
Chapter 7
Spatial Effects: Transport on Interdependent
Networks

Richard G. Morris and Marc Barthelemy

Abstract Space plays an important role in the behaviour of both individual
infrastructures, and the interdependencies between them. In this Chapter, we first
review spatial effects, their relevance in the study of networks, and their characteri-
zation. The impact of spatial embedding in interdependent networks is then described
in detail via the important example of efficient transport (or routing) with multiple
sources and sinks. In this case, there is an optimal interdependence which relies on
a subtle interplay between spatial structure and patterns of traffic flow. Although
simplified, this type of model highlights emergent behaviour and brings new under-
standing to the study of coupled spatial infrastructures.

7.1 The Importance of Spatial Effects

Catastrophic failures in real world infrastructures are typically a result of consecutive
improbable events. However, the chain of these events can often traverse more than
one type of system, therefore it is important to understand the role of interdependency.
For example, Fig. 7.1 shows a simplified schematic of interdependencies between
various systems, and demonstrates howeasily failures can propagate fromone system
to another.

Such interdependencies can be loosely classified into different categories [1]. For
example, interdependencies can be ‘physical’, where the state of each system relies
on the physical output of the other. In this case, one can imagine a coal-fired power
station might generate the power for a rail network that, in turn, is used to deliver
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Fig. 7.1 Types of interdependencies between different critical infrastructures—adapted from
Ref. [1]. Failure in the water distribution network might cause disruption at a power station, due to
lack of cooling. This, in turn, could affect control networks employed to monitor water distribution
in the first place, exacerbating the initial failure

coal to that same power station. We may also characterize ‘cyber’ dependencies,
which is the case for example in supervisory control networks. Here, the state of
one system relies on information about the state of the other system. The final type
of interdependency can be described as ‘spatial’. That is, different systems can be
affected by a localized disturbance due to spatial proximity. This simplest case relates
to scenarios such as seismic failures, explosions, or fires, where an external event
directly affects different infrastructures in the same location—and could be the trigger
for a chain of failures. However, as we describe in later Sections, localized failure in
one infrastructure may also be the cause of localized failure in another. For example,
local traffic congestion on a road network can cause train overcrowding in the same
region due to more people choosing the train.

This Chapter focusses on the last of these three classes, where transportation
systems such as the road network, rail, subway, etc., are an important example. Such
urban systems are, by construction, embedded in space and interdependent. However,
an assessment of their resilience is very difficult [2], and therefore understanding the
effect of interdependence on the stability of such systems is an important task [3]. One
of the main problems is that human-mediated interdependency can be the source of
counter-intuitive phenomena, such as flash congestion [4]. As a result, many detailed
systems-engineering approaches have floundered, whilst the simplified models used
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by physicists have proved helpful to identify the mechanisms underlying certain
important characteristics. The aim of this Chapter is therefore to describe interesting
effects that arise—at the aggregate level—for transportation systems that are both
spatial and interdependent. To achieve this, the Chapter is organized as follows. In
the next Section, spatial networks will be defined and their key properties reviewed.
In Sect. 7.3, we describe, via two examples, how these properties affect systems of
coupled networks. The final Section then concludes with a short recap and discussion
of the main characteristics of such systems, whilst also highlighting open questions
in the field.

7.2 Spatial Networks

Generally speaking, spatial networks are networks for which the nodes are located
in a metric space—that is, one that permits the notion of a distance between any
two points. Transportation and mobility networks, Internet, mobile phone networks,
power grids, social and contact networks, neural networks, are all examples where
space is relevant and where topology alone does not contain all the information [5].
Formost practical applications though, it suffices to embed nodes in a straightforward
two-dimensional euclidean space.

To give an idea of the role played by spatial effects, consider the following simple
example. Imagine that a set of nodes are placed at random in the plane, and an edge
is created between any pair of nodes according to some probabilistic rule. For spatial
networks, this probability might decrease with the euclidean distance between the
two nodes, for example. In this case, there is an implicit ‘cost’ associated with size
of each edge, and therefore the connections between nodes are predominantly local.
More broadly, the spatial constraints have had a dramatic effect on the resulting
topological structure of the network.

Notice that the above definition does not imply that a spatial network is planar.
Indeed, the airline passenger network, for example, is a network connecting direct
flights through the airports in the world, and is not a planar network. Further to this, it
is not even necessary that the embedded space of the network corresponds with a real
space: social networks for example connect individuals through a friendship relations.
The probability that two individuals are friends however generally decreases with
the euclidean distance between them, showing that in social networks, there is an
important spatial component (see for example [6]).

Whilst the above exceptions can be both important and interesting, inmost systems
of interest, both planarity and a real space embedding are natural choices. For exam-
ple, electricity and gas distribution, roads, rail, and other transportation networks are
all, to a very good approximation, spatial and planar networks. Due to the number
of relevant examples and the intuitive ease with which they can be understood, we
choose to focus primarily on such spatial-planar systems.

In the rest of this Section, therefore, we first review the main types of spatial
networks and how they can be characterized. Then, with this in place, we describe
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two important classes of problems that commonly feature spatial networks—failure
cascade prevention and routing/transportation—and how they can be analyzed.

7.2.1 Types of Spatial Networks

There are, of course, many different types of spatial network. Indeed, as we describe
in Sect. 7.2.2.1, choosing appropriate measures to classify different types of spatial
networks is still an open area of research. However, for the purposes of this Chapter,
it will suffice to look at only the broadest classes of spatial networks.

7.2.1.1 Regular Lattices

The simplest and most commonly used spatial network is the regular lattice—
constructed by repeatedly copying a so-called ‘unit cell’. Whether a simple square
lattice or one comprising more complicated polyhedra, the general properties are:
uniform density, periodic structure and high degree of symmetry. In almost all cases,
the unit cell is planar and very straightforward, where all nodes of the network have
the same degree (although it is possible to use repeating units that are either non-
planar or do not have uniform degree). Regular lattices are prevalent for two reasons,
primarily due to their simplicity, but also due to the fact that manyman-made systems
have very regular structures such as the road network inmany cities (e.g.,Manhattan).

7.2.1.2 Delaunay Triangulations (and Voronoi Tessellations)

If the underlying system of study is planar, but a regular lattice has too much sym-
metry, one option is to use less regular types planar subdivisions. By far the most
well-know of these are the Delaunay triangulation, and its dual, the Voronoi tessel-
lation.

A Delaunay triangulation can be defined for any set of points positioned in the
plane, the result being an almost1 unique triangulation that maximises the smallest
angle of all the triangles. That is, it tends to avoid very thin triangles.Given a particular
Delaunay triangulation, one may construct the Voronoi diagram—a more general
subdivision of the plane that associates a polygonwith each node (see Fig. 7.2). There
is a great deal of work that concerns the properties of such subdivisions and how to
efficiently generate them, primarily due to their importance in problems of finding a
so-called ‘convex hull’ for a discrete set of points. We refer the interested reader to
the important work [7] which forms the cornerstone of most modern techniques for
generating either Delaunay or Vornoi diagrams.

1 If, in the exceptional circumstances that more than three nodes lie on the same circumcircle (see
Fig. 7.2), then the neither the Delaunay or Vornoi diagrams are unique.
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Fig. 7.2 A Delaunay triangulation is a triangulation of points (black dots) in the plane where the
circumcircle of each triangle does not contain any other points. If the centres of circumcircles (red
dots) belonging to neighbouring triangles are joined together, the Voronoi diagram is produced (red
lines)

The benefit of such irregular planar subdivisions to the modeller is that one may
specify a non-homogeneous distribution of nodes. For example, when representing
a water distribution network, one might expect the result to be planar subdivision,
but with greater density around towns and cities.

7.2.1.3 Probabilistic Networks

In order to incorporate more disorder, it is necessary to adopt a fully probabilistic
approach to network generation. Here, one typically starts with a set of nodes po-
sitioned in the plane, and then, for each pair of nodes, creates an edge according
to some probabilistic rule. The example discussed earlier considered a probability
decreasing with the distance between two nodes, but this might equally involve more
complicated spatio-topological indicators, such as clustering coefficients or average
shortest paths (for more details on probabilistic models of spatial networks, we refer
the interested reader to the review [5]).

7.2.2 Characterization of Spatial Networks

Whilst the first attempts to characterize spatial networks were made in the area of
quantitative geography in the 1960s [8–11], more recently other measures have been
popularized by the study of complex networks [12, 13]. Most of the currently used
measures—often called indicators—are relatively simple, but still give important
information about the spatial structure of the network. Here, we will briefly review
themost useful quantitieswhich allow for a good characterization of spatial networks.
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7.2.2.1 Spatial and Topological Indicators

The most common quantities used to describe networks typically characterize only
topological aspects and are not of particular interest for spatial networks. For exam-
ple, the degree distribution is usually peaked which results from the fact that physical
constraints imply a small cut-off, and the clustering and assortativity are usually flat,
a consequence of the fact that connections are predominantly made to neighbors
irrespective of their degrees.

A first useful quantity for spatial networks is the average shortest path � which
for most random networks scales as � ∼ log N (where N is the number of nodes),
signalling a small-world type behavior. In contrast, spatial networks are large-world
and usually display a lattice-like behavior of the form

� ∼ N 1/d , (7.1)

where d is the dimension of the embedded space which, for most applications, is
two.

Another helpful quantity used to characterize spatial systems, is the total length

L tot =
∑

e∈E

�(e), (7.2)

where E is the set of edges and �(e) is the Euclidean length of the edge e. Under
the assumption of a peaked distribution of �(e), the scaling for most networks is of
the form

L tot ∼ L
√

N , (7.3)

where L is the typical size of the area under consideration. One can then easily
construct the minimum spanning tree on the same set of nodes and obtain its length
L tot(M ST ). The ratio of these lengths

C = L tot

L tot(M ST )
, (7.4)

is always larger than 1 and is a good measure of how costly a network is.
For some irregular planar subdivisions, like roads and railway lines, the polygons

that make up the faces can correspond to important information about the structure
of the network. We can characterize the faces by two main quantities, their area A
and their shape factor

φ = 4A

π D2 , (7.5)

where D is the largest diameter of the polygon. This quantity φ thus indicates how
anisotropic the face is: for φ ≈ 0 the face is a very elongated rectangle and for φ ≈ 1
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the face is essentially a disk. We observe for most road networks [5] the following
behavior

P(A) ∼ A−γ , (7.6)

where γ ≈ 2, a value which probably finds its origin in the node density fluctua-
tions [5].

The shape factor distribution usually displays a peak around φ ≈ 0.6 and its time
evolution displays some interesting behavior which is so far unexplained [14].

We end this section by noting that the classic quantity, the betweeness centrality
(BC) which quantifies the importance of a node (or an edge) in the network behaves
very differently in spatial networks. In complex, scale-free networks, the BC scales
as a power of the degree. In other words, the larger the degree the larger the BC,
indicating that the hubs are the most important nodes in the network. In spatial
networks, there is an interplay between the degree and the distance to the barycenter
of nodes, leading to the appearance of ‘anomalies’, nodes with a small degree and a
large BC.

7.3 The Effects of Interdependence in Spatial Networks

Studies that incorporate the features of coupled networks with those of spatial net-
works are small but growing in number. So far, such research has focussed on either
failure cascades or transport and routing processes.

For failure cascades, the idea is that either the nodes or edges in the underlying sys-
tem have an intrinsic carrying capacitywhich, if exceeded, causes a ‘failure’. Once an
edge or node has failed, it is removed from the network and then redistributed. This
may then cause the overloading and failure of further power lines, and so on. Such
cascading failures are important because, under certain circumstances, small isolated
failures can result in large system-wide outages. Recent work [15–21] has extended
this idea to a system of interdependent networks—that is, the failure of a node in
one network causes the immediate failure of the nodes to which it is connected in
the second network. By measuring the size of the largest connected component that
remains following a cascade, it can be shown that the extent of cascades increases as
the number of inter-network connections is increased. In Refs. [23, 24], the authors
apply this model of interdependent cascades to a system comprising two interdepen-
dent square lattice networks. Here, it is argued that since the model uses percolation
techniques, the results—measured in terms of giant connected components—should
not depend on the particular realization of the network. That is, it is known that the
percolation transition has universal scaling behavior which does not depend on the
coordination number and is the same for lattice and off-lattice models, as long as
the links have a finite characteristic length [25]. The key aspect of the model is that
dependency links between two networks are randomly chosen within a certain dis-
tance r . One can then show that percolation for small r is a second-order transition,
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and for larger r is a first-order transition.Moreover, the results suggest that systems of
this type become most vulnerable when the distance between interdependent nodes
is in the intermediate range: greater than zero but much smaller than the size of the
system.

As mentioned above, another class of systems that are both interdependent and
spatial are general transport processes, or flows [22].Whether flows of people, fluids,
or electrical currents, these systems can be characterized by specifying the topology
of the underlying network, a source-sink distribution, and a dynamic. To avoid confu-
sion, we only imagine dynamical processes that converge to a steady state—resulting
in a stationary distribution of flows over the network. Unfortunately, the methods of
analysis mentioned above do not capture many of the typical features one might
expect here. For example, it is easy to imagine a simple source-sink distribution that
allows the network to be split into two distinct components such that the flows are
unaffected. In this case, the size of the giant component may decrease but the network
is still operating well.

Since the percolation techniques used to analyze cascading failures are well docu-
mented, the rest of this Chapter is devoted to the description of transport and routing
processes.

7.3.1 Transport and Routing

One may ask: how should an interacting, or coupled, set of flow networks be charac-
terized, and what are the interesting features of such systems? From observing real
systems, one expects interesting effects to arise from three main areas:

• Spatial - and localization-effects from network connections.
• Spatial distribution of source and sinks.
• Coupling between the two networks.

Of course, the global behaviour of any real system is intimately linked with the par-
ticular form of dynamical interactions involved. However, some understanding of the
above points can be gained by investigating the properties of simple examples that are
chosen well enough to represent certain classes of systems. In this Section, we recap
the results of examining such a ‘toy model’ [26], where the main idea is intuitively
simple. Consider a transport network where there is a choice between travelling by
train or by car, or perhaps the routing of packets in Information Communication
Technology networks (ICT) where there are two different networks available (a sim-
ple schematic of this type of system is shown in Fig. 7.3). For these types of systems,
the typical choice is between a ‘fast but sparse’ network and ‘slow but dense’ net-
work. It is in this system that interesting effects arise through the interplay of the
three main areas outlined above.



7 Spatial Effects: Transport on Interdependent Networks 153

Fig. 7.3 Flows on two interdependent networks: edges of network 1 are shown in black, edges of
network 2 are shown in red, and nodes in common to both networks are considered to be coupled
(shown by dashed lines). Shown in green, we represent a path between two nodes, the ‘source’ i
and the ‘sink’ j

(a) (b)

Fig. 7.4 a The national road network in England, and b the network of major internet servers across
the UK operated by British Telecom. These networks are consistent with planar subdivisions on a
finite sampling of nodes taken with uniform density

7.3.1.1 Network Structure

Since themotivation here is transport and routing problems, inspiration for themodel
can be foundby looking at real systems. For example, one can argue that schematics of
national transport networks or internet server networks resemble planar subdivisions
where the nodes have been arranged at random with uniform density (see Fig. 7.4).
Drawing from ideas discussed in Sect. 7.2.1, a good approximation for these systems
is therefore to use Delaunay triangulations.

With the aforementioned examples in mind, one can ask: how should two Delau-
nay triangulations be coupled together? We imagine a road network coupled to a rail
or subway network. Here, all the nodes of the road network are not nodes of the rail
network, but conversely, all stations are located at points which can be considered
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(a) (b) (c)

Fig. 7.5 Each instance of the system is generated according to the following process: a First,
N (1) nodes (here N (1) = 30) are positioned at random within the unit disk and the Delaunay
triangulation is produced; b the second network is then generated by drawing N (2) (here N (2) = 10)
nodes uniformly from the existing ones (N (2) ≤ N (1)) and, once again, computing the Delaunay
triangulation; c the combined system is no longer planar

as nodes in the road network. That is, the nodes of one network are a subset of the
nodes of the other. As will be shown, this setup conveniently provides a simple way
to realize the ‘sparse’ versus ‘dense’ characterization described above.

More mathematically, one can construct two Delaunay triangulations DT (1) and
DT (2). The set of nodes of DT (1) are taken to be N (1) points distributed uniformly
at random within the unit disk. The nodes of DT (2) are then selected at random from
N (1) and we define

β = N (2)

N (1)
≤ 1. (7.7)

That is, the model comprises two individual networks that are each planar Delau-
nay triangulations, forming a combined network that is not necessarily planar (see
Fig. 7.5). For the combined network, N = N (1), and E = E (1) ∪ E (2). Recalling
that Delaunay triangulations are effectively unique for a given set of points, it is then
clear that, for a given value of β, the spatial and topological structure is entirely
defined by N (1) and N (2).

7.3.1.2 Route Assignment

For modelling a transportation system, it is natural to associate a velocity v(n) with
each network n ∈ {1, 2}, and to assign weights to each undirected edge e(n) =
(xi , x j ) according to

w(e(n)) = |xi − x j |
v(n)

. (7.8)

Here, w is the time taken to traverse the edge, and will provide the building block
for all other useful system indicators.
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To allocate flows on the network, rather than considering a dynamical system
which acts to minimize a global quantity—such as electrical networks, where the
dissipated power is minimized—a straightforward choice is to once again follow
a transportation analogy. This means that the source-sink distribution of a general
system of flows, can be replaced by an origin-destination (OD) matrix Ti j . Indeed,
as before, this approach is also representative of the Internet, i.e., it is necessary to
not only receive a packet of information, but it must be a particular packet sent from
a particular server. Since each entry in the OD matrix specifies the proportion of the
total flow that goes from node i to node j , this type of representation has the benefit
that flows are completely specified by combining an OD matrix and a method of
route choice.

The most obvious candidate for a method route choice, is to take the journey that
minimizes the travel time. That is, the weighted shortest path, where the weights are
given by Eq. (7.8). Here, the idea is that the ratio

α = v(1)

v(2)
(7.9)

is a single parameter that controls the relative speed of travel on the two networks.
Indeed, in order to simplify further, we impose the constraint that α ≤ 1. Since
β < 1, this has the effect of enforcing the ‘fast but sparse’ versus ‘slow but dense’
scenario.

In terms of the OD matrix, it is impractical to consider the interplay between
all possible forms for Ti j . Therefore it helps to choose a method that interpolates
between two extremes, the monocentric case and a form of Erdős-Réyni random
graph. We start with a monocentric OD matrix—i.e., all nodes travel to the origin—
and then add noise by rewiring in the following way. For each node, with probability
p, choose a random destination, and with probability 1 − p, choose the origin (see
Fig. 7.6).

7.3.1.3 Interdependence

Previous studies of interacting networks use the term coupling to describe how well
two networks are linked. Typically, this is a purely topological definition i.e., the
fraction of nodes from one network which link to another [15], or the probability
that a particular node has an edge which connects both networks [20]. For transport
processes, a better measure of interaction must include details of how the flows are
distributed. For the system outlined above, we then specify a new quantity which we
coin interdependence and is defined in a similar vein to the betweenness centrality

λ ≡
∑

i 	= j

Ti j
σ
coupled
i j

σi j
, (7.10)
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(a) (b)

Fig. 7.6 Representations of OD matrices where each arrow corresponds to an entry in Ti j and
which relates to the underlying geometry of Fig. 7.5. a Amonocentric ODmatrix. b Amonocentric
OD matrix randomly rewired with probability p = 0.5

where σ
coupled
i j is the number ofweighted shortest paths between nodes i and j , which

include edges from both networks. In the transportation analogy, the interdependence
is a way to quantify the importance of different transportation modes in order to
achieve a fast journey. Here, the entries of the origin-destination matrix Ti j are
normalized i.e.,

∑
i j Ti j = 1, and it is clear from Eq. (7.10) that λ ∈ [0, 1] is

dependent on the method by which the flows are allocated and not just the system
topology. The larger λ, themore one network is relying on the other to ensure efficient
shortest paths (note that there is usually a maximum value of λ strictly less than
one, since not all shortest paths can be multimodal). It is also clear that, by virtue of
influencing the shortest paths, the number α can control the interdependence between
the two networks.

With Eq. (7.10) in mind, instead of investigating the likelihood of catastrophic
cascade failures, we consider more general measures of how well the system is
operating. For example, one such measure is the average travel time

τ =
∑

i 	= j

Ti jwi j , (7.11)

where wi j is defined from Eq. (7.8) as follows: wp = ∑
e∈p w(e) is the cumula-

tive weight of path p, and wi j = minp∈P wp is the minimum weight of all paths P
between nodes i and j . Formost practical transport processes, awell designed system
reduces the average time travelled (i.e., water/food supply, the Internet, transporta-
tion, etc.).

Another important quantity, which can be used as a simple proxy for traffic flow,
is the edge betweenness centrality (BC). For the system at hand, the definition of the
edge BC is

b(e) =
∑

i 	= j

Ti j
σi j (e)

σi j
, (7.12)
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(a) (b)

Fig. 7.7 Simulation results for the average shortest path and the Gini coefficient (N (1) = 100,
N (2) = 20, and p values: 0 (purple), 0.2 (blue), 0.4 (green), 0.6 (orange), and 0.8 (red)). When the
interdependence increases, the average shortest path decreases and the Gini coefficient can increase
for large enough disorder (lines are polynomial fits)

where the sum is weighted by the proportion of trips Ti j , and σi j (e) is the number of
weighted shortest paths between nodes i and j , which use edge e. The betweenness
centrality allows the introduction of a second measure, the Gini coefficient G. A
number between zero and one, G is typically used in economics for the purpose of
describing the concentration of wealth within a nation. Here it is used to characterize
the disparity in the assignment of flows to the edges of a network, something that has
been done before for transportation systems such as the air traffic network [27]. For
example, if all flows were concentrated onto one edge, G would be one, whilst if the
flows were spread evenly across all edges, G would be zero. We use the definition
according to Ref. [28]

G ≡ 1

2|E |2b̄

∑

p,q∈E

|b(p) − b(q)|, (7.13)

where subscripts p and q label edges, E is the total number of edges, and b =∑
p∈E b(p)/|E | is the average ‘flow’ on the system. In this picture, the Gini coef-

ficient can now be thought of as a measure of road use. A low value indicates that
the system uses all roads to a similar extent, whilst a high value indicates that only
a handful of roads carry all the traffic.

7.3.1.4 Existence of Optimal Interdependence

The set of numbers p,β andα, nowdefine an ensemble of systems that are statistically
equivalent (with respect to λ, τ , and G). Therefore one may calculate the quantities
〈λ〉, 〈τ 〉, and 〈G〉 for different values of p and α, where angle brackets 〈. . . 〉 represent
an ensemble average.

Simulation results are shown in Fig. 7.7, where each data point corresponds to
an average over fifty instances of the OD matrix for each of fifty instances of the
coupled network geometry. As the interdependence λ increases, the average journey
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(a) (b) (c) (d)

Fig. 7.8 Colormaps showing normalized edge flows—plotted at the midpoint of each edge—over
many instances of the system. Colors are assigned starting from white (for zero flow) and moving
through yellow, orange and red for higher values of flow, until reaching black (maximum flow).
Each Subfigure corresponds to the following parameter values: a p = 0.2, α = 0.9; b p = 0.2,
α = 0.1; c p = 0.8, α = 0.9; d p = 0.8, α = 0.1

time decreases (Fig. 7.7a). This is straightforward to understand since the increased
interdependence is simply a result of reducing the velocity ratio α. Furthermore it
is clear that increasing randomness in the origin destination matrix increases the
length of the average shortest path by an almost constant value, irrespective of the
interdependence. By contrast, the behaviour of the Gini coefficient at different in-
terdependencies (Fig. 7.7b) is less easily explained. Consider instead Fig. 7.8. Here,
each colormap shows the distribution of flows resulting from many instances of the
system.

The first two plots, Figs. 7.8a and 7.8b, were generated fromODmatrices rewired
with low probability (p = 0.2) i.e., almost monocentric. The ratios of edge weights
per unit distance between the two networks are α = 0.9 and α = 0.1 respectively.
Therefore each diagram corresponds to a point on the blue line in Fig. 7.7b. For α =
0.9, there is minimal independence between the networks and a high concentration
of flows are seen around the origin. Since the flows are disproportionately clustered,
this configuration is described by a high Gini coefficient. By contrast, for α = 0.1,
the difference in the edge weights means that it can be beneficial to first move away
from the origin in order to switch to the ‘fast’ (low α) network. We therefore see a
broader distribution of flows with small areas of high concentration around coupled
nodes. The emergence of these hotspots away from the center also corresponds to
a high Gini coefficient—and therefore the blue line in Fig. 7.7b is relatively flat.
Figs. 7.8c and 7.8d correspond to the red line of Fig. 7.7b: generated from OD
matrices rewired with high probability (p = 0.8). We observe that even for α close
to one, the distribution of flows is broader than for p = 0.2—resulting in a lower
Gini coefficient. Asα is decreased, the second network becomesmore favourable and
interdependence hotspots can be seen once again—resulting in a highGini coefficient
and a positive gradient for the red line of Fig. 7.7b. This result points to the general
idea that randomness in the source-sink distribution leads to local congestion and
more generally to a higher sensitivity to interdependence.

At this stage, it is natural to combine the effects observed above into a single
measure. We assert that it is likely a designer or administrator of a real system would



7 Spatial Effects: Transport on Interdependent Networks 159

(a) (b)

Fig. 7.9 Existence of an optimal interdependence: a Simulation results for μ = 10, N (1) = 100,
N (2) = 20, and p values: 0 (purple), 0.4 (green), and 0.8 (red) (three values only of p are shown to
ensure the lines of best-fit can be seen clearly). b Minima of quadratic best-fit curves for different
values of p. We obtain λ = λ∗ for p∗ 
 0.34 (The error bars shown are those of the closest data
point to the minimum of the best-fit curve)

wish to simultaneously reduce the average travel time and minimize the disparity in
road utilization. To serve this purpose, a ‘utility’ function

F = 〈τ 〉 + μ〈G〉 (7.14)

can be defined, where it is immediately apparent from Fig. 7.7 that, for certain values
of μ, the function F will have a minimum. That is, a non-trivial (i.e., non-maximal)
optimum λ will emerge. Figure 7.9a shows that, whether a non-trivial optimum
interdependence exists depends on the origin-destination matrix. For OD matrices
rewired with a high probability, increasing the speed of the rail network reduces
the road utilization as flows become concentrated around nodes where it is possible
to change modes. Dependent on the value of μ, the effect of reduced utilization
can outweigh the increased journey time, leading to a minimum in F . Monocentric
OD matrices, by contrast, have inherently inefficient road utilization when applied
to planar triangulations, regardless of the speed of the rail network. Therefore no
minimum is observed, and hence no (non-trivial) optimum λ. More systematically,
one may plot the minima λ∗ of best-fit curves corresponding to different values of
p (Fig. 7.9b). Defining p∗, the value of p for which λ∗ = 1, it is then possible to
categorize the system into one of two regimes. We observe that: if p < p∗, then the
optimal interdependence is trivially the maximum; otherwise if p ≥ p∗, a non-trivial
optimal interdependence exists.

7.4 Discussion and Perspectives

In this Chapter, we have highlighted the importance of spatial effects in coupled
networks by focussing on problems of transportation and routing. In contrast to
studies of failure mitigation—that often use either percolation or cascading-sandpile
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techniques—models of transport are better described by measures of utility and
efficiency. By using such quantities, it is possible to identify an optimal interdepen-
dence between the two networks. Below the optimum, the system is inefficient and
travel times can be large, whilst above the optimum, system utilization is poor due to
congestion arising around ‘link nodes’ that connect the two networks. The existence
and behavior of this optimal value turns out to be very sensitive to the randomness
of the individual trajectories that make up the system.

Even though the model is very simplified, it possesses the advantage of highlight-
ing dominant mechanisms, and can serve as a basis for more sophisticated modeling
such as the ones used and developed by civil engineers. The broader interpretation
being that systems that rely on routing like transportation networks, or the Internet,
may be inherently fragile to certain changes in supply and demand. Furthermore, if
such observations can be generalized, this could have serious ramifications in other
areas, such as the transition from centralized to de-centralized power generation [29].

Finally, we note that most studies have so far considered that the dynamical
processes on the different interacting networks were the same. In many cases, this
is not a realistic assumption, and it seems to us that an important future direction of
research is understanding and classifying coupled systems where the dynamics are
different. An example of this type of system are so-called supervisory control sys-
tems. Here, an underlying network such as the electrical distribution grid is coupled
to an Information Communications Technology (ICT) network for the purposes of
monitoring and control. For this case, failure spreading rules are different in each
layer, and therefore the stability of the system is very difficult to predict [30].
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