
Security Analysis of the RC4+ Stream Cipher

Subhadeep Banik1, Santanu Sarkar2, and Raghu Kacker2

1 Applied Statistics Unit, Indian Statistical Institute,
203 B T Road, Kolkata 700 108, India

s.banik r@isical.ac.in
2 National Institute of Standards and Technology, 100 Bureau Drive, Stop 8930

Gaithersburg, MD 20899-8930, USA
santanu.sarkar@nist.gov

Abstract. The RC4+ stream cipher was proposed by Maitra and Paul at
Indocrypt 2008. The authors had claimed that RC4+ ironed out most of
the weaknesses of the alleged RC4 stream cipher and was only marginally
slower than RC4 in software. In this paper we show that it is possible
to mount a distinguishing attack on RC4+ based on the bias of the first
output byte. The distinguisher requires around 226 samples produced
by different keys of RC4+. In the second part of the paper we study the
possibility of mounting the differential fault attack on RC4 proposed by
Biham et. al. in FSE 2005, on RC4+. We will show that that the RC4+

is vulnerable to differential fault attack and it is possible to recover the
entire internal state of the cipher at the beginning of the PRGA by
injecting around 217.2 faults.

Keywords: Cryptanalysis, Differential Fault Attack, Distinguishing At-
tack, RC4, RC4+, Stream Cipher.

1 Introduction

There has been extensive research in recent years to come up with RC4-like
stream ciphers that while marginally slower in software, would wipe out the
known shortcomings of RC4. Many such ciphers like RC4A [10], NGG [9], GGHN [4],
VMPC [14] have been proposed to fulfil this objective. However, all the aforemen-
tioned ciphers have had distinguishing attacks reported against them [7,11–13].
RC4+ is another stream cipher that belongs to this family. The cipher was pro-
posed by Maitra and Paul at Indocrypt 2008 [5]. The authors had claimed that
RC4+ while marginally slower than RC4 in software, would resist all the known
distinguishing and state recovery attacks against RC4. To the best of our knowl-
edge, no cryptanalytic advance has been made against this cipher.

Description of the Cipher. The physical structure of RC4+ is the same as
that of RC4. It consists of a permutation S of N = 256 elements from the integer
ring Z256. It also uses two index pointers i, j of size 1 byte each. As in RC4, during
the Key Scheduling Algorithm(KSA), S is initialized to the identity permutation

G. Paul and S. Vaudenay (Eds.): INDOCRYPT 2013, LNCS 8250, pp. 297–307, 2013.
c© Springer International Publishing Switzerland 2013

298 S. Banik, S. Sarkar, and R. Kacker

and mixed using a Secret KeyK of size l bytes (typically l = 16). Then, the array
S is further scrambled using an l byte IV, after which another layer of zig-zag
scrambling is performed. The exact details of the KSA are given in Table 1. Note
that all addition operations are performed in Z256, and ⊕ denotes bitwise-XOR.
The array V used in the KSA is defined as

V [i] =

⎧
⎨

⎩

IV [127− i], if 128− l ≤ i ≤ 127,
IV [i− 128], if 128 ≤ i ≤ 127 + l
0, otherwise.

Table 1. KSA routine for RC4+

Input: Secret Key K, Initial
Vector IV

Output: Permutation S on Z256

for i = 0 to 255 do
S[i] = i;

end
j ← 0
Key Loading

for i = 0 to 255 do

j ← j + S[i] +K[i mod l];
Swap S[i], S[j];

end
IV Loading

for i = 127 to 0 do

j ←
(j + S[i]) ⊕ (K[i mod l] + V [i]);
Swap S[i], S[j];

end

for i = 128 to 255 do

j ←
(j + S[i]) ⊕ (K[i mod l] + V [i]);
Swap S[i], S[j];

end

Zig-Zag Scrambling

for y = 0 to 255 do
if y ≡ 0 mod 2 then

i = y
2
;

end
else

i = 128 − y+1
2

;
end
j ← j + S[i] +K[i mod l];
Swap S[i], S[j];

end

The PRGA routine of RC4+ deviates slightly from the simplistic structure
of RC4. In order to protect against the well known second output byte bias of
Mantin-Shamir [6] and the permutation recovery attack of Maximov and Khovra-
tovich [8], the designers propose to make the output keystream byte functions
of a few other locations of the permutation array S. The details of the PRGA
routine are given in Table 2. Note that � and � denote right and left bitwise
shifts respectively.

Security Analysis of the RC4+ Stream Cipher 299

Table 2. PRGA routine for RC4+

Input: Permutation S on Z256

Output: Output Keystream bytes Z

i = j = 0;
while Keystream is required do

i← i+ 1;
j ← j + S[i];
Swap S[i], S[j];

t← S[i] + S[j];
t′ ← (S[i� 3⊕ j � 5] + S[i� 5⊕ j � 3])⊕ 0xAA;
t′′ ← j + S[j];

Zi = (S[t] + S[t′])⊕ S[t′′];
end

Our Contribution and Organization of the Paper. In this paper we will
show that the first output byte produced by RC4+ is negatively biased towards 1.
In fact we will prove that the probability that the first output byte is equal to 1 is
around 1

N − 1
2N2 , where N = 256 is the number of elements of the array S used in

the design. Using this observation we will mount a distinguishing attack against
RC4+ that requires around 226 output keystreams produced by (a) Secret Keys
chosen uniformly at random or (b) any fixed Secret Key used with IVs chosen
unformly at random. In the second part of the paper we revisit the Differential
Fault Attack on RC4 proposed by Biham et. al. in FSE 2005 [1]. We explore
the possibility of mounting such a fault attack on RC4+. We will show that by
injecting around 217.2 faults, it is possible to recover the internal state of the
cipher efficiently.

2 Distinguishing Attack on RC4+

In this section we will prove that the first output byte Z1 (when the value of the
index i = 1) is negatively biased towards 1. We will prove that Pr(Z1 = 1) =
1
N − 1

2N2 . The initial state of the RC4+ PRGA is denoted by S0.

Lemma 1. Let S0 be a random permutation on {0, 1, 2, . . . , 255}. If S0[1] = 1
and S0[2] is even, then Z1 can never take the value 1.

Proof. We refer to the PRGA algorithm in Table 2. Initially i = j = 0. After
the increment operations the new values of i, j are as follows: i = 0+ 1 = 1 and
j = 0 + S0[i] = 0 + S0[1] = 1. Since i = j even after the increment operations,
the subsequent swap operation does not bring about any change in the array S0.
Thereafter the values of t, t′, t′′ are calculated as follows:

t = S0[i] + S0[j] = 2 · S0[1] = 2.

300 S. Banik, S. Sarkar, and R. Kacker

t′ = (S0[i � 3⊕ j � 5] + S0[i � 5⊕ j � 3])⊕ 0xAA

= (S0[1 � 3⊕ 1 � 5] + S0[1 � 5⊕ 1 � 3])⊕ 0xAA

= (2 · S0[32])⊕ 0xAA

Finally t′′ = j + S0[j] = 1 + S0[1] = 1 + 1 = 2. Therefore we have Z1 =
(S0[2] + S0[t

′])⊕ S0[2]. Suppose that Z1 = 1, then we will have

(S0[2] + S0[t
′])⊕ S0[2] = 1 ⇒ S0[2] + S0[t

′] = S0[2]⊕ 1

Since S0[2] is even, we must have S0[2] ⊕ 1 = S0[2] + 1. Hence the previous
equation reduces to:

S0[2] + S0[t
′] = S0[2] + 1 ⇒ S0[t

′] = 1

S0 is a permutation and hence injective. So S0[t
′] = S0[1] = 1 can only imply

that t′ = 1. Thus we have

(2 · S0[32])⊕ 0xAA = 1

The LHS of the above equation is clearly an even number whereas the RHS is
odd. This gives rise to a contradiction, and therefore Z1 = 1 can clearly not
hold. ��
Corollary 1. The above Lemma would still hold if any even pad instead of 0xAA
were used in the design.

Theorem 1. Let S0 be a random permutation on {0, 1, 2, . . . , 255}. The prob-
ability that Z1 = 1 is given by the equation Pr(Z1 = 1) = 1

N − 1
2N2 (where

N = 256).

Proof. Let E denote the event: “S0[1] = 1 and S0[2] is even”. Then it is clear

that Pr[E] =
N
2 ·(N−2)!

N ! ≈ 1
2N . From Lemma 1, we have Pr[Z1 = 1|E] = 0. By

standard randomness assumptions, we have Pr[Z1 = 1|Ec] = 1
N (this has been

verified by extensive computer experiments with 220 random keys). Therefore
we have

Pr[Z1 = 1] = Pr[Z1 = 1|E] · Pr[E] + Pr[Z1 = 1|Ec] · Pr[Ec]

= 0 · 1

2N
+

1

N
·
(

1− 1

2N

)

=
1

N
− 1

2N2
.

��
We now state the following theorem from [6], which outlines the number of
output samples required to distinguish two distributions X and Y .

Theorem 2. (Mantin-Shamir [6]) Let X, Y be distributions, and suppose that
the event e happens in X with probability p and in Y with probability p(1 + q).

Then for small p and q, O
(

1
pq2

)
samples suffice to distinguish X from Y with

a constant probability of success.

Security Analysis of the RC4+ Stream Cipher 301

Distinguishing RC4+ from Random Sources. Let X be the probability dis-
tribution of Z1 in an ideal random stream, and let Y be the probability dis-
tribution of Z1 in streams produced by RC4+ for randomly chosen keys. Let
the event e denote Z1 = 1, which occurs with probability of 1

N in X and
1
N − 1

2N2 = 1
N · (1− 1

2N

)
in Y . By using the Theorem 2 with p = 1

N and
q = − 1

2N , we can conclude that we need about 1
pq2 = 4 · N3 = 226 output

samples to reliably distinguish the two distributions.

Experimental Results. By performing extensive computer simulations with
(a) one billion random keys, and (b) a fixed key with one billion random IVs, the
probability Pr[Z1 = 1] was found to be around 2−8 − 2−17.03. This is consistent
with the theoretical value of 1

N − 1
2N2 proven in Theorem 1.

3 Differential Fault Analysis of RC4+

In [1], a Differential Fault Attack and an Impossible Fault Attack of the RC4

stream cipher was proposed. The Impossible Fault Attack uses random faults on
the i or j indices of the RC4 PRGA to drive the cipher into a special state called
Finney state [3]. The Finney states are called impossible states because they can
not occur under normal mode of operation of RC4 and hence the unusual name
of the attack. By injecting around 216 faults on either the i or j register, the
cipher is expected to enter a Finney State. From observing the faulty output
bytes of RC4 it is possible to assess if the cipher has indeed entered a Finney
State. Since any Finney state cycles back after 255 · 256 = 65280 iterations
of the cipher, the attacker selects one of the interleaved cycles in the output
stream as the internal state. Once the internal state is obtained at some point
in time, it is possible to backtrack and find the initial state at the beginning of
the PRGA. Note that, since the PRGA update operations of RC4 and RC4+ are
exactly similar, an impossible fault attack on RC4+ may also be carried out using
the same techniques outlined in [1].

Applying the Differential Fault Attack (DFA) of [1] to RC4+, however, is not
so straightforward. Before proceeding, we note that the PRGA of RC4 is exactly
the same as that of RC4+, the only difference being that RC4 outputs S[t] instead
of (S[t] + S[t′])⊕ S[t′′]. We will state in brief the DFA algorithm in [1].

A. Perform a key setup (KSA) with the unknown key and run the RC4 PRGA
for around 1000 iterations, and record the output stream Zi, (1 ≤ i ≤ 1000)
for later analysis.

B. Process the following 256 times with l being set from 0 to 255, giving 256
faulty output streams

1. Restart the cipher and perform a key setup with the same unknown key.
2. Make a fault in S[l].
3. Run the RC4 PRGA 30 steps, and record the faulty output stream Z1

i [l]
for later analysis.

302 S. Banik, S. Sarkar, and R. Kacker

C. Repeat Step B with fault injection in kth (2 ≤ k ≤ 1000) PRGA iteration
instead of just after key setup. Record the faulty keystream sequence Zk

i [l]
in each case (thus Zk

i [l] is the faulty ith keystream byte when the location
S[l] has been faulted at PRGA round k).

For any i, the output byte Zi is a function of just 3 locations of the S array:
i, j, S[i] + S[j]. So evidently, the output byte of all the Zi

i [l]’s (note Zi
i [l] is the

first output byte obtained after faulting S[l] at round i), except for three of them,
are the same as in the faultless output byte Zi. The identification of these three
streams leak the values of i, j, S[i]+S[j], but not which is which. Of course, the
value of i is always known, thus the only task is to identify which is j and which
is S[i] +S[j]. After the values of j, S[i] +S[j] are obtained for sufficiently many
PRGA rounds i, a cascade guessing technique is employed in [1] to eliminate
incorrect guesses of j from j, S[i] + S[j] and thereafter reconstruct the initial
permutation S. For more details, we refer the reader to [1].

However in RC4+, the output byte is a function of 7 locations of the S array:
i, j, S[i] + S[j], j + S[j], i � 3 ⊕ j � 5, i � 5 ⊕ j � 3, (S[i � 3 ⊕ j �
5] + S[i � 5 ⊕ j � 3])⊕ 0xAA. Therefore repeating the above procedure in the
case of RC4+ would leak a maximum of 7 indices in each round, of which only the
value of i is known with certainty. The values of the other 6 indices can not be
assigned with certainty. Thus, on the face of it, performing DFA on RC4+ seems
to be more difficult than RC4. However as we will see in Section 3.1, this is not
so.

3.1 Inferring the Values of j in Each Round

As we have seen, performing steps A, B, C for RC4+, leaks the values of 6
indices. Although the attacker knows that these are the values of the indices
j, S[i]+S[j], j+S[j], i � 3⊕ j � 5, i � 5⊕ j � 3, (S[i � 3⊕ j � 5]+S[i �
5⊕ j � 3])⊕ 0xAA, he is unable to ascertain which of these 6 values correspond
to which index. We will later see in Section 3.2, that if the attacker can correctly
establish the value of only the index j, it will be enough to reconstruct the
permutation S at the beginning of the PRGA. Before we outline our strategy to
find the value of j, we will look at a result that will help us build the attack.

Lemma 2. For any value of i, consider two values j1, j2. If i � 3⊕ j1 � 5 =
i � 3⊕ j2 � 5, and i � 5⊕ j1 � 3 = i � 5⊕ j2 � 3, then j1 = j2.

Proof. Rearranging the terms in both equations we get (j1 ⊕ j2) � 5 = 0 =
(j1 ⊕ j2) � 3. Then, j1 ⊕ j2 = 0 is the only solution to the equation and so
j1 = j2.

Ascertaining j. For any round i, the attacker has with him 6 values corre-
sponding to the indices j, S[i] + S[j], j + S[j], i � 3 ⊕ j � 5, i � 5 ⊕ j �
3, (S[i � 3 ⊕ j � 5] + S[i � 5 ⊕ j � 3])⊕ 0xAA. Let us call these six val-
ues k1, k2, . . . , k6. He of course does not know the correspondence between the

Security Analysis of the RC4+ Stream Cipher 303

k1, . . . , k6 and the indices. Without loss of generality let k1 be the correct value
of j. Then evaluating the functions i � 3⊕ k1 � 5 and i � 5⊕ k1 � 3 will lead
to two of the values in k2, k3, . . . , k6 i.e. those corresponding to i � 3⊕j � 5 and
i � 5⊕ j � 3. The probability that any other ka, 2 ≤ a ≤ 6 will on evaluating
i � 3⊕ ka � 5 and i � 5⊕ ka � 3 will lead to two elements of {k1, k2, . . . , k6}
is very low. Therefore given any i the strategy will be as follows

• For a = 1 to 6

1. Compute Ma = i � 3⊕ ka � 5 and Na = i � 5⊕ ka � 3.
2. If Ma, Na ∈ {k1, k2, k3, k4, k5, k6} then j = ka.

The strategy of the attacker will be to determine the values of j for around
602 consecutive values of i. As will be seen in Section 3.2, this will suffice to
reconstruct the permutation S at the beginning of the PRGA.

Error Analysis. Lemma 2 guarantees that any value ka different j, when used
to calculate Ma, Na will result in values �= i � 3 ⊕ j � 5 and i � 5 ⊕ j � 3.
Therefore, a confusion will only occur when some value ka �= j on evaluating
i � 3⊕ka � 5 and i � 5⊕ka � 3 also leads to two elements of {k1, k2, . . . , k6}
(which are not equal to i � 3⊕ j � 5 and i � 5⊕ j � 3). In such an event the
attacker must guess one from the multiple values of j extracted by the algorithm.
Experiments with 220 random keys show that in the first 602 rounds there are
around 5 to 6 confusions on average, and each confusion usually gives no more
than 2 values of j to choose from. The attacker can simply guess the values of j
during these rounds and use it in the algorithm for state recovery that will be
discussed in the next subsection.

Fault Requirement. As we will see in the next subsection, around 602 values
of j are required to reconstruct S. Since each round requires 256 faults, the total
fault requirement is around 602× 256 ≈ 217.23.

3.2 Reconstructing the Permutation S

We will now present the Algorithm 1 that will be used to reconstruct the state
S. The technique used here is similar to the algorithm presented in [2]. The
algorithm works under the principle that if j1, j2 are the values of j in two
successive PRGA rounds then the the value of S[i1] is given as j2 − j1.

We assume that the algorithm starts from PRGA round t armed with M
values of j in consecutive PRGA rounds. First, a two dimensional array acc is
used, whose r-th row contains the triplet (ir, jr, zr). After each subsequent round
t + r, the algorithm reverts to the initial round t and in the process uses new
entries to check if the array guess (which is the temporary array used to guess
the state S) can be populated further. Thereafter the algorithm again performs
a forward pass up to the round t+ r + 1 to further populate the array guess as
much as possible. The strategy is formally presented in Algorithm 1.

304 S. Banik, S. Sarkar, and R. Kacker

Input: (it, jt), {(it+r, jt+r, zt+r : r = 1, . . . ,M − 1)}.
Output: Permutation array St+m for some m ∈ [0,M − 1].
numKnown← 0;0.1

m← 0;0.2

for u from 0 to N − 1 do0.3

guess[u]← EMPTY ;0.4

end
acc[0][0] ← it;0.5

acc[0][1] ← jt;0.6

for u from 1 to M − 1 do0.7

acc[u][0] ← it+u;0.8

acc[u][1] ← jt+u;0.9

acc[u][2] ← zt+u;0.10

end
repeat0.11

it+m+1 ← acc[t+m+ 1][0], jt+m+1 ← acc[t+m+ 1][1],0.12

zt+m+1 ← acc[t +m+ 1][2];
if guess[it+m+1] = EMPTY then0.13

guess[it+m+1]← jt+m+1 − jt+m;0.14

end
backtrack(t+m, t);0.15

processForward(t, t+m+ 1);0.16

m← m+ 1;0.17

numKnown← Number of non-empty entries in the array guess;0.18

until numKnown = N − 1 OR m = M − 1 ;
if numKnown = N − 1 then0.19

Fill the remaining single EMPTY location of the array guess;0.20

for u from 0 to N − 1 do0.21

St+m[u]← guess[u];0.22

end

end

Algorithm 1. The algorithm for state recovery with backward and
forward passes.

Security Analysis of the RC4+ Stream Cipher 305

Algorithm 1 uses two subroutines. The subroutine backtrack(r, t) presented in
Algorithm 2 performs a backward pass, tracing all state information back from
the current round r to a previous round t < r. On the other hand, the subroutine
processForward(r, t), presented in Algorithm 3 evolves the state information in
the forward direction from a past round r to the current round t > r. Note that
Algorithm 1 returns the array St+m (the value of S at PRGA round t+m) where
m is the minimal value for which St+m can be fully constructed. Thereafter the
value of S at any previous round can be easily calculated as the state update of
RC4+, like RC4, is one-one and invertible.

Subroutine backtrack(r, t)
repeat1.1

ir ← acc[r][0];1.2

jr ← acc[r][1];1.3

swap(guess[ir], guess[jr]);1.4

r ← r − 1;1.5

until r = t ;

Algorithm 2. Subroutine backtrack

Experimental Results. We present some experimental evidences. Experi-
mental result showing the average number of bytes recovered (over 100 random
simulations) against the number of rounds used is shown in Table 3. It shows
that around 602 consecutive values of j are required to reconstruct the entire of
S.

Table 3. No. of rounds vs. average no. of bytes recovered for Algorithm 1

Rounds M 100 200 300 400 500 602
#Bytes Recovered 84 144 194 233 249 255

4 Conclusion

The paper presents some weaknesses of the RC4+ stream cipher proposed by
Maitra and Paul in Indocrypt 2008. Firstly, a distinguishing attack requiring
around 226 output samples is presented, based on the bias of the first output
byte. In the second part of the paper, a Differential Fault Attack requiring around
217.2 faults is reported against the cipher. The results show that designing re-
inforcements to strengthen RC4 is not an easy task. It would be worthwhile to
discover a design paradigm that not only rids RC4 of its weaknesses but also
preserves its innate simplicity.

306 S. Banik, S. Sarkar, and R. Kacker

Subroutine processForward(r, t)
repeat2.1

ir = acc[r][0];2.2

jr = acc[r][1];2.3

zr = acc[r][2];2.4

tr = Sr[ir] + Sr[jr];2.5

t′r = (Sr[ir � 3⊕ jr � 5] + Sr[ir � 5⊕ jr � 3])⊕ 0xAA;2.6

t′′r = jr + Sr[jr];2.7

swap(guess[ir], guess[jr]);2.8

if

(
guess[ir] �= EMPTY ∧ guess[jr] �= EMPTY ∧ guess[tr] �=

2.9

EMPTY ∧ guess[ir � 3⊕ jr � 5] �= EMPTY ∧ guess[ir �
5⊕ jr � 3] �= EMPTY ∧ guess[t′r] �= EMPTY

)
then

if guess[t′′r] = EMPTY then2.10

guess[t′′r]← zr ⊕
(
guess[tr] + guess[t′r]

)
;2.11

end

end

if

(
guess[ir] �= EMPTY ∧ guess[jr] �= EMPTY ∧ guess[tr] �=

2.12

EMPTY ∧ guess[ir � 3⊕ jr � 5] �= EMPTY ∧ guess[ir �
5⊕ jr � 3] �= EMPTY ∧ guess[t′′r] �= EMPTY

)
then

if guess[t′r] = EMPTY then2.13

guess[t′r]←
(
zr ⊕ guess[t′′r]

)− guess[tr];2.14

end

end

if

(
guess[ir] �= EMPTY ∧ guess[jr] �= EMPTY ∧ guess[ir � 3⊕ jr �

2.15

5] �= EMPTY ∧ guess[ir � 5⊕ jr � 3] �= EMPTY ∧ guess[t′r] �=
EMPTY ∧ guess[t′′r] �= EMPTY

)
then

if guess[tr] = EMPTY then2.16

guess[tr]←
(
zr ⊕ guess[t′′r]

)− guess[t′r];2.17

end

end
r ← r + 1;2.18

until r = t ;

Algorithm 3. Subroutine processForward

Security Analysis of the RC4+ Stream Cipher 307

References

1. Biham, E., Granboulan, L., Nguyen, P.Q.: Impossible Fault Analysis of RC4 and
Differential Fault Analysis of RC4. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005.
LNCS, vol. 3557, pp. 359–367. Springer, Heidelberg (2005)

2. Das, A., Maitra, S., Paul, G., Sarkar, S.: Some Combinatorial Results towards
State Recovery Attack on RC4. In: Jajodia, S., Mazumdar, C. (eds.) ICISS 2011.
LNCS, vol. 7093, pp. 204–214. Springer, Heidelberg (2011)

3. Finney, H.: An RC4 cycle that can’t happen. Posting to sci.crypt (September 1994)
4. Gong, G., Gupta, K.C., Hell, M., Nawaz, Y.: Towards a General RC4-Like

Keystream Generator. In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS,
vol. 3822, pp. 162–174. Springer, Heidelberg (2005)

5. Maitra, S., Paul, G.: Analysis of RC4 and Proposal of Additional Layers for Better
Security Margin. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT
2008. LNCS, vol. 5365, pp. 27–39. Springer, Heidelberg (2008)

6. Mantin, I., Shamir, A.: A Practical Attack on Broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002)

7. Maximov, A.: Two Linear Distinguishing Attacks on VMPC and RC4A and Weak-
ness of RC4 Family of Stream Ciphers. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 342–358. Springer, Heidelberg (2005)

8. Maximov, A., Khovratovich, D.: New State Recovery Attack on RC4. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 297–316. Springer, Heidelberg (2008)

9. Nawaz, Y., Gupta, K.C., Gong, G.: A 32-bit RC4-like Keystream Generator. IACR
Cryptology ePrint Archive 2005, 175 (2005)

10. Paul, S., Preneel, B.: A New Weakness in the RC4 Keystream Generator and an
Approach to Improve the Security of the Cipher. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 245–259. Springer, Heidelberg (2004)

11. Paul, S., Preneel, B.: On the (In)security of Stream Ciphers Based on Arrays and
Modular Addition. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 69–83. Springer, Heidelberg (2006)

12. Tsunoo, Y., Saito, T., Kubo, H., Shigeri, M., Suzaki, T., Kawabata, T.: The
Most Efficient Distinguishing Attack on VMPC and RC4A. In: SKEW (2005),
http://www.ecrypt.eu.org/stream/papers.html

13. Tsunoo, Y., Saito, T., Kubo, H., Suzaki, T.: A Distinguishing Attack on a Fast
Software-Implemented RC4-Like Stream Cipher. IEEE Transactions on Informa-
tion Theory 53(9), 3250–3255 (2007)

14. Zoltak, B.: VMPC One-Way Function and Stream Cipher. In: Roy, B., Meier, W.
(eds.) FSE 2004. LNCS, vol. 3017, pp. 210–225. Springer, Heidelberg (2004)

http://www.ecrypt.eu.org/stream/papers.html

	Security Analysis of the RC4+ Stream Cipher
	1 Introduction
	2 Distinguishing Attack on RC4+
	3 Differential Fault Analysis of RC4+
	3.1 Inferring the Values of j in Each Round
	3.2 Reconstructing the Permutation S

	4 Conclusion
	References

