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Abstract The theory of large deviations deals with the asymptotic estimations for
probabilities of rare events. The method, used in majority of classical works, is
based on the change of measure and application of the variational formula to the
cumulant of the process under study. Here the large deviations problem is considered
for random evolutions in the scheme of asymptotically small diffusion. The method
of asymptotic analysis for the exponential generator of the Markov process is
used. The limit exponential generators are calculated for random evolution with the
ergodic Markov switching (Sect. 3) and with the split-and-double merging switching
Markov process (Sect. 4). The method proposed here may have applications for the
finite dimensional models arising in the theory of random evolutions in Rd , queuing
theory, etc.

1 Introduction

The theory of large deviations had arisen in the work of H. Cramér [2] and
deals with the asymptotic estimations for probabilities of rare events. The main
problem in the large deviations theory is the construction of the rate functional to
estimate probabilities of rare events. The method, used in the majority of classical
works, is based on the change of measure and application of variational formula
to the cumulant of the process under study. Different aspects and applications of
this problem were investigated by many mathematicians. We discuss the Markov
processes with independent increments, so it is natural to refer a reader to the
fundamental works [3, 16] and [7].
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Another approach arises in works [8] and [1] and is applied to the large deviations
problem in [6]. It is based on the asymptotic analysis of the nonlinear Hamilton-
Jacobi equation corresponding to the process under study. Then, the solution of the
limit nonlinear Hamilton-Jacobi equation is given by the variational formula that
defines the rate functional of the prelimit process. The main problem here is to
prove the uniqueness of the solution of the limit nonlinear equation.

All the technical problems connected to the application of the last method to
different classes of Markov processes are solved in the monograph [5]. The main
idea of this monograph is the following.

Let �.t/; t � 0 be a Markov process in Euclidean space R, defined by its
linear generator L. The function '.u/ 2 BR. Unlike the classical martingale
characterization of the Markov processes

�t D '.�.t// � '.�.0// �
Z t

0

L'.�.s//ds;

the large deviations theory is based on the exponential martingale characterization
(see [5, Chap. 1]). Namely,

Q�t D expf'.�.t// � '.�.0// �
Z t

0

H'.�.s//dsg

is a martingale.
The exponential (nonlinear) operator H is connected with the linear generator L

of the Markov process �.t/; t � 0 in a following way:

H'.u/ D e�'.u/Le'.u/; e'.u/ 2 D.L/:

The large deviations problem may be formulated as a limit theorem in the scheme
of series with a small series parameter " ! 0." > 0/. Namely (compare with
[5, Chap. 1])

H"'" ! H'; '" ! '; " ! 0:

Here by definition

H"'.u/ WD e�'.u/=""L"e'.u/=":

The generator L"; " > 0 defines Markov process x".t/; t � 0; " > 0 in the
scheme of series under some scaling transform.

Example 1. The asymptotically small diffusion process is given by
p
"�w.t/; t � 0

with the standard Brownian motion process w.t/; t � 0. The generator of such a
process is the following:

L"'.u/ D "
1

2
B'00.u/; B D �2; '00.u/ WD @2'.u/=@u2:
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The exponential generator of the asymptotically small diffusion process may be
easily calculated:

H"'.u/ D 1

2
BŒ'0.u/�2 C "B'00.u/:

Hence, the limit exponential operator is represented as

H'.u/ D 1

2
BŒ'0.u/�2: (1)

Remark 1. The exponential operator (1) in Euclidean space Rd ; d � 2 is repre-
sented by the quadratic form

H'.u/ D 1

2

dX
k;rD1

Bkr'
0
k.u/'

0
r .u/; '0

k.u/ WD @'.u/=@uk;

B D ŒBkr I 1 � k; r � d� is the variance matrix of w.t/.
To simplify the notations, we present all the following results in R.

The aim of our investigation is the asymptotic analysis of the large deviations
problem for the random evolutions in the scheme of asymptotically small diffusion.

At the beginning (Sect. 2) the large deviations problem is considered for the
processes with locally independent increments under the scaling proposed by A.A.
Mogulskii [12]:

�".t/ D "2�.t="3/; t � 0; " > 0: (2)

The generator of the Markov process (2) is given by

� "'.u/ D "�3
Z

R
Œ'.u C "2v/ � '.u/�� .u; dv/; u 2 R; '.u/ 2 BR: (3)

Usually we assume that the Lévy measure � .u; dv/ satisfies the condition

Z
R
eav� .u; dv/ < 1; a > 0; u 2 R: (4)

In the Sect. 3 the large deviations problem is considered for the random evolution
process with Markov switching [9, Chap. 2]. The scheme of asymptotically small
diffusion is considered under additional balance conditions (local and total).

The large deviations problem in the scheme of phase merging is investigated in
Sect. 4.



206 V.S. Korolyuk and I.V. Samoilenko

2 Processes with Locally Independent Increments

In this section we consider the compound Poisson processes which is supposed to
be defined by the generator (3) under the condition (4) for simplicity.

The balance condition (local) formulates as

�B W b.u/ WD R
R v� .u; dv/ � 0:

The main part of the asymptotic representation of the generator (3) on smooth
enough test functions is

� "'.u/ D "
1

2
B.u/'00.u/C "ı".u/'.u/;

where

B.u/ D
Z

R
v2� .u; dv/

and the negligible term converges uniformly by u on the functions '.u/ 2 C3.R/:

jı".u/'.u/j ! 0; " ! 0: (5)

The large deviations problem for the processes (2) may be solved using the limit
approximation of the exponential generator [5, Part 1]:

H"'.u/ D e�'.u/=""� "e'.u/=" D "�2
Z

R
Œe�

"' � 1�� .u; dv/;

�"' WD "�1Œ'.u C "2v/ � '.u/� D "v'0.u/C "ı"'.u/:

Hence, due to the �B condition,

H"'.u/ D "�2
Z

R
Œ"v'0.u/C "2

1

2
v2Œ'0.u/�2�� .u; dv/C ı".u/'.u/ D

D 1

2
B.u/Œ'0.u/�2 C ı".u/'.u/

with the negligible term (5).

Conclusion (comp. with [12]): The limit exponential operator for the processes
with locally independent increments in the scheme of asymptotically small diffusion
is given by

H'.u/ D 1

2
B.u/Œ'0.u/�2: (6)
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3 Random Evolutions in the Scheme of Ergodic Phase
Merging

In this section we investigate the random evolutions with locally independent
increments and switching, so we should note that random evolutions with switching
are also studied in Chap. 11 of [5] by the classical methods of averaging and
homogenization. This approach involves perturbed PDEs operators and perturbed
test functions and arises in the works [11, 13]. Recent monographs [14, 15] include
large bibliography on this problem. Application of this method for the nonlinear
case may also be found in the work [4]. This approach is important for the infinite
dimensional state space models like interacting particles or stochastic PDEs. But in
this case a lot of additional problems appear: correct description of the functional
space for the solutions, the domain of the infinitesimal operators, etc.

We use the generators of Markov processes with a locally compact vector state
space (see [9] for more details). This simplifies the analysis because the generators
are defined for all bounded measurable functions. We lose generality, but can present
obvious algorithms for verification of convergence conditions and calculation of the
limit generators. This approach is important for finite dimensional models arising in
the theory of random evolutions in Rd , queuing theory, etc.

The Markov random evolution process in the scheme of series with a small
series parameter " ! 0." > 0/ is considered as the stochastic additive functional
[9, Sect. 3.4.2]:

	".t/ D 	0 C
Z t

0

�".dsI x.s="2//; t � 0 (7)

in the case of local balance condition or

	".t/ D 	0 C
Z t

0

�".dsI x.s="3//; t � 0 (8)

in the case of total balance condition.
The family of the processes with locally independent increments �".t I x/; t � 0;

x 2 E is determined by the generators

� ".x/'.u/ D "�3
Z

R
Œ'.u C "2v/ � '.u/�� .u; dvI x/; '.u/ 2 BR: (9)

The switching Markov process x.t/; t � 0 is given on the standard phase space
.E;E/ by the generator

Q'.x/ D q.x/

Z
E

P.x; dy/Œ'.y/ � '.x/�; '.u/ 2 BE: (10)

The random evolution process is considered as the two-component Markov
process 	".t/; x".t/ WD x.t="2/; t � 0; given by the generator [9, Sect. 5.3.2]

L"�'.u; x/ D Œ"�2QC � ".x/�'.u; x/ (11)
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in the case of the local balance condition or as the two-component Markov process
	".t/; x".t/ WD x.t="3/; t � 0; given by the generator

L"T '.u; x/ D Œ"�3QC � ".x/�'.u; x/ (12)

in the case of the total balance condition.
The main assumption in the scheme of ergodic phase merging is the uniform

ergodicity of the switching Markov process x.t/.

EA: There exists the stationary distribution 
.dx/ on .E;E/ which defines the
projector

˘'.x/ WD
Z
E


.dx/'.x/; '.x/ 2 BE

on the null-space of the generator Q:

˘Q D Q˘ D 0:

The main assumption EA provides that the potential operator R0 exists:

QR0 D R0Q D ˘ � I:

So, the Poisson equation

Q'.x/ D  .x/; ˘ .x/ D 0

may be solved as follows:

'.x/ D R0 .x/; ˘'.x/ D 0:

The scheme of asymptotically small diffusion is considered under additional
balance condition (local or total):

�B: b.uI x/ WD R
R v� .u; dvI x/ � 0:

TB: b.u/ WD R
E

.dx/b.uI x/ � 0:

Lemma 1 ([10]). The generator (11) of the random evolution (7) admits the
following asymptotic representation:

L"�'.u; x/ D Œ"�2QC "B.x/�'.u; x/C ı".u; x/'.u/;

B.x/'.u/ D 1

2
B.uI x/'00.u/; B.uI x/ D

Z
R
v2� .u; dvI x/

under the local balance condition �B .
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The generator (12) of the random evolution (8) admits the following asymptotic
representation:

L"T '.u; x/ D Œ"�3QC "�1� .x/C "B.x/�'.u; x/C ı".u; x/'.u/;

under the total balance condition TB and the negligible terms converge uniformly
by u; x on the functions '.u/ 2 C3.R/:

jı".u; x/'.u/j ! 0:

The large deviations problem for the random evolutions in the scheme of ergodic
phase merging is solved by the exponential generators described in the following
theorem.

Theorem 1 ([10]). The exponential generators of the large deviations for the
random evolutions (7)–(12) are determined by the relations

H'.u/ D 1

2
B�.u/Œ'0.u/�2: (13)

The variation B�.u/ is determined by

B�.u/ D
Z
E


.dx/B.uI x/; B.uI x/ D
Z

R
v2� .u; dv/ (14)

under the local balance condition �B , and by

BT .u/ D B�.u/C B0.u/; (15)

B0.u/ D
Z
E


.dx/B0.uI x/; B0.uI x/ D 2b.uI x/R0b.uI x/;

under the total balance condition TB .

Remark 2. The exponential generators of the large deviations for the random evolu-
tions in the scheme of asymptotically small diffusion are determined exactly as the
exponential generator of the processes with independent increments (compare (2)–
(4), (6) with (7), (8), (13)–(15)).

The proof of the Theorem 1 is based on the following lemma:

Lemma 2 ([10]). The exponential generator on the perturbed test function admits
the following asymptotic representations:

(1) In the case of the local balance condition �B on the perturbed test function
'".u; x/ D '.u/C " lnŒ1C "'1.u; x/�,

H"'".u; x/ D Q'1 C QB.x/'.u/C ı".u; x/'.u/:
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Here the operator

QB.x/'.u/ D 1

2
B.uI x/Œ'0.u/�2:

(2) In the case of the total balance condition TB on the perturbed test function
'".u; x/ D '.u/C " lnŒ1C "'1.u; x/C "2'2.u; x/�:

H"'".u; x/ D "�1ŒQ'1C� .x/'.u/�CŒQ'2 � '1Q'1C QB.x/'.u/�Cı".u; x/'.u/:

In this case the operator

� .x/'.u/ WD b.uI x/'0.u/:

The negligible terms converge uniformly by u; x on the functions '.u/ 2
C3.R/:

jı".u; x/'.u/j ! 0; " ! 0:

4 Large Deviations in the Scheme of Split-and-Double
Merging [9, Sect. 5.7.2]

4.1 Split-and-Double Merging Scheme

We introduce the switching Markov process x".t/; t � 0 on the standard phase
(state) space .E;E/ in the series scheme with a small series parameter " ! 0; " > 0

on the split phase space

E D
N[
kD1

Ek; Ek \Ek0 D ;; k ¤ k0:

The Markov kernel is

Q".x;B; t/ D P ".x; B/Œ1 � e�q.x/t �; x 2 E; B 2 E; t � 0:

We also introduce the following assumptions:

ME1: The transition kernel of the embedded Markov chain x"n; n � 0 has the
following representation:

P ".x; B/ D P.x;B/C "P1.x; B/:
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The stochastic kernel P.x;B/ is coordinated with the split phase space as
follows:

P.x;Ek/ D 1k.x/ WD
�
1; x 2 Ek;
0; x … Ek:

The stochastic kernel P.x;B/ determines the support Markov chain
xn; n � 0 on the separate classes Ek; 1 � k � N . Moreover, the perturbing
signed kernel P1.x; B/ satisfies the conservative condition

P1.x;E/ D 0;

which is a direct consequence of P ".x;E/ D P.x;E/ D 1:

ME2: The associated Markov process x0.t/; t � 0; given by the generator

Q'.x/ D q.x/

Z
E

P.x; dy/Œ'.y/ � '.x/�

is uniformly ergodic in every class Ek; 1 � k � N; with the stationary
distributions 
k.dx/; 1 � k � N; satisfying the relations:


k.dx/q.x/ D qk�k.dx/; qk WD
Z
Ek


k.dx/q.x/:

ME3: The average exit probabilities

Opk WD
Z
Ek

�k.dx/P1.x;EnEk/ > 0; 1 � k � N

are positive and

0 < q.x/ < C1:

The perturbing signed kernel P1.x; B/ defines the transition probabilities
between classes Ek; 1 � k � N: So, the relation P ".x; B/ D P.x;B/ C
"P1.x; B/ means that the embedded Markov chain x"n; n � 0 spends a long
time in every class Ek and jumps from one class to another with the small
probabilities "P1.x;EnEk/:
Under Assumptions ME1–ME3 the following weak convergence holds
[9, Chap. 5]:

v.x".t// ) Ox.t/; " ! 0; v.x/ D k 2 OE D f1; : : : ; N g; x 2 Ek:
The limit Markov process Ox.t/; t � 0 on the merged phase space OE D
f1; : : : ; N g is determined by the generating matrix

OQ1 D . Oqkr ; 1 � k; r � N/;
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where:

Oqkr D Oqk Opkr ; k ¤ r; Oqk D Opkqk; 1 � k � N:

Opkr D pkr= Opk; pkr D
Z
Ek

�k.dx/P1.x;Er/; 1 � k; r � N; k ¤ r;

Opk D �
Z
Ek

�k.dx/P1.x;Ek/:

ME4: The merged Markov process Ox.t/; t � 0 is ergodic, with the stationary
distribution O
 D .
k; k 2 OE/:

Thus, the operator Q" may be presented as

Q" D QC "Q1; Q1.x/ D q.x/

Z
E

P1.x; dy/'.y/:

Let˘ be the projector onto the null-space of the reducible-invertible operatorQ
acting as follows on the test functions ':

˘'.x/ D
NX
kD1

O'k1k.x/; O'k WD
Z
Ek


k.dx/'.x/:

The contracted operator OQ1 is defined by the relation

OQ1˘ D ˘Q1˘:

Let Ŏ be the projector onto the null-space of the reducible-invertible contracted
operator OQ1:

Ŏ O' WD
X
k2 OE

O
k O'k:

We define the potential matrix OR0 D Œ OR0kl I 1 � k; l � N� by the following relations:

OQ1
OR0 D OR0 OQ1 D Ŏ � I:

4.2 Large Deviations Under the Local Balance Condition �B

The random evolutions are studied under the condition

�B: b.uI x/ WD R
R v� .u; dvI x/ � 0

with the following scaling:

	".t/ D "2	.t="3/; x"t WD x".t="3/: (16)
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The generator of the random evolution is given by

L"�'.u; x/ D Œ"�3QC "�2Q1 C � ".x/�'.u; x/; (17)

� ".x/'.u/ D "�3
Z

R
Œ'.u C "2v/ � '.u/�� .u; dvI x/:

The generator (17) has the following asymptotic representation:

L"�'.u; x/ D Œ"�3QC "�2Q1 C "B.x/�'.u; x/C "ı".u; x/'.u; x/:

Here

B.x/'.u/ D 1

2
B.uI x/'00.u/; B.uI x/ D

Z
R
v2� .u; dvI x/:

Theorem 2. The exponential generator of the large deviations for the random
evolutions (16) under the conditions ME1–ME4 and �B is determined by the
relation

H'.u/ D 1

2

OOB.u/Œ'0.u/�2;

OOB.u/ D
NX
kD1

O
k
Z
Ek


k.dx/B.uI x/; B.uI x/ D
Z

R
v2� .u; dvI x/:

The proof follows from Lemma 3.

Lemma 3. The exponential generator on the perturbed test function

'".u; x/ D '.u/C " lnŒ1C "'1.u; x/C "2'2.u; x/�

admits the following asymptotic representation:

H"'".u; x/ D "�1Q'1 CQ'2 CQ1'1 � '1Q'1 C QB.x/'.u/C ı"H .u; x/'.u/;

and the negligible term converges uniformly by u; x on the functions '.u/ 2 C3.R/:

jı"H .u; x/'.u/j ! 0; " ! 0:

Here the operator

QB.x/'.u/ D 1

2
B.uI x/Œ'0.u/�2: (18)
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Proof. The proof of the lemma is based on the asymptotic analysis of the items

H"
Q'

".u; x/ D e�'.u/="Œ1C"'1C"2'2��1Œ"�2QC"�1Q1�Œ1C"'1C"2'2�e'.u/="

D e�'.u/="Œ1�"'1�Œ"�2QC"�1Q1�Œ1C"'1C"2'2�e'.u/="Cı".x/'.u/
D "�1Q'1 CQ'2 CQ1'1 � '1Q'1 C ı".x/'.u/

and

H"
� '

".u; x/ D e�'.u/="Œ1C "'1 C "2'2�
�1"� ".x/Œ1C "'1 C "2'2�e

'.u/="

D e�'.u/="Œ1 � "'1�"� ".x/Œ1C "'1 C "2'2�e
'.u/=" C ı".u; x/'.u/

D "�2
Z

R
Œe�

"
v'.u/ � 1�� .u; dvI x/C ı".u; x/'.u/:

Here

�"
v'.u/ D "�1Œ'.u C "2v/ � '.u/� D "v'0.u/C "3 O'00

v .u/;

and due to the �B condition, we obtain

"�2
Z

R
Œe�

"
v'.u/ � 1�� .u; dvI x/ D "�2

Z
R

�
"v'0.u/C 1

2
."v/2Œ'0.u/�2

�
� .u; dvI x/

C ı".u; x/'.u/ D QB.x/'.u/C ı".u; x/'.u/:

Thus,

H"
� '

".u; x/ D QB.x/'.u/C ı".u; x/'.u/

with the main term (18). ut
Proof of Theorem 2. To finish the proof of the theorem we should apply the solution
of the singular perturbation problem for the equations:

Q'1.u; x/ D 0

Q'2 CQ1'1 C QB.x/'.u/ D OOB'.u/:
It follows from the first equation that '1.u; x/ D '1.u; Ox/ 2 NQ; thus, from the

solvability condition for the second equation, we obtain a new relation

˘Q1˘'1 C˘ QB.x/˘'.u/ D OOB'.u/;
or

OQ1 O'1 C bQB.x/ O'.u/ D OOB'.u/:
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The solvability condition for the averaged equation gives finally

Ŏ bQB.x/ Ŏ O'.u/ D OOB'.u/:

Thus, the relation

H"'".u; x/ D H'.u/C ı"H .u; x/'.u/

finishes the proof of the theorem. ut

4.3 Large Deviations Under the Total Balance Condition TB

Under the total balance condition:

TB:
b.uI x/ D R

R v� .u; dvI x/ 6� 0;PN
kD1 O
k Obk.u/ D 0; Obk.u/ D R

Ek

k.dx/b.uI x/; 1 � k � N

we use the following scaling for the random evolutions:

	".t/ D "2	.t="3/; x"t WD x".t="4/: (19)

The generator of the random evolution is given by

L"T '.u; x/ D Œ"�4QC "�3Q1 C � ".x/�'.u; x/; (20)

where

� ".x/'.u/ D "�3
Z

R
Œ'.u C "2v/ � '.u/�� .u; dvI x/:

The generator (20) has the following asymptotic representation:

L"T '.u; x/ D Œ"�4QC "�3Q1 C "�1� .x/C "B.x/�'.u; x/C "ı".u; x/'.u; x/:

Here

� .x/'.u/ WD b.uI x/'0.u/:

Theorem 3. The exponential generator of the large deviations for the random
evolutions defined by (19) under the conditions ME1–ME4 and TB is determined
by the relation

H'.u/ D 1

2

OOBT .u/Œ'0.u/�2; OOBT .u/ D OOB.u/C OOB0.u/:
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Here

OOB.u/ WD
NX
kD1

O
k
Z
Ek


k.dx/B.uI x/; B.uI x/ D
Z

R
v2� .u; dvI x/;

OOB0.u/ WD Ŏ Ob.u; Ox/ OR0 Ob.u; Ox/ Ŏ D
NX

k;lD1
O
k Obk OR0kl Obl :

Remark 3. The limit exponential generator consists of two parts: the first one is
the averaged diffusion coefficient and the second one is defined by the merged
first moments of jumps, averaged with the potential of the limit merged Markov
switching process.

The proof is based on the following Lemma.

Lemma 4. The exponential generator on the perturbed test function

'".u; x/ D '.u/C " lnŒ1C "'1.u; x/C "2'2.u; x/C "3'3.u; x/�

admits the following asymptotic representation:

H"'".u; x/ D "�2Q'1 C "�1ŒQ'2 CQ1'1 � '1Q'1 C � .x/'.u/�

C ŒQ'3 CQ1'2 � '1Q'2 � '2Q'1 � '1Q1'1 C QB.x/'.u/�
C ı".u; x/'.u/;

and the negligible term converges uniformly by u; x on the functions '.u/ 2 C3.R/:

jı".u; x/'.u/j ! 0; " ! 0:

Here the operators

� .x/'.u/ WD b.uI x/'0.u/; QB.x/'.u/ WD 1

2
B.uI x/Œ'0.u/�2: (21)

Proof. The proof of lemma is based on the asymptotic analysis of the items

H"
Q'

".u; x/ D e�'.u/="Œ1C "'1 C "2'2 C "3'3�
�1Œ"�3QC "�2Q1�

� Œ1C "'1 C "2'2 C "3'3�e
'.u/="

D e�'.u/="Œ1 � "'1 � "2'2 C "2'21 � "3'3�
� Œ"�3QC "�2Q1�Œ1C "'1 C "2'2 C "3'3�e

'.u/=" C ı".x/'.u/
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D "�2Q'1 C "�1ŒQ'2 CQ1'1 � '1Q'1�
C ŒQ'3 CQ1'2 � '1Q'2 � �'2Q'1 C '21Q'1 � '1Q1'1�

C ı".x/'.u/

and

H"
� '

".u; x/ D e�'.u/="Œ1C "'1 C "2'2 C "3'3�
�1"� ".x/Œ1C "'1 C "2'2

C "3'3�e
'.u/="

D e�'.u/="Œ1 � "'1 � "2'2 C "2'21 �"�
".x/Œ1C "'1 C "2'2 C "3'3�e

'.u/="

C ı".u; x/'.u/

D "�2

Z
R
Œe�

"
v'.u/ � 1�� .u; dvI x/

C "2e�'.u/="Œ� ".x/'1e
'.u/=" � '1� ".x/e'.u/="�C ı"� .u; x/'.u/:

Here

�"
v'.u/ D "�1Œ'.u C "2v/ � '.u/� D "v'0.u/C "3 O'00

v .u/;

and due to the TB condition, we obtain

"�2
Z

R
Œe�

"
v'.u/ � 1�� .u; dvI x/ D "�2

Z
R

�
"v'0.u/C 1

2
."v/2Œ'0.u/�2

�
� .u; dvI x/

C ı".u; x/'.u/

D "�1� .x/'.u/C QB.x/'.u/C ı".u; x/'.u/:

Each of the terms in the square brackets is not negligible, for instance,

"2'1e
�'.u/="� ".x/e'.u/=" D "'1e

�'.u/=""� ".x/e'.u/=" D '1� .x/'.u/

Cı".u; x/'.u/:

But their difference is equal to 0 due to the relation

� ".x/e'.u/="'1 D "�3
Z

R
Œe'.uC"2v/="'1.u C "v; x/ � e'.u/="'1.u; x/�� .u; dvI x/

D '1.u; x/�
".x/e'.u/=" C o."2/:

Thus,

H"
� '

".u; x/ D "�1� .x/'.u/C QB.x/'.u/C ı".u; x/'.u/;

with the main terms (21). ut
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Proof of Theorem 3. To finish the proof of the theorem, we should apply the
solution of the singular perturbation problems for the equations

Q'1 D 0;

Q'2 CQ1'1 C b.uI x/'0.u/ D 0;

Q'3 CQ1'2 � '1Q'2 � '1Q1'1 C QB.x/'.u/ D OOB'.u/:

It follows from the first equation that '1.u; x/ D '1.u; Ox/ 2 NQ; thus, from the
solvability condition for the second equation

OQ'2 C OQ1 O'1 C Ob.uI Ox/'0.u/ D 0; OQ'2 D 0; (22)

we obtain a new relation:

OQ1 O'1 C Ob.u; Ox/'0.u/ D 0; Ŏ Ob.uI Ox/ � 0;

from which we have

O'1.u; Ox/ D OR0 Ob.uI Ox/'0.u/; OQ1 O'1 D � Ob.u; Ox/'0.u/: (23)

Then, the solvability condition for the equation

Q'3 CQ1'2 � '1Q'2 � '1Q1'1 C QB.x/'.u/ D OOB'.u/

gives

OQ1 O'2 � O'1 OQ'2 � O'1 OQ1 O'1 C OQB.x/ O'.u/ D OOB'.u/;

but from (22)

OQ'2 D �Œ OQ1'1 C Ob.u; Ox/'0.u/� D 0;

and using the solution (23), we have

OQ1 O'2 C OBT .x/ O'.u/ D OOB'.u/:

Application of the solvability condition for this equation finishes the proof of the
theorem. ut
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