Chapter 15

Spatial-Temporal Quantification

of Interdependencies Across Infrastructure
Networks

Christopher Chan and Leonardo Duefias-Osorio

Abstract As infrastructure networks become more complex and intertwined, the
relevance of network interdependency research is increasingly evident. Intercon-
nected networks bring about efficiencies during normal operations but also come
with risks of cascading failures with disaster events. An adequate understanding of
network interdependencies and realistic multi-system modeling capabilities enable
the exploration of practical operation strategies and mitigation efforts applicable to
existing or future coupled networked systems. This chapter examines recent efforts in
quantifying infrastructure network interdependencies through spatial and time-series
analyses to reveal the heterogeneity and complexity in their coupling. Furthermore,
a combined spatial-temporal methodology is recommended for the future calibration
and validation of theoretical and computational models of interdependent networks
of networks. An example case study is demonstrated using data derived from the
2010 Chilean Earthquake in the Talcahuano-Concepcién region, which highlights
the richness in coupling strengths across infrastructure systems, both as a function of
time and geographical extent. Insights for design and control of coupled networks are
also derivable from joint spatial-temporal analyses of infrastructure interdependence
and its evolution.

15.1 Introduction

From the World Wide Web to the national power grid, networks are an essential
part of the world. Appearing in almost all aspects of modern society, a network
connects individual components, or nodes, with links that join together multiple
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nodes in a systemized network. Common networks include public transporta-
tion systems, electrical power grids, water systems, and intertwined social circles
[14, 18]—examples that are frequently seen in everyday life. Hence, a more com-
plex network can be defined as the coupled interaction of those individual networks
with each other; for example, much of a city’s service infrastructures, like the water
supply network and subway systems, are dependent upon the greater regional power
network, which may be contingent upon functioning telecommunications channels
which govern the operations of a series of other networks and infrastructure systems
[22, 34]. Similarly in fields differing from engineering, biochemically linked neu-
rons in the body work both synchronously and in tandem with the other biological
systems to sustain even greater functions [2, 4]. These interdependencies between
networks create a complex web of networks of networks linked by both connectiv-
ity and dependency [13, 17, 29], which significantly increases efficiency, but also
introduces greater risks in network security and reliability.

Network interdependency has especial relevance within infrastructure systems.
As the world continues to urbanize, essential infrastructures have become increas-
ingly interconnected and mutually dependent with new techOnological advances
[3, 13, 34]. Any disruption with critical infrastructure can result in what is known
as cascading failures [6, 15, 36, 42] in which one failure causes a chain event result.
On July 30 and 31 of 2012, more than 700 million people, roughly a tenth of the
world’s population, were plunged into darkness in northern India, as the three inter-
dependent state power grids crippled one after the other [20]. The world’s largest
blackout paralyzed the interstate train system, affected local health services, and
trapped 200 miners among other consequences [39]. The magnitude of the incident
lucidly demonstrated the criticality of linked networks and manifested the extent that
interdependent infrastructures can impact the world.

The inherent nature of increasingly connected and interdependent infrastructure
systems implies that there will continue to be even greater risks and vulnerabilities
during operations as well as even more pronounced repercussions in the event of
external threats. Such dangers ranging from natural disasters to terrorist attacks can
put the connected network of networks at risk of a falling domino effect. In fact,
the reliability of critical infrastructure security became such an issue in the United
States that in 1996 President Clinton issued an executive order to establish the Pres-
ident’s Commission on Critical Infrastructure Protection (PCCIP) [8, 21, 30]. The
importance of critical infrastructures means that it is necessary to not only model the
complexities of infrastructure networks, but also quantify the inherent risk associated
with interdependency.

As a result, much of recent research in the past decade has been devoted to exam-
ining and understanding infrastructure network interdependencies [34]. This can be
done through a host of strategies, for example, identifying the mechanisms of interac-
tion (physical, logistical, geographical, etc.), observing the interdependent character-
istics (operational, spatial, temporal, etc.), and quantifying the coupling and response
behaviors [24, 32]. This chapter will look at research and models to quantify the
interdependencies of infrastructure networks and infer their potential effects on
system performance. Models and simulations in the past have employed a variety
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of techniques to measure and capture the complex interactions in interdependent
networks with a mixture of approaches deriving from complexity and network the-
ories, economic methods, probabilistic analyses, and data-driven approaches. For
example, frequency analyses of infrastructure failure propagation incidents after haz-
ards have been studied as a methodology for characterizing and empirically quan-
tifying network interdependencies [7, 26]. From theoretical and simulation-based
approaches, sandpile dynamics have been used with a multi-type branching process
to analyze cascading loads in connected networks of different topologies [5]. With
the increase in computing power, complex adaptive systems (CAS) have also been
used to model interdependent networks as individual intelligent agents which co-
operate and compete in the larger system. The agent-based CAS modeling could
use sensors in the system to prevent cascading failures and is applied frequently
among operational and socioeconomic networks [1]. Borrowing off of financial mar-
kets modeling, the Leontief economic paradigm, when applied to infrastructure net-
works, is an input—output model that uses an interdependence matrix to compute
shared risk of inoperability of infrastructure systems [21]. Restoration of network
services has also been modeled using multilevel interdependencies in a mathematical
network flows model exploiting advances in operations research [25], while compu-
tationally intensive, flow dynamic-based methods that require large data sets have
been applied to models of telecommunications, gas, power, and emergency systems
[28, 33, 35]. In addition, the graph wavelets approach, which uses the wavelet trans-
form to model changes in the network as a whole, has been used in spatial traffic
flow analysis, which has the potential to impact multiple physical and social sys-
tems [10]. Finally, network reliability models that use a probabilistic quantification
of interdependencies among networks provide flexibility to integrate with network
theory and quantify performance correlations between infrastructure systems which
provide unique insights for infrastructure engineering practice [23].

While these and many other approaches to modeling interdependent systems exist,
for any method, the quantification of coupling, calibration of performance assess-
ment models, and verification of predictions in a sundry of scenarios remains vital to
research and practical applications in network interdependency. Recent approaches
have utilized time-based analyses of multi-network performance to calculate cou-
pling strengths by using temporal correlations of post-disruption restoration times
[16]. At the same time, network interdependency can also be approached by looking
at spatial correlation. Studies have taken stochastic external stresses to identify geo-
graphic vulnerabilities [31] or utilized kriging techniques in generating spatial cor-
relation [40]. The methodology presented in this chapter allows for a novel approach
to quantify joint spatial-temporal network correlations and reveals the heterogene-
ity in the interdependencies of infrastructure systems that simultaneously take into
account the time-dependent and geographic relevance of the networks.

The following sections will briefly overview approaches that have been used
to quantify interdependence, specifically with regard to time- and space-dependent
methods and, furthermore, describe the unique spatial-temporal approach recom-
mended by this study. After the methodological discussions, this chapter will focus
on the application of the spatial-temporal approach to representations of data derived
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from post-event analysis of the 2010 moment magnitude (M) 8.8 Chilean earth-
quake, and finally, the analysis of results and synthesis of insights will be followed
by conclusions and suggestions for future work on interdependent infrastructure
networks research.

15.2 Methodological Approaches to Quantifying Network
Interdependencies

15.2.1 Temporal Methodologies

In order to quantify interdependencies across networks and enable the calibration of
models of networks of networks, recent studies have taken a time-series approach in
analyzing coupling strengths between infrastructure networks. Duefias-Osorio and
Kwasinski [16] explore such an approach by looking at utility service restoration
responses. Utilizing post-disaster restoration information from the 2010 Chilean
Earthquake, data from individual utility service systems, or lifeline system restora-
tion curves, were collected, showing the gradual restoration of power, water, and
telecommunication services available as a function of time. Auto-covariance and
autocorrelations of the restoration data were calculated to assess temporal depen-
dencies within the same system. To measure the coupling strength between differ-
ent utility networks, the cross-correlation p; ; (Eq.15.2) was calculated using the
cross-covariances 7; x (Eq.15.1) for given time lags (or relative times between the
restoration curves) using the following equations:
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where x; ; or x; x is the restoration value at time ¢ of the jth or kth system, n; is
the maximum observation time, and / is the given time lag between the restoration
curves of the systems. The cross-correlations provide a convenient dimensionless
metric for quantifying interdependencies and analyzing the behavior of the systems
across the restoration time series, and in this way, leading or lagging interdepen-
dence properties of the networks can be revealed. In order to achieve stationarity and
make the time-series analysis tools suitable, the time-series data is transformed and
second-differenced before the correlation analysis. The study notes high correlations
between power and telecommunications systems (operational interdependency) as
well as with water delivery (logistical interdependency). For example, correlation
between fixed phone services and the regional power delivery system reaches 0.84
at a lag time of & = 2, highlighting the high level of operational interdependency
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between power and telecommunications with the latter lagging in restoration. Sim-
ilarly, strong correlation between power and water systems reaches 0.79, but at a
negative lag time of & = —13, showing the leading tendency of the power system
restoration on the ability of water system operators to coordinate the logistics of dam-
age repairs. Outcomes are only observed several days later after intensive physical
tasks of digging, welding, and replacing are completed. A mathematical relation-
ship is then formulated as a measure of overall coupling strength S; ; (Eq.15.3),
reflecting both the time lag and the system correlations and demonstrates a high
level of interdependence among power and telecommunication systems in regions
with moderate level of damage, as well as strong intra-dependence within systems of
the same type. In addition, the study reveals a high degree of infrastructure coupling
between neighboring regions where the leading restoration of power and telecom-
munication systems directly affects closely linked restoration processes of networks
in geographically close regions.

| piky/ (1 + JIh]) whenh #0
Sk = ipj,kj(h) whenhs =0 (15.3)

Using a time-series post-event interdependence quantification technique and ana-
lyzing the autocorrelations and cross-correlations in restoration data across systems,
it is possible to not only capture the holistic operational and logistical coupling
between two networks after a critical failure, but also identify leading and lag-
ging relationships to improve performance and adopt effective mitigation actions for
interdependent systems. The quantification of coupling strengths allows for poten-
tial applications in computational and theoretical predictive models as well as in
disaster mitigation efforts for infrastructure operations and recovery. In the end,
practical applications of quantified coupling strengths can include the exploration of
system decentralization or the uncoupling of systems during emergency operations
to enhance restoration as well as identification of specific physical or organizational
factors affecting restoration rates.

15.2.2 Spatial Methodologies

Another significant dimension in quantifying interdependency, especially for
infrastructure systems, is the geographic correlation between network elements and
their performance. Spatial proximity among networks holds important relevance in
modeling infrastructure interdependencies, most notably in the aftermath of natural
disasters, such as earthquakes as demonstrated by Lee and Kiremidjian [27] and
Rahnamay-Naeini et al. [31]. In modeling spatially-dependent systems, geostatisti-
cal techniques like ordinary point kriging utilize optimal least-squares predictions
and can be employed in a probabilistic analysis of infrastructure networks to quan-
tify their interdependencies as distributed in their service area spaces. Wu et al. [40]
demonstrate the application of kriging surfaces on utility restoration records and
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the calculation of spatial correlations to estimate the spatial distribution of network
interdependencies among the lifeline systems of Sect. 15.2.1.

15.2.2.1 Ordinary Point Kriging

Ordinary point kriging is a geostatistical technique recently embraced by the spatial
interdependence assessment methodology as a tool for spatial interpolation in the
creation of restoration and correlation surfaces. Specific details are further discussed
below as they are central to the formulation of the spatial-temporal approach proposed
in Sect. 15.2.3 of this chapter.

In the analysis of spatial interdependency, a spatial surface of the infrastructure
system parameter (e.g. service restoration) must be created by kriging using the
mesh of original evaluation data points. With ordinary point kriging, interpolation of
restoration records and their spatial variability necessitates an estimator variogram
~vE (sometimes refered to as a ‘semi-variogram’ governed by Eq. 15.4). The estimated
variogram enables plotting spatial variation versus distance, and a parametric curve
can then be fitted to model the spatial data [38]. Commonly used parametric models
include the spherical, exponential, and linear models, etc.

N(d)
2
YE(d) = WD Z‘(zx,. — Zx4a)” (15.4)

In defining g (d), zx; and zy, 14 are the restoration values at the evaluation points
x; and x; +d, respectively. N (d) is the cardinality of the set of pairs of points within
a spatial lag or relative distance of d, and the lag interval d is defined as the Euclidian
distance between points x; and x; + d, where the maximum lag is often set as the
mean minimum distance between a given pair in the data set. Using a parametrically
fitted variogram model (exponential, in the Chilean data case), the restoration values
are then interpolated in a mesh grid by ordinary point kriging, which uses a weighted
average of the other neighboring evaluation nodes with weight coefficients \; that
are estimated by minimizing the mean-square error, or kriging variance, and satisfy
the following constraints:

N
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where E (L) is the minimized estimation, N is the number of neighboring evaluation
points, z,, in the context of infrastructure systems after disruption, is the restoration
level at a particular point of interest x;, while Z, and z,, are the estimated interpolated
value and true restoration value at the interpolation point of interest p respectively.
The function y(x;, x ) provides the variogram value between the evaluation point at
x; and the particular point x,, and y(x;, x;) is the variogram value associated with
neighboring evaluation points x; and x;. Spatial interdependence between the two
systems is calculated using cross-correlations among the stationary z,; restoration
values at the location of evaluation points x; of a particular network (known as the
reference network) and those of a second network (known as the adjuct network)
while using a neighborhood set of Z,, values around the evaluation points x; of one
system and the corresponding set of zpp,; values that are collocated in the other
system to establish local interdependence strengths as a function of geographical
location. Such interdependence strengths are finally used to create a kriging-based
surface of local interdependence across systems, which is heterogeneous in contrast
to typically assumed constant values of coupling strengths for all interdependence
links.

15.2.2.2 Spatial Applications to Chilean Data

An application of spatial kriging techniques is performed on the post-disaster Chilean
datain Wu et al. [40]. Cross-correlation of geographically distributed service restora-
tion times for water and power networks are used first as a proxy for spatial interde-
pendency quantification and mapping of local coupling heterogeneity into correlation
surfaces. Then, correlation values across systems are synthesized as a function of
relative angle and radial distance between restoration surfaces away from one of
the system’s set of evaluation nodes. Specifically, by shifting the adjunct system’s
kriging restoration surface from the surface of the reference system and calculat-
ing the correlation values, the spatial interdependency of the two systems can be
found by the different cross-correlation and autocorrelation values, the latter being
that in which the same network serves as both the reference and adjunct network.
Such synthesized correlations are quantified using Pearson’s coefficient (a measure
of linear correlation) as well as Kendall’s tau coefficient (rank correlation). The re-
sulting data is plotted on polar coordinates to represent spatial interdependencies
from a suite of relative angles and distances across restoration surfaces, forming
global correlation plots. These plots demonstrate certain patterns in the analysis,
specifically in the cross-correlation between power as the reference system and wa-
ter as the adjunct system, where a southwest to northeast spatial directionality of the
interdependence is evident, revealing spatial coincidence in the average restoration
time trends along the noted geographical corridor, partially due to the topology of
the systems and the patterns of damage. (Additional details are provided in Sect. 15.4
regarding directionality trends in spatial interdependencies.) Overall correlation
plots are then created by averaging the global correlations across all angles, re-
sulting in initial cross-correlation values as a function of relative distance between
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restoration surfaces of 0.483 and 0.284 for Pearson’s coefficient and Kendall’s tau
coefficient, respectively. The average correlation plots also reveal certain character-
istics of interdependence, such as the average distance away from evaluation nodes
until correlation values become negligible or reach zero, which can be interpreted as
a measure for spatial coupling strength decay or interdependence length [40]. These
interdependence lengths can readily inform utility operators about optimal system
decoupling schemes as well as requirements for temporary back-up systems, given
that the reach of interdependence is spatially confined to manageable distances.

15.2.3 Spatial-Temporal Methods

Both the time-series model and the spatial methods offer unique insights into the
true nature of interdependent infrastructure networks, but emerging strategies in
estimation and modeling of networks of networks attempt to encompass more realis-
tic constraints, as when having both correlations in a single spatial-temporal model.
By assessing the appropriateness of a series of assumptions regarding the covariance
structure across systems in time and space, including full symmetry, separability and
stationarity, a number of methodologies have been proposed that have wide ranging
practical applications [19].

In order to combine spatial covariances (or variograms) with temporal ones,
a variety of models are available, some of which are suitable for novel applica-
tions in infrastructure interdependency assessment problems. In order to be a valid
covariance function, the combined variogram must satisfy the condition of positive
definiteness, where a matrix remains nonnegative definite for all combinations of
space-time coordinates [11, 19]. The Product Model separates temporal and spatial
considerations and disregards dependence between space and time covariance, but
offers a simple and efficient way to represent a spatial-temporal covariance. The
Linear Model simply separates and sums up the two covariances, resulting in only a
positive semi-definite function [11]. The simplicity of the Product Model and the Lin-
ear Model are often inapplicable to certain real world examples due to their inherent
assumptions on separability and positive definiteness. As a result, Cressie and Huang
derived a new approach to tackle nonseparable stationary covariance functions. By
utilizing Bochner’s Theorem and assuming integrability, positive definiteness can be
proved using the Fourier transform on the spectral density, thereby creating a class
of stationary spatial-temporal covariance functions [9]. However, the complexity of
the Cressie and Huang model motivated the development of a more flexible and gen-
eral Product-Sum Model which combines the simplicity of the product and linear
models with the applicability that satisfies the conditions of a viable covariance func-
tion. The Product-Sum model enables, for the first time, the practical quantification of
interdependencies in time and space and provides a reference for models of networks
of networks to use in terms of their necessary input coupling information.
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15.2.3.1 The Product-Sum Model

De Cesare et al. [11] promotes a Product-Sum model that, as its name suggests, serves
as a simple hybrid between the Linear and Product models in the past. De laco [12]
further refines a generalized version of the Product-Sum model and explores in depth
how to fit data to the spatial-temporal variogram. The practical model introduced to
represent spatial-temporal covariances is as follows:

Covgs(hg, hy) = k1Covs(hg)Covi(hy) + ko Covg(hy) + k3zCovy(hy), (15.9)

where Covg and Cov; represent the separate spatial and temporal covariance models
respectively, & is the generic lag, which is qualified by the subindices s and ¢ for
spatial and temporal, and k1, k>, and k3 are constants determined by the individual
variogram sills, defined as the plateauing  limit of the variogram approximating the
population variance [38]. The equivalent combined function using variograms is as
follows:

Yoot (s ) = (ka + k1 C(0))ys (hy) + (ks + k1 Cy (00, () — ki v ()i (B,

(15.10)

where 7y, ; represents the spatial-temporal variogram and +; and +y; are the respective

spatial and temporal variogram models. In addition, Cs, C;, and Cj; are the sills,

estimated from the parametric curve corresponding to each bounded variogram. Each

variogram is found by the following general equation, where v, (hs) = s, (hs, by =
0) and s () = 75,1 (hs = 0, hy):

Var(Z(s + hg, t + h;), Z(s, t))

Vs, (hs, hy) = )

(15.11)
where Z is a second order stationary spatial-temporal random field of the restoration
levels and s, ¢ are space and time values in the respective domains. By using the
sills to calculate the three coefficients, positive definiteness can be guaranteed when
ki1 > 0, ky > 0 and k3 > 0, and the following expressions are used:

ki = [Cs(0) + C1(0) — Cy: (0, 0)]/ C5(0)C:(0) (15.12)
ky = [Cs:(0,0) — C:(0)]/Cs(0) (15.13)
k3 = [Cy(0,0) — Cs(0)]/C:(0) . (15.14)

Spatial-temporal methods already have widespread applications across environ-
mental monitoring and modeling, ranging from air pollution to wind speed monitor-
ing, but the concepts can be adopted and customized to infrastructure network models
as well. This chapter demonstrates next the relevance of the Product-Sum method
to representations of both temporal and spatial data derived from utility restoration
processes after the 2010 My 8.8 Chile Earthquake.
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15.3 Application of the Spatial-Temporal Methodology
to the 2010 Chilean Earthquake

The introduced spatial-temporal methodology is applied onto representations of life-
line systems restoration data throughout time and space derived from field-collected
nodal values after the 2010 Chilean Earthquake [37]. A total of 93 evaluation nodes
covering the service area of two infrastructure networks are used in the study, shown
on the map in Fig. 15.1. The level of restoration at each of the evaluation nodes is
represented as the percent of fully restored services provided by each of the power
and water lifeline networks, which reflects both the level of damage inflicted on the
node as well as the prioritization of the post-event restoration procedure. The tem-
poral data at each node is assumed to follow the shape of restoration curves found
in the local power and water delivery networks in the Talcahuano and Concepcién
region [16].

The joint representations of temporal-spatial data allows for the creation of a
spatial-temporal variogram (Fig.15.2) using the Product-Sum Model, applied to
infrastructure lifeline system restoration in space and time. A given point on the sur-
face of the spatial-temporal variogram can be interpreted as the restoration variance
at a given spatial and temporal lag combination. Using a set of spatially-dependent,
temporally-dependent, and spatial-temporal variograms on the data, the sills corre-
sponding to each variogram are estimated using an exponential model variogram
fit. For example, the spatial-temporal sill Cy ; associated with the variogram shown
in Fig. 15.2 is 0.1484. These values are used in the determination of the constants
k1, k2, and k3 according to Egs. 15.12-15.14 to guarantee positive definiteness. The
resulting spatial-temporal variogram offers a joint variability for every combination
of lag in space and time.

Kriging is then applied using the spatial-temporal variogram by cutting the vari-
ogram surface such that spatial correlation or local interdependency can be observed
in slices for each time lag. In order to calculate such local interdependencies, a local
mesh of 101 points is constructed by kriging around each node for each system.
Then, a correlation analysis can be performed between the water and power network
local meshes (without relative displacements) for a given time, yielding a measure of
local coupling strength in a particular service area. The Pearson’s correlation values
calculated for each node of the restoration surfaces are then kriged once again to
depict the local distribution of correlation in the region per unit of time (Fig. 15.3).
By translating the kriging restoration surfaces by a certain radial distance and angle
(e.g., aradial mesh of 20 angle increments and 500 m radial increments up to 2,500 m
away from evaluation nodes per restoration surface), the correlation of the restoration
levels between the reference and adjunct networks can also be analyzed. Autocorre-
lation represents the dependency within the same network, while cross-correlation
refers to the interdependency between different networks.

The shifting of one network surface from another reference network surface is
performed not only for distinct lags in space but also time. The translations in time
and space of the adjunct network surface will yield global correlation plots, which
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Fig. 15.1 Map of the evaluation nodes from the Talcahuano and Concepcion region during the
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Fig. 15.3 Evolution of local interdependencies across space and time in the Talcahuano-
Concepcién region of Chile

as a function of time, as discussed in the next section. Note for now that Fig. 15.3
is the first depiction of interdependence evolution in time as a function of spatial
location. The local correlation map highlights the richness and heterogeneity of the
interdependencies, which differ from assumptions in early models of networks of
networks that use homogeneous and static coupling strengths.

15.4 Analysis and Discussion of Synthesized Interdependencies

From the temporal evolution of the local correlations or interdependencies in the
region (Fig. 15.3), itis possible to view a generalized summary of the spatial-temporal
coupling between the power and water networks. What appears to be highly localized
negatively or positively correlated regions in the map corresponds to local circum-
stances, demonstrating the spread of correlations across space, dependent upon the
physical location of the networks, their state of damage, and adopted restoration
strategies. The correlations of these areas are still evident through time, but the
heterogeneity decreases as the time lag increases, verifying the intuitive result that
correlation due to location diminishes as restoration levels of nodes reach higher
and higher serviceability, thus reducing variability across them. After about a week
after the earthquake event, there is a notable decrease in negative local correlations
between the power and water systems, but as the majority nodes begin to reach full
restoration, interdependencies are still visible although at reduced strengths.
Global correlation plots (Fig.15.4) are created by displacing entire restora-
tion surfaces relative to each other in space, so as to show spatial correlations in
polar coordinates across time steps as a function radial distance and angle from
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Fig.15.4 Global correlation plots (with North taken in the upwards direction) synthesizing restora-
tion surfaces between and across systems as a function of time as well as a function of radial distance
and angle shown in four stacks depicting: (a) the power—power auto-correlation, (b) water-power
cross-correlation (power as the reference network), (¢) power-water cross-correlation (water as the
reference network), and (d) the water—water auto-correlation

the shifted surfaces. The resulting polar-coordinate plots measure the global inter-
dependence across translated maps and reveal the distance and direction in which
interdependencies matter. The global correlation plots are presented in four stacks
of adjunct-reference network pairs, depicting from left to right: the power—power
auto-correlation, water-power cross-correlation (power as the reference network),
power-water cross-correlation (water as the reference network), and the water—water
auto-correlation. The auto-correlation plots start from a synthesized correlation of
1.0 at the center, since it intuitively represents the same network data. For all the plots,
there are signs of directionality at earlier time steps, hinting at general correlations
northeast or southwest of evaluation node sets. This may be due to the inherent shape
of the analyzed region and associated networks, as well as the distribution of damage
and the location of their main components [41]. However, traces of directionality are
not evident as time lags increase. The two auto-correlations exhibit unique temporal
trends, where the power auto-correlation moves from a central cluster of positive
correlation to a relatively uncorrelated neighborhood, while the water network has a
much larger neighborhood of high positive correlation that maintains directionality
and a certain level of spatial correlation in all directions within a radial proxim-
ity of less than 500 m as time progresses. The auto-correlation of the water system
(Fig. 15.4, Part d) shows the strongest directionality in recovery as the water system
has a concentration of pumping stations and tanks, along with the main water treat-
ment plant in the southwest to northeast direction. Cross-correlation plots are clearly
anisotropic, particularly for large lag times, but reflect similar initial correlations
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Fig. 15.5 Global interdependence plots of overall Pearson’s correlation averaged over all angles as
a function of radial distance at a time lag of 1 and 7 days. For each time lag, the plots are subdivided
into four subplots depicting in a clockwise direction starting from the top left, the power—power auto-
correlation, the water-power cross-correlation (power as the reference network), the water—water
auto-correlation, and the power-water cross-correlation (water as the reference network)

with a diagonal trend of weak correlations northeast and southwest of the evaluation
nodes, mainly contributed by the water system characteristics and the availability of
electricity. At the same time, the trend is still stronger when the power system is taken
as the reference system, highlighting a greater operational and logistical influence of
the power system on the water system than vice versa. Overall, the global correlation
plots provide an illustrative synthesis of the spatial interdependencies over time and
reveal an inherent directionality in the infrastructure restoration trends which cap-
italize on alternative paths and follow directions perpendicular to the main axis of
networks.

The overall correlation plots or average global interdependence plots (Fig. 15.5)
further consolidate the data by averaging across all angles in Fig. 15.4 to obtain the
average correlation for a given distance relative to the two displaced networks. The
plots are compared at different points in time and include error bars indicating one
standard deviation from the mean. For each time lag, the plots are subdivided into
four interdependence plots depicting in a clockwise direction starting from the top
left, the power—power auto-correlation, the water-power cross-correlation (power as
the reference network), the water—water auto-correlation, and the power-water cross-
correlation (water as the reference network). The off diagonal plots reveal the change
in coupling strength between the power and water networks in the region. While ini-
tial cross correlations begin at under 0.5, it is evident that correlations exist up to
approximately 2,000 m before reducing to almost zero at low time lags. Also, com-
parisons of the relationship between average correlation and distance from a time lag
of 1 day to 7 days show a faster decay in correlation behavior with time. Plotting aver-
age global correlations versus distance over time can lead to the creation of surfaces
that reflect the overall evolution of average coupling strengths between networks.
While the average global interdependence plots allow for a succinct representation
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of overall spatial trends of interdependencies, average plots may obscure trends
that are evident in analyses of global or local interdependency, hence the need to
jointly explore local, global and average global information for practical network
of networks modeling and operation recommendations. Clearly, the geographically
focused reach of interdependence effects offers insights into siting and timing of
back-up resources to handle the propagation of interdependent cascades, as well as
the sizing or capacity requirements of equipment and crews.

The spatial-temporal methodology presented in this chapter is shown to be ap-
plicable within the context of infrastructure network interdependency, and further-
more, takes into consideration factors traditionally unaccounted for such as time and
space. The demonstrated approach highlights the multifaceted and evolving nature of
infrastructure network interdependencies and allows for the depiction of heterogene-
ity of interdependence in space and its evolution in time. Insights from the analyses
include the ability to reveal interdependence directionality as well as to identify and
measure the length in which interdependence remains influential. The application of
graphical and mathematical tools in the quantification of interdependence contributes
to the better understanding of network coupling, and thus enables more comprehen-
sive and accurate network of networks models to inform future design and mitigation
actions. Knowledge of coupling strengths may lead to possibilities in the exploita-
tion of interdependencies for efficient operations or the decoupling or reduction of
network dependence during post-disaster or remediation periods.

At the same time, spatial-temporal analyses remain highly dependent on data
availability as well as the reliable fitting of the space and time variograms. Limita-
tions to the model include the assumptions inherent in the product-sum estimation
model and the accuracy of the sill-dependent coefficients of the covariance function.
While the global and average global correlation plots succinctly summarize general
network dependency behaviors, they may over or underemphasize certain correlation
aspects evident in local analysis, and thus motivate the need to study local interde-
pendence plots as well. In the end, the spatial-temporal methodology can be used
in conjunction with field observations and anecdotal data to support local to global
trend interpretations. By comprehensively quantifying and understanding infrastruc-
ture coupling characteristics as well as informing theoretical and simulation-based
multi-network models about interdependence, it is possible to ultimately capture
inherent geographical and temporal interdependencies between critical infrastructure
networks and exploit such properties to enhance operation, control, and restoration
strategies.

15.5 Conclusions

Spatial-temporal analyses of network interdependencies are uncommon to com-
plex infrastructure systems, thus the approach demonstrated in this chapter takes an
important step towards understanding and quantifying the holistic relationships be-
tween networks of networks. Overall, this chapter serves to outline methodologies
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used in analyzing interdependent networks and quantifying their coupling. Further-
more, a novel spatial-temporal approach is recommended to apply on infrastructure
systems so as to reveal their coupling structure and inform models as well as practical
design or mitigation recommendations. Utilizing previous efforts and developments
in network theory and space-time methods, the approach presented in this chapter
applies the Product-Sum method to quantify variability in interdependence in both
time and space realms. In addition, analyzing through slices in time and space allows
for the depiction of interdependence trends that exist in multiple dimensions so as
to calibrate emerging models of networks of networks and to define future strategies
for the control of interdependencies, including siting and staging of resources as well
as strategies for interface decoupling.

A methodological application was provided with representations of power and
water system restoration curves derived from the 2010 moment magnitude (M) 8.8
Chilean earthquake in the Talcahuano-Concepcién region, resulting in the creation of
a spatial-temporal variogram surface that served as the foundation for incorporating
both time and space lag dependencies. Graphical depictions of interdependencies
represented by Pearson’s correlation coefficients revealed the heterogeneous nature
of local infrastructure interdependencies and uncovered an inherent southwest to
northeast directionality in the global plot of interdependencies when shifting net-
work restoration maps. Finally, analyses from average global interdependency plots
(overall correlations) demonstrated the changing radial extent of restoration correla-
tion influence with time as a measure of coupling between networked systems which
in some cases changed from 2.0 km to less than 0.5 km. These findings, enriched
with global correlation plots and local coupling insights, imply that restoration is
interdependent in the perpendicular direction of the studied systems, which highlights
the need to ensure operation of the systems in their main direction through back-up
systems of pertinent capacities or uncouplings of specific geographical extents related
to the radial distances to which interdependencies matter.

Future research will include the creation of surface or volumetric representations
of local correlation values in time and space to better track their evolution, and
further build upon the understanding of interdependencies given spatial-temporal
lags for different components and systems. At the same time, other spatial-temporal
methodologies such as the graph wavelet-based approach will be studied for further
research. This chapter provides a basic methodology and structure for quantify-
ing spatial-temporal coupling across infrastructure networks and enables validation,
calibration, and expansion of emerging interdependent infrastructure models. By
demonstrating the applicability of spatial-temporal modeling among infrastructure
networks, research and design in future complex network interdependence can yield
more accurate and realistic results for protecting utility networks and their users,
particularly after episodes of abnormal operation.
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