
Chapter 10
Network Physiology: Mapping Interactions
Between Networks of Physiologic Networks

Plamen Ch. Ivanov and Ronny P. Bartsch

Abstract The human organism is an integrated network of interconnected and inter-
acting organ systems, each representing a separate regulatory network. The behavior
of one physiological system (network) may affect the dynamics of all other systems
in the network of physiologic networks. Due to these interactions, failure of one sys-
tem can trigger a cascade of failures throughout the entire network. We introduce a
systematic method to identify a network of interactions between diverse physiologic
organ systems, to quantify the hierarchical structure and dynamics of this network,
and to track its evolution under different physiologic states. We find a robust rela-
tion between network structure and physiologic states: every state is characterized by
specific network topology, node connectivity and links strength. Further, we find that
transitions from one physiologic state to another trigger a markedly fast reorganiza-
tion in the network of physiologic interactions on time scales of just a few minutes,
indicating high network flexibility in response to perturbations. This reorganization
in network topology occurs simultaneously and globally in the entire network as well
as at the level of individual physiological systems, while preserving a hierarchical
order in the strength of network links. Our findings highlight the need of an inte-
grated network approach to understand physiologic function, since the framework
we develop provides new information which can not be obtained by studying indi-
vidual systems. The proposed system-wide integrative approach may facilitate the
development of a new field, Network Physiology.
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10.1 Introduction

In contrast to the unorthodox diagnostic approaches of the fictional character Dr.
Gregory House from the acclaimed US TV-series “House” who, in a detective-like
manner, considers a variety of interactions between multiple physiologic systems
and variables to understand origins of symptoms in order to reach the right diag-
nosis, health care specialists traditionally focus on a single physiological system.
Cardiologists mainly examine the heart and consider ECG signals; pulmonologists
check lung structure and function and probe respiratory patterns; and brain neu-
rologists study EEG. However, the human organism is an integrated network of
interconnected and interacting physiologic organ systems, where each system is a
multi-component structural and regulatory network. The complex behavior of one
physiological system may be affected by changes in the dynamics of other systems
in the physiologic network of organ networks. Due to these interactions, failure of
one system may trigger a breakdown of the entire physiologic network.

Multiple organ failure is often the reason for fatal outcome in critical clinical care
[1, 2]. In fact, multiple organ dysfunction remains a leading cause of death in most
intensive care units. Clinical medicine offers support for specific organ systems that
has proven necessary but often insufficient to promote recovery. If the links between
physiological organ systems remain substantially altered, recovery is unlikely even
when the structure and function of a specific failed system is restored after treatment.
Indeed, autopsy findings in patients who succumb to multiple organ failure usually
show that tissue architecture is preserved, cells do not appear abnormal and there is
no widespread thrombosis. Nor does organ function appear to be irretrievably lost for
patients who survived multiple organ failure [3]. This underscores the importance of
identifying and quantifying the interactions between physiological organ systems,
and how these interactions change under different physiologic states, pathologic
conditions and with medical treatment. Further, medications developed to treat one
physiological system often influence the function and have side effects on other
systems. While some of the interactions between organ systems are partially known
at the qualitative level, more precise quantitative estimates are important especially
in the context of evaluating the proper medication dosage. Thus, the framework we
propose to investigate a network of physiologic interactions between organ networks
may help (i) to uncover new hitherto unknown links between organ systems, and
(ii) to quantify the degree and strength of physiologic coupling and interactions, and
how they change under various physiologic states and pathologic conditions.

A defining feature of physiological organ systems is their complexity. Decod-
ing the remarkable range of behaviors of living systems in health and disease has
emerged as a major focus of contemporary medicine. Physiological systems under
neural regulation exhibit nonstationary, intermittent, scale-invariant and nonlinear
behaviors [4, 5]. Moreover, physiologic dynamics transiently change in time with
different physiologic states and under pathologic conditions [6–8], in response to
changes in the underlying control mechanisms. The structural and neuronal control
networks that underlie each physiologic organ system lead to the the high degree of
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complexity in the output signals of physiological systems. This complexity is fur-
ther compounded by various coupling [9] and feedback interactions [10–12] among
different systems, the nature of which is not well-understood. Quantifying these
physiologic interactions is a challenge as one system may exhibit multiple simulta-
neous interactions with other systems where the strength of the couplings may vary
in time.

Therefore, to understand physiologic function it is critical to identify the net-
work of physiologic interactions, and to track its evolution under different phys-
iologic states and pathological conditions. This enterprise requires collaboration
among scientists with different backgrounds, and the need to foster multidisciplinary
approaches to problems at the interface of physics and physiology. Modern methods
of statistical physics and recent advances in the theory of complex networks have
great potential to uncover and quantify the structural and dynamical characteristics of
the physiologic network of organ networks. Here, we introduce a method to identify
interactions between physiologic systems, and we propose an integrative approach
to study the dynamical evolution of an entire network of physiologic interactions in
relation to changes under different physiologic states.

The central task of statistical physics is to understand macroscopic phenomena
that result from microscopic interactions among many individual components often
driven by competing forces and nonlinear feedback mechanisms. This problem is
akin to many investigations undertaken in physiology. In particular, physiological
systems under neural regulation and their complex nonlinear interactions among each
other are good candidates for a statistical physics approach, since (i) physiological
systems include many individual components (nodes) connected through a network
of nonlinear feedback interactions, as observed in certain physical systems, and (ii)
each physiologic system has multiple simultaneous interactions with other systems,
thus forming a network of physiologic networks.

Complex networks have attracted enormous attention in the past decade in various
fields of application. However, despite the importance to physiology and medicine,
the network of interactions between diverse vertically- and horizontally-integrated
organ systems is not known. Dynamical networks of physiologic interactions are
particularly challenging because most physiological systems are multiple component
complex systems with their own regulatory mechanism, and their function is affected
by various interactions with other systems and by their integration in the human
organism. Furthermore, physiologic dynamics and interactions continuously change
in time due to changes in physiologic conditions. Thus, most of the complexities
encountered in many of the networks studied so far are simultaneously present in
physiological networks.

The interdisciplinary field of Network Physiology bridges two active fields of
modern science: (A) the physics of complex networks, and (B) the organization
and control of integrated physiologic organ systems. There are several fundamental
questions that are critical for the development of both fields:

(A) In the field of complex networks: (A.1) it remains an unsolved problem how
to identify and quantify networks comprised of diverse systems with very different
types of interactions; (A.2) the relation between network topology and function is
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hypothesized but has not been demonstrated yet on real systems; (A.3) there are no
studies on real networks evolving in time and undergoing topological phase transi-
tions from one state to another, and (A.4) the relation of network topology to network
robustness and to the propagation of cascades of failure. These questions are even
more challenging for networks of networks, where each subnetwork is characterized
by different topology and dynamics of interactions with other subnetworks.

(B) In the field of integrated physiology: (B.1) it is not known how different phys-
iologic organ systems simultaneously interact as a network in the human body; (B.2)
whether different physiologic states are characterized by distinct networks of phys-
iologic interactions; (B.3) how transitions across physiologic and pathologic states
lead to transitions in the strength of physiologic interactions and in physiologic net-
work topology, and (B.4) quantitative knowledge of the critical zone of physiologic
coupling between multiple organ systems is essential to predict disintegration of the
physiologic network leading to multiple organ failure and other pathologies.

10.2 Complex Networks Approach to Physiologic Interactions

Research in statistical physics of networks has identified networks with complex
topologies [13, 14], and has focused on the role of topology for network function
and robustness [15–17], on the evolution of network topology under varied con-
ditions [18], emergence of self-organization and complex network behavior out of
simple interactions [19], and more recently on critical transitions due to failure in the
coupling of interdependent networks [20]. Recent advances in complex networks
theory are of relevance to a broad range of real systems including industrial [20,
21], transportation [22, 23] and communication networks [24], food and ecological
webs [19], financial systems and social interactions [21, 25–29] as well as biological
systems at the microscopic level such as genetic and protein-interaction networks
[30], biochemical [31], metabolic [32] and cell signaling networks [33]. However,
understanding the relation between topology and dynamics of complex networks
remains a challenge, especially when (i) the network evolves with links created or
lost in time, (ii) links between different nodes have different functional form and
strength/weight which change over time and (iii) network nodes are of different
kind with different dynamical properties and types of links [34, 35]. A further chal-
lenge to the contemporary theoretical framework of complex networks is posed by
real-world systems where each network node represents a multicomponent complex
system, a network on its own, with its own topology and regulatory mechanism that
can vary in time, and where the transient output dynamics of individual networks
affect the entire “network of networks” by reinforcing (or weakening) the coupling
between individual networks and changing network topology. A prime example of
a network of networks is the human organism, where integrated physiologic sys-
tems, each representing a complex network, form a network of interactions that in
turn affect physiologic function of individual systems or of the entire organism, and
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where breakdown in the interaction between physiological systems under certain
conditions may lead to a cascade of system failures [1, 2].

Physiological systems exhibit remarkable dynamic complexity where transient
changes in the underlying control mechanisms associated with different physiologic
states and conditions lead both to changes in their individual output characteristics as
well as in their interactions [6, 36–46]. Here, we introduce a framework to study the
network of interactions between physiological systems, and we focus on the topol-
ogy and dynamics of this network and their relevance to physiologic function. We
hypothesize that during a given physiologic state the physiologic network of organ
networks may be characterized by a specific topology. Further, we hypothesize that
even for networks with relatively stable topology associated with specific physiologic
states, the coupling strength between physiologic systems may change in time due to
the inherent variability in the regulation and output of these systems. Moreover, cou-
pling strength and physiologic network topology may change with transition from
one physiologic state to another, where physiologic interactions (network links) are
established or lost leading to a completely new network configuration. Such transi-
tions may also be associated with changes in the connectivity of specific network
nodes, i.e., the number of systems to which a given physiologic system is connected
can change, forming sub-networks of physiologic interactions. Thus, probing phys-
iologic network connectivity and the stability of physiologic coupling may provide
new insights on integrated physiologic function.

10.3 Time Delay Stability and Network of Physiologic
Interactions

We introduce the concept of time delay stability (TDS) to identify and quantify
dynamic links among physiological systems. The framework we propose allows
(i) to quantify the topology and global dynamics of physiologic networks, taking
into account the output of individual physiologic systems as well as the interactions
among them, and (ii) to track the dynamical evolution of multiple interconnected
systems undergoing transitions from one physiologic state to another (Fig. 10.1). We
construct a network of interactions for an ensemble of key integrated physiologic
systems (cerebral, cardiac, respiratory, ocular and muscle activity). We consider
different sleep stages (deep, light, REM sleep and quiet wake) as examples of physi-
ologic states. We demonstrate that sleep stages are associated with markedly different
networks of physiologic interactions (Fig. 10.2) characterized by different number
and strength of links (Fig. 10.3), and by specific node connectivity (Fig. 10.6). In
particular, during deep sleep we find a much lower number of links in the physio-
logic network compared to light sleep (Figs. 10.2 and 10.3)—individual physiologic
systems, such as the cardiac, are highly connected to other systems during light sleep
while there are practically no TDS links during deep sleep (Fig. 10.6). Furthermore,
the network links are much weaker during deep compared to light sleep (Figs. 10.3d
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(a) (b)

(c)

(d)

Fig. 10.1 Transitions in the network of physiologic interactions. a Dynamical network of interac-
tions between physiological systems where ten network nodes represent six physiologic systems—
brain activity (EEG waves: δ, θ , α, σ , β), cardiac (HR), respiratory (Resp), chin muscle tone, leg
and eye movements. b Transition in the interactions between physiological systems across sleep
stages. The time delay between two pairs of signals, (top) α-brain waves and chin muscle tone, and
(bottom) HR and eye movement, quantifies their physiologic interaction: highly irregular behavior
(blue dots) during deep sleep is followed by a period of time delay stability during light sleep
indicating a stable physiologic interaction (red dots for the HR-eye and orange dots for the α-chin
interaction). c Transitions between physiologic states are associated with changes in network topol-
ogy: snapshots over 30 s windows during a transition from deep sleep (dark gray) to light sleep
(light gray). During deep sleep the network consists mainly of brain-brain links. With transition
to light sleep links between other physiologic systems (network nodes) emerge and the network
becomes highly connected. The stable α-chin and HR-eye interactions during light sleep in (b) are
shown by an orange and a red network link respectively. d Physiologic network connectivity for one
subject during night sleep calculated in 30 s windows as the fraction (%) of present links out of all
possible links. Red line marks sleep stages as independently scored in a sleep lab. Low connectivity
is consistently observed during deep sleep (0:30–1:15 and 1:50–2:20 h) and REM sleep (1:30–1:45
and 2:50–3:10 h), while transitions to light sleep and wake are associated with a significant increase
in connectivity [47]
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Fig. 10.2 Network connectivity across sleep stages. Group-averaged time delay stability (TDS)
matrices and related networks of physiologic interactions during different sleep stages. Matrix ele-
ments are obtained by quantifying the TDS for each pair of physiologic systems after obtaining
the weighted average of all subjects in the group. Color code represents the average strength of
interaction between systems quantified as the fraction of time (out of the total duration of a given
sleep-stage throughout the night) when TDS is observed. The physiologic network exhibits transi-
tions across sleep stages—lowest number of links during deep sleep, higher during REM and highest
during light sleep and quiet wake—a behavior observed in the group-averaged network as well as
for each subject. Network topology also changes with sleep-stage transitions: from predominantly
brain-brain links during deep sleep to a high number of brain-periphery and periphery-periphery
links during light sleep and wake

and 10.5a). Traditionally, differences between sleep stages are attributed to modula-
tion in the sympatho-vagal balance with dominant sympathetic tone during wake and
REM [48]: spectral, scale-invariant and nonlinear characteristics of the dynamics of
individual physiologic systems indicate higher degree of temporal correlations and
nonlinearity during wake and REM compared to NREM (light and deep sleep) where
physiologic dynamics during exhibit weaker correlations and loss of nonlinearity
[6, 45]. In contrast, the network of physiologic interactions shows a completely dif-
ferent picture: the network characteristics during light sleep are much closer to those
during wake and very different from deep sleep (Figs. 10.2 and 10.3). Specifically,
network connectivity and overall strength of physiologic interactions are significantly
higher during wake and light sleep, intermediate during REM and much lower during
deep sleep. Thus, our empirical observations indicate that while sleep-stage related
modulation in sympatho-vagal balance plays a key role in regulating individual phys-
iologic systems, it does not fully account for the physiologic network topology and
dynamics across sleep stages, showing that the proposed framework captures prin-
cipally new information.
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Fig. 10.3 Sleep-stage stratification pattern in network connectivity and network link strength.
Group-averaged number of links (a) and averaged link strength (b) are significantly higher during
wake and light sleep compared to REM and deep sleep. There is no significant difference between
wake and light sleep. This pattern is even more pronounced for the subnetwork formed by the
brain-periphery and periphery-periphery links shown in (c) and (d). In contrast, the number of
brain-brain links remains practically unchanged with sleep-stage transitions (e), and the average
brain-brain link is ≈5 times stronger in all sleep stages compared to the other network links (f).
The group-averaged patterns in the number of network links and in the average link strength across
sleep stages (black bars) are consistent with the behavior observed for individual subjects (red bars
in all panels represent the same subject). The average link strength represents the average strength
of all links in a network obtained from a given subject during a specific sleep stage which then is
averaged over all subjects. Error bars indicate standard deviation

To quantify the interaction between physiologic systems and to probe how this
interaction changes in time under different physiologic conditions we study the time
delay with which modulations in the output dynamics of a given physiologic sys-
tem are consistently followed by corresponding modulations in the signal output of
another system. Periods of time with approximately constant time delay indicate a
stable physiologic interaction, and stronger coupling between physiologic systems
results in longer periods of time delay stability (TDS). The TDS method is general,
and can be applied to diverse systems. It is more reliable in identifying physio-
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logic coupling compared to traditional cross-correlation and cross-coherence analy-
ses (Fig. 10.7) which are not suitable for heterogeneous and nonstationary signals,
and are affected by the degree of auto-correlations in these signals [49]. Utilizing
the TDS method we build a dynamical network of physiologic interactions, where
network links between physiological systems (considered as network nodes) are
established when the time delay stability representing the coupling of these systems
exceeds a significance threshold level, and where the strength of the links is propor-
tional to the percentage of time when time delay stability is observed. This dynamic
network approach provides an integrated view of the simultaneous interactions of
multiple physiologic systems, where transient changes in physiologic conditions of
the human organism are reflected in continuous fluctuations in the strength of network
links, variations in the connectivity of individual network nodes, and emergence or
loss of specific links in response to changes in physiologic function—all leading to
transitions in network topology.

10.4 Transitions in Network Topology with Physiologic Function

We apply this new approach to a group of young subjects with continuously recorded
multi-channel physiologic data during sleep which allows us to track the dynamics
and evolution of the network of physiologic interactions during different sleep stages
and sleep-stage transitions (Fig. 10.1). We focus on physiologic dynamics during
sleep since sleep stages are well-defined physiological states, and external influences
due to physical activity or sensory inputs are reduced during sleep. While earlier
studies have identified how sleep regulation influences aspects of the specific control
mechanism of individual physiologic systems (e.g., cardiac or respiratory [6, 7, 45,
48]), the dynamics and topology of an entire physiologic network have not been
studied so far. Utilizing sleep data as an example we demonstrate that a network
approach to physiologic interactions is necessary to understand how modulations
in the regulatory mechanism of individual systems translate into reorganization of
physiologic interactions across the human organism.

We find that the network of interactions between physiologic systems is very
sensitive to sleep-stage transitions. In a short time window of just a few minutes the
network topology can dramatically change—from only a few links to a multitude
of links (Fig. 10.1c)—indicating transitions in the global interconnectivity between
physiological systems. These network transitions are not associated with random
occurrence or loss of links but are characterized by certain organization in network
topology where given links between physiological systems remain stable during the
transition while others do not—e.g., brain-brain links persist during the transition
from deep to light sleep while brain-periphery links significantly change (Fig. 10.1c).
Further, we find that sleep-stage transitions are paralleled by abrupt jumps in the
total number of links leading to higher or lower network connectivity (Fig. 10.1c, d).
However, even during stable physiologic conditions within a specific sleep stage, the
network of physiologic interactions does not remain static and undergoes continuous
dynamical changes with small fluctuations in the number of network links. These
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Fig. 10.4 Network connectivity and link strength of the brain-brain subnetwork for different sleep
stages. While the topology of the brain subnetwork does not change, the strength of network links
significantly changes with strongest links during light sleep and deep sleep (brown and dark red
color), intermediate during wake (red and orange color) and weakest links during REM sleep
(yellow color)

network dynamics are observed for each subject in the database, where consecutive
episodes of sleep stages (scored from standard polysomnographic recordings) are
paralleled by a level of connectivity specific for each sleep stage, and where sleep-
stage transitions are consistently followed by transitions in network connectivity
throughout the course of the night. Indeed, the network of physiologic interactions
exhibits a remarkable responsiveness as network connectivity changes even for short
sleep-stage episodes (Fig. 10.1d).

To identify the characteristic network topology for each sleep stage we obtain
group-averaged time delay stability matrices, where each matrix element represents
the percentage of time with stable time delay between two physiological systems,
estimated over all episodes of a given sleep stage throughout the night. Matrix ele-
ments with values above a threshold of statistical significance determined by surro-
gate analysis, indicate stable interactions between physiologic systems represented
by network links (Fig. 10.2). We find that matrix elements greatly vary for differ-
ent sleep stages with much higher values for wake and light sleep, lower values for
REM and lowest for deep sleep. This is correspondingly reflected in higher net-
work connectivity for wake and light sleep, lower connectivity for REM and signifi-
cantly reduced number of links during deep sleep (Fig. 10.3a). Further, the time delay
stability matrices indicate separate subgroups of interactions between physiologic
systems—brain-periphery, periphery-periphery and brain-brain interactions—which
are affected differently during sleep stages and form different sub-networks. Specifi-
cally, matrix elements representing interactions between peripheral systems (cardiac,
respiratory, chin, eye, leg) and the brain as well as interactions among the peripheral
systems are very sensitive to sleep-stage transitions, leading to networks of very
different topology for different sleep stages (Fig. 10.2). We find sub-networks with
high number of brain-periphery and periphery-periphery links during wake and light
sleep, lower number of links during REM and a significant reduction of links at
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deep sleep (Fig. 10.3c). In contrast, matrix elements representing brain-brain inter-
actions form a subnetwork with the same number of brain-brain links (Fig. 10.3e),
and stable topology consistently present in the physiologic network during all sleep
stages (Fig. 10.2). These sleep-stage related transitions in network connectivity and
topology are not only present in the group-averaged data but also in the physiologic
networks of individual subjects, suggesting universal behavior (Fig. 10.2). Notably,
we find a higher number of brain-periphery links during REM compared to deep
sleep despite inhibition of motoneurons in the brain leading to muscle atonia during
REM [50]. Further, the empirical observations of significant difference in network
connectivity and topology during light sleep compared to deep sleep are surprising,
given the similarity in the output dynamics of physiologic systems during light and
deep sleep [6, 7, 45, 48] (both stages traditionally classified as NREM), and indi-
cate that previously unrecognized aspects of sleep regulation may be involved in the
control of physiologic network interactions.

10.4.1 Physiologic States and Network Link Strength Stratification

Networks with identical connectivity and topology can exhibit very different strength
of their links. We find that not only network connectivity but also the average strength
of network links changes with sleep-stage transitions: network links are significantly
stronger during wake and light sleep compared to REM and deep sleep—a pattern
similar to the behavior of the network connectivity across sleep stages (Fig. 10.3a, b).
Further, subgroups of physiologic interactions exhibit different relationship between
their respective subnetwork connectivity and the average link strength. Specifically,
the subnetwork of brain-periphery and periphery-periphery interactions is charac-
terized by significantly stronger links (and also higher connectivity) during wake
and light sleep, and much weaker links (with lower network connectivity) during
deep sleep and REM (Fig. 10.3c, d). In contrast, the subnetwork of brain-brain inter-
actions exhibits very different patterns for the connectivity and the average link
strength—while the group average subnetwork connectivity remains constant across
sleep stages, the average link strength varies with highest values during light and deep
sleep and a dramatic ≈40 % decline during REM. The observation of significantly
stronger links in the brain-brain subnetwork during NREM compared to REM sleep
is consistent with the characteristic of NREM as EEG-synchronized sleep and REM
as EEG-desynchronized sleep [50]. During NREM sleep adjacent cortical neurons
fire synchronously with a relatively low frequency rhythm [51] leading to coherence
between frequency bands in the EEG signal, and thus to stable time delays and strong
network links (Fig. 10.3f and 10.4). In contrast, during REM sleep cortical neurons
are highly active but fire asynchronously [51] resulting in weaker links (Fig. 10.3f
and 10.4). Our findings of stronger links in the brain-brain subnetwork during NREM
indicate that bursts in the spectral power of one EEG-frequency band are consistently
synchronized in time with bursts in a different EEG-frequency band, thus leading to
periods of longer time delay stability. This can explain some seemingly surprising
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network links—for example, we find a strong link between α and δ brain activ-
ity during NREM sleep (Fig. 10.2) although α waves are greatly diminished and δ

waves are dominant [50]. Since the spectral densities of both waves are normalized
before the TDS analysis, the presence of a stable α–δ link indicates that a relative
increase in the spectral density in one wave is followed with a stable time delay by a
corresponding increase in the density of the other wave—an intriguing physiologic
interaction which persists not only during deep sleep but is also present in light sleep,
REM and quiet wake (Fig. 10.2). Notably, the average link strength of the brain-brain
subnetwork is by a factor of 5 higher compared to all other links in the physiologic
network (Fig. 10.3d, f).

Our finding that after averaging over all links in the physiologic network the
resulting average link strength exhibits a specific stratification pattern across sleep
stages, with strongest links during light sleep and wake, and weaker links during deep
sleep and REM (Fig. 10.3), raises the question whether the underlying distribution
of the network links strength is also sleep-stage dependent. To this end and to probe
the relative strength of individual links we obtain the rank distribution of the strength
of the brain-periphery and periphery-periphery network links for each sleep stage
averaged over all subjects in the group (Fig. 10.5a). The link strength shown in the
rank plots in Fig. 10.5a is determined by the degree of time delay stability, quantified
as the fraction of time when TDS is observed. We find that the rank distribution
corresponding to deep sleep is vertically shifted to much lower values for the strength
of the network links, while the rank distribution for light sleep and wake is for
all links consistently higher than the distribution for REM. Thus, the sleep-stage
stratification pattern we find for the average strength of the network links (Fig. 10.3d)
originates from the systematic change in the strength of individual network links with
sleep-stage transitions as demonstrated by the rank analysis. Notably, although the
strength of individual network links changes significantly with sleep stages, the rank
order of the links does not significantly change. Remarkably, after rescaling the rank
distributions for all sleep stages, we find that they collapse to two distinct functional
forms: (i) a slow and smoothly decaying rank distribution for REM and wake, and
(ii) a much faster decaying rank distribution for deep sleep and light sleep with a
characteristic plateau in the mid rank range indicating a cluster of links with similar
strength (Fig. 10.5b). Despite the similarity in the functional form of the distributions
and in the rank order in the strength of individual network links, our analyses show
a significant difference in the average strength of network links during deep sleep
compared to light sleep and REM compared to wake (Fig. 10.3d).

10.4.2 Local Topology and Connectivity of the Physiologic Network

Our observations that physiologic networks undergo dynamic transitions where key
global properties such as network connectivity and average link strength significantly
change with sleep-stage transitions following a robust stratification pattern, raise the
question whether local topology and connectivity of individual network nodes also
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Fig. 10.5 Rank distributions of the strength of network links. Group-averaged strength of individual
physiologic network links for different sleep stages. Rank 1 corresponds to the strongest link in
the network, i.e., highest degree of time delay stability (TDS) (shown are all periphery-periphery
and brain-periphery links). a The rank distributions for different sleep stages are characterized by
different strength of the network links—consistently lower values for most links during deep sleep,
higher values during REM and highest during light sleep and wake, indicating that the stratification
pattern in Fig. 10.3d is present not only for the average link strength (when averaging over different
types of links in the network) but also for the strength of individual links. Indeed, links from all
ranks are consistently stronger in light sleep compared to deep sleep and REM: such rank-by-rank
comparison of links across sleep stages is possible because the rank order of the links does not change
significantly from one sleep stage to another. A surrogate test based on TDS analysis of signals paired
from different subjects, which eliminates endogenous physiologic coupling, leads to significantly
reduced link strength (p < 10−3) and close to uniform rank distributions with no difference between
sleep stages (open symbols), indicating that the TDS method uncovers physiologically-relevant
information. Error bars indicate standard error. b Rescaling the plots reveals two distinct forms of
rank distributions: a slow decaying distribution for wake and REM, and a fast decaying distribution
for light sleep and deep sleep with a pronounced plateau in the middle rank range corresponding to
a cluster of links with similar strength, most of which related to the cardiac system

change during these transitions. Considering each physiologic system (network node)
separately, we examine the number and strength of all links connecting the system
with the rest of the network. For example, we find that the cardiac system is highly
connected to other physiologic systems in the network during wake and light sleep
(Fig. 10.6). In contrast, during deep sleep we do not find statistically significant time
delay stability in the interactions of the cardiac system, which is reflected by absence
of cardiac links (Fig. 10.6). Further, we find that the average strength of the links
connected to the cardiac system also changes with sleep stages: stronger interactions
(high % TDS) during wake and light sleep and significantly weaker interactions
below the significance threshold during deep sleep (Fig. 10.6). Such ‘isolation’ of
the cardiac node from the rest of the network indicates a more autonomous cardiac
function during deep sleep—also supported by earlier observations of breakdown
of long-range correlations and close to random and more linear behavior in heart-
beat intervals in this sleep stage [6]. With transition to light sleep, REM and wake
where the average link strength and connectivity of the cardiac system is significantly
higher, indicating increased interactions with the rest of the network that lead to cor-
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Fig. 10.6 Transitions in connectivity and link strength of individual network nodes across sleep
stages. The number of links to specific physiologic systems (network nodes) significantly changes,
with practically no links during deep sleep, a few links during REM and much higher connectivity
during light sleep and wake. Notably, the average strength of the links connecting a given network
node is also lowest during deep sleep and highest during light sleep and wake. Shown are connectivity
and average link strength for two network nodes, heart and chin. This sleep-stage stratification
pattern in individual physiologic system (node) connectivity and in the average strength of the
links connecting a specific network node is consistent with the transitions of the entire network
across sleep stages shown in Fig. 10.3. Networks for heart and chin are obtained by averaging the
corresponding networks for all subjects. During deep sleep no links to the heart are shown since
the strength of each link averaged over all subjects is below the significance threshold. Right bars
in the panels represent for different sleep stages the group mean of the average strength of network
links connecting heart and chin respectively, and error bars show the standard deviation. Left bars
represent an individual subject

respondingly higher degree of correlations and nonlinearity in cardiac dynamics [6].
Similarly, respiratory dynamics also exhibit high degree of correlations during REM
and wake, lower during light sleep and close to random behavior during deep sleep
[45]. Such transitions in the number and strength of links across sleep stages we also
find for other network nodes (for example chin, Fig. 10.6). Moreover, the sleep-stage
stratification pattern in connectivity and average link strength for individual network
nodes (Fig. 10.6) is consistent with the pattern we observe for the entire network
(Fig. 10.3). Our findings of significant reduction in the number and strength of brain-
periphery and periphery-periphery links in the corresponding sub-networks during
deep sleep indicate that breakdown of cortical interactions, previously reported dur-
ing deep sleep [52], may also extend to other physiologic systems under neural
regulation. Indeed, the low connectivity in the physiologic network we find in deep
sleep may explain why people awakened during deep sleep do not adjust immediately
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Fig. 10.7 Cross-correlation and surrogate analysis. Rank plots obtained from cross-correlation
analysis show no statistically significant differences between real and surrogate data, indicating
that cross-correlation is not a reliable measure to identify physiologic interactions

and often feel groggy and disoriented for a few minutes. This effect is not observed
if subjects are awakened from light sleep when we find the physiologic network to
be highly connected (Fig. 10.2). Further, the fact that deep sleep in primates domi-
nates at the beginning of the night and not close to dawn, when many large predators
preferably hunt, may have been evolutionarily advantageous.

Introducing a framework based on the concept of TDS we identify a robust network
of interactions between physiologic systems, which remains stable across subjects
during a given physiologic state. Further, changes in the physiologic state lead to com-
plex network transitions associated with a remarkably structured reorganization of
network connectivity and topology that simultaneously occurs in the entire network
as well as at the level of individual network nodes, while preserving the hierarchical
order in the strength of individual network links. Such network transitions lead to
the formation of sub-networks of physiologic interactions with different topology
and dynamical characteristics. In the context of sleep stages, network transitions
are characterized by a specific stratification pattern where network connectivity and
link strength are significantly higher during light compared to deep sleep and during
wake compared to REM. This can not be explained by the dynamical characteristics
of the output signals from individual physiologic systems which are similar during
light and deep sleep as well as during wake and REM. The observed stability in
network topology and rank order of links strength during sleep stages, and the tran-
sitions in network organization across sleep stages provide new insight into the role
which individual physiologic systems as well as their interactions play during spe-
cific physiologic states. We note that traditional methods based on cross-correlation
or cross-coherence analysis lead to spurious detection of interrelations and coupling
in signals of different origin and with different autocorrelations, and fail to iden-
tify and quantify a the network of physiologic interactions (Fig. 10.7). While we
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demonstrate one specific application, the framework we develop can be applied to
a broad range of complex systems where the TDS method can serve as a tool to
characterize and understand the dynamics and function of real-world heterogeneous
and interdependent networks.

10.5 Summary

We introduce a new framework to investigate a network of interactions between
complex physiological systems, each representing a separate regulatory network.
This proves useful to uncover key aspects of physiologic dynamics and coupling
in the context of the integrated function of diverse physiological systems in the
human organism, and may facilitate novel theoretical approaches to study dynamical
processes on networks of networks. These investigations constitute a first step in the
development of a new field we call Network Physiology.

Specifically:

1. This is the first study of a network comprised of diverse complex systems.
Earlier studies have focused on networks where (i) all nodes are of the same
type, and (ii) network links are static and do not change in time. This is not the
case in many real networks. Further, such “idealized” networks can not exhibit
transitions in topology, and thus do not allow investigation of key questions such
as the relation between network topology and function.
Quantifying networks comprised of different types of nodes, where the nodes are
not identical and simple units, but represent complex multi-component dynamical
systems with their own regulatory mechanisms, is a major challenge which has
not been addressed so far. The reason that network interactions between such
complex systems have not been studied is that different types of systems have
output signals with very different characteristics, which can also change in time.
Thus, current methods tailored to probe the interaction/coupling between two
similar systems do not work for a pair of different systems. This is a strong
limitation when studying real-world networks.
To overcome this limitation we developed a framework, based on a novel concept
of time delay stability (TDS), to probe interactions among diverse systems by
quantifying interrelations between their transient signal outputs. Utilizing this
new approach we identify a dynamic network that represents the global behavior
of a group of complex systems (networks) even when the links between these
systems are not a-priori known. Our approach is general, and can be applied to
many real dynamical systems and networks.

2. We present the first physiologic network. Specifically, we identify and quantify
a network of interactions between key integrated physiologic systems: cerebral,
cardiac, respiratory, ocular and motor system. These are diverse and complex
systems, with their own regulatory neuronal networks, and with very different
types of output signals.
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This discovery provides a first dynamical map of the human organism as an inte-
grated network of interacting physiological systems. Utilizing the physiologic
network we can track how the behavior of one organ system can be affected
by changes in the dynamics of other systems. Further, this approach allows to
estimate whether, under certain conditions, failure of one system may trigger a
breakdown of the entire network of physiologic systems. This network informa-
tion is critical to understand physiologic function and uncovers new aspects of
the mechanisms of physiologic regulation, and cannot be obtained by traditional
studies focusing on individual systems.
The new physiologic information we obtain is relevant and may be utilized for
clinical applications in critical care units, in situations of multiple organ failure,
or in assessing side effects of pharmacological treatment when targeting a specific
system may also affect other systems via the network of physiologic interactions.

3. Of importance to complex networks, we show that there is a robust interplay
between network topology and function. In network theory it is hypothesized that
network function is influenced by network structure, however, examples on real
networks did not exist prior to these investigations.
We demonstrate that each physiologic state is associated with a specific network
of physiologic interactions that is characterized by a given topology, node con-
nectivity, number and strength of network links. A similar network topology and
strength of network links is consistently observed for individual subjects in the
same physiologic state, indicating universal behavior.
In particular, relating physiologic function to network topology we show that
during deep sleep several integrated systems (e.g., cardiac, respiratory and brain)
act as if disconnected from each other. This is a principally new information,
which can explain (i) why earlier studies have found that correlations and scaling
properties in heartbeat intervals break down and exhibit close to random behavior
during deep sleep (as it would be the case of a denervated heart), and (ii) why
people awakened during deep sleep do not adjust immediately and often feel
groggy and disoriented for a few minutes.
Since specific mechanisms regulate physiologic function during each physiologic
state, our observations provide a first empirical evidence on a real network of a
robust relation between network structure and function.

4. We identify phase transitions in network topology. There is no precedent of such
behavior. We quantify the process of transition by tracking the network evolution
in time.
We find that with transition from one physiologic state to another (for example
across sleep stages), network topology dramatically changes within a short time
window of 2–3 min—from only a few links to a multitude of links—indicating a
remarkable flexibility in the interaction between physiologic systems in response
to change in physiologic regulation. Such change in network structure in response
to change in the mechanisms of control during different physiologic states indi-
cates that our findings reflect intrinsic features of physiologic interaction.
Further, we find that transitions from one physiologic state to another trig-
ger a remarkably-structured reorganization of physiologic interactions. This
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reorganization occurs simultaneously and globally in the entire network as well as
at the level of individual network nodes (physiologic systems), while preserving
a hierarchical order in the strength of network links.
Although our study is limited to a data-driven approach the empirical findings
may facilitate future efforts on developing and testing network models of physio-
logic interactions. In relation to critical clinical care, where multiple organ failure
is often the reason for fatal outcome [1, 2], our framework may have practical util-
ity in assessing whether dynamical links between physiological systems remain
substantially altered even when the function of specific systems is restored after
treatment [3]. While we demonstrate one specific application, the framework we
developed can be applied to a broad range of complex systems where the TDS
method can serve as a tool to characterize and understand the dynamics and func-
tion of real-world heterogeneous and interdependent networks. The established
relation between dynamical network topology and network function has not only
significant medical and clinical implications, but is also of relevance for the gen-
eral theory of complex networks, including the emerging field of networks of
networks.
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