
Reciprocal Processes: A Stochastic Analysis
Approach

Sylvie Rœlly

Abstract Reciprocal processes, whose concept can be traced back to
E. Schrödinger, form a class of stochastic processes constructed as mixture of
bridges. They are Markov fields indexed by a time interval. We discuss here a new
unifying approach to characterize several types of reciprocal processes via duality
formulae on path spaces: The case of reciprocal processes with continuous paths
associated to Brownian diffusions and the case of pure jump reciprocal processes
associated to counting processes are treated. This chapter is based on joint works
with M. Thieullen, R. Murr, and C. Léonard.

1 Introduction and Historical Remarks

The theory of reciprocal processes evolved from an idea by Schrödinger. In [25],
he described the motion of a Brownian particle under constraints at initial and
final times as a stochastic variational problem and proposed that its solutions are
stochastic processes that have the same bridges as the Brownian motion. Bernstein
called them réciproques and pointed out that they are Markov fields indexed by time,
which allows to state probabilistic models based on a symmetric notion of past and
future: ces grandeurs deviennent stochastiquement parfaites! See [1].

Various aspects of reciprocal processes have been examined by several authors.
Many fundamental reciprocal properties were given by Jamison in a series of
articles [12–14], first in the context of Gaussian processes. Contributions to a
physical interpretation and to the development of a stochastic calculus adjusted to
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reciprocal diffusions have been made by Zambrini and various coauthors in their
interest of creating a Euclidean version of quantum mechanics (see [8, 27] and the
monograph [6]). Krener in [17] and then Clark in [7] exhibited reciprocal invariants
associated with classes of reciprocal diffusions.

This chapter reviews and unifies for the first time current results on characterizing
various types of reciprocal processes by duality formulae.

A first duality formula appeared under the Wiener measure as an analytical tool
in Malliavin calculus; see [2]. It is an integration by parts on the set of continuous
paths, which reflects the duality between a stochastic derivative operator and a
stochastic integral operator. In [24], the authors indeed characterize the Brownian
motion as the unique continuous process for which the Malliavin derivative and the
Skorohod integral are dual operators.

In the framework of jump processes, a characterization of the Poisson process as
the unique process for which a difference operator and a compensated stochastic
integral are in duality was first given by Slivnjak [26] and extended to Poisson
measures by Mecke [19].

We present here duality formulae as unifying tool to characterize classes of
reciprocal processes in following contexts:

• In the framework of Brownian diffusions, reviewing results of [22, 23]
• In the framework of pure jump processes, namely, counting processes, following

the recent studies of Murr [20]

2 Reciprocal Processes and Reciprocal Classes

We mainly work on the canonical càdlàg path space ˝ D D.Œ0; 1�;R/ or some
subset of it. It is endowed with the canonical �-algebra A; induced by the canonical
process X D .Xt/t2Œ0;1�.

For a time interval Œs; u� � Œ0; 1� one defines:

• XŒs;u� WD .Xt /t2Œs;u�

• AŒs;u� WD �.XŒs;u�/; internal story of the process between time s and time u

P.˝/ denotes the space of probability measures on ˝ .
For a probability measure P 2 P.˝/,

P01 WD P ı .X0; X1/
�1 2 P.R2/

denotes its endpoint marginal law.
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2.1 Definition and First Properties

Definition 1. The probability measure P 2 P.˝/ is reciprocal, or the law of a
reciprocal process, if for any s � u in Œ0; 1� and any event A 2 AŒ0;s�; B 2
AŒs;u�; C 2 AŒu;1�,

P.A \ B \ C j Xs; Xu/ D P.A \ C j Xs; Xu/P.B j Xs; Xu/P -a.e. (1)

| |

s u 10

| |
A B C

This property—which is time symmetric—makes explicit the conditional indepen-
dence under P of the future of u and the past of s with the events happened between
s and u, given the �-algebras at boundary times s and u.

The reciprocality can be expressed in several equivalent ways.

Theorem 1. Let P 2 P.˝/. Following assertions are equivalent:

(1) The probability measure P is reciprocal.
(1*) The reversed probability measure P � WD P ı .X1��/�1 is reciprocal.
(2) For any 0 � s � u � 1 and B 2 AŒs;u�

P.B j XŒ0;s�; XŒu;1�/ D P.B j Xs; Xu/: (2)

(3) For any 0 � v � r � s � u � 1; and A 2 AŒv;r�, B 2 AŒs;u�;

P.A \ B j XŒ0;v�; XŒr;s�; XŒu;1�/ D P.A j Xv; Xr/P.B j Xs; Xu/:

| | | |

sr uv 10

| |
A B

Proof. See, e.g., Theorem 2.3 in [18]. ut
The identity (2) points out that any reciprocal process is a Markov field

parametrized by the time interval [0,1]: To condition events between s and u,
knowing the future of u and past of s is equivalent to condition them knowing only
the �-algebras at both times s and u. This property is sometimes called two-side
Markov property. Therefore
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Proposition 1. Any Markov process is reciprocal but the inverse is false.

Proof. The first assertion was first done in [12] in a Gaussian framework.
Take P the law of a Markov process, 0 � s � u � 1 and A 2 AŒ0;s�; B 2 AŒs;u�,

and C 2 AŒu;1�. The following holds:

P.A \ B \ C / D EŒP.A \ B \ C j XŒs;u�/�

�D EŒP.A j Xs/1BP.C j Xu/�

D EŒP.A j Xs/P.B j Xs; Xu/P.C j Xu/�

�D EŒP.A j Xs/P.B j Xs; Xu/P.C j XŒ0;u�/�

D EŒP.A j Xs/P.B j Xs; Xu/1C �

�D EŒP.A j XŒs;1�/P.B j Xs; Xu/1C �

D EŒ1AP.B j Xs; Xu/1C �;

where the Markov property was used to prove equalities with *. Therefore, (2) holds
and P is reciprocal.

As a counterexample, take, e.g., the periodic process constructed in Sect. 3.1.4.
ut

Indeed a canonical method to construct reciprocal processes is to mix Markovian
bridges. Take P 2 P.˝/ the law of a Markov process whose bridges .P xy/x;y2R
can be constructed for all x; y 2 R as a regular version of the family of conditional
laws P.� j X0 D x; X1 D y/; x; y 2 R. (It is a difficult challenge in a general
non-Markov setting, but it is already done if P is a Lévy process, see [15, 21]
Proposition 3.1, or if P is a right process [11] or a Feller process, see the recent
paper [4].) One can now associate with P a class of reciprocal processes as follows.

Definition 2. The set of probability measures on ˝ obtained as mixture of bridges
of P 2 P.˝/,

Rc.P / WD fQ 2 P.˝/ W Q.�/ D
Z
R�R

P xy.�/ Q01.dxdy/g; (3)

is the so-called reciprocal class associated with P .

This concept was introduced by Jamison in [13] in the case of a Markov reference
process P whose transition kernels admit densities.

Note that, in spite of its name, a reciprocal class is not an equivalence class
because the relation is often not symmetric: The periodic process P per constructed
in Sect. 3.1.4 belongs to Rc.P / but P 62 Rc.P

per/ if P is not periodic.

Proposition 2. Any process in the reciprocal class Rc.P / is reciprocal and its
bridges coincide a.s. with those of P .
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Proof. Let Q 2 Rc.P / as in (3). Let us show that Q satisfies (2). Let 0 � s �
t � 1, A 2 AŒ0;s�; B 2 AŒs;u�, and C 2 AŒu;1�. Then

EQŒ1AQ.B j XŒ0;s�; XŒu;1�/1C � D Q.A \ B \ C / D
Z
R�R

P xy.A \ B \ C / �.dxdy/

XD
Z
R�R

EP xy Œ1AP.B j Xs; Xt /1C � �.dxdy/

D EQŒ1AP.B j Xs; Xt /1C �;

where the reciprocality of P was used at the marked equality. Thus Q.B j
XŒ0;s�; XŒt;1�/ only depends on .Xs; Xt/ and Q.B j XŒ0;s�; XŒt;1�/ D P.B j Xs; Xt /,
Q-a.e. which completes the proof. ut

2.2 Reciprocal Characteristics

Let us now introduce, in two important frameworks, functionals of the reference
process which are invariant on its reciprocal class. They indeed characterize the
reciprocal class, as we will see in Theorems 2 and 3.

2.2.1 Case of Brownian Diffusions

In this paragraph the path space is restricted to the set of continuous paths
˝c WD C.Œ0; 1�IR/. Consider as reference probability measure Pb 2 P.˝c/ a

Brownian diffusion with regular drift b, that is, the law of the SDE

dXt D dBt C b.t; Xt/ dt;

where B is a Brownian motion and b.t; x/ 2 C1;2.Œ0I 1� � RIR/.
The family of its bridges .P

xy

b /x;y2R can be constructed for all x; y 2 R as
mentioned in the preceding section. Since we are only interested in its reciprocal
class, the marginal at time 0 of Pb does not play any role, and, therefore, we do not
mention it.

Clark proved a conjecture of Krener, stating that the reciprocal class of Pb is, in
some sense, characterized by the time–space function

Fb.t; x/ WD @t b.t; x/ C 1

2
@x.b2 C @xb/.t; x/;

thus called reciprocal characteristics associated with Pb .
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Theorem 2. Let Pb and PQb be two Brownian diffusions with smooth drifts b and Qb.

Rc.Pb/ D Rc.PQb/ , Fb � FQb :

Proof. See [7] Theorem 1. ut
Example 1. 1. The reciprocal characteristics of a Wiener measure P0, law of a

Brownian motion with any initial condition, vanishes since b � 0 ) Fb � 0.
2. The reciprocal characteristics of the Ornstein–Uhlenbeck process with linear

time-independent drift b.x/ D ��x is the linear function x 7! �2x.
3. It is known that if the Brownian diffusion Pb admits a smooth transition density

pb , then its bridge P
xy

b between x and y can be constructed as a Brownian
diffusion with drift bxy given by

bxy.t; z/ D b.t; z/ C @z log pb.t; zI 1; y/; t < 1:

Let us compute Fbxy :

Fbxy .t; z/ � Fb.t; z/

D @t @z log pb.t; zI 1; y/ C @zb.t; z/ @z log pb.t; zI 1; y/ C b.t; z/ @2
z log pb.t; zI 1; y/

C�
@z log pb @2

z log pb

�
.t; zI 1; y/ C 1

2
@3

z log pb.t; zI 1; y/

D 0;

where we used the identity

@t pb.t; zI 1; y/ C @2
z pb.t; zI 1; y/ C b.t; z/@zpb.t; zI 1; y/ D 0:

It confirms the fact that Pb 2 Rc.P
xy

b / .

Remark 1. In the multidimensional case, when the path space is C.Œ0; 1�IRd /,
d > 1, one needs one more function to characterize the reciprocal class Rc.Pb/. It is
denoted by Gb and defined as an R

d˝d -valued function Gb.t; x/ D .G
i;j

b .t; x//i;j

as follows G
i;j

b WD @j bi � @i b
j ; see [7].

2.2.2 Case of Counting Processes

In this paragraph, let us now restrict the path space to the set of càdlàg step functions
with unit jumps on [0,1]. It can be described as follows:

˝j WD
(

! D x ı0 C
nX

iD1

ıti ; 0 < t1 < � � � < tn < 1; x 2 R; n 2 N

)
;
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Consider, as reference Markov probability measure P` 2 P.˝j /, the law of a
counting process with a regular uniformly bounded Markovian jump intensity `,
satisfying for all x 2 R; `.�; x/ 2 C1.Œ0I 1�IR/ and 0 < inft;x `.t; x/ �
supt;x `.t; x/ < C1.

Note that the definition of Rc.P`/ makes sense: On one side the family of bridges
Pxy

` can be constructed for all x; y such that y � x 2 N; on the other side, for any
Q 2 P.˝j /, its endpoint marginal law Q01 is concentrated on such configurations.
Murr identified a time–space functional �` of the intensity ` as characteristics of
the reciprocal class associated with P`.

Theorem 3. Let P` and P Q̀ be two counting processes with intensities ` and Q̀ as
below.

Rc.P`/ D Rc.P Q̀/ , �` � � Q̀; (4)

where �`.t; x/ WD @t log `.t; x/ C �
`.t; x C 1/ � `.t; x/

�
.

Proof. See [20] Theorem 6.58. ut
Example 2. 1. The standard Poisson process P WD P1 has constant jump rate—or

intensity—equal to 1 and initial deterministic condition equal to 0. Its reciprocal
characteristics vanishes since ` � 1 ) �` � 0.

2. All Poisson processes are in the same reciprocal class since, for any constant
jump rate � > 0, ` � � ) �` D �1 � 0.

3. For x; y 2 R with y �x 2 N, the bridge Pxy of P is the Markov counting process
starting at x with time–space-dependent intensity given by `xy.t; z/ D max.y�z;0/

1�t
,

for any t < 1.
One verifies, as in Example 1 (3), that �`xy D �1 D 0.

3 Characterization Via Duality Formulae

Our aim is now to show that each reciprocal class coincides—in the frameworks we
introduced below—with the set of random processes for which a perturbed duality
relation holds between the stochastic integration and some derivative operator on
the adequate path space.

3.1 Case of Brownian Diffusions

3.1.1 The Test Functions and the Operators

On ˝c , we define a set of smooth cylindrical functionals by:

S D f˚ W ˚ D '.Xt1 ; : : : ; Xtn/; ' 2 C1
b .RnIR/; n 2 N

�; 0 � t1 < � � � < tn � 1g:
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The derivation operator Dg in the direction g 2 L2.Œ0; 1�IR/ is defined on S by

Dg˚.!/ WD lim
"

1

"

�
˚.! C "

Z :

0
g.t/dt/ � ˚.!/

�
D

nX
j D1

Z tj

0
g.t/

@'

@xj
.!t1 ; : : : ; !tn / dt:

Dg˚ is the Malliavin derivative of ˚ in the direction
R :

0
g.t/dt , element of the

Cameron–Martin space. Furthermore,

Dg˚ D hg; D:˚iL2.Œ0;1�IR/ where Dt ˚ D
nX

j D1

@'

@xj

.Xt1; : : : ; Xtn/1Œ0;tj �.t/:

The integration operator under the canonical process, denoted by ıg, is defined as

ı.g/ WD
Z 1

0

g.t/ dXt :

It is always well defined if the test function g is simple, i.e. a linear combination of
indicator functions of time intervals.

A loop on Œ0; 1� is a function g with vanishing integral:
R 1

0 g.t/dt D 0, that is,
g 2 f1g? in L2.Œ0; 1�IR/.

3.1.2 Duality Formula Under the Wiener Measure
and Its Reciprocal Class

We are now able to present the duality between the operators D and ı under
all probability measures belonging to the reciprocal class of a Wiener measure.
We denote by P the standard Wiener measure, which charges only paths with initial
condition at 0.

Theorem 4. Let Q be a probability measure on ˝c such that EQ.jXt j/ < C1 for
all t 2 Œ0; 1�.

Qis a Wiener measure , 8˚ 2 S; EQ.Dg˚/ D EQ

�
˚ ı.g/

�
; 8g simple: (5)

Q 2 Rc.P/ , 8˚ 2 S; EQ.Dg˚/ D EQ

�
˚ ı.g/

�
; 8g simple loop. (6)

Proof.

• Sketch of
.5/): Using Girsanov formula,

EP0.Dg˚/ D EP0

�
lim
"!0

˚.� C "
R :

0
g.t/dt/ � ˚

"

�
D EP0 .˚ @"Z"j"D0/

with Z" WD exp."
R 1

0 g.t/dXt � "2

2

R 1

0 g.t/2dt ).
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•
.5/(: With adequate choice of ˚ and g, one can prove that the canonical process
Xt � X0 is a Q-martingale, as well as .Xt � X0/

2 � t . This enables to conclude
that Q is any Wiener measure. For details, see [24].

• First note that Q 2 Rc.P/ , Q D R
P

xy Q01.dx; dy/.
.6/): Take ˚.!/ D �0.!.0//�1.!.1// Q̊ .!/ in (5). Then

EP

�
�0 �1

Q̊ ı.g/
� D EP.Dg.�0 �1

Q̊ //

which implies that, for all smooth �0; �1,

EP

�
�0.X0/�1.X1/P. Q̊ ı.g/jX0; X1/

�

D EP

�
�0.X0/�1.X1/P.Dg

Q̊ jX0; X1/
�

C EP

�
�0.X0/�

0
1.X1/ Q̊ � Z 1

0

g.t/dt

) EPX0X1

� Q̊ ı.g/
�

D EPX0X1

�
Dg

Q̊ �
if

Z 1

0

g.t/dt D 0:

This identity holds for any mixture of Brownian bridges too.

•
.6/(: Qxy satisfies (6) too, which leads to identify it as the unique Gaussian process
with mean x C t.y �x/ and covariance s.1� t/, that is, Pxy . For details, see [22].

ut
Remark 2. 1. Equation (5) is an infinite-dimensional generalization of the one-

dimensional integration by parts formula, also called Stein’s formula, satisfied
by the standard Gaussian law:

Z
R

' 0.x/
e�x2=2

p
2�

dx D
Z
R

'.x/ x
e�x2=2

p
2�

dx:

Take g � 1 and ˚ D '.X1/ in (5).
2. Equation (5) remains true under the Wiener measure P, for random processes

g 2 L2.˝c � Œ0; 1�IR/ Skorohod integrable and for any general ˚ 2 D1;2,
closure of S under the norm k˚k2

1;2 WD R
.˚2 C R 1

0
jDt ˚ j2dt/dP: In such a

generality, (5) shows the well-known duality between the Malliavin derivative D

and the Skorohod integral ı under P; see, e.g., [2].
3. Since, for computing Dg , paths are not perturbed at time 0, it is clear that (5)

characterizes only the Brownian dynamics (Wiener measure), but not the initial
law of X0 under Q.

4. Since, for computing Dg for a loop g, paths are perturbed neither at time 0 nor
at time 1, the identity (6) characterizes only the dynamics of the bridges QX0X1 .
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3.1.3 Duality Formula Under the Reciprocal Class of Brownian Diffusions

We now investigate how the duality formula (6) is perturbed when the underlying
reference process admits a drift b (satisfying the same smoothness assumptions as
in Sect. 2.2.1). The transformed duality equation (7) we present below contains
an additional term of order 0 in ˚ , in which appears the reciprocal invariant Fb

associated with Pb .

Theorem 5. Let Q be a probability measure on ˝c such that, for all t 2 Œ0; 1�,

EQ

�
jXt j2 C R 1

0
F 2

b .t; Xt /dt
�

< C1. Then,

Q 2 Rc.Pb/ , 8˚ 2 S; 8g simple loop,

EQ.Dg˚/ D EQ

�
˚ ı.g/

� C EQ

�
˚

Z 1

0

g.r/

Z 1

r

Fb.t; Xt / dt dr
�
: (7)

ut
Proof. • Sketch of ): First, the bridges of Q coincide with those of Pb . Since Pxy

b

is absolutely continuous with respect to Pb on any time interval Œ0; 1 � "�; " > 0,
one can use the Girsanov density to prove that Pxy

b satisfies (7), and thus, by
linearity, Q satisfies (7) too.

• (: First, Qxy satisfies (7) for a.a. x; y. This allows to prove that the canonical
process is a Qxy-quasi-martingale. Therefore, by Rao’s theorem (see [9]), it
is a Qxy-semi-martingale. Its characteristics can be computed: The quadratic
variation is t and the bounded variation part is of the form t 7! R t

0
bx;y.s; Xs/ds.

One computes that Fbx;y D Fb . Thus Qxy D P
xy

b and Q 2 <c.Pb/. For more
details, see [22], Theorem 4.3. ut

3.1.4 Some Applications

We first illustrate the use of the identity (7) to identify a process as element of
some precise reciprocal class. Consider, as Markov reference process, the Ornstein–
Uhlenbeck process denoted by POU, introduced in Example 1 (2), whose associated
reciprocal characteristics is FOU.x/ D �2x. Consider now the periodic Ornstein–
Uhlenbeck process denoted by P

per
OU and solution of the following stochastic

differential equation with periodic boundary conditions on the time interval [0,1]:

dXt D dBt � �Xt dt ; X0 D X1: (8)

This process is Gaussian as the following representation shows:

Xt D
Z t

0

e��.t�s/

1 � e��
dBs C

Z 1

t

e��.1Ct�s/

1 � e��
dBs DW �.B/t : (9)
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But it is not Markov as the following representation shows:

Xt D X0 CBt �
Z t

0

�
�Xs � �

X0 � e��.1�s/Xs

sinh.�.1 � s//

�
ds; X0 � N

�
0;

coth.�=2/

2�

�
:

A natural question is then to investigate if it is reciprocal. In [3] the authors analysed
the form of its covariance kernel to deduce the reciprocality of P

per
OU. We proposed

in [22] an alternative proof based on (7), which allows to conclude directly that
P

per
OU 2 Rc.POU/: Thanks to the representation (9), one notes that the shifted process

X C"
R :

0
g.t/dt can also be represented as the transform by � of a shifted Brownian

motion, if g is a loop. It remains to use Girsanov theorem by computing

EP
per
OU

.Dg˚/ D EP
per
OU

�
lim
"!0

˚.� C "
R :

0 g.t/dt/ � ˚

"

�

to obtain that P
per
OU satisfies, for all ˚ 2 S and g simple loops,

EP
per
OU

.Dg˚/ D EP
per
OU

�
˚ ı.g/

� C EP
per
OU

�
˚

Z 1

0

g.r/

Z 1

r

�2Xt dt dr
�
:

Let us now present a generalization of the famous result stated by Kolmogorov in
[16]: A Brownian diffusion with values in R

d and time-homogeneous drift b is
reversible (i.e. there exists an initial distribution such that Pb D P

�
b ) if and only if

the function b is a gradient.
In the next Theorem, whose proof is detailed in [23] Theorem 5.4, we obtain the

same result under much weaker assumptions: We only require that there exists one
reversible law in Rc.Pb/ and we do not suppose that the drift is time-homogeneous.
Its proof is based on the d -dimensional duality formula characterizing the reciprocal
class Rc.Pb/.

Theorem 6. Let b be a d -dimensional smooth drift such that for any i; j 2
f1; : : : ; d g, the function

�
@j bi � @i b

j
�
.t; x/ is time-independent. Furthermore

suppose there exists Q 2 <c.Pb/ with finite entropy which is time-reversible. Then
the drift b is of gradient type, i.e.

9' W Œ0; 1� � R
d 7! R such that, for all t; b.t; �/ D �r'.t; �/:

Moreover, if Q is itself a Brownian diffusion with drift b, then b is time-independent
and

Q.�/ D 1

c

Z
Rd

Pb.�jX0 D x/ e�2'.x/ dx;

for some positive constant c.
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3.2 Case of Counting Processes

3.2.1 The Test Functions and the Operators

Any path ! in ˝j is characterized by its initial value x, the number of its jumps till
time 1, say n, and the times of its jumps, t1; : : : ; tn. We then define the i th jump-time
of a path by the functional:

Ti .!/ D Ti

0
@x ı0 C

nX
j D1

ıtj

1
A WD ti 1i�n C 1i>n:

We now define a set of smooth test functionals on ˝j by:

S D f˚ W ˚ D '
�
X0; T1; : : : ; Tn

�
; ' 2 C1

b .RnC1IR/; n 2 N
�g:

The derivation operator Dg in the direction g 2 L2.Œ0; 1�IR/ is based on the
perturbation of the jump-times and defined on S by:

Dg˚ WD lim
"

1

"

�
'

�
X0; T1 C "

Z T1

0

g.t/dt; : : : ; Tn C "

Z Tn

0

g.t/dt
� � ˚

�
:

It was introduced by Elliott and Tsoi in [10].

3.2.2 Duality Formula Under the Poisson Process and Its Reciprocal Class

We are now able to present the duality between D and an integration operator under
all probability measures in the reciprocal class of the standard Poisson process.
Recall the notations introduced in Example 2: P denotes the standard Poisson
process on [0,1] and P� denotes a Poisson process on [0,1] with intensity � and
any marginal law at time 0.

Theorem 7. Let Q be a probability measure on ˝j such that EQ.jX1�X0j/<C1.

Q D P� , 8˚ 2 S; EQ.Dg˚/ D EQ

�
˚

Z 1

0

g.s/.dXs � �ds/

�
; 8g simple

(10)

Q 2 <c.P/ , 8˚ 2 S; EQ.Dg˚/DEQ

�
˚

Z 1

0

g.s/.dXs�ds/

�
8g simple loop:

(11)



Reciprocal Processes: A Stochastic Analysis Approach 65

Proof. • Sketch of
.10/,. The main tool is Watanabe’s characterization: Q is a

Poisson process with intensity � on ˝j if and only if .Xt � X0 � �t/t is a
Q-martingale.

• Sketch of
.11/,. One fixes an initial value x and tries to identify the compensator

of Qx. Using (11) one shows that its compensator is absolutely continuous with
respect to Lebesgue measure, with Markov intensity of the form `x.t; Xt�/, and
that �`x � 0. Thanks Theorem 3 one can conclude.
For details, see [20] Theorem 6.39. ut

Remark 3. 1. Equation (10) is an infinite-dimensional generalization of the formula
characterizing the Poisson distributionP˛ onN, known as Chen’s lemma, see [5]:
Let Z a real-valued random variable.

Z � P˛ , 8' smooth, E.'.Z/Z/ D ˛ E.'.Z C 1//:

2. For loops g, the right side of (11) indeed reduces to EQ

�
˚

R 1

0
g.s/dXs

�
.

Therefore one immediately recovers that all Poisson processes with any intensity
are in a unique reciprocal class, the reciprocal class of the standard Poisson
process P. In particular, the law of bridges of Poisson processes depends uniquely
on their boundary conditions but does not depend of their original intensities.

3.2.3 Duality Formula Under the Reciprocal Class of a Counting Process

We now investigate how the duality formula (11) is perturbed when the underlying
reference process P` admits a jump intensity ` which is no more constant, but
smooth enough, as in Theorem 3. Similar to Sect. 3.1.3, the transformed duality
equation (12) presented below contains an additional term of order 0 in ˚ , in which
appears the reciprocal invariant �` associated with P`.

Theorem 8. Let Q be a probability measure on ˝j such that
EQ.jX1 � X0j/ < C1.

Q 2 Rc.P`/ , 8˚ 2 S; 8g simple loop,

EQ.Dg˚/ D EQ

�
˚

Z 1

0
g.s/.dXs�ds/

�
CEQ

�
˚

Z 1

0
g.s/

Z 1

s
�l .r; Xr� /dXr ds

�
:

(12)

Such a duality formula can be used to several aims. One application is, e.g., the
investigation of the time reversal of reciprocal processes belonging to the class
Rc.P`/; see [20] for details.

The extension of these results to pure jump processes with general jumps is in
preparation.
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