
Chapter 4
Modeling Interdependent Networks as Random
Graphs: Connectivity and Systemic Risk

R. M. D’Souza, C. D. Brummitt and E. A. Leicht

Abstract Idealized models of interconnected networks can provide a laboratory for
studying the consequences of interdependence in real-world networks, in particular
those networks constituting society’s critical infrastructure. Here we show how ran-
dom graph models of connectivity between networks can provide insights into shifts
in percolation properties and into systemic risk. Tradeoffs abound in many of our
results. For instance, edges between networks confer global connectivity using rela-
tively few edges, and that connectivity can be beneficial in situations like communi-
cation or supplying resources, but it can prove dangerous if epidemics were to spread
on the network. For a specific model of cascades of load in the system (namely, the
sandpile model), we find that each network minimizes its risk of undergoing a large
cascade if it has an intermediate amount of connectivity to other networks. Thus, con-
nections among networks confer benefits and costs that balance at optimal amounts.
However, what is optimal for minimizing cascade risk in one network is subopti-
mal for minimizing risk in the collection of networks. This work provides tools for
modeling interconnected networks (or single networks with mesoscopic structure),
and it provides hypotheses on tradeoffs in interdependence and their implications for
systemic risk.
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4.1 Introduction

Collections of networks occupy the core of modern society, spanning technologi-
cal, biological, and social systems. Furthermore, many of these networks interact
and depend on one another. Conclusions obtained about a network’s structure and
function when that network is viewed in isolation often change once the network is
placed in the larger context of a network-of-networks or, equivalently, when viewed
as a system composed of complex systems [13, 15]. Predicting and controlling these
über-systems is an outstanding challenge of increasing importance because system
interdependence is growing in time. For instance, the increasingly prominent “smart
grid” is a tightly coupled cyber-physical system that relies on human operators and
that is affected by the social networks of human users. Likewise, global financial
markets are increasingly intertwined and implicitly dependent on power and com-
munication networks. They are witnessing an escalation in high frequency trades
executed by computer algorithms allowing for unanticipated and uncontrolled col-
lective behavior like the “flash crash” of May 2010. Reinsurance companies uncan-
nily forecast the increase of extreme events (in particular in the USA) just weeks
before the onslaught of Superstorm Sandy [59] and stressed the urgent need for new
scientific paradigms for quantifying extreme events, risk, and interdependence [54].

Critical infrastructure provides the substrate for modern society and consists of
a collection of interdependent networks, such as electric power grids, transporta-
tion networks, telecommunications networks, and water distribution networks. The
proper collective functioning of all these systems enables government operations,
emergency response, supply chains, global economies, access to information and
education, and a vast array of other functions. The practitioners and engineers who
build andmaintain critical infrastructure networks have long been cataloging and ana-
lyzing the interdependence between these distinct networks, with particular emphasis
on failures cascading through coupled systems [19, 21, 29, 42, 51, 55, 56, 60, 61,
63].

These detailed, data driven models are extremely useful but not entirely practical
due to the diversity within each infrastructure and due to difficulty in obtaining data.
First, each critical infrastructure network is independently owned and operated, and
each is built to satisfy distinct operating regimes and criteria. For instance, consider
the distinct requirements and constraints of a municipal transportation system versus
a region of an electric power grid. Even within a municipal transportation system
there exist multiple networks and stakeholders, such as publicly funded road net-
works and private bus lines and train networks. Second, there are few incentives
for distinct operators to share data with others, so obtaining a view of a collection
of distinctly owned systems is difficult. Third, the couplings between the distinct
types of infrastructure are often only revealed during extreme events; for instance,
a natural gas outage in New Mexico in February 2011 caused rolling electric power
blackouts in Texas [16]. Thus, even given the most detailed knowledge of individual
critical infrastructure systems, it is still difficult to anticipate new types of failures
mechanisms (i.e., some failure mechanisms are “unknown unknowns”).
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Idealized models for interdependent networks provide a laboratory for discover-
ing unknown couplings and consequences and for developing intuition on the new
emergent phenomena and failuremechanisms that arise through interactions between
distinct types of systems. In fact, the idea of modeling critical infrastructure as a col-
lection of “complex interactive networks” was introduced over a decade ago [3].
Yet idealized models are only starting to gain traction [58, 71], and they are largely
based on techniques of random graphs, percolation and dynamical systems (with
many tools drawn from statistical physics). Despite using similar techniques, these
models can lead to contrasting conclusions. Some analytic formulations show that
interdependencemakes systems radically more vulnerable to cascading failures [15],
while others show that interdependence can confer resilience to cascades [13].

Given a specified set of network properties, such as a degree distribution for the
nodes in the network, random graph models consider the ensemble of all graphs that
can be enumerated consistent with those specified properties. One can use probability
generating functions to calculate the average or typical properties of this ensemble
of networks. In the limit of an infinitely large number of nodes, the generating func-
tions describing structural and dynamic properties are often exactly solvable [52],
which makes random graphs appealing models that are widely used as simple mod-
els of real networks. Of course there are some downsides to using the random graph
approach, which will require further research to quantify fully. First, in the real-
world we are typically interested in properties of individual instances of networks,
not of ensemble properties. Second, percolation models on random graphs assume
local, epidemic-like spreading of failures. Cascading failures in the real-world, such
as cascading blackouts in electric power grids, often exhibit non-local jumps where
a power line fails in one location and triggers a different power line hundreds of
miles away to then fail (e.g., see Ref. [1]). This issue is discussed in more detail
below in Sect. 4.3.4.1. Nonetheless, random graphs provide a useful starting point
for analyzing the properties of systems of interdependent networks.

Here, in Sect. 4.2 we briefly review how random graphs can be used to model
the structural connectivity properties between networks. Then, in Sect. 4.3 we show
how, with the structural properties in place, one can then analyze dynamical process
unfolding on interconnected networks with a focus on cascades of load shedding.

4.2 Random Graph Models for Interconnected Networks

Our model of “interconnected networks” consists of multiple networks (i.e., graphs)
with edges introduced between them. Thus, the system contains multiple kinds of
nodes, with one type of node for each network, and one type of edge. A simple
illustration of a system of two interconnected networks is shown in Fig. 4.1. (A
related class of graphs called multiplex networks considers just one type of node
but multiple kinds of edges [49, 70].) This general framework can model different
kinds of systems that have connections to one another, or it can capture mesoscopic
structure in a single network, such as communities and core-periphery structure.
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Fig. 4.1 A stylized illustra-
tion of two interconnected
networks, a and b. Nodes
interact directly with other
nodes in their immediate net-
work, yet also with nodes in
the second network

4.2.1 Mathematical Formulation

Here we briefly review the mathematics for calculating the structural properties of
interconnected networks as discussed in Ref. [40]. In a system of d ≥ 2 interacting
networks, an individual network μ is characterized by a multi-degree distribution
{pμ

k }, where k is a d-tuple, (k1, . . . , kd), and pμ
k is the probability that a randomly

chosen node in network μ has kν connections with nodes in network ν. A random
graph approach considers the ensemble of all possible networks consistent with this
multi-degree distribution. To realize a particular instance of such a network we take
the “configuration model” approach [10, 47]. Starting from a collection of isolated
nodes, each node independently draws a multi-degree vector from {pμ

k }. Next, each
node is given kν many “edge stubs” (or half-edges) of type ν. We create a graph
from this collection of labeled nodes and labeled edge stubs by matching pairs of
compatible edge stubs chosen uniformly at random. For instance, an edge stub of
type ν belonging to a node in network μ is compatible only with edge stubs of type
μ belonging to nodes in network ν. Generating functions allow us to calculate the
properties of this ensemble.

The generating function for the {pμ
k } multi-degree distribution is

Gμ(x) =
∞∑

k1=0

· · ·
∞∑

kd=0

pμ
k

d∏

ν=1

xkν
ν , (4.1)

where x is the d-tuple, x = (x1, . . . , xd). This is a generating function for a prob-
ability distribution already known to us (our multi-degree distribution for network
μ), and thus not terribly informative on its own. However, we can derive additional
generating functions for probability distributions of interest, such as the distribu-
tion of sizes of connected components in the system. However, we much first derive
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Fig. 4.2 A diagramatical representation of the topological constraints placed on the generating
function Hμν(x) for the distribution of sizes of components reachable by following a randomly
chosen ν-μ edge. The labels attached to each edge indicate type or flavor of the edge, and the sum
runs over over all possible flavors

two intermediate generating function forms, one for the probability distribution of
connectivity for a node at the end of a randomly chosen edge and a second for the
probability distribution of component sizes found at the end of a random edge. Ref-
erence [52] contains a clear and thorough discussion of this approach for a single
network, which we apply here to multiple networks.

First consider following an edge from a node in network ν to a node in network
μ. The μ node is kν times more likely to have ν-degree kν than degree 1. Thus the
probability qμν

k of reaching a μ-node of ν-degree kν is proportional to kν pμ
k1···kν ···kd

.
Accounting for the fact that we have followed an edge from a node in ν to a node
in μ, the properly normalized generating function for the distribution of additional
edges from that μ-node is

Gμν(x) =
∞∑

k1=0

· · ·
∞∑

kd=0

(kν + 1)pμ

k1···(kν+1)···kl

kμν

d∏

γ=1

x
kγ
γ = G

′ν
μ (x)

G ′ν
μ (1)

. (4.2)

Here kμν = ∑
k1 · · · ∑kd

kν pμ
k is the normalization factor accounting for Gμν(1) =

1 and kμν is also the average ν-degree for a node in network μ. We use G
′ν
μ (x) to

denote the first derivative of Gμ(x) with respect to xν and thus G
′ν
μ (1) = kμν . A

system of d interacting networks has d2 excess degree generating functions of the
form shown in Eq. 4.2.

Now consider finding, not the connectivity of the μ-node, but the size of the
connected component to which it belongs. This probability distribution for sizes
of components can be generated by iterating the random-edge-following process
described in Eq. 4.2, where we must consider all possible types of nodes that could
be attached to that μ-node. For an illustration see Fig. 4.2. In other words, the μ-
node could have no other connections; it might be connected to only one other node
and that node could belong to any of the d networks; it might be connected to two
other nodes that could each belong to any of the d networks; and so on. Iterating the
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random-edge construction for each possibility leads to a generating function Hμν for
the sizes of components at the end of a randomly selected edge

Hμν(x) = xμqμν
0···0 (4.3)

+ xμ

1∑

k1...kd=0

δ1,
∑d

λ=1 kλ
qμν

k1···kd

d∏

γ=1

Hγμ(x)kγ

+ xμ

2∑

k1,...,kd=0

δ2,
∑d

λ=1 kλ
qμν

k1···kd

d∏

γ=1

Hγμ(x)kγ + · · · ,

where δi j is the Kronecker delta. Reordering the terms, we find that Hμν can be
written as a function of Gμν as follows:

Hμν(x) = xμ

∞∑

k1=0

· · ·
∞∑

kd=0

qμν
k1···kd

d∏

γ=1

Hγμ(x)kγ

= xμGμν[H1μ(x), . . . , Hdμ(x)]. (4.4)

Here again, for a system of d networks, there are d2 self-consistent equations of the
form shown in Eq. 4.4.

Now instead of selecting an edge uniformly at random, consider a node chosen
uniformly at random. This node is either isolated or has edges leading to other nodes
in some subset of the d networks in the system. The probability argument above
allows us to write a self-consistency equation for the distribution in component sizes
to which a randomly selected node belongs:

Hμ(x) = xμGμ[H1μ(x), . . . , Hdμ(x)]. (4.5)

With this relation for Hμ, we can now calculate the distribution of component sizes
and the composition of the components in terms of nodes from various networks.
However, our current interest is not in finding the exact probability distribution
of the sizes of connected components, but in finding the emergence of large-scale
connectivity in a system of interacting networks. To address this problem, we need
only to examine the average component size to which a randomly chosen node
belongs. For example, the average number of ν-nodes in the component of a randomly
chosen μ-node is

〈sμ〉ν = ∂

∂xν

Hμ(x)

∣∣∣∣
x=1

= δμνGμ[H1μ(1), . . . , Hdμ(1)]

+
d∑

λ =1

G
′λ
μ [H1μ(1), . . . , Hdμ(1)]H

′ν
λμ(1)
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= δμν +
d∑

λ=1

G
′λ
μ (1)H

′ν
λμ(1). (4.6)

Table4.1 shows the explicit algebraic expressions derived from Eq. 4.6 for a
system of d = 2 networks with two different forms of internal degree distribution
and types of coupling between networks. Where the algebraic expression for 〈sμ〉ν
diverges marks the percolation threshold for the onset of a giant component. For
instance, the first case shown in Table4.1 is for two networks, a and b, with internal
Poisson distributions, coupled by a third Poisson distribution. For this situation, the
percolation threshold is defined by the expression (1 − kaa)(1 − kbb) = kabkba .

4.2.2 Consequences of Interactions

To quantify the consequences of interaction between distinct networks, we want to
compare results obtained from the calculations above to a corresponding baseline
model of a single, isolated network. Interesting differences already arise for the case
of d = 2 interacting networks, which we focus on here. Consider two networks,
a and b, with na and nb nodes respectively. They have multi-degree distributions
pa

kakb
and pb

kakb
respectively. The reference single network, C, neglects the network

membership of the nodes. It is of size nC = na +nb nodes, and has degree distribution

pk =
⎡

⎣ fa

k∑

ka ,kb=0

(
pa

kakb
δka+kb,k

)
+ fb

k∑

ka ,kb=0

(
pb

kakb
δka+kb,k

)
⎤

⎦ ,

where fa = na/(na+nb) and fb = nb/(na+nb). In otherwords, network C is a com-
posite view that neglects whether a node belongs to network a or b. So a node that had
degree {ka, kb} in the interacting network view has degree k = ka +kb in the compos-
ite, C, view.We compare the properties of the ensemble of randomgraphs constructed

from the interconnected networks multi-degree distribution,
{

pa
kakb

, pb
kakb

}
, to the

properties of the ensemble constructed from the composite, pk , degree distribution
(Fig. 4.3).

In Ref. [39], we analyze the situation for two networks with distinct internal
Poisson distributions coupled together via a third Poisson distribution. We show
that large-scale connectivity can be achieved with fewer total edges if the network
membership of the node is accounted for (i.e., the composite C view requires more
edges to achieve a giant component).

Next we show that other effects are possible for different types of networks.
For instance, the degree distributions that are a truncated power law describe many
real-world networks, such as the connectivity between Autonomous Systems in the
Internet and connectivity patterns in social contact networks [20]. Yet many critical
infrastructure networks (such as adjacent buses in electric power grids) have very



80 R. M. D’Souza et al.

Ta
bl

e
4.

1
E
xp
re
ss
io
ns

fo
r
av
er
ag
e
co
m
po
ne
nt

si
ze

by
no
de

ty
pe

fo
r
th
re
e
di
ff
er
en
ti
nt
er
ac
tin

g
ne
tw
or
k
to
po
lo
gi
es

N
et
w
or
k
to
po
lo
gy

A
ve
ra
ge

no
de

co
un
tb

y
ty
pe

an
d
in
iti
al
ne
tw
or
k

a-
a

a-
b

b-
a

b-
b

〈s a
〉 a

D
is
tr
ib
ut
io
n
pa
ra
m
et
er
s

〈s a
〉 b

G
en
er
at
in
g
fu
nc
tio

ns
〈s b

〉 a
〈s b

〉 b
Po

is
so
n

Po
is
so
n

Po
is
so
n

Po
is
so
n

1
+

k a
a
[1

−
k b

b
]+

k a
b
k b

a

(1
−

k a
a
)(
1

−
k b

b
)
−

k a
b
k b

a

k a
a

k a
b

k b
a

k b
b

k a
b

(1
−

k a
a
)(
1

−
k b

b
)
−

k a
b
k b

a

G
a
(x

a
,b

)
=

ek a
a
(x

a
−1

)
ek a

b
(x

b
−1

)

k b
a

(1
−

k a
a
)(
1

−
k b

b
)
−

k a
b
k b

a

G
b
(x

a
,b

)
=

ek b
a
(x

a
−1

)
ek b

b
(x

b
−1

)
1

+
k b

b
[1

−
k a

a
]+

k a
b
k b

a

(1
−

k a
a
)(
1

−
k b

b
)
−

k a
b
k b

a

Po
w
er
-l
aw

Po
is
so
n

Po
is
so
n

Po
is
so
n

1
+

k a
a
[1

−
k b

b
]+

k a
b
k b

a
[1

−
G

′ α α
α
(1

)
+

G
′ α α
β
(1

)]
[1

−
G

′ α α
α
(1

)][
1

−
k b

b
]−

k a
b
k b

a
[1

−
G

′ α α
α
(1

)
+

G
′ α α
β
(1

)]

τ a
,κ

a
k a

b
k b

a
k b

b
k a

b
[1

−
G

′ α α
α
(1

)
+

G
′ α α
β
(1

)]
[1

−
G

′ α α
α
(1

)][
1

−
k b

b
]−

k a
b
k b

a
[1

−
G

′ α α
α
(1

)
+

G
′ α α
β
(1

)]

G
a
(x

a
,b

)
=

L
i τ

a
(x

a
e−

1/
κ
a
)

L
i τ

a
(e

−1
/
κ
a
)

ek b
a
(x

b
−1

)
k b

a
[1

+
k a

a
−

G
′ α α
α
(1

)]
[1

−
G

′ α α
α
(1

)][
1

−
k b

b
]−

k a
b
k b

a
[1

−
G

′ α α
α
(1

)
+

G
′ α α
β
(1

)]

G
b
(x

a
,b

)
=

ek b
a
(x

a
−1

)
ek b

b
(x

b
−1

)
1

+
k b

b
[1

−
G

′ α α
α
(1

)]
+

k a
b
k b

a
[1

−
G

′ α α
α
(1

)
−

G
′ α α
β
(1

)]
[1

−
G

′ α α
α
(1

)][
1

−
k b

b
]−

k a
b
k b

a
[1

−
G

′ α α
α
(1

)
+

G
′ α α
β
(1

)]



4 Modeling Interdependent Networks as Random Graphs 81

(a) (b)

Fig. 4.3 Comparing random graphmodels which account for interacting networks (red line) to ran-
dom graph models with the identical degree distribution, but which neglect network membership
(dashed black line). a The fraction of nodes in the largest connected component for two intercon-
nected networks with Poisson degree distribution, as edges are added to network b. Accounting
for network structure allows for a giant component to emerge with fewer edges. Here na = 4nb.
b The corresponding fractional size of the giant component for a network with a Poisson degree
distribution coupled to a network with a truncated power law degree distribution as the power law
regime is extended. Here was see the opposite effect to a, where large scale connectivity is delayed
by accounting for network membership

narrow degree distributions, which we approximate here as Poisson. Thus, we are
interested in the consequences of coupling together networks with these different
types of distributions. Let network a have an internal distribution described by a
truncatedpower law, pa

ka
∝ k−τa

a exp(−k/κa), andnetworkb have an internal Poisson
distribution. Coupling these networks via a distinct Poisson distribution is described
by the second case shown in Table4.1. Here, the composite C view requires fewer
edges to achieve a giant component, so large-scale connectivity requires more edges
if the network membership of the nodes is accounted for. The effects in shifting the
percolation transition can be amplified if the networks are of distinct size, na �= nb.
For more details on these percolation properties of interconnected networks, see
Refs. [39, 40]. Also, see Ref. [38] for a discussion of how correlations in multiplex
networks can alter percolation properties.

4.3 Application: Sandpile Cascades on Interconnected Networks

Equippedwith a random graphmodel of interconnected networks and an understand-
ing of its percolation properties, we now use this framework to analyze systemic risk
by studying a dynamical process occurring on such interconnected networks. Here
we seek a model that captures risk of widespread failure in critical infrastructures.
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4.3.1 The Sandpile Model as a Stylization of Cascading Failure
in Infrastructure

A common feature of many infrastructures is that their elements hold load of some
kind, and they can only hold a certain amount of it. For example, transmission lines
of power grids can carry only so much electricity before they trip and no longer carry
electricity [18]; banks can withstand only so much debt without defaulting [30];
hospitals can hold only so many patients; airports can accommodate only so many
passengers per day. When a transmission line, bank, hospital or airport partially or
completely fails, then some or all of its load (electricity, debt, patients or travelers)
mayburden another part of that networkor a completely different kindof network. For
instance, when a transmission line fails, electricity quickly reroutes throughout the
power grid (the same network), whereas when an airport closes due to a catastrophe
like a volcano eruption [31] travelersmayoverwhelm railway andother transportation
networks.

In addition to loads and thresholds, another commonality among certain risks of
failure in infrastructure are heavy-tailed probability distributions of event size. In
electric power systems, for instance, the amount of energy unserved during 18years
of North American blackouts resembles a power law over four orders of magnitude,
and similarly broad distributions are found in other measures of blackout size [18].
In financial markets, stock prices and trading volume show power law behavior, in
some cases with exponents common to multiple markets [22, 26]. In interbank credit
networks, most shocks to banks result in small repercussions, but the 2008 financial
crisis demonstrates that large crises continue to occur. Similarly broad distributions
of event sizes also occur in natural systems such as earthquakes [64], landslides [32]
and forest fires [45, 65]. Some evidence suggests that engineered systems like electric
power grids [18] and and financial markets [22], not to mention natural catastrophes
like earthquakes [64], landslides [32] and forest fires [45, 65], all show heavy-tailed
event size distributions because they self-organize to a critical point.

An archetypal model that captures these two features—of units with capacity
for load and of heavy-tailed event size distributions—is the Bak-Tang-Wiesenfeld
(BTW) sandpile model [5, 6]. This model considers a network of elements that hold
load (grains of sand) and that shed their load to their neighbors when their load
exceeds their capacity. Interestingly, one overloaded unit can cause a cascade (or
avalanche) of load to be shed, and these cascades occur in sizes and durations dis-
tributed according to power laws. This deliberately simplifiedmodel ignores detailed
features of real systems, but its simplicity allows comprehensive study that can in
turn generate hypotheses to test in more realistic, detailed models, which we will
discuss in Sect. 4.3.4.
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4.3.2 Defining the Sandpile Model on Networks

First studied on a two-dimensional lattice [5, 6], the BTW model has recently been
studied on random graphs [11, 13, 17, 27, 28, 35–37, 41, 53], in part because many
critical infrastructure like power, water, transportation and finance have network
structure. There are different ways to implement the sandpile model on a network,
but these implementations only differ in specifics.Herewe study the followingnatural
formulation [27, 28, 36, 37].

Each node holds grains of sand, which we interpret as units of load. Nodes can
hold only a certain number of grains. When the number of grains equals or exceeds
the node’s threshold, then the node topples andmoves sand to its neighbors. A natural
choice for the threshold of a node is its degree, so that when a node topples it sends
one grain to each of its neighbors. Other thresholds have been studied [27, 36], but
these other rules for the threshold require nodes to shed sand to (for example) a
random subset of their neighbors.

TheBTWsandpilemodel consists of a sequence of cascades (avalanches), defined
as follows. First, drop a grain of sand on a node chosen uniformly at random. If the
node’s number of grains is greater than or equal to its threshold (i.e., its degree), then
that node is considered overwhelmed or unstable, and that node sheds (moves) all its
load to its neighbors by sending one grain to each neighbor. These neighbors may
in turn exceed their thresholds and have to topple, and subsequently their neighbors
may topple, and so on. Once no node exceeds its threshold, we record the number
of nodes that toppled (the cascade size), and the process begins again by dropping a
grain on a random node.

In order to prevent the system from becoming inundated with sand, grains of
sand must somehow be removed. Following [28], we choose the following rule for
dissipation of sand: whenever a grain of sand is sent from one node to another node,
with some small, fixed probability that grain is removed from the system.

The quantities of interest are measured in the dynamical equilibrium state that the
system reaches aftermany cascades have occurred, because the system self-organizes
to a critical point. Specifically, if the network begins without any sand, then sand
slowly builds up in the system. After a large number of cascades (e.g., an order of
magnitude more than the number of nodes), the system appears to reach a dynamical
equilibrium at which the amount of sand does not change significantly relative to the
system size. On one hand, large cascades tend to destroy lots of sand because of the
rule for dissipating sand described above. On the other hand, when the amount of
sand in the system is low, then cascades are typically smaller, so the amount of sand
tends to increase. These effects balance so that the system seeks a critical point at
which the probability distribution of cascade size (and of other measures like cascade
duration) show power law behavior [28, 53]. These power law–distributed cascades
can therefore serve as a useful, stylized model for risk of large cascading failures in
infrastructures.
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4.3.3 Results for the Sandpile Model on Interconnected Networks:
Optimal Interconnectivity, the Yellowstone Effect, and
Systemic Risk

In this subsection, we highlight three results from Ref. [13]. Next, in Sect. 4.3.4, we
comment on current and future work to understand the sandpile model on isolated
and interconnected networks, as well as on work to understand risk in interdependent
infrastructures and other examples of optimal, intermediate amounts of connectivity.

We begin by studying one of the simplest interconnected networks, two random 3-
regular graphs a and b with edges introduced between them. Specifically, each node
in networka (b) has 3 neighbors in networka (b, respectively).Networksa and b have
identical number of nodes.Next, a fraction p of nodes ina have one edge to a neighbor
in the other network. (In the notation of the join degree distributions in Sect. 4.2.1,
the degree distribution of network a is pa

ka ,kb
= δka ,3

[
pδkb,1 + (1 − p)δkb,0

]
, and

vice versa for network b.) This “interconnectivity” parameter p ∈ [0, 1] measures
the coupling between the two networks. The threshold of each node is its total degree.

One motivating example for this choice of interconnected networks are power
grids. The degree of a typical node in the transmission grid (the part of a power grid
that moves electric energy at high voltage) is approximately 3 [13], so we chose
to study random 3-regular graphs. (Using 3-regular graphs rather than, say, Erdős-
Rényi random graphs, simplifies the degree distribution to delta functions and hence
simplifies branching process approximations of cascades [13].) Moreover, power
grids have modular structure because they consist of “regions” or “control areas”.
Historically, each region was its own grid, and then these grids began connecting
with one another, so that now one grid can span an entire continent. Each region
of the grid is typically more densely connected within the region than with other
regions. Furthermore, this modular structure is not static: grids continue to build
new transmission lines between regions in order to, for example, accommodate wind
power [34]. Increasing the interconnectivity p in our model vaguely captures the
construction of new transmission lines between regions of a power grid.

Other infrastructures, from interbank credit networks [46] to transportation [48],
exhibitmodular structure at different scales. In some cases, thesemodules are becom-
ing more interconnected over time, as lending, travel and trade become more global.
Understanding how this increase in connectivity affects systemic risk is a problem
that transcends disciplines. Though the sandpile model does not capture any one of
these infrastructures accurately, it self-organizes to a critical point at which cascades
occur in sizes described by power laws, and this behavior vaguely resembles large
fluctuations inmany engineered and natural systems. Thus, the sandpilemodel can be
useful for generating hypotheses to test in more realistic models. Next we highlight
three such hypotheses.
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Fig. 4.4 The chance that a network a connected to another network b suffers a cascade larger
than half its network [gold curve, Pr(Ta > 1000)] has a minimum at a critical amount of inter-
connectivity p∗. Networks that want to mitigate their largest cascades would prefer to build or
demolish interconnections to operate at this critical point p∗. The blue (red) curve is the chance
Pr(Taa > 1000) [Pr(Tba > 1000)] that a cascade that begins in a (b) topples at least 1000 nodes
in a. Increasing interconnectivity only exacerbates the cascades inflicted from b to a (red), but
interestingly it initially suppresses the local cascades in a (For each p, we run a simulation on one
realization of two random 3-regular graphs with 2000 nodes each; each node has a neighbor in the
other network with probability p. The dissipation parameter is 0.01, the amount that makes the
largest cascades slightly smaller than the size of the system. The inset depicts a small example with
30 nodes per network and p = 0.1.)

4.3.3.1 Optimal Interconnectivity

Suppose each network a, b is a region of a power grid and that each region is owned
by a different utility. (To reiterate, the sandpile model misses crucial features of
power grids, described below in Sect. 4.3.4.1, but we use the power grid example to
facilitate interpretation of results.) If each network (think “each utility in the power
grid”) a, b wants to reduce the risk of cascading failure in its own network, then how
many interconnections (edges between the networks) would they want?

Figure4.4 shows the striking result that each network a, b would want to build
some interconnections but not too many. Specifically, define a large cascade in a
network as a cascade that topples at least half of the network. In Fig. 4.4, a has 2000
nodes, so a large cascade in a is one that causes at least 1000 toppling events in
a. (The results are rather insensitive to changes in this cutoff for calling cascades
large; see [13, Fig. 4]. Also, Sect. 4.3.3.2 explores the risk of small cascades.) The
chance of a large cascade in a network is a measure of that network’s risk. The gold
curve of Fig. 4.4 shows that a network’s risk decreases and then increases with the
interconnectivity p, with theminimumoccurring at an intermediate interconnectivity
p∗. Thus, two initially isolated networks would want to build interconnections up to
p∗ in order to reduce their own risk of large cascades.
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The 70% drop in the risk of either network due to increasing interconnectivity p
from 0.001 to p∗ = 0.075 ± 0.01 is significant. If these cascades were blackouts,
then utility a (say) would experience 70% fewer large blackouts. Why? By building
p∗Na = 150 ± 20 edges (transmission lines) with its neighboring network b, the
networks can collectively share their risk of large blackouts.

To further illustrate this “optimal interconnectivity” p∗, we distinguish cascades
that begin in network a (the blue curve labeled “local cascades” in Fig. 4.4) from
cascades that begin in network b (the red curve labeled “inflicted cascades”). As inter-
connectivity p increases, the chance of a large inflicted cascade increases monoton-
ically, because building interconnections opens new avenues for large cascades to
spread to the other network.

More interestingly, building some interconnections (but not too many) suppresses
local cascades. That is, when interconnectivity p is small, the more edges a has with
b, the lower the chance that a cascade begun in a topples a number of nodes in a
greater than half the size of a. One reason for this suppression of local cascades is
that nodes with an edge to the other network have larger threshold (because their
degree is 4 rather than 3), so they topple less often when they receive sand. (How-
ever, the repercussions of toppling a degree-4 node are worse because they hold more
sand.) Another reason that some interconnectivity suppresses local cascades is that
more interconnections make the cascades less confined to one network and instead
becomemore spread out among the two networks (see [13, Fig.S10]). This phenom-
enon of sharing risk resembles the tenet of diversification in investment portfolios in
finance [2, 9].

Before proceeding, we note a similarity between optimal interconnectivity and
equilibria in economics. Just as rational agents seek more of something as long
as the marginal benefits exceed the marginal costs, a network would seek more
interconnectivity as long as the marginal benefits exceed the marginal costs. In the
sandpile model, building interconnections confers more benefits than costs initially,
where benefits are reduction in risk of large cascades. In a competitive market,
consumers andfirms converge on the optimal price p∗ atwhich themarginal benefit of
the last unit consumed equals the marginal cost. Analogously, two networks seeking
to mitigate their risk of large cascades converge on the optimal interconnectivity p∗
at which the marginal benefits of the last edge built equal the marginal cost. More
realistic models of connections within and between networks would also incorporate
the costs of building and maintaining a new link, and this cost would presumably
change the optimal number of links p∗.

Perhaps many interconnected networks are what Nassim Taleb calls “antifragile”,
meaning that they become more robust against large-scale catastrophes [66] if they
have some variability [67] from input from external networks (e.g., interconnectivity
p∗ > 0).
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Fig. 4.5 a Networks mitigating the smallest cascades of size Ta ∈ [1, 50] seek isolation p = 0,
while b networks suppressing intermediate cascades Ta ∈ [50, 100) seek isolation p = 0 or strong
coupling p = 1, depending on the initial interconnectivity p in relation to the unstable critical point
p∗ ≈ 0.12 ± 0.02. But networks like power grids that mitigate large cascades c, d would seek
interconnectivity at the stable equilibrium p∗ ≈ 0.12 ± 0.02. The qualitative shape of the plots in
the bottom figures and the location of p∗ are robust to changes in the window � ≤ Ta ≤ � + 50
for all 200 ≤ � ≤ 800 (Here we show results from simulations on two random 3-regular graphs
with 1000 nodes each, which is half the network size as in Fig. 4.4, to show how p∗ decreases with
system size.)

4.3.3.2 Yellowstone Effect: Why Suppressing Small Cascades Can Increase
the Risk of Large Ones

Rather than seeking to mitigate their risk of large cascades (and hence seeking inter-
connectivity p∗), what if the two networks a, b seek to mitigate their risk of small
cascades? Figure4.5 shows that the risk of small cascades increases monotonically
with interconnectivity p. Thus, p = 0 minimizes the risk of small cascades.

However, by Fig. 4.4, p = 0 is a local maximum in the risk to each network.
Thus, by seeking p = 0 to mitigate their own small cascades, networks a, b would
increase their risks of large cascades. The same phenomenon is thought to occur in
suppressing blackouts [18] and forest fires [45]. In fact, this phenomenon has been
given the name the “Yellowstone effect” because suppressing small forest fires in
Yellowstone National Park, WY, in the twentieth century densified forest vegetation
and hence increased the risk of massive forest fires [45]. What Fig. 4.5 demonstrates
is that interconnectivity is another mechanism that can cause the Yellowstone effect.
This result suggests that we should look for similar phenomena in more realistic
models.
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Fig. 4.6 Increasing the interconnectivity p between two random 3-regular graphs extends the tail
of the total avalanche size distribution s(t), which does not distinguish whether toppled nodes are
in network a or b. The inset shows a rank-size plot on log-log scales of the number of topplings t in
the largest 104 avalanches (with 2× 106 grains of sand dropped), showing that adding more edges
between random 3-regular graphs enlarges the largest global cascades by an amount on the order
of the additional number of interconnections. As expected theoretically [28], when a and b nodes
are viewed as one network, s(t) ∼ t−3/2 for large t (green line)

4.3.3.3 Risk-Avoiding Networks Can Exacerbate System-Wide Risk

If two networks act in a greedy, rational manner to mitigate their own risk of large
cascades, without regard to the risk of the other network, then by Sect. 4.3.3.1 each
network would seek the optimal, intermediate amount of interconnectivity p∗. What
is the effect of this self-interested behavior on the system as a whole?

Figure4.6 shows that every increase in interconnectivity p tends to increase the
size of the largest cascades in the whole system (where the size of the cascade
no longer distinguishes types of nodes). The main plot of Fig. 4.6 is the cascade
size distribution s(t), which is the probability of observing a cascade with t many
toppling events (in the equilibrium state of the system after many cascades have
been run without collecting statistics), for interconnectivity p = 10−3, 10−2, 10−1.
(As expected [28], the avalanche size distribution shows power law behavior with
exponent −3/2 over at least two orders of magnitude, and more detailed theoretical
arguments confirm this conclusion [53].)

To illustrate the tail behavior of the cascade size distribution s(t), the inset of
Fig. 4.6 shows a rank-size plot of the largest cascades in the whole system. This
plot shows that, as p increases, global cascades become larger by an amount on the
order of the additional number of interconnections. Because each interconnection
confers an addition to the threshold of nodes and hence to the capacity of the system
to hold sand, the system holds more sand in the dynamic equilibrium state, so the
largest cascades can involve more sand. Similar phenomena occur in transportation
systems and electric power grids. Building a new bridge to Manhattan, for example,
can paradoxically worsen traffic because people use the new capacity (the so-called
Braess’ Paradox [12]). Similarly, the benefits of upgrades to power grids are often
fleeting, because operators seek to efficiently use their costly infrastructure [18].
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4.3.4 Optimal Connectivity in Models Other Than the Sandpile
Model

Because the sandpile model self-organizes to a critical point, it has relatively few
parameters, so its behavior can be explored somewhat comprehensively. By contrast,
detailed models of real systems can have so many parameters that they are difficult to
comprehend, and many parameters are difficult to measure in the real world. Thus,
the interesting behavior of the sandpile model—such as power law distributions
of cascade size, optimal interconnectivity, the Yellowstone effect and system-wide
risk—can serve as hypotheses to test and refine in more realistic models.

Next we review recent work in calculating optimal interdependence and optimal
connectivity in power grids, bank networks and social systems.

4.3.4.1 Cascading Failures in Power Grids: Why Topological Models do not
Suffice, and What Details are Needed

One of the promises of the burgeoning field of complex networks is to simplify the
complicated behavior of real systems. Unfortunately, power grids are one example
for which naïve, topological network approaches do not appear to suffice [14, 33].

Furthermore, most of these topological models, like the sandpile model, treat a
cascading failure like an epidemic that spreads between adjacent nodes. By contrast,
failures in the power grid spread non-locally: when a node in a power grid (such
as a bus or a substation) fails or, more commonly, an edge (a transmission line)
trips, the electric power re-routes almost instantly to all parallel paths, inversely
proportionally to the impedances on lines. Thus, a failure can trigger other failures
hundreds of kilometers away [24]. Models that lack this non-locality (or that have
non-local failures but via completely different mechanisms) offer little insight into
cascading failures in power grids [33].

What then is needed to offer insight for blackouts in power grids? A first step
and essential ingredient are the linearized direct current (DC) equations, an approx-
imation of the physics of electric power. These equations require data on the power
injections at every node (which is positive for generators, negative for load buses)
and the impedances and capacities of lines. Thus, the topological structure of a power
grid is insufficient to run the DC power flow equations; these “thin” networks need
to be augmented with data on the buses and transmission lines. (The MATLAB soft-
ware MATPOWER [72] provides a useful starting point because it contains data on
the Polish power grid. Another approach is to generate statistically correct power
grid topologies [69].)

Equipped with a physics-based model of electric power flow in a grid, one must
choose what failure mechanisms to model. Unfortunately, the number of failure
mechanisms is large; examples include thermal overloads, relay failure, voltage col-
lapse, dynamic instability and operator error [23]. The state-of-the-art is to model a
subset of these failure mechanisms (see, e.g., [7, 23, 50]).
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Such a detailed, physics-based, data-drivenmodel of cascading failuresmight find
rather rich pictures of optimal interconnectivity between regions of a power grid.
The model space would likely be much richer than that of the sandpile model. But
solving this problem once is not enough because modern power grids are changing.
For instance, rapid deployment of smart grid technologies enable greater control
and measurement of the grid. Renewable energy will stress the grid in new ways,
as generation becomes more intermittent and increasingly located in sunny, windy
locations, thereby changing the import of power between regions. These changes to
the grid make studies of optimal grid structure all the more timely and important.

4.3.4.2 Optimal Interconnectivity in Bank Networks, Coupled Transportation
Networks and Social Systems

The notion of optimal, intermediate amounts of connectivity is not new. For example,
Battiston et al. [9] found that a network of banks is most resilient to cascading default
if banks have an intermediate amount of risk diversification. What made this result
novel was its contrast with the common wisdom in the financial literature that more
diversification is always better [2]. In another model of bank default, if banks lend
to an intermediate number of other banks, then the banks can be the most fragile and
still not suffer cascading default [8].

Optimal coupling has also been found in a model of transportation on coupled
spatial networks [48]. If a transportation administrator wishes to minimize both
the average travel time and the amount of congestion, then a nontrivial, optimal
“coupling” between, say, a rail network and a road network can emerge. Like in the
sandpile model on interconnected graphs [13], two competing forces (efficiency and
congestion in the transportation model) can balance at optimal amounts of coupling.

Optimal connectivity has also been found in strategic games played on networks.
For example, a social network playing the minority game is most efficient at an
intermediate amount of connectivity [4, 44]. Optimal interconnectivity between two
networks has been found in the public goods game, where the interconnectivity
p = 1/2 maximizes cooperation [68].

These results in financial and social models suggest that optimal connectivity (and
interconnectivity) may be common in networks. If the dynamics occurring on some
network have opposing tradeoffs, then these tradeoffs may balance at critical points.
Whether the corresponding real systems—such as power grids, bank networks or
social networks—can sense and respond to these tradeoffs and hence operate at the
optimal points remains an open question. The answers would likely be essential to
any effort to control such systems [43].
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4.4 Conclusion and Future Work

Why might two networks build connections between them? This chapter demon-
strates two reasons: to efficiently provide global connectivity and to reduce the risk
that either system suffers a large cascading failure.

Thiswork belongs to amovement to studymesosopic, intermediate-scale structure
in networks, and not just global structure (like degree distributions) and microscopic
structure (like clustering coefficients). Two prominent examples ofmesoscopic struc-
ture in networks are community (or modular) structure and core-periphery. There
exist many tools for finding community structure in networks (see the reviews [25,
57]) and comparatively fewer tools for finding core-periphery structure [62]. But we
are only just beginning to learn about the effect of this mesoscopic structure on the
system’s percolation properties (Sect. 4.2, Ref. [40]) and on dynamics occurring on
the network (Sect. 4.3, Ref. [13]).

Another challenge is to study the converse: how the dynamics on the network affect
itsmesoscopic structure. In the sandpilemodel on interconnected networks [13], large
cascades in one network may convince it to build more interconnections and hence
to change the mesoscopic structure. Similarly, in power grids, large blackouts can
provoke upgrades to the grid, which can include new transmission lines that change
the structure of the grid. Large financial crises alter web of financial interactions
among banks [46]. Widespread defection in a social network may alter its social ties.
Thus, rare, catastrophic events [66] may be a sign of a network in the throes of its
path toward optimal connectivity, if one exists.
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