://www.sicmm.org/˜konc/maxclique/). Among the variants available in
MCQD, we report results on MCQD+CS (which uses improved coloring and dynamic
sorting), since it is the best-performing variant.

The experiments are performed on a Linux workstation running 64-bit Red Hat En-
terprise Linux Server release 6.2 with a 2 GHz Intel Xeon E7540 processor. The codes
are implemented in C++ and compiled using gcc version 4.4.6 with -O3 optimization.

4.1 Test Graphs

Our testbed is grouped in three categories.
1. Real-world graphs. Under this category, we consider 10 graphs (downloaded from
the University of Florida Sparse Matrix Collection [11]) that originate from various
real-world applications. Table 1 gives a quick overview of the graphs and their origins.
2. Synthetic Graphs. In this category we consider 15 graphs generated using the R-
MAT algorithm [10]. The graphs are subdivided in three categories depending on the
structures they represent.
A. Random graphs (5 graphs) – Erdős-Rényi random graphs generated using R-MAT
with the parameters (0.25, 0.25, 0.25, 0.25). Denoted with prefix rmat er.
B. Skewed Degree, Type 1 graphs (5 graphs) – graphs generated using R-MAT with
the parameters (0.45, 0.15, 0.15, 0.25). Denoted with prefix rmat sd1.
C. Skewed Degree, Type 2 graphs (5 graphs) – graphs generated using R-MAT with
the parameters (0.55, 0.15, 0.15, 0.15). Denoted with prefix rmat sd2.

http://www.sicmm.org/~konc/maxclique/

Fast Algorithms for the Maximum Clique Problem on Massive Sparse Graphs 161

Table 2. Structural properties (the number of vertices, |V |; edges, |E|; and the maximum degree,
Δ) of the graphs, G in the testbed: DIMACS Challenge graphs (upper left); UF Collection (lower
and middle left); RMAT graphs (right).

G |V | |E| Δ G |V | |E| Δ

cond-mat-2003 31,163 120,029 202 rmat sd1 1 131,072 1,046,384 407
email-Enron 36,692 183,831 1,383 rmat sd1 2 262,144 2,093,552 558
dictionary28 52,652 89,038 38 rmat sd1 3 524,288 4,190,376 618
Fault 639 638,802 13,987,881 317 rmat sd1 4 1,048,576 8,382,821 802
audikw 1 943,695 38,354,076 344 rmat sd1 5 2,097,152 16,767,728 1,069

bone010 986,703 35,339,811 80 rmat sd2 1 131,072 1,032,634 2,980
af shell10 1,508,065 25,582,130 34 rmat sd2 2 262,144 2,067,860 4,493
as-Skitter 1,696,415 11,095,298 35,455 rmat sd2 3 524,288 4,153,043 6,342
roadNet-CA 1,971,281 2,766,607 12 rmat sd2 4 1,048,576 8,318,004 9,453
kkt power 2,063,494 6,482,320 95 rmat sd2 5 2,097,152 16,645,183 14,066

rmat er 1 131,072 1,048,515 82 hamming6-4 64 704 22
rmat er 2 262,144 2,097,104 98 johnson8-4-4 70 1,855 53
rmat er 3 524,288 4,194,254 94 keller4 171 9,435 124
rmat er 4 1,048,576 8,388,540 97 c-fat200-5 200 8,473 86
rmat er 5 2,097,152 16,777,139 102 brock200 2 200 9,876 114

3. DIMACS graphs. This last category consists of 5 graphs selected from the Second
DIMACS Implementation Challenge [20].

The DIMACS graphs are an established benchmark for the maximum clique prob-
lem, but they are of rather limited size and variation. In contrast, the real-work
networks included in category 1 of the testset and the synthetic (RMAT) graphs in
category 2 represent a wide spectrum of large graphs posing varying degrees of diffi-
culty for testing the algorithms. The rmat er graphs have normal degree distribution,
whereas the rmat sd1 and rmat sd2 graphs have skewed degree distributions and con-
tain many dense local subgraphs. The rmat sd1 and rmat sd2 graphs differ primarily
in the magnitude of maximum vertex degree they contain; the rmat sd2 graphs have
much higher maximum degree. Table 2 lists basic structural information (the number of
vertices, number of edges and the maximum degree) about all 30 of the test graphs.

4.2 Results

Table 3 shows the size of the maximum clique (ω) and the runtimes of our exact al-
gorithm (Algorithm 1) and the algorithms of Caraghan and Pardalos (CP), Östergȧrd
(cliquer) and Konc and Janežič (MCQD+CS) for all the graphs in the testbed. The last
two columns show the results of our heuristic (Algorithm 2)—the size of the maximum
clique returned and its runtime. The columns labeled P1, P2, P3 and P5 list the num-
ber of vertices/branches pruned in the respective pruning steps of Algorithm 1. Pruning
4 is omitted since it is used by all the algorithms compared in the table. These numbers
have been rounded (K stands for 103, M for 106 and B for 109), although the exact
numbers can be found in the Appendix (Table 4).

In Table 3, the fastest runtime for each instance is indicated with boldface. An as-
terisk (*) indicates that an algorithm did not terminate within 25,000 seconds for a

162 B. Pattabiraman et al.

Table 3. Comparison of runtimes (in seconds) of algorithms [9] (CP), [28] (cliquer), [21]
(MCQD+CS) and our new exact algorithm (τA1) for the graphs in the testbed. P1, P2, P3
and P5 are the number of vertices/branches pruned in steps Pruning 1, 2, 3 and 5 of our exact
algorithm (K stands for 103, M for 106 and B for 109). ω denotes the maximum clique size in the
graph, ωA2 denotes the clique size returned by our heuristic and τA2 shows its runtime.

τMCQD

Graph ω τCP τcliquer +CS τA1 P1 P2 P3 P5 ωA2 τA2

cond-mat-2003 25 4.875 11.17 2.41 0.011 29K 48K 6,527 17K 25 <0.01
email-Enron 20 7.005 15.08 3.70 0.998 32K 155K 4,060 8M 18 0.261
dictionary28 26 7.700 32.74 7.69 <0.01 52K 4,353 2,114 107 26 <0.01
Fault 639 18 14571.20 4437.14 - 20.03 36 13M 126 1,116 18 5.80
audikw 1 36 * 9282.49 - 190.17 4,101 38M 59K 721K 36 58.38
bone010 24 * 10002.67 - 393.11 37K 34M 361K 44M 24 24.39
af shell10 15 * 21669.96 - 50.99 19 25M 75 2,105 15 10.67
as-Skitter 67 24385.73 * - 3838.36 1M 6M 981K 737M 66 27.08
roadNet-CA 4 * * - 0.44 1M 1M 370K 4,302 4 0.08
kkt power 11 * * - 2.26 1M 4M 401K 2M 11 1.83

rmat er 1 3 256.37 215.18 49.79 0.38 780 1M 915 8,722 3 0.12
rmat er 2 3 1016.70 865.18 - 0.78 2,019 2M 2,351 23K 3 0.24
rmat er 3 3 4117.35 3456.39 - 1.87 4,349 4M 4,960 50K 3 0.49
rmat er 4 3 16419.80 13894.52 - 4.16 9,032 8M 10K 106K 3 1.44
rmat er 5 3 * * - 9.87 18K 16M 20K 212K 3 2.57

rmat sd1 1 6 225.93 214.99 50.08 1.39 39K 1M 23K 542K 6 0.45
rmat sd1 2 6 912.44 858.80 - 3.79 90K 2M 56K 1M 6 0.98
rmat sd1 3 6 3676.14 3446.02 - 8.17 176K 4M 106K 2M 6 1.78
rmat sd1 4 6 14650.40 13923.93 - 25.61 369K 8M 214K 5M 6 4.05
rmat sd1 5 6 * * - 46.89 777K 16M 455K 12M 6 9.39

rmat sd2 1 26 427.41 213.23 48.17 242.20 110K 853K 88K 614M 26 32.83
rmat sd2 2 35 4663.62 851.84 - 3936.55 232K 1M 195K 1B 35 95.89
rmat sd2 3 39 13626.23 3411.14 - 10647.84 470K 3M 405K 1B 37 245.51
rmat sd2 4 43 * 13709.52 - * * * * * 42 700.05
rmat sd2 5 N * * - * * * * * 51 1983.21

hamming6-4 4 <0.01 <0.01 <0.01 <0.01 0 704 0 0 4 <0.01
johnson8-4-4 14 0.19 <0.01 <0.01 0.23 0 1,855 0 0 14 <0.01
keller4 11 22.19 0.15 0.02 23.35 0 9,435 0 0 11 <0.01
c-fat200-5 58 0.60 0.33 0.01 0.93 0 8,473 0 0 58 0.04
brock200 2 12 0.98 0.02 <0.01 1.10 0 9,876 0 0 10 <0.01

particular instance. A hyphen (-) indicates that the publicly available implementation
(the MaxCliqueDyn code) had to be aborted because the input graph was too large for
the implementation to handle. Even for the instances for which the code eventually run
successfully, we had to first modify the graph reader to make it able to handle graphs
with multiple connected components. For the graph rmat sd2 5, none of the algorithms
computed the maximum clique size in a reasonable time; the entry there is marked with
N, standing for “Not Known”.

We discuss in what follows our observations from this table for the exact algorithm
and the heuristic.

Exact Algorithms. As expected, our exact algorithm gave the same size of maximum
clique as the other three algorithms for all test cases. In terms of runtime, its relative
performance compared to the other three varied in accordance with the advantages af-
forded by the various pruning steps.

Vertices that are discarded by Pruning 1 are skipped in the main loop of the al-
gorithm, and the largest cliques containing them are not computed. Pruning 2 avoids

Fast Algorithms for the Maximum Clique Problem on Massive Sparse Graphs 163

re-computing previously computed cliques in the neighborhood of a vertex. In the ab-
sence of Pruning 1, the number of vertices pruned by Pruning 2 would be bounded by
the number of edges in the graph (note that this is more than the total number of vertices
in the graph). While Pruning 3 reduces the size of the input set on which the maximum
clique is to be computed, Pruning 5 brings down the time taken to generate the inter-
section set in Line 12 of the subroutine. Pruning 4 corresponds to back tracking. Unlike
Pruning steps 1, 2, 3 and 5, Pruning 4 is used by all three of the other algorithms in our
comparison. The primary strength of our algorithm is its ability to take advantage of
pruning in multiple steps in a hierarchical fashion, allowing for opportunities for one or
more of the steps to kick in and impact performance.

As a result of the differences seen in the effects of the pruning steps, as discussed
below, the runtime performance of our algorithm (seen in Table 3) compared to the other
three algorithms varied in accordance with the difference in the structures represented
by the different categories of graphs in the testbed.

Real-World Graphs. For most of the graphs in this category, it can be seen that our
algorithm runs several orders of magnitude faster than the other three, mainly due to
the large amount of pruning the algorithm enforced. These numbers also illustrate the
great benefit of hierarchical pruning. For the graphs Fault 639, audikw 1 and af shell10,
there is only minimal impact by Prunings 1, 3 and 5, whereas Pruning 2 makes a big
difference resulting in impressive runtimes. The number of vertices pruned in steps
Pruning 1 and 3 varied among the graph within the category, ranging from 0.001% for
af shell to a staggering 97% for as-Skitter for the step Pruning 1.

Synthetic Graphs. For the synthetic graph types rmat er and rmat sd1, our algorithm
clearly outperforms the other three by a few orders of magnitude in all cases. This is
also primary due to the high number of vertices discarded by the new pruning steps. In
particular, for rmat sd1 graphs, between 30 to 37% of the vertices are pruned just in the
step Pruning 1. For the rmat sd2 graphs, which have relatively larger maximum clique
and higher maximum degree than the rmat sd1 graphs, our algorithm is observed to be
faster than CP but slower than cliquer.

DIMACS Graphs. The runtime of our exact algorithm for the DIMACS graphs is in
most cases comparable to that of CP and higher than that of cliquer and MCQD+CS.
For these graphs, only Pruning 2 was found to be effective, and thus the performance
results agree with one’s expectation. We include in the Appendix timing results on a
larger collection of DIMACS graphs.

It is to be noted that the DIMACS graphs are intended to serve as challenging test
cases for the maximum clique problem, and graphs with such high edge densities and
low vertex count are rare in practice. Most of these have between 20 to 1024 vertices
with an average edge density of roughly 0.6, whereas, most real world graphs are often
very large and sparse. Good examples are Internet topology graphs [13], the web graph
[22], social network graphs [12], and the real-world graphs in our testbed.

The Heuristic. It can be seen that our heuristic runs several orders of magnitude
faster than our exact algorithm, while delivering either optimal or very close to optimal
solution. It gave the optimal solution on 25 out of the 30 test cases. On the remaining
5 cases where it was suboptimal, its accuracy ranges from 83% to 99% (on average

164 B. Pattabiraman et al.

93%). Additionally, we run the heuristic by choosing a vertex randomly in Line 6 of
Algorithm 2 instead of the one with the maximum degree. We observe that on average,
the solution is optimal only for less than 40% of the test cases compared to 83% when
selecting the maximum degree vertex.

Fig. 1. Runtime (normalized, mean)
comparison between various algo-
rithms. For each category of graph,
first, all runtimes for each graph
were normalized by the runtime of
the slowest algorithm for that graph,
and then the mean was calculated for
each algorithm. Graphs were consid-
ered only if the runtimes for at least
three algorithms was less than the
25,000 seconds limit set.

Fig. 2. Run time plots of the new exact and heuristic algorithms. The third curve, labeled edges,
shows the quantity, number of edges in the graph divided by the clock frequency of the computing
platform used in the experiment.

Fast Algorithms for the Maximum Clique Problem on Massive Sparse Graphs 165

Figure 1 provides an aggregated visual summary of the runtime trends of the various
algorithms across the five categories of graphs in the testbed.

To give a sense of runtime growth rates, we provide in Figure 2 plots of the runtime
of the new exact algorithm and the heuristic for the synthetic and real-world graphs in
the testbed. Besides the curves corresponding to the runtimes of the exact algorithm
and the heuristic, the figures also include a curve corresponding to the number of edges
in the graph divided by the clock frequency of the computing platform used in the
experiment. This curve is added to facilitate comparison between the growth rate of the
algorithms with that of a linear-time (in the size of the graph) growth rate. It can be
seen that the runtime of the heuristic by and large grows somewhat linearly with the
size of a graph. The exact algorithm’s runtime, which is orders of magnitude larger than
the heuristic, exhibited a similar growth behavior for these test-cases (even though its
worst-case complexity suggests exponential growth).

5 Conclusion

We presented a new exact and a new heuristic algorithm for the maximum clique prob-
lem. We performed extensive experiments on three broad categories of graphs compar-
ing the performance of our algorithms to the algorithms due to Carraghan and Pardalos
(CP) [9], Östergȧrd (cliquer) [28] and Konc and Janežič (MCQD+CS) [21]. For DI-
MACS benchmark graphs and certain dense synthetic graphs (rmat sd2), our new exact
algorithm performs comparably with the CP algorithm, but slower than cliquer and
MCQD+CS. For large sparse graphs, both synthetic and real-world, our new algorithm
runs several orders of magnitude faster than the other three. The heuristic, which runs
many orders of magnitude faster than our exact algorithm and the others, gave opti-
mal solution for 83% of the test cases, and when it is sub-optimal, its accuracy ranged
between 0.83 and 0.99.

In this work, we did not compare the performance of our algorithm against those for
which an implementation is not publicly available such as [36,25]. It would be interest-
ing to implement these and compare in future work. Further, the MCQD implementation
uses an adjacency matrix, whereas our algorithm uses an adjacency list to represent the
graph. Although it is unlikely for the overall results to be drastically different with a
change in the graph representation, it will be interesting to study to what degree the
performance will change with the change in graph representation. The heuristic’s per-
formance is impressive as presented; still it is worthwhile to compare with other existing
heuristics approaches such as [1,17].

Acknowledgements. This work is supported in part by the following grants: NSF
awards CCF-0833131, CNS-0830927, IIS-0905205, CCF-0938000, CCF-1029166, and
OCI-1144061; DOE awards DE-FG02-08ER25848, DE-SC0001283, DE-SC0005309,
DESC0005340, and DESC0007456; AFOSR award FA9550-12-1-0458. The work of
Assefaw Gebremedhin is supported by the NSF award CCF-1218916 and by the DOE
award DE-SC0010205.

166 B. Pattabiraman et al.

References

1. Andrade, D., Resende, M., Werneck, R.: Fast local search for the maximum independent set
problem. Journal of Heuristics 18, 525–547 (2012)

2. Augustson, J.G., Minker, J.: An analysis of some graph theoretical cluster techniques. J.
ACM 17, 571–588 (1970)

3. Babel, L., Tinhofer, G.: A branch and bound algorithm for the maximum clique problem.
Mathematical Methods of Operations Research 34, 207–217 (1990)

4. Batagelj, V., Mrvar, A.: Pajek datasets (2006),
http://vlado.fmf.uni-lj.si/pub/networks/data/

5. Boginski, V., Butenko, S., Pardalos, P.M.: Statistical analysis of financial networks. Compu-
tational Statistics & Data Analysis 48, 431–443 (2005)

6. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The Maximum Clique Problem. In:
Handbook of Combinatorial Optimization, pp. 1–74. Kluwer Academic Publishers (1999)

7. Bonner, R.E.: On some clustering techniques. IBM J. Res. Dev. 8, 22–32 (1964)
8. Brouwer, A.E., Shearer, J.B., Sloane, N.J.A., Smith, W.D.: A new table of constant weight

codes. IEEE Transactions on Information Theory, 1334–1380 (1990)
9. Carraghan, R., Pardalos, P.: An exact algorithm for the maximum clique problem. Oper. Res.

Lett. 9, 375–382 (1990)
10. Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms, ACM Com-

put. Surv. 38 (2006)
11. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Transactions on

Mathematical Software (TOMS) 38, 1:1–1:25 (2011)
12. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proc. of the 7th

ACM SIGKDD KDD 2001, KDD 2001, San Francisco, California, pp. 57–66. ACM, New
York (2001)

13. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the Internet topol-
ogy. In: Proc. of the Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, SIGCOMM 1999, Cambridge, Massachusetts, United States,
pp. 251–262. ACM (1999)

14. Ferronato, M., Janna, C., Gambolati, G.: Mixed constraint preconditioning in computa-
tional contact mechanics. Computer Methods in Applied Mechanics and Engineering 197,
3922–3931 (2008)

15. Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)
16. Garey, M.R., Johnson, D.S.: W. H. Freeman & Co., New York, NY, USA (1979)
17. Grosso, A., Locatelli, M., Pullan, W.: Simple ingredients leading to very efficient heuristics

for the maximum clique problem. Journal of Heuristics 14, 587–612 (2008)
18. Gutin, G., Gross, J.L., Yellen, J.: Handbook of graph theory. Discrete Mathematics & Its

Applications. CRC Press (2004)
19. Horaud, R., Skordas, T.: Stereo correspondence through feature grouping and maximal

cliques. IEEE Trans. Pattern Anal. Mach. Intell. 11, 1168–1180 (1989)
20. Johnson, D., Trick, M.A. (eds.): Cliques, coloring and satisfiability: Second dimacs imple-

mentation challenge. DIMACS Series on Discrete Mathematics and Theoretical Computer
Science, vol. 26 (1996)

21. Konc, J., Janežič, D.: An improved branch and bound algorithm for the maximum clique
problem. MATCH Commun. Math. Comput. Chem. 58, 569–590 (2007)

22. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Extracting Large-Scale Knowledge
Bases from the Web. In: VLDB 1999, pp. 639–650 (1999)

http://vlado.fmf.uni-lj.si/pub/networks/data/

Fast Algorithms for the Maximum Clique Problem on Massive Sparse Graphs 167

23. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking
diameters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD Inter-
national Conference on Knowledge Discovery in Data Mining, KDD 2005, Chicago, Illinois,
USA, pp. 177–187. ACM, New York (2005)

24. Leydesdorff, L.: On the normalization and visualization of author co-citation data: Salton’s
cosine versus the jaccard index. J. Am. Soc. Inf. Sci. Technol. 59, 77–85 (2008)

25. Li, C.-M., Quan, Z.: An efficient branch-and-bound algorithm based on maxsat for the max-
imum clique problem (2010)

26. Newman, M.E.J.: Coauthorship networks and patterns of scientific collaboration. Proceed-
ings of the National Academy of Sciences of the United States of America 101, 5200–5205
(2004)

27. Niskanen, S., Östergård, P.R.J.: Cliquer user’s guide, version 1.0, Tech. Rep. T48, Commu-
nications Laboratory, Helsinki University of Technology, Espoo, Finland (2003)

28. Östergård, P.R.J.: A fast algorithm for the maximum clique problem. Discrete Appl.
Math. 120, 197–207 (2002)

29. Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure
of complex networks in nature and society. Nature 435, 814–818 (2005)

30. Pardalos, P.M., Xue, J.: The maximum clique problem. Journal of Global Optimization 4,
301–328 (1994)

31. Pavan, M., Pelillo, M.: A new graph-theoretic approach to clustering and segmentation. In:
Proc. of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, CVPR 2003, pp. 145–152. IEEE Computer Society, Washington, DC (2003)

32. Prosser, P.: Exact algorithms for maximum clique: A computational study, arXiv preprint
arXiv:1207.4616v1 (2012)

33. Sadi, S., Öğüdücü, S., Uyar, A.S.: An efficient community detection method using parallel
clique-finding ants. In: Proc. of IEEE Congress on Evol. Comp., pp. 1–7 (July 2010)

34. San Segundo, P., Rodrı́guez-Losada, D., Jiménez, A.: An exact bit-parallel algorithm for the
maximum clique problem. Comput. Oper. Res. 38, 571–581 (2011)

35. Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding a maximum clique.
In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp.
278–289. Springer, Heidelberg (2003)

36. Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and faster branch-
and-bound algorithm for finding a maximum clique. In: Rahman, M. S., Fujita, S. (eds.)
WALCOM 2010. LNCS, vol. 5942, pp. 191–203. Springer, Heidelberg (2010)

37. Matsunaga, T., Yonemori, C., Tomita, E., Muramatsu, M.: Clique-based data mining for re-
lated genes in a biomedical database. BMC Bioinformatics 10, 205 (2009)

38. Turner, J.: Almost all k-colorable graphs are easy to color. Journal of Algorithms 9, 63–82
(1988)

39. van Rietbergen, B., Weinans, H., Huiskes, R., Odgaard, A.: A new method to determine
trabecular bone elastic properties and loading using micromechanical finite-element models.
Journal of Biomechanics 28, 69–81 (1995)

40. Wang, L., Zhou, L., Lu, J., Yip, J.: An order-clique-based approach for mining maximal
co-locations. Information Sciences 179, 3370–3382 (2009)

168 B. Pattabiraman et al.

Appendix

Table 4. P1, P2, P3, P4 and P5 are the number of vertices pruned in steps Pruning 1, 2, 3, 4,
and 5 of Algorithm 1. An asterisk (*) indicates that the algorithm did not terminate within 25,000
seconds for that instance. ω denotes the maximum clique size.

G ω P1 P2 P3 P4 P5

cond-mat-2003 25 29,407 48,096 6,527 2,600 17,576
email-Enron 20 32,462 155,344 4,060 110,168 8,835,739
dictionary28 26 52,139 4,353 2,114 542 107
Fault 639 18 36 13,987,719 126 10,767,992 1,116
audikw 1 36 4,101 38,287,830 59,985 32,987,342 721,938
bone010 24 37,887 34,934,616 361,170 96,622,580 43,991,787
af shell10 15 19 25,582,015 75 40,629,688 2,105
as-Skitter 67 1,656,570 6,880,534 981,810 26,809,527 737,899,486
roadNet-CA 4 1,487,640 1,079,025 370,206 320,118 4,302
kkt power 11 1,166,311 4,510,661 401,129 1,067,824 1,978,595

rmat er 1 3 780 1,047,599 915 118,461 8,722
rmat er 2 3 2,019 2,094,751 2,351 235,037 23,908
rmat er 3 3 4,349 4,189,290 4,960 468,086 50,741
rmat er 4 3 9,032 8,378,261 10,271 933,750 106,200
rmat er 5 3 18,155 16,756,493 20,622 1,865,415 212,838

rmat sd1 1 6 39,281 1,004,660 23,898 151,838 542,245
rmat sd1 2 6 90,010 2,004,059 56,665 284,577 1,399,314
rmat sd1 3 6 176,583 4,013,151 106,543 483,436 2,677,437
rmat sd1 4 6 369,818 8,023,358 214,981 889,165 5,566,602
rmat sd1 5 6 777,052 16,025,729 455,473 1,679,109 12,168,698

rmat sd2 1 26 110,951 853,116 88,424 1,067,824 614,813,037
rmat sd2 2 35 232,352 1,645,086 195,427 81,886,879 1,044,068,886
rmat sd2 3 39 470,302 3,257,233 405,856 45,841,352 1,343,563,239
rmat sd2 4 43 * * * * *
rmat sd2 5 N * * * * *

hamming6-4 4 0 704 0 583 0
johnson8-4-4 14 0 1855 0 136,007 0
keller4 11 0 9435 0 8,834,190 0
c-fat200-5 58 0 8473 0 70449 0
brock200 2 12 0 9876 0 349,427 0

Fast Algorithms for the Maximum Clique Problem on Massive Sparse Graphs 169

Table 5. Comparison of runtimes of algorithms [9] (CP), [28] (cliquer) and [21] (MCQD+CS)
with that of our new exact algorithm (τA1) for DIMACS graphs. An asterisk (*) indicates that
the algorithm did not terminate within 10,000 seconds for that instance. ω denotes the maximum
clique size, ωA2 the maximum clique size found by our heuristic and τA2, its runtime.

τMCQD

G |V | |E| ω τCP τcliquer +CS τA1 ωA2 τA2

brock200 1 200 14,834 21 * 10.37 0.75 * 18 0.02
brock200 2 200 9,876 12 0.98 0.02 0.01 1.1 10 <0.01
brock200 3 200 12,048 15 14.09 0.16 0.03 14.86 12 <0.01
brock200 4 200 13,089 17 60.25 0.7 0.12 65.78 14 <0.01
c-fat200-1 200 1,534 12 <0.01 <0.01 <0.01 <0.01 12 <0.01
c-fat200-2 200 3,235 24 <0.01 <0.01 <0.01 <0.01 24 <0.01
c-fat200-5 200 8,473 58 0.6 0.33 0.01 0.93 58 0.04
c-fat500-1 500 4,459 14 <0.01 <0.01 <0.01 <0.01 14 <0.01
c-fat500-2 500 9,139 26 0.02 <0.01 0.01 0.01 26 0.01
c-fat500-5 500 23,191 64 3.07 <0.01 <0.01 * 64 0.11
hamming6-2 64 1,824 32 0.68 <0.01 <0.01 0.33 32 <0.01
hamming6-4 64 704 4 <0.01 <0.01 <0.01 <0.01 4 <0.01
hamming8-2 256 31,616 128 * 0.01 0.01 * 128 0.67
hamming8-4 256 20,864 16 * <0.01 0.1 * 16 0.03
hamming10-2 1,024 518,656 512 * 0.31 - * 512 95.24
johnson8-2-4 28 210 4 <0.01 <0.01 <0.01 <0.01 4 <0.01
johnson8-4-4 70 1,855 14 0.19 <0.01 <0.01 0.23 14 <0.01
johnson16-2-4 120 5,460 8 20.95 0.04 0.42 22.07 8 <0.01
keller4 171 9,435 11 22.19 0.15 0.02 23.35 11 <0.01
MANN a9 45 918 16 1.73 <0.01 <0.01 2.5 16 <0.01
MANN a27 378 70,551 126 * * 3.3 * 125 1.74
p hat300-1 300 10,933 8 0.14 0.01 <0.01 0.14 8 <0.01
p hat300-2 300 21,928 25 831.52 0.32 0.03 854.59 24 0.03
p hat500-1 500 31,569 9 2.38 0.07 0.04 2.44 9 0.02
p hat500-2 500 62,946 36 * 159.96 1.2 * 34 0.14
p hat700-1 700 60,999 11 12.7 0.12 0.13 12.73 9 0.04
p hat1000-1 1,000 122,253 10 97.39 1.33 0.41 98.48 10 0.11
san200 0.7 1 200 13,930 30 * 0.99 <0.01 * 16 0.01

A Faster Algorithm to Update Betweenness

Centrality after Node Alteration

Keshav Goel2, Rishi Ranjan Singh1, Sudarshan Iyengar1, and Sukrit3

1 Department of Computer Science and Engineering, Indian Institute of Technology,
Ropar, Punjab, India

{rishirs,sudarshan}@iitrpr.ac.in
2 Department of Computer Engineering, National Institute of Technology,

Kurukshetra, India
keshavgoel1993@gmail.com

3 Department of Computer Science and Engineering, PEC University of Technology,
Chandigarh, India

sukritkumar.becse11@pec.edu.in

Abstract. Betweenness centrality is a centrality measure that is widely
used, with applications across several disciplines. It is a measure which
quantifies the importance of a vertex based on its occurrence in shortest
paths between all possible pairs of vertices in a graph. This is a global
measure, and in order to find the betweenness centrality of a node, one
is supposed to have complete information about the graph. Most of the
algorithms that are used to find betwenness centrality assume the con-
stancy of the graph and are not efficient for dynamic networks. We pro-
pose a technique to update betweenness centrality of a graph when nodes
are added or deleted. Our algorithm experimentally speeds up the cal-
culation of betweenness centrality (after updation) from 7 to 412 times,
for real graphs, in comparison to the currently best known technique to
find betweenness centrality.

Keywords: Betweenness Centrality, Minimum Cycle Basis,
Bi-connected Components.

1 Introduction

Network Centrality measures are used to quantify the intuitive notion of nodes’
importance in a network. There are several application centric definitions of
network centrality measures, the popular ones being degree centrality, closeness
centrality, eigenvector centrality and betweenness centrality. For background and
description of centrality measures please refer to the excellent books by Newman
[20] and Jackson [13].

There are a number of centrality indices based on the shortest path lengths
(closeness centrality [22], graph centrality [10]) and the number of shortest paths
(stress centrality [24], betweenness centrality [7, 1]) in a graph. Each centrality
measure signifies a particular characteristic that is exhibited by a node. Close-
ness centrality of a vertex indicates the distance of a vertex from other vertices.

A. Bonato, M. Mitzenmacher, and P. Pra�lat (Eds.): WAW 2013, LNCS 8305, pp. 170–184, 2013.
c© Springer International Publishing Switzerland 2013

A Faster Algorithm to Update Betweenness Centrality after Node Alteration 171

Graph centrality denotes the difference between closeness centrality of the ver-
tex under consideration and the vertex with the highest closeness centrality.
Stress centrality simply denotes the total number of shortest paths passing
through a vertex.

The idea of betweenness centrality was proposed by Freeman [7] and Anthonisse

[1]. Betweenness centrality of a node v is defined as BC(v) =
∑

s�=t�=vεV

σst(v)
σst

,

where σst is the total number of shortest paths from vertex s to vertex t and σst(v)
is the total number of shortest paths from vertex s to vertex t passing through
vertex v.

Betweenness centrality insinuates a more global characteristic unlike the de-
gree centrality which considers the number of links from a node - which is clearly
a local characteristic. Betweenness centrality has found many important appli-
cations in diverse fields. It has been used in the identification of sensitive nodes
in biological networks[18]. Similarly, it can be used in electronic communica-
tion system networks, public transit system networks, gas pipeline networks,
waste-water disposal system networks, etc. In protein-protein interaction (PPI)
networks, essential proteins can be identified by their high betweenness central-
ity [14]. This characteristic of proteins can be used in selecting suitable drug
targets [28] for various ailments including cancer[27], tuberculosis [23], zoonotic
cutaneous leishmaniasis [6], etc. Betweenness centrality score of a person, on
popular social networking sites, like ‘Facebook’ or ‘Twitter’, is being used by
advertisers to choose him/her as an ambassador for their organization. Between-
ness centrality is also used to identify nodes which are crucial for information
flow in a brain network [12] where different regions of the brain represent nodes
in the network and white matter represents the links.

Brandes [3] suggested an algorithm to calculate betweenness centrality that
reduced the time complexity from O(|V |3) to O(|V ||E|) for unweighted graphs.
Since, real world networks tend to be large and transient, such algorithms are
found to be impractical if one requires to compute the betweenness centrality of
nodes in a dynamic network. Work has been done by Lee et al. [15] and Green et
al. [9] to find out betweenness centrality for edge updation in a graph. Most of
the literature are found only for edge updation case. They assume that deletion
of a node from a graph is equivalent to deleting all edges incident on that node.
It is easy to analyze that algorithm proposed here is deg(v)-times faster than
the algorithms with above mentioned concept for updation after node deletion
where deg(v) is the degree of the deleted vertex. The ranking of vertices on
the basis of betweenness centrality is of use in various applications which are
mentioned in the subsequent sections. To ascertain that the order of vertices
in terms of their betweenness centralities before updation of graph is not the
same as after updation, we performed experiments and got positive results. We
present situations which demand a better way of updating betweenness centrality
in changing networks.

172 K. Goel et al.

1.1 Motivation

It is sometimes necessary to calculate betweenness centrality for a network at
every stage of transition. With a large network and the current algorithms in
use, recalculation becomes difficult. Some examples of such networks are given
below.

– Complex communication networks are continuously growing and evolving.
Each node in a communication network has a maximum capacity for carry-
ing load1, after which the node shuts down and its load is distributed among
the remaining nodes. Due to increased load, other nodes may shut down and
the network may become disconnected. This phenomena is commonly known
as cascading failure. It has been found through experiments conducted by S.
Narayanan [18] that breakdown of nodes with higher betweenness centrality
causes greater harm. In such networks we can compute a sequence of nodes
as following: We start with the given network. At each step, we delete the
node with the highest betweenness centrality, add that node to the sequence
and then repeat this process until the network becomes disconnected. This
sequence can be used to decide the order in which security should be pro-
vided to the nodes in the network and that can ensure that if a node in
the present network fails, the node with the highest betweenness centrality
in the resulting network have enough security and resources. This requires
repetitive calculation of betweenness centrality which when done with the
conventional Brandes[3] algorithm will be highly inefficient. Similarly, points
which have excess load in power grid systems and computer networks can
be provided with more resources; stations with excess traffic in public tran-
sit systems can be provided with more measures to redistribute traffic and
sewer lines with higher betweenness centrality can be provided with more
frequent maintenance to prevent blockades. This exercise can also be done
after the failure of some random node in a graph and appropriate actions on
the nodes in the network may be taken thereafter.

– In social networking websites like ‘Twitter’ and ‘Facebook’, betweenness cen-
trality of a node denotes the number of heterogeneous groups of nodes, the
node under consideration links [25]. Since these nodes are involved in passing
of information between heterogeneous groups of nodes, they’re more impor-
tant than a node with just a higher degree.2 Also, we may want to determine
the next important actor in case the current social network is altered. Such
networks are highly dynamic due to the continuous addition and removal of
actors.

– In a network composed of nations, the betweenness centrality of a nation
describes its potential to act as information broker and provides information

1 The amount of information flowing through a node in a communication network, is
called its load.

2 In the study conducted by A. Hanna [11] on the uprising in Egypt, where the social
networking site ‘Twitter’ played an important role in the formation of public opinion
against Mr. Hosni Mubarak (the then President of Egypt), it was found that these
nodes played an important role in shaping public opinion.

A Faster Algorithm to Update Betweenness Centrality after Node Alteration 173

about its overall activity level in the network. Thus nations can analyze the
variation in their eminence with changes in network. They can analyze how
other nations affect them and what actions will benefit or harm them. For
example: Suppose in a network, countries are represented by nodes and a link
signifies that there is a trade relation between the two countries. Countries
may want to know what the effect of formation/removal of links or nodes of
other countries with them or of other countries with other countries will be
on their trade relations.

– A similar application can be in case a new actor wants to join a network. He
will want to form links such that his prominence is maximum. He will have
to form links to nodes accordingly. For example: A professional wants to join
a network of other professionals in his area, he will try to connect with other
actors considering what effect that will have on him. This requires repetitive
calculation of betweenness centrality for a wide number of cases.

We tested our algorithm for both real and synthetic graphs and got positive
results. For synthetic graphs, we achieved speedups ranging from 1.78 to 14
times and for real graphs we got speedups ranging from 7 times to 412 times,
in comparison with Brandes algorithm [3]. In section 2, we present some basic
definitions and concepts used in the paper. Section 3 contains the algorithm with
explanation. Implementation and results are presented in section 4. We’ve further
discussed the previous work conducted on betweenness centrality in section 5.
We conclude in section 6.

2 Preliminary

In this section we define some terms which have been used throughout the paper.
We also explain the basic concepts which provide basis for developing algorithm
in section 3.

2.1 Terminology

We use following terms interchangeably throughout the paper; node or vertex
and graph or network. A (simple) path in a graph is a sequence of edges con-
necting a sequence of vertices without any repetition of vertices. Thus a path
between two vertices vi and vj (called terminal vertices) can be denoted as a
sequence of vertices, {vi, ..., vj} such that vi �= vj and no vertices in the se-
quence are repeated. The length of a path is the sum of the weights of edges in
the path (edge weight is taken as one for unweighted graphs). A shortest path
between two vertices is the smallest length path between them. An end vertex
is a vertex with degree one. A graph is said to be connected if there exists a
path between each pair of vertices. An articulation vertex is a vertex whose
deletion will leave the graph disconnected. A biconnected graph is a connected
graph having no articulation vertex. A cycle in a graph is a path having the
same terminal vertices. A cycle basis of a graph is defined as a maximal set of
linearly independent cycles. Weight of a cycle basis is the sum of the lengths

174 K. Goel et al.

Fig. 1. Type 1: Vertex belongs to a MUC but is not an articulation vertex. Type 2:
Vertex is an articulation vertex. Type 3: Vertex does not belong to a MUC and is an
end vertex.

of all cycles in the cycle basis. A cycle basis of minimum total weight is called
minimum cycle basis (MCB).

The set achieved by repetitive merging (taking union) of all the elements
of the MCB that have at least one vertex in common is called as MUCset.
Each element of MUCset is termed as Minimum Union Cycle (MUC). Thus,
two MUCs can not have any vertex in common. A connection vertex c in a
MUC (say MUCi) is an articulation vertex such that it is adjacent to a vertex
which does not belong to MUCi. On removal of the connection vertex c, the
graph will become disconnected and the components that are disconnected from
MUCi are together termed as disconnected subgraph Gc.

2.2 Basic Concept

Throughout the paper, we have considered only the case of vertex deletion in
undirected unweighted connected graphs. For the case when a vertex is added,
all lemmas, observations, and results hold with a slight modification. On the
basis of the method used for updation of betweenness centrality after deletion
of a vertex, we can categorize the vertices of the graph into three groups as
mentioned in Figure 1.

In this paper, we explain the updation process after alteration of vertices of
Type 1. Deletion of a vertex of Type 2 will leave the graph disconnected and
concept of betweenness centrality will no longer be valid for the graph. So, we
can not consider this case for updation. After deletion of vertices of Type 3, we
can use a procedure similar to Algorithm 2 to update the centality scores. Now,
we define few more terminologies, give lemmas and establish a theorem which
provides basis to develop our algorithm.

Pair dependency of a pair of vertices (s, t) on a vertex v is defined as: δst(v) =
σst(v)
σst

where σst is the number of shortest paths from vertex s to vertex t and
σst(v) is the number of shortest paths from vertex s to vertex t passing through
vertex v. Betweenness centrality of a vertex v can be defined in terms of pair
dependency as: BC(v) =

∑
s�=v �=t∈V

δst(v). Let BFTr denotes the breadth-first

A Faster Algorithm to Update Betweenness Centrality after Node Alteration 175

traversal (BFT) of the graph rooted on vertex r. [3] Dependency of a vertex s
on a vertex v is defined as: δs•(v) =

∑
t∈V \{s,v}

δst(v). Let us define a set P s(w)

= {v : v ∈ V, w is a successor of v in BFTs}. Brandes [3] proved that:

δs•(v) =
∑

w:v∈P s(w)

σsv

σsw
(1 + δs•(w)). (1)

Let SP (vi, vj) be the set of all shortest paths from vertex vi to vj . Let MUCU

be the MUC where alteration has been made. Let Gi be the subgraph made of
the components that will be disconnected from MUCU after removal of connec-
tion vertex ci ∈ MUCU . Let V (Gi) denote the set of vertices in subgraph Gi.
Then we can establish following lemmas and theorem.

Lemma 1. If v lies on all shortest paths between s and t, where s �= t �= v ∈ V ,
then:

σst = σsv.σvt.

Lemma 2. For u ∈ V (Gk) and v ∈ MUCU , every element of SP (u, v) must
contain ck.

Proof. Since ck (connection vertex) is the only vertex that links Gk with MUCU .
So, every path between vertices in Gk and MUCU must pass through ck. ��
Lemma 3. Betweenness centrality of a vertex v can be changed only due to the
shortest paths that had the altered vertex as one of their terminal vertices, where
v ∈ V \MUCU .

Proof. Assume s, t ∈ V and s �= t �= v. Betweenness centrality of vertex v, BC(v)
will be influenced by following types of shortest paths:
1. Shortest paths that do not pass through the MUCU . They start and end

outside MUCU , without passing through it. Naturally when an alteration
is made in a graph, these paths remain unchanged. An example is shown in
Fig. 2.

2. Shortest paths that have one terminal vertex in one disconnected subgraph
Gi and the other in a disconnected subgraph Gj : These shortest paths may
change. For one such shortest path, suppose the terminal vertices s and t are
in different disconnected subgraphs, which pass through connection vertices
c1 and c2, respectively (v lies in the disconnected subgraph where s lies).

According to Lemma 1 and Lemma 2, δst(v) = σst(v)
σst

=
σsc1 (v).σc1c2 .σc2t

σsc1 .σc1c2 .σc2t
=

σsc1 (v)

σsc1
. We can observe that the shortest paths from s to c1 remain same

after node deletion and so this factor doesn’t change.
3. Shortest paths that have one terminal vertex in one disconnected subgraph

Gi and the other in MUCU : Out of these shortest paths, the paths where
deleted vertex is not a terminal vertex, we can get a relation similar to the
one obtained above. When the deleted vertex is a terminal vertex (i.e. either

s or t is deletion vertex), a factor of δst(v) = σst(v)
σst

should be deleted from

176 K. Goel et al.

Fig. 2. Vertex V 9 deleted. No effect on the shortest paths starting and ending in G5

or G7 itself. Other shortest paths may be altered.

betweenness centrality score of vertex v. This is because existing shortest
paths from s to t are nonexistent now.

Thus, only one type of shortest paths (with altered vertex as one of terminal
vertex) can change the betweenness centrality of the vertex v. ��
Theorem 1. Let vd be the vertex to be deleted. Let BC(v) be the betweenness
centrality of the vertex v and dependency of the vertex vd on the vertex v ∈
V \MUCU is δvd•(v). Then the updated betweenness centrality of the vertex v
after deletion of the vertex vd can be calculated as:

BC′(v) = BC(v) − 2δvd•(v)

Proof. By the definition of dependency, δvd•(v) gives the effect of all shortest
paths starting at vertex vd in the betweenness centrality of node v. According to
Lemma 3, shortest paths with vd as terminal vertex (start vertex or end vertex
on the path) are only affecting the change in centrality of vertices outside the
MUCU . After deletion of vd, all such shortest paths will be deleted. Since the
graph is undirected, σvdt = σtvd , so, we will subtract the dependency δvd•(v)
twice. ��

3 Algorithm

After deletion of a vertex which belonged to a MUC and was not an articula-
tion vertex, we will update the betweenness centrality in different ways for the
two types of vertices: vertices outside MUCU and vertices in MUCU . We use
Theorem 1 to update betweenness centrality for vertices outside MUCU and
the algorithm is explained in detail in section 3.2. When vertices in MUCU are
considered, we observe that several shortest paths that were passing through
altered vertex changed after deletion. So we recompute betweenness centrality
using the idea given by Lee et al. [15] which is explained in brief in section 3.3.
We assume that the betweenness centrality score of all vertices is available before
proceeding with the preprocessing step of our algorithm.

A Faster Algorithm to Update Betweenness Centrality after Node Alteration 177

Algorithm 1. Preprocesssing Step: Calculating MUCs in the Graph

1: Use Tarjan’s Algorithm to calculate a set of biconnected components, C.
2: for each Ci ∈ C do
3: if |Ci| = 2 then
4: Remove Ci from C.
5: end if
6: end for
7: while ∃ Ci, Cj ∈ C where Ci and Cj have at least one common vertex do
8: Remove Ci and Cj from C.
9: Insert Ci ∪ Cj in C.
10: end while
11: MUCset ← C
12: for each MUCj ∈ MUCset do
13: Find all the connection vertices and corresponding disconnected subgraphs.
14: end for

3.1 Preprocessing Step

Every time a change is made in the graph, updating the MUCset becomes nec-
essary. We can do it in two ways, either by updation of MUCset (approach used
in [15]) or by recalculation of MUCset. Approach for updation of MUCset takes
longer time than recalculation. So, instead of updating MUCset, we recalculate it
using the output of Tarjan’s biconnected components algorithm[26] (commonly
known as Tarjan’s algorithm) as explained in algorithm 1. The time complexity
for recalculation is O(|V |+ |E|). We use the following procedure for calculating
MUCset.

Every graph can be decomposed into a set of biconnected components, C,
where the elements of C are denoted by Ci using Tarjan’s algorithm. Let |Ci| de-
note the number of vertices in the biconnected component Ci. Each biconnected
component contains at least one edge (two vertices) and may share vertices (ar-
ticulation vertex) with other biconnected components. We remove components
which contain only one edge because single edge can not form a MUC. Since,
the elements of a MUCset are disjoint, we take repetitive union of the compo-
nents that have atleast one vertex in common. We form the MUCset in this
fashion. Then for each MUC, we calculate connection vertices and disconnected
subgraph(s) associated with each connection vertex.

3.2 Calculating Changes in Betweenness Centrality for Vertices
outside MUCU

Effect of the altered vertex on betweenness centrality of vertices outside MUCU

can be found by forming breadth-first traversal (BFT) for the vertex that was
deleted. The BFT can be calculated with a time complexity of O(|E|). We then
calculate the dependency of each vertex with respect to deletion vertex, starting
from the vertices in the bottom level and recursively calculate the dependency
for vertices in subsequent higher levels using equation 1. Then we use Theorem 1

178 K. Goel et al.

to update the centrality values. The complete procedure is shown in Algorithm
2. In case of vertex addition, we will add the dependency to the betweenness
centrality scores of each vertex outside MUCU .

3.3 Calculating Betweenness Centrality for Vertices in MUCU

This section briefly describes the idea suggested by Lee et al. [15] for recom-
putation of betweenness centrality for vertices in MUCU . In the disconnected
subgraph Gj , let V (Gj) denote the vertex set and let |V (Gj)| denote the number
of vertices. Let |SP (u, v)| denote the number of shortest paths between vertex u
and vertex v. Here, we will explain the basic steps of the algorithm, in brief. For
detailed concept and used algorithm, please refer to the QUBE algorithm [15].
Let betweenness centrality of vertex v, BC(v) for all v ∈ MUCU be initialized
with 0. Let cj be a connection vertex of MUCU and Gj be the corresponding
disconnected subgraph. Now we calculate the betweenness centrality of vertex
v by calculating and adding the effect of following three types of shortest paths
on vertex v:
1. The shortest paths with both source and destination in MUCU : For counting

the effect of these paths, we use the algorithm suggested by Brandes [3]
for only the vertices in MUCU and compute local betweenness centrality
BCMUCU

0 (v), for all vertices v ∈MUCU .
2. The shortest paths with either source or destination (but not both) in

MUCU : Let < s, .., t > be a shortest path from s ∈ V (Gj) to t ∈ MUCU .

In this case, σst(v)
σst

=
σcjt

(v)

σcj t
. So, to calculate the total effect of such paths,

for each shortest path < cj , ..., t >, we add the following factor to BC(v):

BC
<cj ,...,t>
1 (v) =

{ |V (Gj)|
|SP (cj,t)| , if v ∈< cj , ..., vt > \{vt}
0, otherwise

3. The shortest paths with neither source nor destination in MUCU : Let <
s, .., t > be a shortest path from s ∈ V (Gj) to t ∈ V (Gk) where j �= k. In

this case, σst(v)
σst

=
σcjck

(v)

σcjck
. So, to calculate the total effect of such paths, for

each shortest path < cj , ..., ck >, we add the following factor to BC(v):

BC
<cj ,...,ck>
2 (v) =

{ |V (Gj)||V (Gk)|
|SP (cj,ck)| , if v ∈< cj , ..., ck >

0, otherwise

When either of the subgraphs is disconnected, an additional factor:

BCi
3(ci) =

⎧⎨⎩|V (Gi)|2 −
x∑

l=1

(|V (Gl
i)|2), if Gi is disconnected

0, otherwise

is added to the betweenness centrality calculations (ci is a connection vertex).
Where Gj

l is the lth component of Gi and x is the number of connected
components in Gi.

A Faster Algorithm to Update Betweenness Centrality after Node Alteration 179

So, we have the following formula to calculate the betweenness centrality score
of a vertex in MUCU :

BC(v) = BCMUCU
0 (v) + 2

∑
Gj ,t

∑
x∈SP (cj,t)

BCx
1 (v)+

∑
Gj ,Gk(j �=k)

∑
y∈SP (cj,ck)

BCy
2 (v) (+ BCi

3(ci) if v = ci).

4 Implementation and Results

We have implemented the algorithm for deletion of vertices, however it can be
easily modified to implement node addition. The algorithm can work faster for
updating betweenness centrality, since it forms a subset of vertices of the graph,
MUCU , for which recalculation of betweenness centrality is to be done. For the
rest of vertices, algorithm 2 updates the betweenness centrality in negligible time
as compared to recalculation step. The recalculation procedure includes local
Brandes algorithm so it is directly proportional to number of vertices inside
MUCU . We have compared our results with Brandes algorithm [3] since that
is the best known algorithm, according to our knowledge, for calculation of
betweenness centrality after vertex updation. The experiments were performed
on an Intel i5-2450M C.P.U. with 2.5 GHz clock speed and 4 G.B. main memory.

We use a similar measure used by authors in [15] termed as proportion to
compare the algorithms. Proportion can be calculated as:

(
Number of vertices in MUCU

Total number of vertices in the graph

)
.100

Proportion is a direct function of the number of vertices in MUCU and thus
speedup achieved by our algorithm is directly affected by the proportion. So, a
smaller proportion would mean betweenness centrality for lesser number of nodes
will have to be recomputed and so this should achieve greater speed-up which
we achieved in our experimental result. We considered the following strategy to
compute the average proportion of a graph. We randomly start deleting vertices
from the graph till either the graph becomes disconnected or k vertices are
deleted. Then we take the average of proportion values for each deletion. The
average speed-up is calculated in a similar way. We consider k = 500 for real
networks. In general, average speed-up on a graph or average proportion of a
graph depends on the number of MUCs formed by biconnected components
and the fraction of total number of vertices belongs to these MUCs. If a graph
consists of most of the MUCs with small number of vertices with respect to the
total number of vertices in the graph, the average proportion will be small and
thus average speed-up on that graph will be large.

180 K. Goel et al.

4.1 Results for Synthetic Graphs

We derived three groups of synthetic graphs with 1000, 2000 and 3000 nodes.
In each group we generated graphs with proportion x, for each x ∈ A, where
A = {10, 20, 30, 40, 50, 60, 70, 80}. These graphs were random graphs based on
the Erdös Rényi graph model. To implement the algorithm, we initially calcu-
lated the betweenness centrality of each vertex using Brandes [3] algorithm. Then
we ran the preprocessing step (Algorithm 1) to calculate the MUCs, connection

Algorithm 2. Calculating BFT and up-
dating the vertices outside MUCU accord-
ingly

1: vd: Vertex to be deleted.
2: Input: BC[v] of each vertex of orig-

inal graph (v ∈ V).
3: S ← Empty Stack
4: P [w]←Empty List, w ∈ V
5: σ[t]← 0, t ∈ V , σ[vd] = 1
6: d[t]← −1, t ∈ V , d[vd] = 0
7: Q← Empty Queue
8: Enqueue vd → Q
9: while Q not empty do

10: Dequeue v ← Q
11: push v → S
12: for each neighbour of v do
13: if d[w] < 0 then
14: enqueue w → Q
15: d[w] ← d[v] + 1
16: end if
17: if d[w] = d[v] + 1 then
18: σ[w] ← σ[w] + σ[v]
19: append v → P [w]
20: end if
21: end for
22: end while
23: δ[v]← 0, v ∈ V
24: while S not empty do
25: pop w← S
26: for v ∈ P [w] do

27: δ[v]← δ[v] + σ[v]
σ[w] (1 + δ[w])

28: end for
29: end while
30: for v ∈ V \MUCU do
31: BC[v] ← BC[v]− 2.δ[v]
32: end for

Fig. 3. Comparison of ours and Brandes’
result on synthetic graphs with 1000, 2000,
and 3000 vertices respectively

A Faster Algorithm to Update Betweenness Centrality after Node Alteration 181

vertices and disconnected subgraphs for our graphs. 50 vertices were removed
from each x proportion graph of each group and average updation times were
calculated for different proportions.

The results are plotted with average updation time (in ms) at the y-axis and
the proportion of the graphs at the x-axis for each group and are shown in
Fig. 3. We get different speed-ups for different proportion graphs in each group.
For synthetic graphs with 1000 nodes, we achieve a speedup of 13.26, 3.90 and
2.25 for graph with proportion 20, 40 and 60 respectively. For synthetic graphs
with 2000 nodes, we achieve a speedup of 14.27, 5.01 and 1.78 for graph with
proportion 20, 40 and 60 respectively. Similarly, for synthetic graphs with 3000
nodes, we achieve a speedup of 12.54, 5.02 and 2.02 for graph with proportion
20, 40 and 60 respectively as shown in Fig. 3.

4.2 Results for Real Graphs

We also tested our algorithm on real world networks. We chose different types
of real datasets to depict the flexibility of our algorithm. We converted directed
graphs into undirected graphs. Collaboration networks generally depict the collab-
orations an author has made while writing research papers. Interaction networks
are networks where nodes are connected due to their features. An ownership net-
work suggests transfer of resources between two nodes. Trust network is a network
of individuals with kindred interests and connections. The yeast protein-protein
interaction network was also taken as an input.3

For such various real networks like Geom3, Erdos024, Erdos9725, etc., infor-
mation about networks, average proportion and average speed-ups over Brandes
algorithm are summarized in Table 1.

Table 1. Figures for Real Data sets

Name of Dataset Type |V | |E| Avg. Proportion Avg. Speed-up
YeastL Interaction 2361 6646 31.16 64.88
YeastS Interaction 2361 6646 28.05 72.76
Geom Collaboration 7343 11898 17.08 7.63
Erdos02 Collaboration 6927 11850 7.13 323.75
Edros972 Collaboration 5488 8972 9.49 411.835
ODLIS[21] Dictionary data 2909 16377 67.68 18.52
Wiki-vote[16] Trust 8297 100762 38.452 28.472

5 Related Work

The idea of betweenness centrality was first introduced by Freeman [7] and
Anthonisse [1]. Newman [19] defined another measure that considered random

3 Dataset available at http://vlado.fmf.uni-lj.si/pub/networks/data
4 Available at http://www.cise.u.edu/research/sparse/matrices/Pajek/
5 http://www.cise.ufl.edu/research/sparse/matrices/

http://vlado.fmf.uni-lj.si/pub/networks/data
http://www.cise.u.edu/research/sparse/matrices/Pajek/
http://www.cise.ufl.edu/research/sparse/matrices/

182 K. Goel et al.

walks on any arbitrary length rather than just shortest paths between two ver-
tices. Brandes [5] considered other types of betweenness centrality like edge be-
tweenness and group betweenness and algorithms to compute them efficiently.
Betweenness centrality was earlier calculated by finding the number and length
of shortest paths between two vertices and then adding up pair dependencies for
all pairs. Brandes [3] suggested an algorithm which introduces a recursive way to
sum the dependencies in graphs. Although the algorithm proposed by Brandes[3]
was faster than the one used previously, it was still too costly for large graphs.
So, several approximation algorithms were proposed by Bader et al. [2], Brandes
et al. [4], Geisberger et al. [8] and Makarychev [17]. Real world networks tend
to be large and transient. Work has been done by Lee et al. [15] and Green et
al. [9] to find out betweenness centrality after updation in a graph. The algo-
rithm suggested by [15] selects a subset of vertices whose betweenness centrality
is updated. However, it works only in the case of edge removal and addition.
The algorithm suggested by [9] takes into consideration different instances that
may arise due to edge addition in a graph and speeds up the algorithm in these
cases. This algorithm works only for streaming graphs i.e. only in case of edge
additions.

6 Conclusion

In this paper, we formulated an algorithm that efficiently calculates between-
ness centrality when vertices in a graph are updated. We did not consider the
traditional way for updating betweenness centrality after node alteration which
considers a node alteration event as a series of edge alteration event. We achieved
the speedups by calculating two sets of vertices; one for which we need to update
betweenness scores and the other for which we need to recompute the between-
ness score. We achieve an average speedup of 4.5 for a proportion of 40 for
synthetic graphs as compared to Brandes algorithm. For real graphs, we get an
average speedup of around 133 for a proportion of 29. The speedup will increase
futher when proportion decreases.

Acknowledgement. The authors would like to thank the anonymous reviewers
for comments that helped with the clarification of some concepts. They would
also like to thank M.J. Lee and Yayati Gupta for their invaluable help.

References

[1] Anthonisse, J.M.: The rush in a directed graph. Technical Report BN 9/71, Sticht-
ing Mathematisch Centrum, Amsterdam (1971)

[2] Bader, D.A., Madduri, K.: Parallel algorithms for evaluating centrality indices
in real-world networks. In: Proceedings of the 2006 International Conference on
Parallel Processing, ICPP 2006, pp. 539–550 (2006)

[3] Brandes, U.: A Faster Algorithm for Betweenness Centrality. Journal of Mathe-
matical Sociology 25(2), 163–177 (2001)

A Faster Algorithm to Update Betweenness Centrality after Node Alteration 183

[4] Brandes, U., Pich, C.: Centrality estimation in large networks. International Jour-
nal of Bifurcation and Chaos 17(7), 2303 (2007)

[5] Brandes, U.: On variants of shortest-path betweenness centrality and their generic
computation. Social Networks 30(2), 136–145 (2008)

[6] Florez, A.F., Park, D., Bhak, J., Kim, B.C., Kuchinsky, A., Morris, J.H., Espinosa,
J., Muskus, C.: Protein network prediction and topological analysis in Leishmania
major as a tool for drug target selection. BMC Bioinformatics 11, 484 (2010)

[7] Freeman, L.A.: set of measures of centrality based on betweenness. Sociometry 40,
35–41 (1977)

[8] Geisberger, R., Sanders, P., Schultes, D.: Better approximation of betweenness
centrality. In: Proceedings of the Tenth Workshop on Algorithm Engineering and
Experiments (ALENEX), pp. 90–100. SIAM (2008)

[9] Green, O., McColl, R., Bader, D.A.: A fast algorithm for streaming betweenness
centrality. In: 2012 ASE/IEEE International Conference on Social Computing and
2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust
(2012)

[10] Hage, P., Harary, F.: Eccentricity and centrality in networks. Social Networks 17,
57–63 (1995)

[11] Hanna, A.: Revolutionary Making and Self-Understanding: The Case of #Jan25
and Social Media Activism. Presented at Meeting of the International Studies
Association, San Diego, CA (2012)

[12] Iturria-Medina, Y., Sotero, R.C., Canales-Rodŕıguez, E.J., Alemán-Gómez, Y.,
Melie-Garćıa, L.: Studying the human brain anatomical network via diffusion-
weighted MRI and Graph Theory. NeuroImage 40(3), 1064–1076 (2008)

[13] Jackson, M.O.: Social and Economic Networks. Princeton University Press (2010)
[14] Joy, M.P., Brock, A., Ingber, D.E., Huang, S.: High-Betweenness Proteins in the

Yeast Protein Interaction Network. J. Biomed. Biotechnol. 2, 96–103 (2005)
[15] Lee, M.J., Lee, J., Park, J.Y., Choi, R.H., Chung, C.W.: QUBE: a Quick algorithm

for Updating BEtweenness centrality. In: Proceedings of the 21st International
Conference on World Wide Web, pp. 351–360 (2012)

[16] Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and
shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1), 2 (2007)

[17] Makarychev, Y.: Simple linear time approximation algorithm for betweenness.
Operations Research Letters 40(6), 450–452 (2012)

[18] Narayanan, S.: The Betweenness Centrality of Biological Networks. M. Sc. Thesis
submitted to the Faculty of the Virginia Polytechnic Institute and State University
(2005)

[19] Newman, M.E.J.: A measure of betweenness centrality based on random walks.
Social Networks 27(1), 39–54 (2005)

[20] Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)
[21] Reitz, J.M.: ODLIS: Online Dictionary of Library and Information Science (2002)
[22] Sabidussi, G.: The centrality index of a graph. Psychometrika 31, 581–603 (1966)
[23] Shanmugham, B., Pan, A.: Identification and Characterization of Potential

Therapeutic Candidates in Emerging Human Pathogen Mycobacterium absces-
sus: A Novel Hierarchical In Silico Approach. PLoS ONE 8(3), e59126 (2013),
doi:10.1371/journal.pone.0059126

[24] Shimbel, A.: Structural parameters of communication networks. Bulletin of Math-
ematical Biophysics 15, 501–507 (1953)

184 K. Goel et al.

[25] Spiliotopoulos, T., Oakley, I.: Applications of Social Network Analysis for User
Modeling. In: International Workshop on User Modeling from Social Media / IUI
2012 (2012)

[26] Tarjan, R.: Depth-First Search and Linear Graph Algorithms. SIAM J. Com-
put. 1(2), 146–160 (1972)

[27] Website of National Cancer Institute, http://www.cancer.gov
[28] Yu, H., Kim, P.M., Sprecher, E., Trifonov, V., Gerstein, M.: The Importance of

Bottlenecks in Protein Networks: Correlation with Gene Essentiality and Expres-
sion Dynamics. PLoS Comput. Biol. 3(4), e59 (2007),
doi:10.1371/journal.pcbi.0030059

http://www.cancer.gov

Generalized Preferential Attachment:

Tunable Power-Law Degree Distribution
and Clustering Coefficient�

Liudmila Ostroumova1,2, Alexander Ryabchenko1,3, and Egor Samosvat1,3

1 Yandex, Moscow, Russia
2 Moscow State University, Moscow, Russia

3 Moscow Institute of Physics and Technology, Moscow, Russia

Abstract. We propose a common framework for analysis of a wide class
of preferential attachment models, which includes LCD, Buckley–Osthus,
Holme–Kim and many others. The class is defined in terms of constraints
that are sufficient for the study of the degree distribution and the cluster-
ing coefficient. We also consider a particular parameterized model from
the class and illustrate the power of our approach as follows. Applying
our general results to this model, we show that both the parameter of the
power-law degree distribution and the clustering coefficient can be con-
trolled via variation of the model parameters. In particular, the model
turns out to be able to reflect realistically these two quantitative character-
istics of a real network, thus performing better than previous preferential
attachment models. All our theoretical results are illustrated empirically.

Keywords: networks, random graph models, preferential attachment,
power-law degree distribution, clustering coefficient.

1 Introduction

Numerous random graph models have been proposed to reflect and predict im-
portant quantitative and topological aspects of growing real-world networks,
from Internet and society [1,5,8] to biological networks [2]. Such models are
of use in experimental physics, bioinformatics, information retrieval, and data
mining. An extensive review can be found elsewhere (e.g., see [1,5,6]). Though
largely successful in capturing key qualitative properties of real-world networks,
such models may lack some of their important characteristics.

The simplest characteristic of a vertex in a network is the degree, the number
of adjacent edges. Probably the most extensively studied property of networks is
their vertex degree distribution. For the majority of studied real-world networks,
the portion of vertices with degree d was observed to decrease as d−γ , usually
with 2 < γ < 3, see [3,5,9,16]. Such networks are often called scale-free.

Another important characteristic of networks is their clustering coefficient, a
measure capturing the tendency of a network to form clusters, densely intercon-
nected sets of vertices. Various definitions of the clustering coefficient can be

� The authors are given in alphabetical order.

A. Bonato, M. Mitzenmacher, and P. Pra�lat (Eds.): WAW 2013, LNCS 8305, pp. 185–202, 2013.
c© Springer International Publishing Switzerland 2013

186 L. Ostroumova, A. Ryabchenko, and E. Samosvat

found in the literature, see [6] for a discussion on their relationship. We consider
the most popular two: the global clustering coefficient and the average local
clustering coefficient (see Section 3.3 for definitions). For the majority of studied
real-world networks, the average local clustering coefficient varies in the range
from 0.01 to 0.8 and does not change much as the network grows [5]. Modeling
real-world networks with accurately capturing not only their power-law degree
distribution, but also clustering coefficient, has been a challenge.

In order to combine tunable degree distribution and clustering in one model,
some authors [2,20,21] proposed to start with a concrete prior distribution of
vertex degrees and clustering and then generate a random graph under such
constraints. However, adjusting a model to a particular graph seems to be not
generic enough and can be suspected in “overfitting”. A more natural approach
is to consider a graph as the result of a random process defined by certain reason-
able realistic rules guaranteeing the desired properties observed in real networks.
Perhaps the most widely studied realization of this approach is preferential at-
tachment. In Section 2, we give a background on previous studies in this field.

In this paper, we propose a new class of preferential attachment random graph
models thus generalizing some previous approaches. We study this class theoret-
ically: we prove the power law for the degree distribution and approximate the
clustering coefficient. We demonstrate that in preferential attachment graphs
two definitions of the clustering coefficient give quite different values. We also
propose a concrete parameterized model from our class where both the power-
law exponent and the clustering coefficient can be tuned. All our theoretical
results are illustrated experimentally.

The remainder of the paper is organized as follows. In Section 2, we give a
background on previous studies of preferential attachment models. In Section 3,
we propose a definition of a new class of models, and obtain some general results
for all models in this class. Then, in Section 4, we describe one particular model
from the proposed class. We demonstrate results obtained for graphs generated
in this model in Section 5. Section 6 concludes the paper.

2 Preferential Attachment Random Graph Models

In 1999, Barabási and Albert observed [3] that the degree distribution of the
World Wide Web follows the power law with the parameter ∼ 2.1. As a possible
explanation for this phenomenon, they proposed a graph construction stochastic
process, which is a Markov chain of graphs, governed by the preferential attach-
ment. At each time step in the process, a new vertex is added to the graph
and is joined to m different vertices already existing in the graph chosen with
probabilities proportional to their degrees.

Denote by dnv the degree of a vertex v in the growing graph at time n. At
each step m edges are added, so we have

∑
v d

n
v = 2mn. This observation and

the preferential attachment rule imply that

P(dn+1
v = d + 1 | dnv = d) =

d

2n
, (1)

Generalized Preferential Attachment 187

where P denotes the probability of an event. Note that the condition (1) on
the attachment probability does not specify the distribution of m vertices to be
joined to, in particular their dependence. Therefore, it would be more accurate
to say that Barabási and Albert proposed not a single model, but a class of
models. As it was shown later, there is a whole range of models that fit the
Barabási–Albert description, but possess very different behavior.

Theorem 1 (Bollobás, Riordan [6]). Let f(n), n ≥ 2, be any integer valued
function with f(2) = 0 and f(n) ≤ f(n+1) ≤ f(n)+1 for every n ≥ 2, such that
f(n)→∞ as n→∞. Then there is a random graph process T (n) satisfying (1)
such that, with probability 1, T (n) has exactly f(n) triangles for all sufficiently
large n.

In [7], Bollobás and Riordan proposed a concrete precisely defined model of the

Barabási–Albert type, known as the LCD-model, and proved that for d < n
1
15 ,

the portion of vertices with degree d asymptotically almost surely obeys the
power law with the parameter 3. Recently Grechnikov substantially improved
this result [17] and removed the restriction on d. It was shown also that the
expectation of the global clustering coefficient in the model is asymptotically

proportional to (log n)2

n and therefore tends to zero as the graph grows [6].
One obtains a natural generalization of the LCD-model, requiring the prob-

ability of attachment of a new vertex n + 1 to a vertex v to be proportional to
dnv +mβ, where β is a constant representing the initial attractiveness of a vertex.
Buckley and Osthus [10] proposed a precisely defined model with a nonnegative
integer β. Móri [19] generalized this model to real β > −1. For both models, the
degree distribution was shown to follow the power law with the parameter 3 +β
in the range of small degrees. The recent result of Eggemann and Noble [15] im-
plies that the expectation of the global clustering coefficient in the Móri model
with β > 0 is asymptotically proportional to log n

n . For β = 0, the Móri model is
almost identical to the LCD-model. Therefore the authors of [15] emphasize the

confusing difference between clustering coefficients ((log n)2

n versus logn
n).

The main drawback of the described preferential attachment models is un-
realistic behavior of the clustering coefficient. In fact, for all discussed models
the clustering coefficient tends to zero as a graph grows, while in the real-world
networks the clustering coefficient is approximately a constant [5].

A model with asymptotically constant (average local) clustering coefficient
was proposed by Holme and Kim [18]. The idea is to mix preferential attach-
ment steps with the steps of triangle formation. This model allows to tune the
clustering coefficient by varying the probability of the triangle formation step.
However, experiments and empirical analysis show that the degree distribution
in this model obeys the power law with the fixed parameter close to 3, which
does not suit most real networks. RAN (random Apollonian network) proposed
in [22] is another interesting example of a Barabási-Albert type model with
asymptotically constant (average local) clustering.

188 L. Ostroumova, A. Ryabchenko, and E. Samosvat

There is a variety of other models, not mentioned here, that are also based
on the idea of preferential attachment. Analyses of properties of all these mod-
els are often very similar. In the next section, we consider theorems aimed at
simplifying these analyses and providing a general framework for them. In order
to do this, we define a new class of preferential attachment models that gener-
alizes models mentioned above, as well as many others. We also propose a new
parameterized model which belongs to this class that allows to tune both the
power-law exponent and the clustering coefficient by adjusting the parameters.

3 Theoretical Results

In this section, we define a general class of preferential attachment models. For
all models in this class we are able to prove the power-law degree distribution.
If an additional property is fulfilled, we are able to analyze the behavior of the
clustering coefficient as the network grows.

3.1 Definition of the PA-class

Let Gn
m (n ≥ n0) be a graph with n vertices {1, . . . , n} and mn edges obtained

as a result of the following random graph process. We start at the time n0 from
an arbitrary graph Gn0

m with n0 vertices and mn0 edges. On the (n + 1)-th step
(n ≥ n0), we make the graph Gn+1

m from Gn
m by adding a new vertex n + 1 and

m edges connecting this vertex to some m vertices from the set {1, . . . , n, n+1}.
Denote by dnv the degree of a vertex v in Gn

m. If for some constants A and B the
following conditions are satisfied

P
(
dn+1
v = dnv | Gn

m

)
= 1−A

dnv
n
−B

1

n
+ O

(
(dnv)

2

n2

)
, 1 ≤ v ≤ n , (2)

P
(
dn+1
v = dnv + 1 | Gn

m

)
= A

dnv
n

+ B
1

n
+ O

(
(dnv)

2

n2

)
, 1 ≤ v ≤ n , (3)

P
(
dn+1
v = dnv + j | Gn

m

)
= O

(
(dnv)

2

n2

)
, 2 ≤ j ≤ m, 1 ≤ v ≤ n , (4)

P(dn+1
n+1 = m + j) = O

(
1

n

)
, 1 ≤ j ≤ m , (5)

then we say that the random graph process Gn
m is a model from the PA-class.

Condition (5) means that the probability to have a self-loop in the added vertex
is small. As we will show later, certain minor details of the models from this
class, such as whether loops and multiple edges are allowed, are irrelevant.

Since we add m edges at each step, summing up the equalities (3)-(5) (with
corresponding coefficients) over all vertices and neglecting error terms we get
2mA+B = m. It is possible to prove that the sum of error terms in this case is

Generalized Preferential Attachment 189

0, but for simplicity we just set 2mA+B = m. Furthermore, we have 0 ≤ A ≤ 1
(for (3) we need mA + B ≥ 0 and we set 2mA + B = m, therefore A ≤ 1).

Here we want to emphasize that we indeed defined not a single model but
a class of models. Even fixing values of parameters A and m does not specify
a concrete procedure for constructing a network. What this definition lacks is
the precise description of the distribution of vertices a new incoming vertex is
being connected to, and therefore there is a range of models possessing very
different properties and satisfying the conditions (2–5). For example, the LCD,
the Holme–Kim and the RAN models belong to the PA-class with A = 1/2 and
B = 0. The Buckley–Osthus (Móri) model also belongs to the PA-class with
A = 1

2+β and B = mβ
2+β . Another example is considered in detail in Sections 4

and 5. This situation is somewhat similar to that with the definition of the
Barabási–Albert models, though our class is wider in a sense that the exponent
of the power-law degree distribution is tunable.

In mathematical analysis of network models, there is a tendency to consider
only fully and precisely defined models. In contrast, we provide results about
general properties for the whole PA-class in the next two subsections.

3.2 Power Law Degree Distribution

Even though the precise description of the distribution of vertices a new incoming
vertex is going to be connected to is not specified, we are still able to describe
the degree distribution of the network.

First, we estimate Nn(d), the number of vertices with given degree d in Gn
m.

We prove the following result on the expectation ENn(d) of Nn(d).

Theorem 2. For every d ≥ m we have ENn(d) = c(m, d)
(
n + O

(
d2+ 1

A

))
,

where

c(m, d) =
Γ
(
d + B

A

)
Γ
(
m + B+1

A

)
AΓ

(
d + B+A+1

A

)
Γ
(
m + B

A

) d→∞∼ Γ
(
m + B+1

A

)
d−1− 1

A

AΓ
(
m + B

A

) ,

and Γ(x) is the gamma function.

Second, we show that the number of vertices with given degree d is highly
concentrated around its expectation.

Theorem 3. For every model from the PA-class and for every d = d(n) we have

P
(|Nn(d)− ENn(d)| ≥ d

√
n logn

)
= O

(
n− logn

)
.

Therefore, for any δ > 0 there exists a function ϕ(n) ∈ o(1) such that

lim
n→∞P

(
∃ d ≤ n

A−δ
4A+2 : |Nn(d)− ENn(d)| ≥ ϕ(n)ENn(d)

)
= 0 .

These two theorems mean that the degree distribution follows (asymptotically)
the power law with the parameter 1 + 1

A .

190 L. Ostroumova, A. Ryabchenko, and E. Samosvat

Theorem 2 is proved by induction on d and n. It is easy to see that given
a graph Gn

m, we can express the conditional expectation of the number of ver-
tices with degree d in Gn+1

m (i.e., E(Nn+1(d) | Gn
m)) in terms of Nn(d), Nn(d −

1), . . . , Nn(d −m). Here we use the fact that the probability of having an edge
between the vertex n + 1 and a vertex v depends on the degree of v (see (2)).
Using the law of total expectation we obtain the recurrent relation for ENn+1(d)
and prove the statement of Theorem 2 by induction.

We use the Azuma–Hoeffding inequality to prove the concentration result of
Theorem 3. In order to do this, we consider the martingale Xi(d) = E(Nn(d) |
Gi

m), i = 0, . . . , n. The complete proofs of these theorems are technical and are
placed in Appendix due to space constraints.

3.3 Clustering Coefficient

Here we consider the clustering coefficient in models of the PA-class. There
are two popular definitions of the clustering coefficient. The global clustering
coefficient C1(n) is the ratio of three times the number of triangles to the number
of pairs of adjacent edges in G. The average local clustering coefficient is defined
as follows: C2(n) = 1

n

∑n
i=1 C(i), where C(i) is the local clustering coefficient for

a vertex i: C(i) = T i

P i
2

, where T i is the number of edges between neighbors of the

vertex i and P i
2 is the number of pairs of neighbors. Results for some classical

preferential attachment models (LCD and Móri) are mentioned in Section 2.
Here we generalize these results. First, we study the random variable P2(n)

equal to the number of P2’s in a random graph Gn
m from an arbitrary model that

belongs to the PA-class. In the theorems below, we use the following notation.
By whp (“with high probability”) we mean that for some sequence An of events,
P (An) → 1 as n→∞. We say an ∼ bn if an = (1 + o(1))bn, and we say an ∝ bn
if C0bn ≤ an ≤ C1bn for some constants C0, C1 > 0.

Theorem 4. For every model from the PA-class, we have

(1) if 2A < 1, then whp P2(n) ∼
(

2m(A + B) + m(m−1)
2

)
n

1−2A ,

(2) if 2A = 1, then whp P2(n) ∼
(

2m(A + B) + m(m−1)
2

)
n log(n) ,

(3) if 2A > 1, then for any ε > 0 whp n2A−ε ≤ P2(n) ≤ n2A+ε.

The ideas of the proof of Theorem 4 are given in Appendix. Here it is worth not-
ing that the value P2(n) in scale-free graphs is usually determined by the power-

law exponent γ. Indeed, we have P2(n) =
∑dmax

d=1 Nn(d)d(d−1)
2 ∝ ∑dmax

d=1 nd2−γ ,
where dmax is the maximum possible degree of a vertex in Gn

m. Therefore if γ > 3,
then P2(n) is linear in n. However, if γ ≤ 3, then P2(n) is superlinear.

Next, we study the random variable T (n) equal to the number of triangles
in Gn

m. Note that in any model from the PA-class we have T (n) = O(n) since

at each step we add at most m(m−1)
2 triangles. If we combine this fact with the

previous observation, we see that if γ ≤ 3, then in any preferential attachment

Generalized Preferential Attachment 191

model (in which the out-degree of each vertex equals m) the global clustering
coefficient tends to zero as n grows.

Our aim is to find models with constant clustering coefficient. Let us consider
a subclass of the PA-class with the following property:

P
(
dn+1
i = dni + 1, dn+1

j = dnj + 1 | Gn
m

)
= eij

D

mn
+ O

(
dni d

n
j

n2

)
. (6)

Here eij is the number of edges between vertices i and j in Gn
m and D is a

positive constant. Note that this property still does not define the correlation
between edges completely.

Theorem 5. Let Gn
m satisfy the condition (6). Then whp T (n) ∼ Dn .

The proof of this theorem is straightforward. The expectation of the number of

triangles we add at each step is D+o(1). The fact that the sum of O
(

dn
i d

n
j

n2

)
over

all adjacent vertices is o(1) can be shown by induction using the conditions (2–5).
It is also possible to first prove that the maximum degree grows as nA and then
use this fact to estimate the sum of error terms. Therefore ET (n) = Dn + o(n).
The Azuma–Hoeffding inequality can be used to prove concentration.

As a consequence of Theorems 4 and 5, we get the following result on the
global clustering coefficient C1(n) of the graph Gn

m.

Theorem 6. Let Gn
m belong to the PA-class and satisfy the condition (6). Then

(1) If 2A < 1 then whp C1(n) ∼ 3(1−2A)D

(2m(A+B)+
m(m−1)

2)
,

(2) If 2A = 1 then whp C1(n) ∼ 3D

(2m(A+B)+ m(m−1)
2) log n

,

(3) If 2A > 1 then for any ε > 0 whp n1−2A−ε ≤ C1(n) ≤ n1−2A+ε .

Theorem 6 shows that in some cases (2A ≥ 1) the global clustering coefficient
C1(n) tends to zero as the number of vertices grows. We empirically show in
Section 5 that the average local clustering coefficient C2(n) behaves differently.

The theoretical analysis in this case is much harder, but we can easily show
why C2(n) does not tend to zero if the condition (6) holds. From Theorems 2
and 3 it follows that whp the number of vertices with degree m in Gn

m is greater
than cn for some positive constant c. The expectation of the number of triangles
we add at each step is D + o(1). Therefore whp C2(n) ≥ 1

n

∑
i:deg(i)=m C(i) ≥

2cD
m(m+1) .

In the next section we introduce a concrete nontrivial model from the PA-
class.

4 Polynomial Model

In this section, we consider polynomial random graph models that belong to the
general PA-class defined above. Applying our theoretical results to polynomial

192 L. Ostroumova, A. Ryabchenko, and E. Samosvat

models, we find the model to be very flexible: one can tune the parameter of the
degree distribution and the clustering coefficient.

Definition of Polynomial Model. Let us define the polynomial model. As in
the random graph process from Subsection 3.1, we construct a graph Gn

m step
by step. On the (n + 1)-th step the graph Gn+1

m is made from the graph Gn
m by

adding a new vertex n+1 and sequentially drawing m edges (multiple edges and
self-loops are allowed).

We say that an edge ij is directed from i to j if i ≥ j, so the out-degree
of each vertex equals m. We also say that i and j are respectively source and
target ends of ij. We consider different approaches to add new edges from the
vertex n+ 1. We first choose an edge from the existing graph Gn

m uniformly and
independently at random and then have three options:

– Preferential attachment (PA): draw one edge from n + 1 to the target end
of the chosen edge

– Uniform (U): draw one edge from n+ 1 to the source end of the chosen edge
– Triangle formation (TF): draw two edges from n + 1 to target and source

ends of the chosen edge

Let us now specify how to draw m edges from the vertex n+1. Consider a col-
lection of positive parameters {αk,l} for 0 ≤ k ≤ m/2 and 0 ≤ l ≤ m− 2k such
that

∑
k,l αk,l = 1, these parameters fully define our model. At the beginning

of the n + 1 step with probabilities {αk,l} we choose some k = k0 and l = l0,
then we draw l0 edges using PA, 2k0 edges using TF and (m− l0 − 2k0) edges
using U. This random graph process defines the polynomial model and from the
definition it follows that graphs in this model can be generated in linear time.
This model belongs to the PA-class. Indeed, one can formally show by simple
calculations that the conditions (2–5) hold for this model.

At this point the model is defined but let us explain why we call it polyno-

mial. Denote by d̂ni = dni −m the in-degree of a vertex i in Gn
m. Let us recall

that by eij we denote the number of edges between vertices i and j. For ev-
ery k, l such that 0 ≤ k ≤ m/2 and 0 ≤ l ≤ m − 2k, let Mn,m

k,l (i1, . . . , im) =

1
nm−l−2k

∏k
x=1

ei2xi2x−1

2mn

∏2k+l
y=2k+1

d̂n
iy

mn . This is a monomial depending on d̂niy and

ei2xi2x−1 . We define the polynomial
∑

k,l αk,lM
n,m
k,l (i1, . . . , im). It is easy to check

that

P (edges e1, . . . , em go to vertices i1, . . . , im, respectively) =

=

m/2∑
k=0

m−2k∑
l=0

αk,lM
n,m
k,l (i1, . . . , im) . (7)

Many models are special cases of the polynomial model. If we consider the

polynomial
∏m

y=1

d̂n
iy

+m

2mn , then we obtain a model that is practically identical to
the LCD-model. The Buckley–Osthus model can be also interpreted in terms of
the polynomial model.

Generalized Preferential Attachment 193

Properties. It is easy to check that the parameters αk,l from (7) and A from
(2) are related in the following way:

A =
∑

αk,l
l + k

m
. (8)

This means that we can use an arbitrary value of A ∈ [0, 1] and any power-law
exponent γ ∈ (2,∞) in the graph generation. Also note that D =

∑
k,l kαk,l .

In the next section we analyze experimentally some properties of graphs in the
polynomial model. We generate polynomial graphs and compare their properties
with theoretical results we obtained.

5 Experiments

In this section, we choose a three-parameter model from the family of polynomial
graph models defined in Section 4 and analyze the properties of the generated
graphs depending on the parameters.

5.1 Description of Empirically Studied Polynomial Model

We study empirically graphs in the polynomial model with m = 2p and the
probability to draw edges to vertices i1, . . . , i2m equals

p∏
k=1

(
α
d̂ni2k d̂

n
i2k−1

(mn)2
+ β

ei2ki2k−1

2mn
+

δ

(n)2

)
.

Here we need α, β, δ ≥ 0 and α+β+δ = 1, therefore, we have three independent
model parameters: m, α, and β. Note that here we write the polynomial in a
symmetric form as we ignore the order of edges.

Based on our theoretical results, we have certain expectations about the prop-
erties of generated graphs. From (8) we obtain that in this model A = α+ β

2 , B =

m(δ − α), D = pβ = mβ
2 , therefore, due to Theorem 2 and Theorem 6, we get

that

C1(n) ∼ 3(1− 2α− β)β

5m− 1− 2(2m− 1)(2α + β)
, γ = 1 +

2

2α + β
. (9)

5.2 Empirical Results

Degree Distribution and Clustering Coefficient. First, we study two
polynomial graphs with n = 107, m = 2, and A = 0.4, assigning α = 0.4, β = 0
for the first graph and α = 0, β = 0.8 for the second one. The observed degree
distributions are almost identical and follow the power law with the expected
parameter γ = 3.5, see Fig. 1a.

For both cases, we also study the behavior of the global and the average local
clustering coefficients of generated graphs, 40 samples for each n =

[
101+0.06i

]
,

i = 0, . . . , 100, see Fig. 1bc. In the first case we observe C1(n) → 0, C2(n) → 0

194 L. Ostroumova, A. Ryabchenko, and E. Samosvat

Fig. 1. a) The degree distribution of polynomial graphs with n = 107 and m = 2.
b) The global clustering coefficient of polynomial graphs with m = 2 depending on n.
c) The average local clustering coefficient of polynomial graphs with m = 2 depending
on n.

(as β = 0) and in the second case C1(n)→ 2
15 (as was expected due to (9)) and

C2(n) → const > 0.
We also generate graphs with n = 106, m = 2, and varying A (we took

β = 0.5 and α ∈ (0, 0.5)). In other words, we fix the probability of a triangle
formation and vary the parameter of the power-law degree distribution. The
obtained results are shown in Fig. 2a. The behavior of the clustering coefficients
is quite different. If A grows, then P2(n) grows (therefore C1(n) → 0), the
number of vertices with small degrees and hence high local clustering also grows
(therefore C2(n) increases).

To demonstrate the difference between the global clustering and the average
local clustering we generated graphs with m = 2, α = 0.5, β = 0.2 and varying
n (Fig. 2b). In this case we have A = α + β

2 > 0.5 and C1(n) → 0, as expected.
However, for the local clustering we obtain C2(n)→ const > 0.

Fig. 2. a) Average local and global clustering in polynomial graphs with n = 106,
m = 2, β = 0.5 depending on A. b) The global and the average local clustering
coefficients of polynomial graphs with m = 2, α = 0.5, β = 0.2 depending on n.

Generalized Preferential Attachment 195

Comparison with Other Models. The following table summarizes our re-
sults for the polynomial model in comparison with other mentioned preferential
attachment models:

A D γ Global clustering Average local clustering

LCD 1/2 0 3 tends to zero tends to zero

BO/Móri 1/(2 + β) 0 (2,∞) tends to zero tends to zero

HK 1/2 mt 3 tends to zero constant

RAN 1/2 3 3 tends to zero constant

Polynomial
∑

αk,l
l+k
m

∑
kαk,l (2,∞) constant for A < 1

2
constant

The polynomial model seems to be the only model where one can control
the exponent in the power law of the degree distribution, and at the same time
guarantee a positive clustering coefficient.

6 Conclusions

In this paper, we introduced the PA-class of random graph models that gener-
alizes previous preferential attachment approaches. We proved that any model
from the PA-class possesses the power-law degree distribution with tunable pa-
rameter. We also estimated its clustering coefficient. Next, we described one
particular model from the proposed class (with tunable both the degree distri-
bution parameter and the clustering coefficient). Experiments with generated
graphs illustrated our theoretical results. We also demonstrated different behav-
ior of two versions of the clustering coefficient in preferential attachment models.

As the degree distribution of a preferential attachment model allows adjust-
ment to reality, the clustering coefficient still gives rise to a problem in some
cases. For most real-world networks the parameter γ of their degree distribution
belongs to [2, 3]. As we showed in Section 3, once γ ≤ 3 in a preferential at-
tachment model, the global clustering coefficients decreases as the graph grows,
which does not correspond to the majority of real-world networks. The reason
is that the number of edges added with a new vertex at each step is a constant
and consequently the number of triangles grows too slowly.

Fortunately, there are many ways to overcome this obstacle. Cooper proposed
a model in which the number of added edges is a random variable [11]. In col-
laboration with Pra�lat he also considered a modification of the Barabási–Albert
model, where a new vertex added at time t generates tc edges [13]. Preferential
attachment models with random initial degrees were considered in [14]. Also
there are models with adding edges between already existing nodes (e.g. [12]).
Using one of these ideas for the PA-class is a topic for future research.

Acknowledgements. Special thanks to Evgeniy Grechnikov, Gleb Gusev, An-
drei Raigorodskii and anonymous reviewers for the careful reading and useful
comments.

196 L. Ostroumova, A. Ryabchenko, and E. Samosvat

References

1. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Reviews of
Modern Physics 74, 47–97 (2002)

2. Bansal, S., Khandelwal, S., Meyers, L.A.: Exploring biological network structure
with clustered random networks. BMC Bioinformatics 10, 405 (2009)

3. Barabási, A.-L., Albert, R.: Science 286, 509 (1999); Barabási, A.-L., Albert, R.,
Jeong, H.: Physica A 272, 173 (1999); Albert, R., Jeong, H., Barabási, A.-L.: Na-
ture 401, 130 (1999)

4. Batagelj, V., Brandes, U.: Efficient generation of large random networks. Phys.
Rev. E 71, 036113 (2005)

5. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex net-
works: Structure and dynamics. Physics Reports 424(45), 175–308 (2006)

6. Bollobás, B., Riordan, O.M.: Mathematical results on scale-free random graphs.
In: Handbook of Graphs and Networks: From the Genome to the Internet, pp. 1–3
(2003)

7. Bollobás, B., Riordan, O.M., Spencer, J., Tusnády, G.: The degree sequence of
a scale-free random graph process. Random Structures and Algorithms 18(3),
279–290 (2001)

8. Borgs, C., Brautbar, M., Chayes, J., Khanna, S., Lucier, B.: The power of local
information in social networks (2012) (preprint)

9. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., Wiener, J.: Graph structure in the web. Computer Networks 33(16),
309–320 (2000)

10. Buckley, P.G., Osthus, D.: Popularity based random graph models leading to a
scale-free degree sequence. Discrete Mathematics 282, 53–63 (2004)

11. Cooper, C.: Distribution of Vertex Degree in Web-Graphs. Combinatorics, Proba-
bility and Computing 15, 637–661 (2006)

12. Cooper, C., Frieze, A.: A General Model of Web Graphs. Random Structures and
Algorithms 22(3), 311–335 (2003)

13. Cooper, C., Pra�l, P.: at, Scale-free graphs of increasing degree. Random Structures
and Algorithms 38(4), 396–421 (2011)

14. Deijfen, M., van den Esker, H., van der Hofstad, R., Hooghiemstra, G.: A prefer-
ential attachment model with random initial degrees. Ark. Mat. 47, 41–72 (2009)

15. Eggemann, N., Noble, S.D.: The clustering coefficient of a scale-free random graph.
Discrete Applied Mathematics 159(10), 953–965 (2011)

16. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the In-
ternet topology. In: Proc. SIGCOMM 1999 (1999)

17. Grechnikov, E.A.: An estimate for the number of edges between vertices of given
degrees in random graphs in the Bollobás–Riordan model. Moscow Journal of Com-
binatorics and Number Theory 1(2), 40–73 (2011)

18. Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Phys.
Rev. E 65(2), 026107 (2002)

19. Móri, T.F.: The maximum degree of the Barabási-Albert random tree. Combina-
torics, Probability and Computing 14, 339–348 (2005)

20. Serrano, M.Á., Boguñá, M.: Tuning clustering in random networks with arbitrary
degree distributions. Phys. Rev. E 72(3), 036133 (2005)

21. Volz, E.: Random Networks with Tunable Degree Distribution and Clustering.
Phys. Rev. E 70(5), 056115 (2004)

22. Zhou, T., Yan, G., Wang, B.-H.: Maximal planar networks with large clustering
coefficient and power-law degree distribution journal. Phys. Rev. E 71(4), 46141
(2005)

Generalized Preferential Attachment 197

Appendix: Proofs

Proof of Theorem 2

In this proof we use the notation θ(·) for error terms. By θ(X) we denote a
function such that |θ(X)| < X . We also need the following notation:

P
(
dn+1
v = d | dnv = d

)
= 1−A

d

n
−B

1

n
+ O

(
d2

n2

)
, (10)

p1
n(d) := P

(
dn+1
v = d + 1 | dnv = d

)
= A

d

n
+ B

1

n
+ O

(
d2

n2

)
, (11)

pjn(d) := P
(
dn+1
v = d + j | dnv = d

)
= O

(
d2

n2

)
, 2 ≤ j ≤ m . (12)

pn :=

m∑
k=1

P(dn+1
n+1 = m + k) = O

(
1

n

)
. (13)

Note that the remainder term of pjn(d) can depend on v. We omit v in notation
pjn(d) for simplicity of proofs.

Put pv(d) =
∑m

j=1 p
j
v(d). Note that Ad+B+1

Ad−A+Bp1
v(d− 1)− pv(d) = 1

v + O
(

d2

v2

)
.

We use this equality several times in this proof.

We want to prove that ENn(d) = c(m, d)
(
n + θ

(
Cd2+ 1

A

))
with some con-

stant C and some function θ. The proof is by induction on d and then on i. First,
we prove the theorem for d = m and all i. Then, if we proved the theorem for
some d = d0 and all i, we are able to prove it for d = d0 + 1 and for all i.

We use the following equalities

E(Ni+1(m) | Ni(m)) = Ni(m) (1− pi(m)) + 1− pi , (14)

E(Ni+1(d) | Ni(d), Ni(d− 1), . . . , Ni(d−m)) = Ni(d) (1− pi(d)) +

+ Ni(d− 1)p1
i (d− 1) +

m∑
j=2

Ni(d− j)pji (d− j) + O(pi) . (15)

Consider the case d = m. For constant number of small i we obviously have
ENi(m) = i

Am+B+1 + θ(C1) with some C1. Assume that ENi(m) = i
Am+B+1 +

θ(C1). From (14) we obtain

ENi+1(m) = ENi(m) (1− pi(m)) + 1− pi =

=

(
i

Am + B + 1
+ θ(C1)

)
(1− pi(m)) + 1 + θ(C2/i) =

=
i + 1

Am + B + 1
+ θ(C1) (1− pi(m)) + θ

(
C3

i

)
1

Am + B + 1
+ θ(C2/i) .

198 L. Ostroumova, A. Ryabchenko, and E. Samosvat

It remains to show that

C1pi(m) ≥ C3

i(Am + B + 1)
+ θ(C2/i) .

We have pi(m) ≥ mA+B
i − C0

i2 . It gives us

C1(Am + B) ≥ C1C0

i
+

C3

Am + B + 1
+ C2 .

This equality holds for large i and C1. This completes the proof for d = m.
Remind that the proof is by induction on d and i. Consider d > m and assume

that we can prove the theorem for all smaller degrees. Now we use induction on
i.

We have Ni(d) ≤ 2mi
d , therefore Ni(d) = O

(
ic(m, d)d1/A

)
. In particular, for

i < 2C7 d
2, where the constant C7 depends only on the parameters of the model

and will be defined later, we have ENi(d) = c(m, d)
(
i + θ

(
Cd2+1/A

))
with some

C. Assume that
ENi(d) = c(m, d)

(
i + θ

(
Cd2+1/A

))
.

From (15) we obtain

ENi+1(d) = ENi(d) (1− pi(d)) + ENi(d− 1)p1
i (d− 1)+

+

m∑
j=2

ENi(d− j)pji (d− j) + O(pi) =

= c(m, d)
(
i + θ

(
Cd2+1/A

))
(1− pi(d)) +

+ c(m, d− 1)
(
i + θ

(
C(d − 1)2+1/A

))
p1
i (d− 1) + θ

(
C4c(m, d)d2id1/A

i2

)
=

= c(m, d)(i + 1) + c(m, d− 1)ip1
i (d− 1)−

− c(m, d)ipi(d)− c(m, d) + c(m, d)θ
(
Cd2+1/A

)
(1− pi(d)) +

+
c(m, d)(Ad + B + 1)

Ad−A + B
θ
(
C(d− 1)2+1/A

)
p1
i (d− 1) + θ

(
C4c(m, d)d2d1/A

i

)
=

= c(m, d)(i + 1) + c(m, d)θ
(
Cd2+1/A

)
(1− pi(d)) +

+
c(m, d)(Ad + B + 1)

Ad−A + B
θ
(
C(d − 1)2+1/A

)
p1
i (d− 1) + θ

(
C5c(m, d)d2d1/A

i

)
.

We need to prove that there exists a constant C that

Cd2+1/Api(d) ≥ C(Ad + B + 1)

Ad−A + B
(d− 1)2+1/Ap1

i (d− 1) +
C5d

2+1/A

i
,

Cd2+1/Api(d) ≥ C(Ad + B + 1)

Ad−A + B

(
d2+1/A − (2 + 1/A)d1+1/A + C6d

1/A
)
·

· p1
i (d− 1) +

C5d
2+1/A

i
,

Generalized Preferential Attachment 199

Cd2+1/A

i

(
2A +

(B −A)(2A + 1)

Ad
+ O

(
d

i2

))
≥ Cd2+1/AO

(
d2

i2

)
+

+
C(Ad + B + 1)

Ad−A + B
C6d

1/A

(
A
d− 1

i
+ B

1

i
+ O

(
d2

i2

))
+

C5d
2+1/A

i
,

Cd2+1/A

i
≥ C7Cd4+1/A

i2
+

C8Cd1+1/A

i
+

C9d
2+1/A

i
.

This inequality holds for large C ≥ C10 and d ≥ d1. For constant number of
small d < d1 there exists a function f(d) > 0 such that

f(d)d2+1/Api(d) ≥ f(d− 1)
Ad + B + 1

Ad−A + B
(d− 1)2+1/Ap1

i (d− 1) +
C5d

2+1/A

i
.

Thus the final C is max {C10,maxd<d1{f(d)}}. This concludes the proof.

Proof of Theorem 3

To prove Theorem 3 we need the Azuma–Hoeffding inequality:

Theorem 7 (Azuma, Hoeffding). Let (Xi)
n
i=0 be a martingale such that |Xi−

Xi−1| ≤ ci for any 1 ≤ i ≤ n. Then

P (|Xn −X0| ≥ x) ≤ 2e
− x2

2
∑n

i=1
c2
i

for any x > 0.

Suppose we are given some δ > 0. Fix n and d: 1 ≤ d ≤ n
A−δ
4A+2 . Consider the

random variables Xi(d) = E(Nn(d) | Gi
m), i = 0, . . . , n.

Let us explain the meaning of the random variable E(Nn(d) | Gi
m). For any

t ≤ n let E(Nn(d) | Gt
m) be the expectation of the number of vertices with

degree d we may have at the step n of the process Gt
m if we fix first t steps of the

evolution and allow the rest n−t steps to be arbitrary. Note that X0(d) = ENn(d)
and Xn(d) = Nn(d). It is easy to see that Xn(d) is a martingale.

We will prove below that for any i = 0, . . . , n− 1

|Xi+1(d)−Xi(d)| ≤Md,

where M > 0 is some constant. Theorem follows from this statement immedi-
ately. Put ci = Md for all i. Then from Azuma–Hoeffding inequality it follows
that

P
(|Nn(d)− ENn(d)| ≥ d

√
n logn

) ≤ 2 exp

{
−n d2 log2 n

2nM2d2

}
= O

(
n− logn

)
.

If d ≤ n
A−δ
4A+2 , then the value of n

d1+1/A is considerably greater than d logn
√
n.

This is exactly what we need.

200 L. Ostroumova, A. Ryabchenko, and E. Samosvat

It remains to estimate the quantity |Xi+1(d)−Xi(d)|. The proof is by a direct
calculation.

Fix 0 ≤ i ≤ n− 1 and some graph Gi
m. Note that∣∣E (Nn(d) | Gi+1

m

)− E
(
Nn(d) | Gi

m

)∣∣ ≤
≤ max

G̃i+1
m ⊃Gi

m

{
E
(
Nn(d) | G̃i+1

m

)}
− min

G̃i+1
m ⊃Gi

m

{
E
(
Nn(d) | G̃i+1

m

)}
.

Put Ĝi+1
m = arg maxE(Nn(d) | G̃i+1

m), Ḡi+1
m = arg min E(Nn(d) | G̃i+1

m). We
need to estimate the difference E(Nn(d) | Ĝi+1

m)− E(Nn(d) | Ḡi+1
m).

For i + 1 ≤ t ≤ n put

δit(d) = E(Nt(d) | Ĝi+1
m)− E(Nt(d) | Ḡi+1

m).

First let us note that for t ≤ C11d
2, then we have δit(d) ≤ 2mt

d ≤Md for some
constant M .

Now we want to prove that δin(d) ≤Md by induction. Suppose that n = i+1.
Fix Gi

m. Graphs Ĝi+1
m and Ḡi+1

m are obtained from the graph Gi
m by adding the

vertex i + 1 and m edges. Therefore δii+1(d) ≤ 2m.
Now consider t: i ≤ t ≤ n− 1, t > C11d

2. Note that

E
(
Nt+1(m) | Gi

m

)
= E

(
Nt(m) | Gi

m

)
(1− pt(m)) + 1 + O(1/t) ,

E
(
Nt+1(d) | Gi

m

)
= E

(
Nt(d) | Gi

m

)
(1− pt(d)) +

+E
(
Nt(d−1) |Gi

m

)
p1
t (d−1)+

m∑
j=2

E
(
Nt(d−j) | Gi

m

)
pjt (d−j)+O(1/t), d ≥ m+1 .

We obtained the same equalities in the proof of Theorem 2, see (14)-(15). Replace
Gi

m by Ĝi
m or Ḡi

m in these equalities. Substracting the equalities with Ḡi
m from

the equalities with Ĝi
m we get (for d > m)

δit+1(d) = δit(d) (1− pt(d)) + δit(d− 1)p1
t (d− 1) + O

(
ENt(d)d2

t2

)
+ O

(
1

t

)
=

= δit(d) (1− pt(d)) + δit(d− 1)p1
t (d− 1) + θ

(
C12d

t

)
. (16)

Here we used that ENt(d) = O
(
td−1−1/A + d

)
= O(t/d). From this recurrent

relation it is easy to obtain by induction that δin(d) ≤Md for some M .

δit+1(d) ≤Md (1− pt(d)) + M(d− 1)p1
t (d− 1) +

C12d

t
≤

≤Md− MA(2d− 1)

t
− MB

d
+

C13Md3

t2
+

C12d

t
≤Md

for sufficiently large M . This concludes the proof of Theorem 3.

Generalized Preferential Attachment 201

Proof of Theorem 4

Let us give the sketch of the proof of Theorem 4. We can prove this theorem by
induction. Note that

P2(n) =

∞∑
d=m

Nn(d)
d(d − 1)

2
.

Therefore

EP2(i+1)=

∞∑
d=m

ENi+1(d)
d(d − 1)

2
= EP2(i)+

m(m− 1)

2
+

∞∑
d=m

ENi(d)pi(d)d ∼

∼ EP2(i)+
m(m− 1)

2
+

∞∑
d=m

(Ad + B)dENi(d)

i
=EP2(i)

(
1 +

2A

i

)
+
m(m− 1)

2
+

+

∞∑
d=m

(A + B)dENi(d)

i
= EP2(i)

(
1 +

2A

i

)
+ 2m(A + B) +

m(m− 1)

2
.

So we obtain

EP2(n) ∼
(

2m(A + B) +
m(m− 1)

2

) n∑
t=1

n∏
i=t+1

(
1 +

2A

i

)
∼

∼
(

2m(A + B) +
m(m− 1)

2

) n∑
t=1

n2A

t2A
.

If 2A < 1 then

EP2(n) ∼
(

2m(A + B) +
m(m− 1)

2

)
n

1− 2A
.

If 2A = 1 then

EP2(n) ∼
(

2m(A + B) +
m(m− 1)

2

)
n log(n) .

If 2A > 1 then
EP2(n) = O

(
n2A

)
.

Note that if 2A ≤ 1, then the structure of an arbitrary graph Gn0
m does not

affect the asymptotic of EP2(n). If 2A > 1, then Gn0
m affects only the constant

in O
(
n2A

)
.

We computed the expectation of P2. One can prove concentration using stan-
dard martingale methods, although the proof is not trivial in this case. Here we
need the fact that the maximum degree Δn grows as nA, which can be shown
using an induction. Let us consider the case 1 − 2A > 0. The intuition behind
this proof is the following. If we draw an edge to some vertex then this edge
increase the expected final degree of this vertex by (n/i)A. Finally, the expected
number of P2 increases by at most nA(n/i)A = n2A/iA (we multiply the number

202 L. Ostroumova, A. Ryabchenko, and E. Samosvat

of extra edges by the maximum possible degree of a vertex). Now, the sum of
the squares of these values (see

∑n
i=1 c

2
i in Theorem 7) is of order n1+2A. So,

in Azuma’s inequality we can take x growing faster than n1/2+A. Note that in
this case x can be taken smaller than EP2(n) which gives concentration. In the
case 1 − 2A < 0 we are not able to get concentration, but it is possible to get
asymptotic from Theorem 4.

Solving Linear Systems with Boundary

Conditions Using Heat Kernel Pagerank

Fan Chung and Olivia Simpson

Department of Computer Science and Engineering,
University of California, San Diego

La Jolla, CA 92093
{fan,osimpson}@ucsd.edu

Abstract. We present an efficient algorithm for solving linear systems
with a boundary condition by computing the Green’s function of a con-
nected induced subgraph S of a graph. Different from previous linear
solvers, we introduce the method of using the Dirichlet heat kernel pager-
ank of the induced graph to approximate the solution to diagonally dom-
inant linear systems satisfying given boundary conditions. Our algorithm
runs in time Õ(1), with the assumption that a unit time allows a step in
a random walk or a sampling of a specified distribution, where the big-O
term depends on the error term and the boundary condition.

Keywords: graph Laplacian, heat kernel, pagerank, symmetric diago-
nally dominant linear systems, boundary conditions.

1 Introduction

A number of linear systems have been developed which model flow over nodes
of a graph with given boundary conditions. A classical example is the case of an
electrical network. Flow can be captured by measuring the passage of electrical
current between points in the network, and the amount that is injected and
removed from the system. Here, the points at which current is measured can
be represented by nodes in a graph, and edges are associated to the ease with
which current passes between two points. The injection and ejection points can
be viewed as the boundary of the system. The total effective resistance of the
network can then be evaluated by solving a system of linear equations over the
measurement points.

Another example is a decision-making process among a network of agents.
Each agent decides on a value, but may be influenced by the decision of other
agents in the network. Over time, the goal is to reach consensus among all
the agents, in which each agrees on an common value. Agents are represented
by nodes, and each node has an associated value. The amount of influence an
agent has on a fellow agent is modeled by a weighted edge between the two
representative nodes, and the communication dynamics can be modeled by a
linear system. In this case, agents which are free of influence can be viewed as
the boundary.

A. Bonato, M. Mitzenmacher, and P. Pra�lat (Eds.): WAW 2013, LNCS 8305, pp. 203–219, 2013.
c© Springer International Publishing Switzerland 2013

204 F. Chung and O. Simpson

In both these cases, the linear systems are equations formulated in the graph
Laplacian. Spectral properties of the Laplacian are closely related to reachability
and the rate of diffusion across nodes in a graph [9]. Indeed, Laplacian systems
have been used to concisely characterize qualities such as edge resistance and
the influence of communication on edges [33]. In this paper, we will show how
systems of linear equations formulated in the graph Laplacian can be effectively
solved and approximated by using a diffusion process over the graph. Namely, we
simulate a series of random walks and approximate the solution with sufficiently
many samples of the resulting distribution.

In practice, two classes of algorithms exist for computing solutions to a linear
system. First are iterative methods, such as the conjugate gradient method or
the Chebyshev method [20]. Second are preconditioned iterative methods in
which an approximation of the matrix is used [5,19,35]. A good preconditioner
is one that requires fewer iterations than the original but still achieves a close
approximation to the true solution. Both methods approximate the solution
by iteratively testing and improving the solution. That is, for a system of the
form Ax = b, each iteration yields a new vector x̂ for which Ax̂ is closer to b
than the previous. The fastest iterative method known is given in [27] which

runs in time O(m log3/2 n
√

log logn log(logn/ε)) in the unit-cost RAM model.
However, the current fastest known algorithm for solving symmetric, diagonally
dominant (SDD) linear systems is by a combinatorial method of [24] which runs
in O(m log2 n log log n log(1/ε))-time in the unit-cost RAM model.

In this paper, we present a new approach for solving Laplacian linear systems
with a boundary condition by computing the Green’s function of a connected
induced subgraph on a subset S of vertices. (If the induced subgraph on S is not
connected, we can then deal with each connected component separately so this
assumption on connectivity is not essential.) The Green’s function is basically the
inverse of the restricted Laplacian on S. Namely, for a given a system Lx = b,
where L = D − A, we consider the subset S consisting of all vertices v with
b(v) = 0. The goal is to find a solution x so that Lx(v) = 0 for v ∈ S and x
satisfies the boundary condition b in the sense that x(u) = b(u) for u �∈ S. When
the induced subgraph S is connected and b is non-trivial, the solution x can be
determined by Γb′ where Γ is the inverse of LS, (which is the restriction of L
to rows and columns indexed by vertices in S), and b′ ∈ RS is determined by b,
as detailed in Section 2.1. To compute b′ from b, it takes time no more than the
size of the edge boundary of S. With b′, our algorithm approximates the solution

in time O
(

(log s)2(log(1/ε))2

ε5 log log(1/ε)

)
= Õ(1), where ε is the error bound and s denotes

the size of S. Note that in our computation, we do not intend to compute or
approximate the pseudoinverse of L.

The speedup exhibited by our algorithm is due to our fast algorithm for
approximating heat kernel pagerank, which dominates the running time. The
PageRank was first introduced by Brin and Page [7] in web search algorithms.
In [3,6], sublinear time algorithms are given for approximating PageRank by
simulating random walks. Our heat kernel pagerank algorithm is related to the
PageRank algorithm in the sense that, while PageRank can be interpreted as

Solving Linear Systems with Heat Kernel 205

a geometric sum of random walks, heat kernel pagerank is an exponential sum
[10]. Based on random walks, we may expect more rapid convergence for heat
kernel pagerank.

1.1 Previous Work

An early result in scientific computing is the approximation algorithm of the
preconditioned Chebyshev method. In [20], Golub and Overton show that for
a positive, semi-definite matrix A and a preconditioner B, the preconditioned
Chebyshev method finds ε-accurate solutions to the system Ax = b in time
O(m

√
κf (A,B)S(B) log(κf (A)/ε)). Here, S(B) is the time it takes to solve lin-

ear systems in B and

κf(A,B) =

(
max

x:Ax �=0

xTAx

xTBx

)(
max

x:Ax �=0

xTBx

xTAx

)
.

This can be pretty good with a clever choice of preconditioner matrix B.
A large work on finding fast linear solvers for systems of equations in the graph

Laplacian was presented by Spielman and Teng in 2004 [35]. Spielman and Teng
improve the preconditioned (or inexact) Chebyshev method by exploiting the
insight of Vaidya that matrices of subgraphs serve as good preconditioners. In
the manuscript [37], Vaidya proves that a maximum spanning tree of a matrix
A nm-approximates A and that by adding t2 edges, one can obtain a sparse
graph that O(nm/t2)-approximates A. The result of this is an algorithm for
solving SDD linear systems with non-positive off-diagonal entries of degree d
in time O((dn)1.75 log(κf (A)/ε)), where κf (A) is the ratio of largest to smallest
eigenvalue of A. This is a huge improvement from the previous worst-case O(nm)-
time bound for the Chebyshev iterative method.

With these tools, Spielman and Teng’s major result is an m logO(1) n-time
linear solver for SDD matrices where n is the dimension of the matrix and m
the number of non-zero entries.

Prior to the contributions of Spielman and Teng, Joshi [23] showed how to re-
cursively apply the results of Vaidya to achieve a O(n log(n/ε)) linear solver. This

was improved for planar linear systems by Reif [31] to O(n1+β logO(1)(κf (A)/ε))
for any β > 0. The above techniques use spanning trees as the precondi-
tioner. Spielman and Teng later improve upon the results of Boman and Hen-
drickson [4,5], which apply spanning trees to construct ultra-sparsifiers in time
m1.31+o(1) log(κf (A)/ε) [34].

Koutis et al. [25] give a nearly optimal linear solver for SDD linear systems; an
improvement on the Spielman-Teng linear solver. Their algorithm uses an incre-
mental graph sparsification algorithm as a main tool and outputs an approximate
vector x̂ satisfying ||x̂ − A+b||A < ε||A+b||A in time O(m log2 n log(1/ε)). Here
A+ denotes the pseudoinverse of A. In [26], the authors improve this bound to
Õ(m log n log(1/ε))2. The faster run time results from an improvement in the
incremental sparsifier. As mentioned above, the fastest existing iterative method
is O(m log3/2 n

√
log logn log(logn/ε))-time in the unit-RAM model, due to Lee

206 F. Chung and O. Simpson

and Sidford [27]. Their improvement is due to an accelerated randomized coordi-
nate descent method which limits the cost per iteration and also achieves faster
convergence.

An early result is the Monte Carlo method for solving linear systems [18],
in which the inverse of a matrix is computed by translating the system into a
random walk model. Our methods use a similar stochastic process and random
sampling procedure. In [32], Sachdeva and Vishnoi show that the inverse of a
positive semi-definite matrix can be approximated by taking a weighted sum of
matrix exponentials. This method is also closely related to ours. However, rather
than taking matrix exponentials explicitly, we are adding small contributions
of the matrix exponential multiplied with a specified vector. In this way we
avoid explicit computation of the matrix inverse and spare a final matrix vector
multiplication in computing the solution.

1.2 Our Contributions

In this paper, we consider a direct method for solving systems of Laplacian linear
equations with boundary condition by way of the discrete Green’s function.
Specifically, our contributions are:

1. We introduce a new approach for solving a specific class of SDD linear sys-
tems subject to boundary conditions which avoids solution iterations.

2. We present an algorithm for approximating the product of the discrete
Green’s function of a graph with a specified vector.

3. We make use of an algorithm introduced in [13] for approximating the Dirich-
let heat kernel pagerank of a graph in sublinear time.

4. Using contributions (2) and (3), we present an algorithm which takes as
input a graph and a boundary conditions, and outputs a vector which is a
close approximation of the solution to the SDD linear system with boundary
condition.

5. We improve the running time of existing linear solvers with boundary con-
dition. Our solver for approximating the solution for a linear system of the
form Lx = b, with x satisfying the boundary condition, runs in sublinear
time Õ(1) where the constant depending on the error bound and the bound-
ary vector b. Here we assume a ‘unit’ time for each basic ‘operation’ which
includes (i) taking a random walk from a specified vertex for a finite, speci-
fied number of steps, (ii) sampling a random vertex according to a specified
distribution.

6. We present a number of applications for our fast linear solver such as solving
for effective resistance, maximum flow, coupled oscillators, and consensus of
multi-agent networks.

Our approach is a revisitation to direct methods for solving linear equations
with boundary condition, but rather than using algorithms based on Gaussian
elimination, we take advantage of diffusion and random walks for computing a
heat kernel pagerank vector. The solution to the system is then a sum of random
samples of heat kernel pagerank values.

Solving Linear Systems with Heat Kernel 207

The algorithm presented herein for approximating Dirichlet heat kernel pager-
ank has a similar flavor to that for approximating PageRank using random walks
in [6]. This heat kernel PageRank approximation is an improvement upon sev-
eral previous results [2,3,14,11]. The Dirichlet heat kernel pagerank algorithm is
related to the rate of convergence of exponential random walks and is of inde-
pendent interest on its own.

1.3 Organization

The remainder of this paper is organized as follows. Preliminaries definitions and
basic facts are given in Section 2. We introduce Dirichlet heat kernel pagerank
and present some crucial relationships between Dirichlet heat kernel pagerank
and the Green’s function. Our main result, an efficient linear solver algorithm,
is given in Section 3 and the analysis is given in Section 4. The algorithm for
approximating heat kernel pagerank is given in Section 5. Finally we discuss
some applications for the linear solver in Section 6.

2 Basic Definitions and Facts

In this section we introduce important results of spectral graph theory which
are crucial to the analysis of our algorithm.

2.1 The Laplacian and Green’s Function

Let G be an undirected graph given by vertex set V = V (G) and edge set
E = E(G). (Although we will mainly focus on simple, unweighted undirected
graphs, the definitions and results can easily generalized to general weighted
graphs.) We say a graph is size n when |V | = n. Let A be the indicator adjacency
matrix A ∈ {0, 1}V×V for which Auv = 1 if and only if {u, v} ∈ E. The degree
of a vertex v is the number of vertices adjacent to it, dv = |{u ∈ V |Auv = 1}|.
Let D be the diagonal degree matrix with entries Dvv = d(v) on the diagonal
and zero entries elsewhere.

The Laplacian is defined L = D−A. The problem of interest is a fast way to
solve systems of linear equations of the form

Lx = b (1)

while the solution x is required to satisfy the boundary condition b in the sense
that x(v) = b(v) for v in the support of b. Let S denote the set

S = {v ∈ V : b(v) = 0}.
Let δ(S) denote the vertex boundary of S, which is the set of vertices not in S
but which are adjacent to a vertex in S.

δ(S) = {u ∈ V : {u, v} ∈ E for some v ∈ S}.

208 F. Chung and O. Simpson

The support of b contains δ(S).
The problem of solving the linear system in (1) with a given boundary con-

dition is to find x ∈ RV such that

x(v) =

{
1
dv

∑
u∼v x(u) if v ∈ S

b(v) if v �∈ S
(2)

Here u ∼ v denotes {u, v} ∈ E. In other words, the solution x is harmonic in S
while satisfying the boundary function b. We remark that in this set up, we do
not place any condition on b. The entries of b can be either positive or negative.

In many applications involving solving systems of linear equations Lx = b,
the boundary vector b has a relatively small support as in the example of an
electrical network. In the graph representation of an electrical network, nodes
are points in the network at which current may be injected or removed and at
which potentials are measured. For all nodes except the injection and removal
points, the in-current matches the out-current. Then, if we inject one unit of
current at the point which we call s, and remove one unit of current from the
point which we call t, we have boundary conditions at these points. If c is the
vector of currents over nodes in the system, we can encompass the boundary
conditions in c:

c(i) =

⎧⎪⎨⎪⎩
1 if vi = s

−1 if vi = t

0 otherwise

The solution x of the linear system Lx = c, with x satisfying the boundary
condition c, can then be used to determine the effective resistance of the system.
This belongs to one of the classical problems, called the Dirichlet problem, for
finding a harmonic function on a set of points satisfying given boundary con-
ditions. There is a large literature on this topic for various domains [17]. The
discrete version of the Dirichlet problem can be reformulated as follows:

Let Aδ(S) be the s×|δ(S)| matrix by restricting the columns of A to δ(S) and
rows to S. Also, let AS be the matrix A restricted to rows and columns indexed
by S. For a boundary vector b ∈ Rδ(S), we wish to find a vector x ∈ RS so that

DSx = ASx + AδSb

or, equivalently xS = (DS − AS)−1
(
AδSb

)
provided the inverse L−1

S exists and xS denotes the restriction of x to vertices in
S. Indeed, if the induced subgraph on S is connected and the vertex boundary
δ(S) is not empty, then it is known [9] that the Green function Γ = (DS −
AS)−1 = L−1

S exists. We can then write

x = Γb′

where Γ = L−1
S and b′ = AδSb.

Solving Linear Systems with Heat Kernel 209

Therefore we have established the following:

Theorem 1. In a graph G, suppose b is a nontrivial vector in RV and the
induced subgraph on S = V \ supp b is connected. Suppose x is the solution for
a linear system Lx = b, satisfying the boundary condition b as in (2). Then the
restriction of x to S, denoted by xS, satisfies

xS = L−1
S

(
AδSb

)
.

For given b ∈ Rδ(S), the computation of b′ = AδSb takes time proportional to
the edge boundary of S, denoted by ∂(S).

∂(S) = {{u, v} ∈ E : u ∈ S, v �∈ S}.
Hence the computational complexity of solving the linear system with a bound-
ary condition on δ(S) is the combination of the running time |∂(S)| for computing
b′ plus the running time for computing Γb′.

2.2 Dirichlet Heat Kernel Pagerank and Green’s Function

The method we present for computing the Green’s function of the Laplacian
works by computing the sum of random samples of heat kernel pagerank vec-
tors. Heat kernel pagerank was originally introduced as a variant of personalized
PageRank of a graph [10,11]. Specifically, it is an exponential sum of random
walks generated from a starting vector, f ∈ Rn. As an added benefit, heat ker-
nel pagerank simultaneously satisfies the heat equation with the rate of diffusion
controlled by the parameter t,

∂u

∂t
= −Δu

where Δ = I−P and P = D−1A denotes the transition probability matrix for a
random walk on the graph G. Namely, if v is a neighbor of u, then P (u, v) = 1/du
is the probability of moving to v from a vertex u. Let S denote a subset of V .
We consider ΔS = IS − PS where, in general, MS denotes the submatrix of M
restricted to rows and columns indexed by vertices in S. For given t > 0 and a
preference vector f ∈ RS as a probability distribution on S, the Dirichlet heat
kernel pagerank is defined to be the exponential sum:

ρt,f = fTHS,t = fT e−tΔS = e−t
∞∑
k=0

tk

k!
fTP k

S (3)

where fT denotes the transpose of f . (Here we follow the notation for random
walks and pagerank so that a random walk step is by a right multiplication
by P .) We also consider the normalized Laplacian L = D−1/2LD−1/2 which is
symmetric version of Δ. The Dirichlet heat kernel can be expressed by

Ȟt = HS,t = D
1/2
S e−tΔSD

−1/2
S = e−tLS . (4)

210 F. Chung and O. Simpson

We note that as long as the graph G has no isolated vertex and D is invertible,
the following two problems of solving linear systems with boundary conditions

Lx = b, and Lx1 = b1,

are equivalent in the sense that we can set x1 = D1/2x and b1 = D−1/2b. In
addition to LS , we consider ΔS since our algorithm and analysis rely heavily on
random walks. Furthermore, we need LS , which is equivalent to ΔS , since we
will discuss the spectral decomposition of LS and use the L2-norm.

Similar to Theorem 1, for solving the linear system Lx = b we have the
following.

Theorem 2. In a graph G, suppose b is a nontrivial vector in RV and the
induced subgraph on S = V \ supp b is connected. Suppose x is the solution for
a linear system Lx = b, satisfying the boundary condition b (i.e. xδ(S) = bδ(S)).
Then the restriction of x to S, denoted by xS , satisfies

xS = L−1
S

(
D

−1/2
S AδSD

−1/2
δ(S) b

)
.

In the remainder of the paper, we assume that the induced subgraph on S is
connected and δ(S) �= ∅. The eigenvalues of LS are called Dirichlet eigenvalues,
denoted by λ1 ≤ λ2 ≤ . . . ≤ λs. It is easy to check (see [9]) that 0 < λi ≤ 2. In
fact, λ1 > 1/|S|3. We can write

LS =

s∑
i=1

λiPi

where Pi are the projection to the ith orthonormal eigenvectors.
Let G denote the inverse of LS . Namely, GLS = LSG = IS . Then

G =

s∑
i=1

1

λi
Pi. (5)

From (5), we see that

1

2
≤ ||G|| ≤ 1

λ1
. (6)

Then G can be related to Ȟ = HS as follows:

Lemma 1. Let G be the Green’s function of a connected induced subgraph on
S ⊂ V with s = |S|. Let Ȟ denote the Dirichlet heat kernel with rows and
columns restricted to S. Then

G =

∫ ∞

0

Ȟt dt. (7)

Solving Linear Systems with Heat Kernel 211

Proof. By our definition of the heat kernel,∫ ∞

0

Ȟt dt =

∫ ∞

0

(s∑
i=1

e−tλiPi

)
dt

=

s∑
i=1

(∫ ∞

0

e−tλi dt
)
Pi

=

s∑
i=1

1

λi
Pi

= G.
We note that G is related to the Green’s function Γ by

G = D
1/2
S ΓD

1/2
S . (8)

3 An Efficient Linear Solver Algorithm

Suppose we are given a linear system Lx = b, where L is the normalized Lapla-
cian of a given graph, and b is a specified vector indexed by vertices of the graph.
We wish to find the solution x which satisfies the boundary condition b. Let S
denote the complement of the support of b. Namely, S = V \ supp b. Our ap-
proximation algorithm for finding the solution of x, restricted to S, satisfying
x = Gb =

∫∞
0

(Ȟt b) dt, is based on a series of approximation and sampling.

Here we sketch the ideas. First we bound the tails and approximate
∫∞

0
(Ȟt b) dt

by
∫ T

0
(Ȟt b) dt for some appropriate T . Then we approximate this integral by

a finite Riemann sum
∑N

j=1 ȞjT/N b T
N for an appropriate N . Then we approxi-

mate by sampling the Ȟtb for sufficiently many values of t. To compute Ȟtb, we
can use the approximate heat kernel pagerank algorithm as in Section 5 . Here
we provide the following definition for an ε-approximate heat kernel pagerank
vector.

Definition 1. Let S be a subset of vertices in a graph S. Let f : V → RS be
a vector and let ρt,f = HS,tf be the Dirichlet heat kernel pagerank vector over
G according to f . Then we say that ν ∈ RS is an ε-approximate heat kernel
pagerank vector if

1. for every node v ∈ V in the support of ν, (1 − ε)(ρt,f [v] − ε) ≤ ν[v] ≤
(1 + ε)ρt,f [v], and

2. for every node with ν[v] = 0, it must be that ρt,f [v] ≤ ε.

We note that the error bound for approximated heat kernel pagerank here is
much stronger than the approximate pagerank in [3] (by a factor of s). The
definition here is similar to that in [6] although the scaling is different there.

To compute the ε-approximate heat kernel pagerank vectors requires

O
(

log(1/ε) log s
ε3 log log(1/ε)

)
time provided a unit time allows a random walk step or a sam-

pling from a given distribution (see Section 5). The algorithm for estimating the

212 F. Chung and O. Simpson

Green’s function is by taking the sum of r samples of an approximate Dirichlet
heat kernel pagerank vector ρ̂b(t) where t is chosen uniformly over the interval
[0, T], r = O(ε−2 log s) and T = O(s3(log(1/ε)). We use ApproxHK of Section 5 for
computing ρ̂b(t) as a subroutine. Therefore the total complexity for the approx-

imate linear solver algorithm takes time O
(

(log s)2(log(1/ε))2

ε5 log log(1/ε)

)
where the solution

is approximated within a multiplicative factor of (1 + ε).
Here we give the rather short description for computing an approximate so-

lution x for Lx = b or x = Gb, satisfying the boundary condition, for a given
graph G, a vector b, a set S = V \ supp b and some ε > 0 as the error bound.

Algorithm 1. GreensSolver(G, b, ε)

initialize a 0-vector x of dimension s where s = |S| = |V \ supp b|
b1 ← D

−1/2
S Aδ(S)D

−1/2
δ(S) b

T ← s3(log(1/ε))
N ← T/ε
r ← ε−2(log s+ log(1/ε))
for j = 1 to r do

xj ← ApproxHK(G, b1, S, kT/N, ε) where the integer k is chosen uniformly from
[1, N]

x ← x+ xj

end for
return x/r

We will prove the following:

Theorem 3. Let G be a graph and L be the Laplacian of G. For the linear
system Lx = b, the solution x is required to satisfy the boundary condition b, (i.e.,
x(v) = b(v) for v ∈ supp b). Let S = V \ supp b and s = |S|. Suppose the induced
subgraph on S is connected and supp b is non-empty. The approximate solution
x̂ as the output of the algorithm GreensSolver(G, b, ε) satisfies the following:

1. For any a > 0, the absolute error of x̂ is

‖x− x̂‖ ≤ O
(
ε(1 + ‖b‖))

with probability at least 1− ε.

2. The running time of GreensSolver is O
(

(log s)2(log(1/ε))2

ε5 log log(1/ε)

)
with additional

preprocessing time O(|∂(S)|).

The term of O(|∂(S)|) is from the computation of b1. We can also compute
an approximate solution for Lx = b satisfying the boundary condition. The
algorithm is almost identical to Algorithm 1 except for setting b1 ← Aδ(S)b and
using ApproxHKPR(G, b1, kT/N, ε) instead.

Solving Linear Systems with Heat Kernel 213

4 Analysis of the Green Linear Solver Algorithm

To prove Theorem 3 we first prove a number of Lemmas. A main tool in our
analysis is the following matrix concentration inequality (see [12], also various
variations in [1], [15], [30], [21], [36]).

Theorem 4. Let X1, X2, . . . , Xm be independent random n× n Hermitian ma-
trices. Moreover, assume that ‖Xi − E(Xi)‖ ≤ M for all i, and put v2 =
‖∑ var(Xi)‖. Let X =

∑
Xi. Then for any a > 0,

P(‖X − E(X)‖ > a) ≤ 2n exp

(
− a2

2v2 + 2Ma/3

)
.

Theorem 5. Let G be a graph and L be the Laplacian of G. Let b denote a vector
and for S = V \supp b, suppose the induced subgraph on S is connected and supp
b is non-empty. Then the solution to the linear system Lx = b, satisfying the

boundary condition, can be computed by sampling Ȟtb for r = log s+log(1/ε)
ε2 values

and the solution is within a multiplicative factor of 1 + ε of the exact solution
x = Gb with probability at least 1− ε.

Proof. By Lemma 1, the exact solution is x = Gb =
∫∞

0
Ȟtb dt. First, we see

that:

||Ȟt|| = ||
∑
i

e−tλiPi||

≤ e−tλ1 · ||
∑
i

Pi||

= e−tλ1 (9)

where λi are Dirichlet eigenvalues for the induced subgraph S. So the error
incured by taking a definite integral up to t = T is the difference

||
∫ ∞

T

Ȟt dt|| ≤
∫ ∞

T

e−tλ1 dt =
1

λ1
e−Tλ1 .

It is known that for a general graph on n vertices, s−3 ≤ λ1 ≤ 1 (see [9], for
example). With this, we restrict the error to ε by setting T = s3 log(1/ε). Namely,

||G −
∫ T

0

Ȟt dt|| ≤ ε ||b||

Next, we approximate the definite integral in [0, T] by discretizing it. That is,
we divide the interval [0, T] into N intervals of size T/N , and a finite Riemann
sum is close to the definite integral:

214 F. Chung and O. Simpson

||
∫ T

0

Ȟt dt−
N∑
j=1

ȞjT/N · T
N
|| ≤ ε ||

∫ T

0

Ȟt dt||.

for a given ε, by choosing choose N = T/ε = s3 log(1/ε)/ε so that T/N ≤ ε.
Thus we have

||G −
N∑
j=1

ȞjT/N · TN || ≤ 2ε.

Let Xi be a random variable which takes on value T ȞjT/N with each j ∈ [1, N]

with probability 1/N . We consider X =
r∑

j=1

Xj . Then we evaluate the expected

value and variance of X as follows:

E(X) = rE(Xj) =
rT

N

N∑
j=1

ȞjT/N

Var(X) = rVar(Xj) =
rT

N

N∑
j=1

Ȟ2jT/N

Furthermore,

||E(X)− rG|| ≤ 2rε

||Var(X)|| = r||Var(Xj)|| ≤ r

2
||G||

We can now apply Theorem 4. By using the above bounds for ||E(X)|| and
||Var(X)|| as well as the bound for G in (6), we have

P
(||X − E(X)|| ≥ ε||E(X)||) ≤ 2se

− ε2||E(X)||2
2Var(X)+

2ε||E(X)||M
3

≤ 2se−
ε2r2||E(Xj)||

r+2εM/3

≤ 2se−
ε2r2||G||

r+2ε||Ht||/3

≤ 2se−
ε2r
2 (10)

Therefore we have

P
(||X − E(X)|| ≥ ε||E(X)||) ≤ ε

if we choose r ≥ log s+log(1/ε)
ε2 . This completes the proof of Theorem 5.

Solving Linear Systems with Heat Kernel 215

Proof (Proof of Theorem 3). The accuracy of the linear solver algorithm
GreensSolver(G, b, ε) follows from Theorem 5. For the running time, we rely
on Theorem 6. The algorithm makes r calls to ApproxHK, giving a total running
time of

r · O
(

log(1/ε) log s

ε3 log log(1/ε)

)
= O

((log s)2(log(1/ε))2

ε5 log log(1/ε)

)
,

as claimed.

5 Heat Kernel Pagerank Approximation Algorithm

We first focus on the algorithm ApproxHKPR for approximating a Dirichlet heat
kernel pagerank vector for a proper subset S of V in a graph G, using on a
preference vector f ∈ RS . Here we impose an additional condition that f is a
probabilistic function and the induced subgraph on S is connected. The algo-
rithm outputs an ε-approximate heat kernel pagerank vector which is denoted

by ρ̂t,f . The running time of the algorithm is O
(

log(1/ε) log s
ε3 log log(1/ε)

)
.

The algorithm essentially works by taking a finite sum of truncated random
walks. The method and complexity is quite similar to the ApproxRow pagerank
algorithm given in [6]. Details of the proof and analysis can be found in [13].

Algorithm 2. ApproxHKPR(G, f, S, t, ε)

initialize 0-vector ρ of dimension s, where s = |S|.
r ← 16

ε3
log s

K ← log(1/ε)
log log(1/ε)

for r iterations do
choose a starting node v according to the distribution vector f .
Start

simulate a PS = D−1
S AS random walk where k steps are taken with probability

e−t tk

k!
where k ≤ K, let u be the last node visited in the walk
ρ[u] ← ρ[u] + 1

End
end for
return 1/r · ρ

Theorem 6. Suppose S is a proper vertex subset in a graph G with s = |S| and
the induced subgraph on S is connected. Let f be a preference vector, f : S → R,
t ∈ R, and 0 < ε < 1. Then, ApproxHKPR(G, f, S, t, ε) outputs an ε-approximate
Dirichlet heat kernel pagerank vector ρ̂f,t with probability at least 1 − o(1) and

the running time of ApproxHKPR(G, f, S, t, ε) is O
(

log(1/ε) log s
ε3 log log(1/ε)

)
.

Since ρt,f = fTD
−1/2
S HtD

1/2
S , we modify the above algorithm to approximate

Ȟtg for a vector g ∈ RS .

216 F. Chung and O. Simpson

Algorithm 3. ApproxHK(G, g, S, t, ε)

initialize 0-vector y of dimension s, where s = |S|.
g+ ← the positive portion of g
g− ← the negative portion of g so that g = g+ − g−
h1 ← ‖D1/2g+‖1 and h2 ← ‖D1/2g−‖1 , where ‖ · ‖ indicates the L1-norm.
r ← 16

ε3
log s

K ← log(1/ε)
log log(1/ε)

for r iterations do
choose a starting node v1 according to the distribution vector f+ = D1/2g+/h1.
Start

simulate a PS = D−1
S AS random walk where k steps are taken with probability

e−t tk

k!
where k ≤ K, let u1 be the last node visited in the walk

y[u1] ← y[u1] + h1/
√

du1

End
choose a starting node v2 according to the distribution vector f− = D1/2g−/h2.
Start

simulate a PS = D−1
S AS random walk where k steps are taken with probability

e−t tk

k!
where k ≤ K, let u2 be the last node visited in the walk

y[u2] ← y[u2]− h2/
√

du2

End
end for
return 1/r · y

The accuracy of the error estimate for the algorithm ApproxHK(G, b, S, t, ε) fol-
lows immediately from that of algorithmApproxHKPR(G, f, S, t, ε)and Theorem 6.

Theorem 7. Suppose S is a proper vertex subset in a graph G with s = |S|, and
the induced subgraph on S is connected. Let g be a vector, g : S → R, t ∈ R, and
0 < ε < 1. The algorithm ApproxHK(G, g, S, t, ε) outputs an ε-approximate vector
Ȟtg with probability at least 1−2ε and the running time of ApproxHK(G, g, S, t, ε)

is O
(

log(1/ε) log s
ε3 log log(1/ε)

)
.

6 Applications

The contributions of this paper have numerous applications. We outline a few
areas in which the graph Laplacian arises in linear systems. For scenarios in
which the associated networks can be very large, the efficiency of our linear
solver is particularly useful.

Effective resistance. Consider a graph as a model of a network of electrical
transistors. The vertices correspond to points at which potential is measured,
and edges correspond to resistors with weights equal to the inverse of resis-
tance. The effective resistance between two vertices vi, vj is the difference in
potential of vi, vj required for one unit of current to flow from vi to vj . To mea-
sure effective resistance, we require that the in-current of a vertex matches the

Solving Linear Systems with Heat Kernel 217

out-current, which the exception of the injection point and the charge removal
point. If p ∈ Rn is the vector of potentials and c ∈ Rn is the vector of currents,
then these values satisfy the equation

c = Lp.

Then effective resistance is the difference of p(i) and p(j) in the solution vector
p for the above equation satisfied by the currents

c(x) =

⎧⎪⎨⎪⎩
1 if x = xi

−1 if x = xj

0 otherwise

In [8] this problem has been studied in the form of electric networks and flows.

Maximum flow by interior point methods. Maximum flow and minimum cost
algorithms for network flows can be solved with an iterative interior point al-
gorithm. Each iteration requires solving a system of linear equations, and this
typically dominates the running time. In many applications it is observed that
these linear equations can be reduced to restricted Laplacian systems [16]. In
one case, Frangioni and Gentile [19] present Prim-based heuristics for gener-
ating a support-graph preconditioner for solving linear systems. However, this
linear program which iteratively use solutions to linear systems can be improved
with our fast direct Laplacian linear solver.

Coupled oscillators. Oscillation is the repetitive variation between states. When
the behavior of one oscillator affects that of others, we may reduce the degrees
of freedom in variation by coupling these oscillations in the model. These oscil-
lators and the couplings can be described in a network. One question is how the
structure or topology of the network affects the synchronization of these oscilla-
tors. In [22], it is shown that the Laplacian is closely related to synchronization
properties of the oscillator network.

Consider a network of n oscillators symmetrically coupled, modeled as a sim-
ple, undirected graph. Let xi be the oscillator state vector at node i. Say F (x) is
a function which determines the uncoupled oscillator dynamics of each node, and
H(x) specifies the coupling of the vector fields. Then the equations of motion
for the oscillator state vector xi at each node i are linearly described by:

dxi

dt
= F (xi)− σ

n∑
j=1

LijH(xj),

where σ is the coupling strength. Solutions to the above equation are said to be
synchronized if xi(t) = xj(t) for all nodes i and j in the network.

Consensus of mult-agent networks. In a network of dynamic agents which have
a communication topology represented by a weighted graph, a group consensus

218 F. Chung and O. Simpson

value can be modeled by a differential equation in the graph Laplacian (see [29],
[28]). If each node in a graph represents an agent and x is a vector of decision val-
ues over the agents, then the value x(i)− x(j) measures the level of disagreement
among agents i and j. The goal of consensus is to minimize disagreement among
agents, which is achieved by minimizing the quadratic form. If the network of in-
tegrator agents applies the distributed linear protocol given by

ui =
∑
j∈Ni

(xj − xi)

with each agent governed by dynamics ẋi = ui, then the evolution of the dynamic
system is the solution to the differential equation

ẋ = −Lx.
Further, the rate of convergence is given in terms of the second eigenvalue of L.

References

1. Ahlswede, R., Winter, A.: Strong converse for identification via quantum channels.
IEEE Trans. Inform. Theory 48(3), 569–579 (2002)

2. Andersen, R., Chung, F.: Detecting sharp drops in pageRank and a simplified local
partitioning algorithm. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007.
LNCS, vol. 4484, pp. 1–12. Springer, Heidelberg (2007)

3. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vec-
tors. In: FOCS, pp. 475–486 (2006)

4. Boman, E.G., Hendrickson, B.: On spanning tree preconditioners, Sandia National
Laboratories (2001) (manuscript)

5. Boman, E.G., Hendrickson, B.: Support theory for preconditioning. SIAM Journal
on Matrix Analysis and Applications 25(3), 694–717 (2003)

6. Borgs, C., Brautbar, M., Chayes, J., Teng, S.-H.: A sublinear time algorithm for
pagerank computations. In: Bonato, A., Janssen, J. (eds.) WAW 2012. LNCS,
vol. 7323, pp. 41–53. Springer, Heidelberg (2012)

7. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems, 107–117 (1998)

8. Christiano, P., Kelner, J.A., Madry, A., Spielman, D.A., Teng, S.-H.: Electrical
flows, laplacian systems, and faster approximation of maximum flow in undirected
graphs. In: STOC, pp. 273–282 (2011)

9. Chung, F.: Spectral graph theory. American Mathematical Society (1997)
10. Chung, F.: The heat kernel as the pagerank of a graph. Proceedings of the National

Academy of Sciences 104(50), 19735–19740 (2007)
11. Chung, F.: A local graph partitioning algorithm using heat kernel pagerank. Inter-

net Mathematics 6(3), 315–330 (2009)
12. Chung, F., Radcliffe, M.: On the spectra of general random graphs. The Electronic

Journal of Combinatorics 18, P215 (2011)
13. Chung, F., Simpson, O.: Local graph partitioning using heat kernel pagerank,

http://cseweb.ucsd.edu/~osimpson/research.html

14. Chung, F., Zhao, W.: A sharp pagerank algorithm with applications to edge ranking
and graph sparsification. In: Kumar, R., Sivakumar, D. (eds.) WAW 2010. LNCS,
vol. 6516, pp. 2–14. Springer, Heidelberg (2010)

http://cseweb.ucsd.edu/~osimpson/research.html

Solving Linear Systems with Heat Kernel 219

15. Cristofides, D., Markström, K.: Expansion properties of random cayley graphs and
vertex transitive graphs via matrix martingales. Random Structures Algs. 32(8),
88–100 (2008)

16. Daitch, S.I., Spielman, D.A.: Faster approximate lossy generalized flow via interior
point algorithms. In: STOC, pp. 451–460 (2008)

17. Doyle, P.G., Snell, J.L.: Random walks and electric networks, vol. 22. Math. Ass.
of America (1984)

18. Forsythe, G.E., Leibler, R.A.: Matrix inversion by a monte carlo method. Mathe-
matical Tables and Other Aids to Computation 4(31), 127–129 (1950)

19. Frangioni, A., Gentile, C.: Prim-based support-graph preconditioners for min-cost
flow problems. Computational Optimization and Applications 36(2-3), 271–287
(2007)

20. Golub, G.H., Overton, M.L.: The convergence of inexact chebyshev and richard-
son iterative methods for solving linear systems. Numerische Mathematik 53(5),
571–593 (1988)

21. Gross, D.: Recovering low-rank matrices from few coefficients in any basis. IEEE
Trans. Inform. Theory 57, 1548–1566 (2011)

22. Hagberg, A., Schult, D.A.: Rewiring networks for synchronization. Chaos: An In-
terdisciplinary Journal of Nonlinear Science 18(3), 037105 (2008)

23. Joshi, A.: Topics in optimization and sparse linear systems. PhD Thesis (1996)
24. Kelner, J.A., Orecchia, L., Sidford, A., Zhu, Z.A.: A simple, combinatorial algo-

rithm for solving sdd systems in nearly-linear time. In: STOC, pp. 911–920 (2013)
25. Koutis, I., Miller, G.L., Peng, R.: Approaching optimality for solving sdd linear

systems. In: FOCS, pp. 235–244 (2010)
26. Koutis, I., Miller, G.L., Peng, R.: A nearly-m log n time solver for sdd linear

systems. In: FOCS, pp. 590–598 (2011)
27. Lee, Y.T., Sidford, A.: Efficient accelerated coordinate descent methods and faster

algorithms for solving linear systems. In: FOCS (2013)
28. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked

multi-agent systems. Proceedings of the IEEE 95(1), 215–233 (2007)
29. Olfati-Saber, R., Murray,R.M.: Consensus protocols for networks of dynamic agents.

In: Proceedings of the American Control Conference 2003, vol. 2, pp. 951–956 (2003)
30. Oliveira, R.I.: Concentration of the adjacency matrix and of the laplacian in ran-

dom graphs with independent edges, arXiv preprint arXiv:0911.0600 (2009)
31. Reif, J.H.: Efficient approximate solution of sparse linear systems. Computers &

Mathematics with Applications 36(9), 37–58 (1998)
32. Sachdeva, S., Vishnoi, N.K.: Matrix inversion is as easy as exponentiation, arXiv

preprint arXiv:1305.0526 (2013)
33. Spielman, D.A.: Algorithms, graph theory, and linear equations in laplacian ma-

trices. In: Proceedings of the International Congress of Mathematicians, vol. 4, pp.
2698–2722 (2010)

34. Spielman, D.A., Teng, S.-H.: Solving sparse, symmetric, diagonally-dominant linear
systems in time o(m1.31). In: FOCS, pp. 416–427 (2003)

35. Spielman, D.A., Teng, S.-H.: Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In: STOC, pp. 81–90 (2004)

36. Tropp, J.A.: User-friendly tail bounds for sums of random matrices. Foundations
of Computational Mathematics 12(4), 389–434 (2012)

37. Vaidya, P.M.: Solving linear equations with symmetric diagonally dominant matri-
ces by constructing good preconditioners. A talk based on this manuscript 2(3.4),
2–4 (1991)

Anarchy Is Free in Network Creation�

Ronald Graham1, Linus Hamilton2, Ariel Levavi1, and Po-Shen Loh2

1 Department of Computer Science and Engineering, University of California,
San Diego, La Jolla, CA 92093

2 Department of Mathematical Sciences,
Carnegie Mellon University, Pittsburgh, PA 15213

Abstract. The Internet has emerged as perhaps the most important
network in modern computing, but rather miraculously, it was created
through the individual actions of a multitude of agents rather than by a
central planning authority. This motivates the game theoretic study of
network formation, and our paper considers one of the most-well studied
models, originally proposed by Fabrikant et al. In it, each of n agents
corresponds to a vertex, which can create edges to other vertices at a cost
of α each, for some parameter α. Every edge can be freely used by every
vertex, regardless of who paid the creation cost. To reflect the desire to
be close to other vertices, each agent’s cost function is further augmented
by the sum total of all (graph theoretic) distances to all other vertices.

Previous research proved that for many regimes of the (α, n) param-
eter space, the total social cost (sum of all agents’ costs) of every Nash
equilibrium is bounded by at most a constant multiple of the optimal
social cost. In algorithmic game theoretic nomenclature, this approxima-
tion ratio is called the price of anarchy. In our paper, we significantly
sharpen some of those results, proving that for all constant non-integral
α > 2, the price of anarchy is in fact 1+ o(1), i.e., not only is it bounded
by a constant, but it tends to 1 as n → ∞. For constant integral α ≥ 2,
we show that the price of anarchy is bounded away from 1. We provide
quantitative estimates on the rates of convergence for both results.

Keywords: Network creation, price of anarchy, algorithmic game
theory.

1 Introduction

Networks are of fundamental importance in modern computing, and substantial
research has been invested in network design and optimization. However, one of
the most significant networks, the Internet, was not created “top-down” by a
central planning authority. Instead, it was constructed through the cumulative
actions of countless agents, many of whom built connections to optimize their
individual objectives. To understand the dynamics of the resulting system, and
to answer the important question of how much inefficiency is introduced through

� Research supported by NSF grants DMS-1201380 and DMS-1041500, an NSA Young
Investigators Grant and a USA-Israel BSF Grant.

A. Bonato, M. Mitzenmacher, and P. Pra�lat (Eds.): WAW 2013, LNCS 8305, pp. 220–231, 2013.
c© Springer International Publishing Switzerland 2013

Anarchy Is Free in Network Creation 221

the selfish actions of the agents, it is therefore natural to study it through the
lens of game theory.

In this paper, we focus on a well-studied game-theoretic model of network
creation, which was formulated by Fabrikant et al. in [1]. There are n agents,
each corresponding to a vertex. They form a network (graph) by laying down
connections (edges) between pairs of vertices. For this, each agent v has an
individual strategy, which consists of a subset Sv of the rest of the vertices that
it will connect to. The resulting network is the disjoint union of all (undirected)
edges between vertices v and vertices in their Sv. Note that in this formulation,
an edge may appear twice, if v lays a connection to w and w lays a connection to
v. Let α be an arbitrary real parameter, which represents the cost of making a
connection. In order to incorporate each agent’s desire to be near other vertices,
the total cost to each agent is defined to be:

cost(v) = α|Sv|+
∑
w

dist(v, w) ,

where the sum is over all vertices in the graph, and dist(v, w) is the number of
edges in the shortest path between v and w in the graph, or infinity if v and w
are disconnected. The social cost is defined as the total of the individual costs
incurred by each agent. This cost function summarizes the fact that v must pay
the construction cost for the connections that it initiates, but v also prefers to
be graph-theoretically close to the other nodes in the network. This model also
encapsulates the fact that, just as in the Internet, once a connection is made, it
can be shared by all agents regardless of who paid the construction cost.

The application of approaches from algorithmic game theory to the study of
networks is not new. The works [2–7] all consider network design issues such as
load balancing, routing, etc. Numerous papers, including [8–14] and the surveys
[15, 16], have considered network formation itself, by formulating and studying
network creation games. From a game-theoretic perspective, a (pure) Nash equi-
librium is a tuple of deterministic strategies Sv (one per agent) under which no
individual agent can strictly reduce its cost by unilaterally changing its strategy
assuming all other agents maintain their strategies. If every unilateral deviation
strictly increases the deviating agent’s cost, then the Nash equilibrium is strict.

To quantify the cumulative losses incurred by the lack of coordination, the
key ratio is called the price of anarchy, a term coined by Koutsoupias and Pa-
padimitriou [17]. It is defined as the maximum social cost incurred by any Nash
equilibrium, divided by the minimum possible social cost incurred by any tuple
of strategies. Note that the minimizer, also known as the social optimum, is not
necessarily a Nash equilibrium itself. The central questions in this area are thus
to understand the price of anarchy, and to characterize the Nash equilibria.

1.1 Previous Work

To streamline our discussion, we will represent a tuple of strategies with a di-
rected graph, whose underlying undirected graph is the resulting network, and

222 R. Graham et al.

where each edge vw is oriented from v to w if it was constructed by v’s strategy
(w ∈ Sv). This is well-defined because it is clear that the social optimum and all
Nash equilibria will avoid multiple edges, and so each edge is either not present
at all, or present with a single orientation.

The problem is trivial for α < 1, because all Nash equilibria produce complete
graphs, as does the social optimum, and therefore the price of anarchy is 1 in this
range. For α ≥ 1, a new Nash equilibrium arises: the star with all edges oriented
away from the central vertex. Indeed, the central vertex has no incentive to
disconnect any of the edges which it constructed, as its individual cost function
would rise to infinity, and no other vertex has incentive to add more connections,
because a new connection would cost an additional α ≥ 1, and reduce at most one
of the pairwise distances by 1. Yet, as observed in the original paper of Fabrikant
et al. [1], when α < 2, the social optimum is a clique, and they calculate the
price of anarchy to be 4

2+α + o(1), where the error term tends to 0 as n → ∞.

This ranges from 4
3 to 1 as α varies in that interval.

For α ≥ 2, the social optimum is the star. Various bounds on the price of
anarchy were achieved, with particular interest in constant bounds, which were
derived in many ranges of the parameter space. From the point of view of ap-
proximation algorithms, these show that in those ranges of α, the Nash equilibria
that arise from the framework of selfish agents still are able to approximate the
optimal social cost to within a constant factor. The current best bounds are
summarized in Table 1.

Table 1. Previous upper bounds on the price of anarchy. The last bound above is due
to Mihalák et al. [14], and the other bounds are due to Demaine et al. [13].

Regime Upper bound on price of anarchy

General α 2O(
√
log n)

2 ≤ α < 3
√

n/2 4
3
√

n/2 ≤ α <
√

n/2 6
α = O(n1−ε) O(1)
α > 273n O(1)

1.2 Our Contribution

Much work had been done to achieve constant upper bounds on the price of
anarchy in various regimes of α, because those imply the satisfying conclusion
that selfish agents fare at most a constant factor worse than optimally coordi-
nated agents. Perhaps surprisingly (or perhaps reassuringly), it turns out that
the price of anarchy is actually 1 + o(1) for most constant values of α. In other
words, the lack of coordination has negligible effect on the social cost as n grows.

Theorem 1. For non-integral α > 2, and n > α3, the price of anarchy is at
most

1 +
150α6

(α− �α�)2

√
logn

n
= 1 + o(1) .

Anarchy Is Free in Network Creation 223

On the other hand, for each integer α ≥ 2, the price of anarchy is at least

3

2
− 3

4α
+ o(1) ,

and it is achieved by the following construction. Start with an arbitrary orienta-
tion of the complete graph on k vertices. For each vertex v of the complete graph,
add α− 1 new vertices, each with a single edge oriented from v.

2 Proof for Non-integral α

Suppose that α > 2 is fixed, and is not an integer. Assume that we are given a
Nash equilibrium. In this section, we prove that its total social cost is bounded
by 1 + o(1) times the social optimum, as stated in Theorem 1. Throughout this
proof, we impose a structure on the graph as follows: select a vertex v, and
partition the remainder of the graph into sets based on their distance from v.
Let N1 denote the set of vertices at distance 1 from v, let N2 denote the set of
vertices at distance 2 from v, etc., as diagrammed in Figure 1. Since the graph
in every Nash equilibrium is obviously connected, every vertex falls into one of
these sets.

v

N1

N2

N3

Fig. 1. Partitioning the graph into sets

Consider any vertex vi ∈ Ni where i ≥ 3. Since the graph is connected, we
can always find a path vivi−1vi−2 . . . v2v1v, where vj ∈ Nj for all 1 ≤ j ≤ i. In
this case, we will call vi a child of v2. (Note that vi may be a child of more than
one vertex, but is always a child of at least one vertex.) This is diagrammed in
Figure 2.

Lemma 1. No matter which vertex is used as v to construct the vertex partition,
every vertex in N2 has at most �α− 1� children.

224 R. Graham et al.

v

N1

N2

N3 N4

a

b

c

d

e

f

Fig. 2. Here, d and e are children of b; c is a child of a, but not a child of b; and f is a
child of both a and b

Proof. Suppose w ∈ N2 has more than α − 1 children. Consider what happens
if v buys an edge to w. Although v pays α for the edge, it gets one step closer
to w and all of its children, and so the distance component of v’s cost function
reduces by more than 1+(α−1) = α. Therefore, buying the edge is a net positive
gain for v. But we assumed the graph was a Nash equilibrium—contradiction.
Therefore, w has at most α− 1 children, and since its number of children is an
integer, we may round the bound down as in the statement of the lemma.

Lemma 2. Regardless of the choice of v, the resulting parts Ni satisfy:

|N1|+ |N2|+ 1 ≥ n

α
.

Proof. Since every vertex in N3 ∪N4 ∪ . . . is a child of at least one vertex of N2,
but Lemma 1 bounds the number of children per N2-vertex by α − 1, we must
have

(α− 1)|N2| ≥ |N3 ∪N4 ∪ . . . | = (n− 1− |N1| − |N2|)
α|N2|+ |N1|+ 1 ≥ n ,

which implies the desired result.

Lemma 3. If x has degree at least α, then every vertex is at most distance 3
from it.

Proof. If some vertex w is distance at least 4 from x, then w can buy an edge
to x. Vertex w will pay α for the edge, and get 3 steps closer to x, as well as at
least 1 step closer to all of x’s immediate neighbors, for a net gain. Hence this
cannot appear in a Nash equilibrium.

Anarchy Is Free in Network Creation 225

Corollary 1. If n is sufficiently large (n > α3), then the graph has diameter at
most 4.

Proof. Consider an arbitrary pair of vertices v, w. Lemma 2 implies that for n
sufficiently large (n > α3 suffices), either v has degree at least α, or one of v’s
neighbors has degree at least α. In either case, we can travel from v to a vertex
with degree at least α in at most one step, and then by Lemma 3, travel to w
in at most 3 more steps. Therefore, v and w are at distance at most 4.

Remark. From now on, we will assume n > α3, and so for any initial choice of
v, the resulting partition will only have N1, N2, N3, and N4.

Lemma 4. Consider the partition constructed from an arbitrary initial vertex
v. Select any w ∈ N2, and let d be the number of edges w pays for which connect
to other vertices in N2. Then d ≤ |N1| · α

α−�α� .

Proof. Consider the following strategy for w: disconnect those d edges, and in-
stead connect to every vertex in N1. We will carefully tally up the potential gain
for this amendment.

– Paying for edges: w saves at least (d − |N1|)α in terms of paying for
edges. (The “at least” is because w might already be connected to some
vertices in N1.)

– Connectedness to v and N1: w obviously can’t get farther away from v or
any vertices in N1.

– Connectedness within N2: w gets farther away from all d vertices it discon-
nected from, but remains at distance 2 from all of N2, since every vertex in
N2 is connected to some vertex in N1. This results in a maximum increased
cost of d in terms of distances to other vertices within N2.

– Connectedness to N3 and N4: When disconnecting from a vertex x ∈ N2,
w might get farther away from all of x’s children in N3 and N4. However,
remember that w is still distance 2 from all of N2. Hence, w is still distance 3
from all of N3 and distance 4 from all of N4. Therefore, w can only get 1 step
farther from x’s children, and doesn’t get any farther from vertices in N3

and N4 that aren’t x’s children. By Lemma 1, every N2-vertex has at most
�α − 1� children. Therefore, in disconnecting from d vertices, w gets 1 step
farther from at most d�α − 1� vertices in N3 and N4, for a cost increase
of at most d�α − 1�.

Adding, w’s net cost savings total to at least (d−|N1|)α−d−d�α−1�, which
must be ≤ 0 since we are at a Nash equilibrium. Rearranging, d ≤ |N1| · α

α−�α� ,

as desired.

Lemma 5. If |N1| is o(n), then so is |N3 ∪ N4|. Quantitatively, |N3 ∪ N4| <
|N1| · 5α3

α−�α� .

Proof. Let P be the number of pairs of vertices (x, y), such that x ∈ N3 ∪ N4

and y is at most distance 2 from x. We will bound this number in two ways.

226 R. Graham et al.

First, Lemma 2 tells us that for any vertex in the graph, the number of vertices
at most distance 2 from it is at least n

α . Therefore, P ≥ |N3 ∪N4| · nα .
For the second way, we will find an upper bound for the number of ways to

start at a vertex x ∈ N3 ∪N4, and then travel along at most two edges in some
way. This is an overcount for P , so it will give an upper bound. To count the
number of these paths, we do casework on the various ways to start at a vertex
in N3 ∪N4 and then travel along at most two edges.

Case 1: The path stays inside N3∪N4. Any vertex in N3∪N4 can be connected
to at most α−1 other vertices in N3∪N4 (otherwise v would gain from connecting
to it directly), so the number of paths for us to count for each starting vertex
is at most 1 + (α− 1) + (α − 1)2 ≤ α2. Therefore, the total number of paths of
this type is at most |N3 ∪ N4|α2.

Case 2: The path travels from N3 ∪ N4 to N3 to N2, or is a length 1 path
traveling from N3 to N2. We count these backwards, starting from N2. The
number of edges from N2 to N3 is at most α|N2| by Lemma 1, and again, every
vertex in N3 is connected to at most α vertices in |N3 ∪N4|, if including itself.
Therefore, the number of paths here is at most α2|N2|.

Case 3: The path travels from N3 to N2 to N3. We can count these by looking
at the vertex in N2 first, and then picking 2 of its children in N3. Thus, the
number of such paths is at most |N2|α2.

Case 4: The path travels from N3 to N2 to N1. Similarly to Case 2, the number
of such paths is at most α|N2||N1|.

Case 5: The path travels from N3 to N2 to N2. By Lemma 4, the number of
edges inside N2 is at most |N2||N1| α

α−�α� . Each such path consists of one of these

edges, together with an edge to N3 from one of its two endpoints. Therefore, the

number of paths for us to count is at most |N2||N1| 2α2

α−�α� .

Total: summing over all cases, we have:

P ≤ |N3 ∪N4|α2 + 2α2|N2|+ |N1||N2|α + |N1||N2| 2α2

α− �α�
< 2α2n + |N1|n

(
α +

2α2

α− �α�
)

< |N1|n
(

5α2

α− �α�
)

.

But P ≥ |N3 ∪N4|nα from above, so:

|N3 ∪N4|n
α

< |N1|n
(

5α2

α− �α�
)

|N3 ∪N4| < |N1| · 5α3

α− �α� .

Anarchy Is Free in Network Creation 227

Lemma 6. If every vertex has degree more than
√
n logn, then the graph is

asymptotically socially optimal: the total social cost is at most 2n2+αn3/2
√

logn.

Proof. Suppose we have a Nash equilibrium where all vertices have degree greater
than

√
n logn. We give a strategy for an arbitrary vertex to achieve an individual

cost of at most α
√
n logn + 2n, by changing only its own behavior. Since this

is a Nash equilibrium, we will then be able to conclude that every vertex must
have had individual cost at most α

√
n logn + 2n, proving this claim.

Specifically, we show that for any vertex w, the strategy “undo all edges you
are currently paying for, and connect to

√
n logn vertices at random” has a

positive probability of bringing it within distance ≤ 2 from every other vertex
in the graph. Indeed, if w does this, then for any other vertex x,

P [x is now distance > 2 from w]

≤ P [w didn’t choose any of x’s neighbors]

≤
(

1−
√
n logn

n

)√
n logn

≤ e− logn =
1

n
.

Since there are only n−1 other vertices x �= w to consider, a union bound shows
that the probability of failure is at most (n − 1) 1

n < 1, and therefore there is a
way for w to attain an individual cost of at most α

√
n logn + 2n, as desired.

Lemma 7. Even if there is a vertex of degree at most
√
n logn, the graph is still

asymptotically socially optimal: the total social cost is at most 2n2 +n3/2
√

logn ·
290α6

(α−�α�)2 .

Proof. Let v be a vertex of degree at most
√
n logn, and construct the vertex

partition N1, N2, N3, N4. We already know |N1| is at most
√
n logn = o(n), so by

Lemma 5, |N3 ∪N4| is at most
√
n logn · 5α3

α−�α� = o(n). By Lemma 4, the total

number of edges inside N2 is at most |N2||N1| α
α−�α� ≤ n3/2

√
logn · α

α−�α� =

o(n2). Also, the total number of edges not completely inside N2 is at most

n · (1 + |N1| + |N3 ∪ N4|) ≤ n3/2
√

logn · 6α3

α−�α� = o(n2). Therefore, the total

number of edges is the whole graph is at most n3/2
√

log n · 7α3

α−�α� = o(n2).

Next, we calculate a bound on the total sum of distances in the graph. Using
Lemma 5 on every vertex in the graph, and the fact that all distances are at
most 4 (Corollary 1), we get:

[total sum of distances in the graph]

≤ 2n2 + 4[# of distances in the graph that are 3 or 4]

= 2n2 + 4
∑
w

[# of vertices at distance 3 or 4 from w]

< 2n2 + 4
∑
w

deg(w) · 5α3

α− �α� .

228 R. Graham et al.

The degree sum is precisely twice the total number of edges in the graph, a
quantity which we just bounded above. Putting everything together, the total
sum of distances is at most:

2n2 + 8n3/2
√

logn · 7α3

α− �α� ·
5α3

α− �α� = 2n2 + n3/2
√

logn · 280α6

(α− �α�)2
.

Adding α times the number of edges to compute the total social cost, we obtain
the desired bound.

Lemmas 6 and 7 cover complementary cases, so we now conclude that the total
social cost of every Nash equilibrium is at most the bound obtained in Lemma
7. As was observed by previous authors [1], the social optimum for α ≥ 2 is the
star, achieving a social cost of at least 2n(n−1). Dividing, we find that the price
of anarchy is at most

1 +
150α6

(α− �α�)2

√
logn

n
= 1 + o(1) ,

proving the first part of Theorem 1.

3 Integral α

There is one catch in our bound above. Namely, when α is only slightly greater
than an integer (e.g. 4.0001), the terms of the form �

α−�α� all blow up, giving

the final o(n2) terms for our bound a large constant factor. Even worse, when α
is an exact integer, the proof fails completely. Perhaps surprisingly, this is not
an artifact of the proof. In this section, we construct a counterexample when α
is an integer. Let v1, v2, . . . , vk be a large clique with edges oriented arbitrarily.
In addition, each vertex vi in the clique also pays for edges to α − 1 separate
leaves li:1, li:2, . . . , li:α−1. This graph also appears in [9], as an example of a
Nash equilibrium which does not correspond to a tree, but its social cost is not
calculated there.

Lemma 8. In this graph, no single vertex has a better strategy than the one it
is currently using.

Proof. First, consider any leaf, say l1:1. This leaf is not currently paying for any
edges, so its only option is to pay for some set of edges. Notice that purely
choosing some set of edges to pay for, without being able to delete any edges,
is an instance of convex optimization. Therefore, by convexity, if any vertex in
any graph can improve its station purely by adding some set of edges S, then it
can also do this by adding some single edge s ∈ S. By observation, the leaf can
only break even by adding one edge, so it can only break even overall.

Next, consider a members of the clique, say v1. This vertex cannot delete its
connections to its leaves, because that would disconnect the graph, making the
distance component of its cost infinite. If v1 remains neighbors with vi and also

Anarchy Is Free in Network Creation 229

buys an edge to some leaf li:j , then this is suboptimal: the edge to li:j costs α
but only gets v closer to one vertex. If v1 deletes its edge to vi but buys an
edge to some leaf li:j , this is unnecessary: v1 can move the edge from li:j to
vi, switching its distances to those two vertices and not increasing the distance
to any other vertex. Therefore, it is unnecessary for v1 to consider strategies
involving connecting to other vertices’ leaves.

Thus, similarly to the previous case, v1 only needs to consider strategies in-
volving purely deleting edges. Again, by convexity, this reduces to considering
strategies involving deleting a single edge. But again, v1 can only break even by
deleting an edge, so it can only break even overall.

Therefore, the graph is indeed a weak Nash equilibrium. Let n be the number
of vertices in the graph. The size of the clique is k = n

α , and so the cost of all of
the edges is

α

[(
k

2

)
+ (α− 1)k

]
= α

[
(1 + o(1))

n2

2α2
+

α− 1

α
n

]
= (1 + o(1))

n2

2α
.

Every clique vertex is distance 1 from the rest of the clique, as well as its leaves,
and distance 2 from every other vertex; therefore, each clique vertex sees a
distance sum of

(1 + o(1))n

(
2− 1

α

)
.

Since there are n
α clique vertices, these contribute a total of

(1 + o(1))n2

(
2

α
− 1

α2

)
.

Every leaf vertex is distance 2 from almost all of the clique, and distance 3 from
almost all of the leaves, and so it sees a distance sum of

(1 + o(1))n

(
3− 1

α

)
.

Since there are n(1− 1
α) leaves, these contribute a total distance sum of

(1 + o(1))n2

(
3− 4

α
+

1

α2

)
.

Putting everything together, we find that this graph has a total social cost of

(1 + o(1))n2

(
3− 3

2α

)
,

giving a price of anarchy at least 3
2 − 3

4α + o(1), as claimed in the second part of
Theorem 1.

230 R. Graham et al.

4 Concluding Remarks

It is interesting that the price of anarchy converges to 1 for non-integral α > 2,
but is bounded away from 1 for integer α ≥ 2. Our convergence rate is non-
uniform in the sense that it slows down substantially when α is slightly more
than an integer. On the other hand, when α is slightly less than an integer, the
convergence rate is still relatively rapid. It would be nice to prove a uniform
convergence rate for all non-integral α.

References

1. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.H., Shenker, S.: On a
network creation game. In: Proc. 22nd Symposium on Principles of Distributed
Computing, PODC 2003, pp. 347–351 (2003)

2. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden,
T.: The price of stability for network design with fair cost allocation. In: Proc. 45th
IEEE Symposium on Foundations of Computer Science, FOCS 2004, pp. 295–304.
IEEE Computer Society, Washington, DC (2004)

3. Anshelevich, E., Dasgupta, A., Tardos, E., Wexler, T.: Near-optimal network de-
sign with selfish agents. In: Proc. 35th ACM Symposium on Theory of Computing,
STOC 2003, pp. 511–520. ACM, New York (2003)

4. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. In: Proc. 13th
ACM-SIAM Symposium on Discrete Algorithms, SODA 2002 (2002)

5. Papadimitriou, C.: Algorithms, games, and the internet. In: Proc. 33rd ACM Sym-
posium on Theory of Computing, STOC 2001, pp. 749–753. ACM, New York (2001)

6. Roughgarden, T.: The price of anarchy is independent of the network topology. In:
Proc. 34th ACM Symposium on Theory of Computing, STOC 2002, pp. 428–437
(2002)

7. Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press (2005)
8. Albers, S.: On the value of coordination in network design. In: Proc. 19th

ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 294–303. So-
ciety for Industrial and Applied Mathematics, Philadelphia (2008)

9. Albers, S., Eilts, S., Even-dar, E., Mansour, Y., Roditty, L.: On Nash equilibria
for a network creation game. In: Proc. 16th ACM-SIAM Symposium on Discrete
Algorithms, SODA 2006, pp. 89–98 (2006)

10. Alon, N., Demaine, E.D., Hajiaghayi, M., Leighton, T.: Basic network creation
games. In: Proc. 22nd ACM Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA 2010, pp. 106–113. ACM, New York (2010)

11. Andelman, N., Feldman, M., Mansour, Y.: Strong price of anarchy. In: Proc. 18th
ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, pp. 189–198. Society
for Industrial and Applied Mathematics, Philadelphia (2007)

12. Corbo, J., Parkes, D.: The price of selfish behavior in bilateral network formation.
In: Proc. 24th ACM Symposium on Principles of Distributed Computing, PODC
2005, pp. 99–107. ACM, New York (2005)

13. Demaine, E.D., Hajiaghayi, M., Mahini, H., Zadimoghaddam, M.: The price of
anarchy in network creation games. ACM Transactions on Algorithms 8(2), Paper
13 (April 2012)

14. Mihalák, M., Schlegel, J.C.: The price of anarchy in network creation games is
(mostly) constant. Theory Comput. Syst. 53(1), 53–72 (2013)

Anarchy Is Free in Network Creation 231

15. Jackson, M.O.: A survey of network formation models: stability and efficiency.
In: Demange, G., Wooders, M. (eds.) Group Formation in Economics; Networks,
Clubs, and Coalitions. Cambridge University Press (2005)

16. Tardos, E., Wexler, T.: Network formation games and the potential function
method. In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V. (eds.) Al-
gorithmic Game Theory, pp. 487–516. Cambridge University Press (2007)

17. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

Author Index

Avrachenkov, Konstantin 56, 106

Bloznelis, Mindaugas 93
Brautbar, Michael 44

Choudhary, Alok 156
Chung, Fan 26, 203
Cooper, Colin 130

Draief, Moez 44

Gebremedhin, Assefaw H. 156
Gleich, David F. 68
Goel, Keshav 170
Gonçalves, Paulo 56
Graham, Ronald 220

Hamilton, Linus 220

Iyengar, Sudarshan 170

Jacob, Emmanuel 14
Janssen, Jeannette 1

Karoński, Micha�l 93
Kempton, Mark 26
Khanna, Sanjeev 44
Kloster, Kyle 68

Lefortier, Damien 80
Levavi, Ariel 220
Liao, Wei-keng 156
Litvak, Nelly 106
Loh, Po-Shen 220

Mamageishvili, Akaki 118
Medyanikov, Vasily 106
Mihalák, Matúš 118
Mörters, Peter 14
Müller, Dominik 118

Ostroumova, Liudmila 80, 185

Pattabiraman, Bharath 156
Patwary, Md. Mostofa Ali 156
Pra�lat, Pawe�l 1

Radzik, Tomasz 130
Ryabchenko, Alexander 185

Samosvat, Egor 80, 185
Siantos, Yiannis 130
Simpson, Olivia 203
Singh, Rishi Ranjan 170
Sokol, Marina 56, 106
Sukrit 170

Wilson, Rory 1

Xu, Rupei 144

	Preface
	Organization
	Table of Contents
	Asymmetric Distribution of Nodes in the Spatial
Preferred Attachment Model
	1 Introduction
	1.1 Background and Related Work
	1.2 The Asymmetric SPA Model

	2 Graph Properties of the SPA Model
	3 Reconstruction of Geometry
	3.1 Estimating the Density

	4 Conclusion
	References

	A Spatial Preferential Attachment Model
with Local Clustering
	1 Introduction
	2 The Model
	3 Rescaling the Graph
	3.1 The Rescaled Picture
	3.2 Convergence

	4 Results
	5 FurtherWork
	References

	A Local Clustering Algorithm
for Connection Graphs
	1 Introduction
	2 Preliminaries
	2.1 The Normalized Connection Laplacian
	2.2 Consistency
	2.3 The Cheeger Ratio

	3 e-Consistency

	4 Consistent and e-Consistent Subsets

	5 Identifying Subsets
	5.1 PageRank Vectors and -Consistent Subsets

	5.2 A Local Partitioning Algorithm

	References

	On the Power of Adversarial Infections�in Networks
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Outline

	2 Model and Preliminaries
	3 Hardness of Maximizing Adversarial Infection
	4 A Cut-Based Analysis
	5 Pandemic Infections
	6 Conclusions and Future Work
	References

	On the Choice of Kernel and Labelled Data
in Semi-supervised Learning Methods
	1 Introduction
	2 Semi-supervised Learning Methods
	3 General Theoretical Considerations
	4 Evaluation
	5 Conclusion and Future Research
	References

	A Nearly-Sublinear Method for Approximating a Column of the Matrix Exponential
for Matrices from Large, Sparse Networks
	1 Introduction
	2 Local Computations and the Gauss-Southwell Method
	3 Exponentials via the Taylor Series Approximation
	3.1 The Truncated Taylor Series of the Exponential
	3.2 Forming a Linear System

	4 Approximating the Taylor Polynomial with GS
	5 Convergence Results for Gauss-Southwell
	5.1 Convergence of the Residual
	5.2 Convergence of Error
	5.3 Complexity

	6 Experimental Results
	6.1 Notes on Implementation
	6.2 Accuracy and Runtime

	7 Related Work and Discussion
	References

	Evolution of the Media Web
	1 Introduction
	2 Related Work
	3 Recency Property of the Media Web
	3.1 Experimental Setup
	3.2 Recency Property

	4 Model
	5 Theoretical Analysis
	5.1 Distribution of Incoming Degrees
	5.2 Recency Property

	6 Validation
	6.1 Parameters Estimation
	6.2 Likelihood

	7 Conclusion
	References

	Random Intersection Graph Process
	1 Introduction
	2 Results
	3 Proofs
	References

	Alpha Current Flow Betweenness Centrality

	1 Introduction
	2 Alpha Current Flow Betweenness
	3 Computation of α-CF Betweenness
	4 Truncated α-CF Betweenness
	5 Datasets
	6 Numerical Results for α-CF Betweenness
	7 Centrality Measures and Network Vulnerability
	References

	Tree Nash Equilibria
in the Network Creation Game
	1 Introduction
	2 Preliminaries
	3 Bounds on α for Existence of Cycles
	4 Small Cycles and Experimental Results
	References

	Fast Low-Cost Estimation of Network Properties
Using Random Walks
	1 Introduction
	2 Network Sampling Methods Based on Random Walks
	3 Estimates Based on First Return Time of a Random Walk
	3.1 Estimates Based on the Cycle Formula of Regenerative Processes
	3.2 Estimates Based on Return Times of Weighted Random Walks
	3.3 Distributional Properties of First Return Times

	4 Evaluation of Random Walk Based Methods
	References

	An Lp Norm Relaxation Approach to Positive Influence Maximization in Social Network
under the Deterministic Linear Threshold Model
	1 Introduction
	2 Problem Formulation
	3 L1 Norm Relaxation
	4 Lp Norm Relaxation
	5 Interior-Point Algorithm
	6 NumericalExperiments
	References

	Fast Algorithms for the Maximum Clique Problem
on Massive Sparse Graphs
	1 Introduction
	2 Related Previous Algorithms
	3 The New Algorithms
	3.1 The Exact Algorithm
	3.2 The Heuristic
	3.3 Complexity

	4 Experiments and Results
	4.1 Test Graphs
	4.2 Results

	5 Conclusion
	References

	A Faster Algorithm to Update Betweenness
Centrality after Node Alteration
	1 Introduction
	1.1 Motivation

	2 Preliminary
	2.1 Terminology
	2.2 Basic Concept

	3 Algorithm
	3.1 Preprocessing Step
	3.2 Calculating Changes in Betweenness Centrality for Vertices
	3.2 Calculating Changes in Betweenness Centrality for Vertices�outside MUCU
	3.3 Calculating Betweenness Centrality for Vertices in MUCU

	4 Implementation and Results
	4.1 Results for Synthetic Graphs
	4.2 Results for Real Graphs

	5 Related Work
	6 Conclusion
	References

	Generalized Preferential Attachment: Tunable Power-Law Degree Distribution
and Clustering Coefficient
	1 Introduction
	2 Preferential Attachment Random Graph Models
	3 Theoretical Results
	3.1 Definition of the PA-class
	3.2 Power Law Degree Distribution
	3.3 Clustering Coefficient

	4 Polynomial Model
	5 Experiments
	5.1 Description of Empirically Studied Polynomial Model
	5.2 Empirical Results

	6 Conclusions
	References

	Solving Linear Systems with Boundary
Conditions Using Heat Kernel Pagerank
	1 Introduction
	1.1 Previous Work
	1.2 Our Contributions
	1.3 Organization

	2 Basic Definitions and Facts
	2.1 The Laplacian and Green’s Function
	2.2 Dirichlet Heat Kernel Pagerank and Green’s Function

	3 An Efficient Linear Solver Algorithm
	4 Analysis of the Green Linear Solver Algorithm
	5 Heat Kernel Pagerank Approximation Algorithm
	6 Applications
	References

	Anarchy Is Free in Network Creation

	1 Introduction
	1.1 Previous Work
	1.2 Our Contribution

	2 Proof for Non-integral α
	3 Integral α
	4 Concluding Remarks
	References

	Author Index

