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Abstract. Ambient Intelligence (AmI) is a new paradigm that specif-
ically aims at exploiting sensory and context information in order to
adapt the environment to the user’s preferences; one of its key features
is the attempt to consider common devices as an integral part of the sys-
tem in order to support users in carrying out their everyday life activities
without affecting their normal behavior.

Our proposal consists in the definition of a gesture recognition module
allowing users to interact as naturally as possible with the actuators
available in a smart office, by controlling their operation mode and by
querying them about their current state. To this end, readings obtained
from a state-of-the-art motion sensor device are classified according to
a supervised approach based on a probabilistic support vector machine,
and fed into a stochastic syntactic classifier which will interpret them as
the basic symbols of a probabilistic gesture language. We will show how
this approach is suitable to cope with the intrinsic imprecision in source
data, while still providing sufficient expressivity and ease of use.

1 Introduction

Our daily-life activities involve spending an increasingly high amount of time
indoor, whether at home or at work, so improving the perceived quality-of-
life without intruding into the users’ habits is of great importance; this is the
purpose of the novel discipline of Ambient Intelligence (AmI) [1], which combines
the use of pervasively deployed sensing devices and actuators with advanced
techniques from Artificial Intelligence. Due the primary role of the end user,
the intrinsic prerequisite of any AmI system (i.e. the presence of “ubiquitous”
monitoring tools) must be coupled to the additional requirement of providing the
system with efficient functionalities for interaction with the system; moreover,
considering the high level of pervasiveness obtainable through currently available
devices, the use of equally unobtrusive interfaces is mandatory. An interesting
scenario is represented by smart offices, where typical applications include energy
efficiency control, ambient-assisted living (AAL) and human-building interaction
(HBI).

In this work, we build up on our previous experience about a testbed for
designing and experimenting with WSN-based AmI applications [2] and we de-
scribe a module aimed at assisting users in order to ease their interaction with
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the system itself. In our previous work, we described the deployment of the
AmI infrastructure in our department premises; the sensory component is im-
plemented through a Wireless Sensor and Actuator Network (WSAN), whose
nodes are equipped with off-the-shelf sensors for measuring such quantities as
indoor and outdoor temperature, relative humidity, ambient light exposure and
noise level. WSANs extend the functionalities of traditional sensor networks by
adding control devices to modify the environment state. The present proposal
suggests the use of a motion sensor device as the primary interface between the
user and the AmI system. The device we used for sensing motion within the
environment is Microsoft Kinect, which, in our vision, plays the dual role of a
sensor (since it may be used for some monitoring tasks, i.e. people detection and
people counting) and a controller for the actuators. In particular, the latter is
performed by training a probabilistic classifier for recognizing some simple hand
gestures in order to produce a basic set of commands; since the output of such
a classifier is noisy due to the non perfect recognition of the hand shape, we
chose to reinforce the classification process by means of a probabilistic syntactic
recognizer, realized as a stochastic parser for an ad-hoc gesture language. The
use of a grammar for the comprehension of the visual commands is significant
as it helps both in dealing with the intrinsically noisy input, and in providing a
smoother interface for users.

The paper is organized as follows: after presenting some related work in Sec-
tion 2, we describe the main modules of the proposed system architecture in
Section 3. The assessment of the system in a deployment scenario realized in our
department will be discussed in Section 4. Conclusions will follow in Section 5.

2 Related Work

Several works have focused on hand gesture recognition using depth image; a
survey is presented in [3], whereas in [4] an approach for hand gesture recog-
nition using Kinect is proposed. The authors preliminary detect the hand by
thresholding the depth image provided by the Kinect, then the finger identifica-
tion task is performed by applying a contour tracing algorithm on the detected
hand image. Even if the obtained results are promising, the whole system is
based on a number of parameters and thresholds that make the approach unre-
liable while varying the application scenario. In [5] a novel dissimilarity distance
metric based on Earth Mover’s Distance (EMD) [6], i.e., Finger-Earth Mover’s
Distance (FEMD), is presented. The authors showed that FEMD based methods
for hand gesture recognition outperform traditional shape matching algorithm
both in speed and accuracy.

Besides processing visual input, we are interested in classifying the different
hand shapes and effectively translate them into commands for the AmI system.
Our system is based on a structural approach to pattern recognition of vectors
of features. Most commonly used methods (e.g. nearest-neighbor classifiers, or
neural networks) resort to machine-learning techniques for addressing this prob-
lem when the features can be represented in a metric space. Our choice, instead,
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was to work with symbolic input and to rather address a discrete problem by a
syntactic pattern recognition method. More specifically, we assume that if user
hand gestures are to represent an intuitive language for interacting with the
system, then rules of some sort must be used to generate the strings of such
language; hence, their inherent structure should not be disregarded, and might
turn into a useful support when the system needs to recognize and interpret such
strings. This approach is not new and in fact its first proposals date back in time,
even though they were referred to different contexts, such as image processing
or grammatical inference [7]; recognition based on parsing has been successfully
employed also to automatic natural language of handwriting recognition [8].

Such methods have been later expanded also to allow for stochastic grammars,
where there are probabilities associated with productions [9], and it has been
shown that a grammar may be considered a specification of a prior probability
for a class. Error-correcting parsers have been used when random variations
occur in an underlying stochastic grammar [10]. Finally probability theory has
been applied to languages in order to define the probabilities of each word in a
language [11].

3 Providing Smooth Human-System Interaction

Our aim is to provide users of a smart environment with the possibility to in-
teract with the available actuators as naturally as possible, by controlling their
operation mode and by querying them about their current state. For instance,
they might want to act upon some of the actuators (e.g. air conditioning system,
or lighting) by providing a set of consecutive commands resulting in complex con-
figurations, such as turn on the air conditioning system, set the temperature to
a certain degree, set the fan speed to a particular value, set the air flow to a
specified angle, and so on.

This section describes our proposal for an interface whose use, consistently
with AmI philosophy, will not impact on the users’ normal behavior; to this aim,
we adapt the functionality of a flexible motion sensing input device, namely Mi-
crosoft Kinect, to detect simple gestures of the user’s hand and to translate
them into commands for the actuators. This peripheral has attracted a number
of researchers due to the availability of open-source and multi-platform libraries
that reduce the cost of developing new algorithms; a survey of the sensor and
corresponding libraries is presented in [12,13]. Direct use of the motion sensor
is however not viable for our purposes, due to its non negligible intrinsic impre-
cision; moreover, naively mapping hand gestures into commands would be very
awkward for users, and would likely result into them refusing to use the interface
altogether.

Our perspective is to consider Kinect as a sensor to transparently gather ob-
servations about users’ behavior [14], higher-level information may be extracted
by such sensed data in order to produce actions for adapting the environment
to the users requirements, by acting upon the available actuators. A preliminary
version of this approach was presented in [15] with reference to the architecture
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Fig. 1. The main functional blocks of the proposed gesture recognition algorithm

described in [16]. In order to turn the Kinect sensor into an effective human-
computer interface, we adopt a probabilistic approach based on recognizing sim-
ple hand gestures (i.e., the number of extended fingers) in order to produce a
set of commands; however, the output of such a classifier will be affected by
noise due to the imperfect recognition of the shape of hand, therefore we chose
to reinforce the classification process by means of a grammar. The use of an
error-correcting parser for such grammar will add significant improvement to
the recognition of visual commands and will make the use of the whole system
more natural for the end user.

The overall scheme for our gesture recognition system is shown in Figure 1.

3.1 Capturing and Classifying Hand Gestures

Several vision-based systems have been proposed during the last 40 years for
simple gesture detection and recognition. However, the main challenge of any
computer vision approach is to obtain satisfactory results not only in a con-
trolled testing environment, but also in complex scenarios with unconstrained
lighting conditions, e.g., a home environment or an office. For this reason, image
data acquired by multiple devices are usually merged in order to increase the
system reliability. In particular, range images, i.e., 2-D images in which each
pixel contains the distance between the sensor and a point in the scene, provide
very useful information about the elements of the scene, e.g., a moving person,
but range sensors used to obtain them are very expensive.

We selected Kinect for our target scenario, thanks to its flexibility, and limited
cost; it is equipped with 10 input/output components, as depicted in Figure 2,
which make it possible to sense the users and their interactions with the sur-
rounding environment. Its projector shines a grid of infrared dots over the scene,
and the embedded IR camera captures the infrared light, then its factory calibra-
tion allows to compute the exact position of each projected dot against a surface
at a known distance from the camera. Such information is finally used to create
depth images of the observed scene, with pixel values representing distances, in
order to capture the object position in a three-dimensional space.

An example of hand tracking using Kinect is provided by the OpenNI/NITE
packages, whose hand detection algorithm is based on the five gesture detectors
listed on the right-hand side of Figure 2, and a hand point listener; however,
those APIs are based on a global skeleton detection method, so the hand is
defined just as the termination of the arm and no specific information about the
hand state (e.g., an open hand vs a fist or the number of extended digits) is
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Gesture Description

wave hand movement as left-right waving,
carried out at least four times in a row.

push hand movement as pushes towards and
away from the sensor.

swipe hand movement, either up, down, left or
right, followed by the hand resting mo-
mentarily.

circle hand that make a full circular motion in
either direction.

steady hand that hasn’t moved for some time.

Fig. 2. Kinect components, and the included OpenNI/NITE gesture detectors

provided. For this reason, we only consider this method as the first step of our
gesture recognition algorithm, and we add further processing to extract more
precise information based on the image representing the area where the hand is
located.

The depth images are segmented in order to detect the hand plane, i.e. the set
of image points that are at the same distance z from the Kinect sensor, where
z is the value of the depth image DI(x, y), with x and y indicating the coordi-
nates of the hand as detected by the APIs. Each hand mask is then normalized
with respect to scale, and represented as a time-series curve [17]. Such shape
representation techniques is also proposed in [5] and is one of the most reli-
able method for the classification and clustering of generic shapes. A time-series
representation allows to capture the appearance of the hand shape in terms of
distances and angles between each point along the hand border and the center
of mass of the hand region; in particular, as suggested by [5], a time time-series
representation can be plotted as a curve where the horizontal axis denotes the
angle between each contour vertex, the center point and a reference point along
the hand border and the vertical axis denotes the Euclidean distance between
the contour vertices and the center point. Figure 3 shows three examples of hand
masks, as depth images capture by Kinect (top row); the centroid of the hand
region (red cross) is used as center point for the time-series computation, while
the lowest point along the hand perimeter (red circle) is used as reference point
for computing the angles between the center and the contour points. The time-
series curve representation (bottom row) is obtained by plotting the angles in
the horizontal axis and the distances on the vertical axis.

The time-series describing the hand shape represents the feature we will an-
alyze in order to discriminate between the set of considered hand gestures; in
particular we need to classify each captured hand image according to one of six
possible classes, with each hand gesture characterized by the number of extended
fingers (from zero in the case of a fist, to five if the hand is open).

The gesture classification has been performed by means of a multi-class
Support Vector Machine (SVM) classifier based on a RBF kernel. SVMs are
supervised learning models used for binary classification and regression, and
multi-class SVMs are usually implemented by combining several binary SVMs ac-
cording to three main strategies: one-versus-all, one-versus-one, Directed Acyclic
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Fig. 3. Gesture representation by means of time-series features

Graphs SVM (DAGSVM). Several studies addressed the issue of evaluating
which is the best multi-class SVM method and most works (e.g., [18,19]) claimed
that the one-versus-one approach is preferable to other methods. However, what
we want to obtain is a membership degree of each detected gesture in the whole
set of gestures. Since the output of an SVM is not a probabilistic value, we chose
to apply the method proposed by [20] to map the SVM output into a positive
class posterior probability by means of a sigmoid function.

3.2 Gesture Language Description

Our Kinect sensor provides an effective way of capturing the input from the
user, but although in principle hand gestures could be directly translated into
commands, the mere recognition of very basic ones is likely inadequate to cover
the broad spectrum of possible instructions with sufficient detail; moreover, a
1-to-1 correspondence between gesture and command would result into an awk-
ward interaction with the system. An additional challenge is represented by the
intrinsic imprecision in data obtained through Kinect, which is represented by
the probabilistic output of the SVM classifier. In order to obtain an overall sat-
isfying behavior, and to allow users to express a broad set of commands in a
natural way starting from elementary and customary gestures, we regard the set
of possible commands and queries as strings of a language, such as for instance:
“query id1 status”, or “set id1, id2, id3 start” for getting the operating status of
actuator id1, or activating actuators id1, id2, id3, respectively.

In this perspective, the language can be precisely defined with the notation
borrowed from formal language theory, and hand gestures can be regarded as the
symbols of the underlying alphabet of core gestures, assuming we can sample the
images acquired by the Kinect with a pre-fixed frequency (i.e., we can identify
repetitions of the same symbol); the Kinect sensor only allows to roughly assess
the number of extended fingers, with no finer detail; moreover, we will consider
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an additional symbol representing a separator, corresponding to the case when
no gesture is made. The following alphabet will thus constitute the basis for the
subsequent discussion:

Σ = {◦, •1, •2, . . . , •5, };
with ◦ indicating the fist (i.e. no recognized finger), •n indicating that n fingers
were detected, and as the separator, when the hand is out of the field of view.

We used this alphabet to code the basic keywords of our language, and we
devised a basic grammar capturing a gesture language expressing simple queries
and commands to the actuators. So for instance, the proper sequence of gestures
by the user (i.e. “•1 ”) will be understood as the query keyword, representing
the beginning of the corresponding statement, and similarly for other “visual
lexemes”.

Even a straightforward language will be able to capture an acceptable range
of instructions given by the user in a natural way, and may be easily defined
in terms of a formal grammar; its core symbols, however, will inevitably be
affected by noise, due to the imprecision in the hand shape classification, and
such uncertainty will be expressed by the posterior probabilities attached by
the SVM classifier to each instance of the hand shape. In order to interpret
instructions for actuators we will thus need to infer the correct gesture pattern
to which the incoming symbol sequence belongs.

Following the approach initially described by [21], we chose to regard this
problem as a variant of stochastic decoding: we formalized the structure of proper
queries and commands by means of context-free grammars expressed in Backus-
Naur Form (BNF), and we consequently expect our instructions to conform to
one of the pre-defined gesture patterns. In particular, our reference grammars for
the language of queries Lq, and the language of commands Lc are respectively
defined as follows:

S′ → stat′ | stat′ S′

stat′ → query idlist status

| query idlist compare id

S′′ → stat′′ | stat′′ S′′

stat′′ → set idlist cmd

cmd → start | stop
| modif [increase | decrease]

modif → [low | med | high]

where the sets of non-terminal symbols, and the start symbol of each grammar
are implicitly defined by the productions themselves, and the terminal ones are
actually coded in terms of the gesture alphabet1.

Interpreting gestures may thus be regarded as an instance of a two-class clas-
sification problem in which each class of patterns is assumed to be described by
the language generated by either of the two grammars. The symbols of alphabet
are produced by a noisy sensor, so we must take into account the presence of
erroneous symbols; however our noise deformation model will assume that the

1 For the sake of brevity the productions for idlist were not included; unsurprisingly,
the list of id’s can be described by a regular expression over the available symbols.
The regular expression (•1◦)+ was used to define a valid id in our prototypal system.
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deformation process does not affect the length of the original string. The only
information needed to characterize the process is the probability of corruption
for each of the input symbols; more specifically, if a, b ∈ Σ are two terminal sym-
bols (i.e. hand gestures), we take advantage of the training process for the SVM
classifier also to compute the conditional probability r(a|b) that a is mistakenly
interpreted as b; the probability that an entire string x is deformed to turn into
a different y (in other words, that a query may be mistaken for a command, for
instance) is given by p(x|y) = r(a1)|b1)r(a2)|b2). . .r(an)|bn).

As pointed out in [22], this kind of stochastic decoding basically corresponds
to maximum-likelihood classification of deformed patterns. In our model, the
grammars for both Lq and Lc are context-free, so each of them may be re-
written in Chomsky normal form; this allows us to use the probabilistic version
of the traditional Cocke-Younger-Kasami parsing method as described in [21] to
reliably recognize gesture patterns and translate them into instructions for the
actuators.

At the end of the process, we obtain a reliable translation of a whole sequence
of gestures into the corresponding command or query for the actuators. Such
approach gives us also the opportunity to exploit the potentialities of the parser
used to process the visual language; the underlying structure provided by our
formulation in terms of grammars results into a smoother interaction for the
user, as well as in greater precision for the overall gesture sequences recognition.

4 Performance Assessment

The proposed method is part of a system aiming for timely and ubiquitous
observations of an office environment, namely a department building, in order
to fulfill constraints deriving both from the specific user preferences and from
considerations on the overall energy consumption.

The system will handle high-level concepts as “air quality”, “lighting condi-
tions”, “room occupancy level”, each one referring to a physical measurement
captured by a physical layer. Since the system must be able to learn the user
preferences, ad-hoc sensors for capturing the interaction between users and ac-
tuators are needed similarly to what is described in [23]. The plan of one office,
giving an example of the adopted solutions, is showed in Figure 4.

The sensing infrastructure was realized by means of a WSAN, whose nodes
are able to measure temperature, relative humidity, ambient light exposure and
noise level. Actuators were available to change the state of the environment by
acting on some quantities of interest; in particular the air-conditioning system,
the curtain and rolling shutter controllers, and the lighting regulator address
this task by modifying the office temperature and lighting conditions. The users’
interaction with actuators was captured via the Kinect sensor (Fig. 4-H) that
was also responsible for detecting the presence and count the number of people
on the inside of the office. The Kinect was connected to a miniature fanless PC
(i.e., fit-PC2i) with Intel Atom Z530 1.6GHz CPU and Linux Mint OS, that
guarantees real-time processing of the observed scene with minimum levels of
obtrusiveness and power consumptions (i.e., 6W).
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Fig. 4. Monitored office

We evaluated the performance of our system by separately assessing the multi-
class SVM classifier and the interpreter for the gesture language. The basic hand
gesture classifier was tested under varying lighting conditions and poses showing
an acceptable level of robustness, thanks to the fact that the input sensor makes
use of depth information in detecting the hand mask, while compensating for the
lower quality of the RGB data. Results showed that about 75% of the gestures
are correctly classified when the user acts in a range of 1.5 to 3.5 meters from
the Kinect; however, greater distances have a negative impact on performance
due to the physical limits of the infrared sensor. Moreover we noticed that even
when a gesture is misclassified, the correct gesture is the second choice (i.e.,
rated with the second most probable value) in approximately 70% of the cases.
This observation shows that the information provided by the SVM classifier can
provide reliable input for the gesture sequence interpreter.

The interpreter functionalities were preliminarily verified by means of a syn-
thetic generator of gestures allowing for the validation of both the alphabet and
the grammar we chose. The overall system has been tested by conducting a set
of experiments involving 8 different individuals. Each person was positioned in
front of Kinect at a distance within the sensor range and was asked to interact
with the device by performing a random sequence of 20 gestures chosen from
a predefined set of 10 commands, and 10 queries referred to the actuators de-
picted in Figure 4. Examples of commands and queries, expressed in terms of
the grammars described in the previous section, were:

set light low increase : increases lighting by a small amount by acting on
the dimmer

set heater high increase : increases HVAC temperature setpoint by 3◦C
set heater stop : stops HVAC
query light, heater status : gets current status of light and HVAC
query energymeter : gets current value read from energy meter

where light, heater, energymeter indicate the id’s of the corresponding
actuators.

The proposed system was able to correctly classify the input gestures se-
quences in 88.125% of the cases, corresponding to 141 positives out of 160 inputs;
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Fig. 5. Accuracy of gesture recognition

Figure 5 shows a plot of the outcome for each trial. While performing translation
of the visual commands, the gesture interpreter had to classify the sequences into
one of the two classes represented by the languages for queries and commands
respectively, thus giving insight about the “structure” of the sentence recognized
so far. In a future development, this could be used to provide feedback to the
user about the system comprehension of the interaction, resulting in an overall
smoother user experience.

5 Conclusions

This work described an approach to the design of a user-friendly interface based
on gesture recognition as part of an AmI system; our application scenario is the
management of an office environment by means of Kinect, an unobtrusive sensing
tool equipped with input/output devices that make it possible to sense the user
and their interactions with the surrounding environment. The control of the
actuators of the AmI system (e.g., air-conditioning, curtain and rolling shutter)
is performed by capturing some simple gestures via the Kinect and recognizing
opportunely structured sequences by means of a symbolic probabilistic approach.
Besides allowing for a smoother interaction between users and the system, our
approach is able to cope with imprecision in basic gesture acquisition thanks
to the use of stochastic decoding, which basically corresponds to maximum-
likelihood classification of deformed patterns. The system was tested on an actual
prototype of a smart office, which we built in our department premises as part
of a research project investigating the use of Ambient Intelligence for energy
efficiency.
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