
Correlation Analysis against Protected SFM
Implementations of RSA

Aurélie Bauer and Éliane Jaulmes

ANSSI
51, boulevard de La Tour-Maubourg

75700 PARIS-07 SP
{Aurelie.Bauer,Eliane.Jaulmes}@ssi.gouv.fr

Abstract. Since Kocher’s first attacks in 1996, the field of side-channel
analysis has widely developed, and new statistical tools have competed
against new countermeasures to threaten cryptosystems. Among existing
algorithms, RSA has always been a privileged target. It seems generally
admitted that a combination of SPA protection such as regular expo-
nentiation associated with blinding techniques such as randomization of
the exponent and of the input message offers in practice sufficient pro-
tection against all known side-channel attacks. Indeed, known attacks
either require building statistical information over several executions of
the algorithm, which is countered by exponent randomization, or rely
on partial SPA leakage, which implies an incorrect implementation of
known countermeasures, or require specific internal knowledge of the
implementation and hard-to-obtain experimental conditions, as for the
recent horizontal correlation analysis of Clavier et al. [10]. In this paper,
we show that it is possible to attack a state-of-the-art implementation of
Straightforward Method (SFM) RSA. Our attack requires a small public
exponent (no greater than 216 + 1) and a reasonable exponent blinding
factor (no greater than 32 bits). It does not require additional internal
knowledge of the implementation, neither does it have special experi-
mental requirements. From a practical point of view, it thus compares
with classical correlation analysis. We provide simulations of our attack
demonstrating its efficiency, even in noisy scenarios. This shows that
SFM implementations of RSA may be much more difficult to protect
against side-channel attacks than CRT implementations.

Keywords: Side-Channel Attacks, Correlation Power Analysis, Colli-
sion Correlation Power Analysis, RSA scheme, Exponent Blinding, Mes-
sage Blinding.

1 Introduction

Physical components included in embedded systems may leak information on
data manipulated throughout cryptographic computations. Side-channel anal-
ysis, which was first introduced by Kocher et al. [17] in 1996, exploits such
leakages and retrieves information on the secret parameters. This field covers
nowadays a large range of statistical and cryptanalytic techniques such as tim-
ing attacks [17], simple power analysis (SPA) [17], differential power analysis
(DPA) [18], correlation power analysis (CPA) [7], mutual information analysis
(MIA) [3, 14] and many others.

G. Paul and S. Vaudenay (Eds.): INDOCRYPT 2013, LNCS 8250, pp. 98–115, 2013.
c© Springer International Publishing Switzerland 2013

Correlation Analysis against Protected SFM Implementations of RSA 99

To counter these threats, research has been focusing on devising implemen-
tations that are resistant to side-channel analysis. While there exists generic
countermeasures designed such that they can protect any given implementation
(for instance clock jitter), most of them stay dedicated to specific algorithms or
particular operations. One set of countermeasures still widely used up to now in
the public key setting, is that introduced by Coron [11] in 1999.

Focusing on the well-known RSA scheme, it can be seen that the modular
exponentiation phase, which consists in raising a given message to a secret ex-
ponent modulo a public integer, is a promising target for side-channel attackers.
An unprotected RSA implementation can easily be threatened by a simple power
analysis (SPA) where only one power curve is sufficient to recover the whole se-
cret key. Thus, implementing RSA while avoiding classical side-channel attacks
requires a set of well-chosen countermeasures. A first idea is to use a regular ex-
ponentiation, for example the “Square-and-Multiply Always” algorithm [11], the
Montgomery ladder [16], the Joye ladder [15] or the atomic Square-and-Multiply
exponentiation [8]. These techniques allow to proceed the same operations in-
dependently from the value of the key bits. Among all these solutions, the later
one is often preferred due to its efficiency. Obviously these countermeasures offer
protection against SPA, but are not sufficient to protect the scheme against more
advanced attacks such as DPA or CPA [7, 18]. Those methods exploit leakage
information from several executions of the algorithm and use statistical tools to
extract the secret information. As a consequence, protecting the scheme against
those kinds of attacks requires to execute the algorithm differently from one call
to the next. Random values should thus be added to the computation, either in
the secret exponent, which refers to the technique called “Exponent Blinding”,
or in the original message, namely using “Message Blinding”.

In this work, we focus on SPA-resistant RSA implementations that use both
exponent blinding and message blinding. As far as we are aware, this scenario
represents the academic state of the art of secure RSA implementations. In fact,
there are few side-channel attacks that threaten this scheme [9,10,12,13,19–23]
and they apply only in particular settings. Indeed, the attack performed by
Walter [22] on RSA with small public exponent, the one proposed by Fouque et
al. [12] or the recent attack of Schindler and Itoh [19], all require partial SPA
leakage exploitable on a single power curve. In Walter’s Big-Mac attack [20] and
Clavier et al. [9, 10] horizontal correlation analysis the authors exploit leakage
information coming from each of the elementary operations involved in the Long
Integer Multiplication. These attacks are very powerful but may be difficult to
apply in practice. Indeed, they require to obtain additional internal information
such as detailed knowledge of the implementation of the modular multiplication.
Moreover, the adversary should also work with experimental tools of high quality
as this attack requires a huge memory on the acquisition device and a precise
timing to separately observe the leakage corresponding to each register operation.

In This Paper. We propose a side-channel attack against SPA-resistant SFM-
RSA1 scheme, implemented using both message blinding and exponent blinding.
This attack can be seen as an alternative to Clavier et al. ROSETTA attack [9],
where no specific information concerning the implementation of the modular
multiplication is required. In fact, it exploits only general leakage information

1 As mentioned before, SFM stands for Straightforward Method, i.e. a non-CRT im-
plementation of RSA.

100 A. Bauer and É. Jaulmes

from each modular operation and does not assume high end metrology. Moreover,
no additional SPA leakage is needed that could allow the attacker to distinguish
multiplications from squaring operations on a unique power curve. Our attack
is described on the Square-and-Multiply always algorithm and on the atomic
Square-and-Multiply implementation of the exponentiation, but it also works
for other choices of algorithms. It applies when the exponent masking technique
suggested by Coron [11] is used and for any kind of message blinding. It works
for small public exponents. The masking factor used for exponent randomization
should either be less than 32-bit long or reduced in this range through fault
injection.2

The paper is organised as follows. Section 2 recalls some basic notions related
to the RSA scheme with exponent blinding and message blinding, and gives
statistical definitions required for correlation power analysis. Section 3 presents
existing side-channel attacks on RSA implementations using various counter-
measures. In Section 4, we describe our attack against protected RSA imple-
mentations for a public exponent e equal to 3 and known inputs. In Section
5, we explain how to adapt this attack when the input is blinded by using the
collision correlation technique [23]. Then Section 6 provides simulation results
for various signal-to-noise ratios. Section 7 concludes the analysis.

2 Preliminaries

2.1 State-of-the-Art Implementation of RSA

Description. Let N be an n-bit RSA modulus, defined as the product of two
large primes p and q. In the sequel, we focus on the balanced case meaning that
the prime factors p and q are equal-sized. The public exponent e is chosen to be
coprime to the Euler’s totient function φ(N) = (p−1)(q−1). The corresponding
private key d satisfies the well-known RSA equation ed ≡ 1 mod φ(N). In other
words, there exists an integer k ∈ Z such that:

ed = 1 + kφ(N) . (1)

By definition, the private key satisfies 0 < d < φ(N). Its binary representation
is expressed as d = (d[0] . . . d[n − 1]), where the least significant bit is referred
as d[0] and the most significant one as d[n− 1]. Note that the variable k verifies
0 < k < e since otherwise it would imply d > φ(N), which is not possible [6].

Implementation. In this paper, we focus on StraightForward Method (SFM)
implementations of RSA. It means that the decryption of a ciphertext C using
the private key d is computed as Cd mod N . In order to resist “side-channel
attacks”, several steps must be taken into account to protect the sensitive op-
erations where secrets bits are manipulated. In the particular case of RSA, this
concerns the modular exponentiation Cd mod N , where secrets bits are pro-
cessed sequentially and combined to the known value C.3

2 Even if a 32-bit long masking factor is not recommended, this scenario still corre-
sponds to some implementation designs of RSA on embedded devices.

3 The attack is presented on a RSA decryption but could also apply on a RSA signa-
ture.

Correlation Analysis against Protected SFM Implementations of RSA 101

The first threat to address is the Simple Power Analysis (SPA). In order to
resist this attack, the algorithm should behave similarly when the bits of the
secret exponent are equal to 0 or 1. Regular algorithms have been designed to
address this issue: the well-known Square-and-Multiply Always technique, pro-
vided in Fig. 1, Algorithm 1 and the Atomic Square-and-Multiply method [8],
provided in Fig. 1, Algorithm 2, which is one of the most efficient technique.
In Section 5, we focus on these two implementations. Other implementations
choices are studied in Appendix A.

Algorithm 1. “Square-and-Multiply-Always” (from left to right)

R0 ← 1
for i = n− 1 to 0 do

R0 ← R2
0

if d[j] = 1 then
R0 ← R0 · C

else
R1 ← R0 · C

return R0

Algorithm 2. “Atomic Square-and-Multiply” (from left to right)

R0 ← 1; R1 ← C
k ← 0, i← n− 1
while i ≥ 0 do

R0 ← R0 ·Rk

k← k ⊕ d[i]
i← i− ¬k

return R0

Fig. 1. Two well-known regular SFM-RSA implementations

Additionally to that SPA-protection, the RSA scheme is also assumed to be
implemented using exponent masking. This countermeasure prevents an attacker
to gain information on the secret exponent d by studying several power consump-
tion curves corresponding to computations of Cd mod N , for different values of
C. In that case, the adversary could apply a Differential Power Analysis (DPA)
or use an improved version called Correlation Power Analysis (CPA) (further
details on this attack are provided in Section 2.2). To prevent such scenarios,
the key should be masked before its use inside the modular exponentiation. A
suitable idea, originally described by Coron [11], is to blind the exponent d using
a random value λ. Thus a new secret key d(i) = d+ λ(i)φ(N) is generated, each
time the modular exponentiation has to be performed on C(i), with λ(i) a ran-
dom l-bit integer. That way, the decryption (similarly the signature) process is

performed as
(
C(i)

)d(i)

mod N . In our attack, we require l to be no greater than
32. In real implementations, this could be the case for low end devices where
generating random bits have a non negligible cost or it could be the result of a
fault injection during the generation of λ(i) or during the computation of d(i).

102 A. Bauer and É. Jaulmes

Finally, in order to make the scheme fully secure, we also assume that it
has been implemented using message blinding. Several techniques have been
proposed in the literature, but we will not detail them here, since our attack
applies independently from the chosen method.

2.2 Correlation Power Analysis

The attack proposed in this paper against secure SFM-RSA schemes, imple-
mented as described in the previous section, makes use of the Correlation Power
Analysis technique, introduced in [7]. For the sake of completeness, we remind
the basic principle of this method, which can be seen as an extension of the
Differential Power Analysis of Kocher et al. [18].

As all side-channel attacks, correlation power analysis works by first register-
ing leakage information from the power consumption or electromagnetic emana-
tion of the device during the computation. Such leakage can come from several
instants of a single execution, in the case of horizontal power analysis [9, 10], or
from a single instant of several executions, in the case of classical power anal-
ysis [7]. More generally, any combination of the two above is also possible, see
for instance a unified description of CPA in both contexts in [4]. In the leakage
traces, the attacker needs to identify the points of interest, namely the points
in the traces where the leakage corresponds to the manipulation of the targeted
sensitive information. For example, in vertical attacks, there is only one such
point on each execution trace. In the case of horizontal analysis, several points
of interest must be identified on the unique trace used to perform the attack.
Let us denote as (�i)i∈I the leakage values at the identified points of interest
extracted from the power consumption curve(s).

Then, the adversary makes an hypothesis on a sub-part of the secret. Using
his hypothesis and following the algorithm, the attacker is able to predict the
operations Oi that took place during the execution(s) at each identified point
of interest. He determines the contributions of these predicted operations to
the global leakage. Therefore he chooses a leakage modelM and computes the
quantities mi =M(Oi), all related to the hypothesis on the secret parameter.
The choice of a given leakage model should of course be based on the knowledge
of the attacked device architecture. A common choice for M is to take the
Hamming Weight of register size values manipulated during the operation Oi.
For instance, in the case of a multiplication on a 32-bit architecture, one could
choose the Hamming Weight of the 32 least significant bits of the result.

Finally, the adversary validates or invalidates his hypothesis by computing
the so-called correlation coefficient between the modelization values and the
leakages. If L denotes the random variable corresponding to the observed leakages
(�i)i∈I and M the one corresponding to the modelized predictions (mi)i∈I , then
this coefficient can be expressed as:

ρ = ρ(L,M) =
cov(L,M)

σLσM
,

where “cov” is the covariance function and “σ” the standard deviation. For the
sample (m1,m2 . . .m|I|) of predicted leakages and (�1, �2, . . . �|I|) of registered
power consumption values, an approximation ρ̃(L,M) of ρ(L,M) is given by the
Pearson coefficient:

Correlation Analysis against Protected SFM Implementations of RSA 103

ρ̃(L,M) =

∑
i(�i − �)(mi −m)

√∑
i(�i − �)2

∑
i(mi −m)2

,

where m = 1
|I|

∑
i mi and � = 1

|I|
∑

i �i, with a sum taken over i ∈ I.

When the value of this correlation coefficient is high, it means that the random
variables L and M are related, implying that the hypothesis on the sub-part of
the secret was correct. In the other case, it means that the initial guess was
wrong. In practice, the good hypothesis is often determined as that giving the
highest correlation value among all possible hypotheses.

Remark: In practice, the identification of the points of interest is in fact done a
posteriori by running the same attack on all points of the traces (or in a selected
interval). The points of interest are then the points for which one of the key
hypotheses produced a correlation peak.

3 Previous Attacks on RSA Implementations

In this section, we recall some existing side-channel attacks on RSA implementa-
tions. In particular, we study their applicability to the implementation we attack
in this paper.

3.1 Statistical Analyses on Several Consumption Traces

Most existing side-channel attacks, such as Differential Power Analysis, Corre-
lation Power Analysis or Mutual Information Analysis, require a high number –
at least several – consumption traces to be efficient. Indeed, statistical analyses
are performed on the collected curves, all related to the same sub-part of the
secret, allowing to validate or invalidate hypotheses on the secret key. Such at-
tacks target SPA-protected implementations, where the observation of a single
power consumption trace does not provide enough information on the key.

Among such attacks, one can cite, for instance the work of Amiel et al. [2]
describing a classical correlation power analysis on RSA or the work in [1] where
the study of the Hamming weight distributions allows to distinguish multiplica-
tions from squaring operations. In [23], the collision correlation technique can
be used to distinguish products with a common operand (key bit equal to 0)
and products with independent operands (key bit equal to 1). Finally the well-
known doubling attack of Fouque et al. [13] observes common intermediate values
between the exponentiation of C and that of C2.

In our context. Clearly these techniques are powerful on SPA-protected im-
plementations. However they are successful only when sufficiently many traces,
relied to the same sub-part of the secret, are available. As a consequence, the use
of exponent blinding, which consists in changing the secret exponent at each new
modular exponentiation performed by the device, make such attacks ineffective.

104 A. Bauer and É. Jaulmes

3.2 Attacks that Exploit an SPA Leak

Another approach is to assume that the SPA protection is not perfect and that
some information can be extracted from a single execution of the secret com-
putation. Indeed, in particular configurations, such as, for instance, when using
sliding windows or implementing special types of multiplication algorithms such
as MMM the “MontgomeryModular Multiplication”, leakages might be obtained
revealing partial information about the secret key. For a practical example, see
Fouque et al. ’s attack on RSA when e is small [12] and the improvement pro-
posed by Walter in 2007 [22]. In 2011 [19], Schindler and Itoh generalized this
technique by showing that any partial SPA information can be used to recon-
struct the secret exponent, even when exponent blinding is used. They have no
limitation on the size of the public key.

In our context. These techniques are efficient, since they are successful even
against exponent blinding in the RSA exponentiation. However, they also rely
on a strong hypothesis, which is the presence of SPA leaks. In this paper, we
focus on implementations, that do not leak any exploitable SPA information. All
the attacks mentioned in this section become ineffective in this context.

3.3 Horizontal Attacks

Up to now, the only attacks successful against protected implementations using
exponent blinding, and which do not require any SPA leak, are horizontal cor-
relation analyses. Indeed, these attacks use a unique power consumption curve.
Their main idea can be explained as follows: when considering the leakage from
the result of a modular multiplication or squaring, the attacker only gets a single
information. However, modular operations in the case of RSA consist in multi-
plying 1024-bit or 2048-bit long numbers. In an embedded device, this is done
by splitting the numbers into several smaller registers. The attacker could then
consider the leakage coming from each register operation and thus gain much
more information from a single modular operation. This idea was first studied by
Walter in [20,21] in the so-called Big-Mac attack. It consists in cutting the power
consumption trace – obtained from one or many execution of the algorithm on
a single input – in many sub-traces, each of them containing information on
a single internal operation such as, for instance, an elementary multiplication
inside a LIM. This attack has then been extended in the work of Clavier et
al. [9, 10] giving the Horizontal correlation analysis. A unified version of these
two approaches can be found in [4].

In our context. This kind of attack is very efficient and provides strong results
even for message blinding and exponent blinding implementations. However,
it relies on two assumptions. First, the attacker needs a precise knowledge of
the internal modular operations implementation (e.g. performed using LIM or
MMM, parallelized or not, etc.). Secondly, the power consumption curve must
be sufficiently precise to obtain several points of interest from one modular mul-
tiplication4. Thus correct time synchronisation and patterns identification will

4 By comparison, a classical CPA on RSA like [2] will use one point of interest for each
modular multiplication. In [9] the authors exploit (�2−�)/2 points per multiplication,
where � = n/w for a modulus of size n on a w-bit architecture.

Correlation Analysis against Protected SFM Implementations of RSA 105

become a critical factor. As a matter of fact, in some experimental settings, hori-
zontal analysis might not be applicable. In such configurations, our attack could
be an interesting alternative, since it uses the same metrology as classical CPA
on RSA schemes.

3.4 Attack Proposed in this Paper

Our attack applies against protected implementations of RSA using a regular
exponentiation algorithm, with exponent masking of the form d(i) = d+λ(i)φ(N)
and any kind of message blinding. We do not assume any partial SPA leakage
nor require a precise knowledge of the internal implementation of modular op-
erations. Our attack uses only one point of interest for each modular operation,
as for vertical CPA attacks [2], and thus have less constraints on the metrology
than horizontal attacks. For this reason, it represents an interesting alternative
in noisy or black box scenarios.

4 The Attack on Protected RSA with Known Inputs

This section provides a description of our attack in a simplified setting, when
the inputs5 are known and for a public-key e equal to 3. The generalization for
implementations using messages blinding will be discussed later, see Section 5.
Other implementation choices are discussed in Appendix A. Additional consid-
erations required for a practical implementation of the attack are provided in
Appendix B.

4.1 Special Properties of the RSA Scheme

Let us first recall some well-known facts about the RSA cryptosystem, that will
be useful in the following. For a more complete description of RSA properties,
see [5].

Known Bits on φ(N). Since the factorization of the modulus N is a private in-
formation, the totient Euler’s function is unknown to the attacker. However, half
of its bits can easily be recovered. Indeed, knowing that φ(N) = (p− 1)(q− 1) =

N−p− q+1 and assuming that p and q are balanced (e.g. p, q �
√
N), the half6

most significant bits of φ(N) is known and is equal to the half most ones of N .

Relation between d and φ(N). In the relation ed = 1 + kφ(N), see RSA Equa-
tion (1), the parameters d, k and φ(N) refer to unknown values. However when
e = 3, the relation becomes:

3d = 1 + 2φ(N). (2)

The knowledge of the half most significant bits of φ(N) allows to deduce the
half most significant ones of the secret key d. This result remains valid if more
significant bits are known or guessed on φ(N). Conversely, guessing additional
bits on d automaticaly implies recovering the corresponding ones on φ(N).

5 Known inputs can either represent known messages for RSA signature or known
ciphertexts for RSA decryption.

6 Of course, there could be some carries issues, but this point will be discussed in
Appendix B.

106 A. Bauer and É. Jaulmes

4.2 Description of the Attack

Let us now explain the details of our correlation analysis on protected RSA
implementations. We recall that the secret exponent d is masked before each
modular exponentiation as d(i) = d + λ(i)φ(N), see implementation details in
Section 2.1, and that we first focus here on a simplified setting where each input
data C(i) is known to the attacker.

General idea. Let T (1), . . . , T (L) be L power consumption curves, registered by

the adversary during the computation of
(
C(1)

)d(1)

mod N, . . . ,
(
C(L)

)d(L)

mod

N . In these expressions, the notation d(i) refers to the i-th masked value of d.
The random masking factor λ(i) belongs to [0, 232−1]. The attack, which mainly
consists in two steps, works as follows. First, the goal consists in guessing, for
each i, the value of the masking factor λ(i) associated to the curve T (i). To do so,
several separate correlation analyses are made on each curve, using the first half
of the exponentiation. In a second step, the adversary tries to guess the unknown
bits of d by small increments using a classical correlation analysis, similar to the
one described in [2]. For this step, the adversary uses the information gathered
during the first part, namely the value of the masking factors λ(i). Thus a guess
on d can easily be transformed into as many guesses on the masked values d(i).

Step 1: Learning Masking Factors with Correlation Attacks. First,
we know that the half most significant bits of d can easily be recovered using
Equation (2) of Section 4.1. From this information, the attacker wants to learn
the value of the masking factors λ(i) that have been used to blind the exponent
d as d(i) = d+ λ(i) · φ(N) for each exponentiation and thus for each curve T (i).
To do so, the attacker should perform the following operations:

1. Try all possible values for λ(i). Since each masking factor has been chosen
as a 32-bit random value, this step requires 232 operations.

2. For each possible λ(i), deduce the n/2 most significant bits of d(i). Indeed,
observe that once λ(i) is known, we can use the knowledge on the most
significant bits of d and φ(N) (see Section 4.1) to deduce the most significant
bits of d(i) thanks to the relation d(i) = d+λ(i)φ(N). Note that we may know
a few less bits than that, due to carries coming from the unknown parts of
φ(N) and d that cannot be predicted.

3. From that point, since the adversary knows the input value C(i) together
with the half most significant bits of d(i), it can predict the first half of the
intermediate operations that have been performed during the modular ex-

ponentiation (C(i))d
(i)

mod N . Depending on the exponentiation algorithm,
the number η of intermediate operations the adversary is able to predict

will vary from n/2 to n. In what follows, we denote as O(i)
j such operations.

Then, the attacker chooses a leakage model functionM and computes some

predicted values m
(i)
j =M(O(i)

j) for j ∈ {1, η}. These values are then stored

in a vector M(i) = (m
(i)
j)1≤j≤η.

4. Perform a correlation analysis between the values M(i) = (m
(i)
j)1≤j≤η, that

have been predicted, and the leakages L(i) = (�
(i)
j)1≤j≤η coming from the

Correlation Analysis against Protected SFM Implementations of RSA 107

trace T (i) at the identified points of interest. To do so, the adversary com-
putes the Pearson correlation coefficient ρ̃(L(i),M(i)), as described in Sec-
tion 2.2. (See Figure 2 for an illustration.)

5. Eventually keep the mask λ(i) that gives the best correlation value.

Fig. 2. Step 1: Correlation between predicted values m
(i)
� and points on the curve T (i)

At the end of the process, the attacker is able to link each curve T (i) to its
corresponding masked factor λ(i).

Step 2: Recovering d. Assume now that we have guessed sufficiently many
λ’s corresponding to given power consumption curves, say L for instance. In this
case, the final step consists in recovering the whole secret key d, namely guessing
its n/2 least significant bits. To do so, the adversary performs a correlation power
analysis as described in [2]. The idea is to make an hypothesis on a few bits on d,
say w at a time, from the most significant bits to the least significant ones, then
to (in)validate it using a CPA on the obtained consumption curves. So until we
have guessed the whole secret key d or until the remaining bits can simply be
recovered by a final exhaustive search, we repeat the following operations7:

1. Try all possible values for w bits of d. In practice, w may be taken quite
small, as an example 8 bits could be a good choice, the idea being to make
this exhaustive search step as fast as possible. From that hypothesis, we get
a truncated value named d, corresponding to the known most significant bits
of d, concatenated with our guess and padded with 0’s on the least significant
positions (except for the last bit which we know is 1 since d is odd).

7 The following process starts from the most significant unknown bits of d after exe-
cution of step 1 of the attack.

108 A. Bauer and É. Jaulmes

2. For each obtained value d, compute φ(N) as 3d−1
2 , see Equation (2).

3. For each curve T (i), deduce an approximation of d(i) by computing d(i) =
d + λ(i)φ(N). From these guessed bits on d(i), the adversary is able to de-

termine the corresponding intermediate operations O(i)
j during the modular

exponentiation
(
C(i)

)d(i)

mod N . One can notice that, depending on the

size of λ(i), the place of the w bits in d(i) will slightly vary From that point,
the adversary uses a model functionM and computes the predicted values

m
(i)
j =M(O(i)

j) corresponding to the intermediate operations.

4. Extract from the curves (T (i))i the leakages �
(i)
j corresponding to the same

operations. Use the correlation analysis described in Section 2.2 and compute

the correlation coefficient ρ̃
(
(�

(i)
j)i,j , (m

(i)
j)i,j

)
. (See Figure 3 to illustrate the

process.)

Fig. 3. Correlation Analysis between L curves T (i) and the corresponding guessed bits

on d(i)

5. Validate the w bits on d that give the best correlation coefficient.

5 The Attack on Protected RSA with Masked Inputs

In the previous attack, since we use a correlation analysis, we need to know
the input in order to evaluate our predictions. When the input is unknown,
the attack can be modified by performing a Collision Correlation Analysis, as
described in [23]. Indeed, even if the input is unknown, we can still predict,
from our guess on the exponent, the sequence of operations that should occur,
according to the implemented exponentiation algorithm. In the following, we
especially focus on two implementation cases.

Correlation Analysis against Protected SFM Implementations of RSA 109

5.1 The Atomic Square-and-Multiply Exponentiation Algorithm

This exponentiation technique has been proposed in [8] and is provided by Al-
gorithm 2, see Figure 1. Here, from the guess on the exponent, we are able to
deduce the sequence of operations. That is, we know when a squaring written
as a multiplication is followed by a multiplication by R1 = C (case d[j] = 1)
and when it is followed by another squaring (case d[j] = 0). In the first case,
the result R0 of the first squaring is then multiplied by R1 = C, which value is
independent from R0. In the second case, this result is multiplied by R0 itself.
Thus, in this second case we expect a correlation between the result of the first
squaring and the second operand of the next operation.

Following this exponentiation algorithm, a bit d(i)[j] of the exponent corre-

sponds to 1 or 2 modular operations. Let us denote as O(i)
f(j) the first squaring

that always occurs. The next modular operation O(i)
f(j)+1 is then either a multi-

plication by C or the squaring associated to d(i)[j− 1]. When we know the most
significant bits of d(i) down to j, we are able to determine the corresponding

values of f(j). In the following, we denote as (�in)
(i)
f(j) the leakage associated to

the loading of the second operand of O(i)
f(j) and (�out)

(i)
f(j) the one related to the

output of O(i)
f(j).

First Part of the Attack. From a guess on λ(i), we obtain the half most
significant bits of d(i). Let L1 and L2 be two sets initially empty. For all known

bits of d(i) such that d(i)[j] = 0, we add (�out)
(i)
f(j) to L1 and (�in)

(i)
f(j)+1 to L2.

Thus the correlation coefficient ρ̃(L1, L2) is maximal for the good hypothesis,
which gives us the correct value for λ(i).

Second Part of the Attack. We proceed as above, except that one guess
on the bits of the private exponent d corresponds to different values for the
corresponding bits of the masked exponents d(i). We use the same sets L1 and
L2 initially empty. For all i and all new known bits of d(i) such that d(i)[j] = 0,

we add (�out)
(i)
f(j) to L1 and (�in)

(i)
f(j)+1 to L2. Again, the correlation coefficient

ρ̃(L1, L2) is maximal for the good hypothesis, which gives us the correct value
for the targeted bits of d.

5.2 The Square-and-Multiply-Always Exponentiation Algorithm

This exponentiation is given by Algorithm 1, see Figure 1. Here, from a guess
on the private exponent, we can predict when two consecutive multiplications
will have a common operand. Indeed when d[j] = 0, the Square-and-Multiply-
Always algorithm computes R1 ← R0 ·C followed by R0 ← R0 ·R0. The R0 input
value is the same for both operations. When d[j] = 1, the algorithm computes
R0 ← R0 · C followed by R0 ← R0 · R0. The R0 value is updated after the first
multiplication and thus the two operations have no common operand.

Following this exponentiation algorithm, a bit d(i)[j] of the exponent always

corresponds to 2 modular operations. We denote O(i)
f(j) the first squaring. The

110 A. Bauer and É. Jaulmes

next modular operation O(i)
f(j)+1 is the multiplication by C and O(i)

f(j)+2 cor-

responds to the squaring associated with d(i)[j − 1]. Let �
(i)
f(j) be the leakage

associated to the loading of the first operand of O(i)
f(j).

First Part of the Attack. From a guess on λ(i), we obtain the half most
significant bits of d(i). Let L1 and L2 be two sets initially empty. For all known

bits of d(i) such that d(i)[j] = 0, we add �
(i)
f(j)+1 to L1 and �

(i)
f(j)+2 to L2. The

correlation coefficient ρ̃(L1, L2) is maximal for the good hypothesis, which gives
us the correct value for λ(i).

Second Part of the Attack. We proceed as above, except that one guess
on the bits of the private exponent d corresponds to different values for the
corresponding bits of the masked exponents d(i). We use the same sets L1 and
L2 initially empty. For all i and all new known bits of d(i) such that d(i)[j] = 0,

we add �
(i)
f(j)+1 to L1 and �

(i)
f(j)+2 to L2. That way, the correlation coefficient

ρ̃(L1, L2) is maximal for the good hypothesis, which gives us the correct value
for the targeted bits of d.

6 Simulation Results

In order to check the validity of our attack, we performed many simulations
on RSA implementations, using a public key e equal to 3, a modulus of size
1024 and 2048 bits and exponent blinding with 8-bit and 16-bit random masked
factors8. For each scenarios, we performed a hundred simulations, each of them
following the same process: simulating and storing the leakage of the imple-
mentation at each loop iteration, then performing our attack using either cor-
relation power analyses or collision correlation attacks depending whether the
inputs are known or not. More precisely, in order to simulate the leakage of
the operation Z = X.Y mod N , we produce the three consecutive leakages
(HW32(X),HW32(Y),HW32(Z)), where HW32(X) denotes the Hamming weight
of the 32 least significant bits of X . Then, we add to this value a random noise
of zero mean and standard deviation σ. Finally, each experiment has been per-
formed for different number of traces. Obviously, when this number increases,
the Pearson coefficient better estimates the value of the correlation. Thus, the
attack works better. However, it also takes longer to compute since the random
blinding factor must first be guessed for each trace.

Figure 4 presents the success rate observed over the hundred experiments
for the two steps of the known input attack. The first number represents the
success rate for guessing the correct value of λ(i). The second number represents
the success rate for guessing the correct value of d. Note that success consists
in recovering the whole secret exponent. Thus we observe that when the noise
becomes too high the success rate drops quickly since we need to accumulate 128
correct guesses (w = 8) in step 2 to obtain the whole secret key, for a 1024-bit
modulus.

8 The exponent blinding factor was chosen quite small in order to be able to launch
hundreds of attacks for comparison. However, simulations indicate that when this
factor increases it mainly impacts the computation time.

Correlation Analysis against Protected SFM Implementations of RSA 111

On the same figure, we show two variations on the main experiments. In the
first one, we used moduli of size 2048 bits instead of 1024 bits and kept λ(i)

of size 8 bits with 500 traces. We observe in this case that the success rate for
the whole attack drops quicker since a success requires more correct guesses. On
the other hand, even in high noise the guesses on λ(i) stay quite good. Further
experiments suggest that, at a given noise level, decreasing the success rate of
the first step has a negligible impact on the success of the second step. In the
second scenario, we used λ(i) of size 16 bits and kept moduli of size 1024 bits with
500 traces. We observe in this case that the success rate for the first step of the
attack drops when the noise is high. However, it has no impact when the noise
stays reasonable and the overall success rate is unchanged. This observation was
confirmed on our simulations for moduli of size 256 to 2048 bits.

On Figure 5, we show the attack on unknown inputs with the Square-and-
Multiply-Always algorithm and with the Atomic Square-and-Multiply algorithm.
In these last two cases, the success rate of the attack is more impacted by noise.
Indeed here noise impacts the two sets we try to correlate instead of one. This
observation shows that our attack is similar to second order attacks classically
applied on symmetric algorithm. We also observe in the “no noise” scenario
that some wrong guesses have the same correlation than the correct one. These
wrong branches could be detected by a more elaborating backtracking algorithm
since the correlation coefficient then drops for the next guesses. This would also
improve the results in the noisy case.

Deviation σ

N λ Traces 0 1 5 10 15 20

1024 8 500 100 100 100 100 100 96 100 71 99.8 0 93.9 0

1024 8 1000 100 100 100 100 100 100 100 100 99.8 61 93.9 0

1024 8 2000 100 100 100 100 100 100 100 100 99.8 96 93.9 55

2048 8 500 100 100 100 100 100 95 100 29 100 0 99.9 0

1024 16 500 100 100 100 100 100 96 100 71 94 0 58 0

Fig. 4. Percentage of success in the known input attack

Square-and-Multiply Always Atomic Square-and-Multiply

Traces σ = 0 σ = 1 σ = 3 σ = 5 σ = 0 σ = 1 σ = 3 σ = 5

1000 100 97 100 97 99.8 74 53.9 0 100 99 100 98 99.7 83 21.9 0

2000 100 99 100 98 99.8 76 51.4 4 100 97 100 96 98.8 84 30.6 0

Fig. 5. Percentage of success for regular algorithms, with input blinding (N = 1024
bits and λ = 8 bits)

112 A. Bauer and É. Jaulmes

7 Conclusion

We have described an attack against an SFM implementation of RSA protected
against SPA by a regular exponentiation algorithm and against DPA by exponent
and message blinding. Our attack does not require any assumption concerning
the details of the modular multiplication. It works in two steps, combining the
results of several correlation analyses. The attack only applies when the exponent
blinding factor allows an exhaustive search. This could limit the applicability of
our attack. However, in a scenario where the blinding factor may be reduced in
a small interval through fault injection, our attack may find a renewed interest.

One can observe that RSA-CRT implementations do not suffer from this at-
tack since the private exponents dp and dq corresponding to the prime factors p
and q are completely unknown from the attacker. Indeed, even if e is small, we
cannot deduce useful information about the first bits of dp and dq.

References

1. Amiel, F., Feix, B., Tunstall, M., Whelan, C., Marnane, W.P.: Distinguishing Mul-
tiplications from Squaring Operations. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.)
SAC 2008. LNCS, vol. 5381, pp. 346–360. Springer, Heidelberg (2009)

2. Amiel, F., Feix, B., Villegas, K.: Power Analysis for Secret Recovering and Reverse
Engineering of Public Key Algorithms. In: Adams, C., Miri, A., Wiener, M. (eds.)
SAC 2007. LNCS, vol. 4876, pp. 110–125. Springer, Heidelberg (2007)

3. Bastina, L.,Gierlichs,B.,Prouff,E.,Rivain,M., Standaert, F.-X.,Veyrat-Charvillon,
N.: Mutual Information Analysis: A Comprehensive Study. Journal of Cryptol-
ogy 24(2), 269–291 (2011)

4. Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal and vertical side-channel at-
tacks against secure RSA implementations. In: Dawson, E. (ed.) RSA 2013. LNCS,
vol. 7779, pp. 1–17. Springer, Heidelberg (2013)

5. Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices of the
American Mathematical Society, AMS (1999)

6. Boneh, D., Durfee, G., Frankel, Y.: An Attack on RSA Given a Small Fraction
of the Private Key Bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 25–34. Springer, Heidelberg (1998)

7. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

8. Chevallier-Mames, B., Ciet, M., Joye, M.: Lowcost Solutions for Preventing Sim-
ple Side-Channel Cryptanalysis: Side-Channel Atomicity. IEEE Transactions on
Computers 53(6), 760–768 (2004)

9. Clavier, C., Feix, B., Gagnerot, G., Giraud, C., Roussellet, M., Verneuil, V.:
ROSETTA for Single Trace Analysis – Recovery of Secret Exponent by Triangu-
lar Trace Analysis. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS,
vol. 7668, pp. 140–155. Springer, Heidelberg (2012)

10. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal Cor-
relation Analysis on Exponentiation. In: Soriano, M., Qing, S., López, J. (eds.)
ICICS 2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)

11. Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
292–302. Springer, Heidelberg (1999)

12. Fouque, P.-A., Kunz-Jacques, S., Martinet, G., Muller, F., Valette, F.: Power At-
tack on Small RSA Public Exponent. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 339–353. Springer, Heidelberg (2006)

Correlation Analysis against Protected SFM Implementations of RSA 113

13. Fouque, P.-A., Valette, F.: The Doubling Attack – Why Upwards is Better than
Downwards. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS,
vol. 2779, pp. 269–280. Springer, Heidelberg (2003)

14. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

15. Joye, M.: Highly regular m-ary powering ladders. In: Jacobson Jr., M.J., Rijmen,
V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 350–363. Springer,
Heidelberg (2009)

16. Joye, M., Yen, S.-M.: The Montgomery Powering Ladder. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer,
Heidelberg (2003)

17. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

18. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

19. Schindler, W., Itoh, K.: Exponent Blinding Does Not Always Lift (Partial) SPA
resistance to Higher-Level Security. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011.
LNCS, vol. 6715, pp. 73–90. Springer, Heidelberg (2011)

20. Walter, C.D.: Sliding Windows Succumbs to Big Mac Attack. In: Koç, Ç.K.,
Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer,
Heidelberg (2001)

21. Walter, C.D.: Longer Keys May Facilitate Side Channel Attacks. In: Matsui, M.,
Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 42–57. Springer, Heidelberg
(2004)

22. Walter, C.D.: Longer Randomely Blinded RSA Keys May Be Weaker Than Shorter
Ones. In: Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp.
303–316. Springer, Heidelberg (2008)

23. Witteman, M.F., van Woudenberg, J.G.J., Menarini, F.: Defeating RSA Multiply-
Always and Message Blinding Countermeasures. In: Kiayias, A. (ed.) CT-RSA
2011. LNCS, vol. 6558, pp. 77–88. Springer, Heidelberg (2011)

A Our Attack in Other Implementation Cases

A.1 Right-to-Left Implementation

The description can be adapted to the right-to-left case by going backward from
the result of the computation. Indeed if we look at a right-to-left “Square-and-
Multiply Always” implementation (see Algorithm 3), we see that knowing the
last t bits of d, we can deduce the last t squares and multiplies.

Algorithm 3. “Square-and-Multiply-Always” (from right to left)

R0 ← 1 ; R1 ← C
for j = 0 to n− 1 do

if d[j] = 1 then
R0 ← R0 · R1

else
t← R0 · R1

R1 ← R2
1

return R0

114 A. Bauer and É. Jaulmes

A.2 Montgomery

Our attack in the known input case can be adapted to the improved version
of the “Square-and-Multiply Always” algorithm based on Montgomery [16] (see
Algorithm 4).

Algorithm 4. “Montgomery ladder”

R0 ← 1 ; R1 ← C
for j = n− 1 to 0 do

if d[j] = 0 then
R1 ← R1 · R0

R0 ← R0 · R0

else
R0 ← R0 · R1

R1 ← R1 · R1

return R0

In the masked input case, we can distinguish a transition from ’0’ to ’1’ or
’1’ to ’0’ from no transition. Indeed when a transition occurs, the output of the
square is used as the first operand of the next multiplication. When there is no
transition the output of the squaring is used as the second operand.

A.3 Larger Public Key

When e is greater than 3, the coefficient k is no longer known for certain (see
Equation (1)). Thus it must be guessed together with the λ(i) in order to apply
the first part of the attack. Since k verifies 0 < k < e, this means that the
exhaustive search factor is multiplied by the value of the public key. In most
RSA implementations, the RSA public exponent does not exceed 216 + 1. This
means that a 216 factor should be added to the exhaustive search complexity.

B Attack Implementation: Carries and Wrong Guesses

There is an issue when performing “Step 2” of the attack: how to deal with the
carries and their potential wrong guesses implication. Indeed, in this part of the
algorithm, we are trying to guess the bits of d by small increments, setting the
lower unknown bits to 0. When the intermediate value d is used to compute

φ(N) and d(i), we may be confronted to the fact that the bits we are guessing
are wrong because of unknown carries coming up to this point in the real values.
More precisely, we may be wrong on two points:

1. When We Compute d(i) from d and φ(N). In this case, an error means
that the prediction given by the corresponding curve will be incorrect: this
adds some noise in the correlation coefficient computation. If we are not
wrong too often, this will not change the overall decision about d.

2. When We Compute φ(N) from d. In this configuration, an error means

that we will be wrong for all curves. Indeed, if φ(N) is incorrect, then all

d(i) will also be incorrect. But let us have a look at the kind of error it
implies. Assume that we predict some value a for the w bits of d we are

Correlation Analysis against Protected SFM Implementations of RSA 115

considering at this point. Thus, we can write d as [d](j+1)w+a2jw+1, where

[d](j+1)w = d− (d mod 2(j+1)w). In that case, we compute φ(N) as:

φ(N) =
3d− 1

2
=

3[d](j+1)w + a2jw + a2jw+1 + 2

2

=
3[d](j+1)w

2
+ a2jw + a2jw−1 + 1.

Let b be the value of the corresponding bits of φ(N), that is:

b =

(
3[d](j+1)w

2jw+1
+ a+ �a/2�

)
mod 2w

If we assume that b is incorrect, this means that a carry should have appeared
in the computation of b and the correct value is b + 1. In this case, the
predictions of d(i) for the guess a will all be wrong. On the other hand, the
predictions for a+ 1 will give:

φ(N) =
3[d](j+1)w

2
+ (a+ 1)2jw + a2jw−1 + 2jw−1 + 1.

As a consequence, if b′ denotes the value of the corresponding bits of φ(N),
we obtain:

b′ =
(
3[d](j+1)w

2jw+1
+ a+ 1 + �a/2�

)
mod 2w = b+ 1.

This time, we reach the correct value for φ(N). Since d(i) = d + λ(i)φ(N),

with high probability, we also have the correct value for the bits of d(i) we
are considering. The guess a+1 will have a better correlation coefficient than
the guess a. At the next step, however, the correlation will drop suddenly.
When this happens, we know that the previous guess a + 1 was incorrect
and we just have to back up one step, subtract 1 to the guess, and go on.
The simulations we have done confirm that this approach is correct.

	Correlation Analysis against Protected SFM Implementations of RSA
	1 Introduction
	2 Preliminaries
	2.1 State-of-the-Art Implementation of RSA
	2.2 Correlation Power Analysis

	3 Previous Attacks on RSA Implementations
	3.1 Statistical Analyses on Several Consumption Traces
	3.2 Attacks that Exploit an SPA Leak
	3.3 Horizontal Attacks
	3.4 Attack Proposed in this Paper

	4 The Attack on Protected RSA with Known Inputs
	4.1 Special Properties of the RSA Scheme
	4.2 Description of the Attack

	5 The Attack on Protected RSA with Masked Inputs
	5.1 The Atomic Square-and-Multiply Exponentiation Algorithm
	5.2 The Square-and-Multiply-Always Exponentiation Algorithm

	6 Simulation Results
	7 Conclusion
	References

