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Abstract. Proxy signatures allow an entity (the delegator) to delegate
his signing capabilities to other entities (called proxies), who can then
produce signatures on behalf of the delegator. Typically, a delegator may
not want to give a proxy the power to sign any message on his behalf,
but only messages from a well defined message space. Therefore, the
so called delegation by warrant approach has been introduced. Here, a
warrant is included into the delegator’s signature (the so called certifi-
cate) to describe the message space from which a proxy is allowed to
choose messages to produce valid signatures for. Interestingly, in all pre-
viously known constructions of proxy signatures following this approach,
the warrant is made explicit and, thus, is an input to the verification
algorithm of a proxy signature. This means, that a verifier learns the
entire message space for which the proxy has been given the signing
power. However, it may be desirable to hide the remaining messages in
the allowed message space from a verifier. This scenario has never been
investigated in context of proxy signatures, but seems to be interesting
for practical applications. In this paper, we resolve this issue by intro-
ducing so called warrant-hiding proxy signatures. We provide a formal
security definition of such schemes by augmenting the well established
security model for proxy signatures by Boldyreva et al. Furthermore,
we discuss strategies how to realize this warrant-hiding property and we
also provide two concrete instantiations of such a scheme. They enjoy
different advantages, but are both entirely practical. Moreover, we prove
them secure with respect to the augmented security model.

1 Introduction

Proxy signatures, first introduced in [13], allow an entity (the delegator) to del-
egate his signing capabilities to other entities (called proxies), who can then
produce signatures on behalf of the delegator. This concept has seen a con-
siderable amount of interest since its introduction and numerous (secure) con-
structions have been proposed, see, e.g., [5]. Surprisingly, only quite recently
a suitable security model for proxy signatures has been introduced [4], and
adopted to multi-level and identity-based proxy signature schemes later on [16].
Apart from standard proxy signatures, various other ”flavors” of proxy signa-
tures have been introduced, including threshold [21], one-time [20], blind [18],
ring [2], designated-verifier [19] as well as anonymous proxy signatures [9].
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In the initial paper [13], it was already observed that the delegator may not
want to give a proxy the power to sign any message on behalf of the delega-
tor, but only to sign messages from a well defined message space. To realize
this feature, [13] introduced the so called delegation by warrant approach. Here,
a signed warrant is included into the delegator’s signature (the certificate) to
describe the delegation. Thereby, any type of security policy may be included
into this warrant to enforce the restrictions under which the delegation is valid.
This approach seems to be particularly attractive and received the most atten-
tion, since the delegator can clearly define a message space for which the signing
rights are delegated to the proxy. In state of the art schemes [16,5], a warrant ω
is either the concatenation of all permitted messages or an abstract description
of the message space for which signing is being delegated, together with a certifi-
cate, which is a signature on ω (and typically other values including the proxy’s
identity and public key), under the delegator’s private signing key. An abstract
description of a message space, thereby, could, for instance, be a context-free
grammar, a regular expression, or as in [4], the description of a polynomial-time
Turing machine computing the characteristic function of all potential messages,
i.e., given a message to decide, whether the message is covered by ω or not.

Problem Statement: This plain inclusion of the warrant into the certificate,
however, means that a verifier obtains a precise description of the message space
a proxy is allowed to sign. However, this “feature” may not be desirable in some
situations. Consider for instance a proxy, who is delegated the rights to sign a
contract on behalf of the delegator and the proxy was given the power to sign
different versions of the contract, e.g., including different contract conditions
such as prices. Given such a signature from the proxy for one of these versions,
the warrant would leak all conditions, e.g., more expensive prices, the delegator
would have been willing to pay. Consequently, it would be desirable from the
point of view of the delegator to hide the remaining options from the allowed
message space, i.e., the warrant, from a verifier. Otherwise, this could compro-
mise the delegator, as a verifier can learn for instance that the delegator would
have been willing to pay a much higher price than he actually did.

In order to overcome this problem, which exists in all known proxy signature
schemes supporting the delegation by warrant feature, we introduce the notion
of a warrant-hiding proxy signature scheme. Basically, in such a signature scheme
a proxy learns the warrant, but a proxy signature does not reveal the warrant,
as it is not required as an explicit input to the proxy verification algorithm. Con-
sequently, the warrant cannot be determined by a verifier when given a proxy
signature. However, a proxy should only be able to produce valid signatures for
messages that are consistent with the warrant, i.e., messages in the message
space defined by the delegator. Thus, there must be an implicit mechanism to
check membership in the warrant for a given message with corresponding proxy
signature, but there should be no means to check membership for other mes-
sages.

Contribution: In this paper, we formally define warrant-hiding proxy signature
schemes by augmenting the state of the art security model of [5] and introducing
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an additional property for proxy signatures called privacy. The latter property
captures the fact that given a proxy signature, it is not possible to determine
the warrant under which the proxy signer has produced the proxy signature.
More precisely, this means that guessing the remaining messages in the warrant
is intractable. Basically, this can be achieved by committing to the permitted
message space and the proxy needs to provide a non-interactive proof that the
message he has signed is contained in the warrant without revealing any other
information about the remaining messages in the warrant. Consequently, we can
base such a construction generally on zero-knowledge sets [14]. Since general con-
structions thereof heavily suffer from problems with efficiency, we propose two
concrete practical constructions of such a proxy signature scheme based on the
delegation-by-certificate approach. Our instantiations can be constructed from
any secure digital signature scheme, a randomized version of the Merkle trees
yielding hiding vector commitments (without updates) and the secure uncondi-
tionally hiding polynomial commitment scheme from [12] respectively. Note that
in contrast to a naive approach, i.e., computing an independent certificate (sig-
nature of the delegator) for every allowed message, our approach uses a single
certificate for all messages. After presenting our constructions, we compare them
in terms of computational effort as well as bandwidth. Note that the proofs of
the security of our constructions in the proposed security model are given in the
full version [11]. Finally, we mention open problems for future work.

Outline: Section 2 discusses the cryptographic preliminaries. In Section 3, we
present the formal framework for proxy signatures, the security model and our
extensions to cover warrant-hiding proxy signature schemes. Section 4 discusses
general design strategies and presents our two constructions of warrant-hiding
proxy signatures as well as a comparison of their efficiency. Finally, Section 5
concludes the paper and lists open issues for future work.

2 Preliminaries

2.1 Basic Notions

Here, we briefly recall the definitions of bilinear maps, the t-SDH assumption,
standard digital signature schemes as well as pseudorandom generators.

Definition 1 (Bilinear Map). Let G,GT be two cyclic groups of the same
prime order p, where G is additive and GT is multiplicative. We call the map
e : G×G → GT a symmetric bilinear map or symmetric pairing if it is efficiently
computable and the following conditions hold:

Bilinearity: For all P1, P2 ∈ G we have for all P ∈ G:
e(P1 + P2, P ) = e(P1, P ) · e(P2, P ) and e(P, P1 + P2) = e(P, P1) · e(P, P2).

Non-degeneracy: If P generates G, then g = e(P, P ) generates GT , i.e. g �= 1.

In practice, G and GT will typically be a suitable elliptic curve group of prime
order and a torsion subgroup of some suitable finite field, respectively.
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Definition 2 (t-Strong Diffie Hellman Assumption (t-SDH)). Let p be a
prime of bitlength κ, G be a p-order group, α ∈R Z

∗
p and let (P, αP, . . . , αtP ) ∈

Gt+1 for some t > 0. Then, for every PPT adversary A there is a negligible
function ε such that

Pr

(
A(P, αP, α2P, . . . , αtP ) =

(
c,

1

α+ c
P

))
≤ ε(κ)

for any c ∈ Zp \ {−α}.

Definition 3 (Digital Signature Scheme). A digital signature scheme DSS
is a triple (K, S,V) of PPT algorithms:

K(κ): Is a key generation algorithm that takes input a security parameter κ ∈ N

and outputs a private (signing) key sk and a public (verification) key pk.

S(m, sk): Is a (probabilistic) algorithm, which takes as input a message M ∈
{0, 1}∗ and a private key sk, and outputs a signature σ.

V(σ,m, pk): Is a deterministic algorithm, which takes as input a signature σ,
a message M ∈ {0, 1}∗ and a public key pk, and outputs a single bit b ∈
{true, false} indicating whether σ is a valid signature for M under pk.

Furthermore, we require the digital signature scheme to be correct, i.e., for all
(sk, pk) ∈ K(κ) and all M ∈ {0, 1}∗ we have V(S(M, sk),M, pk) = true. A digital
signature scheme is secure, if it is existentially unforgeable under adaptively
chosen-message attacks (UF-CMA) [10]. Note that in practice, the sign and verify
algorithms will typically use a hash function to map input messages to constant
size strings, which is also known as the hash-then-sign paradigm.

Definition 4 (Pseudorandom Generator (PRG)). A pseudorandom gen-
erator f : {0, 1}κ → {0, 1}�, with � > κ being positive integers, is a function
that can be computed in polynomial time. The input s0 to the function is called
seed. A PRG is called secure if its output is computationally indistinguishable
from random when given a random seed s0.

2.2 Commitments

A commitment scheme CS as a tuple (CSetup,CCommit,COpen) of PPT algo-
rithms:

CSetup(κ): Takes a security parameter κ and produces and outputs public
parameters cpk which we assume to be implicitly input to the other two
algorithms.

CCommit(M): Takes a value M ∈ M and outputs a tuple (C, O) representing
the commitment C to M and the open information O.

COpen(C,O): Gets (C, O) and outputs either M ∈ M or ⊥ to indicate success
or failure, respectively.
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A commitment scheme is required to be hiding and binding. The former means
that the value M ∈ M is hidden in C unless the open information O is available,
whereas the latter means that is not possible to find an open information O′ such
that the given commitment C opens to M ′ �= M . Besides hiding and binding,
a commitment scheme needs to be correct, which means that for every honestly
computed commitment C, we have COpen(CCommit(M)) = M for all M ∈ M.

We call a commitment scheme r-binding, if it satisfies correctness, hiding and
relaxed-binding [1]. Relaxed-binding is a weaker notion than binding and uses a
modified security game. In this game the adversary A choses a value M . Then, is
is given a commitment (C, O) to M (the randomness r for CCommit is randomly
chosen but not controlled by A). If r-binding holds, A is not able to efficiently
find O′ computed with randomness r′ such that COpen(C, O′) = M ′ �= M . We
write CCommit(M, r) if we address an r-binding commitment scheme.

In order to support larger messages as input to the CCommit algorithm, it is
common to use the so called hash-then-commit approach. It is not hard to see
that this approach yields a secure commitment scheme assuming the existence
of secure hash functions (collision resistance) and the security of the underlying
commitment scheme. Subsequently, whenever we use commitment schemes, we
assume that the hash-then-commit paradigm is being implicitly applied.

2.3 Polynomial Commitments

The constant-size unconditionally hiding PolyCommitPed polynomial commit-
ment scheme from [12] is based on Pedersen commitments [15] and uses an
algebraic property of polynomials f(X) ∈ Zp[X ]. Namely, that (X−γ) perfectly
divides the polynomial f(X)−f(γ) for γ ∈ Zp. We briefly recall the construction:

PSetup(κ, t): Pick two groups G,GT of the same prime order p (with p being
a prime of bitlength κ) having a symmetric pairing e : G × G → GT such
that the t-SDH assumption holds. Choose two generators P,Q ∈ G and
α ∈R Z

∗
p and output ppk = (G,GT , p, e, P, αP, . . . , α

tP,Q, αQ, . . . , αtQ) as
well as psk = α.

PCommit(ppk, f(X)): Given f(X) ∈ Zp[X ] with deg(f) ≤ t, pick a random
polynomial r(X) ∈ Zp[X ] with deg(f) ≤ deg(r) ≤ t and compute the com-
mitment C = f(α)P + r(α)Q ∈ G and output C.

POpen(ppk, C, f(X), r(X)): Output (f(X), r(X)).

PVerify(ppk, C, f(X), r(X)): Verify whether

C =

deg(f)∑
i=0

f (i)(αiP ) +

deg(r)∑
i=0

r(i)(αiQ)

holds and output true on success and false otherwise.

PCreateWit(ppk, f(X), r(X), γ): Compute φ(X) = f(X)−f(γ)
X−γ , φ̂(X) = r(X)−r(γ)

X−γ

and Wγ = φ(α)P + φ̂(α)Q and output (γ, f(γ), r(γ),Wγ).
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PVerifyWit(ppk, C, γ, f(γ), r(γ),Wγ): Verify that f(γ) is the evaluation of un-
known f at point γ. This is done by checking whether

e(C, P ) = e(Wγ , αP − γP ) · e(f(γ)P + r(γ)Q,P )

holds. Output true on success and false otherwise.

A polynomial commitment scheme is secure if it is correct, polynomial binding,
evaluation binding and hiding. This scheme can be proven secure under the t-
SDH assumption in G. Note that α must remain unknown to the committer (and
thus the setup must be run by a TTP), since, otherwise, it would be a trapdoor
commitment scheme.

In one of our constructions, we require an r-binding variant of PolyCommitPed,
since the random polynomial required for the hiding is not chosen implicitly in
PCommit, but provided externally by computing it from a compact seed using a
PRG.

Lemma 1. The aforementioned modification of PolyCommitPed satisfies the r-
binding property.

Proof. In order to show that the r-binding property holds for this variant of
PolyCommitPed, we can follow the same strategy used to prove the binding of
PolyCommitPed in [12]. Note, that now the adversary is allowed to choose f(X),
but r(X) is randomly chosen by the challenger. Then, C, f(X), r(X) is given
to the adversary and the adversary needs to deliver f ′(X), r′(X) with f ′(X) �=
f(X) such that PVerify(ppk, C, f ′(X), r′(X)) returns true. It is not hard to see,
that the r-binding of this variant of PolyCommitPed can be proven using the the
same reduction to the DL problem in G as in [12]. ��

2.4 Randomized Merkle Trees

Let T be a complete binary tree of height h with n leaves and let N be the
set of nodes of T . Furthermore, let H : {0, 1}∗ → {0, 1}� be a secure hash
function, λ : N → {0, 1}� be a labeling function, κ be a security parameter and
(CSetup,CCommit,COpen) be an unconditionally hiding commitment scheme CS
producing commitments of length �. Then, T is called randomized Merkle tree if
the labeling function λ is recursively defined as follows:

λ(v) =

⎧⎪⎨
⎪⎩
H(λ(vL)||λ(vR)) if v has two children vL, vR,

H(λ(vL)) if v has one child vL, and

Ci if v is the i’th leaf,

where (Ci, Oi) = CCommit(Mi) and M = (Mi)
n
i=1 is the sequence of strings

assigned to the leaves.
Let us additionally define the authentication path or witness of a leaf i with

label Ci as WMi = (wj)
h
j=1, where the value wj at height j is defined to be the

label of the sibling of the node of height j at the unique path from Ci to the
root.
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2.5 Hiding Vector Commitments from Randomized Merkle Trees

Vector commitments allow to commit to an ordered sequence of values repre-
sented as a compact commitment and to selectively open values at given po-
sitions. For a detailed description of vector commitments, we refer the reader
to [6]. Below, we present a novel construction of vector commitments from ran-
domized Merkles trees which are additionally hiding, but do not support up-
dates and proofs of updates. Yet, it seems to be quite straight forward to modify
the construction in order to support these two operations by replacing the leaf
commitments with trapdoor commitments (chameleon hashes). Our construc-
tion uses an r-binding commitment scheme for the leaves, since we do not want
the randomizers R required for the hiding to be generated implicitly, but from a
compact seed. Clearly, one could also create a hiding vector commitment scheme
in the ordinary sense using a binding and unconditionally hiding commitment
scheme for the leaves.

Subsequently, let VectorCommitMerkle = (VKeyGen,VCommit,VOpen,VVerify)
be a tuple of PPT algorithms associated with a randomized Merkle tree T , such
that:

VKeyGen(κ): Given the security parameter κ, run CSetup(κ) to obtain cpk of
a suitable unconditionally hiding r-binding commitment scheme and output
cpk.

VCommit(M,R): Given a sequence of n messages M and a sequence of n ran-
domizers R, output the root hash C of T .

VOpen(i,M,R): Takes a leaf index i, a sequence of n messages M and a se-
quence of n randomizers R and outputs the authentication path WMi .

VVerify(C, i,Mi, ri,WMi): Takes a root hash C of a randomized Merkle tree T ,
the leaf index i, a message Mi, the randomizer ri and an authentication path
WMi and returns true if C equals the root hash reconstructed from Mi and
the authentication path WMi and false otherwise.

We note that the auxiliary information in [6] essentially corresponds to (M,R)
in our case. The security requirements are correctness and position r-binding as
in [6] and additionally hiding.

Theorem 1. Assuming the existence of secure hash functions and of secure,
unconditionally hiding r-binding commitment schemes, the above construction of
a hiding, r-binding vector commitment scheme is secure.

Proof. The proof of the scheme’s correctness can easily be verified. Since the
above construction is essentially what Steinfeld et. al implicitly use in [17], the
hiding as well as the r-binding properties follow directly from the proofs in [17].
The position binding of the above construction is immediate due to the structure
of the Merkle tree (and the security of the used hash function) and the r-binding
of the leaf commitments. ��

3 Proxy Signatures

In this section, we recall the formal model for proxy signatures and the se-
curity model of [4]. Then, we present an additional definition, capturing the
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warrant-hiding property and, finally, we define what constitutes a secure warrant-
hiding proxy signature scheme.

Definition 5 (Proxy Signature Scheme [4]). A proxy signature scheme is a
tuple PSS = (DSS, (D,P),PS,PV, ID) of PPT algorithms and the algorithms
(D,P),PS,PV, ID are given access to a potentially empty common reference
string P.1 Furthermore, DSS is a secure digital signature scheme and the other
algorithms are defined as follows:

– (D,P) is a pair of interactive probabilistic algorithms forming the (two-party)
proxy-designation protocol. Each algorithm gets the two public keys pki, pkj
for the delegator i and the proxy j, respectively, as input. D also takes as
input the private key ski of the delegator, the identity j of the proxy, and
a message space descriptor (warrant) ω for which user i wants to delegate
its signing rights to user j. P also takes as input the private key skj of
the proxy. As a result of the interaction, the expected local output of P
is skp, a proxy signing key that user j uses to produce proxy signatures
on behalf of user i, for messages in ω. D has no local output. We write
skp = (D(pki, ski, j, pkj , ω),P(pkj , skj , pki)) for the result of this interaction.

– PS is the (probabilistic) proxy signing algorithm. As input it takes a proxy
signing key skp and a message M ∈ {0, 1}∗ and outputs a proxy signature
σp.

– PV is the deterministic proxy verification algorithm. It takes a public key
pk, a message M ∈ {0, 1}∗ and a proxy signature σp as input, and outputs
true or false. In the former case, we say that σp is a valid proxy signature
for M ∈ ω relative to pk.

– ID is the proxy identification algorithm. It takes input a valid proxy signature
σp, and outputs an identity j ∈ N or ⊥ in case of an error.

As it is required by proxy signature schemes when used in practice, we assume
the existence of a public key infrastructure. This means that the public keys of
delegators and proxies are available in an authentic fashion, i.e., bound to their
identities, to all participants.

Definition 6 (Security of a Proxy Signature Scheme [4]). Let PSS =
(DSS, (D,P),PS,PV, ID) be a proxy signature scheme, A be an adversary and
κ ∈ N. We associate to PSS, A and κ the following game. First, if required, a
TTP generates the common reference string P and makes it publicly available
(we then implicitly assume that the challenger as well as A have access to P).
Then, a public and private key pair (pk1, sk1) for user 1 is generated via K(κ)
and a counter n for the number of users is initialized to 1. The game initializes an
empty array skp1 to store the self-delegated proxy signing keys and corresponding
message spaces, and empty sets DU and CS. The set DU stores the identities
of the users designated by user 1 (together with the message spaces for which
they are designated). The set CS keeps track of the set of messages for which

1 If P is empty this definition exactly matches the definition given in [4,5].
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the adversary can produce proxy signatures by user 1 on behalf of user 1 using
compromised self-delegated proxy signing keys. Adversary A is given input pk1
and it can make the following requests or queries in any order and any number
of times:

– (i registers pki) A can request to register a public key pki for user i = n+ 1
by outputting pki. The key is stored, counter n is incremented, and an empty
array skpi is created. This array will store the proxy signing keys of user 1 on
behalf of user i together with the message spaces ω to which they correspond.

– (1 designates i) A can request to interact with user 1 running algorithm
D(pk1, sk1, i, pki, ω), for some i ∈ {2, . . . , n} and some message space ω
(chosen by A). During the interaction, A plays the role of user i running
P(pki, ski, pk1). After a successful run, DU is set to DU ∪ {(i, ω)}.

– (i designates 1) A can request to interact with user 1 running P(pk1, sk1, pki),
for some i ∈ {2, . . . , n}. In the interaction, A plays the role of user i run-
ning D(pki, ski, 1, pk1, ω) for some message space ω selected by A. If skp is
the resulting proxy signing key, then the pair (skp, ω) is stored in the last
unoccupied position of skpi. A does not have access to the elements in skpi.

– (1 designates 1) A can request that user 1 runs the designation protocol with
itself for some message space ω. A is given the transcript of the interaction.
If skp is the resulting proxy signing key, the pair (skp, ω) is stored in the
next available position of skp1.

– (exposure of the l-th proxy signing key produced during self-delegation) A
can request to see skp1[l] for some l ∈ N. If skp1[l] contains a proxy signing
key and message space pair (skp, ω), then skp is returned to A and CS is set
to CS ∪ ω. Otherwise, ⊥ is returned to A.

– (standard signature by 1) A can query oracle OS(sk1, ·) with a message M
and obtain a standard signature for M by user 1, σ = S(M, sk1).

– (proxy signature by 1 on behalf of i using the l-th proxy signing key) A
can make a query (i, l,M), where i ∈ [n], l ∈ N and M ∈ {0, 1}∗, to ora-
cle OPS((skpu)u∈[n], ·, ·, ·). If skpi[l] contains a proxy signing key and mes-
sage space pair (skp, ω), we say the query is valid and the oracle returns
PS(skp,M). Otherwise, we say the query is invalid and the oracle returns ⊥.

Eventually, A outputs a forgery (M,σ) or (M,σp, pk). The output of the game
is as follows:

Forgery of a Standard Signature: If the forgery is of the form (M,σ), where
V(σ,M, pk1) = true, and M was not queried to oracle OS(sk1, ·), then return 1.

Forgery of a Proxy Signature by User 1 on Behalf of User i �= 1: If the
forgery is of the form (M,σp, pki), where PV(pki,M, σp) = 1, ID(σp) = 1, for
some i ∈ {2, . . . , n}, and no valid query (i, l,M), for l ∈ N, was made to the
oracle OPS((skpu)u∈[n], ·, ·, ·), then return 1.

Forgery of a Proxy Signature by User 1 on Behalf of User 1: If the
forgery is of the form (M,σp, pk1), where PV(pk1,M, σp) = 1, ID(σp) = 1, no
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valid query (1, l,M), for l ∈ N, was made to OPS((skpu)u∈[n], ·, ·, ·), and M /∈ CS
then return 1.

Forgery of a Proxy Signature by User i �= 1 on Behalf of User 1; User
i Was not Designated by User 1 to Sign M : If the forgery is of the form
(M,σp, pk1), where PV(pk1,M, σp) = 1 and for each message space ω for which
(ID(σp), ω) ∈ DU it holds that M /∈ ω then return 1.

Otherwise, return 0.
A wins the game, if it returns 1. We say that PSS is a secure proxy signature

scheme, if the probability of winning the above game is negligible in the security
parameter κ for all polynomial-time adversaries A.

For our privacy definition we have chosen an extractability style game instead
of an indistinguishability style game, since it is not possible to find a meaningful
notion of indistinguishability due to the fact that the adversary must not know
the entire warrant. This requires the warrant to be chosen by the challenger.

Definition 7 (Privacy of a Proxy Signature Scheme). Let the setup be
identical to the one in Definition 6. In query phase 1, A is allowed to issue the
same types of queries as in the unforgeability game. At some point, A signals the
challenger that it is ready to proceed to phase 2 by submitting the tuple (i, c)
with c > 1. Now, the challenger chooses a warrant ω∗, consisting of c random
messages from some message space M of minimum size c+1, computes the proxy
signing key skp∗ = (D(pk1, sk1, i, pki, ω

∗),P(pki, ski, pk1)) and stores the proxy
signing key to a new array skp′i. Then, in query phase 2, A is allowed to issue
queries as in phase 1. Additionally, A is allowed to query proxy signatures for
the proxy key in skp′i for all but one message M∗ in the warrant ω∗ (whereas on
receiving query l ∈ {0, . . . , c − 2} the challenger chooses an unused index l and
takes message Ml from ω∗). At some point, A outputs a warrant ω′ and wins if
ω′ = ω∗.

We say that PSS is warrant-hiding, if for all polynomial-time adversaries the
probability of winning the above game is negligibly close to 1/|M′|, where M

′

represents the message space M minus all queried messages.

Definition 8 (Secure Warrant-Hiding Proxy Signature Scheme). If a
secure PSS is warrant-hiding with respect to Definition 7, then we call PSS a
secure warrant-hiding PSS (WHPSS).

4 Warrant-Hiding Proxy Signature Schemes

In this section we give the problem statement, discuss a generic design strategy
and present concrete representation of the warrants which are used in our in-
stantiations and present the two schemes.

Problem Statement: When trying to make the warrant implicit and hidden,
one must, on the one hand, enforce that proxy signatures are only valid for
messages within the warrant, which requires some suitable representation of the
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warrant, and, on the other hand, that verifiers cannot test messages against
this representation by brute force to determine the remaining messages in the
warrant. Furthermore, it is desirable that the representation of the warrant is
compact, proxy signatures are compact and the verification of proxy signatures
does not require interaction with the delegator, i.e., the verification of warrant-
hiding proxy signatures should be non-interactive. Particular issues of interest,
from the point of view of a designator, are:

– The verification of a proxy signature should hide the remaining messages in
the warrant and

– the verification of a proxy signature should should not reveal (too much)
information on the exact size of the warrant.

The first issue is satisfied by both of our constructions and concerning the second
issue our constructions reveal an upper bound on the size of the warrant. In
Section 4.6, we, however, discuss how the second issue can be achieved, although,
reducing the efficiency of such a scheme.

A cryptographic building block that immediately comes to mind when being
confronted with this problem statement is a commitment scheme. In particular,
one seeks a commitment scheme that is capable of committing to a set of values
resulting in a compact commitment and allows to selectively prove membership
of a value in the commitment, while at the same time hiding the remaining val-
ues in the commitment. Primitives that satisfy both aforementioned properties
are zero-knowledge sets [14] and vector commitments [6]. Latter, however, needs
to be modified in a way such that it supports hiding. Another primitive, which
seems suited at first glance, but actually turns out to be unsuitable, is the con-
cept of a cryptographic accumulator. We briefly discuss these primitives in our
context below.

(Nearly) Zero-Knowledge Sets: Zero-knowledge sets (ZKS) were introduced
by Micali et. al [14]. They allow a prover to commit to an arbitrary finite set S
in such a way that for any string x he can provide an efficient proof of whether
x ∈ S or x /∈ S, without revealing any knowledge beyond this (non) member-
ship. In particular, the verifier of the proof neither learns the remaining elements
of the set S and nor the size of S. Follow up work [8,7] has instantiated ZKS
from a variety of other assumptions and improved the efficiency. In [12], it is
shown that when relaxing ZKS to nearly ZKS, which no longer require hiding
an upper bound on the cardinality of S, the size of the proof that an element is
(or is not) in a committed set is reduced by a factor of sixteen or more, when
compared to the best known ZKS construction. One of our instantiations uses
the polynomial commitment scheme introduced in [12]. Furthermore, note that
we no not require non-membership proofs in our application and, thus, do not
rely on costly general ZKS constructions. Doing so, we obtain a size of the public
parameters of O(|ω|) and a size of the proxy signature of O(1).

Hiding Vector Commitments: Vector commitments [6] allow to commit to
an ordered sequence of values represented as a compact commitment and to
selectively open values at given positions. However, the constructions of [6] do
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not provide hiding as it is, but can be extended to support hiding by applying
the vector commitments to a sequence of hiding commitments instead of mes-
sages. They additionally support updates, which is not required in our applica-
tion. Most importantly, the constructions of [6] require public parameters of size
O(|ω|2). Our proposed construction uses an efficient hiding vector commitment
from randomized Merkle trees as they are used implicitly in the construction of
content extraction signatures in [17]. Our construction does not provide updates
as it is. Nevertheless, it seems that it can easily be turned into a vector com-
mitment scheme supporting updates. This could be achieved by exchanging the
commitments of the leaves with trapdoor commitments (chameleon hash values).
In contrast to the vector commitments of [6], the public parameters are O(1),
but the size of the proxy signatures is O(log |ω|). As it is also the case with our
first construction, an upper bound of the size of the warrant is revealed (vector
commitments of [6] reveal the exact size).

Cryptographic Accumulators: A cryptographic accumulator [3] allows to
represent a finite set of values S by a single value (the accumulator), whose size
is independent of the size of S. For every accumulated value, one can compute a
witness. Having such a witness, anybody can verify that the corresponding value
has indeed been accumulated. However, it is infeasible to find a witness for a
value that was not accumulated. The basic problem with accumulators is that
they do not guarantee the hiding of the accumulated set S, which is crucial for
our application.

4.1 Warrant Representation

In our constructions, the warrant ω is a sequence of messages ω = (Mi)
c
i=1, which

is being mapped into a compact representation, i.e., of constant size, which is
then integrated into the certificate of the proxy. We stress that we do not re-
quire an explicit ordering and could also use a set representation instead, but we
use the sequence notation for a consistent description of both schemes (in the
second scheme, the messages are ordered, but the ordering is arbitrary and does
not have any meaning for our construction). Note that in contrast to an abstract
description of the message space, which allows the representation of a potentially
unbounded message space, our construction supports only fixed message spaces
in the sense that each message in this space must be known a priori. In partic-
ular, the number of messages is polynomially bounded and each message needs
to be generated by a polynomial time algorithm. However, in most practical
applications of proxy signatures such a message space is sufficient. Furthermore,
this allows us to construct proxy signatures, which provide the warrant-hiding
property. Considering potentially unbounded message spaces while hiding the
warrant seems to be far from trivial and is an interesting aspect for future work.

Polynomial Commitments: Our first construction is based on the constant-
size unconditionally hiding polynomial commitment scheme of Kate et al. [12].
Loosely speaking, this construction works in the following way. A delegator maps
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all c messages in the warrant to a polynomial of degree c, whereas the roots of
this polynomial are defined to be hash values of messages in the warrant. Then,
the delegator commits to this polynomial and signs the polynomial commitment
resulting in a certificate for the proxy. A proxy signer is then allowed to pro-
duce proxy signatures by generating witnesses for the roots of the polynomial
(representing valid messages in the warrant) and signs the witness along with
the public key of the delegator. Then, any verifier can check both signatures
and verify whether the message and the witness correspond to the committed
polynomial and represent a root of the polynomial. Consequently, the verifier
can check the correctness of a proxy signature without learning the remaining
messages in the warrant. Latter is due to the unconditional hiding property of
the polynomial commitment scheme.

Now, we need to discuss in detail how a set of valid messages (the warrant)
is represented. Instead of using ω = (Mi)

c
i=1 itself, we firstly construct a set

ωH = {H(Mi) : i = 1, . . . , c}, where H : {0, 1}∗ → Zp is a secure hash function.
From this set ωH , we secondly derive the so-called warrant polynomial m(X)
using the map

φ : 2Zp → Zp[X ] with ωH 
→
∏

H∈ωH

(X −H).

Note that the degree of m(X) is polynomially bounded, i.e., represents the size
of the warrant.

The intuition for this particular representation is that if the hash values
of messages in ω are roots of the warrant polynomial m(X), this polynomial
uniquely captures the messages given by the warrant. More precisely, a message
is in the warrant if and only if its hash value is a root of m(X), i.e., there is a
1-to-1 correspondence between the set of valid witnesses and the warrant (up to
collisions in the hash function H). Otherwise, if the valid messages did not cor-
respond to the roots of m(X) and were arbitrary evaluations, a dishonest proxy
signer would be able to generate witnesses for arbitrary messages and, in further
consequence, efficiently produce valid proxy signatures for messages outside the
warrant.

Hiding Vector Commitments from Randomized Merkle Trees: Our
second construction is based on hiding vector commitments from randomized
Merkle trees. Loosely speaking, this construction works in the following way. A
delegator generates an r-binding commitment for each of the c messages in the
warrant and then computes the root of the randomized Merkle tree T with c
leaves. This means that T aggregates commitments to all c messages in ω into a
single root hash value. Then, the delegator signs the root hash of T resulting in a
certificate for the proxy. A proxy signer is then allowed to produce proxy signa-
tures by generating witnesses WMi , which is the respective authentication path
for the leaf Ci, and signs the witness along with the public key of the delegator.
Then, any verifier can check both signatures and verify whether the message
and the witness correspond to the root hash of T . Consequently, the verifier
can check the correctness of a proxy signature without learning the remaining
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messages in the warrant. Latter is due to the unconditional hiding property of
the commitment scheme used at the leaf nodes.

4.2 The First Scheme (WHPSSPolyCommit)

Before Scheme 1 can be used, a TTP runs a setup in the following way to
produce the common reference string, which is then accessible to all parties, i.e.,
delegators, proxy signers and verifiers, in an authentic fashion:

Setup: Given a security parameter κ and an upper bound t ∈ N for the size
of the warrant, execute PSetup(κ, t) and obtain (ppk, psk). Choose a secure
PRG f : Zp → Z

t+1
p and output a suitable encoding of the tuple (f, ppk) as

the common reference string P.

(D,P): D and P are given local inputs pki, ski, j, pkj , ω and pkj , skj , pki, where ω = (Mi)
c
i=1 with

c ≤ t.
D picks a seed s ∈R Zp, computes ωH = {H(Mi) : i = 1, . . . , c} and m(X) = φ(ωH). Then,
compute r(X) ∈ Zp[X] with deg(r) = deg(m) = c with coefficients obtained evaluating f(s)
as well as

C = PCommit(ppk,m(X), r(X)) and cert = S(C‖j‖pkj , ski).
It sets the proxy signing key of user j as skp′ = (pki, s, C, j, pkj , ω, cert) and sends it to P.

Now, P computes ωH and m(X) = φ(ωH) as well as r(X) from seed s. It checks whether

V(cert,PCommit(ppk,m(X), r(X))‖j‖pkj , pki) = true

If not, return ⊥ and terminate. Otherwise, set skp = (skj , skp
′), output skp and terminate. If

P returns ⊥, D aborts. Otherwise, also D terminates correctly.
PS: Given skp,M so that there is an index l with 1 ≤ l ≤ c and Ml = M , this algorithm computes

ωH and m(X) = φ(ωH) as well as r(X) from seed s. Then, it computes hM = H(M),
rM = r(hM) as well as

WM = PCreateWit(ppk,m(X), r(X), hM ) and σ = S(WM‖rM‖pki, skj),

and returns σp = (j, C,WM , rM , pkj , cert, σ).

PV: Given pki,M, σp = (j, C,WM , rM , pkj , cert, σ), this algorithm verifies whether

V(cert, C‖j‖pkj , pki) ∧ V(σ,WM‖rM‖pki, pkj) ∧
PVerifyWit(ppk, C, H(M), 0, rM ,WM )

yields true. On success return true and false otherwise.
ID: Given σp = (j, C,WM , rM , pkj , cert, σ) output j.

Scheme 1: Warrant-hiding Proxy Signature Scheme from PolyCommitPed
(WHPSSPolyCommit)

4.3 The Second Scheme (WHPSSVectorCommit)

In contrast to Scheme 1, here the requirement of a TTP for generating a common
reference string depends on the commitment scheme used for labeling the leaves
of the randomized Merkle tree.
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(D,P): D and P are given local inputs pki, ski, j, pkj , ω and pkj , skj , pki, where ω = (Mi)
c
i=1. D picks

a seed s ∈R {0, 1}κ, chooses a secure PRG f : {0, 1}κ → ({0, 1}κ)c and computes R = f(s)
and

C = VCommit(ω,R) and cert = S(C‖j‖pkj , ski).
It sets the proxy signing key of user j as skp′ = (pki, s, C, j, pkj , ω, cert) and sends it to P. Now,
P computes R from s and checks whether

V(cert,VCommit(ω,R)‖j‖pkj , pki) = true

If not, return ⊥ and terminate. Otherwise, set skp = (skj , skp
′), output skp and terminate. If P

returns ⊥, D aborts. Otherwise, also D terminates correctly.
PS: Given skp,M so that there is an index l with 1 ≤ l ≤ c and Ml = M , this algorithm computes

R from seed s, sets rM = (rl, l) and computes

WM = VOpen(l, ω,R) and σ = S(WM‖rM‖pki, skj),

and returns σp = (j, C,WM , rM , pkj , cert, σ).

PV: Given pki,M, σp = (j, C,WM , rM , pkj , cert, σ) with rM = (rl, l), this algorithm verifies whether

V(cert, C‖j‖pkj , pki) ∧ V(σ,WM‖rM‖pki, pkj) ∧ VVerify(C, l,M, rl,WM )

yields true. On success return true and false otherwise.
ID: Given σp = (j, C,WM , rM , pkj , cert, σ) output j.

Scheme 2: Warrant-hiding Proxy Signature Scheme from Vector Commitments
(WHPSSVectorCommit)

4.4 Security

Here, we discuss the security properties of our proposed WHPSS constructions.
We are not dealing with the correctness of Scheme 1 and Scheme 2, since this
is straight-forward to verify. Due to space constraints we omit the proofs here,
and refer the reader for the full proofs of the subsequent theorems to the full
version of the paper [11]. Subsequently, we informally discuss the security of
both constructions.

In Scheme 1, the delegator, by running the delegation, commits to a message
polynomial m(X) based on an unconditionally hiding polynomial commitment
C using a random polynomial r(X). Hence, since the delegator does not sign the
warrant itself, but a representation thereof (the commitment), we need to guar-
antee that the delegator is not able to change the warrant later on, i.e., finding
polynomials m′(X), r′(X) with m(α) = m′(α) as well as r(α) = r′(α), which
would violate the binding of PolyCommitPed. Now, we argue why the warrant-
hiding property holds. Let C be a commitment to some warrant polynomial
m(X) of degree c. Note that PolyCommitPed unconditionally hides m(X) in C
as long as r(X) is unknown (r(X) is only known to the proxy). Along with a
proxy signature, a root of m(X) and an evaluation of the random polynomial
r(X) are being disclosed. It is not possible to interpolate r(X) unless c+1 (with
c being the size of the warrant) distinct evaluations of r(X) are known, which
will never happen and, thus, the hiding of PolyCommitPed and the security of the
used PRG holds. The warrant polynomial m(X) can only be reconstructed from
all c roots, however, then, we no longer need the warrant to be hidden, since
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then all messages from the warrant are already known. Latter means that the
unknown randomizers can not be determined.

Theorem 2. Assuming the r-binding of PolyCommitPed, the existence of secure
hash functions and the security of the DSS scheme, Scheme 1 is a secure PSS.

Theorem 3. Assuming the unconditional hiding of PolyCommitPed and the ex-
istence of secure PRGs, Scheme 1 is a warrant-hiding PSS.

In Scheme 2, the delegator, by running the delegation, commits to a sequence
of messages and randomness based on VectorCommitMerkle producing a root hash
C. As above, due to the binding of the commitment scheme we guarantee that
the delegator cannot change the warrant afterwards. The warrant-hiding prop-
erty holds, because even if an adversary gets to know all the leaf commitments,
the respective messages are hidden due to the unconditionally hiding leaf com-
mitment and the security of the used PRG. Latter means that the unknown
randomizers can not be determined.

Theorem 4. Assuming the r-binding of VectorCommitMerkle, the existence of se-
cure hash functions and the security of the DSS scheme, Scheme 2 is a secure
PSS.

Theorem 5. Assuming the unconditional hiding of VectorCommitMerkle and the
existence of secure PRGs, Scheme 2 is a warrant-hiding PSS.

Taking the above results together, we obtain the following result:

Corollary 1. Scheme 1 and Scheme 2 are both secure WHPSS.

4.5 Efficiency Comparison

In Table 1, we analyze the complexity of both introduced schemes in terms of
computational costs of all involved algorithms as well as the sizes of parame-
ters, certificates (delegations) and proxy signatures. We now briefly highlight
the major differences between both schemes. In terms of computational effort,
WHPSSPolyCommit has higher costs for signature generation, but requires constant
time for signature verification. In contrast, WHPSSVectorCommit is faster in signa-
ture generation, but has higher cost for verification (although in practice, the op-
erations are cheap hash function evaluations). In terms of size, WHPSSPolyCommit

Table 1. Comparison of Costs of Scheme 1 and Scheme 2

Computation Size
Scheme D P PS PV ID P cert σp

WHPSSPolyCommit O(|ω|) O(|ω|) O(|ω|) O(1) O(1) O(|ω|) O(1) O(1)
WHPSSVectorCommit O(|ω|) O(|ω|) O(log |ω|) O(log |ω|) O(1) O(1) O(1) O(log |ω|)
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has constant size proxy signatures, but the parameters P generated by a TTP
are linear in the warrant size. In contrast, WHPSSVectorCommit has small constant
size parameters P, but a proxy signature size logarithmic in the size of the war-
rant. We note that depending on the actual unconditionally hiding commitment
scheme used in the construction of the randomized Merkle tree, also here a TTP
may be required to be involved in the generation of P, e.g., when using Pedersen
commitments.

4.6 On Hiding the Warrant Size

As already noted, both constructions reveal an upper bound on the warrant size.
More precisely, in case of WHPSSPolyCommit this upper bound is t, which may be
adjusted to be larger than any value that allows to draw meaningful conclusions
for practical applications. Similarly to above, in case of WHPSSVectorCommit one
can artificially enlarge the height of the hash tree and introduce dummy leaves to
hide the warrant size. Clearly, both cases reduce practicality with increasing the
upper bound. In theory, ZKS achieve hiding the cardinality of the set. However,
the parameters therefore need to be chosen in a way that they are larger than
any meaningful set size, which in practice does not improve on our modifications.

5 Conclusion

In this paper, we have introduced a new type of proxy signatures following the
delegation by warrant approach. These so called warrant-hiding proxy signatures
enable a delegator to restrict the message space for a proxy while hiding this
message space (warrant) from verifiers.

An interesting question for future work is to construct such signature schemes
for potentially unbounded message spaces which do not require exponential effort
in producing a delegation. Nevertheless, this does not seem to be straight-forward
when seeking efficient constructions suitable for practical applications. It may be
interesting to study the security in context of multi-level proxy signatures [16].
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