
Chapter 2
Avalanches in Multiplex and Interdependent
Networks

G. J. Baxter, S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes

Abstract Many real-world complex systems are represented not by single networks
but rather by sets of interdependent networks. In these specific networks, vertices
in each network mutually depend on vertices in other networks. In the simplest rep-
resentative case, interdependent networks are equivalent to the so-called multiplex
networks containing vertices of one sort but several kinds of edges. Connectivity
properties of these networks and their robustness against damage differ sharply from
ordinary networks. Connected components in ordinary networks are naturally gener-
alized to viable clusters in multiplex networks whose vertices are connected by paths
passing over each individual sort of their edges. We examine the robustness of the
giant viable cluster to random damage. We show that random damage to these sys-
tems can lead to the avalanche collapse of the viable cluster, and that this collapse is a
hybrid phase transition combining a discontinuity and the critical singularity. For this
transition we identify latent critical clusters associated with the avalanches triggered
by a removal of single vertices. Divergence of their mean size signals the approach to
the hybrid phase transition from one side, while there are no critical precursors on the
other side. We find that this discontinuous transition occurs in scale-free multiplex
networks whenever the mean degree of at least one of the interdependent networks
does not diverge.

2.1 Introduction

The network representation of complex systems is successfully exploited in various
sciences [1]. Numerous real-world systems, however, cannot be represented by a
single network. Instead, they consist of several interacting networks. In simple sit-
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Fig. 2.1 a Two interdependent networks. A vertex in one network has a mutual dependence,
represented by grey vertical lines, on zero or one vertex in the other network. b This can be reduced
to a multiplex network by merging the mutually dependent vertices, and representing the edges of
each network by different kinds or colours of edges

uations, these interactions can be represented by interlinks connecting vertices in
different networks [2, 3]. When these interconnections and edges in all these net-
works are identical, then it is possible to describe the structural organization of this
set of networks and the statistics of its connected components similarly to ordinary
networks [4]. Here we consider significantly more interesting systems in which ver-
tices in each network mutually depend on vertices in other networks in the sense that
the removal (or, generally, change of the state) of a vertex in one network immedi-
ately leads to the removal (or change of the state) of its neighbour in another network.
These interdependent networks describe numerous complex systems, both natural
[5], and man-made [6, 7]. Importantly, the interdependencies can make a system
more fragile: damage to one element can lead to avalanches of failures throughout
the system [8, 9]. Recent theoretical investigations of interdependent networks con-
sisting of two [10] or more [11] subnetworks have shown that small initial failures
can cascade back and forth through the networks, leading, at some critical point, to
the collapse of the whole system in a discontinuous phase transition.

In the original formulation of the problem [10] the researchers focused on the
final result of the removal of a finite 1 − p fraction of vertices from one of the
interdependent networks. This removal leads to a complicated infinite (for infinite
networks) cascade in back-and-forth damage propagation. Below a critical point pc,
this cascade of failures eliminates the interdependent networks completely, while
above the transition, the cascade sweeps out a finite fraction of the networks. Son
et al. [12] showed the original approach of studying two interdependent networks can
be simplified, if one uses the equivalence of a wide class of interdependent networks
to a multiplex network problem. They proposed a simple mapping from the model
used in [10] in which a vertex in one network has a mutual dependence on no more
than one vertex in the other network, to a multiplex network with one kind of vertex
but two kinds of edges. The mapping is achieved by simply merging the mutually
dependent vertices from the two networks. Figure2.1 explains this mapping. In graph
theory, the multiplex networks are also called graphs with coloured edges.

As we will see, the phase transition in this system is discontinuous, and hybrid
in nature, in contrast to ordinary percolation that occurs as a continuous phase tran-
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sition. The difference between hybrid and continuous phase transitions is that the
hybrid transition has a discontinuity like a first-order transition, but exhibits critical
behavior near the transition, like a second-order transition. Moreover, the hybrid
transition is asymmetric: critical correlations appear on only one side of the critical
point, whereas they appear on both sides of a continuous phase transition. Another
intriguing phenomenon appearing at the critical point of the hybrid transition is scale-
invariant avalanches that are absent in a continuous phase transition. Each avalanche
is triggered by removal of a single vertex and results in the elimination of multiple
vertices. To highlight this principal difference from continuous phase transitions, let
us compare with, for example, the continuous percolation phase transition. This is
a second order phase transition in an equilibrium system. Percolation can be repre-
sented as the removal of uniformly randomly chosen vertices. Removal of a vertex
can only split a cluster (connected component) into smaller clusters but, it cannot
trigger an avalanche.

In this chapter we describe these discontinuous phase transitions. Our aim is to
expand and deepen the understanding of the nature of the phase transition and the
avalanche collapse in interdependent and multiplex networks. This understanding
has been lacking until recently. We investigate the damage caused by the removal of
a single node chosen at random from an infinite network. The removal of a single
vertex causes an avalanche of damage (so named to distinguish it from the cascades of
failures mentioned above, which are caused by the sudden removal of a finite fraction
of the vertices in the network). Our method allows the identification of individual
avalanches and the study of their structure.

Why is the problem of the avalanches triggered by the removal of a single vertex
principally important and attractive for researchers? The reason is that the statistics
of these individual avalanches reveals the critical divergence at the phase transition
point. To understand a phase transition, it is not sufficient to obtain an equation
showing the emergence of a non-zero order parameter. For continuous and hybrid
transitions, one should also find the divergence of susceptibility associated with this
transition, and also describe critical correlations. It is avalanches that are responsible
for critical correlations. The mean size of the individual avalanches triggered by a
randomly removed vertex plays a role of susceptibility and diverges at the critical
point manifesting the hybrid transition. The second reason, with a practical perspec-
tive, is that knowledge of the organization of individual avalanches enables one to
control them and increase robustness of the system.

In the remainder of this chapter, then, we will generally consider multiplex net-
works, but it should be noted that the results are identical to those for two interdepen-
dent networks as defined above, and may be qualitatively extended to interdependent
networks in general. The results presented in this chapter are based on results obtained
in our paper [13].

This chapter is organised as follows. In Sect. 2.2 we define the multiplex network
model, and give an algorithm for identifying the viable clusters. In Sect. 2.3 we derive
basic equations for the size of the giant viable cluster, and show how the location and
scaling of the transition may be obtained. In Sect. 2.4 we analyse the structure and
statistics of the avalanches associated with the transition. These results are extended
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Fig. 2.2 a In an ordinary network, two vertices i and j belong to the same cluster if there is a path
connecting them. b In a multiplex network, vertices i and j belong to the same viable cluster if
there is a path connecting them for every kind of edge, following only edges of that kind. In the
example shown, there are m = 3 kinds of edges. Vertices i and j are said to be 3-connected

to the special case of scale-free networks in Sect. 2.5. Results are summarised in
Sect. 2.6.

2.2 Viable Clusters and Algorithm

In ordinary networks, two vertices are connected if there is a path between the ver-
tices. Based on this notion, one introduces clusters of connected vertices and studies
emergence of the giant connected component of a graph. In multiplex network, this
notion of connection between vertices must be modified. We consider a set of ver-
tices connected by m different types of edges. The connections are essential to the
function of each site, so that a vertex is only viable if it maintains connections of
every type to other viable vertices. A viable cluster is defined as follows: For every
kind of edge, and for any two vertices i and j within a viable cluster, there must be
a path from i to j following only edges of that kind. In other words, in multiplex
network with m types of edges, two vertices are m-connected if for every type of
edges there is a path between these vertices. Based on this definition, a viable cluster
is then a cluster of m-connected vertices. Figure2.2 explains the viable clusters. In
a large system, we wish to find when there is a giant cluster of viable vertices. From
this definition of viable clusters, it follows that any giant viable cluster is a subgraph
of the giant connected component of each of the m networks formed by considering
only a single type of edge in the multiplex network. The absence of, at least, any one
giant connected component means the absence of the giant viable cluster. Note that
viable clusters are simple generalization of clusters of connected vertices in ordinary
networks with a single type of edges. The important difference is that in a multiplex
networks we demand that vertices in a viable cluster must be connected by every
type of edges (m-connected). It is this additional condition that leads to discontinu-
ous emergence of the giant viable cluster as a result of a hybrid phase transition in
contrast to a continuous phase transition in ordinary percolation.

The viable clusters of any size may be identified by an iterative pruning algorithm,
based on the principles of percolation. Here we give such an algorithm for identifying
viable clusters that may be implemented, for example, in a computer program for
investigations of the resilience of real-world multiplex networks.
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Fig. 2.3 An example demonstrating the algorithm for identifying a viable cluster in a small network
with two kinds of edges. a In the original network, in step (i) we select vertex 0 as the test vertex.
b In step (ii) we identify the clusters of vertices connected to 0 by each kind of edge. c Step (iii):
the intersection of these two clusters forms becomes the new candidate set for the viable cluster
to which 0 belongs. d We repeat steps (ii) using only vertices from the candidate set shown in
c. Repeating step (iii), we find the overlap between the two clusters from d, shown in e. Further
repetition of steps (ii) and (iii) does not change this cluster, meaning that the cluster consisting of
vertices 0, 1, 3 and 4 is a viable cluster

Fig. 2.4 A small network with two kinds of edges (left). Applying the algorithm described in the
text, non-viable vertices are removed, leaving two viable clusters (right)

Consider a multiplex network, with vertices i = 1, 2, . . . , N connected by m
kinds of edges labeled s = a, b, . . .. Viable clusters in any multiplex network may
be identified by the following algorithm.

(i) Choose a test vertex i at random from the network.
(ii) For each kind of edge s, compile a list of vertices that can be reached from i by

following only edges of type s.
(iii) The intersection of these m lists forms a new candidate set for the viable cluster

containing i .
(iv) Repeat steps (ii) and (iii) but traversing only the current candidate set. When

the candidate set no longer changes, it is either a viable cluster, or contains only
vertex i .

(v) To find further viable clusters, remove the viable cluster of i from the network
(cutting any edges) and repeat steps (i)–(iv) on the remaining network beginning
from a new test vertex.

Repeated application of this procedure will identify every viable cluster in the
network. A simple example of the use of the algorithm to identify a small viable
cluster is given in Fig. 2.3. The results of applying the algorithm to a graph containing
two finite viable clusters is illustrated in Fig. 2.4.
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Fig. 2.5 Diagrammatic representation of Eq. (2.1) in a system of two interdependent networks a
and b. The probability Xa, represented by a shaded infinity symbol can be written recursively as a
sum of second-neighbor probabilities.Open infinity symbols represent the equivalent probability Xb
for network b, which obeys a similar recursive equation. The filled circle represents the probability
p that the vertex remains in the network

2.3 Hybrid Transition in Multiplex Networks

In this section we will study collapse of giant viable cluster in multiplex networks
damaged by random removal of vertices. We will use the fraction p of vertices
remaining undamaged as a control variable, however other control variables such as
mean degree could also be used. As we will show below, in uncorrelated random
networks the giant viable cluster collapses at a critical undamaged fraction pc in
a discontinuous hybrid transition, similar to that seen in the k-core or bootstrap
percolation [14, 15].

Hybrid transitions, like those which occurs in the collapse of multiplex and inter-
dependent networks, and associated avalanches, also occur in a wide variety of other
systems. For example, a jump in activity in neural networks [16], population collapse
in biological systems [17, 18], jamming and rigidity transitions and glassy dynamics
[19, 20], and magnetic systems [21].

Let us construct the basic equationswhich allowus to analyse the hybrid transition.
Consider the case of sparse uncorrelated networks, which are locally tree-like in
the infinite size limit N → ∞. In order to find the giant viable cluster, we take
advantage of the locally tree-like property of the network, and define Xs , with the
index s ∈ {a, b, . . .}, to be the probability that, on following an arbitrarily chosen
edge of type s, we encounter the root of an infinite sub-tree formed solely from type
s edges, whose vertices are also each connected to at least one infinite subtree of
every other type. We call this a type s infinite subtree. This is illustrated in Fig. 2.5,
which shows the probability Xa as the sum of second-level probabilities in terms of
Xa and Xb. The vector {Xa, Xb, . . .} plays the role of the order parameter. Writing
this graphical representation in equation form, using the joint degree distribution
P(qa, qb, . . .), we arrive at the self consistency equations

Xs = p
∑

qa , qb,...

qs

〈qs〉 P(qa, qb, . . .)
[
1 − (1 − Xs)

qs−1]∏

l �=s

[
1 − (1 − Xl)

ql
]

≡ Ψs(Xa, Xb, . . .) . (2.1)

The multiplier p in Eq. (2.1) is the probability that the vertex remains in the network.
The term (qs/〈qs〉)P(qa, qb, . . .) gives the probability that on following an arbitrary
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Fig. 2.6 Viable and critical viable vertices for two interdependent networks. a A vertex is in the
giant viable cluster if it has connections of both kinds to giant viable subtrees, represented by infinity
symbols, which occur with probabilities Xa (shaded) or Xb (open)—see text. b A critical viable
vertex of type a has exactly one connection to a giant sub-tree of type a

edge of type s, we find a vertex with degrees qa, qb, . . ., while [1 − (1− Xa)qa ] is
the probability that this vertex has at least one edge of type a �= s leading to the
root of an infinite sub-tree of type a edges. This becomes [1 − (1− Xs)

qs−1] when
a = s. The argument leading to Eq. (2.1) is similar to that used in [12]. Later it will
be useful to write the right-hand side of this equation as Ψs(Xa, Xb, . . .).

A vertex is then in the giant viable cluster if it has at least one edge of every type
s leading to an infinite type s sub-tree (probability Xs), as shown in Fig. 2.6a.

S = p
∑

qa ,qb,...

P(qa, qb, . . .)
∏

s=a,b,...

[
1 − (1−Xs)

qs
]
, (2.2)

which is equal to the relative size of the giant viable cluster of the damaged network.
A hybrid transition appears at the point where Ψs(Xa, Xb, . . .) first meets Xs at

a non-zero value, for all s. This occurs when

det[J − I] = 0 (2.3)

where I is the unit matrix and J is the Jacobian matrix Jab = ∂Ψb/∂ Xa . The critical
point pc is found by solving Eqs. (2.1) and (2.3) together. To find the scaling near
the critical point, we expand Eq. (2.1) about the critical value X (c)

s . We find that

Xs − X (c)
s ∝ (p − pc)

1/2. (2.4)

This square-root scaling is the typical behaviour of the order parameter near a hybrid
transition. In the next section we will show that this results from avalanches which
diverge in size near the transition. The scaling of the size of the giant viable cluster,
S, immediately follows

S − Sc ∝ (p − pc)
1/2. (2.5)

A similar result is found for other control parameters, for example, mean degrees of
the vertices.
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Fig. 2.7 A critical cluster. Removal of any of the shown viable vertices will result in the removal
of all downstream critical viable vertices. Vertices 2–5 are critical vertices. Removal of the vertex
labeled 1 will result in all of the shown vertices being removed (becoming non-viable). Removal
of vertex 2 results in the removal of vertices 3, 4, and 5 as well, while removal of vertex 4 results
only in vertex 5 also being removed. As before, infinity symbols represent connections to infinite
viable subtrees. Other connections to non-viable vertices or finite viable clusters are not shown

2.4 Structure of Avalanches

Having established the behaviour of the order parameter, Xs , and the location of
the hybrid transition, we now turn to examining avalanches, in order to understand
the nature of the transition more completely. We focus on the case of two types of
edges. Consider a viable vertex that has exactly one edge of type a leading to a type
a infinite subtree, and at least one edge of type b leading to a type b infinite subtree.
We call this a critical vertex of type a. It is illustrated in Fig. 2.6b. Critical vertices
of type a will drop out of the viable cluster if they lose their single link to a type
a infinite subtree. A vertex may have outgoing edges of this kind, so that removal
of this vertex from the giant viable cluster also requires the removal of the critical
vertices which depend on it. This is the way that damage propagates in the system.
The removal of a single vertex can result in an avalanche of removals of critical
vertices from the giant viable cluster. To represent this process visually, we draw a
diagram of viable vertices and the edges between them. We mark the special critical
edges, that critical viable vertices depend on, with an arrow leading to the critical
vertex. An avalanche can only transmit in the direction of the arrows. For example,
in Fig. 2.7, removal of the vertex labeled 1 removes the essential edge of the critical
vertex 2 which thus becomes non-viable. Removal of vertex 2 causes the removal of
further critical vertices 3 and 4, and the removal of 4 then requires the removal of
5. Thus critical vertices form critical clusters. At the head of each critical cluster is
a ‘keystone vertex’ (e.g. vertex 1 in the figure) whose removal would result in the
removal of the entire cluster. Graphically, upon removal of a vertex, we remove all
vertices found by following the arrowed edges, which constitutes an avalanche. Note
that an avalanche is a branching process. Removing a vertex may lead to avalanches
along several edges emanating from the vertex (for example, in Fig. 2.7, removing
vertex 2 leads to avalanches along two edges).As we approach the critical point from
above, the avalanches increase in size. The mean size of avalanches triggered by a
randomly removed vertex finally diverges in size at the critical point, which is the
cause of the discontinuity in the size of the giant viable cluster, which collapses to
zero. These avalanches are thus an inherent part of a hybrid transition.
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Fig. 2.8 Symbols used in
the diagrams to represent
key probabilities. Solid lines
represent edges of type a,
dashed lines represent edges
of type b

Fig. 2.9 a The probability
Ra can be defined in terms of
the second-level connections
of the vertex found upon
following an edge of type a.
Note that possible connections
to ‘dead ends’—vertices not in
the viable cluster (probability
1−Xa −Ra or 1−Xb−Rb) are
not shown. b The equivalent
graphical equation for the
probability Rb

(a)

(b)

We can use a generating function approach, similar to that developed by Newman
[4] to calculate the sizes and structure of avalanches. There are three possibilities
when following an arbitrarily chosen edge of a given type: (i) with probability Xs

we encounter a type s infinite subtree (ii) with probability Rs we encounter a vertex
which has a connection to an infinite subtree of the opposite type, but none of the
same type. Such a vertex is part of the giant viable cluster if the parent vertex was; or
(iii) with probability 1− Xs − Rs , we encounter a vertex which has no connections
to infinite subtrees of either kind. These probabilities are represented graphically in
Fig. 2.8. We will use these symbols in subsequent diagrams.

The probability Ra obeys

Ra =
∑

qa

∑

qb

qa

〈qa〉 P(qa, qb)(1−Xa)qa−1 [
1−(1−Xb)

qb
]

(2.6)

and similarly for Rb. This equation is represented graphically in Fig. 2.9.
The generating function for the size of an avalanche triggered by removing an

arbitrary type a edge which does not lead to an infinite type a subtree can be found
by considering the terms represented in Fig. 2.10. The first term represents the proba-
bility, upon following an edge of type a (solid lines) of reaching a “dead end”, that is,
a vertex with no connection to a type b subtree (and hence is not a viable vertex). In
other words, a critical cluster of size 0. The second term represents a critical cluster of
size 1: the vertex encountered has a connection to the type b infinite subtree (infinity
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Fig. 2.10 Representation of the generating function Ha(x, y) (right-hand side of Eq.2.8) for the
size of a critical cluster encountered upon following an edge of type a

symbol), but no further connections to viable vertices. Subsequent terms represent
recursive probabilities that the vertex encountered has 1 (third and fourth terms), 2
(fifth, sixth, seventh terms) or more connections to further potential critical clusters.
The variable u (for type a edges) or v (type b) are assigned to each such edge. The
equation for this generating function can be written in terms of functions Fa(x, y)

and Fb(x, y) which we define as follows:

Fa(x, y) ≡
∑

qa

∑

qb

qa

〈qa〉 P(qa, qb)xqa−1
qb∑

r=1

(
qb

r

)
Xr

b yqb−r (2.7)

and similarly for Fb(x, y), by exchanging all subscripts a and b. While the function
Fa(x, y) does not necessarily represent a physical quantity or probability, we can see
that it incorporates the probability of encountering a vertex with at least one child
edge of type b leading to a giant viable subtree (probability Xb) upon following an
edge of type a. All other outgoing edges then contribute a factor x (for type a edges)
or y (type b).

In terms of these functions, we can write the generating function for the number
of critical vertices encountered upon following an arbitrary edge of type a (that is,
the size of the resulting avalanche if this edge is removed) as

Ha(u, v) = 1 − Xa − Ra + uFa[Ha(u, v), Hb(u, v)] (2.8)

and similarly for Hb(u, v), the corresponding generating function for the size of the
avalanche caused by removing a type b edge:

Hb(u, v) = 1 − Xb − Rb + vFb[Ha(u, v), Hb(u, v)]. (2.9)

These recursive equations can be understood by noting that Ha(0, v)
= 1 − Xa − Ra is the probability that an arbitrarily chosen edge leads to a vertex
outside the viable cluster. Here u and v are auxiliary variables. Following through a
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critical cluster, a factor u appears for each arrowed edge of type a, and v for each
arrowed edge of type b. For example, the critical cluster illustrated in Fig. 2.7 con-
tributes a factor u2v2. The mean number of critical vertices reached upon following
an edge of type a, i.e. the mean size of the resulting avalanche if this edge is removed,
is given by ∂u Ha(1, 1) + ∂v Ha(1, 1), where ∂u signifies the partial derivative with
respect to u.

Unbounded avalanches emerge at the point where ∂u Ha(1, 1) [or ∂v Hb(1, 1)]
diverges. Taking derivatives of Eq. (2.8),

∂u Ha(u, v) = Fa[Ha, Hb] + u
{
∂u Ha∂x Fa[Ha, Hb] + ∂u Hb∂y Fa[Ha, Hb]

}

(2.10)

∂v Ha(u, v) = u
{
∂v Ha∂x Fa[Ha, Hb] + ∂v Hb∂y Fa[Ha, Hb]

}
(2.11)

with similar equations for ∂u Hb(u, v) and ∂v Hb(u, v). Some rearranging gives

∂u Ha(1, 1) = Ra + ∂u Hb(1, 1)∂y Fa(1 − Xa, 1 − Xb)

1 − ∂x Fa(1 − Xa, 1 − Xb)
(2.12)

and

∂v Ha(1, 1) = ∂u Ha(1, 1)∂x Fb(1 − Xa, 1 − Xb)

1 − ∂y Fb(1 − Xa, 1 − Xb)
(2.13)

where we have used that Ha(1, 1) = 1 − Xa and Fa(1 − Xa, 1 − Xb) = Ra .
From Eqs. (2.1) and (2.7),

∂x Fa(1 − Xa, 1 − Xb) = ∂

∂ Xa
Ψa(Xa, Xb) (2.14)

∂y F1(1 − Xa, 1 − Xb) = 〈qa〉
〈qb〉

∂

∂ Xa
Ψb(Xa, Xb), (2.15)

and similarly for ∂x F1b and ∂y F1b, which when substituted into (2.12) and (2.13)
gives

∂u Ha(1, 1) = Ra[1 − ∂
∂ Xb

Ψb(Xa, Xb)]
det[J − I] . (2.16)

We see that the denominator exactly matches the left-hand side of Eq. (2.3), meaning
that the mean size of avalanches triggered by random removal of vertices diverges
exactly at the point of the hybrid transition.

Themean size of the avalanche triggered by the removal of a randomly chosen ver-
tex can be related to the susceptibility of the giant viable cluster to random damage,
similar to the susceptibility for ordinary percolation. In the latter case, the suscepti-
bility is defined as the mean size of the cluster to which a randomly chosen vertex
belongs [22]. Due to the similarity of Eq. (2.4) to the k-core version [23], we can
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expect that, at the critical point p = pc, the size distribution of avalanches triggered
by randomly removed vertices obeys a power law p(s) ∝ s−σ with σ = 3/2.

2.5 Avalanches in Scale-Free Networks

In ordinary and k-core percolation, networkswith degree distributions that are asymp-
totically power laws P(q) ∼ q−γ may exhibit qualitatively different transitions
from those described above, especially when γ < 3. To investigate such effects
in the giant viable cluster, we consider two uncorrelated scale-free networks, so
P(qa, qb) = Pa(qa)Pb(qb), having powerlaw degree distributions with fixed mini-
mum degree q0 = 1 (then 〈q〉 ≈ (γ − 1)q0/(γ − 2)), so that

Ps(qs) = ζ(γs)q
−γs (2.17)

where s takes the values a or b, and ζ(γ ) is the Riemann zeta function. As before,
we apply random damage to the system as a whole as a control parameter, so that
vertices survive with probability p.

First consider the case that at least one of the degree distribution exponents γa

and γb is greater than three. The giant viable cluster is necessarily a subgraph of
the overlap between the giant-components of each graph. We know from ordinary
percolation that for γ > 3, the giant component appears at a finite value of p [24]. It
follows that the giant viable cluster, also, cannot appear from p = 0; there must be a
finite threshold pc, (with a hybrid transition). This is true even if one of the networks
has γs < 3.

The more interesting case is when γa, γb < 3, when the percolation threshold is
zero for each network when considered separately. Let us write γa = 2 + δa and
γb = 2+ δb, and examine the behavior for small δa and δb. We proceed by assuming
that in this situation, for p near pc, Eq. (2.1) have a solution with small Xa , Xb � 1.
Writing only leading orders of Xa and Xb, and δa and δb, we find that

Ψa(Xa, Xb) = p
π2

6 δb
X δa

a

(
Xb − X1+δb

b

)
(2.18)

and similarly for Ψb(Xa, Xb). The location of the critical point is found from Eq.
(2.3) which becomes

δa + δb = p
π2

6
X δa

a X δb
b

(
Xa

Xb
+ Xb

Xa

)
. (2.19)

Substituting Eq. (2.18) into (2.1) and solving with Eq. (2.19), we find Xs and S at pc.
We find in general that the hybrid transition persists for δa, δb �= 0, that is pc > 0, but
that the height of the discontinuity X (c)

s at the hybrid transition becomes extremely
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small for small δ small. In experiments or simulations, this could be misinterpreted
as evidence of a continuous phase transition.

To illustrate the results in this case, we describe two representative examples.
First, we fix δb at some small value, and examine the limit δa → 0, so that δa � δb.
That is, γa → 2 while γb > 2. We find that the location, pc, of the transition tends
to a finite value as δa → 0, proportional to the larger δb,

pc =
√

1 − 2 f

f (1 − f )2

δb

ζ(2)
≈ 1.19δb, (2.20)

where f ≈ 0.236. The values of Xa and Xb become very small at the critical point,
Xb = f 1/δb and Xa ≈ 1.5Xb, meaning the size of the giant viable cluster at the
critical point is exponentially small

Sc =
(
1 − 2 f

f

)3/2

f 2/δb = Ae−B/δb (2.21)

where A ≈ 3.36 and B ≈ 2.89. We see that a hybrid transition occurs, albeit with
an extremely small discontinuity, at a non-zero threshold pc as long as at least one
of δa and δb is not equal to zero.

To examine the case that both δa and δb tend to zero, we consider the symmetric
case δa = δb ≡ δ. Then Xa = Xb ≡ X .

Equation (2.1) become a single equation,

Ψ (X) ≈ p
ζ(2)

δ

(
X1+δ − X1+2δ

)
. (2.22)

The discontinuity is found by requiringΨ ′(X) = 1 [from Eq. (2.3)] which condition
becomes

Ψ ′(X) ≈ p ζ(2)
[
(1 + δ)X δ − (1 + 2δ)X2δ

]
= 1. (2.23)

Solving these two equations, we find that Xc = (1/2)1/δ and

pc = 24

π2 δ (2.24)

Sc = 4

(
1

2

)2/δ

. (2.25)

The location of the hybrid transition tends to p = 0 as δ → 0, and the size of the
‘jump’ becomes very small even for nonzero δ, but vanishes completely as δ → 0. In
Fig. 2.11 we plot the size of the giant viable cluster in this symmetric case for three
values of γ . For values not close to two, the transition looks similar to that observed
in, say, Erdős–Rényi graphs. As γ approaches 2, however, we see that the height
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Fig. 2.11 Size of the giant viable cluster S as a function of the fraction p of vertices remaining
undamaged for two symmetric powerlaw distributed networks with, from right to left, γ = 2.8,
2.5, and 2.1. The height of the jump becomes very small as γ approaches 2, but is not zero, as seen
in the inset, which is S versus p on a logarithmic vertical scale for γ = 2.1

of the discontinuity becomes extremely small. Nevertheless, the square-root scaling
and non-zero critical point are retained.

We can also examine the behaviour of X and S above the transition (p > pc).
Expanding Ψ (X) about Xc we find that

X − Xc

Xc
= 12

π2 δ pc

(
p − pc

pc

)1/2

(2.26)

which holds so long as p − pc � δ3. That is, the scaling of the order parameter X ,
and hence the size of the giant viable cluster, S, is square-root in a narrow region of
width O(δ3) above the hybrid transition. This region disappears as δ → 0.

2.6 Conclusions

In conclusion, we have studied the robustness of multiplex networks, which are
networks with two or more different kinds of edges. There is a direct mapping
between such multiplex networks and interdependent networks, in which vertices in
one network depend on atmost one vertex in another network.We found that the giant
viable cluster of a multiplex network with two or more kinds of edges collapses with
a discontinuous hybrid transition. The collapse occurs through avalanches which
diverge in size when the transition is approached from above. We described critical
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clusters associatedwith these avalanches. The avalanches are responsible for both the
critical scaling and the discontinuity observed in the size of the giant viable cluster.
Remarkably, these specific clusters and avalanches in our problem turned out to be
organized in a novel way, different from those in the k-core [15, 23] and bootstrap
percolation [14] problems.

In contrast to ordinary networks, where two vertices are connected if there is a
path between them, in multiplex network with m types of edges, two vertices are m-
connected if for every kind of edge there is a path from one to another vertex. Based
on this notion, we introduced viable clusters as clusters of m-connected vertices
in multiplex network. This new notion of connectivity between vertices leads to the
emergence in amultiplex network of a giant viable cluster in a hybrid phase transition
in contrast to a continuous phase transition in ordinary percolation.

Surprisingly, when the degree distributions are asymptotically power-law P(q) ∝
q−γ the critical point pc (taking the undamaged fraction of vertices p as the control
parameter) remains at a finite value even when the exponents γ of the degree distrib-
utions are below three, remaining finite until both exponents reach two, in agreement
with an argument given in [10]. This is in stark contrast to ordinary percolation in
complex networks, in which the threshold falls to zero as soon as γ reaches three
[25, 26].We show, further, that the nature of the transition does not change. Although
the height of the discontinuity becomes extremely small near γ = 2, it remains finite
near this limit (see Fig. 2.11). The critical clustersmay have important practical appli-
cations, helping to identify vulnerabilities to targeted attack, as well as informing
efforts to guard against such attack.
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