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Abstract. In a basic (t, n)-threshold secret sharing scheme the adver-
sary is passive and the security goal is to ensure that unauthorized sub-
sets do not learn any information about the secret. In this paper we
consider the case that the corrupted parties submit incorrect shares and
there are extra security goals with respect to incorrect shares. We con-
sider two such security requirements: in a (t, n)-threshold robust secret
sharing (RSS) scheme we require that the shared secret can be recovered
from the set of all n shares even if up to t of them are incorrect; and in
a (t, n)-threshold secret sharing scheme with cheating detection (SSCD)
property we require to prevent cheaters who try to make another player
reconstruct an invalid secret.

We make the following contributions. Firstly, we construct a robust
(t, n)-threshold secret sharing (RSS) scheme with the lowest known share
size for n = 2t+1. In our RSS scheme the share size is log2 s+log2

1
δ
+n

bits which is less than the share size of the best known scheme by
log2

1
δ
+ n bits. Here log2 s bits denotes secret size and δ denotes er-

ror probability in reconstructing the correct secret. We then consider the
problem of reducing the size of public information in RSS. We will moti-
vate this problem and propose a scheme that nearly halves the amount
of public information. For this we first construct a new variant of Shamir
secret sharing scheme and then modify it to provide robustness. The con-
struction achieves the least total share storage/communication among all
known threshold robust secret sharing schemes.

The final contribution of this paper is the constriction of an optimal
threshold secret sharing with cheating detection property. We propose a
scheme that achieves the lower bound on the share size of cheating de-
tection schemes, and hence is optimal. The scheme is the first to achieve
the bound without having special requirements.

1 Introduction

Secret sharing is one of the most important primitive in cryptography and in
particular distributed systems. In a (t, n)-threshold secret sharing scheme [26,1],
a dealer D distributes a secret s to n players, say P1, . . . , Pn in such a way that
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any t+1 or more players can recover the secret s, but any t or fewer players have
no information on s. A piece of information given to Pi is called a share and is
denoted by σi. The scheme is said to be perfect if no subset of t or less shares
can leak any information about the secret s, where the leakage is in information
theoretic sense and without assuming any limit on the computational resources
of the adversary. An important efficiency parameter in secret sharing scheme
is the size of shares. Let Σi be the set of possible shares for Pi. Let S be the
set of possible secrets. Then it is well known that |Σi| ≥ |S| for any perfect
(t, n)-threshold secret sharing scheme [15], i.e., log2 σi ≥ log2 s. Schemes with
log2 σi = log2 s are called ideal.

In its basic form, secret sharing assumes that the corrupted participants are
passive (or semi-honest) and follow the protocol during the reconstruction phase.
In practice however one needs to consider stronger adversaries who deviate from
the protocol, collude and submit wrong shares. There are a wide range of settings
and security requirements that address active adversaries in secret sharing. In
this paper we consider two particular formulation of security requirements for
threshold secret sharing, known as robust secret sharing [4] and secret sharing
with cheating detection [22]. In the following we briefly describe these two and
then present our contributions. A closely related problem of identifying cheaters
in secret sharing has also been studied [17,21,6,13] in the literature.

Robust Secret Sharing (RSS): In a perfect (t, n)-threshold robust secret shar-
ing scheme, in addition to the requirement of perfect threshold secret sharing it
is also required that the secret can be reconstructed with high probability from
the set of all shares, even if up to t shares are incorrect. Requiring that the set
of uncorrupted shares have sufficient information to recover the secret implies
that n− t ≥ t + 1 and so n ≥ 2t+ 1 (t ≤ n−1

2 ). When n = 2t+ 1, the number
of honest users is only one more than the colluders. It is known that in this
case colluders will always succeed with some probability and that the share size
of the users is always larger than the secret size. The extra share size is called
the share redundancy and is defined as maxi{log2 σi} − log2 s. Construction of
schemes with the lowest probability of failure and the least share redundancy
has been an active research area in recent years. The construction in [7] has
the lowest known share redundancy equal to 2 log2

1
δ + 2n bits where δ is the

probability of error in reconstructing the correct secret.
We also consider a new property for secret sharing schemes and study it for

RSS. Secret sharing schemes, including robust schemes, use some public data
during reconstruction. This public data enables users to store smaller shares.
For example in Shamir secret sharing the public data is the interpolation points
which is assigned to players individually but does not need to be made secret.
The information is used during the reconstruction. By making these points pub-
lic, the share size of the users is effectively halved. To implement such a scheme
however one needs to provide a broadcast channel or authenticated bulletin
board that will be used to make the required public data available for recon-
struction. Reducing this public data is not only important from practical view
point, but also raises interesting theoretical questions and in particular possible
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tradeoff between the amount of public and private data in various schemes. To
our knowledge this has not been considered before. We will discuss this in our
contributions.

Secret Sharing with Cheating Detection (SSCD): The goal of secret shar-
ing schemes with cheating detection property is to ensure detection of cheating
by the malicious players who aim to cheat an honest player by opening incorrect
shares and causing the honest player to reconstruct wrong secret. Specifically,
suppose that t players, say P1, . . . , Pt, want to cheat a (t + 1)th player, Pt+1,
by opening modified shares σ′

1, . . . , σ
′
t. They succeed if the secret s′ that is re-

constructed from σ′
1, . . . , σ

′
t and σt+1 is different from the original secret s. In

this case, we say that the player Pt+1 is cheated by the wrong shares σ′
1, . . . , σ

′
t.

Tompa and Woll [27] first considered this problem (see also [3,2,22]). Two dif-
ferent model exists for such a system. In the first one, known as CDV model, we
suppose that the cheaters somehow know the value of the secret s. The other
model OKS is characterized by the property that t cheaters (corrupted players)
P1, . . . , Pt does not have any idea about the secret s before they cheat Pt+1.
Ogata, Kurosawa, and Stinson showed the following tight lower bound on share
size in OKS model:

log2 σi ≥ log2 s+ log2
1

δc
, (1)

where δc denotes the cheating probability. In OKS model, the only two known
share-optimal schemes [23,22] impose restrictions on the secret set. Construction
of SSCD schemes in this model that meet the lower bound is an interesting open
problem.

1.1 Our Contribution

The contribution of this paper is three fold.

[i] A Threshold Robust Secret Sharing with the Lowest Redundancy.
We propose a new (t, n)-threshold robust secret sharing scheme that has re-
dundancy, log2

1
δ + n bits. Each user’s share consists of two field elements and

system’s public parameters, in addition to the interpolation points, consists of
two filed elements that are used to verify correctness of a reconstructed candi-
date secret. For share generation the scheme uses polynomials over finite fields,
and for reconstruction Lagrange interpolation(s) to construct a candidate secret.
The reconstruction algorithm loops over all subsets of size t+1 of n participants
and so is computationally inefficient. A similar inefficiency exists in [7], which
has had the shortest share size before this paper. It is worth noting that the best
scheme [4] with computationally efficient reconstruction has share size which is
substantially larger than our proposed scheme (see Sect. 3.3). Construction of
RSS schemes with computationally efficient reconstruction and share size similar
to ours is an interesting open question.

[ii] Reducing System’s Public Information. In polynomial based schemes
such as Shamir’s scheme, each user is associated with two pieces of information:
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one is an index/identity that can be made public, and a second that is the share
of the secret. In some cases [27] to add extra security properties, the public part
is also made private. On the other hand in some cases [14] to provide extra
properties such as robustness, the public part of the user is enlarged, and/or
the secret part of the share grows [4]. An interesting question is to what extent
private and public information associated with a user can be reduced. In this
paper we ask this question in the context of RSS and in particular our proposed
RSS scheme. We show that the public information can be nearly halved. To
achieve this we first construct a variant of Shamir secret sharing. We will then use
this scheme to construct an RSS with the same share length (for the secure part
of share) as the scheme in Sect. 3, but with the extra property that it has only
t+1 field elements for its public values. This nearly halves the amount of public
information and effectively results in the least total share storage/communication
among all known threshold robust secret sharing schemes.

[iii] Secret Sharing with Cheating Detection. The robust secret sharing
scheme in Sect. 3 builds on a secret sharing scheme with cheating detection
property.We describe the underlying scheme in Sect. 5. In the previous section we
noted the two common security models for secret sharing with cheating detection.
We evaluate security of our scheme in OKS model and show that it has the
smallest possible share size, satisfying with equality the lower bound in (1) for
such schemes. There are two other known optimal schemes [22,23] in OKS model,
both imposing restrictions on the secret set. In particular the scheme in [23]
requires that the secret set be a finite field with characteristic different from 2,
and the construction in [22] requires a number q such that q be a prime power
and q2 + q + 1 is a prime. The latter scheme also assumes that secret is chosen
with uniform distribution hence using a weaker security notion. In our scheme
secret can be from any finite field and the only requirement is that the field size
to be ≥ n which is a general requirement for all schemes. We use the strong
definition of security which requires security for any distribution on the secret
set.

1.2 Related Work

It is known that, in the range n
3 ≤ t < n

2 , robust secret sharing is possible,
but only if one admits a small but positive failure probability (denoted as δ)
in reconstructing the correct secret.The first solution to the problem of design-
ing robust secret sharing schemes with absolute correctness in reconstruction
(i.e., the error probability δ = 0) was presented by McElice and Sarwate [20],
where error correcting technique for Reed-Solomon codes are used to enhance
the original Shamir secret sharing scheme with the robustness property. Their
scheme assumes n ≥ 3t+1. Moreover, it follows immediately from the theory of
Reed-Solomon error correcting codes that the condition n ≥ 3t+ 1 (t ≤ n−1

3 ) is
also necessary for Shamir’s scheme to be robust with δ = 0. In fact, the above
is true for any (t, n)-threshold secret sharing scheme. It was shown in [16] that
a secret sharing scheme realizing an access structure Γ has robustness property
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with δ = 0 precisely when the access structure Γ satisfies a condition called Q3

[12]. A monotone access structure Γ for a set P of participants is said to satisfy
Q3 condition if A1 ∪ A2 ∪ A3 �= P for any A1, A2, A3 ∈ Γ c, where Γ c is 2P\Γ .
The (t, n)-threshold access structure satisfies Q3 precisely when n ≥ 3t+ 1.

Constructions for threshold robust secret sharing schemes with unconditional
security for n = 2t + 1 can be broadly divided into two classes. We briefly
describe the best scheme in each class. The scheme due to Cramer et al. [7]
follows the approach of [2]. It uses standard Shamir secret sharing and distributes
the shares of three field elements that are algebraically related: the dealer shares
independently the actual secret s ∈ Fq, a randomly chosen field element r ∈ Fq,
and their product ρ = s · r. The reconstructor does the following: for every
subset of t + 1 players, he reconstructs s′, r′ and ρ′ and checks if s′ · r′ = ρ′,
and halts and outputs s′ if it is the case. One can show that for any subset of
t + 1 players: if s′ �= s then s′ · r′ �= ρ′ except with probability 1/|Fq|. Thus
if �log2 |Fq|� = k, taking into account union bound over all subsets of size t +
1, gives a robust secret sharing scheme with failure probability δ = 1

2k−n and

shares of size 3k (= k + 2 log2
1
δ + 2n) bits. Therefore the redundancy in share

size is 2 log2
1
δ + 2n. The reconstruction procedure of this scheme has running

time which is exponential in the number of players.
The second scheme is given by Cevellos, Fehr, Ostrovsky and Rabani [4], and is

based on the scheme of Rabin and Ben-Or [25]. The Share distribution algorithm
of this scheme is the same as the well-known scheme of Rabin and Ben-Or [25]
which is the standard Shamir secret sharing scheme, but enhanced by means of
an (unconditionally secure) message authentication code (MAC : M×K → T ,
M = Fq,K = Fq×Fq, and T = Fq). In particular, for every pair of players Pi and
Pj , Pi’s Shamir share si ∈ M is authenticated with an authentication tag τij ∈
T , where the corresponding authentication key kji ∈ K is given to player Pj .
Therefore, beyond the actual Shamir share, every player gets 3n field elements as
part of his share. The scheme by [4] uses a message authentication code with short
tags and keys and with the resulting weak security. The short tags and keys result
in the required saving (improvement over Rabin and Ben-Or scheme) in the share
size. The weakened security of authentication (and so higher chance of forging) is
compensated with a more sophisticated reconstruction procedure which runs in
polynomial time and results in an exponentially small failure probability. Finally
the redundancy in share size for the scheme is 3 log2

1
δ +3n log2(nλ) bits, where

λ is an independent security parameter and δ is the scheme’s error probability.
Cheating detection was first consisted by Tompa and Woll [27]. Their work

was followed by a number of authors including [3,2,22]. In OKS model, the only
two known share-optimal schemes [23,22] impose restrictions on the secret set.
Construction of SSCD schemes in this model that meet the lower bound is an
interesting open problem.

Applications. Threshold robust secret sharing schemes provide a powerful tool
for building secure and reliable distributed data storage systems. Users’ data
(files) can be broken into pieces (shares) and stored on multiple servers such
that privacy of data against servers is provided, and the system ensures recovery
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of the data when a subset of servers corrupt their stored shares, accidentally
or intentionally. In recent years, systems and architectures based on this prim-
itive have emerged [18,28,9] which shows importance of threshold robust secret
sharing in practice. Threshold robust secret sharing has also direct application
to Secure Message Transmission (SMT) [8,10,11]. In an unconditionally secure
SMT, a sender is connected to a receiver through n wires such that up to t of
which are controlled by an adversary. The goal of an SMT protocol is to ensure
that the message sent by the sender is received correctly by the receiver, and no
information about the message is leaked to the adversary. Good threshold robust
secret sharing schemes lead to good secure message transmission schemes [8,19].
Robust secret sharing schemes may also be seen as an stepping stone towards
the construction of verifiable secret sharing (VSS) schemes [5,24], in which, in
addition to the corrupted players, the dealer is dishonest and may hand out
inconsistent shares. Finally robust secret sharing is an important primitive for
secure multi-party computation.

2 Preliminaries

2.1 Robust Secret Sharing

Secret sharing schemes, that satisfy the additional property, that the secret can
be reconstructed from the set of all shares even if some players provide incorrect
shares, are called robust secret sharing schemes. In order to clearly define the
robustness property of a secret sharing, we describe a secret sharing scheme by
means of two interactive protocols, Share and Rec, where Share involves a dealer
D and n players P1, . . . , Pn, and the reconstruction protocol Rec involves the n
players and the reconstructorR, a trusted third party. The dealer is connected to
every player by a secure, untappable channel. There is also a broadcast channel
that can be used by everyone in the system. We now describe the protocols Share
and Rec. Let [n] = {1, . . . , n}.

– Share: The dealer D takes as input a secret s ∈ S, locally computes shares
σ1, . . . , σn, and for every i ∈ [n], sends the i-th share σi privately to player
Pi.

– Rec: During reconstruction, each player Pi, communicates, possibly by means
of several synchronous communication rounds1, its share σi to R. The recon-
structor uses the received shares to produce an output s′, which is supposed
to be the secret s.

Security. We now define the security goals of a (t, n)-threshold robust secret
sharing scheme. We begin by defining the adversary.

Adversarial Capability. We consider unbounded adversary. In the reconstruc-
tion phase Rec, the adversary A adaptively corrupts up to t players. The cor-
ruption can be done between communication rounds and continue as long as

1 In each round, every player Pi sends a part of its full share σi. In case, when the Rec
is single round, each player sends σi.
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the total number of corrupted players does not exceed t. Once a player Pi is
corrupted, the adversary learns Pi’s share σi, and from then on, he controls
the information that Pi send to R. By a rushing adversary we mean, in every
communication round, he can decide for every corrupted player on what this
player should send to R, depending on what he has seen so far and depending
on what the honest players have sent to R in the current round. By contrast,
a non-rushing2 adversary is one who selects the corrupted shares before the
start of each round.

Privacy. By the perfect privacy of a (t, n)-threshold RSS scheme we mean that
at the end of the share distribution protocol Share, no t players has any infor-
mation about the secret. Formally, for any subset B ⊂ {P1, . . . , Pn} of size at
most t and for every two elements s1, s2 ∈ S, we have

Prob[Secret is s1 | viewB] = Prob[Secret is s2 | viewB],

where viewB denotes the total available information for the members of B to
see. The probabilities are taken over the random coins of Share.

Robustness.We now define the (t, δ)-robustness property of an n-player robust
secret sharing scheme Π = (Share,Rec). To describe it clearly, we consider the
following game called the “robustness game”.

Robustness Game

1. Share distribution phase: The dealer D picks a secret s ∈ S, and uses
Share to compute shares σ1, . . . , σn for the n players; σi is given privately to
Pi, 1 ≤ i ≤ n.

2. Reconstruction Phase: In this phase, the adversaryA adaptively corrupts
up to t players as described above.

3. Final Phase: At the end of reconstruction phase, R has all the n shares
and at most t of them are incorrect. Based on the shares, R outputs the
secret s′. The adversary is said to win if s′ �= s.

We now define the advantage of A in the above game as

AdvRobustΠ,(t,n)(A) = Prob[s′ �= s].

Definition 1. A (t, n)-threshold robust secret sharing scheme Π = (Share,Rec)
is said to be unconditionally secure with (t, δ)-robustness property against non-
rushing adversary, if it has both perfect privacy and AdvRobustΠ,(t,n)(A) ≤ δ in the
above game.

In this paper, we present RSS schemes with single round reconstruction. The
schemes are secure against non-rushing adversary.

2 Security against non-rushing adversary makes sense in a communication model en-
hanced with a simultaneous broadcast channel, i.e., one by means of which all players
broadcast their information at the same time.
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2.2 Lagrange Interpolation

Let t be a positive integer and F be a field. Given any t+1 pairs of field elements
(x1, y1), . . . , (xt+1, yt+1) with the xi’s distinct, there exists a unique polynomial
f(x) ∈ F[x] of degree at most t such that f(xi) = yi for 1 ≤ i ≤ t + 1. The
polynomial can be obtained using the Lagrange interpolation formula as follows,

f(x) = y1λ
A
x1
(x) + · · ·+ yt+1λ

A
xt+1

(x), (2)

where A = {x1, . . . , xt+1} and λA
xi
(x)’s are Lagrange basis polynomials, given by

λA
xi
(x) =

∏
1≤j≤t+1,j �=i(x − xj)

∏
1≤j≤t+1,j �=i(xi − xj)

.

To simplify the notation, we write λxi(x) for λ
A
xi
(x) when the description of the

set A is clear from the context. We define Lagrange coefficients as λxi = λxi(0).

Therefore, from equation (2) we have f(0) =
∑t+1

i=1 yiλxi . One may also note

that
∑t+1

i=1 λxi = 1.

2.3 Shamir Secret Sharing

Let f(x) = s + a1x + · · · + atx
t. The secret is f(0) = s. Player Pi will receive

an ordered pair (αi, f(αi)). It is easy to show that this is a threshold scheme,
since for any t+ 1 participants, there is only one polynomial of degree at most
t passing through their t+ 1 points. Also it is a perfect threshold scheme since
for any t points and any point (0, s′), there is a unique polynomial of degree at
most t passing through their t points and (0, s′). The scheme becomes ideal if the
values {αi}ni=1 are publicly revealed (the values does not yield any information
about s) so that the share of player Pi is just the value f(αi).

3 The New Scheme: RSSS-Basic

We noted that in the scheme in [7], the relation ρ = s · r is formed and ρ, r
and s individually shared. Our first observation is that in [7] one only needs
to distribute (Shamir secret sharing) shares of s and r and make ρ the public
parameter. We note that, knowledge of ρ and t shares does not reveal any in-
formation about the secret and so this appears as a promising approach. This
approach however does not guarantee the required robustness. Following this
direction, we use the Rabin and Ben-Or’s Information Checking [25] vectors3

(relation) and construct an efficient RSS with unconditional security. We now
describe our scheme.

3 Information Checking Vector (α, β): Let s ∈ Fq. Let α �= 0 and y be randomly chosen
from Fq and β = s+ αy. Then the tuple (α, β) will reveal no information about s.
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We have a group of n players {P1, . . . , Pn}. Let t and n are positive integers
such that n = 2t+ 1. We fix a finite field Fq with q > n, and n distinct points,
α1, . . . , αn ∈ Fq, known to all players. We now present a (t, n)-threshold robust
secret sharing scheme.

– Share: On input a secret s ∈ Fq, the share generation algorithm Share outputs
a list of shares as follows:
• The dealer D chooses random r,X(�= 0) ∈ Fq with uniform distribution
and computes Y = s+Xr.

• D chooses t random elements f1, . . . , ft from Fq independently with uni-
form distribution. These random elements together with s define a poly-
nomial f(x) = s+

∑t
i=1 fix

i. D then computes si = f(αi) for all i ∈ [n].
• D also picks t random elements g1, . . . , gt ∈ Fq independently with uni-
form distribution. These random elements together with r define a poly-
nomial g(x) = r+

∑t
i=1 gix

i. D then computes ri = g(αi) for all i ∈ [n].
• Every player Pi gets his/her share σi = (si, ri). The tuple (X,Y ) is part
of system’s public parameters.

– Rec: The secret reconstruction algorithm Rec outputs the secret as follows:
• Every player sends (s′i, r

′
i) to the reconstructor R. Therefore, R receives

n shares, at most t of which are possibly incorrect.
• To reconstruct the secret, R does the following for every subset of t+ 1
players {Pi1 , . . . , Pit+1}:
∗ Computes, s′ =

∑t+1
j=1 λij s

′
ij

and r′ =
∑t+1

j=1 λij r
′
ij

(Lagrange inter-

polation).
∗ Checks, if Y = s′ +Xr′.
∗ If yes, R then outputs the secret as s′.

3.1 Privacy

The following theorem shows, that no t players has any information about the
secret.

Theorem 1. For any subset B ⊂ {P1, . . . , Pn} of size t and its viewB

Prob[Secret is s1 | viewB] = Prob[Secret is s2 | viewB],

for all s1, s2 ∈ Fq, where viewB denotes the elements, that the members of B
see: viewB = (X,Y, {(si, ri)Pi∈B}).

Proof: Without loss of generality, let B = {P1, . . . , Pt}. Then viewB

= (X,Y, {(si, ri)ti=1}). For every choice of s ∈ Fq for secret, we have: a unique
value for r = X−1 · (Y − s), a unique polynomial f of degree at most t such that
f(0) = s; f(αi) = si for 1 ≤ i ≤ t, and a unique polynomial g of degree at most
t such that g(0) = r; g(αi) = ri for 1 ≤ i ≤ t. As the set of actual unknowns
were chosen independently with uniform distribution, hence, for every s ∈ Fq,
Pr[s is secret | (si, ri)Pi∈B] =

1
q2t+1 . Since the probability is the same for every

s ∈ Fq, the privacy follows.
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3.2 Robustness

Theorem 2. Let Fq be any finite field with q elements. Let k = �log2 q�. Then
for any positive integers n, t with n = 2t+ 1, q > n, and secret space Fq, RSSS-
Basic forms an unconditional secure (t, n)-threshold robust secret sharing scheme
with (t, δ) robustness against non-rushing adversary such that

δ ≤ 1

2k−n
.

Proof: Consider an arbitrary set A of t+1 shares revealed in the reconstruction
phase. If A consists exclusively of shares of honest players, then the secret s′

reconstructed by R would certainly be the correct secret s. Else, either a failure
would be detected, or an incorrect secret s′ �= s is accepted based on the shares
in A. We now compute the probability for the case when s′ �= s but Y = s′+Xr′.
Let s′ = s+ εs and r′ = r+ εr. The value s

′ is accepted for the secret if and only
if the corrupted shares in A leads to a pair (εs, εr) ∈ Fq×Fq such that εs �= 0 and
Y = (s+εs)+X(r+εr). But Y = (s+εs)+X(r+εr) = s+Xr+εs+Xεr implies
εs +Xεr = 0. Thus we see that, for every (εs, εr) ∈ Fq × Fq with εs �= 0, there
is a unique value of εr = −X−1εs (X �= 0) such that Y = (s + εs) +X(r + εr).
Hence, for any set of t+1 shares containing at most t corrupted shares, a wrong
secret is accepted with probability at most 1

q . Therefore, taking into account, the
union bound of probabilities over all subsets of size t+1, the probability that an
incorrect secret is accepted in the reconstruction process is at most 2n

q = 1
2k−n .

3.3 Efficiency Comparison

Set the secret space S = Fq. We now compare the share efficiency of our construc-
tion with the schemes of [7,4]. One may note that, for all the three schemes, the
error probability δ is determined directly by the cardinality of the secret space.
For our construction and [7], we have δ = 2n

|Fq| , i.e., log2
1
δ + n = log2 |Fq|.

For [4], δ is dictated by |Fq| and an independent parameter λ4; specifically
δ = 1

2n
log2 |Fq|

λ
−n log2(n·λ)

(improved error probability over the other two schemes).

We set k = �log2 |Fq|� (in bits). The following table exhibit the individual share
redundancy (in bits).

Table 1. Comparison Table

Scheme Secret size Redundancy δ Rec Complexity

[7] k 2(log2
1
δ
+ n) 2−(k−n) exp(n)

[4] k 3 log2
1
δ + 3n log2(nλ) 2

−(n k
λ
−n log2(n·λ)) poly(n)

RSSS-Basic k log2
1
δ
+ n 2−(k−n) exp(n)

4 In [4], each player gets n tags and n keys beside the actual share. The length of
tags and keys are determined by MAC : Fq × (Fq/2

λ)2 → Fq/2
λ. The tag space

T = Fq/2
λ and key space K = (Fq/2

λ)2. Therefore, the share size redundancy is

3n
log2 |Fq |

λ
= 3 log2

1
δ
+ 3n log2(nλ) bits.
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4 Robust Secret Sharing with Savings on Public Data

In a secret sharing scheme shares carry information about the secret and need
to be securely stored and so the share size is the main efficiency parameter of
a secret sharing scheme. For reconstruction, secret sharing schemes may also
use some public values associated with each player. For example in Shamir’s
secret sharing each user has an associated field element αi ∈ Fq. The share
of the player is f(αi) which is securely stored by the user. The reconstruction
needs the tuple (αi, f(αi)). The value αi can be stored publicly and so is not
considered in measuring share efficiency of schemes. This means without extra
setup assumptions such as existence of a public bulletin board that allows access
to the non-sensitive part of the secret when needed, for a log2 |Fq| bit secret
in Shamir’s scheme, 2 log2 |Fq| bits need to be stored and presented at the re-
construction time. Taking into account the interpolation points, for the robust
secret sharing scheme in Section 3, a user’s storage is essentially 3 log2 |Fq| bits
and therefore the total communication5 during reconstruction is 3n log2 |Fq| bits.
An interesting question is if the total share storage can be reduced.

In the following we present a threshold robust secret sharing for n = 2t + 1
with the property that we can save on t interpolation points. This is the least
total share storage/communication among all known threshold robust secret
sharing schemes.The scheme follows the approach of RSSS-Basic, in achieving
robustness, but replaces the Shamir secret sharing with a new ideal polynomial
based secret sharing that allows us to reduce the public values. We begin by first
describing our variant of Shamir’s scheme.

4.1 A Variant of Shamir Secret Sharing

We have a group of n players {P1, . . . , Pn}. Let t be a positive integer such that
1 ≤ t ≤ n. We fix a prime q > n, and n distinct points, α1, . . . , αn ∈ Fq, known
to all players. We now present a (t, n)-threshold secret sharing scheme.

– Share: On input a secret s ∈ Fq, the share generation algorithm Share outputs
a list of shares as follows:

• The dealerD chooses t random elements f1, . . . , ft from Fq independently
with uniform distribution. These random elements together with s define
a polynomial f(x) = s+

∑t
i=1 fix

i. D then computes si = f(αi) for all
i ∈ [n].

• He then computes σi = s+ αisi for all i ∈ [n].

• For every i ∈ [n], the dealer sends to player Pi the share σi.

– Rec: Any t+1 players {Pi1 , . . . , Pit+1} with their shares {σi1 , . . . , σit+1}, com-

pute the secret as follows: s =
(
λi1

∏
j �=1 αij

+ · · ·+ λit+1

∏
j �=t+1 αij

+
∏t+1

j=1 αij

)−1 ·(
λi1

∏
j �=1 αij

σi1 + · · ·+ λit+1

∏
j �=t+1 αij

σit+1

)
.

5 We are not counting the information which is same for all the players, like the
threshold parameter or the description of the underlying field.
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4.2 Correctness

The correctness of the scheme requires that any t+1 correct shares would output
the original secret.

λi1

∏

j �=1

αijσi1 + · · ·+ λit+1

∏

j �=t+1

αijσit+1

= λi1

∏

j �=1

αij (s+ αi1si1) + · · ·+ λit+1

∏

j �=t+1

αij (s+ αit+1sit+1)

= s(λi1

∏

j �=1

αij + · · ·+ λit+1

∏

j �=t+1

αij ) +

t+1∏

j=1

αij (

t+1∑

j=1

λijsij )

= s(λi1

∏

j �=1

αij + · · ·+ λit+1

∏

j �=t+1

αij ) +

t+1∏

j=1

αijs

= s(λi1

∏

j �=1

αij + · · ·+ λit+1

∏

j �=t+1

αij +

t+1∏

j=1

αij ).

Remark 1. In the scheme, a user’s share is σi = s + αisi, where {α1, . . . , αn}
denotes the interpolation points. We observe that, correctness will still holds if
a user’s share is computed as follows: (βi, σi = s + βisi) for 1 ≤ i ≤ n, where
{β1, . . . , βn} are random field elements and the interpolation points {α1, . . . , αn}
are kept public as usual. This fact would help us derive the correctness of our
robust secret sharing scheme in the next section.

4.3 Privacy

The privacy of the scheme follows as a special case of the privacy of infor-
mation checking procedure from [25]. We first prove the following lemma for
completeness.

Lemma 1. ([25]) Let s ∈ Fq be the secret. Let random elements α �= 0 and y are
chosen from Fq independently with uniform distribution. Compute β = s + αy.
Then the tuple (α, β) will reveal no information about s.

Proof: Note that for every value of s in Fq, there exists a unique value for y in Fq,
namely y = α−1(β−s), such that β = s+αy. Therefore, Prob[secret is s | (α, β)]
= Prob[y = α−1(β − s) is chosen] = 1

|Fq| . Thus (α, β) gives no information

about s.
Rabin and Ben-Or [25] observed that, the above lemma immediately general-

izes to the following. For a secret s ∈ Fq, any positive integer 
, and α1, . . . , α� ∈
Fq\{0} choose random elements y1, . . . , y� ∈ Fq independently with uniform dis-
tribution. Compute βi = s+ αiyi for 1 ≤ i ≤ 
. Then the tuples {(αi, βi)}1≤i≤�

will reveal no information about s. We know that for Shamir secret sharing
scheme, any t shares are independent from the secret s. Thus for any t Shamir
shares (si1 , . . . , sit), the values σij = s+αijsij , 1 ≤ j ≤ t will give no information
about the secret s. This shows the perfect privacy of the above scheme.
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4.4 The New Scheme: RSSS

Let Fq be a field. Let t and n are positive integers such that n = 2t+1. We now
present an n-player robust secret sharing scheme.

– Share: On input a secret s ∈ Fq, the share generation algorithm Share outputs
a list of shares as follows:
• The dealer D chooses random r,X(�= 0) ∈ Fq with uniform distribution
and computes Y = s+Xr.

• The dealer chooses two sets of random t points s1, . . . , st and r1, . . . , rt
from Fq independently with uniform distribution.

• It then computes unique set of t points α1, . . . , αt, where αi = ris
−1
i ,

1 ≤ i ≤ t.
• The dealer D then interpolates the unique polynomial f of degree at
most t such that f(0) = s and f(αi) = si for all 1 ≤ i ≤ t. The dealer
also interpolates the unique polynomial g of degree at most t such that
g(0) = r and g(αi) = ri for all 1 ≤ i ≤ t.

• D picks t+1 random points βt+1, . . . , βn ∈ Fq with uniform distribution,
and also sets βi = αi for 1 ≤ i ≤ t.

• It then computes si = f(βi) for t+1 ≤ i ≤ n, ri = g(βi) for t+1 ≤ i ≤ n,
and αi = ris

−1
i for t+ 1 ≤ i ≤ n.

• The dealer finally computes σi = s+ ri for all i ∈ [n]. Every participant
Pi will receive an ordered pair (σi, αi). The tuple (X,Y ) along with t+1
points βt+1, . . . , βn are part of system’s public parameters (Note that
the players {P1, . . . , Pt} have interpolation points βi = αi, 1 ≤ i ≤ t,
respectively).

– Rec: The secret reconstruction algorithm Rec outputs the secret as follows:
• Every player sends their share (σ′

i, α
′
i) to the reconstructor R.

• To reconstruct the secret, R does the following for every subset of t+ 1
players {Pi1 , . . . , Pit+1}:
∗ R computes, s′ =

(
λi1

∏
j �=1 α′

ij
+ · · · + λit+1

∏
j �=t+1 α′

ij
+

∏t+1
j=1 α′

ij

)−1 ·(
λi1

∏
j �=1 α′

ij
σ′
i1

+ · · · + λit+1

∏
j �=t+1 α′

ij
σ′
it+1

)
.

∗ It then computes r′ij = σ′
ij
− s′ for all 1 ≤ j ≤ t+ 1.

∗ It computes r′ =
∑t+1

j=1 λij rij and checks if Y = s′ +Xr′.
∗ If yes, then R outputs the secret as s′.

4.5 Correctness and Efficiency

During the reconstruction, if the t + 1 shares (σ′
ij
, α′

ij
)’s are all correct i.e.,

(σ′
ij
, α′

ij
) = (σij , αij ) for all 1 ≤ j ≤ t + 1, then s′ = s, the correct secret.

This follows immediately from Remark 1 in Sect. 4.2. We now give a table to
summarize the efficiency of the scheme.
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Table 2. Comparison Table

Scheme Redundancy Rec Complexity δ Saving on Interpolation Pts

[7] 2(log2
1
δ
+ n) exp(n) 2−(k−n) -

[4] 3 log2
1
δ + 3n log2(nλ) poly(n) 2−(n k

λ
−n log(n·λ)) -

RSSS log2
1
δ
+ n exp(n) 2−(k−n) t

4.6 Privacy

The following theorem shows, that any t players get no information about the
secret.

Theorem 3. For any subset B ⊂ {P1, . . . , Pn} of size t and its viewB

Prob[Secret is s1 | viewB] = Prob[Secret is s2 | viewB],

for all s1, s2 ∈ Fq, where viewB denotes the elements, that the members of B
see: viewB = (X,Y, {(σi, αi)Pi∈B}).

Proof: Consider any set B = {Pi1 , . . . , Pit} of t players. Therefore, we have viewB

= (X,Y, {(σij , αij )
t
j=1}). For every choice of s ∈ Fq for secret, we have: unique

values for r = X−1 · (Y − s); rij = σij − s, 1 ≤ j ≤ t; sij = α−1
ij

· (σij − s) =

α−1
ij

· rij , 1 ≤ j ≤ t, a unique polynomial f of degree at most t satisfying

f(0) = s; f(βij ) = sij for 1 ≤ j ≤ t, and a unique polynomial g of degree at
most t such that g(0) = r; g(βij ) = rij for 1 ≤ j ≤ t. Therefore, the t players in
B cannot rule out any element of Fq as a possibility for secret. This shows that
viewB does not contain any information about the original secret.

4.7 Robustness

One may note that, both the schemes, RSSS-Basic and RSSS are similar. The
later scheme achieves some advantage due to the restructuring of the former.
In the previous section, we proved, the restructuring did not affect the privacy
of the scheme and therefore the robustness property of RSSS remain the same
as for RSSS-Basic. For completeness, we now state the theorem. The proof is
similar to RSSS-Basic.

Theorem 4. Let Fq be any finite field with q elements. Let k = �log2 q�. Then
for any positive integers n, t with n = 2t+ 1, q > n, and secret space Fq, RSSS
forms an unconditional secure (t, n)-threshold robust secret sharing scheme with
(t, δ) robustness against non-rushing adversary such that

δ ≤ 1

2k−n
.
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5 Secret Sharing with Cheating Detection

Tompa and Woll [27] introduced the problem of cheating detection in secret
sharing. Suppose that, in a (t, n) threshold secret sharing scheme, t players, say
P1, . . . , Pt, want to cheat a (t + 1)th player, Pt+1, by opening modified shares
σ′
1, . . . , σ

′
t. They succeed if the secret s′ that is reconstructed from σ′

1, . . . , σ
′
t and

σt+1 is different from the original secret s (see Section 2.1 of [22] for a thorough
definition). There are two different models, CDV and OKS, for secret sharing
schemes capable of detecting such cheating. The CDV model is characterized by
the property that t cheaters (corrupted players) P1, . . . , Pt somehow know the
secret s before they cheat Pt+1, whereas in OKS model, they does not have any
idea about the secret. In [22], a lower bound on share size has been derived for
secret sharing schemes with cheating detection property in OKS model; log2 σi ≥
log2 s + log2

1
δc
, where δc is the cheating probability. Therefore, in the above

model, the redundancy in share size is at least log2
1
δc
.

One may easily note that our robust secret sharing scheme RSSS-Basic in
Section 3 is build upon a secret sharing scheme with cheating detection property.
We see that the share size, for the underlying secret sharing scheme with the
property of cheating detection, meets the lower bound of [22]. We observe that
this is the first such scheme. To the best of our knowledge, there exists two
schemes [22,23] in the literature that satisfy the above lower bound, but both
the schemes admit some limitations whereas our scheme is free from any such
limitation. In particular, the scheme of [23] requires that the secret should lie
in a field whose characteristic is different from 2, and the construction of [22]
requires a number q such that q be a prime power and q2 + q + 1 is also prime.
The latter scheme also assumes that secret is chosen with uniform distribution
and so effectively has a weaker security notion. In our scheme secret can be from
any filed and only requires the field size to be ≥ n. This is a general restriction
on all scheme. We use the strong definition of security which requires security
for any distribution on the secret set. For completeness, we now describe our
scheme.

5.1 The Scheme

We have a group of n players {P1, . . . , Pn}. Let t be a positive integer such
that 1 ≤ t ≤ n. We fix a prime q > n, and n distinct points, α1, . . . , αn ∈ Fq,
known to all players. We now present a (t, n)-threshold secret sharing scheme
with cheating detection property.

– Share: On input a secret s ∈ Fq, the share generation algorithm Share outputs
a list of shares as follows:
• The dealer D chooses random r,X(�= 0) ∈ Fq with uniform distribution
and computes Y = s+Xr.

• The dealerD chooses t random elements f1, . . . , ft from Fq independently
with uniform distribution. These random elements together with s define
a polynomial f(x) = s+

∑t
i=1 fix

i. D then computes si = f(αi) for all
i ∈ [n].
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• D also chooses t random elements g1, . . . , gt from Fq independently with
uniform distribution. These random elements together with r define a
polynomial g(x) = r +

∑t
i=1 gix

i. D then computes ri = g(αi) for all
i ∈ [n].

• Every participant Pi will receive its share σi = (si, ri).
• The tuple (X,Y ) is part of system’s public parameters.

– Rec: Any qualified set of players (t + 1 players) {Pi1 , . . . , Pit+1} will recon-
struct the secret as follows.
• They obtain s =

∑t+1
j=1 λijsij and r =

∑t+1
j=1 λij rij from their shares.

• If Y = s+Xr, they take s as the correct value of the secret.

5.2 Security and Share Size Efficiency

The privacy of the scheme follows from Theorem 1. The cheating probability of
the above scheme follows from Theorem 2, in particular the cheating probability
δc is 1

q = 1
2k and it holds for arbitrary distribution on the secret space. The

individual share size of each player is log2 σi = 2k = log2 s+ log2
1
δc
. Therefore

this scheme meets the lower bound of [22] in the OKS model. One may also note
that, a secret sharing scheme with cheating detection property can also extracted
from RSSS with the added property of saving t interpolation points.

Acknowledgments. The authors would like to thank Pengwei Wang for use-
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comments.
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