
Goutam Paul
Serge Vaudenay (Eds.)

 123

LN
CS

 8
25

0

14th International Conference on Cryptology in India
Mumbai, India, December 2013
Proceedings

Progress in Cryptology –
INDOCRYPT 2013



Lecture Notes in Computer Science 8250
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Goutam Paul Serge Vaudenay (Eds.)

Progress in Cryptology –
INDOCRYPT 2013

14th International Conference on Cryptology in India
Mumbai, India, December 7-10, 2013
Proceedings

13



Volume Editors

Goutam Paul
Indian Statistical Institute
R. C. Bose Centre for Cryptology and Security
203 B. T. Road
Kolkata 700 108, India
E-mail: goutam.paul@isical.ac.in

Serge Vaudenay
EPFL - I&C - LASEC, INF 241 (INF Building)
Station 14
1015 Lausanne, Switzerland
E-mail: serge.vaudenay@epfl.ch

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-03514-7 e-ISBN 978-3-319-03515-4
DOI 10.1007/978-3-319-03515-4
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013951885

CR Subject Classification (1998): E.3, K.6.5, D.4.6, C.2.0, J.1, G.2

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer International Publishing Switzerland 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Indocrypt 2013, the 14th International Conference on Cryptology in India, took
place during December 7–10, 2013. It was hosted by the Homi Bhabha National
Institute (HBNI), Mumbai. Indocrypt series of conferences began in 2000 under
the leadership of Prof. Bimal Roy of Indian Statistical Institute and since 2003
it is organized under the aegis of Cryptology Research Society of India (CRSI),
in association with an Indian institute or organization. This series is now well
established as an international forum for presenting high-quality cryptography
research. This year 76 papers were submitted for consideration. The authors of
the submitted papers were from institutions across 12 countries and 4 continents.

Typically the submission deadline of Indocrypt is in July. But previous years’
experience taught us that in this case the review time becomes very short. To
ensure quality review, we brought forward the submission deadline by one month
and set it for June 14. We received many requests for deadline extension, but we
thought it would be unfair towards authors who submitted on time. Nevertheless,
we opened a new call for short papers with July 15 as the deadline. We received
39 regular papers and 37 short papers.

After the Program Committee (PC) members selected their preferred papers,
we assigned the articles for review. Most papers were refereed by three commit-
tee members, and papers co-authored by a PC member were refereed by five
committee members. It was indeed a difficult challenge for the 40 PC members
and 41 sub-reviewers to give every paper a fair assessment in such a short time.

Authors of regular papers were notified on August 26 and the authors of
short papers were notified on September 2. We accepted a total of 21 papers, of
which 15 are in the regular category and 6 are in the short papers category. The
authors had to revise their papers according to the suggestions of the referees
and submit the camera-ready versions by September 9.

The proceedings also contain the invited papers by Tatsuaki Okamoto, Kaisa
Nyberg and Kenny Paterson. The organization of the conference involved many
individuals. We express our heart-felt gratitude to the general chairs, namely,
B.K. Dutta, Homi Bhabha National Institute, Mumbai, India, and Y.S. Mayya,
Bhabha Atomic Research Centre, Mumbai, India. We are also extremely grateful
to the Advisory Board members, in particular, to Prof. Bimal Roy, Director of
Indian Statistical Institute, Kolkata. Special thanks to Subhadeep Banik for his
help in preparing this proceedings version.

Finally, we would like to acknowledge Springer for their active cooperation
and timely production of the proceedings.

December 2013 Goutam Paul
Serge Vaudenay
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Functional Encryption on the Decisional

Linear Assumption�

Tatsuaki Okamoto

NTT
Tokyo, 180-8585 Japan

okamoto.tatsuaki@lab.ntt.co.jp

Abstract. Recently an advanced class of encryption systems, functional
encryption (FE), formalized by Boneh, Sahai and Waters [TCC’11] and
O’Neill [IACR ePrint’10], have been extensively studied, where a cipher-
text of plaintext x is decrypted to f(x) by a secret key associated with
a function f , and there is a layered structure for keys such that a higher
level key is a pair of master public and secret keys (for an authority) and
a lower level key is a secret key with f (for a user) and is generated by
a master secret key.

In my talk, we show two FE schemes for all (polynomial-size) circuits
on the decisional linear (DLIN) assumption. Our FE schemes are adap-
tively secure and attribute-hiding in the indistinguishability-based secu-
rity definition (not in the simulation-based security definition). In the
first FE scheme, the number of secret keys is (polynomially) bounded,
while that of ciphertexts is unbounded, and the security is proven solely
under the DLIN assumption. The second FE scheme requires no bound
on the number of secret keys and ciphertexts, but assumes the existence
of the indistinguishability obfuscation, which was introduced by Barak et
al. [Crypto’01] and recently instantiated by Garg et al. [FOCS’13] from
the multi-linear maps, in addition to the DLIN assumption.

These FE schemes are constructed on the randomized encoding tech-
nique by Applebaum et al. [Computational Complexity’06] and (strongly)
attribute-hiding inner-product encryption (IPE), which is instantiated
by the Okamoto-Takashima IPE scheme [Eurocrypt’12] under the DLIN
assumption.

* This is a joint work with Koutarou Suzuki.



Linear Cryptanalysis and Its Extensions

Kaisa Nyberg

Aalto University School of Science, Finland

kaisa.nyberg@aalto.fi

Abstract. During its 20 years of existence in public cryptographic lit-
erature, the method of Linear cryptanalysis has gained its position as
one of the most significant generic methods of statistical cryptanalysis
[8]. The main goal of this invited talk is to discuss some recent exten-
sions of linear cryptanalysis for block ciphers. As these extensions typi-
cally exploit several linear approximations simultaneously, the statistical
analysis involves distinguishing various types of probability distributions
of the cipher data. We will present the details of the statistical model of
the Zero-correlation cryptanalysis [2] and in particular its multidimen-
sional version [3]. We will also present a proper statistical model for the
Statistical saturation attack [5], which was recently shown in [7] to be
mathematically equivalent with the Multidimensional linear cryptanaly-
sis [6]. We will explain how this equivalence naturally extends itself to
the statistical models of these attacks.

Recently we showed that linear approximations can be useful also out-
side the traditional domain of linear cryptanalysis [1]. Using the link be-
tween differential and linear cryptanalysis established in [4] we estimated
expected differential probabilities using known strong linear approxima-
tions. As a final topic of this invited talk, we want to demonstrate that
this link has potential applications also in the opposite direction. As
an example, we will recall the classical statistical cryptanalysis method
of Index of coincidence, where probabilities of differences, in particular
zero-differences, are used to evaluate the nonuniformity of the ciphertext
distribution.

References

1. Blondeau, C., Nyberg, K.: New links between differential and linear cryptanalysis.
In: Nguyen, P.Q., Johansson, T. (eds.) Advances in Cryptology – EUROCRYPT
2013. Lecture Notes in Computer Science, vol. 7881, pp. 388–404. Springer (2013)
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Cryptographic Aspects of TLS

Kenneth G. Paterson�

Information Security Group,

Royal Holloway, University of London, U.K.

Abstract. TLS is one of the most important cryptographic protocols,
being used daily by millions of people and their devices. In the last couple
of years, TLS has become the focus of intense research attention, with
a slew of papers reporting attacks on and security proofs for different
parts of the protocol. In this talk, I will give a high-level overview of this
recent work, focussed on explaining how the complexity and idiosyncratic
design of TLS has raised barriers to its analysis. I’ll also prognosticate
on future developments in the TLS arena.

* Supported by EPSRC Leadership Fellowship EP/H005455/1.
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Key-Private Proxy Re-encryption under LWE

Yoshinori Aono1, Xavier Boyen2, Le Trieu Phong1,�, and Lihua Wang1,��

1 NICT, Japan
phong@nict.go.jp

2 Queensland University of Technology, Australia

Abstract. Proxy re-encryption (PRE) is a highly useful cryptographic
primitive whereby Alice and Bob can endow a proxy with the capacity
to change ciphertext recipients from Alice to Bob, without the proxy
itself being able to decrypt, thereby providing delegation of decryption
authority. Key-private PRE (KP-PRE) specifies an additional level of
confidentiality, requiring pseudo-random proxy keys that leak no infor-
mation on the identity of the delegators and delegatees.

In this paper, we propose a CPA-secure PK-PRE scheme in the stan-
dard model (which we then transform into a CCA-secure scheme in the
random oracle model). Both schemes enjoy highly desirable properties
such as uni-directionality and multi-hop delegation.

Unlike (the few) prior constructions of PRE and KP-PRE that typ-
ically rely on bilinear maps under ad hoc assumptions, security of our
construction is based on the hardness of the standard Learning-With-
Errors (LWE) problem, itself reducible from worst-case lattice hard prob-
lems that are conjectured immune to quantum cryptanalysis, or
“post-quantum”.

Of independent interest, we further examine the practical hardness of
the LWE assumption, using Kannan’s exhaustive search algorithm cou-
pling with pruning techniques. This leads to state-of-the-art parameters
not only for our scheme, but also for a number of other primitives based
on LWE published the literature.

Keywords: proxy re-encryption, key privacy, learning with errors, cho-
sen ciphertext security, LWE practical hardness.

1 Introduction

Proxy re-encryption (PRE), introduced in [7], is a type of public key encryption,
in which anyone can send encrypted messages to others using their public keys.
The unique feature in PRE is the intermediation of delegation via “proxy re-
encryption keys”: Alice and Bob must set up a proxy key rkA→B transforming
Alice’s ciphertexts to those Bob can decrypt. The proxy key rkA→B is usually

� Corresponding author.
�� This author is partially supported by JSPS KAKENHI Grant Number 23500031.

G. Paul and S. Vaudenay (Eds.): INDOCRYPT 2013, LNCS 8250, pp. 1–18, 2013.
c© Springer International Publishing Switzerland 2013



2 Y. Aono et al.

put in a semi-trusted server: although the server cannot decrypt, its participation
allows Alice to revoke delegation to Bob by revoking the key rkA→B held at the
server.

KP-PKE. Often, anonymity is a concern, and it is required that neither the
delegator (Alice) nor the delegatee (Bob) be identifiable from the proxy re-
encryption key rkA→B that they set up. We speak of “key-private” proxy re-
encryption (KP-PRE)—which, to be clear is a public-key primitive.

KP-PRE (a.k.a., anonymous PRE) is useful in various applications such as dis-
tributed file systems, digital rights management, credential system, and mailing
lists as summarized in [2]. For example, in mailing list application, to securely
send a message to all members {1, . . . , N} in the list, it suffices to send only
one (instead of N if not using PRE) encrypted message under the public key
represented that list. A proxy server will do the re-encrytion to all members in
the list. The key privacy property of PRE ensures members1 {1, . . . , N} in the
mailing list remain anonymous.

We note that it is not a paradox for a re-encryption proxy to be granted
the power to re-encrypt a ciphertext from Alice to Bob anonymously, without
knowing the identity of either party. Not only can the proxy be prompted to
perform re-encryption on the basis of an anonymous key (designated, e.g., as
an index in a table), but the key index itself can be hidden using standard
oblivious-transfer techniques if “unlinkability” across multiple re-encryptions is
a requirement.

Related Works. Achieving key-private PRE has been acknowledged as a diffi-
cult task. In fact, many PRE schemes including [3,7,10,18,21] are not key-private,
as shown in [2]. To our knowledge, there exist only two secure schemes with key
privacy up to now: (1) the CPA-secure scheme in [2]; and (2) the CCA-secure in
the random oracle model in [32]. Another PRE scheme had been claimed CCA-
secure and key-private, in [33], but unfortunately its CCA security was recently
broken as shown in [19].

There have also been a lot of works trying to achieve CCA security for PRE,
even without the key privacy requirement: we mention [21] achieving the weaker
notion of Replayable CCA from LWE per the corrected proof in [28], as well
as [19,30,31,35] and [13] achieving full CCA respectively in bilinear groups and
in groups where decisional Diffie-Hellman assumption holds. All of those schemes
are single-hop schemes, in which a ciphertext can be re-encrypted once; and none
of them is key-private.

Additionally, some works have looked at identity-based PRE: see for instance
[29] for a key-private scheme using pairings and random oracles, and [34] for a
construction focused on collusion safeness, to list just some recent ones.

With the exception of [21] (which is neither key-private nor truly CCA), all the
foregoing PRE and KP-PRE constructions ultimately rely on the hardness of the

1 When the system using PRE involves N users, they are conventionally represented
as integers in {1, . . . , N}.
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Discrete Logarithm, and typically much stronger assumptions when pairings are
involved. Those will never provide long-term safety guarantees (against quantum
cryptanalysis in particular).

LWE. “Learning With Errors” or LWE [26] is rapidly emerging as a hardness
assumption of choice when long-term security is an issue, both classical and
quantum. As shown in [9,26], the LWE assumption theoretically has strong con-
nection to lattice hardness assumptions, which are conjectured very safe in many
respects. In practice, however, there are certain efficient “attacks” on LWE, such
as those illustrated in [22–25]. Although none of those attacks comes anywhere
close to breaking the LWE assumption in a theoretical sense, they force us to be
careful in our choice of LWE parameters when concrete real-world security is a
concern. Amongst the known “attacks”, those of [22, 23] against the computa-
tional variant of LWE (namely, Search-LWE) are the most potent.

1.1 Our Contributions

The foregoing leaves us with the double interrogation, of whether it is possible
to contruct KP-PRE from the theoretically very appealing LWE assumption,
and whether one can then parametrize such construction in order to avoid the
practical attacks. Specifically, in this study, we ask:

1. Can key-private PRE be efficiently constructed under the LWE assumption?
2. How hard is LWE, practically? This will affect the parameters of our schemes,

as well as others.

Constructive Contributions: KP-PRE from LWE

• We design a key-private PRE against chosen plaintext attacks (CPA). This
is achieved by transforming the public key encryption scheme of [22] in
ways that are reminiscent of certain techniques developed in the context
of fully homomorphic encryption schemes such as [8], notwithstanding cer-
tain impossibility results shown in [2]. At a very high level, we exploit two
(new) facts about (our variant of) the encryption scheme of [22]: recipient
anonymity, and additive homomorphism. We use those facts to show that
our PRE scheme is CPA-secure under the LWE assumption, in the standard
model. See Section 3.

• We then show that our scheme is eligible for conversion into a CCA-secure
encryption scheme, using the well-known Fujisaki-Okamoto method [14,15],
without losing the key-private PRE functionality. Consequently, this scheme
is CCA-secure under the LWE assumption, in the random oracle model [6].
See Section 4.

Both CPA-secure and CCA-secure schemes are multi-hop (namely a ciphertext
can be re-encrypted several times, albeit not indefinitely), and are uni-directional
(namely one proxy key can only transform ciphertexts in one direction, not both).



4 Y. Aono et al.

Analytic Contributions: LWE Parameter Selection

• We evaluate the practical hardness of the LWE assumption. As with Lindner-
Peikert [22] and Liu-Nguyen [23], our strategy is to solve a bounded distance
decoding problem derived from a search LWE instance, and then employs
Kannan’s lattice exhaustive search algorithm [20]. However, using a new
pruning strategy called band pruning, our attack on LWE can handle any
Gaussian noise deviation (e.g., 4 or 5 as used in our schemes), in contrast
to [22, 23] (larger than 8 mandatorily. See footnote2.). The computation,
including lattice enumeration, cost of the attack is slightly better than [22],
and is comparable with [23]. See Section 5.

2 Preliminaries and Definitions

We use
c≈ for computational indistinguishability. For a matrix A, AT is its trans-

pose.
LWE Assumption. Succinctly, the assumption LWE(m,n, α, q) asserts that

(A,Ax + e)
c≈ (A, r)

in which

– A ∈ Z
m×n
q and r ∈ Z

m×1
q are randomly chosen.

– x ∈ ψn×1
αq , e ∈ ψm×1

αq , and Ax + e is computed over Zq. Moreover ψαq is the
Gaussian distribution over the integers Z, with mean 0 and deviation αq for
real number 0 < α < 1. (Originally, x is chosen randomly from Z

n×1
q in [26].

However, as showed in [1, 24], one can take x ∈ ψn×1
αq as we do here.)

By a standard hybrid argument over columns of X ∈ ψn×l
αq , we have under the

LWE assumption

(A,AX + E)
c≈ (A,R)

for random R ∈ Z
m×l
q and Gaussian noise E ∈ ψm×l

αq . This fact is used in our
security proofs.

Syntax of PRE. The scheme consists of following algorithms (ParamsGen,
KeyGen, ReKeyGen, Enc, ReEnc, Dec). ParamsGen(λ) returns public parameters
pp according to security parameter λ. KeyGen(pp) returns public-secret key pairs
(pk, sk). Algorithm ReKeyGen(pp, ski, pkj) returns rki→j . Enc(pp, pk,m) returns
a ciphertext CT . ReEnc(pp, rki→j , CTi) transforms ciphertext CTi of party i into
a ciphertext that party j can decrypt. Dec(pp, sk, CT ) recovers a message m.

Definition 1 (CPA security of PRE, [2]). Consider below interactions be-
tween an adversary A and a challenger C.
Phase 1:
2 Quoting from [22, Section 6]: “... to allow for a Gaussian parameter s ≥ 8, so that
the discrete Gaussian DZm,s approximates the continuous Gaussian Ds extremely
well.” The same reason is for [23]. Our attack and its analysis in Section 5 do not
rely on that approximation, and hence work for arbitrary noise deviation.
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– C generates public parameters pp ← ParamsGen(λ) and gives them to A.

– Uncorrupted key generation: C generates (pk, sk) ← KeyGen(pp) and gives
A public key pk upon request. A can request many pk, and let ΓH be the set
of honest user indexes.

– Corrupted key generation: In this process, C generates key pair (pk, sk) ←
KeyGen(pp) and A is given (pk, sk). A can request many times, and let ΓC

be the set of corrupted user indexes.

Phase 2:

– Re-encryption key generation: A submits pair of indexes (i, j) to get rki→j ←
ReKeyGen(pp, ski, pkj). All requests where i = j or where i ∈ ΓH , j ∈ ΓC

are ignored. (Remark here that it is sufficient to consider query (i, j) with
i, j ∈ ΓH , since if i ∈ ΓC , then A can generate rki→j itself for all j.)

– Re-encryption: A submits query (i, j, Ci). The challenger in turn generates
rki→j ← ReKeyGen(pp, ski, pkj) (if it is not yet created), and then returns
Cj ← ReEnc(pp, rki→j , Ci). All requests where i = j or where i ∈ ΓH , j ∈ ΓC

are ignored. (Similarly to above, it is sufficient to consider queries (i, j) with
i, j ∈ ΓH .)

– Challenge: A submits (i∗,m0,m1). The challenger then chooses random bit
b ∈ {0, 1}, and then returns Ci∗ = Enc(pp, pki∗ ,mb). This is done only once,
and it is required that i∗ ∈ ΓH .

A finally outputs b′ ∈ {0, 1} as a guess of b. Define A’s advantage as |Pr[b′ =
b]− 1/2|. The PRE scheme is CPA-secure if this advantage is negligible for all
poly-time adversary A.

Definition 2 (Key privacy). Consider following interactions of an adversary
A. Phase 1 is the same as in Definition 1.
Phase 2:

– Re-encryption key generation: On input (i, j) for i �= j by the adversary,
where i ∈ ΓH , j ∈ ΓH ∪ ΓC , return the key rki→j . (There is no need to
consider i ∈ ΓC since A holds ski in that case.)

– Re-encryption queries (i, j, Ci): The challenger returns to A the re-encrypted
ciphertext Cj = ReEnc(pp, rki→j , Ci). (If the re-encryption key rki→j was
not generated yet, the challenger creates it.)

– Challenge: On input (i∗, j∗), the challenger takes a bit b randomly, returns
rk∗ = rki∗→j∗ = ReKeyGen(pp, ski∗ , pkj∗) if b = 1 or returns a random
key rk∗ in the key space if b = 0. The constraints are: (1) rki∗→j∗ was not
queried before, (2) there is no chain of re-encryption keys from j∗ to any
k ∈ ΓC , (3) i∗ �= j∗ and j∗ ∈ ΓH . Note there is no limitation on i∗, namely
i∗ ∈ ΓH ∪ ΓC.

Eventually, A outputs a bit b′, and its advantage is defined as |Pr[b′ = b]− 1/2|.
The PRE scheme is key-private if this advantage is negligible for all poly-time
adversary A.
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The above definition differs from its counterpart in [2] in some ways. The con-
dition (3) with j∗ ∈ ΓH while i∗ is free in ΓH ∪ ΓC means that, regardless
delegators, honest delegatees are enough to provide key privacy. This is stronger
than [2] which requires both i∗, j∗ ∈ ΓH .

Our definition also removes the “collusion-safe” condition implicitly incorpo-
rated in that of [2] by requiring condition (2). This is for good because we think
that collusion-safeness and key privacy are separate issues in applications.

Definition 3 (CCA security of PRE). This is the same as Definition 1, with
following additional decryption queries by adversary A in Phase 2: A repeatedly
submits (i, Ci) to the challenger, who returns the decryption Dec(ski, Ci). The
additional constraints here are: (1) i ∈ ΓH (since if i ∈ ΓC then A already
held ski to do decryption itself), and (2) (i, Ci) is not a derivative of (i∗, Ci∗).
Derivatives are defined as follows.

– (i∗, Ci∗) is a derivative of itself.
– (i, Ci) is computed from (i∗, Ci∗) via a chain of re-encryption by the re-

encryption oracle.
– A chain of re-encryption keys from i∗ to i is already hold by A, and Ci is

computed from Ci∗ by using those keys.

Our definition is slightly different from those in single-hop schemes [17, 19,
21] (in which two games are needed). The derivative notion is taken from [19],
adapted for the multi-hop setting by considering chain conditions.

Definition 4 (Key privacy, CCA setting). Phase 1, Phase 2 are the same
as in Definition 2, except that in Phase 2, A can access to additional oracles
Dec(skj , ·), where j ∈ ΓH , handling queries of form (j, Cj). The queries cannot
simultaneously satisfy: (1) j = j∗, and (2) Cj is computed involving rk∗.

3 Our Key-Private, CPA-Secure PRE

Let us first recall some notions, originally used in fully homomorphic encryption.
For matrices A,B, the notation [A|B] stands for their column concatenation.

Functions Bits(·) and Power2(·). The functions Power2(·) and Bits(·) are
described as follows. Let v ∈ Z

n
q and κ = �lg q� where lg(·) is logarithm of base

2. Then there are bit vectors vi ∈ {0, 1}n such that v =
∑κ−1

i=0 2ivi. Then

Bits(v) = [v0| · · · |vκ−1] ∈ {0, 1}1×nκ.

Let X = [X1| · · · |Xl] ∈ Z
n×l
q where Xi are column vectors. Then

Power2(X) =

⎡
⎢⎢⎢⎣

X1 · · · Xl

2X1 · · · 2Xl

...
...

2κ−1X1 · · · 2κ−1Xl

⎤
⎥⎥⎥⎦ ∈ Z

nκ×l
q .
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It is easy to check that

Bits(v)Power2(X) = vX ∈ Z
1×l
q .

This equality will be useful in checking the correctness of our schemes. Following
PRE scheme is based on the public key encryption scheme given in [22]. In
particular, the first three algorithms are basically the same as those in [22],
while the last two are ours. Concrete parameters are given in Table 1.

Parameters Generation: Choose positive integers q, n, and take matrix A ∈
Z
n×n
q randomly.

Key Generation: Let s = αq for 0 < α < 1. Take Gaussian noise matrices
R,S ∈ ψn×l

s . The public key is pk = P for P = R − AS ∈ Z
n×l
q , and the

secret key is sk = S. Here, l is the message length in bits, while n is the key
dimension.

Encryption: To encrypt m ∈ {0, 1}l, take Gaussian noise vectors e1, e2 ∈
ψ1×n
s , and e3 ∈ ψ1×l

s , and return ciphertext c = (c1, c2) ∈ Z
1×(n+l)
q where

c1 = e1A+ e2 ∈ Z
1×n
q , c2 = e1P + e3 +m · 	 q

2

 ∈ Z

1×l
q .

Decryption: To decrypt c = (c1, c2) ∈ Z
1×(n+l)
q by secret key S, compute

m = c1S + c2 ∈ Z
l
q. Let m = (m1, . . . ,ml). If mi ∈ [−	 q

4
, 	
q
4
) ⊂ Zq, let

mi = 0; otherwise mi = 1.
Proxy Key Generation: Alice with keys (A, PA, SA) and Bob with keys (B,

PB, SB) want to set up proxy key rkA→B . The proxy key rkA→B = (PB , Q)
where

Q =

[
X −XSB + E + Power2(SA)

0l×n Il×l

]

in which matrices X ∈ Z
nκ×n
q (κ = �lg q�) is chosen randomly. Noise matrix

E is chosen from ψnκ×l
s . Therefore, one way to generate Q is as follows

1. Bob creates X,E, and securely sends X,−XSB+E to Alice. This can be
done without interaction by encrypting the tuple under a public key for
which Alice holds the corresponding secret key. The resulting ciphertext
is added to Bob’s public key.

2. Alice with SA uses above information from Bob to set up the proxy key.
Re-encryption: Let rkA→B = (PB , Q). To transform Alice’s ciphertext (c1, c2)

∈ Z
1×(n+l)
q into Bob’s ciphertext, return

f1[A|PB ] + [f2|f3] + [Bits(c1)|c2] ·Q ∈ Z
1×(n+l)
q

in which f1, f2 ∈ ψ1×n
s , and f3 ∈ ψ1×l

s are chosen by the proxy.

Intuition on Key Privacy. The re-encryption key rkA→B contains following
information on Bob’s secret skB = SB: (A,PB = RB−ASB) and (X,−XSB+E).
These together can be written in LWE form[

A
X

]
,−
[
A
X

]
SB +

[
RB

E

]
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Table 1. The concrete parameters of our CPA-secure PRE

n q s pk = P Q ∈ rk Ciphertext Rate Bit security
(bits) (bits) (bits) |CT |/|m| (cf. Table 3)

toy 160 2053 4.00 2.4× 105 3.9× 106 3456 27 45
low 192 4093 5.44 2.9× 105 5.6× 106 3840 30 62
medium 256 4093 5.13 3.9× 105 9.8× 106 4608 36 101
high 320 4093 4.88 4.9× 105 15× 106 5376 42 143

The CCA-secure scheme parameters are almost the same, except ciphertexts are a
little lengthened by a symmetric encryption part. Intuitively, compared to [22], we
have to decrease the noise deviation s to tolerate the noise increased in ciphertext
transformation by proxy. In the table, message length |m| = l = 128.

and thus rkA→B is pseudo-random if SB is kept secret, namely if Bob is not
corrupted. This also implies that public key PB is pseudo-random and unrelated
to Bob, which is the recipient-anonymous property of [22].

However, the above is still insufficient! If re-encryption is deterministic, for
example using [Bits(c1)|c2] · Q for rkA→B = Q (and PB is unused), there is
an attack on key privacy as follows: (1) adversary A creates ciphertext (c1, c2)
using Alice’s public key; (2) A asks for challenge rk∗ between Alice and Bob
(which is either rkA→B = Q or random); (3) A asks for re-encryption (c′1, c

′
2)

of (c1, c2) from Alice to Bob, namely (c′1, c′2) = [Bits(c1)|c2] · Q; (4) A checks
whether (c′1, c

′
2) = [Bits(c1)|c2] · rk∗. If the comparison holds true, A decides

that rk∗ is the re-encryption key between Alice and Bob. The idea of this attack
is originated in [2, Lemma 2.7], and works well under the condition that re-
encryption is deterministic.

To deal with the attack, we add the term f1[A|PB ] + [f2|f3] into the re-
encryption. This is exactly an encryption of zero vector under the public key
of Bob, so that decryption by Bob will not be affected by this term. Thus re-
encryption is randomized, and we succeed in proving that the PRE scheme is
key-private.

Multi-hop Property. A ciphertext (c1, c2) ∈ Z
1×(n+l)
q , after re-encryption, is

changed to a ciphertext in Z
1×(n+l)
q . Namely, re-encryption does not change the

format of ciphertexts. Original ciphertexts and transformed ciphertexts are de-
crypted by the same decryption algorithm (with different secret keys, of course).
Thus our scheme is multi-hop, namely a ciphertext can be re-encrypted many
times as long as the incurred noise is kept small enough.

Uni-directional Property. This property ensures that Alice and proxy to-
gether cannot decrypted Bob’s ciphertexts. This is intuitively true because Alice
and proxy can only get (X,−XSB + E) where X and E are chosen by Bob.
The tuple is pseudo-random under the LWE assumption, so the information is
useless.

Correctness. First, we check that normal ciphertext c1 = e1A + e2, c2 =
e1P + e3 + m · 	 q

2
 can be decrypted by secret S via the formula c1S + c2.
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Indeed,

c1S + c2 = e1R+ e2S + e3 +m · 	 q
2



will yield m if the noise e1R + e2S + e3 is small enough. Second, we check a
transformed ciphertext can be decrypted by Bob. Namely, decryption of cipher-
text f1[A|PB ]+[f2|f3]+[Bits(c1)|c2] ·Q by Bob’s secret SB is the same as Alice’s
decryption on (c1, c2) with SA. Indeed,

(f1[A|PB ] + [f2|f3] + [Bits(c1)|c2] ·Q)

[
SB

Il×l

]

= f1(ASB + PB) + f2SB + f3 + [Bits(c1)|c2]
[
E + Power2(SA)

Il×l

]
= f1RB + f2SB + f3 + Bits(c1) (E + Power2(SA)) + c2

= f1RB + f2SB + f3 + Bits(c1)E︸ ︷︷ ︸
noise

+c1SA + c2

will yield Alice’s decryption on (c1, c2) since the incurred noise is sufficiently
small. Technical details are deferred to Appendix A.

Theorem 1 (CPA security). Under the LWE(n + qrkn�lg q�, n, α, q) as-
sumption, the above PRE scheme is CPA-secure. Here, qrk is the number of
re-encryption key queries the adversary can make.

Proof. Consider an adversaryA against the PRE. Let Game0 be the interactions
between A and a challenger as in Definition 1. In this initial game, pp = (q, n,A),
ΓH is the set of honest users, ΓC is the set of corrupted users. A key pair (Pi, Si)
satisfying Pi = Ri − ASi for Gaussian noise matrix Ri, Si. The re-encryption
key from party i to party j is rki→j = (Pj , Qij) in which

Qij =

[
Xij −XijSj + Eij + Power2(Si)
0l×n Il×l

]

in which Xij , Eij are generated by party j. The challenge ciphertext related to
party i∗ is (c∗1, c∗2) where

c∗1 = e∗1A+ e∗2 and c∗2 = e∗1P
∗ + e∗3 +mb · 	

q

2



in which b ∈ {0, 1} is the challenge bit, (e∗1, e∗2, e∗3) are Gaussian noise, and P ∗ is
the challenge public key.

For notational convenience, let ΓH = {1, . . . , N}. Following Game1≤k≤N cor-
responds to honest party k ∈ ΓH . Gamek is identical to Gamek−1, except the
following change:

– Pk (= Rk −ASk in Gamek−1) is changed into a random matrix P ′
k.
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– Re-encryption key query (i, k): return rki→k = (P ′
k, Qik) in which

Qik =

[
Xik Rik

0l×n Il×l

]

where Rik is freshly random.

– Re-encryption query (i, k, Ci): return a random vector in Z
1×(n+l)
q to A.

Gamefinal is identical to GameN except that challenge ciphertext is

c∗1 = r∗1 and c∗2 = r∗2 +mb · 	
q

2



in which r∗1 , r
∗
2 are freshly random vectors over Zq of proper lengths. By this

change, the challenge bit b is information-theoretically hidden from A, so Pr[b′ =
b] = 1/2, and hence A’s advantage in Game1 is 0.

We now need to prove that the games are indistinguishable from the view of
A, under the LWE assumption. The change from Gamek−1 to Gamek involves
turning

Pk = Rk −ASk, Rik = Eik −XikSk

into random matrices. This is ensured by LWE with secret Sk of the form⎡
⎢⎢⎢⎢⎣

A
...

Xik

...

⎤
⎥⎥⎥⎥⎦
i

,−

⎡
⎢⎢⎢⎢⎣

A
...

Xik

...

⎤
⎥⎥⎥⎥⎦
i

Sk +

⎡
⎢⎢⎢⎢⎣
Rk

...
Xik

...

⎤
⎥⎥⎥⎥⎦
i

where index i corresponds to all re-encryption key queries (i, k). Here we rely on
the LWE(n+ qrkn�lg q�, n, α, q) assumption. The change also relies on the fact
that f1[A|P ′

k]+ [f2|f3] is pseudo-random under LWE(n+ l, n, α, q) when dealing
with re-encryption queries.

The change from GameN to Gamefinal involves turning e∗1A + e∗2 and c∗2 =
e∗1P ∗ + e∗3 into random vectors. This is ensured by LWE with secret (e∗1)T (the
transpose of e∗1) of the form

[A|P ∗]T , (e∗1[A|P ∗] + [e∗2|e∗3])T

where P ∗ is random by one of previous games. The assumption parameter is
LWE(n + l, n, α, q). We consider n + qrkn�lg q� > n + l, ending with the LWE
parameter stated in the theorem. �


Theorem 2 (Key privacy). Under the LWE(n + qrkn�lg q�, n, α, q) assump-
tion, the above PRE scheme is key-private. Here, qrk is the number of re-
encryption key queries the adversary can make.
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Proof. Let Game0 be the attack game as in Definition 2. In the game, the chal-
lenge re-encryption key is rki∗→j∗ = (Pj∗ , Qi∗j∗) where

Qi∗j∗ =

[
Xi∗j∗ −Xi∗j∗Sj∗ + Ei∗j∗ + Power2(Si∗)
0l×n Il×l

]

for j∗ ∈ ΓH . For notational convenience, let ΓH = {1, . . . , N}. Game1≤k≤N

corresponds to honest party k ∈ ΓH . Gamek is identical to Gamek−1, except
that re-encryption key rki→k for any i ∈ ΓH ∪ ΓC is set to

rki→k =

(
Pk,

[
Xik Rik

0l×n Il×l

])

where Pk, Rik are freshly random matrices over Zq of proper sizes. Since j
∗ ∈ ΓH

by the constraint in definition, rki∗→j∗ is changed in Gamej∗ into

rki∗→j∗ =

(
Pj∗ ,

[
Xi∗j∗ Ri∗j∗

0l×n Il×l

])

for random matrices Pj∗ , Ri∗j∗ . Also, in Gamek, re-encryption queries (i, k, Ci) is

answered by random vectors of length Z
1×(n+l)
q for all index i. Thus in GameN ,

the challenge that A gets is random in both cases b = 0 and b = 1, and hence
A’s advantage is 0.

The games Gamek and Gamek−1 are indistinguishable under LWE with secret
Sk of the form ⎡

⎢⎢⎢⎢⎣
A
...

Xik

...

⎤
⎥⎥⎥⎥⎦
i

,−

⎡
⎢⎢⎢⎢⎣

A
...

Xik

...

⎤
⎥⎥⎥⎥⎦
i

Sk +

⎡
⎢⎢⎢⎢⎣
Rk

...
Eik

...

⎤
⎥⎥⎥⎥⎦
i

where i depends on the re-encryption key queries, and LWE of form f1[A|Pk] +
[f2|f3] for random matrix Pk and secret Gaussian noise vectors f1, f2, f3. Thus
all games above are indistinguishable to A under the LWE(n+qrkn�lg q�, n, α, q)
and LWE(n+ l, n, α, q) assumptions. Considering n+ qrkn�lg q� > n+ l, we end
up with the LWE parameters as stated. �


4 Our Key-Private, CCA-Secure PRE

We apply Fujisaki-Okamoto method to the CPA-secure PRE to obtain following
CCA-secure one. Succinctly, the encryption is as follows

Encprecca(m;σ) = Encprecpa(σ;H(σ, cs))||SEG(σ)(m)

in which

– σ is random; H and G are hash functions modeled as random oracles.
– cs = SEG(σ)(m) is the symmetric encryption of m under the key G(σ).
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Below is the detailed description of our CCA-secure scheme. Let (SE, SD) be a
symmetric encryption scheme, which is one-time secure. (One example of (SE,
SD) is the one-time-pad.) Let G,H are random oracles. Algorithms for parame-
ters generation, key generation, proxy key generation are identical to the CPA-
secure scheme in Section 3. The differences are in following algorithms.

Encryption: Choose random σ ∈ {0, 1}l. Symmetrically encrypt message m ∈
{0, 1}∗: cs = SEG(σ)(m). Let h = H(σ, cs).
Encrypt σ: use randomness h, take Gaussian noise vectors e1, e2 ∈ ψ1×n

s ,

and e3 ∈ ψ1×l
s , and return ciphertext c = (c1, c2) ∈ Z

1×(n+l)
q where

c1 = e1A+ e2 ∈ Z
1×n
q , c2 = e1P + e3 + σ · 	 q

2

 ∈ Z

1×l
q .

Return (c1, c2, cs).
Re-encryption: Do the re-encryption on (c1, c2) as in the CPA-secure scheme.

Return the result together with unchanged cs.
Decryption: To decrypt c = (c1, c2, cs) by secret key S, compute σ = c1S +

c2 ∈ Z
l
q. Let σ = (σ1, . . . , σl). If σi ∈ [−	 q

4
, 	
q
4
) ⊂ Zq, let σ

′
i = 0; otherwise

σ′
i = 1.

Let σ′ = σ′
1 · · ·σ′

l and h′ = H(σ′, cs). Using h′, obtain c′1, c
′
2 as the encryption

of σ′ as in the encryption process. If (c′1, c
′
2) �= (c1, c2), return ⊥; otherwise

return SDG(σ′)(cs) as the message.

Security Intuition. For CCA security, we need to ensure that the decryp-
tion oracles are useless to the adversary. In particular, the challenge ciphertext
(c∗1, c

∗
2, c

∗
s) cannot be converted to another ciphertext passing decryption without

⊥. Some checks are as follows.
First, any modification on c∗s will yield different hash value h′, and hence

(c′1, c
′
2) �= (c∗1, c

∗
2) in decryption, so ⊥ is returned.

Second, consider the malformed ciphertext (c∗1, c∗2 + e, c∗s), in which e is small
noise. In decryption of (c∗1, c

∗
2 + e, c∗s), we have σ = c∗1S + c∗2 + e, and suppose e

is small enough compared to q, resulting σ′ ∈ {0, 1}l becomes the same as in the
decryption of the challenge (c∗1, c∗2, c∗s). Then h′ is also the same since there is no
change in c∗s, and hence internal term (c′1, c

′
2) becomes exactly (c∗1, c

∗
2), since these

terms encrypt the same message and randomness. But then (c′1, c
′
2) �= (c∗1, c

∗
2+e),

so ⊥ is returned.
Third, now consider the malformed ciphertext (c∗1 + e, c∗2, c

∗
s), in which e is

small noise. In this case σ = (c∗1+ e)S+ c∗2 = c∗1S+ c∗2 + eS. We can assume that
eS is small since both e and S are so. The same argument as in the second case
shows that the internal term in decryption (c′1, c

′
2) is exactly identical to (c∗1, c

∗
2).

Then finally ⊥ is returned since (c′1, c′2) �= (c∗1 + e, c∗2).
Certainly, using the re-encryption algorithm, the adversary can re-encrypt

(c∗1, c
∗
2, c

∗
s) to other uncorrupted parties. Directly submitting the re-encrypted

ciphertext is forbidden by the rules of derivatives, so the adversary changes it in
some way, and then asks for decryption. But then the decryption oracle will act
as above due to the modification of the ciphertext, preventing any information
leakage on the challenge bit.
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Theorem 3 (CCA security). The above PRE scheme is CCA-secure under
the LWE assumption, if G,H are random oracles.

Theorem 4 (Key privacy). The above PRE scheme is key-private in CCA
setting under the LWE assumption.

5 Practical Hardness of Search LWE Problem

Technical Reminders. Consider the search version of LWE(m,n, α, q). Recall
ψs=αq is the discrete Gaussian distribution over Z, whose density function at
y is proportional to exp(−πy2/s2). Let A ∈ Z

m×n, x ∈ ψn×1
αq , e ∈ ψm×1

αq ,
b = Ax + e ∈ Z

m×1. The search version of LWE is defined as the problem of
finding x (or equivalently finding e) from given A and b = Ax+e. Denote Rm×m

O
the set of normalized orthogonal matrix of degree m.

Previous Attacks on LWE [22,23]. The basic strategy is to solve a bounded
distance decoding (BDD) problem. That is, consider the lattice Λq(A) := {z ∈
Z
m : ∃x such that z = Ax ( mod q)} in which the desired vector is derived

from the closest vector to b = Ax + e. Lindner and Peikert [22] use Babai’s
nearest plane algorithm, while Liu and Nguyen [23] employ [20]’s exhaustive
search algorithm with linear pruning. As mentioned in the introduction, these
attacks was analyzed with Gaussian deviation s = αq ≥ 8.

Our Attack on LWE. We use a modified version of the exhaustive search
algorithm [20] with a new pruning strategy detailed below. Our attack works for
any Gaussian noise deviation.

Throughout this section, we assume that the lattice Λq(A) is given by a q-ary
lattice, i.e., a lower triangle matrix with first m−n and last n diagonal elements
are q and 1, respectively. For this basis, we use (b1, . . . , bm) and (b̃1, . . . , b̃m) to
denote a reduced basis and its Gram-Schmidt basis. Following Schnorr’s geomet-
ric series assumption (GSA) [27] and experiments in [22], we assume that the
graph of ln ||b̃i|| consists of horizontal line ||b̃i|| = q, slope of 0.5 ln r, and line
||b̃i|| = 1. Here, r is a constant in GSA that assumes ||b̃i||2/||b1||2 = ri−1 for a
reduced basis. It connects to the Hermite factor by the relation r = δ−4m/(m−1);
here, δ is an algorithm-depended factor so that ||b1|| = δn det(L)1/n.

Following [22], we assume that such lattice basis can be computed in tBKZ(δ)
= 21.8/ lg(δ)−130 single-core seconds, while they expected it as 21.8/ lg(δ)−110.
This is because the latest lattice reduction algorithm can solve 124 dimensional
SVP instance [11] which achieves δ = 1.00862 in 4 single core days3; it derives
lg(tBKZ(δ))− 1.8/ lg(δ) ≈ −127. Thus, we rewrite the constant in [22] to −130.
Since the record is the time to find a short vector, not to find a reduced basis,
actual time for lattice reduction can be slightly larger than this. Therefore, the
estimation is expected to be a lower bound of lattice reduction.

3 Chen and Nguyen also announced a record for dimension 126, but the CPU time for
solving one instance was not reported.
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Table 2. Our re-estimation for [22, Figure 4]

n q s=αq Lattice dim Hermite factor lg(our time) vs. lg([LP11]’s time) [secs]

128 2053 6.77 320 1.0086 17 32
192 4093 8.87 462 1.0067 59 78
256 4093 8.35 619 1.0054 102 132
320 4093 8.00 773 1.0045 147 189

Table 3. Estimation on our PRE schemes’ parameters

n q s=αq Lattice dim Hermite factor Bit security lg(time) [secs]

toy 160 2053 4.00 362 1.0083 45 21
low 192 4093 5.44 451 1.0074 62 39
medium 256 4093 5.13 578 1.0060 101 78
high 320 4093 4.88 718 1.0050 143 120

New Strategy: Band Pruning. Our attack employs an exhaustive search
algorithm [20] with pruning technique adopted for LWE. Since an error vector is
sampled from a discrete Gaussian, we can upper and lower bound its projected
length with high probability. Consider a search tree whose nodes at depth k are
labeled by b−

∑m
i=m−k+1 ai · bi, and a node is pruned if the length of projected

vector πm−k+1(b −
∑m

i=m−k+1 ai · bi) is outer of the range given below.

Write the error vector e := b − z = (e1, . . . , em) =
∑m

i=1 αib̃i for some z ∈
Λq(A). By 〈e, b̃i〉 = αi||b̃i||2, the projective length of each node is∣∣∣∣∣
∣∣∣∣∣πm−k+1

(
b−

m∑
i=m−k+1

ai · bi

)∣∣∣∣∣
∣∣∣∣∣
2

=

m∑
i=m−k+1

α2
i ||b∗i ||2 =

m∑
i=m−k+1

〈e, b∗i /||b∗i ||〉2.

Under the heuristic assumption [16, Heuristic 3] by Gama, Nguyen and Regev
that claims the distribution of matrix (b̃1/||b̃1||, . . . , b̃m/||b̃m||) of a random re-
duced basis looks like a uniform distribution over Rm×m

O , we can predict the
range of projected length of an error vector.

Theorem 5 (Band pruning). Under [16, Heuristic 3], we can efficiently com-
pute numbers Lk and Rk so that

Pr
e ← Dm

Z,σ

(v1, . . . , vm) ← Rm×m
O

[
L2
k <

k∑
i=1

〈e, vi〉2 < R2
k

]
> 1− 2/m2.

The proof is given in the full version. Let the eventEk be L2
k <

∑k
i=1〈e, vi〉2 < R2

k

holds, then the probability that the error vector is found is bounded by

Pr [E1 ∩ · · · ∩ Em] > 1 +

m∑
i=1

(Pr[Ei]− 1) > 1− 2/m. (1)
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Also, following [16], by the Gaussian heuristic assumption, the number of
processed nodes during lattice enumeration is approximated by

N =
m∑

k=1

VolC(L1, . . . , Lk;R1, . . . , Rk)∏m
i=m−k+1 ||b̃i||

where C(L1, . . . , Lk;R1, . . . , Rk) is a k-dimensional Baumkuchen intersection
defined by {

(x1, . . . , xk) ∈ R
k : L2

i <

i∑
�=1

x2
� < R2

i for ∀i ∈ [k]

}
.

Also, using their approximation technique, we compute the cost for lattice enu-
meration for various parameters. For each parameter tuple (n, q, s = αq), we
search the optimal pair of (m, δ) so that the computational time in seconds

21.8/ lg(δ)−130 + (�ENUM/(2.5 · 107))

is minimized. Here, the first term is our lower bound estimation of lattice re-
duction algorithm, and the other term is the cost for enumeration from our
benchmark testing of lattice enumeration that marks about 25 million nodes
per single-thread second by Intel E5645 CPU. This CPU also marks about 9
million keys per single-thread second by RC5-72 benchmark testing published
in distributed.net. Thus, our bit security estimation is given by following
formula

bit security = lg((time in second) · (9 · 106)).

By our new attack, we update the security estimation of parameters in Lind-
ner and Peikert [22] in Table 2 and suggest parameter sets in Table 3 for our PRE
schemes. The gap between our attack and [22] is mainly due to the improvement of
lattice reductionalgorithm, i.e., tBKZ(δ), andnewestimationof time toprocess one
node. Improvement of the lattice enumeration part is slightly weaker because for
[22]’s parameter (n, q, s, δ)=(128, 2053, 6.77, 1.0089) and (192, 4093, 8.87, 1.0067),
the number of enumeration is about 246.3 (m = 325) and 283.2 (m = 462), while
the original attacks estimated 247 and 287, respectively.
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A Correctness of Our PRE Scheme

We will use following lemmas, whose proofs can be derived from [4, 5]. Below
| · | stands for either the Euclidean norm of a vector or the absolute value; 〈·, ·〉
for inner product. Writing |ψn

s | is a short hand for taking a vector from the
distribution and computing its norm.

Lemma 1. Let c ≥ 1 and C = c · exp( 1−c2

2 ). Then for any real s > 0 and any

integer n ≥ 1, we have Pr
[
|ψn

s | ≥ c·s√n√
2π

]
≤ Cn.

Lemma 2. For any real s > 0 and T > 0, and any x ∈ R
n, we have

Pr [|〈x, ψn
s 〉| ≥ Ts|x|] < 2 exp(−πT 2).

http://eprint.iacr.org/
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Theorem 6 (Correctness). Let q, n, s be as in the scheme, and ρ (= 0.01
concretely) be the error of decryption per message symbol. For correctness of

our PRE, we need s2 ≤
√
2π·q

16c
√

n ln(2/ρ)
in which c ∈ {1.22, 1.20, 1.17, 1.16}

corresponds to n ∈ {160, 192, 256, 320}. These c are chosen so that C4n =

(c · exp(1−c2

2 ))4n ≤ 2−40.

Proof. It suffices to check correctness of the transformed ciphertexts, since the
noise is bigger than that in original ones. Continuing the main text, let us now
check the decryption of transformed ciphertexts of (c1, c2), which is

f1RB + f2SB + f3 + Bits(c1)E + c1SA + c2

= f1RB + f2SB + f3 + Bits(c1)E + e1R+ e2S + e3︸ ︷︷ ︸
noise

+m · 	 q
2

.

Suppose Bits(c1) contains all 1’s, each component in Zq of the noise (in Z
1×l
q ) can

be written as the inner product of two vectors e = (f1, f2, f3, E1, . . . , Enκ, e1,
e2, e3) and x = (rB , sB,0101×l,11×nκ, r, s,0101×l), where 0101×l stands for a
vector of length l with all 0’s except one 1; 11×nκ for a vector of length nκ with

all 1’s. We have e ∈ ψ
1×(nκ+4n+2l)
s and |x| ≤ |(rB , sB, r, s)| +

√
nκ+ 2 where

(rB , sB, r, s) ∈ ψ1×4n
s . Applying Lemma 1, we have with high probability (e.g.,

≥ 1− 2−40 when c = 1.22, n = 160)

|x| ≤ c · s
√
4n√

2π
+
√
nκ+ 2.

We now use Lemma 2 with x and e ∈ ψ
1×(nκ+4n+2l)
s . Let ρ (e.g., = 0.01) be

the error per message symbol in decryption, we set 2 exp(−πT 2) = ρ, so T =√
ln(2/ρ)/

√
π. For correctness, we need Ts|x| ≤ q/4, which holds true provided

that √
ln(2/ρ)√

π
· s ·
(
c · s

√
4n√

2π
+
√
nκ+ 2

)
≤ q

4
.

With our choices of concrete parameters, c · s
√
4n ≥

√
2π

√
nκ+ 2, so the above

holds true if√
ln(2/ρ)√

π
· s · 2c · s

√
4n√

2π
≤ q

4
⇐⇒ s2 ≤

√
2π · q

16c
√
n ln(2/ρ)

as claimed. �
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Abstract. In PODC 2012, Dani et al. presented an unconditionally secure mul-
tiparty computation (MPC) protocol, which allows a set of n parties to securely
evaluate any arithmetic circuit C of size |C| on their private inputs, even in the
presence of a computationally unbounded malicious adversary who can corrupt
upto t < ( 1

3
− ε)n parties, for any given non-zero ε with 0 < ε < 1

3
. The total

circuit-dependent communication complexity of their protocol isO(PolyLog(n)·
|C|), which is a significant improvement over the standard MPC protocols, which
has circuit-dependent complexity of the form O(Poly(n) · |C|). The key innova-
tion in their protocol is that instead of following the standard method of having
every party communicate with every other party for evaluating each gate of C, it is
sufficient to involve only a small subset of parties of size Θ(PolyLog(n)) to com-
municate with each other for evaluating each gate of the circuit. The protocol was
presented in a synchronous setting and it was left as an open problem to design an
asynchronous MPC (AMPC) protocol, with a similar characteristic. In this work,
we solve this open problem by presenting the first unconditionally secure AMPC
protocol where the circuit dependent complexity is O(PolyLog(n) · |C|).

1 Introduction

A milestone in the area of secure distributed computing is the following fundamental re-
sult by Ben-Or et al. [6] and independently by Chaum et al. [10]: let P = {P1, . . . , Pn}
be a set of mutually distrusting parties, connected by pair-wise secure and authentic
channels. Party Pi has a private input xi ∈ F, where F is a finite field. Then there ex-
ists a protocol for the n parties, which allows them to “securely” compute any publicly
known n-ary function f : Fn → F of their private inputs if less than 1/3 fraction of
the parties are corrupted. More specifically, let Adv be a computationally unbounded
static malicious adversary, who can select any t parties to corrupt before the execution
of a protocol and force them to behave in any arbitrary manner during the protocol
execution. Then [6,10] showed that as long as t < n/3, there exists an MPC protocol
satisfying the following requirements: (1) The honest parties (namely the parties not un-
der the control of Adv) obtains yout = f(x1, . . . ,xn). This property is often called the
correctness property; (2) The inputs of the honest parties remain as private as possible;
namely Adv does not learn anything about the inputs of the honest parties, beyond what

� This work has been supported in part by EPSRC via grant EP/I03126X.

G. Paul and S. Vaudenay (Eds.): INDOCRYPT 2013, LNCS 8250, pp. 19–37, 2013.
c© Springer International Publishing Switzerland 2013
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is revealed by the inputs of the corrupted parties, the description of the function f and
the function output yout. This property is often called the privacy property. The result of
[6,10] is a very powerful result in distributed cryptography, since f can model any joint
cryptographic task, which can be solved by the parties using an MPC protocol, even
without deploying any public key machinery (which are computationally expensive and
whose security is based on the assumption that adversary is computationally bounded).

The work of [6,10] laid the foundation of what is called unconditionally secure MPC,
also known as information theoretically secure MPC. Due to its central importance
in distributed cryptography, several papers have been written in the last three decades
and various protocols have been proposed, addressing this problem (see for example
[2,13,4] and their references). The common principle underlying all these protocols is
the following: each party Pi (verifiably) secret-share its input xi among all the parties,
using a linear secret-sharing scheme (LSSS), say Shamir [22], with threshold t. Infor-
mally, such a scheme ensures that xi remains private for an honest Pi, even if any set of
t parties combine their shares of xi. On the other hand, given the shares of xi, then xi

can be efficiently reconstructed, even if upto t < n/3 shares are incorrect1. Once each
party secret-share its input, the protocol performs what is called the shared-circuit-
evaluation. More specifically, for simplicity and without loss of generality, assume that
f is expressed as a (publicly known) arithmetic circuit C over F, consisting of 2-input
addition and multiplication gates; then the protocol tries to maintain the following in-
variant for each gate g of the circuit: let a and b be the inputs of g, such that both a and b
are secret-shared (with threshold t) among the parties; then g(a, b) is also secret-shared
(with threshold t) among the parties. To maintain this invariant, every party in P inter-
acts with every other party in P ; we refer to this as all-to-all communication paradigm.
Finally, once yout is available in secret-shared fashion, the parties exchange their shares
of yout and reconstruct yout. Intuitively, the security follows as all intermediate val-
ues during the computation remain secret-shared with threshold t. The communication
complexity of these protocols, namely the total number of elements of F communicated
by the honest parties, is of the form O(Poly(n)|C| + Poly(n)), where |C| is the size
of C. The research community focused on to improve the circuit-dependent communi-
cation complexity (which depends on |C|). This is because for most of the functions,
|C| is significantly larger than n; so in scenarios involving huge computations and large
number of parties, a protocol with less circuit-dependent complexity is desirable. The
initial protocols of [6,10] were highly inefficient, with circuit-dependent complexity of
the form Ω(n6|C|). Following a long series of work, the most efficient protocol was
presented in [4], with communication complexity of O(n|C|+ Poly(n)).

MPC with Poly-Log Circuit-Dependent Complexity: Even though an MPC proto-
col with linear circuit-dependent complexity (namely O(n|C|)) looks promising, ef-
forts were made to further improve it. Towards this, Damgård et al. [12] presented an
MPC protocol with circuit-dependent complexity O(PolyLog(|C|) · PolyLog(n) · |C|).
The protocol still follows the all-to-all communication paradigm; however instead of
one gate, “several” gates are evaluated in parallel by a single “instance” of all-to-all

1 Informally this is done by applying the standard Reed-Solomon (RS) error-correction and
using the fact that a set of n Shamir shares is the same as an RS codeword of length n [19].
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communication. Intuitively this is done by using packed secret-sharing [16], where sev-
eral values are packed and then shared in a single instance of secret-sharing. Though the
protocol of [12] has a better circuit-dependent complexity, it is highly complex mainly
due to the use of packed secret-sharing. Moreover, instead of tolerating t < n/3 corrup-
tions, it tolerates t < (13 − ε)n corruptions, for any given constant ε, with 0 < ε < 1

3 .
In a different line of work, Dani et al. [14] tried to bypass the all-to-all commu-

nication paradigm for obtaining efficient MPC protocol with better circuit-dependent
complexity. The key innovation was that for doing the shared circuit-evaluation, instead
of involving all the n parties (as was the case in all the existing MPC protocols), it is
sufficient to involve only a “small” subset of parties and do the shared circuit-evaluation
only among this small subset of parties. More specifically, for each gate in the circuit, a
designated subset of Θ(log n) parties is involved, who do the all-to-all communication
only among them for the shared evaluation of that gate. This is quite practical as it is
highly unrealistic to ensure that every party communicates with every other party, par-
ticularly for real world applications where n is typically large. Based on this idea, they
proposed an MPC protocol tolerating t < (13 − ε)n corruptions for any given ε, where
0 < ε < 1

3 , with communication complexity O(PolyLog(n)|C| + n
√
n · PolyLog(n)),

which is highly efficient as (asymptotically) it has better circuit-dependent complexity.
The protocol is very simple and does not use packed secret-sharing; the only disadvan-
tage is that it involves a negligible error probability in the correctness and privacy.

Our Results: All the above results are in the synchronous model, where there ex-
ists a global clock and the delay of every message in the network is upper bounded
by a known constant. Though (theoretically) impressive, it does not model a real-life
communication network, like the Internet, with no timing assumptions and where the
messages can be arbitrarily (but finitely) delayed. Even though practically motivated,
AMPC protocols received much less attention, due to the following general phenom-
ena which is impossible to deal with in any asynchronous protocol and which makes
the protocol highly involved: it is not possible to distinguish between a slow but hon-
est sender (whose messages are delayed arbitrarily) and a corrupted sender (who does
not send the messages at all). As a result, at every “stage” of an asynchronous proto-
col, a party cannot afford to listen from all the parties (to avoid endless waiting) and so
communication from t (potentially honest) parties has to be ignored. This automatically
implies that even the inputs of upto t parties have to be ignored for the computation of
f ; for an excellent introduction to the asynchronous protocols, see [9]. The best known
unconditionally secure AMPC protocols [20,21,11] have communication complexity
O(Poly(n)|C| + Poly(n)) and are based on all-to-all communication paradigm. There
does not exist any AMPC protocol whose circuit-dependent communication complex-
ity is PolyLog(n); infact this was left as an open question in [14]. Motivated by the
importance of asynchronous model, we solve this question and show the following:

Theorem 1 (Main Result). Let P = {P1, . . . , Pn} be a set of n parties, connected
by pair-wise secure and authentic channels. Moreover let Adv be a computationally
unbounded static adversary, who can maliciously corrupt upto t parties, where t <
(13 − ε)n for any given ε, with 0 < ε < 1

3 . Furthermore, let f : Fn → F be an n-ary
publicly known function, expressed as an arithmetic circuit C over F. Then there exists
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a protocol for the n parties, which with high probability, is a secure AMPC protocol,
with communication complexity O(PolyLog(n)|C| + Poly(n)).

Note: As in [14,17], in the rest of the paper the phrase with high probability means that
an event happens with probability at least 1− 1/nc for every constant c and sufciently
large n, where the probabilities are over the random coins of the honest parties.

2 Protocol Overview

We follow [14] and borrow few ideas from [20,1]. Without going into the full details of
our protocol, we rather focus on the major idea behind the MPC protocol of [14] and
the subtle problem in directly adapting the same to the asynchronous setting; this will
be followed by a high level idea of our proposed solution to deal with this problem.
Before that, we first state the following interesting result2 by King et al. [17], based on
[15]. This result lies at the heart of the MPC protocol of [14] as well as ours:

Theorem 2 (Universe Reduction Theorem [17]). Let P = {P1, . . . , Pn} be a set of
parties, connected by pair-wise secure and authentic (asynchronous) channels and let
Adv be a computationally unbounded static adversary, corrupting upto t parties, where
t < (13 − ε)n and 0 < ε < 1

3 . Then there exists an efficient (asynchronous) protocol,
say Quorum(P), with total communication complexity O(n

√
n · PolyLog(n)). With

high probability, the protocol outputs n publicly known (non-disjoint) sets Q1, . . . ,Qn

of parties called quorums, satisfying the following properties:

(1). Each |Qi| = Θ(log n); (2). A party Pi ∈ P appears in Θ(log n) quorums and (3).
For each Qi, the fraction of corrupted parties in Qi is strictly less than 1/3.

The above result states that it is possible to divide a large “universe” with a certain
“property” into several smaller universe with the same property. Specifically, starting
with the initial set P (the large universe) with more than 2/3 fraction of honest parties,
we can obtain n (non-disjoint) quorums of Θ(log n) parties (smaller universe), such
that in each quorum, more than 2/3 fraction of the parties are honest. Intuitively the
MPC protocol of [14] (and also our AMPC protocol) with poly-log circuit-dependent
complexity uses the above result to implement the following idea for each gate of the
circuit: instead of deploying the entire set P to do the shared evaluation of the gate,
only three designated quorums, each of size Θ(log n) are involved; the details follow.

Shared Gate Evaluation in the MPC Protocol of [14] Involving Θ(log n) Parties:
The MPC protocol of [14] maintains the following invariant for each gate g of the
circuit C: let xleft and xright be the two inputs of g. Then there will be a publicly known
designated quorum, say Qout and a uniformly random mask, say mout, such that:

– The masked gate output g(xleft, xright)+mout will be publicly known to Qout, while
the mask mout will be Shamir-shared among Qout with threshold tout. Here tout is
the maximum possible value satisfying tout <

|Qout|
3 .

2 Actually they showed the result in the more powerful adversarial model, namely the full infor-
mation model, where the adversary can even see the communication of all the honest parties;
obviously the result will hold in the point-to-point secure-channel setting.
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It is easy to see that if Qout contains at most tout corrupted parties (which is indeed
ensured by the quorum formation protocol Quorum with high probability), then mout

remains private and so is g(xleft, xright). To maintain the above invariant, two more
publicly known designated quorums, say Qleft and Qright are involved (for simplicity,
we assume Qleft,Qright and Qout to be disjoint), with the following inputs:

– The masked input xleft + mleft will be publicly known to the parties in Qleft and
mleft will be a uniformly random mask, Shamir-shared among Qleft with threshold
tleft; here tleft is the maximum value satisfying tleft <

|Qleft|
3 .

– The masked input xright+mright will be publicly known to Qright and mright will be
a uniformly random mask, Shamir-shared among Qright with threshold tright; here

tright is the maximum value satisfying tright <
|Qright|

3 .

Note that if Qleft and Qright contain at most tleft and tright corrupted parties respectively
(which is indeed the case with high probability due to Quorum), then xleft and xright re-
main private, as the respective masks remain private. To (securely) maintain the above
mentioned invariant for g, the parties in Qleft,Qright and Qout execute a protocol, say
LightWeightGateEval, with the above public inputs and private inputs. The exact details
of LightWeightGateEval were not provided in [14], but they refer to any standard 1/3
fault-tolerant MPC protocol, say [6] for the same. Specifically, more than 2/3 fraction of
the parties in Qleft∪Qright∪Qout will be honest (with high probability) and so from [6],
we know that there exists an MPC protocol for Qleft∪Qright∪Qout, meeting the require-
ments of LightWeightGateEval. The interesting feature about LightWeightGateEval is
that even though it involves all-to-all communication among Qleft ∪ Qright ∪ Qout, in-
stead of n parties, the all-to-all communication involves only Θ(log n) parties and so it
has communication complexity O(PolyLog(n)), rather than O(Poly(n)).

We now pause for a moment and discuss how any potential LightWeightGateEval
protocol will work; this will help us to understand the subtle issue that bars us from
directly extending LightWeightGateEval to the asynchronous setting. Perhaps the ma-
jor bottleneck for LightWeightGateEval is that the private inputs, namely the masks
mleft,mright and mout are individually shared among different quorums. Instead, if
somehow we have these masks also (securely) “re-shared” among all the parties in
Qcombined = Qleft∪Qright∪Qout, with threshold tcombined = tleft+ tright+ tout, then we
are done. That is, the parties in Qcombined can then jointly do the following: (1). Unmask
mleft from xleft +mleft and mright from xright +mright respectively in a shared fashion;
as a result xleft and xright will be now shared among Qcombined with threshold tcombined;
(2). Apply any existing 1/3 fault-tolerant MPC protocol, say [6,4] on the shared xleft

and xright and obtain g(xleft, xright) in a shared fashion with threshold tcombined. To this,
add the mask mout in a shared fashion and obtain g(xleft, xright) + mout in a shared
fashion with threshold tcombined; (3). Finally, publicly reconstruct g(xleft, xright)+mout,
which is possible as long as the maximum number of corrupted parties in Qcombined is
tcombined (which will be the case with high probability).

From the above discussion, it follows that all that LightWeightGateEval needs to
do is to have mleft,mright and mout reshared among Qcombined with threshold tcombined

and without leaking any information about these masks. This can be done as follows:
consider for example mleft; then each party in Qleft is asked to reshare its share of
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mleft among Qcombined with threshold tcombined. Let s = (s1, . . . , s|Qleft|) be the vec-
tor of original shares of mleft available with the respective parties in Qleft and let
s′ = (s′1, . . . , s′|Qleft|) be the vector of actual shares, reshared by the parties in Qleft.
It is easy to see that s and s′ will have distance at most tleft, assuming that Qleft has
at most tleft corrupted parties. Since tleft <

|Qleft|
3 , it follows that by applying the (RS)

error-correction on s′, we can error-correct tleft errors and recover s (and hence mleft).
Interestingly, this is possible even if we have the shares of s′, instead of the actual s′

(which is the case for us). Thus we can perform the error-correction in a shared fash-
ion and that too without revealing any information about the correct components of s′

(namely the shares of mleft corresponding to the honest parties in Qleft). Informally this
is because the only information which is made public during the shared error-correction
is the syndrome of the vector s′; however it will be already known to the adversary, as
the syndrome of s′ is the same as the syndrome of the “error-vector” (which will be
known to the adversary); see [1] for more details.

Problem in Extending LightWeightGateEval to the Asynchronous Setting and Our
Solution: The major challenge for designing (a generic) LightWeightGateEval for the
asynchronous setting is that it is not possible to ensure that all the honest parties in
Qleft,Qright and Qout participate with their private inputs. For example, consider Qleft:
assuming Qleft to have at most tleft corrupted parties, due to the asynchronicity, we can
ensure that only |Qleft| − tleft parties from Qleft participate in LightWeightGateEval
with their private inputs, namely the shares of mleft. However the tleft ignored parties
may be honest, which implies that instead of having more than 2/3 fraction of hon-
est parties, we may only have more than 1/2 fraction of honest parties participating
in LightWeightGateEval with the correct shares of mleft. This seems to be insufficient
for any existing generic 1/3 fault-tolerant AMPC protocol, say [7,20]3, to have mleft

reshared among Qcombined with threshold tcombined. Indeed this will be the case for the
LightWeightGateEval outlined in the previous section, as we will not have the suffi-
cient “redundancy” (namely two-third), to perform the (shared) error-correction on the
reshared shares of mleft and have it robustly reshared among Qcombined with thresh-
old tcombined. Moreover, we may end up revealing some information about the correct
shares of mleft during the shared error-correction. This is because due to the insufficient
redundancy, the error-correction may report a correct share of mleft as incorrect, thus
reporting an “incorrect” error-vector which was unknown to the adversary; as a result,
the resultant syndrome may leak information about such correct shares of mleft.

To deal with the above problems, we apply the shared error-correction in an “online”
fashion and that too without revealing anything about mleft. Specifically, we exploit the
fact that if the (shared) error-correction algorithm fails to correct all the errors among
the |Qleft|− tleft reshared shares, then we can always detect the same by applying error-
detection4 (in a shared fashion) on the output obtained at the end of error-correction.
This is because we will still have enough redundancy left among the correctly reshared
shares to perform the error-detection. If the error-detection indicates errors, then cer-
tainly we know that some of the missing tleft shares belonged to the honest parties and

3 These are the only known 1/3 fault-tolerant unconditionally secure AMPC protocols.
4 The goal of the error-detection is to only detect (rather correct) the presence of any error.
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so we wait for the completion of resharing of additional shares of mleft (by the “ignored”
parties in Qleft) and repeat the process of error-correction followed by error-detection.

In a more detail, the online shared error-correction involves an iteration of length at
most (tleft + 1). During the iteration r, where 0 ≤ r ≤ tleft, we wait for the comple-
tion of 2tleft + 1 + r shares of mleft to be re-shared. Now assuming at most r of these
reshared shares to be incorrect, we try to error-correct upto r errors (in a shared fash-
ion), followed by the verification (aka shared error-detection) that the resultant (shared)
vector constitutes a set of 2tleft + 1+ r Shamir shares with threshold tleft. This process
is repeated till in some iteration, the error-detection outputs no error, after which mleft

will be robustly reshared among Qcombined. The idea is that if r̂ denotes the number of
parties in Qleft who reshares an incorrect share of mleft, where r̂ ≤ tleft, then during the
r̂th iteration, we will have the resharing of 2tleft+1+ r̂ shares of mleft being completed,
with 2tleft+1 of them being the correct ones; so the error correction will correct r̂ errors
and the error-detection will confirm that no more errors are present.

To maintain the privacy of mout during all the iterations, the above process is actually
carried out on a masked vector s′r +mr during the rth iteration. Here s′r denotes the
(shared) vector of 2tleft+1+r shares ofmleft, which have been reshared by the end of the
rth iteration (and on which we would ideally like to apply the shared error-correction),
while mr denotes a uniformly random shared mask of length 2tleft + 1 + r, such that
the components of mr constitute a set of 2tleft + 1 + r Shamir shares with threshold
tleft. The idea is that if sr constitutes the original vector of 2tleft + 1+ r shares of mleft

corresponding to s′r, then sr + mr constitutes a set of 2tleft + 1 + r Shamir shares
with threshold tleft. So if the distance between s′r and sr is indeed r, then so will be
between s′r +mr and sr +mr. Thus if error-correction followed by error-detection is
successful during the iteration r, then sr+mr will be restored (in a shared fashion) and
the parties can then unmask mr in a shared fashion, resulting in sr (and hence mleft)
being reshared among Qcombined. On the other hand if the error-correction followed
by error-detection is unsuccessful during the iteration r, then no information about the
correct components of sr (namely the correct shares of mleft) is revealed, as the error-
correction and detection is done on a masked vector, where the mask is random, private
and is independently generated for each iteration. Since tleft = Θ(log n), we may need
to repeat the shared error-correction followed by error-detection O(log n) times and so
the communication complexity of the resultant protocol will be still O(PolyLog(n)).

3 Preliminaries and Definitions

We assume a set of n parties P = {P1, . . . , Pn}, connected by pair-wise private and
authentic channels. We assume a computationally unbounded static adversaryAdv, who
can corrupt any set of t parties at the beginning of a protocol, where t < (13 − ε)n and
0 < ε < 1

3 is a given constant. The adversary can force the parties under its control
to behave in any arbitrary manner during the execution of a protocol. The channels are
asynchronous and can have arbitrary (but finite) delay; i.e. the messages will reach to
their destinations eventually. Moreover, the order in which the messages reach their
destinations may be different from the order in which they were sent. To model the
worst case scenario, Adv is given the power to schedule the delivery of every message
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in the network. Note that, while Adv can schedule the messages of the honest parties at
its will, it has no access to the “contents” of these messages.

As in [9], we consider a protocol execution in the asynchronous model as a sequence
of atomic steps, where a single party is active in each such step. A party gets activated by
receiving a message after which it performs an internal computation and then possibly
sends messages on its outgoing channels. The order of the atomic steps are controlled
by a “scheduler”, which is controlled by Adv. At the beginning of the computation, each
party will be in a special start state. We say a party has terminated/completed the proto-
col if it reaches a halt state, after which it does not perform any further computation. A
protocol execution is said to be complete if each (honest) party terminates the protocol.
Notice that the executions that complete do so after a finite number of steps.

We assume that all computation and communication in our protocols is done over a
finite field F, where |F| > 3n; there exists 3n publicly known non-zero distinct elements
α1, . . . , α3n ∈ F, where αi, αi+n and αi+2n will be associated as the evaluation points
with party Pi ∈ P . In our protocols, we will use two types of Shamir-shared values.
One where the value is shared only among a single set of parties where each share
holder receives one share. Second where the value is shared among three (possibly non-
disjoint) sets of parties and where a party may receive more than one share, depending
upon the number of sets in which is it present. More formally:

Definition 1 (d-sharing). Let s ∈ F be a value and d be the degree of sharing.

– d-Sharing Involving a Single Quorum: Let Q ⊆ P be a quorum of parties; then
s is said to be d-shared among Q if there exists a polynomial, say f(·), of degree at
most d with f(0) = s and every (honest) Pi ∈ Q holds a share si = f(αi) of s. The
vector of shares of s corresponding to the (honest) parties in Q is called d-sharing
of s, denoted as [s]dQ.

– d-Sharing Involving Three Quorums: Let A,B and C be three quorums of par-
ties and let for each party Pi ∈ A ∪ B ∪ C, ki denotes the number of quorums
(among A,B and C) in which Pi is present and so ki ∈ {1, 2, 3}. Then s is said
to be d-shared among A ∪ B ∪ C if there exists a polynomial, say f(·), of de-
gree at most d with f(0) = s and every (honest) party Pi ∈ A ∪ B ∪ C holds ki
shares5 si,1, . . . , si,ki , with si,k = f(αi+(k−1)n) for k ∈ {1, . . . , ki}. The vector
of (multi)shares of s corresponding to the (honest) parties in A ∪ B ∪ C is called
d-sharing of s, denoted as [[[s]]]dA∪B∪C . �

Intuitively [[[·]]]-sharing is the same as [·]-sharing, where if Pi occurs in ki quorums
among A,B and C then it plays the “role” of ki share-holders. A well known property
of d-sharings is the following linearity property: given [x(1)]dQ, . . . , [x

(�)]dQ and publicly
known constants c1, . . . , c�, then we have [c1 · x(1) + . . .+ c� · x(�)]dQ = c1 · [x(1)]dQ +

. . .+c� · [x(�)]dQ. We capture the above by saying that the parties in Q (locally) compute
[c1 ·x(1)+ . . .+c� ·x(�)]dQ from [x(1)]dQ, . . . , [x

(�)]dQ; for this the parties apply the above
linear function on their respective shares of x(1), . . . , x(�). It is easy to see that the
linearity property holds even with respect to [[[·]]]-shared values. A well know property
based on the linearity of d-sharings is the following: given at least d+1 distinct shares of

5 A party may receive upto three shares, hence we require three evaluation points for each party.



Breaking the O(n|C|) Barrier for Unconditionally Secure 27

a d-shared value s, then s can be expressed as a linear combination of these d+1 shares.
This is because the d+1 shares constitute d+1 distinct points on the underlying sharing
polynomial of degree at most d; and the free coefficient of this polynomial (i.e. s) can
be expressed as a publicly known linear combination of the d+ 1 points.

3.1 Reed-Solomon (RS) Codes

Let C(N, k, d) be the family of RS codes of length N , dimension k and distance d.
Associated with C(N, k, d) will be a publicly known k ×N generator matrix G and a
corresponding publicly known (N − k)×N parity-check matrix H defined as:

G
def
=

⎛
⎜⎜⎜⎝

1 . . . 1
α1 . . . αN

...
...

αk−1
1 . . . αk−1

N

⎞
⎟⎟⎟⎠ and H

def
=

⎛
⎜⎜⎜⎝

1 . . . 1
α1 . . . αN

...
...

αN−k−1
1 . . . αN−k−1

N

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎝

v1 0
. . .

0 vN

⎞
⎟⎠ ,

where v1, . . . , vN are publicly known non-zero values such that G ·HT = 0N−k. The
encoding of a vector a = (a0, . . . , ak−1) ∈ F

k is given by a · G. If we consider the
polynomial f(x) = a0+a1·x+. . .+ak−1·xk−1, then the RS codeword corresponding to
a is the vector (f(α1), . . . , f(αN )). It thus follows that the vector (f(α1), . . . , f(αN ))
constitutes (k − 1)-sharing of a0. The syndrome of a word y ∈ F

N is given by s(y) =
y ·HT ∈ F

N−k. The following facts about C(N, k, d) are well known:

Lemma 1 ([18]). For C(N, k, d) the following holds: (1). d ≥ N − k+1. So if y1 and
y2 are two codewords such that at least k components of y1,y2 are (position-wise) the
same then y1 = y2. (2). If y = a·G (i.e. y is the RS codeword of a) then s(y) = 0N−k.
(3). The maximum number of errors that can be corrected by C(N, k, d) is �d

2�.

RS Error-correction: We assume a (standard) efficient RS error-correcting proce-
dure RSDec(N, k,Δ) for C(N, k, d) RS codes based on the syndrome decoding, where
d ≥ (N−k+1). The algorithm takes as input a vector y′ = (y′1, . . . , y

′
N ) ∈ F

N with a
Hamming distance6 Δ from an unknown codeword y = (y1, . . . , yN ) ∈ C(N, k, d),
such that Δ ≤ �d

2�. The goal of the algorithm is to “correct” the Δ errors in y′

and recover the original codeword y. On a high level, RSDec works as follows: we
first compute the syndrome s(y′) which further allows to compute the error vector
e = (e1, . . . , eN ), such that for every i, y′i − ei = yi holds; we stress that e can be
computed from s(y′) alone. Moreover, e will have at most Δ non-zero components
(corresponding to the error locations), as we are assuming that at most Δ components
of y′ are corrupted (different from y). Once e is computed, we can easily recover the
original codeword y. As long as it is ensured that Δ ≤ �d

2�, it is guaranteed that the
output is indeed y. A crucial observation about RSDec which we use later is that it is a
linear function of the input vector y′ as syndrome computation is a matrix multiplica-
tion operation; so we can deploy RSDec in a shared fashion on the shares of y′.

6 Hamming distance between two vectors is the number of positions in which they differ.
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4 The Various Existing Asynchronous Primitives

Asynchronous Verifiable Secret Sharing: The following result states that it is pos-
sible to verifiably share a secret, if the fraction of corrupted parties is less than 1/3:

Theorem 3 ([7,20]). Let Q ⊆ P be a quorum of N parties containing at most t′ cor-
rupted parties where t′ < N

3 and let D ∈ P be a dealer with a secret s ∈ F. Then there
exists a protocol, say AVSS(D,Q, s) for D and the parties in Q satisfying:

(1). TERMINATION: With high probability, the following holds: (A) If D is honest and
the parties in Q participate in AVSS then every honest party in Q eventually terminates;
(B) If D is corrupted and some honest party in Q terminates, then every other honest
party in Q eventually terminates. (2). CORRECTNESS: If some honest party in Q termi-
nates, then with high probability, there exists a value, say s, such that s will be t′-shared
among Q (i.e. [s]t

′
Q). Moreover, if D is honest then s = s. (3). PRIVACY: If D is honest,

then the view of the corrupted parties in Q is independent of s. (4). COMMUNICATION

COMPLEXITY: The protocol has communication complexity O(poly(N)).

The following corollary of Theorem 3 follows easily:

Corollary 1. Let A,B and C be three (possibly non-disjoint) quorums of parties, con-
taining ta, tb and tc corrupted parties respectively, where ta < |A|

3 , tb < |B|
3 and

tc < |C|
3 . Let tcombined = ta + tb + tc and Qcombined = A ∪ B ∪ C. Moreover let

D ∈ P be a dealer with a secret s. Furthermore let D invokes AVSS(D,Qcombined, s)
and each Pi ∈ Qcombined plays the role of ki different parties in the protocol, where
ki ∈ {1, 2, 3} is the number of quorums among A,B and C where Pi is present; thus
tcombined < |N |

3 , where N = |A|+ |B|+ |C|. If AVSS(D,Qcombined, s) terminates then
with high probability, there exists an s, which is (tcombined)-shared among Qcombined

(i.e. [[[s]]]tcombined

Qcombined
). Moreover, if D is honest then s = s and s remains private. �

In the rest of the paper we say that party Pi t-share s among Q (resp. Qcombined) to
mean that Pi as a D invoke an instance AVSS(Pi,Q, s) (resp. AVSS(Pi,Qcombined, s))
and the parties in Q (resp. Qcombined) participate in the instance.

Asynchronous Reconstruction Protocol: Let s ∈ F be a value which is t′-shared
among a quorum of parties Q ⊆ P , where t′ < |Q|

3 is the maximum number of cor-
rupted parties in Q (i.e. [s]t

′
Q). Then the well known asynchronous protocol OEC(Q,

[s]t
′
Q) (online error correction) [5,20], with communication complexity O(|Q|2), allows

the parties in Q to robustly reconstruct s. In the rest of the paper we say that the parties
in Q robustly reconstruct [s]t

′
Q to mean that they execute OEC(Q, [s]t

′
Q).

Let A,B and C be three quorums, containing at most ta < |A|
3 , tb <

|B|
3 and tc <

|C|
3

corrupted parties respectively. Moreover, let tcombined = ta + tb + tc,Qcombined = A ∪
B∪C and let s be tcombined-shared amongQcombined. Then by executingOEC(Qcombined,
[[[s]]]tcombined

Qcombined
), the parties in Qcombined can reconstruct s. This is because each Pi ∈

Qcombined plays the role of ki share-holders where ki ∈ {1, 2, 3} denotes the number
of quorums among A,B and C in which it is present. Thus tcombined < N

3 holds where
N = |A|+ |B|+ |C|. In the rest of the paper we say that the parties in Qcombined robustly
reconstruct [[[s]]]tcombined

Qcombined
to mean that they execute OEC(Qcombined, [s]

tcombined

Qcombined
).
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Asynchronous Broadcast and Agreement on a Common Subset: Bracha [8] pre-
sented an asynchronous protocol called A-Cast, which allows a sender Sen ∈ P to send
some message m identically to all the n parties. If Sen is honest then all the honest
parties eventually terminate with output m. If Sen is corrupted and some honest party
terminates with output m′, then every other honest party eventually does the same. The
protocol has communication complexity O(n2|m|) for a message m of size |m|. The
details of A-Cast are available in [9].

Protocol ACS (agreement on a common subset) [5,7] allows the (honest) parties in a
quorum Q of size N containing upto t′ < N

3 corrupted parties, to agree on a common
subset Com of (N−t′) parties, satisfying certain “property”. The property will have the
following characteristics: every honest party in Q will eventually satisfy the property;
a corrupted party Pi in Q may not necessarily satisfy the property, but if some honest
party in Q has found Pi to satisfy the property then it will hold that every other party in
Q will also eventually find the same. The idea behind ACS is to execute |Q| instances
of a 1/3 fault-tolerant asynchronous Byzantine agreement (ABA) protocol [9], one on
the behalf of each party in Q to decide if it satisfies the property and should be included
in Com. The protocol has communication complexity O(Poly(N)).

1/3 Fault-Tolerant AMPC Protocol: The following result states that it is possible
to securely evaluate an arithmetic gate in a shared fashion as long as the fraction of
corrupted parties is less than 1/3:

Theorem 4 ([7,20]). Let Q ⊆ P be a quorum of N parties containing at most t′ < N
3

corrupted parties and let a, b be t′-shared among Q (i.e. [a]t
′
Q, [b]

t′
Q). Moreover, let g

be a publicly known 2-input gate over F. Then there exists an efficient asynchronous
protocol AMPC(g,Q, [a]t

′
Q, [b]

t′
Q) for the parties in Q with the following properties:

(1) TERMINATION: With high probability, all the honest parties eventually terminate
the protocol. (2) CORRECTNESS: With high probability, the protocol outputs [g(a, b)]t

′
Q.

(3) PRIVACY: The view of the adversary is independent of a and b and (4) COMMUNI-
CATION COMPLEXITY: The protocol has communication complexity O(Poly(N)).

The following corollary to Theorem 4 follows easily:

Corollary 2. Let A,B and C be three quorums, containing at most ta, tb and tc cor-
rupted parties respectively, where ta < |A|

3 , tb <
|B|
3 and tc <

|C|
3 . Let tcombined = ta+

tb+tc andQcombined = A∪B∪C. Moreover let a, b be tcombined-shared among Qcombined

and let the parties inQcombined executeAMPC(g,Qcombined, [[[a]]]
tcombined

Qcombined
, [[[b]]]tcombined

Qcombined
)

with each Pi ∈ Qcombined playing the role of ki different parties, where ki ∈ {1, 2, 3} is
the number of quorums in which Pi occurs. Then with high probability, the protocol ter-
minates with output [[[g(a, b)]]]tcombined

Qcombined
. The view of the adversary will be independent

of a, b and the protocol has communication complexity O(Poly(|Qcombined|)).

Generating Uniformly Random [·] and [[[·]]]-Shared Vectors: Protocol Rand(Q, �)
is a standard protocol, which allows a quorum of parties Q to generate a uniformly
random t′-shared vector [r]t

′
Q = ([r1]

t′
Q, . . . , [r�]

t′
Q) of length �, where t′ < |Q|

3 is the
maximum number of corrupted parties in Q; thus the view of the adversary will be
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independent of r. In the protocol each party in Q t′-share a uniformly random vector of
length �. Using ACS the parties in Q agree on a common subset Com of |Q|− t′ parties
who have correctly shared their vectors. Finally [r]t

′
Q is set to be the sum of the vectors

shared by the parties in Com. The protocol eventually terminates as there exists at least
|Q| − t′ honest parties in Q who correctly share their vectors. As there exists at least
one honest party in Com (since |Q| − t′ > 2t′) whose shared vector is indeed random
and private (follows from the property of AVSS), it follows that the shared r is indeed
random and private. The protocol has communication complexity O(Poly(|Q|, �)).

Let A,B and C be three quorums, containing at most ta, tb and tc corrupted parties
respectively, where ta < |A|

3 , tb < |B|
3 and tc < |C|

3 . Let tcombined = ta + tb + tc and
Qcombined = A ∪ B ∪ C. It follows that using the above idea, the parties in Qcombined

can execute Rand(Qcombined, �) to generate a uniformly random tcombined-shared vector
[[[r]]]tcombined

Qcombined
= ([[[r1]]]

tcombined

Qcombined
, . . . , [[[r�]]]

tcombined

Qcombined
) of length �. For this, every party

Pi ∈ Qcombined plays the role of ki different parties and accordingly tcombined-share ki
uniformly random vectors among Qcombined; here ki ∈ {1, 2, 3} denotes the number of
quorums in which Pi is present. As a result, the relation tcombined < N

3 will hold where
N = |A|+ |B|+ |C| and so the arguments used above hold here also.

5 Transforming a [·]-Shared Value to a [[[·]]]-Shared Value

We now present an asynchronous protocol Transform. The protocol takes as input a
ta-shared value s (i.e. [s]taA ), shared among the parties in a quorum A, containing at

most ta < |A|
3 corrupted parties. The protocol also takes as input two additional (pos-

sibly non-disjoint) quorums B and C, containing at most tb and tc corrupted parties
respectively, where tb < |B|

3 and tc < |C|
3 . The protocol outputs [[[s]]]tcombined

Qcombined
, with the

view of the adversary being independent of s (thus s remains private); here Qcombined =
A ∪ B ∪ C and tcombined = ta + tb + tc. The protocol has communication complexity
O(Poly(|Qcombined|)). Looking ahead, protocol Transform will be the major compo-
nent in our AMPC protocol for implementing the protocol LightWeightGateEval dis-
cussed in the introduction. For designing Transform we further need another subproto-
col Cor&Det (standing for correct-and-detect) which we discuss next.

5.1 Protocol Cor&Det: Shared Error-Correction Followed by Error-Detection

The protocol takes as input quorums A,B, C and values ta, tb and tc. Additionally, it
takes input a parameter r, where r ≤ ta and a tcombined-shared vector [[[s′]]]tcombined

Qcombined
=

([[[s′1]]]
tcombined

Qcombined
, . . . , [[[s′2ta+1+r]]]

tcombined

Qcombined
) . The vector s′ = (s′1, . . . , s′2ta+1+r) has a

Hamming distance of at most ta from an unknown vector s = (s1, . . . , s2ta+1+r),
which constitutes 2ta + 1 + r distinct points on (an unknown) polynomial f(·) of de-
gree at most ta; i.e. f(αi) = si holds for i = 1, . . . , 2ta + 1+ r. The exact value of the
Hamming distance between s and s′ is not known (except that it is at most ta). More-
over, Adv knows the components of s and s′ in which they differ and thus Adv may
know ta points on7 f(·). The goal of Cor&Det is to error-correct upto r errors in s′

7 Looking ahead, for Transform, s will be a “truncated” ta-sharing of s and s′ will be the
reshared shares of s, of which at most ta may be incorrect.
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and then identify if there are still more errors left. In a more detail, if indeed the Ham-
ming distance between s and s′ is at most r, then the protocol outputs tcombined-shared
s; i.e. [[[s1]]]

tcombined

Qcombined
, . . . , [[[s2ta+1+r]]]

tcombined

Qcombined
. Otherwise it outputs ⊥. In any case, s

remains private; the protocol has communication complexity O(Poly(|Qcombined|)).
The protocol (see Fig. 1) is based on the idea of shared error-correction, also used

in [1]; however we need to make some modifications in our context (more on this in
the sequel). Specifically we observe that s is an (N, k, d) RS codeword where N =
2ta+1+r, k = ta+1 and hence d ≥ ta+r+1 and so by applying RS error-correction,
we can correct upto � ta+r

2 � errors in s′. If indeed the Hamming distance between s and
s′ is at most r, then we can error-correct the r errors in s′, as r ≤ ta+r

2 ; otherwise
the recovered word may not be s. To detect this, we further apply the error-detection
property of the RS codes. More specifically, let s� be the word obtained after correcting
r errors in s′. We can verify whether s� is an (N, k, d) RS codeword by computing the
syndrome of s� and checking it for 0. The idea is that if the syndrome of s� is 0 then
s� = s. This is because s and s� will have at least (2ta+1+ r)− ta− r = ta+1 same
components: in the worst case, at most ta components of s′ could be corrupted and
at most r correct components of s′ could have been incorrectly identified as corrupted
by the error-correction algorithm. However from Lemma 1, if s and s� are different
codewords then they can have at most ta same components, which is a contradiction.

The above idea can be executed even with [[[s′]]]tcombined

Qcombined
. This is because RSDec in-

volves performing linear operations on s′ and so due to the linearity property of d-
sharing, the same operations can be performed even on shared s′ and so we can com-
pute the shared syndrome s(s′). However, we also require the actual syndrome s(s′)
to be reconstructed, so as to compute the error-vector. But reconstructing s(s′) seems
to reveal information about the (unknown) components of s′, which we want to avoid.
Specifically, if indeed at most r components of s′ are corrupted, then reconstructing the
syndrome does not reveal any information about the unknown components of s. This
is because in this case the adversary will known the exact error-vector that RSDec will
output and so it can compute the syndrome itself (this follows from the fact that in this
case the syndrome of the vector s′ will be the same as the syndrome of the reported
error-vector); a detailed proof for the same appears in [1]. However, if more than ta+r

2
errors have occurred, then Adv may not know the exact error-vector that RSDec will
output because in this case, even some of the correct components of s′ may be in-
correctly reported as corrupted (in the error-vector) by the algorithm, which may leak
information about such correct components of s′.

To deal with the above privacy issue, we carry out the shared error-correction on
s′+m instead of s′, where m = (m1, . . . ,m2ta+1+r) constitutes a completely random
and unknown mask subject to the condition that m constitutes 2ta+1+r distinct points
on a random unknown polynomial, say M(·) of degree at most ta; i.e. m is an (N, k, d)
RS codeword. To generate such a (shared) m, we use the protocol Rand to generate the
coefficients of M(·) in a shared fashion and then generate the points on M(·) in a shared
fashion. The idea is that s +m also constitutes an RS codeword. So if indeed at most
r components of s′ are corrupted, then so will be in s′ + m and so we can correctly
error-correct upto r errors in s′ + m obtaining s + m and then unmask m; else we
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Cor&Det(A,B, C, r, ta, tb, tc, [[[s′]]]tcombined
Qcombined

)

i. GENERATING tcombined-SHARED RANDOM MASK: The parties in Qcombined execute
Rand(Qcombined, ta + 1) and generate a uniformly random tcombined-shared vector
[[[M]]]tcombined

Qcombined
= ([[[m0]]]

tcombined
Qcombined

, . . . , [[[mta ]]]
tcombined
Qcombined

) of length ta + 1. Let M(x) =

m0 + m1 · x + . . . + mta · xta be the masking polynomial of degree at most ta. Us-
ing the linearity property, the parties in Qcombined compute the tcombined-shared vector
[[[m]]]tcombined

Qcombined
= [[[m1]]]

tcombined
Qcombined

, . . . , [[[m2ta+1+r]]]
tcombined
Qcombined

, where mi = M(αi) for

i = 1, . . . , 2ta + 1+ r. Thus [[[mi]]]
tcombined
Qcombined

= [[[m0]]]
tcombined
Qcombined

+ αi · [[[m1]]]
tcombined
Qcombined

+

. . .+ αta
i · [[[mta ]]]

tcombined

Qcombined
.

ii. MASKING THE INPUT VECTOR: The parties in Qcombined (locally) compute [[[s′ +
m]]]

tcombined
Qcombined

= [[[s′]]]tcombined
Qcombined

+ [[[m]]]
tcombined
Qcombined

.
iii. SHARED ERROR-CORRECTION, DETECTION AND TERMINATION: Let H be the publicly

known (ta+r)×(2ta+1+r) parity-check matrix corresponding to the family of RS codes
C(2ta+1+r, ta+1, ta+r+1). The parties in Qcombined apply RSDec(2ta+1+r, ta+1, r)
on [[[s′ + m]]]

tcombined

Qcombined
using H to error-correct r errors in a shared fashion followed by

shared error-detection as follows:
– The parties compute the tcombined-shared syndrome ([[[s1]]]

tcombined
Qcombined

, . . . ,

[[[sta+r]]]
tcombined
Qcombined

) = [[[s′ +m]]]tcombined
Qcombined

·HT . The parties then robustly reconstruct

[[[si]]]
tcombined
Qcombined

for i = 1, . . . , ta + r and obtain the syndrome s = (s1, . . . , sta+r).
– From s, the parties (locally) obtain the error vector e = (e1, . . . , e2ta+1+r). If e has

more than r non-zero components then the parties output ⊥ and terminatea.
– The parties compute a defaultbtcombined-sharing [[[e]]]tcombined

Qcombined
= ([[[e1]]]

tcombined
Qcombined

, . . . ,

[[[e2ta+1+r]]]
tcombined
Qcombined

) and set [[[s�]]]tcombined
Qcombined

= [[[s′ +m]]]tcombined
Qcombined

− [[[e]]]tcombined
Qcombined

.

– The parties compute the shared syndrome ([[[s�1 ]]]
tcombined
Qcombined

, . . . , [[[s�ta+r]]]
tcombined
Qcombined

) =

[[[s�]]]tcombined
Qcombined

·HT and then robustly reconstruct [[[s�i ]]]
tcombined
Qcombined

for i = 1, . . . , ta+r

to obtain the new syndrome s� = (s�1, . . . , s
�
ta+r). If s� �= 0ta+r then the parties

output ⊥, else [[[s]]]tcombined
Qcombined

= [[[s�]]]tcombined
Qcombined

− [[[m]]]tcombined
Qcombined

and then terminate.

a This clearly implies that more than r components in [[[s′ + m]]]tcombined
Qcombined

are corrupted and
so the parties stop further calculations.

b A default sharing of a value v is nothing but the constant polynomial v.

Fig. 1. Protocol for the shared error-correction followed by error-detection

detect that more than r errors are present in s′ +m. But in any case, the privacy of the
unknown components of s is preserved, as we compute syndrome of the masked s′.

5.2 Designing Transform Using Cor&Det

The high level idea of Transform (see Fig. 2) is as follows: for simplicity and without
loss of generality, let A = {P1, . . . , P|A|}; moreover let |A| = 3ta + 1, which is the
minimum possible value of |A|. In the protocol, each party Pi in A reshare its share
si of s among Qcombined with threshold tcombined. An honest Pi will indeed reshare si,
however a corrupted Pi may not do the same. Moreover, due to the asynchronicity, we
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cannot wait for all the |A| shares of s to be reshared. So the parties in Qcombined perform
what we call “online” shared error-correction, which is an iterative process of length at
most ta + 1. The iterations are indexed by a parameter r, whose value ranges from 0
to ta. Namely during the iteration r, the parties in Qcombined agree on a common subset
SPr ⊆ A of 2ta + 1 + r “share-providers”, such that the shares of each party in SPr

will be eventually reshared among Qcombined. Let sr denote the vector of original shares
of the parties in SPr and let s′r denote the vector of actual values which are reshared
by the individual parties in SPr; clearly the distance between sr and s′r is at most ta,
as SPr may contain ta corrupted parties, who could reshare an incorrect share. The
parties optimistically assume that the distance between sr and s′r is at most r and try to
error-correct the same; protocol Cor&Det is used for the same purpose. If ⊥ is obtained
as the output of Cor&Det then this clearly indicates that more than r parties in SPr are
corrupted, who shared an incorrect share; so the parties go to the next iteration and wait
for more shares to be reshared (i.e. new parties are added to the set SPr) and repeat
the process. The idea is that if r̂ is the number of corrupted parties in A who reshare
incorrect shares of s, where r̂ ≤ ta, then during the r̂th iteration, SP r̂ will be of size
2ta + 1 + r̂ containing r̂ corrupted parties, implying that the distance between sr̂ and
s′r̂ will be r̂ and so by the properties of Cor&Det, the vector sr̂ will be “re-stored” and
tcombined-shared at the end of iteration r̂. Once this is done, tcombined-sharing of s can
be computed using the linearity property. Specifically, the components of sr̂ constitute
distinct points on a polynomial of degree at most ta and so the constant term of the
polynomial (namely s) can be expressed as a linear combination of these points. It is
easy to see that prior to the iteration r̂, the instances of Cor&Det will output ⊥ and
s remains private, thanks to the property of Cor&Det and the fact that each honest
Pi ∈ A independently reshare its share of s, where the degree of sharing is tcombined.

6 The High Level Description of Our AMPC Protocol

Our AMPC protocol is a sequence of the following stages:

(1) Quorum Assignment: The parties in P execute the protocol Quorum(P) and ob-
tain n public quorums Q1, . . . ,Qn with the properties as stated in Theorem 2; to recall,
each quorum will be of size Θ(log n) and with high probability, the fraction of corrupted
parties in each quorum is strictly less than 1/3. For simplicity, we assume |Qi| = 3ti+1
for each Qi; so with high probability, the maximum number of corrupted parties in Qi

will be ti. The next task is to assign a unique quorum for each gate of the circuit C,
who will be involved in the shared evaluation of that gate, along with two other quo-
rums (who will have the corresponding masked gate inputs); care is taken while doing
this assignment to ensure “load-balancing”. More specifically, corresponding to the cir-
cuit C, we construct a network G, with |C| + n nodes: for every gate in C, there will
be a node in G, called internal node and the remaining n nodes in G correspond to the
n inputs of C and are called input nodes. For every (internal) wire from one gate to an-
other gate in C, there will be an edge connecting the corresponding internal nodes in G.
For every wire from an input to a gate in C, there will be an edge from the correspond-
ing input node to the corresponding internal node in G. We next assume a canonical
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Protocol Transform(A,B, C, ta, tb, tc, [s]taA )

Let Qcombined = A ∪ B ∪ C and tcombined = ta + tb + tc. For simplicity and without loss of
generality, let |A| = 3ta + 1 and A = {P1, . . . , P3ta+1}.

i. RESHARING THE SHARES OF s: Every party Pi ∈ A acts as a D and tcombined-share its
share si of s among Qcombined.

ii. ONLINE SHARED ERROR-CORRECTION AND TERMINATION—For r = 0, . . . , ta, the
parties in Qcombined do the following:

– Execute an instance of ACS and agree on a common set SPr ⊆ A of size 2ta+1+
r, such that the share of each Pi ∈ SPr is eventually reshared among Qcombined.
For simplicity, let SPr = {P1, . . . , P2ta+1+r}.

– Let [[[s′r]]]
tcombined
Qcombined

= ([[[s′1]]]
tcombined
Qcombined

, . . . , [[[s′2ta+1+r]]]
tcombined
Qcombined

) be the vec-
tor of values reshared by the parties in in SPr . The parties in Qcombined

execute Cor&Det(A,B, C, r, ta, tb, tc, [[[s′r]]]tcombined

Qcombined
). If ⊥ is obtained at

the end of Cor&Det then continue with the next iteration. Else let
[[[s1]]]

tcombined
Qcombined

, . . . , [[[s2ta+1+r]]]
tcombined
Qcombined

be the non-⊥ output obtained at the end

of Cor&Det. Then using the linearity property, the parties compute [[[s]]]tcombined
Qcombined

from [[[s1]]]
tcombined
Qcombined

, . . . , [[[s2ta+1+r]]]
tcombined
Qcombined

and terminate.

Fig. 2. Protocol for securely computing [[[s]]]tcombined
Qcombined

from [s]taA

numbering of all the nodes in G and the n quorums and assign quorum Qi to node j in
G if i = j mod n; thus a quorum is assigned to at most |C|+n

n nodes in G.

(2) Random Shared Mask Generation for Each Node of G: For each node of the
network G, the parties in the corresponding assigned quorum collectively generate a
uniformly random and shared mask (the purpose of the mask will be clear in the sequel).
More specifically, if a quorum say Qk is assigned to a node in G, then corresponding
to this node, the parties in Qk collectively generate a uniformly random mask, say m,
which is tk-shared (recall that we assumed that |Qk| = 3tk+1) amongQk (i.e. [m]tkQk

);
if Qk is assigned to more than one node in G, then an independent shared mask is gener-
ated for each such node. For generating [m]tkQk

, the parties in Qk execute Rand(Qk, 1),
which will have communication complexity O(Poly(|Qk|)) = O(PolyLog(n)). If in-
deed tk is the maximum number of corrupted parties in Qk (which will be the case with
high probability) then the view of the adversary will be independent of m. The total
communication complexity of this stage will be O((|C| + n)PolyLog(n)).

(3) Input Commitment: Here each party Pi ∈ P commits its private input xi (for
the computation of f ) to the quorum which is assigned to the input node in G, corre-
sponding to the input xi; for simplicity and without loss of generality, let Qi be the
designated quorum, then Pi ti-share xi among Qi (i.e. [xi]

ti
Qi

). Recall that in a com-
pletely asynchronous setting, it is impossible to ensure input provision from all the n
parties, as it will turn endless; as a result, the parties in P need to agree on a common
subset Com of (n− t) “input-providers”, who have indeed correctly shared their private
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inputs to the respective assigned quorums. Towards this, corresponding to each party
Pi ∈ P , every party Pj in the assigned quorum Qi broadcasts a confirmation after
correctly receiving its share of xi corresponding to [xi]

ti
Qi

. The idea is that if majority
of the parties in Qi broadcasts the confirmation, then with high probability, indeed Pi

has correctly committed its input to Qi and this will be known publicly; this is because
with high probability, the quorum formation protocol Quorum(P) would ensure that
Qi has at most ti < Qi

3 corrupted parties. Based on the broadcasted confirmations,
the parties in P then agree on the set Com by executing an instance of ACS. For the
remaining t parties not in Com, the parties in the quorum assigned to the corresponding
input nodes in G consider a default sharing of 0 as the private input of those t parties.
The interpretation is that the (n− t) parties in Com have committed their inputs to the
corresponding quorums, while the input for the remaining t parties is 0; and our goal is
to securely compute the function f on the n-ary input vector x = (x1, . . . ,xn), where
xi is the value committed by Pi if Pi ∈ Com, otherwise8 xi = 0. It is easy to see that
if Pi ∈ Com and if indeed ti is the maximum number of corrupted parties in Qi (which
will be the case with high probability), then xi remains private (due to AVSS).

Finally once the inputs are committed, the parties in each Qi (associated with the
input nodes) do the following: they mask the shared input [xi]

ti
Qi

with the corresponding
shared mask [mi]

ti
Qi

(corresponding to the input node) generated in the previous stage;
i.e. they compute [xi+mi]

ti
Qi

. This is followed by (robust) reconstruction of the masked
input xi +mi (the need to perform this step is to maintain the invariant for shared gate
evaluation discussed in the sequel). Notice that xi of the honest Pis in Com remains
private because with high probability, the mask mi will be random and private.

(4) Shared Gate Evaluation Involving Three Quorums: Using Transform as a sub-
protocol, we design a protocol LightWeightGateEval, to maintain the following invari-
ant for each gate g of the circuit C: let g takes inputs xleft and xright, which we call the
left and right inputs respectively. The input xleft (resp. xright) may either be the output
of some “previous” gate in C or it may be the private input (for f ) of one of the par-
ties in P . In either case, there will be a node (either an internal node or an input node)
in the network G and a corresponding assigned quorum Qleft (resp. Qright) called left
quorum (resp. right quorum), where |Qleft| = 3tleft + 1 (resp. |Qright| = 3tright + 1).
Correspondingly there will be a uniformly random mask mleft (resp. mright) called left
mask (resp. right mask), generated during the shared mask generation stage, such that
mleft (resp. mright) will be tleft-shared (resp. tright-shared) among Qleft (resp. Qright);
i.e. [mleft]

tleft
Qleft

(resp. [mright]
tright
Qright

). Furthermore, the masked left input zleft = xleft+mleft

and the masked right input zright = xright + mright will be publicly known to the par-
ties in Qleft and Qright respectively. Apart from Qleft and Qright, there will be an addi-
tional quorum Qout called output quorum of size |Qout| = 3tout + 1, assigned to the
internal node corresponding to g in the network G; accordingly there will be a corre-
sponding mask mout called output mask from the shared mask generation stage, which
will be tout-shared among Qout (i.e. [mout]

tout
Qout

). Then LightWeightGateEval computes
the masked output zout = g(xleft, xright) + mout and makes it publicly known to the

8 Informally, this is the way we define an ideal-world AMPC functionality to prove security in
the real-world/ideal-world paradigm; see for example [5,7].
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parties in Qcombined = Qleft ∪Qright ∪Qout. If Qleft,Qright and Qout contains tleft, tright
and tout parties respectively (which indeed will be the case with high probability), then
xleft, xright,mleft,mright and mout remains private.

The high level idea behind LightWeightGateEval (discussed in the introduction) is
the following: let tcombined = tleft + tright + tout. Then using Transform, the parties in
Qcombined ensure that the private inputs, namely xleft, xright and the output mask mout

is tcombined-shared among them; i.e. they securely generate [[[xleft]]]
tcombined

Qcombined
from zleft

and [mleft]
tleft
Qleft

, [[[xright]]]
tcombined

Qcombined
from zright and [mright]

tleft
Qleft

and [[[mout]]]
tcombined

Qcombined
from

[mout]
tout
Qout

respectively. Then using AMPC, they compute [[[g(xleft, xright)]]]
tcombined

Qcombined
fol-

lowed by computing [[[g(xleft, xright) +mout]]]
tcombined

Qcombined
. Finally they reconstruct g(xleft,

xright) + mout using OEC. It is easy to see that if indeed the fraction of corrupted
parties in each of Qleft,Qright and Qout is less than 1/3 (which will be the case with
high probability), then the protocol LightWeightGateEval meets the promised secu-
rity goals. Moreover, the communication complexity of LightWeightGateEval will be
O(PolyLog(n)); Transform involves Θ(log n) parties while the instance of AMPC and
OEC also involves Θ(log n) parties. Thus the total complexity of this stage is O(|C|) ·
PolyLog(n)).

(5) Output Propagation: Let Qfinal be the quorum of size 3tfinal+1 which is assigned
to the internal node in G corresponding to the output gate in the circuit C. Then due
to the invariant maintained during the shared gate evaluation, the parties in Qfinal will
eventually have the publicly known masked function output yout +mfinal, where mfinal

will be a tfinal-shared mask corresponding to this internal node, available to the parties
in Qfinal from the shared mask generation stage. The parties in Qfinal then (robustly)
reconstruct mfinal and then unmask mfinal, obtaining the function output yout. The final
task will be to “propagate” yout to all the parties in P . One obvious way of doing this
is to ask each party in Qfinal to broadcast the same and this will have communication
complexity O(n2 · PolyLog(n)); if Qfinal has at most tfinal corrupted parties (which
will be the case with high probability), then every honest party will eventually receive
yout from the broadcast of majority of the parties in Qfinal. A more efficient output
propagation method with communication complexity O(n ·PolyLog(n)) was proposed
in [14], which works even in the asynchronous setting.

Acknowledgement. The author would like to thank Arpita Patra for several helpful
discussion.
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Abstract. We formally study iterated block ciphers that alternate be-
tween two sequences of independent and identically distributed
(i.i.d.) rounds. It is demonstrated that, in some cases the effect of alter-
nating increases security, while in other cases the effect may strictly de-
crease security relative to the corresponding product of one of
its component sequences. As this would appear to contradict conven-
tional wisdom based on the ideal cipher approximation, we introduce
new machinery for provable security comparisons. The comparisons made
here simultaneously establish a coherent ordering of security metrics
ranging from key-recovery cost to computational indistinguishability.
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1 Introduction

1.1 Overview

For many decades, various issues related to product ciphers have been raised
and addressed. A large part of Shannon’s seminal work [16] is devoted to both
theoretical and practical aspects of products, and his invocation of the pastry
dough mixing analogy [16, p. 712] captures a very intuitive idea that by alternat-
ing between two weakly mixing operations, we should eventually achieve strong
mixing. Even today, many modern block cipher designs retain an element of this
structure (see, e.g. [8]).

To model such mixing, we formalize the notion of an alternating product cipher
as an interleaving product of independent ciphers as depicted in Fig. 3. We then
ask: How well does the mixing work, and how might it fail? Various outcomes
seem possible. We present a threefold alternating product with good security
expansion. However, a related construction demonstrates somewhat surprisingly,
an alternating product which is strictly less secure than the two-term product
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of one of the component sequences by itself. On its face, this would appear to
contradict an emerging conventional wisdom about multiple encryption based on
the ideal cipher approximation, “that double encryption improves the security
only marginally [...] triple encryption is significantly more secure than single and
double encryption” [6]. The situation demands that we explore the problem of
provable security comparisons. We find that certain security orderings transcend
the (somewhat artificial) boundary between classical and modern cryptography.

We conclude that alternating product ciphers are, at a fundamental level,
different from two-term products. Ascertaining their security is more nuanced
and they provide evidence of further limits on the applicability of the ideal cipher
approximation (see also [1]).

1.2 Motivation

We are initially motivated by how we might generalize the question, “is a cipher
a group?”, in the case of alternating products. Roughly, an encryption function
E : K ×M → M is said to have the group property [16, p.673], if for each key
pair (k1, k2), there is another key k ∈ K such that E(k2, E(k1, p)) = E(k, p)
for each plaintext p ∈ M . Equivalently, the product of the cipher with itself
produces no new permutations.

The group property obviously affords the cryptanalyst considerable advan-
tage, if only because it reduces the cost of brute-force search against the prod-
uct. Understandably, the question was raised as a possible weakness to multiple
encryption schemes of DES [7]. These concerns were dismissed with increasing
strength as researchers showed that DES was not likely to be a group [7], that
it is not a group [3] and that it generates a large group [18].

Questions about whether a cipher is a group or whether multiple encryption
improves security are really questions about ordering. That is to say, rather than
quantifying specific models of attack against fixed encryption systems, we seek
to establish the correct ordering between constructs of interest. In the case of
alternating products, we find the comparison between XY Z and XZ to be the
most intriguing since our intuition suggests that inserting statistically indepen-
dent Y in between X and Z should improve security. Thus in comparing the two
products of Fig. 1, we find that the order itself depends on the internal structure
of the constituents.

Z Y X vs Z X

Fig. 1. Motivating comparison between alternating product XY Z and XZ

1.3 Toward Coherent Security Ordering

Motivated by the above, we start by quantifying how the permutation count of
an alternating product can grow or shrink. Numerically comparing these counts
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offers one possible ordering, since integers are totally ordered (every pair is com-
parable). But we argue that by relaxing this notion and considering partial/pre
orders on ciphers, we pave the way to stronger and more broadly applicable
security comparisons. There is a lucrative trade-off here: if we give up compar-
ing every pair of ciphers, we are left with a more meaningful ordering of the
remainder.

One powerful order (known to not be total) is majorization, and a great many
interesting real-valued security metrics are known to respect majorization. These
are called Schur-convex (concave if they reverse it). This covers the case of zero
data complexity in the far left of Fig. 2; if a majorization relationship between
two ciphers can be established, then the ciphers are also ordered by the real
values of any Schur-convex(concave) function.

Better still, the comparisons of Fig. 1 in this paper possess additional struc-
ture, facilitating a coherent ordering of security metrics in arbitrary data com-
plexity q. Specifically, we show in Sect. 3, that nonadaptive chosen-plaintext
attack (ncpa) advantage [11,17] as well as conditional guesswork [13] are such
metrics. This is depicted in the two rightmost diagrams in Fig. 2.

z .......................
�

y

H(Z)
�

.............
≥

H(Y )
�

z ........................
�q

y

AdvZ(q)
�

.......
≤

AdvY (q)
�

z ...........................
�q

y

W (Z|C, p)
�

.......
≥

W (Y |C, p)
�

Fig. 2. We establish a coherent ordering of the ciphers in Fig. 1 by showing the con-
sistency of a broad range of security metrics, crossing the divide between information-
theoretic and modern cryptography.

2 Preliminaries

2.1 Prerequisites

We’ve tried to make this paper readable by nonspecialists conversant in contem-
porary cryptography. But in order to follow the proofs, we assume additional
familiarity with the basics of permutation groups, probability theory and repre-
sentation theory, referring the reader to [15], [5]. We also exploit aspects of the
theory of majorization, treated very well in [9]. Since that is critical here, we
provide a brief summary in §3.1.

2.2 Shannon’s Model

We formalize Shannon’s model [16] by representing an encryption system as a
permutation-valued random variable. Precisely, given message spaceM, let G be
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some subgroup of the full symmetric group SM of all permutations on M. An
encryption system on M, or G-cipher for short, is a G-valued random variable
X . As a notational convention, for a G-cipher X (always uppercase), we shall
denote the probability distribution from which it is drawn by lowercase function
x : G → R and write X ∼ x.

Shannon observed that the set of encryption systems is endowed with the
structure of an unital associative algebra1 whose sum and product correspond
to parallel and series composition, respectively. The composition in series of
independent G-ciphersX,Y gives the notion of a product cipher Z = XY , which
survives to this day. It is a standard observation that the probability distribution
of the product z(g) = Pr [XY = g], is given by the convolution z = x ∗ y:

z(g) =
∑
h∈G

x(gh−1)y(h). (1)

3 Models for Security Comparison

After a brief review of the theory of majorization, we explore ways in which
claims of security ordering may be rigorously established as in Fig. 2.

3.1 Majorization and Schur-Convexity

Given vectors x, y ∈ R
n
+ we say x is majorized by y and write x � y, if their l1

norms agree and for each 1 ≤ k ≤ n,

k∑
i=1

x[i] ≤
k∑

i=1

y[i],

with the values rearranged by x[1] ≥ x[2] ≥ · · · ≥ x[n] and similarly for y. The
vector x↓ is the decreasing rearrangement of x (so x[i] = (x↓)i). Majorization is
a preorder relation, so not all vectors are comparable in this way. We have, from
the Hardy-Littlewood-Pólya theorem, that x � y is equivalent to the existence of
a doubly-stochastic matrix D such that x = Dy. Furthermore, by the Birkhoff-
von Neumann theorem, such a matrix is a convex sum of permutations, so x � y
means:

x =
∑

π∈Sn

pππ · y. (2)

For our purposes, the vectors will usually be probability distributions, each with
l1 norm of 1. It is readily verified that the uniform distribution u = (1/n, . . . , 1/n)
has u � x for all probability vectors x. If x � y and y � x, then x is a permutation
of y. If x � y but x is not a permutation of y, we’ll write x ≺ y.

1 These days, it would be identified as the group algebra RG.
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Certain useful real-valued functions respect or reverse majorization. So if φ :
R

n
+ → R has φ(x) ≤ φ(y) (φ(x) ≥ φ(y)) whenever x � y, we call φ Schur-convex

(concave). If a Schur-convex (concave) function additionally satisfies φ(x) < φ(y)
(φ(x) > φ(y)) when x ≺ y, we call φ strictly Schur-convex (concave).

Examples and applications abound throughout science and engineering (see
e.g. [4] for an interesting information-theoretic treatment). In particular,
Shannon entropy, Rényi entropy and guesswork [10] are strictly Schur-concave.
Furthermore marginal guesswork [12] and Bonneau’s α-guesswork [2] are Schur-
concave. For further details, see [9, pp. 562–564] and [14, Appx.]. As remarked,
majorization treats the case of zero data complexity, which is sometimes useful
by itself.

3.2 Nontrivial Data Complexity

For an adversary with access to q plaintext-ciphertext pairs or equivalently q
queries to a chosen-plaintext oracle, we can often identify a vector mapping
σ : V → V̂ and a Schur-convex function φq on V̂ measuring in some way the
cipher’s resistance to attack. If z � y in V has additional structure so that ẑ � ŷ
in V̂ , we write z � φq◦σ y or just z �q y when clear from context. This situation
affords meaningful security comparisons for arbitrary data complexity. A proof
of the following is sketched in the appendix and proved in the full version [14].

Theorem 1. Given data complexity limit q and G-ciphers X ∼ x, Y ∼ y and
Z ∼ z with Z = XY , we have (for appropriate choices of σ)

1. z �q y for conditional guesswork: W (E|C, p), p ∈ M(q) is Schur-concave as
a function of ê,

2. z �q y for distinguishing advantage: Advncpa
E (q) is Schur-convex as a func-

tion of ê,

Here E ∼ e is a generic argument.

The relationship z �q y can arise in many ways, but for our purposes, we’ll use
the fact that Z = XY .

4 Alternating Product Ciphers

4.1 The Formal Definition

We may now give a formal definition of an alternating product followed by an
example.

Definition 1. An alternating product is the product of independent G-ciphers
alternating between two sequences of i.i.d. G-ciphers.

Example 1. Let {Xi}r+1
i=1 be i.i.d. G-ciphers and let {Yi}ri=1 be distinct i.i.d.

G-ciphers. Then E = Xr+1YrXr · · ·Y1X1 is an alternating product of Xi and
Yi. Notice that Def. 1 permits either an even or an odd number of components
in the product. We can imagine E as alternating between the “factors” of two
products X = Xr+1 · · ·X1 and Y = Yr · · ·Y1 as depicted in Fig. 3 below.
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X =

E =

Y =

· · ·

· · ·

· · ·

Xr+1

↓

Xr+1

X1

↓

X1 Y1

↑

Y1

X2

↓

X2 Y2

↑

Y2

Fig. 3. An alternating product cipher seen as an interleaving of the terms of two
iterated ciphers

4.2 Threefold Mixing Convolutions and Double Cosets

While most of this paper is devoted to alternating products, we treat a slightly
more general case in this section to explicate a key observation, namely how
mixing in typical iterated block ciphers is related to expansion along double
cosets when randomness enters via a subgroup operation (like the XOR-ing of
round subkeys).

Consider a threefold product T = XY Z with Z confined to subgroup K ≤ G,
X confined to subgroup H ≤ G, and Y deterministically taking single value π ∈
G. To understand how the convolution t = x ∗ y ∗ z decomposes, it’s instructive
to employ an action of g ∈ G on functions φ : G → R taking φ �→ φ ◦ g−1,
in other words (g · φ)(f) = φ(g−1f). With this in mind, we have the following
useful lemma.

Lemma 1. If the support of φ is confined to a left coset kH, then the support
of g · φ is confined to gkH.

Proof: Assume supp(φ) ⊆ kH , and observe that f ∈ supp(g ·φ) =⇒ (g ·φ)(f) �=
0 =⇒ φ(g−1f) �= 0 =⇒ g−1f ∈ supp(φ) =⇒ g−1f ∈ kH =⇒ f ∈ gkH .
Thus supp(g · φ) ⊆ gkH . �

It should be intuitively clear that T is spread out over the double coset HπK,
but the following stronger result details some of the mechanics of the mixing,
facilitating deeper security comparisons.

Theorem 2. The cipher T has supp(t) ⊆ HπK and its distribution is a convex
direct sum

t =

m⊕
i=1

αizi,

of m = [H:H∩πK] distinct probability vectors. Furthermore, each zi is majorized
by z.

Proof: The three terms in T = XY Z are given by probability distributions
x(g), y(g) and z(g) with supp(x) ⊆ H , supp(y) = {π} and supp(z) ⊆ K. First
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note that by the associativity of product ciphers, we may write T = X(Y Z),
and the inner convolution z′ = y ∗ z yields,

z′(g) =
∑
h∈G

y(h)z(h−1g) = z(π−1g) = π · z(g),

which by Lem. 1, precisely describes a function confined to πK.
Now the outer convolution t = x ∗ z′ yields

t(g) =
∑
h∈G

x(h)z′(h−1g) =
∑
h∈H

x(h)z′(h−1g) =
∑
h∈H

x(h)h · z′(g).

Recognizing that z′ is confined to πK, it is natural according to Lem. 1 to
collect terms for which h · z′ is confined to the same left coset of K. Indeed,
recall that the left action of H on left cosets G/K (the supports of the various
h · z′) is equivalent to the double coset action H\G/K. We may decompose the
orbit HπK =

⋃m
i=1 λiK, where the orbit size m = [H :H ∩ πK] is given by the

orbit-stabilizer theorem with

S � StabH\(G/K)(πK) = H ∩ πK.

Furthermore, we recognize {h ∈ H | h(πK) = λiK} = hiS, for some left trans-
versal {hi} of S in H . This gives us a recipe for collecting terms,

t =
∑
h∈H

x(h)h · z′ =
m∑
i=1

∑
h∈hiS

x(h)h · z′ =
m∑
i=1

x(hiS)

(
1

x(hiS)

∑
h∈hiS

x(h)h · z′
)

︸ ︷︷ ︸
� zi

=

m∑
i=1

x(hiS)zi,

where, by construction, each zi is confined to left coset λiK, so the sum is a direct
sum. By the Hardy-Littlewood-Pólya and Birkhoff-von Neumann theorems,

zi =
1

x(hiS)

∑
h∈hiS

x(h)h · z′

is a convex sum of permuted copies of z′, assuring majorization zi � z′ � z.
Finally, taking αi = x(hiS) yields

∑
i αi = 1 and the theorem is proved. �

Uniform distributions simplify the matter.

Corollary 1. When both X and Z are uniformly distributed, T is uniformly
distributed on HπK.

Proof: The uniformity of Z implies z � zi � z, so each zi is uniform on λiK.
The uniformity of X implies

t =

m∑
i=1

x(hiS)zi =
|S|
|H |

m∑
i=1

zi =
|H ∩ πK|

|H |

m∑
i=1

zi =
1

m

m∑
i=1

zi,
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which precisely describes a function uniform on HπK. �

The following is immediate.

Corollary 2. If in addition to the conditions of the previous corollary, |HπK| >
|K| then t ≺ z.

Remark. For noncommutative G, the additional condition in Coro. 2 is actually
the typical case, even when H = K. For the remainder of this paper we assume
H �= πH so that [H :H ∩ πH ] > 1 and thus |HπH | > |H |. This is always true in
a simple group since H = πH means H is normal. �

5 Applications

5.1 An Expanding Alternating Product

If, in Coro. 2, we further impose H = K, we obtain an alternating product cipher
in the sense of Def. 1.

Proposition 1. The alternating product cipher T = XY Z is more secure than
D = XZ when X and Z are uniform H-ciphers and Y is deterministic on {π},
in the sense that:

a). The mixing of permutations in T produces dramatically more than D.
b). t ≺ d, so by any strictly Schur-convave security metric, T is more secure

than D.
c). t �q d, so by the security metrics of Thm. 1, T is no less secure than D.

Proof: For (a) and (b), we need only apply Coro. 1 and Coro. 2. For (c), observe
that since D = XZ = Z, T = XY Z = (XY )D, we have the necessary product
relation for Thm. 1. �

5.2 A Collapsing Alternating Product

Now let H be a subgroup of G and let π ∈ G fall strictly outside H (so H �= πH).
Consider three independent G-ciphers X,Y, Z, where both X and Z are uni-
formly distributed on the left coset πH and Y takes the value π−1 determin-
istically. We seek to compare the products T = XY Z vs D = XZ. Note that
since X and Z are i.i.d., and Y is independent of these, T is also an alternating
product. We have the following.

Proposition 2. The product cipher D is more secure than the alternating prod-
uct T in that:

a). The mixing of permutations in D produces dramatically more than T .
b). d ≺ t, so by any strictly Schur-convex security metric, D is more secure than

T .
c). d �q t, so by the security metrics of Thm. 1, D is no less secure than T .
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Proof: Without loss of generality, we may drop the trailing π, which poses no
cryptanalytic barrier. We compare instead the products T ′ = X ′Y Z and D′ =
X ′Z, withX ′ uniform onH . Writing T ′ = X ′(Y Z) the inner convolution v = y∗z
trivially reduces to uniform onH . In this way, T ′ = X ′V is the double encryption
of Prop. 1. On the other hand, D′ is uniform on HπH since it is of the form
of the triple product of Prop. 1. The desired result follows at once from this
reversal of roles of the double and triple product from Prop. 1. �

5.3 A Collapsing General Alternating Product

Consider again the general alternating product cipher of Fig. 3 and Ex. 1, only
now with each Xi uniform on πH and each Yi deterministically taking π−1. We
seek to compare E = Xr+1YrXr · · ·Y1X1 with X = Xr+1 · · ·X1. Again because
products are associative, we may write E = Xr+1((YrXr) · · · (Y1X1)), and each
of the inner convolutions ei = yi ∗xi trivially collapses to uniform on H . Further
the sequence of convolutions v = er ∗ · · · ∗ e1 remains uniform on H and the final
xr+1 ∗ v is uniform on πH . On the other hand x2 ∗ x1 has support on translate
of double coset HπH and continued left convolution can only make this count
go up. Clearly then, we have.

Proposition 3. X is more secure than E.

5.4 A Resource-Bounded Example of Extreme Expansion

It may seem from our treatment in the above examples that the ciphers here
are purely information theoretic, applying only to infeasible and hypothetical
ciphers. In this section, we present a positive example of a computationally effi-
cient alternating product cipher T = XY Z which has nearly optimal expansion
of permutations along a huge double coset, yet where the D = XY is trivially
distinguishable from any idealized cipher.

To facilitate such a comparison, we exploit special properties of a polynomial-
time cipher which achieves every permutation (given enough key construction
data or equivalently a private random function oracle).

This construction from [13] called a universal security amplifier was originally
put forth to decided whether any efficient block cipher possessed a property of
the one-time pad, namely that when composed with a non-perfect cipher was
strictly more secure.

For security parameter n, let M′ = {0, . . . , 2n} and let X and Z independent
universal security amplifiers on M = {0, . . . , 2n − 1}, so they leave fixed the
final plaintext 2n. Let Y deterministically pick out any permutation π �∈ SM.
For example π could simply add 1 mod 2n+1, which is clearly computationally
feasible. Now we’d like to compare T = XY Z with D = XZ. Since X and
Z clearly have the group property, supp(d) = SM, and so encrypting once the
plaintext 2n will yield ciphertext 2n with 100% probability. The following is thus
immediate.

Proposition 4. The product D is distinguishable from any idealized cipher.
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We may further exploit Thm. 2 and in this case, the expansion is huge.

Proposition 5. The alternating product cipher T has supp(t) on about (2n+1)!
permutations.

Proof: Because the action SM′ on M′ is multiply transitive we have by a stan-
dard result from group theory (see [15, Thm. 9.6]) that SM′ = SM∪SMπSM,
in other words the double coset relevant to Thm. 2, SMπSM is nearly the whole
of SM′ . This double coset has size (2n + 1)!− 2n! ≈ (2n + 1)!.

It remains then to show t has full support on the double coset. But z has
full support on SM [13], and by Thm. 2 each zi � z so it cannot have fewer
permutations on each of the left cosets λiSM. This forces supp(t) = SMπSM,
and we are done. �
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Appendices

A.1 Variation Distance to Uniformity

The following lemma will prove quite useful.

Lemma 2. The variation distance to uniformity is Schur-convex.

Proof: Suppose x � y with x, y ∈ R
n
+. As a consequence of the definition,

‖u− x‖ =

kx∑
i=1

x[i] −
kx
n
, and ‖u− y‖ =

ky∑
i=1

y[i] −
ky
n
,

where kx = max
{
i | x[i] ≥ 1/n

}
and ky = max

{
i | y[i] ≥ 1/n

}
. If kx < ky, then

ky∑
i=1

y[i] −
ky
n

=

kx∑
i=1

y[i] +

ky∑
i=kx+1

y[i] −
(
kx
n

+
ky − kx

n

)

=

kx∑
i=1

y[i] −
kx
n

+

ky∑
i=kx+1

(
y[i] −

1

n

)
≥

kx∑
i=1

x[i] −
kx
n
.

I.e., ‖u− y‖ ≥ ‖u− x‖. In case kx ≥ ky the result follows mutatis mutandis. �

A.2 Sketch of Proof of Thm. 1

Proof Sketch of Thm. 1: For arbitrary q-tuple p ∈ M(q), let H = StabG(p), and
let {gi} be a left transversal for H in G. Then the two cases correspond to two
different induced representations from H to G. Specifically, R↑GH describes distri-
butions over q-tuples for comparing values ofAdvncpa

X (q), while RH↑GH describes
the distributions over all permutations for comparing values of W (X |C, p).

In either case, a general result adapted from [13, Lem. 3.3] is that if z � y in
V ↑GH ∼=

⊕
i gi⊗V and the permutations for this majorization in (2) act on it by

permuting direct summands gi ⊗ V then

z
(i)
↓ =

[G:H]∑
i=1

ωijDijy
(i)
↓ , (3)
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where z(i) and y(i) are projections of z and y into the direct summands of z and
y, and where each Dij is doubly stochastic as is the matrix Ω = [ωij ].

(Case 1:) Define σ taking x �→ x̂ =
∑

i x
(i)
↓ . The product relation assures

(3), which by a result of Day [9, Prop. 5.A.6] implies ẑ � ŷ. Since guesswork is

Schur-concave and W (X |C, p) = W (
∑

i x
(i)
↓ ) we have z �q y.

(Case 2:) Define σ taking x �→ x̂ = [x(g1H), . . . , x(g[G:H]H)]t. Likely begin-
ning with [17] and more recently [11] NCPA advantage Advncpa

X (q) is identified
with variation distance to uniformity ‖x̂− û‖, which by Lem. 2 is Schur-convex.
Now the action of G on G/H also gives rise to a left module action of RG on
R↑GH consistent with (3), now with 1-dimensional summands. The 1× 1 doubly
stochastic matrices vanish and we obtain ẑ = Ωŷ or ẑ � ŷ. Again z �q y by the
Schur-convexity of Advncpa

X (q). �
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Abstract. This paper presents an improved integral distinguisher using
2913 computations against an 11-round version of the compression func-
tion of the SHA-3 candidate Grøstl-512 with the round 3 parameters.
The original result presented in [18] was enhanced through the use of
different integral properties.
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1 Introduction

The entire cryptographic community has been waiting until last October for
the outcome of the SHA-3 competition1. Among the finalists, Grøstl [13] is a
surviving proposal designed by P. Gauravaram et al. It is based on AES trans-
formations and outputs 256 or 512 bits of hash according to the Grøstl-256/512
version.

During the second round, Grøstl has attracted a significant amount of crypt-
analysis. For example, T. Peyrin presented rebound distinguishers against full
version of the compression function Grøstl-256 [20]. This is one of the main rea-
sons that forced the Grøstl designers to modify the parameters of Grøstl for the
SHA-3 round 3. In the remainder of this paper, we refer to this last version as
Grøstl v3 whereas the previous version is called Grøstl v2. Results against the
compression function of Grøstl-256 v3 include a semi-free-start collision against
6 rounds that uses 2180 computations [22], a pseudo preimage against 8 rounds
that uses 2507.32 computations [21], a rebound distinguisher against 10 rounds
that uses 2392 computations [14], and an integral distinguisher against 11 rounds
that requires 2953 computations [18]. In this paper, we improve this last distin-
guisher leading to an integral distinguisher on 11 rounds of the compression
function of Grøstl-512 v3 with a complexity of 2913 computations.

� This work was partially supported by the French National Agency of Research:
ANR-11-INS-011.

1 see for example: http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

G. Paul and S. Vaudenay (Eds.): INDOCRYPT 2013, LNCS 8250, pp. 50–59, 2013.
c© Springer International Publishing Switzerland 2013
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This paper is organized as follows: Section 2 introduces related work, notations
of the paper and the description of Grøstl-512; Section 3 describes the integral
distinguisher against Grøstl-512 v3 reduced to 11 rounds and finally Section 4
concludes this paper.

2 Related Work and Notations

2.1 Integral Attacks

Integral cryptanalysis was first introduced against the Square block cipher in the
original paper [6] in the unknown key setting to retrieve information on some
key bytes. Then, it was applied to AES in the original submission paper [7,8].
The original integral property on AES was extended by one round by Ferguson
et al. in [10].

After those first attacks, many ciphers especially the ones that use a SPN
structure have been studied with regard to this kind of distinguishers. Among
all the integral cryptanalyses proposed in the literature, we could cite the at-
tacks against SAFER [2], CRYPTON [9] and more recently on PRESENT [5].
The different Rijndael versions (Rijndael-192 and Rijndael-256) have also been
attacked using integral properties [15,11]. Other contributions also analyze the
general framework of Integral cryptanalysis and especially focus on the condi-
tions that a block cipher must fulfill to be attacked using this method [17,3].
In [17], L. Knudsen and D. Wagner analyze integral cryptanalysis as a dual to
differential attacks particularly applicable to block ciphers with bijective com-
ponents. A first-order integral cryptanalysis considers a particular collection of
m words in the plaintexts and ciphertexts that differ on a particular component.
The aim of this attack is thus to predict the values in the sums (i.e. the integral)
of the chosen words after a certain number of rounds of encryption. The same
authors also generalize this approach to higher-order integrals: the original set
to consider becomes a set of md vectors which differ in d components and where
the sum of this set is predictable after a certain number of rounds. The sum of
this set is called a d-th order integral.

More recently, in [16] Integral cryptanalysis has been proposed in the new
model called known key settings where the key is known to the attacker. In
the same settings, compression functions of hash functions could also be an-
alyzed and some distinguishers have been proposed against SHA-3 candidates
also using integral properties. Consider for instance integral distinguishers on
the compression functions of Hamsi-256 [1,19] and Keccak [4].

2.2 Notations

In the remainder of this paper, we use the consistent notations introduced in
[17] and extend them for expressing word-oriented integral attacks. For a d-th
order integral, we have:
• The symbol ‘C’ (for “Constant”) in the i-th entry, means that the values of
all the i-th words in the collection of texts are equal.
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• The symbol ‘P ’ (for “Permutation”) means that all words in the collection
of texts are different.

• The symbol ‘?’ means that the sum of words cannot be predicted.
• The symbol ‘P d’ corresponds to the components that participate in a d-th
order integral, i.e. if a word can take m different values then Pd means that
in the integral, the particular word takes all values exactly md−1 times.

• The symbol ‘0’ means that the sum of all values is zero.

2.3 Description of the Grøstl-512 Hash Function

Grøstl [12] is a SHA-3 candidate designed by Guaravaram et al., notably Grøstl-
256 outputs hash values of lengths 224 and 256 bits whereas Grøstl-512 outputs
hash values of lengths 384 or 512 bits. We focus on Grøstl-512. It is an iterated
hash function with a compression function built from two distinct permutations
P and Q. A t-block message (after padding) (M1, · · · ,Mt) is hashed by comput-
ing successive chaining values Hi using the compression function f(Hi−1,Mi)
and then applying the output transformation g(Ht) as follows:

H0 = IV

Hi = f(Hi−1,Mi) = Hi−1 ⊕ P (Hi−1 ⊕Mi)⊕Q(Mi) for 1 ≤ i ≤ t

h = g(Ht) = trunc(Ht ⊕ P (Ht))

where trunc(·) denotes the function that truncate its input by returning only
the last 384 (or 512) bits.

The two permutations P and Q are constructed using the wide trail strategy,
their design is very similar to AES with a fixed key input. Both permutations
of the compression function of Grøstl-512 act on a 1024-bit state represented
as a 8 × 16 matrix of bytes and have 14 rounds. The round transformations of
Grøstl-512 are the following ones:

– AddRoundConstant (AC) adds a round-dependent constant to the state of
P and Q.

– SubBytes (SB) is the non-linear layer that applies the AES Sbox to each
byte of the state.

– ShiftBytes (ShB) rotates the bytes of row j in the following way: 0 for j = 1,
1 for j = 2, · · · 6 for j = 7 and 11 for j = 8 for the P permutation and the
shifted values are 1, 3, 5, 11, 0, 2, 4, 6 for the Q permutation.

– MixBytes (MB) is the linear diffusion layer where each column of the state
is multiplied by a constant matrix B.

Note that the differences between Grøstl-512 v2 and the new version of Grøstl-
512, Grøstl-512 v3 are localized in the two transformations AddRoundConstant
and ShiftBytes.
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3 Description of the 11-Round Distinguisher of the
Grøstl-512 v3 Compression Function

3.1 The Divide-and-Conquer Method to Find Integral Properties

In [18], the authors propose a divide-and-conquer method to efficiently find in-
tegral properties on several rounds of an AES-like cipher or hash function. Their
method works as follows: first, find some integral properties that sum to 0 be-
fore the last MixColumns (or MixBytes) operation. Then, combine several in-
tegral properties that sum together to 0 on a complete column and apply the
MixColumns (or MixBytes) operation to fulfill the integral property. One thus
obtain finally an integral property on a complete number of rounds.

3.2 Integral Properties for P and Q in the Forward Direction

We apply this method to the case of Grøstl-512 v3 and we find, for P and Q, the
integral properties for 3.5 rounds shown in Fig. 1. In fact, we find the following
integral properties with two active bytes for P :

– when the two active bytes are in position (0,0) and (1,1), then after 3.5
rounds, the bytes on three shifted columns have their sum equal to 0. This
property also holds for two active bytes at positions (3,0) and (4,1); (5,0) and
(6,1); (0,1) and (5,6); (7,1) and (0,6); (7,0) and (1,6). All those properties
lead to three zero-sum shifted columns.

and the following integral properties with two active bytes for Q:

– when the two active bytes are in position (0,0) and (5,1), then after 3.5
rounds, the bytes on three shifted columns have their sum equal to 0. This
property also holds for two active bytes at positions (1,0) and (6,1); (2,0)
and (7,1); (4,0) and (0,1); (3,0) and (0,6); (3,1) and (4,6); (4,1) and (2,6).
All those properties lead to three zero-sum shifted columns.

Thus, we can combine those two bytes 3.5-round integral properties to mount
integral properties on 4 rounds with respectively 12 active bytes for P and 14
active bytes for Q using the divide-and-conquer method of [18]. The deduced
integral properties for P and Q are shown in Fig. 2. We are hence able to
distinguish P and Q from random permutations using respectively 296 and 2112

chosen texts that sum to 0 at byte level on three particular columns (i.e. on 192
bits) after four applications of the round function of P (respectively Q). This
distinguisher has a complexity equal to 296 cipher operations for P and 2112

cipher operations for Q.
Following the work of [15], we extended by two rounds at the beginning those

4-round integral properties using first a 24-th order integral property and second
a 104-th order integral property as shown on Fig 3. We were able to distinguish
P and Q from random permutations using 2832 chosen texts that sum to 0 at
byte level on three particular columns (i.e. on 192 bits) after six applications of
the round function of P (respectively Q). This distinguisher has a complexity
equal to 2832 cipher operations.
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Fig. 1. The 3.5-round P integral property with 2 active bytes on the left and the
3.5-round Q integral property with 2 active bytes on the right
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Fig. 2. The 4-round P integral property with 12 active bytes on the left and the 4-round
Q integral property with 14 active bytes on the right

3.3 Integral Properties for P and Q in the Backward Direction

Let us now analyze which integral properties exist for the backward direction.
We use the backward integral property already described in [19], a 2nd order
integral property on 3 backward rounds presented in Fig. 4.

This property leads to a distinguisher on 3 backward rounds where the sums
taken at byte level over all the inputs on the three shifted columns marked in
blue in Fig. 4 are equal to 0. It requires 216 chosen texts to work and has a
complexity equal to 216 cipher operations. This property could be extended by
first one round and second two backward rounds at the beginning using a 80th
order integral property as shown on Fig. 5. This leads to an integral distinguisher
that uses 2640 chosen texts with a complexity equal to 2640 cipher operations to
test if the sums taken at byte level over 3 × 8 × 8 = 192 bits are equal to 0 or
not.
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Fig. 3. The two added rounds of the integral property with 104 active bytes, for P on
the left and Q on the right
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Fig. 5. The two added rounds of the P integral property with 80 active bytes on the
left and the two added rounds of the Q integral property with 80 active bytes on the
right

3.4 Distinguisher on 11 Rounds of the Compression Function of
Grøstl-512 v3

We combined those two properties (in the backward and in the forward direc-
tions) starting from both the middle of P and the middle of Q to build a struc-
tural property on the compression function of Grøstl-512 when 11 rounds are
considered (see Fig. 6). For the permutation P , start from the middle with 2912

middletexts with 114 active bytes (the other are taken equal to a constant) then,
go backward on five rounds to obtain inputs that sum to 0 on 3 shifted columns
and go forward on 6 rounds to obtain outputs that sum to 0 on 3 columns.
Do the same for the permutation Q. Using Q, get the 2912 corresponding Mt

messages. Using those messages and the inputs of P , compute the corresponding
2912 Ht−1 values. Those 2912 values also verify that their sums taken over all
2912 values on 6 bytes are equal to 0 (due to the linearity of the XOR operation
and considering the intersection of all 0-sum bytes). Considering the knowledge
of Ht−1, of the outputs of P and of the outputs of Q, the corresponding Ht

values are such that the sums taken over all the 2912 values on the intersection
of the 6 common bytes (for the backward direction) and of the 3 columns (for
the forward direction) are equal to 0. In other words, the sum taken over all the
2912 outputs of the compression function is null at 4 byte positions whereas the
corresponding inputs Ht−1 and Mt have 0-sum on 6 bytes (see Fig. 7).

Thus, we have exhibited a structural property of the Grøstl-512 compression
function when P and Q are limited to 11 rounds. The computational cost of this
property is about 2913 cipher operations with modest memory requirements to
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Fig. 6. Complete property on 11 rounds of P (on the left) and of Q (on the right)
starting from the middle with a 114th order integral property
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Fig. 7. Position of the 6 zero-sum bytes for Ht−1 and Mt (left), and the 4 zero-sum
bytes for Ht (right)

find some 0-sums at particular positions (4 bytes at the output of the compression
function and 6 bytes at the input). This new structural property improves the
one described in [18] that reaches 11 rounds also with a complexity equal to 2953

cipher operations.

Table 1. Summary of distinguishers against the compression function of Grøstl-512 v3

Nb rounds Type of Attack Time Memory Source
6 Semi-free-start Collision 2180 264 [22]
8 Pseudo Preimage 2507.32 2507 [21]
10 Rebound Distinguisher 2392 264 [14]
11 Integral Distinguisher 2953 small [18]
11 Integral Distinguisher 2913 small this paper



58 M. Minier and G. Thomas

4 Conclusion

In this paper, we have improved the integral properties exhibited on the com-
pression function of Grøstl-512 v3 presented in [18]. Table 1 sums up the main
distinghuishers against the compression function of Grøstl-512 v3.
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Schläffer, M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submission to NIST,
Round 1/2 (2008)

13. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
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Abstract. Proxy signatures allow an entity (the delegator) to delegate
his signing capabilities to other entities (called proxies), who can then
produce signatures on behalf of the delegator. Typically, a delegator may
not want to give a proxy the power to sign any message on his behalf,
but only messages from a well defined message space. Therefore, the
so called delegation by warrant approach has been introduced. Here, a
warrant is included into the delegator’s signature (the so called certifi-
cate) to describe the message space from which a proxy is allowed to
choose messages to produce valid signatures for. Interestingly, in all pre-
viously known constructions of proxy signatures following this approach,
the warrant is made explicit and, thus, is an input to the verification
algorithm of a proxy signature. This means, that a verifier learns the
entire message space for which the proxy has been given the signing
power. However, it may be desirable to hide the remaining messages in
the allowed message space from a verifier. This scenario has never been
investigated in context of proxy signatures, but seems to be interesting
for practical applications. In this paper, we resolve this issue by intro-
ducing so called warrant-hiding proxy signatures. We provide a formal
security definition of such schemes by augmenting the well established
security model for proxy signatures by Boldyreva et al. Furthermore,
we discuss strategies how to realize this warrant-hiding property and we
also provide two concrete instantiations of such a scheme. They enjoy
different advantages, but are both entirely practical. Moreover, we prove
them secure with respect to the augmented security model.

1 Introduction

Proxy signatures, first introduced in [13], allow an entity (the delegator) to del-
egate his signing capabilities to other entities (called proxies), who can then
produce signatures on behalf of the delegator. This concept has seen a con-
siderable amount of interest since its introduction and numerous (secure) con-
structions have been proposed, see, e.g., [5]. Surprisingly, only quite recently
a suitable security model for proxy signatures has been introduced [4], and
adopted to multi-level and identity-based proxy signature schemes later on [16].
Apart from standard proxy signatures, various other ”flavors” of proxy signa-
tures have been introduced, including threshold [21], one-time [20], blind [18],
ring [2], designated-verifier [19] as well as anonymous proxy signatures [9].

G. Paul and S. Vaudenay (Eds.): INDOCRYPT 2013, LNCS 8250, pp. 60–77, 2013.
c© Springer International Publishing Switzerland 2013
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In the initial paper [13], it was already observed that the delegator may not
want to give a proxy the power to sign any message on behalf of the delega-
tor, but only to sign messages from a well defined message space. To realize
this feature, [13] introduced the so called delegation by warrant approach. Here,
a signed warrant is included into the delegator’s signature (the certificate) to
describe the delegation. Thereby, any type of security policy may be included
into this warrant to enforce the restrictions under which the delegation is valid.
This approach seems to be particularly attractive and received the most atten-
tion, since the delegator can clearly define a message space for which the signing
rights are delegated to the proxy. In state of the art schemes [16,5], a warrant ω
is either the concatenation of all permitted messages or an abstract description
of the message space for which signing is being delegated, together with a certifi-
cate, which is a signature on ω (and typically other values including the proxy’s
identity and public key), under the delegator’s private signing key. An abstract
description of a message space, thereby, could, for instance, be a context-free
grammar, a regular expression, or as in [4], the description of a polynomial-time
Turing machine computing the characteristic function of all potential messages,
i.e., given a message to decide, whether the message is covered by ω or not.

Problem Statement: This plain inclusion of the warrant into the certificate,
however, means that a verifier obtains a precise description of the message space
a proxy is allowed to sign. However, this “feature” may not be desirable in some
situations. Consider for instance a proxy, who is delegated the rights to sign a
contract on behalf of the delegator and the proxy was given the power to sign
different versions of the contract, e.g., including different contract conditions
such as prices. Given such a signature from the proxy for one of these versions,
the warrant would leak all conditions, e.g., more expensive prices, the delegator
would have been willing to pay. Consequently, it would be desirable from the
point of view of the delegator to hide the remaining options from the allowed
message space, i.e., the warrant, from a verifier. Otherwise, this could compro-
mise the delegator, as a verifier can learn for instance that the delegator would
have been willing to pay a much higher price than he actually did.

In order to overcome this problem, which exists in all known proxy signature
schemes supporting the delegation by warrant feature, we introduce the notion
of a warrant-hiding proxy signature scheme. Basically, in such a signature scheme
a proxy learns the warrant, but a proxy signature does not reveal the warrant,
as it is not required as an explicit input to the proxy verification algorithm. Con-
sequently, the warrant cannot be determined by a verifier when given a proxy
signature. However, a proxy should only be able to produce valid signatures for
messages that are consistent with the warrant, i.e., messages in the message
space defined by the delegator. Thus, there must be an implicit mechanism to
check membership in the warrant for a given message with corresponding proxy
signature, but there should be no means to check membership for other mes-
sages.

Contribution: In this paper, we formally define warrant-hiding proxy signature
schemes by augmenting the state of the art security model of [5] and introducing
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an additional property for proxy signatures called privacy. The latter property
captures the fact that given a proxy signature, it is not possible to determine
the warrant under which the proxy signer has produced the proxy signature.
More precisely, this means that guessing the remaining messages in the warrant
is intractable. Basically, this can be achieved by committing to the permitted
message space and the proxy needs to provide a non-interactive proof that the
message he has signed is contained in the warrant without revealing any other
information about the remaining messages in the warrant. Consequently, we can
base such a construction generally on zero-knowledge sets [14]. Since general con-
structions thereof heavily suffer from problems with efficiency, we propose two
concrete practical constructions of such a proxy signature scheme based on the
delegation-by-certificate approach. Our instantiations can be constructed from
any secure digital signature scheme, a randomized version of the Merkle trees
yielding hiding vector commitments (without updates) and the secure uncondi-
tionally hiding polynomial commitment scheme from [12] respectively. Note that
in contrast to a naive approach, i.e., computing an independent certificate (sig-
nature of the delegator) for every allowed message, our approach uses a single
certificate for all messages. After presenting our constructions, we compare them
in terms of computational effort as well as bandwidth. Note that the proofs of
the security of our constructions in the proposed security model are given in the
full version [11]. Finally, we mention open problems for future work.

Outline: Section 2 discusses the cryptographic preliminaries. In Section 3, we
present the formal framework for proxy signatures, the security model and our
extensions to cover warrant-hiding proxy signature schemes. Section 4 discusses
general design strategies and presents our two constructions of warrant-hiding
proxy signatures as well as a comparison of their efficiency. Finally, Section 5
concludes the paper and lists open issues for future work.

2 Preliminaries

2.1 Basic Notions

Here, we briefly recall the definitions of bilinear maps, the t-SDH assumption,
standard digital signature schemes as well as pseudorandom generators.

Definition 1 (Bilinear Map). Let G,GT be two cyclic groups of the same
prime order p, where G is additive and GT is multiplicative. We call the map
e : G×G → GT a symmetric bilinear map or symmetric pairing if it is efficiently
computable and the following conditions hold:

Bilinearity: For all P1, P2 ∈ G we have for all P ∈ G:
e(P1 + P2, P ) = e(P1, P ) · e(P2, P ) and e(P, P1 + P2) = e(P, P1) · e(P, P2).

Non-degeneracy: If P generates G, then g = e(P, P ) generates GT , i.e. g �= 1.

In practice, G and GT will typically be a suitable elliptic curve group of prime
order and a torsion subgroup of some suitable finite field, respectively.
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Definition 2 (t-Strong Diffie Hellman Assumption (t-SDH)). Let p be a
prime of bitlength κ, G be a p-order group, α ∈R Z

∗
p and let (P, αP, . . . , αtP ) ∈

Gt+1 for some t > 0. Then, for every PPT adversary A there is a negligible
function ε such that

Pr

(
A(P, αP, α2P, . . . , αtP ) =

(
c,

1

α+ c
P

))
≤ ε(κ)

for any c ∈ Zp \ {−α}.

Definition 3 (Digital Signature Scheme). A digital signature scheme DSS
is a triple (K, S,V) of PPT algorithms:

K(κ): Is a key generation algorithm that takes input a security parameter κ ∈ N

and outputs a private (signing) key sk and a public (verification) key pk.

S(m, sk): Is a (probabilistic) algorithm, which takes as input a message M ∈
{0, 1}∗ and a private key sk, and outputs a signature σ.

V(σ,m, pk): Is a deterministic algorithm, which takes as input a signature σ,
a message M ∈ {0, 1}∗ and a public key pk, and outputs a single bit b ∈
{true, false} indicating whether σ is a valid signature for M under pk.

Furthermore, we require the digital signature scheme to be correct, i.e., for all
(sk, pk) ∈ K(κ) and all M ∈ {0, 1}∗ we have V(S(M, sk),M, pk) = true. A digital
signature scheme is secure, if it is existentially unforgeable under adaptively
chosen-message attacks (UF-CMA) [10]. Note that in practice, the sign and verify
algorithms will typically use a hash function to map input messages to constant
size strings, which is also known as the hash-then-sign paradigm.

Definition 4 (Pseudorandom Generator (PRG)). A pseudorandom gen-
erator f : {0, 1}κ → {0, 1}�, with � > κ being positive integers, is a function
that can be computed in polynomial time. The input s0 to the function is called
seed. A PRG is called secure if its output is computationally indistinguishable
from random when given a random seed s0.

2.2 Commitments

A commitment scheme CS as a tuple (CSetup,CCommit,COpen) of PPT algo-
rithms:

CSetup(κ): Takes a security parameter κ and produces and outputs public
parameters cpk which we assume to be implicitly input to the other two
algorithms.

CCommit(M): Takes a value M ∈ M and outputs a tuple (C, O) representing
the commitment C to M and the open information O.

COpen(C,O): Gets (C, O) and outputs either M ∈ M or ⊥ to indicate success
or failure, respectively.
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A commitment scheme is required to be hiding and binding. The former means
that the value M ∈ M is hidden in C unless the open information O is available,
whereas the latter means that is not possible to find an open information O′ such
that the given commitment C opens to M ′ �= M . Besides hiding and binding,
a commitment scheme needs to be correct, which means that for every honestly
computed commitment C, we have COpen(CCommit(M)) = M for all M ∈ M.

We call a commitment scheme r-binding, if it satisfies correctness, hiding and
relaxed-binding [1]. Relaxed-binding is a weaker notion than binding and uses a
modified security game. In this game the adversary A choses a value M . Then, is
is given a commitment (C, O) to M (the randomness r for CCommit is randomly
chosen but not controlled by A). If r-binding holds, A is not able to efficiently
find O′ computed with randomness r′ such that COpen(C, O′) = M ′ �= M . We
write CCommit(M, r) if we address an r-binding commitment scheme.

In order to support larger messages as input to the CCommit algorithm, it is
common to use the so called hash-then-commit approach. It is not hard to see
that this approach yields a secure commitment scheme assuming the existence
of secure hash functions (collision resistance) and the security of the underlying
commitment scheme. Subsequently, whenever we use commitment schemes, we
assume that the hash-then-commit paradigm is being implicitly applied.

2.3 Polynomial Commitments

The constant-size unconditionally hiding PolyCommitPed polynomial commit-
ment scheme from [12] is based on Pedersen commitments [15] and uses an
algebraic property of polynomials f(X) ∈ Zp[X ]. Namely, that (X−γ) perfectly
divides the polynomial f(X)−f(γ) for γ ∈ Zp. We briefly recall the construction:

PSetup(κ, t): Pick two groups G,GT of the same prime order p (with p being
a prime of bitlength κ) having a symmetric pairing e : G × G → GT such
that the t-SDH assumption holds. Choose two generators P,Q ∈ G and
α ∈R Z

∗
p and output ppk = (G,GT , p, e, P, αP, . . . , α

tP,Q, αQ, . . . , αtQ) as
well as psk = α.

PCommit(ppk, f(X)): Given f(X) ∈ Zp[X ] with deg(f) ≤ t, pick a random
polynomial r(X) ∈ Zp[X ] with deg(f) ≤ deg(r) ≤ t and compute the com-
mitment C = f(α)P + r(α)Q ∈ G and output C.

POpen(ppk, C, f(X), r(X)): Output (f(X), r(X)).

PVerify(ppk, C, f(X), r(X)): Verify whether

C =

deg(f)∑
i=0

f (i)(αiP ) +

deg(r)∑
i=0

r(i)(αiQ)

holds and output true on success and false otherwise.

PCreateWit(ppk, f(X), r(X), γ): Compute φ(X) = f(X)−f(γ)
X−γ , φ̂(X) = r(X)−r(γ)

X−γ

and Wγ = φ(α)P + φ̂(α)Q and output (γ, f(γ), r(γ),Wγ).
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PVerifyWit(ppk, C, γ, f(γ), r(γ),Wγ): Verify that f(γ) is the evaluation of un-
known f at point γ. This is done by checking whether

e(C, P ) = e(Wγ , αP − γP ) · e(f(γ)P + r(γ)Q,P )

holds. Output true on success and false otherwise.

A polynomial commitment scheme is secure if it is correct, polynomial binding,
evaluation binding and hiding. This scheme can be proven secure under the t-
SDH assumption in G. Note that α must remain unknown to the committer (and
thus the setup must be run by a TTP), since, otherwise, it would be a trapdoor
commitment scheme.

In one of our constructions, we require an r-binding variant of PolyCommitPed,
since the random polynomial required for the hiding is not chosen implicitly in
PCommit, but provided externally by computing it from a compact seed using a
PRG.

Lemma 1. The aforementioned modification of PolyCommitPed satisfies the r-
binding property.

Proof. In order to show that the r-binding property holds for this variant of
PolyCommitPed, we can follow the same strategy used to prove the binding of
PolyCommitPed in [12]. Note, that now the adversary is allowed to choose f(X),
but r(X) is randomly chosen by the challenger. Then, C, f(X), r(X) is given
to the adversary and the adversary needs to deliver f ′(X), r′(X) with f ′(X) �=
f(X) such that PVerify(ppk, C, f ′(X), r′(X)) returns true. It is not hard to see,
that the r-binding of this variant of PolyCommitPed can be proven using the the
same reduction to the DL problem in G as in [12]. �


2.4 Randomized Merkle Trees

Let T be a complete binary tree of height h with n leaves and let N be the
set of nodes of T . Furthermore, let H : {0, 1}∗ → {0, 1}� be a secure hash
function, λ : N → {0, 1}� be a labeling function, κ be a security parameter and
(CSetup,CCommit,COpen) be an unconditionally hiding commitment scheme CS
producing commitments of length �. Then, T is called randomized Merkle tree if
the labeling function λ is recursively defined as follows:

λ(v) =

⎧⎪⎨
⎪⎩
H(λ(vL)||λ(vR)) if v has two children vL, vR,

H(λ(vL)) if v has one child vL, and

Ci if v is the i’th leaf,

where (Ci, Oi) = CCommit(Mi) and M = (Mi)
n
i=1 is the sequence of strings

assigned to the leaves.
Let us additionally define the authentication path or witness of a leaf i with

label Ci as WMi = (wj)
h
j=1, where the value wj at height j is defined to be the

label of the sibling of the node of height j at the unique path from Ci to the
root.
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2.5 Hiding Vector Commitments from Randomized Merkle Trees

Vector commitments allow to commit to an ordered sequence of values repre-
sented as a compact commitment and to selectively open values at given po-
sitions. For a detailed description of vector commitments, we refer the reader
to [6]. Below, we present a novel construction of vector commitments from ran-
domized Merkles trees which are additionally hiding, but do not support up-
dates and proofs of updates. Yet, it seems to be quite straight forward to modify
the construction in order to support these two operations by replacing the leaf
commitments with trapdoor commitments (chameleon hashes). Our construc-
tion uses an r-binding commitment scheme for the leaves, since we do not want
the randomizers R required for the hiding to be generated implicitly, but from a
compact seed. Clearly, one could also create a hiding vector commitment scheme
in the ordinary sense using a binding and unconditionally hiding commitment
scheme for the leaves.

Subsequently, let VectorCommitMerkle = (VKeyGen,VCommit,VOpen,VVerify)
be a tuple of PPT algorithms associated with a randomized Merkle tree T , such
that:

VKeyGen(κ): Given the security parameter κ, run CSetup(κ) to obtain cpk of
a suitable unconditionally hiding r-binding commitment scheme and output
cpk.

VCommit(M,R): Given a sequence of n messages M and a sequence of n ran-
domizers R, output the root hash C of T .

VOpen(i,M,R): Takes a leaf index i, a sequence of n messages M and a se-
quence of n randomizers R and outputs the authentication path WMi .

VVerify(C, i,Mi, ri,WMi): Takes a root hash C of a randomized Merkle tree T ,
the leaf index i, a message Mi, the randomizer ri and an authentication path
WMi and returns true if C equals the root hash reconstructed from Mi and
the authentication path WMi and false otherwise.

We note that the auxiliary information in [6] essentially corresponds to (M,R)
in our case. The security requirements are correctness and position r-binding as
in [6] and additionally hiding.

Theorem 1. Assuming the existence of secure hash functions and of secure,
unconditionally hiding r-binding commitment schemes, the above construction of
a hiding, r-binding vector commitment scheme is secure.

Proof. The proof of the scheme’s correctness can easily be verified. Since the
above construction is essentially what Steinfeld et. al implicitly use in [17], the
hiding as well as the r-binding properties follow directly from the proofs in [17].
The position binding of the above construction is immediate due to the structure
of the Merkle tree (and the security of the used hash function) and the r-binding
of the leaf commitments. �


3 Proxy Signatures

In this section, we recall the formal model for proxy signatures and the se-
curity model of [4]. Then, we present an additional definition, capturing the
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warrant-hiding property and, finally, we define what constitutes a secure warrant-
hiding proxy signature scheme.

Definition 5 (Proxy Signature Scheme [4]). A proxy signature scheme is a
tuple PSS = (DSS, (D,P),PS,PV, ID) of PPT algorithms and the algorithms
(D,P),PS,PV, ID are given access to a potentially empty common reference
string P.1 Furthermore, DSS is a secure digital signature scheme and the other
algorithms are defined as follows:

– (D,P) is a pair of interactive probabilistic algorithms forming the (two-party)
proxy-designation protocol. Each algorithm gets the two public keys pki, pkj
for the delegator i and the proxy j, respectively, as input. D also takes as
input the private key ski of the delegator, the identity j of the proxy, and
a message space descriptor (warrant) ω for which user i wants to delegate
its signing rights to user j. P also takes as input the private key skj of
the proxy. As a result of the interaction, the expected local output of P
is skp, a proxy signing key that user j uses to produce proxy signatures
on behalf of user i, for messages in ω. D has no local output. We write
skp = (D(pki, ski, j, pkj , ω),P(pkj , skj , pki)) for the result of this interaction.

– PS is the (probabilistic) proxy signing algorithm. As input it takes a proxy
signing key skp and a message M ∈ {0, 1}∗ and outputs a proxy signature
σp.

– PV is the deterministic proxy verification algorithm. It takes a public key
pk, a message M ∈ {0, 1}∗ and a proxy signature σp as input, and outputs
true or false. In the former case, we say that σp is a valid proxy signature
for M ∈ ω relative to pk.

– ID is the proxy identification algorithm. It takes input a valid proxy signature
σp, and outputs an identity j ∈ N or ⊥ in case of an error.

As it is required by proxy signature schemes when used in practice, we assume
the existence of a public key infrastructure. This means that the public keys of
delegators and proxies are available in an authentic fashion, i.e., bound to their
identities, to all participants.

Definition 6 (Security of a Proxy Signature Scheme [4]). Let PSS =
(DSS, (D,P),PS,PV, ID) be a proxy signature scheme, A be an adversary and
κ ∈ N. We associate to PSS, A and κ the following game. First, if required, a
TTP generates the common reference string P and makes it publicly available
(we then implicitly assume that the challenger as well as A have access to P).
Then, a public and private key pair (pk1, sk1) for user 1 is generated via K(κ)
and a counter n for the number of users is initialized to 1. The game initializes an
empty array skp1 to store the self-delegated proxy signing keys and corresponding
message spaces, and empty sets DU and CS. The set DU stores the identities
of the users designated by user 1 (together with the message spaces for which
they are designated). The set CS keeps track of the set of messages for which

1 If P is empty this definition exactly matches the definition given in [4,5].
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the adversary can produce proxy signatures by user 1 on behalf of user 1 using
compromised self-delegated proxy signing keys. Adversary A is given input pk1
and it can make the following requests or queries in any order and any number
of times:

– (i registers pki) A can request to register a public key pki for user i = n+ 1
by outputting pki. The key is stored, counter n is incremented, and an empty
array skpi is created. This array will store the proxy signing keys of user 1 on
behalf of user i together with the message spaces ω to which they correspond.

– (1 designates i) A can request to interact with user 1 running algorithm
D(pk1, sk1, i, pki, ω), for some i ∈ {2, . . . , n} and some message space ω
(chosen by A). During the interaction, A plays the role of user i running
P(pki, ski, pk1). After a successful run, DU is set to DU ∪ {(i, ω)}.

– (i designates 1) A can request to interact with user 1 running P(pk1, sk1, pki),
for some i ∈ {2, . . . , n}. In the interaction, A plays the role of user i run-
ning D(pki, ski, 1, pk1, ω) for some message space ω selected by A. If skp is
the resulting proxy signing key, then the pair (skp, ω) is stored in the last
unoccupied position of skpi. A does not have access to the elements in skpi.

– (1 designates 1) A can request that user 1 runs the designation protocol with
itself for some message space ω. A is given the transcript of the interaction.
If skp is the resulting proxy signing key, the pair (skp, ω) is stored in the
next available position of skp1.

– (exposure of the l-th proxy signing key produced during self-delegation) A
can request to see skp1[l] for some l ∈ N. If skp1[l] contains a proxy signing
key and message space pair (skp, ω), then skp is returned to A and CS is set
to CS ∪ ω. Otherwise, ⊥ is returned to A.

– (standard signature by 1) A can query oracle OS(sk1, ·) with a message M
and obtain a standard signature for M by user 1, σ = S(M, sk1).

– (proxy signature by 1 on behalf of i using the l-th proxy signing key) A
can make a query (i, l,M), where i ∈ [n], l ∈ N and M ∈ {0, 1}∗, to ora-
cle OPS((skpu)u∈[n], ·, ·, ·). If skpi[l] contains a proxy signing key and mes-
sage space pair (skp, ω), we say the query is valid and the oracle returns
PS(skp,M). Otherwise, we say the query is invalid and the oracle returns ⊥.

Eventually, A outputs a forgery (M,σ) or (M,σp, pk). The output of the game
is as follows:

Forgery of a Standard Signature: If the forgery is of the form (M,σ), where
V(σ,M, pk1) = true, and M was not queried to oracle OS(sk1, ·), then return 1.

Forgery of a Proxy Signature by User 1 on Behalf of User i �= 1: If the
forgery is of the form (M,σp, pki), where PV(pki,M, σp) = 1, ID(σp) = 1, for
some i ∈ {2, . . . , n}, and no valid query (i, l,M), for l ∈ N, was made to the
oracle OPS((skpu)u∈[n], ·, ·, ·), then return 1.

Forgery of a Proxy Signature by User 1 on Behalf of User 1: If the
forgery is of the form (M,σp, pk1), where PV(pk1,M, σp) = 1, ID(σp) = 1, no
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valid query (1, l,M), for l ∈ N, was made to OPS((skpu)u∈[n], ·, ·, ·), and M /∈ CS
then return 1.

Forgery of a Proxy Signature by User i �= 1 on Behalf of User 1; User
i Was not Designated by User 1 to Sign M : If the forgery is of the form
(M,σp, pk1), where PV(pk1,M, σp) = 1 and for each message space ω for which
(ID(σp), ω) ∈ DU it holds that M /∈ ω then return 1.

Otherwise, return 0.
A wins the game, if it returns 1. We say that PSS is a secure proxy signature

scheme, if the probability of winning the above game is negligible in the security
parameter κ for all polynomial-time adversaries A.

For our privacy definition we have chosen an extractability style game instead
of an indistinguishability style game, since it is not possible to find a meaningful
notion of indistinguishability due to the fact that the adversary must not know
the entire warrant. This requires the warrant to be chosen by the challenger.

Definition 7 (Privacy of a Proxy Signature Scheme). Let the setup be
identical to the one in Definition 6. In query phase 1, A is allowed to issue the
same types of queries as in the unforgeability game. At some point, A signals the
challenger that it is ready to proceed to phase 2 by submitting the tuple (i, c)
with c > 1. Now, the challenger chooses a warrant ω∗, consisting of c random
messages from some message space M of minimum size c+1, computes the proxy
signing key skp∗ = (D(pk1, sk1, i, pki, ω

∗),P(pki, ski, pk1)) and stores the proxy
signing key to a new array skp′i. Then, in query phase 2, A is allowed to issue
queries as in phase 1. Additionally, A is allowed to query proxy signatures for
the proxy key in skp′i for all but one message M∗ in the warrant ω∗ (whereas on
receiving query l ∈ {0, . . . , c − 2} the challenger chooses an unused index l and
takes message Ml from ω∗). At some point, A outputs a warrant ω′ and wins if
ω′ = ω∗.

We say that PSS is warrant-hiding, if for all polynomial-time adversaries the
probability of winning the above game is negligibly close to 1/|M′|, where M

′

represents the message space M minus all queried messages.

Definition 8 (Secure Warrant-Hiding Proxy Signature Scheme). If a
secure PSS is warrant-hiding with respect to Definition 7, then we call PSS a
secure warrant-hiding PSS (WHPSS).

4 Warrant-Hiding Proxy Signature Schemes

In this section we give the problem statement, discuss a generic design strategy
and present concrete representation of the warrants which are used in our in-
stantiations and present the two schemes.

Problem Statement: When trying to make the warrant implicit and hidden,
one must, on the one hand, enforce that proxy signatures are only valid for
messages within the warrant, which requires some suitable representation of the
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warrant, and, on the other hand, that verifiers cannot test messages against
this representation by brute force to determine the remaining messages in the
warrant. Furthermore, it is desirable that the representation of the warrant is
compact, proxy signatures are compact and the verification of proxy signatures
does not require interaction with the delegator, i.e., the verification of warrant-
hiding proxy signatures should be non-interactive. Particular issues of interest,
from the point of view of a designator, are:

– The verification of a proxy signature should hide the remaining messages in
the warrant and

– the verification of a proxy signature should should not reveal (too much)
information on the exact size of the warrant.

The first issue is satisfied by both of our constructions and concerning the second
issue our constructions reveal an upper bound on the size of the warrant. In
Section 4.6, we, however, discuss how the second issue can be achieved, although,
reducing the efficiency of such a scheme.

A cryptographic building block that immediately comes to mind when being
confronted with this problem statement is a commitment scheme. In particular,
one seeks a commitment scheme that is capable of committing to a set of values
resulting in a compact commitment and allows to selectively prove membership
of a value in the commitment, while at the same time hiding the remaining val-
ues in the commitment. Primitives that satisfy both aforementioned properties
are zero-knowledge sets [14] and vector commitments [6]. Latter, however, needs
to be modified in a way such that it supports hiding. Another primitive, which
seems suited at first glance, but actually turns out to be unsuitable, is the con-
cept of a cryptographic accumulator. We briefly discuss these primitives in our
context below.

(Nearly) Zero-Knowledge Sets: Zero-knowledge sets (ZKS) were introduced
by Micali et. al [14]. They allow a prover to commit to an arbitrary finite set S
in such a way that for any string x he can provide an efficient proof of whether
x ∈ S or x /∈ S, without revealing any knowledge beyond this (non) member-
ship. In particular, the verifier of the proof neither learns the remaining elements
of the set S and nor the size of S. Follow up work [8,7] has instantiated ZKS
from a variety of other assumptions and improved the efficiency. In [12], it is
shown that when relaxing ZKS to nearly ZKS, which no longer require hiding
an upper bound on the cardinality of S, the size of the proof that an element is
(or is not) in a committed set is reduced by a factor of sixteen or more, when
compared to the best known ZKS construction. One of our instantiations uses
the polynomial commitment scheme introduced in [12]. Furthermore, note that
we no not require non-membership proofs in our application and, thus, do not
rely on costly general ZKS constructions. Doing so, we obtain a size of the public
parameters of O(|ω|) and a size of the proxy signature of O(1).

Hiding Vector Commitments: Vector commitments [6] allow to commit to
an ordered sequence of values represented as a compact commitment and to
selectively open values at given positions. However, the constructions of [6] do
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not provide hiding as it is, but can be extended to support hiding by applying
the vector commitments to a sequence of hiding commitments instead of mes-
sages. They additionally support updates, which is not required in our applica-
tion. Most importantly, the constructions of [6] require public parameters of size
O(|ω|2). Our proposed construction uses an efficient hiding vector commitment
from randomized Merkle trees as they are used implicitly in the construction of
content extraction signatures in [17]. Our construction does not provide updates
as it is. Nevertheless, it seems that it can easily be turned into a vector com-
mitment scheme supporting updates. This could be achieved by exchanging the
commitments of the leaves with trapdoor commitments (chameleon hash values).
In contrast to the vector commitments of [6], the public parameters are O(1),
but the size of the proxy signatures is O(log |ω|). As it is also the case with our
first construction, an upper bound of the size of the warrant is revealed (vector
commitments of [6] reveal the exact size).

Cryptographic Accumulators: A cryptographic accumulator [3] allows to
represent a finite set of values S by a single value (the accumulator), whose size
is independent of the size of S. For every accumulated value, one can compute a
witness. Having such a witness, anybody can verify that the corresponding value
has indeed been accumulated. However, it is infeasible to find a witness for a
value that was not accumulated. The basic problem with accumulators is that
they do not guarantee the hiding of the accumulated set S, which is crucial for
our application.

4.1 Warrant Representation

In our constructions, the warrant ω is a sequence of messages ω = (Mi)
c
i=1, which

is being mapped into a compact representation, i.e., of constant size, which is
then integrated into the certificate of the proxy. We stress that we do not re-
quire an explicit ordering and could also use a set representation instead, but we
use the sequence notation for a consistent description of both schemes (in the
second scheme, the messages are ordered, but the ordering is arbitrary and does
not have any meaning for our construction). Note that in contrast to an abstract
description of the message space, which allows the representation of a potentially
unbounded message space, our construction supports only fixed message spaces
in the sense that each message in this space must be known a priori. In partic-
ular, the number of messages is polynomially bounded and each message needs
to be generated by a polynomial time algorithm. However, in most practical
applications of proxy signatures such a message space is sufficient. Furthermore,
this allows us to construct proxy signatures, which provide the warrant-hiding
property. Considering potentially unbounded message spaces while hiding the
warrant seems to be far from trivial and is an interesting aspect for future work.

Polynomial Commitments: Our first construction is based on the constant-
size unconditionally hiding polynomial commitment scheme of Kate et al. [12].
Loosely speaking, this construction works in the following way. A delegator maps
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all c messages in the warrant to a polynomial of degree c, whereas the roots of
this polynomial are defined to be hash values of messages in the warrant. Then,
the delegator commits to this polynomial and signs the polynomial commitment
resulting in a certificate for the proxy. A proxy signer is then allowed to pro-
duce proxy signatures by generating witnesses for the roots of the polynomial
(representing valid messages in the warrant) and signs the witness along with
the public key of the delegator. Then, any verifier can check both signatures
and verify whether the message and the witness correspond to the committed
polynomial and represent a root of the polynomial. Consequently, the verifier
can check the correctness of a proxy signature without learning the remaining
messages in the warrant. Latter is due to the unconditional hiding property of
the polynomial commitment scheme.

Now, we need to discuss in detail how a set of valid messages (the warrant)
is represented. Instead of using ω = (Mi)

c
i=1 itself, we firstly construct a set

ωH = {H(Mi) : i = 1, . . . , c}, where H : {0, 1}∗ → Zp is a secure hash function.
From this set ωH , we secondly derive the so-called warrant polynomial m(X)
using the map

φ : 2Zp → Zp[X ] with ωH �→
∏

H∈ωH

(X −H).

Note that the degree of m(X) is polynomially bounded, i.e., represents the size
of the warrant.

The intuition for this particular representation is that if the hash values
of messages in ω are roots of the warrant polynomial m(X), this polynomial
uniquely captures the messages given by the warrant. More precisely, a message
is in the warrant if and only if its hash value is a root of m(X), i.e., there is a
1-to-1 correspondence between the set of valid witnesses and the warrant (up to
collisions in the hash function H). Otherwise, if the valid messages did not cor-
respond to the roots of m(X) and were arbitrary evaluations, a dishonest proxy
signer would be able to generate witnesses for arbitrary messages and, in further
consequence, efficiently produce valid proxy signatures for messages outside the
warrant.

Hiding Vector Commitments from Randomized Merkle Trees: Our
second construction is based on hiding vector commitments from randomized
Merkle trees. Loosely speaking, this construction works in the following way. A
delegator generates an r-binding commitment for each of the c messages in the
warrant and then computes the root of the randomized Merkle tree T with c
leaves. This means that T aggregates commitments to all c messages in ω into a
single root hash value. Then, the delegator signs the root hash of T resulting in a
certificate for the proxy. A proxy signer is then allowed to produce proxy signa-
tures by generating witnesses WMi , which is the respective authentication path
for the leaf Ci, and signs the witness along with the public key of the delegator.
Then, any verifier can check both signatures and verify whether the message
and the witness correspond to the root hash of T . Consequently, the verifier
can check the correctness of a proxy signature without learning the remaining
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messages in the warrant. Latter is due to the unconditional hiding property of
the commitment scheme used at the leaf nodes.

4.2 The First Scheme (WHPSSPolyCommit)

Before Scheme 1 can be used, a TTP runs a setup in the following way to
produce the common reference string, which is then accessible to all parties, i.e.,
delegators, proxy signers and verifiers, in an authentic fashion:

Setup: Given a security parameter κ and an upper bound t ∈ N for the size
of the warrant, execute PSetup(κ, t) and obtain (ppk, psk). Choose a secure
PRG f : Zp → Z

t+1
p and output a suitable encoding of the tuple (f, ppk) as

the common reference string P.

(D,P): D and P are given local inputs pki, ski, j, pkj , ω and pkj , skj , pki, where ω = (Mi)
c
i=1 with

c ≤ t.
D picks a seed s ∈R Zp, computes ωH = {H(Mi) : i = 1, . . . , c} and m(X) = φ(ωH). Then,
compute r(X) ∈ Zp[X] with deg(r) = deg(m) = c with coefficients obtained evaluating f(s)
as well as

C = PCommit(ppk,m(X), r(X)) and cert = S(C‖j‖pkj , ski).
It sets the proxy signing key of user j as skp′ = (pki, s, C, j, pkj , ω, cert) and sends it to P.

Now, P computes ωH and m(X) = φ(ωH) as well as r(X) from seed s. It checks whether

V(cert,PCommit(ppk,m(X), r(X))‖j‖pkj , pki) = true

If not, return ⊥ and terminate. Otherwise, set skp = (skj , skp
′), output skp and terminate. If

P returns ⊥, D aborts. Otherwise, also D terminates correctly.
PS: Given skp,M so that there is an index l with 1 ≤ l ≤ c and Ml = M , this algorithm computes

ωH and m(X) = φ(ωH) as well as r(X) from seed s. Then, it computes hM = H(M),
rM = r(hM) as well as

WM = PCreateWit(ppk,m(X), r(X), hM ) and σ = S(WM‖rM‖pki, skj),

and returns σp = (j, C,WM , rM , pkj , cert, σ).

PV: Given pki,M, σp = (j, C,WM , rM , pkj , cert, σ), this algorithm verifies whether

V(cert, C‖j‖pkj , pki) ∧ V(σ,WM‖rM‖pki, pkj) ∧
PVerifyWit(ppk, C, H(M), 0, rM ,WM )

yields true. On success return true and false otherwise.
ID: Given σp = (j, C,WM , rM , pkj , cert, σ) output j.

Scheme 1: Warrant-hiding Proxy Signature Scheme from PolyCommitPed
(WHPSSPolyCommit)

4.3 The Second Scheme (WHPSSVectorCommit)

In contrast to Scheme 1, here the requirement of a TTP for generating a common
reference string depends on the commitment scheme used for labeling the leaves
of the randomized Merkle tree.
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(D,P): D and P are given local inputs pki, ski, j, pkj , ω and pkj , skj , pki, where ω = (Mi)
c
i=1. D picks

a seed s ∈R {0, 1}κ, chooses a secure PRG f : {0, 1}κ → ({0, 1}κ)c and computes R = f(s)
and

C = VCommit(ω,R) and cert = S(C‖j‖pkj , ski).
It sets the proxy signing key of user j as skp′ = (pki, s, C, j, pkj , ω, cert) and sends it to P. Now,
P computes R from s and checks whether

V(cert,VCommit(ω,R)‖j‖pkj , pki) = true

If not, return ⊥ and terminate. Otherwise, set skp = (skj , skp
′), output skp and terminate. If P

returns ⊥, D aborts. Otherwise, also D terminates correctly.
PS: Given skp,M so that there is an index l with 1 ≤ l ≤ c and Ml = M , this algorithm computes

R from seed s, sets rM = (rl, l) and computes

WM = VOpen(l, ω,R) and σ = S(WM‖rM‖pki, skj),

and returns σp = (j, C,WM , rM , pkj , cert, σ).

PV: Given pki,M, σp = (j, C,WM , rM , pkj , cert, σ) with rM = (rl, l), this algorithm verifies whether

V(cert, C‖j‖pkj , pki) ∧ V(σ,WM‖rM‖pki, pkj) ∧ VVerify(C, l,M, rl,WM )

yields true. On success return true and false otherwise.
ID: Given σp = (j, C,WM , rM , pkj , cert, σ) output j.

Scheme 2: Warrant-hiding Proxy Signature Scheme from Vector Commitments
(WHPSSVectorCommit)

4.4 Security

Here, we discuss the security properties of our proposed WHPSS constructions.
We are not dealing with the correctness of Scheme 1 and Scheme 2, since this
is straight-forward to verify. Due to space constraints we omit the proofs here,
and refer the reader for the full proofs of the subsequent theorems to the full
version of the paper [11]. Subsequently, we informally discuss the security of
both constructions.

In Scheme 1, the delegator, by running the delegation, commits to a message
polynomial m(X) based on an unconditionally hiding polynomial commitment
C using a random polynomial r(X). Hence, since the delegator does not sign the
warrant itself, but a representation thereof (the commitment), we need to guar-
antee that the delegator is not able to change the warrant later on, i.e., finding
polynomials m′(X), r′(X) with m(α) = m′(α) as well as r(α) = r′(α), which
would violate the binding of PolyCommitPed. Now, we argue why the warrant-
hiding property holds. Let C be a commitment to some warrant polynomial
m(X) of degree c. Note that PolyCommitPed unconditionally hides m(X) in C
as long as r(X) is unknown (r(X) is only known to the proxy). Along with a
proxy signature, a root of m(X) and an evaluation of the random polynomial
r(X) are being disclosed. It is not possible to interpolate r(X) unless c+1 (with
c being the size of the warrant) distinct evaluations of r(X) are known, which
will never happen and, thus, the hiding of PolyCommitPed and the security of the
used PRG holds. The warrant polynomial m(X) can only be reconstructed from
all c roots, however, then, we no longer need the warrant to be hidden, since
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then all messages from the warrant are already known. Latter means that the
unknown randomizers can not be determined.

Theorem 2. Assuming the r-binding of PolyCommitPed, the existence of secure
hash functions and the security of the DSS scheme, Scheme 1 is a secure PSS.

Theorem 3. Assuming the unconditional hiding of PolyCommitPed and the ex-
istence of secure PRGs, Scheme 1 is a warrant-hiding PSS.

In Scheme 2, the delegator, by running the delegation, commits to a sequence
of messages and randomness based on VectorCommitMerkle producing a root hash
C. As above, due to the binding of the commitment scheme we guarantee that
the delegator cannot change the warrant afterwards. The warrant-hiding prop-
erty holds, because even if an adversary gets to know all the leaf commitments,
the respective messages are hidden due to the unconditionally hiding leaf com-
mitment and the security of the used PRG. Latter means that the unknown
randomizers can not be determined.

Theorem 4. Assuming the r-binding of VectorCommitMerkle, the existence of se-
cure hash functions and the security of the DSS scheme, Scheme 2 is a secure
PSS.

Theorem 5. Assuming the unconditional hiding of VectorCommitMerkle and the
existence of secure PRGs, Scheme 2 is a warrant-hiding PSS.

Taking the above results together, we obtain the following result:

Corollary 1. Scheme 1 and Scheme 2 are both secure WHPSS.

4.5 Efficiency Comparison

In Table 1, we analyze the complexity of both introduced schemes in terms of
computational costs of all involved algorithms as well as the sizes of parame-
ters, certificates (delegations) and proxy signatures. We now briefly highlight
the major differences between both schemes. In terms of computational effort,
WHPSSPolyCommit has higher costs for signature generation, but requires constant
time for signature verification. In contrast, WHPSSVectorCommit is faster in signa-
ture generation, but has higher cost for verification (although in practice, the op-
erations are cheap hash function evaluations). In terms of size, WHPSSPolyCommit

Table 1. Comparison of Costs of Scheme 1 and Scheme 2

Computation Size
Scheme D P PS PV ID P cert σp

WHPSSPolyCommit O(|ω|) O(|ω|) O(|ω|) O(1) O(1) O(|ω|) O(1) O(1)
WHPSSVectorCommit O(|ω|) O(|ω|) O(log |ω|) O(log |ω|) O(1) O(1) O(1) O(log |ω|)
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has constant size proxy signatures, but the parameters P generated by a TTP
are linear in the warrant size. In contrast, WHPSSVectorCommit has small constant
size parameters P, but a proxy signature size logarithmic in the size of the war-
rant. We note that depending on the actual unconditionally hiding commitment
scheme used in the construction of the randomized Merkle tree, also here a TTP
may be required to be involved in the generation of P, e.g., when using Pedersen
commitments.

4.6 On Hiding the Warrant Size

As already noted, both constructions reveal an upper bound on the warrant size.
More precisely, in case of WHPSSPolyCommit this upper bound is t, which may be
adjusted to be larger than any value that allows to draw meaningful conclusions
for practical applications. Similarly to above, in case of WHPSSVectorCommit one
can artificially enlarge the height of the hash tree and introduce dummy leaves to
hide the warrant size. Clearly, both cases reduce practicality with increasing the
upper bound. In theory, ZKS achieve hiding the cardinality of the set. However,
the parameters therefore need to be chosen in a way that they are larger than
any meaningful set size, which in practice does not improve on our modifications.

5 Conclusion

In this paper, we have introduced a new type of proxy signatures following the
delegation by warrant approach. These so called warrant-hiding proxy signatures
enable a delegator to restrict the message space for a proxy while hiding this
message space (warrant) from verifiers.

An interesting question for future work is to construct such signature schemes
for potentially unbounded message spaces which do not require exponential effort
in producing a delegation. Nevertheless, this does not seem to be straight-forward
when seeking efficient constructions suitable for practical applications. It may be
interesting to study the security in context of multi-level proxy signatures [16].
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Abstract. Scan-chains are one of the most commonly-used DFT (De-
sign for Testability) techniques. DFT refers to design techniques that
add certain testability features to a micro-electronic hardware product
design. However, the presence of scan-chains makes the device vulnerable
to scan-based attacks from cryptographic point of view. Techniques to
cryptanalyze stream ciphers like Trivium, with additional hardware for
scan-chains, are already available in literature (Agrawal et. al. Indocrypt
2008). However, extending such ideas to more complicated stream ciphers
like MICKEY 2.0, is not possible as the state update function used by
MICKEY 2.0 is far more complex. In this paper, we will describe a gen-
eral strategy to perform a scan-chain based attack on MICKEY 2.0. Fur-
thermore, we will look at the XOR-CHAIN based countermeasure that
was proposed by Agrawal et. al. in Indocrypt 2008, to protect Trivium
from such scan-based attacks. We will show that such an XOR-CHAIN
based countermeasure is vulnerable to a SET attack. As an alternative,
we propose a novel countermeasure that can protect scan-chains against
such attacks.

Keywords: MICKEY 2.0, Scan-Chain Attack, Stream Cipher.

1 Introduction

While manufacturing any hardware product, DFT techniques are design efforts
that are specifically employed to ensure that a device is testable. Single scan-
chains are one of the most popular and effective ways of providing testability to
any hardware device. The objective of the scan-chain is to make testing easier by
providing a way to set and observe every flip-flop in an IC. Unlike the functional
tests that check chip functionality, scan tests cover stuck-at-faults, caused by
manufacturing problems. Physical manufacturing defects, such as

– silicon defects, photo-lithography defects, mask contamination

– process variation or defective oxide etc.

G. Paul and S. Vaudenay (Eds.): INDOCRYPT 2013, LNCS 8250, pp. 78–97, 2013.
c© Springer International Publishing Switzerland 2013



Improved Scan-Chain Based Attacks and Related Countermeasures 79

may lead to electrical defects such as shorts (bridging faults), opens, transistors
stuck on open, changes in threshold voltage etc. which may lead to digital logic
being stuck at either the 0 or 1 value at one or many of the flip-flops. It may
also lead to slower transitions among the flip-flops causing delay faults which
hamper the proper functioning of a cryptosystem.

Scan-chain testing can be done to check whether a chip is functioning normally
or not. It provides the designer an easy way to ascertain whether the device has
succumbed to the above mentioned defects or not. In this design methodology,
all the flip-flops in the design are replaced with scan type flip-flops. The design
is made controllable and observable by chaining all these flip-flops together and
shifting test data in and out. Scan type flip-flop contains a multiplexer to select
either a normal mode functioning or a scan mode functioning. By suitably alter-
ing the control value to the multiplexer, the chip can be used for normal or scan
test mode of operation. After selecting scan-test mode, the user is able to input
test patterns of his choice into the device and thereafter scan out the contents
of all the flip-flops connected to the scan-chain. It therefore gives the following
opportunities to the user:

1. Controllability: The ability to set the flip-flops to certain states or logic
values.

2. Observability: The ability to observe the state of these flip-flops.

The flip side of this design paradigm is that this makes certain cryptosystems
implemented with such scan-chains in hardware, vulnerable to scan-based side
channel attacks. Scan-based attack is a semi-intrusive side channel attack that
does not require the attacker to actively tamper with the functioning of the
cryptosystem as in optical/laser fault attacks. The attacker takes advantage of
the scan-chain already implemented in the device and stops the normal mode of
operation of the cryptosystem at some suitably chosen time instant and scans
out the content of all the flip-flops in the system. The flip-flops usually store
the internal state bits of the cryptosystem, and if the adversary can deduce the
correspondence between the individual bits of the scanned out vector and the
internal state bits, this may be enough to break the system. However, ascertain-
ing such a correspondence is usually non-trivial and thus a fascinating area for
cryptanalytic research. Scan-based attacks have already been reported against
block ciphers like AES [19] and DES [20] and stream-ciphers like RC4 [16] and
Trivium [2].

1.1 MICKEY 2.0

The stream cipher MICKEY 2.0 [3] was designed by Steve Babbage and Matthew
Dodd as a submission to the eStream project. The cipher has been selected as
a part of eStream’s final hardware portfolio. MICKEY is a synchronous, bit-
oriented stream cipher designed for low hardware complexity and high speed.
After a TMD tradeoff attack [14] against the initial version of MICKEY (ver-
sion 1), the designers responded by tweaking the design by increasing the state
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size from 160 to 200 bits and altering the values of some control bit tap loca-
tions. These changes were incorporated in MICKEY 2.0 and these are the only
differences between MICKEY version 1 and MICKEY 2.0. While MICKEY 2.0
uses an 80-bit key and a variable length IV, a modified version of the cipher,
MICKEY-128 2.0, that uses a 128-bit key [4], was also proposed by the designers.

The name MICKEY is derived from “Mutual Irregular Clocking Keystream
generator” which describes the behavior of the cipher. The state consists of two
100-bit shift registers named R and S, each of which is irregularly clocked and
controlled by the other. The cipher specification underlines that each key can be
used with up to 240 different IVs of the same length, and that 240 keystream bits
can be generated from each key-IV pair. Very little cryptanalysis of MICKEY
2.0 is available in literature. In [11], it was observed that unprotected implemen-
tations of MICKEY 2.0 may be vulnerable to power analysis attacks. In [18],
non-smooth cryptanalysis of MICKEY 2.0 was performed. The attack, however,
had time complexity more than exhaustive search. In [5], a differential fault
attack has been reported against MICKEY 2.0. Apart from these, not many
published results on MICKEY 2.0 are available.

1.2 Our Contribution

In [2], the stream cipher Trivium [8] was successfully cryptanalyzed using scan-
based attack. We will show that due to the complex structure of the state-update
functions used in MICKEY 2.0, extending the attack of [2] to MICKEY 2.0 is
impossible. Our contributions are therefore threefold:

1. We will propose a strategy to perform the scan-based attack on MICKEY
2.0 that is independent of any specific physical implementation of the cipher.

2. In [2], the XOR-CHAIN based countermeasure was suggested to protect
cryptosystems from such attacks. We will show that such a countermeasure
is vulnerable to the SET attack.

3. As an alternative, we provide a countermeasure for scan-chains that will
thwart a SET or RESET attack. We will prove that incorporating such a
countermeasure will still allow the designer to control and test the scan-
chain.

The organization of the paper is as follows. In Section 2 we will give some
background on how scan-based attacks are mounted and carried out against
cryptosystems. In Section 3, we will outline the details of the attack against
MICKEY 2.0. In Section 4, we propose an attack against the XOR-CHAIN
based countermeasure and show how MICKEY 2.0 can be attacked even in the
presence of such a countermeasure. In Section 5 we will outline the proposed
countermeasure and discuss its security features in detail. Section 6 concludes
the paper.

2 Scan-Chain Attack: Background and Preliminaries

A scan-based test involves construction of one or more scan-chains in a chip by
connecting the internal registers and flip-flops of a device and by making either
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ends of the chain available to the boundary scan interface, via the SCAN-IN and
SCAN-OUT ports (See Fig 2). During testing, test vectors can be scanned in
serially through the SCAN-IN pin. The contents of the chain can also be scanned
out in a serial manner through the SCAN-OUT pin. During the testing phase, all
flip-flops are disconnected from the combinatorial digital logic of the device and
connected in single or multiple connected chains. As shown in Figure 2, this is
done by placing a multiplexer infront of the D input of each flip-flop controlled
by the SCAN-ENABLE signal. In normal mode of operation, the SCAN-ENABLE

signal is set to 0, so the flip-flop accepts the D-input and the device behaves
normally. In test mode, the SCAN-ENABLE signal is set to 1 and in this event the
flip-flop accepts the SCAN-IN input. Scan-chains are automatically inserted into
the design by a Computer aided synthesis tool. The chain is usually organized
according to the physical positions of the flip-flops. One may note that any
arbitrary pattern can be given as input into the scan-chain, and the state of
every flip-flop can be read out. We will now discuss some salient features related

SCAN-IN FF FF FF FF

SCAN-OUT

CLOCK

SCAN-ENABLE

Combinational Logic

....

....

....

Fig. 1. Diagram of a Scan-chain
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Fig. 2. Scan-enabled D FF

to scan-chains and state clearly the cryptographic model that is employed to
mount a scan-based attack.

� Ability to Assert the SCAN-ENABLE Signal : We assume that the adver-
sary is able to control the SCAN-ENABLE input to the device i.e. he has the
ability to run the device under normal mode or test mode interchangeably.
It is also reasonable to assume that the adversary can time the changing
of the SCAN-ENABLE signal in synchronization with the system clock signal.
In other words, he is able to stop the normal mode of operation of the de-
vice after any given number of clock rounds, drive the device into test mode
and scan out the contents of the flip-flops of the scan-chain serially, via the
SCAN-OUT port.

� Knowledge of the Cryptosystem Used in the Device : We assume
that the adversary knows the high-level algorithmic design details of the
cryptosystem implemented in the device (in this case MICKEY 2.0).
Although, the adversary is expected to know the general hardware structure
of the cryptosystem, he does not know exactly how many flip-flops have
been used in the design. For example, a typical implementation of MICKEY
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2.0 ( [6, 10, 12, 15, 17]) is expected to have around 211 flip-flops (100
each for the R and S registers, 7 for the counter register, and one each
for INPUT BIT R, INPUT BIT S, CONTROL BIT R, CONTROL BIT S).1 But
different implementations of the cipher may use extra flip-flops as per the
requirements of the designer. In this sense, the adversary must be able
to come up with an attack strategy that is independent of any specific
hardware implementation of the cipher.

� Ability to Manipulate the Public Variables : We assume that the ad-
versary is able to operate the cryptosystem using any public variable of his
choice. In this case, this implies that he can run the cipher using any IV of
his choice, while the Key remains secret. The Secret Key is usually stored in
the memory (RAM) which is not connected to the scan-chain.

� Knowledge of Scan-Chain Structure : Here, we assume that the adver-
sary does not have any knowledge of the structure of the scan-chain that ties
the flip-flops of the device together. The flip-flops in a scan-chain are not
connected according to their positions in their respective registers. Rather,
a Computer-aided tool optimizes the scan-chain according to the physical
locations of the individual flip-flops. He also does not know the number of
flip-flops in the scan-chain, but as shown in Section 3.1, finding this number
is not difficult.

� Putting It All Together : The online attack procedure of the scan-based
attack is very simple. The adversary lets the cryptosystem run in the normal
mode for a fixed number of clock rounds. He then asserts the SCAN-ENABLE

signal, which halts the normal operation mode, and scans out the content
of the scan-chain serially via the SCAN-OUT port. He will get a scanned out
vector V, of the length of the scan-chain. This scanned out vector contains
all the state bits of the cryptosystem at the clock round after which the
normal mode of operation was halted. However, since the structure of the
scan-chain is unknown to the adversary, he is unable to deduce the corre-
spondence between the individual bits of V and individual state bits of the
cryptosystem. For example, he knows with certainty that some element of
V is equal to the 0th bit of the register R at the round when the normal
mode was halted, but he does not know which element. In other words, he
is unaware of the permutation π between the scanned out vector V and the
internal state of the cipher.
So any scan-based attack usually proceeds in two phases :
(a) Pre-processing stage → In this stage, the adversary performs various
tests on the device to gain information about the structure of the scan-chain
and deduce the structure of the permutation π. This is the stage that re-
quires rigorous cryptanalysis. Once the permutation π has been ascertained,
the adversary proceeds to the online stage.
(b) Online stage → The adversary lets the device get initialized with some
unknown Key and IV, and halts the device at some suitable clock round (in

1 These are internal variables used in the description of MICKEY 2.0. For more please
refer to [3].
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the case of MICKEY 2.0, he stops the normal mode at the beginning of the
PRGA). He then scans out the content of the flip-flops in the scan-chain
through the SCAN-OUT port and therefore gets the vector V. Since the per-
mutation π is now known to him, he is able to reconstruct the internal state
of the cipher from V and this completes the attack.

3 Attacking MICKEY 2.0

The keystream generator makes use of two registers R and S (100 bits each).
The registers are updated in a non-linear manner using the control variables:
INPUT BIT R, INPUT BIT S, CONTROL BIT R, CONTROL BIT S. As referred to
earlier, any implementation of the cipher contains flip-flops for the R,S regis-
ters and the 4 control variables. Furthermore, there must be 7 flip-flops for the
counter register to keep track of the number of rounds in the Preclock stage. For
more details please refer to [3].

In [2], a scan-based attack on Trivium was presented. As we go along we will
show that the attack idea of [2] can not be extended to MICKEY-like ciphers
whose state update functions are much more complex. The keystream production
stage in MICKEY 2.0 is preceded by the three stages:- IV Loading, Key Loading
and Preclock. Initially the R,S registers are initialized to the all zero state. Then
at each clock round, a variable length IV [iv0, iv1, . . . , ivv−1] and the 80 bit Key
[k0, k1, . . . , k79] is used to update the state by successively executing the function
CLOCK KG(R,S, 1, ivi), (for i → 0 to v− 1) and CLOCK KG(R,S, 1, ki), (for i →
0 to 79). The strategy of the adversary in our attack will be to operate the cipher
in the IV loading stage using certain IV′s of his choice and then halt the normal
mode by asserting the SCAN-ENABLE signal and read out the contents of the
scan-chain. He will repeat this exercise multiple number of times. By observing
the scanned out vector in each case, he will attempt to deduce the structure of
the scan-chain.

3.1 Finding the Length of the Scan-Chain

The attacker begins by resetting all the flip-flops of the scan-chain to zero and
then asserts the SCAN-ENABLE signal. The first input to SCAN-IN port is set to 1.
As is obvious from Figure 2, if there are n flip-flops in the chain, the scanned out
vector will contain n zeros (which is the initial state of the scan-chain) followed
by the single 1 which comes from the first input to the scan-chain. Thus the
attacker can deduce the value of n easily.

3.2 Strategy to Find the Location of the Counter Bits

Initially, the task of the adversary is to ascertain the location of the bits of
the counter register in the scanned out vector. In [2], the strategy to find the
counter bits for Trivium was as follows (note that Trivium uses an 11-bit counter
register). The attacker would initially RESET all the flip-flops in the scan-chain
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and run the cipher in the normal mode for 210−1 clock rounds. The structure of
Trivium is such that if all the registers are initialized to the all-zero state, then
it will continue to be in this state as long as the cipher runs. Hence, the only
bits which will change are those in the flip-flops of the counter register which
operates independently of the combinational logic of the cipher. After 210 − 1
rounds the 10 least significant bits of the counter become all 1s. If the adversary
now asserts the SCAN-ENABLE signal and reads out the content of the scan-chain,
he will observe exactly ten ones in the scanned-out vector. The bit locations of
these 1s indicate the position of the ten LSBs of the counter register in the scan-
chain. However, such an attack can not be extended to MICKEY 2.0. Initially,
all the flip-flops in the R,S registers are set to 0. If the IV Loading stage runs
even for a single clock round with the first IV bit equal to zero, the state of the
S register evaluates to 085804128010408643BC42800. This vector itself has 24
ones and so it is clear that the strategy of [2] can not be extended to MICKEY
2.0. The strategy that we propose is as follows. To find the location of the LSB of
the counter the attacker will use such IVs whose length is of the form l0 = 2α+1
i.e. an odd number. Whatever be the value of the IV, after l0 rounds, the LSB
of the counter register will always evaluate to 1. After l0 rounds of IV loading,
the attacker asserts the SCAN-ENABLE signal and reads out the contents of the
scan-chain. The attacker does this for n0 many IVs of odd length and performs
the bitwise AND of each of the n0 scanned out vectors. If n0 is sufficiently large,
all but one of the elements of this product vector becomes 0. Clearly, the only
non-zero element in the product vector corresponds to the location of the LSB
of the counter register.

To find the location of the next LSB, the attacker chooses IVs of length
l1 = 4α+2 or 4α+3. It is clear that irrespective of the values of the IV, after l1
rounds of IV loading, the second LSB of the counter register always evaluates to
1. The attacker repeats the above process with n1 IVs of this form and as above,
computes the bitwise AND of all the scanned out vectors. If n1 is sufficiently
large, all but one of the elements of this product vector becomes 0 and the only
non-zero element in the product vector corresponds to the location of the second
LSB of the counter register. The process can similarly be extended to find the
location of all the other bits of the counter register. The above arguments have
been formalized in Algorithm 1.

Algorithm 1 returns the location βk of the kth LSB of the counter register
in the scan-chain. It also returns the IV set Ak which helps determine βk. The
values of Ak ∀k ∈ [0, 6] for an implementation of MICKEY 2.0, that uses the
211 flip-flops given above, are included in Appendix A.

3.3 Strategy to Find the Location of the Other Internal State Bits

We will briefly recall the strategy of [2] to find the location of the state bits of
Trivium. Note that Trivium has an internal register of 288 bits. The 80 bit Secret
Key is directly loaded on to the first 80 bits of the register. The 80 bit IV is
loaded on to the 94th to the 173rd bits of the register. The remaining 128 bits are
loaded with a fixed initialization constant. In order to find the location of the 2nd
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Input: The index of the counter LSB k
Output: The Set Ak of IVs which determine the location of the kth LSB of counter register
Output: The location index βk of the kth LSB of counter register in the scan-chain

Let P be a vector of n elements (n is the length of the scan-chain)
P ← 1n;
w ← 0;
while |P| �= 1 do

/* |P| denotes the number of 1s in P */

Generate a random Initial Vector IVw of length lk = 2k+1α + 2k + r, (0 ≤ r < 2k);

Append IVw to the Set Ak ;

Reset cipher and perform IV Loading with IVw ;

Assert the SCAN-ENABLE signal and read the scanned out vector V.

P = P&V ( & denotes bitwise AND);

w ← w + 1;
end

for i = 1 TO n do

if P[i] = 1 then

βk ← i;
end

end
Return Ak, βk;

Algorithm 1. Algorithm to determine the location of counter bits

bit of the state register (say), the adversary initializes the cipher with the Key
8000 0000 0000 0000 and the all zero IV. The remaining bits of the register
are initialized to all zero. As a result, before the initialization stage begins, only
the first register bit holds the value 1 and the rest 0. The cipher is run in normal
mode for one clock round, and then the SCAN-ENABLE signal is asserted and the
contents of the chain are scanned out. The state update of Trivium is such that
after the first initialization round, only the 2nd register bit has the value 1 and
the rest 0. So the scanned out vector that the adversary obtains has two 1s: one
in the location corresponding to the LSB of the counter register and the other in
the position corresponding to the 2nd bit of the state register. Since the attacker
already knows the location of the counter bits, he can easily deduce the location
of the 2nd state register bit. This approach cannot be extended to MICKEY 2.0
for two reasons:

• As we have already seen, the state update function of MICKEY 2.0 is way too
complex.

• Unlike Trivium, MICKEY 2.0 does not allow direct loading of Key and IV bits
on to the state register. As mentioned earlier, initially the R,S registers are
initialized to the all zero state. Then a variable length IV [iv0, iv1, . . . , ivv−1]
and the 80 bit Key [k0, k1, . . . , k79] is used to update the state by succes-
sively executing CLOCK KG(R,S, 1, ivi), (for i → 0 to v − 1) and thereafter
CLOCK KG(R,S, 1, ki), (for i → 0 to 79).

The strategy that we propose is as follows. To find the location of the ith

bit of the register R (say), the attacker will use such Initial Vectors IVw =
[iv0, iv1, . . . , ivv−1] which after the IV Loading stage i.e. executing the routine
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CLOCK KG(R,S, 1, ivi), (for i → 0 to v − 1) successively, leaves the ith bit of
the register R at value 1. Since the CLOCK KG routine is known publicly, the
attacker can easily select such IVs by random selection. By standard randomness
assumptions, one out of every two randomly selected IVs will result in the ith bit
of R being equal to 1 at the end of the IV Loading stage. The rest of the attack is
same as before. After IV Loading, the attacker asserts the SCAN-ENABLE signal
and reads out the scanned-out vector V. The attacker does this for mi many
IVs that result in the ith bit of R being 1 and performs the bitwise AND of
each of the mi scanned out vectors. If mi is sufficiently large, all but one of the
elements of this product vector becomes 0. Clearly, the only non-zero element in
the product vector corresponds to the location of the ith bit of R.

Experimentally, the values of ni, mi for an implementation of MICKEY 2.0
with 211 flip-flops has been found to be around 8 to 20. To speed up the process,
the attacker can omit those bit locations of the scanned out vector V whose
correspondence to some flip-flop in the design have already been found out. For
example, the attacker can omit the bits of V which correspond to the counter
register. He may also omit any other bits of V whose correspondence with some
internal state bit have already been determined. The arguments have been for-
malized in Algorithm 2.

Algorithm 2 returns the location βχ of the state bit χ in the scan-chain. It
also returns the IV set Aχ which helps determine βχ. The values of Aχ for all
bits of the registers R, S, for an implementation of MICKEY 2.0 that use the
211 flip-flops given above, are included in Appendix A.

4 Attacking the XOR-CHAIN Countermeasure Scheme

The Flipped-Scan countermeasure technique to protect scan-chains was proposed
in [16]. This involved placing inverters at random points in the scan-chain. Se-
curity stemmed from the fact that an adversary could not guess the number
and positions of the inverters. This technique was cryptanalyzed in [2] using a
RESET attack. It was shown that if all flip-flops in the scan-chain are initially
RESET, then the positions of the inverters can be completely determined by the
0 → 1 and 1 → 0 transitions in the scanned-out vector. As an alternative, the
XOR-CHAIN based countermeasure was proposed in [2]. The technique involves
placing XOR gates at random points of the chain as described in Figure 4. Secu-
rity again stems from the fact that an adversary is unable to guess the number
and positions of the XOR gates.

Notations. We assume that there are n flip-flops in the scan-chain. The state
of the ith flip-flop (1 ≤ i ≤ n) at clock round t (t ≥ 0) after the SCAN-ENABLE

signal is asserted, is given by the symbol St
i . The τ th (τ ≥ 1) round input to

the scan-chain is given as xτ . Similarly the τ th round output of the scan-chain
is denoted as yτ . We also define the sequence ai, (1 ≤ i ≤ n) over GF(2) as
follows. If there is an XOR gate before the ith flip-flop then ai = 1 else ai = 0.
The goal of the attacker is to determine the value of the vector [a1, a2, . . . , an].
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Input: The internal state bit χ whose location in the scan-chain is to be determined
Input: The set of index locations scan-chain T whose correspondence has been determined
Output: The Set Aχ of IVs which determine the location of the state bit χ
Output: The location index βχ of the state bit χ in the scan-chain

Let P be a vector of n elements (n is the length of the scan-chain)
P ← 1n;
w ← 0;

for ∀ i ∈ T do
P[i] = 0;

end
while |P| �= 1 do

/* |P| denotes the number of 1s in P */
Generate a random Initial Vector IVw = [iv0, iv1, . . . , ivv−1];

Set R ← 0, S ← 0 ;

Execute CLOCK KG(R, S, 1, ivi), (for i → 0 to v − 1);

if The state bit χ = 1 then

Append IVw to the Set Aχ ;

Reset cipher and perform IV Loading with IVw ;

Assert the SCAN-ENABLE signal and read the scanned out vector V.

P = P&V ( & denotes bitwise AND);
end

w ← w + 1;
end

for i = 1 TO n do

if P[i] = 1 then

βχ ← i;
end

end

Append βχ to the set T;
Return Aχ, βχ;

Algorithm 2. Algorithm to determine location of the state bit χ

SCAN-IN
S1 S2 S3 S4 S5 ....S6 Sn−1 Sn

SCAN-OUT

Fig. 3. Diagram of the XOR-CHAIN scheme proposed in [2]

4.1 The SET Attack on the XOR-CHAIN Structure

Most standard VLSI designs provide a GLOBAL SET/RESET (GSR) pin to initialize
all flip-flops to some known state INIT during configuration [9]. The INIT value of
flip-flop primitives like FDP, FDPE, FDS etc. in the Xilinx Virtex 6 library is 1 by
default, i.e. these flip-flops are SET after configuration. Our strategy to attack
the XOR-CHAIN would be to SET all the flip-flops in the chain and then assert
the SCAN-ENABLE signal. We will prove in Theorem 1, that by observing the
values of the scanned-out vector, the adversary will be able to determine the
number and positions of the XOR gates in the chain.
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Theorem 1. If the scan-chain is initially SET i.e. S0
i = 1, ∀i ∈ [1, n], and

x1 = 1, then the value of the vector [a1, a2, . . . , an] can be determined efficiently
by observing the output bits yi, ∀i ∈ [1, n] of the scanned-out vector.

Proof. Define the symbol St
0 = xt+1. Due to the architecture of the scan-chain,

the following equation holds for any t > 0, 1 ≤ i ≤ n:

St
i = St−1

i−1 ⊕ ai · St−1
i (1)

We will give a general outline of the proof first and sort out the more technical
details later. As can be seen from Figure 4, the first output bit y1 is given by
y1 = S0

n = 1. The second output bit is given by

y2 = S1
n = S0

n−1 ⊕ an · S0
n = 1⊕ an.

The value of an is therefore given by 1⊕ y2. Now look at the equation governing
y3.

y3 = S2
n = S1

n−1 ⊕ an · S1
n = S0

n−2 ⊕ an−1 · S0
n−1 ⊕ an · (S0

n−1 ⊕ an · S0
n)

= S0
n−2 ⊕ (an−1 ⊕ an) · S0

n−1 ⊕ an · S0
n

= 1⊕ an−1.

The value of an−1 is therefore given by 1⊕ y3. Now look at the equation for y4.

y4 =S3
n = S2

n−1 ⊕ an · S2
n

=S1
n−2 ⊕ an−1 · S1

n−1 ⊕ an ·
(
S0
n−2 ⊕ (an−1 ⊕ an) · S0

n−1 ⊕ an · S0
n

)
=S0

n−3 ⊕ (an−2 ⊕ an−1 ⊕ an) · S0
n−2 ⊕ (an−1 ⊕ an ⊕ anan−1) · S0

n−1 ⊕ an · S0
n

=1⊕ an−2 ⊕ an ⊕ anan−1.

Since the values of an, an−1 are known, the value of an−2 may be calculated as
1 ⊕ y4 ⊕ an ⊕ anan−1. Proceeding in this manner we can deduce an−3 from y5,
an−4 from y6, . . ., an−i+3 from yi−1. At the ith stage, yi, (1 ≤ i ≤ n+1) can be
written as

yi = S0
n−i+1 ⊕ bi,n−i+2 · S0

n−i+2 ⊕ bi,n−i+3 · S0
n−i+3 ⊕ · · · ⊕ bi,n · S0

n (2)

It can be shown that (i) bi,n−i+2 = an⊕an−1⊕· · ·⊕an−i+2, (ii) bi,n−i+3, bi,n−i+4,
. . . , bi,n are functions of an, an−1, . . . an−i+3 only. Since an, an−1, . . . an−i+3 are
already known, an−i+2 equals

1⊕ yi ⊕ an ⊕ an−1 ⊕ · · · ⊕ an−i+3 ⊕ bi,n−i+3 ⊕ · · · ⊕ bi,n.

The values of an, an−1, . . . , a1 may be found out in this manner. Now all that
remains to be shown are the proofs of (i), (ii). We will proceed by mathematical
induction. Let P (i) be the proposition defined as follows. For all k ∈ [1, n], (and
k − i ≥ 0)

Si
k = S0

k−i ⊕ ck−i+1 · S0
k−i+1 ⊕ . . .⊕ ck · S0

k
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then A. ck−i+1 = ak ⊕ ak−1 ⊕ · · · ak−i+1, B. ck−i+2, . . . , ck are functions of
ak−i+2, ak−i+3, . . . , ak only. For i = 1, S1

k = S0
k−1 ⊕ ak · S0

k and so P (1) is true.
Assume P (i) is true for i = 2, 3, . . . , u. For i = u+ 1,

Su+1
k = Su

k−1 ⊕ ak · Su
k

= S0
k−1−u ⊕ (ak−1 ⊕ ak−2 ⊕ · · · ⊕ ak−u) · S0

k−u ⊕ ηk−u+1 · S0
k−u+1 ⊕ · · ·⊕

ηk · S0
k ⊕ ak · (S0

k−u ⊕ γk−u+1 · S0
k−u+1 ⊕ · · · ⊕ γk · S0

k)

= S0
k−u−1 ⊕ (ak ⊕ · · · ⊕ ak−u) · S0

k−u ⊕ (ηk−u+1 ⊕ ak · γk−u+1) · S0
k−u+1

⊕ · · · ⊕ (ηk ⊕ ak · γk) · S0
k.

This proves A. By induction hypothesis on i = u, ηk−u+1, . . . , ηk, γk−u+1, . . . , γk
are functions of ak−u+1, . . . , ak only and so this proves B as well. It can be seen
that (i), (ii) follow from A, B.

4.2 Attacking MICKEY 2.0 in Presence of XOR-CHAIN

One of the main difficulties of applying Algorithms 1 and 2, to any implementa-
tion of MICKEY 2.0 protected by an XOR-CHAIN structure is that the scanned-
out vector will no longer represent the state of the scan-chain before the SCAN-

ENABLE signal was asserted. Because of the random placement of the XOR gates
in the chain, the scanned out vector V = [y1, y2, y3, . . . yn]

T is a linear combina-
tion of the state of the scan-chain S = [S0

1 , S0
2 , S0

3 , . . . , S0
n]

T . From Equation
(2), the relation between V and S is given as :

S0
n = y1

S0
n−1 ⊕ b1,n · S0

n = y2

S0
n−2 ⊕ b2,n−1 · S0

n−1 ⊕ b2,n · S0
n = y3

...

S0
1 ⊕ bn,2 · S0

2 ⊕ · · · ⊕ bn,n−2 · S0
n−2 ⊕ bn,n−1 · S0

n−1 ⊕ bn,n · S0
n = yn

In matrix form these equations may be written as B · S = V. Once the
attacker has determined the values of [a1, a2, . . . , an] he can determine the values
of bi,j ∀i, j and hence the matrix B. Now we would like to point out that B is
invertible over GF (2). Clearly, B is a lower anti-triangular matrix with all the
elements in the anti-diagonal equal to 1. Therefore, it follows that Det(B) = 1,
and hence the result. The attacker can now deduce the state of the scan-chain
before the assertion of the SCAN-ENABLE signal, by computing S = B−1 ·V. The
adversary can now apply Algorithms 1 and 2 to the vector S.

5 Securing the Scan-Chain: Double Feedback
XOR-CHAIN

Our motivation was to find a structure that would resist the SET and RESET

attacks. We found that a few simple tweaks to the XOR-CHAIN structure was
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sufficient to secure the chain from the aforementioned attacks. The structure we
propose is this: We retain the idea of placing XOR gates at random points in the
scan-chain. In the original proposal, if ai was 1, the output of the i

th flip-flop was
fed back to the XOR gate placed before it. In the structure that we propose, if ai
is 1 (∀ i ∈ [1, n− 1]), then the output of the ith and the (i+ 1)th flip-flop would
be fed back to the XOR gate placed infront of the ith flip-flop (see Figure 5).
For i = n, (i.e. for the last flip-flop in the chain) we keep an = 0. We call this
the “Double Feedback XOR-CHAIN” structure. We will first prove that such a
structure can be used to test the scan-chain efficiently. We will also prove that
such a structure would resist the SET and RESET attacks.

SCAN-IN
S1 S2 S3 S4 S5 ....S6 Sn−1 Sn

SCAN-OUT

Fig. 4. Double Feedback XOR-CHAIN

5.1 Testability

Because of the structure of the Double Feedback XOR-CHAIN, the flip-flops are
updated by the following recursive equation (See Figure 5).

St
i =

⎧⎨
⎩

St−1
i−1 ⊕ ai · (St−1

i ⊕ St−1
i+1 ), if 1 < i < n,

St−1
i−1 , if i = n,

xt ⊕ ai · (St−1
i ⊕ St−1

i+1 ), if i = 1.

(3)

Let X = [x1, x2, . . . , xn] be the inputs in the first n clock rounds, to the
scan-chain after the assertion of SCAN-ENABLE signal. In the next n rounds,
we read out the vector Y = [yn+1, yn+2, . . . , y2n] from the SCAN-OUT pin. A
necessary and sufficient condition to be able to use Double Feedback XOR-
CHAIN structure for testing purposes is that the function mapping X → Y
must be a bijection [2]. We will prove the bijection in two steps. Denote by
St = [St

1, S
t
2, . . . , S

t
n]

T the state of the scan-chain at the tth clock round. We will
first prove that the map between X → Sn is a bijection, and then we prove that
the map between Sn → Y is also a bijection. First we note that Equation (3)
can be written in matrix form as follows:⎛

⎜⎜⎜⎜⎜⎜⎜⎝

St
1

St
2

St
3

St
4
...
St
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 a1 0 0 0 · · · 0 0
1 a2 a2 0 0 · · · 0 0
0 1 a3 a3 0 · · · 0 0
0 0 1 a4 a4 · · · 0 0
...

...
...

...
...
. . .

...
...

0 0 0 0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

St−1
1

St−1
2

St−1
3

St−1
4
...

St−1
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
⊕
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

xt

0
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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We can write this in compact form St = A·St−1⊕Xt. Here A is the tridiagonal
matrix defined above and Xt = [xt, 0, 0, . . . , 0]

T . Before we prove the bijection
we will look at a few useful results regarding the structure of A and its powers.

Lemma 1. Consider the elements in the first column of Ap, (1 ≤ p ≤ n − 1).
It can be shown that Ap(p + 1, 1) = 1 and Ap(i, 1) = 0 for all i ∈ [p + 2, n].
(M(i, j) denotes the element in the ith row and jth column of the matrix M)

Lemma 2. Consider the elements in the last row of Ap, (1 ≤ p ≤ n − 1). It
can be shown that Ap(n, n− p) = 1 and Ap(n, j) = 0 for all j ∈ [1, n− p− 1].

Lemma 3. Let e1 = [1, 0, 0, . . . , 0]T . Then, the first columns of Ap, (1 ≤ p ≤
n− 1) and In i.e.

In · e1, A · e1, A2 · e1, . . . , An−1 · e1
are linearly independent over GF(2). (In is the n× n identity matrix.)

Lemma 4. Let en = [0, 0, 0, . . . , 1]. Then, the last rows of Ap, (1 ≤ p ≤ n− 1)
and In i.e.

en · In, en · A, en · A2, . . . , en · An−1

are linearly independent over GF(2).

Lemma 1, 2, 3, 4 are quite standard results for tridiagonal matrices and hence
we state them here without proof.

Theorem 2. The function mapping the first n inputs to the scan-chain X =
[x1, x2, . . . , xn] to the state Sn of the scan-chain is a bijection.

Proof. We have already shown that the successive state vectors St of the scan-
chain are related by the equation St = A · St−1 ⊕ Xt, ∀t > 0 where Xt =
[xt, 0, 0, . . . , 0]

T . Combining these equations for t = 1, 2, . . . n we get

Sn = An · S0 ⊕An−1 ·X1 ⊕An−2 ·X2 ⊕ · · · ⊕ A ·Xn−1 ⊕Xn. (4)

The scan-chain is usually RESET before the SCAN-ENABLE signal is asserted, and
so S0 = 0 and therefore we have

Sn = An−1 ·X1 ⊕An−2 ·X2 ⊕ · · · ⊕ A ·Xn−1 ⊕Xn

= x1 · An−1 · e1 ⊕ x2 · An−2 · e1 ⊕ · · · ⊕ xn−1 · A · e1 ⊕ xn · In · e1.

Now, if possible let X ′ = [x′
1, x

′
2, . . . , x

′
n] �= X be a vector that leads to the same

value of Sn. So we have,

Sn = x′
1 · An−1 · e1 ⊕ x′

2 · An−2 · e1 ⊕ · · · ⊕ x′
n−1 · A · e1 ⊕ x′

n · In · e1.

Adding the equations we get

0 = (x1 ⊕ x′
1) · An−1 · e1 ⊕ (x2 ⊕ x′

2) · An−2 · e1 ⊕ · · · ⊕ (xn ⊕ x′
n) · In · e1.

By Lemma 3, In ·e1, A·e1, A2 ·e1, . . . , An−1 ·e1 are linearly independent,
so we must have xi = x′

i, ∀i ∈ [1, n]. Hence X = X ′ and so the function mapping
X → S is certainly an injection. Also both the domain and range of this map is
the vector space GF (2)n, which proves that the function is a bijection. �




92 S. Banik and A. Chowdhury

Theorem 3. The function mapping the state Sn of the scan-chain to the output
vector Y = [yn+1, yn+2, yn+3, . . . , y2n] is a bijection. Therefore the map between
X → Y is also a bijection.

Proof. We have yn+1 = Sn
n = en · Sn. Similarly, yn+2 = Sn+1

n = en · Sn+1 =
en · (A · Sn ⊕Xn+1) = en · A · Sn. Generalizing in this manner, we have for all
i ∈ [1, n],

yn+i = Sn+i−1
n = en · Sn+i−1 = en · (Ai−1 · Sn ⊕Ai−2 ·Xn+1 ⊕ · · · ⊕Xn+i−1)

= en · (Ai−1 · Sn ⊕ xn+1 · Ai−2 · e1 ⊕ · · · ⊕ xn+i−1 · In · e1)

By Lemma 1, the last element of the column vectors Ai−2 ·e1,Ai−3 ·e1, . . . , In ·e1
are all 0 and so their dot product with en will also be 0. And so we have
yn+i = en · Ai−1 · Sn, ∀i ∈ [1, n]. We can therefore write

Y T =

⎛
⎜⎜⎜⎝

en · In
en · A

...
en · An−1

⎞
⎟⎟⎟⎠ · Sn = C · Sn.

By Lemma 4, the rows of C are linearly independent and so C is invertible.
This proves that the function mapping Sn → Y is a bijection. Combining this
result with Theorem 2, we can say that the function mapping X → Y is also a
bijection. �


5.2 Resistance against SET and RESET Attacks

In a Double Feedback XOR-CHAIN structure, it can be shown that if the scan-
chain is initially RESET then the output in the first n rounds will be all 0.
Similarly, if the chain is initially SET then the output in the first n rounds will
be all 1. This is because, the initial contents of the scan-chain are simply shifted
across each flip-flop regardless of whether there is a XOR gate placed infront of
it. From Equation (3), we know that the value of S1

i = S0
i−1 ⊕ ai · (S0

i ⊕ S0
i+1).

If ai = 0, i.e. if there is no XOR gate before the ith flip-flop, then the content of
the (i − 1)th flip-flop is simply shifted to the ith flip-flop in the next round. On
the other hand, if ai = 1, then we have S1

i = S0
i−1 ⊕S0

i ⊕S0
i+1. If the scan-chain

is initially RESET i.e. S0
j = 0, ∀j, then the updated value of S1

i is also 0 and

thus equal to S0
i−1. If the scan-chain is initially SET i.e. S0

j = 1, ∀j, then the

updated value of S1
i is also 1 ⊕ 1 ⊕ 1 = 1 and thus also equal to S0

i−1. In either
event, the initial values of the flip-flops (whether all SET or RESET) are shifted
across the chain and this is the output obtained in the first n rounds. Thus
it is clear that in both attack scenarios no meaningful information about the
vector [a1, a2, . . . , an−1] can be obtained from the first n scanned-out bits. Thus
the attacker must look at the output bits yn+1, yn+2, . . . in hope of deducing
[a1, a2, . . . , an−1]. From equation (4), we have

Sn = An · S0 ⊕An−1 ·X1 ⊕An−2 ·X2 ⊕ · · · ⊕ A ·Xn−1 ⊕Xn.
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Note that S0 is the all 1 or the all 0 column vector in the case of SET or RESET

attack respectively. From Theorem 3, we have Y T = [yn+1, yn+2, . . . , y2n]
T =

C · Sn. Note that, An,An−1, . . . ,A are dense n×n matrices over the polynomial
ring GF (2)[a1, a2, . . . , an−1]. The relation Y T = C ·Sn gives rise to n equations of
degree n−1 each in a1, a2, . . . , an−1. Solving such a system of equations does not
seem to be easier than simply guessing the values [a1, a2, . . . , an−1] or breaking
the cipher itself.

6 Conclusion

Although, scan-chains are a valuable tool to test an electrical device for faults,
deployment of such scan-chains without having proper countermeasures in place
can provide an attacker with a potent side channel to cryptanalyze the under-
lying cryptosystem. In this paper we outline a strategy to perform a scan-based
side channel attack on MICKEY 2.0 that is independent of the actual imple-
mentation of the cipher. We then show that the XOR-CHAIN mechanism which
was proposed in [2], is vulnerable to the SET attack. As a countermeasure we
propose the Double Feedback XOR-CHAIN structure that resists the SET and
RESET attacks. We have also presented detailed analysis, showing that such a
structure may indeed be used for DFT purposes.
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Appendix A: Set of IVs to Ascertain the Location of the
Internal State Bits

Table 1. Set Ak of IVs which can determine the location of the kth LSB of counter
register (The IVs are of the form 0i. The values of i are listed in the table.)

kth LSB of counter Set Ak of IVs to find kth LSB
0th bit (LSB): 3, 5, 7, 9, 11, 13, 15, 17

1st bit: 3, 7, 11, 15, 19, 23, 27, 31

2nd bit: 4, 12, 20, 28, 36, 44, 52, 60

3rd bit: 8, 9, 10, 11, 12, 13, 14, 15

4th bit: 16, 17, 18, 19, 20, 21, 22, 23

5th bit: 32, 33, 34, 35, 36, 37, 38, 39

6th bit: 64, 65, 66, 67, 68, 69, 70, 71

Table 2. The Set Aχ of IVs which can determine the location of the bits of Registers
R,S. (The IVs are of the form 0i. The values of i are listed in the table.)

i Set Aχ of IVs to find R[i] Set Aχ of IVs to find S[i]
0 3, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 25, 26, 29, 30,

31, 34, 35, 36, 37
13, 16, 19, 22, 23, 25, 27, 28, 29, 33, 34, 36, 37, 38, 40

1 3, 4, 10, 12, 13, 16, 18, 22, 23, 25, 27, 28, 29, 31, 32, 34,
36

13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 30, 31, 33,
34, 36, 39

2 4, 5, 6, 7, 11, 12, 14, 15, 17, 19, 23, 24, 26, 28, 29, 32,
33, 34, 37, 38, 39

13, 14, 16, 17, 19, 21, 24, 25, 26, 27, 29, 31, 32, 35, 36,
37, 38

3 3, 5, 7, 8, 10, 11, 14, 15, 18, 21, 22, 24, 27, 28, 30, 31,
33, 34, 39, 40

14, 17, 19, 22, 23, 26, 28, 30, 32, 33, 36, 39

4 3, 4, 6, 7, 8, 9, 10, 12, 14, 15, 20, 21, 28, 31, 32, 35, 36,
37, 40

1, 4, 7, 10, 16, 18, 21, 22, 23, 24, 26, 27, 28, 30, 31, 33,
35, 36, 37, 39

5 3, 4, 5, 6, 8, 9, 11, 12, 13, 19, 20, 22, 25, 26, 33, 36 2, 4, 5, 8, 10, 11, 13, 15, 16, 17, 23, 24, 26, 28, 30, 31,
32, 33, 37, 39

6 3, 4, 5, 7, 9, 12, 13, 14, 16, 17, 19, 25, 27, 28, 29, 30,
31, 37

3, 5, 9, 11, 13, 14, 15, 17, 22, 24, 25, 27, 28, 29, 31, 32,
36, 38, 39, 40

7 4, 5, 8, 10, 11, 12, 14, 17, 18, 19, 20, 26, 28, 29, 31, 38,
39

4, 5, 6, 7, 10, 11, 12, 14, 16, 17, 18, 26, 28, 30, 32, 33,
34, 38, 39, 40

8 5, 9, 11, 13, 14, 18, 20, 21, 22, 23, 27, 28, 29, 32, 39, 40 5, 7, 8, 11, 12, 15, 17, 23, 24, 29, 30, 34, 35, 36, 38, 39

9 3, 6, 7, 12, 16, 17, 20, 22, 23, 24, 25, 26, 28, 30, 31, 33,
38, 39, 40

1, 5, 6, 10, 12, 13, 17, 18, 19, 23, 24, 29, 30, 31, 33, 35,
36, 39, 40

10 4, 7, 8, 13, 14, 15, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29,
30, 32, 34, 35, 36, 37, 38, 40

2, 3, 6, 11, 13, 14, 18, 20, 21, 22, 24, 25, 27, 30, 32, 34,
36, 38, 40

11 5, 6, 7, 8, 9, 14, 16, 17, 18, 20, 22, 25, 28, 29, 31, 32,
33, 34, 36, 38

1, 3, 4, 8, 11, 12, 13, 14, 15, 16, 18, 25, 26, 27, 29, 31,
34, 35, 36, 38, 39, 40

12 3, 6, 8, 9, 13, 16, 18, 19, 20, 25, 30, 31, 32, 33, 34, 37,
39

1, 2, 4, 5, 8, 9, 13, 14, 15, 19, 21, 22, 23 25, 26, 28, 29,
30, 32, 33, 34, 35, 37, 38, 39

13 3, 4, 7, 9, 13, 14, 16, 23, 25, 29, 30, 33, 34, 40 2, 3, 6, 8, 9, 10, 13, 14, 15, 17, 22, 24, 25, 26, 28, 31,
33, 38, 39

14 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 17, 24, 26, 30, 34 3, 4, 7, 16, 18, 19, 21, 26, 28, 29, 31, 32, 33, 34, 36, 37,
38, 39, 40

15 5, 7, 8, 9, 11, 13, 16, 17, 18, 19, 25, 26, 27, 28, 31, 32,
35, 36, 37, 38, 39

4, 8, 9, 10, 13, 14, 16, 19, 20, 27, 30, 31, 32, 33, 35, 37,
38, 39

16 3, 6, 7, 8, 9, 12, 15, 16, 18, 19, 21, 22, 25, 27, 33, 36,
39, 40

5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 24, 31, 32, 33, 34, 37,
38, 39, 40

17 4, 7, 8, 9, 10, 11, 12, 16, 19, 20, 22, 26, 28, 34, 35, 36,
40

6, 7, 8, 11, 15, 18, 20, 21, 23, 24, 27, 32, 34, 35, 36, 39

18 5, 6, 7, 8, 9, 10, 12, 17, 20, 21, 22, 27, 28, 29, 30, 31,
32, 35, 37, 38, 39

7, 8, 12, 13, 19, 20, 24, 25, 26, 27, 29, 30, 31, 32, 34, 37,
38

19 3, 6, 8, 9, 11, 12, 13, 15, 16, 17, 18, 20, 22, 23, 25, 26,
28, 30, 33, 36, 37, 38, 40

8, 9, 14, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 32, 34,
35, 36, 37, 39, 40
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Table 2. (Contd.)

i Set Aχ of IVs to find R[i] Set Aχ of IVs to find S[i]
20 3, 4, 7, 9, 12, 13, 14, 17, 18, 19, 20, 24, 25, 27, 28, 31,

37, 38
9, 15, 19, 20, 22, 24, 25, 26, 27, 29, 31, 32, 35, 40

21 3, 4, 5, 6, 7, 8, 16, 17, 18, 19, 23, 26, 28, 34, 35, 36, 37,
38

1, 5, 9, 10, 12, 16, 20, 21, 23, 26, 29, 30, 33, 35, 36, 37,
38

22 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 16, 18, 19, 21, 22, 24, 25,
26, 27, 28, 32, 34, 36, 39

2, 3, 6, 7, 10, 13, 14, 15, 16, 17, 19, 21, 23, 24, 25, 26,
30, 33, 36, 39, 40

23 4, 5, 8, 9, 10, 12, 15, 17, 19, 20, 22, 25, 27, 29, 30, 31,
32, 33, 34, 37, 38, 39, 40

3, 4, 7, 8, 11, 16, 17, 18, 19, 20, 23, 24, 26, 28, 29, 31,
36, 38, 40

24 5, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21 22, 26, 28, 30,
32, 33, 35, 36, 37, 39, 40

4, 8, 12, 13, 14, 15, 16, 17, 18, 20, 23, 24, 29, 32, 38, 39

25 3, 6, 7, 11, 12, 17, 18, 19, 22, 23, 25, 26, 27, 28, 31, 33,
34, 35, 37, 38, 39, 40

5, 7, 9, 11, 16, 17, 18, 21, 23, 24, 27, 34, 36, 37, 38, 39,
40

26 4, 7, 8, 12, 18, 20, 23, 24, 26, 27, 29, 30, 31, 34, 36, 37,
39, 40

6, 7, 10, 11, 12, 13, 14, 16, 17, 18, 23, 24, 27, 29, 33, 35,
39, 40

27 5, 6, 7, 8, 9, 13, 14, 15, 19, 21, 22, 23, 24, 25, 26, 27,
30, 32, 35, 36, 38, 39, 40

1, 4, 9, 11, 12, 14, 15, 16, 17, 18, 20, 22, 23, 24, 26, 27,
29, 30, 36, 37, 38

28 3, 6, 8, 9, 13, 14, 15, 19, 21, 24, 26, 27, 29, 30, 32, 33,
36, 38, 40

2, 5, 10, 11, 13, 14, 15, 16, 17, 18, 21, 24, 28, 29, 30, 31,
33, 34, 39

29 4, 7, 9, 10, 11, 12, 13, 15, 16, 17, 20, 22, 23, 25, 26, 27,
30, 33, 37, 38

2, 3, 5, 6, 8, 12, 14, 15, 16, 17, 18, 19 21, 22, 24, 25, 27,
29, 30, 31, 32, 34, 35, 39, 40

30 5, 6, 7, 8, 10, 12, 14, 15, 16, 18, 19, 21, 22, 24, 26, 27,
31, 32, 34, 35, 36, 37, 39

1, 3, 4, 6, 7, 10, 16, 17, 18, 19, 20, 22, 23, 25, 26, 34,
35, 38

31 6, 8, 9, 11, 12, 15, 16, 19, 20, 22, 25, 26, 27, 32, 33, 34,
36, 38, 39, 40

2, 3, 4, 5, 7, 11, 12, 13, 17, 20, 24, 26, 27, 33, 35, 36,
38, 39

32 7, 9, 10, 11, 13, 14, 15, 16, 20, 21, 22, 26, 27, 33, 35, 36,
39, 40

1, 3, 4, 5, 6, 8, 13, 14, 16, 18, 19, 23, 27, 32, 33, 35, 37,
38, 39

33 8, 10, 12, 13, 15, 16, 21, 23, 27, 34, 35, 37, 38, 39, 40 2, 3, 4, 5, 7, 8, 9, 10, 13, 15, 17, 18, 19, 22, 23, 24, 25,
29, 30, 33, 38

34 9, 11, 12, 14, 15, 16, 22, 23, 24, 28, 35, 38, 40 3, 4, 6, 8, 10, 11, 14, 16, 18, 20, 23, 25, 26, 30, 31, 32,
33, 39

35 10, 11, 13, 14, 16, 23, 24, 25, 26, 29, 30, 31, 32, 36, 37,
38

4, 5, 8, 9, 15, 18, 19, 21, 23, 24, 27, 29, 31, 32, 33, 34,
36, 38

36 11, 14, 17, 24, 25, 27, 28, 30, 32, 33, 34, 35, 36, 38 5, 6, 7, 9, 10, 11, 16, 17, 18, 19, 22, 23, 25, 28, 29, 32,
33, 35, 36, 37, 38, 39, 40

37 3, 10, 11, 13, 16, 17, 18, 20, 21, 22, 26, 28, 31, 33, 34,
36, 38

6, 8, 10, 12, 13, 14, 16, 17, 19, 20, 21, 22 23, 24, 26, 27,
28, 29, 33, 34, 35, 37, 39, 40

38 3, 4, 10, 12, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 35,
36, 38

7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, 22, 23, 24, 25, 27,
30, 31, 35, 36, 38

39 4, 5, 6, 7, 11, 12, 16, 19, 20, 21, 22, 24, 26, 27, 29, 30,
31, 32, 36, 39

8, 9, 12, 13, 14, 15, 17, 20, 22, 23, 24, 25, 27, 31, 32, 36,
38

40 5, 7, 8, 12, 17, 20, 21, 23, 25, 26, 27, 30, 32, 33, 34, 35,
36, 40

9, 13, 15, 18, 19, 21, 22, 24, 25, 27, 28, 29, 32, 33, 34,
38

41 3, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18 20, 22, 24, 25,
27, 29, 30, 32, 33, 34, 36, 38, 39

10, 14, 16, 17, 18, 19, 22, 26, 27, 29, 30, 31, 34, 35, 36,
37, 39

42 3, 4, 7, 8, 9, 11, 15, 17, 18, 19, 20, 26, 28, 29, 31, 33,
34, 37, 39, 40

11, 15, 16, 17, 18, 19, 20, 23, 27, 30, 32, 33, 35, 37, 40

43 4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18, 20, 21, 22, 23, 27, 28,
29, 32, 34, 38, 39, 40

1, 5, 8, 11, 12, 14, 16, 17, 18, 19, 20, 21, 23, 24, 26, 31,
33, 34, 36

44 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 21, 23, 24, 28, 29,
33, 34, 39, 40

2, 3, 6, 9, 12, 15, 17, 20, 21, 23, 24, 28, 29, 30, 32, 35,
38, 39, 40

45 3, 6, 7, 8, 9, 11, 12, 13, 14, 15, 18, 19, 20, 21, 23, 24,
30, 31, 35, 36, 37, 40

3, 4, 6, 7, 9, 10, 12, 18, 20, 21, 23, 24, 25, 27, 28, 30,
31, 39,

46 3, 4, 7, 8, 9, 12, 13, 14, 15, 22, 24, 29, 30, 34, 35, 37,
38, 39

4, 5, 6, 8, 10, 11, 12, 19, 20, 22, 23, 24, 25, 26, 27, 28,
31, 32, 33, 40,

47 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 23, 25, 26, 30, 35,
38, 40

5, 6, 7, 11, 12, 16, 18, 19, 20, 21, 22, 26, 28, 32, 34, 38,

48 5, 7, 8, 9, 10, 12, 15, 17, 18, 19, 24, 26, 27, 28, 31, 32,
36, 37, 38

6, 7, 8, 12, 16, 17, 19, 20, 21, 23, 27, 33, 35, 36, 39, 40,

49 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 20, 25, 26, 27, 29,
30, 31, 33, 34, 35, 36, 38

1, 4, 10, 14, 26, 27, 28, 31, 33, 34, 37, 38,

50 3, 7, 8, 9, 11, 12, 17, 18, 19, 20, 23, 25, 27, 29, 31, 32,
35, 37, 39

2, 5, 11, 15, 27, 29, 32, 33, 34, 38,

51 4, 8, 9, 10, 11, 13, 14, 15, 18, 20, 21, 22 23, 24, 26, 28,
30, 31, 33, 34, 35, 38, 39, 40

3, 6, 12, 16, 17, 18, 19, 20, 21, 23, 25, 27, 30, 31, 32, 34,
37, 38,

52 3, 5, 6, 7, 9, 11, 13, 14, 15, 20, 22, 23, 24, 27, 28, 31,
32, 35, 38, 40

4, 7, 16, 17, 19, 20, 24, 26, 27, 29, 30, 31, 33, 34, 36, 38,
40,

53 4, 6, 8, 10, 11, 14, 16, 17, 21, 22, 24, 25, 26, 28, 29, 30,
31, 33, 34, 35, 39

5, 6, 8, 9, 17, 20, 25, 26, 28, 29, 31, 32, 34, 37, 38,

54 3, 5, 6, 9, 10, 12, 14, 15, 16, 18, 20, 21, 26, 27, 28, 30,
35, 38, 39, 40

6, 7, 9, 10, 18, 19, 23, 27, 31, 32, 35, 39,

55 4, 6, 10, 13, 14, 16, 19, 21, 27, 29, 30, 36, 37, 38, 40 7, 10, 19, 20, 24, 25, 26, 27, 28, 29, 30, 32, 36, 40

56 3, 5, 6, 10, 13, 14, 15, 16, 19, 21, 23, 25, 26, 28, 29, 31,
34, 35, 36, 39

1, 5, 8, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 27, 30, 31,
33, 34, 36

57 4, 6, 11, 12, 13, 15, 16, 20, 22, 23, 24, 26, 27, 28, 29, 32,
35, 37, 38, 39, 40

2, 3, 6, 7, 9, 13, 16, 20, 21, 24, 27, 28, 29, 31, 33, 35,
36, 38,

58 3, 5, 6, 10, 11, 15, 17, 19, 20, 24, 27, 30, 31, 33, 36, 37,
38, 40

3, 7, 8, 9, 14, 17, 19, 20, 22, 27, 29, 32, 34, 36, 37, 38

59 4, 6, 11, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 31, 34,
35, 36, 38

3, 4, 6, 8, 9, 10, 12, 13, 16, 19, 20, 21, 22, 24, 25, 27,
29, 30, 32, 35, 36, 38, 39, 40
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Table 2. (Contd.)

i Set Aχ of IVs to find R[i] Set Aχ of IVs to find S[i]
60 3, 5, 6, 10, 11, 13, 15, 16, 18, 19, 22, 23, 24, 25, 27, 28,

34, 36, 38
2, 5, 9, 10, 11, 14, 16, 17, 21, 22, 23, 30, 31, 33, 35, 36,
37, 39, 40

61 3, 4, 6, 10, 12, 15, 17, 21, 22, 23, 24, 26, 28, 32, 34, 37,
39

1, 3, 5, 6, 9, 10, 11, 12, 14, 15, 19, 21, 22, 24, 25, 27,
34, 36, 39, 40,

62 4, 5, 6, 11, 12, 16, 17, 18, 19, 22, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 38, 39, 40

1, 2, 5, 6, 7, 10, 11, 12, 15, 18, 21, 23, 25, 26, 28, 29,
33, 34, 35, 36, 37, 39

63 3, 5, 7, 10, 11, 14, 16, 18, 19, 21, 22, 23, 26, 27, 30, 33,
34, 38, 40

2, 6, 8, 9, 11, 13, 14, 16, 22, 23, 24, 26, 29, 30, 31, 33,
35, 40

64 3, 4, 6, 7, 8, 10, 12, 14, 15, 16, 21, 24, 25, 26, 27, 29,
30, 32, 35, 36, 37, 39

3, 4, 7, 9, 12, 14, 16, 22, 23, 25, 26, 28, 29, 31, 40,

65 3, 4, 5, 6, 8, 9, 10, 14, 15, 17, 19, 20, 21, 23, 26, 27, 29,
31, 33, 36, 40

1, 4, 5, 7, 8, 11, 18, 19, 21, 22, 27, 28, 30, 35, 36, 37, 38

66 3, 4, 5, 7, 9, 11, 12, 14, 15, 18, 22, 24, 25, 26, 27, 29, 37 2, 3, 5, 8, 12, 13, 19, 22, 28, 29, 30, 36, 38,

67 3, 4, 5, 8, 12, 13, 20, 21, 22, 23, 26, 27, 29, 32, 34, 35,
36, 37, 38, 39

3, 4, 9, 11, 13, 14, 20, 28, 31, 33, 34, 37

68 4, 5, 9, 13, 21, 23, 24, 27, 30, 31, 32, 33, 34, 36, 38, 40 4, 5, 10, 12, 13, 14, 15, 21, 22, 29, 32, 34, 35, 38, 39, 40

69 5, 10, 11, 12, 13, 22, 23, 24, 25, 26, 28, 31, 33, 35, 36,
39

2, 4, 5, 6, 8, 10, 11, 13, 14, 15, 17, 19, 22, 23, 25, 27,
28, 29, 30, 32, 33, 34, 35, 37

70 6, 7, 11, 13, 23, 24, 25, 27, 28, 29, 30, 31, 34, 35, 37, 38,
39, 40

1, 3, 5, 6, 7, 9, 11, 12, 14, 15, 16, 18, 21, 23, 24, 26, 28,
29, 30, 31, 33, 34, 35, 36, 38,

71 3, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22, 24, 26, 28,
30, 34, 36, 37, 38, 40

1, 2, 4, 6, 7, 8, 10, 12, 13, 15, 16, 17, 21, 22, 24, 25, 27,
31, 32, 34, 35, 36, 37, 39,

72 3, 4, 8, 9, 10, 12, 16, 18, 22, 23, 27, 28, 31, 34, 37, 38 1, 2, 3, 5, 7, 8, 9, 11, 13, 14, 19, 22, 23, 25, 26, 30, 32,
33, 34, 35, 37, 38

73 4, 5, 6, 7, 9, 10, 13, 14, 15, 17, 19, 23, 24, 28, 29, 30,
31, 35, 36, 37, 39

3, 4, 6, 8, 9, 10, 14, 15, 19, 20, 22, 23, 24, 27, 31, 34,
35, 36, 38, 39,

74 5, 7, 8, 10, 14, 16, 17, 18, 19, 20, 24, 25, 26, 29, 31, 36,
38, 39, 40

1, 11, 14, 15, 18, 20, 21, 22, 23, 24, 25, 31, 32, 35, 39

75 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 20, 21, 22, 23, 25, 27,
28, 30, 31, 37, 38, 40

1, 2, 5, 7, 10, 14, 15, 16, 19, 21, 22, 26, 27, 29, 31, 32,
34, 37, 38, 40,

76 7, 8, 9, 10, 11, 13, 15, 18, 21, 23, 24, 26, 28, 29, 30, 32,
38

1, 2, 3, 7, 8, 12, 17, 20, 24, 25, 31, 32, 36, 37, 39

77 8, 9, 10, 12, 13, 16, 17, 19, 22, 23, 24, 25, 26, 27, 28, 29,
31, 32, 33, 34, 35, 36, 37, 38

1, 2, 3, 4, 7, 8, 9, 12, 13, 16, 19, 22, 24, 25, 26, 28, 31,
32, 33, 36, 37, 38

78 9, 10, 13, 17, 18, 19, 20, 23, 24, 25, 27, 29, 32, 33, 35,
37, 39

2, 3, 5, 8, 10, 14, 16, 19, 22, 26, 28, 29, 32, 33, 34, 36,
37, 38, 40,

79 3, 11, 12, 15, 16, 17, 18, 19, 23, 24, 26, 28, 29, 32, 33,
34, 35, 40

3, 4, 6, 8, 9, 13, 15, 16, 17, 19, 20, 27, 28, 30, 32, 33,
35, 36, 37, 38, 39, 40

80 3, 4, 10, 11, 14, 17, 18, 19, 21, 22, 24, 27, 28, 30, 31, 33,
34, 36, 37

4, 7, 9, 10, 13, 17, 18, 19, 21, 22, 31, 33, 37, 38, 39

81 3, 4, 5, 6, 7, 10, 12, 14, 15, 16, 17, 18, 19, 21, 28, 31,
32, 35, 36

1, 4, 5, 12, 13, 14, 16, 18, 19, 20, 25, 27, 28, 29, 35, 36

82 3, 4, 5, 7, 8, 10, 14, 15, 17, 18, 19, 21, 23, 25, 26, 33,
36, 38, 39

2, 4, 5, 6, 8, 12, 13, 14, 15, 17, 19, 20, 21, 23, 27, 28,
29, 30, 32, 33, 36, 39

83 4, 5, 8, 9, 11, 12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 26,
27, 28, 34, 35, 36, 39, 40

3, 6, 7, 11, 13, 14, 15, 18, 19, 20, 21, 23, 24, 25, 29, 30,
31, 33, 37, 38, 40,

84 5, 9, 10, 11, 13, 15, 17, 18, 21, 22, 24, 25, 26, 27, 29, 30,
31, 32, 35, 37, 38, 39, 40

3, 4, 6, 7, 8, 10, 12, 13, 14, 15, 21, 23, 24, 25, 26, 28,
29, 30, 31, 32, 35, 36, 38, 39, 40

85 6, 7, 10, 12, 13, 16, 17, 18, 22, 25, 27, 30, 32, 33, 34, 35,
38, 40

2, 5, 7, 8, 9, 13, 14, 15, 18, 19, 22, 23, 24, 28, 30, 31,
32, 34, 36, 38, 39

86 7, 8, 11, 12, 14, 15, 17, 18, 23, 26, 28, 31, 32, 33, 35, 39 1, 3, 7, 8, 9, 10, 12, 13, 14, 15, 17, 21, 22, 25, 28, 30,
31, 32, 35, 36, 39

87 3, 8, 9, 10, 11, 14, 15, 18, 19, 20, 21, 22, 24, 25, 26, 27,
28, 33, 34, 35, 38, 39, 40

2, 3, 4, 8, 10, 14, 18, 25, 27, 28, 31, 34, 35, 38, 39,

88 3, 4, 9, 11, 13, 22, 23, 26, 27, 32, 35, 38, 40 1, 3, 4, 5, 9, 12, 16, 20, 23, 27, 28, 29, 33, 35, 36, 39,
40,

89 3, 4, 5, 6, 7, 12, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25,
26, 27, 29, 30, 31, 33, 36, 37, 39

2, 4, 5, 6, 7, 8, 9, 13, 17, 21, 24, 28, 30, 34, 35, 37, 38,
40

90 3, 4, 5, 7, 8, 10, 11, 12, 13, 15, 17, 18, 22, 23, 24, 26,
27, 29, 31, 32, 37, 38, 39, 40

3, 6, 7, 8, 9, 10, 14, 16, 22, 23, 25, 28, 29, 31, 34, 35,
36, 37, 39

91 3, 4, 5, 8, 9, 10, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24,
27, 29, 33, 39, 40

4, 7, 8, 10, 15, 17, 18, 24, 26, 27, 29, 32, 33, 35, 40,

92 3, 4, 5, 9, 11, 12, 13, 14, 15, 16, 17, 22, 23, 24, 28, 29,
32, 38, 39, 40

5, 6, 8, 9, 10, 11, 16, 17, 18, 23, 24, 28, 29, 30, 31, 34,
35, 36, 38, 39

93 4, 5, 10, 11, 13, 15, 16, 18, 19, 23, 24, 25, 26, 29, 33, 34,
35, 36, 37, 38, 40

6, 7, 8, 10, 11, 17, 18, 24, 25, 26, 29, 31, 35, 37, 39

94 3, 5, 10, 12, 15, 17, 21, 22, 24, 26, 27, 28, 29, 32, 35, 37,
38

7, 8, 11, 12, 16, 18, 22, 25, 27, 29, 30, 31, 34, 35, 36, 38,
39, 40

95 3, 4, 6, 7, 10, 14, 18, 20, 21, 27, 30, 31, 33, 36, 37, 38 8, 12, 17, 18, 25, 27, 30, 31, 32, 33, 34, 35, 38, 39

96 3, 4, 5, 6, 8, 10, 13, 16, 17, 20, 22, 25, 26, 28, 29, 30,
37, 38

9, 10, 13, 18, 23, 24, 26, 28, 29, 30, 31, 32, 34, 36, 38,
40

97 3, 4, 5, 7, 9, 10, 13, 14, 16, 18, 20, 25, 27, 28, 30, 32,
34, 35, 36, 37, 38

10, 11, 13, 14, 16, 18, 19, 21, 25, 30, 31, 32, 33

98 4, 5, 8, 10, 14, 17, 19, 21, 22, 23, 26, 28, 29, 30, 33, 34,
36, 38

11, 12, 14, 15, 17, 20, 23, 25, 26, 28, 31, 32, 33, 34, 36,
38, 40

99 5, 9, 11, 12, 13, 14, 18, 19, 20, 22, 24, 27, 28, 29, 31, 32,
34, 37, 38

12, 15, 18, 21, 22, 24, 26, 27, 28, 32, 33, 35, 36, 37, 39,
40
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Abstract. Since Kocher’s first attacks in 1996, the field of side-channel
analysis has widely developed, and new statistical tools have competed
against new countermeasures to threaten cryptosystems. Among existing
algorithms, RSA has always been a privileged target. It seems generally
admitted that a combination of SPA protection such as regular expo-
nentiation associated with blinding techniques such as randomization of
the exponent and of the input message offers in practice sufficient pro-
tection against all known side-channel attacks. Indeed, known attacks
either require building statistical information over several executions of
the algorithm, which is countered by exponent randomization, or rely
on partial SPA leakage, which implies an incorrect implementation of
known countermeasures, or require specific internal knowledge of the
implementation and hard-to-obtain experimental conditions, as for the
recent horizontal correlation analysis of Clavier et al. [10]. In this paper,
we show that it is possible to attack a state-of-the-art implementation of
Straightforward Method (SFM) RSA. Our attack requires a small public
exponent (no greater than 216 + 1) and a reasonable exponent blinding
factor (no greater than 32 bits). It does not require additional internal
knowledge of the implementation, neither does it have special experi-
mental requirements. From a practical point of view, it thus compares
with classical correlation analysis. We provide simulations of our attack
demonstrating its efficiency, even in noisy scenarios. This shows that
SFM implementations of RSA may be much more difficult to protect
against side-channel attacks than CRT implementations.

Keywords: Side-Channel Attacks, Correlation Power Analysis, Colli-
sion Correlation Power Analysis, RSA scheme, Exponent Blinding, Mes-
sage Blinding.

1 Introduction

Physical components included in embedded systems may leak information on
data manipulated throughout cryptographic computations. Side-channel anal-
ysis, which was first introduced by Kocher et al. [17] in 1996, exploits such
leakages and retrieves information on the secret parameters. This field covers
nowadays a large range of statistical and cryptanalytic techniques such as tim-
ing attacks [17], simple power analysis (SPA) [17], differential power analysis
(DPA) [18], correlation power analysis (CPA) [7], mutual information analysis
(MIA) [3, 14] and many others.
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To counter these threats, research has been focusing on devising implemen-
tations that are resistant to side-channel analysis. While there exists generic
countermeasures designed such that they can protect any given implementation
(for instance clock jitter), most of them stay dedicated to specific algorithms or
particular operations. One set of countermeasures still widely used up to now in
the public key setting, is that introduced by Coron [11] in 1999.

Focusing on the well-known RSA scheme, it can be seen that the modular
exponentiation phase, which consists in raising a given message to a secret ex-
ponent modulo a public integer, is a promising target for side-channel attackers.
An unprotected RSA implementation can easily be threatened by a simple power
analysis (SPA) where only one power curve is sufficient to recover the whole se-
cret key. Thus, implementing RSA while avoiding classical side-channel attacks
requires a set of well-chosen countermeasures. A first idea is to use a regular ex-
ponentiation, for example the “Square-and-Multiply Always” algorithm [11], the
Montgomery ladder [16], the Joye ladder [15] or the atomic Square-and-Multiply
exponentiation [8]. These techniques allow to proceed the same operations in-
dependently from the value of the key bits. Among all these solutions, the later
one is often preferred due to its efficiency. Obviously these countermeasures offer
protection against SPA, but are not sufficient to protect the scheme against more
advanced attacks such as DPA or CPA [7, 18]. Those methods exploit leakage
information from several executions of the algorithm and use statistical tools to
extract the secret information. As a consequence, protecting the scheme against
those kinds of attacks requires to execute the algorithm differently from one call
to the next. Random values should thus be added to the computation, either in
the secret exponent, which refers to the technique called “Exponent Blinding”,
or in the original message, namely using “Message Blinding”.

In this work, we focus on SPA-resistant RSA implementations that use both
exponent blinding and message blinding. As far as we are aware, this scenario
represents the academic state of the art of secure RSA implementations. In fact,
there are few side-channel attacks that threaten this scheme [9,10,12,13,19–23]
and they apply only in particular settings. Indeed, the attack performed by
Walter [22] on RSA with small public exponent, the one proposed by Fouque et
al. [12] or the recent attack of Schindler and Itoh [19], all require partial SPA
leakage exploitable on a single power curve. In Walter’s Big-Mac attack [20] and
Clavier et al. [9, 10] horizontal correlation analysis the authors exploit leakage
information coming from each of the elementary operations involved in the Long
Integer Multiplication. These attacks are very powerful but may be difficult to
apply in practice. Indeed, they require to obtain additional internal information
such as detailed knowledge of the implementation of the modular multiplication.
Moreover, the adversary should also work with experimental tools of high quality
as this attack requires a huge memory on the acquisition device and a precise
timing to separately observe the leakage corresponding to each register operation.

In This Paper. We propose a side-channel attack against SPA-resistant SFM-
RSA1 scheme, implemented using both message blinding and exponent blinding.
This attack can be seen as an alternative to Clavier et al. ROSETTA attack [9],
where no specific information concerning the implementation of the modular
multiplication is required. In fact, it exploits only general leakage information

1 As mentioned before, SFM stands for Straightforward Method, i.e. a non-CRT im-
plementation of RSA.
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from each modular operation and does not assume high end metrology. Moreover,
no additional SPA leakage is needed that could allow the attacker to distinguish
multiplications from squaring operations on a unique power curve. Our attack
is described on the Square-and-Multiply always algorithm and on the atomic
Square-and-Multiply implementation of the exponentiation, but it also works
for other choices of algorithms. It applies when the exponent masking technique
suggested by Coron [11] is used and for any kind of message blinding. It works
for small public exponents. The masking factor used for exponent randomization
should either be less than 32-bit long or reduced in this range through fault
injection.2

The paper is organised as follows. Section 2 recalls some basic notions related
to the RSA scheme with exponent blinding and message blinding, and gives
statistical definitions required for correlation power analysis. Section 3 presents
existing side-channel attacks on RSA implementations using various counter-
measures. In Section 4, we describe our attack against protected RSA imple-
mentations for a public exponent e equal to 3 and known inputs. In Section
5, we explain how to adapt this attack when the input is blinded by using the
collision correlation technique [23]. Then Section 6 provides simulation results
for various signal-to-noise ratios. Section 7 concludes the analysis.

2 Preliminaries

2.1 State-of-the-Art Implementation of RSA

Description. Let N be an n-bit RSA modulus, defined as the product of two
large primes p and q. In the sequel, we focus on the balanced case meaning that
the prime factors p and q are equal-sized. The public exponent e is chosen to be
coprime to the Euler’s totient function φ(N) = (p−1)(q−1). The corresponding
private key d satisfies the well-known RSA equation ed ≡ 1 mod φ(N). In other
words, there exists an integer k ∈ Z such that:

ed = 1 + kφ(N) . (1)

By definition, the private key satisfies 0 < d < φ(N). Its binary representation
is expressed as d = (d[0] . . . d[n − 1]), where the least significant bit is referred
as d[0] and the most significant one as d[n− 1]. Note that the variable k verifies
0 < k < e since otherwise it would imply d > φ(N), which is not possible [6].

Implementation. In this paper, we focus on StraightForward Method (SFM)
implementations of RSA. It means that the decryption of a ciphertext C using
the private key d is computed as Cd mod N . In order to resist “side-channel
attacks”, several steps must be taken into account to protect the sensitive op-
erations where secrets bits are manipulated. In the particular case of RSA, this
concerns the modular exponentiation Cd mod N , where secrets bits are pro-
cessed sequentially and combined to the known value C.3

2 Even if a 32-bit long masking factor is not recommended, this scenario still corre-
sponds to some implementation designs of RSA on embedded devices.

3 The attack is presented on a RSA decryption but could also apply on a RSA signa-
ture.
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The first threat to address is the Simple Power Analysis (SPA). In order to
resist this attack, the algorithm should behave similarly when the bits of the
secret exponent are equal to 0 or 1. Regular algorithms have been designed to
address this issue: the well-known Square-and-Multiply Always technique, pro-
vided in Fig. 1, Algorithm 1 and the Atomic Square-and-Multiply method [8],
provided in Fig. 1, Algorithm 2, which is one of the most efficient technique.
In Section 5, we focus on these two implementations. Other implementations
choices are studied in Appendix A.

Algorithm 1. “Square-and-Multiply-Always” (from left to right)

R0 ← 1
for i = n− 1 to 0 do

R0 ← R2
0

if d[j] = 1 then
R0 ← R0 · C

else
R1 ← R0 · C

return R0

Algorithm 2. “Atomic Square-and-Multiply” (from left to right)

R0 ← 1; R1 ← C
k ← 0, i ← n− 1
while i ≥ 0 do

R0 ← R0 ·Rk

k ← k ⊕ d[i]
i ← i− ¬k

return R0

Fig. 1. Two well-known regular SFM-RSA implementations

Additionally to that SPA-protection, the RSA scheme is also assumed to be
implemented using exponent masking. This countermeasure prevents an attacker
to gain information on the secret exponent d by studying several power consump-
tion curves corresponding to computations of Cd mod N , for different values of
C. In that case, the adversary could apply a Differential Power Analysis (DPA)
or use an improved version called Correlation Power Analysis (CPA) (further
details on this attack are provided in Section 2.2). To prevent such scenarios,
the key should be masked before its use inside the modular exponentiation. A
suitable idea, originally described by Coron [11], is to blind the exponent d using
a random value λ. Thus a new secret key d(i) = d+ λ(i)φ(N) is generated, each
time the modular exponentiation has to be performed on C(i), with λ(i) a ran-
dom l-bit integer. That way, the decryption (similarly the signature) process is

performed as
(
C(i)
)d(i)

mod N . In our attack, we require l to be no greater than
32. In real implementations, this could be the case for low end devices where
generating random bits have a non negligible cost or it could be the result of a
fault injection during the generation of λ(i) or during the computation of d(i).
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Finally, in order to make the scheme fully secure, we also assume that it
has been implemented using message blinding. Several techniques have been
proposed in the literature, but we will not detail them here, since our attack
applies independently from the chosen method.

2.2 Correlation Power Analysis

The attack proposed in this paper against secure SFM-RSA schemes, imple-
mented as described in the previous section, makes use of the Correlation Power
Analysis technique, introduced in [7]. For the sake of completeness, we remind
the basic principle of this method, which can be seen as an extension of the
Differential Power Analysis of Kocher et al. [18].

As all side-channel attacks, correlation power analysis works by first register-
ing leakage information from the power consumption or electromagnetic emana-
tion of the device during the computation. Such leakage can come from several
instants of a single execution, in the case of horizontal power analysis [9, 10], or
from a single instant of several executions, in the case of classical power anal-
ysis [7]. More generally, any combination of the two above is also possible, see
for instance a unified description of CPA in both contexts in [4]. In the leakage
traces, the attacker needs to identify the points of interest, namely the points
in the traces where the leakage corresponds to the manipulation of the targeted
sensitive information. For example, in vertical attacks, there is only one such
point on each execution trace. In the case of horizontal analysis, several points
of interest must be identified on the unique trace used to perform the attack.
Let us denote as (�i)i∈I the leakage values at the identified points of interest
extracted from the power consumption curve(s).

Then, the adversary makes an hypothesis on a sub-part of the secret. Using
his hypothesis and following the algorithm, the attacker is able to predict the
operations Oi that took place during the execution(s) at each identified point
of interest. He determines the contributions of these predicted operations to
the global leakage. Therefore he chooses a leakage model M and computes the
quantities mi = M(Oi), all related to the hypothesis on the secret parameter.
The choice of a given leakage model should of course be based on the knowledge
of the attacked device architecture. A common choice for M is to take the
Hamming Weight of register size values manipulated during the operation Oi.
For instance, in the case of a multiplication on a 32-bit architecture, one could
choose the Hamming Weight of the 32 least significant bits of the result.

Finally, the adversary validates or invalidates his hypothesis by computing
the so-called correlation coefficient between the modelization values and the
leakages. If L denotes the random variable corresponding to the observed leakages
(�i)i∈I and M the one corresponding to the modelized predictions (mi)i∈I , then
this coefficient can be expressed as:

ρ = ρ(L,M) =
cov(L,M)

σLσM

,

where “cov” is the covariance function and “σ” the standard deviation. For the
sample (m1,m2 . . .m|I|) of predicted leakages and (�1, �2, . . . �|I|) of registered
power consumption values, an approximation ρ̃(L,M) of ρ(L,M) is given by the
Pearson coefficient:
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ρ̃(L,M) =

∑
i(�i − �)(mi −m)√∑

i(�i − �)2
∑

i(mi −m)2
,

where m = 1
|I|
∑

i mi and � = 1
|I|
∑

i �i, with a sum taken over i ∈ I.

When the value of this correlation coefficient is high, it means that the random
variables L and M are related, implying that the hypothesis on the sub-part of
the secret was correct. In the other case, it means that the initial guess was
wrong. In practice, the good hypothesis is often determined as that giving the
highest correlation value among all possible hypotheses.

Remark: In practice, the identification of the points of interest is in fact done a
posteriori by running the same attack on all points of the traces (or in a selected
interval). The points of interest are then the points for which one of the key
hypotheses produced a correlation peak.

3 Previous Attacks on RSA Implementations

In this section, we recall some existing side-channel attacks on RSA implementa-
tions. In particular, we study their applicability to the implementation we attack
in this paper.

3.1 Statistical Analyses on Several Consumption Traces

Most existing side-channel attacks, such as Differential Power Analysis, Corre-
lation Power Analysis or Mutual Information Analysis, require a high number –
at least several – consumption traces to be efficient. Indeed, statistical analyses
are performed on the collected curves, all related to the same sub-part of the
secret, allowing to validate or invalidate hypotheses on the secret key. Such at-
tacks target SPA-protected implementations, where the observation of a single
power consumption trace does not provide enough information on the key.

Among such attacks, one can cite, for instance the work of Amiel et al. [2]
describing a classical correlation power analysis on RSA or the work in [1] where
the study of the Hamming weight distributions allows to distinguish multiplica-
tions from squaring operations. In [23], the collision correlation technique can
be used to distinguish products with a common operand (key bit equal to 0)
and products with independent operands (key bit equal to 1). Finally the well-
known doubling attack of Fouque et al. [13] observes common intermediate values
between the exponentiation of C and that of C2.

In our context. Clearly these techniques are powerful on SPA-protected im-
plementations. However they are successful only when sufficiently many traces,
relied to the same sub-part of the secret, are available. As a consequence, the use
of exponent blinding, which consists in changing the secret exponent at each new
modular exponentiation performed by the device, make such attacks ineffective.
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3.2 Attacks that Exploit an SPA Leak

Another approach is to assume that the SPA protection is not perfect and that
some information can be extracted from a single execution of the secret com-
putation. Indeed, in particular configurations, such as, for instance, when using
sliding windows or implementing special types of multiplication algorithms such
as MMM the “MontgomeryModular Multiplication”, leakages might be obtained
revealing partial information about the secret key. For a practical example, see
Fouque et al. ’s attack on RSA when e is small [12] and the improvement pro-
posed by Walter in 2007 [22]. In 2011 [19], Schindler and Itoh generalized this
technique by showing that any partial SPA information can be used to recon-
struct the secret exponent, even when exponent blinding is used. They have no
limitation on the size of the public key.

In our context. These techniques are efficient, since they are successful even
against exponent blinding in the RSA exponentiation. However, they also rely
on a strong hypothesis, which is the presence of SPA leaks. In this paper, we
focus on implementations, that do not leak any exploitable SPA information. All
the attacks mentioned in this section become ineffective in this context.

3.3 Horizontal Attacks

Up to now, the only attacks successful against protected implementations using
exponent blinding, and which do not require any SPA leak, are horizontal cor-
relation analyses. Indeed, these attacks use a unique power consumption curve.
Their main idea can be explained as follows: when considering the leakage from
the result of a modular multiplication or squaring, the attacker only gets a single
information. However, modular operations in the case of RSA consist in multi-
plying 1024-bit or 2048-bit long numbers. In an embedded device, this is done
by splitting the numbers into several smaller registers. The attacker could then
consider the leakage coming from each register operation and thus gain much
more information from a single modular operation. This idea was first studied by
Walter in [20,21] in the so-called Big-Mac attack. It consists in cutting the power
consumption trace – obtained from one or many execution of the algorithm on
a single input – in many sub-traces, each of them containing information on
a single internal operation such as, for instance, an elementary multiplication
inside a LIM. This attack has then been extended in the work of Clavier et
al. [9, 10] giving the Horizontal correlation analysis. A unified version of these
two approaches can be found in [4].

In our context. This kind of attack is very efficient and provides strong results
even for message blinding and exponent blinding implementations. However,
it relies on two assumptions. First, the attacker needs a precise knowledge of
the internal modular operations implementation (e.g. performed using LIM or
MMM, parallelized or not, etc.). Secondly, the power consumption curve must
be sufficiently precise to obtain several points of interest from one modular mul-
tiplication4. Thus correct time synchronisation and patterns identification will

4 By comparison, a classical CPA on RSA like [2] will use one point of interest for each
modular multiplication. In [9] the authors exploit (�2−�)/2 points per multiplication,
where � = n/w for a modulus of size n on a w-bit architecture.
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become a critical factor. As a matter of fact, in some experimental settings, hori-
zontal analysis might not be applicable. In such configurations, our attack could
be an interesting alternative, since it uses the same metrology as classical CPA
on RSA schemes.

3.4 Attack Proposed in this Paper

Our attack applies against protected implementations of RSA using a regular
exponentiation algorithm, with exponent masking of the form d(i) = d+λ(i)φ(N)
and any kind of message blinding. We do not assume any partial SPA leakage
nor require a precise knowledge of the internal implementation of modular op-
erations. Our attack uses only one point of interest for each modular operation,
as for vertical CPA attacks [2], and thus have less constraints on the metrology
than horizontal attacks. For this reason, it represents an interesting alternative
in noisy or black box scenarios.

4 The Attack on Protected RSA with Known Inputs

This section provides a description of our attack in a simplified setting, when
the inputs5 are known and for a public-key e equal to 3. The generalization for
implementations using messages blinding will be discussed later, see Section 5.
Other implementation choices are discussed in Appendix A. Additional consid-
erations required for a practical implementation of the attack are provided in
Appendix B.

4.1 Special Properties of the RSA Scheme

Let us first recall some well-known facts about the RSA cryptosystem, that will
be useful in the following. For a more complete description of RSA properties,
see [5].

Known Bits on φ(N). Since the factorization of the modulus N is a private in-
formation, the totient Euler’s function is unknown to the attacker. However, half
of its bits can easily be recovered. Indeed, knowing that φ(N) = (p− 1)(q− 1) =

N−p− q+1 and assuming that p and q are balanced (e.g. p, q &
√
N), the half6

most significant bits of φ(N) is known and is equal to the half most ones of N .

Relation between d and φ(N). In the relation ed = 1 + kφ(N), see RSA Equa-
tion (1), the parameters d, k and φ(N) refer to unknown values. However when
e = 3, the relation becomes:

3d = 1 + 2φ(N). (2)

The knowledge of the half most significant bits of φ(N) allows to deduce the
half most significant ones of the secret key d. This result remains valid if more
significant bits are known or guessed on φ(N). Conversely, guessing additional
bits on d automaticaly implies recovering the corresponding ones on φ(N).

5 Known inputs can either represent known messages for RSA signature or known
ciphertexts for RSA decryption.

6 Of course, there could be some carries issues, but this point will be discussed in
Appendix B.
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4.2 Description of the Attack

Let us now explain the details of our correlation analysis on protected RSA
implementations. We recall that the secret exponent d is masked before each
modular exponentiation as d(i) = d + λ(i)φ(N), see implementation details in
Section 2.1, and that we first focus here on a simplified setting where each input
data C(i) is known to the attacker.

General idea. Let T (1), . . . , T (L) be L power consumption curves, registered by

the adversary during the computation of
(
C(1)

)d(1)

mod N, . . . ,
(
C(L)

)d(L)

mod

N . In these expressions, the notation d(i) refers to the i-th masked value of d.
The random masking factor λ(i) belongs to [0, 232−1]. The attack, which mainly
consists in two steps, works as follows. First, the goal consists in guessing, for
each i, the value of the masking factor λ(i) associated to the curve T (i). To do so,
several separate correlation analyses are made on each curve, using the first half
of the exponentiation. In a second step, the adversary tries to guess the unknown
bits of d by small increments using a classical correlation analysis, similar to the
one described in [2]. For this step, the adversary uses the information gathered
during the first part, namely the value of the masking factors λ(i). Thus a guess
on d can easily be transformed into as many guesses on the masked values d(i).

Step 1: Learning Masking Factors with Correlation Attacks. First,
we know that the half most significant bits of d can easily be recovered using
Equation (2) of Section 4.1. From this information, the attacker wants to learn
the value of the masking factors λ(i) that have been used to blind the exponent
d as d(i) = d+ λ(i) · φ(N) for each exponentiation and thus for each curve T (i).
To do so, the attacker should perform the following operations:

1. Try all possible values for λ(i). Since each masking factor has been chosen
as a 32-bit random value, this step requires 232 operations.

2. For each possible λ(i), deduce the n/2 most significant bits of d(i). Indeed,
observe that once λ(i) is known, we can use the knowledge on the most
significant bits of d and φ(N) (see Section 4.1) to deduce the most significant
bits of d(i) thanks to the relation d(i) = d+λ(i)φ(N). Note that we may know
a few less bits than that, due to carries coming from the unknown parts of
φ(N) and d that cannot be predicted.

3. From that point, since the adversary knows the input value C(i) together
with the half most significant bits of d(i), it can predict the first half of the
intermediate operations that have been performed during the modular ex-

ponentiation (C(i))d
(i)

mod N . Depending on the exponentiation algorithm,
the number η of intermediate operations the adversary is able to predict

will vary from n/2 to n. In what follows, we denote as O(i)
j such operations.

Then, the attacker chooses a leakage model function M and computes some

predicted values m
(i)
j = M(O(i)

j ) for j ∈ {1, η}. These values are then stored

in a vector M(i) = (m
(i)
j )1≤j≤η.

4. Perform a correlation analysis between the values M(i) = (m
(i)
j )1≤j≤η, that

have been predicted, and the leakages L(i) = (�
(i)
j )1≤j≤η coming from the
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trace T (i) at the identified points of interest. To do so, the adversary com-
putes the Pearson correlation coefficient ρ̃(L(i),M(i)), as described in Sec-
tion 2.2. (See Figure 2 for an illustration.)

5. Eventually keep the mask λ(i) that gives the best correlation value.

Fig. 2. Step 1: Correlation between predicted values m
(i)
� and points on the curve T (i)

At the end of the process, the attacker is able to link each curve T (i) to its
corresponding masked factor λ(i).

Step 2: Recovering d. Assume now that we have guessed sufficiently many
λ’s corresponding to given power consumption curves, say L for instance. In this
case, the final step consists in recovering the whole secret key d, namely guessing
its n/2 least significant bits. To do so, the adversary performs a correlation power
analysis as described in [2]. The idea is to make an hypothesis on a few bits on d,
say w at a time, from the most significant bits to the least significant ones, then
to (in)validate it using a CPA on the obtained consumption curves. So until we
have guessed the whole secret key d or until the remaining bits can simply be
recovered by a final exhaustive search, we repeat the following operations7:

1. Try all possible values for w bits of d. In practice, w may be taken quite
small, as an example 8 bits could be a good choice, the idea being to make
this exhaustive search step as fast as possible. From that hypothesis, we get
a truncated value named d, corresponding to the known most significant bits
of d, concatenated with our guess and padded with 0’s on the least significant
positions (except for the last bit which we know is 1 since d is odd).

7 The following process starts from the most significant unknown bits of d after exe-
cution of step 1 of the attack.
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2. For each obtained value d, compute φ(N) as 3d−1
2 , see Equation (2).

3. For each curve T (i), deduce an approximation of d(i) by computing d(i) =
d + λ(i)φ(N). From these guessed bits on d(i), the adversary is able to de-

termine the corresponding intermediate operations O(i)
j during the modular

exponentiation
(
C(i)
)d(i)

mod N . One can notice that, depending on the

size of λ(i), the place of the w bits in d(i) will slightly vary From that point,
the adversary uses a model function M and computes the predicted values

m
(i)
j = M(O(i)

j ) corresponding to the intermediate operations.

4. Extract from the curves (T (i))i the leakages �
(i)
j corresponding to the same

operations. Use the correlation analysis described in Section 2.2 and compute

the correlation coefficient ρ̃
(
(�

(i)
j )i,j , (m

(i)
j )i,j

)
. (See Figure 3 to illustrate the

process.)

Fig. 3. Correlation Analysis between L curves T (i) and the corresponding guessed bits

on d(i)

5. Validate the w bits on d that give the best correlation coefficient.

5 The Attack on Protected RSA with Masked Inputs

In the previous attack, since we use a correlation analysis, we need to know
the input in order to evaluate our predictions. When the input is unknown,
the attack can be modified by performing a Collision Correlation Analysis, as
described in [23]. Indeed, even if the input is unknown, we can still predict,
from our guess on the exponent, the sequence of operations that should occur,
according to the implemented exponentiation algorithm. In the following, we
especially focus on two implementation cases.
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5.1 The Atomic Square-and-Multiply Exponentiation Algorithm

This exponentiation technique has been proposed in [8] and is provided by Al-
gorithm 2, see Figure 1. Here, from the guess on the exponent, we are able to
deduce the sequence of operations. That is, we know when a squaring written
as a multiplication is followed by a multiplication by R1 = C (case d[j] = 1)
and when it is followed by another squaring (case d[j] = 0). In the first case,
the result R0 of the first squaring is then multiplied by R1 = C, which value is
independent from R0. In the second case, this result is multiplied by R0 itself.
Thus, in this second case we expect a correlation between the result of the first
squaring and the second operand of the next operation.

Following this exponentiation algorithm, a bit d(i)[j] of the exponent corre-

sponds to 1 or 2 modular operations. Let us denote as O(i)
f(j) the first squaring

that always occurs. The next modular operation O(i)
f(j)+1 is then either a multi-

plication by C or the squaring associated to d(i)[j− 1]. When we know the most
significant bits of d(i) down to j, we are able to determine the corresponding

values of f(j). In the following, we denote as (�in)
(i)
f(j) the leakage associated to

the loading of the second operand of O(i)
f(j) and (�out)

(i)
f(j) the one related to the

output of O(i)
f(j).

First Part of the Attack. From a guess on λ(i), we obtain the half most
significant bits of d(i). Let L1 and L2 be two sets initially empty. For all known

bits of d(i) such that d(i)[j] = 0, we add (�out)
(i)
f(j) to L1 and (�in)

(i)
f(j)+1 to L2.

Thus the correlation coefficient ρ̃(L1, L2) is maximal for the good hypothesis,
which gives us the correct value for λ(i).

Second Part of the Attack. We proceed as above, except that one guess
on the bits of the private exponent d corresponds to different values for the
corresponding bits of the masked exponents d(i). We use the same sets L1 and
L2 initially empty. For all i and all new known bits of d(i) such that d(i)[j] = 0,

we add (�out)
(i)
f(j) to L1 and (�in)

(i)
f(j)+1 to L2. Again, the correlation coefficient

ρ̃(L1, L2) is maximal for the good hypothesis, which gives us the correct value
for the targeted bits of d.

5.2 The Square-and-Multiply-Always Exponentiation Algorithm

This exponentiation is given by Algorithm 1, see Figure 1. Here, from a guess
on the private exponent, we can predict when two consecutive multiplications
will have a common operand. Indeed when d[j] = 0, the Square-and-Multiply-
Always algorithm computes R1 ← R0 ·C followed by R0 ← R0 ·R0. The R0 input
value is the same for both operations. When d[j] = 1, the algorithm computes
R0 ← R0 · C followed by R0 ← R0 · R0. The R0 value is updated after the first
multiplication and thus the two operations have no common operand.

Following this exponentiation algorithm, a bit d(i)[j] of the exponent always

corresponds to 2 modular operations. We denote O(i)
f(j) the first squaring. The
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next modular operation O(i)
f(j)+1 is the multiplication by C and O(i)

f(j)+2 cor-

responds to the squaring associated with d(i)[j − 1]. Let �
(i)
f(j) be the leakage

associated to the loading of the first operand of O(i)
f(j).

First Part of the Attack. From a guess on λ(i), we obtain the half most
significant bits of d(i). Let L1 and L2 be two sets initially empty. For all known

bits of d(i) such that d(i)[j] = 0, we add �
(i)
f(j)+1 to L1 and �

(i)
f(j)+2 to L2. The

correlation coefficient ρ̃(L1, L2) is maximal for the good hypothesis, which gives
us the correct value for λ(i).

Second Part of the Attack. We proceed as above, except that one guess
on the bits of the private exponent d corresponds to different values for the
corresponding bits of the masked exponents d(i). We use the same sets L1 and
L2 initially empty. For all i and all new known bits of d(i) such that d(i)[j] = 0,

we add �
(i)
f(j)+1 to L1 and �

(i)
f(j)+2 to L2. That way, the correlation coefficient

ρ̃(L1, L2) is maximal for the good hypothesis, which gives us the correct value
for the targeted bits of d.

6 Simulation Results

In order to check the validity of our attack, we performed many simulations
on RSA implementations, using a public key e equal to 3, a modulus of size
1024 and 2048 bits and exponent blinding with 8-bit and 16-bit random masked
factors8. For each scenarios, we performed a hundred simulations, each of them
following the same process: simulating and storing the leakage of the imple-
mentation at each loop iteration, then performing our attack using either cor-
relation power analyses or collision correlation attacks depending whether the
inputs are known or not. More precisely, in order to simulate the leakage of
the operation Z = X.Y mod N , we produce the three consecutive leakages
(HW32(X),HW32(Y ),HW32(Z)), where HW32(X) denotes the Hamming weight
of the 32 least significant bits of X . Then, we add to this value a random noise
of zero mean and standard deviation σ. Finally, each experiment has been per-
formed for different number of traces. Obviously, when this number increases,
the Pearson coefficient better estimates the value of the correlation. Thus, the
attack works better. However, it also takes longer to compute since the random
blinding factor must first be guessed for each trace.

Figure 4 presents the success rate observed over the hundred experiments
for the two steps of the known input attack. The first number represents the
success rate for guessing the correct value of λ(i). The second number represents
the success rate for guessing the correct value of d. Note that success consists
in recovering the whole secret exponent. Thus we observe that when the noise
becomes too high the success rate drops quickly since we need to accumulate 128
correct guesses (w = 8) in step 2 to obtain the whole secret key, for a 1024-bit
modulus.

8 The exponent blinding factor was chosen quite small in order to be able to launch
hundreds of attacks for comparison. However, simulations indicate that when this
factor increases it mainly impacts the computation time.
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On the same figure, we show two variations on the main experiments. In the
first one, we used moduli of size 2048 bits instead of 1024 bits and kept λ(i)

of size 8 bits with 500 traces. We observe in this case that the success rate for
the whole attack drops quicker since a success requires more correct guesses. On
the other hand, even in high noise the guesses on λ(i) stay quite good. Further
experiments suggest that, at a given noise level, decreasing the success rate of
the first step has a negligible impact on the success of the second step. In the
second scenario, we used λ(i) of size 16 bits and kept moduli of size 1024 bits with
500 traces. We observe in this case that the success rate for the first step of the
attack drops when the noise is high. However, it has no impact when the noise
stays reasonable and the overall success rate is unchanged. This observation was
confirmed on our simulations for moduli of size 256 to 2048 bits.

On Figure 5, we show the attack on unknown inputs with the Square-and-
Multiply-Always algorithm and with the Atomic Square-and-Multiply algorithm.
In these last two cases, the success rate of the attack is more impacted by noise.
Indeed here noise impacts the two sets we try to correlate instead of one. This
observation shows that our attack is similar to second order attacks classically
applied on symmetric algorithm. We also observe in the “no noise” scenario
that some wrong guesses have the same correlation than the correct one. These
wrong branches could be detected by a more elaborating backtracking algorithm
since the correlation coefficient then drops for the next guesses. This would also
improve the results in the noisy case.

Deviation σ

N λ Traces 0 1 5 10 15 20

1024 8 500 100 100 100 100 100 96 100 71 99.8 0 93.9 0

1024 8 1000 100 100 100 100 100 100 100 100 99.8 61 93.9 0

1024 8 2000 100 100 100 100 100 100 100 100 99.8 96 93.9 55

2048 8 500 100 100 100 100 100 95 100 29 100 0 99.9 0

1024 16 500 100 100 100 100 100 96 100 71 94 0 58 0

Fig. 4. Percentage of success in the known input attack

Square-and-Multiply Always Atomic Square-and-Multiply

Traces σ = 0 σ = 1 σ = 3 σ = 5 σ = 0 σ = 1 σ = 3 σ = 5

1000 100 97 100 97 99.8 74 53.9 0 100 99 100 98 99.7 83 21.9 0

2000 100 99 100 98 99.8 76 51.4 4 100 97 100 96 98.8 84 30.6 0

Fig. 5. Percentage of success for regular algorithms, with input blinding (N = 1024
bits and λ = 8 bits)
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7 Conclusion

We have described an attack against an SFM implementation of RSA protected
against SPA by a regular exponentiation algorithm and against DPA by exponent
and message blinding. Our attack does not require any assumption concerning
the details of the modular multiplication. It works in two steps, combining the
results of several correlation analyses. The attack only applies when the exponent
blinding factor allows an exhaustive search. This could limit the applicability of
our attack. However, in a scenario where the blinding factor may be reduced in
a small interval through fault injection, our attack may find a renewed interest.

One can observe that RSA-CRT implementations do not suffer from this at-
tack since the private exponents dp and dq corresponding to the prime factors p
and q are completely unknown from the attacker. Indeed, even if e is small, we
cannot deduce useful information about the first bits of dp and dq.
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A Our Attack in Other Implementation Cases

A.1 Right-to-Left Implementation

The description can be adapted to the right-to-left case by going backward from
the result of the computation. Indeed if we look at a right-to-left “Square-and-
Multiply Always” implementation (see Algorithm 3), we see that knowing the
last t bits of d, we can deduce the last t squares and multiplies.

Algorithm 3. “Square-and-Multiply-Always” (from right to left)

R0 ← 1 ; R1 ← C
for j = 0 to n− 1 do

if d[j] = 1 then
R0 ← R0 · R1

else
t ← R0 · R1

R1 ← R2
1

return R0
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A.2 Montgomery

Our attack in the known input case can be adapted to the improved version
of the “Square-and-Multiply Always” algorithm based on Montgomery [16] (see
Algorithm 4).

Algorithm 4. “Montgomery ladder”

R0 ← 1 ; R1 ← C
for j = n− 1 to 0 do

if d[j] = 0 then
R1 ← R1 · R0

R0 ← R0 · R0

else
R0 ← R0 · R1

R1 ← R1 · R1

return R0

In the masked input case, we can distinguish a transition from ’0’ to ’1’ or
’1’ to ’0’ from no transition. Indeed when a transition occurs, the output of the
square is used as the first operand of the next multiplication. When there is no
transition the output of the squaring is used as the second operand.

A.3 Larger Public Key

When e is greater than 3, the coefficient k is no longer known for certain (see
Equation (1)). Thus it must be guessed together with the λ(i) in order to apply
the first part of the attack. Since k verifies 0 < k < e, this means that the
exhaustive search factor is multiplied by the value of the public key. In most
RSA implementations, the RSA public exponent does not exceed 216 + 1. This
means that a 216 factor should be added to the exhaustive search complexity.

B Attack Implementation: Carries and Wrong Guesses

There is an issue when performing “Step 2” of the attack: how to deal with the
carries and their potential wrong guesses implication. Indeed, in this part of the
algorithm, we are trying to guess the bits of d by small increments, setting the
lower unknown bits to 0. When the intermediate value d is used to compute

φ(N) and d(i), we may be confronted to the fact that the bits we are guessing
are wrong because of unknown carries coming up to this point in the real values.
More precisely, we may be wrong on two points:

1. When We Compute d(i) from d and φ(N). In this case, an error means
that the prediction given by the corresponding curve will be incorrect: this
adds some noise in the correlation coefficient computation. If we are not
wrong too often, this will not change the overall decision about d.

2. When We Compute φ(N) from d. In this configuration, an error means

that we will be wrong for all curves. Indeed, if φ(N) is incorrect, then all

d(i) will also be incorrect. But let us have a look at the kind of error it
implies. Assume that we predict some value a for the w bits of d we are
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considering at this point. Thus, we can write d as [d](j+1)w+a2jw+1, where

[d](j+1)w = d− (d mod 2(j+1)w). In that case, we compute φ(N) as:

φ(N) =
3d− 1

2
=

3[d](j+1)w + a2jw + a2jw+1 + 2

2

=
3[d](j+1)w

2
+ a2jw + a2jw−1 + 1.

Let b be the value of the corresponding bits of φ(N), that is:

b =

(
3[d](j+1)w

2jw+1
+ a+ 	a/2


)
mod 2w

If we assume that b is incorrect, this means that a carry should have appeared
in the computation of b and the correct value is b + 1. In this case, the
predictions of d(i) for the guess a will all be wrong. On the other hand, the
predictions for a+ 1 will give:

φ(N) =
3[d](j+1)w

2
+ (a+ 1)2jw + a2jw−1 + 2jw−1 + 1.

As a consequence, if b′ denotes the value of the corresponding bits of φ(N),
we obtain:

b′ =
(
3[d](j+1)w

2jw+1
+ a+ 1 + 	a/2


)
mod 2w = b+ 1.

This time, we reach the correct value for φ(N). Since d(i) = d + λ(i)φ(N),

with high probability, we also have the correct value for the bits of d(i) we
are considering. The guess a+1 will have a better correlation coefficient than
the guess a. At the next step, however, the correlation will drop suddenly.
When this happens, we know that the previous guess a + 1 was incorrect
and we just have to back up one step, subtract 1 to the guess, and go on.
The simulations we have done confirm that this approach is correct.
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Nevertheless, despite Kerckhoffs’s principle, the security is sometimes ex-
pected through obscurity, and proprietary or otherwise secret cryptographic al-
gorithms are still used in civil applications such as GSM or Pay-TV systems and
for diplomatic or military usages. For sake of simplicity a strategy for designing
a secret encryption function may consist in only modifying some parameters of
a well studied and widely used public function. Doing this, the design and devel-
opment costs are reduced, and provided that the secret parameters are carefully
chosen the designer can expect inheriting the strength of the public function
structure like the Substitution Permutation Network in the exemplary case of
AES.

It is thus of interest to study to which extent SCA techniques – essentially
through power or electromagnetic measurements – can be used to recover the
structure details and/or the parameter values of an encryption algorithm whose
specifications are kept secret. Novak [14] has first described a SCARE1 tech-
nique that reveals the content of one of the two substitution tables used in
an authentication and key agreement secret GSM algorithm. His attack consid-
ers the observational model where the adversary is able to decide whether two
instances of precisely located intermediate data collide or not – without iden-
tifying their values – based on the side-channel observation of their execution
trace(s). In the same model, Clavier [5] later improved this attack by revealing
both S-Boxes without prior knowledge of the encryption key. In [7] Daudigny et
al. proposed a SCARE of the standard DES. They used DPA to infer so-called
scheduling information which reveals when particular bits are manipulated, from
which the supposedly unknown permutation functions are derived. Two other
contributions extended the usage of SCARE to whole classes of ciphers sharing
the same structure: Real et al. [17] first revealed the round function of any un-
known hardware Feistel implementation while Rivain et al. [19] recently show
how to exploit S-Boxes collisions to retrieve an equivalent representation of any
secret Substitution-Permutation Network based encryption function. Although
other publications [8,15] also deal with side-channel analysis to reveal informa-
tion about secret algorithms, as far as we know all methods described so far
either target a specific component – often the non linear substitution table – of
the algorithm or only applies to unprotected implementations.

In this paper, we investigate the feasibility of reverse engineering the secret
specifications of an AES-like block cipher. In the collision power analysis model,
we demonstrate that an adversary who does not know the secret key can effi-
ciently recover the full set of secret parameters of an AES-like software imple-
mentation even if it is protected by a common set of countermeasures. While
our work has much in common with [19] (same attacker model, same attacker
goal) they still have distinct contributions. On one hand Rivain et al. recover
any SPN-based function while our method only applies to AES with secret pa-
rameters. On the other hand they assume an unprotected implementation while
we describe a variant of our attack that deals with some classical side-channel
countermeasures.

1 SCARE stands for Side-Channel Analysis for Reverse Engineering.
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The paper is organized as follow: Section 2 briefly describes the AES and
defines what we call an AES-like function which is the target of our attacks. We
also present the considered attacker model. In Section 3 we explain step by step
how to recover the full set of parameters of the AES-like function in the case of
an unprotected implementation, whereas Section 4 deals with the adaptation of
our attack to an implementation which features a classical set of countermea-
sures including first-order Boolean masking of the encryption path together with
shuffling of independent operations. We discuss possible countermeasures to our
attacks in Section 5 and conclude the paper in Section 6.

2 AES-Like Block Cipher and the Attacker Model

We give hereafter a brief description of the 128-bit version of AES, and define
what we mean in this paper by an AES-like block cipher. For more precise
information about the AES we refer the reader to the NIST standard [13] which
includes its full specifications.

2.1 Description of the AES

In the process of AES computation, a byte is considered as an element of the
finite field GF (28), and each 16-byte internal state may be represented as a
square 4×4 matrix. The mapping between the vector and matrix representations
is done by numbering the elements column by column.

Given a 128-bit plaintext M = (m0, . . . ,m15) and a 128-bit ciphering key
K = (k0, . . . , k15) the AES computes a 128-bit ciphertext C = (c0, . . . , c15)
by first XOR-ing M with K and then updating the result state S0 through
10 rounds. For r = 1, . . . , 9, each AES round number r computes its output
state Sr by successively applying four transformations SubBytes, ShiftRows,
MixColumns and AddRoundKey to its input Sr−1. The ciphertext is finally defined
as the output of a 10th and last round which does not include the MixColumns

operation. The encryption process is summarized as follow:

S0 ← M ⊕K0 (K0 = K)

Sr ← MixColumns(ShiftRows(SubBytes(Sr−1)))⊕Kr (r = 1, . . . , 9)

C ← ShiftRows(SubBytes(S9))⊕K10

The SubBytes transformation is a permutation over GF (28) defined by an S-
Box table S. The ShiftRows consists in rotating each row number i (i = 0, . . . , 3)
by i bytes to the left. The MixColumns computes each column of its output as
the product of a constant matrix by the corresponding input column. Finally the
AddRoundKey computes the XOR (addition in GF (28)) between the current state
and the round key Kr. The different round keys Kr involved in the encryption
process are derived from K through the key scheduling function depicted on
Figure 1. The RotWord operation simply rotates each byte of a column by one
position upward, SubWord applies the S-Box to each byte of the column, and
Rcon[r] is a round dependent constant word equal to (ρr−1, 0, 0, 0) with ρ = 2.
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⊕ ⊕ ⊕ ⊕

Kr−1

RotWord

SubWord⊕
Rcon(r)

Kr

Fig. 1. The AES key schedule

2.2 Definition of an AES-Like Block Cipher

From the definition of the 128-bit AES it is possible to derive a large class of
encryption functions which differ from the standard AES while preserving its
essential structure of a Substitution Permutation Network as well as the number
and width of its internal values.

We define an AES-like block cipher as any function which is derived from
AES by modifications of the following parameters:

1. the S-Box table S can be replaced by any other one that preserves the
property that the SubBytes function is a permutation overGF (28) elements,

2. in the ShiftRows transformation each row number i is rotated by σi bytes
to the left, where σi can be any value from 0 to 3 (σi = i for the standard
AES),

3. the constant matrix which defines the MixColumns operation can be replaced
by any 16-tuple (α0, . . . , α15) of GF (28) elements2 provided that the result-
ing matrix remains invertible,

4. the RotWord operation in the key schedule rotates the column by η bytes
upward, where η can be any value from 0 to 3 (η = 1 for the standard AES),

5. the round dependent constant word Rcon[r] involved in the key schedule for
the computation of Kr is defined as (ρr−1, 0, 0, 0) where ρ can take any byte
value (ρ = 2 for the standard AES).

Figures 2 to 5 depict the possible degrees of freedom on the parameters of
ShiftRows, MixColumns, RotWord and Rcon respectively.

For sake of simplicity, in the following sections, we shall simply denote by AES
the secret AES-like function that the attacker aims at reverse-engineer, and we
shall refer to the standard AES function as standard AES.

2 Note that we do not require that the modified MixColumns matrix is circulant as is
the standard one.
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	 σ0

	 σ1

	 σ2

	 σ3

⎡
⎢⎢⎣
α0 α4 α8 α12

α1 α5 α9 α13

α2 α6 α10 α14

α3 α7 α11 α15

⎤
⎥⎥⎦

Fig. 2. ShiftRows parameters Fig. 3. MixColumns matrix

�
η

⊕ ρr−1

Fig. 4. RotWord parameter Fig. 5. Rcon[r] parameter

2.3 The Attacker Model

We consider the chosen plaintext scenario which is relevant as we assume that the
attacker owns a device (e.g. a smartcard) embedding a software implementation
of a secret AES-like encryption function. He can query the device with chosen
plaintexts and receives the corresponding ciphertexts. He is assumed to ignore
the value of the keyK and his goal is to reverse-engineer all the secret parameters
of the encryption function by analysing the power traces of each encryption.

It is obvious that the cryptographic strength of an AES-like block cipher de-
fined as above may range from very weak to reasonably strong functions. Even,
probably a quite small fraction of them can be acceptable for a safe crypto-
graphic usage. Nevertheless, as a conservative option, we choose to consider a
blind attacker who does not disqualify a possible function regarding the rel-
evance of its parameters, but rather accepts a priori any set of parameters
(S, {σi}i, {αi}i, η, ρ) modifiable according to our definition.

We make the observation assumption that the attacker can identify S-Box
collisions by side-channel analysis. More precisely, given two power trace seg-
ments T and T ′ corresponding to two table lookups y = S(x) and y′ = S(x′)
in the AES computation3, the attacker can decide whether (x, y) = (x′, y′) or
not, based on a side-channel distinguisher. This side-channel collision model has
already been used in many key recovery attacks [21,20,1,2,3,6] as well as for
reverse-engineering purpose [14,5]. Notably Bogdanov [3] used exactly the same
model as ours applied on AES S-Boxes.

It may be argued that detecting collisions between two S-Boxes based on traces
from two different executions is more difficult than from a unique trace and may
result in less reliable decisions due to possible differences in the experimental
conditions (temperature,. . . ). As we think that this is a debatable question, we

3 The two S-Box lookups may be located at different rounds, and possibly on different
traces with different inputs.
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choose to present our attack in both settings: the inter-traces scenario where
the attacker can detect collisions from different traces, and the intra-trace one
where he can not.

2.4 Notations

We introduce the following further notations:

– Kr = (kr,0, . . . , kr,15), the rth round key (for r = 0, . . . , 10)
– μr,i,j = kr,i ⊕ kr,j (for r = 1, . . . , 10 and i, j = 0, . . . , 15)

– Xr = (xr,0, . . . , xr,15), the SubBytes input of round r (for r = 1, . . . , 10)
– Yr = (yr,0, . . . , yr,15), the SubBytes output of round r (for r = 1, . . . , 10)

3 Attacking an Unprotected Implementation

In this section we describe how to recover the secret parameters of an AES
implementation that does not feature any side-channel countermeasure. We pro-
ceed step by step, and the order of these steps has importance as each of them
depends on the information retrieved in previous ones.

When this is relevant, we propose methods for both inter-traces and intra-
trace settings.

3.1 Retrieving ShiftRows Parameters

In the inter-traces setting we can easily recover the σi parameters. We first
acquire a trace for a random plaintext, then we compare this trace with the four
ones corresponding to a single modification of plaintext byte mi (i = 0, . . . , 3).
For each line i, observing which quadruplet of consecutive second round S-Boxes
do not collide with the reference trace reveals the value of σi.

In the intra-trace scenario, things are a little more complex :

Lemma 1. Assume a collision occurring between S-Box i in the first round,
and S-Box j in the second round. There are two ways to destroy this collision
by modification of a single plaintext byte: (i) either the active plaintext byte is
at position i or, (ii) the active byte is any of the four bytes involved in the
computation of x2,j.

Depending whether one of the four plaintext positions involved in the compu-
tation of x2,j is equal to i itself or not, there are respectively 4 or 5 active bytes
that destroy the collision.

Definition 1. We denote by 4-Collision and 5-Collision collisions that can
be destroyed by 4 and 5 plaintext bytes respectively.

Lemma 2. The four bytes involved in the calculation of a same x2,j belong
to different lines of the state matrix and are aligned on a same column after
ShiftRows operation.
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To retrieve the ShiftRows parameters we first encrypt random plaintexts until
a single collision occurs between a first round S-Box at position i and a second
round S-Box at position j. Then for all k �= i we encrypt a modified plaintext
where only mk has changed, and identify whether 3 or 4 positions destroy the
collision.

The first case (cf. red and ∗ in Figure 6) corresponds to a 4-Collision and the
three identified positions together with i are involved in the computation of x2,j .
The second case (cf. green and ' in Figure 6) corresponds to a 5-Collision
and the four identified positions are related to x2,j . In both cases, these four
positions are equal to {4((u + σi) mod 4) + i}i=0,...,3 where u = 	j/4
 is the
column of the collision. They are all different modulo 4 so that it is easy to infer
the σi parameters from them.

∗ ∗ ∗ ∗� � �� �M :
...

x1,0 x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8 x1,9 x1,10x1,11x1,12x1,13x1,14x1,15X1 :
...

x2,0 x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8 x2,9 x2,10x2,11x2,12x2,13x2,14x2,15X2 :

Fig. 6. Collision between x1,5 and x2,2 revealing a 4-Collision(medium gray/red,∗).
And collision between x1,12 and x2,7 revealing a 5-Collision(light gray/green,�).

3.2 Retrieving K0 and K10 Up to a XOR with a Constant Byte

The first step consists in detecting collisions between first round S-Boxes at two
indices i and i′ (cf. light gray/green boxes on Figure 7) either on a same trace or
on two different ones. Each such collision implies equality of two S-Boxes inputs
and provides us with a linear relation between two key bytes:

x1,i = x1,i′ ⇔ (mi ⊕ k0,i) = (mi′ ⊕ k0,i′)

⇔ k0,i ⊕ k0,i′ = mi ⊕mi′

Gathering several relations with random plaintexts eventually allows to relate
all key bytes together. We now know each differential μ0,i,i′ = k0,i ⊕ k0,i′ and
the key K0 is thus retrieved up to a XOR with a constant byte. For example, it
suffices to know the value of k0,0 to compute other key bytes as k0,i = k0,0⊕μ0,0,i.

Since we already retrieved the ShiftRows parameters we know which last
round S-Box index any ciphertext byte is linked to. Similarly to the recovery
of K0, encrypting random plaintexts and observing collisions in the last round
S-Boxes (cf. medium gray/red boxes on Figure 7) makes it possible to gather
linear relations μ10,i,i′ = k10,i ⊕ k10,i′ = ci ⊕ ci′ which eventually reveal K10 up
to a XOR with a constant byte. Note that the same set of traces can be used to
recover both K0 and K10 up to a constant.
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3.3 Retrieving the S-Box Table

A collision between first round S-Box at index i and last round S-Box at index j
(cf. dark gray/blue boxes on Figure 7) implies that x1,i = x10,j and y1,i = y10,j .
Denoting x = x1,i and y = y10,j , the collision reveals an S-Box relation S(x) = y
for two values x = x′ ⊕ k0,0 and y = y′ ⊕ k10,0 where x′ = mi ⊕ μ0,0,i and
y′ = cj′ ⊕ μ10,0,j′

4 are known from the attacker.
The S-Box table can thus be recovered by encrypting random plaintexts and

observing such collisions (possibly on different traces) between first and last
round S-Boxes. Once all 256 S-Box relations

S(x′ ⊕ k0,0) = y′ ⊕ k10,0

have been identified for all couples (x′, y′) the table S is recovered up to two
XOR permutations on its inputs and outputs respectively.

When only collisions on the same trace are exploited, the relations are gath-
ered like in the coupon collector problem. In that case we can save a large amount
of traces by choosing the plaintexts so that all x′

i = mi⊕μ0,0,i are different from
each others and do not belong to already known relations.

m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15M :
...

x1,0 x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8 x1,9 x1,10x1,11x1,12x1,13x1,14x1,15X1 :
...
...

x10,0 x10,1 x10,2 x10,3 x10,4 x10,5 x10,6 x10,7 x10,8 x10,9 x10,10x10,11x10,12x10,13x10,14x10,15X10 :
...

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15C :

μ0,0,5

=
m0 ⊕m5

μ10,12,15

=
c12 ⊕ c15

S(m9 ⊕ k0,9)
=

c7 ⊕ k10,7

Fig. 7. Examples of collisions used in different attack steps in order to retrieve K0

(light gray/green), K10 (medium gray/red) or the S-Box (dark gray/blue)

3.4 Retrieving K and All Key Schedule Parameters

The next step is simply a 226 offline exhaustive search that aims at recovering
the absolute value of the key K as well as the key schedule parameters which
are the amount of rotation η of the RotWord operation and the constant byte ρ
that defines the Rcon vector.

4 Due to the ShiftRows the ciphertext byte related to the collision is located at index
j′ = 4((u− σk) mod 4) + (j mod 4) where u = �j/4
.
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For each candidate about k0,0 and k10,0 we know K0, K10 and the S-Box
table. It is then sufficient to make guesses also about the 22 values of η and the
28 values of ρ in order to be able to compute the key schedule and derive all
round keys. Each of these 226 candidates suggests a K10 value which is checked
against the 128-bit known K10. As this check on K10 is a 128-bit constraint,
the probability of finding a false positive is overwhelmingly low, which has been
confirmed by our simulations.

Note that a natural extension of the definition of Rcon would be to define each
constant word as Rcon[r] = (ρr−1

0 , ρr−1
1 , ρr−1

2 , ρr−1
3 ). Then the exhaustive search

takes 250 computations which may is unaffordable. We propose in Appendix A
an adaptation of our attack that can deal with such 32-bit entropy Rcon as well
as with a full 320-bit entropy Rcon where all words are independent.

3.5 Retrieving the MixColumns Matrix

At this point we have retrieved all secret parameters of the AES except the
coefficients {αi}i=0,...,15 of the MixColumns matrix. We are so able to know the
input of the first round MixColumns for each already acquired trace. As can
be seen on Figure 8, each byte u4i+j of the MixColumns output depends on 4
same-row parameters {αj , αj+4, αj+8, αj+12}:

u4i+j = αj ∗ v4i ⊕ αj+4 ∗ v4i+1 ⊕ αj+8 ∗ v4i+2 ⊕ αj+12 ∗ v4i+3

v3 u3 x2,3

v2 u2 x2,2

v1 u1 x2,1

v0 u0 x2,0

v7 u7 x2,7

v6 u6 x2,6

v5 u5 x2,5

v4 u4 x2,4

v11 u11 x2,11

v10 u10 x2,10

v9 u9 x2,9

v8 u8 x2,8

v15 u15 x2,15

v14 u14 x2,14

v13 u13 x2,13

v12 u12 x2,12

. . . ⇒
SR

⇒
MC

⇒
⊕K1 ⇒

SB . . .

u8 = α0 ∗ v8 ⊕ α4 ∗ v9 ⊕ α8 ∗ v10 ⊕ α12 ∗ v11

u7 = α3 ∗ v4 ⊕ α7 ∗ v5 ⊕ α11 ∗ v6 ⊕ α15 ∗ v7 x2,i = ui ⊕ k1,i

Fig. 8. Propagation of value v through MixColumns of first round

The goal is thus to obtain such equations by determining some input values
x2,� of the second round S-Boxes, from which u� is inferred as u� = x2,�⊕k1,� and
the MixColumns input is derived from the plaintext. Gathering 4 independent
equations involving the same set of parameters, and solving offline this system
of equations, allows to recover a row of 4 parameters of MixColumns matrix.
Finding 4 equations for each row allows to determine the whole matrix.

In both inter-traces and intra-trace settings no more traces are required for ob-
taining these equations as we can exploit traces already acquired for the previous
steps. Amongst these traces we can find some x2,� values by noticing collisions
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occurring between x2,� and either some byte of known X1 or some byte of known
X10. Our simulations demonstrate that the number of previously acquired traces
always happens to be far from sufficient to get enough independent equations.

3.6 Experimental Results

In order to verify the soundness of our attack and estimate the number of traces
necessary to fully recover the AES secret specifications we have performed PC-
based simulations. For each of the successive steps we developed a program that
simulates only that part of the attack so that we can evaluate the individual
cost of each step. All these programs have been executed on a large number of
simulation runs that comprise the following features:

1. a secret AES-like block cipher is generated by drawing at random the set of
its parameters complying with properties stated as in Section 2.2,

2. a secret key K is generated at random,
3. all parameters (or key knowledge) that are supposed to have been retrieved

in previous steps are considered as known,
4. an oracle simulates a perfect collision detection: it takes as input all the

AES parameters, the key, a plaintext and two S-Box positions (possibly at
different rounds and/or on different traces) and returns a Boolean value
which indicates whether the input/output pairs of these two S-Boxes are
equal or not,

5. the attack step is performed by following the method described in the rele-
vant section, and the number of traces used in the oracle queries is counted.

Table 1 presents the number of traces – averaged on 10 000 runs – required
by each step in both intra-trace and inter-traces settings. For sake of clarity we
also mention the two last steps that do not necessitate any further trace.

Our attack on an unprotected implementation recovers the full set of secret
AES parameters as well as the key within less than 400 traces on average by
intra-trace analysis, and less than 100 traces when collisions between different
traces can be exploited.

Table 1. Experimental results on an unprotected implementation

Step
# of traces # of
intra inter runs

Section 3.1 - Retrieving ShiftRows 11.4 5. 10 000
Section 3.2 - Reducing K0 and K10 entropies to 8 bits 69.5 7.8 10 000
Section 3.3 - Retrieving the S-Box 287.7 81.2 10 000
Section 3.4 - Retrieving K and the key schedule 0. 0. –
Section 3.5 - Retrieving MixColumns 0. 0. 10 000

Total 368.6 94.0
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4 Attacking an Implementation with Both First-Order
Masking and Shuffling

In this section we consider a first-order side channel protected implementation
of the AES. Precisely we assume an implementation that jointly features two
countermeasures:

The first countermeasure makes use of an 8-bit Boolean masking all along
the data and the key schedule paths. Due to the considered attacker model,
we are only concerned by the effect of this countermeasure on the inputs and
outputs of the SubBytes operation. The masking of all other operations have no
consequence on our attack. SubBytes uses a randomized version S̃ of the S-Box
table by means of two independent 8-bit input and output Boolean masks rin
and rout such that S̃(x⊕ rin) = S(x)⊕ rout for all x. Due to memory and time
constraints, typical embedded implementations of this countermeasures refresh
the S-Box randomization only at each execution. We thus assume that the same
randomized table is used for each input index and at each round of a same
execution5. The main negative effect of this countermeasure for the attacker is
that he is no more able to detect and exploit S-Box collisions from two different
traces. Though, note that it is still possible to interpret collisions on S̃ on a same
trace as revealing collisions on the non-randomized S-Box. Thus, with this single
countermeasure only, the intra-trace version of the attack described in Section 3
perfectly applies.

We also assume a second countermeasure which shuffles the 16 computations
of ỹi = S̃(x̃i) at each round6. As a consequence, the observation of a collision

between two (or more) computations of S̃(x̃) (possibly at different rounds) gives
no information about the index of the x̃ = x ⊕ rin input bytes. The attacker
is thus limited to observe the number of different S-Box inputs at each round,
and how many occurrences of each of them there are. To capture this limited
attacker capacity, we introduce the following definition :

Definition 2. Let’s define an n-structure (or more simply a structure) of type

n
(t1)
1 n

(t2)
2 . . . n

(ts)
s of elements of E the set of all n-tuples of elements of E (with

n = Σk tknk) such that t = Σk tk distinct elements appear in the tuple with
n1, n2, . . . , ns occurrences of each of them respectively.

For example, any Xr made of all distinct S-Box input bytes belongs to a
structure of type 1(16) of elements of GF (28). As another example, the 16-tuple:

X1 = (13, 47, 173, 47, 86, 119, 13, 47, 119, 223, 205, 119, 37, 88, 200, 5)

is a 1(8)2(1)3(2) structure as 13 appears twice, and 47 and 119 appear three times
each.
5 A mask conversion is applied to masked intermediate values before or at the end of
each round to adapt from the rout of one round to the rin of the next one.

6 Here also the shuffling of other AES operations such as ShiftRows, MixColumns,
AddRoundKey, etc. have no influence on the attack proposed in the considered S-Box
collision model.
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4.1 Retrieving K0 Up to a XOR with a Constant Byte

The first step consists in executing the AES with random plaintexts until finding
one such that the first round SubBytes presents a unique n-fold colliding value
(a 1(16−n)n(1) structure). Only about a couple of traces are needed on average
to find such a reference trace. Then, for each i = 0, . . . , 15, one modifies mi and
observes whether the collision disappears (or its multiplicity n is reduced). The
set I of indices for which this happens verifies:

∀ i, i′ ∈ I, k0,i ⊕ k0,i′ = mi ⊕mi′

where mi and mi′ are the byte values from the reference plaintext.
By comparing the reference trace with at most 16 modified ones, one should

result with |I| = n. However, if n = 2, a non-detection may occur when the
change of an input byte involved in the initial collision makes it collide with
another not initially colliding one. In such rare case, it should be sufficient to
change again the different message bytes to reveal all which of them are involved
in the initial collision.

Once a set of n colliding indices is identified, n different key bytes are linearly
related together. Repeating this process to exploit different reference plaintexts
exhibiting 1(16−n)n(1) structures, eventually allows to relate all key bytes to each
others. K0 is then retrieved up to a XOR with a constant byte (e.g. k0,0).

Notice that two tricks allow to reduce the number of traces required to relate
all key bytes together. First, when the linear relation that some subset J of
key bytes verify is known, one should choose the reference plaintext such that
X1 bytes belonging to J are all different. The second trick is an early abort of
the process of determining the set I for a reference plaintext: as soon as a new
relation is found that involves a key byte from J , one can skip considering other
indices from J .

4.2 Retrieving K10 Up to a XOR with a Constant Byte

If the attacker can query a decipher oracle with chosen ciphertexts, it is possible
to recover the value of K10 up to a XOR with a constant by a similar method
than that used to recover K0. One first encrypts random plaintexts until finding
one such that the last round SubBytes presents a 1(16−n)n(1) structure. Let C be
the ciphertext. For modified ciphertexts C′, differing from C by only one byte
ci, one then encrypts M ′ = AES−1

K (C′) and observes whether the collision in
the last round S-Boxes disappeared. By the same principle as for K0, it is thus
possible to identify relations like k10,i⊕k10,i′ = ci⊕ci′ . Accumulating sufficiently
many such relations eventually reveals K10 up to a XOR with a constant, with
the same complexity than for K0.

When the attacker does not have access to a decipher oracle, it is still possible
to recover K10. For random plaintexts, we exploit only traces which show no
collision in the last round S-Boxes (a 1(16) structure). In that case we know that
for each index pair (i, i′), μ10,i,i′ is not equal to ci ⊕ ci′ . Starting from lists of all
possible values for all μ10,i,i′ , and accumulating such negative information, we
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end up with sufficiently many lists containing only one remaining value so that
K10 is finally recovered up to a XOR with a constant byte (e.g. k10,0).

Note that we can do better by exploiting (possibly a posteriori) traces with
collisions as well. Whenever some μ10,i,i′ is known one can detect when a collision
occurs between S-Boxes related to bytes ci and ci′ . If it happens that this iden-
tified collision on X10 is the only one on this trace, then one can infer negative
information as above for all index pairs (j, j′) not involved in the collision.

4.3 Retrieving the S-Box Table

At this point, we know K0 and K10, each up to a XOR with a constant. We
now show how to recover the S-Box table for each candidate about these two
constants. We are seeking couples (x′ = x⊕k0,0, y

′ = y⊕k10,0) verifying S(x) = y
as in Section 3.3. To that end we select wisely chosen plaintexts such that X1

contains five different byte values x(1), x(2), x(3), x(4) and x(6). As depicted on
Figure 9 each value is repeated a different number of times, so that when a
collision occurs the colliding value can be identified based on the collision order.

x(1)

1

x(2) x(2)

2

x(3) x(3) x(3)

3

x(4) x(4) x(4) x(4)

4

x(6) x(6) x(6) x(6) x(6) x(6)

6

X1 :

Fig. 9. Example of state X1 having five values with different numbers of occurrences

If a collision occurs between one (or several) of the five input values x(i)

and some X10 byte then at least 240 values y′ are invalidated for pairing with
x′ = x(i) ⊕ k0,0. For any other non-colliding x(j), one can invalidate up to 16
values y′ for pairing with x′ = x(j) ⊕ k0,0. After each execution one should
propagate the negative information as much as possible. For example if it is
known that x′ is necessarily paired with y′ then one can invalidate all couples
(x′, y′′) and (x′′, y′) with x′′ �= x′ and y′′ �= y′. This, in turn can reveal another
assured pair, and so on.

The same set of x(i) can be used multiple times if needed by just changing
their positions. Nevertheless, as a wise strategy for choosing the x(i) values, we
suggest to select values x′ = x(i) ⊕ k0,0 with the least number of invalidated y′

values. The rational behind this criterion is to maximize the expected gained
information.

4.4 Retrieving K and All Key Schedule Parameters

The same offline 226 exhaustive search (not impacted by the countermeasures) as
in Section 3.4 can be conducted to retrieve K and the key schedule parameters.

We also provide in Appendix B an adaptation of our attack that can deal
with the case of a 32-bit or a full entropy Rcon constants set.
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4.5 Retrieving the MixColumns Matrix and the ShiftRows Parameters

Knowing K and the S-Box we are able to fully control vectors X1 and Y1. Let’s
encrypt the plaintext M0 defined by mi = k0,i ⊕ S−1(0) for all i, such that
Y1 = (0, . . . , 0). For that reference plaintext the output of the MixColumns is
also all zeroes and we have X2 = K1. By analysing the trace of this execution
(or simply because we know K1) we obtain the number n0 of second round S-
Box inputs which collide with the value S−1(0) of X1 in the first round (cf.
Figure 10).

Without loss of generality, assume that we want to recover the first col-
umn (α0, α1, α2, α3) of the MixColumns matrix. Let’s modify only one message
byte m4u and denote by v = y1,4u the value of the active cell at S-Box out-
put. The column number (u − σ0) mod 4 takes value (v, 0, 0, 0) at input, and
(α0v, α1v, α2v, α3v) at output of the MixColumns, whereas all other columns re-
main unchanged. Assuming that the active quadruplet of bytes of X2 does not
contain the value S−1(0) in the reference execution7, by exhausting v we can
identify four values8 v0, v1, v2 and v3 which induce more than n0 occurrences
of S−1(0) in the second round S-Box inputs (cf. Figure 11). Since each of these
values has provoked an extra S−1(0) in X2, we know that for some unknown
permutation π of {0, 1, 2, 3} the following holds:

∀ i = 0, . . . , 3 αi vπ(i) ⊕ k1,4((u−σ0) mod 4)+i = S−1(0)

For each possible σ0 this system of equations suggests a set of 24 values (one
per candidate about π) for the targeted column of coefficients (α0, α1, α2, α3).

At this point, we can change the value of u and repeat this process with the
active cell at the top of another column. For each possible σ0 we obtain a new
set of 24 candidates for the column of coefficients. By intersecting the two sets,
with high probability, there remains only one column value for the correct σ0

and none for the incorrect ones, which therefore reveals (α0v, α1v, α2v, α3v) and
σ0.

We can do better by having two active bytes on the same row. This allows the
attacker to gather the eight v values that produce extra collisions with only one
stone. The number of permutation candidates to exhaust becomes 8! (instead of
2× 4!) which is still affordable.

By repeating this attack with the active cell located on the other rows, we
can successively recover the three other columns of coefficients together with the
corresponding ShiftRows parameters.

In the rare cases where it remains an indecision about some column(s) of
MixColumns coefficients (and possibly ShiftRows parameters), it can be solved

7 The opposite case should be rare and is easily detectable by observing a reduction
of the number of occurrences of S−1(0). In that case, simply modify u to change the
column of the active cell.

8 It may happen that less than four values are identified when one or two of them
produce multiple extra S−1(0) values. In such case, these special v values should be
counted as many times as their collision order.
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Fig. 10. Collision revealing that n0 = 1

−1

S(v)
−1

S(0)
−1

S(0)
−1

S(0)
−1

S(0)
−1

S(0)
−1

S(0)
−1

S(0)
−1

S(0)
−1

S(0)
−1

S(0)
−1

S(0)
−1

S(0)
−1

S(0)
−1

S(0)
−1

S(0)X1 :
...

t0 t1 t2 t3 k1,4 k1,5 k1,6 k1,7 k1,8 k1,9 k1,10 k1,11 k1,12 k1,13 k1,14 k1,15X2 :

Fig. 11. Presence of an extra collision (n = 2) gives exploitable information

by checking the few AES-like candidates against a known plaintext/ciphertext
pair.

4.6 Experimental Results

We performed simulations of the different attack steps described in this section in
a similar way as for the unprotected implementation case described in Section 3.

Table 2 presents the number of traces – averaged on 10 000 runs – required by
each step of the attack. For sake of clarity we also mention the offline exhaustive
search of Section 4.4 that does not necessitate any further trace.

Overall, less than 4 000 traces are required to fully recover to whole set of
secret AES parameters in the more realistic scenario of a classical first-order
protected implementation and no prior information about the key.

We emphasize that the entropy of secret information in the case of a SCARE
attack is usually much important compared to a classical key recovery. In the
considered AES-like case, the total entropy to be retrieved amounts to about
1 830 bits9 of information in addition to the 128 key bits.

Table 2. Experimental results on a masked and shuffled implementation

Step # of traces # of runs

Section 4.1 - Reducing K0 entropy to 8 bits 245.6 10 000
Section 4.2 - Reducing K10 entropy to 8 bits 1 407.7 10 000
Section 4.3 - Retrieving the S-Box 1 263.4 10 000
Section 4.4 - Retrieving K and the key schedule 0. –
Section 4.5 - Retrieving MC and SR 910.0 10 000

Total 3 826.7

9 Taking account of all secret components: S-Box(log2(256!) � 1684 bits), ShiftRows
(4 x 2 bits), MixColumns (16 x 8 bits), RotWord (2 bits), Rcon (8 bits).
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5 Countermeasures

We showed in Section 4 that our attack applies to a first-order protected imple-
mentation even if this countermeasure comes together with shuffling of indepen-
dent operations.

First, we notice that our attack should not be feasible on an hardware AES
implementation or if the attacker is not able to choose the plaintexts.

While it is a quite memory consuming countermeasure, we have envisaged a
high-order masking and shuffling protected implementation where 16 randomized
S-Box tables are computed at the beginning of each execution, each table being
masked with independent couples of input and output masks. This 128-bit mask
countermeasure, which necessitates 4 kilo-bytes of RAM to store the different S-
Boxes, prevents the attacker to exploit collisions occurring at two different S-Box
indices. Nevertheless vertical collisions between S-Boxes at the same position in
different rounds are still observable and provide the advantage that the attacker
knows that the two colliding indices are equal. We have also found an attack
against this strong countermeasure provided that the attacker has the prior
knowledge of K0 up to a XOR with a constant. We intend to describe this attack
in an extended version of this paper. While we have not yet precisely estimated
its complexity, we think that it may require many dozens of thousands traces
which may be considered as dissuasive.

We have also studied the T-Box equivalent implementation which merges
SubBytes and MixColumns steps in four 1 kilo-bytes 8-bit to 32-bit tables. This
implementation may be considered as a countermeasure attempt since the four
tables are different which reduces the potential of collisions occurrence. Unfortu-
nately, such implementation option (even in 32-bit or 128-bit masked versions)
is still vulnerable to small adaptations of the attacks described in this paper
provided the prior knowledge of K0 up to a constant.

Considering the powerful potential of information retrieval provided by the
S-Box collision model, we think that a full higher-order masking scheme of the
AES such as the ones recently proposed [18,9,4] is an efficient countermeasure
against our attack.

As another safe option we advice the developers to also include generic hard-
ware and/or software countermeasures such as random delays or current scram-
blers that can mitigate the side-channel signal and make the observation of
collisions difficult or even impossible.

6 Conclusion

We proposed a new application of SCARE attack to reverse engineer secret
specifications of a modified AES where every parameter can be changed provided
that its SPN structure and sizes are preserved. Our chosen plaintext attacks,
which use collisions detected when two S-Box operations have same inputs and
outputs, apply on 8-bit processor implementations and do not necessitate the
knowledge of the encryption key.
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On unprotected implementations the full set of secret parameters and the key
are recovered within an average of only 94 or 369 traces depending whether the
attacker can detect collisions on different traces or not.

We also considered protected implementations which feature a common set of
countermeasures including both first-order masking and shuffling of independent
operations. Those countermeasures do not prevent from retrieving the secret
parameters which is still possible and necessitates to analyse about 3 800 traces.

This study illustrates the powerful potential of information retrieval provided
by the S-Box collision model and confirms the need to protect AES implemen-
tations against high-order side channel analysis.
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A Attack against Extended Rcon on Unprotected
Implementation

In the main part of the paper we assumed an 8-bit entropy Rcon vector made of
10 words Rcon[r] = (ρr−1, 0, 0, 0). Two natural extensions would be to define a
32-bit entropy or a full entropy Rcon vectors of constant words respectively equal
to (ρr−1

0 , ρr−1
1 , ρr−1

2 , ρr−1
3 ) and (ρr,0, ρr,1, ρr,2, ρr,3) for r = 1, . . . , 10. In the first

case the exhaustive search of Sections 3.4 and 4.4 necessitates 250 computations
which is a quite intensive task, while it is completely infeasible in the second
case.

In this appendix we present an adaptation of this attack step that exploits
new collisions to recover Rcon parameters in both extended cases.

A.1 Inter-traces Version

The first step uses 28 particular plaintexts in order to accumulate information
aboutK1. The attacker already knows every couples (x, y) verifying S(x⊕k0,0) =
y⊕k10,0. So for each candidate for k10,0 he knows the plaintext that produces an
all zeroes Y1 vector. For each candidate for k0,0, by observing collisions between
first round of already acquired traces and second round of those particular traces,
the attacker can determine the values x2,i. For the correct guess on (k0,0, k10,0)
the identified X2 vector is equal to K1 while it is considered as random for
incorrect guesses.

The second step uses the key schedule offline step to obtain other informa-
tions about K1. For each candidate for (k0,0, k10,0), the attacker can determine
the S-Box. For each further candidates for η and ρ1,0 he can compute the set
{k1,0, k1,4, k1,8, k1,12}. So for each (k0,0, k10,0) there are 210 candidates for 4
bytes of K1 which are checked against the K1 value suggested by the first step.
With high probability there will be only one match which reveals the correct
(k0,0, k10,0, η, ρ1,0). At this point, the attacker knows K0, K10, the S-Box, η , K1

and ρ1,0. Knowing K0, η, and K1, he can easily compute ρ1,1, ρ1,2 and ρ1,3.
The MixColumns parameters can now be recovered as described in Section 3.5

since only first round parameters are required for this step. Then, iteratively,
it is possible to compute successive values of Kr and (ρr,0, ρr,1, ρr,2, ρr,3) for
each round r = 2, . . . , 9. The attacker computes the values just before the
AddRoundKey of round r. He is also able to recover Xr+1 by collisions on al-
ready acquired traces. This gives Kr from which the ρ parameters for this round
are derived. Rcon[10] is finally inferred from K9 and K10.

A.2 Intra-trace Version

In case where only intra-trace collisions are available, attacker can adapt the
previous method.

To identify x2,i values for each k10,0 candidate, he places zeroes in the first 8
bytes of Y1 and chooses the last 8 plaintext bytes to place 8 different values in
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the right part of X1 at each execution. Each collision observed between the right
part of X1 and the left part of X2 reveals the value of some x2,i up to k0,0. The
same can be done be inverting the roles of the right and left parts. For each k0,0,
known x2,i values are checked against one of the four sets of 210 K1 computed
offline. When sufficiently many x2,i have been identified all sets become empty
which invalidates k10,0 except for the correct candidate.

The collisions on last step in order to learn informations on bytes of round
keys can be done intra-trace too. For each trace already acquired we know the
exact values of S-Boxes of first, second and last rounds. So the attacker will learn
the value of one xi,j at each collision with any one of known S-Boxes. Notice
that the attacker progressively learns values for other rounds S-Boxes making
progressively grow the number of instructive collisions.

B Attack against Extended Rcon on Protected Version

In case of joint 8-bit masking and shuffling countermeasures, attacker applies
the method described in Appendix A with some modifications.

For the first step, attacker will uses intra-trace method with 12 fixed bytes and
4 free bytes at first round in order to have 12 fixed bytes in second round and 4
bytes considered as random (impacted by the free bytes). He cannot determine
exactly where a collision between X1 and X2 occurs but can determine if it
occurs between the fixed parts, between the free parts or between a free and a
fixed part.

If the collision occurs between the fixed parts it will not disappear when he
changes the free part. He learns that the fixed value of first round collides with
one of the fixed values of second round.

If the collision occurs between a first round byte and one from the random
part of second round, it will disappear every time he changes only one byte of
the free part. He does not learn anything and waits for other cases.

If the collision occurs between the fixed part of second round and the free part
of first round, it will disappear only when he changes the colliding free byte. He
learns which byte from the free part collides with a fixed byte.

The attacker can so accumulate the values of the 12 first bytes of X2 without
knowing their precise positions. Remind that X2 = K1 if k10,0 is correct. He can
then use this knowledge to intersect with offline candidates of K1 lines.

For the last step collisions, the attacker gathers data about Xr when there are
no collision between the rth round values and a known round. When a collision
occurs he cannot determine the colliding bytes, but when a no-collision occurs
he learns 16 byte values that are not used in those S-Boxes. By accumulation he
is finally able to determine the value of Kr and then the values of Rcon[r].
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Abstract. Generalized Feistel network (GFN) is a widely used design
for encryption algorithm such as DES, IDEA and others. Generally, block
ciphers are used not only for symmetric encryption but also as building
blocks of cryptographic hash functions in modes such as Matyas-Meyer-
Oseas (MMO) and Miyaguchi-Preneel. For these compression function
modes, block ciphers are used with a key that is known to the attacker.
Therefore a known-key distinguisher on the internal block cipher can be
directly converted into a distinguisher on the compression function. In
other words, the security of a compression mode relies on the security of
the internal block cipher used.

The security of the cipher in known-key setting is only due to the
round function. Block ciphers popularly use sub-key XOR-ing followed by
one or more SP-functions as the building block of a round function. The
general understanding is that increasing the number of active S-boxes
will cause more confusion and guarantee more secure ciphers against dif-
ferential and linear cryptanalysis. In Indocrypt 2012, Sasaki compared
the security of single-SP function with double-SP function and success-
fully mounted a distinguisher up to 7-round for 4-branch type-2 GFN
with double-SP functions and up to 11-rounds of 2-branch single-SP
functions by using the rebound attack technique. Based on the total
number of S-boxes used and the number of rounds attacked, he argued
that double-SP is in fact weaker than single-SP. The basis of this result
is the number of rounds that the author could attack. In this work, we
successfully increase the number of rounds attacked from 7 to 8 for 4-
branch type-2 double-SP. The presented distinguisher is the first known
distinguisher for 8 round 4-branch type-2 GFN with double SP-function.
In our attack, we use an improved matching technique which is simpler
than the byte-by-byte matching. This simple matching technique results
in better complexity than the previously known 7 round distinguisher
for most of the practical cases, allowing us to attack one extra round.

Keywords: Block cipher, rebound attack, generalized Feistel network,
SP-functions, known-key distinguisher, active S-box.

1 Introduction

Design of block ciphers has been a challenging and interesting topic for cryp-
tographers for a long time. Fesitel network and its variants have been a popular
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choice for block cipher designers since the seminal work of Luby and Rackoff [5]
on proving its security.

Moreover, these primitives are also used as building blocks of compression
functions, authenticated encryption schemes, signcryption schemes and many
others. Typical examples of block cipher based constructions are Davies-Meyer,
Matyas-Meyer-Oseas and Miyaguchi-Preneel hashing modes. The security of
these designs lies on two parameters: the round function and the secret key.
Recently, many attacks were proposed in the context of known-key setting [4]
where the value of the key is already known to the attacker. In this case only
the randomness of the key and the round function provides the security.

The security of round function can be understood in terms of the paradigm
of confusion and diffusion. There are various ways to achieve high confusion
and high diffusion in the design. Many block ciphers use a subkey XOR-ing
followed by a non-linear component called S-box transformation and a linear
transformation called P-box. This design paradign is popularly known as the
SP-layer (single SP). Since only the S-boxes are responsible for non-linearity in
the round function, it is generally understood that larger active S-boxes will
provide a more secure design against differential [1] and liner attacks [6].

Recently, cryptographers analyzed the security of Block-ciphers in terms of
repetition of SP-functions. In 2011, Bogdanov and Shibutani [2] analyzed 4-
branch GFN with double SP-function and single SP-function in terms of number
of the active S-boxes and concluded that double SP-function is more secure than
single SP-function against differential and linear cryptanalysis. Note that [2]
analyzed the design assuming infinite number of SP rounds. In 2011, Sasaki and
Yasuda [9] used rebound attack technique on 2-branch single SP-function and
successfully mounted distinguisher up to 11 rounds against it. More recently in
Indocrypt 2012, Sasaki [8] presented the first cryptanalysis for 4-branch type-2
GFN with double SP-functions and showed a distinguisher against 7 rounds. He
compared the two designs and opined that double SP is weaker than single SP
when the number of rounds is finite.

Our Contribution: In this paper, we extend the number of rounds attacked
from 7 to 8 for 4-branch type-2 GFN with double SP-function. We use a simple
matching technique described by Sasaki in [8] and improve it further, which
allows us to extend the distinguisher for an extra round. Our result is the first
cryptanalytic result for 8 rounds of the above mentioned GFN. Moreover, our
7 round distinguisher has lesser complexity that the previously known best 7
round attack on the same GFN. Our result strengthens the belief of [8] that
double SP is indeed weaker than single SP.

The rest of the paper is organized as follows. In § 2, we provide the notation
used in this work and describe related prior work. Our attack on 4-branch type-2
GFN with double SP-function is presented in § 3 In § 4, we provide the summary
of the attack with results. Finally, we conclude the work in § 5 with some open
problems.
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2 Preliminaries

2.1 The Generalized Feistel Network (GFN)

An N -bit block size is represented by m lines and the size of each line is n bits
i.e n = N/m. This block cipher is called GFN, if the m lines satisfy the following
restrictions [2].

1. After each round, lines are rotated by one position to the either right or
left. 1

2. Each lines follows one of the three criteria:
(a) It is the source of a keyed, domain preserving, nonlinear function acting

on n bits.
(b) It is the output of a keyed, domain preserving, nonlinear function acting

on n bits. The line is updated by XORing the output of the function to
it.

(c) It is neither source nor destination.
3. The structure should attain full diffusion after a finite number of rounds.

A schematic diagram of 4-line type-2 GFN is shown in Figure 1. A 4-line GFN
divides an input of N -bit equally in four parts such that N = (n1, n2, n3, n4)
and a round of type-2 GFN outputs [n4 ⊕ f2(n3), n1, n2 ⊕ f1(n1), n3] for keyed
nonlinear functions f1 and f2. For details on the type of GFNs, please refer
to [12].

f1 f2

n1 n2 n3 n4

n1 n3(n4 ⊕ f2(n3)) (n2 ⊕ f1(n1))

k k′

Fig. 1. GFN 4-line type-2

Based on the above criteria, we introduce the following notation to fix the
parameters of the Generalized Feistel Network.

1. N :Length of the block in bits. Popular choices are 64 bits (e.g. in DES) and
128 bits (e.g. in AES).

2. n: Size of the input and output of the round function. In other words it is
the size of one word. Therefore, for a 4-branch Feistel network n = N/4.

3. c: Input/output size of an S-box in bits. Popular choices are 8 bits or 4 bits. 2

1 In this paper lines are rotated one position right.
2 For subsequent discussion c-bit will be termed as one byte.
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4. r: Number of S-box used in one S-box layer, i.e., r = n/c.

As an example, the design of the CLEFIA block cipher [10] is very similar to
4-branch type-2 GFN with parameters (N,n, c, r) =(128, 32, 8, 4).

2.2 Double SP Round Function

Round function of a 4-branch type-2 GFN with double SP-function has these
six operations: XORing of subkey, S-box layer, permutation layer, again XORing
of subkey, an S-box layer and finally a permutation layer at the end (since SP
layer used twice, hence named as double SP) [2]. The design of double SP round
function is described in Figure 2 and Figure 3 next. Next we briefly explain the
operations used in the round function [11].

S P PS

K K′

n

Fig. 2. Simplified Double-SP round function
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Fig. 3. Double-SP round function

Subkey XOR : This is the first layer of the round function. The input of the
round function gets XOR’ed with the round key in this step. Note that the round
key is generated by the key scheduling algorithm.

S-Box : S-box layer is used to create confusion. This layer may contain several
S-boxes which could all be same (as in AES) or be different (as in DES). Each
group of input bits is substituted by using one or more S-boxes. Usually, the
S-boxes are represented in the form of tables.

If all the S-boxes of the S-box layer are different then the operation of the
layer can be defined as S[X ] = S1[X1]‖S2[X2]‖S3[X3]‖ . . . ‖Sr[Xr], where X =
X1‖X2‖X3‖ . . . ‖Xr.

On the other hand, if all the S-boxes are the same then the S-box layer
operations can be defined as S[X ] = S[X1]‖S[X2]‖S[X3]‖ . . . S[Xr].



140 D. Chang, A. Kumar, and S. Sanadhya

Permutation Layer : Permutation layer is used to introduce diffusion in the
cipher. It makes sure that local differences in the internal state before P-layer
propagate to larger area of the state after this layer.

2.3 Rebound-Attack Technique

Rebound attack was first introduced by Mendel et al. [7] at FSE 2009 to attack
hash functions Whirlpool and Grøstl. It has become a very useful technique
to analyze the security of block cipher based compression functions. The aim
of the technique is to get message pairs which will satisfy certain truncated
differential trail. Truncated differential cryptanalysis, developed by Knudsen in
1994 [3], is a generalization of the differential cryptanalysis [1]. While the attacker
is interested in differential on the full state in differential cryptanalysis, the
truncated differential attack relaxes this condition and looks for partial state
differentials.
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Fig. 4. Inbound phase

The entire truncated differential trail is divided into the following three phases:

1. Backward outbound phase,
2. Inbound phase,
3. Forward outbound phase.

Among these three phases, the inbound phase corresponds to a low probability
part of the truncated differential trail. The basic attack strategy of Rebound
attack is to find at least one starting point i.e. one paired values, which will
follow the characteristics of inbound phase. After getting one starting point,
the attacker checks whether or not the starting point satisfies the truncated
differential path of the outbound phase. The criteria of success is to find at least
one starting point which will follow the outbound phase.

We briefly describe the rebound attack idea now. The inbound phase consists
of a linear layer, a non-linear layer and finally another linear layer. An example
is shown in Figure 4 where truncated differential path for inbound phase is 1 →
F → 1. 3 To get a starting point, one chooses all possible differences of c bits

3 F is any full active difference, i.e., a word where all bytes are active.
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(size of an S-box) from both sides of the cipher. For both the directions, the
attacker finds the truncated differential characteristic just before the component
which causes non-linearity. The next step is to store all the input differences and
the output differences for the non-linear component (set of S-boxes). Finally, we
choose any one difference as input and try to find a matching output difference.
We know that given any random input and output differences for an S-box,
matching probability in the ideal case is 2c−1 where c is the input/output size
of an S-box. For a randomly chosen input and output differences, there exist
difference pairs following the given input/output differences with a probability
roughly half (this probability is very close to the best possible probability, the
actual probability depends upon DDT of S-box under consideration). Thus, if
the non-linear component has r number of S-boxes then the matching probability
for any randomly selected input/output difference pair is 2−r. After matching
all possible input and output differences, total number of matched difference will
be 22c−r. So as long as 2c ≥ r, we will get at least one matched input and output
difference and hence, 22c matching pairs.

We can describe the Rebound attack with reference to Figure 4 in the following
steps.

1. Prepare differential distribution table (DDT) for all c-bit r S-boxes (in case
the design uses the same S-boxe repeatedly, only one table is required).

2. For all possible 2c − 1 (in Figure 4 colored boxes represents active S-boxes )
possible differences of state #A, compute corresponding r-byte difference of
state #B, and store them in a table T .

3. Repeat Step 2, for state #D, and after getting differences at state #C,
check whether this output difference of S-boxes will match with any input
differences stored in table T by using DDT. After getting any such matched
input/output pair, produce it as a matching result. The matching probability
of one difference is 2−r, so after matching all 2c−1 differences, we have 2c−r

matched differences and hence 2c matching pairs.
4. Repeat Step 2 and Step 3, form backward direction.

Since Step 4 will also result in the same number of matches as Step 3, we will
have 22c−r matched differences and 22c matching pairs after completing all the
Steps from 1 to 4.

2.4 Previous Rebound Attack on 4-Branch Double-SP Feistel

In 2011, Sasaki and Yasuda [9] successfully mounted distinguishers for 9-round
and 11-rounds for single SP-function. In order to compare the security of GFN
in the context of single SP-function with double SP-function, Sasaki again ap-
plied the same technique for 4-branch type-2 GFN with double SP-function for
6-rounds [8] and presented a distinguisher. He exploited the fact that an attacker
may control the behavior of S-boxes for a few rounds. He interpreted the result
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that double SP-function is weaker than single SP-function.4 The metric of his
comparison is the number of rounds attacked. In the same work, he used byte-
by-byte matching approach in place of simple rebound technique for matching
and extended number of rounds attacked. He could find a distinguisher for one
more round i.e up to 7-rounds, which is the best known attack in terms of the
number of rounds distinguished.

The complexity of the 7-round distinguisher was shown to be 23c−r 7-round
4-branch computations in [8]. Note that the complexity in the case of random
permutation will be 2(n−c)/2 queries to the permutation.

3 8-Round Distinguishing Attack on Type-2 4-Branch
GFN with Double-SP Layer

In this section, we present our new known-key distinguishing attack on a block
cipher EK(·) which is 8-round type-2 4-branch double-SP GFN. The key K is
known to the attacker.

Theorem 1 (Our Result). Let EK(·) be a block cipher with block size N(=
4n), where K is a randomly chosen and public N -bit key. For any given c-bit con-
stant a, we show that we can find a message pair (M,M ′) and the corresponding
ciphertext pair (C,C′) with complexity 22c such that

– M ⊕M ′ = (binn(0), X, ?, ?), and
– C ⊕ C′=(?, ?,P[1a],?),

where each ? represents any n-bit value out of the possible 2n, C = EK(M),
C′ = EK(M ′), c is the bit size of an S-box, r is the number of such S-boxes, n =
c× r, 1a is the n-bit constant, where only one predetermined (j-th) byte is active
defined by 1a := (bin1(0), bin2(0), bin3(0), . . . binj(a) . . . , binr(0)), binj(x) is the
c-bit representation of x which is j-th byte of word, P[·] is the underlying n-bit
permutation of the block cipher E and X is any full-active difference determined
in the middle of the attack. 5

On the other hand, in case of a random permutation over N -bit, we show that
it requires a complexity of 32 × r × 2n/2 to find such plaintext and ciphertext
pairs, in terms of number of S-box operations. Therefore, our construction will
work as a distinguisher for 4-branch type-2 GFN with double SP-functions.

Proof. In case of Random permutation: For a random permutation, given
any two messages (M,M ′) such that M⊕M ′ = (binn(0), X, ?, ?) the probability

4 Note that Bogdanov et al. had earlier proved that double SP is stronger than single
SP, however there are two differences in their approach with that of Sasaki. Firstly
they consider infinite number of rounds in the design and secondly they consider key-
xor after each SP. In comparison, Sasaki [8] considers finite number of rounds and
consider key xor after double SP. The second point should not make any difference
since the results being considered are in the known-key setting.

5 j is any predetermined byte i.e. 1 ≤ j ≤ r.
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that the corresponding ciphertext (C,C′) satisfies C ⊕ C′ = (?, ?, P [1a], ?), is
2−n, where n is the size of a word in bits. So, for getting one such message pair
we need 2n/2 message-ciphertext pairs.

Since, each round is using 4 S-box layers and each layer contains r S-boxes,
the total number of S-boxes used in our construction is 32 × r. Therefore, the
complexity of calculating 2n/2 message-ciphertext pairs can be described as the
time complicity of 32× r × 2n/2 S-box operations.

For example, let’s consider a case of (N,n, c, r)=(128,32,8,4). For a block ci-
pher with a known key, we can find a message pair satisfying the condition
discussed with about 218 operations, on the other hand, for a random permuta-
tion, we can find it with about 223 operations. This fact leads to a distinguishing
attack against the block cipher.

In case of EK(·) :

The aim of the our attack is to prduce a pair of messages having differences
of the form (0, X, ?, ?), such that they produce an output difference of the form
(?, ?, P [1a], ?) for all known keys.

The truncated differential characteristic followed by our 8-round attack is as
follows.

(0, X, ?, ?) → (0, 0, X, ?) → (0, 0, 0, X) → (X, 0, 0, 0) → (0, X,P[1α], 0) →
(P[1a], 0, X , P[1α]) → (0,P[1a], ?, X) → (?, 0,P[1a], ?) → (?, ?,P[1a], ?).

Our differential trail starts with an input message pair having no difference in
the first word, some specific difference X in the second word (X is a full active
difference determined in the middle of the attack) and any arbitrary difference
in the next two words.

Given such an input difference, we will get a ciphertext pair which can have
arbitrary differences in first, second and fourth words, but the difference in the
third word will be a fixed value. That is, we show that we can get a specific
difference out of the possible 2c − 1 differences. Our work shows that we can
create such a differential trail with lower complexity in comparison to a random
permutation. This can be used as a valid distinguisher against the cipher.

Out of the 8 rounds, first three rounds are backward outbound phase, next
three rounds are inbound phase and last two rounds are forward outbound phase.
Complexity of the attack is only in finding a pair of values satisfying truncated
differential path of the inbound phase. This is due to the fact that after getting
any suitable pair, both the forward and the backward outbound phases will
satisfy with probability 1.

Three-Round Inbound Phase: The truncated differential trail for inbound
phase will propagate as:

(X, 0, 0, 0) → (0, X,P[1α], 0) →(P[1a], 0, X , P[1α]) → (0,P[1a], ?, X)
The complexity of inbound phase is cost of finding a pair of values which will

follow truncated differential path as shown in given Figure 5.
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Definition: We say that Δ and ∇ are matched if we can find at least one X
such that S[X ]⊕S[X ⊕Δ]=∇.

To get inbound phase with desired differential characteristic, the following
steps are followed.

1. Make difference distribution table (DDT) for all S-boxes.
2. (a) See Figure 5. Fix the difference at position (5) as 1a, where a is an already

provided value at the beginning of the attack process as mentioned in
our result (theorem 1). Using DDT, choose any matched β such that
differences 1β and 1a at positions (4) and (5) are matched.

(b) Since P is linear, the difference at position (3) will be P−1[1β].
(c) For every α such that 1 ≤ α ≤2c− 1, we define the difference at position

(1) as 1α, and repeat the following procedure.
i. Since the difference at position (1) is 1α, the difference at the position

(2) will be P[1α].
ii. If the differences at positions (2) and (3) are matched, for each

matched difference we can generate 2r possible matching massage
pairs at position (2) from the DDT, where the difference of each
matching pair (M,M ′) is P[1α] and the difference of (S[M ],S[M ′]) is
P−1[1β].

iii. For each matching pair (M,M ′) of 2r pairs, repeat the following
procedure.
A. If the difference of S[P[S[M ]]⊕K ′

9 ] and S[P[S[M ′]]⊕K ′
9] at po-

sition (5) is 1a, then fix it and fix all the corresponding val-
ues in between position (10) and (12) from the knowledge of
(M,M ′) . Find difference X at position (11) from the knowledge
of (M,M ′), and go to Step 2-(d).

B. Else if there remain matched pairs we have not considered, go to
Step 2-(c)-iii, otherwise go to Step 2-(c).

(d) Fix the difference at position (10) as 1α, where α is already fixed in Step
2-(c).

(e) For every λ such that 1 ≤ λ ≤ 2c − 1, repeat the following procedure.
i. Calculate the difference P−1[1λ] at position (8). Note that we already

know that the difference at position (7) should be X .
ii. If the differences at positions (7) and (8) are matched, we generate

2r possible matching pairs at position (7) from the DDT, where the
difference of each matching pair (W,W ′) is X and the difference of
(S[W ],S[W ′]) is P−1[1λ].

iii. For each matching pair (W,W ′) of 2r pairs, repeat the following
procedure.
A. If the difference of S[P[S[W ]]⊕K ′

11 ] and S[P[S[W ′]]⊕K ′
9 ] at

position (10) is 1α, then fix it and calculate the value at position
(6) from the knowledge of (M,M ′) and (W,W ′), fix the value at
position (13) and stop the inbound phase and exit.

B. Else if there remain matched pairs we have not considered, go to
Step 2-(e)-iii, otherwise go to Step 2-(e).
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Fig. 5. 3-round inbound phase

Complexity Calculation for the Inbound Phase: Next, we provide the
time and memory complexity for the procedure described above in a step by
step fashion.

1. a). If the S-box layer has same S-boxes, Step 1 requires 22c time and 22c

memory.
b). If the S-box layer has all different S-boxes, Step 1 requires r × 22c time
as well as memory.

2. Step 2-(a) requires constant complexity by DDT look up.
3. Step 2-(b) requires only one operation, so the complexity is constant.
4. Step 2-(c)-i again requires constant complexity.
5. Step 2-(c)-ii: Since we are using r S-boxes in the S-box layer, the matching

probability is 2−r. And after getting one matched difference we have 2r

matching pair, so the complexity of Step 2-(c)-ii is 2r.
6. Step 2-(c)-iii requires 2c complexity, since after completion of this step we

found all 2c−r matched differences and used all 2c matching pairs.
7. Step 2-(d) requires constant complexity.
8. Step 2-(e)-i again requires constant complexity.
9. Step 2-(e)-ii: Since we are using r S-boxes in the S-box layer the matching

probability is 2−r. After getting one matched difference, we have 2r matching
pairs, so the complexity of Step 2-(e)-ii is 2r.

10. Step 2-(e)-iii requires 2c complexity. After completion of this step we found
all 2c−r matched differences and used all 2c matching pairs.

11. Overall complicity of finding one starting point i.e. one message pair, which
may follow entire differential characteristic of inbound phase is r× 22c, both
in terms of time and memory.

Three-Round Backward Outbound Phase :
The truncated differential path of backward outbound phase is as follows.
(0, X, ?, ?) → (0, 0, X, ?) → (0, 0, 0, X).
After getting one starting point for inbound phase, the truncated differential

path for backward outbound phase will propagate with probability 1.
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Two-Round Forward Outbound Phase :
The truncated differential path of forward outbound phase is as follows.
(0,P[1a], ?, X) → (?, 0,P[1a], ?) → (?, ?,P[1a], ?).
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Fig. 7. 2-round forward outbound phase

Similar to the backward outbound phase, after getting any paired values which
will satisfy inbound phase, i.e., one starting point, truncated differential path
will follow the forward outbound phase with probability 1.

4 Summary of the Attack

As shown in Table 1, the complexity of the proposed distinguisher is much lower
than for a random permutation.

We have presented the complexity of our attack in terms of the number of S-
box look ups. In [8], Sasaki showed a 6-round distinguisher with the complexity
of 2c 6-round 4-branch double SP-function computation and a 7-round distin-
guisher with complexity 23c−r 7-round 4-branch double SP-functions computa-
tions. Similarly, complexity of our distinguisher is 2c 8-round 4-branch type-2
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Table 1. Complexity comparison between random permutation and our distinguisher.
N is block length in bits, n is size of a word, c is size of S-box and r number of S-boxes
used in an S-box layer.

N n c r complexity for complexity of our attack
random permutation same S-box different S-box

64 16 4 4 215 28 210

128 32 8 4 223 216 218

256 64 8 8 240 216 219

double SP-function computations. For random permutation, the required com-
plexity is 2n/2 8-round 4-branch type-2 double SP-function computations. Hence
the proposed distinguisher has lower complexity than any known distinguisher
for GFN, provided that the input size of S-boxes is ≥ the number of S-boxes
used.

5 Conclusions

We extended the number of rounds which can be distinguished from a random
permutation by one more round in comparison to previous work by Sasaki, i.e.,
from 7 to 8 rounds, by using the rebound attack technique.

We have shown an attack on 32 SP-layers for double SP-functions, while in
the case of single SP-function the maximum number of layers attacked is 22.
The limitation of the proposed distinguisher is that it is useful only for those
cases where the input size of S-boxes is greater than or equal to the number of
S-boxes used. Increasing the numbers of rounds attacked is an interesting open
problem.
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Abstract. Differentials with low probability are used in improbable dif-
ferential cryptanalysis to distinguish a cipher from a random permuta-
tion. Due to large diffusion, finding such differentials for actual ciphers re-
mains a challenging task. At Indocrypt 2010, Tezcan proposed a method
to derive improbable differential distinguishers from impossible differ-
ential ones. In this paper, we discuss the validity of the assumptions
made in the computation of the improbable differential probabilities. In
particular, we show based on experiments that such improbable differ-
ential cryptanalysis can fail. The validity of the improbable differential
cryptanalyses on PRESENT and CLEFIA is discussed.

Keywords: improbable differential, impossible differential, truncated
differential, PRESENT, CLEFIA.

1 Introduction

Since the introduction of differential cryptanalysis [2] in the beginning of the
90’s, many generalizations of this attack have been proposed to cryptanalyse a
large number of block ciphers. While most of them exploit differentials with high
probability, in the impossible differential cryptanalysis context [1] attackers take
advantage of zero-probability differentials. Recently a variation of this attack
called improbable differential cryptanalysis have been introduced by Tezcan [21]
at Indocrypt 2010 and by Mala, Dakhilalian and Shakiba [15]. In this context,
differentials with low probabilities are used to distinguish the cipher from a
random permutation.

While in theory this attack could be efficient on some ciphers, in practice, it
may be hard to find differentials or truncated differentials with such small prob-
abilities. In [15,21] a method based on the knowledge of impossible differentials
is proposed. The computation of improbable differential probabilities is then
obtained based on the assumption that all other differentials than the known
impossible ones on the r1 last rounds of the cipher are uniformly distributed.

In this paper, we recall and explain the assumptions made in [15,21] to derive
improbable differentials from impossible ones. Based on experiments on SPN
and Feistel ciphers, we show that the assumptions made in the computation
of the improbable differential probabilities are not correct. In particular, the
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validity of the improbable differential attack by Tezcan on 11, 12 and 13 rounds
of PRESENT [22,23] and 13, 14 and 15 rounds of respectively CLEFIA-128,
CLEFIA-192 and CLEFIA-256 [21] is discussed.

This paper is organized as follows. In Section 2, we recall the principle of
improbable differential cryptanalysis and the method described in [21] to derive
improbable differentials from impossible ones. In Section 3, based on experi-
ments on a 24-bit block cipher, we show that the assumptions made in the
computation of the improbable differential probabilities are not valid and that
the corresponding key-recovery attack can fail. In Section 4, a comparison be-
tween the assumptions in truncated differential cryptanalysis and in the method
proposed by Tezcan is made to support the discussion regarding the validity of
the latter one. Section 5 is dedicated to the two improbable differential crypt-
analyses proposed in the literature on PRESENT and CLEFIA and constructed
from that model.

2 Improbable Differential Cryptanalysis

2.1 Improbable Differential Distinguisher

In this paper, iterated block ciphers E with block size n parameterized by a
key K are considered. Among the different cryptanalyses on block ciphers, the
statistical ones make use of a non-uniform behavior of the cipher. A key-recovery
attack is often derived from a distinguisher that compares the probability of a
particular characteristic, such as the probability of a differential with the uni-
form one. By a slight abuse of notation, as in this paper we will focus on the
distinguishing part of the statistical attack (adaptation to a key-recovery at-
tack can be done easily), we will denote by E the part of the cipher we aim at
distinguishing.

While contemporary ciphers are designed to be resistant to the classical differ-
ential cryptanalysis, by improving the different existing methods, attackers are
often able to show a non-random behavior of a reduced number of rounds of the
cipher. Among the different generalizations of differential cryptanalysis, we focus
in this paper on the truncated differential cryptanalysis [12], the impossible dif-
ferential cryptanalysis [1], and the improbable differential cryptanalysis [22]. As
all of these attacks rely on truncated differentials1, we first recall the definition
of a truncated differential.

Definition 1. A truncated differential on E is a pair (A,C) where A ⊂ (Fn
2 )

∗

(where (Fn
2 )

∗ = F
n
2\{0}) is a set of input differences and C ⊂ (Fn

2 )
∗ a set of

output differences.

1 Notice that in impossible differential cryptanalysis if only one output difference
is taken into consideration, the complexity of the attack will be close to the full
codebook, as in the case of the simple zero-correlation presented in [8].
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The expected probability of the truncated differential (A,C) on the cipher E
is defined by

p = P [A
E→ C] =

1

|A|
∑
a∈A

PX,K[EK(X)⊕ EK(X ⊕ a) ∈ C]. (1)

The probability of such truncated differential (A,C) for a random permutation

is pU = |C|
2n−1 and is usually called uniform probability.

Depending on the probability p different key-recovery attacks are implemented.
As in the impossible differential setting p = 0, all the key candidates for which
the truncated differential occurs are discarded. In the truncated and improbable
differential key-recovery attacks a threshold T is introduced to reduce the set of
potential candidates. The number Sk of occurrences of the truncated differential
is then compared with the threshold T for each key candidate k. In classical
truncated differential cryptanalysis, as p > pU , the correct key should be among
the ones such that Sk ≥ T , whereas in improbable differential cryptanalysis,
as p < pU , the correct key should satisfy Sk ≤ T . To avoid confusion, we call
“probable differential” a truncated differential with probability p > pU .

For most of the cases in the probable differential context or for the described
improbable differential cryptanalyses in [21,22], the probability p of a truncated
differential can be expressed relative to the uniform probability pU . The sign
of the bias ε = p − pU indicates if the truncated differential is probable or
improbable.

The data complexity of such distinguishing attacks has been heavily studied.
While tight estimates of their complexities can be obtained from the algorithms
presented in [4] and [21], an asymptotic behavior can be derived from an expan-
sion of the Kullback-Leibler divergence between two binomial distributions with
respective probabilities pU and pU ±ε. As presented in Table 3 of [4], the number
NS of samples2 required to distinguish two distributions with probabilities pU
and p = pU ± ε is proportional to 2pU

ε2 .
The data complexity of an impossible differential distinguisher is inverse pro-

portional to pU . A discussion regarding the advantages and the disadvantages
of an improbable, or almost impossible, differential in comparison with an im-
possible differential in key-recovery attack on the same number of rounds of a
cipher is provided in [15].

2.2 Construction of Improbable Differentials: Using Impossible
Differential

In practice, due to the large number of trails composing a differential, having
a good estimate of its probability can be challenging. Based on assumptions,
such as the Markov assumption [14], the probability of a differential trail is often
computed by multiplying the probabilities round by round. Nevertheless, it is

2 The ratio between the number NS of samples and the data complexity depends of
the number of input differences.



152 C. Blondeau

well known that this kind of assumption is not always true and in particular a key
dependency can occur [11,3]. Although, finding all trails relative to a differential
is impossible for almost all ciphers, underestimate of a differential probability
can be obtained by summing up the probability of trails in a subset. Therefore,
using standard methods, finding improbable differentials for a particular cipher
can be a challenging task.

In [21,15], the authors proposed a method based on the knowledge of im-
possible differentials. Without loss of generality3, we assume that an impossible
distinguisher (B,C) on the r1 last rounds of E is combined with a truncated
differential (A,B) on the r0 first rounds of E. We denote by E0 and E1 the
corresponding partial ciphers: E = E1 ◦E0 and by q the probability of the trun-

cated differential (A,B) on E0: q = P [A
E0�→ B] (see Figure 1). From these two

partial distinguishers, Tezcan proposed a method to compute the probability of
the truncated differential (A,C) on E. While in [21], the following assumption
is not explicitly written, this one seems necessary to compute the probability of
the distinguisher as in Proposition 1.

Assumption 1. For all b̄ /∈ B, b̄ �= 0, the probabilities P [b̄
E1�→ C] on the r1

rounds of E1 are equal.

Notice that for any permutation, for any fix input difference we have:∑
c∈F

n
2
P [b → c] = 1 and

∑
b∈F

n
2

∑
c∈F

n
2
P [b → c] = 2n.

As depicted in Figure 1, in the improbable differential context of Tezcan the
set (Fn

2 )
∗\B of intermediate differences which are not in B play an important

role. In the following, we denote by B̄ this set: B̄ = (Fn
2 )

∗\B.

A

�
B

�
C

�
��

�
�
�
��

B̄ = (Fn
2 )

∗\B

q

0

1−q

|C|
2n−|B|−1

�

�

E0

E1

Fig. 1. Improbable differential from impossible differential

Based on the previous assumption, the probability of the improbable differ-
ential can be computed as followed:

Proposition 1. Let E = E1 ◦ E0 be a Markov cipher with probable truncated
differential (A,B) on E0 and impossible differential (B,C) on E1 with |B| <
2n − |C| − 1. Let q = P [A

E0→ B] be the probability of the differential (A,B).

3 A more general description can be found in [21].
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Assuming independent rounds keys and under Assumption 1, the truncated dif-

ferential (A,C) has probability p =
|C|

2n − |B| − 1
(1 − q) ≈ |C|

2n
(1 − q) and is

improbable.

Proof. Based on Assumption 1, as E1 is a permutation of Fn
2 we deduce from

that for all b̄ /∈ B, b̄ �= 0, we have P [b̄
E1�→ C] =

|C|
2n − |B| − 1

.

Then assuming that the cipher is a Markov cipher, we have

p =
1

|A|
∑
a∈A

∑
c∈C

P [a
E�→ c]

=
1

|A|
∑
a∈A

∑
b̄∈B̄

∑
c∈C

P [a
E0�→ b̄]P [b̄

E1�→ c]

=
|C|

2n − |B| − 1

1

|A|
∑
a∈A

∑
b̄∈b̄

P [a
E0�→ b̄]

=
|C|

2n − |B| − 1
(1− q)

�


In the following sections, the validity4 of Assumption 1 is discussed using a
comparison between the expected probability p of the improbable differential
with the experimental one pE for different ciphers. In particular, we show that
the different cases can occur: pE = p, pE <p, pE > p and even pE > pU . In the
last two cases, the attack can fail due to an overestimate of the data complexity
or a wrong threshold selection.

3 Experimental Improbable Distinguisher

As accurate experiments are possible on a 24-bit cipher, we design5 a 24-bit gen-
eralized Feistel Network with 6 branches to test the validity of Assumption 1.
The experiments aim at computing the probability of some 11-round improba-
ble differential of the cipher with round function given by Figure 2. In order to
limit the number of assumptions in the computation of the experimental prob-
ability, independent round keys have been selected. For the presented experi-
mental results of this section, the 4-bit Sbox S of the cipher PRESENT [7] has
been chosen6. Using an impossible differential on 10 rounds of this cipher, and a

4 In some cases Assumption 1 on the last rounds can be replaced by an assumption
on the first rounds. The validity can nevertheless be discussed in the same way.

5 This example is proposed in an illustrative and easy to understand purpose. For dif-
ferent reasons, experiments on reduced versions of existing ciphers such as CLEFIA
may not reflect the behavior of the real ciphers.

6 Experiments with different Sboxes have also been performed and the provided results
are similar.
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1 round ⇐ q = 2−3.91
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10 rounds ⇐ Impossible

C : 0 0 0 Z 0 0

Fig. 2. Round function of a 24-bit cipher build for experimental purpose and the
11-round improbable distinguisher where X,Y, Z are non-zero nibble values

truncated differential on the first round (see Figure 2) we conducted experiments
to determine the probability pE of the truncated differential (A,C).

The results of the experiments are shown in Table 1 for different sets of input
differences. In this table we can see that the experimental probabilities are dif-
ferent from the theoretical ones. In particular, we always have that pE > p and
ε2E > ε2. A theoretical estimate of the data complexity would then have been
overestimated. The first attack setting presented in Table 1 illustrates a failed
attack since pE > pU .

Table 1. Experiments of 11 rounds of the experimental cipher for different sets of input
differences defined regarding the quantity δ(a, b) = #{x ∈ (F4

2)
∗|S(x)⊕ S(x⊕ a) = b}

X,Y ∈ {0x1..0xF}
q p pE 2−19.88(1− q)

such that

All 2−3.90 2−20.10 2−19.94 2−19.98

δ(X,Y ) ≥ 2 2−2.68 2−20.24 2−20.14 2−20.12

δ(X,Y ) ≥ 4 2−2 2−20.42 2−20.28 2−20.29

As Proposition 1 requires Assumption 1, these experiments show that this
assumption may not be correct. More detailed experiments targeting the claim

proposed in Assumption 1 confirm the non-equality of the probabilities P [b̄
E1→

C]. In particular, we observe a large deviation between expected probabilities

P [b̄
E1→ C] and the uniform probability pU : while some are impossible, some are

of order of magnitude 23pU or 2−3pU .
As Assumption 1 has some similarities with the assumptions made in probable

differential cryptanalysis, in the next section, we recall the assumptions made
in the truncated differential cryptanalysis context and discuss the difference
between the two cryptanalysis methods.
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4 Validity of the Assumptions

Assumptions similar to Assumption 1 are made in probable differential crypt-
analysis when computing truncated differential probabilities using a truncated
differential trails. For this section, we denote by FKi (1 ≤ i ≤ r) the round
functions of the cipher EK and by (A0, A1, · · · , Ar−1, Ar) a truncated differen-
tial trail. To compute the truncated differential probability of the differential
(A0, Ar), the following assumption is commonly made.

Assumption 2. For all ai ∈ Ai and for all ai+1 ∈ Ai+1, the probabilities

P [ai
FKi→ ai+1] are equal.

Proposition 2. Assuming a Markov cipher for differential cryptanalysis. If the
rounds keys are independent under Assumption 2 the probability of the truncated

differential trail (A0, A1, · · · , Ar−1, Ar) is equal to
∏r−1

i=0 P [Ai

FKi→ Ai+1].

In many of the published truncated differential cryptanalysis (see for instance
[18,17]) a comparison between the experimental probability of a truncated dif-
ferential and the formula provided in Proposition 2 on a reduced number of
rounds of the cipher is made to check if Assumption 2 can be bypassed. Some of
them, such as [17], show that the experimental probabilities can be larger than
the theoretical ones, which in the context of truncated differential cryptanalysis
provides an underestimate of the attack complexity but does not challenge its
validity.

By comparing Assumption 2 with Assumption 1, we observe that the latter

is stronger and the probabilities P [b̄
E1→ C] are less likely to be equal. Indeed

a simple comparison between the different existing attacks show that often in
truncated differential cryptanalysis, the sets Ai correspond to a small number of
Sboxes while in improbable differential setting, the intermediate state is of size
2n− |B| meaning that more probabilities are required to be equal. Since the dif-
fusion grows with the number of rounds, the number r1 of involved rounds in the
improbable differential context may also influence deviations of the probabilities
and contradiction with Assumption 2 may be more likely.

In the literature, there is no complete match between the truncated differentials
(A, B̄) on E0 and (B̄, C) on E1. In particular it may occur that the set D such

that P [A
E0→ D] = 1 is a small subset of Fn

2 . In that case, if we know the truncated

probability P [D
E1→ C] (which may be different from

|C|
2n − |B| − 1

) we may, based

on Assumption 2, be able to compute the probability of the truncated differential
(A,C).

To illustrate this behavior, we provide some explanations on the cryptanalysis
presented in Section 3. In particular we show that based on Assumption 2, we are
able to explain the experimental probabilities provided in Table 1. As r0 = 1,
it is easy to see from Figure 2 that D = {0XW000 | X,W ∈ F

4
2, X �= 0}.

An experimental computation of the probability show that P [D\B E1→ C] =
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2−19.88 and is far from the uniform probability pU = 2−20. Using Proposition 2,

and the knowledge of P [A
E0→ B] we are able to compute the probability of

the truncated differential (A,C). The results of this computation are provided
in the last column of Table 1. The quasi-nonexistent deviation between these
new theoretical probabilities and the experimental ones illustrates that a tight

estimate of the probability P [D
E1→ C] is necessary to the computation, and can

not be derived directly from the impossible differential (B,C).

5 Improbable Differential in the Literature

5.1 The Improbable Attack on PRESENT

PRESENT is a 64-bit lightweight block cipher designed in 2008 [7] by Bogdanov
et al. The description of this cipher can be found in [7]. The security of a version
reduced to 26 out of the 31 rounds have been threaten by a multidimensional
linear cryptanalysis [10].

In [22], Tezcan presents an improbable differential cryptanalysis on this block
cipher. This attack on a version reduced to 11 rounds is derived from a 9-round
improbable distinguisher. In Table 2, we describe this distinguisher based on
combination of a 3-round differential with the 6-round impossible differential.

Table 2. A 3-round truncated differential combined with a 6-round impossible differ-
ential on PRESENT as in [22]. The four bits x can not be zero at the same time. Xi,S

denotes the state after the non-linear layer and Xi,P after the permutation at round i.

A 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0000 0001
DifferentialX1,S 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1001 0000 0000 1001

X1,P 0000 0000 0000 1001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1001
X2,S 0000 0000 0000 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0100

with q = 2−12
X2,P 0000 0000 0000 0001 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000 0000
X3,S 0000 0000 0000 0011 0000 0000 0000 0011 0000 0000 0000 0000 0000 0000 0000 0000
X3,P 0000 0000 0000 0000 0000 0000 0000 0000 0000 1001 0000 0000 0000 1001 0000 0000

B 0000 0000 0000 0000 0000 0000 0000 0000 0000 ???0 0000 0000 0000 ???0 0000 0000

Impossible

X4,P 0000 0000 0?00 0000 0000 0000 0?00 0?00 0000 0000 0?00 0?00 0000 0000 0000 0000
X5,S 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000 ???? ???? 0000 0000 0000 0000
X5,P 00?? 00?? 00?? 0000 00?? 00?? 00?? 0000 00?? 00?? 00?? 0000 00?? 00?? 00?? 0000
X6,S ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000
X6,P ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0 ???0

X6,P ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???x ???x ???x ???x
X7,S ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? 000x 000x 000x 000x
X7,P ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? xxxx
X8,S ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? 0000 ???? ???? ???? ???1
C ???0 ???0 ???0 ???? ???0 ???0 ???0 ???? ???0 ???0 ???0 ???? ???0 ???0 ???0 ???1 pU = 2−13

X9,S 0101 0101 0101 ???? 0101 0101 0101 ???? 0101 0101 0101 ???? 0101 0101 0101 0001
X9,P 000? 000? 000? 0000 111? 111? 111? 1110 000? 000? 000? 0000 111? 111? 111? 1111 pU = 2−48

As depicted in Table 2, the truncated output difference describes a set of size
212. Therefore, an experimental verification of the expected probability of this
distinguisher on 9 rounds of PRESENT is out of reach since pU ≈ 2−48.
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Nevertheless, by piling-up only one round of this distinguisher, we are able to
compute the probability of the 8 first rounds of the improbable distinguisher of
Table 2. As depicted in Table 2, this distinguisher is derived from a 3-round dif-
ferential composed with a 5-round impossible differential. As the uniform prob-
ability to obtain the truncated output differences is pU = 2−13, according to
Proposition 1 if Assumption 1 was true, the theoretical probability of the trun-
cated differential on the 8-round distinguisher would be smaller than pU . Our
experiments with 300 keys and 232 plaintexts show that this truncated differ-
ential have a probability which vary depending of the key between 2−12.96 and
2−12.98 and is not improbable.

We thus believe that if the improbable differential distinguisher does not work
on these 8 rounds, the proposed attack on 11 rounds of PRESENT derived from
the 9-round distinguisher of Table 2 is not correct. From the fact that 22 rounds
of PRESENT can be distinguished from a random permutation [10], we can also
deduce that Assumption 1 is not true for 6 rounds.

In [23], Tezcan proposed an attack on 12 and 13 rounds of PRESENT. In
this extended version of [22], Tezcan explains how to use undisturbed bits to
find impossible differentials on some ciphers. Using the theory a 5-round and
a 6-round impossible distinguisher on PRESENT are proposed. While the 6-
round distinguisher correspond to the one of Table 2, the probability of the
(5+5)-rounds distinguisher is estimated p = 2−16(1 − 2−17.84). No experiments
on the full improbable distinguisher can be performed. To derive the attack on 12
and 13 rounds, the 5-round impossible distinguisher is combined with a 5-round
differential. As based on the previous discussions, Assumption 1 is not valid on
5 rounds of PRESENT, the different cases presented at the end of Section 2.2
can occur.

As impossible differentials are harder to find on a large number of rounds
of an SPN cipher with diffusion similar to the one of PRESENT than a linear
or differential distinguisher (even using undisturbed bits as in [23]), it may be
impossible to build improbable differentials using this technique for this type
of cipher. Additionally due to the large diffusion, it is hard to believe that
Assumption 1 can be true for SPN ciphers.

5.2 The Improbable Attack on CLEFIA

In Appendix C of [21], an experimental attack on 5 rounds of CLEFIA [19] is
proposed to illustrate the theory developed in the same paper. In this section,
we discuss the choices taken to run these experiments. The sets A, B, C chosen
for the experimental attack in [21] are such that a truncated differential on 1
round with probability q = 10

256 is combined with an impossible differential on 4
rounds. By the choice taken for the set C, the uniform probability pU = 1−2−32

is very close to 1 and is the deterministic factor which made this experimental
attack succeed. Indeed under Assumption 1, the probability of the improbable
differential is p = (1 − 2−32)(1 − q) ≈ (1 − q) and the conducted experiments
confirm this probability. Notice that even if the probability P [D �→ C] would be
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slightly different from (1−232), it will only marginally influence the probability p
which is close to 1− 10

256 and no experiment will be able to detect this deviation.
In [21], an attack on 13 rounds of CLEFIA-128 using an improbable distin-

guisher on 1+9 rounds is proposed. As CLEFIA is a 128-bit word oriented block
cipher, it is more difficult to conduct sensible experiment on a reduced number
of rounds than it is for the SPN cipher PRESENT. Nevertheless, the number
of impossible differentials on 9 rounds of this cipher presented in [24] tends to
induce that the probability of the truncated differential (B̄, C) is not close to
the uniform one pU . Based on this believe and on the discussion provided in Sec-
tion 4, we want to say that the probability of the truncated differential (A,C)
on 10 rounds of CLEFIA may be badly estimated. If this is the case, the whole
improbable differential attack on this cipher may be wrong. Nevertheless others
attacks [20,16] on 13 rounds of CLEFIA using one of the 9-round impossible dif-
ferential are done by taking into consideration the key-schedule of the cipher. To
our knowledge7, in the single key model, the best known attack which were pro-
posed at SAC 2013[6] are zero-correlation attacks on 14 rounds of CLEFIA-192
and 15 rounds of CLEFIA-256.

Similar arguments as the ones provided for CLEFIA, may hold for many gen-
eralized Feistel constructions since many impossible and multidimensional zero-
correlation distinguishers8 are often derived from the same number of rounds of
the cipher and the validity of Assumption 1 can be challenged in the same way.
Therefore, we claim that it may be hard to use the method proposed in [21] to
derive an improbable distinguisher using impossible differentials.

6 Conclusion

In this paper, we discussed the assumptions made when deriving improbable dif-
ferential distinguishers from impossible differential distinguishers. In particular
we show that assuming that almost all differentials of the cipher have similar
probability is a strong assumption which leads to a wrong estimate of the trun-
cated differential probability and which can turn out to not be improbable.

Other improbable differential attacks exist in the literature [9,13]. As the
computation of the truncated differential probability does not depend on the
same assumption we believe that these attacks remain valid. This article provides
then new insights on improbable differential cryptanalysis.

Acknowledgments. I would like to thank Kaisa Nyberg and Hadi Soleimany
for the advices provided when writing this article.

7 Notice that the recent proposed attack [25] on the full CLEFIA is not a valid one
due to the involved complexities.

8 Using the link between zero-correlation and impossible differential provided in [5]
we can convert a zero-correlation distinguisher to an impossible differential one.
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Abstract. How to reduce communication complexity is a common important is-
sue to design cryptographic protocols. This paper focuses on authenticated key
exchange (AKE). Several AKE schemes have been studied, which satisfy strong
security such as exposure-resilience in the standard model (StdM). However,
there is a large gap on communication costs between schemes in the StdM and
in the random oracle model. In this paper, we show a generic construction that
is significantly compact (i.e., small communication cost) and secure in the StdM.
We follow an existing generic construction from key encapsulated mechanism
(KEM). Our main technique is to use a bounded chosen-ciphertext secure KEM
instead of an ordinary chosen-ciphertext secure KEM. The communication cost
can be reduced to half by this technique, and we achieve the most compact AKE
scheme in the StdM. Moreover, our construction has instantiations under wider
classes of hardness assumptions (e.g., subset-sum problems and multi-variate
quadratic systems) than existing constructions. This work pioneers the first mean-
ingful application of bounded chosen-ciphertext secure KEM.

Keywords: authenticated key exchange, key encapsulation mechanism, bounded
CCA.

1 Introduction

1.1 Background

Authenticated Key Exchange (AKE) is a cryptographic primitive to share a common
session key among multiple parties through unauthenticated networks such as the Inter-
net. In the ordinary PKI-based setting, each party locally keeps his own static secret key
(SSK) and publish a static public key (SPK) corresponding to the SSK. Validity of SPKs
is guaranteed by a certificate authority. In a key exchange session, each party generates
an ephemeral secret key (ESK) and sends an ephemeral public key (EPK) corresponding
to the ESK. A session key is derived from these keys with a key derivation procedure.
Parties can establish a secure channel with the session key.

Bellare and Rogaway [1,2] first proposed a provably secure AKE scheme in the ran-
dom oracle model (ROM). Their security model (denoted as the BR model) captures
natural security requirements of AKE such as impersonation resistance and known key
secrecy. However, as studies on AKE make progress, various advanced attacks that can-
not be prevented in the BR model have been proposed. For example, key-compromise
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c© Springer International Publishing Switzerland 2013
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impersonation (KCI) [3] can be a practical threat. Suppose a party A’s SSK is disclosed.
Though, clearly, an adversary that knows the SSK can now impersonate A, it may be
desirable that this loss does not enable an adversary to impersonate other entities to
A. Also, ESK-exposure attacks [4] are another concern. If an adversary can guess the
ESK of one or both parties (e.g., thanks to a poor implementation of pseudo-random
number generator), the secrecy of session keys should not be affected. Therefore, most
of advanced attacks use exposure of secret information; thus, the security model must
capture such exposure.

There have been several security models that can guarantee exposure-resilience.
Canetti and Krawczyk [5] propose a model (denoted as the CK model) formulating
exposure of SSKs and session state (i.e., some intermediate computation result). The
CK model captures more security requirements than the BR model such as forward
secrecy. However, the CK model only guarantees partial exposure-resilience because
resistances to KCI and ESK-exposure attacks are not guaranteed. LaMacchia et al. [4]
propose a very strong security model (denoted as the eCK model) formulating exposure
of both SSKs and ESKs. The eCK model captures resistances to KCI and ESK-exposure
attacks. However, it is clarified that the eCK model is not stronger than the CK model
because of the difference on session state reveal property [6,7]. Fujioka et al, [8] revisit
security attributes of HMQV [9] as a model (denoted as the CK+ model) formulating ex-
posure of SSKs, ESKs and session state. The CK+ model captures all known advanced
attacks, and is stronger than the CK model.

Concrete AKE schemes satisfying these models have been studied. HMQV [9] is
one of the most efficient protocols and satisfies the CK+ model. However, the security
proof is given in the ROM under the knowledge-of-exponent assumption [10] that is
a widely criticized assumption [11]. Various variants of HMQV (e.g., NAXOS [4] and
CMQV [12]) have been studied and proved in the ROM. Okamoto [13,14] first proposes
a specific construction (i.e., not generic construction) of eCK secure AKE in the StdM.
However, the schemes rely on a strong building block, πPRF. It is not known how to
construct πPRF concretely. Boyd et al. [15,16] propose a generic construction (BCGNP
construction) of AKE from key encapsulation mechanism (KEM), which is secure in
the CK model in the standard model (StdM). Because the CK model does not capture
exposure of ESKs in the test session, unfortunately, it is unclear whether the BCGNP
construction is secure when the ESK of the test session is exposed. Fujioka et al, [8]
show that the BCGNP construction is insecure in the CK+ model, and propose another
generic construction (FSXY construction) of AKE from KEM, which is secure in the
CK+ model in the StdM.

1.2 Motivation

Most of exposure-resilient AKE schemes in the ROM is optimally compact (i.e., achiev-
ing the optimal communication cost); that is, each party only sends one group ele-
ment like the Diffie-Hellman key exchange (DHKE). On the other hand, schemes in the
StdM need larger communication costs than in the ROM. The existing most compact
exposure-resilient AKE scheme in the StdM is the BCGNP construction (a variant that
the DHKE is added) or the FSXY construction. These constructions use chosen cipher-
text secure (IND-CCA secure) KEM as a building block. For example, in the BCGNP
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construction, each party exchanges a ciphertext of IND-CCA secure KEM and a EPK
(one group element) of the DHKE. Thus, if the ciphertext length of underlying IND-
CCA secure KEM is compact, the instantiated AKE scheme is also compact. However,
Hanaoka et al. [17] show that it is impossible to construct IND-CCA secure KEM that
the ciphertext length is shorter than two group elements with standard assumptions in
the StdM. Hence, a limitation of these generic constructions is that the communication
cost must be larger than three group elements.

1.3 Our Contribution

We overcome the barrier of communication costs by showing an exposure-resilient
compact AKE scheme that the communication cost is lower than three group elements.
Specifically, we introduce a new generic construction of CK+ secure AKE in the StdM.

Our technique is to use bounded chosen-ciphertext secure (IND-q-CCA secure)
KEM [18] instead of ordinary IND-CCA secure KEM. The difference between IND-
q-CCA security and IND-CCA security is whether the number q of decryption queries
by an adversary is bounded in advance. We carefully examine the security proofs of
generic constructions from KEM, and find that the number of decryption queries de-
pends on the number of sessions that each party owns. Because the number of sessions
must be bounded in advance, a simulator can handle simulations only with an a-priori
bounded number of decryption queries. We further discuss this issue in Section 3.3.

The distinguished advantage of IND-q-CCA secure KEM is compactness of the ci-
phertext. The decisional DH (DDH) based KEM [18], the computational DH (CDH)
based KEM [19,20], the decisional bilinear DH (DBDH) based KEM [21] and the com-
putational bilinear DH (CBDH) based KEM [20] can be constructed with one group
element ciphertexts. Moreover, based on the fact that the factoring assumption implies
the CDH assumption on a group of Z∗N [22], the CDH-based KEM is secure under the
factoring assumption if it is implemented on Z∗N . Thus, our result includes the most
compact factoring-based AKE.

Another merit is that our generic construction can be instantiated by wider classes
of hardness assumptions than existing constructions. Since the BCGNP construction
and the FSXY construction are based on IND-CCA secure KEM, these cannot be in-
stantiated under assumptions that IND-CCA secure KEM in the StdM is not known
(e.g., subset-sum problems [23] and multi-variate quadratic systems [24]). Conversely,
our generic construction covers these assumptions, because IND-q-CCA secure KEM
is constructed from semantically secure (IND-CPA secure) KEM in the black-box man-
ner [18], and IND-CPA secure KEM schemes in the StdM are known under these
assumptions.

Furthermore, though the BCGNP construction and the FSXY construction adapt a
strong randomness extractor as a part of the session key derivation procedure, we can
replace it with a weaker building block, a key derivation function (KDF). The KDF is
weaker and more efficient primitive than the strong randomness extractor; the output
of the KDF is just guaranteed computationally indistinguishable from random value but
the strong randomness extractor guarantees statistical indistinguishability. We can prove
the security of our construction only with the computational property; thus, we can
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improve efficiency of the session key derivation procedure. This technique is proposed
in [25,26]

This paper pioneers the first meaningful application of IND-q-CCA secure KEM
because it was just a theoretical notion (i.e., to examine how strong security is achieved
only from CPA-PKE) and any application is previously unknown.

2 CK+ Security Model

In this section, we recall and quote the CK+ model [9,8].

Notations. Throughout this paper we use the following notations. If Set is a set, then
by m ∈R Set we denote that m is sampled uniformly from Set. IfALG is an algorithm,
then by y← ALG(x; r) we denote that y is output byALG on input x and randomness
r (ifALG is deterministic, r is empty).

We denote a party by UP, and party UP and other parties are modeled as probabilistic
polynomial-time (PPT) Turing machines w.r.t. security parameter κ. For party UP, we
denote static secret (public) key by S S KP (S PKP) and ephemeral secret (public) key
by ES KP (EPKP). Party UP generates its own keys, ES KP and EPKP, and the static
public key EPKP is linked with UP’s identity in some systems like PKI.1

Session. An invocation of a protocol is called a session. Session activation is done
by an incoming message of the forms (Π,I,UP,UP̄) or (Π,R,UP̄,UP, XP), where we
equate Π with a protocol identifier, I and R with role identifiers, and UP and UP̄ with
party identifiers. If UP is activated with (Π,I,UP,UP̄), then UP is called the session
initiator. If UP̄ is activated with (Π,R,UP̄,UP, XP), then UP̄ is called the session re-
sponder. The initiator UP outputs XP, then may receive an incoming message of the
forms (Π,I,UP,UP̄, XP, XP̄) from the responder UP̄, UP then computes the session key
S K if UP received the message. On the contrary, the responder UP̄ outputs XP̄, and
computes the session key S K.

If UP is the initiator of a session, the session is identified by sid = (Π,I,UP,UP̄, XP)
or sid = (Π,I,UP,UP̄, XP, XP̄). If UP̄ is the responder of a session, the session is iden-
tified by sid = (Π,R,UP̄,UP, XP, XP̄). We say that UP is the owner of session sid, if the
third coordinate of session sid is UP. We say that UP is the peer of session sid, if the
fourth coordinate of session sid is UP. We say that a session is completed if its owner
computes the session key. The matching session of (Π,I,UP,UP̄, XP, XP̄) is session
(Π,R,UP̄,UP, XP, XP̄) and vice versa.

Adversary. The adversary A, which is modeled as a probabilistic polynomial-time
Turing machine, controls all communications between parties including session activa-
tion by performing the following adversary query.

1 Static public keys must be known to both parties in advance. They can be obtained by ex-
changing them before starting the protocol or by receiving them from a certificate authority.
This situation is common for all PKI-based AKE schemes.
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– Send(message): The message has one of the following forms: (Π,I,UP,UP̄), (Π,
R, UP̄,UP, XP), or (Π,I,UP,UP̄, XP, XP̄). The adversary A obtains the response
from the party.

To capture exposure of secret information, the adversary A is allowed to issue the
following queries.

– KeyReveal(sid): The adversaryA obtains the session key S K for the session sid if
the session is completed.

– StateReveal(sid): The adversary A obtains the session state of the owner of ses-
sion sid if the session is not completed (the session key is not established yet).
The session state includes all ephemeral secret keys and intermediate computation
results except for immediately erased information but does not include the static
secret key.

– Corrupt(Ui): This query allows the adversary A to obtain all information of the
party Ui. If a party is corrupted by a Corrupt(Ui, S i) query issued by the adversary
A, then we call the party Ui dishonest. If not, we call the party honest.

Freshness. For the security definition, we need the notion of freshness.

Definition 1 (Freshness). Let sid∗ = (Π,I,UP,UP̄, XP, XP̄) or (Π,R,UP,UP̄, XP̄, XP)
be a completed session between honest parties UP and UP̄. If the matching session
exists, then let sid∗ be the matching session of sid∗. We say session sid∗ is fresh if none
of the following conditions hold:

1. The adversaryA issues KeyReveal(sid∗), or KeyReveal(sid∗) if sid∗ exists,
2. sid∗ exists and the adversaryA makes either of the following queries

– StateReveal(sid∗) or StateReveal(sid∗),
3. sid∗ does not exist and the adversaryA makes the following query

– StateReveal(sid∗).

Security Experiment. For the security definition, we consider the following security
experiment. Initially, the adversary A is given a set of honest parties and makes any
sequence of the queries described above. During the experiment, the adversaryAmakes
the following query.

– Test(sid∗): Here, sid∗ must be a fresh session. Select random bit b ∈U {0, 1}, and
return the session key held by sid∗ if b = 0, and return a random key if b = 1.

The experiment continues until the adversaryA makes a guess b′. The adversaryA
wins the game if the test session sid∗ is still fresh and if the guess of the adversaryA is
correct, i.e., b′ = b. The advantage of the adversaryA in the AKE experiment with the
PKI-based AKE protocol Π is defined as

AdvAKE
Π (A) = Pr[A wins] − 1

2
.

We define the security as follows.
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Definition 2 (Security). We say that a PKI-based AKE protocolΠ is secure in the CK+

model if the following conditions hold:

1. If two honest parties complete matching sessions, then, except with negligible prob-
ability, they both compute the same session key.

2. For any PPT bounded adversaryA, AdvAKE
Π (A) is negligible in security parameter

κ for the test session sid∗,
(a) if sid∗ does not exist, and the static secret key of the owner of sid∗ is given to
A.

(b) if sid∗ does not exist, and the ephemeral secret key of sid∗ is given toA.
(c) if sid∗ exists, and the static secret key of the owner of sid∗ and the ephemeral

secret key of sid∗ are given toA.
(d) if sid∗ exists, and the ephemeral secret key of sid∗ and the ephemeral secret key

of sid∗ are given toA.
(e) if sid∗ exists, and the static secret key of the owner of sid∗ and the static secret

key of the peer of sid∗ are given toA.
(f) if sid∗ exists, and the ephemeral secret key of sid∗ and the static secret key of

the peer of sid∗ are given toA.

3 Compact AKE from BCCA-KEM

In this section, we propose a generic construction of compact CK+-secure AKE from
BCCA-KEM.

3.1 Preliminaries

Security Notions of KEM Schemes. Here, we recall the definition of IND-q-CCA
and IND-CPA security for KEM, and min-entropy of KEM keys as follows.

Definition 3 (Model for KEM Schemes). A KEM scheme consists of the following
3-tuple (KeyGen, EnCap, DeCap):

(ek, dk) ← KeyGen(1κ, rg) : a key generation algorithm which on inputs 1κ and rg ∈
RSG, where κ is the security parameter and RSG is a randomness space, outputs a
pair of keys (ek, dk).

(K,CT ) ← EnCapek(re) : an encryption algorithm which takes as inputs encapsu-
lation key ek and re ∈ RSE, outputs KEM session key K ∈ KS and ciphertext
CT ∈ CS, where RSE is a randomness space,KS is a KEM session key space, and
CS is a ciphertext space.

K ← DeCapdk(CT ) : a decryption algorithm which takes as inputs decapsulation key
dk and ciphertext CT ∈ CS, and outputs KEM session key K ∈ KS.

Definition 4 (IND-q-CCA and IND-CPA Security for KEM). A KEM scheme is
IND-q-CCA-secure if the following property holds for security parameter κ; For any
PPT adversaryA = (A1,A2), Advind−cca = | Pr[rg ← RSG; (ek, dk)← KeyGen(1κ, rg);
state ← ADO(dk,·)

1 (ek); b ← {0, 1}; re ← RSE; (K∗0 , CT ∗0) ← EnCapek(re); K∗1 ← K ;
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b′ ← ADO(dk,·)
2 (ek, (K∗b ,CT ∗0), state); b′ = b] − 1/2| ≤ negl, where A1 and A2 are re-

stricted to pose at most q queries to decryption oracle DO in total, K is the space of
session key and state is state information that A wants to preserve from A1 to A2. A
cannot submit the ciphertext CT = CT ∗0 toDO.

We say a KEM scheme is IND-CCA-secure for KEM if q is unbounded. We say a
KEM scheme is IND-CPA-secure for KEM ifA does not accessDO.

Definition 5 (Min-Entropy of KEM Key). A KEM scheme is k-min-entropy KEM if
for any ek, distribution DKS of variable K defined by (K,CT ) ← EnCapek(re), distri-
bution Dpub of public information and random re ∈ RSE, H∞(DKS|Dpub) ≥ k holds,
where H∞ denotes min-entropy.

Security Notion of Key Derivation Function. Let KDF : S alt × Dom → Rng be a
function with finite domain Dom, finite range Rng, and a space of non-secret random
salt S alt.

Definition 6 (Key Derivation Function [27]). We say function KDF is a key deriva-
tion function (KDF) if the following condition holds for a security parameter κ: For
any PPT adversaryA and any distribution DRng over Rng with H∞(DRng) ≥ κ, | Pr[y ∈R

Rng; 1← A(y)] − Pr[x ∈R Dom; s ∈R S alt; y← KDF(s, x); 1←A(y)]| ≤ negl.

For example, concrete constructions of such a computationally secure KDF are given
in [28,29] from a computational extractor and a PRF.

Security Notion of Pseudo-Random Function. Let κ be a security parameter and
F = {Fκ : Domκ × FSκ → Rngκ}κ be a function family with a family of domains
{Domκ}κ, a family of key spaces {F Sκ}κ and a family of ranges {Rngκ}κ.
Definition 7 (Pseudo-Random Function [16]). We say that function family F = {Fκ}κ
is a PRF family if for any PPT distinguisher D, Advprf = | Pr[1 ← DFκ (·)] − Pr[1 ←
DRFκ(·)]| ≤ negl, where RFκ : Domκ → Rngκ is a truly random function.

3.2 Protocol of FSXY Construction

First, we recall the protocol of the FSXY construction.
It is a generic construction from IND-CCA secure KEM (KeyGen, EnCap, DeCap)

and IND-CPA secure KEM (wKeyGen, wEnCap, wDeCap), where the randomness
space of encapsulation algorithms is RSE , the randomness space of key generation
algorithms is RSG and the KEM key space is KS. Other building blocks are PRFs and
a strong randomness extractor. For a security parameter κ, let F : {0, 1}∗ × FS → RSE ,
F′ : {0, 1}∗×FS → RSE , and G : {0, 1}∗×FS → {0, 1}κ be PRFs, where FS is the key
space of PRFs (|F S| = κ). Let Ext : SS×KS → FS be a strong randomness extractor
with randomly chosen seed s ∈ SS, where SS is the seed space.

Party UP randomly selects σP ∈R FS and r ∈R RSG, and runs (ekP, dkP) ←
KeyGen(1κ, r). Party UP’s SSK and SPK are ((dkP, σP), ekP). Fig. 1 shows the protocol.
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Common public parameter : F, F′,G, Ext, s
SSK and SPK for party UA : S S KA := (dkA , σA), S PKA := ekA

SSK and SPK for party UB : S S KB := (dkB, σB), S PKB := ekB

Party UA (Initiator) Party UB (Responder)

rA, r′A ∈R FS; rT A ∈R RSG

(CTA, KA)←
EnCapekB

(FσA (rA) ⊕ F′r′A (σA))

(ekT , dkT )← wKeyGen(1κ, rT A)
UA,UB,CTA, ekT−−−−−−−−−−−−−−−−−→

rB, r′B ∈R FS; rT B ∈R RSE

(CTB, KB)←
EnCapekA

(FσB (rB) ⊕ F′r′B (σB))
UA,UB,CTB,CTT←−−−−−−−−−−−−−−−−−− (CTT , KT )← wEnCapekT

(rT B)
KB ← DeCapdkA

(CTB)
KT ← wDeCapdkT

(CTT ) KA ← DeCapdkB
(CTA)

K′1 ← Ext(s, KA); K′2 ← Ext(s, KB) K′1 ← Ext(s, KA); K′2 ← Ext(s, KB)
K′3 ← Ext(s, KT ) K′3 ← Ext(s, KT )

ST := (UA,UB, ekA, ekB, ST := (UA,UB, ekA, ekB,
CTA, ekT , CTB, CTT ) CTA, ekT , CTB, CTT )

SK = GK′1 (ST) ⊕ GK′2 (ST) ⊕ GK′3 (ST) SK = GK′1 (ST) ⊕ GK′2 (ST) ⊕ GK′3 (ST)

Fig. 1. FSXY construction

The FSXY construction uses the twisted PRF trick [13]; that is, computing Fσ(r) ⊕
F′r′(σ) from ESK (r, r′) and SSK σ. The trick ensures that if either of the ESK or the
SSK is revealed, Fσ(r) ⊕ F′r′(σ) is still hidden. Thus, it is guaranteed that randomness
of EnCap for honest parties is never revealed.

3.3 Construction

Next, we show our generic construction.

Design Principle. First, we examine the role of IND-CCA secure KEM in the security
proof of the FSXY construction. The proof is divided by game transitions. A simula-
tor must manage such transitions so that an adversary cannot distinguish two games.
In some game, KA or KB in the test session is replaced with a random value. It is en-
sured that the adversary cannot distinguish this change from the IND-CCA security
of (KeyGen, EnCap, DeCap). Then, the simulator (as the attacker in the IND-CCA
game) must embed the challenge encapsulation key ek∗ into the SPK and the challenge
ciphertext CT ∗ into the EPK of the test session to manage the simulation. Because
the simulator does not know the decapsulation key corresponding to ek∗, the simulator
poses EPKs, that are sent to the party assigned ek∗ in sessions except the test session, to
the decryption oracle and can simulate session key derivation procedures. On the other
hand, in the CK+ model, the adversary can initiate multiple sessions for arbitrary two
honest parties, and can designate a session as the test session from completed sessions.
Because the simulator cannot know which session is designated, a possible way is to
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guess the session that the adversary poses Test query. Therefore, it is inevitable to limit
the number of candidates in the proof; e.g., N parties exist in a system and each party
is activated in at most � sessions.2 It means that the number of EPKs that are sent to
the party assigned ek∗ in sessions except the test session is at most � − 1. Hence, the
maximum number of queries to the decryption oracle is also � − 1.

This fact implies that the IND-CCA security is not necessary to prove the security
in the CK+ model. Our main idea is to use IND-q-CCA secure KEM instead of IND-
CCA secure KEM. Specifically, q = � − 1. It is known that IND-q-CCA secure KEM
is constructed from IND-CPA secure KEM in a black-box manner [18]. Thus, we can
instantiate the generic construction with various hard problems. Especially, we have
compact instantiations based on DH problems and the factoring problem. We have DH-
based IND-q-CCA secure KEM schemes [18,19,21,20] that a ciphertext contains only
one group element. If we use the ElGamal KEM as IND-CPA secure KEM, the com-
munication cost of DH-based AKE schemes is only two group elements. Moreover, the
CDH-based KEM [19,20] is also used as the factoring-based thanks to the fact [22]
that the factoring assumption implies the CDH assumption on Z∗N . Hence, we can also
reduce the communication cost of factoring-based AKE schemes.

Also, the session key derivation procedure is more efficient than the FSXY construc-
tion because a KDF is used instead of a strong randomness extractor. On input a value
having sufficient min-entropy, a strong randomness extractor outputs a value which
is statistically indistinguishable from a uniformly chosen random value. Indeed, such
statistical indistinguishability is not necessary to prove security of our construction.
Computational indistinguishability is sufficient, and the KDF is suitable.

To adjust a small change of the security proof, we add a random κ bits element σ′P to
the SSK of each party.

Protocol. The protocol of our generic construction is shown in Fig. 2. We use IND-q-
CCA secure KEM (bKeyGen, bEnCap, bDeCap).

Public Parameters. Let κ be the security parameter, F : {0, 1}∗ × FS → RSE , F′ :
{0, 1}∗×FS → RSE , and G : {0, 1}∗×FS → {0, 1}κ be pseudo-random functions, where
FS is the key space of PRFs (|F S| = κ), RSE is the randomness space of encapsulation
algorithms, and RSG is the randomness space of key generation algorithms, and let
KDF : S alt×KS → FS be a KDF with a non-secret random salt s ∈ S alt, where S alt
is the salt space and KS is a space of KEM session keys. These are provided as some
of the public parameters.

Secret and Public Keys. Party UP randomly selects σP ∈R FS, σ′P ∈R {0, 1}κ and
r ∈R RSG, and runs (ekP, dkP) ← bKeyGen(1κ, r). Party UP’s SSK and SPK are
((dkP, σP, σ

′
P), ekP).

2 It is one of the most different aspects between security models for KEM and AKE. In KEM,
the simulator can embed an instance of a hard problem into the challenge ciphertext with-
out guessing because the challenge ciphertext is unique in the game. In AKE, as mentioned,
candidates of the test session are multiple and the test session is chosen from all completed
sessions.
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Common public parameter : F, F′,G, KDF, s
SSK and SPK for party UA : S S KA := (dkA, σA, σ

′
A), S PKA := ekA

SSK and SPK for party UB : S S KB := (dkB, σB, σ
′
B), S PKB := ekB

Party UA (Initiator) Party UB (Responder)

rA ∈R {0, 1}κ; r′A ∈R FS; rT A ∈R RSG

(CTA, KA)←
bEnCapekB

(FσA (rA) ⊕ F′r′A (σ′A))

(ekT , dkT )← wKeyGen(1κ, rT A)
UA,UB,CTA, ekT−−−−−−−−−−−−−−−−−→

rB ∈R {0, 1}κ; r′B ∈R FS; rT B ∈R RSE

(CTB, KB)←
bEnCapekA

(FσB (rB) ⊕ F′r′B (σ′B))
UA,UB,CTB,CTT←−−−−−−−−−−−−−−−−−− (CTT , KT )← wEnCapekT

(rT B)
KB ← bDeCapdkA

(CTB)
KT ← wDeCapdkT

(CTT ) KA ← bDeCapdkB
(CTA)

K′1 ← KDF(s, KA); K′2 ← KDF(s, KB) K′1 ← KDF(s, KA); K′2 ← KDF(s, KB)
K′3 ← KDF(s, KT ) K′3 ← KDF(s, KT )

ST := (UA,UB, ekA, ekB, ST := (UA,UB, ekA, ekB,
CTA, ekT , CTB, CTT ) CTA, ekT , CTB, CTT )

SK = GK′1 (ST) ⊕ GK′2 (ST) ⊕ GK′3 (ST) SK = GK′1 (ST) ⊕GK′2 (ST) ⊕GK′3 (ST)

Fig. 2. Our construction

Session State. The session state of a session owned by UA contains ephemeral secret
keys (rA, rT A), encapsulated KEM key KA and ad-hoc decryption key dkT . Other infor-
mation that is computed after receiving the message from the peer is immediately erased
when the session key is established. Similarly, the session state of a session owned by
UB contains ephemeral secret keys (rB, rT B) and encapsulated KEM key KB.

Security. We show the following theorem.

Theorem 1. If (bKeyGen, bEnCap, bDeCap) is IND-(� − 1)-CCA secure and κ-min-
entropy KEM, (wKeyGen,wEnCap, wDeCap) is IND-CPA secure and κ-min-entropy
KEM, F, F′,G are PRFs, and KDF is a KDF, then our construction is CK+-secure.

The proof of Theorem 1 is shown in Appendix A. Here, we give an overview of the
security proof.

The proof outline is almost same as that of the FSXY construction except the differ-
ence between the strong randomness extractor and the KDF. We have to consider the
following four exposure patterns in the CK+ security model (matching cases):

2-(c) the static secret key of the initiator and the ephemeral secret key of the responder
2-(d) both ephemeral secret keys
2-(e) both static secret keys
2-(f) the ephemeral secret key of the initiator and the static secret key of the responder
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In case 2-(c), KA is protected by the security of CTA because r′A is not revealed;
therefore, F′r′A(σ′A) is hidden and dkB is not revealed. In case 2-(d), KA and KB are pro-
tected by the security of CTA and CTB because σA and σB are not revealed; therefore,
FσA (rA) and FσB (rB) are hidden and dkA and dkB are not revealed. In case 2-(e), KT is
protected by the security of CTT because dkT and rT B are not revealed. In case 2-(f),
KB is protected by the security of CTB because r′B is not revealed; therefore, F′r′B (σ′B) is
hidden and dkA is not revealed.

We transform the CK+ security game since the session key in the test session is
randomly distributed. First, the simulator guesses the test session. The guess matches
with an adversary’s choice with probability 1/N2�. Secondly, we change part of the
twisted PRF in the test session into a random function because the key of part of the
twisted PRF is hidden from the adversary; therefore, the randomness of the protected
KEM can be randomly distributed. Thirdly, we change the protected KEM key into a
random key for each pattern; therefore, the input of KDF is randomly distributed and
has sufficient min-entropy. In this case, though the simulator is limited to pose only
� − 1 queries to the decryption oracle, it is no problem because the maximum number
of sessions for the target party is at most � − 1 except the test session. Fourthly, we
change the output of KDF into randomly chosen values. Finally, we change one of
the PRFs (corresponding to the protected KEM) into a random function. Therefore, the
session key in the test session is randomly distributed; thus, there is no advantage to the
adversary. We can show a similar proof in non-matching cases.

4 Instantiations

4.1 Diffie-Hellman-Based

We can instantiate our generic construction with IND-q-CCA secure KEM from vari-
ous assumptions: DDH-based [18], CDH-based [19,20], DBDH-based [21] and CBDH-
based [20]. The DDH-based instantiation is with the Cramer et al.’s KEM [18] as an
IND-q-CCA secure KEM, and with the ElGamal KEM as an IND-CPA KEM. The
communication cost (for two parties) is 4|p|, where |p| is the length of a group element.
The computational cost (for two parties) is 11 regular exponentiations (all symmetric
operations such as hash function/KDF/PRF and multiplications are ignored). There-
fore, our instantiation is more efficient both in communication and computation than
the DDH-based instantiation of the FSXY construction.

A disadvantage of using IND-q-CCA secure KEM is the encapsulation key size. The
Cramer et al.’s KEM needs the encapsulation key and the decapsulation key consist-
ing of O(κq2) · |p| group elements, respectively. Thus, our instantiation also needs the
EPK and SPK consisting of the same order group elements. Therefore, our instantiation
is suitable for environments that the bandwidth is constrained, but the storage size is
sufficiently large. A typical example is to use smartphones outdoors.

We show a comparison between this instantiation and previous schemes in Table 1.

4.2 Factoring-Based

Moreover, we can instantiate our generic construction with IND-q-CCA secure KEM
from the factoring assumption. We use the fact [22] that if a scheme is secure under the
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Table 1. Comparison of exposure-resilient DH-based schemes and instantiations of our
construction

Instantiations Model Assumption Computation (#parings Communication EPK
+#[multi,regular]-exp) complexity size

[9] − ROM gap DH & KEA1 0 + [2, 2] 2|p| 512 O(1) · |p|
[13] − StdM DDH & πPRF 0 + [6, 6] 9|p| 2304 O(1) · |p|
[8] Cramer-Shoup [30] StdM DDH 0 + [4, 12] 8|p| 2048 O(1) · |p|

ElGamal [31]
Ours Cramer et al. [18] StdM DDH 0 + [0, 11] 4|p| 1024 O(κ(� − 1)2) · |p|

ElGamal [31]
Ours Yamada et al. [21] StdM DDH & DBDH (2κ(� − 1)2 + 4) 4|p| 1024 O(

√
κ(� − 1)) · |p|

ElGamal [31] +[0, 10]

Table 2. Comparison of exposure-resilient factoring-based schemes and instantiations of our
construction

Instantiations Model Assumption Computation Communication EPK
(#[multi,regular]-exp) complexity size

[8] Hofheinz-Kiltz [32] StdM factoring [3, 13] 6|p| 18k O(1) · |p|
Blum-Goldwasser [33]

Ours Pereira et al. [19] StdM factoring [0, 4κ2 + 8] 4|p| 12k O(κ2(� − 1)2) · |p|
Blum-Goldwasser [33]

Ours anonymous [20] StdM factoring [0, 4κ + 8] 4|p| 12k O(κ(� − 1)2) · |p|
Blum-Goldwasser [33]

For concreteness expected communication costs for 128-bit security implementations are also given.
Note that computational costs are estimated without any pre-computation technique.

CDH assumption in Z∗N , it is also secure under the factoring assumption. Because the
CDH-based IND-q-CCA secure KEM schemes [19,20] remain the security when imple-
mented in Z∗N , we enjoy this fact to obtain factoring-based instantiations. For example,
the CDH-based instantiation is with the Pereira et al.’s KEM [19] as an IND-q-CCA
secure KEM, and with the Hofheinz-Kiltz KEM [32] as an IND-CPA KEM. The com-
munication cost (for two parties) is 6|p|, where |p| is the length of a group element.
The computational cost (for two parties) is 2 multi exponentiations and 4κ2 + 7 regular
exponentiations (all symmetric operations such as hash function/KDF/PRF and multi-
plications are ignored). Therefore, our instantiation is more efficient in communication
than the factoring-based instantiation of the FSXY construction.

We show a comparison between this instantiation and previous schemes in Table 2.

4.3 Others

Cramer et al. [18] showed that IND-q-CCA secure KEM is generically constructed
only from IND-CPA secure KEM. There have many efficient IND-CPA KEM (or PKE)
schemes based on code-based problems [34], lattice problems [35], subset-sum prob-
lems [23], and multi-variate quadratic systems [24]. Therefore, we have AKE instantia-
tions from various types of assumptions other than the DH and the factoring assumption.
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A Proof of Theorem 1

In the experiment of CK+ security, we suppose that sid∗ is the session identity for the
test session, and that there are at most N parties and at most � sessions are activated for
each party. Let κ be the security parameter, and letA be a PPT (in κ) bounded adversary.
S uc denotes the event thatAwins. We consider the following events that cover all cases
of the behavior ofA.
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– Let E1 be the event that the test session sid∗ has no matching session sid
∗
, the owner

of sid∗ is the initiator and the static secret key of the initiator is given toA.
– Let E2 be the event that the test session sid∗ has no matching session sid

∗
, the owner

of sid∗ is the initiator and the ephemeral secret key of sid∗ is given toA.
– Let E3 be the event that the test session sid∗ has no matching session sid

∗
, the owner

of sid∗ is the responder and the static secret key of the responder is given toA.
– Let E4 be the event that the test session sid∗ has no matching session sid

∗
, the owner

of sid∗ is the responder and the ephemeral secret key of sid∗ is given toA.
– Let E5 be the event that the test session sid∗ has matching session sid

∗
, and both

static secret keys of the initiator and the responder are given toA.
– Let E6 be the event that the test session sid∗ has matching session sid

∗
, and both

ephemeral secret keys of sid∗ and sid∗ are given toA.
– Let E7 be the event that the test session sid∗ has matching session sid

∗
, and the

static secret key of the owner of sid∗ and the ephemeral secret key of sid∗ are given
toA.

– Let E8 be the event that the test session sid∗ has matching session sid
∗
, and the

ephemeral secret key of sid∗ and the static secret key of the owner of sid∗ are given
toA.

To finish the proof, we investigate events Ei ∧ S uc (i = 1, . . . , 8) that cover all cases of
event S uc. In this paper, we show the proof of event E1 ∧ S uc. Other events are given
in the full version.

A.1 Event E1 ∧ Suc

We change the interface of oracle queries and the computation of the session key. These
instances are gradually changed over seven hybrid experiments, depending on specific
sub-cases. In the last hybrid experiment, the session key in the test session does not con-
tain information of the bit b. Thus, the adversary clearly only output a random guess.
We denote these hybrid experiments by H0, . . . ,H6 and the advantage of the adversary
A when participating in experiment Hi by Adv(A,Hi).

Hybrid Experiment H0: This experiment denotes the real experiment for CK+ se-
curity and in this experiment the environment forA is as defined in the protocol. Thus,
Adv(A,H0) is the same as the advantage of the real experiment.

Hybrid Experiment H1: In this experiment, if session identities in two sessions are
identical, the experiment halts.

When two ciphertexts from different randomness are identical and two public keys
from different randomness are identical, session identities in two sessions are also iden-
tical. In the IND-q-CCA secure KEM and IND-CPA secure KEM, such an event occurs
with negligible probability. Thus, |Adv(A,H1) − Adv(A,H0)| ≤ negl.

Hybrid Experiment H2: In this experiment, the experiment selects a party UA and
integer i ∈ [1, �] randomly in advance. If A poses Test query to a session except i-th
session of UA, the experiment halts.
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Since guess of the test session matches with A’s choice with probability 1/N2�,
Adv(A,H2) ≥ 1/N2� · Adv(A,H1).

Hybrid Experiment H3: In this experiment, the computation of (CT ∗A,K
∗
A) in the test

session is changed. Instead of computing (CT ∗A,K
∗
A)← bEnCapekB

(FσA (rA)⊕F′r′A (σ′A)),
it is changed as (CT ∗A,K

∗
A) ← bEnCapekB

(FσA (rA) ⊕ RF(σ′A)), where we suppose that
UB is the intended partner of UA in the test session.

We construct a distinguisherD between PRF F∗ : {0, 1}∗×FS → RSE and a random
function RF fromA in H2 or H3.D performs the following steps.

Setup. D chooses pseudo-random functions F : {0, 1}∗ ×FS → RSE and G : {0, 1}∗ ×
FS → {0, 1}k, whereFS is the key space of PRFs, and a KDF KDF : S alt×KS → FS
with a salt s ∈ S alt. Also, D embeds F∗ into F′. These are provided as a part of
the public parameters. Also, D sets all N parties’ static secret and public keys. D se-
lects σP ∈ FS, σ′P ∈ {0, 1}kappa and r ∈ RSG randomly, and runs key the genera-
tion algorithm (ekP, dkP) ← bKeyGen(1κ, r) and UP’s static secret and public keys are
((dkP, σP, σ

′
P), ekP).

Next, D sets the ephemeral public key of i-th session of UA (i.e., the test session)
as follows:D selects ephemeral secret keys r∗A ∈ FS and r∗T A ∈ RSG randomly. Then,
D poses σ′A to his oracle (i.e., F∗ or a random function RF) and obtains x ∈ RSE . D
computes (CT ∗A,K

∗
A)← bEnCapekB

(FσA (r∗A)⊕ x) and (dk∗T , ek∗T )← wKeyGen(r∗T A), and
sets the ephemeral public key (CT ∗A, ek∗T ) of i-th session of UA.

Simulation. Dmaintains the list LS K that contains queries and answers of KeyReveal.
D simulates oracle queries byA as follows.

1. Send(Π,I,UP,UP̄): If P = A and the session is i-th session of UA, D returns the
ephemeral public key (CT ∗A, ek∗T ) computed in the setup. Otherwise, D computes
the ephemeral public key (CTP, ekT ) obeying the protocol, returns it and records
(Π,UP,UP̄, (CTP, ekT )).

2. Send(Π,R,UP̄,UP, (CTP, ekT )): D computes the EPK (CTP̄,CTT ) and the ses-
sion key S K obeying the protocol, returns the ephemeral public key, and records
(Π,UP,UP̄, (CTP, ekT ), (CTP̄,CTT )) as the completed session and S K in the list
LS K .

3. Send(Π, I, UP, UP̄, (CTP, ekT ), (CTP̄, CTT )): If (Π, UP, UP̄, (CTP, ekT ), (CTP̄,
CTT )) is not recorded,D records the session (Π,UP,UP̄, (CTP, ekT ), (CTP̄,CTT ))
is not completed. Otherwise,D computes the session key S K obeying the protocol,
and records (Π,UP,UP̄, (CTP, ekT ), (CTP̄,CTT )) as the completed session and S K
in the list LS K .

4. KeyReveal(sid):
(a) If the session sid is not completed,D returns an error message.
(b) Otherwise,D returns the recorded value S K.

5. StateReveal(sid): D responds the ephemeral secret key and intermediate compu-
tation results of sid as the definition. Note that the StateReveal query is not posed
to the test session from the freshness definition.

6. Corrupt(UP):D responds the static secret key and all unerased session states of UP

as the definition.
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7. Test(sid):D responds to the query as the definition.
8. IfA outputs a guess b′ = 0,D outputs that the oracle is the PRF F∗. Otherwise,D

outputs that the oracle is a random function RF.

Analysis. For A, the simulation by D is same as the experiment H2 if the oracle is
the PRF F∗. Otherwise, the simulation byD is same as the experiment H3. Thus, if the
advantage ofD is negligible, then |Adv(A,H3) − Adv(A,H2)| ≤ negl.

Hybrid Experiment H4: In this experiment, the computation of K∗A in the test session
is changed again. Instead of computing (CT ∗A,K

∗
A)← bEnCapekB

(FσA (rA)⊕RF(σ′A)), it
is changed as choosing K∗A ← KS randomly, where we suppose that UB is the intended
partner of UA in the test session.

We construct an IND-CCA adversaryS fromA in H3 or H4. S performs the follow-
ing steps.

Init. S receives the public key ek∗ as a challenge.

Setup. S chooses pseudo-random functions F : {0, 1}∗ × FS → RSE , F′ : {0, 1}∗ ×
FS → RSE and G : {0, 1}∗ × FS → {0, 1}k, where FS is the key space of PRFs, and
a KDF KDF : S alt × KS → FS with a salt s ∈ S alt. These are provided as a part of
the public parameters. Also, S sets all N parties’ static secret and public keys except
UB. S selects σP ∈ FS, σ′P ∈ {0, 1}kappa and r ∈ RSG randomly, and runs key the
generation algorithm (ekP, dkP) ← bKeyGen(1κ, r) and UP’s static secret and public
keys are ((dkP, σP, σ

′
P), ekP).

Next, S sets ek∗ as the static public key of UB. Also, S receives the challenge
(K∗,CT ∗) from the challenger.

Simulation. S maintains the list LS K that contains queries and answers of KeyReveal.
S simulates oracle queries byA as follows.

1. Send(Π,I,UP,UP̄): If P = A and the session is i-th session of UA, S computes ek∗T
obeying the protocol and returns the ephemeral public key (CT ∗, ek∗T ). Otherwise,
S computes the ephemeral public key (CTP, ekT ) obeying the protocol, returns it
and records (Π,UP,UP̄, (CTP, ekT )).

2. Send(Π,R,UP̄,UP, (CTP, ekT )): If P̄ = B and CTP � CT ∗, S poses CTP to the de-
cryption oracle, obtains KP, computes the ephemeral public key (CTP̄,CTT ) and the
session key S K obeying the protocol, returns the ephemeral public key, and records
(Π,UP,UP̄, (CTP, ekT ), (CTP̄,CTT )) as the completed session and S K in the list
LS K . Else if P̄ = B and CTP = CT ∗, S sets KP = K∗, computes the ephemeral
public key (CTP̄,CTT ) and the session key S K obeying the protocol, returns the
ephemeral public key, and records (Π,UP,UP̄, (CTP, ekT ), (CTP̄,CTT )) as the com-
pleted session and S K in the list LS K . Otherwise, S computes the ephemeral public
key (CTP̄,CTT ) and the session key S K obeying the protocol, returns the ephemeral
public key, and records (Π, UP, UP̄, (CTP, ekT ), (CTP̄, CTT )) as the completed ses-
sion and S K in the list LS K .
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3. Send(Π, I, UP, UP̄, (CTP, ekT ), (CTP̄, CTT )): If (Π, UP, UP̄, (CTP, ekT ), (CTP̄,
CTT )) is not recorded, S records the session (Π,UP,UP̄, (CTP, ekT ), (CTP̄,CTT ))
is not completed. Else if P = A and the session is i-th session of UA, S com-
putes the session key S K obeying the protocol except that K∗A = K∗, and records
(Π,UP,UP̄, (CTP, ekT ), (CTP̄,CTT )) as the completed session and S K in the list
LS K . Otherwise, S computes the session key S K obeying the protocol, and records
(Π,UP,UP̄, (CTP, ekT ), (CTP̄,CTT )) as the completed session and S K in the list
LS K .

4. KeyReveal(sid):
(a) If the session sid is not completed, S returns an error message.
(b) Otherwise, S returns the recorded value S K.

5. StateReveal(sid): S responds the ephemeral secret key and intermediate computa-
tion results of sid as the definition. If the owner of sid is UB, S poses ciphertexts
received by UB to the decryption oracle and can simulate all intermediate compu-
tation results. Note that the StateReveal query is not posed to the test session from
the freshness definition.

6. Corrupt(UP): S responds the static secret key and all unerased session states of UP

as the definition.
7. Test(sid): S responds to the query as the definition.
8. IfA outputs a guess b′, S outputs b′.

Analysis. Smust pose ciphertexts to the decryption oracle when the receiver is UB and
sessions are not the test session. The maximum number of sessions activated with UB

is � − 1 except the test session. Thus, the number of queries to the decryption oracle is
equal or smaller than � − 1.

The simulation by S is same as the experiment H3 if the challenge is (K∗1 ,CT ∗0). Oth-
erwise, the simulation by S is same as the experiment H4. Also, both K∗A,1 in two ex-
periments have κ-min-entropy because (bKeyGen, bEnCap, bDeCap) is κ-min-entropy
KEM. Thus, if the advantage ofS is negligible, then |Adv(A,H4)−Adv(A,H3)| ≤ negl.

Hybrid Experiment H5: In this experiment, the computation of K′∗1 in the test ses-
sion is changed. Instead of computing K′∗1 ← KDF(s,K∗A), it is changed as choosing
K′∗1 ∈ FS randomly.

Since K∗A is randomly chosen in H4, it has sufficient min-entropy. Thus, by the defi-
nition of the strong randomness extractor, |Adv(A,H5) − Adv(A,H4)| ≤ negl.

Hybrid Experiment H6: In this experiment, the computation of S K in the test session
is changed. Instead of computing S K = GK′1 (ST) ⊕ GK′2 (ST) ⊕ GK′3 (ST), it is changed
as S K = x ⊕GK′2 (ST) ⊕ GK′3 (ST) where x ∈ {0, 1}κ is chosen randomly and we suppose
that UB is the intended partner of UA in the test session.

The proof of |Adv(A,H6) −Adv(A,H5)| ≤ negl is similar to that in experiment H3.
Thus, we omit it.

In H6, the session key in the test session is perfectly randomized. Thus, A cannot
obtain any advantage from Test query.

Therefore, Adv(A,H6) = 0 and Pr[E1 ∧ S uc] is negligible.
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Abstract. In a basic (t, n)-threshold secret sharing scheme the adver-
sary is passive and the security goal is to ensure that unauthorized sub-
sets do not learn any information about the secret. In this paper we
consider the case that the corrupted parties submit incorrect shares and
there are extra security goals with respect to incorrect shares. We con-
sider two such security requirements: in a (t, n)-threshold robust secret
sharing (RSS) scheme we require that the shared secret can be recovered
from the set of all n shares even if up to t of them are incorrect; and in
a (t, n)-threshold secret sharing scheme with cheating detection (SSCD)
property we require to prevent cheaters who try to make another player
reconstruct an invalid secret.

We make the following contributions. Firstly, we construct a robust
(t, n)-threshold secret sharing (RSS) scheme with the lowest known share
size for n = 2t+1. In our RSS scheme the share size is log2 s+log2

1
δ
+n

bits which is less than the share size of the best known scheme by
log2

1
δ
+ n bits. Here log2 s bits denotes secret size and δ denotes er-

ror probability in reconstructing the correct secret. We then consider the
problem of reducing the size of public information in RSS. We will moti-
vate this problem and propose a scheme that nearly halves the amount
of public information. For this we first construct a new variant of Shamir
secret sharing scheme and then modify it to provide robustness. The con-
struction achieves the least total share storage/communication among all
known threshold robust secret sharing schemes.

The final contribution of this paper is the constriction of an optimal
threshold secret sharing with cheating detection property. We propose a
scheme that achieves the lower bound on the share size of cheating de-
tection schemes, and hence is optimal. The scheme is the first to achieve
the bound without having special requirements.

1 Introduction

Secret sharing is one of the most important primitive in cryptography and in
particular distributed systems. In a (t, n)-threshold secret sharing scheme [26,1],
a dealer D distributes a secret s to n players, say P1, . . . , Pn in such a way that
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any t+1 or more players can recover the secret s, but any t or fewer players have
no information on s. A piece of information given to Pi is called a share and is
denoted by σi. The scheme is said to be perfect if no subset of t or less shares
can leak any information about the secret s, where the leakage is in information
theoretic sense and without assuming any limit on the computational resources
of the adversary. An important efficiency parameter in secret sharing scheme
is the size of shares. Let Σi be the set of possible shares for Pi. Let S be the
set of possible secrets. Then it is well known that |Σi| ≥ |S| for any perfect
(t, n)-threshold secret sharing scheme [15], i.e., log2 σi ≥ log2 s. Schemes with
log2 σi = log2 s are called ideal.

In its basic form, secret sharing assumes that the corrupted participants are
passive (or semi-honest) and follow the protocol during the reconstruction phase.
In practice however one needs to consider stronger adversaries who deviate from
the protocol, collude and submit wrong shares. There are a wide range of settings
and security requirements that address active adversaries in secret sharing. In
this paper we consider two particular formulation of security requirements for
threshold secret sharing, known as robust secret sharing [4] and secret sharing
with cheating detection [22]. In the following we briefly describe these two and
then present our contributions. A closely related problem of identifying cheaters
in secret sharing has also been studied [17,21,6,13] in the literature.

Robust Secret Sharing (RSS): In a perfect (t, n)-threshold robust secret shar-
ing scheme, in addition to the requirement of perfect threshold secret sharing it
is also required that the secret can be reconstructed with high probability from
the set of all shares, even if up to t shares are incorrect. Requiring that the set
of uncorrupted shares have sufficient information to recover the secret implies
that n− t ≥ t + 1 and so n ≥ 2t+ 1 (t ≤ n−1

2 ). When n = 2t+ 1, the number
of honest users is only one more than the colluders. It is known that in this
case colluders will always succeed with some probability and that the share size
of the users is always larger than the secret size. The extra share size is called
the share redundancy and is defined as maxi{log2 σi} − log2 s. Construction of
schemes with the lowest probability of failure and the least share redundancy
has been an active research area in recent years. The construction in [7] has
the lowest known share redundancy equal to 2 log2

1
δ + 2n bits where δ is the

probability of error in reconstructing the correct secret.
We also consider a new property for secret sharing schemes and study it for

RSS. Secret sharing schemes, including robust schemes, use some public data
during reconstruction. This public data enables users to store smaller shares.
For example in Shamir secret sharing the public data is the interpolation points
which is assigned to players individually but does not need to be made secret.
The information is used during the reconstruction. By making these points pub-
lic, the share size of the users is effectively halved. To implement such a scheme
however one needs to provide a broadcast channel or authenticated bulletin
board that will be used to make the required public data available for recon-
struction. Reducing this public data is not only important from practical view
point, but also raises interesting theoretical questions and in particular possible
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tradeoff between the amount of public and private data in various schemes. To
our knowledge this has not been considered before. We will discuss this in our
contributions.

Secret Sharing with Cheating Detection (SSCD): The goal of secret shar-
ing schemes with cheating detection property is to ensure detection of cheating
by the malicious players who aim to cheat an honest player by opening incorrect
shares and causing the honest player to reconstruct wrong secret. Specifically,
suppose that t players, say P1, . . . , Pt, want to cheat a (t + 1)th player, Pt+1,
by opening modified shares σ′

1, . . . , σ
′
t. They succeed if the secret s′ that is re-

constructed from σ′
1, . . . , σ

′
t and σt+1 is different from the original secret s. In

this case, we say that the player Pt+1 is cheated by the wrong shares σ′
1, . . . , σ

′
t.

Tompa and Woll [27] first considered this problem (see also [3,2,22]). Two dif-
ferent model exists for such a system. In the first one, known as CDV model, we
suppose that the cheaters somehow know the value of the secret s. The other
model OKS is characterized by the property that t cheaters (corrupted players)
P1, . . . , Pt does not have any idea about the secret s before they cheat Pt+1.
Ogata, Kurosawa, and Stinson showed the following tight lower bound on share
size in OKS model:

log2 σi ≥ log2 s+ log2
1

δc
, (1)

where δc denotes the cheating probability. In OKS model, the only two known
share-optimal schemes [23,22] impose restrictions on the secret set. Construction
of SSCD schemes in this model that meet the lower bound is an interesting open
problem.

1.1 Our Contribution

The contribution of this paper is three fold.

[i] A Threshold Robust Secret Sharing with the Lowest Redundancy.
We propose a new (t, n)-threshold robust secret sharing scheme that has re-
dundancy, log2

1
δ + n bits. Each user’s share consists of two field elements and

system’s public parameters, in addition to the interpolation points, consists of
two filed elements that are used to verify correctness of a reconstructed candi-
date secret. For share generation the scheme uses polynomials over finite fields,
and for reconstruction Lagrange interpolation(s) to construct a candidate secret.
The reconstruction algorithm loops over all subsets of size t+1 of n participants
and so is computationally inefficient. A similar inefficiency exists in [7], which
has had the shortest share size before this paper. It is worth noting that the best
scheme [4] with computationally efficient reconstruction has share size which is
substantially larger than our proposed scheme (see Sect. 3.3). Construction of
RSS schemes with computationally efficient reconstruction and share size similar
to ours is an interesting open question.

[ii] Reducing System’s Public Information. In polynomial based schemes
such as Shamir’s scheme, each user is associated with two pieces of information:
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one is an index/identity that can be made public, and a second that is the share
of the secret. In some cases [27] to add extra security properties, the public part
is also made private. On the other hand in some cases [14] to provide extra
properties such as robustness, the public part of the user is enlarged, and/or
the secret part of the share grows [4]. An interesting question is to what extent
private and public information associated with a user can be reduced. In this
paper we ask this question in the context of RSS and in particular our proposed
RSS scheme. We show that the public information can be nearly halved. To
achieve this we first construct a variant of Shamir secret sharing. We will then use
this scheme to construct an RSS with the same share length (for the secure part
of share) as the scheme in Sect. 3, but with the extra property that it has only
t+1 field elements for its public values. This nearly halves the amount of public
information and effectively results in the least total share storage/communication
among all known threshold robust secret sharing schemes.

[iii] Secret Sharing with Cheating Detection. The robust secret sharing
scheme in Sect. 3 builds on a secret sharing scheme with cheating detection
property.We describe the underlying scheme in Sect. 5. In the previous section we
noted the two common security models for secret sharing with cheating detection.
We evaluate security of our scheme in OKS model and show that it has the
smallest possible share size, satisfying with equality the lower bound in (1) for
such schemes. There are two other known optimal schemes [22,23] in OKS model,
both imposing restrictions on the secret set. In particular the scheme in [23]
requires that the secret set be a finite field with characteristic different from 2,
and the construction in [22] requires a number q such that q be a prime power
and q2 + q + 1 is a prime. The latter scheme also assumes that secret is chosen
with uniform distribution hence using a weaker security notion. In our scheme
secret can be from any finite field and the only requirement is that the field size
to be ≥ n which is a general requirement for all schemes. We use the strong
definition of security which requires security for any distribution on the secret
set.

1.2 Related Work

It is known that, in the range n
3 ≤ t < n

2 , robust secret sharing is possible,
but only if one admits a small but positive failure probability (denoted as δ)
in reconstructing the correct secret.The first solution to the problem of design-
ing robust secret sharing schemes with absolute correctness in reconstruction
(i.e., the error probability δ = 0) was presented by McElice and Sarwate [20],
where error correcting technique for Reed-Solomon codes are used to enhance
the original Shamir secret sharing scheme with the robustness property. Their
scheme assumes n ≥ 3t+1. Moreover, it follows immediately from the theory of
Reed-Solomon error correcting codes that the condition n ≥ 3t+ 1 (t ≤ n−1

3 ) is
also necessary for Shamir’s scheme to be robust with δ = 0. In fact, the above
is true for any (t, n)-threshold secret sharing scheme. It was shown in [16] that
a secret sharing scheme realizing an access structure Γ has robustness property
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with δ = 0 precisely when the access structure Γ satisfies a condition called Q3

[12]. A monotone access structure Γ for a set P of participants is said to satisfy
Q3 condition if A1 ∪ A2 ∪ A3 �= P for any A1, A2, A3 ∈ Γ c, where Γ c is 2P\Γ .
The (t, n)-threshold access structure satisfies Q3 precisely when n ≥ 3t+ 1.

Constructions for threshold robust secret sharing schemes with unconditional
security for n = 2t + 1 can be broadly divided into two classes. We briefly
describe the best scheme in each class. The scheme due to Cramer et al. [7]
follows the approach of [2]. It uses standard Shamir secret sharing and distributes
the shares of three field elements that are algebraically related: the dealer shares
independently the actual secret s ∈ Fq, a randomly chosen field element r ∈ Fq,
and their product ρ = s · r. The reconstructor does the following: for every
subset of t + 1 players, he reconstructs s′, r′ and ρ′ and checks if s′ · r′ = ρ′,
and halts and outputs s′ if it is the case. One can show that for any subset of
t + 1 players: if s′ �= s then s′ · r′ �= ρ′ except with probability 1/|Fq|. Thus
if 	log2 |Fq|� = k, taking into account union bound over all subsets of size t +
1, gives a robust secret sharing scheme with failure probability δ = 1

2k−n and

shares of size 3k (= k + 2 log2
1
δ + 2n) bits. Therefore the redundancy in share

size is 2 log2
1
δ + 2n. The reconstruction procedure of this scheme has running

time which is exponential in the number of players.
The second scheme is given by Cevellos, Fehr, Ostrovsky and Rabani [4], and is

based on the scheme of Rabin and Ben-Or [25]. The Share distribution algorithm
of this scheme is the same as the well-known scheme of Rabin and Ben-Or [25]
which is the standard Shamir secret sharing scheme, but enhanced by means of
an (unconditionally secure) message authentication code (MAC : M×K → T ,
M = Fq,K = Fq×Fq, and T = Fq). In particular, for every pair of players Pi and
Pj , Pi’s Shamir share si ∈ M is authenticated with an authentication tag τij ∈
T , where the corresponding authentication key kji ∈ K is given to player Pj .
Therefore, beyond the actual Shamir share, every player gets 3n field elements as
part of his share. The scheme by [4] uses a message authentication code with short
tags and keys and with the resulting weak security. The short tags and keys result
in the required saving (improvement over Rabin and Ben-Or scheme) in the share
size. The weakened security of authentication (and so higher chance of forging) is
compensated with a more sophisticated reconstruction procedure which runs in
polynomial time and results in an exponentially small failure probability. Finally
the redundancy in share size for the scheme is 3 log2

1
δ +3n log2(nλ) bits, where

λ is an independent security parameter and δ is the scheme’s error probability.
Cheating detection was first consisted by Tompa and Woll [27]. Their work

was followed by a number of authors including [3,2,22]. In OKS model, the only
two known share-optimal schemes [23,22] impose restrictions on the secret set.
Construction of SSCD schemes in this model that meet the lower bound is an
interesting open problem.

Applications. Threshold robust secret sharing schemes provide a powerful tool
for building secure and reliable distributed data storage systems. Users’ data
(files) can be broken into pieces (shares) and stored on multiple servers such
that privacy of data against servers is provided, and the system ensures recovery
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of the data when a subset of servers corrupt their stored shares, accidentally
or intentionally. In recent years, systems and architectures based on this prim-
itive have emerged [18,28,9] which shows importance of threshold robust secret
sharing in practice. Threshold robust secret sharing has also direct application
to Secure Message Transmission (SMT) [8,10,11]. In an unconditionally secure
SMT, a sender is connected to a receiver through n wires such that up to t of
which are controlled by an adversary. The goal of an SMT protocol is to ensure
that the message sent by the sender is received correctly by the receiver, and no
information about the message is leaked to the adversary. Good threshold robust
secret sharing schemes lead to good secure message transmission schemes [8,19].
Robust secret sharing schemes may also be seen as an stepping stone towards
the construction of verifiable secret sharing (VSS) schemes [5,24], in which, in
addition to the corrupted players, the dealer is dishonest and may hand out
inconsistent shares. Finally robust secret sharing is an important primitive for
secure multi-party computation.

2 Preliminaries

2.1 Robust Secret Sharing

Secret sharing schemes, that satisfy the additional property, that the secret can
be reconstructed from the set of all shares even if some players provide incorrect
shares, are called robust secret sharing schemes. In order to clearly define the
robustness property of a secret sharing, we describe a secret sharing scheme by
means of two interactive protocols, Share and Rec, where Share involves a dealer
D and n players P1, . . . , Pn, and the reconstruction protocol Rec involves the n
players and the reconstructorR, a trusted third party. The dealer is connected to
every player by a secure, untappable channel. There is also a broadcast channel
that can be used by everyone in the system. We now describe the protocols Share
and Rec. Let [n] = {1, . . . , n}.

– Share: The dealer D takes as input a secret s ∈ S, locally computes shares
σ1, . . . , σn, and for every i ∈ [n], sends the i-th share σi privately to player
Pi.

– Rec: During reconstruction, each player Pi, communicates, possibly by means
of several synchronous communication rounds1, its share σi to R. The recon-
structor uses the received shares to produce an output s′, which is supposed
to be the secret s.

Security. We now define the security goals of a (t, n)-threshold robust secret
sharing scheme. We begin by defining the adversary.

Adversarial Capability. We consider unbounded adversary. In the reconstruc-
tion phase Rec, the adversary A adaptively corrupts up to t players. The cor-
ruption can be done between communication rounds and continue as long as

1 In each round, every player Pi sends a part of its full share σi. In case, when the Rec
is single round, each player sends σi.
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the total number of corrupted players does not exceed t. Once a player Pi is
corrupted, the adversary learns Pi’s share σi, and from then on, he controls
the information that Pi send to R. By a rushing adversary we mean, in every
communication round, he can decide for every corrupted player on what this
player should send to R, depending on what he has seen so far and depending
on what the honest players have sent to R in the current round. By contrast,
a non-rushing2 adversary is one who selects the corrupted shares before the
start of each round.

Privacy. By the perfect privacy of a (t, n)-threshold RSS scheme we mean that
at the end of the share distribution protocol Share, no t players has any infor-
mation about the secret. Formally, for any subset B ⊂ {P1, . . . , Pn} of size at
most t and for every two elements s1, s2 ∈ S, we have

Prob[Secret is s1 | viewB] = Prob[Secret is s2 | viewB],

where viewB denotes the total available information for the members of B to
see. The probabilities are taken over the random coins of Share.

Robustness.We now define the (t, δ)-robustness property of an n-player robust
secret sharing scheme Π = (Share,Rec). To describe it clearly, we consider the
following game called the “robustness game”.

Robustness Game

1. Share distribution phase: The dealer D picks a secret s ∈ S, and uses
Share to compute shares σ1, . . . , σn for the n players; σi is given privately to
Pi, 1 ≤ i ≤ n.

2. Reconstruction Phase: In this phase, the adversaryA adaptively corrupts
up to t players as described above.

3. Final Phase: At the end of reconstruction phase, R has all the n shares
and at most t of them are incorrect. Based on the shares, R outputs the
secret s′. The adversary is said to win if s′ �= s.

We now define the advantage of A in the above game as

AdvRobustΠ,(t,n)(A) = Prob[s′ �= s].

Definition 1. A (t, n)-threshold robust secret sharing scheme Π = (Share,Rec)
is said to be unconditionally secure with (t, δ)-robustness property against non-
rushing adversary, if it has both perfect privacy and AdvRobustΠ,(t,n)(A) ≤ δ in the
above game.

In this paper, we present RSS schemes with single round reconstruction. The
schemes are secure against non-rushing adversary.

2 Security against non-rushing adversary makes sense in a communication model en-
hanced with a simultaneous broadcast channel, i.e., one by means of which all players
broadcast their information at the same time.
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2.2 Lagrange Interpolation

Let t be a positive integer and F be a field. Given any t+1 pairs of field elements
(x1, y1), . . . , (xt+1, yt+1) with the xi’s distinct, there exists a unique polynomial
f(x) ∈ F[x] of degree at most t such that f(xi) = yi for 1 ≤ i ≤ t + 1. The
polynomial can be obtained using the Lagrange interpolation formula as follows,

f(x) = y1λ
A
x1
(x) + · · ·+ yt+1λ

A
xt+1

(x), (2)

where A = {x1, . . . , xt+1} and λA
xi
(x)’s are Lagrange basis polynomials, given by

λA
xi
(x) =

∏
1≤j≤t+1,j �=i(x − xj)∏
1≤j≤t+1,j �=i(xi − xj)

.

To simplify the notation, we write λxi(x) for λ
A
xi
(x) when the description of the

set A is clear from the context. We define Lagrange coefficients as λxi = λxi(0).

Therefore, from equation (2) we have f(0) =
∑t+1

i=1 yiλxi . One may also note

that
∑t+1

i=1 λxi = 1.

2.3 Shamir Secret Sharing

Let f(x) = s + a1x + · · · + atx
t. The secret is f(0) = s. Player Pi will receive

an ordered pair (αi, f(αi)). It is easy to show that this is a threshold scheme,
since for any t+ 1 participants, there is only one polynomial of degree at most
t passing through their t+ 1 points. Also it is a perfect threshold scheme since
for any t points and any point (0, s′), there is a unique polynomial of degree at
most t passing through their t points and (0, s′). The scheme becomes ideal if the
values {αi}ni=1 are publicly revealed (the values does not yield any information
about s) so that the share of player Pi is just the value f(αi).

3 The New Scheme: RSSS-Basic

We noted that in the scheme in [7], the relation ρ = s · r is formed and ρ, r
and s individually shared. Our first observation is that in [7] one only needs
to distribute (Shamir secret sharing) shares of s and r and make ρ the public
parameter. We note that, knowledge of ρ and t shares does not reveal any in-
formation about the secret and so this appears as a promising approach. This
approach however does not guarantee the required robustness. Following this
direction, we use the Rabin and Ben-Or’s Information Checking [25] vectors3

(relation) and construct an efficient RSS with unconditional security. We now
describe our scheme.

3 Information Checking Vector (α, β): Let s ∈ Fq. Let α �= 0 and y be randomly chosen
from Fq and β = s+ αy. Then the tuple (α, β) will reveal no information about s.
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We have a group of n players {P1, . . . , Pn}. Let t and n are positive integers
such that n = 2t+ 1. We fix a finite field Fq with q > n, and n distinct points,
α1, . . . , αn ∈ Fq, known to all players. We now present a (t, n)-threshold robust
secret sharing scheme.

– Share: On input a secret s ∈ Fq, the share generation algorithm Share outputs
a list of shares as follows:
• The dealer D chooses random r,X(�= 0) ∈ Fq with uniform distribution
and computes Y = s+Xr.

• D chooses t random elements f1, . . . , ft from Fq independently with uni-
form distribution. These random elements together with s define a poly-
nomial f(x) = s+

∑t
i=1 fix

i. D then computes si = f(αi) for all i ∈ [n].
• D also picks t random elements g1, . . . , gt ∈ Fq independently with uni-
form distribution. These random elements together with r define a poly-
nomial g(x) = r+

∑t
i=1 gix

i. D then computes ri = g(αi) for all i ∈ [n].
• Every player Pi gets his/her share σi = (si, ri). The tuple (X,Y ) is part
of system’s public parameters.

– Rec: The secret reconstruction algorithm Rec outputs the secret as follows:
• Every player sends (s′i, r

′
i) to the reconstructor R. Therefore, R receives

n shares, at most t of which are possibly incorrect.
• To reconstruct the secret, R does the following for every subset of t+ 1
players {Pi1 , . . . , Pit+1}:
∗ Computes, s′ =

∑t+1
j=1 λij s

′
ij

and r′ =
∑t+1

j=1 λij r
′
ij

(Lagrange inter-

polation).
∗ Checks, if Y = s′ +Xr′.
∗ If yes, R then outputs the secret as s′.

3.1 Privacy

The following theorem shows, that no t players has any information about the
secret.

Theorem 1. For any subset B ⊂ {P1, . . . , Pn} of size t and its viewB

Prob[Secret is s1 | viewB] = Prob[Secret is s2 | viewB],

for all s1, s2 ∈ Fq, where viewB denotes the elements, that the members of B
see: viewB = (X,Y, {(si, ri)Pi∈B}).

Proof: Without loss of generality, let B = {P1, . . . , Pt}. Then viewB

= (X,Y, {(si, ri)ti=1}). For every choice of s ∈ Fq for secret, we have: a unique
value for r = X−1 · (Y − s), a unique polynomial f of degree at most t such that
f(0) = s; f(αi) = si for 1 ≤ i ≤ t, and a unique polynomial g of degree at most
t such that g(0) = r; g(αi) = ri for 1 ≤ i ≤ t. As the set of actual unknowns
were chosen independently with uniform distribution, hence, for every s ∈ Fq,
Pr[s is secret | (si, ri)Pi∈B] =

1
q2t+1 . Since the probability is the same for every

s ∈ Fq, the privacy follows.
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3.2 Robustness

Theorem 2. Let Fq be any finite field with q elements. Let k = 	log2 q�. Then
for any positive integers n, t with n = 2t+ 1, q > n, and secret space Fq, RSSS-
Basic forms an unconditional secure (t, n)-threshold robust secret sharing scheme
with (t, δ) robustness against non-rushing adversary such that

δ ≤ 1

2k−n
.

Proof: Consider an arbitrary set A of t+1 shares revealed in the reconstruction
phase. If A consists exclusively of shares of honest players, then the secret s′

reconstructed by R would certainly be the correct secret s. Else, either a failure
would be detected, or an incorrect secret s′ �= s is accepted based on the shares
in A. We now compute the probability for the case when s′ �= s but Y = s′+Xr′.
Let s′ = s+ εs and r′ = r+ εr. The value s

′ is accepted for the secret if and only
if the corrupted shares in A leads to a pair (εs, εr) ∈ Fq×Fq such that εs �= 0 and
Y = (s+εs)+X(r+εr). But Y = (s+εs)+X(r+εr) = s+Xr+εs+Xεr implies
εs +Xεr = 0. Thus we see that, for every (εs, εr) ∈ Fq × Fq with εs �= 0, there
is a unique value of εr = −X−1εs (X �= 0) such that Y = (s + εs) +X(r + εr).
Hence, for any set of t+1 shares containing at most t corrupted shares, a wrong
secret is accepted with probability at most 1

q . Therefore, taking into account, the
union bound of probabilities over all subsets of size t+1, the probability that an
incorrect secret is accepted in the reconstruction process is at most 2n

q = 1
2k−n .

3.3 Efficiency Comparison

Set the secret space S = Fq. We now compare the share efficiency of our construc-
tion with the schemes of [7,4]. One may note that, for all the three schemes, the
error probability δ is determined directly by the cardinality of the secret space.
For our construction and [7], we have δ = 2n

|Fq| , i.e., log2
1
δ + n = log2 |Fq|.

For [4], δ is dictated by |Fq| and an independent parameter λ4; specifically
δ = 1

2n
log2 |Fq|

λ
−n log2(n·λ)

(improved error probability over the other two schemes).

We set k = 	log2 |Fq|� (in bits). The following table exhibit the individual share
redundancy (in bits).

Table 1. Comparison Table

Scheme Secret size Redundancy δ Rec Complexity

[7] k 2(log2
1
δ
+ n) 2−(k−n) exp(n)

[4] k 3 log2
1
δ + 3n log2(nλ) 2

−(n k
λ
−n log2(n·λ)) poly(n)

RSSS-Basic k log2
1
δ
+ n 2−(k−n) exp(n)

4 In [4], each player gets n tags and n keys beside the actual share. The length of
tags and keys are determined by MAC : Fq × (Fq/2

λ)2 → Fq/2
λ. The tag space

T = Fq/2
λ and key space K = (Fq/2

λ)2. Therefore, the share size redundancy is

3n
log2 |Fq |

λ
= 3 log2

1
δ
+ 3n log2(nλ) bits.
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4 Robust Secret Sharing with Savings on Public Data

In a secret sharing scheme shares carry information about the secret and need
to be securely stored and so the share size is the main efficiency parameter of
a secret sharing scheme. For reconstruction, secret sharing schemes may also
use some public values associated with each player. For example in Shamir’s
secret sharing each user has an associated field element αi ∈ Fq. The share
of the player is f(αi) which is securely stored by the user. The reconstruction
needs the tuple (αi, f(αi)). The value αi can be stored publicly and so is not
considered in measuring share efficiency of schemes. This means without extra
setup assumptions such as existence of a public bulletin board that allows access
to the non-sensitive part of the secret when needed, for a log2 |Fq| bit secret
in Shamir’s scheme, 2 log2 |Fq| bits need to be stored and presented at the re-
construction time. Taking into account the interpolation points, for the robust
secret sharing scheme in Section 3, a user’s storage is essentially 3 log2 |Fq| bits
and therefore the total communication5 during reconstruction is 3n log2 |Fq| bits.
An interesting question is if the total share storage can be reduced.

In the following we present a threshold robust secret sharing for n = 2t + 1
with the property that we can save on t interpolation points. This is the least
total share storage/communication among all known threshold robust secret
sharing schemes.The scheme follows the approach of RSSS-Basic, in achieving
robustness, but replaces the Shamir secret sharing with a new ideal polynomial
based secret sharing that allows us to reduce the public values. We begin by first
describing our variant of Shamir’s scheme.

4.1 A Variant of Shamir Secret Sharing

We have a group of n players {P1, . . . , Pn}. Let t be a positive integer such that
1 ≤ t ≤ n. We fix a prime q > n, and n distinct points, α1, . . . , αn ∈ Fq, known
to all players. We now present a (t, n)-threshold secret sharing scheme.

– Share: On input a secret s ∈ Fq, the share generation algorithm Share outputs
a list of shares as follows:

• The dealerD chooses t random elements f1, . . . , ft from Fq independently
with uniform distribution. These random elements together with s define
a polynomial f(x) = s+

∑t
i=1 fix

i. D then computes si = f(αi) for all
i ∈ [n].

• He then computes σi = s+ αisi for all i ∈ [n].

• For every i ∈ [n], the dealer sends to player Pi the share σi.

– Rec: Any t+1 players {Pi1 , . . . , Pit+1} with their shares {σi1 , . . . , σit+1}, com-

pute the secret as follows: s =
(
λi1

∏
j �=1 αij

+ · · ·+ λit+1

∏
j �=t+1 αij

+
∏t+1

j=1 αij

)−1 ·(
λi1

∏
j �=1 αij

σi1 + · · ·+ λit+1

∏
j �=t+1 αij

σit+1

)
.

5 We are not counting the information which is same for all the players, like the
threshold parameter or the description of the underlying field.
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4.2 Correctness

The correctness of the scheme requires that any t+1 correct shares would output
the original secret.

λi1

∏
j �=1

αijσi1 + · · ·+ λit+1

∏
j �=t+1

αijσit+1

= λi1

∏
j �=1

αij (s+ αi1si1) + · · ·+ λit+1

∏
j �=t+1

αij (s+ αit+1sit+1)

= s(λi1

∏
j �=1

αij + · · ·+ λit+1

∏
j �=t+1

αij ) +

t+1∏
j=1

αij (

t+1∑
j=1

λijsij )

= s(λi1

∏
j �=1

αij + · · ·+ λit+1

∏
j �=t+1

αij ) +

t+1∏
j=1

αijs

= s(λi1

∏
j �=1

αij + · · ·+ λit+1

∏
j �=t+1

αij +

t+1∏
j=1

αij ).

Remark 1. In the scheme, a user’s share is σi = s + αisi, where {α1, . . . , αn}
denotes the interpolation points. We observe that, correctness will still holds if
a user’s share is computed as follows: (βi, σi = s + βisi) for 1 ≤ i ≤ n, where
{β1, . . . , βn} are random field elements and the interpolation points {α1, . . . , αn}
are kept public as usual. This fact would help us derive the correctness of our
robust secret sharing scheme in the next section.

4.3 Privacy

The privacy of the scheme follows as a special case of the privacy of infor-
mation checking procedure from [25]. We first prove the following lemma for
completeness.

Lemma 1. ([25]) Let s ∈ Fq be the secret. Let random elements α �= 0 and y are
chosen from Fq independently with uniform distribution. Compute β = s + αy.
Then the tuple (α, β) will reveal no information about s.

Proof: Note that for every value of s in Fq, there exists a unique value for y in Fq,
namely y = α−1(β−s), such that β = s+αy. Therefore, Prob[secret is s | (α, β)]
= Prob[y = α−1(β − s) is chosen] = 1

|Fq| . Thus (α, β) gives no information

about s.
Rabin and Ben-Or [25] observed that, the above lemma immediately general-

izes to the following. For a secret s ∈ Fq, any positive integer �, and α1, . . . , α� ∈
Fq\{0} choose random elements y1, . . . , y� ∈ Fq independently with uniform dis-
tribution. Compute βi = s+ αiyi for 1 ≤ i ≤ �. Then the tuples {(αi, βi)}1≤i≤�

will reveal no information about s. We know that for Shamir secret sharing
scheme, any t shares are independent from the secret s. Thus for any t Shamir
shares (si1 , . . . , sit), the values σij = s+αijsij , 1 ≤ j ≤ t will give no information
about the secret s. This shows the perfect privacy of the above scheme.
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4.4 The New Scheme: RSSS

Let Fq be a field. Let t and n are positive integers such that n = 2t+1. We now
present an n-player robust secret sharing scheme.

– Share: On input a secret s ∈ Fq, the share generation algorithm Share outputs
a list of shares as follows:
• The dealer D chooses random r,X(�= 0) ∈ Fq with uniform distribution
and computes Y = s+Xr.

• The dealer chooses two sets of random t points s1, . . . , st and r1, . . . , rt
from Fq independently with uniform distribution.

• It then computes unique set of t points α1, . . . , αt, where αi = ris
−1
i ,

1 ≤ i ≤ t.
• The dealer D then interpolates the unique polynomial f of degree at
most t such that f(0) = s and f(αi) = si for all 1 ≤ i ≤ t. The dealer
also interpolates the unique polynomial g of degree at most t such that
g(0) = r and g(αi) = ri for all 1 ≤ i ≤ t.

• D picks t+1 random points βt+1, . . . , βn ∈ Fq with uniform distribution,
and also sets βi = αi for 1 ≤ i ≤ t.

• It then computes si = f(βi) for t+1 ≤ i ≤ n, ri = g(βi) for t+1 ≤ i ≤ n,
and αi = ris

−1
i for t+ 1 ≤ i ≤ n.

• The dealer finally computes σi = s+ ri for all i ∈ [n]. Every participant
Pi will receive an ordered pair (σi, αi). The tuple (X,Y ) along with t+1
points βt+1, . . . , βn are part of system’s public parameters (Note that
the players {P1, . . . , Pt} have interpolation points βi = αi, 1 ≤ i ≤ t,
respectively).

– Rec: The secret reconstruction algorithm Rec outputs the secret as follows:
• Every player sends their share (σ′

i, α
′
i) to the reconstructor R.

• To reconstruct the secret, R does the following for every subset of t+ 1
players {Pi1 , . . . , Pit+1}:
∗ R computes, s′ =

(
λi1

∏
j �=1 α′

ij
+ · · · + λit+1

∏
j �=t+1 α′

ij
+

∏t+1
j=1 α′

ij

)−1 ·(
λi1

∏
j �=1 α′

ij
σ′
i1

+ · · · + λit+1

∏
j �=t+1 α′

ij
σ′
it+1

)
.

∗ It then computes r′ij = σ′
ij
− s′ for all 1 ≤ j ≤ t+ 1.

∗ It computes r′ =
∑t+1

j=1 λij rij and checks if Y = s′ +Xr′.
∗ If yes, then R outputs the secret as s′.

4.5 Correctness and Efficiency

During the reconstruction, if the t + 1 shares (σ′
ij
, α′

ij
)’s are all correct i.e.,

(σ′
ij
, α′

ij
) = (σij , αij ) for all 1 ≤ j ≤ t + 1, then s′ = s, the correct secret.

This follows immediately from Remark 1 in Sect. 4.2. We now give a table to
summarize the efficiency of the scheme.
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Table 2. Comparison Table

Scheme Redundancy Rec Complexity δ Saving on Interpolation Pts

[7] 2(log2
1
δ
+ n) exp(n) 2−(k−n) -

[4] 3 log2
1
δ + 3n log2(nλ) poly(n) 2−(n k

λ
−n log(n·λ)) -

RSSS log2
1
δ
+ n exp(n) 2−(k−n) t

4.6 Privacy

The following theorem shows, that any t players get no information about the
secret.

Theorem 3. For any subset B ⊂ {P1, . . . , Pn} of size t and its viewB

Prob[Secret is s1 | viewB] = Prob[Secret is s2 | viewB],

for all s1, s2 ∈ Fq, where viewB denotes the elements, that the members of B
see: viewB = (X,Y, {(σi, αi)Pi∈B}).

Proof: Consider any set B = {Pi1 , . . . , Pit} of t players. Therefore, we have viewB

= (X,Y, {(σij , αij )
t
j=1}). For every choice of s ∈ Fq for secret, we have: unique

values for r = X−1 · (Y − s); rij = σij − s, 1 ≤ j ≤ t; sij = α−1
ij

· (σij − s) =

α−1
ij

· rij , 1 ≤ j ≤ t, a unique polynomial f of degree at most t satisfying

f(0) = s; f(βij ) = sij for 1 ≤ j ≤ t, and a unique polynomial g of degree at
most t such that g(0) = r; g(βij ) = rij for 1 ≤ j ≤ t. Therefore, the t players in
B cannot rule out any element of Fq as a possibility for secret. This shows that
viewB does not contain any information about the original secret.

4.7 Robustness

One may note that, both the schemes, RSSS-Basic and RSSS are similar. The
later scheme achieves some advantage due to the restructuring of the former.
In the previous section, we proved, the restructuring did not affect the privacy
of the scheme and therefore the robustness property of RSSS remain the same
as for RSSS-Basic. For completeness, we now state the theorem. The proof is
similar to RSSS-Basic.

Theorem 4. Let Fq be any finite field with q elements. Let k = 	log2 q�. Then
for any positive integers n, t with n = 2t+ 1, q > n, and secret space Fq, RSSS
forms an unconditional secure (t, n)-threshold robust secret sharing scheme with
(t, δ) robustness against non-rushing adversary such that

δ ≤ 1

2k−n
.
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5 Secret Sharing with Cheating Detection

Tompa and Woll [27] introduced the problem of cheating detection in secret
sharing. Suppose that, in a (t, n) threshold secret sharing scheme, t players, say
P1, . . . , Pt, want to cheat a (t + 1)th player, Pt+1, by opening modified shares
σ′
1, . . . , σ

′
t. They succeed if the secret s′ that is reconstructed from σ′

1, . . . , σ
′
t and

σt+1 is different from the original secret s (see Section 2.1 of [22] for a thorough
definition). There are two different models, CDV and OKS, for secret sharing
schemes capable of detecting such cheating. The CDV model is characterized by
the property that t cheaters (corrupted players) P1, . . . , Pt somehow know the
secret s before they cheat Pt+1, whereas in OKS model, they does not have any
idea about the secret. In [22], a lower bound on share size has been derived for
secret sharing schemes with cheating detection property in OKS model; log2 σi ≥
log2 s + log2

1
δc
, where δc is the cheating probability. Therefore, in the above

model, the redundancy in share size is at least log2
1
δc
.

One may easily note that our robust secret sharing scheme RSSS-Basic in
Section 3 is build upon a secret sharing scheme with cheating detection property.
We see that the share size, for the underlying secret sharing scheme with the
property of cheating detection, meets the lower bound of [22]. We observe that
this is the first such scheme. To the best of our knowledge, there exists two
schemes [22,23] in the literature that satisfy the above lower bound, but both
the schemes admit some limitations whereas our scheme is free from any such
limitation. In particular, the scheme of [23] requires that the secret should lie
in a field whose characteristic is different from 2, and the construction of [22]
requires a number q such that q be a prime power and q2 + q + 1 is also prime.
The latter scheme also assumes that secret is chosen with uniform distribution
and so effectively has a weaker security notion. In our scheme secret can be from
any filed and only requires the field size to be ≥ n. This is a general restriction
on all scheme. We use the strong definition of security which requires security
for any distribution on the secret set. For completeness, we now describe our
scheme.

5.1 The Scheme

We have a group of n players {P1, . . . , Pn}. Let t be a positive integer such
that 1 ≤ t ≤ n. We fix a prime q > n, and n distinct points, α1, . . . , αn ∈ Fq,
known to all players. We now present a (t, n)-threshold secret sharing scheme
with cheating detection property.

– Share: On input a secret s ∈ Fq, the share generation algorithm Share outputs
a list of shares as follows:
• The dealer D chooses random r,X(�= 0) ∈ Fq with uniform distribution
and computes Y = s+Xr.

• The dealerD chooses t random elements f1, . . . , ft from Fq independently
with uniform distribution. These random elements together with s define
a polynomial f(x) = s+

∑t
i=1 fix

i. D then computes si = f(αi) for all
i ∈ [n].
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• D also chooses t random elements g1, . . . , gt from Fq independently with
uniform distribution. These random elements together with r define a
polynomial g(x) = r +

∑t
i=1 gix

i. D then computes ri = g(αi) for all
i ∈ [n].

• Every participant Pi will receive its share σi = (si, ri).
• The tuple (X,Y ) is part of system’s public parameters.

– Rec: Any qualified set of players (t + 1 players) {Pi1 , . . . , Pit+1} will recon-
struct the secret as follows.
• They obtain s =

∑t+1
j=1 λijsij and r =

∑t+1
j=1 λij rij from their shares.

• If Y = s+Xr, they take s as the correct value of the secret.

5.2 Security and Share Size Efficiency

The privacy of the scheme follows from Theorem 1. The cheating probability of
the above scheme follows from Theorem 2, in particular the cheating probability
δc is 1

q = 1
2k and it holds for arbitrary distribution on the secret space. The

individual share size of each player is log2 σi = 2k = log2 s+ log2
1
δc
. Therefore

this scheme meets the lower bound of [22] in the OKS model. One may also note
that, a secret sharing scheme with cheating detection property can also extracted
from RSSS with the added property of saving t interpolation points.

Acknowledgments. The authors would like to thank Pengwei Wang for use-
ful discussions. The Authors would also like to thank the reviewers for their
comments.
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Abstract. In this paper, we study the fixed-point scalar multiplication
operation on elliptic curves in the context of embedded devices prone
to physical attacks. We propose efficient algorithms based on Yao and
BGMW algorithms that are suited for embedded computing, with var-
ious storage-efficiency trade-offs. In particular, we study their security
towards side-channel and fault analysis and propose a set of low-cost yet
efficient countermeasures against these attacks.

Keywords: elliptic curve cryptography, scalar multiplication, embed-
ded devices, side-channel analysis, fault analysis.

1 Introduction

Elliptic Curve Cryptography (ECC) is involved in many cryptographic protocols
for signature (ECDSA), key exchange (ECDH), encryption (ECIES), etc. These
protocols are used in many applications such as payment, pay-TV, transport
and identity. It is thus of strong interest for the industry to improve the compu-
tation efficiency of the point scalar multiplication — the most time-consuming
operation in ECC protocols.

Implementations must withstand Side-Channel Analysis (SCA) and Fault
Analysis (FA). In general, the Simple Side-Channel Analysis (SSCA) operates
the secret recovery through a single side-channel execution trace. Alternatively,
Advanced Side-Channel Analysis (ASCA) uses multiple traces and associated
data (messages, ciphertexts...) to recover the secret value through statistical
processing [27]. On the other hand, FA consists in perturbing the chip activity
and infer information from the possibly faulty results returned by the device [9].

The fixed base-point property of protocols relying on ElGamal or Diffie-
Hellman schemes can be exploited to speed up the scalar multiplication com-
putation. For instance, an ECDSA signature generation requires a single scalar
multiplication involving a fixed base point. Yao and Pippenger showed first that

� This work was initiated when both authors were with Inside Secure.
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values depending on the generator only can be precomputed to save computa-
tions during a group exponentiation or scalar multiplication [5,34].

Subsequent works have improved these methods to fit implementers needs.
First, Brickell, Gordon, McCurley, and Wilson have proposed a method based
on Yao’s algorithm, often referred to as BGMW algorithm [11]. In an other direc-
tion, Lim and Lee presented a fixed-base comb technique [28], later improved by
Tsaur and Chou [32] and by Mohamed, Hashim, and Hutter [29] in the context
of elliptic curve cryptography.

In this paper, we study how simple algorithms inspired by Yao’s method can be
protected against physical attacks, including SSCA, ASCA and FA. All of them
are suited to the context of embedded devices, since nowadays microprocessors
have storage capabilities from many hundreds of kilobytes to a few megabytes,
which was not the case a decade ago. Moreover, our methods are designed to
ensure reasonable RAM requirements, they are thus very practical on embed-
ded devices. In particular, we show that the point additions performed in our
algorithms can be computed in a random sequence, hence providing a novel and
cheap countermeasure. In addition, internal point blinding can be applied for a
negligible extra cost. Finally, we propose an adaptation of a FA countermeasure
proposed by Boscher, Naciri and Prouff [10] and improved by Baek [3] and Joye
and Karroumi [26].

Roadmap. The paper is organized as follows. Section 2 reminds the reader of
the necessary background on elliptic curve scalar multiplication and embedded
security. In Section 3 we present fast fixed-point scalar multiplication algorithms
and compare their cost with classical methods. In Section 4 we devise side-
channel and fault analysis countermeasures for our algorithms. We also discuss
their cost and compare the performances obtained with our techniques with
classical ones. Finally we conclude our paper in Section 5.

2 Scalar Multiplication Background

2.1 Elliptic Curves Background

We focus on general elliptic curves defined over fields of large characteristic as
they are the most used in practice. However, most of our study applies also to
curves of specific shape such as Montgomery and Edwards curves, or to elliptic
curves defined over binary fields.

An elliptic curve over a field Fq of characteristic greater than 3 is defined by
an affine equation of the form:

y2 = x3 + ax+ b (1)

where a, b are elements of Fq such that 4a3 + 27b2 �= 0.
The set of the affine points of E with coordinates in Fq, together with the point

at infinity O is denoted E(Fq). It has an abelian group structure considering
the well-known chord and tangent group law denoted [+]. The addition of two
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same points is generally computed using a specific doubling formula and is thus
denoted P [+]P = [2]P in the following.

Homogeneous (H) and Jacobian (J ) projective coordinates are generally used
to implement elliptic curve arithmetic to avoid the costly field inversion of affine
(A) point addition formulas. Jacobian coordinates offer a faster doubling than
homogeneous coordinates, but the addition is more expensive.

Table 1 recalls the cost of additions, mixed affine-projective additions and
doublings using homogeneous projective coordinates and Jacobian projective
coordinates on prime fields of large characteristic [6]. Throughout the rest of
this paper, M denotes the cost of a field multiplication, S the cost of a field
squaring and A the cost of a field addition or subtraction.

Table 1. Cost of point operation in homogeneous and Jacobian coordinates over large-
characteristic fields

Operation Cost

H ← H [+]H 12M + 2S + 7A

H ← H [+]A 9M + 2S + 7A

H ← [2]H 6M + 6S + 12A

H ← [2]H (a = −3) 7M + 3S + 11A

Operation Cost

J ← J [+]J 11M + 5S + 13A

J ← J [+]A 7M + 4S + 14A

J ← [2]J 2M + 8S + 17A

J ← [2]J (a = −3) 3M + 5S + 18A

2.2 Scalar Multiplication

The addition of a point P to itself d times is called the scalar multiplication of
P by d and denoted [d]P . A well-known method to compute the scalar mul-
tiplication is the double-and-add algorithm. Considering (d�−1d�−2 . . . d0)2, the
binary representation of d, the right-to-left version of this method relies on the
following decomposition:

[d]P =
�−1∑
i=0

di
[
2i
]
P (2)

We focus in this study on the right-to-left version of this algorithm on which
Yao’s algorithm is based, whereas fixed-base comb algorithms are based on its
left-to-right counterpart. This algorithm requires on average � doublings and �/2
point additions.

Because a point addition P [+]Q and a subtraction P [−]Q have the same
cost in E(Fq), a common option to speed up the scalar multiplication consists in
using a signed representation in order to decrease the number of additions to be
computed.

A base b signed representation of k is (k�b−1k�b−2 . . . k0) such that:

k =

�b−1∑
i=0

kib
i with |ki| < b (3)



200 B. Feix and V. Verneuil

Among them the binary Non-Adjacent Form (NAF) is defined as follows. The
NAF representation of a positive non-zero integer k is (k�−1k�−2 . . . k0)NAF with
ki ∈ {−1, 0, 1}, 0 ≤ i < �− 1 and k�−1 = 1, such that for all pairs of consecutive
digits, at least one of them is zero. As a consequence, the number of non-zero
digits of �-digit NAF representations is approximately �/3.

The right-to-left double-and-add scalar multiplication algorithm using the
NAF representation is presented in Alg. 2.1. Compared to the binary algorithm,
it requires only � doublings and �/3 point additions on average, thus saving �/6
point additions.

Alg. 2.1. Right-to-left NAF double-and-add scalar multiplication

Input: P ∈ E(Fq), �-NAF-digit scalar d = (d�−1d�−2 . . . d0)NAF

Output: Q = [d]P
1: Q ← O
2: R ← P
3: for i = 0 to �− 1 do
4: if di = 1 then
5: Q ← Q [+]R

6: if di = −1 then
7: Q ← Q [−]R

8: R ← [2]R

9: return Q

Remark. For a sake of simplicity, the binary length of d and the length of its
signed representation — which may differ by 1 — are both denoted � through
the rest of this paper.

2.3 Side-Channel Analysis and Countermeasures

Countering SSCA on scalar multiplication can be achieved using regular imple-
mentations [25]. Considering ASCA, most countermeasures stem from Coron’s
propositions [14]: scalar blinding, projective coordinates randomization and in-
put point blinding. Among them, the multiplicative blinding of the projective
coordinates requires the lowest computational overhead but does not protect
against chosen input-point attacks [19,1]. It is then necessary to use extra coun-
termeasures such as additive point randomization [14,1] or scalar blinding, which
are much more expensive.

Another category of attacks inspired by the Big Mac attack from Walter [33]
has been recently extended to several other attacks referred to as horizontal
techniques [13,4]. They are more difficult to mount in practice than classical
ASCA but necessitate only one side-channel trace, contrary to classical ASCA.

To thwart FA on scalar multiplication, Biehl, Meyer, and Müller proposed
that implementations verify that the output point of a computation belongs to
the curve [7]. Ciet and Joye advise to check the curves parameters also [12].
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Nevertheless Blömer, Otto, and Seifert have proven that such countermeasures
are circumvented by a so-called sign change attack which takes advantage of
the signed NAF representation [8]. To provide a robust protection against fault
attacks, self-secure algorithms [18,10,3,26] detect a fault injected during the
execution of the scalar multiplication by checking an invariant property on the
manipulated variables during or at the end of the computation.

Recently, Fan, Gierlichs, and Vercauteren presented a combined FA and
SSCA [16]. A well-chosen input point and a single fault injection lead to the
manipulation of the point at infinity during the scalar multiplication, which can
be observed by SSCA. Input point blinding is thus necessary to thwart this
attack.

2.4 Fixed-Point Scalar Multiplication Methods

Assuming that (dv−1dv−2 . . . d0)h is the base-h representation of d, the BGMW
[11] algorithm relies on the following decomposition:

[d]P =

h−1∑
i=1

i
∑
dj=i

[
hj
]
P (4)

If all
[
hj
]
P , such that 0 ≤ j ≤ v − 1, are precomputed, Alg. 2.2 computes [d]P

using in average v(h− 1)/h− 1 point additions1 in the inner loop (step 5) and
h− 2 additions in the main loop (step 6).

Alg. 2.2. BGMW fixed-point scalar multiplication

Input: P ∈ E(Fq), d = (dv−1dv−2 . . . d0)h,
{
Pj =

[
hj

]
P, for j ∈ [0, v − 1]

}
Output: Q = [d]P
1: Q,R ← O
2: for i = h− 1 to 1 by −1 do
3: for j = 0 to v − 1 do
4: if dj = i then
5: Q ← Q [+]Pj

6: R ← R [+]Q

7: return R

Other fixed-point scalar multiplication techniques are generally derived from
the Lim and Lee comb method [28] which uses more precomputations but pro-
vides a better efficiency. For instance, Tsaur and Chou [32] and Mohamed et
al. [29] improve this method by using signed representations. Besides, Hedabou,
Pinel and Bénéteau [21] show that comb algorithms can be rendered regular
to counter SSCA by recoding the scalar and propose a point blinding method
against ASCA. Unfortunately, this method does not allow to refresh the blinding

1 The initial point addition with O is free.
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point without recomputing the whole array of precomputed points, which is an
issue in practice. Finally, we are not aware of any work addressing the protection
of these algorithms against FA.

3 Revisiting the BGMW Algorithm

Following Brickell et al. observation [11], the sequence of intermediate results
stored in R in Alg. 2.1 does not depend on the scalar:

R ← P ← [2]P ← · · · ←
[
2�−1

]
P

We propose in this section to rewrite the BGMW algorithm to make use of signed
representations of the scalar and benefit of the lower number of non-zero digits
thereof.

3.1 NAF Scalar Multiplication

Let T refer to an �-point pre-computation table such that:

Ti =
[
2i
]
P with 0 ≤ i ≤ �− 1

With di the binary or NAF digits of d, the scalar multiplication can then be
written as:

[d]P =
�−1∑
i=0

[di]Ti

In this manner, the computation complexity drops to �/3 point additions, see
below Alg. 3.1. On the other hand, 2(�− 1) ��/8� bytes in memory are required
if the additional �− 1 points are stored in affine coordinates.

Alg. 3.1. Add-only NAF scalar multiplication using precomputations

Input: P ∈ E(Fq), �-NAF-digit scalar d = (d�−1d�−2 . . . d0)NAF, T =
([
2i
]
P
)
0≤i≤�−1

Output: Q = [d]P
1: Q ← O
2: for i = 0 to �− 1 do
3: if di = 1 then
4: Q ← Q [+]Ti

5: if di = −1 then
6: Q ← Q [−]Ti

7: return Q

The storage requirements of this method amounts to 16 kB for a 256-bit
elliptic curve and 64 kB for a 512-bit curve. In the next section, we discuss using
window methods to improve both efficiency and memory requirements.
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3.2 Application to m-ary NAF Scalar Multiplication

Window algorithms are well-known to improve scalar multiplication efficiency
by reducing the number of point additions in left-to-right algorithms [20]. Yet
less widely known among implementers, window methods apply to right-to-left
algorithms also [30,34]. Considering an m-ary scalar multiplication algorithm,
with m = 2t, this strategy generally requires m−1 point registers instead of one
register Q to perform a general m-ary scalar multiplication — thus it requires
more RAM —, and an additional computation phase at the end of the main loop
known as aggregation.

On the other hand, only one precomputed point out of t is required, therefore
the size of T drops � to �′ = ��/t�. Consequently, the precomputed values are:

Ti =
[
2ti
]
P with 0 ≤ i ≤ �′ − 1

We consider in this section an �-NAF-digit integer which digits are scanned
using a fixed window of size t. As two consecutive NAF digits cannot be both
non-zero, the set of possible integers coded by t NAF digits is:

{0,±1} for t = 1,

{0,±1,±2} for t = 2,

{0,±1,±2,±3,±4,±5} for t = 3,

{0,±1,±2, . . . ,±ν(t)} for any t ≥ 1,

with ν(t) =
2t+1 − 3+(−1)t

2

3
.

The m-ary NAF scalar multiplication strategy requires that ν(t) registers Rj ,
j ∈ {1, 2, . . . , ν(t)} are available to store the internal sums of points

[
2ti
]
P such

that the ith scanned window holds the value j. We obtain the final result by
computing the aggregation:

ν(t)∑
i=1

[i]Ri

Our fixed-point scalar multiplication using the m-ary NAF scalar scanning is
presented in Alg. 3.2. The average number of point additions performed in the
main loop is: ⌈

�

t

⌉(
1−
(
2

3

)t
)

The aggregation is computed using the efficient technique from Joye and Kar-
roumi [26]. It requires 2(ν(t)− 1) additional additions.

It is worth noticing that the storage requirement and the number of additions
performed in the main loop decrease when t increases. On the other hand, the
cost of the aggregation rises rapidly with t. The optimal value for t thus depends
on �, as discussed in Section 3.4.
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Alg. 3.2. Add-only m-ary NAF scalar multiplication using precomputations

Input: P ∈ E(Fq), �-NAF-digit scalar d = (d�−1d�−2 . . . d0)NAF, T =
([
2ti

]
P
)
0≤i≤�′−1

Output: Q = [d]P
Initialization

1: R1 ← O, R2 ← O, . . . , Rν(t) ← O
Main loop

2: for i = 0 to �′ − 1 do
3: u =

∑t−1
j=0 2

jdti+j [Assume di = 0 if i ≥ �]
4: if u > 0 then
5: Ru ← Ru [+]Ti

6: if u < 0 then
7: R−u ← R−u [−]Ti

Aggregation

8: for i = ν(t)− 1 to 1 by −1 do
9: Ri ← Ri [+]Ri+1

10: Rν(t) ← Rν(t) [+]Ri

11: return Rν(t)

On-the-fly Table Computation. Although we focus on the context where the
base point is known in advance and the precomputations table can be calculated
off-line — this is the context of ECDSA signature, where the input point is a
generator defined in the public parameters —, we can also consider the case
of an unknown base point that will be used for several scalar multiplications.
This may be the case in applications such as ECDSA verification, ECDH key
exchange, ECIES decryption, etc.

In such a case, one may run a first scalar multiplication using the classical
right-to-left algorithm, and populates on-the-fly the table T . However, points Ti

will likely be computed in projective coordinates which involves general additions
during further scalar multiplications instead of mixed affine-projective additions.

An option is thus to convert these points to affine coordinates at the end of the
first scalar multiplication using Montgomery’s trick for multiple inversions [31].
It requires expensive computations to be put in balance with the gain obtained
in further scalar multiplications.

3.3 Application to Width-w NAF Scalar Multiplication

We recall the width-w NAF representation [20]: given an integer w ≥ 2, the
width-w NAF representation of a non-zero positive integer k, denoted (k)NAFw

is a base 2w−1 signed representation2, cf. expression (3) and the aggregation
consists in computing:

2w−2−1∑
i=0

[2i+ 1]R2i+1

2 In particular, (k)NAF = (k)NAF2 for any positive integer k.
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Algorithm 3.3 presents our fixed-point scalar multiplication method using the
width-w representation. The number of point additions performed in the main
loop is �/(w+ 1) in the average. The aggregation is computed using an efficient
technique inspired by Joye and Karroumi [26] and requires 3(2w−2−1) additions.

Alg. 3.3. Add-only width-w NAF scalar multiplication using precomputations

Input: P ∈ E(Fq), d = (d�−1d�−2 . . . d0)NAFw , T =
([
2i
]
P
)
0≤i≤�−1

Output: Q = [d]P
Initialization

1: R1 ← O, R3 ← O, . . . , R2w−1−1 ← O
Main loop

2: for i = 0 to �− 1 do
3: if di > 0 then
4: Rdi ← Rdi [+]Ti

5: if di < 0 then
6: R−di ← R−di [−]Ti

Aggregation

7: for i = 2w−1 − 3 to 1 by −2 do
8: Ri ← Ri [+]Ri+2

9: if i = 2w−1 − 3 and i �= 1 then [First loop iteration, w �= 3]
10: R2w−1−1 ← [2]R2w−1−1 [+] [2]Ri

11: if i �= 2w−1 − 3 and i �= 1 then [Not first/last loop iteration]
12: R2w−1−1 ← R2w−1−1 [+] [2]Ri

13: if i �= 2w−1 − 3 and i = 1 then [Last loop iteration, w �= 3]
14: R2w−1−1 ← R2w−1−1 [+]Ri

15: if i = 2w−1 − 3 and i = 1 then [Single loop iteration (w = 3)]
16: R2w−1−1 ← [2]R2w−1−1 [+]Ri

17: return R2w−1−1

This methods requires less registers than Alg. 3.2 as only odd digits appear in
the width-w NAF representation. On the other hand, it requires the full �-point
precomputed table T .

Remark. The width parameter w allow to control the aggregation cost vs. main
loop speed-up trade-off. Intermediate trade-offs can be obtained using sliding-
window NAF techniques [20] for instance, or, more generally, fractional window
techniques [30].

3.4 Efficiency and Storage Requirements Analysis

We study hereafter the efficiency and storage (RAM & non-volatile memory)
requirements of the previous fixed-point scalar multiplication methods.
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Coordinates Choice. Since our algorithms involve point additions only, the
best representation for registers Ri is the homogeneous projective coordinates.
All additions performed in the main loop use a mixed affine-projective formula,
as precomputed points Ti are stored in affine coordinates. Only the aggregation
stage requires general additions.

As a matter of reference, we provide the cost of a classical left-to-right NAF
double-and-add algorithm, denoted LR-NAF-DA. It is computed assuming the
use of Jacobian coordinates, mixed affine-projective additions and a = −3 to
provide a fair comparison.We compare our algorithms with BGMWAlg. 2.2 with
h = 2t for t=2, 3, 4, 5, assuming the use of homogeneous projective coordinates
and mixed affine-projective additions when possible.

Efficiency Comparison. Costs are expressed in field multiplications M , as-
suming S/M = 0.8 and A/M = 0. The storage requirement corresponds to
the size of table T for our algorithms and to the size of the array {Pj} for the
BGMW algorithm. The RAM estimation is based on the number of registers
used in algorithms — i.e. it does not include the RAM required to compute
point operations.

We provide in Fig. 1 a graphical comparison of the cost per scalar bit of our
fixed base-point scalar multiplication algorithms depending on � for common key
lengths.

Table 2. Comparison of scalar multiplication algorithms cost (in M), storage require-
ment (in kB), and used RAM (in B) for 256 and 512-bit elliptic curves over large
characteristic fields, assuming a = −3

Algorithm
� = 256 � = 512

Cost Storage RAM Cost Storage RAM

LR-NAF-DA 2662 0 160 5324 0 320

BGMW Alg. 2.2 h = 4 1034 8 256 2052 32 512
BGMW Alg. 2.2 h = 8 862 5.3 256 1654 21.3 512
BGMW Alg. 2.2 h = 16 816 4 256 1452 16 512
BGMW Alg. 2.2 h = 32 923 3.2 256 1449 12.8 512

Alg. 3.1 901 16 160 1806 64 320
Alg. 3.2, t = 2 775 8 256 1529 32 512
Alg. 3.2, t = 3 743 5.3 544 1377 21.3 1088
Alg. 3.2, t = 4 781 4 1024 1325 16 2048
Alg. 3.3, w = 3 717 16 256 1395 64 512
Alg. 3.3, w = 4 663 16 448 1206 64 896
Alg. 3.3, w = 5 736 16 832 1188 64 1664

Non-volatile Memory Transfers. We consider in Table 2 arithmetic opera-
tions only. On embedded devices, the comparison must also takes into account
the numerous transfers from non-volatile memory to RAM performed in algo-
rithms, but such costs highly depends on devices (frequency, bus width, etc.) To
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Fig. 1. Comparison of fixed-point scalar multiplication algorithms cost depending on
the key length

estimate the practical expected overhead, we take as an example an 8-bit AVR
chip provided with the Ad-X coprocessor, both running at 30MHz. Considering
Alg. 3.2 with t = 2 and � = 256, the transfer of 8kB of EEPROM to RAM
takes about 5% of the full computation time. This is far from negligible, but
makes our method still very attractive. In addition, the overhead would be much
smaller for higher window sizes, for 16 or 32-bit devices, or if transfers can be
performed while the coprocessor is running.

Results Analysis. Considering Fig. 1, the best choice for an efficient and
practical implementation is the m-ary NAF add-only scalar multiplication with
t = 3 or 4, depending on the key length.

The better efficiency of our algorithms over the classical BGMW method, cf.
Table 2, is due to the use of signed representations. On the opposite, the strategy
of using separate registers and a final aggregation requires a few more compu-
tations and more RAM than the strategy applied in the BGMW algorithm.
However, we will see in the next section that our choices allow very efficient
countermeasures.

4 Side-Channel Analysis Countermeasures

We discuss in this section the means to protect our fixed-point algorithms against
side-channel and fault attacks.



208 B. Feix and V. Verneuil

4.1 Simple Analysis Countermeasure

Algorithms 3.1, 3.2, and 3.3 are obviously subject to the simple analysis if the
conditional branches of the main loop can be observed by an attacker. We show
in the following how this source of leakage can be removed using an highly regular
algorithm.

Highly Regular Addition Loop. Highly regular algorithms such as the Mont-
gomery ladder [24] are known to perform the scalar multiplication — or the
exponentiation in a multiplicative group — without any dummy operation and
thus provide a protection against a wide range of attacks [25,26].

A straightforward adaptation of the m-ary method can be obtained as
described in Alg. 4.1. It requires t registers instead of ν(t) compared to
Alg. 3.2.

Alg. 4.1. Regular add-only m-ary scalar multiplication using precomputations

Input: P ∈ E(Fq), �-bit scalar d = (d�−1d�−2 . . . d0)2, T =
([
2ti

]
P
)
0≤i≤�′−1

Output: Q = [d]P
Initialization

1: R0 ← O, R1 ← O, . . . , Rm−1 ← O
Main loop

2: for i = 0 to �′ − 1 do
3: u =

∑t−1
j=0 dti+j2

j [Assume di = 0 if i ≥ �]
4: Ru ← Ru [+]Ti

Aggregation

5: for i = m− 2 to 1 by −1 do
6: Ri ← Ri [+]Ri+1

7: Rm−1 ← Rm−1 [+]Ri

8: return Rm−1

This algorithm requires exactly �′ point additions in the main loop. It is worth
noticing that the overhead introduced by this method over Alg. 3.2 tends to 0
as t grows. Note also that the NAF representation does not help reducing the
number of performed additions here, as zero digits are now treated in the same
way as other digits.

Efficiency Analysis. Table 3 gives the precise cost of Alg.4.1 assuming the use
of homogeneous coordinates and mixed affine-projective additions in the main
loop. Under our assumptions, the window width minimizing the number of field
operations is t = 3 for � ≤ 224, and t = 4 for � ≥ 256.
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Table 3. Cost of Alg. 4.1 (in M), storage requirement (in kB), and used RAM (in B)
for 256 and 512-bit elliptic curves over large characteristic fields

Algorithm
� = 256 � = 512

Cost Storage RAM Cost Storage RAM

Alg. 4.1, t = 1 2740 16 256 5454 64 512
Alg. 4.1, t = 2 1438 8 448 2795 32 896
Alg. 4.1, t = 3 1102 5.3 832 2003 21.3 1664
Alg. 4.1, t = 4 1086 4 1600 1764 16 3200
Alg. 4.1, t = 5 1394 3.2 3136 1935 12.8 6272

4.2 Advanced Analysis Countermeasures

Let us now focus on the protection of our algorithms towards ASCA. Com-
monly used countermeasures consist in randomizing the projective coordinates
of points, blinding the scalar with a random multiple of the subgroup order and
input point blinding.

While the projective coordinates randomization is generally a low-cost coun-
termeasure, it would imply a non-negligible overhead here. Indeed, each point
Ti of the precomputed table should have its coordinates randomized, which in
turn requires a general addition, instead of a mixed affine-projective one.

The scalar blinding countermeasure d∗ ← d + rn, with r a random nonce
and n the order of the generator point P , has two drawbacks: first it induces an
overhead of (|r|+ �)/�, second its efficiency is uncertain when n has a particular
form as with NIST prime curves [17].

We present in the rest of this section two ASCA countermeasures ensuring
high protection and little overhead for the fixed-point scalar multiplication al-
gorithms.

Shuffling the Sequence of Point Additions. As the main loop of our al-
gorithms performs additions only, and as points to be added are all stored in
a table, the sequence of additions can be performed in any order. Not only it
can be processed in left-to-right direction as well as right-to-left, but it is even
possible to pick the points Ti to be added in a random order3.

Considering our proposed highly regular algorithm, a random permutation σ
of {0, 1, . . . , �′ − 1} can be generated and used in a similar way to shuffle the
iterations of the main loop. This solution is detailed at the end of the section in
Alg. 4.2.

The extra cost brought by this countermeasure lies principally in the genera-
tion of the random permutation. Generating efficiently a random permutation is
an issue that merits a whole study by itself. As it is not the core subject of this
paper, we suggest to use the method proposed by Coron [15,4] for generating a
pseudo-random permutation.

3 Permutations of the points added in Yao’s algorithm already appear in a paper by
Avanzi [2] for efficiency purpose.
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Internal Point Blinding. Assuming a random point R lying on the curve, a
näıve blinding of the form [d] (P [+]R) [−] [d]R requires two scalar multiplica-
tions instead of one, which is an overkill for most applications. In specific cases
such as fixed-scalar multiplication, efficient point blinding is possible as shown by
Coron [14]. Itoh, Izu, and Takenaka have also proposed a modified left-to-right
algorithm using internal point blinding [22,23].

Due to the specific structure of our algorithms the countermeasure is straight-
forward to apply. For instance, considering Alg. 3.1, initialize Q to some random
point R from E(Fq) at step 1 and subtract this point from Q before the return
statement. Thus the point blinding requires only an extra point addition.

For m-ary algorithms using accumulators R1, R2,. . . , Rq, q > 1, we pro-
pose the following strategy to keep a low overhead. Find a sequence of integers
(ei)1≤i≤q ∈ {−1, 1}q such that:

q∑
i=1

i · ei ∈ {0, 1}

Then, modifying the initialization step of the algorithm to Ri ← [ei]R, for
1 ≤ i ≤ q, yields Rq = [d]P or Rq = [d]P [+]R at the end of the aggregation
step. In the first case no extra operation is required to remove the mask, and a
single subtraction by R has to be performed in the second case.

Our experimentations show that a sequence (ei) with i · ei summing to 1 can
be easily found if q = ν(t) — i.e. using the m-ary NAF algorithm — or summing
to 0 if q = 2t− 1 — i.e. using the highly regular m-ary algorithm4. For instance:

(ei) = (−1, 1) for q = 2,

(ei) = (−1,−1, 1) for q = 3,

(ei) = (1,−1, 1, 1,−1) for q = 5.

(ei) = (−1, 1,−1,−1, 1,−1, 1) for q = 7.

Random Point Generation. Generating a random point on the curve may be an
overkill in practice as it requires a square root computation in Fq. The following
strategy can thus be applied: a random point R is generated once for all offline
before any computation and stored in non-volatile memory together with T .
After each scalar multiplication, R is updated as follows:

for i = 1 to r do
Pick at random j ∈ {0, 1, . . . , �′ − 1}
Pick a random bit b
R ← R [+]

[
(−1)b

]
Tj

where r is a security parameter depending on the size of T and on the required
security level.

Randomizing the projective coordinates of R before each scalar multiplication
provides an additional level of blinding at a very low cost.

4 In this case, R0 can be initialized to R as it has no consequence on the result.
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4.3 Fault Analysis Countermeasures

We finally consider the protection of our scalar multiplication algorithms against
FA.

Following an observation by Joye and Karroumi [26], register R1 holds the

value
[∑m−1

i=1

]
R∗

i at the end of the aggregation, where R∗
i is the value stored

in Ri prior to the aggregation. It follows that, after the aggregation, R0 +R1 =[∑�′−1
i=0

]
Ti. We can use this invariant to check the computation consistency.

Therefore, we propose to store an extra point S, together with the table T ,
equal to the sum of all the points in T . The fault detection stage then requires
only a point addition R0 [+]R1 after the aggregation and a comparison with S.

If the point blinding countermeasure presented in the last section is used,
an extra subtraction is required to unmask R0 [+]R1. Alternatively, one may

initialize R0 to
[
−
∑m−1

i=1 ei

]
R, such that no extra addition at all is required in

the fault verification stage.
We present in Alg. 4.2 an updated version of the highly regular m-ary algo-

rithm with the main loop shuffling and point blinding countermeasures presented
in the previous section, and the present fault detection method.

Alg. 4.2. Regular Add-only m-ary scalar multiplication using precomputations
with ASCA and FA countermeasures
Input: P ∈ E(Fq), �-bit scalar d = (d�−1d�−2 . . . d0)2, T =

([
2ti

]
P
)
0≤i≤�′−1

, S =∑�′−1
i=0 Ti, (ei)1≤i≤t−1 s.t.

∑m−1
i=1 i · ei = 0 and

∑m−1
i=1 ei = −1

Output: Q = [d]P
Initialization

1: Generate a random permutation σ = (σ0 . . . σ�′−1) of [0, . . . , �
′ − 1]

2: Generate a random point R ∈ E(Fq) \ O
3: R0 ← R, R1 ← [e1]R, . . ., Rt−1 ← [et−1]R

Main loop

4: for i = 0 to �′ − 1 do
5: u =

∑t−1
j=0 2

jdtσi+j [Assume di = 0 if i ≥ �]
6: Ru ← Ru [+]Tσi

Aggregation

7: for i = m− 2 to 1 by −1 do
8: Ri ← Ri [+]Ri+1

9: Rm−1 ← Rm−1 [+]Ri

Fault detection

10: R0 ← R0 [+]R1

11: if R0 �= S then
12: return fault detected
13: return Rt−1
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4.4 Security Analysis

The regular structure of Alg. 4.2 provides a standard protection against classical
SSCA, i.e. against attacks targeting conditional branches leakages. The additive
blinding of internal point registers thwarts classical ASCA that requires the
knowledge of manipulated data. It also counteracts chosen input-point attacks
when the attacker controls the value of the internal registers. Shuffling the se-
quence of point additions adds an additional layer of protection against ASCA
by increasing the number of required traces by a factor of �′.

Let us now consider the attacks based on potential noticeable additions involv-
ing the point at infinity in the main loop of the scalar multiplication. Obviously
no point in T should be the point at infinity and its integrity should further
be checked. As specified in Alg. 4.2, the pseudo-random generation of R should
also verify that R �= O. The possibility that the point at infinity appears in one
computation of the main loop is thus very unlikely considering the size of the
groups. Due to the masking and shuffling countermeasures, even in this case, an
attacker would not be able to identify the addition or the register involved.

Finally, as no value nor any result is ever discarded during the computation,
the fault countermeasure ensures that a perturbation introduced in any point
addition or any point register would be detected and no result returned.

5 Conclusion

We propose in this paper fixed-point scalar multiplication algorithms derived
from Yao and BGMW algorithms. These algorithms benefit from the use of
signed representations for the scalar and have a small code size footprint. They
can be used in embedded devices provided with a few dozen kilobytes of stor-
age and a few kilobytes of RAM. We propose a novel countermeasure towards
side-channel analysis with a very low cost and adapt some others to our al-
gorithms. We present a combination of them and hence provide our regular
m-ary algorithm with state-of-the-art protection against SSCA, ASCA and FA.
The question of comparing the efficiency, storage requirement, and protection
against physical attacks of our methods with fixed-base comb algorithms is left
open for further research.
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Abstract. The design and the security verification of side-channel re-
sistant cryptographic hardware often represent an iterative process. This
process essentially consists of a detection phase (DP), where the infor-
mation leakage is identified and a correction phase (CP), where design
flaws are corrected. Correlation Power Analysis (CPA) and the Stochastic
Approach (SA) are two candidate tools to perform the DP and to sup-
port designers in the CP. However, until now, the relationship between
these two tools has not been discussed yet and it is uncertain from a de-
signer point of view, what informative feedback can be gained from these
methods, especially when it comes to evaluate high-dimensional leakage
models. In this work, we investigate the relationship between CPA and
the SA from both a mathematical and empirical point of view. In par-
ticular, we demonstrate that the informative feedback provided by the
SA is transferable to a linear combination of CPA attacks and discuss
the implications of this entanglement, when it comes to pinpoint the
high-dimensional leakage of simulated leakage data and simulated power
traces of an ASIC implementation of Present.

1 Introduction

The analysis of side-channel leakage is an integral part of the design of secure
cryptographic hardware, which is performed at early stages of development al-
ready. Typically, the earlier a design flaw is discovered, the less re-engineering
effort has to be spent in correcting the issue [1,19]. In practice, two different chal-
lenges have to be accomplished during the development of side-channel resistant
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cryptographic hardware: first, the leakage must be identified in a so-called de-
tection phase (DP). Secondly, the design flaws, which have caused the leakage,
must be repaired in a so-called correction phase (CP).

Recently, different works have been published addressing the DP , cf. [7,17,23],
whereas the CP was not addressed. However, previous contributions have shown
how the Correlation Power Analysis (CPA) and the Stochastic Approach (SA)
are indeed useful tools to constructively support designers in the correction of
design flaws: in [15, 16] CPA was used to pinpoint a design flaw of a masked
ASIC implementation of AES, while a constructive usage of the SA is reported
in [9], where the SA was used to pinpoint a design flaw in the routing of an
FPGA implementation of AES. Yet, it remains uncertain from a designer per-
spective, which different informative feedback can be gained from CPA and the
SA to support designers in the CP. Also, it remains unclear, to which extent
these tools can be used to pinpoint the leakage of bit interactions using high-
dimensional leakage models. In fact, aforementioned works only considered the
switching activity of independent leakage contributions, whereas [3, 8, 20] have
shown that dependent contributions may also produce exploitable information
leakage e.g. due to the occurrence of glitches in the combinational logic path or
due to technology factors like the scaling of the CMOS technology.

In this work, we address these open questions by investigating the relationship
between CPA and the SA from both a mathematical and empirical point of view.
In particular, we provide the following contributions:

– We proof that the SA can be expressed as a linear combination of CPA at-
tacks and provide two Corollaries, which demonstrate that the informative
feedback provided by CPA and the SA is indeed equivalent, in some specific,
yet practically relevant cases.

– We extend previous works [9, 15, 16] by considering high-dimensional leak-
age models. In particular, we show that the SA can precisely identify and
quantify each contribution to the leakages, once an adequate approximation
subspace is selected and properly estimated. On the other hand, we show
that CPA can only loosely point to individual leakage contributions, being
inherently unable to capture bit interactions when high-dimensional leakage
models are used.

The rest of the paper is structured as follows. In Sect. 2, we provide the neces-
sary background information. In Sect 3, we discuss the mathematical relationship
between CPA and the SA. In Sect. 4, we empirically evaluate and discuss the ap-
plication of CPA and the SA to simulated high-dimensional leakage data as well
as to simulated power traces of an ASIC implementation of Present. Finally,
we draw conclusions in Sect. 5.

2 Background

The Leakage Model. During the execution of a cryptographic implementa-
tion θ, sensitive intermediate values vθ,t(x, k) ∈ {0, 1}w are computed at cer-
tain time t. Sensitive intermediate values typically depends on a public input
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x ∈ {0, 1}p and a secret key k ∈ {0, 1}s and their size w depends on the par-
ticular design specifications. The computation of sensitive intermediate values
vθ,t(x, k) for randomly chosen inputs x ∈ {0, 1}p and a random, but fixed, key
k ∈ {0, 1}s can be interpreted as a random experiment, which defines the ran-
dom variable Vθ,t(·, k). Similarly, the measurable leakage �θ,t, which is observed
during the computation of vθ,t(·, k), can be treated as the realization of yet an-
other random variable Lθ,t(·, k) taking values in IR. A central assumption in
side-channel analysis is to consider the leakage as the sum of a deterministic
contribution δθ,t and independent noise Rt:

Lθ,t(·, k) = δθ,t(Vθ,t(·, k)) +Rt. (1)

Tools for Side-Channel Analysis. CPA and the SA are side-channel analysis
tools which are typically employed by designers to analyse the leakages of crypto-
graphic hardware implementations and identify possible design flaws [9, 15, 16].
Both techniques consider the leakage �θ,t(·, k) of N cryptographic operations
under public inputs x0, . . . , xN−1, being observed at M points in time T =
{t0, t1, . . . , tM−1}. Let the matrix Lθ =

(
�θ,tj(xi, k)

)
0≤i≤N−1
0≤j≤M−1

denote the N ×M

leakage matrix and �θ,t a column vector thereof. For any u ≥ 0, let Aθ be the
N × (u+ 1) model matrix defined as follows:

Aθ :=

⎛
⎜⎝

gθ,0(x0, k
∗) . . . gθ,u(x0, k

∗)
...

. . .
...

gθ,0(xN−1, k
∗) . . . gθ,u(xN−1, k

∗)

⎞
⎟⎠ . (2)

where gθ,j : {0, 1}p × {0, 1}q → IR are the analytical model functions, which
model the leakages of arbitrary selected target intermediate values. The target
intermediate values are typically a function of the public inputs x0, . . . , xN−1 and
a small key hypothesis k∗ ∈ {0, 1}q (q * s) and do not necessarily correspond to
vθ,t(·, k), being arbitrarily selected by designers during the security verifications
(e.g. only a subset of bits can be targeted).

Correlation Power Analysis (CPA). The basic idea of CPA is to evaluate the
linear strength between the observed leakages and the leakage models specified
via the Aθ matrix, cf. [4]. Hence, given the leakages �θ,t and the corresponding
model matrix Aθ, CPA computes the sample Pearson’s correlation coefficient ρ̃
between the measured leakages �θ,t and each column Aθ,j of the model matrix
Aθ, as follows:

ρ̃θ,j,t(Aθ,j, �θ,t) :=

∑N−1
n=0 (gθ,j(xn, k

∗)− Ẽ(Aθ,j))(�θ,t(xn, k)− Ẽ(�θ,t))√∑N−1
n=0 (gθ,j(xn, k∗)− Ẽ(Aθ,j))2

∑N−1
n=0 (�θ,t(xn, k)− Ẽ(�θ,t))2

,

where Ẽ(·) denotes the sample mean operator.

The Stochastic Approach (SA). The core idea of the SA is to estimate the leak-
age function, which underlies the origin of the leakage, by approximating the
deterministic part δθ,t and the noise Rt of Eq. (1) in a chosen subspace. In here,
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we only recall the approximation of the deterministic part, and refer to [9,11,22]
for a comprehensive study of the SA. The SA approximates the deterministic
part in a (u + 1)-dimensional subspace Fu+1,t spanned by the analytical model
functions gθ,j(·, ·) as follows:

Fu+1,t :=

⎧⎨
⎩δ̃ : {0, 1}p × {0, 1}q → IR; δ̃ =

u∑
j=0

β̃θ,j,tgθ,j

⎫⎬
⎭ . (3)

The ordinary least square method, cf. [18], is used to derive the optimal ap-

proximation δ̃θ,t(·) in terms of square errors. The least square estimators β̃θ are
uniquely determined by the solution which minimizes ‖Lθ −Aθβθ‖22:

β̃θ = (AT
θ Aθ)

−1AT
θ Lθ, (4)

where AT
θ Aθ must be an invertible (u + 1) × (u + 1)-matrix and, typically,

Aθ,0 = 1N . In side-channel analysis, the regression coefficients βθ are usually
referred to as the leakage characteristic of the design θ under test or, simply,
βθ-characteristic [9].

Other Tools. For the sake of completeness, we briefly recall the Kocher’s orig-
inal DPA attack [10] and the Mutual Information Analysis (MIA) [2]. Kocher’s
original DPA attack assumes a single-bit model (e.g. Aθ defined over {0, 1})
and computes Ẽ [�θ,t|Aθ,j = 1] − Ẽ [�θ,t|Aθ,j = 0]. Similarly, MIA estimates the

mutual information between leakages and models as Ĩ(�θ,t,Aθ,j) to quantify the
leakage amount in bits of information. Interestingly, these attacks are asymptoti-
cally equivalent to CPA attacks when single-bit models are employed [14].

Security Verification. The goal of a side-channel security analysis is to make
conclusive statements about the side-channel security of a design θ under test.
However, since both leakages and models are realizations of random experiments,
security statements are only possible in a stochastic sense, that is, only relatively
to selected (Aθ,T, γ)-adversaries, where Aθ denotes the selected leakage models,
T denotes the selected side-channel analysis tool (e.g. CPA or the SA) and γ
denotes the desired statistical confidence1, unless equivalences are demonstrated,
cf. [6, 14]. Hence, the experience of designers play a fundamental role to select
appropriate adversaries in order to anticipate the attackers working conditions
and pre-emptively remove possible design flaws. Clearly, an improper selection of
the adversaries could possibly leave exploitable flaws behind and, consequently,
lead to an overestimated security confidence and produce higher security risks.
In this respect, the task of designers is to properly define the model matrixAθ by
accurately choosing the target intermediate values, the model selection functions
and the side-channel analysis tools. A typical choice for designers is to select
those intermediate values which can be computed from a small key hypothesis

1 In this view, we can speak of (Aθ,T, γ)-security. The number of traces N is implicitly
accounted in by γ.
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and then use Boolean model functions in the form gθ,j : Fp
2 × F

q
2 → F2 to map

intermediate values to single-bits [15, 16], possibly considering any polynomial
of the target bits, as follows:

gθ,j(x, k
∗) =

∏
p∈Pj

fθ,p(x, k
∗), j = 1, . . . ,

b∑
i=1

(
b

i

)
− 1, (5)

where fθ,p denotes the pth bit of the target intermediate values obtained by com-
bining the public and secret material by an algorithm specific function fθ(·, ·), b
is the size of target intermediate values, P denotes the power set operator and
Pj is the jth element of the set P(b)\{∅}. The choice of using single-bit models
is well-known to be suboptimal for attackers in terms of efficiency [13]. How-
ever, using the single-bit models of Eq. (5) still represents the most effective way
for designers to understand the leakage characteristic of digital circuits. In fact,
single-bit models make the least assumptions on the leakages and enable design-
ers to collect informative feedback relatively to every single signal in the design.
Additionally, using quadratic or higher-degree polynomials of the target bits, de-
noted as high-dimensional models in [8], allow to capture also those effects which
arise from the interactions of logical transitions e.g. like those occurring during
the asynchronous activity of the combinational logic. It is worth noting that,
contrary to attackers, hardware designers typically work under more favourable
conditions during security verifications for at least three reasons: first, designers
have full control over the design under test and possess the knowledge of the
secret key processed by the device. Therefore, they can skip over testing mul-
tiple key hypothesis and significant computational effort can be saved. Second,
designers are not only interested in exploiting the leakage in the most efficient
way, rather they are mainly interested in identifying and correcting design flaws.
Third, hardware designers can simulate the switching activity of their imple-
mentation, or even single parts of it, with a sampling frequency in the range of
THz, which is typically not available to real attackers. For instance, designers
can simulate the switching activity of individual hardware modules at gate or
transistor level, with a resolution of a few picoseconds [1, 19].

3 On the Relation between CPA and the SA

In this section we discuss the mathematical relation between CPA and the SA by
proving that the leakage characteristic of the SA can be expressed as a linear
combination of CPA attacks. Therefore, we derive two Corollaries of specific, yet
practical relevance.

Proposition 1. Let Aθ and β̃θ,t be defined as in Eq. (2) and (4). Let β̃
∗
θ,t be

the vector β̃θ,t\{β̃θ,0,t} and Aθ,0 = 1N . Then, the β̃
∗
θ,t-characteristic can be

expressed as a linear combination of sample correlation coefficients:
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β̃θ,i,t =

u∑
j=1

wi,j ρ̃θ,j,t(Aθ,j , �θ,t), i ∈ [1, u], wi,j ∈ W as defined in Eq. (8)

Proof. Starting from Eq. (2) and (4), we derive:

(AT
θ Aθ)β̃θ,t = AT

θ �θ,t ⇐⇒(∑N−1
n=0 gθ,i(xn, k

∗)gθ,j(xn, k
∗)
)
0≤i,j≤u

β̃θ,t =
(∑N−1

n=0 gθ,i(xn, k
∗)�θ,t(xn, k

∗)
)
0≤i≤u

⇐⇒(∑u
j=0 Ẽ [Aθ,i ·Aθ,j] β̃θ,j,t

)
0≤i≤u

=
(
Ẽ [Aθ,i · �θ,t]

)
0≤i≤u

,

(6)
where the · operator denotes the element-by-element multiplication between
vectors. From Eq. (6): β̃θ,0,t = Ẽ [�θ,t] −

∑u
j=1 β̃θ,j,tẼ [Aθ,j ] for i = 0, since

Aθ,0 = 1N . By replacing β̃θ,0,t in Eq. (6) and grouping terms together, we ob-
tain:

( u∑
j=1

σ̃(Aθ,i,Aθ,j)β̃θ,j,t

)
0≤i≤u

=
(
σ̃(Aθ,i, �θ,t)

)
0≤i≤u

, (7)

where σ̃(·, ·) is the sample covariance estimator. By rewriting Eq. (7) in a matrix

form we obtain Σ̃Aθ,i,Aθ,j
β̃
∗
θ,t = Σ̃Aθ,i,�θ,t , where the matrices Σ̃Aθ,i,Aθ,j

=

(σ̃(Aθ,i,Aθ,j))1≤i,j≤u and Σ̃Aθ,i,�θ,t = (σ̃(Aθ,i, �θ,t))1≤i≤u are sample covariance

matrices. Therefore, solving for β̃
∗
θ,t:

β̃
∗
θ,t = WRAθ,i,�θ,t , (8)

where RAθ,i,�θ,t = (ρ̃θ,i,t(Aθ,i, �θ,t))1≤i≤u is a sample correlation matrix and the

weighting matrix is W = diag
(
(σ̃(Aθ,i)σ̃(�θ,t))1≤i≤u

)
Σ̃−1

Aθ,i,Aθ,j
.

�

Proposition 1 establishes a mathematical relation between CPA and the SA,
which entails the following theoretical, yet practical, consequences. First, the

β̃
∗
θ,t-characteristic can be computed from CPA attacks. For instance, designers

can evaluate CPA attacks in first place and then estimate the β̃
∗
θ,t-characteristic

only afterwards, with a consequent saving of computational resources. It is worth

noting that β̃θ,t and β̃
∗
θ,t are equivalent from a designer perspective, since β̃θ,0,t

only accounts to an offset in the leakages, which is typically not relevant for the
sake of side-channel analysis. Secondly, Eq. (8) clearly shows that the informa-

tion feedback provided by the β̃θ,t-characteristic results necessarily biased, in
case the leakages contain dependent contributions which are not accounted by
the selected subspace. In this respect, only an appropriate selection of the sub-
space can precisely identify the leakage contributions. In contrast, an improper
selection would provide a biased leakage characteristic and therefore lead de-
signers to misinterpret the leakage contributions and the design flaws there of.
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Finally, it can be observed from Eq. (8) that, if all the correlations ρθ,i,t equal
zero, then also the β∗

θ,t-characteristic necessarily equal zero. This is of course
most unlikely to happen for any particular leakage realization, but hypothesis
testing can be used to verify if there exists enough evidence in the realizations
to reject the idea that populations values equal zero [13, 18].

Corollary 1. If all the columns of the model matrix Aθ are pairwise uncorre-

lated, then the β̃
∗
θ,t-characteristic can be expressed as scaled correlation coeffi-

cients:

β̃θ,i,t = ρ̃θ,i,t(Aθ,i, �θ,t)
σ̃�θ,t

σ̃Aθ,i

, ∀i ∈ [1, u]

Proof. If ∀i �= j : σ̃(Aθ,i,Aθ,j) = 0, then
(
Σ̃Aθ,i,Aθ,j

)−1

= diag
(
Σ̃Aθ,i,Aθ,j

)−1

.

Therefore, the Corollary follows immediately from Equation (8).
�

Corollary 2. If all the columns of the model matrix Aθ are pairwise uncor-

related and all Aθ,i are defined over two constants {a0,i, a1,i}, then the β̃
∗
θ,t-

characteristic can be expressed as a scaled difference of means:

β̃θ,i,t =
1

a1,i − a0,i

(
Ẽ [�θ,t|Aθ,i = a1,i]− Ẽ [�θ,t|Aθ,i = a0,i]

)
, ∀i ∈ [1, u]

Proof. If ∀i �= j : σ̃(Aθ,i,Aθ,j) = 0, then β̃θ,i,t = σ̃(Lθ,t,Aθ,i)/σ̃
2(Aθ,i) from

Corollary 1. Since each Aθ,i can be viewed as the realization of a binary ran-
dom variable with probability pi, then σ2(Aθ,i) = pi(1 − pi)(a1,i − a0,i)

2 and
σ(Lθ,t,Aθ,i) = pi(1 − pi)(a1,i − a0,i)(E [Lθ,t|Aθ,i=a1,i] − E [Lθ,t|Aθ,i = a0,i]).
Therefore, the Corollary follows immediately.

�

The Corollaries above are valid if and only if Aθ,i,Aθ,j are uncorrelated, that
is σ̃(Aθ,i,Aθ,j) = 0. As previously discussed, it is very unlikely to happen that
σ̃(Aθ,i,Aθ,j) = 0. However, the model matrix Aθ is under the control of design-
ers and can be constructed in such a way that the condition σ̃(Aθ,i,Aθ,j) = 0
holds true. This is indeed the practical case when balanced inputs go through
bijective functions (or, composition thereof, e.g. S◦⊕) and only first degree poly-
nomials of the target intermediates are considered [5]. In particular, Corollary 1
implies that, under the conditions stated, the informative feedback provided

by the β̃
∗
θ,t-characteristic corresponds to CPA attacks. They are indeed equiva-

lent, in case both �θ,t and Aθ,i are standardized. Therefore, in this case, testing
whether ρθ,i,t = 0 is equivalent to test whether βθ,i,t = 0 and require the same
sample size. It should be noted that standardization is a common pre-processing
technique for the SA [18] to reduce problems which arise from round-off errors
and does not affect CPA, being the Pearson’s correlation coefficient invariant to
linear transformations of the inputs. Finally, Corollary 2 implies that, if single-
bit models are used under the conditions stated, then the informative feedback
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of the SA is equivalent to the informative feedback provided by the Kocher’s
original DPA attacks and similar considerations regarding hypothesis testing
hold, as in the previous case.

4 Empirical Validation

In this section, we evaluate the relationship between CPA and the SA from an
empirical point of view, by considering the information feedback of CPA and
the SA, when applied to simulated high-dimensional leakage data as well as to
simulated power traces of an ASIC implementation of Present [21].

Validation Using Simulated Leakage Data. Simulated high dimensional
leakage data were generated by drawing inputs X uniformly at random and using
the Present S-box input vSim,t0(X, k) = X⊕k and S-box output vSim,t1(X, k) =
vSim,t2(X, k) = S(X ⊕ k) as sensitive intermediate values. Table 1 summarizes
the results of conducted experiments by the way of three exemplary simulated
leakage functions LSboxIN

Sim,t0
, LSboxOUT

Sim,t1
and LSboxOUT

Sim,t2
. For the sake of analysis, the

very same intermediate values were targeted, using the gSim,j model functions as
defined by Eq. (5). When applying the SA, two different subspaces were consid-

ered, namely the so-called linear subspace F5 (c.f. β̃Lin
Sim,j,t) and the so-called full

subspace F16 (c.f. β̃Full
Sim,j,t). Finally, bold faced fonts were used to mark values

significantly different from zero with a confidence level of γ = 0.999 [13,18] and

the coefficient of determination R̃2 [6, 18] was used to quantify the model fit.
From Table 1, it can be observed that only the SA is able to precisely identify
each contribution to the leakages, given that the selected subspace properly ac-
counts all the existing dependent contributions contained in the leakage function,
c.f. β̃Lin

Sim,j,t1
.

Table 1. Simulated Leakage Data

gSim,j v1 v2 v3 v4 v1v2 v1v3 v1v4 v2v3 v2v4 v3v4 v1v2v3 v1v2v4 v1v3v4 v2v3v4 v1v2v3v4 R̃2

LSboxIN
Sim,t0

= 5v1 + 2.5v1v2 + 2.5v1v3 + 2.5v1v4 +N (0, 0.001)

ρ̃Sim,j,t0 0.944 0.126 0.124 0.137 0.696 0.696 0.697 0.134 0.149 0.155 0.553 0.554 0.557 0.139 0.445 0.459

β̃Full
Sim,j,t0

5.000 0.000 0.000 0.000 2.500 2.500 2.500 −0.000 −0.000 −0.000 0.000 −0.000 0.000 0.000 −0.000 1.000

β̃Lin
Sim,j,t0

s 8.751 1.234 1.252 1.267 0.946

L
SboxOUT

Sim,t1
= v1 + v2 + v3 + v4 +N (0, 0.001)

ρ̃Sim,j,t1 0.497 0.503 0.497 0.495 0.577 0.570 0.573 0.571 0.571 0.569 0.559 0.562 0.557 0.557 0.506 0.848

β̃Full
Sim,j,t1

1.000 1.000 1.000 1.000 0.000 −0.000 0.000 −0.000 0.000 −0.000 0.000 −0.000 0.000 0.000 −0.000 1.000

β̃Lin
Sim,j,t1

1.000 1.000 1.000 1.000 1.000

LSboxOUT

Sim,t2
= 5v1 − 5v2 + 10v1v2 +N (0, 0.001)

ρ̃Sim,j,t2 0.895 0.000 −0.000 −0.010 0.775 0.510 0.515 −0.002 −0.010 −0.009 0.502 0.507 0.328 −0.013 0.337 0.228

β̃Full
Sim,j,t2

5.000 −5.000 0.000 −0.000 10.000 −0.000 0.000 −0.000 0.000 −0.000 0.000 −0.000 0.000 0.000 −0.000 1.000

β̃Lin
Sim,j,t2

10.039 0.040 −0.029 −0.020 0.801
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In contrast, if the employed subspace does not properly account the leakage
contributions, c.f. β̃Lin

Sim,j,t0
or β̃Lin

Sim,j,t2
, the information feedback delivered by the

SA is biased and it is unable to identify the origins of the leakage correctly,
although a notably high measure of model fit. In this sense, a biased leakage
characteristic provides designers with wrong indications about the origins of the
leakage and the flaws there of. On the other hand, it can be noted that CPA can
only loosely explain the leakages in the three cases, since it can only consider
contributions individually as if they were independent, although they are neces-
sarily dependent when high-dimensional models are considered. Yet, it might be
possible to grasp individual contributions using CPA by studying how the ob-
tained individual contributions relate to each other. However, while this strategy
would certainly be successful for relatively simple leakages, e.g. like those typ-
ically happening during the synchronous update of registers [12], it would not
definitely be an option to explain arbitrary complicated leakage functions in
general.

Validation Using Simulated Power Traces. In order to map previous ex-
periments to a concrete application scenario, the leakage of an ASIC implemen-
tation of Present [21] was investigated. Please note that only the analysis of an
unprotected implementation is reported, since the goal here is to evaluate how
CPA and the SA can support designers in the identification of design flaws by
detecting each contribution to the leakages, and not to pin-point the flaws of a
specific protected implementation. The design was synthesized using Synopsys
DesignCompiler version G-2012.06-SP3 in a TSMC 150nm process. The circuit
was simulated at 25 MHz using Synopsys VCS version F-2011.12-SP1 and power
estimations were performed using Synopsys PrimeTime version F-2011.06-SP3
with a resolution of 100 ps, resulting in 400 points per clock cycle. The data
path processes 4 bits per clock cycle and performs one round in 17 clock cycles.
The first 16 clock cycles perform Si(Xi ⊕ ki) of input nibble i ∈ [0, 15], while
the 17th perform the permutation layer. The investigation focused on the pro-
cessing of the first nibble in the first round and only the power consumption
after the register updates was considered in the analysis. Hence, only the asyn-
chronous switching activity of the combinational path was considered to validate
the presence of bit interactions, due to glitches and different propagation delay
characteristics.

Table 2 summarizes the results of conducted experiments by the way of three
exemplary cases, obtained by targeting the intermediate values of the S-box
output over a clock cycle. It can be observed that, the information feedback pro-
vided by CPA and the SA at time t0 is fairly equivalent, since they both point
to the same leakage contributions, although CPA only loosely. A similar situa-
tion can be observed a couple of hundreds picoseconds later, at time t1, where
the issue persists only for the second contribution, but it occurs that the R̃2 is
halved. In this case, the selected subspace generated from the S-box output is
not able to completely capture all the contributions in the leakages. This fact
can be explained by observing that the considered implementation, though seri-
alized, actually moves all the nibbles every clock cycles through a shift register
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Table 2. Simulated Power Traces

gSer,j v1 v2 v3 v4 v1v2 v1v3 v1v4 v2v3 v2v4 v3v4 v1v2v3 v1v2v4 v1v3v4 v2v3v4 v1v2v3v4 R̃2

ρ̃Ser,j,t0 0.732 0.632 0.104 −0.102 0.779 0.528 0.338 0.469 0.272 0.067 0.607 0.424 0.355 0.315 0.424 0.458

β̃Full
Ser,j,t0

0.358 0.316 −0.001 0.001 0.002 0.003 0.003 0.000 −0.001 0.002 −0.002 0.002 −0.006 −0.003 0.000 0.990

β̃Lin
Ser,j,t0

0.360 0.315 −0.001 0.000 0.989

ρ̃Ser,j,t1 −0.053 0.731 0.049 −0.056 0.380 0.022 −0.088 0.469 0.383 0.022 0.299 0.202 0.014 0.298 0.202 0.110

β̃Full
Ser,j,t1

−0.004 0.116 −0.000 −0.003 −0.001 0.003 0.008 0.002 −0.000 0.002 −0.001 0.004 −0.009 −0.006 0.000 0.535

β̃Lin
Ser,j,t1

−0.002 0.115 0.000 −0.002 0.535

ρ̃Ser,j,t2 0.413 0.426 0.345 0.139 0.642 0.281 0.307 0.472 0.399 0.324 0.605 0.428 0.280 0.494 0.428 0.430

β̃Full
Ser,j,t2

0.414 0.266 0.601 0.092 −0.099 −0.862 −0.003 −0.676 0.007 −0.337 1.119 −0.857 0.446 0.660 0.000 0.935

β̃Lin
Ser,j,t2

0.205 0.210 0.127 0.084 0.483

producing surrounding activity which is not modelled by the targeted S-box.
Finally, at time t3, which happens closely before the end of the combinational
logic activity, the F16 subspace clearly shows several high-dimensional contribu-
tions, which would be quite difficult to appreciate from either CPA or the SA in
the F5 subspace. The propagation of the leakage characteristic over a clock cy-
cle towards higher-degree polynomials results fairly clear and understandable if
considering that the analysed implementation is unprotected and the sampling
resolution used for power estimations is fine enough to be able to measure the
effects of different path delays and the glitches there of, occurring during the
switching activity of the logic gates in the combinational path.

5 Conclusion

In this work, we investigated the relationship between CPA and the SA as candi-
date tools to identify the leakage contributions and support hardware designers
in the correction of design flaws. First, we investigated the mathematical rela-
tionship of CPA and the SA and showed how in some specific, yet practically
relevant cases, they convey the same information feedback to designers. Secondly,
we analysed the results of CPA and the SA when applied to simulated data and
power traces, and showed the importance of high-dimensional leakage models
when it comes to pinpoint the leakage of bit interactions during the switching
activity of the combinational logic path. In particular, we have shown that the
SA is able to precisely quantify high-dimensional leakages given that an adequate
approximation subspace is selected, whereas CPA can only loosely point to the
leakage contributions of high-dimensional leakages, being inherently unable to
consider dependent variables jointly. On the other hand, we have shown that the
SA has some notable limitations over CPA in practice, since establishing whether
a selected subspace is adequate to properly explain the leakage contributions, us-
ing the coefficient of determination as a measure of model fit, is not an easy task.
In this respect, we have shown that it is not always straightforward to interpret
the measure of model fit in practice, since a notably high fit generated a false pos-
itive, cf. Table 1, while a relatively low fit provided a false negative, cf. Table 2.
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Additionally, contrary to CPA which has quite good convergence properties, the
estimation effort of the SA grows with the size of the selected subspace, which is
exponential in the size of the considered target bits. Hence, the analysis of large
datapath designs with the SA might be much more laborious, than the provided
exemplary analysis of a 4-bit datapath design. In this case, the use of stepwise
regression as proposed in [24] can be of help to systematically evaluate different
subspaces, but still liable to similar interpretation issues in the context of side-
channel security verifications. To conclude, the constructive usage of CPA and
the SA offers a crucial support to designers for the identification and correction
of design flaws, but ultimately the engineering experience and expertise are still
decisive to determine the success of the correction phase.

Acknowledgements. This work has been funded in part by the German Fed-
eral Ministry of Education and Research 163Y1200D (HIVE) and 01DP12037A
(SMERCS). The authors would like to thank Oscar Guillen and Stefan Rass for
their useful comments.
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Abstract. In the paper, we revisit the “Lazy Doubling” (LD) method
for multi-precision squaring, which reduces the number of addition op-
erations by deferring the doubling process so that it can be performed
on accumulated results. The original LD method has to employ carry-
catcher registers to store carry values, which reduces the number of gen-
eral purpose registers available for optimization of the implementation.
Furthermore, the LD method adopts the idea of hybrid multiplication to
separate the partial products into several product blocks, which prevents
the doubling process to be conducted on fully accumulated intermediate
results. To overcome these deficiencies of the LD method and improve
the performance of multi-precision squaring, we propose a novel and flex-
ible method named “Sliding Block Doubling” (SBD). The SBD method
delays the doubling process till the very end of the partial-product com-
putation and then doubles the result by simply shifting it one bit to
the left. In order to further reduce the overhead of doubling, we also
optimize the execution process for updating carry values and adopt the
product-scanning method for efficient computation of the partial prod-
ucts. Our experimental results on an AVR ATmega128 processor show
that the SBD method outperforms state-of-the-art implementations by
a factor of between 3.5% and 4.4% for operands ranging from 128 bits
to 192 bits.

1 Introduction

Multiple-precision arithmetic is a performance-critical component of public-key
cryptographic algorithms such as RSA [12], elliptic curve cryptosystems [7,11]
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and pairing-based schemes [15]. This is in particular the case for multiplication
and squaring due to the high computational cost of these operations. When
implementing multi-precision integer arithmetic in software, the operands are
usually represented by arrays of single-precision words, i.e. w-bit digits such
that w matches the word-size of the target processor. Given two m-bit integers
A and B, the computation of the product A ·B requires to execute n2 word-level
(i.e. w × w-bit) multiply instructions on the underlying processor, whereby n
denotes the number of single-precision words, i.e. n = �m/w�. Consequently,
multi-precision multiplication has a complexity of O(n2) when implemented in
software. The square A2 of an n-word integer A can be computed much faster (up
to almost 50%) than the product of two distinct integers. More precisely, when
A = B, a large number of w×w-bit partial products of the form A[i]·B[j] appear
twice during the execution of a multi-precision multiplication since A[i] ·B[j] =
A[j] · B[i]. In particular, when squaring a large integer A, all partial products
of the form A[i] · A[j] appear once for i = j and twice for i �= j [3]. Optimized
squaring algorithms compute all these “duplicates” only once and then shift them
left by 1 bit to double them. In this way, the computational cost for squaring an
n-word integer amounts to (n2 + n)/2 single-precision multiplications, which is
just slightly more than half of that needed to compute A · B.

1.1 Previous Work

There exist a large number of multiplication and squaring methods that aim
to improve the execution time by reducing the number of memory accesses
and/or word-level arithmetic instructions. In the case of multi-precision multipli-
cation, one of the seminal techniques is the school-book method [10], also called
operand-scanning method. The school-book method can be easily implemented
on embedded microprocessors using a high-level language like C. It loads the
operands and generates the partial products in a row-wise fashion. An alterna-
tive way to implement multiplication is the so-called product-scanning method.
This method computes the partial products column by column and does not
need to reload intermediate results [2]. The hybrid method combines the advan-
tageous features of operand-scanning and product-scanning [4]. By adjusting the
row and column width, the number of operand accesses and result updates are
reduced. This method is particularly efficient on a microprocessor equipped with
a large number of general purpose registers. At CHES 2011, the operand-caching
method, which reduces the number of load operations by caching the operands,
was presented [6]. Later, based on the operand-caching method, Seo and Kim
[14] proposed the consecutive-operand-caching method, which is characterized
by a continuous operand caching process.

All these multiplication methods can be straightforwardly applied to
squaring. However, as mentioned before, it is not efficient to do so since com-
puting all partial products and loading the words of both operands is not nec-
essary for squaring. For this reason, specialized squaring methods have been
studied in the literature. One of the first squaring methods, based on the
operand-scanning technique, was developed for hardware implementation [5].
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Unfortunately, the squaring technique from [5] is not really suited for software
implementation on resource-constrained devices. In 2007, the so-called carry-
catcher squaring method was presented, which aims to reduce the propagation
of generated carry values up to the most significant word by introducing storage
for saving carry values [13]. In 2012, the Lazy Doubling (LD) method, the fastest
squaring technique so far, was proposed in [8]. The basic idea is that the par-
tial products which need to be considered twice are doubled “in one pass” after
they have been collected to the accumulator registers at the end of each column
computation.

1.2 Our Contributions

This paper presents an efficient implementation of multi-precision squaring that
achieves record-setting execution times on 8-bit AVR-based processors. Our
optimized squaring technique can be used to accelerate the multi-precision arith-
metic of public-key schemes, e.g. the modular squaring operation of RSA, squar-
ing in prime fields operation for ECC. The research contribution of this paper is
two-fold:

– Novel sliding block doubling method for efficient implementation of multi-
precision squaring on embedded processors. We present a novel and flexi-
ble implementation methodology for multi-precision squaring named Sliding
Block Doubling (SDB), which yields high performance on a range of embed-
ded platforms (e.g. 8-bit, 16-bit, 32-bit processors). The proposed method is
inspired by the well-known LD method of Lee et al. [8] and also influenced
by the state-of-art techniques for implementing multi-precision multiplica-
tion on micro-controllers, i.e. the operand-caching method [6] and consecu-
tive operand-caching method [14]. Specifically, we make full use of the lazy
doubling feature and delay the doubling process until the very end of the
product computation and then conduct it by a simple 1-bit left shift. We
also aim to reduce the overhead that may be introduced when using tra-
ditional squaring or the LD method. A third optimization is to calculate
the partial products of each block by using the efficient product-scanning
method. We also provide a simple formula to estimate the computational
cost of our proposed SBD method depending on the operand-length.

– New Speed record results achieved on 8-bit AVR embedded platforms. In order
to confirm the theoretical performance gain, we realized our squaring method
on an 8-bit AVR embedded platform. We took the squaring of a 160-bit
operand on an 8-bit ATmega128 as concrete examples for our experiments.
Our results show that the SBD method takes only 1,456 clock cycles to
square a 160-bit operand. This result represents the current speed record for
multi-precision squaring on 8-bit platforms. When compared with the best
previous results, our implementation achieves a performance enhancement
by a factor of 3.5% to 4.4% for operands ranging from 128 to 192 bits.

The remainder of this paper is organized as follows. In Section 2, we re-
cap the different approaches for implementing multi-precision multiplication and
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squaring. In Section 3, we present the new sliding block doubling method and
analyse its computational complexity. In Section 4, we evaluate the performance
of the proposed method in terms of clock cycles and compare with related work.
Finally, Section 5 concludes the paper.

2 Multi-precision Multiplication and Squaring

In this section, we explore multiplication and squaring methods from the ba-
sic method (e.g. school-book method) to sophisticated method (e.g. operand
caching multiplication and lazy doubling method). Then, we discuss the main
differences of concrete implementation between multiplication and squaring to
project considerations for efficient implementation on embedded processors.

2.1 Multi-precision Multiplication Techniques

In this section, we introduce various multi-precision multiplication techniques,
including operand scanning method, product scanning method, hybrid scanning
method, operand caching method as well as consecutive operand caching method.
Each method has unique feature for reducing the number of load and store

instructions and arithmetic operations.
Before describing the multi-precision multiplication method into details, we

first define the following notations. Let A and B be two operands with a length
of m-bit that are represented by multiple-word arrays. Each operand is written
as follows: A = (A[n − 1], A[n − 2], . . . , A[1], A[0]) and B = (B[n − 1], B[n −
2], . . . , B[1], B[0]), whereby n = �m/w�, and w is the word size. The product
of multiplication A · B is twice the length of A and can be represented by C =
(C[2n− 1], C[2n− 2], . . . , C[1], C[0]).

For clarity, we describe the method using a multiplication structure and rhom-
bus form. As shown in Figure 1, each point represents a word-level multiplica-
tion, i.e. A[i]×B[j]. The rightmost corner of the rhombus represents the lowest
index (i, j = 0), meanwhile the leftmost represents corner with highest index
(i, j = n − 1). The lowermost side represents result index C[k], which ranges
from the rightmost corner (k = 0) to the leftmost corner (k = 2n− 1).

Operand Scanning Method. Figure 1. (a) shows the operand scanning which
consists of two parts, i.e., inner and outer loops. In the inner loop, operand A[i]
holds a value and computes the partial product by multipling all the multipli-
cands B[j] (j = 0...n − 1). While in the outer loop, the index of operand A[i]
increases by a word-size and then the inner loop is executed.

Product Scanning Method. Figure 1. (b) shows the product scanning method
which computes all partial products in the same column by multiplication and
addition [2]. Since each partial product in the column is computed and then
accumulated, registers are not needed for intermediate results. The results are
stored once, and the stored results are not reloaded since all computations have
already been completed.
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Fig. 1. Multi-precision multiplication techniques. (a) Operand scanning method [10].
(b) Product scanning method [2]. (c) Hybrid scanning method [4]. (d) Operand caching
method [6]. (e) Consecutive operand caching method [14].

Hybrid Scanning Method. Figure 1. (c) shows the hybrid scanning method
which combines both of the advantages of operand scanning and product scan-
ning. Multiplication is performed on a block scale using product scanning. The
number of rows within the block is defined as d, and inner block partial products
follow the operand scanning rule. Therefore, this method reduces the number of
load instructions by sharing the operands within the block [4].

Operand Caching Method. Figure 1. (d) shows the operand caching method
which follows the product scanning method, but it divides the calculation into
several row sections [6]. By reordering the sequence of inner and outer row sec-
tions, previously loaded operands in working registers are reused for the next
partial products. A few store instructions are added, but the number of required
load instructions is reduced. The number of row section is given by r = 	n/e
,
and e denotes the number of words used to cache digit in the operand.

Consecutive Operand Caching Method. Figure 1. (e) shows the consecu-
tive operand caching which is based on characteristic of operand-caching method.
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Previous method has to reload operands whenever a row is changed which gener-
ates unnecessary overheads. To avoid these shortcomings, this method provides a
contact point among rows that share the common operands for partial products.
As a result of this, one side of operands is continuously maintained in registers
and used [14].

Fig. 2.Multi-precision squaring structure. (a) Before removing duplicated partial prod-
uct results. (b) After removing duplicated partial product results.

2.2 Multi-precision Squaring Techniques

A typical software implementation of squaring method can be realized either
using one of the above mentioned multiplication techniques or the specialized
squaring method. Implementation using a specialized squaring method may have
two advantages than simply using multiplication method for squaring as shown
in described in Figure 2. Firstly, only one operand (A) is used for squaring
computation, thus, the number of operand load is reduced to half times of
multiplication, and many registers used for operand holding previously become
idle status and can be used for caching intermediate results or other values.
Second, there are duplicated partial products exist. In Figure 2. (a), the squaring
structure consists of three parts including red dotted middle part, light and
dark gray triangle parts. The red part is multiplying a same operand, which
is computed once. The other parts including light and dark gray parts generate
same partial product results. For this reason, these parts are multiplied once and
added twice to intermediate results. This computation generates same results,
we expected. After removing duplicated partial product results, we can describe
the squaring structure as a triangular form in Figure 2. (b).

Yang-Hseih-Lair Method. Figure 4. case (a) describes Yang et al’s method
[5]. This squaring method is intended for hardware machine not for software im-
plementation. The following is computation process in detail. First, duplicated
partial products are computed using operand scanning. And then the intermedi-
ate results are doubled. Lastly, remaining partial products are computed. This
method is not favorable for software implementation because the number of gen-
eral purpose register is not enough to store all operands, carry catcher value1 and

1 This method is not introduced when this paper is published. To implement operand
scanning method in software form, carry catcher method should be considered.



Multi-precision Squaring for Public-Key Cryptography 233

intermediate result during partial product computations using operand scanning.
Furthermore, re-loading and re-storing the intermediate results for doubling con-
duct many memory accesses. Thus, straight-forward implementation of squaring
method for hardware is not recommended for software implementation.

Fig. 3. Carry computation techniques. (a) Carry-propagation. (b) Carry-catcher.

Carry Catcher Method. Prime field multiplication or squaring consists of
a number of partial products. When we compute partial products in ascend-
ing order, intermediate results generate carry values, accumulating the par-
tial product results. Traditionally, carry values spread to end of intermediate
results, which is described in Figure 3. (a). This case continuously updates re-
sult registers(r6 ∼ r0) so addition arithmetic is used in many times. To re-
duce the overheads, carry-catcher method, storing carry values to additional
registers(c6 ∼ c0), was presented in [13] and is described in Figure 3. (b). The
carry catching registers are updated at the end of computation at once. In Figure
4. (b), carry catcher based squaring was introduced by [13]. This method follows
hybrid-scanning and doubles partial product results before they are added to
results. This method is inefficient because all products should be doubled.

Lazy Doubling Method. In Figure 4. (d), efficient doubling method named
lazy-doubling is described [8]. This method also follows hybrid scanning struc-
ture. The inner loop is computed in a operand scanning way, and then carry
catcher method is used for removing consecutive carry updates. The strong fea-
ture of this method is doubling process which is delayed to end of inner structure
and then computed. This method reduces number of arithmetic operations by
conducting doubling computations on accumulated intermediate results. This
technique significantly reduces a number of doubling process to one doubling
process.
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Fig. 4. Multi-precision squaring techniques. (a) Yang et al.’s method [5]. (b) Scott et
al.’s method [13]. (c) Lee et al.’s method [8].

3 Sliding Block Doubling Method

Most of the previous squaring methods either employ the normally used operand-
scanning method or directly follow the idea of hybrid-scanning when imple-
menting the multi-precision squaring on resource constraint processors. How-
ever, these implementations may have two disadvantages, namely (1) lacking
of optimal usage of working registers, and (2) inefficiently dealing with the
carry bit produced when adding two partial products. In order to overcome
the above shortcomings, we proposed a novel technique for efficient implemen-
tation of multi-precision squaring on embedded platforms, named “sliding block
doubling” (SBD). On one hand, SBD method computes doubling using “1-bit
left shifting” operation at the end of duplicated partial product computation,
which accumulates all partial product results with only consuming few arith-
metic operations. On the other hand, contrary to previously known solutions,
SBD method adopts product-scanning method to compute duplicated product
parts (see the black dots in Figure 5). After then the intermediate results are
doubled, and added into the final results. The detailed process of proposed SBD
method is described as follows.

Product-Scanning for Upper Part of Triangular Form. We adopt product-
scanning method to execute partial products from the least significant part up
to most significant part. As shown in Figure 5, the first black dot represents an
execution of operation A[2] × A[1], after then the remaining black dots in the
Figure 5 are computed. As mentioned before, we stored the intermediate results
into memory rather than working registers similar as the works did in [6,14] for
multiplication.
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Sliding Block Doubling of Duplicated Products. After finishing the first
step, we can then double the intermediate results accumulated from previous
process by simply left-shifting 1-bit. This efficient operation is also the main
difference between our SBD method and previous works in [13,8], namely, com-
paring to their works, we significantly saved the cost of doubling computation.
Specially, both of Scott et al.’s [13] and Lee et al.’s [8] methods compute the dou-
bling process in the middle of squaring process, while proposed SBD cunningly
delayed this operation to the very end of duplicated partial products, in this
way, we can double the accumulated intermediate results altogether. Compared
to [5], our method separates the whole doubling process into several sub-doubling
blocks due to limited number of working registers.

Remaining Partial Products for Middle Line of Triangular Form. The
first two steps are used to calculate the blocks for the case of Ai × Aj where
i �= j, in which case each block is required to be computed twice. For the case
of i = j, represented by the read dots in Figure 5, the multiplication is only
computed once. And then the computed intermediate results are added to final
results.

Fig. 5. Sliding-block-doubling squaring method

3.1 Computation Complexity

This section mainly discusses the computation complexity of SBD method, we
took 8-bit AVR platform as an example to show the total number of operations.
However, it is worth to note that similar works can also be extended to 16-bit
MSP, 32-bit ARM platforms. On an AVR platform, each mul, load and store

instruction consumes 2 clock cycles, while add and shift only needs 1 clock
cycle.

In upper part of triangular form, n times load instructions are required for
loading operands to registers as we load the operand byte by byte. After all
operands are loaded to registers, each computation of partial product using
product-scanning method to execute an operation of (t, u, v) = (t, u, v)+Ai ·Aj ,
whereby (t, u, v) represents three accumulator registers and Ai, Aj are the two
registers allocated for operands. This operation requires one mul and three add
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(or adc) instructions, consuming five clock cycles altogether. An upper part of

squaring operation needs to execute n2−2n
2 iterations, therefore, the whole clock

cycles are 5(n2−2n)
2 . The results are needed to first store the intermediate result

into memory. This process consumes 2n times of store and 4n clock cycles.
In sliding block doubling part, intermediate results are reloaded to registers

which consumes 2n times of load, and thus costs 4n clock cycles. Then the full
intermediate results are left-shifted by 1-bit. This shift operation is conducted
by size of intermediate results, and roughly needs 2n clock cycles for shift

operation.
In remaining partial products for middle line. Each block executes an opera-

tion of Ai ·Ai, costing 5 clock cycles and the operations are iterated by n times,
therefore, 5n clock cycles are needed. During middle line computations, we catch
carry values into registers and compute products using product-scanning. The
values are updated after all computations and this is conducted by size of inter-
mediate results, this process needs 2n clock cycles. After all computations, final
results are stored to memory by 2n and it needs 4n clock cycles.

Table 1. Comparison of computation complexity with previous works

Algorithms mul load store add shift total

Scott et al. [13] (CC) n2

2
5n 2n 6n2

2
- 9

2
n2 + 6n+ 5

Lee et al. [8] (LD) n2

2
15
4
n− 26 2n 3n2

2
- 3n2 + 54

4
n+ 55

Our method (SBD) n2

2
3n 4n 3n2+4n

2
2n

(
5n2+36n

2

)
× α

Table 1 shows the number of main instructions required, including of mul,
load, store, add and shift, for carry catcher and lazy doubling methods as

well as the proposed SBD method. Total number of mul instructions are n2

2 in-
cluding upper and middle part of triangular form. The memory-access operations
are categorized into load and store. For load instruction, loading operands and
intermediate results are iterated by 3n times. For store instruction, intermedi-
ate and final results are stored by 4n times. The addition instructions are used

for accumulation and carry catcher update by 3n2+4n
2 times. Finally shift oper-

ations are executed by size of intermediate results to double duplicated results.
Besides of the above analyzed cost, proposed SBD method also have to pay

additional overheads, e.g. integration of the blocks, setting or resetting working
registers. For the sake of simplicity, we called the additional overheads “self-
adjusting factor”, represented by the symbol α . The concrete value of α depends
on the block sizes adopted for implementation. To order to give an accurate
estimation of the value α, we compared the real implementation cost CI with
the estimated results CE obtained from Table 1, and then, computed the ratio
as α = CI/CE , we lists the value in Table 2.

Practical Implementation. We separate the whole process into three parts
but for practical implementation we should combine the second and third part.
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Table 2. The value of self-adjusting factor α

Operand length CI CE CI − CE α

128-bit 1, 003 928 75 1.08

160-bit 1, 456 1, 360 96 1.07

192-bit 2, 014 1, 872 142 1.07

When we double the intermediate results, all results should be loaded into regis-
ters. After computation, results are stored into memory. To compute middle line
of triangular form, intermediate results should be re-loaded. This costs lots of
load and store operations. To overcome this drawback, we combine both pro-
cesses and then compute part of combined process. The whole combined process
is not computed at once due to limited number of registers so we separate com-
bined process depending on available registers. Separated parts are computed in
this order. First, intermediate results are loaded into registers. Second, the re-
sults are 1-bit left shifted. Third, middle line of triangular form is computed and
then updated to intermediate results. This process is continued to the last sepa-
rated block which is most significant byte. The detailed block structure example
on 128-, 160-, 192-bit is available in Appendix. B. Furthermore during middle
line computations, we can re-use operand registers for carry-catcher registers.
For example, A[0]×A[0] product result is accumulated to intermediate results.
During the process carry bit is generated. To catch the carry bit, we re-used a
register storing operand A[0].

4 Experimental Results

In this section, we evaluate the performance of proposed SBD method in term of
execution time on 8-bit embedded platforms and then compare our results with
related works.

4.1 Evaluation on 8-bit Platform ATmega128

We implemented the method on 8-bit AVR processor ATmega128 which is widely
used in MICAz mote, and then simulated our implementation over AVR Studio
6.0. Normally, an ATmega128 processor runs at a frequency of 7.3728 MHz. It
has a 128 KB EEPROM chip and 4 KB RAM chip [1]. The ATmega128 proces-
sor also supports a RISC architecture with 32 registers, among which 6 registers
(R26 - R31) serve as the special pointers for indirect addressing. The remaining
26 registers are available for arithmetic operations. One arithmetic instruction
incurs one clock cycle, and memory addressing (e.g. load, store) or 8-bit mul-
tiplication (e.g. mul) incurs two processing cycles [1]. We used four registers for
the operand and result pointers, two registers for storing the result of multipli-
cation, three registers for accumulating the intermediate result, one register for
holding the zero value and the remaining registers for caching operands.
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Table 3. Instruction counts for a 160-bit multiplication and squaring on the AT-
mega128 (excluding PUSH/POP), Unrolled the Loop (U-L)

Method load store mul add shift others total

Multiplication
Operand Scanning 820 440 400 1,600 - 466 5,427
Product Scanning [2] 800 40 400 1,200 - 161 3,957
Gura et al. [4] 200 40 400 1,250 - 311 2,904
Uhsadel et al. [16] 238 40 400 986 - 539 2,881
Liu et al. [9] 200 40 400 1194 - 391 2,865
Zhang et al. [17] 200 40 400 1092 - 473 2,845
Scott et al. [13] (U-L) 200 40 400 1263 - 108 2,651
Hutter et al. [6] (U-L) 80 60 400 1,240 - 70 2,395
Seo et al. [14] (U-L) 70 60 400 1,240 - 56 2,356

Squaring
Yang et al. [5] 468 280 210 909 40 244 3,009
Scott et al. [13] (CC) 100 40 210 1,265 - 100 2,065
Lee et al. [8](LD) 51 40 210 804 - 103 1,509
Our method (SBD) 58 81 210 671 42 45 1,456

Fig. 6. Performance comparison in different operand size

Table 3 lists the performance comparison of the total clock cycles in case of
160-bit squaring. There are two main categories of methods, namely, the multi-
precision multiplication and squaring methods. The multiplication methods are
inefficient for squaring, since it does not take the advantage of main feature
of squaring which can avoid duplicated partial products, exploiting doubling
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Table 4. Performance enhancement of ATmega128 for squaring operation, our: pro-
posed, LD: lazy-doubling, CC: carry-catcher

Bit Clock Cycle Performance Enhancement(%)
Our LD CC (1− Our

LD
)× 100 (1− Our

CC
)× 100

128 1,003 1,039 1,365 3.465 26.520
160 1,456 1,509 2,065 3.512 29.492
192 2,014 2,107 2,909 4.414 30.767

operation. For this reason, when using the multiplication methods to conduct
partial products, the efficiency is quite low.

In case of squaring, we compared with the three widely used methods. First,
we compared with Yang et al.’s method. As mentioned before, this method is
not suitable for software implementation. It conducts the multiplication with
operand scanning method which requires lots of registers for maintaining inter-
mediate results and carry catcher values. The registers in need are about 3n.
If number of register is lower than 3n, performance is sharply plunged due to
frequent memory access to restore the values.2 Second, we compared with the
carry catcher method. It enhances performance by computing partial products
within specific inner multiplication blocks. Carry propagation is effectively re-
duced but doubling method is conducted to all duplicated partial products which
computes lots of addition operations. Third, we compared with the best known
previous result, namely LD method. LD method eliminates many number of
doubling process by accumulating the intermediate results and then computing
doubling at the end of inner multiplication blocks. However, this method does not
fully accumulate intermediate results before doubling process. Compared to the
three methods, SBD method is fully computing partial products using product-
scanning and then shifting the intermediate results, which compute doubling
with single 1-bit left shift operation, adding remaining partial products to in-
termediate results. Even though we conduct more number of memory accesses
for load and store intermediate results, we efficiently compute doubling process
and partial products, which draw higher performance enhancement by reducing
arithmetic operations.

Table 4 and Figure 6 give the comparison details of these methods. The pro-
posed SBD method only requires 1,456 clock cycles to accomplish an squaring
operation of 160-bit, which is setting a new speed record for multi-precision
squaring operation on 8-bit AVR micro-controllers. As a result of this, compared
to previous best known result, lazy doubling, SBD method shows performance
improvement by about 3.5 ∼ 4.4%. It is also worth to notice that the perfor-
mance enhancement of SBD appears in each operand length (128-bit to 192-bit),
and the enhancement ratio shows an increased tendency with the increasing of
operand length.

2 Software implementation of Yang et al. is not reported in [5]. For pair comparison,
we implemented this method following the their main idea and using carry-catcher
method as well.
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5 Conclusion

This paper presented a new technique to implement multi-precision squaring
on resource-constrained embedded processors, named “sliding block method”
(SBD). As the name suggests, the SBD method delays the doubling process to
the very end of the partial-product computations so that it can be performed
“in one pass” by a 1-bit left shift. In order to achieve high performance, we also
optimized the usage of general purpose registers and reduced the overhead dur-
ing the computation of each block by combining the advantages of the operand
caching technique and lazy doubling method. We then theoretically analyzed
the computational complexity of the proposed SBD method and provided a
method to estimate the performance for arbitrary-length operands. To validate
the theoretical results, we implemented the SBD method on an 8-bit AVR mi-
crocontroller for operands of different length. Our results show that the SBD
method requires only 1456 clock cycles to perform a 160-bit squaring, which sets
a new speed record for multi-precision squaring on an 8-bit platform. The pro-
posed method outperforms the best previous results in the literature by a factor
of between 3.5% and 4.4%, depending on the concrete bit-length. Moreover, the
SBD method can be easily adapted to other embedded platforms with minor
modifications, e.g. 16-bit MSP and 32-bit ARM processors. As a future work,
we will port our method to various other platforms and show the impact of SBD
squaring in real public-key algorithms, including RSA, ECC and pairing-based
schemes.
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Appendix A. Algorithm for Sliding-Block-Doubling
Squaring Method

Input: word size n, parameter e, where n ≥ e, Integers a ∈ [0, n), c ∈ [0, 2n).
Output: c = a2.
RA[n− 1, ..., 0] ← MA[n− 1, ..., 0].
ACC ← 0.
for i = 1 to n− 1

for j = 1 to � i
2�

ACC ← ACC +RA[i]×RA[j].
end for
MC [i] ← ACC0.
(ACC1, ACC0) ← (ACC2, ACC1).
ACC2 ← 0.

end for
for i = n to 2n− 1

for j = 2n− 1 to � i
2�

ACC ← ACC +RA[i]×RA[j].
end for
MC [i] ← ACC0.
(ACC1, ACC0) ← (ACC2, ACC1).
ACC2 ← 0.

end for
ACC ← 0.
for i = 0 to n− 1

if i%d == 0
RC [i+ d, ..., i] ← MC [i+ d, ..., i].
RC [i+ d, ..., i] ← RC [i+ d, ..., i] * 1.

end if
ACC ← ACC +RA[i]×RA[i].
MC [i] ← ACC0.
MC [i+ 1] ← ACC1.

end for



Multi-precision Squaring for Public-Key Cryptography 243

Appendix B. Example: Sliding-Block-Doubling Structure
for 128-, 160-, 192-bit Case

Fig. 7. Practical implementation of proposed method in case of, (a) 128-bit, (b) 160-bit,
(c) 192-bit
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Abstract. The decision regarding the best suitable microprocessor for a
given task is one of the most challenging assignments a hardware designer
has to face. In this paper, we make a comparison of cycle-accurate VHDL
clones of the 8-bit Atmel ATmega, the 16-bit Texas Instruments MSP430,
and the 32-bit ARM Cortex-M0+. We investigate their runtime, chip
area, power, and energy characteristics regarding Elliptic Curve Cryp-
tography (ECC), one of the practically most resource-critical public-key
cryptography systems. If ECC is not implemented with greatest care,
its implementation can lead to excruciating runtimes or enable practi-
cal side-channel attacks. Considering those important requirements, we
present a constant runtime, side-channel protected, and resource sav-
ing scalar multiplication algorithm. To tap the full potential of all three
microprocessors, we perform assembly optimizations and add carefully
crafted instruction-set extensions. To the best of our knowledge, this
is the first thorough software and hardware comparison of these three
embedded microprocessors.

Keywords: ATmega, MSP430, Cortex-M0+, Elliptic Curve Cryptogra-
phy, Instruction-Set Extension, Software and Hardware Evaluation.

1 Introduction

Motivation. It is a well-known fact that embedded microprocessors play a sig-
nificant role within a huge number of consumer, industrial, commercial and mil-
itary applications. Microprocessors are being produced and deployed in huge
numbers and are the beating heart of, e.g., smart cards, wireless sensor net-
works, or in future even RFID tags. Those applications require solutions that are
highly optimized in order to be cheap, energy-efficient, and/or power-efficient,
while being versatile and delivering the necessary performance.

To meet all these requirements, the high demands of security and cryptogra-
phy have too often been disregarded. Especially public-key cryptography needs
to be implemented with great care in order to achieve small, performant, and
energy-saving solutions. Since RSA and ElGamal based crypto systems simply
require too much memory, Elliptic Curve Cryptography (ECC) seems to be the

G. Paul and S. Vaudenay (Eds.): INDOCRYPT 2013, LNCS 8250, pp. 244–261, 2013.
© Springer International Publishing Switzerland 2013
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best choice. However, ECC is a highly demanding challenge within most appli-
cations, and therefore the decision regarding the most suitable microprocessor
usually is the most discussed topic within a hardware manufacturer. To evaluate
the performance of ECC in software and in hardware, we built VHDL clones of
three of the most popular microprocessors.

Related Work. The research community recognized the challenge of efficiently
implementing ECC. In this context, we want to cite [19,20,22,33,42,45], just to
name a few. Those papers presented and used a lot of different approaches to im-
prove the performance of ECC on embedded microprocessors. Unfortunately, in
many papers, the authors sacrifice practical crucial properties, e.g., the memory
footprint or practical side-channel security threats for the sake of fastest run-
times. Other characteristics like power and energy consumptions are also often
neglected. Szczechowiak et al [42] is a welcome exception as they presented mea-
sured power values for the ATmega and the MSP430 microprocessor. However,
how comparable are those values as both processors were manufactured in differ-
ent ASIC technologies by different vendors? A fair comparison of the investigated
microprocessors must utilize a common design flow, common technologies, and
practically secured software implementations.

Our Contribution. In this paper, we perform a systematic and comprehen-
sive approach to evaluate ECC on cycle-accurate VHDL clones1 of three of the
most popular microprocessors: the 8-bit Atmel AVR ATmega, the 16-bit Texas
Instruments MSP430, and the 32-bit ARM Cortex-M0+. Our contribution is
composed of the following points:

– We derive a point multiplication methodology from previous work which is
light-weight and secure against (most) side-channel attacks. The resulting
algorithm can be applied to any future embedded designs.

– All our software implementations for the three processors are secure against
side-channel attacks and highly optimized using state-of-the-art multi-
precision integer multiplication techniques. Runtime, chip area, power,
and energy results are given for four different standardized elliptic curves
(secp160-192-224-256r1).

– We built three cycle-accurate clones of three of the most popular micro-
processors and evaluate them in an 130nm ASIC manufacturing process.
The hardware models are based on publicly available design documents and
software simulators. It is quite unlikely that Atmel, Texas Instruments, or
ARM would have given us their cores for such a comparison. Their chips are
produced in different technologies, so any comparison of actual chips is im-
practicable for our purposes. Regarding code quality, we want to emphasize
that Atmel, Texas Instruments, and ARM use similar libraries and tools as
we do. Therefore our designs are probably very close to the real deal.

– We are the first to integrate instruction-set extensions (ISE) in actual clones
of those microprocessors. The only common denominator of those three pro-
cessors is the 16-bit instruction-set. In every other key aspect, they differ (e.g.

1 Closed source for now, done by the authors.
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8, 16, 32 bit datapaths, Harvard/Von Neumann architecture, ...). Therefore
the multiply-accumulate ISEs have to be carefully crafted for each CPU core.

– We are the first to optimize ECC on the Cortex-M0+.
– Our results represent state-of-the-art of side-channel protected, fast, light-

weight, and standardized asymmetric cryptography for embedded processors.

The paper is structured as follows: Section 2 presents and analyzes the side-
channel protected elliptic-curve point multiplication algorithm. Within Section 3
the three processors are reviewed and compared on an architectural level. Sec-
tions 4 and 5 summarize the assembly and instruction-set optimizations. A rig-
orous analysis of all implementation results is performed in Section 6. Section 7
concludes the paper.

2 Elliptic Curve Cryptography

When implementing elliptic curve cryptography, a designer has a multitude of
options. In the following we present an algorithm for the point multiplication
which was chosen based on four characteristics:

– It is easy to tamper with embedded microprocessors. Timing attacks,
power-analysis attacks and fault-analysis attacks are a real and omnipresent
danger. For that matter we will not claim to be secure against all kinds of at-
tacks, but by choosing a methodology that is aware of many kind of attacks,
we emphasize the practical significance of the results presented later.

– ECC is a feature. Unlike, e.g., the work in [42] (Comb method with window
size w = 4), we think that only a small fraction of the available program and
data memory resource should be used for ECC so that the actual application
is not hindered in its operation. Therefore we choose a point-multiplication
formula which does not allocate the whole memory for pre-computed or
temporary points. Reduced memory requirements further allows hardware
designers to save money by equipping the chip with smaller memories.

– Standards were made to be used and simplify the interoperability of prod-
ucts. Thus, by choosing a NIST [35] or SECG [7] standard, any company can
be sure that their product is compatible with products from other vendors.

– Achieving a high speed is an ubiquitous goal of nearly every designer. By
getting the most out of an available hardware, one reduces latency times
(important in real-time protocols) and saves energy (important for battery-
powered devices and from an economic point of view). As we do not sacrifice
our security requirements for speed, we concentrate on improving the finite-
field operations by doing assembly and instruction-set optimizations.

In Algorithm 1, we present the point multiplication formula used for all our
practical evaluations. A detailed analysis of Algorithm 1 is given in Appendix A.
Our goal was to design an algorithm which can be used for Diffie-Hellman key
exchanges (DHKE) and elliptic-curve based signatures (ECDSA [35]), which
are the major features embedded applications actually require. The algorithm
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Algorithm 1. Elliptic curve point-multiplication algorithm used for evaluation

Input: Domain parameters, secret scalar k with MSB = 1, point P = (x, y).
Output: R = k × P
1: if y2 �= x3 + ax+ b then Perform Error Handling

2: (X,Y, Z) ← (x · λ, y · λ, λ) � Randomize Projective Coordinates
3: if Y 2Z �= X3 + aXZ2 + bZ3 then Perform Error Handling

4: Q[0] ← (X,Z), Q[1] ← 2 · (X,Y, Z) � Initial Point Doubling
5: for i = |k| − 2 downto 0 do � Montgomery Ladder
6: Q[ki] ← Q[ki] +Q[ki ⊕ 1]
7: Q[ki ⊕ 1] ← 2 ·Q[ki ⊕ 1]
8: end for
9: (X,Y, Z) ← y-recovery(Q[0], Q[1])
10: if Y 2Z �= X3 + aXZ2 + bZ3 then Perform Error Handling

11: R = (x, y) ← (XZ−1, Y Z−1)
12: if y2 �= x3 + ax+ b then Perform Error Handling

is using a Montgomery ladder [34] with Randomized Projective Coordinates
(RPC) [10] and multiple point validation (PV) checks. After an initial PV check
the coordinates are randomized. In step 3, the point is again checked within the
projective coordinates. A fault attack on the randomized projective coordinates
is much more complex. Then, an initial point doubling within the RPC is per-
formed. The double of the original point is needed for the following Montgomery
ladder. Here we use the common-z interleaved point addition and doubling for-
mulas by Hutter, Joye, and Sierra [25]. As this is the most costly part of the
algorithm, no PV checks are performed within it. For the following recovery
of the y-coordinates, both Q[0] and Q[1] are used. Another two PV checks are
performed before and after the inversion of the Z-coordinate. One may argue
that several of the PV checks are redundant, but because they hardly have any
impact on the speed, we perform them anyways.

Runtimes of all finite-field operations are constant and data-independent.
Therefore, a finite-field inversion was implemented based on Fermat’s little the-
orem (inversion by exponentiation). Particularly, the algorithm is based on the
exponentiation trick by Itoh and Tsujii [27]. Although this trick is usually applied
to elliptic curves over binary fields, we utilize it to optimize the inversion for the
standardized Mersenne-like primes, nearly halving the number of multiplications
needed for an exponentiation with a fixed exponent.

Summarizing, it is important to utilize the available resources. Therefore a
detailed knowledge of the used microprocessors is necessary to achieve competi-
tive results. Section 3 discusses the characteristics of the investigated embedded
microprocessors.

3 Microprocessor Architectures

This paper focuses on three of the most popular embedded microprocessors:
the 8-bit Atmel ATmega AVR, the 16-bit Texas Instruments MSP430 and the
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32-bit ARM Cortex-M0+ microprocessors. All of them were designed for em-
bedded applications, in which price and power consumption matter more than
the maximum clock speed or the amount of available data or program cache. In
fact, those RISC processors do not have any cache. In this section, we introduce
the three processor architectures and discuss their capabilities relevant for ECC.

Atmel ATmega AVR Series. In 1996, two students from the Norwegian In-
stitute of Technology developed the first AVR processor. Today, designers can
choose from a vast range of descendants. Especially the ATmega series [2] has
been and is used in a magnitude of commercial products.

The ATmega is a 8-bit RISC processor with separated program, data, and I/O
memory buses (Harvard architecture). It comes with 32 general-purpose regis-
ters (GPR) and 91 (133 including simulated) instructions. To perform integer
arithmetic, operands need to be loaded (2 cycles) to the GPRs, processed within
the GPRs, and stored back (2 cycles) to the data memory. A for multi-precision
integer arithmetic [9] interesting 8-bit multiply-accumulate operation (LD, LD,
MUL, ADD, ADC, ADC) takes 9 cycles.

Texas Instruments MSP430 Series 1. One of the most successful, direct
competitor of the ATmega is the MSP430 processor series [43] by Texas Instru-
ments. With its six low-power modes it is most interesting for low power, and
low-energy applications. This is why it is used for many wireless sensor nodes
such as the EPIC Mote, TelosB, T-Mote Sky, and XM1000 platforms.

The original series-1 MSP430 is a 16-bit RISC processor with a single com-
bined data and program bus. Merely 12 of its 16 16-bit registers are actually
usable as general-purpose registers. The MSP430 series comes with a fully or-
thogonal instruction set of only 27 instructions with 7 addressing modes. Unfor-
tunately, there is no dedicated multiplication instruction, but a memory mapped
16× 16 → 32-bit multiplier, with multiply-accumulate feature, is available. De-
spite the high costs introduced by transfering the operands from data memory
to the multiplier, a 16-bit multiply-accumulate operation (MOV, MOV, NOP, ADD)
can be performed in 13 cycles.

ARM Cortex-M0+ Series. In the recent years, ARM made a name for itself
with supplying smart phones and tablets with powerful energy-saving processors,
namely the Cortex-A series. For embedded applications however, Cortex-M series
processors are more suitable. The Cortex-M0+ embedded microprocessor [1] is
the smallest, most energy-efficient ARM ever built and supports a subset of
the Thumb-2 instruction-set. This 32-bit RISC processor is designed as direct
competitor for the ATmega and MSP430 processors. Launched in 2012, major
companies (e.g., Freescale [15], Fujitsu [16], or NXP [36]) just started to introduce
the Cortex-M0+ to their lineups.

Similar to the MSP430, the Cortex-M0+ comes with a Von Neumann archi-
tecture. Its 32-bit address and data buses enable the addressing of up to 4GByte
of data, preparing it perfectly for future memory requirements. Exactly 13 of its
16 32-bit registers can be used as general-purpose registers, but most of its 56
instructions can only access the lower 8 registers R0–R7. Registers R8–R15 are
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Table 1. Summary of the embedded microprocessors

Characteristic ATmega MSP430 (1 Series) Cortex-M0+

Data-Width 8 bits 16 bits 32 bits
Instruction-Word Size 16 bits 16 bits 16 bits
Architecture Harvard Von Neumann Von Neumann
General-Purpose Registers 32 12/16 8/13/16
Number of Instructions 81 27 56
Max. Data Memory 16 kByte 10KByte 4GByte
Max. Program Memory 256 kByte 60KByte 4GByte
Multiply Accumulatea 9 cycles 13 cycles 29 cycles

Used Clone JAAVR [47] IDLE430 [50] Xetroc-M0+ [44]

Core areab 6,140 GE 4,913GE 15,262 GE
Registers 2,002 GE 1,732GE 4,176GE
Multiplier 372GE 1,751GEc 2,766 GE

a Load two operands, multiply and accumulate them.
b Including memory arbiter and necessary special function registers.
c Memory mapped and therefore not part of the core area.

accessible through a MOV instruction only. Optionally, the Cortex-M0+ comes
with a bit-serial or a single-cycle 32×32→ 32-bit multiplication instruction. Note
that for ECC, also the upper half of the product is necessary for multi-precision
integer arithmetic. In the following, we use this multiplier as 16 × 16 → 32-bit
multiplier. Section 4 illustrates the implementation of an efficient 29-cycle 32-bit
multiply-accumulate operation.

Summary of the Embedded Microprocessors. The common denomina-
tors of the three embedded microprocessors are that they are RISC processors,
support single-cycle register-to-register operations, and have 16-bit instruction
sets (with some 32-bit exceptions). The major differences are summarized in
Table 1. The three microprocessors utilize different architectures, have different
amounts of available registers, clearly distinct instruction sets and support dif-
ferent amounts of data and program memory. Those differences become apparent
when the actual hardware footprint is evaluated. Most remarkably, the 16-bit
MSP430 (4,913GE) requires less chip area than the 8-bit ATmega (6,140GE).
This is the price the ATmega has to pay for its three memory buses and the
vast instruction set. To efficiently perform integer multiplications, the MSP430
additionally needs a memory mapped multiplier which is 1,751GE in size. Com-
pared to the ATmega and the MSP430, the 32-bit Cortex-M0+ is much larger.
It requires 15,262GE in a configuration with a single-cycle 32-bit multiplier. The
optional 32-cycle bit-serial multiplier saves 1,363GE which brings the Cortex-
M0+ to a minimum size of 13,899GE in the used 130nm UMC process.

Related Work. ARM specifies that their Cortex-M0+ is only 12 kGE large in a
90 nm process. When synthesizing our clone in a 90 nm UMC process it requires
12,436GE. So in terms of area, our Cortex-M0+ is (as aimed for) very close to
the original. As neither Atmel nor Texas Instruments released characteristics of
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their processors, we can only compare our clones to the versions uploaded to
opencores.org. Compared to the openMSP430 [37], our MSP430 is 5, 958 −
4, 913 = 1, 045GE smaller. Compared to other (insufficiently tested) ATmega or
AVR clones, our ATmega clone is similarly small.

4 Assembly Optimizations for ECC

As we already fixed the point arithmetic, we focus our effort on the finite-field
operations. Most crucial is the finite-field multiplication as it contributes to
90% of the runtime of a point multiplication. Hence, optimizing the runtime of
the finite-field multiplication automatically improves the runtime of the point-
multiplication algorithm. Additionally, it leads to a speedup of the finite-field
squaring, exponentiation and inversion operation. To optimize the finite-field
multiplication, one can either perform assembly optimizations or extend the
instruction-set (see Section 5).

While the currently fastest multi-precision multiplication approaches for the
ATmega and the MSP430 are based on related work, it was necessary to come
up with a new technique for the Cortex-M0+ as it has not yet been investigated.

ATmega. In 2004, Gura et al. [22] presented an efficient multi-precision multipli-
cation method and applied it to the ATmega. Hutter and Wenger [26] presented
the “Operand Caching” method in 2011. It further reduced the number of mem-
ory load operations at the cost of some memory store operations. As it fully
utilizes the available general purpose registers as caches and currently is one of
the fastest ways to perform multi-precision multiplications on an ATmega, we
used their technique.

MSP430. The MSP430 only has 12 useable GPRs, of which three registers
have to be used as pointers and further three registers are necessary for the ac-
cumulation of intermediate results. With the remaining six registers, we applied
the product-scanning technique by Comba [9]. This technique fully utilizes the
multiply-accumulate functionality of the memory-mapped multiplier. It was first
described by Gouvêa and López [19] and is fully tailored to the MSP430.

Cortex-M0+. ECC performance of the Cortex-M0+ has never been examined
before. Most notable are the works of Aydos et al. [3], who optimized ECC for
an ARM7TDMI processor, and Bernstein and Schwabe [4], who optimized the
NaCl cryptographic library for a Cortex-A8. However, none of their work had
to deal with the limitations of a Cortex-M0+: Its multiplier only computes 32-
bit products, most instructions are restricted to registers R0–R7, and, for most
instructions, the destination register must equal one of the source registers, i.e.
in each multiplication one of the operands is overwritten by the product.

We evaluated several multiplication techniques and finally settled for a
product-scanning multi-precision multiplication method. Its centerpiece is shown
in Algorithm 2: the two operand references are moved from registers R8 and R9

to R1 and R2. Consequently, we can load their values from the memory. Then,
five registers are available to perform four 16×16→ 32-bit multiplications (steps
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Algorithm 2. Multiply-Accumulate Operation on Cortex-M0+

Input: R8 and R9 are pointers.
Output: R3, R4, R5 contain the sum.
1: MOV R1, R8

2: LDR R1, [R1, #offset1]

3: MOV R2, R9

4: LDR R2, [R2, #offset2]

5: UXTH R6, R1

6: UXTH R7, R2

7: LSR R1, R1, #16

8: LSR R2, R2, #16

9: MOV R0, R6

10: MUL R0, R0, R7 � Low–Low
11: MUL R6, R6, R2 � Low–High
12: MUL R2, R2, R1 � High–High
13: MUL R1, R1, R7 � High–Low

14: MOV R7, #0

15: ADD R3, R3, R0 � Low–Low
16: ADC R4, R4, R2 � High–High
17: ADC R5, R5, R7

18: LSL R0, R6, #16 � Low–High
19: LSR R2, R6, #16

20: ADD R3, R3, R0

21: ADC R4, R4, R2

22: ADC R5, R5, R7

23: LSL R0, R1, #16 � High–Low
24: LSR R2, R1, #16

25: ADD R3, R3, R0

26: ADC R4, R4, R2

27: ADC R5, R5, R7

9–13), whereby the 16-bit masking steps are performed only once (steps 5–7).
Steps 14–27 accumulate the four 32-bit products into the registers R3–R5.

The stack is used to temporarily store the product of the multi-precision
integer multiplication. Hence, we benefit from addressing relative to the stack
pointer and avoid moving the address to one of the registers R0–R7. In a second
step, a reduction is performed by taking advantage of the Mersenne-like primes.

Assembler Optimized Results. We did all assembly optimizations for four
standardized elliptic curves (secp160-192-224-256r1). In order to keep the
general view, Table 2 depicts the memory footprints, the runtimes for finite-field
operations and the point multiplication over the secp160r1 elliptic curve.

In terms of ROM size the processors behave converse their word sizes. The
implementation for the ATmega takes up 7,762 bytes in ROM, which is twice
as much as for the Cortex-M0+. This is mainly a result of the unrolled integer
multiplication. The MSP430 behaves well as it requires only 13% more ROM
than the Cortex-M0+. With respect to RAM, the ATmega (402 byte) and the
Cortex-M0+ (404 byte) perform similarly, consuming about 40% more RAM
than the MSP430 (290 byte). The increased RAM footprint of the ATmega is
due to the elliptic curve constants that need to be loaded to the RAM at startup.
The root of the increased memory usage of the Cortex-M0+ lies within its calling
hierarchy. Each PUSH operation stores four bytes of data within the RAM. These
facts combined make the MSP430 an economic platform in terms of memory
footprint and chip area.

Impressingly, the finite-field addition on the Cortex-M0+ is 2.6 times faster
than an addition on the MSP430. The main reason for that is the load-multiple
LDM instruction of the Cortex-M0+, which allows loading multiple words into
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Table 2. Benchmark data of assembly optimized implementations for secp160r1

Processor ROM RAM Addition Mult. Inversion Point Mult. Core Area
[Bytes] [Bytes] [Cycles] [Cycles] [Cycles] [Cycles] [kGE]

Atmega 8,358 402 291 3,024 519,217 9,230,048 6,140
MSP430 4,788 290 163 1,905 327,366 5,779,957 7,003
CortexM0+ 4,256 404 62 942 162,500 2,809,619 15,262

Relative Performance

Atmega 1.96 1.46 4.69 3.21 3.20 3.29 1.00
MSP430 1.13 1.00 2.63 2.02 2.01 2.06 1.14
CortexM0+ 1.00 1.39 1.00 1.00 1.00 1.00 2.49

several registers requiring only #words + 1 cycles. The load LDR instruction
takes 2 cycles per word and therefore 2×#words cycles would be needed.

As the runtime of integer multiplication scales quadratically, one expects
the 32-bit Cortex-M0+ to be four times faster than the 16-bit MSP430 and the
16-bit MSP430 to be four times faster than the 8-bit ATmega. But they are not.
The Cortex-M0+ is only twice as fast as the MSP430. The reason for that is the
tremendous overhead needed to perform a 32× 32→ 64-bit multiplication using
the 32× 32 → 32-bit integer multiplier (see the highly optimized Algorithm 2).
But also the MSP430 is only 1.6 times faster than the ATmega. This is because
the MSP430 has a memory mapped multiplier and the ATmega has an integrated
multiplier.

By combining finite-field additions, multiplications, and inversions, the run-
times for secp160r1 point multiplications were obtained. They are 9.2 million
cycles for the ATmega, 5.8 million cycles for the MSP430, and 2.8 million cycles
for the Cortex-M0+. As the finite-field multiplication contributes to the majority
of this runtime, the ratios for the point multiplications are nearly identical to the
ratios of the finite-field multiplication. Equipping the Cortex-M0+ with a bit-
serial multiplier quadruples its runtime: With 11.9 million cycles the bit-serial
multiplier simply defeates the purpose of having a 32-bit processor. Hence, we do
not recommend implementing prime-field based ECC on a Cortex-M0+ without
single-cycle multiplier. Consequently, instruction-set extensions were equipped
to improve runtimes and to monitor how the performance ratios change.

5 Instruction-Set Modifications

We carefully crafted the VHDL clones of the ATmega, the MSP430, and the
Cortex-M0+ to be cycle-compatible with its originals. During that process, we
also observed some minor shortcomings regarding their respective potentials.
This section is all about maximizing the performance by improving the runtime
of existing instructions and adding multiply-and-accumulate [21] instructions.
This MULACC instruction is optimal for multi-precision multiplication. It is used
to multiply two n-bit registers and add the 2n-bit product to three accumulation



8/16/32 Shades of Elliptic Curve Cryptography on Embedded Processors 253

registers. As the three processors differ significantly, MULACC had to be integrated
differently for each processor.

ATmega. Our modifications of the ATmega are based on Wenger [46]. In this
paper, we showed among other things how to improve load, store, and multiply
instructions and execute them within a single cycle instead of two. Additionally,
we added a single-cycle multiply-and-accumulate instruction, which was com-
bined with the Operand-Caching multiplication method. In a special operating
mode, activated by writing a memory-mapped configuration register, the existing
MUL instruction is reinterpreted as MULACC instruction. Therefore, the software
toolchain does not need to be modified. In fact, the trick of having a special
mode for the instruction-set extension has also been applied for the MSP430
and Cortex-M0+.

MSP430. The advantage of the MSP430 is, that operands do not have to be
explicitly loaded to core registers before their usage. The drawback is that the
multiplier is only accessible via the memory. To get rid of this bottleneck, we
removed the memory-mapped multiplier (saved 1,751GE) and added a dedi-
cated MULACC instruction within its core. Unfortunately, the 7 existing addressing
modes were insufficient for our purposes. By perfectly utilizing the pre-existing
auto-increment and a new auto-decrement addressing mode it is possible to load
two operands, multiply-and-accumulate the data, and update the addressing reg-
isters. To omit manual pointer updates completely, we combined the new MULACC

instruction with Wenger and Werner’s [49] zig-zag product-scanning multiplica-
tion method. Other modifications with less impact on the ECC runtime improved
move, jump, push, and call instructions by one to two cycles. This modifications
do not only minimize the overhead of the C-calling convention, but also poten-
tially improve the runtimes of any other algorithm run on the modified MSP430.

Cortex-M0+. As it is only possible to compute a 16×16→ 32-bit product with
the internal multiplier of the Cortex-M0+ and 29 cycles are necessary to perform
a 32-bit (c.f. Algorithm 2) multiply-and-accumulate operation, it is specially
important to equip the Cortex-M0+ with a MULACC extension. This extension
reduced the for the product-scanning important sequence of LDR, LDR, MULACC
instructions to mere 5 cycles. To save area, the pre-existing 32 × 32 → 32-bit
multiplier is reused and only extended to compute a 64-bit product. Therefore,
the MULACC extension did only cost 3.4 kGE.

Results Using Instruction-Set Modifications. In general, the core idea of
all modifications was to improve the performance without adding unnecessary
hardware. So the modifications of the ATmega (+14.8%) and the Cortex-M0+
(+22.5%) only marginally increased the size of the CPU cores. The effective size
of the MSP430 only increased by 2.8%. The slow, memory-mapped multiplier
was approximately as large as the new dedicated datapath to multiply-and-
accumulate within a single cycle. While the size of the CPU cores increased, the
size of the program memory decreased by 19-30%. The rather large unrolled in-
teger multi-precision multiplication functions shrunk significantly and therefore
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Table 3. Benchmarks of processors with instruction-set modifications for secp160r1

Processor ROM RAM Addition Mult. Inversion Point Mult. Core Area
[Bytes] [Bytes] [Cycles] [Cycles] [Cycles] [Cycles] [kGE]

Atmega 5,828 402 176 984 170,053 3,268,486 7,039
MSP430 3,898 286 150 718 123,939 2,445,508 7,197
CortexM0+ 3,088 408 62 369 64,859 1,231,946 18,700

Relative Performance of Modified Processors

Atmega 1.89 1.41 2.84 2.67 2.62 2.65 1.00
MSP430 1.26 1.00 2.42 1.95 1.91 1.99 1.02
CortexM0+ 1.00 1.43 1.00 1.00 1.00 1.00 2.66

Modified versus Assembly-optimized Implementations (Table 2)

Atmega −30.3% ±0.0% −39.5% −67.5% −67.2% −64.6% 14.6%
MSP430 −18.6% −1.4% −8.0% −62.3% −62.1% −57.7% 2.8%
CortexM0+ −27.4% 1.0% ±0.0% −60.8% −60.1% −56.2% 22.5%

the total chip areas actually decreased. However, the modifications only have
very little impact on data memory utilization.

As intended, the modifications achieve a massive speedup of multiplications in
the prime field (cf. Table 3). Throughout, the corresponding runtimes dropped by
60%, with the highest speedup achieved on the ATmega (-67%). As inversions are
based on exponentiation to counteract side-channel attacks, the same impressing
speedup is found there. Accordingly, point multiplication runtimes slumped by
65% on the ATmega and plunged by 57% on the others. Concerning addition,
there are no performance gains for the Cortex-M0+ and the MSP430. Contrary
to that, addition is performed 40% faster on the ATmega due to the improved
timings of the load and store operations. Relating runtimes of the three modified
processors, the Cortex-M0+ again achieves the best performance, being between
2-3 times faster than its competitors. However, its advantage diminishes slightly
compared to the unmodified ATmega.

6 Discussion of Hardware Implementations

All our implementations for the three microprocessors, with and without
instruction-set modifications, and over four elliptic curves were tested for cor-
rectness using externally generated test vectors, synthesized in a Faraday UMC
130nm low-leakage ASIC library, placed-and-routed, and power-simulated (us-
ing Cadence RTL Compiler, Cadence Encounter). The huge number of results
are accumulated within Table 4 and discussed in the following.

Memories. We used area-efficient single-port RAM macros as data memories
and single-port Via-1 ROM macros as program memories. As their necessary
sizes depend on the ECC implementation, they were chosen appropriately for
each implementation. Experiments showed that synthesizing the program mem-
ories as standard logic cells resulted in smaller program memories after synthesis,
but there were two problems: Firstly, it was virtually impossible to place and
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Table 4. Summary of all experiments

Processor Version Program Dataa Chip Area Power Energy Runtime
Memory Memory ROM RAM Core Total @10MHz @10MHz

[Bytes] [Bytes] [GE] [GE] [GE] [GE] [µW] [µJ] [ms]

secp160r1

ATmega ASM 8,358 402 11,807 3,754 6,140 21,701 545 503 923
MSP430 ASM 4,788 290 7,796 3,250 7,003 18,048 583 337 578
CortexM0+ ASM 4,256 404 8,270 4,308 15,262 27,840 718 202 281

ATmega ISE 5,828 402 8,202 3,754 7,039 18,995 666 218 327
MSP430 ISE 3,898 286 6,363 3,225 7,197 16,786 794 194 245
CortexM0+ ISE 3,088 408 6,416 4,334 18,700 29,450 1,306 161 123

secp192r1, NIST P-192

ATmega ASM 10,238 462 11,807 4,107 6,140 22,054 556 839 1,509
MSP430 ASM 5,408 330 8,202 3,475 7,003 18,679 581 533 918
CortexM0+ ASM 4,860 448 8,270 4,560 15,262 28,092 716 329 459

ATmega ISE 6,564 462 10,040 4,107 7,039 21,186 670 336 502
MSP430 ISE 4,142 330 7,796 3,475 7,197 18,468 801 283 353
CortexM0+ ISE 3,164 444 6,416 4,535 18,700 29,652 1,318 241 183

secp224r1, NIST P-224

ATmega ASM 12,570 526 15,484 4,485 6,140 26,109 571 1,326 2,321
MSP430 ASM 6,294 374 10,040 3,750 7,003 20,792 584 819 1,403
CortexM0+ ASM 5,672 496 8,270 4,838 15,262 28,369 716 496 693

ATmega ISE 7,600 526 10,040 4,485 7,039 21,564 664 500 754
MSP430 ISE 4,588 370 7,796 3,725 7,197 18,718 805 419 521
CortexM0+ ISE 3,352 492 6,416 4,812 18,700 29,929 1,330 334 251

secp256r1, NIST P-256

ATmega ASM 16,112 590 17,029 4,838 6,140 28,006 548 1,914 3,493
MSP430 ASM 8,378 418 11,878 4,000 7,003 22,881 580 1,286 2,217
CortexM0+ ASM 7,168 540 10,123 5,089 15,262 30,475 719 771 1,073

ATmega ISE 9,596 590 11,807 4,838 7,039 23,684 655 779 1,190
MSP430 ISE 6,168 416 10,040 3,975 7,197 21,212 791 717 907
CortexM0+ ISE 4,124 536 8,270 5,064 18,700 32,034 1,339 546 408

a Including Stack.

route the program memories without significantly decreasing the cell density,
which actually increased the effective size of the program memory. Secondly,
the ROM macros have a significantly lower power consumption compared to the
synthesized program memories.

Runtime. The runtime is measured at 10MHz and visualized in Figure 1. The
time for a single, side-channel secured point multiplication varies between 123–
923ms. As expected, the 32-bit processor is faster than the 16-bit processor,
which in turn is faster than the 8-bit processor. Quite remarkably though is that
the modified ATmega is nearly as fast as the native Cortex-M0+.

Area. The area visualized in Figure 1 accumulates the respective areas of the
CPU, the ROM, the RAM, and core building blocks, such as an arbiter. Quite
remarkably, the native and the modified MSP430 represent the smallest im-
plementation, requiring around 16.8–18.0kGE. Compared to that, the modified
Cortex-M0+ (29 kGE) is 75% larger.

Area-runtime-product. In the prestigious category of area-runtime-product,
the modified implementations clearly outperform its native counterparts (see the
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Fig. 1. Area-runtime-characteristics for secp160r1 at 10MHz

dashed lines within Figure 1). The modified Cortex-M0+ system performs best,
and the native ATmega system performs worst. However, the modified ATmega
system provides a better performance for the used chip area than the native
Cortex-M0+. Consequently, if some commercial company evaluates whether to
switch to a more powerful Cortex-M0+, we can clearly recommend to replace the
native MSP430 or ATmega with its modified counterpart, presented within this
paper. As nice side-effect, the software code-base does not have to be updated
for a different processor.

Power. According to Figure 2, all designs require between 545–1,305µW. The
8-bit ATmega requires the least amount of power, slightly less (6.5%) than the
MSP430. However, when their modified counterparts are compared, the modified
ATmega needs 16% less power than the modified MSP430. The Cortex-M0+ and
the modified Cortex-M0+ need the most power.

Power-runtime-product: Energy. However, the same two processors shine
within the energy-efficiency race. As represented by the dashed lines in Figure 2,
the Cortex-M0+ based designs only need 161–202µJ, while the other designs
need 194–503µJ. That is up to 60% less. The MSP430 is 11–33% more energy
efficient than the ATmega.

Relating the Different Elliptic Curves. As initially stated and depicted
in Table 4, we did not do our evaluation only with secp160r1, but also with
secp192r1, secp224r1, and secp256r1. Most importantly, the results observed
at the 80-bit security level are reproducible for the larger elliptic curves. On
average, changing from one elliptic curve to the next larger one, costs 6% of
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Fig. 2. Power-runtime-characteristics for secp160r1 at 10MHz

additional chip area, 53% of additional runtime and 54% of additional energy.
The power consumption is not effected by the chosen elliptic curve.

Related Work. In terms of software implementations (c.f. Table 5), our imple-
mentations distinct themselves from related work with their low memory foot-
prints and the side-channel countermeasures. In fact none of the implementations
done by [20,22,33,42,45] have side-channel countermeasures built in. Therefore
it is expected that, e.g., [20,22,42], achieve faster runtimes than we do. However,
e.g., [20,42] need up to 7–10 times more program and data memory than we do.

Table 5. Comparison with related soft-
ware implementations (80 bit security
level)

Curve ROM RAM Runtime
[Bytes] [Bytes] [kCycles]

ATmega

Custom [42] 46,100 1,800 9,376
secp160r1 [33] 20,768 1,774 15,060
secp160r1 [22] 3,682 282 6,480
Our secp160r1 8,358 402 9,230

MSP430

Custom [42] 31,300 2,900 5,898
secp160r1 [20] 23,300 2,800 2,528
secp160r1 [33] 16,218 1,866 11,821
secp160r1 [45] 12,500 1,300 28,080
Our secp160r1 4,788 290 5,780

Table 6. Comparison with related hard-
ware implementations

Implementation Area Runtime
[GE] [kCycles]

96-bit security level

Satoh et al. [39] 29,655 4,165
Hutter et al. [24] 19,115 859
Wenger et al. [48] 11,686 1,377

80-bit security level

Öztürk et al. [38] 30,333 545
Fürbass et al. [17] 23,656 500
Kern et al. [29] 18,247 512

Our Mod. ATmega 18,995 3,268
Our Mod. MSP430 16,786 2,446
Our Mod. Cortex-M0+ 29,450 1,232
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For the sake of completeness, we also compare our modified processors with
related hardware implementations (c.f. Table 6). Unfortunately, those dedicated
hardware designs are faster than our flexible microprocessor based designs. How-
ever, in terms of chip area, our smallest modified MSP430 implementation is
smaller than the work of [17,24,29,38,39]. Only the custom microprocessor de-
sign byWenger et al. [48] is smaller. However, their microprocessor does not come
with the vast (open-source) compiler toolchains, the ATmega, the MSP430, or
the Cortex-M0+ provide.

7 Conclusion

In this work, three of the most popular micro-processors were evaluated re-
garding their runtime, chip area, power, and energy consumption on standard-
compatible side-channel protected elliptic curve cryptography. By comparing
them using a single design flow, the same application, and with a common tech-
nology, we achieve a fair comparison between the different architectures. Our
work might help any system architect on their decision regarding best suitable
processor, best suitable security level, and whether or not to implement hard-
ware extensions. Our results show that the Cortex-M0+ is the fastest and most
energy-efficient processor (e.g., ideal for Wireless Sensor Nodes), the MSP430
enables the smallest and least power consuming hardware design (e.g., ideal for
RFID tags), and the ATmega gains the most performance when instruction-
set modifications are applied (e.g., ideal for long-lived products that must be
equipped with ECC). Any designer now has to define their own metric and
weigh the characteristics with each other. To the best of our knowledge, such an
comprehensive evaluation has not been done before.

Acknowledgments. This work has been supported in part by the Austrian
Government through the research program FIT-IT under the project number
835917 (project NewP@ss) and by the European Commission through the ICT
Programme under contract ICT-SEC-2009-5-258754 TAMPRES.

References

1. ARM. Cortex-M0+ Processor (2013),
http://www.arm.com/products/processors/cortex-m/cortex-m0plus.php

2. Atmel Corporation. megaAVR Microcontroller (2013),
http://www.atmel.com/products/microcontrollers/avr/megaavr.aspx
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A Analysis of Point Multiplication Formula

The following analysis discusses how Algorithm 1 holds up against the most com-
mon side-channel attacks. It is based on the overview papers of Fan et al. [12,13].
Attacks that are considered not to affect the security of the given algorithm:

Timing analysis [30] is not possible, because the used Montgomery Lad-
der [25] has a key-independent runtime, and all finite-field operations have
a constant runtime as well. To avoid leading-zero-bits timing attacks [6]
based on the LLL algorithm [32], we set the most-significant bit of the secret
ephemeral scalar to one.

Simple power analysis [31] is hindered by using a Montgomery Ladder and
Randomized Projective Coordinates.

Differential power analysis [31], Refined power analysis [18] are not
possible as random ephemeral scalars are used for DHKE and ECDSA.

M & C safe-error analysis [28,51] are not possible because a Montgomery
ladder in conjunction with random ephemeral scalars is used.

Invalid point analysis [5], Twist-curve based analysis [14] is not possi-
ble because in lines 1, 3, 10, and 12 point-validity checks are performed.

Subgroup analysis [5] is not possible because an y-recovery with subsequent
point verification is performed. Ebeid and Lambert [11] provide a thorough
analysis of the y-recovery as countermeasure.

Attacks that may affect the security of the given algorithm:

Program-flow fault analysis [40,41]. A fault attack applied on the program
flow can hardly be detected by the program flow itself. To circumvent such
paths of attacks, hardware countermeasures are recommended.

Invalid-curve analysis [8] has to be additionally handled by checking the va-
lidity of the stored curve parameters. This is not done within Algorithm 1,
but the point-validity checks certainly handicap any invalid-curve attack.

Electromagnetic-emanation analysis [23] is possible if the attacker can de-
tect which memory locations are accessed at certain points in time. A coun-
termeasure would be to randomize the memory access patterns.
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Abstract. Sorting is an age old problem in Computer Science. Recently
with the advent of cloud computing this problem is revisited on encrypted
data. This paper tries to evaluate the possibility of applying the recently
discovered Fully Homomorphic Encryption schemes to sort encrypted
text. The paper first develops fully homomorphic circuits for performing
comparison based swaps and then employs them to realize conventional
sorting algorithms. Since the sorting time grows exponentially with the
input size, it is required to propose suitable measures to reduce it; the
delay occuring due to the costly Recrypt operation which removes the
noise in the Homomorphic computations. The paper then investigates the
opportunity of reducing Recrypt by experimenting on the average errors
introduced due to wrong comparisons, which arise due to the removal of
the de-noising step. Results show that suitably choosing the number of
Recrypt operations results in an almost sorted array. This motivates to
develop a two-stage sorting called LazySort: the first phase performing a
Bubble sort with reduced Recrypt operations to result in an almost sorted
array, to be followed by a second stage which employs an Insertion sort
with all Recrypt operations. Detailed experiments show that helps to
obtain a significant speed up in the sorting time.

1 Introduction

Storage and management in cloud services are of growing importance due to its
low cost approach of using large shared resources. However, with public access
to the information in clouds security is a very important issue. Confidentiality of
data can be preserved by encrypting critical data before storing it in the cloud.
However using any encryption algorithm inhibits performing computations on
the information stored in the cloud, as they are in the ciphertext domain. Bring-
ing the data back and processing also leads to an overhead and outweighs the
advantage of cloud computing. Homomorphic encryption which allows opera-
tions directly on the encrypted data is a major solution to reduce this overhead.
The notion of delegating the ability to process secured data without giving away
access to it was first introduced in [7] and vividly explained in Gentry’s work [3].
In this paper, Gentry introduced the concept of performing arbitrary manipula-
tions like addition, multiplication etc on encrypted data without the knowledge
of secret key. The basic idea of this Fully Homomorphic Encryption (FHE) is
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as follows: Consider the messages m1, . . . ,mt , which are encrypted to the ci-
phertexts c1, . . . , ct with the FHE scheme under some key. For any efficiently
computable function f , the FHE scheme allows anyone to efficiently compute a
ciphertext that decrypts to f(m1, . . . ,mt) under the secret key.

However there are several practical limitations of applying the FHE scheme
to solve real life problems. One of the age old computer science problems is to
sort information. This paper looks into the aspect of applying the FHE scheme
to perform sorting of encrypted data. We investigate sorting algorithms based
on comparisons. To achieve this we need further procedures and architectures
based on the fundamental encrypted additions and multiplications on single bits
defined in [3] and implemented using integers in [4] and [2]. Further works on
fully homomorphic encryption has been reported on [6] and [9]. Some advances
has been reported on [1] and [8].

Our work first develops a comparison based swap which utilizes a Fully Ho-
momorphic Multiplexer circuit developed using the FHE primitives (like adder,
multiplier). Results show that due to the costly Recrypt operations, which re-
moves the noise of the FHE operations and produces correct results, the overall
time of sorting grows exponentially with the number of elements, making it im-
practical. To alleviate this issue, the paper subsequently proposes a lazy two
staged technique of sorting, LazySort. The proposed method is based on the
observation that popular sorting techniques like Bubble sort are quite tolerant
against erroneous comparisons, where around 30% error in the comparisons pro-
vide more than 50% correctly sorted data. Thus the LazySort algorithm performs
first a Bubble sort with reduced Recrypt operations, followed by an Insertion sort
stage with all the Recrypt operations present. Owing to the efficiency of Inser-
tion sort for almost sorted data, the two staged approach leads to a remarkable
improvement in the sorting process. Detailed experimental results are provided
to demonstrate the above phenomena.

The overall paper is organised as follows: section 2 describes the basic concept
of homomorphic encryption. Next, section 3 describes design of the comparison
unit which is the basic building for sorting. Further, section 4 explains the design
and timing requirement of sorting in homomorphic domain. Finally, section 5
mentions some future direction of this work.

2 Preliminaries: Fully Homomorphic Encryption

A homomorphism is a structure-preserving transformation between two sets,
where an operation on two members in the first set is preserved in the second
set on the corresponding members. Let P and C be sets with members p1, p2 ∈ P ,
t is a transformation between the two sets with its reverse function t′ and an
operation ⊕. The system is a homomorphism, if ∀(p1, p2) ∈ P , (p1 ⊕ p2) =
t′(t(p1) , t(p2)). If there are two functions ⊕ and ⊗ , such that ∀(p1, p2) ∈ P ,
(p1 ⊕ p2) = t′(t(p1), t(p2)) and ∀(p1, p2) ∈ P , (p1 ⊗ p2) = t′(t(p1) ∗ t(p2)). This
is called an algebraic homomorphism. Operations ⊕ and ⊗ on plaintext may be
similar or may be different with the opearations, and ∗ performed on ciphertext.
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The obvious practical implication is the possibility to transform the two members
p1 and p2 into the range of C, thus applying some sort of encryption, and having
the operations ⊕ and ⊗ (or equivalent operations) performed by a third party.
The result can then be decrypted back into the range of P . An algebraically
homomorphic crypto-system can be described as a 6-tupleH1 = (P,C, t, t′,⊕,⊗)
where P and C denote the plain-text space and the ciphertext space, respectively,
whereas t and t′ denote the encryption and decryption functions. ⊕ and⊗ tag the
two algebraic operations. Gentry’s approach [3] of bootstrapping is to develop a
fully homomorphic from a somewhat homomorphic system and provide addition
and multiplication plus a normalization procedure that is supposed to allow
unlimited chaining of operations in ciphertext space. This technique of reducing
noise in the cipher-text space requires for an additional formal descriptive item,
extending H1 to H2 = (P,C, t, t′,⊕,⊗, r), introducing a reduction-function r,
which takes a noisy cipher-text and transforms it into an equivalent with reduced
noise.

An encryption scheme ε consists of three algorithms:KeyGenε, Encryptε and
Decryptε. Each of these algorithms must be efficient, i.e. they must all run in
polynomial time (λ), where λ is the security parameter which specifies the bit-
length of the keys. KeyGenε generates a key, which is used in both Encryptε
and Decryptε . In the next subsections, we shall discuss about two main ho-
momorphic schemes: Somewhat homomorphic scheme and fully homomorphic
scheme.

2.1 Somewhat Homomorphic Scheme

Consider the following encryption scheme. Here λ is the security parameter. We
set N = λ, P = λ2 and Q = λ5.

– KeyGenε(λ): Generate a random P -bit odd integer p, which acts as the key.
– Encryptε(p,m): Output a ciphertext c ← m′ + p ∗ q, where m′ is a random

N-bit number such that m′ = m mod 2 and q is any random Q-bit number.
– Decryptε(p, c): Output (c mod p) mod 2.
– Evaluateε(f, c1, . . . ct): The boolean function f is first converted to an equiv-

alent function f ′ with only AND and XOR gates. Then the AND and XOR
operators are replaced with multiplication and addition operators respec-
tively to generate the function f ′′. Compute and return f ′′(c1, . . . , ct).

2.2 Recrypt: Error Minimization in Ciphertext

One can observe that the ciphertexts from ε are near-multiples of p. (c mod p) is
referred to as the noise associated with the cipher-text. It is the difference from
the nearest multiple of p. Since the noise has the same parity as the message
encrypted. Operations like Add ε(c1, c2), Sub ε(c1, c2) and Mult ε(c1, c2) are
computed as (c1 + c2), (c1 − c2) and (c1 ∗ c2) respectively.

In order to make it more convincing, an example is presented. For the com-
putation of Mult ε(c1, c2), where c1 ← Encryptε(p,m1) = m′

1 + p ∗ q1, and
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c2 ← Encryptε(p,m2) = m′
2 + p ∗ q2. The cipher-text output by Evaluate ε is

c = c1 ∗ c2. So,

c = m′
1 ∗m′

2 + p ∗ q′ (1)

where q′ is some integer. As long as the noisem′
1∗m′

2 is small, and not comparable
to p, we have:

c mod p = m′
1 ∗m′

2 (2)

Therefore, (c mod p) mod 2 = m1∗m2. This scheme works as long as the noise
does not blow up too much and start affecting the result. It is easy to prove that
this scheme is incomplete, because if the result of an operation between the
two operands a and b exceeds the prime modulus p, the decryption fails. So
starting with two clean plain-text items, the intermediate result grows towards
the modulus with every operation and in this sense is polluted. To compensate
for this, a fully homomorphic encryption scheme must define normalization (as
mentioned reencryption procedure in [3]) of the intermediate result. In the case of
the system shown here, a normalization would be any function that can minimize
the remainder mod p of the result while preserving the parity mod p. Gentry
addresses this problem by generating a public key that contains a decryption
hint. This hint allows to homomorphically decrypt the intermediate result in the
encrypted domain, which means that the plain-text of the argument remains
unknown. With the plain-text at hand in cipherspace, it is possible to reencrypt
the plain-text which generates a new cipher of the plain-text with reduced noise.
Now reencryption can be defined as follows:

– Recryptε(pk2, Dε, sk1, c1): Compute c1 ← Encryptε(pk2, < c1 >) over the
bits of c1. Then output c ← Evaluateε(pk2, Dε, sk̄1; c̄1).

Here c1 is the ciphertext encrypted under pk1, sk̄1 are the bits of the secret key
sk1 encrypted under pk2, andDε is the decryption circuit. If we observe carefully,
we will find that Recryptε takes in a ciphertext encrypted in pk1 and outputs
another new ciphertext encrypted under pk2. This recryption procedure basically
refreshes the noise element, so that it once again becomes small enough. But for
that, the scheme must be able to handle the decryption function Decryptε . But
the scheme that we just discussed does not have this property, and so the scheme
is not appropriate.

2.3 Fully Homomorphic Scheme

In order to make the above scheme fully homomorphic, Gentry introduced the
concept of bootstrapping. He defined a scheme to be bootstrappable if the set
Fε of permitted function includes the Decryptε function. The scheme ε is trans-
formed to ε∗ so that the new scheme becomes bootstrappable. This scheme
requires two integer parameters 0 < α < β.
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– KeyGenε∗(λ): Run KeyGenε∗(λ) to obtain p. A set −→y = {y1, y2, . . . yβ} is
generated such that yi ∈ [0, 2). Out of these elements, there must exist a
sparse subset S ⊂ −→y of α elements, such that

∑
yj∈S(yj) = 1

p mod 2. Set

sk to be a binary encoding s of the sparse subset S, where s = (0, 1)β . Set
pk ← (p,−→y ).

– Encryptε∗(pk,m): Run Encryptε(pk,m) to obtain the ciphertext c. Gener-
ate −→z : zi ← c.yi mod 2. Return c∗ = (c,−→z ). In the rest of the paper, we
shall mention Encryptε∗(pk,m) as Encrypt.

– Decryptε∗(sk, c
∗): Output LSB(c) XOR LSB(	

∑
t Stzt�), where LSB() re-

turns the least significant bit of the input, and 	.� returns the nearest in-
teger to the input. Decryption works since (up to small precision errors)∑

t Stzt =
∑

t cStyt =
c
p mod 2.

The computations also get modified as Addε∗(c
∗, c∗1, c∗2): Obtain c by run-

ning Addε(c, c1, c2). Compute −→z from c and −→y in a manner similar to the one
explained in Encryptε∗ . Multε∗ and Subε∗ will be computed similarly.

3 Fully Homomorphic Swap

Comparison based sorting algorithms are based on conditional swap operations.
When the data is encrypted this operation translates to a Fully Homomorphic
Swap (FHS) operation. We use the following Fully Homomorphic primitive prim-
itive circuits to realize the FHS circuit:

– fhe add: Add ciphertexts (XOR).
– fhe mul: Multiply ciphertexts (AND)
– fhe fulladd: Add with carry in and carry out
– fhe halfadd: Add with carry out

Fig. 1. Fully Homomorphic addition and multiplication

The FHS circuit depends on two main operations : subtraction operation and
decision making based on the subtraction result. Fully Homomorphic subtrac-
tion, which is built using the fhe add operation by performing homomorphic
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addition of one ciphertext with 2’s complement of another ciphertext. The Sub-
traction can be implemented by adding one number with the 2’s complement of
another. For two plaintext numbers a and b, subtraction can be computed as:

a− b = a + 2’s complement of b (3)

Now a homomorphic subtraction of a′ and b′ which are the encryptions of a and
b respectively is computed using the homomorphic addition as follows:

a′ − b′ = a′ + Encrypt( 2’s complement of b) (4)

(5)

The 2’s complement of b in the encrypted domain is obtained as follows:

Encrypt((2′s complement of b), pk) = b′ ⊕
Encrypt(11 . . . 1, pk)⊕ Encrypt(1, pk)

Fig. 2. Fully Homomorphic Subtraction

Figure 3 shows addition module in fully homomorphic domain and it is used to
design the subtraction circuit as shown in figure 2. The MSB of the subtraction
output is further fed to the decision making module as a selection line. The
following equations represent how the swap operation takes place between two
elements A[i] and A[i + 1] depending on MSB (represented here as bt):

temp = bt ∗A[i] + (1− bt) ∗A[i + 1]

A[i + 1] = (1 − bt) ∗A[i] + bt ∗A[i + 1]

A[i] = temp

Figure 3 shows the overall swap operation in fully homomorphic domain. As
the figure depicts, other than the fully homomorphic subtraction, FHS operation
also depends on decision making of multiplexer(MUX) in homomorphic domain.

Figure 4 represents the fully homomorphic MUX (fhe mux) designed with
fhe add and fhe mul modules. In the figure, a′ and b′ are the encryptions of the
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Fig. 3. Fully Homomorphic Swap

Fig. 4. Fully Homomorphic 2:1 Mux

two inputs a and b and MSB represents the MSB of the subtraction output.
In every stage, to invert any input we add Encrypt(1, pk) using fhe add circuit.
Finally, the output result of the MUX is computed as follows:

(a′.MSB).(b′.MSB) = a′.MSB + b′MSB [applying De Morgan′s law]

var represents the inversion of var, where var is any variable. The overall
module is designed with the inhand functions available to Scarab library [5]. With
the help of this function we have developed the sorting operation in homomorphic
domain. In the subsequent section, we explain the implementation of sorting
algorithm in detail.

Next we shall discuss about the other submodule required for swap operation.

4 Homomorphic Form of Sorting

In this section, we consider two common sorting algorithms namely Bubble and
Insertion sorts on encrypted data. We use the above developed FHS circuit for
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Algorithm 1. Fully Homomorphic Bubble sort

void bubble sort(mpz t ∗ ∗enc arr, int lenarr, fhe pk t pk){
int i, j, k,m;
mpz t ∗ temp1 = (mpz t∗)calloc(sizeof(mpz t), sizeof(int) ∗ 8);
char ∗ ptext = (char∗)calloc(sizeof(char), sizeof(int) ∗ 8);
for (i = 0; i < lenarr − 1; i++) do

for (j = 0; j < lenarr − i− 1; j ++) do
copy mpz arr(temp1, enc arr[j]);
copy mpz arr(temp2, enc arr[j + 1]);
fhe Swap(enc arr[j + 1], enc arr[j], temp1, temp2, pk);

free(temp1);
free(temp2);
temp1 = NULL;
temp2 = NULL;
}

achieving the sorting functionalities. In Algorithm 1 we present an overview of
fully homomorphic bubble sort.

In the algorithm mpz t is the datatype mentioned in the library [5]. The
function copy mpz arr is to copy enc arr[j] to the temp array. Finally,fhe Swap
is the function for above mentioned FHS operation and responsible for the main
swap operation in the comparison based sorting. Further, we implement the
Insertion sort of the encrypted data using the above FHS operation. The sorting
was performed on input sizes of length 5 − 40 for repeated runs of around 20
times. As can be observed that the average time for performing the encryptions
increase exponentially with time.

Further, we investigate the ways to improve the performance of this sorting
algorithm in fully homomorphic domain. We shall analyse how the number of
recrypt operation can be reduced maintaining the overall functionality as this
recrypt operation is the main reason of large timing requirement in homomorphic
domain. Here are few techniques used in order to reduce number of recrypts.

– Recrypt operation is mainly required to refresh the ciphertext when error
in the ciphertext increases beyond a certain threshold. Since, fhe add func-
tion is the homomorphic implementtion of addition operation, error level is
expected to be at most double, where it can be square for homomorphic
multiplication. Hence, all the recrypts after addition operation are removed.

– To properly estimate the requirement of recrypt operation, measurement of
noise is important. Hence, a noise measurement module is added and recrypt
operation is performed once the noise level is crossing the threshold.

Table 1 shows required time for performing different sorting with increasing
number of data. With the presence of all recrypt operations, initially around
807s was required for sorting only 5 data in homomorphic domain. From the
reduced timing requirement in this table, it is clear that sorting using the fully
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Table 1. Comparison of different sortings

Sorting No. of elements Average Timing requirement
(sec)

Bubble Sort 5 235
10 1527
40 21565

Insertion Sort 5 290
10 1702
40 21757

homomorphic scheme is costly due to the presence of Recrypt operations. As we
have taken size of integers as 32 bits, many functions/circuits on encrypted num-
bers have a constant overhead. Following table shows all the values of overhead
in seconds.

Table 2. Estimate of different suboperations for sorting

Operation Overhead(sec)

1. fhe add(XOR) 0.4
2. fhe mul(AND) 0.5
3. fhe swap(greater/smaller) 14.2
4. fhe swap(greater+smaller) 26.5
5. fhe recrypt 0.4

Using these values we have theoretically estimated the required time for sort-
ing which mainly depends on time for each comparison, which in turn again
depends on fhe add, fhe mul and Recrypt. For e.g. for n = 40, around n2 com-
parisons are required. The total timing requirement in average case is around
((402) ∗ 26.5/2)s or 21,200s which is very close to practical time as observed
in table 1. Figure 5 shows the comparison between theoretical and practical
requirements.

Till now we have measured the possible minimization of recrypt properly
maintaining the sorting operation. Next we shall introduce the concept of Lazy
sorting and discuss about its possible advantages of it in sorting of encrypted
data in terms of performance.

Lazy Sorting. In previous section recrypt operations are minimized but it is
ensured that the sorting is errorless. However, as shown in the previous section
the overall timing for sorting is quite slow.
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Fig. 5. Timing requirement for fully homomorphic Bubble sort

In this section we introduce the concept of lazy-sorting which is based on lazy
fhe swap. In this operation, we further reduce the number of recrypts. Reduction
of recrypt operation leads to erroneous swap. In order to analyze the effect, we
purposefully perform some erroneous swaps and analyze how much erroneous
swaps can be tolerated to result in an almost sorted array. This almost sorted
array is further converted to final sorted array but with an advantage of less
number of recrypts. Figure 6 shows an average of several experiments with more
than 1000 data to measure the allowable error. It shows that on an average with
around 30% error, around 60% data are placed in proper position.

Thus, minimization of recrypt after a certain threshold may introduce some
error in the comparison decision(swap) of fully homomorphic encrypted data.
Hence, this will in turn introduce some error in the sorting decision. The term
error indicates an element is placed in wrong position in the final sorted array.
Now, if we perform any erroneous comparison sort with minimized recrypt, it will
take comparatively less time due to the use of comparison circuit with reduced
number of recrypts and results an almost sorted array. Finally, we apply insertion
sort, which works in linear time for an almost sorted array.

4.1 Futher Reduction of Recrypt to Introduce Error

Now, according to the analysis in figure 6, it is evident that it is not possible to
remove all the recrypts since it will introduce 100% error and result in positioning
large number of elements in the wrong place in the sorted array. For this reason,
careful choice of removable recrypts are necessary.We have identified the recrypts
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present in fhe subtract, which is one of the main submodule of fhe swap. In this
function, we have removed the recrypt operations required to correct the values
of carry bit(cout) of the addition result using fhe fulladd. This in turn reduces
the time requirement in every iteration of addition and finally reduces the time
for swap operation. However, use of this modified swap operation results correct
output with 70% accuracy. This results in an almost sorted array. Subsequently,
we apply insertion sort, which has linear time complexity for almost sorted array.

Table 3. Timing analysis for Lazy sort

Sorting No. of elements Fully homomorphic sorting Time Lazy sort time
(sec) (sec)

Bubble 10 1527 976
(almost sorted)

with insertion sort 40 21565 1399

Table 3 shows the advantage of this scheme, where general Bubble sort in
homomorphic domain requires around 21500s, performing bubble sort with this
erroneous technique reduces the time to 1350s.
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5 Conclusion

In this paper, we have explained a technique for sorting on encrypted data using
homomorphic encryption. To the best of our knowledge, there is no reported
sorting technique on encrypted data. However, the fully homomorphic addition
and multiplication operations are slow due to the presence of cipher refreshing
recrypt technique. This in turn detoriates the overall performance. With this
motivation, we have experimented the effect of eliminating recrypts, the error
arising thereof and the effect of that on sorting. Finally, based on these obser-
vations, we propose a two stage lazy-technique for sorting which improves the
time for sorting significantly. As a future work, we can further investigate var-
ious different ways of improving performance by applying parallelization and
other techniques in software domain and perform a formal timing analysis for
modified sorting schemes. Further, it can be investigated what is the relation
between such sorting schemes and security of such homomorphic cryptosystems.
Implementing the overall algorithm in a dedicated hardware can be looked in
this context.
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Abstract. Many recent block ciphers use Maximum Distance Separa-
ble (MDS) matrices in their diffusion layer. The main objective of this
operation is to spread as much as possible the differences between the
outputs of nonlinear Sboxes. So they generally act at nibble or at byte
level. The MDS matrices are associated to MDS codes of ratio 1/2. The
most famous example is the MixColumns operation of the AES block
cipher.

In this example, the MDS matrix was carefully chosen to obtain com-
pact and efficient implementations in software and hardware. However,
this MDS matrix is dedicated to 8-bit words, and is not always adapted
to lightweight applications. Recently, several studies have been devoted
to the construction of recursive diffusion layers. Such a method allows
to apply an MDS matrix using an iterative process which looks like a
Feistel network with linear functions instead of nonlinear.

In this paper, we present a generic construction of MDS recursive
diffusion layers as proposed in [1], [7], [10], [12], [15] but bridging this
construction with the theory of Gabidulin codes. This construction uses
Gabidulin codes which have the property to be not only MDS but also
MRD (Maximum Rank Distance). This fact gives an additional property
to diffusion layers which seems interesting for cryptographic applications.

Keywords: MDS matrices, diffusion, Gabidulin codes, rank distance,
MixColumns.

1 Introduction

The MixColumns of the AES [5] is an important step in the diffusion of dif-
ferences between the outputs of Sboxes. The MixColumns matrix is in fact a
redundancy matrix of an MDS code of length 8, dimension 4 and minimum
distance 5 over GF (28). This matrix was carefully chosen to optimize software
implementations. It remains suitable for hardware implementations. However, in
some situations, the cost of the implementation may be too high in relation to
available resources [10].
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Moreover, MixColumns is efficient on 4 blocks of byte. In the lightweight
block cipher KLEIN [9], the authors use this MixColumns operation on 8 nibble
blocks. In this context, MixColumns is far from being optimal when considering
the resistance against linear and differential attacks. In this case, its branch
number is equal to 5 as shown in [3], while the optimum value is 9.

Following the work of Sajadieh et al. [12] and of Guo et al. [10], some recent
papers [1], [7], [9], [15] are devoted to the construction of recursive diffusion
matrices. This method consists in searching a companion matrix of size r with
entries that are linear applications of GF (2)m into itself, where m is the size of
the Sboxes, such that r iterations of this matrix is an MDS matrix. The main
advantage of this approach is the fact that this MDS matrix can be implemented
in hardware using a Feistel network with r rounds. In this case, the internal
non-linear functions usually used in a Feistel network are replaced by linear
applications which correspond to the last row of the companion matrix.

In this paper, we present a generic construction of MDS recursive diffusion
layers. This construction comes from the theory of Maximum Rank Distance
(MRD) codes and Gabidulin codes. So our MDS diffusion matrices have the
additional MRD property.

This paper is organized as follows: in Section 2, we recall some results on
the link between MDS codes and optimal diffusion layers and the construction
of recursive diffusion layers. In Section 3 we first introduce some basic results
on Gabidulin, we construct MDS matrices from Gabidulin codes and show that
they are suitable for a recursive implementation. We discuss the interest of MRD
property for cryptographic applications and we compare our results with existing
works.

2 Recursive MDS Diffusion Layers

In this section we will recall some recent results on linear diffusion layers and
their links with MDS codes.

2.1 MDS Matrices in Cryptography

The results concerning error coding codes and MDS codes are standard and can
be found in [11]. To my knowledge, the link between MDS codes and optimal
diffusion layers was introduced first in [13], [14] and was extensively studied in
[4], [5].

Let K denotes the finite field GF (2m) and E denotes the GF (2) vector space
GF (2)m (there is no more multiplication by a scalar in E). The integer m corre-
sponds in practice to the size of blocks, i.e. the binary size of the Sboxes of the
non-linear part of a cryptographic scheme. A linear code of length n over K is
a K-subspace of Kn. An additive code of length n over E is a GF (2)-subspace
of En. Let k be the dimension of a linear code C over K or log2m(#C) for an
additive code C over E.

The minimum distance of a code is the minimum number of non-zero coordi-
nates of non-zero codewords. The MDS bound is the upper bound given by the
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relation k + d ≤ n + 1. In other words, if we try to increase the size of a code,
we decrease the distance between codewords. A code which meets this bound is
called Maximum Distance Separable (MDS) code.

From a code of ratio 1/2, i.e. n = 2k, we obtain some matrices of great interest
for linear diffusion layers.

Definition 1. A square matrix A of size r with coefficients in K is MDS
(Maximum Distance Separable) if the code C over K generated by the matrix
M = (Ir |A) is MDS, where Ir is the r × r identity matrix.

The following proposition gives a characterization of MDS matrices over a
finite field K:

Proposition 1 ([11]). A square matrix A of size r with coefficients in K is
MDS if and only if every square submatrices of A are non singular.

If a matrix A over a finite field K is MDS, then the matrices A−1 and At are
MDS.

In the case of additive codes, the definition of MDS matrices is a little more
complicated. Roughly speaking, the generator matrix M of Definition 1 becomes
a matrix with entries in L(GF (2)m, GF (2)m), the set of GF (2)-endomorphisms
of GF (2)m. Sometimes, these endomorphisms are replaced by their m× binary
matrices representations, in that case the diffusion layers is described by a mr×
mr binary matrix which is MDS by blocks of size r.

One can remark that Proposition 1 does not hold in the general case, but
remains true if the entries of the matrix are commutative endomorphisms, which
is the case for example in [1], [7], [12], [15].

A major application of MDS matrices in cryptography is the design of linear
diffusion layers in block ciphers or cryptographic hash functions. The best known
example of the use of MDS matrices to design a linear layer is the AES Mix-
Columns operation. It takes as input r = 4 blocks of byte (m = 8) and outputs
4 blocks of byte. The main requirement of such an operation is to diffuse any
change into the maximum number of blocks.

If A is a r × r diffusion matrix with entries in K, the output is simply the
image of the input x ∈ Kr by A: y = (Axt)t = xAt, where At denotes the
transpose of A.

The resistance against linear or differential cryptanalysis of a diffusion layer is
measured by the linear and differential branch numbers. As explained in [5], the
linear branch number is the minimum distance of the linear code generated by
the matrix (Ir |A) and the differential branch number is the minimum distance
of the linear code generated by the matrix (Ir |At).

In consequence, a diffusion layer A has optimal linear and differential branch
numbers if and only if it is an MDS matrix (either considered over a finite field
or over E in the situation of additive codes).
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So, there is a direct correspondence between optimal diffusion layers and MDS
codes of ration 1/2.

2.2 Recursive MDS Diffusion Layers

The construction and implementation of efficient MDS diffusion layers is a major
problem in symmetric cryptography. Reference [8] is a good one for the design
of MDS matrices for software applications.

Following the example of MixColumns, in that case the size of the binary
MDS diffusion layer is 32× 32. Even if MixColumns was well chosen to optimize
the implementations, especially in software, in the context of limited resources
or hardware implementation the size of this matrix becomes a problem.

To avoid this difficulty, the designers of Photon [10] proposed first the use of
a companion matrix D such that A = Dr is MDS. The implementation of D is
then compact, and the full diffusion is obtained after r iterations of D.

This approach was generalized by many authors. A nice presentation under
a Feistel-like scheme was introduced in [12] and was reused in many papers (see
e.g. [7], [15]).

The papers [1], [7], [12], [15] are devoted to the construction of such recursive
diffusion layers. The results are obtained by combining theoretical results and
exhaustive search. All these papers (except [1]) concern MDS matrices that are
associated to additive codes.

We will present this approach in our context which is those of linear codes
over K. Moreover, we use the transpose of the traditional companion matrix
which corresponds to source-heavy Generalized Feistel Networks (GFN) instead
of target-heavy GFN [16].

Let D be a companion matrix of size r over K:

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . . . . 0 a1

1 0
. . .

... a2

0 1
. . .

... a3
...
. . .

. . . 0
...

0 . . . 0 1 ar

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Let x = (x1, ..., xr) ∈ Kr and y = xDt the image of x by the linear applica-
tion defined by D. The yi’s can be computed from the xi’s using the following
network:

This network can be interpreted as a round of a generalized Feistel network
with linear components instead of nonlinear. Note that this function is bijective
if and only if a1 is invertible, since det(D) = a1. The matrix D−1 corresponds
also to a generalized Feistel network.
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x1 x2 x3 . . . . . . xr

y1 y2 y3 . . . . . . yr

a1

a2⊕
a3⊕

ar⊕

The application of r rounds of this Feistel scheme corresponds to the compu-
tation of the matrix A = Dr applied to the input x. In [1], [12], [7], [15], the
coefficients ai are not necessary elements of a finite field, but could be GF (2)-
linear mappings from GF (2)m into itself. In this paper, we only consider the
case where the linear operations correspond to multiplications in the field K,
for example, the symbol ai in our network means the GF (2)-linear application
u �→ aiu in K.

3 MDS Matrices from Gabidulin Codes

In this section we introduce some basic properties on the rank metric and the
construction of Gabidulin codes, that are optimal for this metric. A complete
description of the theory of rank metric and Gabidulin codes can be found
in [6].

3.1 Rank Metric and Gabidulin Codes

Let K = GF (pm) be a finite field which is an extension of degree m of the base
field F = GF (p). For our applications, we will restrict ourself to the case p = 2.

The field K can be viewed as a vector space of dimension m over F .

Definition 2. Let x = (x1, . . . , xn) be an element of E = Kn, the rank weight
rk(x) of x is the dimension of the F -vector space generated by {x1, . . . , xn}.

For example, let K = GF (23) = GF (2)(α) with α3 = α + 1, and n = 5. Set
x = (α6, α, 0, α5, α) = (α2 + 1, α, 0, α2 + α+ 1, α). The rank of x is rk(x) = 2.

A simple way to compute the rank of a codeword x is to use a basis B =
(b1, ..., bm) of K over F . The rank of x is then the rank of the m×n matrix Mx

with entries in F replacing each coordinate xi by the column vector of its decom-
position over the basis B. Following the previous example, if we use the natural
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polynomial basis B = (1, α, α2), we obtain the matrixMx =

⎛
⎝1 0 0 1 0

0 1 0 1 1
1 0 0 1 0

⎞
⎠, which

is of rank 2.
The relation dr(a, b) = rk(a − b) defines a distance over E. We have the

following properties: dr(x, y) ≤ m and dr(x, y) ≤ dh(x, y), where dh(x, y) is
the Hamming distance between x and y. The rank distance dr of a linear code
C is then the minimum rank weight of its non-zero codewords. There exists a
Singleton-like bound for the rank distance:

Proposition 2 ([6]). If C is a linear code of length n, dimension k and rank
distance dr, then
• if n ≤ m, then k + dr ≤ n+ 1
• if n > m, then km+ drn ≤ (m+ 1)n.

A maximum rank distance (MRD) code is a code reaching this bound. Note
that, if n ≤ m, then any MRD code is also an MDS code. Following the definition
of MDS matrices, we say that a square matrix A has the MRD property if the
code generated by (Ir|A) is MRD. As for the Hamming distance, it is easy to
verify that, if A has the MRD property, then both At and A−1 have the MRD
property.

In his original article, Gabidulin gives a construction of a family of codes that
are MRD, the so-called Gabidulin codes.

Definition 3. Let B = (b1, b2, . . . , bn) be an ordered set of n ≤ m elements of
K, which are linearly independent over F . The Gabidulin code GB,k of support
B and dimension k is the code generated by the generator matrix

GB,k =

⎛
⎜⎜⎜⎜⎝

b
[0]
1 b

[0]
2 · · · b

[0]
n

b
[1]
1 b

[1]
2 · · · b

[1]
n

...
...

. . .
...

b
[k−1]
1 b

[k−1]
2 · · · b[k−1]

n

⎞
⎟⎟⎟⎟⎠ with the convention b

[i]
j = bp

i

j .

These codes can be viewed as evaluation of linearized polynomials of linear
degree strictly less than k over a set of linearly independent points. Using a
similar reasoning than for Reed Solomon codes, it is easy to show that these
codes are MRD (and so are MDS).

3.2 Construction of MDS Matrices with the MRD Property

As soon as n ≤ m, a MRD code is MDS. So, from any Gabidulin code of ratio
1/2, it is direct to construct a MDS matrix as explained in Section 2.1.

In practice, we fix p = 2 and m = 2r even. We choose a basis B = (b1, ..., bm)
of K over F = GF (2). The Gabidulin code GB,r is a MRD code of parameters
[m = 2r, r, r + 1] over K.

If A is the square matrix of size r over K such that (Ik|A) is the systematic
generator matrix of GB,r, then A is an MDS matrix over K.
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This matrix is optimal for diffusion on r blocks of size m = 2r and have the
additional MRD property.

Example. For example, we set m = 8 and r = 4. Let α be a root of the primitive
polynomial X8 +X4 +X3 +X2 + 1. The set B = (1, α, α2, ..., α7) is a basis of
K over F .

The MDS matrix A constructed from the Gabidulin code GB,4 is:

A4 =

⎛
⎜⎜⎝

α15 α253 α205 α153

α168 α49 α246 α252

α235 α170 α92 α3

α238 α190 α138 α18

⎞
⎟⎟⎠ .

This matrix A have the same parameters as MixColumns. Note that r = 4 is
the maximum size of an MDS matrix with MRD property over GF (28).

Note that it is possible to choose n < m linearly independent points of K. In
this case, we obtain a r × r diffusion matrix over K, with n = 2r. For instance,
if we fix m = 16, it is possible to construct an MDS diffusion matrix of size r,
2 ≤ r ≤ 8.

The condition n ≤ m is very strong and limits the number of MDS matrices
with the MRD property. Suppose that n > m and n = 2k. In this situation an
MRD code is not necessary MDS (in fact, it is generally not MDS). In a previous
work [2], we constructed MDS codes of length n > m by extending the evaluation
points of linearized polynomial using binary optimal codes. Unfortunately, these
codes are no more MRD. Moreover, their parameters are constrained, so it is
not possible to attempt a ration 1/2. These extended Gabidulin codes seem
not suitable to construct MDS diffusion layers and have no specific additional
properties compared to Reed Solomon codes.

3.3 Analysis of the MRD Property

In this section, we will discuss the meaning of the MRD property for an MDS
diffusion matrix. For clarity, we focus on our previous example. The following
considerations can be generalized to any block size.

Let C be the Gabidulin code over K = GF (28) generated by the matrix
(I4|A4). The parameters of this code are [8, 4, 5] where d = 5 is both the minimum
Hamming distance and the minimum rank distance of C.

Let x = (x1, ..., x4) ∈ K4 be the input of the diffusion process and y =
(y1, ..., y4) = xAt be the associated output. The corresponding codeword is c =
(x|y). In a differential cryptanalysis, x is the differential in input and y is the
differential in output.

In practice each xi or yi is a byte, i.e. xi = (xi,1, ..., xi,8) ∈ F 8 & K (idem for
yi). In the following, we use the letter z to refer generically to both the input
x and the output y. The MDS property means that, from all the 8 bytes zi, if
c is non-zero, then at least 5 of them are non-zero. The MRD property means
that, not only 5 of them are non-zero, but at least 5 of them are F -linearly
independent when considered as elements of F 8.
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A similar property does not exist for the MixColumns matrix because it is
not an MRD matrix. More precisely, the word c = (1, 1, 1, 1, 1, 1, 1, 1) ∈ (F 8)8 is
a codeword of the MDS code associated to MixColumns. This means that the
input differential which consists in swapping the low weight bit of each byte leads
to the same property in output. This differential corresponds to a codeword of
rank 1. So the rank distance of the MDS code corresponding to the MixColumns
matrix is only 1, which is the weakest value.

Another interesting differential for the Mixcolumns is the particular input
x = (1, 0, 0, 0) which leads to the output y = (2, 3, 1, 1) (with the convention
3 = (1, 1, 0, 0, 0, 0, 0, 0), and so on). The codeword over K corresponding to this
differential has an Hamming weight of 5, but remains of rank 2. In particular
it is localized on the two bits of low weight of each byte. In addition, when
interpreting this codeword as a binary word of length 32, its Hamming distance
is only 6.

If our diffusion matrix A4 is used instead of the MixColumns, at least 5 of the
8 bits of each byte is modified by any differential. The minimum distance of the
underlying binary code is 10.

To the best of our knowledge, we do not know any attack against the AES
which uses this particular property. However, MixColumns is often used in the
design of lightweight block ciphers. For example, KLEIN [9] applies nonlinear
Sboxes at nibble level and then uses MixColumns as a diffusion layer by regroup-
ing two nibbles in one byte. This is a clear weakness of this cipher exploited in
the attack presented in [3], which would be discarded by the use of the diffusion
matrix A4.

In conclusion, the MRD property is a local one at bit level. For a well-designed
cryptosystem with an ideal Sbox, this property does not probably augment the
level of security against known attacks so far. However, for some specified cryp-
tosystems, it increases the diffusion of Sboxes and may help to discard some
attacks using the potential weakness of Sboxes. This MRD proprty is an addi-
tional ones, and preserves the MDS optimality of the diffusion layers and the
resistance against linear and differential attacks.

3.4 An Infinite Class of Recursive MDS Diffusion Layers with the
MRD Property

In this section, we will show that if we choose a polynomial basis to construct
our Gabidulin code, it is possible to construct a companion matrix which is a
recursive diffusion layer corresponding to our MDS matrix A.

Let α ∈ K = GF (2m) be a root of an irreducible polynomial P (X) of degree
m. This implies in particular K = GF (2)(α). The set B = (1, α, α2, ..., αm−1) is
a basis of K over F . Such a basis is called a polynomial basis.

For i from 0 to m−1, we set ai = αi. In particular, the ai’s verify aiaj = ai+j

for all i and j such that 0 ≤ i+ j < m.
Using the notation a[i] = a2

i

, we obtain the following generator matrix of the
Gabidulin code GB,r, with m = 2r.
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GB,r =

⎛
⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 . . . am−1

a
[1]
0 a

[1]
1 a

[1]
2 . . . a

[1]
m−1

a
[2]
0 a

[2]
1 a

[2]
2 . . . a

[2]
m−1

...
...

...
...

...

a
[r−1]
0 a

[r−1]
1 a

[r−1]
2 . . . a

[r−1]
m−1

⎞
⎟⎟⎟⎟⎟⎟⎠

We define the square matrices U and S of size r as follows:
U is the matrix GB,r restricted to its r first columns.

S is the diagonal matrix with coefficients (a1, a
[1]
1 , a

[2]
1 , ..., a

[r−1]
1 ).

Lemma 1. For 0 ≤ i ≤ r, we have

SiU =

⎛
⎜⎜⎜⎝

ai ai+1 ai+2 . . . ai+r−1

a
[1]
i a

[1]
i+1 a

[1]
i+2 . . . a

[1]
i+r−1

...
...

...
...

...

a
[r−1]
i a

[r−1]
i+1 a

[r−1]
i+2 . . . a

[r−1]
i+r−1

⎞
⎟⎟⎟⎠ .

In particular, GB,r = (U |SrU) and M = (Ir |U−1SrU) is the systematic gener-
ator matrix of the Gabidulin code GB,r.

Proof. This is a direct consequence of the relations aiaj = ai+j and (ab)[s] =
a[s]b[s] for all i+ j ≤ m, for any integer s and for all elements a and b of K.

Now, we are interested by the MDS diffusion matrix A = U−1SrU . We set
A = (ai,j) for 0 ≤ i, j < r. We define the companion matrix Δ as follows:

Δ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . . . . 0 a0,0

1 0
. . .

... a1,0

0 1
. . .

... a2,0
...
. . .

. . . 0
...

0 . . . 0 1 ar−1,0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The main result of this section is the fact that Δ is a companion diffusion
layer in r rounds associated to the matrix A.

Theorem 1. The following property is satisfied: Δr = U−1SrU = A.

Proof. The equality Δr = U−1SrU = A is equivalent to UΔrU−1 = Sr. So, it is
sufficient to prove that UΔU−1 = S since (UΔU−1)r = UΔrU−1. Finally, our
result is equivalent to show that UΔ = SU .

From Lemma 1, we have

SU =

⎛
⎜⎜⎜⎝

a1 a2 a3 . . . ar

a
[1]
1 a

[1]
2 a

[1]
3 . . . a

[1]
r

...
...

...
...

...

a
[r−1]
1 a

[r−1]
2 a

[r−1]
3 . . . a

[r−1]
r

⎞
⎟⎟⎟⎠ .
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For i from 0 to m− 1, we denote by Ci the column

(ai, a
[1]
i , ..., a

[r−1]
i )t. With this notation, we have SU = (C1|C2|...|Cr).

Note that U = (C0|C1|...|Cr−1). Since Δ is a companion matrix, the r − 1
first columns of UΔ are just a shift of one position of the r − 1 last columns of
U . So we have UΔ = (C1|C2|...|Cr−1|Dr) with Dr = UΔr where Δr is the last
column of Δ, i.e. the first column of A.

To complete our proof, we have to show that Dr = Cr. Recall that A =
U−1SrU . This implies UA = SrU . The first column of the matrix U is C0, that is

the all one column. In consequence, the first column of UA is (ar, a
[1]
r , ..., a

[r−1]
r )t

which is Cr.

If we continue the example of Section 3.2, we obtain

Δ =

⎛
⎜⎜⎝

0 0 0 α15

1 0 0 α168

0 1 0 α235

0 0 1 α238

⎞
⎟⎟⎠ with Δ4 = A.

If we change the basis B in the construction of Gabidulin, we obtain distinct
MDS matrices with the MRD property. In particular, for m = 8 and r = 4 it is
possible to construct some MDS matrices of order 51, 85 or 255.

3.5 Comparison with Previous Constructions

The MRD condition is a very strong constraint on the research of MDS matrices.
So, it will not be as efficient as results of [7], [10], [12], [15]. However, from an
implementation aspect, it is close to the results of [1].

Moreover, our approach is quite different from previous works in the meaning
that our original starting point is not the search of companion matrices leading
to MDS matrices, but is a MDS matrix for which we are able to exhibit a
corresponding companion matrix.

If someone needs to construct a MDS matrix over blocks of size m, due to
the MDS conjecture on the length of MDS codes [11], the maximum number of
blocs is r = 2m. For instance, if m = 8 then number of blocks is upper bounded
by 256, however, the typical values for applications a r = 4 or r = 8. So there is
a large choice of MDS matrices, and it is possible to exhibit some matrices with
goods properties from the implementation aspects. The MRD constraint limits
the size of blocs to r = m/2, so, for m = 8 the maximum number of blocks is
r = 4 and the choice of MRD matrices is restricted.

In [7], [10], [12], [15], authors have imposed additional constraints on com-
panion matrices to obtain efficient implementations. For example, some of coef-
ficients ai defined in Section 2.2 are fixed to 1 (the identity map), and the others
are of low density. In our situation, if we fix any ai equals to 1, it is easy to show
that the resulting MDS matrix cannot be MRD.
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4 Conclusion

In this paper, we introduced a new infinite class of MDS diffusion matrices which
can be computed using recursive diffusion layers. These matrices have the ad-
ditional MRD property, which seems interesting for cryptographic applications.
However, it remains an open problem to determine the impact of this additional
property in concrete cryptanalyzes of existing cryptosystems.

Even if practical implementations are possible, the MRD property implies that
this construction cannot be as efficient as previous one. So this work remains at
the present moment a bit theoretical, however, it is a potential tool to increase
the security against some specific attacks.

Acknowledgments. The author want to thanks Marine Minier for her helpful
comments and remarks.
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Abstract. In this article we discus a probability problem applied in the
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Introduction

One of the main threats in modern cryptography is the arrival of the quan-
tum computers, it was shown that cryptosystems based on factorisation of large
numbers would be compromised [18]. Therefore, new concepts like hash-based
cryptography, code-based cryptography, lattice-based cryptography, and multi-
variate cryptography were proposed as possible solutions. The new aspects of
the post-quantum cryptography are well illustrated in [2].

Even though code-based cryptosystems exist since 1978, being introduced by
Robert J. McEliece in [15], they weren’t used in real life because of the key length
problem. Nowadays, these problems are partially solved as new variants of the
classical McEliece using shorter keys, without compromising the security, were
proposed in [6,4,5,16] and more recently in [3]. The latest proposal for embedded
devices proposed in [12] is based on QC-MDPC codes.

Here we will focus our attention on the last step in the decoding algorithm.
If Patterson algorithm [17] or Berlekamp-Massey algorithm [14] is used, the
last step is the same : finding the roots of the error locator polynomial. This
polynomial has a particular form and it will be detailed in Section 1.

McBits [3] is the latest implementation and uses some new algorithms in order
to provide a fast constant-time decoding. Other existing implementations like:
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ence for Peace", SPS Project 984520.
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HyMes [6], CCA2-secure variant of McEliece [7], QD for embedded devices [10],
Low-reiter [11], CFS [13], MicroEliece [9] use the mentioned decoding algorithms
and manipulate the type of polynomials treated in this paper.

Our Contribution

We will provide an answer the following problem :
What is the probability that all the coefficients of a monic polynomial P (X)

of degree t with t distinct roots over F2m are different from zero ?
Thefinal probability will be bounded by theoretical and experimental results.

We will show how this result can be used in the context of side-channel attacks
against the McEliece cryptosystem.

As shown, this problem has a direct application in code-based cryptography
but it could be also usefull in many other scientific fields e.g. those where error
correcting codes are used.

Organization of the Paper

In Section 1, we give the required notations and some definitions and properties
for the Goppa codes. The Section 2 details the simple roots problem and give the
theoretical approach. We provide in Section 3 the experimental results. Section
4 shows how to apply this result and we wonclude in Section 5.

1 Preliminaries

1.1 Notations

We will use the following notations :

• The partial permutations Ak
n = n(n − 1) . . . (n − k + 1).

• The Galois field L : F2m = {0, 1, α, α2, . . . , αn−2}
• Let P (x) be a monic polynomial of degree t over L with t distinct roots ai :

P (x) = xt + St
t−1xt−1 + St

t−2xt−2 + ... + St
2x2 + St

1x + St
0

where the coefficients Si ∈ F
m
q correspond to :

St
t−1 =

t∑

i=1
ai, St

t−2 =
t∑

i=1,j=1
i�=j

aiaj , . . .

. . . St
1 =

t∑

j=1

t∏

i=1
i�=j

ai, St
0 =

t∏

i=1
ai.

• The subset of all roots for a given polynomial Rf(x) = { ai | f(ai) = 0}.
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1.2 Goppa Codes

Definition :
The Goppa code Γ (L, g) consists of all vectors c = (c0, c1, ..cn−1) over Fq

such that Sc(x) ≡ 0 mod g(x). Here g(x) is a polynomial over F2m and L =
{α0, α1, .., αn−1} a subset so that g(αi) �= 0 for all i = 0 . . . n − 1. Sc(x) =
n−1∑

i=0

ci

x−αi
is called the syndrome of c and L the support of the Goppa code.

The syndrome polynomial Sc(x) satisfies the following property :

Sc(x) = ω(x)
σ(x) mod g(x)

σ(x) is called the error locator polynomial : σ(x) =
t∏

i=1
(x + ai).

ω(x) = σ′(x) for binary Goppa codes.

2 Simple Roots Problem

Problem : Let P (x) be a monic polynomial of degree t with t distinct
roots over F2m .
What is the probability that all its coefficients are different from zero ?

Proposition 1 : This probability is independent of the primitive generator
polynomial G(x) of degree m where F2m = F2[x]/G(x).

Proof. This is due to:

F2[x]/G1(x) ∼= F2[x]/G2(x) ∼= F2[x]/G3(x) ∼= . . .F2[x]/GN (x)

where Gi(x) are primitive polynomials ∀i ∈ {1, 2, .., N } of degree = m. ��

2.1 General Properties

Let n = 2m.

1. P (St
0 = 0) = t

n

Proof. If St
0 = 0 then 0 ∈ RP (x). There are t different positions for any

possible root. We can choose any of those t positions for zero. ��
2. P(St

1 = 0 ∩ St
0 = 0) = 0

Proof. If St
0 = 0 then 0 ∈ RP (x). So St

1 =
t−1∏

i=1
ai = 0. It means that zero is a

root of order 2 of P (x) and that’s impossible. ��

3. P(St
i ∈ F2m ∩ St

1 �= 0 ∩ St
0 = 0) = P(St−2

i ∈ F2m ∩ ai �= 0) × P(St
0 = 0)
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Proof. If St
0 = 0 then 0 ∈ RP (x) This implies that the two following events

are equivalent :

{St
1 �= 0 ∩ St

0 = 0} ⇔ {St−1
0 �= 0 ∩ at = 0}.

The only information we obtain with this event is that at = 0 then :

P(St
1 �= 0 ∩ St

0 = 0) = P(St
0 = 0).

��
4. If St

i = 0 then St−1
i−1 = atS

t−1
i ∀ 0 < i < t

Proof. The proof can easily be done by induction.
Suppose that St

t−1 = 0. It means that we can express at as :

at =
t−1∑

i=1
ai ⇒ at = St−1

t−2 .

If St
t−2 = 0 ⇒ at

t−1∑

i=1
ai =

t−1∑

i�=j,1
aiaj ⇒ atS

t−1
t−2 = St−1

t−3 .

If St
t−3 = 0 ⇒ at

t−1∑

i�=j,1
aiaj =

t−1∑

i�=j �=k,1
aiajak ⇒ atS

t−1
t−3 = St−1

t−4

By induction, we obtain St
1 = 0 ⇒ atS

t−1
1 = St−1

0 . ��
In the following paragraph we will give two bounds for the probability. The lower
bound is very close to our experimental results (see Section 3).

2.2 The Bounds

We propose a lemma concerning the last coefficient (the sum) and we observe
that the probability can be bounded. We consider for ∀i ≥ 3 the probability
P(Si

i−1 = 0). We give a general formula with the following consideration :

Lemma 1 :

Even i : P(Si
i−1 = 0) =

� i−1
2 �∑

k=1
(−1)k−1 1

n+2k−i + (−1)� i−1
2 �−1( 1

n−3 − 1
n−2 )

Odd i : P(Si
i−1 = 0) =

� i−1
2 �∑

k=1
(−1)k−1 1

n+2k−i + (−1)� i−1
2 �−1( 1

n − 1
n−1 )

We will give some simple examples and observe that the general behavior of the
sum suits the formula given above. We will use induction in order to prove it.

Main idea :
• Let i = 3. The probability associated to this event is P = A2

n−1
A3

n
= 1

n . Consider
(a1, a2, a3) so that ∀i ∈ {1, 2, 3} ai ∈ RP (x).
The number of all posible combinations is : A3

n = n(n − 1)(n − 2).
The number of good cases is :
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#{((a1, a2, a3) | a1 + a2 + a3 = 0} = #{((a1, a2, a3) | a1 + a2 = a3} = A2
(n−1) =

(n − 1)(n − 2).

• Let i = 4. The probability is P = A3
n

A4
n

= 1
n−3 .

Consider (a1, a2, a3, a4) so that ∀i ∈ {1, 2, 3, 4} ai ∈ RP (x).
The number of all posible combinations is : A4

n = n(n − 1)(n − 2)(n − 3).
The number of good cases is :

#{((a1, a2, a3, a4) | a1 + a2 + a3 + a4 = 0} = #{((a1, a2, a3, a4) | a1 + a2 + a3 =
a4} = A3

n = n(n − 1)(n − 2).

Is it possible that for a given (a1, a2, a3, a4) solution, the choice of a4 might
cause repetitions? We know that a4 is fixed as a4 = a1 + a2 + a3 and all the
elements are different (because P (X) has 4 distincts roots).
Example: If a4 = a1 then a2 = a3. But a2 and a3 must be different. So it is
impossible that a4 = a1. Therefore we have the exact probability P = 1

n−3• Let i = 5
If a2 �= a3 �= a4 �= a2 then the event related to a1 + · · ·+a5 = 0 has the following
form:

❶ {s =
5∑

i=1
ai = 0} = {s = 0 ∩ a1 = a5} ∪ {s = 0 ∩ a1 �= a5}

The event {s = 0 ∩ a5 = a1} was treated in the case i = 3. So P({s = 0 ∩ a5 =
a1}) = 1

n .

The event {s =
5∑

i=1
ai = 0} has the following probability:

P({s =
5∑

i=1
ai = 0}) = n(n−1)(n−2)(n−3)

n(n−1)(n−2)(n−3)(n−3) = 1
n−3

Finally we obtain the probabillity P = 1
n−3 − 1

n .
For i ∈ 6, 7, 8 we will only give the final result. The idea and the calculus are

the same as for the explained cases.
• Let i = 6 the probabillity is : P = 1

n−4 − 1
n−3 .

• Let i = 7 the probabillity is : P = 1
n−5 − ( 1

n−3 − 1
n ).

• Let i = 8 the probabillity is : P = 1
n−6 − ( 1

n−4 − 1
n−3 ).

Proof. By induction :
• For the even case : The hypothesis is satisfied for

i = 4 as we have P(S4
3 = 0) = 1

n−3 .

Suppose that i = 2p and

P(S2p
2p−1 = 0) =

� 2p−1
2 �∑

k=1

(−1)k−1 1
n + 2k − 2p

+ (−1)� 2p−1
2 �−1( 1

n − 3
− 1

n − 2
).

We will search the P(S2p+2
2p+1 = 0)
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As before we distinguish the case where a2p = a1 and the case where a2p �= a1
( the general case in ❶).
So we have P(S2p+2

2p+1 = 0) + P(S2p
2p−1 = 0) = 1

n−2p
We finally obtain :

P = 1
n−2p −

[
� 2p−1

2 �∑

k=1
(−1)k−1 1

n+2k−2p + (−1)� 2p−1
2 �−1( 1

n−3 − 1
n−2 )

]

=

� 2p+1
2 �∑

k=1
(−1)k−1 1

n+2k−(2p+2) + (−1)� 2p+1
2 �−1( 1

n−3 − 1
n−2 )

• For the odd case on can easilly use the same proof.
Asymptotically, P ≈ 1

n−i+2 . ��

Lemma 2 :
P(St

i = 0) ≈ P(St
t−1 = 0) ∀i ∈ {1, 2, .., t − 2}

Proof. Using properties 3 and 4 from 2.1 we get :

St
i = 0 ⇒ St−1

i−1 = atS
t−1
i ∀ 0 < i < t

So we have all the possible choices on the first t − 1 elements, as for the last one
it has to be defined as in the formula above. We get the same number of possible
choices for (a1, a2, ..., at) as in the case St

t−1 = 0. ��

Proposition 2 : For a given polynomial with t different roots the probability
that all coefficients are different from zero can be bouded by the two following
quantities :

The two bounds:

1 + f(n, t) −
[

t

n
+ (t − 1)ub

]

≤ P ≤ 1 + f(n, t) −
[

t

n
+ (t − 1)lb

]

Proof From Lemma 1 we have :

P(St
t−1 = 0) = 1

n − t + 2
− 1

n − t + 4
+ 1

n − t + 6
− 1

n − t + 8
+ 1

n − t + 10
+ . . .

So :
lb ≤ P(St

t−1 = 0) ≤ ub

where
lb =

1
n − t + 2 − 1

n − t + 4
and

ub = 1
n − t + 2

− 1
n − t + 4

+ 1
n − t + 6
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Using property 1 from 2.1 we have P(St
0 = 0) = t

n .
From Lemma 2 we can approach

P(St
i = 0) ≈ P(St

t−1 = 0) ∀i ∈ {1, 2, .., t − 2}

We will be able to approach the sum :

t−1∑

i=0
P(St

i = 0) ≈ P(St
0 = 0) + (t − 1)P(St

t−1 = 0)

Givind the bounds for the sum it becomes a simple task :

t

n
+ (t − 1) × lb ≤

t−1∑

i=0
P(St

i = 0) ≤ t

n
+ (t − 1) × ub

Finally :

P(
t−1⋂

i=0
{St

i �= 0}) = 1 − P(∃i St
i = 0)

Notation : f(n, t) represents the sum of the probabilities associated to all
the possible intersections between St

i ∀i so that at least two coefficients equal
zero.

Example for t = 3 :

{S3
0 = 0} =

⋃
{S3

0 = 0, S3
1 ∈ {0, �=}, S3

2 ∈ {0, �=}}

We have the same relation for S3
1 and S3

2 . So all the possible combinations
where at least two members equal zero will constitute the function.

f(n, 3) = 2 × P(S3
0 = S3

1 = S3
2 = 0)

+P(S3
0 = S3

1 = 0, S3
2 �= 0)

+P(S3
0 = S3

2 = 0, S3
1 �= 0)

+P(S3
1 = S3

2 = 0, S3
0 �= 0)

We use the following relation in order to finalize our proof :

t−1∑

i=0
P(St

i = 0) = P(∃i St
i = 0) + f(n, t)

P(
t−1⋂

i=0
{St

i �= 0}) = 1 + f(n, t) −
t−1∑

i=0
P(St

i = 0)

So :

1 + f(n, t) −
[

t

n
+ (t − 1)ub

]

≤ P(
t−1⋂

i=0
{St

i �= 0}) ≤ 1 + f(n, t) −
[

t

n
+ (t − 1)lb

]
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That sets the two bounds but doesn’t allow having a graphic representation since
the quantity f(n, t) is unknown. ��

One of the ideas was to consider the following result :

1 −
[

t

n
+ (t − 1) × ub

]

≤ 1 + f(n, t) −
[

t

n
+ (t − 1) × ub

]

≤ P(
t−1⋂

i=0
{St

i �= 0})

We represented in Section 3 the lower bound 1 − [
t
n + (t − 1) × ub

]
and the

experimental values using the Monte Carlo method. As expected the quantity
represented by f(n, t) could be neglected in the formula. Therefore we used two
following bounds in Section 3 :

LB = 1 −
[

t

n
+ (t − 1) × ub

]

and UB = 1 −
[

t

n
+ (t − 1) × lb

]

3 Experiments

Simulations were made using PariGP, a free software used especially for its
abillity to generate finite fields in the Galois field theory.

For the experimental approach we used the Monte-Carlo method. It uses
the Central Limit Theorem and applied in our case to estimate the number
of coefficients equal to zero for a given polynomial. We will detail in the next

Fig. 1. Experimental and theoretical bounds for n = 2048
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paragraph the procedure used in order to obtain the results. After that we will
give the graphical representation of the simulated variables and the theoretical
bounds. We will see that the possible distribution is very close to one of the
bounds.

First of all we simulated for a given number t of roots the corresponding
polynomial. Then we counted the number of coefficients that equal zero. We
repeated the simulation 3.000.000 times for each t. In our case the Monte Carlo
method was applied to the variable : number of coefficients that equal zero.

Results : The figure illustrates the importance of the lower bound. Since we
are interested in having less coefficients equal to zero the lower bound gives the
folowing values :

classical parameters n = 2048 and t ≤ 50 we obtain P ≥ 0.95;
128-bit security [2960; 2288] Goppa code (t = 56) we obtain P ≥ 0.9622;

256-bit security [6624; 5129] Goppa code (t = 115) we obtain
P ≥ 0.9651.

4 Applications

4.1 The McEliece Cryptosystem [15]

KeyGen : The first step is to generate the support L and the Goppa polynomial
g(x). Once this step is achieved, we can build the parity check matrix and bring
it into systematic form pk = (m, t, RT , L). The permutation Π and the Goppa
polynomial g(x) form the secret key sk = (g(x), Π).

Encrypt :

• Input : message m ∈ F
k
2 , public key pk = (m, t, RT , L)

• Output : ciphertext z ∈ F
n
2

1. Expand public key RT to G = [RT |Ik];
2. Choose a random n-bit error-vector with wt(e) = t;
3. Encode z = mG ⊕ e;
4. Return z.

Decrypt :

• Input : ciphertext z ∈ F
n
2 , secret key sk = (g(x), Π)

• Output : message m ∈ F
k
2

1. Find e′ using Decode(z, sk)
2. m ← the first k bits of z ⊕ e′

3. Return m.

Decode(., .) is a decoding algorithm used for the Goppa codes.
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4.2 Side-Channel Attacks

The most important side-channel attacks treated in the scientific literature are
timing attacks. They operate on the software implementation of the McEliece
PKC and can be classified by their goal:

1. Recover the secret message ( in [22,1])
2. Recover the secret key, fully or partially ( in [21,20,19])

The type of attacks aiming to recover the secret message exploit timing differ-
ences between deg(σ1) = t and deg(σ2) = t − 1. The countermeasures proposed
manipulate σ(x) so that if deg(σ) < t the designer should either

1. deterministicaly add coefficients so that deg(σ) = t and all coefficients are
non zero

2. use coefficents from the non-support so that deg(σ) = t and all coefficients
are non zero

Countermeasure Our idea is that the second part of the statement make
sure that all coefficients are non zero is already verified by 2. So we should only
manipulate the degree of σ. Then the probability of having at least one coefficient
equal to zero in σ is extremely low.

4.3 CFS Signature Scheme

In the CFS signature scheme, a small number t is used due to the density of the
Goppa codes. It was proven in [8] that the decoding algorithm must be repeated
in average t! times. Decoding Goppa Codes for CFS with the recommended
values gives the following result :

for n = 216 and t ≤ 10 we obtain P > 0.999.

5 Conclusion

In this article, we have treated the simple roots polynomial problem. We have
shown that the structure is such that timing attacks are difficult to be applied,
since most of the σ-coefficient are different from 0. The security comes directly
from the structure of the Galois field and the form of the error-locator polynomial.

Acknowledgements. We would like to thank Alain Couvreur and Michael
Bulois for their help and comprehension. We would also like to thank Florent
Bernard for his support.
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Abstract. The RC4+ stream cipher was proposed by Maitra and Paul at
Indocrypt 2008. The authors had claimed that RC4+ ironed out most of
the weaknesses of the alleged RC4 stream cipher and was only marginally
slower than RC4 in software. In this paper we show that it is possible
to mount a distinguishing attack on RC4+ based on the bias of the first
output byte. The distinguisher requires around 226 samples produced
by different keys of RC4+. In the second part of the paper we study the
possibility of mounting the differential fault attack on RC4 proposed by
Biham et. al. in FSE 2005, on RC4+. We will show that that the RC4+

is vulnerable to differential fault attack and it is possible to recover the
entire internal state of the cipher at the beginning of the PRGA by
injecting around 217.2 faults.

Keywords: Cryptanalysis, Differential Fault Attack, Distinguishing At-
tack, RC4, RC4+, Stream Cipher.

1 Introduction

There has been extensive research in recent years to come up with RC4-like
stream ciphers that while marginally slower in software, would wipe out the
known shortcomings of RC4. Many such ciphers like RC4A [10], NGG [9], GGHN [4],
VMPC [14] have been proposed to fulfil this objective. However, all the aforemen-
tioned ciphers have had distinguishing attacks reported against them [7,11–13].
RC4+ is another stream cipher that belongs to this family. The cipher was pro-
posed by Maitra and Paul at Indocrypt 2008 [5]. The authors had claimed that
RC4+ while marginally slower than RC4 in software, would resist all the known
distinguishing and state recovery attacks against RC4. To the best of our knowl-
edge, no cryptanalytic advance has been made against this cipher.

Description of the Cipher. The physical structure of RC4+ is the same as
that of RC4. It consists of a permutation S of N = 256 elements from the integer
ring Z256. It also uses two index pointers i, j of size 1 byte each. As in RC4, during
the Key Scheduling Algorithm(KSA), S is initialized to the identity permutation

G. Paul and S. Vaudenay (Eds.): INDOCRYPT 2013, LNCS 8250, pp. 297–307, 2013.
c© Springer International Publishing Switzerland 2013
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and mixed using a Secret KeyK of size l bytes (typically l = 16). Then, the array
S is further scrambled using an l byte IV, after which another layer of zig-zag
scrambling is performed. The exact details of the KSA are given in Table 1. Note
that all addition operations are performed in Z256, and ⊕ denotes bitwise-XOR.
The array V used in the KSA is defined as

V [i] =

⎧⎨
⎩

IV [127− i], if 128− l ≤ i ≤ 127,
IV [i− 128], if 128 ≤ i ≤ 127 + l
0, otherwise.

Table 1. KSA routine for RC4+

Input: Secret Key K, Initial
Vector IV

Output: Permutation S on Z256

for i = 0 to 255 do
S[i] = i;

end
j ← 0
Key Loading

for i = 0 to 255 do

j ← j + S[i] +K[i mod l];
Swap S[i], S[j];

end
IV Loading

for i = 127 to 0 do

j ←
(j + S[i]) ⊕ (K[i mod l] + V [i]);
Swap S[i], S[j];

end

for i = 128 to 255 do

j ←
(j + S[i]) ⊕ (K[i mod l] + V [i]);
Swap S[i], S[j];

end

Zig-Zag Scrambling

for y = 0 to 255 do
if y ≡ 0 mod 2 then

i = y
2
;

end
else

i = 128 − y+1
2

;
end
j ← j + S[i] +K[i mod l];
Swap S[i], S[j];

end

The PRGA routine of RC4+ deviates slightly from the simplistic structure
of RC4. In order to protect against the well known second output byte bias of
Mantin-Shamir [6] and the permutation recovery attack of Maximov and Khovra-
tovich [8], the designers propose to make the output keystream byte functions
of a few other locations of the permutation array S. The details of the PRGA
routine are given in Table 2. Note that - and * denote right and left bitwise
shifts respectively.
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Table 2. PRGA routine for RC4+

Input: Permutation S on Z256

Output: Output Keystream bytes Z

i = j = 0;
while Keystream is required do

i ← i+ 1;
j ← j + S[i];
Swap S[i], S[j];

t ← S[i] + S[j];
t′ ← (S[i � 3⊕ j � 5] + S[i � 5⊕ j � 3])⊕ 0xAA;
t′′ ← j + S[j];

Zi = (S[t] + S[t′])⊕ S[t′′];
end

Our Contribution and Organization of the Paper. In this paper we will
show that the first output byte produced by RC4+ is negatively biased towards 1.
In fact we will prove that the probability that the first output byte is equal to 1 is
around 1

N − 1
2N2 , where N = 256 is the number of elements of the array S used in

the design. Using this observation we will mount a distinguishing attack against
RC4+ that requires around 226 output keystreams produced by (a) Secret Keys
chosen uniformly at random or (b) any fixed Secret Key used with IVs chosen
unformly at random. In the second part of the paper we revisit the Differential
Fault Attack on RC4 proposed by Biham et. al. in FSE 2005 [1]. We explore
the possibility of mounting such a fault attack on RC4+. We will show that by
injecting around 217.2 faults, it is possible to recover the internal state of the
cipher efficiently.

2 Distinguishing Attack on RC4+

In this section we will prove that the first output byte Z1 (when the value of the
index i = 1) is negatively biased towards 1. We will prove that Pr(Z1 = 1) =
1
N − 1

2N2 . The initial state of the RC4+ PRGA is denoted by S0.

Lemma 1. Let S0 be a random permutation on {0, 1, 2, . . . , 255}. If S0[1] = 1
and S0[2] is even, then Z1 can never take the value 1.

Proof. We refer to the PRGA algorithm in Table 2. Initially i = j = 0. After
the increment operations the new values of i, j are as follows: i = 0+ 1 = 1 and
j = 0 + S0[i] = 0 + S0[1] = 1. Since i = j even after the increment operations,
the subsequent swap operation does not bring about any change in the array S0.
Thereafter the values of t, t′, t′′ are calculated as follows:

t = S0[i] + S0[j] = 2 · S0[1] = 2.
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t′ = (S0[i - 3⊕ j * 5] + S0[i * 5⊕ j - 3])⊕ 0xAA

= (S0[1 - 3⊕ 1 * 5] + S0[1 * 5⊕ 1 - 3])⊕ 0xAA

= (2 · S0[32])⊕ 0xAA

Finally t′′ = j + S0[j] = 1 + S0[1] = 1 + 1 = 2. Therefore we have Z1 =
(S0[2] + S0[t

′])⊕ S0[2]. Suppose that Z1 = 1, then we will have

(S0[2] + S0[t
′])⊕ S0[2] = 1 ⇒ S0[2] + S0[t

′] = S0[2]⊕ 1

Since S0[2] is even, we must have S0[2] ⊕ 1 = S0[2] + 1. Hence the previous
equation reduces to:

S0[2] + S0[t
′] = S0[2] + 1 ⇒ S0[t

′] = 1

S0 is a permutation and hence injective. So S0[t
′] = S0[1] = 1 can only imply

that t′ = 1. Thus we have

(2 · S0[32])⊕ 0xAA = 1

The LHS of the above equation is clearly an even number whereas the RHS is
odd. This gives rise to a contradiction, and therefore Z1 = 1 can clearly not
hold. �


Corollary 1. The above Lemma would still hold if any even pad instead of 0xAA
were used in the design.

Theorem 1. Let S0 be a random permutation on {0, 1, 2, . . . , 255}. The prob-
ability that Z1 = 1 is given by the equation Pr(Z1 = 1) = 1

N − 1
2N2 (where

N = 256).

Proof. Let E denote the event: “S0[1] = 1 and S0[2] is even”. Then it is clear

that Pr[E] =
N
2 ·(N−2)!

N ! ≈ 1
2N . From Lemma 1, we have Pr[Z1 = 1|E] = 0. By

standard randomness assumptions, we have Pr[Z1 = 1|Ec] = 1
N (this has been

verified by extensive computer experiments with 220 random keys). Therefore
we have

Pr[Z1 = 1] = Pr[Z1 = 1|E] · Pr[E] + Pr[Z1 = 1|Ec] · Pr[Ec]

= 0 · 1

2N
+

1

N
·
(
1− 1

2N

)
=

1

N
− 1

2N2
.

�


We now state the following theorem from [6], which outlines the number of
output samples required to distinguish two distributions X and Y .

Theorem 2. (Mantin-Shamir [6]) Let X, Y be distributions, and suppose that
the event e happens in X with probability p and in Y with probability p(1 + q).

Then for small p and q, O
(

1
pq2

)
samples suffice to distinguish X from Y with

a constant probability of success.
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Distinguishing RC4+ from Random Sources. Let X be the probability dis-
tribution of Z1 in an ideal random stream, and let Y be the probability dis-
tribution of Z1 in streams produced by RC4+ for randomly chosen keys. Let
the event e denote Z1 = 1, which occurs with probability of 1

N in X and
1
N − 1

2N2 = 1
N ·
(
1− 1

2N

)
in Y . By using the Theorem 2 with p = 1

N and
q = − 1

2N , we can conclude that we need about 1
pq2 = 4 · N3 = 226 output

samples to reliably distinguish the two distributions.

Experimental Results. By performing extensive computer simulations with
(a) one billion random keys, and (b) a fixed key with one billion random IVs, the
probability Pr[Z1 = 1] was found to be around 2−8 − 2−17.03. This is consistent
with the theoretical value of 1

N − 1
2N2 proven in Theorem 1.

3 Differential Fault Analysis of RC4+

In [1], a Differential Fault Attack and an Impossible Fault Attack of the RC4

stream cipher was proposed. The Impossible Fault Attack uses random faults on
the i or j indices of the RC4 PRGA to drive the cipher into a special state called
Finney state [3]. The Finney states are called impossible states because they can
not occur under normal mode of operation of RC4 and hence the unusual name
of the attack. By injecting around 216 faults on either the i or j register, the
cipher is expected to enter a Finney State. From observing the faulty output
bytes of RC4 it is possible to assess if the cipher has indeed entered a Finney
State. Since any Finney state cycles back after 255 · 256 = 65280 iterations
of the cipher, the attacker selects one of the interleaved cycles in the output
stream as the internal state. Once the internal state is obtained at some point
in time, it is possible to backtrack and find the initial state at the beginning of
the PRGA. Note that, since the PRGA update operations of RC4 and RC4+ are
exactly similar, an impossible fault attack on RC4+ may also be carried out using
the same techniques outlined in [1].

Applying the Differential Fault Attack (DFA) of [1] to RC4+, however, is not
so straightforward. Before proceeding, we note that the PRGA of RC4 is exactly
the same as that of RC4+, the only difference being that RC4 outputs S[t] instead
of (S[t] + S[t′])⊕ S[t′′]. We will state in brief the DFA algorithm in [1].

A. Perform a key setup (KSA) with the unknown key and run the RC4 PRGA
for around 1000 iterations, and record the output stream Zi, (1 ≤ i ≤ 1000)
for later analysis.

B. Process the following 256 times with l being set from 0 to 255, giving 256
faulty output streams

1. Restart the cipher and perform a key setup with the same unknown key.
2. Make a fault in S[l].
3. Run the RC4 PRGA 30 steps, and record the faulty output stream Z1

i [l]
for later analysis.
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C. Repeat Step B with fault injection in kth (2 ≤ k ≤ 1000) PRGA iteration
instead of just after key setup. Record the faulty keystream sequence Zk

i [l]
in each case (thus Zk

i [l] is the faulty ith keystream byte when the location
S[l] has been faulted at PRGA round k).

For any i, the output byte Zi is a function of just 3 locations of the S array:
i, j, S[i] + S[j]. So evidently, the output byte of all the Zi

i [l]’s (note Zi
i [l] is the

first output byte obtained after faulting S[l] at round i), except for three of them,
are the same as in the faultless output byte Zi. The identification of these three
streams leak the values of i, j, S[i]+S[j], but not which is which. Of course, the
value of i is always known, thus the only task is to identify which is j and which
is S[i] +S[j]. After the values of j, S[i] +S[j] are obtained for sufficiently many
PRGA rounds i, a cascade guessing technique is employed in [1] to eliminate
incorrect guesses of j from j, S[i] + S[j] and thereafter reconstruct the initial
permutation S. For more details, we refer the reader to [1].

However in RC4+, the output byte is a function of 7 locations of the S array:
i, j, S[i] + S[j], j + S[j], i - 3 ⊕ j * 5, i * 5 ⊕ j - 3, (S[i - 3 ⊕ j *
5] + S[i * 5 ⊕ j - 3])⊕ 0xAA. Therefore repeating the above procedure in the
case of RC4+ would leak a maximum of 7 indices in each round, of which only the
value of i is known with certainty. The values of the other 6 indices can not be
assigned with certainty. Thus, on the face of it, performing DFA on RC4+ seems
to be more difficult than RC4. However as we will see in Section 3.1, this is not
so.

3.1 Inferring the Values of j in Each Round

As we have seen, performing steps A, B, C for RC4+, leaks the values of 6
indices. Although the attacker knows that these are the values of the indices
j, S[i]+S[j], j+S[j], i - 3⊕ j * 5, i * 5⊕ j - 3, (S[i - 3⊕ j * 5]+S[i *
5⊕ j - 3])⊕ 0xAA, he is unable to ascertain which of these 6 values correspond
to which index. We will later see in Section 3.2, that if the attacker can correctly
establish the value of only the index j, it will be enough to reconstruct the
permutation S at the beginning of the PRGA. Before we outline our strategy to
find the value of j, we will look at a result that will help us build the attack.

Lemma 2. For any value of i, consider two values j1, j2. If i - 3⊕ j1 * 5 =
i - 3⊕ j2 * 5, and i * 5⊕ j1 - 3 = i * 5⊕ j2 - 3, then j1 = j2.

Proof. Rearranging the terms in both equations we get (j1 ⊕ j2) * 5 = 0 =
(j1 ⊕ j2) - 3. Then, j1 ⊕ j2 = 0 is the only solution to the equation and so
j1 = j2.

Ascertaining j. For any round i, the attacker has with him 6 values corre-
sponding to the indices j, S[i] + S[j], j + S[j], i - 3 ⊕ j * 5, i * 5 ⊕ j -
3, (S[i - 3 ⊕ j * 5] + S[i * 5 ⊕ j - 3])⊕ 0xAA. Let us call these six val-
ues k1, k2, . . . , k6. He of course does not know the correspondence between the
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k1, . . . , k6 and the indices. Without loss of generality let k1 be the correct value
of j. Then evaluating the functions i - 3⊕ k1 * 5 and i * 5⊕ k1 - 3 will lead
to two of the values in k2, k3, . . . , k6 i.e. those corresponding to i - 3⊕j * 5 and
i * 5⊕ j - 3. The probability that any other ka, 2 ≤ a ≤ 6 will on evaluating
i - 3⊕ ka * 5 and i * 5⊕ ka - 3 will lead to two elements of {k1, k2, . . . , k6}
is very low. Therefore given any i the strategy will be as follows

• For a = 1 to 6

1. Compute Ma = i - 3⊕ ka * 5 and Na = i * 5⊕ ka - 3.
2. If Ma, Na ∈ {k1, k2, k3, k4, k5, k6} then j = ka.

The strategy of the attacker will be to determine the values of j for around
602 consecutive values of i. As will be seen in Section 3.2, this will suffice to
reconstruct the permutation S at the beginning of the PRGA.

Error Analysis. Lemma 2 guarantees that any value ka different j, when used
to calculate Ma, Na will result in values �= i - 3 ⊕ j * 5 and i * 5 ⊕ j - 3.
Therefore, a confusion will only occur when some value ka �= j on evaluating
i - 3⊕ka * 5 and i * 5⊕ka - 3 also leads to two elements of {k1, k2, . . . , k6}
(which are not equal to i - 3⊕ j * 5 and i * 5⊕ j - 3). In such an event the
attacker must guess one from the multiple values of j extracted by the algorithm.
Experiments with 220 random keys show that in the first 602 rounds there are
around 5 to 6 confusions on average, and each confusion usually gives no more
than 2 values of j to choose from. The attacker can simply guess the values of j
during these rounds and use it in the algorithm for state recovery that will be
discussed in the next subsection.

Fault Requirement. As we will see in the next subsection, around 602 values
of j are required to reconstruct S. Since each round requires 256 faults, the total
fault requirement is around 602× 256 ≈ 217.23.

3.2 Reconstructing the Permutation S

We will now present the Algorithm 1 that will be used to reconstruct the state
S. The technique used here is similar to the algorithm presented in [2]. The
algorithm works under the principle that if j1, j2 are the values of j in two
successive PRGA rounds then the the value of S[i1] is given as j2 − j1.

We assume that the algorithm starts from PRGA round t armed with M
values of j in consecutive PRGA rounds. First, a two dimensional array acc is
used, whose r-th row contains the triplet (ir, jr, zr). After each subsequent round
t + r, the algorithm reverts to the initial round t and in the process uses new
entries to check if the array guess (which is the temporary array used to guess
the state S) can be populated further. Thereafter the algorithm again performs
a forward pass up to the round t+ r + 1 to further populate the array guess as
much as possible. The strategy is formally presented in Algorithm 1.
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Input: (it, jt), {(it+r, jt+r, zt+r : r = 1, . . . ,M − 1)}.
Output: Permutation array St+m for some m ∈ [0,M − 1].
numKnown ← 0;0.1

m ← 0;0.2

for u from 0 to N − 1 do0.3

guess[u] ← EMPTY ;0.4

end
acc[0][0] ← it;0.5

acc[0][1] ← jt;0.6

for u from 1 to M − 1 do0.7

acc[u][0] ← it+u;0.8

acc[u][1] ← jt+u;0.9

acc[u][2] ← zt+u;0.10

end
repeat0.11

it+m+1 ← acc[t+m+ 1][0], jt+m+1 ← acc[t+m+ 1][1],0.12

zt+m+1 ← acc[t +m+ 1][2];
if guess[it+m+1] = EMPTY then0.13

guess[it+m+1] ← jt+m+1 − jt+m;0.14

end
backtrack(t+m, t);0.15

processForward(t, t+m+ 1);0.16

m ← m+ 1;0.17

numKnown ← Number of non-empty entries in the array guess;0.18

until numKnown = N − 1 OR m = M − 1 ;
if numKnown = N − 1 then0.19

Fill the remaining single EMPTY location of the array guess;0.20

for u from 0 to N − 1 do0.21

St+m[u] ← guess[u];0.22

end

end

Algorithm 1. The algorithm for state recovery with backward and
forward passes.
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Algorithm 1 uses two subroutines. The subroutine backtrack(r, t) presented in
Algorithm 2 performs a backward pass, tracing all state information back from
the current round r to a previous round t < r. On the other hand, the subroutine
processForward(r, t), presented in Algorithm 3 evolves the state information in
the forward direction from a past round r to the current round t > r. Note that
Algorithm 1 returns the array St+m (the value of S at PRGA round t+m) where
m is the minimal value for which St+m can be fully constructed. Thereafter the
value of S at any previous round can be easily calculated as the state update of
RC4+, like RC4, is one-one and invertible.

Subroutine backtrack(r, t)
repeat1.1

ir ← acc[r][0];1.2

jr ← acc[r][1];1.3

swap(guess[ir], guess[jr]);1.4

r ← r − 1;1.5

until r = t ;

Algorithm 2. Subroutine backtrack

Experimental Results. We present some experimental evidences. Experi-
mental result showing the average number of bytes recovered (over 100 random
simulations ) against the number of rounds used is shown in Table 3. It shows
that around 602 consecutive values of j are required to reconstruct the entire of
S.

Table 3. No. of rounds vs. average no. of bytes recovered for Algorithm 1

Rounds M 100 200 300 400 500 602
#Bytes Recovered 84 144 194 233 249 255

4 Conclusion

The paper presents some weaknesses of the RC4+ stream cipher proposed by
Maitra and Paul in Indocrypt 2008. Firstly, a distinguishing attack requiring
around 226 output samples is presented, based on the bias of the first output
byte. In the second part of the paper, a Differential Fault Attack requiring around
217.2 faults is reported against the cipher. The results show that designing re-
inforcements to strengthen RC4 is not an easy task. It would be worthwhile to
discover a design paradigm that not only rids RC4 of its weaknesses but also
preserves its innate simplicity.
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Subroutine processForward(r, t)
repeat2.1

ir = acc[r][0];2.2

jr = acc[r][1];2.3

zr = acc[r][2];2.4

tr = Sr[ir] + Sr[jr];2.5

t′r = (Sr[ir � 3⊕ jr � 5] + Sr[ir � 5⊕ jr � 3])⊕ 0xAA;2.6

t′′r = jr + Sr[jr ];2.7

swap(guess[ir], guess[jr]);2.8

if

(
guess[ir] �= EMPTY ∧ guess[jr] �= EMPTY ∧ guess[tr] �=

2.9

EMPTY ∧ guess[ir � 3⊕ jr � 5] �= EMPTY ∧ guess[ir �

5⊕ jr � 3] �= EMPTY ∧ guess[t′r] �= EMPTY

)
then

if guess[t′′r ] = EMPTY then2.10

guess[t′′r ] ← zr ⊕
(
guess[tr] + guess[t′r]

)
;2.11

end

end

if

(
guess[ir] �= EMPTY ∧ guess[jr] �= EMPTY ∧ guess[tr] �=

2.12

EMPTY ∧ guess[ir � 3⊕ jr � 5] �= EMPTY ∧ guess[ir �

5⊕ jr � 3] �= EMPTY ∧ guess[t′′r ] �= EMPTY

)
then

if guess[t′r] = EMPTY then2.13

guess[t′r] ←
(
zr ⊕ guess[t′′r ]

)
− guess[tr];2.14

end

end

if

(
guess[ir] �= EMPTY ∧ guess[jr] �= EMPTY ∧ guess[ir � 3⊕ jr �

2.15

5] �= EMPTY ∧ guess[ir � 5⊕ jr � 3] �= EMPTY ∧ guess[t′r] �=

EMPTY ∧ guess[t′′r ] �= EMPTY

)
then

if guess[tr] = EMPTY then2.16

guess[tr] ←
(
zr ⊕ guess[t′′r ]

)
− guess[t′r];2.17

end

end
r ← r + 1;2.18

until r = t ;

Algorithm 3. Subroutine processForward
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Abstract. Piccolo is a new lightweight block cipher proposed at CHES
2011 [13]. It ciphers plaintext blocks of length 64 bits under keys of
lengths 80 or 128 bits. It is based on a modified Feistel structure with a
variable number of rounds.

In this paper, we present two related key impossible differential at-
tacks against 14 rounds of Piccolo-80 and 21 rounds of Piccolo-128 with-
out the whitening layers. The attack against Piccolo-80 has a time and
data complexity of 268.19 whereas the time/data complexity of the attack
against Piccolo-128 is 2117.77.

Keywords: Lightweight block ciphers, Piccolo, related-key impossible
differential attack.

Introduction

Due to the emergence of new highly constrained systems such as RFID tags,
many lightweight block ciphers dedicated to those environments have been re-
cently proposed. Among them, let us mention: PRESENT [4], DESXL [12],
KATAN&KTANTAN [7], SEA [14], LED [8], LBlock [17], TWINE [15], PRINCE
[6] and finally Piccolo [13].

Even if some cryptanalytic results (see [5,11] for example) have already been
published concerning the security of those block ciphers, it still remains necessary
to study more deeply their security and their efficiency.

In this paper, we focus on the security evaluation of the new lightweight
block cipher Piccolo [13]. We present two related key impossible differential at-
tacks against 14 rounds of Piccolo-80 and 21 rounds of Piccolo-128 without the
whitening layers. Of course, an attack in the related key security model is much
weaker than an attack in the secret key setting but this result provides a bet-
ter understanding of the Piccolo security evaluation, especially its key schedule.
Table 1 compares the already published attacks against Piccolo.
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Table 1. Comparison table of cryptanalytic results against Piccolo

Attack Nb rounds In time complexity

MIM 21/Piccolo-128 [9] 2121

MIM 14/Piccolo-80 [9] 273

Biclique 28/Piccolo-128 [16] 2126.79

Biclique full/Piccolo-80 [16] 278.95

This paper is organized as follows: Section 1 gives a short description of Pic-
colo; In Section 2 we describe the related key impossible differential attacks on
21 rounds of Piccolo-128 and 14 rounds of Piccolo-80 while Section 3 concludes
the paper.

1 Description of Piccolo

Piccolo is a new lightweight block cipher proposed by K. Shibutani, T. Isobe, H.
Hiwatari, A. Mitsuda, T. Akishita and T. Shirai at CHES 2011 [13]. It ciphers
blocks of length 64 bits under keys of length 80 or 128 bits. The number of
rounds is variable and depends on the key lengths. It is equal to 25 for a 80-bit
key and to 31 for a 128-bit key. Those rounds are surrounded at the top and
at the bottom by key additions with two 16-bit whitening keys. The encryption
function is illustrated on Fig. 1. The round function is a modified Generalized
Feistel with 4 branches. It is composed of an F -function that acts at 16-bit
level composed of the application of a 4-bit S-box applied four times in parallel,
followed by a MixColumns-like transformation acting at nibble level, finally fol-
lowed by the reapplication of the S-box layer. A subkey addition is applied after
the F -function as shown on Fig. 1. The RP transformation acts at byte level
and permutes the bytes of the current block X i = (x0, x1, x2, x3, x4, x5, x6, x7)
into (x2, x7, x4, x1, x6, x3, x0, x5).

The key schedule of Piccolo is linear. The key is seen as 5 or 8 16-bit words
ki(16) for i from 0 to 4 or 0 to 7. For a 80-bit key, the key schedule extracts
the subkeys as described in Algorithm 1 where con80

i are round constants. For
a 128-bit key, the key schedule works as shown in Algorithm 2 where con128

i are
round constants.

Finally, Table 2 sums up the key words extracted at each round for the two
possible key lengths.

2 Related Key Impossible Differential Attacks

In this section, we first introduce our attack model then we present our related
key impossible attacks against 14 rounds of Piccolo-80 and 21 rounds of Piccolo-
128. We first describe the related keys, then the impossible differentials and we
conclude with the full attacks.
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X(64)

64

16 16 16 16
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F Frk0 rk1
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Fig. 1. Encryption function of Piccolo
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Algorithm 1. The Piccolo Key Schedule for a 80-bit key

Data: The master key k0(16), k1(16), k2(16), k3(16), k4(16).
Result: The whitening keys wk0, · · · , wk3, the round keys rk0, · · · , rk49.
wk0 ← kL

0 ||kR
1 , wk1 ← kL

1 ||kR
0 , wk2 ← kL

4 ||kR
3 , wk3 ← kL

3 ||kR
4

for i from 0 to r − 1 do

(rk2i, rk2i+1) ← (con80
2i , con

80
2i+1)⊕

⎧⎨
⎩

(k2, k3) (if i mod 5 = 0 or 2)
(k0, k1) (if i mod 5 = 1 or 4)
(k4, k4) (if i mod 5 = 3)

Algorithm 2. The Piccolo Key Schedule for a 128-bit key

Data: The master key k0(16), · · · , k7(16).
Result: The whitening keys wk0, · · · , wk3, the round keys rk0, · · · , rk61.
wk0 ← kL

0 ||kR
1 , wk1 ← kL

1 ||kR
0 , wk2 ← kL

4 ||kR
7 , wk3 ← kL

7 ||kR
4

for i from 0 to r − 1 do
if i+ 2 mod 8 = 0 then

(k0, k1, k2, k3, k4, k5, k6, k7) ← (k2, k1, k6, k7, k0, k3, k4, k5)

rki ← k(i+2) mod 8 ⊕ con128
i

Table 2. Key expansion function for Piccolo-128 and Piccolo-80

Piccolo-128

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Key Word 2, 3 4, 5 6, 7 2, 1 6, 7 0, 3 4, 5 6, 1 4, 5 2, 7 0, 3 4 ,1 0, 3 6, 5 2, 7 0, 1

Round 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Key Word 2, 7 4, 3 6, 5 2, 1 6, 5 0, 7 4, 3 6, 1 4, 3 2, 5 0, 7 4, 1 0, 7 6, 3 2, 5

Piccolo-80

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Key Word 2, 3 0, 1 2, 3 4, 4 0, 1 2, 3 0, 1 2, 3 4, 4 0, 1 2, 3 0, 1 2, 3 4, 4 0, 1 2, 3

Round 17 18 19 20 21 22 23 24 25
Key Word 0, 1 2, 3 4, 4 0, 1 2, 3 0, 1 2, 3 4, 4 0, 1
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2.1 The Attack Model

Impossible differential attacks have been introduced by E. Biham et al. in [2] in
1998. Impossible differential cryptanalysis, in contrast with ordinary differential
cryptanalysis, exploits differences with probability 0 at some intermediate state
of a cipher. The related key attacks introduced by E. Biham in [1] in 1993 allow
an attacker to know some relations between different keys without knowing the
keys themselves and to cipher under those keys some plaintexts. From those
pairs of plaintexts/ciphertexts, the aim of the attacker is to recover the key.

The idea of combining both techniques has been first introduced by G. Jaki-
moski and Y. Desmedt in [10] in 2003 against AES-192. In this model, an at-
tacker introduces a difference in the keys and produces an impossible differen-
tial in the middle of the cipher considering only differences between the keys.
Some variants of this attack where differences are also introduced in the plain-
text/ciphertext could also be considered. The most interesting differences in the
plaintexts/ciphertexts are in general the ones that could partially cancel the ones
in the key as proposed against AES-192 in [3].

2.2 The Considered Related Keys

Piccolo-128. For Piccolo-128, we consider the following related keys. Given two
master keys K and K ′ such that K⊕K ′ = (0, 0, X, 0, 0, 0, 0, 0) where X denotes
a byte difference in the lower bits of k2, then the differences in the subkeys are
summed up in Table 3.

Piccolo-80. For Piccolo-80, we consider the following related keys. Given two
master keys K and K ′ such that K⊕K ′ = (X, 0, 0, 0, 0) where X denotes a byte
difference in the lower bits of k0, then the differences in the subkeys are summed
up in Table 3.

2.3 The Considered Impossible Differentials

The Impossible Differential for Piccolo-128. We propose the following
impossible differential for Piccolo-128 taking into account the injection of differ-
ences coming from the subkeys.

If we consider an input difference at round 5 of the form (0, 0, 0, 0, 0, 0, 0, 0)
seen at byte level, this input difference gives after 8 rounds the following output
difference (0, 0, ∗, ∗, ∗, ∗, ∗, ∗) where ∗ denotes an unknown (possibly null) differ-
ence. In the same way and in the backward direction, if the output of round
16 is of the form (0, ∗, 0, 0, 0, 0, 0, 0) then deciphering 4 rounds gives an input of
the form (�= 0, �= 0, ∗, ∗, 0, 0, ∗, ∗) when �= 0 means a difference that could not be
null.

Thus we can construct the following related key impossible differential on 12
rounds, between the rounds 5 and 16, for Piccolo-128: (0, 0, 0, 0, 0, 0, 0, 0) could
not lead to (0, ∗, 0, 0, 0, 0, 0, 0).
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Table 3. Subkey differences for Piccolo-128 on the left and Piccolo-80 on the right

Piccolo-128 Piccolo-80

Round Number Subkey Differences Subkey Differences

1 (rk0, rk1) (X,0) (rk0, rk1) (0,0)
2 (rk2, rk3) (0,0) (rk2, rk3) (X,0)
3 (rk4, rk5) (0,0) (rk4, rk5) (0,0)
4 (rk6, rk7) (X,0) (rk6, rk7) (0,0)
5 (rk8, rk9) (0,0) (rk8, rk9) (X,0)
6 (rk10, rk11) (0,0) (rk10, rk11) (0,0)
7 (rk12, rk13) (0,0) (rk12, rk13) (X,0)
8 (rk14, rk15) (0,0) (rk14, rk15) (0,0)
9 (rk16, rk17) (0,0) (rk16, rk17) (0,0)
10 (rk18, rk19) (X,0) (rk18, rk19) (X,0)
11 (rk20, rk21) (0,0) (rk20, rk21) (0,0)
12 (rk22, rk23) (0,0) (rk22, rk23) (X,0)
13 (rk24, rk25) (0,0) (rk24, rk25) (0,0)
14 (rk26, rk27) (0,0) (rk26, rk27) (0,0)
15 (rk28, rk29) (X,0)
16 (rk30, rk31) (0,0)
17 (rk32, rk33) (X,0)
18 (rk34, rk35) (0,0)
19 (rk36, rk37) (0,0)
20 (rk38, rk39) (X,0)
21 (rk40, rk41) (0,0)

The Impossible Differential for Piccolo-80. We found the following impos-
sible differential for Piccolo-80 taking into account the injection of differences
coming from the subkeys.

If we consider an input at round 3 of the form (0, 0, 0, 0, 0, 0, 0, 0), this input
difference gives after 5 rounds the following output difference (0, 0, ∗, ∗, ∗, ∗, ∗, ∗)
where ∗ denotes an unknown (possibly null) byte difference. In the same way
and in the backward direction, if the output of round 12 is of the form
(∗, 0, 0, 0, 0, 0, 0, 0) then deciphering 5 rounds gives an input of the form (�= 0, �=
0, ∗, ∗, ∗, ∗, ∗, ∗) when �= 0 means a byte difference that could not be null.

Thus we can construct the following related key impossible differential on 10
rounds, between the rounds 3 and 12, for Piccolo-80: (0, 0, 0, 0, 0, 0, 0, 0) could
not lead to (∗, 0, 0, 0, 0, 0, 0, 0).

2.4 Adding Rounds at the Beginning and at the End

Piccolo-128. We can add 4 rounds at the beginning and 5 rounds at the end to
the related key impossible differential described in the previous subsection. The
two extensions are shown respectively in Fig. 2 and 3 with the number of byte
conditions required for the attack to succeed (i.e. to find a differential of the form
(0, 0, 0, 0, 0, 0, 0, 0) at the output of round 4 taking into account the differences
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F F

1 byte cdtion

rk0 rk1

F F

1 byte cdtion

rk2 rk3

F F

2 byte cdtions

rk4 rk5

F F

1 byte cdtion

rk6 rk7

Fig. 2. The 4 rounds added at the beginning. The gray nibbles designate nibbles with
differences.

F F

1 byte cdtion

rk32 rk33

F F

4 byte cdtions

rk34 rk35

F F

2 byte
cdtions

rk36

rk37

F F rk38

rk39

F F

Fig. 3. The 5 rounds added at the end. The gray nibbles designate nibbles with differ-
ences.

coming from the subkeys and a differential of the form (0, ∗, 0, 0, 0, 0, 0, 0) at the
output of round 16).

Piccolo-80. We can add 2 rounds at the beginning and 2 rounds at the end
to the related key impossible differential described in the previous subsection.
The two extensions are shown respectively in Fig. 4 with the number of byte
conditions required for the attack to succeed (i.e. to find a differential of the form
(0, 0, 0, 0, 0, 0, 0, 0) at the output of round 2 taking into account the differences
coming from the subkeys and a differential of the form (∗, 0, 0, 0, 0, 0, 0, 0) at the
output of round 12).
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Rounds added at the beginning

F F

2 byte cdtions

rk0 rk1

F F

1 byte cdtion

rk2 rk3

Rounds added at the end

F F

2 byte cdtions

rk24 rk25

F F

3 byte cdtions

rk26 rk27

Fig. 4. The 2 rounds added at the beginning on the left and the 2 rounds added at the
end. The gray nibbles designate nibbles with differences.

2.5 Attack Procedure

Piccolo-128. The procedure of our attack is as follows:

– For the differential path in the key schedule, we find N good pairs of in-
put messages that satisfy the extended differential path on 21 rounds (N
pairs with differences of the form (∗, 0, 0, ∗, 0, ∗, ∗, ∗) at the input and with
differences everywhere at the output). This can be done with a complexity
equal to CN that will be explained at the end. As the partial keybits will
be determined only in a second step, we need to build the N set and repeat
the following procedure for each of the two keys involved in the differential
path in the key schedule.

– For each of the N good pairs (and for the two possible keys involved in the
differential path in the key schedule), we check if the conditions of getting
from the input pair to the beginning of the impossible differential on the 4
initial rounds, and from the output to the end of the impossible differential
on the 5 rounds, can be verified by some values of the keybits that intervene
in these conditions. In total, we have 112 keybits involved in the subkey
search.

– The keybits that make both transitions possible for at least one of the N
good pairs will be filtered out of the possible key guesses as otherwise they
would imply that the impossible differential had occurred.

– From Fig. 2, we can see that there are 5 byte conditions for erasing the
active bytes and obtaining the differential configuration at the input of the
impossible differential. The 16-bit words of the key involved in the process
are k1, k2, k3, k4, k5, k6, k7. Thus, in total, we need to determine 112 keybits.
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– From Fig. 3, we can see that there exist 7 byte conditions for obtaining
from the output the differential configuration of the end of the impossible
differential. They involve the 16-bit words of the key k1, k2, k3, k4, k5, k6, k7.
These are exactly the same keybits as for the initial rounds.

As the probability that for a good pair the 12 byte conditions are verified is
2−96, for each key guess the probability that none of the N good pairs verifies all
the conditions is P = (1−2−96)N . Thus, we takeN = 2102. And, P = 2−92,33. We
have 2112 possibilities for the involved keybits. With N = 2102 and P = 2−92,33,
this means that the estimated number of wrong key guesses that pass the test is
equal to 2112−92,33 = 219,67. These keys will be directly tested in a second step
at low cost to find the good key.

The cost CN for generating N valid pairs could be computed according the
number of bit differences at the input and at the output, which is equal, in our
case, to 64 + 40 = 104. Thus the total cost for generating N = 2102 pairs of
differences is CN = N264+1−104 = 263.

The complexity of the attack, where we recover 112 keybits (and then the
remaining ones with much lower complexity) is then

2 ∗ (263 + 21022112−96) ≈ 2119

partial ciphering operations corresponding to approximatively 9
21 · 2120 ≈ 2117.77

encryptions. In this equation, the first term represents the complexity of obtain-
ing the 2102 pairs with the wanted input-output differences for the 2 related
keys, and the second term comes from the fact that, for each of the 2102 pairs
of messages, and for the 2 possible keys, we filter out all the partial keys that
verify the conditions.

The data complexity is about the same as the time complexity. This attack
works without the whitening keys that could not be added due to the presence
of the whole 16-bit word k0 in the whitening keys. If we try to add the whitening
keys at the beginning and at the end of our attack, the complexity of the attack
becomes more expensive than the exhaustive key search.

Piccolo-80. The attack procedure for Piccolo-80 is exactly the same, so we do
not describe it in details. We only mention that a total of 64 keybits coming
from the 16-bit word subkeys rk0 = k2, rk1 = k3, rk2 = k0, rk24 = k2, rk25 =
k3, rk26 = k4, rk27 = k4 must be guessed under 8 byte conditions, 3 at the
beginning and 5 at the end. As the probability P is equal to P = (1 − 2−64)N ,
we take N = 269 which leads to P = 2−46.16. The total cost for generating
N = 269 pairs of differences is CN = N264+1−24−48 = 262. The complexity
of the attack, where we recover 64 keybits (and then the remaining ones with
much lower complexity) is then 2 ∗ (262 + 269264−64) ≈ 270 partial ciphering
operations corresponding to approximatively 4

14 · 270 ≈ 268.19 encryptions. The
data complexity is about the same as the time complexity. This attack works
without the whitening keys that could not be added due to the presence of the
whole 16-bit word k0 in the whitening keys. If we try to add the whitening keys
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at the beginning and at the end of our attack, the complexity of the attack
becomes more expensive than the exhaustive key search.

3 Conclusion

We have presented in this article two related key impossible differential attacks
against the two reduced versions of Piccolo. Even if those attacks are in the
related key settings, they improve the previous complexities of the best attack
known against Piccolo except the biclique attacks. But the biclique attacks are
much more improvements of the key exhaustive search than classical attacks in
the common sense of the term.

As part of our future work, we consider improving our analysis on Piccolo by
considering more number of rounds and whitening keys.
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S.S., Yalçın, T.: PRINCE – A low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

7. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
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Jaulmes, Éliane 98
Jhanwar, Mahabir Prasad 179

Kacker, Raghu 297
Kasper, Michael 215
Kaushal, Manish 262
Kim, Howon 227
Kumar, Abhishek 136

Liu, Zhe 227

Mangard, Stefan 215
Minier, Marine 50, 308

Phong, Le Trieu 1
Pliam, John O. 38

Richmond, Tania 286

Safavi-Naini, Reihaneh 179
Sanadhya, Somitra 136
Sarkar, Santanu 297
Sengupta, Indranil 262
Seo, Hwajeong 227
Sigl, Georg 215
Slamanig, Daniel 60
Stein, Oliver 215
Stöttinger, Marc 215

Thomas, Gaël 50
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