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Abstract Typical complex system operates through multiple types of interactions
between its constituents. The collective function of these multiple interactions, or
multiple network layers, is often non-additive, resulting in nontrivial effects on the
network structure and dynamics. To better model such situations, the concept of mul-
tiplex network, the network with explicit multiple types of links, has recently been
applied. In this contribution, we survey recent studies on this subject, focused on
the notion of correlated multiplexity. Empirical multiplex network analysis as well
as analytical results on the random graph models of correlated multiplex networks
are presented, followed by a brief summary of dynamical processes on multiplex
networks. It is illustrated that a multiplex complex system can indeed exhibit struc-
tural and dynamical properties that cannot be represented by its individual layer’s
properties alone, establishing the network multiplexity as an essential ingredient in
the new physics of “network of networks.”

3.1 Introduction

In the last decade, network science has successfully established itself as a unified
framework for studying complex systems [1, 2]. Along with its impressive success,
the framework has continuously been evolving. One of the most current evolution of
complex network theory is the study of multiplex networks, the networks with more
than one type of links [3]. Indeed, most studies until quite recently have focused on
isolated, single networks, ignoring the existence of multiple types of interactions. In
most, if not all, real-world complex systems, however, nodes in the system can engage
in more than one type of interactions, and such multiple interactions can make a non-
additive effect on network structure and the dynamics on it. For example, as illustrated
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Fig. 3.1 A cartoon of multi-
plex social network as a triplex
network consisting of friend-
ship, family, and work-related
acquaintanceship layers

family

friends
work-related

in Fig. 3.1, people in a society interact via their friendship, family relationship, and/or
more formal work-related acquaintanceship, etc., which are collectively responsible
for complex emergent social phenomena [4, 5]. Countries in the global economic
system also interact via various international relations ranging from commodity trade
to political alliance [6]. Even proteins in a cell participate in multiple layers of
interactions and regulations, from transcriptional regulations andmetabolic synthesis
to signaling [7]. Obviously, in dealing with such problems the multiplex network
representation would be a more appropriate description than the single network, or
simplex, one.

In this contribution, we will survey recent works on the topic of multiplex net-
works. We begin with an analysis of real-world multiplex coauthorship network data
to introduce the notion of correlated multiplexity in Sect. 3.2. Then the random graph
model of correlated multiplex network is introduced in Sect. 3.3. In Sect. 3.4, ana-
lytical formalism based on the joint degree distribution for analyzing the structural
properties of multiplex random graph models is developed. The cases of duplex ran-
dom graphs and duplex scale-free networks are studied in detail in Sects. 3.5 and 3.6,
respectively. Topics of network robustness and network dynamics are briefly dis-
cussed in Sects. 3.7 and 3.8, respectively. Finally, we will conclude our contribution
with a summary and outlook.

3.2 Correlated Multiplexity

In most previous studies of coupled networks—in context of layered, interacting,
interdependent networks [8–10]—network layers were coupled randomly. In real-
world complex systems, however, nonrandom structure in network multiplexity can
be prominent. For example, a person with many links in the friendship layer is likely
to also have many links in another social network layer, being a friendly person. We
termed the correlated multiplexity [3] to refer such a nonrandom pattern of network



3 Multiplex Networks 55

multiplexity. Examples of correlated multiplexity are widespread. Some of examples
reported in the literature are:

• Social networks: online-game network [11], coauthorship network [12].
• Organizational networks [13].
• Transportation networks [8, 14, 15].
• Cellular network: Interaction network and perturbation network [16].
• Economic networks: Trade networks in different industrial sectors [17].

The most frequent pattern of correlated multiplexity is the positively correlated
multiplexity, such that a node with large degree in one layer likely has more links
in the other layer as well. For example, in the online game social network data [11],
it was shown that different positive social relations such as friendship and trade are
highly correlated as well as overlap.

In Fig. 3.2, we present our own analysis of a multiplex coauthorship network [12].
The network consists of a set of researchers who are connected with one another
by three types of collaboration links, first being due to publications in the field of
fractal surface growth (denoted KPZ, representing Kardar-Parisi-Zhang equation),
second in the field of self-organized criticality (denoted SOC, representing Self-
Organized Criticality), and third in the field of complex network theory (denoted
CNR, representing Complex Network Research), resulting in a triplex network (for
more details on the data collection, see [12]). Despite the separation of timescales
of three research topics, degree distributions of the three network layers, and that of
the superposed network, are indistinguishable (Fig. 3.2a, inset).Within the individual
layer, analysis of degree distributions of restricted set of nodes that participate inmore
than one layers reveals that there indeed exists a positively correlated multiplexity
pattern: the more layer a node participates to, the more likely would they have larger
degrees (Fig. 3.2a). The analysis of joint degree distributions (Fig. 3.2c,d) confirms
this finding. There is a systematic enrichment of joint degree distribution near the
diagonal of the plots, revealing strong correlation between degrees of a node in two
network layers. In addition, it was found that a pair of nodes which are closer in
one layer tend to be also closer in another layer (Fig. 3.2b). This result extends the
classical concept of multiplexity that accounts only for direct link overlap [4] and
demonstrates the effect of network multiplexity at all scales.

3.3 Random Graph Model of Correlated Multiplexity

For a systematic mathematical understanding of correlated multiplexity, one needs
a graph model. There exist a few random graph models with multiple link-types
(or colored edges) [3, 18, 19]. Here we present a way to build correlated multiplex
networks, following [3].

Given two network layers with equal number of nodes, we define three particu-
lar couplings: (i) uncorrelated, (ii) maximally-positive (MP), and (iii) maximally-
negative (MN) correlated couplings (Fig. 3.3). In the uncorrelated coupling, we
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Fig. 3.2 Patterns of correlated multiplexity in multiplex coauthorship network. a Degree distri-
bution of nodes participating in a single (diamond), double (circle), and triple layers (square). b
Conditional distance distribution P(dKPZ |dSOC) in KPZ-layer of pairs of nodes of distance dSOC in
SOC-layer. c Joint degree distributionP(kSOC, kKPZ ), and d Significance plot based on Z-score with
respect to randomly coupled counterpart. Z-score is obtained as Z = (Preal − 〈Prandom〉)/σPrandom ,
where the average and standard deviation for Prandom are evaluated over 104 independent random-
izations

couple the two layers randomly, that is, we use a random matching between a node
in one layer to a node in the other layer. In the MP correlated coupling, a node’s
degrees in different layers are maximally correlated in their degree order; the node
that is hub in one layer is also the hub in the other layer, and the node that has the
smallest degree in one layer also has the smallest degree in other layer. Likewise,
in the MN correlated coupling, a node’s degrees in different layers are maximally
anti-correlated in their degree order.

These three particular couplings are useful in their mathematical simplicity and
tractability, thus highlighting the effect of correlated multiplexity. Yet in real-world
multiplex systems the correlated multiplexity would hardly be maximal. The cases
of partially correlated multiplexity can be constructed by maximally correlating a
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Fig. 3.3 Schematic illustration of constructing the correlated multiplex networks discussed in the
text. MP (MN) stands for maximally-positive (maximally-negative) correlated multiplexity

fraction q of nodes in the network while randomly coupling the rest fraction 1 − q.
Using this method one can interpolate between MP, through uncorrelated, and MN
couplings, modulating the strength of correlated multiplexity.

3.4 Analytical Formalisms

3.4.1 Degree Distributions

The information of degree distribution of a multiplex network with � layers (�-
plex network) can be encoded in the joint degree distribution P({kα}) ≡ P(k1, k2,
· · · , k�). (Throughout this work, we will use Greek subscript to denote the layer
index). The degree distribution within a layer α, denoted as πα(kα), can be obtained
as the marginal distribution, πα(kα) = ∑

{kβ �=α} P(k1, k2, · · · , k�). The total degree
of a node in the multiplex network is given by k = ∑

α kα , which can differ from the
number of distinct connected nodes when there are link overlaps between network
layers. Such link overlaps can be neglected for large, sparse random graphs, but can
be significant in real-world multiplex networks as in multiplex social network data
[11, 12]. One can obtain the total degree distribution P(k) from the joint degree
distribution as P(k) = ∑

{kμ} P({kμ})δk,
∑

ν kν
, where δ denotes Kronecker delta

symbol.
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3.4.2 Emergence of the Giant Component

Having established away to construct the total degree distributionP(k), it is tempting
to use it to calculate the connected components properties via standard generating
function technique [20]. It turns out that, however, this simplified procedure works
only when the degree distributions of all layers are identical, as we will see shortly.

Nowwe develop a theory which exploits the full joint degree distribution P({kα}),
applicable when every layer is uncorrelated and locally tree-like, as in random graph
models. Let us define uα to be probability that a node reached by a randomly chosen
link in layer α does not belong to the giant component (which is connected via any
types of links). Following a similar reasoning as the standard generating function
technique, one can construct the self-consistency equations for uα’s as

uα =
∑

{kμ}

kαP({kμ})
zα

∏
ν ukν

ν

uα

(α = 1, · · · , �) , (3.1)

where zα is the mean degree of layer α. Then the probability that a randomly chosen
node belongs to the giant component (that is, the giant component size), denoted S,
can be obtained as

S = 1 −
∑

{kμ}
P({kμ})

∏

ν

ukν
ν , (3.2)

with uν’s being the solution of Eq. (3.1). Therefore, the giant component exists (that
is, S > 0) if Eq. (3.1) has a nontrivial solution other than (u1, · · · , u�) = (1, · · · , 1).
This condition can be extracted from the Jacobian of Eq. (3.1), which reads in the
case of duplex network

1

4

⎡

⎣
(

κ1

z1
+ κ2

z2

)

+
√

(
κ1

z1
− κ2

z2

)2

+ 4κ2
12

z1z2

⎤

⎦ > 1 , (3.3)

where κ1 = 〈k21〉, κ2 = 〈k22〉, and κ12 = 〈k1k2〉 are second-order moments of joint
degree distribution.

When the degree distributions of all layers are identical, one has the solution of
Eq. (3.1) satisfying u1 = u2 = · · · = u�, which reduces Eqs. (3.1–3.3) to those of
standard generating function technique [20]. For example, Eq. (3.3) reduces to the
well-knownMolloy-Reed criterion for the total degree distribution, 〈k2〉−2〈k〉 > 0,
with k = k1 + k2 [21]. This shows that in such a case, one can use the reduced total
degree distribution P(k) to study the component structure, but in general Eqs. (3.1–
3.3) should be used to have the correct results. Note that similar generating function-
type techniques for clustered [22], multi-type [23], and interdependent networks [24]
have also been developed recently, which slightly differ from the current formalism.
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3.4.3 Degree-Degree Correlations

The fact that one cannot use the reduced total degree distribution P(k) for compo-
nent structure of correlated multiplex network suggests that the superposed network
possesses degree correlations even when uncorrelated random networks are coupled.
To show this explicitly, let us consider the assortativity coefficient r defined as [25]

r = 〈kk′〉l − 〈k〉2l
〈k2〉l − 〈k〉2l

, (3.4)

where k and k′ are the total degrees of nodes at two ends of an edge and 〈· · · 〉l denotes
the average over all edges in the superposed network. Nonzero value of r dictates the
presence of degree-degree correlations between connected nodes. Following the steps
developed in [22], one can show that the numerator of Eq. (3.4) can be expressed,
after some manipulations, as

∑

k,k′
kk′Q(k, k′) −

⎛

⎝
∑

k,k′
kQ(k, k′)

⎞

⎠

2

=
∑

μ

cμX2
μ −

(
∑

μ

cμXμ

)2

= 1

2

∑

μ,ν

cμcν(Xμ − Xν)
2 ≥ 0 , (3.5)

where Q(k, k′) denotes the probability that a randomly chosen link (of any kind)
connects two nodes with total degree k and k′ at each end, cα is the fraction of links
of type α, such that

∑
α cα = 1, and Xα is the expected total degree of a node that is

reached by following a randomly chosen link of type α, which is related to the joint
degree distribution as

Xα =
∑

k

k
∑

{kμ}
kαP({kμ})δ(k −

∑

ν

kν)/zα . (3.6)

Therefore, a multiplex network can become assortative (r > 0), even when uncorre-
lated layers are coupled, unless the degree distributions of all layers are identical, so
that all Xα’s are equal. (Another exception is the uncorrelated multiplex ER graphs,
see Sect. 3.5.1.) It also allows one to calculate the assortativity coefficient r, once the
joint degree distribution is given.
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3.5 Duplex ER Graphs

To illustrate basic effects of multiplex couplings, in this section we apply the for-
malism to duplex Erdős-Rényi (ER) graphs [26] in which two ER graph layers are
multiplex coupled, summarizing the results reported in [3].

3.5.1 Uncorrelated Duplex ER Graphs

In the absence of correlation between network layers, the joint degree distribution
factorizes,Puncorr(k1, k2) = π1(k1)π2(k2). The total degree distribution is then given
by the convolution of πα(kα), Puncorr(k) = ∑k

k1=0 π1(k1)π2(k − k1). It is easy to
see that the resulting superposed network is nothing but an ER graph with the total
mean degree z1 + z2, so that

Puncorr(k) = e−zzk

k! (3.7)

with z = z1+z2. The connectivity and component properties follow the conventional
behaviors [20, 26].

3.5.2 Duplex ER Networks with Equal Link Densities

The case of duplex ER networks with layers of equal link densities is particularly
simple, as one can use standard generating function technique with the total degree
distribution. Furthermore it is amenable for a number of explicit exact results.

MP coupling.—In this case, degrees of a node in the two layers would become
almost equal in the thermodynamic limit (more precisely, relative dispersion of the
two degrees would decay with N and vanish as N → ∞), so that the total degree
distribution of the duplex network can be approximated as

PMP(k) =
{

e−z1zk/2
1 /(k/2)! (k even),

0 (k odd),
(3.8)

where z1 is the mean degree of the layer 1. Therefore, the Molloy-Reed criterion is
fulfilled for all nonzero z1, as 〈k2〉−2〈k〉 = 4(z1+z21)−2(2z1) = 4z21 > 0 for z1 �= 0,
which can also follow from the condition Eq. (3.3). This means that surprisingly the
giant component exists for any nonzero link density, that is, the critical single-layer
mean degree zc above which the giant component exists vanishes,
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zMP
c = 0 . (3.9)

One can further obtain the giant component size S and the average size of finite
components 〈s〉 from the standard generating function technique [20], which are
given explicitly by:

S = 1 − P(0) = 1 − e−z1 , (3.10)

and
〈s〉 = 1 . (3.11)

This shows that the giant component grows linearly in the vicinity of zMP
c , and

that only the isolated nodes are outside the giant component and all the linked nodes
form a single giant component. All these predictions are fully supported by numerical
simulations (Fig. 3.4).

MN coupling.—In this case, there exist distinct regimes of z1, three of which
among them are of relevance for the giant component properties (in N → ∞ limit).

(i) 0 ≤ z1 ≤ ln 2.

In this regime, more than half of nodes are of degree zero in each layer so every
linked node in one layer is coupled with a degree-0 node in the other layer under
MN coupling. After some inspection one obtains the total degree distribution
P(k) as

PMN (k) =
{
2π(0) − 1 (k = 0),
2π(k) (k ≥ 1).

(3.12)

In this regime there is no giant component.

(ii) ln 2 ≤ z1 ≤ z∗.
Following similar steps,P(k) in this regime is obtained as

PMN (k) =

⎧
⎪⎪⎨

⎪⎪⎩

0 (k = 0),
2[2π(0) + π(1) − 1] (k = 1),
2π(2) − 2π(0) + 1 (k = 2),
2π(k) (k ≥ 3).

(3.13)

In this regime, 〈k2〉 − 2〈k〉 = 2(z21 − z1 − 2e−z1 + 1), which becomes positive
for z1 > zMN

c where
zMN

c = 0.838587497... (3.14)

Therefore the giant component emerges at a much higher link density. Being
delayed in its birth, however, the giant component grows more abruptly once
formed (Fig. 3.4c). This regime is terminated at z1 = z∗, determined by the
condition 2π(0) + π(1) = 1, from which we have z∗ = 1.14619322...

(iii) z1 ≥ z∗.
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Fig. 3.4 a, b Total degree distribution P(k) of duplex ER graphs with z1 = z2 = 0.7 (a) and
z1 = z2 = 1.4 (b).Different symbols denotesMP (square), uncorrelated (circle), andMN(diamond)
couplings. c, d The giant component size S (c) and the average size of finite components 〈s〉 (d)
as a function of z1 of duplex ER graphs with z1 = z2. Same symbols as (a, b) are used. Gray
shade denotes the region in which S = 1 for the MN case (z1 > z∗). Lines represent the theoretical
curves and symbols the numerical simulation results. Errorbars denote standard deviations. Adapted
from [3]
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In this regime we have P(0) = P(1) = 0 and thereby S = 1. This means that
the entire network becomes connected into a single component at this finite link
density z∗, which can never be achieved for ordinary ER networks.

All these theoretical results are confirmed numerically (Fig. 3.4). Meanwhile, it is
noteworthy that despite these abnormal behaviors and apparently more rapid growth
of S near zc, the critical behavior in the MN case is found to be consistent with that
of standard mean-field [3].

Imperfect correlated multiplexity.—So farwe have seen thatmaximally correlated
or anti-correlated multiplexity crucially affects the onset of emergence of giant com-
ponent in multiplex ER networks. For a partially correlated duplex ER network (with
equal link densities) in which a fraction q of nodes are maximally correlated coupled
while the rest fraction 1 − q are randomly coupled, the total degree distribution can
be obtained as Ppartial(k) = qPmaximal(k) + (1 − q)Puncorr(k), where maximal is
either MP or MN . Using Eqs. (3.8, 3.12, 3.13) and following similar steps as in the
previous section we obtain the critical link density as a function of q as

zc = (1 − q)/2 (3.15a)

for positively correlated case and

zc =
{
1/(2 − q) (q < 2 − 1/ ln 2),
z1(q) (q > 2 − 1/ ln 2)

(3.15b)

for negatively correlated case, where z1(q) is the solution of (2−q)z21−z1−2qe−z1 +
q = 0. This result shows that zc depends continuously on q (Fig. 3.5), illustrating
that the effect of correlated multiplexity is present for general q.
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Fig. 3.6 a, c, e Numerical simulation results of the size of giant component of duplex ER networks
of size N = 104 with a MP, c uncorrelated, and e MN couplings. b, d, f The giant component
size S (red) is plotted for z2 = 0.4, along with the assortativity coefficient r (blue) for the MP (b),
uncorrelated (d), andMN (f) cases. Theoretical predictions based on the joint degree distribution in
Sect. 3.4 are shown in lines, demonstrating excellent agreements with simulations. Errorbars denote
standard deviations from 104 independent runs. Adapted partly from [3]
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3.5.3 Duplex ER Networks with General Link Densities

In this section we consider general duplex ER networks with z1 �= z2. Qualitative
picture of behavior of giant component size is similar to the equal link density case:
the giant component emerges at lower link densities for the MP case but grows more
slowly than the uncorrelated case, whereas it emerges at higher link densities for the
MN case but grows more abruptly and connects all the nodes in the network at finite
link density (Fig. 3.6).

It should be emphasized, however, that one should use the formalism in Sect. 3.4,
which fully exploits the joint degree distribution, in order to obtain correct theoretical
results for z1 �= z2 (Fig. 3.4b, d, f). Indeed, the assortativity coefficient r calculated
both analytically by Eqs. (3.4–3.6) and numerically shows that it is assortative inMP
andMN cases, except for z1 = z2. This clearly shows that the correlated multiplexity
can not only modulate the total degree distribution P(k) of the superposed network
but also introduce higher-order correlations in its network structure.

3.6 Duplex SF Networks

Now we consider a duplex scale-free (SF) network, in which two SF networks con-
structed by the static model [27] are multiplex-coupled. The static model network is
constructed as follows. Each node i (i = 1, · · · , N) is assigned a weight wi = i−a,
where a is a constant greater than 1. By successively connecting two nodes each cho-
senwith probability proportional to its weight until desired number of links aremade,
one obtains a network with asymptotic power-law degree distribution π(k) ∼ k−γ ,
with γ (called the degree exponent) given by γ = 1 + 1/a [27]. Thus one can tune
both the degree exponent and the mean degree of the network.

An important property of SF networks is the vanishing percolation threshold for
γ ≤ 3 [28], fundamentally different from the case with γ > 3. The case of γ = 2.5
is examined first (Fig. 3.7a). In this case the giant component exists for any z1 > 0
even in the single layer, so zc = 0 in all three cases. For small z1, MP has the largest
giant component size as in the ER case. Peculiar behavior is observed for the MN
coupling, in which the giant component size increases slowly until it makes a jump
around zjump ≈ 1.05, almost doubling its size. This unusual behavior is rooted in
the fact that with MN coupling each layer’s hub supports giant component of its
own and the two giant components are totally disjoint until the link density reaches
the threshold zjump. Beyond this threshold, the two equally-large giant components
cannot but overlap andmerge, therebymaking a jump.This picture is supported by the
observations that sizes of the largest and second largest component are almost equal,
and the position of jump coincides with the point at which all nodes in the network
acquire at least one link (Fig. 3.7a, inset). The case of γ = 5.0 is examined next
(Fig. 3.7b), yielding overall similar qualitative behaviors as the duplex ER networks,
without any discontinuous jump.
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Fig. 3.7 Giant component size of duplex SF networks of equal link densities with γ = 2.5 (a) and
γ = 5.0 (b). Symbols stand for uncorrelated (◦), MP (�), and MN (�) couplings. (Inset) Size of
largest (�) and second largest (�) components, together with the fraction of nonzero-degree nodes
(∗), for MN coupling

3.6.1 Betweenness and Load

Betweenness centrality [29] or load [27] is a widely-used centrality measure which
characterizes the potential burden or traffic over a node in a network due to simple
shortest path-based transport protocols. It has been shown that the load distribution
of SF network also follows a power law, with the exponent ≈ 2.2 for non-tree SF
networks with 2 < γ ≤ 3 [27]. Here we examine how the betweenness and its
distribution are affected by the multiplex coupling of SF networks. From the scaling
perspective, neither the degree exponent nor the power-law exponent for betweenness
distribution is found to be affected by the multiplex coupling (Fig. 3.8a, b). Looking
at the individual node level, it is found that the betweenness changes most when the
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Fig. 3.8 a Total degree distribution and b betweenness distributions of duplex SF networks. Dashed
line has the slope−3.0 (a) and−2.2 (b), drawn as a guide to the eye. c–h Scatterplots of betweenness
centralities of a node in the two layers for different multiplex couplings. Diagonal lines are drawn
as a guide to the eye

two networks are coupled randomly, rather than in a MP or MN way (Fig. 3.8c–h).
This suggests that inMPorMNcoupling the pathway structure isweakly affected and
topological centralities of hub nodes are largely preserved. Concepts of betweenness
and load are intimately related with the definition of shortest path. One interesting
issue in this regard is the concept of optimal path in multiplex networks with the
context and interplay between layers fully taken into account, which deserves further
study.
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Fig. 3.9 Schematic diagramof intentional attack onMPandMN typemultiplex networks. From left
to right, nodes are removed in descending order of the total degree to simulate an intentional attack,
and the size of largest connected component in the remaining superposed network is monitored

3.7 Robustness of Multiplex Networks

Having established that correlated multiplexity can significantly affect the overall
connectivity of multiplex networks, the next question we might have is its impact on
network robustness against random failures or intentional attack [2]. For example, as
the cartoon diagram in Fig. 3.9 shows, the way how the network layers are multiplex-
coupled can alter the resilience of the superposed network against attack. It has also
been shown that robustness of interdependent networks to cascade of failures can be
affected by the correlated coupling [14, 30].

As a preliminary case study, here we use the multiplex coauthorship network in-
troduced in Sect. 3.2 and examine the topological robustness under various failure
and attack scenarios. We construct the SOC-KPZ coauthorship network, consisting
of the nodes participating in both layers and the links among them. Then we simulate
virtual random node or link failures and degree-based intentional node attacks, and
measure the fraction of nodes in the initial largest component that still form largest
component in the remaining superposed network, denoted S/S0, as a function of
the fraction of removed nodes or links f . We also compare the results against those
obtained from three shuffled networks, in which the two layers are MP, uncorrelated,
and MN-coupled (obtained by shuffling the node names in each layer according to
the coupling rule, while controlling the link density of the superposed network to be
equal) (Fig. 3.10). It is noteworthy that even though the coauthorship networks show
positive correlated multiplexity (Fig. 3.2), the topological robustness properties do
not always correspond to those of MP-correlated networks. For example, the real
coauthorship network is more vulnerable, albeit slightly, to random link removals
than its uncorrelated versions, in contrast to the higher robustness of MP-correlated
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Fig. 3.10 Topological robustness of correlated multiplex networks. a Relative size of largest com-
ponent S/S0 of the superposed network under random (failure) and intentional (attack) removal of
nodes of fraction f . The intentional attack was simulated by removing nodes in descending order of
total degree. Shown are results for the multiplex coauthorship network (SOC-KPZ) (×, ∗) and its
three shuffled versions, MP (square), uncorrelated (circle), and MN-coupled networks (textitdia-
mond). b Same plots for random link removals. Data are averaged over 104 independent simulation
runs

networks than the uncorrelated ones (Fig. 3.10b). Such discrepancy indicates the
presence of higher-order correlations in the coupling structure of real multiplex net-
works, beyond the degree correlation. More systematic investigation on this topic
using model networks is currently underway (B. Min et al., arXiv:1307.1253).
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3.8 Dynamics on Multiplex Networks

Multiplexity can also have impact on network dynamics [31]; in fact it is one of the
ultimate goals of the study of multiplex networks to understand what the generic
effect of correlated multiplexity on various dynamic processes occurring on top of
real-world multiplex complex systems. This may have implications on many pro-
found real-world complex systems problems, such as understanding, predicting, and
controlling systemic risk and collective social movement. Dynamics with multiplex-
ity in general, poses the question of how the interplay of different network layers
can bring about emergent dynamic consequences, and in many cases calls for devel-
opment of new theoretical tools, similarly to what we did in Sect. 3.4 for structural
analysis, which raises theoretical challenge as well.

Study of dynamical processes on multiplex networks is still in its infancy, yet
is rapidly growing over the years [32–39]. Surveying all these recent effort would
already require a separate contribution; here we could merely compile them with a
brief summary of key findings. Given the obvious relevance of multiplex-network
framework for many real-world problems, such as social cascades in social networks
[5] or dynamics of systemic risk [40], this list is expected to expand quickly so is by
no means meant to be exhaustive.

One of the first studies on multiplex dynamics was the study of sandpile dynamics
[32], where it is found that the scaling behavior of avalanche does not change by the
multiplex coupling, despite alterations in the detailed cascade dynamics. Generalized
models of behavioral cascades in multiplex social networks [33, 34] showed that
the multiplexity can facilitate global cascades compared to null models of simplex
networks. In the study of random Boolean network on multiplex networks [35], the
multiplex coupling is shown to support stabilization of the system even when each
single layer is in the unstable chaotic state. In studies of evolutionary dynamics on
multiplex networks, it was shown that the cooperative behavior is enhanced when
individuals interact throughmultiple network layers [36, 37]. In the study of diffusion
dynamics on multiplex networks [38], the existence of multiple channels of diffusive
motion is shown to speedup thediffusionprocess. These studies collectively highlight
how the dynamical properties onmultiplex networks can differ from those of a single
or simplex network.

3.9 Summary and Outlook

In summary, we have surveyed recent studies on multiplex networks, the networks
with explicit multiple types of links, which is a better representation of real-world
complex systems. Particularly emphasized are the notion of correlated multiplexity
and its effect on the structural properties of multiplex network system. We have in-
troduced the random graph models of correlated multiplex networks and developed
analytical formalism to study its structural properties. Applications to multiplex
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ER and SF networks demonstrated that the correlated multiplexity can dramatically
change the properties of the giant component. This shows that a multiplex complex
system can exhibit structural properties that cannot be represented by its individ-
ual network layer’s properties alone. Such nontrivial, emerging multiplex structure
should entail significant impact on dynamical processes occurring on it, opening a
vast avenue of future studies on the impact of correlated multiplexity on network
dynamics and function [14, 30].

The concepts and tools for the multiplex network should also be useful in the
study of related subjects of recent interest such as layered [8], multi-type [23], in-
teracting [9, 41], and interdependent networks [10, 24, 42], which share similar
theoretical framework and mathematical techniques. Notable areas for further in-
vestigation would be, to name but a few, the multiplex network evolution [43] and
the role of negative or antagonistic interactions between layers [11, 44]. Altogether,
these studies will cooperatively help establish unified framework for the emerging
paradigm of “network of networks,” and the concept of network multiplexity will
play an essential role in this collective endeavor.
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26. P. Erdős and A. Rényi, Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960).
27. K.-I. Goh, B. Kahng, and D. Kim, Phys. Rev. Lett. 87, 278701 (2001).
28. R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev. Lett. 85, 4626 (2000).
29. L. C. Freeman, Sociometry 40, 35 (1977).
30. S. V. Buldyrev, N. Shere, and G. A. Cwilich, Phys. Rev. E 83, 016112 (2011).
31. A. Barrat, M. Barthélemy, and A. Vespignani, Dynamic processes on complex networks (Cam-

bridge University Press, Cambridge, 2008).
32. K.-M. Lee, K.-I. Goh, and I.-M. Kim, J. Korean Phys. Soc. 60, 641 (2012).
33. C. D. Brummitt, K.-M. Lee, and K.-I. Goh, Phys. Rev. E 85, 045102(R) (2012).
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