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Abstract We give an overview of the recent asymptotic results on the geometry
of excursion sets of stationary random fields. Namely, we cover a number of
limit theorems of central type for the volume of excursions of stationary (quasi-,
positively or negatively) associated random fields with stochastically continuous
realizations for a fixed excursion level. This class includes in particular Gaussian,
Poisson shot noise, certain infinitely divisible, ˛-stable, and max-stable random
fields satisfying some extra dependence conditions. Functional limit theorems (with
the excursion level being an argument of the limiting Gaussian process) are reviewed
as well. For stationary isotropic C1-smooth Gaussian random fields similar results
are available also for the surface area of the excursion set. Statistical tests of
Gaussianity of a random field which are of importance to real data analysis as well
as results for an increasing excursion level round up the paper.

1 Introduction

Geometric characteristics such as Minkowski functionals (or intrinsic volumes,
curvature measures, etc.) of excursions of random fields are widely used for data
analysis purposes in medicine (brain fMRI analysis; see, e.g., [5, 55, 60, 62]),
physics and cosmology (microwave background radiation analysis; see, e.g., [41]
and references therein), and materials science (quantification of porous media; see,
e.g., [42, 61]), to name just a few. Minkowski functionals include the volume, the
surface area, and the Euler–Poincaré characteristic (reflecting porosity) of a set with
a sufficiently regular boundary.
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Among the possible abundance of random field models, Gaussian random fields
are best studied due to their analytic tractability. A number of results starting with
explicit calculation of the moments of Minkowski functionals are available for
them since the mid-1970s. We briefly review these results in Sect. 4. However,
our attention is focused on the asymptotic arguments for (mainly non-Gaussian)
stationary random fields. There has been a recent breakthrough in this domain
starting with the paper [15] where a central limit theorem (CLT) for the volume
of excursions of a large class of quasi-associated random fields was proved. We also
cover a number of hard-to-find results from recent preprints and PhD theses.

The paper is organized as follows: After introducing some basic facts on
excursions and dependence structure of stationary random fields in Sect. 2, we
briefly review the limit theorems for excursions of stationary Gaussian processes
(d D 1) in the next section. However, our focus is on the recent results in the
multidimensional case d > 1 which is considered in Sects. 5 and 6. Thus, Sect. 5
gives (uni- and multivariate as well as functional) central limit theorems for the
volume of excursion sets of stationary (in general, non-Gaussian) random fields
over fixed, variable, or increasing excursion levels. In Sect. 6, a similar scope of
results is covered for the surface area of the boundary of excursion sets of stationary
(but possibly anisotropic) Gaussian random fields in different functional spaces. The
paper concludes with a number of open problems.

2 Preliminaries

Fix a probability space .˝;F;P/. Let X D fX.t; !/; t 2 R
d ; ! 2 ˝g be a

stationary (in the strict sense) real-valued measurable (in .t; !/ 2 R
d �˝) random

field. Later on we suppress ! in the notation. For integrable X we assume X to be
centered (i.e., EX.o/ D 0 where o 2 R

d is the origin point). If the second moment
of X.o/ exists, then we denote by C.t/ D E .X.o/X.t//, t 2 R

d the covariance
function of X .

Let k � k2 be the Euclidean norm in R
d and dist2 the Euclidean distance: for two

sets A;B � R
d , we put dist2.A;B/ D inffkx � yk2 W x 2 A; y 2 Bg. Denote by

k � k1 the supremum norm in R
d and by dist1 the corresponding distance function.

Let
d�! mean convergence in distribution. Denote by Ac the complement and by

int.A/ the interior of a set A in the corresponding ambient space which will be clear
from the context. Let card.A/ be the cardinality of a finite set A. Denote by Br.x/
the closed Euclidean ball with center in x 2 R

d and radius r > 0. Let Hk.�/ be
the k-dimensional Hausdorff measure in R

d , 0 � k � d . In the sequel, we use the
notation �j D Hj .B1.o//, j D 0; : : : ; d .

To state limit theorems, one has to specify the way of expansion of windows
Wn � T , where the random field X D fX.t/; t 2 T g is observed, to the whole
index space T D R

d or Zd . A sequence of compact Borel sets .Wn/n2N is called a
Van Hove sequence (VH) if Wn " R

d with
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lim
n!1Vd .Wn/ D 1 and lim

n!1
Vd .@Wn ˚ Br.o//

Vd .Wn/
D 0; r > 0:

A sequence of finite subsets Un � Z
d , n 2 N is called regular growing if

card.Un/ ! 1 and card.ıUn/=card.Un/ ! 0 as n ! 1

where ıUn D fj 2 Z
d n Un W dist1.j; Un/ D 1g is the discrete boundary of Un

in Z
d .

2.1 Excursion Sets and Their Intrinsic Volumes

The excursion set of X at level u 2 R in the compact observation window W � R
d

is given by Au.X;W / D ft 2 W W X.t/ � ug. The sojourn set under the level u is
Su.X;W / D ft 2 W W X.t/ � ug, respectively.

Due to measurability ofX , Au.X;W / and Su.X;W / are random Borel sets. IfX
is a.s. upper (lower) semicontinuous, then Au.X;W / (Su.X;W /, respectively) is a
random closed set (cf. [45, Sect. 5.2.1]).

A popular way to describe the geometry of excursion sets is via their intrinsic
volumes Vj , j D 0; : : : ; d . They can be introduced for various families of sets
such as convex and polyconvex sets [54, Chap. 4], sets of positive reach, and
their finite unions [22], unions of basic complexes [4, Chap. 6]. One possibility
to define Vj .K/, j D 0; : : : ; d for a set K belonging to the corresponding family
is given by the Steiner formula (see, e.g., [53, Sect. 13.3]) as the coefficients in the
polynomial expansion of the volume of the tubular neighborhood Kr D fx 2 R

d W
dist2.x;K/ � rg of K with respect to the radius r > 0 of this neighborhood:

Hd .Kr/ D
dX

jD0
�d�j Vj .K/rd�j

for admissible r > 0 (for convex K, these are all positive r). The geometric
interpretation of intrinsic volumes Vj .K/, j D 1; : : : ; d�2 can be given in terms of
integrals of elementary symmetric polynomials of principal curvatures for convex
setsK with C2-smooth boundary, cf. [53, Sects. 13.5–6]. Without going into details
here, let us discuss the meaning of some of Vj .Au.X;W //, j D 0; : : : ; d in several
dimensions.

For d D 1, V1 .Au.X;W // is the length of excursion intervals and
V0 .Au.X;W // is the number of upcrossings of level u by the random process
X within W .

For dimensions d � 2, Vd .Au.X;W // is always the volume (i.e., the
Lebesgue measure) of Au.X;W / and Vd�1 .Au.X;W // is half the surface area, i.e.,
1=2 � Hd�1 .@Au.X;W //. The Euler characteristic V0 .Au.X;W // is a topological
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measure of “porosity” of excursion set Au.X;W /. For “basic” sets A (e.g.,
nonempty convex sets or sets of positive reach), we set V0.A/ D 1. Then V0 is
defined for unions of basic sets by additivity. One can show that for d D 2, it holds

V0.A/ D cardfconnected components of Ag � cardfholes of Ag:

The existence of Vj .Au.X;W //, j D d; d�1, is clear sinceAu.X;W / is a Borel
set whose Lebesgue and Hausdorff measures are well defined. Intrinsic volumes
Vj of lower orders j D 0; : : : ; d � 2 are well defined, e.g., for excursion sets of
sufficiently smooth (at least C2) deterministic functions (cf. [4, Theorem 6.2.2])
and Gaussian random fields (cf. [4, Theorem 11.3.3]) satisfying some additional
conditions.

2.2 Dependence Concepts for Random Fields

To prove limit theorems for a random field X , some conditions have to be imposed
on the structure of the dependence ofX . Mixing conditions that are usually required
(cf., e.g., [13, 20]) are however rather difficult to check for a particular random
field under consideration. For this practical reason, we follow the books [16], [58,
Chap. 10] and introduce association as well as related dependence concepts.

A random field X D ˚
X.t/; t 2 R

d
�

is called associated (A) if

cov .f .XI / ; g .XI // � 0

for any finite subset I � R
d , and for any bounded coordinatewise non-decreasing

functions f W Rcard.I / ! R, g W Rcard.I / ! R where XI D fX.t/; t 2 I g.
A random field X D ˚

X.t/; t 2 R
d
�

is called positively (PA) or negatively
(NA) associated if

cov .f .XI / ; g .XJ // � 0 .� 0; resp./

for all finite disjoint subsets I; J � R
d , and for any bounded coordinatewise non-

decreasing functions f W Rcard.I / ! R, g W Rcard.J / ! R. It is clear that ifX 2 A,
then X 2 PA.

Subclasses of A (PA; NA)-fields are certain infinitely divisible (e.g., max-stable
and ˛-stable) random fields. In particular, a Gaussian random field with nonnegative
covariance function is associated.

A random field X D ˚
X.t/; t 2 R

d
�

with finite second moments is called quasi-
associated (QA) if

jcov .f .XI / ; g .XJ //j �
X

i2I

X

j2J
Lipi .f /Lipj .g/ jcov .X .i/ ; X .j //j
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for all finite disjoint subsets I; J � R
d , and for any Lipschitz functions f W

R
card.I / ! R, g W R

card.J / ! R where Lipi .f / is the Lipschitz constant of
function f for coordinate i . It is known that if square-integrable X 2 A.PA;NA/,
then X 2 QA, cf. [16, Theorem 5.3].

A real-valued random field X D fX .t/ ; t 2 R
d g is called .BL; �/-dependent if

there exists a nonincreasing sequence � D f�rgr2RC
0

, �r # 0 as r ! 1 such that for

any finite disjoint sets I; J � R
d with dist1 .I; J / D r 2 R

C
0 and any bounded

Lipschitz functions f W Rcard.I / ! R, g W Rcard.J / ! R, one has

jcov .f .XI / ; g .XJ //j �
X

i2I

X

j2J
Lipi .f /Lipj .g/ jcov .X .i/ ; X .j //j �r :

It is often possible to choose � as the Cox–Grimmett coefficient

�r D sup
y2Rd

Z

Rd nB1
r .y/

jcov .X .y/ ;X .t//j dt

where B1
r .y/ D fx 2 R

d W kx � yk1 � rg. It can be easily seen that if X 2
QA and its covariance function is absolutely integrable on R

d , then X is .BL; �/
dependent.

3 Excursions of Stationary Gaussian Processes

Excursions of stochastic processes is a popular research topic in probability theory
since many years; see, e.g., [10] and references in [27]. The vast literature on
this subject for different classes of processes such as Lévy, diffusion, stable, and
Gaussian ones can be hardly covered by one review. For this reason, we concentrate
on the excursions of (mainly stationary) Gaussian processes here.

Let X D fX.t/; t � 0g be a centered real-valued Gaussian process. If X is
a polynomial of degree n with iid N.0; 1/-distributed coefficients, then the mean
number of real roots of the equation X.t/ D 0 was first obtained by M. Kac
[28]. It initiated a substantial amount of papers on the roots of random algebraic
polynomials; see [12] for a review. For C1-smooth stationary Gaussian processes
X , expectation of the number of upcrossings of a level u by X in time interval Œ0; 1�
has been studied in [14, 50, 51], etc. Higher-order factorial moments are considered
in [17]; see also references therein and [7, 8]. For reviews (also including results on
non-Gaussian stationary processes), see [33, Sects. 7.2 and 7.3] and [6, Chap. 3].
In [1] and [2], the notion of the number of upcrossings of level u for random
processes has been generalized to the Euler–Poincaré characteristic of excursion
sets of random fields.

The first proof of a central limit theorem for the number of zeros of a stationary
Gaussian process within an increasing time interval was given in [40]. Cuzick
[18] refined the assumptions given in [40] and proved a central limit theorem
for the number of zeros NX.T / D 2V0.A0.X I Œ0; T �// of a centered separable
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stationary Gaussian process X D fX.t/; t � 0g in the time interval Œ0; T �
as well as analogous results for integrals

R T
0
g
�
X.t/

�
dt as T ! 1. He used

approximations by m-dependent random processes with spectral representation as
a method borrowed from [40]. In more detail, let C.t/ be twice differentiable
with C.0/ D 1, C 00.0/ D ��2, and variogram � of X 0 be given by �.h/ D
C 00.h/ � C 00.0/ D 1=2E.X 0.h/ �X 0.0//, h � 0.

Theorem 1 ([18]). If C , C 00 are square integrable on RC,
R "
0
�.t/=t dt < 1 for

some " > 0 and

VarNX.T /=T ! �2 > 0 as T ! C1 (1)

then

T �1=2 .NX.T / � ENX.T //
d�! N.0; �2/ as T ! C1

where

�2 D ��1
0

@�1=22 C
1Z

0

 
E .jX 0.0/X 0.t/jjX.0/ D X.t/ D 0/

p
1�C2.t/

�.E jX 0.0/j/2
!
dt

1

A :

Condition (1) is difficult to check and is substituted in [18, Lemma 5] by a more
tractable sufficient condition involving C and �2. Piterbarg [48] managed to prove
the above theorem by substituting condition (1) with

1Z

0

t
�jC.t/j C jC 0.t/j C jC 00.t/j� dt < 1:

He approximates the point process of upcrossings of X of level u by a strongly
mixing point process.

Theorem 2 ([18]). Let X be a stationary Gaussian process with covariance func-
tion C being integrable on RC. For any measurable function g W R ! R such that
Eg2.X.0// < 1 and g.x/ � g.0/ is not odd, it holds

T �1=2
�Z T

0

g
�
X.t/

�
dt � TEg

�
X.0/

�� d�! N.0; �2/ as T ! C1 (2)

where �2 > 0.

It is clear that the choice g.x/ D 1fx 2 R W x � ug for any u 2 R leads to the
central limit theorem for the length V1.Au.X I Œ0; T �// of excursion intervals of X
in Œ0; T �.
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Elizarov [21] first proved a functional central limit theorem for the sojourn
times of the stationary Gaussian process under the level u, in our terms, for
V1.Su.X I Œ0; T �// if excursion level u is allowed to vary within R. Additionally,
an analogous result for local times

lim
"!C0

1

2"
.V1.SuC".X I Œ0; T �// � V1.Su�".X I Œ0; T �///

was given. Both results were proved in the functional space C Œ0; 1� after the
substitution u 7! f .x/, x 2 Œ0; 1� where f 2 C Œ0; 1� is a monotonously increasing
function with f .0/ D �1, f .1/ D 1.

Belyaev and Nosko [9] proved limit theorems for V1.Au.X I Œ0; T �//, T ! 1
as u ! 1 for stationary ergodic processes X satisfying a number of additional
(quite technical) assumptions. In particular, these assumptions are satisfied if X
is an ergodic Gaussian stationary process with twice continuously differentiable
covariance function such that

ˇ̌
C 00.t/ � C 00.0/

ˇ̌ � a=j log jt jj1C"; t # 0

for some constants a; " > 0.
Slud [57] gave a multiple Wiener- Itô representation for the number of crossings

of a C1-function  by X . In [31], methods of [40] and [18] are generalized to the
case of functionals ofX ,X 0, andX 00. CLTs for the number of crossings of a smooth
curve  by a Gaussian process X as well as for the number of specular points of
X (if X is a Gaussian process in time and space) are given in [32]. For a review
of results on moments and limit theorems for different characteristics of stationary
Gaussian processes, see [30]. In [27], CLTs for the multivariate nonlinear weighted
functionals (similar to those in (2)) of Gaussian stationary processes with multiple
singularities in their spectra, having a covariance function belonging to a certain
parametric family, are proved.

4 Moments of Vj .Au.X; W // for Gaussian Random Fields

We briefly review the state of the art for EVj .Au.X;W // of Gaussian random fields
X . For recent extended surveys, see the books [4] and [6]. For stationary (isotropic)
Gaussian fields X , stratified C2-smooth compact manifolds W � R

d , and any u 2
R, formulae for EVj .Au.X;W //, j D 0; : : : ; d are given in [4, Theorems 13.2.1
and 13.4.1].

Apart from obtaining exact (or asymptotic as u ! 1) formulae for
EVj .Au.X;W //, j D 0; : : : ; d , the possibility of an estimate

ˇ̌
ˇ̌P
�

sup
t2W

X.t/ > u

�
� EV0 .Au.X;W //

ˇ̌
ˇ̌ � g.u/ (3)
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(the so-called Euler–Poincaré heuristic) with g.u/ D o.1/ as u ! 1 is of special
interest. It has been proved in [4, Theorem 14.3.3] with g.u/ D c0 expf�u2.1 C
˛/=2g for some positive constants c0 and ˛ if X is a (non)stationary Gaussian
random field with constant variance on a stratified manifold W as u ! 1. Lower
and upper bounds for the density of supremum of stationary Gaussian random fields
X (which imply relation (3)) for any u 2 R are given in [6, Theorem 8.4]. Similar
bounds are proven in [6, Theorem 8.10] for nonstationary Gaussian random fields
X with a unique point of maximum of variance in int.W / as u ! 1.

In [59], asymptotic behavior of EVj
�
Au.X; Œa; b�

d /
�
, j D 0; d � 1; d of

nonstationary sufficiently smooth Gaussian random fields is studied as the excursion
level u ! 1. The variance of these fields is assumed to attain a global maximum
at a vertex of Œa; b�d . It is shown that the heuristic (3) still holds true.

An interesting rather general formula for the mean surface area of Gaussian
excursions is proven in [24]. Let W be a compact subset of Rd with a nonempty
interior and a finite Hausdorff measure of the boundary. LetX D fX.t/; t 2 W g be
a Gaussian random field with mean 	.t/ D EX.t/ and variance �2.t/ D VarX.t/.
For an arbitrary (but fixed) excursion level u 2 R, introduce the zero set r�1

X .0/

of the gradient of the normalized field .X � u/=� by r�1
X .0/ D ft 2 W W

r ..X.t/ � u/=�.t// D 0g:
Theorem 3 ([24]). Assume that X 2 C1.W / a.s., EVd�1

�r�1
X .0/

�
< 1 and

�.t/ > 0 for all t 2 W . Then

EVd�1 .@Au.X;W // D 1

2
p
2�

Z

W
exp

"
� .	.t/ � u/2

2�2.t/

#
E

����r ..X.t/ � u/=�.t//

����
2

dt:

Asymptotic formulae for EVj .Au.X;W //, j D 0; : : : ; d as u ! 1 of
three subclasses of stable random fields (subgaussian, harmonizable, concatenated-
harmonizable ones) are given in [3].

5 Volume of Excursion Sets of Stationary Random Fields

The first limit theorems of central type for the volume of excursion sets (over a
fixed level u) of stationary isotropic Gaussian random fields were proved in [26,
Chap. 2]. There, the case of short- and long-range dependence (Theorem 2.2.4 and
Example 2.2.1, Theorem 2.4.6) was considered. The CLT followed from a general
Berry–Esséen-type bound for the distribution function of properly normed integral
functionals

Z

Br .o/

G
�
X.t/

�
dt (4)
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as r ! 1 where G W R ! R is a function such that EG2.X.o// < 1 satisfying
some additional assumptions, cf. also [36]. To get the volume Vd .Au .X;Br.o///

out of (4), set G.x/ D 1.x � u/. The isotropy of X was essential as one used
expansions with respect to the basis of Chebyshev–Hermite polynomials in the
proofs. The cases of

G.x/ D 1.jxj � u/; maxf0; xg; jxj

as well as of G depending on a parameter and of weighted integrals in (4) are
considered as well.

In a remark [26, p. 81], it was noticed that similar CLTs can be expected for
non-Gaussian mixing random fields. The aim of this section is to review the recent
advances in proving such CLTs for various classes of stationary random fields that
include also the (not necessarily isotropic) Gaussian case.

For instance, random fields with singularities of their spectral densities are
considered in [37]. In Sect. 3.2 of that book, noncentral limit theorems for the
volume of excursions of stationary isotropic Gamma-correlated and 
2-random
fields over a radial surface (i.e., the level u is not constant anymore, but a function of
ktk2, where t 2 R

d is the integration variable in (4)) are proved. (Non)central limit
theorems for functionals (4) of stationary isotropic vector-valued Gaussian random
fields are given in the recent preprint [34]. There, the case of long- and short-range
dependence is considered as well as applications to F - and t -distributed random
fields.

The asymptotic behavior of tail probabilities

P
�Z

W

eX.t/ dt > x

�
; x ! 1

for a homogeneous smooth Gaussian random field X on a compact W � R
d is

considered in [38]; see [39] for further extensions.

5.1 Limit Theorems for a Fixed Excursion Level

The main result (which we call a methatheorem) can be formulated as follows:

Theorem 4 (Methatheorem). Let X be a strictly stationary random field satis-
fying some additional conditions and u 2 R fixed. Then, for any sequence of
VH -growing sets Wn � R

d , one has

Vd .Au .X;Wn// � P.X.o/ � u/ � Vd .Wn/p
Vd .Wn/

d�! N
�
0; �2.u/

�
(5)

as n ! 1. Here
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�2.u/ D
Z

Rd

cov .1fX .o/ � ug; 1fX .t/ � ug/ dt: (6)

Depending on the class of random fields, these additional conditions will vary. First
we consider the family of square-integrable random fields.

5.1.1 Quasi-Associated Random Fields

Theorem 5 ([15]). Let X D fX .t/ ; t 2 R
d g 2 QA be a stationary square-

integrable random field with a continuous covariance function C such that jC.t/j D
O
�ktk�˛

2

�
for some ˛ > 3d as ktk2 ! 1. Let X.o/ have a bounded density. Then

�2.u/ 2 .0;1/ and Theorem 4 hold true.

Let us give an idea of the proof. Introduce the random field Z D fZ.j /; j 2
Z
d g by

Z.j / D
Z

jCŒ0;1�d
1
˚
X.t/ � u

�
dt � �.u/; j 2 Z

d : (7)

Here �.u/ D P
�
X.o/ > u

�
is the tail distribution function of X.o/. It is clear that

the sum of Z.j / over indices j 2 Wn \ Z
d approximates the numerator in (5).

One has to show that Z can be approximated by a sequence of .BL; �/-dependent
stationary centered square-integrable random fields Z� , � # 0, on Z

d . The proof
finishes by applying the following CLT to Z� for each � > 0.

Theorem 6 ([16], Theorem 3.1.12). Let Z D fZ.j /; j 2 Z
d g be a .BL; �/-

dependent strictly stationary centered square-integrable random field. Then, for any
sequence of regularly growing sets Un � Z

d , one has

S .Un/ =
p

card .Un/
d�! N

�
0; �2

�

as n ! 1, with

�2 D
X

j2Zd
cov .Z .o/ ;Z .j // :

We give two examples of random fields satisfying Theorem 5.

Example 1 ([15]). Let X D fX.t/; t 2 R
d g be a stationary shot noise random

field given by X.t/ D P
i2N �i'.t � xi / where ˘� D fxig is a homogeneous

Poisson point process in R
d with intensity � 2 .0;1/ and f�ig is a family of

i.i.d. nonnegative random variables with E �2i < 1 and characteristic function
'� . Assume that ˘� and f�ig are independent. Moreover, let ' W R

d ! RC
be a bounded and uniformly continuous Borel function with '.t/ � g0.ktk2/ D
O
�ktk�˛

2

�
as ktk2 ! 1 for a function g0 W RC ! RC, ˛ > 3d , and
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Z

Rd

ˇ̌
ˇ̌ exp

�
�

Z

Rd

�
'�.s'.t// � 1� dt

	 ˇ̌
ˇ̌ ds < 1:

Then Theorem 5 holds true.

Example 2 ([15]). Consider a stationary Gaussian random field X D fX .t/ ; t 2
R
d g with a continuous covariance function C.�/ such that jC.t/j D O

�ktk�˛
2

�
for

some ˛ > d as ktk2 ! 1. Let X .o/ � N
�
a; 
2

�
. Then, Theorem 5 holds true

with

�2.u/ D 1

2�

Z

Rd

Z �.t/

0

1p
1 � s2 e

� .u�a/2


2.1Cs/ ds dt;

where �.t/ D corr.X.o/;X.t//: In particular, for u D a one has

�2.a/ D 1

2�

Z

Rd

arcsin .�.t// dt:

5.1.2 PA- or NA-Random Fields

What happens if the field X does not have the finite second moment? In this case,
another set of conditions for our methatheorem to hold was proven in [29, Theorem
3.59].

Theorem 7. Let X D fX.t/; t 2 R
d g 2 PA.NA/ be stochastically continuous

satisfying the following properties:

1. The asymptotic variance �2.u/ 2 .0;1/ (cf. its definition in (6)),
2. P .X.o/ D u/ D 0 for the chosen level u 2 R.

Then Theorem 4 holds.

The idea of the proof is first to show that the random field Z D fZ.j /; j 2 Z
d g

defined in (7) is PA (NA). Second, use [16, Theorem 1.5.17] to prove that Z is
.BL; �/–dependent. Then apply Theorem 6 to Z.

A number of important classes of random fields satisfy Theorem 7. For instance,
stationary infinitely divisible random fields X D fX.t/; t 2 R

d g with spectral
representation

X.t/ D
Z

E

ft .x/�.dx/; t 2 R
d ;

where � is a centered independently scattered infinitely divisible random measure
on space E and ft W E ! RC are �-integrable kernels, are associated, and
hence PA by [16, Chap. 1, Theorem 3.27]. The finite susceptibility condition
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�2.u/ 2 .0;1/ can be verified by [29, Lemma 3.71]. Further examples of random
fields satisfying Theorem 7 are stable random fields which we consider in more
detail following [29, Sect. 3.5.3].

Max-Stable Random Fields

Let X D ˚
X.t/; t 2 R

d
�

be a stationary max-stable random field with spectral
representation

X.t/ D max
i2N �ift .yi /; t 2 R

d ;

where ft W E ! RC is a measurable function defined on the measurable space
.E;	/ for all t 2 R

d with

Z

E

ft .y/	.dy/ D 1; t 2 R
d ;

and f.�i ; yi /gi2N is the Poisson point process on .0;1/�E with intensity measure
��2d� � 	.dy/. It is known that all max-stable distributions are associated and
hence PA by [49, Proposition 5.5.29]. The field X is stochastically continuous if
kfs � ftkL1 ! 0 as s ! t (cf. [23, Lemma 2]). Condition �2.u/ 2 .0;1/ is
satisfied if

Z

Rd

Z

E

minff0.y/; ft .y/g	.dy/ dt < 1:

˛-Stable Random Fields

Let X D ˚
X.t/; t 2 R

d
�

be a stationary ˛-stable random field (˛ 2 .0; 2/, for
simplicity ˛ ¤ 1) with spectral representation

X.t/ D
Z

E

ft .x/�.dx/; t 2 R
d ;

where � is a centered independently scattered ˛-stable random measure on space
E with control measure m and skewness intensity ˇ W E ! Œ�1; 1�, ft W E ! RC
is a measurable function on .E;m/ for all t 2 R

d . By [52, Proposition 3.5.1], X
is stochastically continuous if

R
E

jfs.x/ � ft .x/j˛ m.dx/ ! 0 as s ! t for any
t 2 R

d . Condition �2.u/ 2 .0;1/ is satisfied if

Z

Rd

�Z

E

minfjf0.x/j˛; jft .x/j˛gm.dx/
�1=.1C˛/

dt < 1:
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5.2 A Multivariate Central Limit Theorem

If a finite number of excursion levels uk 2 R, k D 1; : : : ; r is considered
simultaneously, a multivariate analogue of Theorem 4 can be proven. Introduce the
notation

Su.Wn/ D �
Vd
�
Au1 .X;Wn/

�
; : : : ; Vd

�
Aur .X;Wn/

��>
; �.u/ D .�.u1/; : : : ; �.ur //

> :

Theorem 8 ([15,29]). LetX be the above random field satisfying Theorem 4. Then,
for any sequence of VH -growing sets Wn � R

d , one has

Vd .Wn/
�1=2 .Su.Wn/ � �.u/ Vd .Wn//

d! N.0;˙.u//

as n ! 1. Here, ˙.u/ D .�lm.u//rl;mD1 with

�lm.u/ D
Z

Rd

cov .1fX .0/ � ulg; 1fX .t/ � umg/ dt:

If X is Gaussian as in Example 2, we have

�lm.u/

D 1

2�

Z

Rd

Z �.t/

0

1p
1� s2

exp

�
� .ul � a/2 � 2r.ul � a/.um � a/C .um � a/2

2
2.1� s2/

	
ds dt:

However, the explicit computation of the elements of matrix ˙ for the majority
of fields X (except for Gaussianity) seems to be a very complex task. In order to
overcome this difficulty in statistical applications of the methatheorem to testing,
the matrix ˙ can be (weakly) consistently estimated from one observation of a
stationary random field X ; see [47], [58, Sect. 9.8.3] and references therein.

Statistical Version of the CLT and Tests

Let X be a random field satisfying Theorem 4, uk 2 R, k D 1; : : : ; r , and .Wn/n2N
be a sequence of VH -growing sets. Let OCn D . Ocnlm/rl;mD1 be a weakly consistent
estimator for the nondegenerate asymptotic covariance matrix ˙.u/, i.e., for any
l; m D 1; : : : ; r

Ocnlm P! �lm.u/ as n ! 1:
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Then

OC�1=2
n Vd .Wn/

�1=2 .Su.Wn/ � �.u/ Vd .Wn//
d! N.0; I /: (8)

Based on the latter relation, an asymptotic test for the following hypotheses can be
constructed:
H0 W X is a random field satisfying Theorem 4 with tail distribution function �.�/
vs. H1 W negation of H0. As a test statistic, we use

Tn D Vd .Wn/
�1 .Su.Wn/ � �.u/ Vd .Wn//

> OC�1
n .Su.Wn/ � �.u/ Vd .Wn//

which is asymptotically 
2r distributed by continuous mapping theorem and relation

(8): Tn
d�! 
2r as n ! 1. Hence, reject the null hypothesis at a confidence level

1 � � if Tn > 
2r;1�� where 
2r;1�� is the .1 � �/-quantile of 
2r -law.

5.3 Functional Limit Theorems

A natural generalization of multivariate CLTs is a functional CLT where the
excursion level u 2 R is treated as a variable, which also appears as a (“time”) index
in the limiting Gaussian process. In order to state the main results, introduce the
Skorokhod spaceD.R/ of càdlàg functions on R endowed with the usual Skorokhod
topology, cf. [11, Sect. 12]. Denote by ) the weak convergence in D.R/.

Define the stochastic processes Yn D fYn.u/; u 2 Rg by

Yn.u/ D 1

nd=2

�
Vd
�
Au.X; Œ0; n�

d /
� � nd�.u/� ; u 2 R: (9)

Introduce the following condition:

.?/ For any subset T D ft1; : : : ; tkg � R
d and its partition T D T1[T2, there exist

some constants c.T /; � > 0 such that

cov

0

@
Y

ti2T1
�a;b

�
X.ti /

�
;
Y

tj2T2
�a;b

�
X.tj /

�
1

A � c.T / .1Cdist1.T1; T2//�.3dC�/ ;

where �a;b.x/ D 1.a < x � b/ � P.a < X.o/ � b/ for any real numbers
a < b.

The following functional CLT is proven in [43, Theorem 1 and Lemma 1].

Theorem 9. Let X D fX.t/; t 2 R
d g be a real-valued stationary random field

with a.s. continuous sample paths and a bounded density of the distribution ofX.o/.
Let condition .?/ and Theorem 4 be satisfied. Then Yn ) Y as n ! 1 where
Y D fY.u/; u 2 Rg is a centered Gaussian stochastic process with covariance
function
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CY .u; v/ D
Z

Rd

cov .1fX .0/ � ug; 1fX .t/ � vg/ dt; u; v 2 R:

In particular, condition .?/ is satisfied ifX 2 A is square integrable with covariance
function C that admits a bound

jC.t/j � � .1C ktk1/��

for all t 2 R
d and some � > 0, � > 9d . The proofs are quite technical involving a

Móricz bound for the moment of a supremum of (absolute values of) partial sums
of random fields on Z

d , cf. [46, Theorem 2].
For max-stable random fields introduced in Sect. 5.1.2, condition .?/ is satisfied

if for any T D ft1; : : : ; tkg � R
d and its partition T D T1 [ T2, there exist some

constants c.T /; � > 0 such that
Z

E

min

�
max
ti2T1

fti .y/;max
tj2T2

ftj .y/

	
	.dy/ � c.T / .1C dist1.T1; T2//�.3dC�/ :

(10)

For ˛-stable moving averages, i.e., ˛-stable random fields from Sect. 5.1.2 with
ft .�/ D f .t � �/ for any t 2 R

d , condition (10) should be replaced by

�Z

Rd

min

�
max
ti2T1

f .ti � y/;max
tj2T2

f .tj � y/
	 ˛

m.dy/

�1=.1C˛/

� c.T / .1C dist1.T1; T2//�.3dC�/ :

These results are proven (under slightly more general assumptions) in [29, Sect.
3.5.5] together with analogous conditions for infinitely divisible random fields (that
are too lengthy to give them in a review paper) as well as examples of random fields
satisfying them.

Theorem 9 together with the continuous mapping theorem can be used to test
hypotheses of Sect. 5.2 with test statistic

Tn D supu2R Yn.u/p
EY 2n .0/

if a large deviation result for the limiting Gaussian process Y is available, cf. [43,
Corollary 1].

5.4 Limit Theorem for an Increasing Excursion Level

If the level u ! 1, one may also expect that a CLT for the volume of the
corresponding excursion set holds, provided that a particular rate of convergence
of r to infinity is chosen in accordance with the expansion rate of the observation
window.
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First, results of this type were proven in [26, Theorems 2.7.1, 2.7.2, 2.8.1] for
stationary isotropic Gaussian random fields with short- or long-range dependence.
A generalization to the case of stationary PA-random fields is given in a recent
preprint [19]:

Theorem 10. Let X D fX.t/; t 2 R
d g 2 PA be a stationary random field with a

continuous covariance function C such that jC.t/j D O
�ktk�˛

2

�
for some ˛ > 3d

as ktk2 ! 1. Let X.o/ have a bounded density pX.o/. Assume that the variance of
Vd
�
Aun

�
X; Œ0; n�d

��
being equal to

�2n D
Z

Œ0;n�d

Z

Œ�x;n�x�d
cov .1fX .o/ � ung; 1fX .t/ � ung/ dt dx

satisfies

�2n ! 1; n ! 1: (11)

Introduce �.x/ D supy�x pX.o/.y/, x 2 R. Choose a sequence of excursion levels
un ! 1 such that

nd�2=3.un/

�
2.˛C3/=3
n

! 0; n ! 1: (12)

Then it holds

Vd
�
Aun

�
X; Œ0; n�d

�� � ndPs.X.o/ � un/

�n

d�! N .0; 1/ (13)

as n ! 1.

Conditions (11), (12) are checked in [19] explicitly for stationary (non-isotropic)
Gaussian as well as shot noise random fields leading to quite tractable simple
expressions. For instance, it suffices to choose un D O.

p
logn/, n ! 1 in the

Gaussian case.
Student and Fisher–Snedecor random fields are considered in the recent preprint

[34, Sect. 7]. CLTs for spherical measures of excess

Z

@Br .o/

1fX.t/ > u.r/gHd�1.dt/

of a stationary Gaussian isotropic random fieldX over the moving level u.r/ ! 1,
r ! 1 are proved in [37, Sect. 3.3]. For yet another type of geometric measures of
excess over a moving level, see [35].
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6 Surface Area of Excursion Sets of Stationary Gaussian
Random Fields

Limit theorems for Vd�1 .Au.X;Wn// have been first proven for one fixed level u
and a stationary isotropic Gaussian random field X in [31] in dimension d D 2.
There, the expansion of Vd�1 .Au.X;Wn// in Hermite polynomials is used. In higher
dimensions, a multivariate analogue of this result can be proven along the same
guidelines; see [56, Proof of Theorem 1] for a shorter proof. A CLT for the integral
of a continuous function along a level curve @Au.X;W / for an a.s. C1-smooth
centered mixing stationary random field X D fX.t/; t 2 R

2g in a rectangle W
is proved in [25].

6.1 Functional Limit Theorems

Let us focus on functional LTs for Vd�1 .@Au.X;Wn// proven in [44] for the phase
space L2.R; �/ (where � is a standard Gaussian measure in R) and in [56] for the
phase space C.R/.

LetX D fX.t/; t 2 R
d g, d > 1, be a centered stationary and isotropic Gaussian

random field with a.s. C1-smooth paths and covariance function C 2 C2.Rd /

satisfying C.o/ D 1 as well as

jC.t/j C 1

1 � C.t/
dX

iD1

ˇ̌
ˇ̌@C.t/
@ti

ˇ̌
ˇ̌C

dX

i;jD1

ˇ̌
ˇ̌@
2C.t/

@ti @tj

ˇ̌
ˇ̌ < g.t/ (14)

for large ktk2 (where t D .t1; : : : ; td /
>) and a bounded continuous function g W

R
d ! RC such that limktk2!1 g.t/ D 0 and

Z

Rd

p
g.t/ dt < 1:

Denote by rX.t/ the gradient of X.t/. Assume that the .2d C 2/-dimensional
random vector .X.o/;X.t/;rX.o/;rX.t//> is nondegenerate for all t 2 R

d n fog.
Let �2 D �@2C.o/=@t21 .

Introduce the sequence of random processes fYng, n 2 N by

Yn.u/ D 2�d=2�1

nd=2

�
Vd�1

�
@Au.X; Œ0; n�

d /
� � EVd�1

�
@Au.X; Œ0; n�

d /
��

(15)

where u 2 R. They will be interpreted as random elements in L2.R; �/. Let *
denote the weak convergence of random elements in L2.R; �/. Let

�.t/ D f
�
X.t/

�
expf�X2.t/=2gkrX.t/k2; t 2 R

d :
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Theorem 11 ([44]). Under the above assumptions on X and C , it holds Yn *
Y as n ! 1 where Y is a centered Gaussian random element in L2.R; �/ with
covariance operator

VarhY; f iL2.R;�/ D 1

2�

Z

Rd

cov .�.o/; �.t// dt; f 2 L2.R; �/:

For d � 3, processes Yn have a continuous modification QYn if conditions on X
starting from (14) are replaced by the following ones:

1. Covariance functionC as well as all its first- and second- order derivatives belong
to L1.R/

2. There exist 
 2 .0; 1/ and ˇ > 0 such that for all h 2 Œ�
; 
� and eh D
.h; 0; 0 : : : ; 0/> 2 R

d , the determinant of the covariance matrix of the vector

�
X.o/;X.eh/;

@X.o/

@t1
;
@X.eh/

@t1

�>

is not less than jhjˇ .

Let + denote the weak convergence of random elements in C.R/. Denote by pX.t/
(pX.o/;X.t/) the density of X.t/ ( .X.o/;X.t//>), t 2 R

d , respectively. Set

Ht.u; v/ D E .krX.o/k2krX.t/k2 jX.o/ D u; X.t/ D v/ ; u; v 2 R; t 2 R
d :

In definition (15), assume � D 1.

Theorem 12 ([56]). Under the above assumptions onX andC , it holds QYn + Y as
n ! 1 for d � 3 where Y is a centered Gaussian random process with covariance
function

cov .Y.u/; Y.v// D
Z

Rd



Ht.u; v/pX.o/;X.t/.u; v/ � .EkrX.o/k2/2 pX.o/.u/pX.t/.v/

�
dt

for u; v 2 R.

The case d D 2 is still open.

7 Open Problems

It is a challenging problem to prove the whole spectrum of limit theorems for
Vj .Au.X;Wn// of lower orders j D 0; : : : ; d�2 for isotropicC2-smooth stationary
Gaussian random fields. Functional limit theorems and the case of increasing level
u ! 1 are therein of special interest. Further perspective of research is the
generalization of these (still hypothetic) results to non-Gaussian random fields.
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Another open problem is to prove limit theorems for a large class of functionals
of non-Gaussian stationary random fields that includes the volume of excursion sets.
It is quite straightforward to do this for

Z

Wn

g.X.t// dt

for a measurable function g W R ! R such that Eg2.X.o// < 1. For more general
classes of functionals of the field X and the observation window Wn, it is still terra
incognita.
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