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Preface

This special volume contains contributed papers of selected speakers of the
International Conference “Modern Stochastics: Theory and Applications III.” This
conference was held on September 10–14, 2012, at Taras Shevchenko National Uni-
versity of Kyiv, Ukraine. It was dedicated to anniversaries of prominent Ukrainian
scientists of international recognition: 100th anniversary of B.V. Gnedenko and 80th
anniversary of M.I. Yadrenko.

This conference is third in the “Modern Stochastics: Theory and Applications”
series, the first two having taken place in 2006 and 2010. It was a major scientific
event, providing an excellent opportunity for exchanging ideas and discussing recent
results and new trends in probability, statistics, and their applications. The confer-
ence covered all research areas in probability theory and its applications: stochastic
analysis, stochastic processes and fields, random matrices, optimization methods
in probability, stochastic models of evolution systems, financial mathematics, risk
processes and actuarial mathematics, statistics, information security, etc. Over 250
scientists from 29 countries took part in the conference, including both top-level
specialists as well as young researchers.

The editors pursued two goals in collecting chapters for this volume: to present
the most deep and bleeding-edge results and to make this volume accessible
to as wide audience as possible. This resulted in extensive overview of some
modern trends in probability and stochastic analysis and its applications. Scientific
researchers will find in the volume a variety of new tools, ideas, and optimization
methods, while practitioners will find a rigorous mathematical background for their
studies.

The volume consists of five parts.
The first part is devoted to properties of probability distributions and their

applications. The chapter by F. Hirsch and M. Yor describes the relation between
the inequalities for the integrands of stochastic integrals and convex order of the
integrals. This result is of particular interest in financial mathematics for pricing
of contingent claims in continuous financial market models. Yu.V. Kozachenko
and R.E. Yamnenko show how sub-Gaussian random processes can be applied
to queuing theory. New probabilistic tools for mathematical physics are given in

vii
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the chapter by E. Orsingher, where pseudoprocesses governed by higher-order
heat-type equations are considered and a probabilistic representation of their
densities is given. The chapter by S. Rœlly is concerned with reciprocal processes
(whose concept can be traced back to E. Schrödinger), discussing an approach to
characterize different types of these processes via duality formulae on path spaces.

The second part discusses stochastic ordinary and partial differential equations.
The chapter by Ya.I. Belopolskaya shows how theory of backward stochastic
differential equations can be extended in order to construct a viscosity solution
to the Cauchy problem for a system of quasilinear parabolic equations. Stochastic
partial differential equations with fractional noise are studied in the chapter by M.
Dozzi, E.T. Kolkovska, and J.A. López-Mimbela, which focuses mainly on the cases
where solution of equation does not exist globally, but blows up in a finite time. The
authors make substantial contribution by giving both lower and upper bounds for the
blowup time of solutions of stochastic partial differential equations, thus providing
tools for sharp estimation of risks and reliability. S. Fang shows how variational
principles for the Navier–Stokes equation can be established by analysis of ordinary
and stochastic differential equations with Sobolev coefficients, thus opening new
ways to investigate this famous equation from hydrodynamics. Stochastic partial
differential equations driven by fractional noises with long memory are also studied
in the chapter by M. Hinz, E. Issoglio, and M. Zähle, who survey recent results
on solvability and regularity of such equations. Stochastic integrals with respect
to general stochastic measures are studied in the chapter by V. Radchenko. The
uniqueness of the approach is that no special assumptions, such as martingale
property or integrability, are imposed, which allows to apply these results in a vast
variety of situations. It allows to establish the solvability of parabolic stochastic
partial differential equations under mildest assumptions on the random driver.

The third part of this collection is about limit theorems for stochastic processes
and fields. S.V. Anulova and A.Yu. Veretennikov make a considerable progress
in the investigation of Langevin–Smoluchowski-type system, proving existence
of unique solution with a strong Markov property and establishing exponential
stability of the system. V.P. Knopova and A.M. Kulik study fractional Lévy motion
both in long-memory and in short-memory cases and provide examples showing
the difference of asymptotic behavior of the distribution density of the process
in these cases. V.S. Korolyuk and I.V. Samoilenko discuss the problem of large
deviations for random evolutions in the scheme of asymptotically small diffusion.
The chapter by E. Spodarev is devoted to limit behavior of geometric characteristics
of random fields, which are widely used for data analysis purposes in medicine
(FMR image processing), physics and cosmology (e.g., microwave background
radiation analysis), and materials science (quantification of porous media).

Particular attention in the volume is given to financial applications of stochastic
analysis, which is the subject of the fourth part of the book. J.M. Corcuera,
G. Farkas, and A. Valdivia review ambit processes, which share their mathematical
structure with the solutions of random evolution equations, allowing them great
flexibility for modelling. They discuss applications of ambit processes to finance.
A.A. Gushchin, R.V. Khasanov, and I.S. Morozov give a review of new tools in the
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utility maximization problem. They propose new ideas on how to embed the original
maximization problem in an appropriate functional space and then to deduce the
dual variational problem. The techniques developed by the authors allow to get rid
of singular functionals in the dual problem. O. Ragulina considers the classical risk
model where an insurance company has the opportunity to adjust franchise amount
continuously. She solves the problem of optimal control by franchise amount.

The last part of this book is devoted to statistics. The chapter by Yu. Mishura,
K. Ral’ chenko, O. Seleznev, and G. Shevchenko discusses parameter estimation for
stochastic differential equations driven by fractional Brownian motion. The chapter
by L. Sakhno deals with the parameter estimation of stationary fields in the spectral
domain based on minimum contrast principle. The chapter by S. Shklyar presents
different methods of estimation for generalized linear models with measurement
errors (Poissonian regression, Gamma regression, exponential regression).

Kyiv, Ukraine Volodymyr Korolyuk
Compiègne Cedex, France Nikolaos Limnios
Kyiv, Ukraine Yuliya Mishura

Lyudmyla Sakhno
Georgiy Shevchenko
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Comparing Brownian Stochastic Integrals
for the Convex Order

Francis Hirsch and Marc Yor

Abstract We show that, in general, inequalities between integrands with respect
to Brownian motion do not lead to majorization in the convex order for the
corresponding stochastic integrals. Particular examples and counterexamples are
discussed.

1 Introduction

In this chapter, we are interested in the following general question. Let X and Y
be square integrable Brownian centered random variables given by their predictable
representations:

X D
Z 1

0

Ht dBt Y D
Z 1

0

Kt dBt

with
Z 1

0

EŒH2
t � dt < 1 and

Z 1

0

EŒK2
t � dt < 1: (1)
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e-mail: deaproba@proba.jussieu.fr

V. Korolyuk et al. (eds.), Modern Stochastics and Applications, Springer Optimization
and Its Applications 90, DOI 10.1007/978-3-319-03512-3__1,
© Springer International Publishing Switzerland 2014
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4 F. Hirsch and M. Yor

Is it possible to give conditions on H and K ensuring that X � Y in the convex
order?

We recall that two integrable random variablesX and Y are said to satisfyX � Y

in the convex order, which will be denoted in the sequel by X
.c/� Y , if, for every

convex ' W R �! R,

�1 < EŒ'.X/� � EŒ'.Y /� � C1:

There is an obvious necessary condition:

X
.c/� Y H)

Z 1

0

EŒH2
t � dt �

Z 1

0

EŒK2
t � dt: (2)

This condition is far from being sufficient. In Sect. 2 we present an easy
counterexample.

Then, in Sect. 3, we consider the elementary case where .Ht / or .Kt / is
deterministic. In this case, there is a simple sufficient condition.

In the three following sections, we study particular families .Xf .a/I a � 0/

defined by

Xf .a/ D
Z 1

0

f .a; s; Bs/ dBs;

where f denotes a nonnegative Borel function on RC � RC � R.
In Sect. 4, f .a; s; x/ D 1.0;1/.s/ 1.a;C1/.x/. Then f is decreasing with respect

to a, and the map: a �! Xf .a/ also is decreasing in the convex order.
In Sect. 5, f .a; s; x/ D 1.0;1/.s/ 1.�1;a/.x/. Then f is increasing with respect to

a, and the map: a �! Xf .a/ also is increasing in the convex order.
In Sect. 6, f .a; s; x/ D a 1.0;1/.s/ C 1.1;2/.s/ 1.�1;0/.x/. Then f is increasing

with respect to a, and the map: a �! Xf .a/ is not monotone in the convex
order. More precisely, a �! EŒ.Xf .a//2� is obviously increasing, but a �!
EŒexp.Xf .a//� is strictly decreasing on Œ0; a0� for some a0 > 0.

2 A Simple Example

In this section, we show that, in general, the converse of (2) does not hold, even if
H is deterministic.

Proposition 1. We set, for � � 0,

X� D
Z 1

0

exp.�Bs/ dBs:
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Obviously, for any � � 0,

Z 1

0

EŒexp.2�Bs/� ds D
Z 1

0

exp.2�2s/ ds � 1:

However, there exists � > 0 such that B1
.c/� X� does not hold.

Proof. For every C1-function ' with bounded first derivative, we have

d

d�
EŒ'.X�/�

ˇ̌
ˇ̌
�D0

D 1

2
EŒ'0.B1/ .B2

1 � 1/�:

Suppose that for every � > 0, one has B1
.c/� X�. Then, for every convex

C1-function ' with bounded first derivative, EŒ'0.B1/ .B2
1 � 1/� � 0. In particular,

we obtain for the convex function: '.x/ D .xC1/2 1.�1;0/.x/C.1C2x/ 1.0;C1/.x/,

2EŒ..B1 C 1/C ^ 1/ .B2
1 � 1/� � 0:

Now,

EŒ..B1 C 1/C ^ 1/ .B2
1 � 1/� D 1p

2�
.e�1=2 � 1/ < 0;

which yields a contradiction. ut

3 Case WhereH Or K Is Deterministic

The following proposition partially extends a result of Pagès [8, Proposition 2.4]
with a different method.

Proposition 2. Let .Ht / be an adapted process and k be a deterministic Borel
function such that

Z 1

0

EŒH2
t � dt < 1 and

Z 1

0

k2.t/ dt < 1:

We set

X D
Z 1

0

Ht dBt Y D
Z 1

0

k.t/ dBt :
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One has

1. if
Z 1

0

H2
t dt �

Z 1

0

k.t/2 dt a.s., then X
.c/� Y ;

2. if
Z 1

0

k.t/2 dt �
Z 1

0

H2
t dt a.s., then Y

.c/� X .

Proof. By the Dubins–Schwarz theorem (see, e.g., Revuz-Yor [9, Chap. V]), there
exist a filtration .Gu/ and a G-Brownian motion .ˇu/ such that: X D ˇT , with
T WD R1

0
H2
t dt a .Gu/-stopping time. By hypothesis, T is integrable. Denote by

s the deterministic time
R1
0
k.t/2 dt . Let also QY D ˇs . Since k is deterministic,

we have: Y
.law/D QY . Now, if T � s, then X D EŒ QY jGT �, and if s � T , then

QY D EŒX jGs�. The desired result then follows from Jensen’s inequality. ut
Remark 1. We shall show in Sect. 6 that in the above proposition, the
hypothesis that k is deterministic cannot be deleted. Likewise, the hypothesis:R1
0

EŒH2
t � dt < 1 cannot be deleted as shown by the following example. Suppose

that k.t/ D 1.0;1/.t/ and Ht D 1.0;d1/.t/ with d1 D infft � 1IBt D 0g. Then, since
1 � d1, one has 0 � k.t/ � Ht . But, X D Bd1 D 0, Y D B1 and, obviously,

B1
.c/� 0 does not hold. On the contrary, we have 0

.c/� B1, which shows that, in
general, the implication (2) does not hold if the condition (1) is not fulfilled.

4 A Decreasing Family

We set, for t � 0 and a � 0,

Xt.a/ D
Z t

0

1.Bs>a/ dBs

and we denote X1.a/ simply by X.a/. We also denote as usual by Ta the entrance
time of .Bt / in Œa;C1Œ.

Proposition 3. The map: a � 0 �! X.a/ is decreasing in the convex order.

Proof. Denote by B.a/ the Brownian motion defined by B
.a/
t D BtCTa � a.

It is independent of FBTa (where .FBt / denotes the natural filtration of B) and, in
particular, it is independent of Ta. We set, for t � 0,

X
.a/
t D

Z t

0

1
.B

.a/
s >0/

dB.a/
s :

We clearly have

X.a/ D X
.a/

.1�Ta/C : (3)
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Let QB be an independent copy of B . We deduce from (3) that

X.a/
.law/D QX.1�Ta/C.0/; (4)

where QXt.a/ is defined as Xt.a/ from QB in place of B . We set, for a � 0,

OFa D �fBs; s � 0I QBs^.1�Ta/C ; s � 0g:

Then, the above family of � -algebras is decreasing with respect to a. We have,
if a � b,

QX.1�Tb/C.0/ D EŒ QX.1�Ta/C.0/ j OFb�:

The desired result follows from (4) and Jensen’s inequality. ut
Remark 2. Proposition 3 says, in the terminology of Hirsch et al. [3], that
.X.a/I a � 0/ is an inverse peacock. By the general theorem of Kellerer (see [2, 5]
and also [3, Exercise 1.6]), there exists an inverse martingale which is associated
to .X.a/I a � 0/, which means that both processes have the same 1-marginals (we
also say that .X.a/I a � 0/ is a 1-inverse martingale). In the previous proof, we
showed that we may take as associated inverse martingale: . QX.1�Ta/C.0/; a � 0/.

In the sequel of this section, we shall give another proof, more analytic, of
Proposition 3, from a computation of the law of X.a/.

Proposition 4. The law of X.a/ is

r
2

�

��Z a

0

e�u2=2 du

�
ı0 C ha.z/ dz

�
;

where ı0 denotes the Dirac measure at 0, and

ha.z/ D 4

3
exp

�
� .a � 2z/2

2

�
1.�1;0/.z/C 1

3
exp

�
� .aC z/2

2

�
1.0;C1/.z/:

Proof. Denote by �a the law of Ta. One has

�a.dy/ D ap
2�

1.0;C1/.y/ y
�3=2 exp

�
� a

2

2y

�
dy: (5)

By (4), we have for every nonnegative ',

EŒ'.X.a//� D '.0/

Z C1

1

�a.dy/C
Z 1

0

EŒ'.X1�y.0//� �a.dy/: (6)
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By (5) and the change of variable y D a2 u�2, we obtain

Z C1

1

�a.dy/ D
r
2

�

Z a

0

e�u2=2 du: (7)

By Tanaka’s formula, Xt.0/ D BC
t � 1

2
Lt where Lt denotes the local time at 0

of the Brownian B . According to [9, Exercise 2.18], the joint law of .Bt ; Lt / has a
density given by

1p
2�t3

�
.aC b/ exp

�
� .aC b/2

2t

��
for a; b � 0 and

1p
2�t3

�
.�aC b/ exp

�
� .�aC b/2

2t

��
for a � 0; b � 0:

Consequently, the density of the law of Xt.0/ is

r
2

� t

�
4

3
exp

�
�2u2

t

�
1.u<0/ C 1

3
exp

�
� u2

2t

�
1.u>0/

�
: (8)

Thus, by (5) and (8),

Z 1

0

EŒ'.X1�y.0//� �a.dy/ D a

3�

Z 1

0

Ia.z/ Œ2'.�z=2/C '.z/� dz (9)

with

Ia.z/ D
Z 1

0

y�3=2.1 � y/�1=2 exp

�
� a

2

2y

�
exp

�
� z2

2.1 � y/
�

dy:

The change of variable: y D a2u.1C a2u/�1 yields

Ia.z/ D a�1 exp

�
� .a

2 C z2/

2

�Z 1

0

u�3=2 exp

�
� 1

2u

�
exp

�
�a

2z2u

2

�
du

D p
2� a�1 exp

�
� .a

2 C z2/

2

�
E

�
exp

�
� .az/2T1

2

��

and hence

Ia.z/ D p
2� a�1 exp

�
� .aC z/2

2

�
: (10)

Finally, gathering (6), (7), (9), and (10), we obtain the announced result, after an
obvious change of variable. ut
The next corollary follows easily from Proposition 4.
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Corollary 1. Let ' be a suitably integrable function. Then, for any a � 0,

d

da
EŒ'.X.a//�

D
r
2

�

Z 1

0

.aC z/ exp

�
� .aC z/2

2

��
'.0/ � 2

3
'.�z=2/ � 1

3
'.z/

�
dz:

In particular, if moreover ' is convex, then

d

da
EŒ'.X.a//� � 0

and the inequality is strict if and only if ' is not an affine function.

Clearly, the above corollary entails Proposition 3.
By Remark 2, .X.a/I a � 0/ is a 1-inverse martingale. One may wonder whether

it also is a 2-inverse martingale, that is, whether it has the same 2-marginals as an
inverse martingale. We answer this question in the next proposition.

Proposition 5. For every a > 0, EŒX.0/X.a/2� > EŒX.a/3�.
Consequently, .X.a/I a � 0/ is not a 2-inverse martingale.

Proof. Set:

E.a/ D EŒX.0/X.a/2� � EŒX.a/3�:

By Itô’s formula:

E.a/ D
Z 1

0

E

��Z t

0

1.0<Bs<a/ dBs

�
1.Bt>a/

�
dt:

We set, for t > 0,

U.t/ D E

��Z t

0

1.0<Bs<1/ dBs

�
1.Bt>1/

�
(11)

By scaling,

E

��Z t

0

1.0<Bs<a/ dBs

�
1.Bt>a/

�
D a U.a�2t/:

Hence,

E.a/ D a

Z 1

0

U.a�2t/ dt D a3
Z a�2

0

U.t/ dt: (12)

The result will then follow from the next lemma.
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Lemma 1. For every t > 0,

U.t/ D 1

2
p
2�

Z 1

t�1
e�u=2 u�1=2 du;

where U.t/ is defined in (11).

Proof. By Tanaka’s formula,

U.t/ D E

��
1C 1

2
L1t � 1

2
L0t

�
1.Bt>1/

�
;

where L1t (resp. L0t ) denotes the local time of the Brownian motion at time t in 1
(resp. 0). Using the classical property

Lxt D lim
"!0

1

"

Z t

0

1.x<Bs<xC"/ ds

we obtain

EŒL1t 1.Bt>1/� D 1

2
p
2�

Z t

0

e�1=2s s�1=2 ds; (13)

EŒL0t 1.Bt>1/� D 1

2�

Z t

0

e�1=2s .t � s/1=2 s�3=2 ds: (14)

By (14),

d

dt
EŒL0t 1.Bt>1/� D 1

4�

Z t

0

e�1=2s .t � s/�1=2 s�3=2 ds

and the change of variable s D t .2vt C 1/�1 yields

d

dt
EŒL0t 1.Bt>1/� D 1

2
p
2�

e�1=2t t�1=2;

which is equal to
d

dt
EŒL1t 1.Bt>1/� by (13). Thus, EŒL0t 1.Bt>1/� D EŒL1t 1.Bt>1/�, and

consequently U.t/ D PŒBt > 1�, which is the announced result. ut
The proposition follows then from the above lemma and (12). ut
Remark 3. By Lemma 1, limt!1 U.t/ D 1

2
andU.t/ is equivalent to 1p

2�
e�1=2t t 1=2

when t tends to 0. Therefore, by (12), E.a/ is equivalent to a
2

when a tends to 0 and

is equivalent to
q

2
�

e�a2=2a�2 when a tends to 1.
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5 An Increasing Family

We set, for t � 0 and a � 0,

Yt .a/ D
Z t

0

1.Bs<a/ dBs

and we denote Y1.a/ simply by Y.a/.

Proposition 6. The law of Y.a/ is
r
2

�

�
Aa.z/ 1.�1;a/.z/CDa.z/ 1.a;C1/.z/

�
dz

with

Aa.z/ D
�
1

2
exp

�
� z2

2

�
� 1

6
exp

�
� .2a � z/2

2

��

and Da.z/ D 4

3
exp

�
� .2z � a/2

2

�
:

Proof. We shall follow the same lines as in the proof of Proposition 4, of which we
keep the notation.
We set, for t � 0,

Y
.a/
t D

Z t

0

1
.B

.a/
s <0/

dB.a/
s :

We clearly have

Y.a/ D 1.Ta>1/ B1 C 1.Ta<1/

�
aC Y

.a/

.1�Ta/
	

(15)

and

1.Ta<1/ B1 D 1.Ta<1/

�
aC B

.a/

.1�Ta/
	
: (16)

Since Y .a/ and B.a/ are independent of Ta, by (15) and (16), we have for every
nonnegative ',

EŒ'.Y.a//� D EŒ'.B1/�C
Z 1

0

�
EŒ'.aC Y1�y.0//� � EŒ'.aC B1�y/�

�
�a.dy/:

(17)

Clearly, Yt .0/
.law/D �Xt.0/. Consequently, by (8), the density of the law of Yt .0/ is

r
2

� t

�
1

3
exp

�
� u2

2t

�
1.u<0/ C 4

3
exp

�
�2u2

t

�
1.u>0/

�
: (18)
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By (18) and (5),

Z 1

0

EŒ'.aCY1�y.0//� �a.dy/ D a

3�

Z 1

0

Ia.z/ Œ2'.aCz=2/C'.a�z/� dz; (19)

where Ia.z/ is given in (10). Likewise,

Z 1

0

EŒ'.aC B1�y/� �a.dy/ D a

2�

Z 1

0

Ia.z/ Œ'.aC z/C '.a � z/� dz: (20)

Finally, gathering (17), (19), (20), and (10), we obtain the announced result, after
obvious changes of variable. ut
The next corollary follows easily from Proposition 6.

Corollary 2. Let ' be a suitably integrable function. Then, for any a � 0,

d

da
EŒ'.Y.a//�

D
r
2

�

Z 1

0

.aCz/ exp

�
� .aCz/2

2

��
2

3
'.aCz=2/C1

3
'.a�z/�'.a/

�
dz:

In particular, if moreover ' is convex, then

d

da
EŒ'.Y.a//� � 0

and the inequality is strict if and only if ' is not an affine function.

Clearly, the above corollary entails the following proposition.

Proposition 7. The map: a � 0 �! Y.a/ is increasing in the convex order.

Proposition 7 says, in the terminology of Hirsch et al. [3], that .Y.a/I a � 0/

is a peacock. By the general aforementioned theorem of Kellerer, there exists a
martingale which is associated to .Y.a/I a � 0/ (in the sense that both processes
have the same 1-marginals). We shall exhibit such a martingale, using the stochastic
differential equation method (see [3, Chap. 6] and [2]).

We first introduce some further notation. We set, for .a; x/ 2 RC � R,

p.a; x/ D 1p
2�

�
exp

�
�x

2

2

�
� 1

3
exp

�
� .2a � x/2

2

��
if x < a

and p.a; x/ D 1p
2�

8

3
exp

�
� .2x � a/2

2

�
if x � a:
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Thus, by Proposition 6, the law of Y.a/ is p.a; x/ dx. We then define the call
function C by

8.a; x/ 2 RC � R; C.a; x/ D EŒ.Y.a/ � x/C�:

We also set, for x 2 R,

N.x/ D 1p
2�

Z 1

x

exp

�
�u2

2

�
du:

Lemma 2.

1. For every .a; x/ 2 RC � R,

p.a; x/ � 2

3
p
2�

exp

�
� Œ.2x � a/ _ .2a � x/�2

2

�
and

p.a; x/ � 8

3
p
2�

exp

�
� Œ.2x � a/ _ x�2

2

�
:

2. For .a; x/ 2 RC � R,

@

@a
C.a; x/ D 2

3
N..2x � a/ _ .2a � x//:

3. For .a; x/ 2 RC � R,

@

@a
C.a; x/ �

p
2�

2
p.a; x/:

Proof. The first point follows from the above definition of p.
The second point is a direct consequence of Corollary 2.
For the third point, we remark that .2x � a/ _ .2a � x/ � a � 0 and

supfexp.u2=2/N.u/I u � 0g D N.0/ D 1=2: ut
We now set, for .a; x/ 2 RC � R,

�.a; x/ D
 
2

@
@a
C.a; x/

p.a; x/

!1=2
:

This definition of � comes from Dupire [1].



14 F. Hirsch and M. Yor

Proposition 8. The stochastic differential equation:

Mt D M0 C
Z t

0

�.s;Ms/ dBs; M0
.law/D Y.0/ (21)

admits a weak solution which is unique in law. Such a solution is a continuous,
strong Markov martingale, which is associated to the peacock .Y.a/I a � 0/.

Proof. We shall first prove the existence of a weak solution to (21). We remark
that, by Lemma 2, one has 0 < � � .2�/1=4. However, � is not continuous on
RC � R, but only continuous on the complement of f.a; a/I a � 0g. So, we need to
approximate � . We set, for " > 0 and .t; x/ 2 RC � R,

p".t; x/ D
Z 1

0

p.t; x C " u/ du:

Thus, p".t; x/ dx is the law of Y "t WD Y.t/ � "U , where U denotes a uniform
variable on Œ0; 1�, independent of Y.t/. Clearly, p" is continuous and> 0 on RC�R.
We set:

C".t; x/ D EŒ.Y "t � x/C� D
Z 1

0

C.t; x C " u/ du:

Consequently, by Lemma 2, for .t; x/ 2 RC � R,

0 <
@

@t
C".t; x/ D

Z 1

0

@

@t
C.t; x C " u/ du �

p
2�

2
p".t; x/:

We then set, for .t; x/ 2 RC � R,

�".t; x/ D
 
2

@
@t
C".t; x/

p".t; x/

!1=2
:

Thus, �" is continuous and, for every .t; x/ 2 RC � R,

0 < �".t; x/ � .2�/1=4: (22)

Therefore, the stochastic differential equation

Mt D M0 C
Z t

0

�".s;Ms/ dBs; M0
.law/D Y "0 (23)

admits a weak solution, and, using M. Pierre’s uniqueness theorem ([3, Theo-
rem 6.1]), one sees as in the proof of Theorem 6.2 in [3] that such a solution M" is
unique in law andM" is a continuous martingale, which is associated to the peacock
.Y "t I t � 0/. Besides, by (22) and BDG inequalities, for every � > 0, there exists
c� > 0 such that
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8" > 0; 8s; t � 0; EŒjM"
t �M"

s j� � � c� jt � sj�=2: (24)

We denote by P
" the law of M" on C.RCIR/. We deduce from (24) and

Kolmogorov’s criterion (see, e.g., [9, Theorem 1.8, Chap. XIII]) that the family of
laws fP"I " > 0g is weakly relatively compact. Therefore, there exists a sequence
."n/ tending to 0 and a probability P on C.RCIR/ such that P"n weakly converges
to P when n tends to infinity. We denote by M a continuous process with law P.
Obviously, the law of Mt is p.t; x/ dx. To show that M is a weak solution to (21),
we shall prove that P is a solution to the corresponding martingale problem. Let
f be a C2-function with compact support and let 0 � s � t and g be a bounded
continuous function on C.Œ0; s�IR/. By (23), for every n,

E
"n

��
f .yt / � f .ys/ � 1

2

Z t

s

�2"n.u; yu/ f
00.yu/ du

�
g.yjŒ0;s�/

�
D 0:

We set

Rn D E
"n

�Z t

s

j�2"n.u; yu/ � �2.u; yu/j du

�
:

Then,

Rn D
Z
R

dx
Z 1

0

dv
Z t

s

du j�2"n.u; x/ � �2.u; x/jp.u; x C "nv/:

Since, for every u � 0, x �! p.u; x/ is right-continuous, we obtain by dominated
convergence (see point 1 in Lemma 2): limn!1Rn D 0. We define the bounded
function H on C.RCIR/ by

H.y/ D
�
f .yt / � f .ys/ � 1

2

Z t

s

�2.u; yu/ f
00.yu/ du

�
g.yjŒ0;s�/:

We obtain by what precedes: limn!1 E
"n ŒH � D 0. On the other hand, H is

continuous at any y such that u 6D yu du-a.e. Now, since the law of yu under P

admits a density, namely, p.u; x/, one has

Z 1

0

Z
1fuDyug P.dy/ du D 0:

Therefore, P-a.s., u 6D yu du-a.e. Thus, H is continuous at every point of the com-
plement of a P-negligible set. By a classical result, this entails limn!1 E

"n ŒH � D
EŒH �, and therefore, EŒH � D 0 which means

E

��
f .yt / � f .ys/ � 1

2

Z t

s

�2.u; yu/ f
00.yu/ du

�
g.yjŒ0;s�/

�
D 0:
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So, P is a solution to the martingale problem corresponding to .Y.0/; �2/, which is
equivalent to say that M is a weak solution of (21).

Now, by Lemma 2, � satisfies the conditions allowing to apply M. Pierre’s
uniqueness theorem [3, Theorem 6.1] with a D 1

2
�2. Consequently, we may show,

as in the proof of Theorem 6.2 in [3], the uniqueness in law of the weak solution
of (21), and the strong Markov property follows. ut
Remark 4. By the results of Lowther [6], the martingale M , weak solution
of (21), is the only (in law) continuous, strong Markov martingale associated to
.Y.a/I a � 0/. It also follows from Lowther [6, 7] (see also [4, Theorem 4.4])
that there exists a continuous inverse martingale associated to .X.a/I a � 0/.
This inverse martingale is therefore different, in law, of the one proposed in
Remark 2, which is not continuous. Note that the above method does not apply
to .X.a/I a � 0/, since, as seen in Proposition 4, the law of X.a/ is not absolutely
continuous.

Here again, one may wonder whether .Y.a/I a � 0/ is a 2-martingale, that is,
whether it has the same 2-marginals as a martingale. We answer this question in the
next proposition.

Proposition 9. For every a > 0, EŒY.0/2 Y.a/� < EŒY.0/3�.
Consequently, .Y.a/I a � 0/ is not a 2-martingale.

Proof. We follow the same lines as in the proof of Proposition 5. Set:

F.a/ D EŒY.0/2 Y.a/� � EŒY.0/3�:

By Itô’s formula:

F.a/ D
Z 1

0

E

��Z t

0

1.0<Bs<a/ dBs

�
1.Bt<0/

�
dt:

We set, for t > 0,

V.t/ D E

��Z t

0

1.0<Bs<1/ dBs

�
1.Bt<0/

�
(25)

By scaling,

E

��Z t

0

1.0<Bs<a/ dBs

�
1.Bt<0/

�
D a V.a�2t/:

Hence,

F.a/ D a

Z 1

0

V .a�2t/ dt D a3
Z a�2

0

V .t/ dt: (26)

The result will then follow from the next lemma.
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Lemma 3. For every t > 0,

V.t/ D �1
4

p
2�

Z 1

t�1
.1 � e�2u/ u�3=2 du;

where V.t/ is defined in (25).

Proof. By Tanaka’s formula,

V.t/ D 1

2
E

�
L1t � L0t

�
1.Bt<0/

�
;

where L1t (resp. L0t ) still denotes the local time of the Brownian motion at time t in
1 (resp. 0). Using again

Lxt D lim
"!0

1

"

Z t

0

1.x<Bs<xC"/ ds

we obtain

EŒL0t 1.Bt<0/� D t 1=2p
2�

EŒL1t 1.Bt<0/� D 1

4�

Z t

0

e�1=2s s�1=2
Z t�s

0

e�1=2u u�3=2 du ds: (27)

By (27),

d

dt
EŒL1t 1.Bt<0/� D 1

4�

Z t

0

exp

�
� t
2

1

s .t � s/
�
.t � s/�3=2 s�1=2 ds

and the change of variable s D t .v C 1/�1 yields

d

dt
EŒL1t 1.Bt<0/� D 1

2
p
2�

e�2=t t�1=2:

Thus, we obtain

V.t/ D �1
4

p
2�

Z t

0

.1 � e�2=s/ s�1=2 ds

which yields the desired result. ut
The proposition follows then from the above lemma and (26). ut
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Remark 5. By Lemma 3, limt!1 V.t/ D � 1
2

and V.t/ is equivalent to � 1

2
p
2�
t1=2

when t tends to 0. Therefore, by (26), F.a/ is equivalent to � a
2

when a tends to 0,
and lima!1 F.a/ D � 1

3
p
2�

.

6 An Example of Non-monotony

The following example (which is inspired from Pagès [8, Example 2.4.3]) shows
that there exist functions f and g, satisfying

8s � 0;8x 2 R; 0 � f .s; x/ � g.s; x/ � 1

and such that
R
f .s; Bs/dBs and

R
g.s; Bs/dBs are not comparable in the convex

order. In particular, Proposition 2 does not hold in general, if neither H nor K is
deterministic.

Proposition 10. Set, for a � 0,

Z.a/ D aB1 C
Z 2

1

1.Bs<0/ dBs:

Then, there exists a0 > 0 such that a �! EŒexp.Z.a//� is strictly decreasing
on Œ0; a0�. In particular, if 0 � a1 < a2 � a0, then Z.a1/ and Z.a2/ are not
comparable in the convex order.

Proof. We begin with the following lemma.

Lemma 4. We set, for x 2 R,

E.x/ D E

�
exp

�Z 1

0

1.Bs<x/ dBs

��
:

Then, for every x 2 R, E0.x/ > 0, and hence E is strictly increasing on R.

Proof. For x � 0, E.x/ D EŒexp.Y.x//�, and, for x � 0, E.x/ D EŒexp.�X.�x//�.
The result follows then from Corollaries 1 and 2. ut

We have:

Z.a/ D aB1 C
Z 1

0

1. QBs<�B1/ d QBs

with QBs D B1Cs � B1. Since . QBs/0�s�1 is independent of B1, one obtains:

EŒexp.Z.a//� D EŒexp.aB1/E.�B1/�:
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Hence,

d

da
EŒexp.Z.a//�

ˇ̌
ˇ̌
aD0

D EŒB1 E.�B1/�:

Since x �! E.�x/ is strictly decreasing by Lemma 4 and x �! x is strictly
increasing,

d

da
EŒexp.Z.a//�

ˇ̌
ˇ̌
aD0

< EŒB1�EŒE.�B1/� D 0:

This entails the desired result. ut
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Application of '-Sub-Gaussian Random
Processes in Queueing Theory

Yuriy V. Kozachenko and Rostyslav E. Yamnenko

Abstract The chapter is devoted to investigation of the class V.';  / of
'-sub-Gaussian random processes with application to queueing theory. This class of
stochastic processes is more general than the Gaussian one; therefore, all results
obtained in general case are valid for Gaussian processes by selection of certain
Orlicz N -functions ' and  . We consider different queues filled by an aggregate of
such independent sources and obtain estimates for the tail distribution of some
extremal functionals of incoming random processes and their increments which
describe behavior of the queue. We obtain the upper bound for the buffer overflow
probability for the corresponding storage process and apply obtained result to the
aggregate of sub-Gaussian generalized fractional Brownian motion processes.

1 Introduction

Consider a single server queue that is filled by the aggregate of N independent
(uncorrelated) random sources Xi D fXi.t/; t 2 T g, where T is some parametric
set, e.g., an interval Œa; b�. Our main interest is focused on studying the distribution
of the following functionals that depend on the incoming aggregate and characterize
the behavior of the queue:

sup
t2T

 
NX
iD1

Xi .t/ � f .t/
!
;

sup
s�t; s;t2T

 
NX
iD1

Xi .t/ � f .t/ �
 

NX
iD1

Xi .s/ � f .s/
!!

;
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and

sup
s;t2T

sup
s�t

 
NX
iD1

Xi .t/ � f .t/ �
 

NX
iD1

Xi .s/ � f .s/
!!

;

where f .t/ is a continuous function which describes intensity of the queue serving.
Here we summarize recent studies [6–8, 13–18] for a general class of incoming

processes Xi . We assume that incoming streams belong to the class V.';  / and
study the buffer overflow probability for the storage process Q.t/. Our results
are illustrated by sub-Gaussian generalized fractional Brownian motion (GFBM).
Recall that the normalized FBM process with Hurst parameter H 2 .0:5; 1/ is
the Gaussian centered process with stationary increments, continuous paths, and
covariance function of the form

RH.t; s/ D �
t 2H C s2H � js � t j2H � =2: (1)

Its long-range dependence and self-similarity properties make the FBM process a
natural choice for modeling traffic through telecommunication networks (see more
results on FBM storage models in [1, 10–12]).The paper is organized as follows.
Section 2 is devoted to the general theory of '-sub-Gaussian random processes and
is based on the works [2–6, 8, 9, 13, 18]. In Sect. 3 we consider the storage process
from the class V.';  / with application to GFBM processes.

2 Random Variables from Spaces SUB'.˝/, SSUB'.˝/,
and Class V.'; /

This section contains some basic notions, definitions and properties of random
variables, and processes from the spaces SUB'.˝/, SSUB'.˝/, and the class
V.';  /.

Let .˝;F;P/ be a standard probability space and let .T; �/ be a pseudometric
(metric) compact space equipped by pseudometric (metric) �.

Definition 1 ([2]). Metric entropy with regard to pseudometric (metric) � or just
metric entropy is a function

H.T;�/.u/ D HT .u/ D H.u/ D
�

log N.T;�/.u/; if N.T;�/.u/ < C1
C1; if N.T;�/.u/ D C1 ;

where N.T;�/.u/ D NT .u/ D N.u/ denotes the least number of closed �-balls with
radius u covering space .T; �/.
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Example 1. If T is an interval Œa; b� and � is the Euclidean distance, then

ln

�
max

�
b � a
2u

; 1


�
� H.u/ � ln

�
b � a
2u

C 1

�
:

Definition 2 ([2]). A continuous even convex function ' is said to be an Orlicz
N -function if it is strictly increasing for x > 0, '.0/ D 0 and

'.x/

x
! 0 as x ! 0 and

'.x/

x
! 1 as x ! 1:

Example 2. The following functions are N -functions.

• '.x/ D ˛jxjˇ; ˛ > 0; ˇ > 1I
• '.x/ D expfjxjg � jxj � 1I
• '.x/ D expf˛jxjˇg � 1; ˛ > 0; ˇ > 1I
• '.x/ D

( �
e˛=2

�2=˛
x2; jxj � �

2=˛
�1=˛I

expfjxj˛g; jxj > �2=˛�1=˛; 0 < ˛ < 1:
Condition Q ([3]). We say that an N -function ' satisfies Condition Q if

lim inf
x!0

'.x/

x2
D ˛ > 0: (2)

It is permitted ˛ to be infinite.

Example 3. Condition Q is fulfilled for N -function '.x/ D cjxjˇ; c > 0; when
1 < ˇ � 2 and is not fulfilled when ˇ > 2.

Definition 3 ([2]). Let ' be an Orlicz N -function satisfying Condition Q. The
random variable 	 belongs to the space SUB'.˝/ (a space of '-sub-Gaussian
random variables), if it is centered, i.e., E	 D 0, the moment generating function
E expf�	g exists for all � 2 R and there exists a positive constant a such that the
following inequality

E exp .�	/ � exp .'.a�// (3)

holds for all � 2 R.

Theorem 1 ([2]). The space SUB'.˝/ is a Banach space with respect to the norm

'.	/ D inffa � 0W E exp .�	/ � exp.'.a�//; � 2 Rg and the inequality

E exp.�	/ � exp
�
'
�
�
'.	/

��
; (4)

holds for all � 2 R: Moreover, for all r > 0 there exists constant cr > 0 such that

.E	r /1=r � cr
'.	/: (5)
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When '.x/ D x2=2, the space SUB'.˝/ is called the space of sub-Gaussian
random variables and is denoted by SUB.˝/: The simplest examples of sub-
Gaussian random variables are the following:

• Centered Gaussian random variables 	 D N.0; �2/ belong to the space SUB.˝/

and 
.	/ D .E	2/1=2.
• Let 	 be a centered bounded random variable, i.e., E	 D 0, and there exists

number c > 0 that j	j � c almost surely. Then 	 2 SUB.˝/ and 
.	/ � c.

Theorem 2 ([8]). Let 	 2 SUB'.˝/. Then for all " > 0 the following inequality
holds:

P fj	j > "g � 2 exp

�
�'

�
"


'.	/

�

:

Definition 4 ([2]). Random processX D fX.t/; t 2 T g is called a '-sub-Gaussian
process if for all t 2 T X.t/ 2 SUB'.˝/.

Condition ˙ . Suppose there exists such a continuous monotonically increasing
function � D f�.h/; h > 0g that �.h/ ! 0, as h ! 0, and the following inequality
for increments of the process is true:

sup
�.t;s/�h


'.Y.t/ � Y.s// � �.h/: (6)

If a process X.t/ is continuous in norm 
'.�/, then the function

�.h/ D sup
�.t;s/�h


'.Y.t/ � Y.s//

satisfies Condition ˙ .

Theorem 3 ([2]). Let ' be an Orlicz N -function satisfying Condition Q and the
function '.

p � / be convex. Suppose that 	1; 	2; : : : ; 	n are independent random
variables from the space SUB'.˝/. Then


2'

� nX
iD1

	i

�
�

nX
iD1


2'.	i /: (7)

Definition 5 ([4]). A family of random variables � from the space SUB'.˝/ is
called strictly SUB'.˝/, if there exists a constant C� > 0 such that for arbitrary
finite set I W 	i 2 �; i 2 I and for any �i 2 R, the following inequality takes place:


'

�X
i2I

�i 	i

�
� C�

 
E
�X
i2I

�i 	i

�2!1=2
: (8)
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If � is a family of strictly SUB'.˝/ random variables, then linear closure � of the
family � in the space L2.˝/ is also strictly SUB'.˝/ family of random variables.
Linearly closed families of strictly SUB'.˝/ random variables form a space of
strictly '-sub-Gaussian random variables. This space is denoted by SSUB'.˝/.

When '.x/ D x2=2, the space SSUB'.˝/ is called the space of strictly sub-
Gaussian random variables and is denoted as SSUB.˝/: The space of jointly
Gaussian random variables belongs to the space SSUB.˝/ and 
2.	/ D E	2, i.e.,
C� D 1.

Definition 6 ([2]). A random process X D fX.t/; t 2 T g is a strictly '-sub-
Gaussian process if the corresponding family of random variables belongs to the
space SSUB'.˝/.

Example 4 ([4]). Let ' be such an Orlicz N -function that the function '.
p � / is

convex and

X.t/ D
1X
kD1

	k�k.t/;

where series
1P
kD1

	k�k.t/ converges in mean square sense for all t 2 T and

family f	k; k � 1g belongs to the space SSUB'.˝/, for instance, f	k; k � 1g
are independent random variables from SSUB'.˝/. Then X.t/ is a strictly '-sub-
Gaussian random process.

Example 5 ([7]). We call the process ZH D .ZH.t/; t 2 T / strictly '-sub-
Gaussian GFBM with Hurst index H 2 .0; 1/, if ZH is a strictly '-sub-Gaussian
process with stationary increments and covariance function as defined by (1).

In order to give an example of such a process, let’s consider a sequence of
independent strictly '-sub-Gaussian random variables f
n; n D 1; 2; : : :g for which
E
n D 0, E
2n D 1, and ' is such an N -function that function '.

p�/ is convex

and 
'.
n/ � 
 < C1. Then the process ZH.t/ D
1P
nD1

�n
n n.t/ is a centered

strictly '-sub-Gaussian random process with covariance functionRH from (1), if �n
are eigenvalues and  n are corresponding eigenfunctions of the following integral
equation:

 .s/ D ��2
Z T

0

RH.t; s/ .t/ dt:

Definition 7 ([6]). N -function ' is subordinated by an Orlicz N -function
 (' �  ) if there are exist such numbers x0 > 0 and k > 0 that '.x/ <  .kx/

for x > x0:
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Theorem 4 ([13]). Let '1 and '2 be such N -functions that '1 � '2. If 	 2
SUB'1.˝/, then 	 2 SUB'2.˝/, and there exists such a constant c'1;'2 that

'2.	/ � c'1;'2
'1.	/.

Definition 8 ([6]). Let ' �  are two Orlicz N -functions. Random process X D
fX.t/; t 2 T g belongs to class V.';  / if for all t 2 T the random variable X.t/ is
from SUB .˝/ and, for all s; t 2 T increments .X.t/ �X.s// belong to the family
SUB'.˝/.

Example 6. Sub-Gaussian random processes belong to the class V.'; '/ with
'.x/ D x2=2.

Example 7. Let

X.t/ D 	0 C
1X
kD1

	kfk.t/;

where ' is such an Orlicz N -function that '.
p�/ is a convex function. Let 	0 be a

 -sub-Gaussian random variable and f	k; k D 1; 2; : : :g be a sequence of '-sub-

Gaussian random variables such that
1P
kD1


'.	k/jfk.t/j < 1. Then the process X.t/

belongs to the class V.';  /.

Condition F. A continuous function f D ff .t/; t 2 T g satisfies Condition F if

jf .u/ � f .v/j � ı.�.u; v//;

where ı D fı.s/; s > 0g is some monotonically increasing nonnegative function.

Condition R. A continuous function r D fr.u/; u � 1g satisfies Condition R if
r.u/ > 0 when u > 1 and function s.t/ D r.expftg/; t � 0; is convex.

Let B � T be a compact set. In what follows we use the following notation:

• �.u/ D 
 .X.u// < 1;

• ˇ > 0 is such a number that ˇ � �

�
inf
s2B sup

t2B
�.t; s/

�
;

• Bt D fu 2 BW u � tg;
• L.u/ D �

N.u/2 C N.u/
�
=2, where function N.u/ is denoted in Definition 1.

Theorem 5 ([18]). Let X D fX.t/; t 2 Bg be a separable random process from
the class V.';  / which satisfies Condition ˙ . Let functions f D ff .t/; t 2 Bg
and r D fr.u/W u � 1g satisfy Conditions F and R, respectively. If

ˇZ

0

r.N.�.�1/.u/// du < 1;
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then for all p 2 .0; 1/ and x > 0 the following inequality holds

P
�

sup
t2T
.X.t/ � f .t// > x



� inf

�>0
Zr.�; p; ˇ/;

where

Zr.�; p; ˇ/

D exp

(
� .�; p/C p'

�
�ˇ

1 � p
�

C �

 1X
kD2

ı.�.�1/.ˇpk�1// � x
!)

�r.�1/
0
@ 1

ˇp

ˇpZ

0

r.N.�.�1/.u/// du

1
A ; (9)

� .�; p/ D sup
u2T

�
.1 � p/ 

�
��.u/

1 � p
�

� �f .u/
�
: (10)

Example 8 ([18]). Let ZH D fZH.t/; t 2 Œa; b�g, 0 � a < b < 1 be a GFBM
process from the class V.';  / with Hurst index H 2 .0; 1/ and let c > 0 be a

constant service rate. Then for all p 2 .0; 1/, ˇ 2
�
0; .b � a=2/H

i
, and � > 0, the

following inequality holds:

P

(
sup
a�t�b

�
ZH.t/ � ct� > x

)
� .b � a/

�
e

ˇp

�1=H

� exp

�
�c.ˇp/1=H

C�.1 � p1=H / C p'

�
�ˇ

1 � p
�

C .1 � p/� .�; p/ � �x

C�



; (11)

where � .�; p/ D sup
a�u�b

�
 
�
�uH

1�p
	

� �cu
C�.1�p/

	
.

More details on the GFBM process can be found in papers [7, 13–15].

Condition ˙N. We say that independent separable random processes Xi D
fXi.t/; t 2 Bg from classes V.'i ;  i / defined on a compact set B � T

satisfy Condition˙N if there exist such continuous monotone increasing functions
f�i .h/; h � 0g that �i .h/ ! 0 when h ! 0 and

sup
�.t;s/�h


'.Xi .t/ �Xi.s// � �i .h/; (12)

�i .u/ D 
 .Xi .u// < 1; (13)

�.h/ D sup
1�i�N

�i .h/ < 1; i D 1;N: (14)
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Theorem 6. Let random process X.t/ D
NP
iD1

Xi .t/ satisfy the assumptions of

Theorem 5, where functions �i .u/ and �.h/ are given in (13) and (14). Then for
all p 2 .0; 1/ and x > 0, following inequalities hold:

P

(
sup
t2B

 
NX
iD1

Xi .t/ � f .t/
!
> x

)
� Zr.p; ˇ; x/;

P

(
inf
t2B

 
NX
iD1

Xi .t/ � f .t/
!
< �x

)
� Zr.p; ˇ; x/;

P

(
sup
t2B

ˇ̌
ˇ̌
ˇ

NX
iD1

Xi .t/ � f .t/
ˇ̌
ˇ̌
ˇ > x

)
� 2Zr.p; ˇ; x/;

where

Zr.p; ˇ; x/ D r.�1/

0
@ 1

ˇp

ˇpZ

0

r
�
NB.�

.�1/.u//
�

du

1
A

� inf
�>0

exp

(
�'.�; p/C p

NX
iD1

'i

�
�ˇ

1� p

�
C �

 
1X
kD2

ı
�
�.�1/.ˇpk�1/

�� x

!)
;

� .�; p/ D sup
u2B

 
.1� p/

NX
iD1

 i

�
��i .u/

1� p

�
� �f .u/

!
:

Proof. Let V"k denote a set of the centers of closed balls with radii "k D �.�1/.ˇpk/,
p 2 .0; 1/, k D 0; 1; 2; : : :, which forms minimal covering of the space .B; �/.
Number of elements in the set V"k is equal to N.B;�/."k/ D NB."k/.

It follows from Theorem 2 and Condition ˙ that for any " > 0

P fjXi.t/ �Xi.s/j > "g

� 2 exp

�
�'i

�
"


'i .Xi .t/ �Xi.s//
�


� 2 exp

�
�'i

�
"

�.�.t; s//

�

:

Therefore the processesXi.t/ are continuous in probability, and the processX.t/ D
NP
iD1

Xi .t/ � f .t/ is continuous in probability as well. Hence the set V D
1S
kD1

V"k is

a set of separability of the process X and with probability one

sup
t2T

X.t/ D sup
t2V

X.t/: (15)
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Consider a mapping ˛n D f˛n.t/; n D 0; 1 : : :g of the set V D S
V"k into the set

V"n , where ˛n.t/ is such a point from the set V"n that �.t; ˛n.t// < "n. If t 2 V"n ,
then ˛n.t/ D t . If there exist several such points from the set V"n that �.t; ˛n.t// <
"n, then we choose one of them and denote it ˛n.t/.

It follows from Chebyshev’s inequality, Theorem 1, and Condition ˙ that

P
n
jXi.t/ �Xi.˛n.t//j > p n

2

o

� E.Xi .t/ �Xi.˛n.t///2
pn

� c22

2
'.Y.t/ � Y.˛n.t///

pn
� c22�

2."n/

pn
D c22ˇ

2pn;

where c2 is the constant from (5). This inequality implies that

1X
nD1

P
n
jXi.t/ �Xi.˛n.t//j > p n

2

o
< 1:

It follows from the Borel-Kantelli lemma that Xi.t/ � Xi.˛n.t// ! 0 as n ! 1
with probability one. Since the function f is continuous, thenX.t/�X.˛n.t// ! 0

as n ! 1 with probability one as well. Since the set V is countable, then X.t/ �
X.˛n.t// ! 0 as n ! 1 for all t simultaneously.

Let t be an arbitrary point from the set V . Denote by tm D ˛m.t/, tm�1 D
˛m�1.tm/; : : :, t1 D ˛1.t2/ for any m � 1. Since for all m � 2

X.t/ DX.t1/C
mX
kD2
.X.tk/ �X.tk�1//CX.t/ �X.˛m.t//

� max
u2V"1

X.u/C
mX
kD2

max
u2V"k

.X.u/ �X.˛k�1.u//CX.t/ �X.˛m.t//

we have

X.t/ � lim
m!1 inf

 
max
u2V"1

X.u/C
mX
kD2

max
u2V"k

.X.u/�X.˛k�1.u//CX.t/�X.˛m.t///
!

D lim
m!1 inf

 
max
u2V"1

X.u/C
mX
kD2

max
u2V"k

.X.u/�X.˛k�1.u///
!
: (16)

It follows from (15) and (16) that with probability one

sup
t2T

X.t/ � lim
m!1 inf

 
max
u2V"1

X.u/C
mX
kD2

max
u2V"k

.X.u/ �X.˛k�1.u///
!
: (17)
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Let fqk; k D 1; 2; : : :g be such a sequence that qk > 1 and
1P
kD1

q�1
k � 1. It follows

from the Hölder’s inequality, the Fatou’s lemma, and (17) that for all � > 0

E exp

�
� sup
t2T

X.t/




� E lim
m!1 inf exp

(
�

 
max
u2V"1

X.u/C
mX
kD2

max
u2V"k

.X.u/ �X.˛k�1.u///
!)

� lim
m!1 inf E exp

(
�

 
max
u2V"1

X.u/C
mX
kD2

max
u2V"k

.X.u/ �X.˛k�1.u///
!)

� lim
m!1 inf

 �
E exp

�
q1� max

u2V"1
X.u/


�1=q1

�
mY
kD2

�
E exp

�
qk� max

u2V"k
.X.u/ �X.˛k�1.u///


�1=qk!

�
�

E exp

�
q1� max

u2V"1
X.u/


�1=q1

�
1Y
kD2

�
E exp

�
qk� max

u2V"k
.X.u/ �X.˛k�1.u///


�1=qk
: (18)

Consider each of the factors in the right-hand side of (18) separately. It follows
from (4) that for all 1 � i � N

E expfq1�Xi .u/g � expf i.q1��i .u//g

and

E expfqk�.Xi .u/ �Xi.˛k�1.u///g � expf'i .qk��i ."k�1//g:

Therefore,

�
E exp

�
q1� max

u2V"1
X.u/


�1=q1

�
� X

u2V"1
E exp

n
q1�

NX
iD1

Xi .u/
o

exp
n

� q1�f .u/
o�1=q1
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�
� X

u2V"1

NY
iD1

E exp
n
q1�Xi .u/

o
exp

n
� q1�f .u/

o�1=q1

�
�
NB."1/

	1=q1
exp

(
1

q1
sup
u2B

 
NX
iD1

 i .q1��i .u// � q1�f .u/
!)

:

Using the assumption jf .u/ � f .v/j � ı.�.u; v//, we obtain that

�
E exp

�
qk� max

u2V"k
.X.u/ �X.˛k�1.u///


�1=qk

�
�

NB."k/ max
u2V"k

E exp
n
qk�

NX
iD1

�
Xi.u/ �Xi.˛k�1.u//

�o

� exp
n

� qk�
�
f .u/ � f .˛k�1.u//

�o�1=qk �
�
NB."k/

	1=qk

�
 

max
u2V"k

exp

(
NX
iD1

'i
�
qk��."k�1/

�C qk�ı.�.u; ˛k�1.u///
)!1=qk

�
�
NB."k/

	1=qk
exp

(
q�1
k

NX
iD1

'i
�
qk�ˇp

k�1�C �ı
�
�.�1/.ˇpk�1/

�)
:

From inequality (18) after substitution of qk D p1�k=.1 � p/, k � 1, we have

E exp

�
� sup
t2B

X.t/




� exp

( 1X
kD2
.1 � p/pk�1

NX
iD1

'i

�
�ˇ

1 � p
�

C �

1X
kD2

ı
�
�.�1/

�
ˇpk�1��

)

� exp

(
� .�; p/C

1X
kD1
.1 � p/pk�1HB

�
�.�1/

�
ˇpk

��)
: (19)

As in Theorem 5 Condition R implies the next inequality for the function r.t/

exp

( 1X
kD1
.1 � p/pk�1HB

�
�.�1/

�
ˇpk

��) � r.�1/
�
1

ˇp

ˇpZ

0

r
�
NB

�
�.�1/.u/

��
du

�
:

(20)
So, we obtain the assertion of Theorem 6 from (19), (20), and Chebyshev’s
inequality.
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3 Storage Processes

This section is devoted to the study of a storage process with mixed input from class
V.';  /.

Definition 9. We call a random process Q.t/ D fQ.t/; t 2 T g storage process of
the queue with input process X.t/ D fX.t/; t 2 T g if

Q.t/ D sup
s�t

�
X.t/ �X.s/ � .f .t/ � f .s//�; s; t 2 T; (21)

where function f .t/ denotes intensity of queue serving.

If more work arrives than can be processed by the server, then the surplus is
stored in a buffer of size x � 0. Obviously that part of the input received after the
moment when buffer overflow is lost. Therefore estimation of the buffer overflow
probability is an important task in the queueing theory. Such problem can also
be reformulated in terms of the risk theory as estimation of the probability of
bankruptcy for the corresponding risk process, e.g., [1, 15].

The following theorem gives an upper estimate for the tail distribution of a
storage process with aggregate input

Q.t/ D sup
s�t

 
NX
iD1
.Xi .t/ �Xi.s// � .f .t/ � f .s//

!
; s; t 2 B: (22)

Theorem 7. Let Xi D fXi.t/; t 2 Bg be independent separable random processes
from classes V.'i ;  i / defined on a compact set B � T and satisfying Condition
˙N. Let f D ff .t/; t 2 Bg be a continuous function satisfying Condition F, and let
r D fr.u/; u � 1g be a continuous function satisfying Condition R. If, in addition,

Rˇ.t/ D
ˇZ

0

r.NBt .�
.�1/.u/// du < 1; (23)

then for all p 2 .0; 1/ and x > 0 the following inequality holds for the storage
process Q.t/ defined in (22)

P fQ.t/ > xg � Zr.p; t; x/; (24)

where

Zr.p; t; x/ D r.�1/
�
Rˇ.t/=.ˇp/

�

� inf
�>0

W.�; p; t/ exp

(
p

NX
iD1

'i

�
�ˇ

1 � p
�

C �

 1X
kD2

ı
�
�.�1/.ˇpk�1/

� � x
!)

;
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W.�; t; p/ D min fU1.�; t; p/I U2.�; t; p/g ;
.U1.�; t; p//

1=.1�p/

D
NBt .�.�1/.ˇp//C1Z

1

exp

(
NX
iD1

'

 
��
�
2x�.�1/.ˇp/

�
1 � p

!
C �ı.2x�.�1/.ˇp//

1 � p

)
dx;

U2.�; t; p/ D �
NBt .�

.�1/.ˇp//
�1�p

inf
v>1

exp

(
.1 � p/

NX
iD1

 i

�
v��.t/

1 � p
�
=v

��f .t/C max
u2Bt

 
.v � 1/.1 � p/

NX
iD1

 i

�
v��i .t/

.v � 1/.1 � p/
�
=v C �f .u/

!
:

The assertion of Theorem 7 follows from Theorem 6 and comes as a natural
generalization of the results in [17] for a sum of random processes from classes
V.'i ;  i /.

Theorem 8 also follows from Theorem 6 and can be easily obtained through the
generalization of the results of paper [16] for an aggregate of random processes from
classes V.'i ;  i /.

Theorem 8. Let Xi D fXi.t/; t 2 Bg be independent separable random processes
from classes V.'i ;  i / defined on a compact set B � T and satisfying Condition
˙N. Let f D ff .t/; t 2 Bg be a continuous function satisfying Condition F, and let
r D fr.u/; u � 1g be a continuous function satisfying Condition R. If, in addition,
the following condition holds

Z ˇ

0

r
�
L
�
�.�1/.u/

��
du < 1; (25)

then for all p 2 .0; 1/ and x > 0 following estimates hold for the storage process
Q.t/ defined in (22)

P
�

sup
s�t I s;t2B

Q.t/ > x



� Zr.p; x/; (26)

P
�

inf
s�t I s;t2B Q.t/ < �x



� Zr.p; x/; (27)

P
�

sup
s�t I s;t2B

jQ.t/j > x



� 2Zr.p; x/; (28)
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where

Zr.p; t; x/ D r.�1/

 
1

ˇp

Z ˇp2

0

r
�
L
�
�.�1/.u/

��
du

!

� inf
�>0

W.�; p/ exp

(
p

NX
iD1

'i

�
2�ˇ

1�p
�

C�
 
2

1X
kD1

ı
�
�.�1/.ˇpk/

��x
!)

;

W.�; p/ D
 N.�.�1/.ˇp//�1X

lD0

�
N
�
�.�1/.ˇp/

� � l�

� exp

� NX
iD1

'i

�
��.2l�.�1/.ˇp//

1 � p
�

C �ı.2l�.�1/.ˇp//

1 � p

!1�p

:

Example 9. Consider independent centered normalized GFBM processes Xi.t/ D
fXi.t/, t 2 Œa; b�g from classes V. i ; 'i / and N -functions 'i .x/ D x2=x2i ; where
xi > 0 are some constants, i D 1;N. Let f .t/ be a continuous service function with
the following property:

jf .t/ � f .s/j � cjt � sjn; t; s 2 Œa; b�; (29)

where c > 0 and 0 < n � 1 are some constants. It is easy to see that Condition F
holds for the function f .

Let Condition ˙N be fulfilled for processes Xi . Then the following estimates
follow from Theorem 8.

Theorem 9. Let Xi.t/ D fXi.t/, t 2 Œa; b�g be independent GFBM processes with
Hurst indexes Hi 2 .0; 1/ from classes V. i ; 'i / defined by Orlicz N -functions
'.x/ D x2=x2i , i D 1;N, and let f D ff .t/; t 2 Œa; b�g be a continuous function
which satisfies (29). Then for all

p 2
�
0;min

n
.2=3/Hmax I 1=ˇ

oi
and x � 0 (30)

the following estimates hold

P
�

sup
s�t Is;t2B

 
NX
iD1
.Xi .t/ �Xi.s// � .f .t/ � f .s//

!
> x



� Z.p; x/;

P
�

inf
s�t Is;t2B

 
NX
iD1
.Xi .t/ �Xi.s// � .f .t/ � f .s//

!
< �x



� Z.p; x/;

P
�

sup
s�t Is;t2B

ˇ̌
ˇ̌
ˇ

NX
iD1
.Xi .t/ �Xi.s// � .f .t/ � f .s//

ˇ̌
ˇ̌
ˇ > x



� 2Z.p; x/;
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where Hmin D miniD1;NHi , Hmax D maxiD1;NHi ,

Z.p; x/ D .b � a/2
2

.ˇpe/2=Hmax

0
B@

b�a

2.ˇp/1=HmaxX
lD0

�
b � a

2.ˇp/1=Hmax
C 1 � l

�

� exp

(
�
�
x�c.2l/n.ˇp/n=Hmax�2c.ˇp2/n=Hmax=.1�pn=Hmax/

�2
4pˇ2

PN
iD1 x�2

i .4Cp.2l/2Hi /

)!1�p
:

Proof. From (8), (12), and (14), we obtain the following bounds for sub-Gaussian
increments of the aggregate

P
Xi.t/:

�.u/ D sup
iD1;N

f�i .u/g D sup
iD1;N

uHi D
�

uHmin ; 0 � u � 1;

uHmax ; u > 1;
(31)

and

�.�1/.u/ D
�

u1=Hmax ; 0 � u � 1;

u1=Hmin ; u > 1:
(32)

Let r.u/ D u˛ , 0 < ˛ < H
2

. If p � min
n
.2=3/Hmax I 1=ˇ

o
, then b�a

2u1=Hmax >
3
2
, since

u � .2=3/Hmax .b � a=2/Hmax � pˇ � 1. Therefore, we obtain

r.�1/
 
1

ˇp

Z ˇp

0

r
�
L
�
�.�1/.u/

��
du

!

�
 
1

ˇp

Z ˇp

0

 �
b � a
2u1=Hmax

C 1

�2
C b � a
2u1=Hmax

C 1

!˛
=2˛ du

!1=˛

� 1

2

 
1

ˇp

Z ˇp

0

�
b � a
2u1=Hmax

C 3

2

�2˛
du

!1=˛
<
1

2

 
1

ˇp

Z ˇp

0

�
b � a

u1=Hmax

�2˛
du

!1=˛

D .b � a/2
2

.ˇp/2=Hmax

�
1 � 2˛

Hmax

��1=˛
! .b � a/2

2
.ˇpe/2=Hmax ; ˛ ! 0: (33)

Also

1X
kD1

ı
�
�.�1/.ˇpk/

� D
1X
kD1

c.ˇpk/n=Hmax D cˇn=Hmaxpn=Hmax

1 � pn=Hmax
: (34)

Applying (33), (34), and the following chain of transforms to Theorem 5, we obtain
the assertion of Theorem 9 (Fig. 1).
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Fig. 1 Here is depicted upper estimating function Z.p; x/ from Theorem 9 for various sets of
sub-Gaussian GFBM incoming processes considered on interval Œa; b� D Œ0; 1� with the following

values: c D 1, n D 1 (i.e., f .t/ D t ), xi D p
2, ˇ D �

b�a
2

�Hmax D .0:5/Hmax , p D 0:25

(a) N D 1, H D 0:5 (b) N D 1, H D 0:75 (c) N D 5, Hi D 0:9 (d) N D 5,
Hi 2 f0:5; 0:6; 0:7; 0:8; 0:9g

inf
�>0
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iD1
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C �

 
2
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ı
�
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2.ˇp/
1
H max

C 1 � l
!
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exp
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�2

NX
iD1

�
4pˇ2

x2i .1 � p/2 C .2l/2Hi .ˇp/2

x2i .1 � p/2
�



Application of '-Sub-Gaussian Random Processes in Queueing Theory 37

��
 

x

1 � p � 2cˇn=Hmaxpn=Hmax

.1 � p/.1 � pn=Hmax/
� .2l/nc.ˇp/n=Hmax

1 � p

!)!1�p

�

0
B@

b�a

2.ˇp/1=HmaxX
lD0

�
b � a

2.ˇp/1=Hmax
C 1 � l

�

� exp

(
�
�
x � c.2l/n.ˇp/n=Hmax � 2c.ˇp2/n=Hmax=.1 � pn=Hmax/

�2
4pˇ2

PN
iD1 x�2

i .4C p.2l/2Hi /

)!1�p
:

4 Conclusions

The paper summarizes some recent studies that have been made for a general class
V.�;  / of incoming processes Xi . As an example, we consider sub-Gaussian
GFBM storage process with aggregated input formed by independent sources.
We show that obtained estimate for the tail distribution of such storage process
depends on the buffer size x as o

�
exp

˚�˛x2��. Also we provide several illustra-
tions of the buffer overflow probability for different values of Hurst parameter of
the incoming processes.
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A Review on Time-Changed Pseudoprocesses
and Related Distributions

Enzo Orsingher

Abstract Pseudoprocesses governed by higher-order heat-type equations are
considered, and a probabilistic representation of their densities is presented. The
composition of pseudoprocesses Xn.t/, t > 0, with stable processes T 1

n
.t/, t > 0,

produces Cauchy processes which for odd values of n are asymmetric. Cauchy-type
processes satisfying higher-order Laplace equations are considered and some of
their properties are discussed. Pseudoprocesses on a unit-radius circle with densities
obtained by wrapping up their counterparts on the line are examined. Various forms
of Poisson kernels related to the composition of circular pseudoprocesses with
stable processes are considered. The Fourier representation of the signed densities
of circular pseudoprocesses is given and represents an extension of the classical
circular Brownian motion.

1 Pseudoprocesses and Generalized Cauchy Processes

The study of the structure of solutions of higher-order heat-type equations of the
form

(
@
@t

um.x; t/ D �m
@m

@xm
um.x; t/; x 2 R; t > 0; m � 2;

um.x; 0/ D ı.x/;
(1)

where

�m D
(
.�1/m2 C1; if m is even

˙1; if m is odd;
(2)
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has started with the papers by [2, 4, 13, 21]. These mathematicians have shown that
the solutions to (1) have an infinite number of zeros so that they differ from the
fundamental solution of the heat equation because they are sign-varying.

The analysis of the asymptotic behavior of the solutions

um.x; t/ D 1

2�

Z
R

e�iˇxC�m.�iˇ/mtdˇ (3)

in the even-order case has been performed by [14]. This analysis for the casem D 4

was done by [7] and for m D 3 by [1].
A probabilistic representation of the solutions to (1) was recently published by

[18] and can be stated as follows. The structure of the solutions of (1) has the form

u2n.x; t/ D 1

�x
E

�
sin

�
xG2n

�
1

t

��

; x 2 R; n � 1; (4)

u2nC1.x; t/ D 1

�x
E

�
e�bnxG2nC1. 1t / sin anxG

2nC1
�
1

t

�

; x 2 R; n � 1; (5)

where G� .t/ is the generalized gamma r.v. with density

g�.x; t/ D �
x��1

t
e� x�

t ; x > 0; � > 0; t > 0: (6)

The numbers an and bn are defined as

an D cos
�

2.2nC 1/
; bn D sin

�

2.2nC 1/
; (7)

and are related to the asymmetric structure of the solutions to (1) for odd values
of m.

The representation (5) shows that the exponential factor is responsible for the
asymmetric structure of the fundamental solutions to the heat-type equations (1).
Formula (7) shows that the asymmetry decreases as the order of equations increases.
The third-order case is therefore the most asymmetric of all solutions to (1) and takes
the form

u3.x; t/ D 1
3

p
3t

Ai

�
x
3

p
3t

�

D 3t

�x

Z 1

0

e� xy
2 sin

 p
3

2
xy

!
y2e�ty3dy

D � 1

�x

1X
kD1

1

kŠ
sin

�
�k

3

�
�

�
1C k

3

��
� x

3
p
t

�k
: (8)



A Review on Time-Changed Pseudoprocesses and Related Distributions 41

The fourth-order case has been analyzed by several authors and can be represented
in different forms as

u4.x; t/ D 1

2�

Z 1

�1
e

� y2t

22 cos xydy

D 1

2�
p
2t

1
2

1X
kD0

.�1/k
.2k/Š

�

�
k

2
C 1

4

� �p
2jxj
t
1
4

!2k

D 2

Z 1

0

1p
2�s

cos

�
x2

2s
� �

4

�
e� s2

2tp
2�t

ds: (9)

Pseudoprocesses related to the solutions of the mth-order heat equations (1) have
been constructed by several authors. The functions x W t ! x.t/ which can be
regarded as the sample paths of the pseudoprocess X are first introduced. The
cylinders C defined as

C D ˚
x W aj � x.tj / � bj ; j D 1; : : : ; n

�
(10)

with signed measure

�.C/ D
Z b1

a1

: : :

Z bn

an

Y�
p.tj � tj�1I xj � xj�1/

�
dxj ; (11)

where p.x; t/ is the fundamental solution of equation (1) having Fourier repre-
sentation (3) are then considered. The measure (11) is then extended to the field
generated by the cylinder sets. For this construction, see, for example, [7–9, 15, 16]).
Its properties were analyzed in the fourth-order case by [7, 15]. Various types
of functionals related to pseudoprocesses have been investigated recently in a
systematic and general way in a series of papers by [5, 6, 9–11]. See also [12] for a
recent review on pseudoprocesses and related functionals.

Some functionals related to pseudoprocesses have the surprising property of
being genuine r.v.’s. This happens, for example, for the sojourn time

�t D
Z t

0

IŒ0;1� .X.s// ds (12)

for which we have that

Pr f�t 2 dsg
ds

D 1

�

1p
s.t � s/ ; 0 < s < t; (13)

for even-order pseudoprocesses, while for odd-order pseudoprocesses the sojourn
time �t possesses a Beta distribution (see [8, 9]).
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We have investigated compositions of pseudoprocesses and positively skewed
stable processes and obtained the following result. If X2nC1.t/, t > 0, is a
pseudoprocess of order 2n C 1 (i.e., its law is related to (1) for m D 2n C 1),
and T 1

2nC1
.t/, t > 0, is a positively skewed stable process of order 1

2nC1 (i.e., a

stable subordinator of order 1
2nC1 ), then X2nC1

�
T 1
2nC1

.t/
	

, t > 0, is a r.v. with the

following Cauchy distribution for x 2 R (see [18]):

Pr
n
X2nC1

�
T 1
2nC1

.t/
	

2 dx
o

D dx
t cos �

2.2nC1/

�

��
x C t sin �

2.2nC1/
	2 C t 2 cos2 �

2.2nC1/

� :

(14)

The Cauchy r.v. with distribution (14) has therefore the location parameter
�t sin �

2.2nC1/ and the scale parameter equal to t cos �
2.2nC1/ . The asymmetry

of (14) decreases with n increasing and is maximal for the third-order case. The

composition of X2n
�
T 1
2n
.t/
	

yields, for all n, a symmetric Cauchy, and thus we

have that

Pr
n
X2n

�
T 1
2n
.t/
	

2 dx
o

D dx
t

� .t2 C x2/
: (15)

In view of (14) we have the following fine relationship for the Airy functions:

Pr
n
X3

�
T1
3
.t/
	

2 dx
o

dx
D
Z 1

0

1
3

p
3s

Ai

�
xp
33s

�
t

s

1
3

p
3s

Ai

�
t

3
p
3s

�

D
p
3

2�

t

x2 C xt C t 2
: (16)

The r-times iterated pseudoprocess

Zr.t/ D X2nC1
�
T 1 1
2nC1

�
T 2 1
2nC1

�
� � �
�
T r 1
2nC1

.t/
	

� � �
			

(17)

is for any t > 0 a stable r.v. of order 1
.2nC1/r and possesses the characteristic function

EeiˇZr .t/ D e�t jˇj
1

.2nC1/r�1
�

cos
�

2.2nC 1/r
C i sin

�

2.2nC 1/r

�
: (18)

For r D 1 we retrieve result (14) because

EeiˇZ1.t/ D e
�t jˇj

�
cos �

2.2nC1/Ci sin �
2.2nC1/

	
(19)

which is the characteristic function of the Cauchy r.v. with density (14).
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For pseudoprocesses related to

@

@t
u D � @2kC1

@x2kC1 u (20)

the composition X2nC1
�
T 1
2nC1

.t/
	

has distribution:

Pr
n
X2kC1

�
T 1
2kC1

.t/
	

2 dx
o

D
dx t cos �

2.2kC1/
�

��
x C .�1/kC1t sin �

2.2kC1/
	2 C t2 cos2 �

2.2kC1/
� :

(21)

The density function (21) is a solution to the higher-order Laplace equation

�
@2kC1

@t2kC1 C @2kC1

@x2kC1

�
u D 0: (22)

The characteristic function of (21) has the form

U .ˇ; t/ D
Z 1

0

eiˇx Pr
n
X2kC1

�
T 1
2kC1

.t/
	

2 dx
o

D e
�t jˇj cos �

2.2kC1/�i.�1/kC1tˇ sin �
2.2kC1/

D e�t jˇje� i�
2.2kC1/

ˇ
jˇj

.�1/kC1

: (23)

The Fourier transform of (22) becomes

�
@2kC1

@t2kC1 C .�iˇ/2kC1
�
U.ˇ; t/ D 0; (24)

and the derivative of (23) is therefore

@2kC1

@t2kC1 U.ˇ; t/ D
�

�jˇje� i�
2.2kC1/

ˇ

jˇj .�1/
kC1

�2kC1
U.ˇ; t/

D .�jˇj/2kC1 e� i�
2 .�1/

.kC1/.2kC1/

�
ˇ

jˇj

�2kC1

U.ˇ; t/

D �
�

�i jˇj ˇjˇj
�2kC1

U.ˇ; t/

D � .�iˇ/2kC1U.ˇ; t/: (25)
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We note also that the asymmetric Cauchy densities of the form

f .x; t Im/ D 1

�

t cos �
2m�

x C t sin �
2m

�2 C t 2 cos2 �
2m

(26)

are solutions of the second-order equation
�
@2

@t2
C @2

@x2

�
f D 2 sin

�

2m

@2

@x@t
f (27)

as proved in [19].
A different class of higher-order Cauchy distributions is obtained by considering

Laplace equations of the form (see [19])
�
@2

n

@t2
n C @2

n

@x2
n

�
u D 0; n � 1: (28)

In this case we arrive at densities with the following structure:

p2n.x; t/ D t .x2 C t 2/

2n�2� .x2n C t 2
n
/
g.x; t/ (29)

where g.x; t/ is a polynomial of order 2n � 22. For n D 2 we have

p4.x; t/ D t .x2 C t 2/p
2�.x4 C t 4/

(30)

which is the distribution of F .Tt / of the Fresnel pseudoprocess F with the first
passage time Tt D inf fs W B.s/ D tg of a Brownian motion B through level t (on
this point consult [17]). The density (30) as well as (29) have a bimodal structure.
The explicit form of (29) can be given in several different forms as

p2n.x; t/ D 1

2n�1�

2n�1�1X
kD�.2n�1�1/

k odd

te
i�k
2n

x2 C
�
te

i�k
2n

	2

D t .x2 C t 2/

2n�2�

2n�1�1X
kD1

k odd

cos k�
2n

x4 C t 4 C 2x2t2 cos k�
2n�1

: (31)

Each component of (31) is obtained by folding and symmetrizing the density of
the r.v.

V.t/ D C

�
t cos

k�

2n

�
� t sin

k�

2n
; (32)

where C.t/, t > 0, is the symmetric Cauchy process.
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2 Pseudoprocesses on Circles

In this section we consider pseudoprocesses �n.t/, t > 0, on a unit-radius
ring R . They can be obtained by wrapping up around R the sample paths of
pseudoprocesses Xn.t/, t > 0, on the line (see [20]). Increasing sample paths of
Xn correspond to trajectories running counterclockwise on R . The distributions
of �n.t/, t > 0, can be obtained by wrapping up those of Xn.t/ in the same way as
in the case of circular Brownian motion. If we denote by vn.�; t/ the density of the
signed measure related to �n.t/, we have that it solves the initial-value problem

(
@
@t
vn.�; t/ D cn

@n

@�n
vn.�; t/; � 2 Œ0; 2��; t > 0;

vn.�; 0/ D ı.�/:
(33)

The constants cn coincide with those of the pseudoprocesses on the line defined
in (2). The Fourier expansion of the solutions to (33) has the following form:

(
v2n.�; t/ D 1

2�
C 1

�

P1
kD1 e�k2nt cos k�;

v2nC1.�; t/ D 1
2�

C 1
�

P1
kD1 cos

�
k2nC1t C k�

�
:

(34)

We observe that for n D 1we extract from (34) the Fourier expansion of the circular
Brownian motion (with infinitesimal variance equal to 2). For n D 1 the second
formula represents a sort of discretized Airy function. In both cases they represent
the Fourier expansion of the wrapped up laws (5). In other words (34) is obtained
by expanding

8<
:
v2n.�; t/ D P1

mD�1
1

�.�C2m�/
E
˚
sin
�
an.� C 2m�/G2n

�
1
t

���
v2nC1.�; t/ D P1

mD�1
1

�.�C2m�/
E

n
e�bn..�C2m�/G2nC1. 1t // sin

�
an.� C 2m�/G2nC1

�
1
t

��o
;

(35)

where G2nC1 � 1
t

�
, an, bn, are defined by (6) and (7), respectively. Circular even-

order pseudoprocesses after a small initial time interval (when their density measure
is sign-varying) become genuine r.v.’s. For t ! 1 their distributions become
uniform on the ring R (see Fig. 1).

The process obtained as the composition of circular Brownian motion B with the
inverse of a stable subordinator L�.t/, t > 0, 0 < � � 1, defined as

L�.t/ D inf fs > 0 W H�.s/ � tg ; (36)

where H�.t/ is a positively skewed stable process, has a distribution governed by a
higher-order fractional equation (see [20]). In other words

v�2n.�; t/ d� D Pr fB .L�.t// 2 d�g (37)
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Fig. 1 The distributions of the fourth-order circular pseudoprocess for different values of t

solves
8<
:

@�

@t�
v�2n.�; t/ D �

�
� @2

@�2

	n
v�2n.�; t/

v�2n.�; 0/ D ı.�/:
(38)

The fractional derivative in (38) must be understood in the Dzerbayshan–Caputo
sense, that is as

@�

@t�
v�2n.�; t/ D 1

� .1 � �/
Z t

0

@
@s
v�2n.�; s/

.t � s/� ds: (39)

The explicit form of the solution to (38) is

v�2n.�; t/ D 1

2�

 
1C 2

1X
kD1

E�;1
��k2nt�� cos k�

!
; (40)

where

E�;1 .x/ D
1X
kD0

xk

� .�k C 1/
; x 2 R; t > 0; (41)

is the Mittag-Leffler function. For � D 1, we retrieve from (40) the solutions (34)
of higher-order circular heat equations.

Wrapped up stable symmetric process can be represented as B
�
Hˇ.t/

�
, t > 0,

B is a circular Brownian motion stopped at the positively skewed stable process
Hˇ.t/, t > 0. Furthermore their probability distributions
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pˇ.�; t/ D 1

2�

 
1C 2

1X
kD1

e
�
�
k2

2

	ˇ
t cos k�

!
(42)

are solutions to the space-fractional equation
8<
:

@
@t
pˇ.�; t/ D �

�
� 1
2
@2

@�2

	ˇ
pˇ.�; t/

pˇ.�; 0/ D ı.�/:
(43)

The differential operator appearing in (43) has the following integral representation
(see [3]):

�
�1
2

@2

@�2

�ˇ
D � sin�ˇ

2

Z 1

0

�
�C

�
�1
2

@2

@�2

���1
�ˇ d�: (44)

Fractionality in time and space leads to the equation
8<
:

@�

@t�
p�;ˇ.�; t/ D �

�
� 1
2
@2

@�2

	ˇ
p�;ˇ.�; t/

p�;ˇ.�; 0/ D ı.�/;
(45)

whose solutions have the following form:

p�;ˇ.�; t/ D 1

2�
C 1

�

1X
kD1

E�;1

 
�
�
k2

2

�ˇ
t�

!
cos k�: (46)

The distribution (46) coincides with the law of

F �;ˇ.t/ D B
�
Hˇ .L�.t//

�
(47)

as the following check shows:

Pr
˚

F �;ˇ.t/ 2 d��

D d�

Z 1

0

Pr fB.s/ 2 d�g
Z 1

0

Pr
˚
Hˇ.w/ 2 ds�Pr fL�.t/ 2 dwg

D d�

2�
C d�

�

Z 1

0

1X
kD1

e� k2

2 s cos k�
Z 1

0

Pr
˚
Hˇ.w/ 2 ds�Pr fL�.t/ 2 dwg

D d�

2�
C d�

�

Z 1

0

1X
kD1

e
�
�
k2

2

	ˇ
w cos k� Pr f�.t/ 2 dwg

D d�

2�
C d�

�

1X
kD1

cos k�E�;1

 
�
�
k2

2

�ˇ
t�

!
: (48)
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3 Poisson Kernels

The composition of pseudoprocesses on the ring R with positively skewed random
variables leads to Poisson kernels of various forms (see [20]). We recall that the
general form of the Poisson kernel is

P .�; r I ;R/ D R2 � r2
� ŒR2 C r2 � 2rR cos . � �/� ; r < RI  ; � 2 Œ0; 2��:

(49)

Here we consider the circular counterpart of the composition of pseudoprocesses on
the line which leads to Cauchy processes (see [19]). In both cases pseudoprocesses
stopped at suitably chosen stable processes give rise to genuine random variables.
The circular pseudoprocesses �2n stopped at times represented by the subordinator
H

1
2n .t/, t > 0, have the probability density

Pr
n
�2n

�
H

1
2n .t/

	
2 d�

o
D d�

2�

1 � e�2t

1C e�2t � 2e�t cos �
; 0 < � < 2� (50)

with distribution function

Pr
n
�2n

�
H

1
2n .t/

	
< �

o
D
(
1
�

arctan 1Ce�t

1�e�t tan �
2
; 0 < � < �

1C 1
�

arctan 1Ce�t

1�e�t tan �
2
; � < � < 2�:

(51)

The Poisson kernel can be interpreted as the distribution of the hitting point on R
of a planar Brownian motion starting from .0; e�t /. If 
R D inf ft > 0 W B.t/ 2 R g,
we have therefore the following equality in distribution:

B
�

R
� lawD �2n

�
H

1
2n .t/

	
: (52)

In the odd-order case the composition �2nC1
�
H

1
2nC1 .t/

	
has the probability

density

Pr
n
�2nC1

�
H

1
2nC1 .t/

	
2 d�

o
D d�

2�

1 � e�2ant

1C e�2ant � 2e�ant cos.� C bnt/
; (53)

where

an D cos
�

2.2nC 1/
; bn D sin

�

2.2nC 1/
: (54)

While the distribution (50) is independent from n, the distribution (53) changes
with n and its asymmetry decreases with increasing values of n. For n ! 1 the
density (53) takes the form (50). The distribution (53) corresponds to the law of
the hitting point of a planar Brownian motion starting from the point with polar
coordinates .e�ant ;�bnt/. The densities (50) and (53) converge in distribution to
the uniform law as t ! 1.
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4 Circular Fresnel Pseudoprocesses

The equation of vibrations of rods

@2

@t2
u D � 1

22
@4

@x4
u; x 2 R; t > 0; (55)

has fundamental solution

u.x; t/ D 1p
2�t

cos

�
x2

2t
� �

4

�
: (56)

On the base of (64), it is possible to construct a non-Markovian pseudoprocess with
measure of cylinders given by

�.C/ D
Z b1

a1

� � �
Z bn

an

.2�/� n
2Qn

jD1
p
tj � tj�1

cos

0
@ nX
jD1

�
xj � xj�1

�2
2.tj � tj�1/

� n�
4

1
A nY
jD1

dxj :

(57)

The wrapped up density

f .�; t/ D 1p
2�t

1X
mD�1

cos

�
.� C 2m�/2

2t
� �

4

�
(58)

has Fourier expansion

f .�; t/ D 1

2�
C 1

�

1X
kD1

cos
k2t

2
cos k� (59)

and solves

(
@2

@t2
f D � 1

22
@4

@�4
f; � 2 Œ0; 2��;

f .�; 0/ D ı.�/:
(60)

The law (59) can be regarded as the superposition of two circular Brownian
motions running on R and taken formally at imaginary times ˙i t . This construction
is similar to that of Fresnel pseudoprocess on the line developed in [17]. The
composition of the Fresnel pseudoprocess F with the positively skewed stable
processes Hˇ.t/, t > 0, has density

f ˇ.�; t/ D 1

2�
C 1

2�

1X
kD1

cos k�e� k2ˇ

2 t cos ˇ�2 cos

�
k2ˇt

2ˇ

�
sin

ˇ�

2
: (61)
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The composition F .L�.t// where L�.t/ is the inverse of H� has density

f �.�; t/ D 1

2�
C 1

�

1X
kD1

cos k�E2�;1

�
� t

2�k4

200

�
(62)

and solves the time fractional equation

@2�

@t2�
f �.�; t/ D � 1

22
@4

@�4
f �.�; t/ (63)

which includes the equation of vibrations of rods when � D 1.
For � D 1

2
we extract from (62) the Fourier expansion of the fourth-order heat

equation on the ring R . For � D 1, since E2;1 .�x/ D cos
p
x we retrieve (59).

The superposition of Poisson kernels is obtained by considering Brownian
motions starting from .r; �/ where � is a r.v. which takes values ˙ with equal
probability 1

2
. The Poisson kernel becomes

EP .r; �;R;˚/ D 1

2�

�
1

2
P .r;C ;R; �/C 1

2
P .r;� ;R; �/

�

D 1

2�

�
R1 � r2� �R2 C r2 � 2rR cos 

�
.R2 C r2 � 2rR cos cos�/2 � .2rR sin sin�/2

; (64)

where

P .r;˙ ;R; �/ D R2 � r2
2� .R2 C r2 C 2rR cos .� ˙  //

: (65)

The expression (64) considerably simplifies for � D ˙�
2

and becomes

EP
�
r; � D ˙�

2
;R; �

	
D 1

2�

R4 � r4
R4 C r4 C 2rrR2 cos 2�

: (66)

In the case of the Fresnel pseudoprocesses one must take F .
t /, 
t D
inf fs W B.s/ D tg, and the Poisson kernel becomes

f 
t .�; t/ D 1

22�

�
1 � r21

1C r21 � 2r1 cos �
C 1 � r22
1C r22 � 2r1 cos �

�
(67)

with

r1 D e
� tp

2
.1�i/

; r2 D e
� tp

2
.1Ci/

: (68)
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Reciprocal Processes: A Stochastic Analysis
Approach

Sylvie Rœlly

Abstract Reciprocal processes, whose concept can be traced back to
E. Schrödinger, form a class of stochastic processes constructed as mixture of
bridges. They are Markov fields indexed by a time interval. We discuss here a new
unifying approach to characterize several types of reciprocal processes via duality
formulae on path spaces: The case of reciprocal processes with continuous paths
associated to Brownian diffusions and the case of pure jump reciprocal processes
associated to counting processes are treated. This chapter is based on joint works
with M. Thieullen, R. Murr, and C. Léonard.

1 Introduction and Historical Remarks

The theory of reciprocal processes evolved from an idea by Schrödinger. In [25],
he described the motion of a Brownian particle under constraints at initial and
final times as a stochastic variational problem and proposed that its solutions are
stochastic processes that have the same bridges as the Brownian motion. Bernstein
called them réciproques and pointed out that they are Markov fields indexed by time,
which allows to state probabilistic models based on a symmetric notion of past and
future: ces grandeurs deviennent stochastiquement parfaites! See [1].

Various aspects of reciprocal processes have been examined by several authors.
Many fundamental reciprocal properties were given by Jamison in a series of
articles [12–14], first in the context of Gaussian processes. Contributions to a
physical interpretation and to the development of a stochastic calculus adjusted to
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reciprocal diffusions have been made by Zambrini and various coauthors in their
interest of creating a Euclidean version of quantum mechanics (see [8, 27] and the
monograph [6]). Krener in [17] and then Clark in [7] exhibited reciprocal invariants
associated with classes of reciprocal diffusions.

This chapter reviews and unifies for the first time current results on characterizing
various types of reciprocal processes by duality formulae.

A first duality formula appeared under the Wiener measure as an analytical tool
in Malliavin calculus; see [2]. It is an integration by parts on the set of continuous
paths, which reflects the duality between a stochastic derivative operator and a
stochastic integral operator. In [24], the authors indeed characterize the Brownian
motion as the unique continuous process for which the Malliavin derivative and the
Skorohod integral are dual operators.

In the framework of jump processes, a characterization of the Poisson process as
the unique process for which a difference operator and a compensated stochastic
integral are in duality was first given by Slivnjak [26] and extended to Poisson
measures by Mecke [19].

We present here duality formulae as unifying tool to characterize classes of
reciprocal processes in following contexts:

• In the framework of Brownian diffusions, reviewing results of [22, 23]
• In the framework of pure jump processes, namely, counting processes, following

the recent studies of Murr [20]

2 Reciprocal Processes and Reciprocal Classes

We mainly work on the canonical càdlàg path space ˝ D D.Œ0; 1�;R/ or some
subset of it. It is endowed with the canonical � -algebra A; induced by the canonical
process X D .Xt /t2Œ0;1�.

For a time interval Œs; u� � Œ0; 1� one defines:

• XŒs;u� WD .Xt /t2Œs;u�
• AŒs;u� WD �.XŒs;u�/; internal story of the process between time s and time u

P.˝/ denotes the space of probability measures on ˝.
For a probability measure P 2 P.˝/,

P01 WD P ı .X0;X1/�1 2 P.R2/

denotes its endpoint marginal law.
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2.1 Definition and First Properties

Definition 1. The probability measure P 2 P.˝/ is reciprocal, or the law of a
reciprocal process, if for any s � u in Œ0; 1� and any event A 2 AŒ0;s�; B 2
AŒs;u�; C 2 AŒu;1�,

P.A \ B \ C j Xs;Xu/ D P.A \ C j Xs;Xu/P.B j Xs;Xu/P -a.e. (1)

| |

s u 10

| |
A B C

This property—which is time symmetric—makes explicit the conditional indepen-
dence under P of the future of u and the past of s with the events happened between
s and u, given the � -algebras at boundary times s and u.

The reciprocality can be expressed in several equivalent ways.

Theorem 1. Let P 2 P.˝/. Following assertions are equivalent:

(1) The probability measure P is reciprocal.
(1*) The reversed probability measure P � WD P ı .X1��/�1 is reciprocal.

(2) For any 0 � s � u � 1 and B 2 AŒs;u�

P.B j XŒ0;s�; XŒu;1�/ D P.B j Xs;Xu/: (2)

(3) For any 0 � v � r � s � u � 1; and A 2 AŒv;r�, B 2 AŒs;u�;

P.A \ B j XŒ0;v�; XŒr;s�; XŒu;1�/ D P.A j Xv;Xr/P.B j Xs;Xu/:

| | | |

sr uv 10

| |
A B

Proof. See, e.g., Theorem 2.3 in [18]. ut
The identity (2) points out that any reciprocal process is a Markov field

parametrized by the time interval [0,1]: To condition events between s and u,
knowing the future of u and past of s is equivalent to condition them knowing only
the � -algebras at both times s and u. This property is sometimes called two-side
Markov property. Therefore
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Proposition 1. Any Markov process is reciprocal but the inverse is false.

Proof. The first assertion was first done in [12] in a Gaussian framework.
Take P the law of a Markov process, 0 � s � u � 1 and A 2 AŒ0;s�; B 2 AŒs;u�,

and C 2 AŒu;1�. The following holds:

P.A \ B \ C/ D EŒP.A \ B \ C j XŒs;u�/�
�D EŒP.A j Xs/1BP.C j Xu/�

D EŒP.A j Xs/P.B j Xs;Xu/P.C j Xu/�

�D EŒP.A j Xs/P.B j Xs;Xu/P.C j XŒ0;u�/�
D EŒP.A j Xs/P.B j Xs;Xu/1C �
�D EŒP.A j XŒs;1�/P.B j Xs;Xu/1C �

D EŒ1AP.B j Xs;Xu/1C �;

where the Markov property was used to prove equalities with *. Therefore, (2) holds
and P is reciprocal.

As a counterexample, take, e.g., the periodic process constructed in Sect. 3.1.4.
ut

Indeed a canonical method to construct reciprocal processes is to mix Markovian
bridges. Take P 2 P.˝/ the law of a Markov process whose bridges .P xy/x;y2R
can be constructed for all x; y 2 R as a regular version of the family of conditional
laws P.� j X0 D x;X1 D y/; x; y 2 R. (It is a difficult challenge in a general
non-Markov setting, but it is already done if P is a Lévy process, see [15, 21]
Proposition 3.1, or if P is a right process [11] or a Feller process, see the recent
paper [4].) One can now associate with P a class of reciprocal processes as follows.

Definition 2. The set of probability measures on ˝ obtained as mixture of bridges
of P 2 P.˝/,

Rc.P / WD fQ 2 P.˝/ W Q.�/ D
Z
R�R

P xy.�/Q01.dxdy/g; (3)

is the so-called reciprocal class associated with P .

This concept was introduced by Jamison in [13] in the case of a Markov reference
process P whose transition kernels admit densities.

Note that, in spite of its name, a reciprocal class is not an equivalence class
because the relation is often not symmetric: The periodic process P per constructed
in Sect. 3.1.4 belongs to Rc.P / but P 62 Rc.P

per/ if P is not periodic.

Proposition 2. Any process in the reciprocal class Rc.P / is reciprocal and its
bridges coincide a.s. with those of P .
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Proof. Let Q 2 Rc.P / as in (3). Let us show that Q satisfies (2). Let 0 � s �
t � 1, A 2 AŒ0;s�; B 2 AŒs;u�, and C 2 AŒu;1�. Then

EQŒ1AQ.B j XŒ0;s�; XŒu;1�/1C � D Q.A \ B \ C/ D
Z
R�R

Pxy.A \ B \ C/�.dxdy/

XD
Z
R�R

EPxy Œ1AP.B j Xs;Xt /1C � �.dxdy/

D EQŒ1AP.B j Xs;Xt /1C �;

where the reciprocality of P was used at the marked equality. Thus Q.B j
XŒ0;s�; XŒt;1�/ only depends on .Xs; Xt / and Q.B j XŒ0;s�; XŒt;1�/ D P.B j Xs;Xt /,
Q-a.e. which completes the proof. ut

2.2 Reciprocal Characteristics

Let us now introduce, in two important frameworks, functionals of the reference
process which are invariant on its reciprocal class. They indeed characterize the
reciprocal class, as we will see in Theorems 2 and 3.

2.2.1 Case of Brownian Diffusions

In this paragraph the path space is restricted to the set of continuous paths
˝c WD C.Œ0; 1�IR/. Consider as reference probability measure Pb 2 P.˝c/ a

Brownian diffusion with regular drift b, that is, the law of the SDE

dXt D dBt C b.t; Xt / dt;

where B is a Brownian motion and b.t; x/ 2 C1;2.Œ0I 1� � RIR/.
The family of its bridges .Pxyb /x;y2R can be constructed for all x; y 2 R as

mentioned in the preceding section. Since we are only interested in its reciprocal
class, the marginal at time 0 of Pb does not play any role, and, therefore, we do not
mention it.

Clark proved a conjecture of Krener, stating that the reciprocal class of Pb is, in
some sense, characterized by the time–space function

Fb.t; x/ WD @tb.t; x/C 1

2
@x.b

2 C @xb/.t; x/;

thus called reciprocal characteristics associated with Pb .
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Theorem 2. Let Pb and PQb be two Brownian diffusions with smooth drifts b and Qb.

Rc.Pb/ D Rc.PQb/ , Fb 	 FQb:

Proof. See [7] Theorem 1. ut
Example 1. 1. The reciprocal characteristics of a Wiener measure P0, law of a

Brownian motion with any initial condition, vanishes since b 	 0 ) Fb 	 0.
2. The reciprocal characteristics of the Ornstein–Uhlenbeck process with linear

time-independent drift b.x/ D ��x is the linear function x 7! �2x.
3. It is known that if the Brownian diffusion Pb admits a smooth transition density
pb , then its bridge P

xy

b between x and y can be constructed as a Brownian
diffusion with drift bxy given by

bxy.t; z/ D b.t; z/C @z logpb.t; zI 1; y/; t < 1:

Let us compute Fbxy :

Fbxy .t; z/ � Fb.t; z/
D @t @z logpb.t; zI 1; y/C @zb.t; z/ @z logpb.t; zI 1; y/C b.t; z/ @2z logpb.t; zI 1; y/

C�@z logpb @
2
z logpb

�
.t; zI 1; y/C 1

2
@3z logpb.t; zI 1; y/

D 0;

where we used the identity

@tpb.t; zI 1; y/C @2zpb.t; zI 1; y/C b.t; z/@zpb.t; zI 1; y/ D 0:

It confirms the fact that Pb 2 Rc.P
xy

b / .

Remark 1. In the multidimensional case, when the path space is C.Œ0; 1�IRd /,
d > 1, one needs one more function to characterize the reciprocal class Rc.Pb/. It is
denoted by Gb and defined as an R

d˝d -valued function Gb.t; x/ D .G
i;j

b .t; x//i;j

as follows Gi;j

b WD @j b
i � @ibj ; see [7].

2.2.2 Case of Counting Processes

In this paragraph, let us now restrict the path space to the set of càdlàg step functions
with unit jumps on [0,1]. It can be described as follows:

˝j WD
(
! D x ı0 C

nX
iD1

ıti ; 0 < t1 < � � � < tn < 1; x 2 R; n 2 N

)
;
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Consider, as reference Markov probability measure P` 2 P.˝j /, the law of a
counting process with a regular uniformly bounded Markovian jump intensity `,
satisfying for all x 2 R; `.�; x/ 2 C1.Œ0I 1�IR/ and 0 < inft;x `.t; x/ �
supt;x `.t; x/ < C1.

Note that the definition of Rc.P`/makes sense: On one side the family of bridges
Pxy` can be constructed for all x; y such that y � x 2 N; on the other side, for any
Q 2 P.˝j /, its endpoint marginal law Q01 is concentrated on such configurations.
Murr identified a time–space functional �` of the intensity ` as characteristics of
the reciprocal class associated with P`.

Theorem 3. Let P` and P Q̀ be two counting processes with intensities ` and Q̀ as
below.

Rc.P`/ D Rc.P Q̀/ , �` 	 � Q̀; (4)

where �`.t; x/ WD @t log `.t; x/C �
`.t; x C 1/ � `.t; x/�.

Proof. See [20] Theorem 6.58. ut
Example 2. 1. The standard Poisson process P WD P1 has constant jump rate—or

intensity—equal to 1 and initial deterministic condition equal to 0. Its reciprocal
characteristics vanishes since ` 	 1 ) �` 	 0.

2. All Poisson processes are in the same reciprocal class since, for any constant
jump rate � > 0, ` 	 � ) �` D �1 	 0.

3. For x; y 2 R with y�x 2 N, the bridge Pxy of P is the Markov counting process
starting at x with time–space-dependent intensity given by `xy.t; z/ D max.y�z;0/

1�t ,
for any t < 1.
One verifies, as in Example 1 (3), that �`xy D �1 D 0.

3 Characterization Via Duality Formulae

Our aim is now to show that each reciprocal class coincides—in the frameworks we
introduced below—with the set of random processes for which a perturbed duality
relation holds between the stochastic integration and some derivative operator on
the adequate path space.

3.1 Case of Brownian Diffusions

3.1.1 The Test Functions and the Operators

On ˝c , we define a set of smooth cylindrical functionals by:

S D f˚ W ˚ D '.Xt1 ; : : : ; Xtn/; ' 2 C1
b .R

nIR/; n 2 N
�; 0 � t1 < � � � < tn � 1g:
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The derivation operator Dg in the direction g 2 L2.Œ0; 1�IR/ is defined on S by

Dg˚.!/ WD lim
"

1

"

�
˚.! C "

Z :

0
g.t/dt/ � ˚.!/

�
D

nX
jD1

Z tj

0
g.t/

@'

@xj
.!t1 ; : : : ; !tn / dt:

Dg˚ is the Malliavin derivative of ˚ in the direction
R :
0
g.t/dt , element of the

Cameron–Martin space. Furthermore,

Dg˚ D hg;D:˚iL2.Œ0;1�IR/ where Dt˚ D
nX

jD1

@'

@xj
.Xt1 ; : : : ; Xtn/1Œ0;tj �.t /:

The integration operator under the canonical process, denoted by ıg , is defined as

ı.g/ WD
Z 1

0

g.t/ dXt :

It is always well defined if the test function g is simple, i.e. a linear combination of
indicator functions of time intervals.

A loop on Œ0; 1� is a function g with vanishing integral:
R 1
0
g.t/dt D 0, that is,

g 2 f1g? in L2.Œ0; 1�IR/.

3.1.2 Duality Formula Under the Wiener Measure
and Its Reciprocal Class

We are now able to present the duality between the operators D and ı under
all probability measures belonging to the reciprocal class of a Wiener measure.
We denote by P the standard Wiener measure, which charges only paths with initial
condition at 0.

Theorem 4. Let Q be a probability measure on ˝c such that EQ.jXt j/ < C1 for
all t 2 Œ0; 1�.

Qis a Wiener measure , 8˚ 2 S; EQ.Dg˚/ D EQ
�
˚ ı.g/

�
;8g simple: (5)

Q 2 Rc.P/ , 8˚ 2 S; EQ.Dg˚/ D EQ
�
˚ ı.g/

�
;8g simple loop. (6)

Proof.

• Sketch of
.5/): Using Girsanov formula,

EP0 .Dg˚/ D EP0

�
lim
"!0

˚.� C "
R :
0
g.t/dt/ � ˚
"

�
D EP0 .˚ @"Z"j"D0/

with Z" WD exp."
R 1
0
g.t/dXt � "2

2

R 1
0
g.t/2dt ).
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•
.5/(: With adequate choice of ˚ and g, one can prove that the canonical process
Xt � X0 is a Q-martingale, as well as .Xt � X0/

2 � t . This enables to conclude
that Q is any Wiener measure. For details, see [24].

• First note that Q 2 Rc.P/ , Q D R
P
xy Q01.dx; dy/.

.6/): Take ˚.!/ D �0.!.0//�1.!.1// Q̊ .!/ in (5). Then

EP

�
�0 �1 Q̊ ı.g/� D EP.Dg.�0 �1 Q̊ //

which implies that, for all smooth �0; �1,

EP

�
�0.X0/�1.X1/P. Q̊ ı.g/jX0;X1/

	

D EP

�
�0.X0/�1.X1/P.Dg

Q̊ jX0;X1/
	

CEP

�
�0.X0/�

0
1.X1/

Q̊ 	
Z 1

0

g.t/dt

) EPX0X1

� Q̊ ı.g/
	

D EPX0X1

�
Dg

Q̊ 	 if
Z 1

0

g.t/dt D 0:

This identity holds for any mixture of Brownian bridges too.

•
.6/(:Qxy satisfies (6) too, which leads to identify it as the unique Gaussian process
with mean xC t .y�x/ and covariance s.1� t /, that is, Pxy . For details, see [22].

ut
Remark 2. 1. Equation (5) is an infinite-dimensional generalization of the one-

dimensional integration by parts formula, also called Stein’s formula, satisfied
by the standard Gaussian law:

Z
R

'0.x/
e�x2=2
p
2�

dx D
Z
R

'.x/ x
e�x2=2
p
2�

dx:

Take g 	 1 and ˚ D '.X1/ in (5).
2. Equation (5) remains true under the Wiener measure P, for random processes
g 2 L2.˝c � Œ0; 1�IR/ Skorohod integrable and for any general ˚ 2 D1;2,
closure of S under the norm k˚k21;2 WD R

.˚2 C R 1
0

jDt˚ j2dt/dP: In such a
generality, (5) shows the well-known duality between the Malliavin derivativeD
and the Skorohod integral ı under P; see, e.g., [2].

3. Since, for computing Dg, paths are not perturbed at time 0, it is clear that (5)
characterizes only the Brownian dynamics (Wiener measure), but not the initial
law of X0 under Q.

4. Since, for computing Dg for a loop g, paths are perturbed neither at time 0 nor
at time 1, the identity (6) characterizes only the dynamics of the bridges QX0X1 .
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3.1.3 Duality Formula Under the Reciprocal Class of Brownian Diffusions

We now investigate how the duality formula (6) is perturbed when the underlying
reference process admits a drift b (satisfying the same smoothness assumptions as
in Sect. 2.2.1). The transformed duality equation (7) we present below contains
an additional term of order 0 in ˚ , in which appears the reciprocal invariant Fb
associated with Pb .

Theorem 5. Let Q be a probability measure on ˝c such that, for all t 2 Œ0; 1�,

EQ

�
jXt j2 C R 1

0
F 2
b .t; Xt /dt

	
< C1. Then,

Q 2 Rc.Pb/ , 8˚ 2 S; 8g simple loop,

EQ.Dg˚/ D EQ
�
˚ ı.g/

�CEQ

�
˚

Z 1

0

g.r/

Z 1

r

Fb.t; Xt / dt dr
	
: (7)

ut
Proof. • Sketch of ): First, the bridges ofQ coincide with those of Pb . Since Pxyb

is absolutely continuous with respect to Pb on any time interval Œ0; 1� "�; " > 0,
one can use the Girsanov density to prove that Pxyb satisfies (7), and thus, by
linearity, Q satisfies (7) too.

• (: First, Qxy satisfies (7) for a.a. x; y. This allows to prove that the canonical
process is a Qxy-quasi-martingale. Therefore, by Rao’s theorem (see [9]), it
is a Qxy-semi-martingale. Its characteristics can be computed: The quadratic
variation is t and the bounded variation part is of the form t 7! R t

0
bx;y.s; Xs/ds.

One computes that Fbx;y D Fb . Thus Qxy D P
xy

b and Q 2 <c.Pb/. For more
details, see [22], Theorem 4.3. ut

3.1.4 Some Applications

We first illustrate the use of the identity (7) to identify a process as element of
some precise reciprocal class. Consider, as Markov reference process, the Ornstein–
Uhlenbeck process denoted by POU, introduced in Example 1 (2), whose associated
reciprocal characteristics is FOU.x/ D �2x. Consider now the periodic Ornstein–
Uhlenbeck process denoted by P

per
OU and solution of the following stochastic

differential equation with periodic boundary conditions on the time interval [0,1]:

dXt D dBt � �Xt dt ; X0 D X1: (8)

This process is Gaussian as the following representation shows:

Xt D
Z t

0

e��.t�s/

1 � e�� dBs C
Z 1

t

e��.1Ct�s/

1 � e�� dBs DW �.B/t : (9)
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But it is not Markov as the following representation shows:

Xt D X0CBt �
Z t

0

�
�Xs � �X0 � e��.1�s/Xs

sinh.�.1 � s//
�
ds; X0 
 N

�
0;

coth.�=2/

2�

�
:

A natural question is then to investigate if it is reciprocal. In [3] the authors analysed
the form of its covariance kernel to deduce the reciprocality of P per

OU. We proposed
in [22] an alternative proof based on (7), which allows to conclude directly that
P

per
OU 2 Rc.POU/: Thanks to the representation (9), one notes that the shifted process
XC" R :

0
g.t/dt can also be represented as the transform by � of a shifted Brownian

motion, if g is a loop. It remains to use Girsanov theorem by computing

EP per
OU
.Dg˚/ D EP per

OU

�
lim
"!0

˚.� C "
R :
0
g.t/dt/ � ˚
"

�

to obtain that P per
OU satisfies, for all ˚ 2 S and g simple loops,

EP per
OU
.Dg˚/ D EP per

OU

�
˚ ı.g/

�CEP per
OU

�
˚

Z 1

0

g.r/

Z 1

r

�2Xt dt dr
	
:

Let us now present a generalization of the famous result stated by Kolmogorov in
[16]: A Brownian diffusion with values in R

d and time-homogeneous drift b is
reversible (i.e. there exists an initial distribution such that Pb D P

�
b ) if and only if

the function b is a gradient.
In the next Theorem, whose proof is detailed in [23] Theorem 5.4, we obtain the

same result under much weaker assumptions: We only require that there exists one
reversible law in Rc.Pb/ and we do not suppose that the drift is time-homogeneous.
Its proof is based on the d -dimensional duality formula characterizing the reciprocal
class Rc.Pb/.

Theorem 6. Let b be a d -dimensional smooth drift such that for any i; j 2
f1; : : : ; dg, the function

�
@j b

i � @ib
j
�
.t; x/ is time-independent. Furthermore

suppose there exists Q 2 <c.Pb/ with finite entropy which is time-reversible. Then
the drift b is of gradient type, i.e.

9' W Œ0; 1� � R
d 7! R such that, for all t; b.t; �/ D �r'.t; �/:

Moreover, ifQ is itself a Brownian diffusion with drift b, then b is time-independent
and

Q.�/ D 1

c

Z
Rd

Pb.�jX0 D x/ e�2'.x/ dx;

for some positive constant c.
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3.2 Case of Counting Processes

3.2.1 The Test Functions and the Operators

Any path ! in ˝j is characterized by its initial value x, the number of its jumps till
time 1, say n, and the times of its jumps, t1; : : : ; tn. We then define the i th jump-time
of a path by the functional:

Ti .!/ D Ti

0
@x ı0 C

nX
jD1

ıtj

1
A WD ti1i�n C 1i>n:

We now define a set of smooth test functionals on ˝j by:

S D f˚ W ˚ D '
�
X0; T1; : : : ; Tn

�
; ' 2 C1

b .R
nC1IR/; n 2 N

�g:

The derivation operator Dg in the direction g 2 L2.Œ0; 1�IR/ is based on the
perturbation of the jump-times and defined on S by:

Dg˚ WD lim
"

1

"

�
'
�
X0; T1 C "

Z T1

0

g.t/dt; : : : ; Tn C "

Z Tn

0

g.t/dt
� � ˚

�
:

It was introduced by Elliott and Tsoi in [10].

3.2.2 Duality Formula Under the Poisson Process and Its Reciprocal Class

We are now able to present the duality between D and an integration operator under
all probability measures in the reciprocal class of the standard Poisson process.
Recall the notations introduced in Example 2: P denotes the standard Poisson
process on [0,1] and P� denotes a Poisson process on [0,1] with intensity � and
any marginal law at time 0.

Theorem 7. LetQ be a probability measure on˝j such thatEQ.jX1�X0j/<C1.

Q D P� , 8˚ 2 S; EQ.Dg˚/ D EQ

�
˚

Z 1

0

g.s/.dXs � �ds/
�
;8g simple

(10)

Q 2 <c.P/ , 8˚ 2 S; EQ.Dg˚/DEQ
�
˚

Z 1

0

g.s/.dXs�ds/
�

8g simple loop:

(11)
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Proof. • Sketch of
.10/,. The main tool is Watanabe’s characterization: Q is a

Poisson process with intensity � on ˝j if and only if .Xt � X0 � �t/t is a
Q-martingale.

• Sketch of
.11/,. One fixes an initial value x and tries to identify the compensator

of Qx . Using (11) one shows that its compensator is absolutely continuous with
respect to Lebesgue measure, with Markov intensity of the form `x.t; Xt�/, and
that �`x 	 0. Thanks Theorem 3 one can conclude.
For details, see [20] Theorem 6.39. ut

Remark 3. 1. Equation (10) is an infinite-dimensional generalization of the formula
characterizing the Poisson distribution P˛ on N, known as Chen’s lemma, see [5]:
Let Z a real-valued random variable.

Z 
 P˛ , 8' smooth, E.'.Z/Z/ D ˛ E.'.Z C 1//:

2. For loops g, the right side of (11) indeed reduces to EQ
�
˚
R 1
0
g.s/dXs

�
.

Therefore one immediately recovers that all Poisson processes with any intensity
are in a unique reciprocal class, the reciprocal class of the standard Poisson
process P. In particular, the law of bridges of Poisson processes depends uniquely
on their boundary conditions but does not depend of their original intensities.

3.2.3 Duality Formula Under the Reciprocal Class of a Counting Process

We now investigate how the duality formula (11) is perturbed when the underlying
reference process P` admits a jump intensity ` which is no more constant, but
smooth enough, as in Theorem 3. Similar to Sect. 3.1.3, the transformed duality
equation (12) presented below contains an additional term of order 0 in ˚ , in which
appears the reciprocal invariant �` associated with P`.

Theorem 8. Let Q be a probability measure on ˝j such that
EQ.jX1 �X0j/ < C1.

Q 2 Rc.P`/ , 8˚ 2 S; 8g simple loop,

EQ.Dg˚/ D EQ

�
˚

Z 1

0
g.s/.dXs�ds/

	
CEQ

�
˚

Z 1

0
g.s/

Z 1

s
�l .r; Xr�/dXrds

	
:

(12)

Such a duality formula can be used to several aims. One application is, e.g., the
investigation of the time reversal of reciprocal processes belonging to the class
Rc.P`/; see [20] for details.

The extension of these results to pure jump processes with general jumps is in
preparation.
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Part II
Stochastic Equations



Probabilistic Counterparts of Nonlinear
Parabolic Partial Differential Equation Systems

Yana I. Belopolskaya

Abstract We extend the results of the FBSDE theory in order to construct a
probabilistic representation of a viscosity solution to the Cauchy problem for
a system of quasilinear parabolic equations. We derive a BSDE associated with
a class of quasilinear parabolic system and prove the existence and uniqueness
of its solution. To be able to deal with systems including nondiagonal first order
terms along with the underlying diffusion process, we consider its multiplicative
operator functional. We essentially exploit as well the fact that the system under
consideration can be reduced to a scalar equation in an enlarged phase space. This
allows to obtain some comparison theorems and to prove that a solution to FBSDE
gives rise to a viscosity solution of the original Cauchy problem for a system of
quasilinear parabolic equations.

1 Introduction

Quasilinear systems of parabolic equations arise as mathematical models which
describe various chemical and biological phenomena. They arise as well in financial
mathematics and in differential geometry when one considers nonlinear parabolic
equations in sections of vector bundles.

Let d; d1 be given integers and a.x/ 2 Rd ;A.x/ 2 Rd�d ; B.x/ 2
Rd�d1�d1 ; c.x/ 2 Rd1�d1 ; x 2 Rd , and g W Rd � Rd1 � Rd�d1 ! Rd1 be given
functions. Consider a class of quasilinear parabolic equations of the form

@ul
@s

C 1
2
T rA�r2ulAC ha;rul i C Bi

lmrium C clmum C gl.s; x; u;ru/ D 0;

ul .T; x/ D u0l .x/; l D 1; : : : ; d1 (1)

Y.I. Belopolskaya (�)
St. Petersburg State University for Architecture and Civil Engineering, St. Petersburg, Russia
e-mail: yana@yb1569.spb.edu

V. Korolyuk et al. (eds.), Modern Stochastics and Applications, Springer Optimization
and Its Applications 90, DOI 10.1007/978-3-319-03512-3__5,
© Springer International Publishing Switzerland 2014

71

mailto:yana@yb1569.spb.edu


72 Y.I. Belopolskaya

with respect to Rd1-valued function u.s; x/ defined on Œ0; T ��Rd : Here and below,
we assume a convention of summing up over repeating indices if the contrary is
not mentioned and denote by h�; �i an inner product in Rd regardless of d . One can
suggest at least a couple of probabilistic counterparts of the Cauchy problem (1).
To derive them let us assume first that there exists a classical solution u.s; x/ to this
problem. In this case one can prove applying the standard technique of the stochastic
differential equation theory and especially the Ito formula that the function u.s; x/
satisfying (1) admits at least two probabilistic representations.

The first one was suggested in papers by Dalecky and Belopolskaya [1–3] and
was aimed to develop a probabilistic approach to prove the existence and uniqueness
of a classical solution to (1) and to much more general systems of the form

@ul
@s

C F.x; u;ru;r2ul / D 0; ul .T; x/ D ul0.x/:

The second one suggested in papers by Pardoux and Peng [4–6] leads to the
powerful backward stochastic differential equations (BSDE) theory. This approach
allows to construct a viscosity solution to a quasilinear scalar parabolic PDE or to a
diagonal system of PDEs (see [6, 7]). In terms of (1) this means that one has to set
B 	 0 and c 	 0 and gl.x; u; A�ru/ 	 gl.x; u; A�rul /.

To present these approaches we fix a probability space .˝;F; P / and denote
by w.t/ 2 Rd the standard Wiener process. Let Ft be a flow of � -subalgebras
of F generated by w.t/ and Es;xŒf .	.T //� D EŒf .	.T /j	.s/ D x� denote the
conditional expectation.

Assume that g in (1) does not depend on ru and all coefficients a;A;B; C
depend on s; x and u. Assume that u.s; x/ is a smooth function satisfying (1) with
these parameters. Then it was stated in [1] that this function admits a representation
of the form

hh; u.s; x/i D Es;x

�
h
.T /; u0.	.T //i C

Z T

s

h
.�/; g.�; 	.�/; u.�; 	.�///d�i
�
;

(2)
where stochastic processes 	.t/ and 
.t/ satisfy the stochastic equations

d	.t/ D a.	.t/; u.t; 	.t///dt C A.	.t/; u.t; 	.t///dw.t/; 	.s/ D x; (3)

and

d
.t/ D c.	.t/; u.t; 	.t///
.t/dt C C.	.t/; u.t; 	.t///.
.t/; dw.t//; 
.s/ D h:

(4)

Note that a;A; c in (3), (4) are the same as in (1), while it is assumed that C in (4)
and B in (1) satisfy an equality Blm

k D C lm
i Aik:

Remark 1. Notice that when A is a nondegenerated matrix one can define C by
C lm
i D Blm

k A
�1
ki , while when A is a degenerated matrix we assume that B has the
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above form. It is important that although in a general case A D 0 yields B D 0 and
we do not obtain a general nonlinear system of hyperbolic equations as a vanishing
viscosity limit of (1). Nevertheless one can state some restrictions on B such that
given A� D �A and C� D ��1C one can apply (2) to investigate the vanishing
viscosity limit of (1) with these coefficients (see AB).

An important observation is the fact that we can consider (2)–(4) as a closed system
of equations and state conditions on its data to ensure the existence and uniqueness
of a solution to this system. If in addition it will be revealed that the function u.s; x/
given by (2) is twice differentiable in the spatial variable x, then one can verify that
u.s; x/ is a unique classical solution of (1) with correspondent parameters. It should
be mentioned that this approach can be essentially generated to give a possibility to
study systems of quasilinear and even fully nonlinear parabolic equations. In other
words one can consider (1) with coefficients a;A; c; C; g depending on .x; u;ru/
or even .x; u;ru;r2u/. Note that to deal with these more complicated cases within
a framework of this approach we require more strong assumptions concerning
regularity of coefficients of (3)–(4) and the Cauchy data u0. As a result we can prove
on this way the existence and uniqueness of a classical solution to (1), possibly on
a small time interval.

To describe the second approach which allows to construct a different class of
solutions to the Cauchy problem

@ul
@s

C1

2
T rA�.x/r2ulA.x/Cha.x/;ruliCgl.x; u; A�rul /D0; ul .T; x/Du0l .x/;

(5)
we assume once again that there exists a classical solution ul .s; x/ of (5).

Consider a stochastic process 	.t/ satisfying (3) with coefficients a.s; x; u/ 	
a.s; x/; A.s; x; u/ 	 A.s; x/. Keeping in mind that ul .s; x/ is a classical solution of
(5), by Ito’s formula, we derive an expression for a stochastic differential of y.t/ D
u.t; 	.t// in the form

dy.t/ D �g.t; 	.t/; y.t/; z.t//dt � zdw.t/; y.T / D u0.	.T //; (6)

where z.t/ D A�.	.t//ru.t; 	.t//: The equation (6) is called a BSDE.
In general one can forget about the process 	.t/ and consider an independent

BSDE of the form

dy.t/ D �f .t; y.t/; z.t//dt � zdw.t/; y.T / D �; (7)

where f .t; y; z/ is an Ft -adapted random process meeting some additional require-
ments and � is an FT -measurable random variable. A general theory of BSDEs
was developed by a number of authors (see, e.g., [7] for references). In addition
the system (4), (6) shows a way to construct the so-called viscosity solution to (5)
(defined in [8]) setting u.s; x/ D y.s//.

To generalize this approach and apply it to (1), we observe that this system has
a crucial property which can be easily revealed if one analyzes the probabilistic
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representation (2) of a smooth solution to (1). Namely, the Cauchy problem (1) can
be reduced to the Cauchy problem for a scalar equation:

@˚

@s
C1

2
T rQ�.x; h/r2˚Q.x; h/Chq.x; h/;r˚iCG.s; h; x; ˚;Q�r˚/D0; (8)

˚.T; x/ D ˚0.x; h/ D hh; u0.x/i:

with respect to a scalar function ˚.s; x; h/ D hh; u.s; x/i:
Here

T rQ�r2˚.s; x; h/Q D A�
ki

@2˚.s; x; h/

@xi@xj
Ajk C 2C lm

k hl
@2˚.s; x; h/

@xj @hm
Ajk

CCqm

k hm
@2˚.s; x; h/

@hq@hp
C
pn

k hn

D A�
ki

@2˚.s; x; h/

@xi@xj
Ajk C 2C lm

k hl
@2˚.s; x; h/

@xj @hm
Ajk;

since, due to linearity of ˚.s; x; h/ in h, we have @2˚.s;x;h/

@hq@hp
	 0: In addition

hq;r˚.s; x; h/i D aj
@˚.s; x; h/

@xj
C clmhm

@˚.s; x; h/

@hl
;

G.s; x; h/ D hh; g.s; x; u; A�ru/i:

Coming back to (4), we notice that its solution (provided it exists) gives rise to
a multiplicative operator functional � .t; s; 	.�// 	 � .t; s/ of the process 	.t/
satisfying (3), that is, 
.t/ D � .t; s/h and � .t; s/h D � .t; �/� .�; s/ a.s. for
0 � s � � � t � T . Hence to derive a forward–backward stochastic equation
(FBSDE) associated with (1), we can proceed as follows.

Assume that there exists a classical solution to the Cauchy problem (1) or what
is equivalent suppose that there exists a classical solution to (8) and compute a
stochastic differential of a stochastic process Y.t/ D h
.t/; u.t; 	.t//i,

dY.t/ D hd
.t/; u.t; 	.t//i C h
.t/; du.t; 	.t//i C hd
.t/; du.t; 	.t//i:

Taking into account (3) and (4) by Ito’s formula, we derive the relation

dY.t/ D �F.t; Y.t/; Z.t//dt C hZ.t/; dW.t/i; Y.T / D � D hh; u0.	.T //i;
(9)
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where W.t/ D .w.t/;w.t//�,

hZ.t/; dW.t/i D hC.� .t/h; dw.t//; u.t; 	.t//i C h� .t/h;ru.t; 	.t//Adwi
D hh; � �.t/ŒC �u.t; 	.t//C A�ru.t; 	.t//�dw.t/i

and � .t/h 	 � .t; s/h D 
s;h.t/: As a result we can rewrite (9) in the form

dy.t/ D �f .t; y.t/; z.t//dt C z.t/dw.t/; y.T / D u0.	.T //; (10)

where

f .t; y.t/; z.t// D � �.t/g
�
	.t/; u.t; 	.t//; C�.t; 	.t//u.t; 	.t//

C A�.t; 	.t//ru.t; 	.t//
�

D � �.t/g
�
	.t/; Œ� ���1.t/y.t/; C�.	.t//Œ� ���1.t/y.t/

C A�.	.t//Œ� ���1.t/z.t/
	
;

Z.t/ D .Œ� ���1.t/C�.t; 	.t//u.t; 	.t//; Œ� ���1.t/A�.	.t//ru.t; 	.t///�;
z.t/dw.t/ D Œ� ���1.t/ŒC�udw.t/CA�rudw.t/� 2 Rd1 (11)

and hh; z.t/dw.t/i D hZ.t/; dW.t/i:
When the solution y.t/ is a scalar process and a comparison theorem holds,

one can prove that the function u.s; x/ defined by y.s/ D u.s; x/ is a viscosity
solution of the Cauchy problem for a corresponding quasilinear parabolic equation.
In a multidimensional case it was shown in [9] that given a solution of the BSDE

dyl.t/ D �gl.t; 	.t/; y.t/; zl .t //dt C hzl .t /; dw.t/i; yl .T / D u0l .	.T //; (12)

where 	.t/ satisfies (9) under some condition one can prove that the function
u.s; x/ D y.s/ is a viscosity solution to the Cauchy problem

@ul
@s

C 1

2
T rA�r2ulAC ha;rul i C gl.s; x; u; A

�rul / D 0; ul .T; x/ D u0l .x/:

(13)
In this paper we show that a certain combination of two approaches allows to

extend the results of FBSDEs theory to construct a viscosity solution to the system
of the form (1). In particular we define the very notion of a viscosity solution
for (1) and prove a comparison theorem for solutions of multidimensional BSDEs
which is a crucial point in construction of the viscosity solution via a solution to
a BSDE.

In the next section we give a construction of an FBSDE required to construct a
viscosity solution for (1), assuming that coefficients a; �; C; c do not depend on u.
We state here conditions on the BSDE parameters that ensure the existence and
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uniqueness of its solution. In Sect. 3 we prove a comparison theorem, and in Sect. 4
we state the notion of a viscosity solution of the Cauchy problem for (1) and prove
that FBSDE solution gives rise to a viscosity solution for (1).

2 Forward–Backward Stochastic Differential Equations

In this section we introduce notations and present in a suitable form necessary
results from FBSDE theory adapted to the case under consideration.

Given integers d; d1 consider Euclidian spaces Rd ;Rd1 and let k � k denote a
norm in Rd and h�; �i denote an inner product regardless of d .

Given a Euclidian space X , let:

• L
p
t .X/ be a set of Ft -measurable X -valued random variables, Ek	kp < 1.

• H2
c.X/ be a set of Ft -measurable X -valued semimartingales such that

E


sup0�t�T ky.t/k2� < 1:

• H2
t .X/ be a set of Fs;t -measurable X -valued semimartingales such that

E


sup0���t ky.�/k2� < 1:

• H2.X/ be a set of square integrable progressively measurable processes z.t/ 2 X
such that E

hR T
0

kz.
/k2d

i
< 1:

• S2 D H2
c.R

d1/ [ H2.Rd�d1/:

• S3 D H2
c.R

d / [ H2
c.R

d1/ [ H2
T .R

d�d1/:

• B2 D H2.Rd1/ [ H2
T .R

d�d1/:

• B3 D H2.Rd / [ H2.Rd1/ [ H2
T .R

d�d1/I
L.Rd / be the space of bounded linear maps acting in Rd I
L.Rd IRd1/ 	 Rd�d1 be the space of bounded linear maps acting from Rd

to Rd1 .

• Given ˇ > 0 and � 2 H2
T .R

d /, let k�k2ˇ D E
hR T
0
eˇtk�.t/k2dt

i
and H2

T;ˇ.R
d /

be the space H
2;d
T equipped with the norm k � kˇ:

Let W.t/ D .w.t/;w.t// 2 Rd � Rd and �.t/ D .	.t/; 
.t// 2 Rd � Rd1 be a
solution of a system of SDEs

d	.t/ D a.t; 	.t//dt C A.t; 	.t//dw.t/; 	.s/ D x 2 Rd ; (14)

d
.t/ D c.t; 	.t//
.t/dt C C.t; 	.t//.
.t/; dw.t//; 
.s/ D h 2 Rd1: (15)

We say that condition C 2.1 holds if coefficients a W Œ0;1/ � Rd ! Rd ; A W
Œ0;1/ � Rd ! L.Rd /; c W Œ0;1/ � Rd ! L.Rd1/; C W Œ0;1/ � Rd !
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L.Rd IL.Rd1// are continuous in t 2 Œ0; T � and there exist constantsK1;K2; L1; L2
such that

ka.t; x/k2 C kA.t; x/k2 � K1Œ1C kxk2�I

ka.t; x1/ � a.t; x2k2 C kA.t; x1/ � A.t; x2/k2 � L1kx1 � x2k2I

kc.t; x/hk2 C kC.t; x/hk2 � K2khk2I

kc.t; x1/ � c.t; x2/hk2 C kŒC.t; x1/ � C.t; x2/�hk2 � L2kx1 � x2k2khk2:

Recall that we use notation kAk D Œ
Pd

j;kD1 AkjAjk�
1
2 for A 2 L.Rd /.

Lemma 1. Let condition C 2.1 hold. Then there exists a unique solution �.t/ D
.	.t/; 
.t// 2 Rd �Rd1 to (14), (15) such that 	.t/ 2 Rd is a Markov process with
Ek	.t/k2 < 1 and 
.t/ 2 Rd1 with Ek
.t/k2 < 1 for any t 2 Œ0; T �.

It follows from C 2.1 that coefficients of (14) and (15) satisfy classical conditions
of the existence and uniqueness theorem for solutions of SDEs and hence the lemma
statement results from this theorem.

Lemma 2. Let condition C 2.1 hold. Then the stochastic process 
.t/ satisfying
(15) gives rise to a multiplicative operator functional � .t/ 	 � .t; s/ W H2

s .R
d1/ !

H2
t .R

d1/ satisfying the SDE

d� .t/ D c.t; 	.t//� .t/dt C C.t; 	.t//.� .t/; dw.t//; � .s; s/ D I; (16)

where I is the identity operator in Rd1 . Moreover there exists an inverse map
� �1.s; t/ W H2

t .R
d1/ ! H2

s .R
d1/ satisfying

� �1.s; t/ D I �
Z t

s

� �1.�; t/Œc.�; 	.�// � C2.�; 	.�//�d�

�
Z t

s

� �1.t/C.�; 	.�//dw.�/ (17)

with probability 1.

Proof. Under the condition C 2.1, we can state the existence and uniqueness of a
solution to (17) and the corresponding properties of the map � �1.s; t/. In particular
we deduce from uniqueness of solutions to (15) and (17) that the map � .t; s/
defined by 
.t/ D � .t; s/h is an evolution family, that is, � .t; �/� .�; s/ D � .t; s/

with probability 1 and the map � �1.t; s/ has the same property. Besides, by Ito’s
formula we can check that � .t; s/� �1.s; t/ D I a.s. Let � �.s; t/ be defined by
h� .t; s/h; ui D hh; � �.s; t/ui:We can verify that � �.s; t/ is an invertible evolution
map acting from H2

t .R
d1/ to H2

s .R
d1/. Here and below we identify the space Rd

with its dual space .Rd /�. ut
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Consider a BSDE of the form

dy.t/ D �� �.s; t/g.Œ� ���1.s; t/y.t/; Œ� ���1.s; t/z.t//dt C z.t/dw.t/; (18)

and state conditions on its parameters g and � to ensure that there exists a unique
solution .y.t/ 2 Rd1 ; z.t/ 2 Rd�d1/ to (18) under an assumption that y.T / D
u0.	.T //.

We say that condition C 2.2 holds when g W Œs; T � � Rd � Rd1 � Rd�d1 ! Rd1 ,
� 2 Rd1 be an FT -measurable square integrable random variable and there exist
constants L;L3; such that

kg.t; x1; y; z/ � g.t; x2; y; z/k � L3kx1 � x2k;

kg.t; x; y1; z1/ � g.t; x; y2; z2/k � LŒ ky1 � y2k C kz1 � z2k �;

hy � y1; g.t; x; y1; z/ � g.t; x; y2; z/i � �ky � y1k2:

There exists a constant C0 > 0 such that for all x; x0 2 Rd

ku0.x/ � u0.x
0/k � C0kx � x0k:

Denote by f .t; y; z/ D � �.t/g.	.t/; Œ� ���1.t/y; Œ� ���1.t/z/ and let � D
u0.	.T //, where 	.t/; t 2 Œs; T � is a solution to (14). Consider a BSDE

dy.t/ D �f .t; 	.t/; y.t/; z.t//dt C z.t/dw.t/; y.T / D � 2 Rd1: (19)

A couple of progressively measurable random processes .y.t/; z.t// 2 B2 is called
a solution of (19) if with probability 1

y.t/ D � C
Z T

t

f .�; 	.�/; y.�/; z.�//ds �
Z T

t

z.�/dw.�/; 0 � t � T: (20)

Lemma 3. Let conditions C 2.1, C 2.2 hold. Then

kf .t; x; y1; z1/ � f .t; x; y2; z2/k � LŒ ky1 � y2k C kz � z1k �:

Proof. By Lipschitz continuity of g and the properties of � .t/, we have a.s.

kf .t; y1; z1/ � f .t; y2; z2/k
D kg.t; 	.t/; Œ� ���1y1; Œ� ���1z1/ � g.t; 	.t/; Œ� ���1y2; Œ� ���1z2/k
� k� �kLŒ kŒ� ���1y1 � Œ� ���1y2k �C Œ kŒ� ���1z1 � Œ� ���1z2k �
� LŒ ky � y1k C kz1 � z2k �:

ut
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Given .u; v/ 2 B2, we define a map M by .y; z/ D M.u; v/ as follows. Let �
be Rd1 -valued FT -measurable random variable and given f W Œs; T � � Rd � Rd1 �
Rd�d1 ! Rd1 set

y.t/ D E

�
� C

Z T

t

f .�; 	.�/; u.�/; v.�//d� jFt
�
; 0 � t � T: (21)

We apply the Ito theorem about martingale representation of a square integrable
random variable

� D � C
Z T

0

f .�; u.�/; v.�//d�

to define the process z.t/ by the equality

� D EŒ��C
Z T

0

z.�/dw.�/:

It is easy to check that the couple .y; z/ defined in this way satisfies

y.t/ D � C
Z T

t

f .�; 	.�/; u.�/; v.�//d� �
Z T

t

z.�/dw.�/:

In a standard way we show that M acts in B2 and possesses a contraction property.
To this end we denote by Nf D f1 � f2 for f D y; z; u; v. By Ito’s formula, we
obtain

eˇtEk Ny.t/k2 CE

�Z T

t

eˇsŒˇk Ny.s/k2 C kNz.s/k2�ds
�

D 2E

�Z T

t

eˇsh Ny.s/; f .s; u1.s/; v1.s// � f .s; u2.s/; v2.s//ids
�
:

Taking into account Lipschitz continuity of f , we obtain

EŒeˇtk Ny.t/k2�CE

�Z T

t

eˇsŒˇk Ny.s/k2 C kNz.s/k2�ds
�

� 2LE

�Z T

t

eˇsk Ny.s/kŒkNu.s/k C kNv.s/k�ds
�

and by the elementary inequality 2ab � a2˛2 C b2

˛2
;

EŒeˇtk Ny.t/k2�CE

�Z T

t

eˇskNz.s/k2�ds
�
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� Œ2L2˛2 � ˇ�E
�Z T

t

eˇsk Ny.s/k2ds
�

C 1

˛2
E

�Z T

t

eˇs.kNu.s/k2 C kNv.s/k2/ds
�
:

Choosing 1
˛2

D 1
2

and ˇ � 4L2 D 1, we obtain

eˇtEk Ny.t/k2 CE

�Z T

t

eˇskNz.s/k2ds
�

� 1

2
E

�Z T

t

eˇsŒkNu.s/k2 C kNv.s/k2�ds
�
:

In a similar way we can check that .y; z/ D M.u; v/ 2 B2. As a result we deduce
that M is a contraction in B2 and the following statement holds.

Theorem 1. Let condition C 2.2 hold. Then there exists a unique solution .y; z/ 2
B2 of BSDE (19) and successive approximations .yn; zn/ of the form

ynC1.t/ D � C
Z T

t

f .�; 	.�/; yn.�/; zn.�//d� �
Z T

t

znC1.�/dw.�/

converges to the solution of (19) with probability 1.

Proof. The existence and uniqueness of a solution .y; z/ to (19) follows from
the fixed point theorem for the contraction M W B2 ! B2. By applying the
above estimates to the successive approximations .yn; zn/, we can verify that when
m; n ! 1,

E

�Z T

t

eˇ�kyn.�/ � ym.�/k2dsjFt
�

CE

�Z T

t

eˇ�kzn.�/ � zm.�/k2dsjFt
�

! 0;

with probability 1. Hence, .yn; zn/ is a Cauchy sequence in B2, and the limit P �
limn!1.yn; zn/ D .y; z/ exists and satisfies (17). ut

Below along with a weakly coupled multidimensional FBSDE of the form

dy.t/ D �f .t; 	.t/; y.t/; z.t//dt C z.t/dw.t/; y.T / D u0.	.T //; (22)

where 	.t/ is a solution of (17), we consider a weakly coupled scalar FBSDE which
can be described as follows. Let

q.�/ D
�
a.x/

c.x/h

�
;Q.�/ D

�
A.x/ 0

0 C.x/h

�
; QG.�; y; z/ D hh; f .x; y; z/i: (23)

Obviously, we can rewrite the system (14), (15) in the form

d�.t/ D q.t; �.t//dt CQ.t; �.t//dW.t/; �.s/ D � D .x; h/: (24)
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The required FBSDE can be presented in the form

dY.t/ D � QG.t; �.t/; Y.t/; Z.t//dt C hZ.t/; dW.t/i; Y.T / D hh; u0.	.T /i;
(25)

where �.t/ D .	.t/; 
.t// solves (24),W.t/ D .w.t/;w.t//�, and hZ.t/; dW.t/i D
hh; z.t/dw.t/i:

A triple of progressively measurable random processes .�.t/; y.t/; z.t// 2 B3 is
called a solution of (24), (25) if with probability 1 for all 0 � s � t � T

�.t/ D � C
Z t

s

q.�; �.�//d� C
Z t

s

Q.�; �.�//dW.�/; (26)

Y.t/ D hh; u0.	.T //i C
Z T

t

QG.�; �.�/; Y.�/;Z.�//d� �
Z T

t

hZ.�/; dW.�/i:
(27)

The FBSDEs (14), (15), (19), and (24), (25) are equivalent.

3 Comparison Theorem for Multidimensional BSDE

Comparison theorems present an important tool in the BSDE and FBSDE theory and
in particular in the context of the connections between FBSDE theory and viscosity
solutions of corresponding parabolic equations and systems. In this paper to prove
a comparison theorem for a multidimensional BSDE, we use the special features of
the BSDE under consideration.

Consider a couple of d1-dimensional BSDEs

yi .t/ D �i C
Z T

t

f i .�; yi .�/; zi .�//d� �
Z T

t

zi .�/dw.�/; i D 1; 2 (28)

for 0 � t � T and use the specific features of these BSDEs investigated in the
previous sections. Here �i ; f i .�; y; z/ 2 Rd1 for � 2 Œ0; T �; y 2 Rd1; z 2 Rd�d1 :

For any fixed nonzero vector h 2 Rd1 and y1; y2 2 Rd1 , we say that y1 �h

y2 under h if hh; y1i � hh; y2i. Without loss of generality we choose h to have
khk D 1.

Given two vectors y1; y2 2 Rd1 , we say y1 � y2 if y1m � y2m, m D 1; : : : ; d1,
where ym D hy; emi and .em/

d1
mD1 is a fixed orthonormal basis in Rd1 .

Given f 2 Rd1 , we denote by f C
m D maxŒfm; 0�; m D 1; : : : ; d1:

Consider a couple of BSDEs with parameters �i ; f i , i D 1; 2.
We say that condition C 3.1 holds if

(i) �1 � �2; P � a.s.:
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(ii) For each m D 1; : : : ; d1 inequality, f 1
m.t; y

1; z1/ � f 2
m.t; y

2; z2/ holds true
when y1l � y2l for all l D 1; : : : ; d1 except l D m while y1m D y2m; and
z1mk D z2mk for each k D 1; : : : ; d .

(iii) For all y1; y2 2 Rd1; z1; z2 2 Rd�d1 and for each m D 1; : : : ; d1

jf i
m.t; y

1; z1/ � f i
m.t; y

2; z2/j � LŒky1 � y2k C kz1 � z2k�; i D 1; 2:

Set N̨ D ˛1 � ˛2 for ˛ D y; �; f , and z as well.
Let us mention that within this section we do not assume summing up with

respect to repeating indices.

Theorem 2. Let .�i ; f i /; i D 1; 2 be parameters of BSDEs (28) satisfying
conditions C 2.1 and C 3.1. Assume that .yi .t/; zi .t //; i D 1; 2; t 2 Œs; T � solve
(28) with this parameters. Then y1.t/ � y2.t/ a.s. Moreover the comparison is
strict, that is, if in addition y2.s/ D y1.s/, then �1 D �2, f 2.t; y2.t/; z2.t// D
f 1.t; y2.t/; z2.t// and y2.t/ D y1.t/; 8t 2 Œs; T �P -a.s. In particular whenever
either P.�1 < �2/ > 0 or f 1.t; y2.t/; z2.t// < f 2.t; y2.t/; z2.t// on a set of
positive dt � dP measure, then y1.s/ < y2.s/ a.s.

Proof. Applying Ito’s formula to j Nyj .t/Cj2 where j D 1; : : : ; d1 and evaluating
mean value, we get

Ej Nyj .t/Cj2 D Ej N�C
j j2

�E
"Z T

t
2Iy1j .s/>y

2
j .s/

Nyj .s/Œfj .s; y1.s/; z1.s//�fj .s; y2.s/; z2.s//�ds
#

�E
"Z T

t
Ifyj .s/>y2j .s/gkNzj .s/k2ds

#
�E

"Z T

t
NyC
j dLj .s/

#
; (29)

where Lj .t/ is the local time of Nyj .s/ at 0. Note that the last summand is equal to 0
and since �1 � �2 a.s. we have EŒkŒ�1 � �2�Ck2� D 0, Obviously,

E
hR T
t
Iy1j .s/>y

2
j .s/

Nyj .s/Nzj .s/dw.s/
i

D 0: Hence,

EŒ Nyj .t/C� D E

"Z T

t
Iy1j .s/>y

2
j .s/

2 NyC
j .s/Œf

1
j .s; y

1.s/; z1.s// � f 2j .s; y2.s/; z2.s//�ds
#

�E
"Z T

t
Ify1j .s/>y2j .s/gkNzj .s/k2ds

#
:

Set

Nfj .s/ D f 1
j .s; y

1; z1/ � f 2
j .s; y

2; z2/

D f 1
j .s; y

1
1 ; : : : ; y

1
j ; : : : ; y

1
d1
; z11; : : : ; z

1
j ; : : : ; z

1
d1
/
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�f 2
j .s; y

2
1 ; : : : ; y

2
j ; : : : ; z

2
1; : : : ; z

2
j ; : : : ; z

2
d1
/

D Œf 1
j .s; y

1
1 ; : : : ; y

1
j ; : : : ; y

1
d1
; z11; : : : ; z

1
j ; : : : ; z

1
d1
/

�f 2
j .s; y

1
1 C NyC

1 ; : : : ; y
1
j ; : : : ; y

1
d1

C NyC
d1
; z21; : : : ; z

1
j ; : : : ; z

2
d1
/�

CŒf 2
j .s; y

2
1 C NyC

1 ; : : : ; y
1
j ; : : : ; y

2
d1

C NyC
d1
; z21; : : : ; z

1
j ; : : : ; z

2
d1
/

�f 2
j .s; y

2
1 ; : : : ; y

2
j ; : : : ; z

2
1; : : : ; z

2
j ; : : : ; z

2
d1
/�

D ˘1 C˘2:

Since for anym D 1; : : : ; d1 we have y1m � y2mC NyC
m form ¤ j , taking into account

(ii) in C 3.1, we get ˘1 � 0.
Next, due to Lipschitz continuity of f 2, we have

˘2 � LŒj NyC
1 j C � � � C j NyC

j�1j C j Nyj j C � � � C j NyC
d1

j C kNzj k�:
By applying Ito’s formula due to generator properties, we deduce that

Ej NyC
j .t/j2 � 2E

�Z T

t

Iy1j .s/>y
2
j .s/

NyC
j .s/

Nfj .s/ds
�

�E
"Z T

t

Iy1j .s/>y
2
j .s/

dX
kD1

jNzjk.s/j2ds
#

� E

�
2

Z T

t

Iy1j .s/>y
2
j .s/

L NyC
j .s/Œj Ny1.s/j C � � � C j NyC

j�1j

Cj Nyj .s/j C � � � C j NyC
d1

j C kNzj .s/k� ds�

�E
�Z T

t

Ify1j .s/>y2j .s/gkNzj .s/k2ds
�

� E

�Z T

t

Ify1j .s/>y2j .s/gL
2.d1 C 1/j Nyj .s/j2ds

�

CE
"Z T

t

Ify1j .s/>y2j .s/gŒ
d1X
kD1

j Nyk.s/j2 C kNzj .s/k2�ds
#

�E
�Z T

t

Ify1j .s/>y2j .s/gkNzj .s/k2ds
�

D L2.d1 C 1/

Z T

t

EŒIfy1j .s/>y2j .s/gj Nyj .s/j2�ds

C
Z T

t

EŒIfy1j .s/>y2j .s/g
d1X
kD1

j Nyk.s/j2�ds: (30)
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Note that above we have used an elementary inequality of the form

2L NyC
j .s/j Nyk.s/j � L2j NyC

j .s/j2 C j Nyk.s/j2:
Summing up the left- and right-hand side in (30), we get that the function m.t/ DPd1

jD1 Ej NyC
j .t/j2 satisfies inequality

m.t/ � .L2.d1 C 1/C d1/

Z T

t

m.s/ds:

Finally, due to results of the previous section, we know that for t 2 Œ0; T � the
inequality Ej Nyj .t/Cj2 < 1 holds for each j D 1; : : : ; m; then by the Gronwall
lemma, we know that m.t/ D 0, and since m is a sum of positive summands, each
summand should be equal to zero. Hence, j NyC

j .t/j D 0 and thus y1j .t/ � y2j .t/ a.s.
for all j D 1; : : : ; d1: ut

At the end of this section, we come back to the one-dimensional BSDE (27) and
derive the corresponding comparison theorem. Note that this theorem motivates our
choice of comparison for vector functions in the case under consideration.

Consider the SDE of the form

�.t/ D � C
Z t

s

q.�.�//d� C
Z t

s

Q.�.�//dW.�/; s � t � T; (31)

introduced in the previous section and note that one can consider instead of the
BSDE

y.t/ D u0.	.T //C
Z T

t

f .�; 	.�/; y.�/; z.�//d� �
Z T

t

z.�/dw.�/; s � t � T;

(32)
with respect to the process y.t/ 2 Rd1 a new BSDE

dY.t/D� QG.t; �.t/; Y.t/; Z.t//dtChZ.t/; dW.t/.t/i; Y.T /D�Dhh; u0.	.T //i;
(33)

where Y.t/ D h
.t/; u.t; 	.t//i is a scalar process. We denote jY j D
supkhkD1 jhh; uij D kuk.

Theorem 3. Let .Y i ; Zi /; i D 1; 2 be solutions of one-dimensional BSDEs

dY i .t/D� QGi .t; �.t/; Y i .t/; Zi .t//dtChZi .t/; dW.t/i; Y i .T /D� iDhh; ui0.	.T //i:
(34)

Suppose that � 1 � � 2 and QG1.t; �; Y 2; Z2/ � QG2.t; �; Y 2; Z2/ dt � dP - a.e.
Then Y 1.t/ � Y 2.t/ a.s. for all s � t � T .
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Proof. Define a scalar process

�.t/ D
( QG1.t;�.t/;Y 2.t/;Z1.t//� QG1.t;�.t/;Y 1.t/;Z1.t//

Y 2.t/�Y 1.t/ if Y 1.t/ ¤ Y 2.t/;

0 if Y 1.t/ D Y 2.t/;

and a vector process �.t/ 2 Rd such that

�k.t/ D
8<
:

QG1.t;�.t/;Y 1.t/;Z.k/.t//� QG1.t;�.t/;Y 1.t/;Z.k�1/.t//

Z2k.t/�Z1k.t/
if Z1

k.t/ ¤ Z2
k.t/

0 if Z1
k.t/ D Z2

k.t/
;

where Z.k/.t/ denotes the d -dimensional vector such that its first k components are
equal to corresponding components of Z2 and the remaining d � k components are
equal to those of Z1. Due to Lipschitz continuity of g, the processes �.t/ and �.t/
are bounded, and in addition, they are progressively measurable.

As above we use notation Nf D f 1 � f 2 for f D Y;Z; � and observe that
. NY .t/; NZ.t// satisfies the BSDE

NY .t/ D N�C
Z T

t

Œ�.�/ NY .�/Ch�.�/; NZ.�/i�d�C
Z T

t

N.�/d��
Z T

t

h NZ.�/; dW.�/i;

whereN.t/ D QG1.t; �.t/; Y 2.t/; Z2.t//� QG2.t; �.t/; Y 2.t/; Z2.t//: For s � t � T

we define

�s;t D exp

�Z t

s

.�.�/ � 1

2
k�.�/k2/d� C

Z t

s

h�.�/; dW.�/i
�
:

By Ito’s formula, we can verify that . NY .�/; NZ.�// satisfy the BSDE

dŒ�s;� NY .�/� D �s;� Œ NY .�/CN.�/�d� C �s;� h NZ.�/C NY .�/�.�/; dW.�/i

for � 2 Œs; T � and

NY .�/ D E

�
�s;T N� C

Z T

�

�s;#N.#/d#jF�
�
:

The required assertion immediately follows from negativity of N� and N.t/. ut
Let us mention a useful remark. Let Y 1;Z1 be a solution of BSDE

Y 1.t/ D � 1 C
Z T

t

QG1.�; Y 1.�/; Z1.�//d� �
Z T

t

hZ1.�/; dW.�/i
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and .Y 2;Z2/ satisfy

Y 2.t/ D � 2 C
Z T

t

M.�/d� �
Z T

t

hZ2.�/; dW.�/i;

where M.�/ is a scalar progressively F� -measurable process. Suppose that � 1 �
� 2 and QG1.t; Y 2.t/; Z2.t// � M.t/. Then we can choose

QG2.t; �.t/; Y 2; Z2/ D QG1.t; �.t/; Y 2; Z2/C ŒM.t/ �G1.t; �.t/; Y 2.t/; Z2.t//�

and apply the result of Theorem 3 to deduce that Y 1.t/ � Y 2.t/. If in addition
QG1.t; �.t/; Y 2; Z2/ < M.t/ on a set of positive measure dt � dP , then Y 1.s/ <
Y 2.s/.

4 Viscosity Solution to Nonlinear Parabolic System

In this section we show that a solution of a FBSDE generates a viscosity solution of
the Cauchy problem for a system of quasilinear parabolic equations.

Let .	.t/ 2 Rd ; y.t/ 2 Rd1; z.t/ 2 Rd�d1/ be a solution of the FBSDE

d	.t/ D a.	.t//dt C A.	.t//dw.t/; 	.s/ D x; (35)

dy.t/D�� �.t/g.Œ� ���1.t/y.t/; Œ� ���1.t/z.t//dtCz.t/dw.t/; y.T /Du0.	.T //;

(36)

where � .t/ is a multiplicative operator functional of the process 	.t/ generated by
the solution 
.t/ 2 Rd1 of the linear SDE

d
.t/ D c.	.t//
.t/dt C C.	.t//.
.t/; dw.t//; 
.s/ D h; (37)

and u0 W Rd ! Rd1 be a continuous bounded function.
Denote by Sd1C D fh 2 Rd1 W hm � 0;m D 1; : : : ; d1 and khk D 1g; and let

e1; : : : ; ed1 be a fixed orthonormal basis in Rd1 .
In Sect. 2 we have shown that one can write (36) in the form

dy.t/ D �f .t; 	.t/; y.t/; z.t//dt C z.t/dw.t/; y.T / D u0.	.T //; (38)

and proved that given a solution 	.t/ of (35), there exists a unique solution
.y.t/; z.t// of this BSDE.

Assume that there exists a solution .	s;x.t/; ys;x.t/; zs;x.t// to (35), (36) and the
comparison Theorem 2 is valid. The aim of this section is to prove that the function
u.s; x/ D ys;x.s/ is a viscosity solution of the Cauchy problem
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@ul
@s

C 1

2
T rA�.x/r2ulA.x/C ha.x/;rul i C Bi

lm.x/rium C clm.x/um

Cgl.x; u; K.u;ru// D 0; l D 1; : : : ; d1; (39)

u.T; x/ D u0.x/;

where Bi
lm D Pd

qD1 C
q

lmA
qi ; K.u;ru/ D C �u C A�ru:

As it was mentioned in Sect. 2, the system (39) can be easily reduced to a scalar
parabolic equation

@V
@s

C 1
2
T rQ�.x; h/r2VQ.x; h/Chq.x; h/;rV iCG.h; x; V;Q�rV / D 0;

V .T; x/DV0.x; h/Dhh; u0.x/i (40)

with respect to a scalar function V defined on Œ0; T � �Rd � Sd1C [see (14)].
Hence we recall first the definition of a viscosity solution of the Cauchy problem

for a general scalar nonlinear parabolic equation:

@V

@s
C �.s; z; V;rV;r2V / D 0: V .T; z/ D V0.z/; (41)

where z D .x; h/:

A function � W Œ0; T �� .Rd �Sd1C /�R� .Rd �Rd1/�Rd ˝Rd ! R satisfying
estimates

�.s; z; V; p; q/ � �.s; z; U; p; q/ if V � U;

and

�.s; z; V; p; q/ � �.s; z; V; p; q1/ if q1 � q

is called a proper function.
Given a proper function � to define a viscosity solution of (41), one has to

introduce notions of a sub- and a supersolution of this Cauchy problem.
Denote by C1;2

d;d1
	 C1;2.Œ0; T ��Rd IRd1/ a set of functions  W Œ0; T ��Rd IRd1

differentiable in s 2 Œ0; T � and twice differentiable in x 2 Rd .
A continuous real-valued function V.s; z/ is called a subsolution of (41) if

V.T; z/ � V0.z/, z 2 Rd2; d2 D d C d1; and for any ˚ 2 C
1;2
d2;1

and a point
.s; z/ 2 Œ0; T � � Rd2 which is a local maximum of V.t; Qz/ � ˚.t; Qz/ (that may be
assumed to be equal to zero), the inequality

@˚

@s
C �.s; z; V;r˚;r2˚/ � 0

holds.
A continuous function V.s; z/ is called a supersolution of (41) if V.T; z/ � V0.z/,

z 2 Rd2 , and for any � 2 C1;2
d2;1

and .s; x/ 2 Œ0; T � � Rd which is a local minimum
of V.t; Qz/ � ˚.t; Qz/ (that may be assumed to be equal to zero), the inequality
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@˚

@s
C �.s; z; V;r˚;r2˚/ � 0

holds. A continuous function V.s; z/ is called a viscosity solution of (41) if it is both
sub- and supersolution of this Cauchy problem. Hence, to prove that the function
V.s; z/ is a viscosity solution to (41), one has to prove that V is both sub- and
supersolution of (41).

To give a definition of a viscosity solution of the Cauchy problem to the system
(39), we use a definition of a viscosity solution of the scalar Cauchy problem (40)
and then rewrite the definition in terms of the solution to (39).

Given functions �m 2 C1;2
d;d1

, m D 1; : : : ; d1, denote by

ŒA��m.x/ D 1

2
T rA�.x/r2�mA.x/C ha.x/;r�mi C Bi

ml .x/ri �l C cml .x/�l ;

where i D 1; : : : d; m; l D 1; : : : ; d1.
Let .s; x; �; p; q/ 2 Œ0; T � �Rd �Rd1 �Rd�d1 �Rd2�d1 and

Mm.s; x; �; p; qm/ D 1

2
T rA�.x/qmA.x/C ha.x/; pmi

CBi
ml .x/ripl C cml .x/�l C gl.s; x; u; p/: (42)

Given Mm;m D 1; : : : ; d1; of the form (42), the system

@um
@s

C Mm.s; x; u;ru;r2um/ D 0 (43)

coincides with (39).
A continuous function u W Œ0; T ��Rd ! Rd1 is called a subsolution of (43) if for

each m D 1; : : : ; d1 an inequality um.T; x/ � u0m.x/ holds and for any 'm 2 C1;2
d;1

and a point .s; x/ 2 Œ0; T � � Rd which is a local maximum of um.Qs; Qx/ � 'm.Qs; Qx/
an inequality

@'m

@s
C Mm.s; x; u;r';r2'm/ � 0 (44)

holds.
A continuous function u.s; x/ is called a supersolution of (43) if for each m D

1; : : : ; d1 an inequality um.T; Qx/i � u0m. Qx/, x 2 Rd holds and for any 'm 2 C
1;2
d;1

and a point .s; x/ 2 Œ0; T � � Rd which is a local minimum of um.Qs; Qx/ � 'm.Qs; Qx/
an inequality

@'m

@Qs C Mm.s; x; u;r';r2'm/ � 0; (45)

holds.
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A continuous function u.s; x/ is called a viscosity solution of (43) if it is both
sub- and supersolution of this Cauchy problem. Hence, to prove that the function
u.s; x/ is a viscosity solution to (43), one has to prove that u is both sub- and
supersolution of (43).

Theorem 4. Assume that conditions of Theorem 2 hold and .	s;x.t/; ys;x.t/; zs;x.t/;

s;x.t// is a solution to (35)–(37). Then u.s; x/ D ys;x.s/ is a continuous in .s; x/
viscosity solution of (39).

Proof. Under assumptions of Sect. 2, continuity of u.s; x/ D ys;x.s/ in spatial
variable x and time variable s is granted by the BSDE theory results [5] which state
that under C 2.1 and C 2.2 the solution of BSDE (38) is continuous with respect to
parameters .s; x/. To verify that u.s; x/ is a viscosity solution of (39), we have to
prove that u is both a subsolution and a supersolution of (39). First, we check that
u is a subsolution. To this end, for each m D 1; : : : ; d1, we can choose a function
�m 2 C

1;2
d;1 and a point .s; x/ 2 Œ0; T � � Rd such that at the point .s; x/ a function

um.s; x/ � �m.s; x/ has a local maximum. Without loss of generality, we assume
that um.s; x/ D �m.s; x/.

We have to prove that (44) holds. Denote by

K.u;r�/.t; 	s;x.t// D
�
� �.t/A�.	.t//r�.t; 	s;x.t//
� �.t/C �.	s;x.t//u.t; 	s;x.t//

�
; s � t � s C ˛;

and assume on the contrary that there exists m 2 f1; : : : ; d1g such that

Ku;�
m .s; x/ D @�m

@s
C ŒA��m.s; x/C gm.s; x; u.s; x/;K.u;r�/.s; x// < 0: (46)

By continuity, there exists 0 < ˛ � T � s such that for all � 2 Œs; s C ˛�, x1 2
Rd ; h1 2 Rd1 , kx � x1k � ˛; kem � h1k � ˛ the inequalities

˚u.�; x1; h1/ � ˚�.�; x1; h1/ � 0 (47)

and
�
h1;

�
@�

@�
C A�

�
.�; x1/C g.�; x1; u.�; x1/;K.u;r�/.�; x1//

�
< 0 (48)

hold.
Given .	s;x.t/; 
s;h.t// satisfying (35) and (37), define 
 by


 D infft � s W k	s;x.t/�xk � ˛g^ infft � s W k
s;h.t/�hk � ˛g^.sC˛/: (49)

It follows from results in [10, 11] that the pair

. Oy.t/; Oz.t// D .ys;x.t ^ 
/; IŒs;
�.t/zs;x.t ^ 
//; s � t � s C ˛
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satisfies BSDE

Oy.t/ D � �.t; 
/u.Œs C ˛� ^ 
; 	.Œs C ˛� ^ 
//

C
Z sC˛

t

IŒs;
�.�/f .�; 	.�/; Oy.�/; Oz.�//d�

�
Z sC˛

t

Oz.�/dw.�/i; s � t � s C ˛: (50)

On the other hand, by applying Ito’s formula, we obtain that the couple

. Qy.t/; Qz.t// D .� �.t; t ^ 
/�.t ^ 
; 	s;x.t ^ 
//; IŒs;
�.t/K.u;r�/.t; 	s;x.t//

for t 2 Œs; s C ˛� satisfies a backward stochastic equation

Qy.t/ D .� �.
/�.
; 	s;x.
//C
Z sC˛

t

IŒs;
�.�/

�
@�

@�
C ŒA��

�
.�; 	s;x.�//d�

C
Z sC˛

t

Qz.�/dw.�/:

Notice that Oym.s/ D Qym.s/ D um.s; x/:
Then for a stopping time 
 2 Œs; s C ˛� given by (49) due to (47) and (48), we

derive

0 � Œ˚u.
; �.
// � ˚�.
; �.
//� D hem; u.s; x/ � �.s; x/i

�
Z 


s

hem; Œ@�
@�

C A��.�; 	s;x.�//id� �
Z 


s

hem; f .�; 	s;x.�/; Oy.�/; Oz.�//id� C

Chem;
Z 


s

ŒOz.�/ �K.u;r�/.�; 	s;x.�//�dw.�/ i:

Keeping in mind that by assumption for each m D 1; : : : ; d1 at the point .s; x/, we
have um.s; x/ � �m.s; x/ D 0, and computing the expectation of both parts of the
last inequality, we deduce

E

�Z 


s

�
@�

@�
C A�

�
m

.�; 	.�//d� C
Z 


s

fm.�; 	.�/; Oy.�/; Oz.�//d�
�

� 0: (51)

Denote by Ku;�.t; x/ D K.u;r�/.t; x/ and set

�1.s; 
/ D
Z 


s

Ku;�
m .�; 	.�//d�;
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�2.s; 
/ D
Z 


s

Œfm.�; 	.�/; Qy.�/; Qz.�//

�gm.�; 	.�/; u.�; 	.�//;K.u;r�/.�; 	.�///�d�;

�3.s; 
/ D
Z 


s

ffm.�; 	.�/; Oy.�/; Oz.�// � fm.�; 	.�/; Qy.�/; Qz.�//gd�

and rewrite (51) in the form

EŒ�1.s; 
/C �2.s; 
/C �3.s; 
/� � 0:

Due to (46), we can assume that there exists a number ı0 < 0 such that
Ku;�.s; x/ < ı0 and


1 D inff� 2 Œs; s C ˛� W Ky.�/;z.�/.�; 	.�// � ı0g ^ 
:

By assumption, the inequality (51) holds for 
 and hence for 
1. But this leads to a
contradiction since

0 > ı0E.
1 � s/ � E

�Z 
1

s

Œ
@�

@�
C A��m.�; 	.�//d�

C
Z 
1

s

gm.�; 	.�/; u.�; 	.�//;K.u;r�/.�; 	.�///d�
�

� 0:

It remains to check that �2.s; s C�s/ ! 0 and �3.s; s C�s/ ! 0 as �s ! 0 a.s.
Note that �2.s; s C �s/ ! 0 a.s. by definition of f , properties of � .s; t/, and

uniqueness of a BSDE solution.
Finally we check that �3.s; s C �s/ ! 0 as �s ! 0 a.s. Note that the couple

. Qy.t/; Qz.t//; s � t � s C�s satisfies

Qy.t/ D � �.s C�s/�.s C�s; 	s;x.s C�s//

C
Z sC�s

t

f .�; 	s;x.�/; Qy.�/; Qz.�//d� �
Z sC�s

t

Qz.�/dw.�/: (52)

Given � 2 Œs; s C�s�, set

�.�/ D Qy.s C�s/ � � �.s; �/�.�; 	s;x.�// �
Z sC�s

�

Ku;�.#; 	s;x.#//d#

and

$.�/ D Qz.�/ �K.u;r�/.�; 	s;x.�///:



92 Y.I. Belopolskaya

Applying Ito’s formula, we derive BSDE to govern the couple .�.�/;$.�//

�.�/ D � �.s; s C�s/�.s C�s; 	s;x.s C�s// � � �.s; �/�.�; 	s;x.�//

C
Z sC�s

�

f .#; 	s;x.#/; Qy.#/; Qz.#//d# �
Z sC�s

�

Ku;�.#; 	s;x.#//d#

�
Z sC�s

�

Qz.#/dw.#/C
Z sC�s

�

K.u;r�/.#; 	s;x.#///dw.#/

D
Z sC�s

�

f .#; 	s;x.#/; �.#/C � �.s; #/�.#; 	s;x.#//

C
Z sC�s

#

Ku;�.r; 	s;x.r//dr; $.#/CK.u;r�/.#; 	s;x.#///d#

C
Z sC�s

�

��
@�

@#
C A�

�
.#; 	s;x.#// � Ku;�.#; 	s;x.#//

�
d#

�
Z sC�s

�

$.#/dw.#/: (53)

We verify that .�;$/ converges to .0; 0/ as �s ! 0. Keeping in mind the
estimates for the generator g by standard reasoning based on the Ito formula and
the Burkholder inequality, we can prove that

E

"
sup

t2Œs;sC�s�
j�.t/j2

#
CE

�Z sC�s

s

k$.�/k2d�
�

� LE

�Z sC�s

s

km.�;�s/k2d�
�
;

where

m.�;�s/ D �Ku;�.�; 	s;x.�//C
�
@�

@�
C A�

�
.�; 	s;x.�//

Cf .�; 	s;x.�/; �.�/C � �.s; �/�.�; 	s;x.�//

C
Z sC�s

�

Ku;�.r; 	s;x.r//dr; $.�/CK.u;r�/.�; 	s;x.#//:

Furthermore, since sup�2Œs;sC�s� EŒk	s;x.�/� xk2� ! 0 as �s ! 0 and parameters
of stochastic equations as well as the function � and its derivatives are uniformly
continuous in x, we obtain

lim
�s!0

sup
s���sC�s

EŒkm.�;�s/k2� D 0:

Hence,
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E

"
sup

s���sC�s
j�.�/j2

#
CE

�Z sC�s

s

k$.�/k2d�
�

� LE

�Z sC�s

s

km.�;�t/k2d�
�

� ".�s/�s; (54)

where ".�s/ ! 0 as�s ! 0. As a result we get that Qy.�/ converges to �.s; x/ and
Qz.�/ converges to ŒCu�.s; x/C Œr�A�.s; x/ a.s. as �s ! 0:

This estimate does not satisfy yet our purposes. To get a more satisfactory
estimate, we evaluate the conditional expectation of both sides of (53) that leads

to �.�/ D E
hR sC�s
�

n.#;�s/d#jF�
i
; where

n.�;�s/ D �Ku;�.�; 	s;x.�//C
�
@�

@�
C A�

�
.�; 	s;x.�//

Cf .�; 	s;x.�/; Qy.�/; Qz.�//
D f .�; 	s;x.�/; Qy.�/; Qz.�// � f ��; 	s;x.�/; � �.�/�.�; 	s;x.�//

C
Z sC�s

�

Ku;�.�; 	s;x.�//d�; K.u;r�/.�; 	s;x.�/// :

By Lipschitz continuity of f , we have for s � � � sC�s, kn.�;�s/k � LŒk�.�/k
+ k$.�/k�; that is kn.�;�s/k ! 0 a.s. as �s ! 0.

Hence we have proved that u.s; x/ is a viscosity subsolution of the Cauchy
problem (39). In a similar way we prove that u.s; x/ is a supersolution of (39) and
hence a viscosity solution of this problem. ut

The author expresses her gratitude to an anonymous referee for valuable
comments which essentially improved the exposition of the problem.
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Finite-Time Blowup and Existence of Global
Positive Solutions of a Semi-linear Stochastic
Partial Differential Equation with Fractional
Noise

M. Dozzi, E.T. Kolkovska, and J.A. López-Mimbela

Abstract We consider stochastic equations of the prototype

du.t; x/ D �
%u.t; x/C �u.t; x/C u.t; x/1Cˇ

�
dt C �u.t; x/ dBH

t

on a smooth domain D � R
d , with Dirichlet boundary condition, where ˇ > 0, �

and � are constants and fBH
t , t � 0g is a real-valued fractional Brownian motion

with Hurst index H > 1=2. By means of the associated random partial differential
equation, obtained by the transformation v.t; x/ D u.t; x/ expf�BH

t g, lower and
upper bounds for the blowup time of u are given. Sufficient conditions for blowup
in finite time and for the existence of a global solution are deduced in terms of
the parameters of the equation. For the case H D 1=2 (i.e. for Brownian motion),
estimates for the probability of blowup in finite time are given in terms of the laws
of exponential functionals of Brownian motion.

1 Introduction and Background

In a classical paper [7], Fujita proved that for a bounded smooth domain D � R
d ,

the equation

@u.t; x/

@t
D %u.t; x/C u1Cˇ.t; x/; x 2 D;
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with Dirichlet boundary condition, where ˇ > 0 is a constant, explodes in finite
time for all nonnegative initial values u.0; x/ 2 L2.D/ satisfying

Z
D

u.0; x/ .x/ dx > �1=ˇ1 : (1)

Here �1 > 0 is the first eigenvalue of the Laplacian on D and  the corresponding
eigenfunction normalized so that k kL1 D 1.

In this paper we consider a stochastic analog of the above equation, namely, we
investigate the semi-linear SPDE

du.t; x/ D .%u.t; x/C �u.t; x/CG.u.t; x/// dt C �u.t; x/ dBH
t ; t > 0;

u.0; x/ D f .x/ � 0; x 2 D; (2)

u.t; x/ D 0; t � 0; x 2 @D;

where G W R ! RC is locally Lipschitz and satisfies

G.z/ � C z1Cˇ for all z > 0; (3)

C > 0; �; ˇ > 0 and � are given numbers, fBH
t ; t � 0g is a one-dimensional

fractional Brownian motion with Hurst index H > 1=2 on a stochastic basis
(˝;F; P ), and f W D ! RC is of class C2 and not identically zero. We assume (3)
in Sects. 1–3 only; it is replaced by (16) in Sects. 4 and 5.

The results on global solutions of parabolic equations perturbed by an additive
or multiplicative time or space–time fractional noise established up to now are
sufficient to state the existence and uniqueness of the variational (weak) and of the
mild solution of (2) and the equivalence of both; see Maslowski and Nualart [8],
Nualart and Vuillermot [11], and Sanz and Vuillermot [17], where the integral with
respect to BH is understood in the sense of fractional calculus (see, e.g., Zähle
[19, 20]). Let us recall the notions of variational and mild solutions we are going to
use here; see [11, 17]. Let ˛ 2 .1 �H; 1

2
/, t > 0, and let B˛;2.Œ0; t �; L2.D// be the

Banach space of all measurable mappings u W Œ0; t � ! L2.D/ endowed with the
norm k � k˛;2, defined by

kuk2˛;2 D �
ess sups2Œ0;t �ku.s; �/k2

�2 C
Z t

0

ds

�Z s

0

dr
ku.s; �/ � u.r; �/k2

.s � r/˛C1

�2
< 1;

where k � k2 is the usual norm in L2.D/: An L2.D/�valued random field u D
fu.t; �/; t � 0g is a variational solution of (2) on the interval �0; %Œ if, a.s.,

u 2 L2.Œ0; t �;H1.D// \ B˛;2.Œ0; t �; L2.D// (4)

for all t < % and if, for every ' 2 H1.D/ vanishing on @D,
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Z
D

u.t; x/'.x/ dx D
Z
D
f .x/'.x/ dx

C
Z t

0

Z
D


hru.s; x/;r'.x/i
Rd

C �u.t; x/'.x/

CG.u.s; x//'.x/� dx ds C �

Z t

0

Z
D

u.s; x/'.x/ dx dBHs P – a.s.

for all t 2 Œ0; %Œ. The requirement for u to belong to the B˛;2 spaces implies
that the integral with respect to BH exists as a generalized Stieltjes integral in
the sense of [20], see Proposition 1 in [11]. Let fSt , t � 0g be the semigroup of
d -dimensional Brownian motion with variance parameter 2, killed at the boundary
of D. An L2.D/-valued random field u D fu.t; �/; t � 0g is a mild solution of (2)
on the interval �0; 
Œ if (4) holds a.s. for all t < 
 , and if

u.t; x/ D Stf .x/C
Z t

0

Œ�St�r .u.r; �//.x/C St�r .G.u.r; �///.x/� dr

C�
Z t

0

St�r .u.r; �//.x/ dBH
r P – a.s. and x – a.e. in D

for all t 2�0; 
Œ (see, e.g., [14, Chap. IV]). Let us remark that the proof of the
uniqueness of the mild solution and the equivalence of the variational and the
mild solutions are carried out in [17] under the conditions H 2 . 4dC1

4dC2 ; 1/ and
˛ 2 .1 �H; 1

4dC2 /, and for the more general case where BH is a space-dependent
fractional Brownian motion. For an approach based on stochastic integrals in the
Wick sense, we refer to [12]. The positivity of the solution of (2) will be addressed
in the next section.

Our aim in this communication is to study the blowup behaviour of u by means
of the random partial differential equation of Sect. 2 [see (6) below]. The case of
H D 1=2, in which fBH

t g is a standard one-dimensional Brownian motion, was
investigated in [4]. There we obtained estimates of the probability of blowup and
conditions for the existence of a global solutions of (2) with H D 1=2 and � D 0.
Following closely the approach in [4], here we are going to derive the same kind of
bounds for the positive solutions of (2), in the case H > 1=2 and with a constant
drift in the non-random linear part. Moreover, we obtain useful lower and upper
bounds 
�, 
� for the explosion time % of (2). We remark that both, the estimates
we obtain and the distributions of the random times 
�, 
�, are given in terms of
exponential functionals of BH of the form

Z t

0

e.��1C�/ˇsC�ˇBHs ds and
Z 1

0

e.��1C�/ˇsC�ˇBHs ds: (5)

When H D 1=2 the distribution of the integrals above can be obtained using
Dufresne’s and Yor’s formulae [5, 18] or the method of Pintoux and Privault [15].
However, to our knowledge such precise results are not presently available for
H ¤ 1=2. It remains a challenge to obtain more accurate information on the
explosion times of (2).
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We describe in Sects. 3 and 4 the blowup behaviour of the solution v of the
random partial differential equation (6) in terms of the first eigenvalue and the first
eigenfunction of the Laplace operator on D. This is done by solving explicitly a
stochastic equation in the time variable which is obtained from the weak form of (6).
The solution of this differential equation can be written in terms of integrals of the
exponential of fractional Brownian motion with drift. Near the end of the paper,
sufficient conditions for v to be a global solution are given in terms of the semigroup
of the Laplace operator using recent sharp results on its transition density. These
conditions show in particular that the initial condition f has to be small enough in
order to avoid for a givenG the blowup of v, as well as a sufficiently small j� j and a
sufficiently big ˇ. The results presented here can be used to investigate the blowup
behaviour of u for non-linearities satisfying (3) or (16).

2 Weak Solutions of a Random PDE

In this section we investigate the random partial differential equation

@v

@t
.t; x/ D %v.t; x/C �v.t; x/C e��BHt G.e�BHt v.t; x//; t > 0; x 2 D;
v.0; x/ D f .x/; x 2 D; (6)

v.t; x/ D 0; x 2 @D:

This equation is understood trajectorywise and classical results for partial differen-
tial equations of parabolic type apply to show existence and uniqueness of a solu-
tion v.t; x/ up to eventual blowup (see, e.g., Friedman [6, Chap. 7, Theorem 9]).
Moreover,

v.t; x/ D e�tStf .x/C
Z t

0

e�.t�s/St�s
�
e��BHs G.e�BHs v.s; x//

	
ds; (7)

and therefore v.t; x/ � e�tStf .x/ � 0.

Proposition 1. Let u be a weak solution of (2). Then the function v defined by

v.t; x/ D e��BHt u.t; x/; t � 0; x 2 D;
solves (6).

Remark 1. Proposition 1 implies in particular that (2) possesses a strong local
solution u.t; x/. Moreover, u.t; x/ � 0 due to (7).

Proof. By Itô’s formula for BH (see, e.g., [10, Lemma 2.7.1])

e��BHt D 1 � �
Z t

0

e��BHs dBH
s :
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We notice that the last integral can be defined as a Riemann–Stieltjes integral. Let us
write u.t; '/ 	 R

D
u.t; x/'.x/ dx: Then the weak solution of (2) can be written as

u.t; '/Du.0; '/C
Z t

0
u.s;%'/ dsC

Z t

0
Œ�u.s; '/CG.u/.s; '/� dsC�

Z t

0
u.s; '/ dBHs :

By applying the integration by parts formula, which is a special case of the two-
dimensional Itô’s formula (see [10], p. 184), we get

v.t; '/ WD
Z
D

v.t; x/'.x/ dx

D v.0; '/C
Z t

0

e��BHs du.s; '/C
Z t

0

u.s; '/
�
��e��BHs dBH

s

	
:

Therefore,

v.t; '/ D v.0; '/C
Z t

0

e��BHs Œu.s;%'/C �u.s; '/CG.u/.s; '/� ds

C�
Z t

0

e��BHs u.s; '/ dBH
s � �

Z t

0

e��BHs u.s; '/ dBH
s

D v.0; '/C
Z t

0

h
v.s;%'/C �v.s; '/C e��BHs G.e�BH� v/.s; '/

i
ds:

Moreover, by self-adjointness of the Laplacian and the fact that '.x/ D 0 for
x 2 @D,

v.s;%'/ D
Z
D

v.s; x/%'.x/ dx D
Z
D

%v.s; x/'.x/ dx D %v.s; '/: ut
In what follows % denotes the blowup time of (6). Due to Proposition 1 and to

the a.s. continuity of BH
: , % is also the explosion time of (2).

3 An Upper Bound for %

Without loss of generality, let us assume that C D 1 in (3). Let  be the
eigenfunction corresponding to the first eigenvalue �1 of the Laplacian on D,
normalized by

R
D
 .x/ dx D 1: It is well known that  is strictly positive on D.

Due to Proposition 1, we have that

v.t;  / D v.0;  /C
Z t

0

Œv.s;% / C �v.s;  /� dsC
Z t

0

e��BHs G.e�BH: v/.s;  / ds:
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Moreover,

v.s;% / D ��1v.s;  /;

and, due to (3),

Z
D

e��BHs G.e�BHs v.s; x// .x/ dx � e�ˇB
H
s

Z
D

v.s; x/1Cˇ .x/ dx:

By Jensen’s inequality,

Z
D

v.s; x/1Cˇ .x/ dx �
�Z

D

v.s; x/ .x/ dx

�1Cˇ
D v.s;  /1Cˇ;

and therefore

d

dt
v.t;  / � .��1 C �/v.t;  /C e�ˇB

H
s v.t;  /1Cˇ: (8)

Hence v.t;  / � I.t/ for all t � 0, where I.�/ solves

d

dt
I.t/ D .��1 C �/I.t/ C e�ˇB

H
t I.t/1Cˇ ; I.0/ D v.0;  /;

and is given by

I.t/ D e.��1C�/t
�
v.0;  /�ˇ � ˇ

Z t

0

e.��1C�/ˇsC�ˇBHs ds

�� 1
ˇ

; 0 � t < 
�;

with


� WD inf

�
t � 0

ˇ̌
ˇ̌
Z t

0

e.��1C�/ˇsC�ˇBHs ds � 1

ˇ
v.0;  /�ˇ



: (9)

It follows that I exhibits finite-time blowup on the event Œ
� < 1�. Due to I 5
v.�;  /; 
� is an upper bound for the blowup time of v.�;  /. Since by assumptionR
D
 .x/ dx D 1, v.t; x/ cannot be bounded on Œ
� < 1�. Hence 
� is also an

upper bound for the blowup times of v and u.

We subsume the above argumentation into the following corollary.

Corollary 1. The function v.t;  / D R
D
v.t; x/ .x/ dx explodes in finite time on

the event Œ
� < 1�, hence u.t; x/ D e�B
H
t v.t; x/ also explodes in finite time if


� < 1, and the blowup times of u and v are the same.
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Remark 2. Notice that, from (9),

P Œ
� D C1� D P

�Z t

0

e.��1C�/ˇsC�ˇBHs ds <
1

ˇ
v.0;  /�ˇ for all t > 0

�

D P

�Z 1

0

e.��1C�/ˇsC�ˇBHs ds 5 1

ˇ
v.0;  /�ˇ

�
: (10)

Assume now that � > �1, and recall the law of the iterated logarithm for BH [1]:

lim inf
t!C1

BH
t

tH
p
2 log log t

D �1; lim sup
t!C1

BH
t

tH
p
2 log log t

D C1 P – a.s.

It follows that the integral in (10) diverges. Therefore P Œ
� D C1� D 0 and any
nontrivial positive solution of (2) explodes in finite time a.s. If � < �1 this is not
true anymore, and it would be interesting to estimate this probability. As mentioned
in the introduction, the law of these integrals is known only in the case H D 1

2
,

i.e. for Brownian motion. After the following remark, we consider this case in more
detail.

Remark 3. By putting � D � D 0 we get v D u and, moreover, in (10) we
obtain that P Œ
� D C1� D 0 or 1 according to

R
D
f .x/ .x/ dx > �

1=ˇ
1 orR

D
f .x/ .x/ dx � �

1=ˇ
1 , which is a probabilistic counterpart to condition (1).

The case of H D 1
2

was investigated in [4], where we obtained a lower bound
for the probability of finite-time explosion of the solution of (2). For the reader’s
convenience, here we explain the calculations for this special case.

When H D 1
2
, Itô’s formula contains a second order term and the associated

random PDE therefore reads (we write W instead of B1=2/

@v

@t
.t; x/ D %v.t; x/C

 
� � �2

2

!
v.t; x/C e��Wt G.e�Wt v.t; x//; t > 0; x 2 D;

v.0; x/ D f .x/; x 2 D; (11)

v.t; x/ D 0; x 2 @D:

We get again a differential inequality for v.t;  /; and the blowup time of the
associated differential equation for I is

Q
� D inf

�
t � 0

Z t

0

e�.�1C�2=2��/ˇsC�ˇWs ds � 1

ˇ
v.0;  /�ˇ



: (12)
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Now

P Œ Q
� D C1� D P

�Z 1

0

e�.�1C�2=2��/ˇsC�ˇWs ds 5 1

ˇ
v.0;  /�ˇ

�

D P

�Z 1

0

e2
ǑW .�/

s ds 5 1

ˇ
v.0;  /�ˇ

�
; (13)

where W .�/
s WD �s C Ws , � WD �.�1 � � C �2=2/=�, and Ǒ WD �ˇ=2. Setting

O� D �= Ǒ we get by performing the time change s 7! s. Ǒ/2;

P Œ Q
� D C1� D P

�
4

�2ˇ2

Z 1

0

expf2W . O�/
s g ds 5 1

ˇ
v.0;  /�ˇ

�
: (14)

If Q� WD �.�1��C�2=2/=�ˇ > 0; it follows again that P Œ Q
� D C1� D 0 and any
nontrivial positive solution of (2) with BH replaced by W explodes in finite time
a.s.; see also [9, Proposition 6.4], or [16, Sect. 2]. If Q� < 0; it follows from [18]
(Chap. 6, Corollary 1.2) that

Z 1

0

expf2W . O�/
s g ds D 1

2Z� O�

in distribution, where Z� O� is a random variable with law � .� O�/; i.e. P.Z� O� 2
dy/ D 1

� .� O�/e
�yy� O��1 dy: We get therefore (see also Formula 1.10.4(1) in [3])

P Œ Q
� D C1� D
Z 1

ˇ v.0; /
�ˇ

0

h.y/ dy;

where

h.y/ D .�2ˇ2y=2/�.2.�1��/C�2/=�2ˇ

y� ..2.�1 � �/C �2/=.�2ˇ//
exp

�
� 2

�2ˇ2y



:

In this way we have proved the following:

Proposition 2. The probability that the solution of (2) with BH replaced by W
blows up in finite time is bounded from below by

R C1
1
ˇ v.0; /

�ˇ h.y/ dy:

We end this section by reviewing another method to find upper estimates of
the blowup time of the solution of (2). In [2] it is shown that the formula (12)
for Q
�can also be found by replacing the random differential inequality (8) by a
stochastic differential inequality, whose associated equality can be solved explicitly.
A comparison theorem for stochastic differential inequalities is needed for this, and
since no such theorem seems to be known at present for inequalities with fractional
Brownian motion, we have to restrict ourselves to Brownian motion where these
theorems are classical.



Blowup and Global Positive Solutions of a Semi-linear SPDE with Fractional Noise 103

Proceeding with the variational solution in Sect. 1 in the same way as with the
random PDE at the beginning of this section, we get the stochastic differential
inequality

u.t;  / � u.0;  /C
Z t

0



.� � �1/u.s;  /C u.s;  /1Cˇ

�
ds C �

Z t

0

u.s;  / dWs:

The corresponding stochastic differential equation

Xt D u.0;  /C
Z t

0



.� � �1/Xs CX1Cˇ

s

�
ds C �

Z t

0

Xs dWs

can be solved explicitly. In fact, by the ansatz Yt D h.Xt / and by Itô’s formula, we
then get

Yt D Y0 C
Z t

0

"
h0.Ys/

�
.� � �1/Ys C Y

1Cˇ
s

	
C �2

2
h00.Ys/Y 2s

#
ds C �

Z t

0
h0.Ys/Ys dWs:

The function h can now be chosen in such a way that Y satisfies the linear stochastic
differential equation

Yt D Y0 C
Z t

0

.aC bYs/ ds C
Z t

0

.c C dYs/ dWs:

for suitable constants a; b; c; d 2 R: In fact, a comparison of the martingale parts of
both representations of Y gives a differential equation for h whose solution is given
by h.Yt / D kY

d=�
t � c

d
for any constant k 2 R: By comparing the finite variation

parts of the representations of Y , we get

kd

�
Y
d=�Cˇ
t C kd

�
.� � �1/Y d=�t C 1

2
kd.d � �/Y d=�t D aC bkY

d=�
t � bc

d
:

We choose d D �ˇ�; c D 0; b D ˇ.
.1Cˇ/�2

2
��C�1/; a D �kˇ and get Yt D X

�ˇ
t :

From the explicit formula for the solution of the linear equation for Y , we get

Xt D Y
�1=ˇ
t D 


u.0;  /�ˇY 0t � ˇY 1t
��1=ˇ

; (15)

where

Y 1t D Y 0t

Z t

0

exp
˚�.�1 C �2=2 � �/ˇs C �ˇWs

�
ds

with Y 0t D exp
˚
.�1 C �2=2 � �/ˇt � �ˇWt

�
. It can easily be seen that (15) yields

the same formula for the blowup time of X as (12) for I:
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4 A Lower Bound for %

We consider again equation (6), but we assume that � ¤ 0 and that G W RC ! RC
satisfies G.0/ D 0, G.z/=z is increasing and

G.z/ � (z1Cˇ for all z > 0; (16)

where ( and ˇ are certain positive numbers. Let fSt , t � 0g again denote the
semigroup of d -dimensional Brownian motion killed at the boundary of D. Recall
the integral form (7) of (6). We define

F.t/ D
�
1 �(ˇ

Z t

0

e�ˇB
H
r ke�rSrf kˇ1 dr

�� 1
ˇ

; 0 � t < 
�; (17)

where


� D inf

�
t > 0 W

Z t

0

e�ˇB
H
r ke�rSrf kˇ1 dr � .(ˇ/�1



: (18)

Hence F.0/ D 1 and

dF

dt
.t/ D (e�ˇB

H
t ke�tStf kˇ1F 1Cˇ.t/;

which implies

F.t/ D 1C(

Z t

0

e�ˇB
H
r ke�rSrf kˇ1F 1Cˇ.r/ dr:

Let

R.V /.t; x/ WD e�tStf .x/C
Z t

0
e��BHr e�.t�r/St�r

�
G.e�B

H
r Vr .�//

	
.x/ dr; x 2 D; t � 0;

where .t; x/ 7! Vt .x/ is any nonnegative continuous function such that Vt .�/ 2
C0.D/, t � 0, and

Vt .x/ � e�tStf .x/F.t/; 0 � t < 
�; x 2 D: (19)

Then e�tStf .x/ � R.V /.t; x/ and
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R.V /.t; x/

D e�tStf .x/C
Z t

0

e��BHr e�.t�r/St�r

 
G.e�B

H
r Vr .�//

Vr.�/ Vr.�/
!
.x/ dr

� e�tStf .x/C
Z t

0

e��BHr e�.t�r/St�r

 
G.e�B

H
r F.r/ke�rSrf k1/

F.r/ke�rSrf k1
Vr.�/

!
.x/ dr

� e�tStf .x/C(

Z t

0

e�ˇB
H
r F 1Cˇ.r/ke�rSrf kˇ1e�.t�r/St�r .e�rSrf /.x/ dr

D e�tStf .x/

�
1C(

Z t

0

e�ˇB
H
r F 1Cˇ.r/ke�rSrf kˇ1 dr

�
D e�tStf .x/F.t/; (20)

where to obtain the first inequality we used (19) and the fact thatG.z/=z is increasing
and to obtain the second inequality we used (16). Consequently,

e�tStf .x/ � R.V /.t; x/ � e�tStf .x/F.t/; 0 � t < 
�; x 2 D:

Let

v0t .x/ WD e�tStf .x/ and vnC1
t .x/ D R.vn/.t; x/; n D 0; 1; 2; : : : :

Using induction, one can easily prove that the sequence fvng is increasing, and
therefore the limit

vt .x/ D lim
n!1 v

.n/
t .x/

exists for all x 2 D and all 0 � t < 
�. The monotone convergence theorem implies

vt .x/ D Rvt .x/ for x 2 D and 0 � t < 
�,

i.e. the function vt .x/ solves (7) on Œ0; 
�/�D. Moreover, because of (20) and (17),

vt .x/ � e�tStf .x/�
1 �(ˇ R t

0
e�ˇB

H
r ke�rSrf kˇ1 dr

	1=ˇ < 1

as long as
Z t

0

e�ˇB
H
r ke�rSrf kˇ1 dr < .(ˇ/�1:

In this way we have proved the following proposition.

Proposition 3. The blowup time of (7) is bounded from below by the random
variable 
� defined in (18).
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5 Non-Explosion of v

An immediate consequence of the discussion in the preceding section is the
following result.

Theorem 1. Assume that the function f � 0 is such that

(ˇ

Z 1

0

e�ˇB
H
r ke�rSrf kˇ1 dr < 1: (21)

Then (6) admits a global solution v.t; x/ that satisfies

0 � v.t; x/ � e�tStf .x/�
1 �(ˇ R t

0
e�ˇB

H
r ke�rSrf kˇ1 dr

	 1
ˇ

; t � 0: (22)

When the boundary ofD is sufficiently smooth, it is possible to derive a sufficient
condition for (21) in terms of the transition kernels fpt .x; y/, t > 0g of fSt , t � 0g
and the first eigenvalue �1 and corresponding eigenfunction  . We recall the
following sharp bounds for fpt .x; y/, t > 0g, which we borrowed from Ouhabaz
and Wang [13].

Theorem 2. Let > 0 be the first Dirichlet eigenfunction on a connected, bounded
C1;˛- domain in R

d , where ˛ > 0 and d � 1, and let pt .x; y/ be the corresponding
Dirichlet heat kernel. There exists a constant c > 0 such that, for any t > 0,

max

�
1;
1

c
t�.dC2/=2



� e�1t sup

x;y

pt .x; y/

 .x/ .y/
� 1C c.1 ^ t /�.dC2/=2e�.�2��1/t ;

where �2 > �1 are the first two Dirichlet eigenvalues. This estimate is sharp for
both short and long times.

The above theorem is useful in verifying condition (21). Let the domainD satisfy
the assumptions in Theorem 2, and let the initial value f � 0 be chosen so that

f .y/ � KS
 .y/; y 2 D; (23)

where 
 � 1 is fixed and K > 0 is a sufficiently small constant to be specified later
on. Arguing as in [4] we obtain that condition (21) is satisfied provided that

(ˇ

"
K.1C c/e��1


�
sup
x2D

 .x/

�2 Z
D

 .y/ dy

#ˇ Z 1

0

e�ˇB
H
r C.��1C�/ˇr dr < 1;
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or

Z 1

0

e�ˇB
H
r C.��1C�/ˇr dr <

e�1ˇ


(ˇ

"
K.1C c/

�
sup
x2D

 .x/

�2 Z
D

 .y/ dy

#ˇ ; (24)

which holds if K in (23) is sufficiently small. In this way we get the following:

Theorem 3. LetG satisfy (16), and letD be a connected, bounded C1;˛-domain in
R
d , where ˛ > 0: If (23) and (24) hold for some 
 > 0 andK > 0, then the solution

of (7) is global.

Remark 4. The integral on the left side of (24) coincides with the corresponding
integral in Sect. 3. If G.z/ D (z1Cˇ , the results of this section can be applied also
to the solution u of (2) because v.t; x/ D e��BHt u.t; x/, t � 0, x 2 D:
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Hydrodynamics and Stochastic Differential
Equation with Sobolev Coefficients

Shizan Fang

Abstract In this chapter, we will explain how the Brenier’s relaxed variational
principle for Euler equation makes involved the ordinary differential equations with
Sobolev coefficients and how the investigation on stochastic differential equations
(SDE) with Sobolev coefficients is useful to establish variational principles for
Navier–Stokes equations. We will survey recent results on this topic.

1 Introduction

The Euler equation describes the velocity of incompressible nonviscous fluids on
Rd or on a compact Riemannian manifold M :

d

dt
ut C .ut � r/ut D �rp; div.ut / D 0; (1)

where .ut � r/ut is understood as the covariant derivative rut ut in the case of
manifolds.

If x ! ut .x/ is smooth, there is a flow of diffeomorphisms gt such that

d

dt
gt .x/ D ut .gt .x//; g0.x/ D x: (2)

Fix a time T > 0, then t ! gt is a continuous curve on the group of
diffeomorphisms Diff.M/; in other words, g� 2 C.Œ0; T �I Diff.M//. A famous work
by V. Arnold says that u is a solution to (1) if and only if g is a geodesic on Diff.M/

equipped with L2 metric. Precisely, g� minimizes the functional C.Œ0; T �I Diff.M//
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SŒ'� D 1

2

Z T

0

Z
M

ˇ̌
ˇ d
dt
't .x/

ˇ̌
ˇ2
TxM

dxdt: (3)

To solve (1), it turns often to minimize (3) with constraints: '0 D I; 'T D h;
the pressure field p arises as a Lagrange multiplier from the incompressibility
constraint. It is known that the solution ut to (1) loses more and more regularity
as t grows even the initial data u0 is smooth (see, e.g., [9]). From a time t , ut should
be in some Sobolev space. In [8], Brenier has relaxed (3) by looking for probability
measures 
 on the path space C.Œ0; T �;M/, which minimizes the functional

SŒ
� D 1

2

Z
C.Œ0;T �;M/

�Z T

0

j P�.t/j2T�.t/M dt
�
d
.�/; (4)

with constraints: .e0; eT /�
 D .I; h/�.dx/ and .et /�
 D dx, where et W � ! �.t/.
If g� is a classical solution to (3) with gT D h, then the probability measure 
 on

the path space C.Œ0; T �;M/ defined by
Z
C.Œ0;T �;M/

 .�/ d
.�/ D
Z
M

 .g�.x// dx

is a Brenier’s solution. In this latter case, 
 can be expressed by


 D .˚g/�.dx/;

with ˚g W M ! C.Œ0; T �;M/; x ! g�.x/. In other words, 
 is supported by the
graph of g 2 C.Œ0; T �;Diff.M// in above sense (see [2]). So it is interesting to
know for which class of vector fields the above construction remains true.

In the viscous case, the velocity obeys the Navier–Stokes equation

d

dt
ut C .ut � r/ut � ��ut D �rp; div.ut / D 0: (5)

How do you establish the suitable variational principle for the Navier–Stokes
equation? In parallel to the flow (2) associated with a velocity field in the Euler
equation, a stochastic flow of diffeomorphisms having u, a solution to (5), as the drift
should be considered. A straight generalization of (4) meets two difficulties: first,
there is no canonical way to construct the Brownian motion onM , when the latter is
not parallelizable, and second, solutions to SDE are not absolutely continuous with
respect to the time t . Progresses have been done by A.B. Cruzeiro and others (see,
e.g., [3] for a notion of generalized flow and [4] a survey for the related topics).
See also related works by Le Jan and Raimond [17, 18]. In this survey based on our
works [15,16], we will do the exploration in an opposite direction; we want to solve
strongly SDE with coefficients having Sobolev regularity.

In 1989, Di Perna and Lions [12] solved the ODE with coefficient in Sobolev
space on Rd :

dXt.x/

dt
D Vt .Xt .x//; (6)
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where Xt W Rd ! Rd is a family of measurable maps, such that .Xt /�.dx/ has a
density, and Vt has to be supposed to have bounded divergence. A useful tool for
solving (6) is the transport equation in distribution sense

dut
dt

C Vt � rut D 0: (7)

In order to prove the well-posedness of (7), they introduced the notion of renormal-
ized solution: if u is a solution to (7), then for any ˇ 2 C1

b .R/, ˇ.u/ still is a solution
to (7), but with a different initial data.

Let’s see this concept for SDE. Consider the Stratanovich SDE

dXt D
mX
iD1

Ai .Xt / ı dwit C A0.Xt / dt;

where t ! wt D .w1t ; : : : ;w
m
t / is the standard Brownian motion. When the

coefficients are good enough, the above SDE defines a flow of homeomorphisms
Xt . Let �.t; x/ D �0.X

�1
t .x//; then � satisfies the stochastic transport equations

dt� C
mX
iD1
.Ai � r�/ ı dwit C .A0 � r�/ dt D 0;

or in Itô form

dt� D �
mX
iD1
.Ai � r�/dwit � .A0 � r�/ dt � 1

2

mX
iD1

L2Ai � dt; (8)

where LAi denotes the derivative with respect to Ai . By Itô formula, it is easy to see
that (8) is not stable under the left action by ˇ; this means that ˇ.�/ is no more a
solution to (8).

2 Flat Case Rd

To simplify things, we consider the standard Gaussian measure �d on Rd as the
reference measure. We say that a measurable map X W˝ � Rd ! C.Œ0; T �;Rd / is a
solution to the Itô SDE

dXt D
mX
iD1

Ai .Xt / dwit C A0.Xt / dt; X0 D x; (9)
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if

1. For each t 2 Œ0; T � and almost all x 2 Rd , w ! Xt.w; x/ is measurable
with respect to Ft , i.e., the natural filtration generated by the Brownian motion
fws W s � tg.

2. For each t 2 Œ0; T �, there exists Kt 2 L1.˝ � Rd / such that the push forward
measure .Xt .w; �//#�d admits Kt as the density with respect to �d .

3. Almost surely

mX
iD1

Z T

0

jAi.Xs.w; x//j2 ds C
Z T

0

jA0.Xs.w; x//j ds < C1:

4. For almost all x 2 Rd ,

Xt.w; x/ D x C
mX
iD1

Z t

0

Ai .Xs.w; x// dwis C
Z t

0

A0.Xs.w; x// ds:

5. The flow property holds

XtCs.w; x/ D Xt.�sw; Xs.w; x//;

where �s denotes the shift operator: .�sw/.t/ D w.t C s/ � w.s/.

For a vector field A on Rd and p > 1, we say that A 2 Dp
1 .�d / if A 2 Lp.�d /

and there exists rA W Rd ! Rd ˝ Rd in Lp.�d / such that for any v 2 Rd

rA.x/.v/ D lim

!0

A.x C 
v/ � A.x/



holds in Lp�;

where Lp� means that the above convergence holds on all Lq.�d / for q < p.
For such a vector field A 2 Dp

1 .�d /, the divergence div� .A/ with respect to the
Gaussian measure �d exists in Lp.�d / (see [14]) in the sense that

Z
Rd

hrf;Ai d�d D �
Z

Rd
f div� .A/ d�d ; for any f 2 C1

b .R
d /:

We have div� .A/ D Pd
iD1.@Ai=@xi � xiAi /.

Theorem 1 (see [15]). Assume that the diffusion coefficients A1; : : : ; Am belong
to the Sobolev space

T
q>1 Dq

1.�d / and the drift A0 2 Dq
1.�d / for some q > 1.

Assuming for a small �0 that

Z
Rd

exp

�
�0

�
jdiv� .A0/j C

mX
jD1

�jdiv� .Aj /j2 C jrAj j2�
��
d�d < C1; (10)
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and that the coefficients A0;A1; : : : ; Am are of linear growth, then there is a unique
stochastic flow of measurable maps X W Œ0; T ��˝ � Rd ! Rd , which solves (9) for
almost all initial x 2 Rd , and the push forward .Xt .w; �//#�d admits a density with
respect to �d , which is in L1 logL1.

An immediate consequence of Theorem 1 is the following:

Theorem 2. Let A0;A1; : : : ; Am be globally Lipschitz continuous. Suppose that
there exists a constant C > 0 such that

mX
jD1

hx;Aj .x/i2 � C .1C jxj2/ for all x 2 Rd : (11)

Then the stochastic flow of homeomorphisms Xt generated by SDE (9) leaves the
Lebesgue measure quasi-invariant.

It is clear that the condition (11) implies (10). Note that A. Y. Pilipenko recently
told me that the condition (11) could be removed using an early result by Bouleau
and Hirsch [7], which says that x ! Xt.x/ is inW p;loc

1 , together with a generalized
formula of change of variable. We refer to [5] for a new development.

For proving Theorem 1, we need two ingredients that we will explain in what
follows.

In the case of ODE where V is smooth, the push forward measure .Xt /]�d admits
the density Kt with respect to �d and

Kt.x/ D exp
�Z t

0

�div� .V /.X�s.x//ds
	
;

and the Cruzeiro’s estimate [11] in Lp.�d / for p > 1

jjKt jjpLp �
Z

Rd
exp

� p2t

p � 1 jdiv� .V /j
	
d�d

holds. In the case of SDE (9), we obtained the following:

Theorem 3 ([15]). Let Kt.w; x/ be the density of .Xt /]�d with respect to �d . Then
for p > 1, we have

kKtkLp.P��d / �
� Z

Rd
exp

�
pt
h
2jdiv� .A0/j

C
mX
jD1

�jAj j2CjrAj j2C2.p�1/jdiv� .Aj /j2
�i�

d�d

� p�1
p.2p�1/

:

(12)
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We see that the condition (10) in Theorem 1 comes from (12). The second ingredient
we need is a method developed by Crippa–De Lellis [10] and Xicheng Zhang [19].

The absence of Lipschitz condition was filled by the following inequality: for
f 2 W 1;1

loc .R
d /,

jf .x/ � f .y/j � Cd jx � yj �MRjrf j.x/CMRjrf j.y/�

holds for x; y 2 Nc and jx � yj � R, where N is a negligible set of Rd and MRg

is the local maximal function defined by

MRg.x/ D sup
0<r�R

1

Lebd .B.x; r//

Z
B.x;r/

jg.y/j dy;

where B.x; r/ denotes the ball of center x and of radius r and Lebd denotes the
Lebesgue measure (see [15] for a complete proof); the classical moment estimate is
replaced by estimating the quantity

Z
B.0;r/

log

� jXt.x/ � QXt.x/j
�

C 1

�
dx;

where � > 0 is a small parameter. Here is a basic estimate:

Lemma 1 ([15]). Let q > 1. Suppose that A1; : : : ; Am as well as OA1; : : : ; OAm are
in D2q

1 .�d / and A0; OA0 2 Dq
1.�d /. Then, for any T > 0 and R > 0, there exist

constants Cd;q;R > 0 and CT > 0 such that for any � > 0,

E
�Z

GR

log

�
sup0�t�T jXt � OXt j2

�2
C 1

�
d�d

�

� CT(p;T

�
Cd;q;R

�
krA0kLq C

mX
iD1

krAik2L2q
�

C 1

�2

mX
iD1

kAi � OAik2L2q C 1

�

�
kA0 � OA0kLq

�

;

where p is the conjugate number of q: 1=p C 1=q D 1, and

GR.w/ D
�
x 2 Rd I sup

0�t�T
jXt.w; x/j _ j OXt.w; x/j � R



:

Proof of Theorem 1. Let Anj be a suitable regularization of Aj for j D 0; 1;m. Let
Xn be the solution associated with Anj . Let

�n;k D jjAn0 � Ak0 jjLq C
 

mX
iD1

jjAni � Aki jj2L2q
!1=2

;
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and Gn;R D ˚
x 2 Rd I sup0�t�T jXn

t .w; x/j � R
�
. By Lemma 1,

In;k WD E
�Z

Gn;R\Gk;R
log

�kXn �Xkk21;T0

�2n;k
C 1

�
d�d

�

is bounded with respect to n; k, where jj � jj1;T0 denotes the uniform norm over
Œ0; T0�; from this fact, we deduce that fXnIn � 1g is a Cauchy sequence in L0.
Combined with boundedness in all Lp , we get the convergence of Xn to X in Lp .

ut
Note that the above method does not work if Rd is replaced by a Riemannian

manifold M .

3 Non-flat Case

Let M be a complete Riemannian manifold and �M the Laplace operator on it. For
a C1 vector field Z on M , the diffusion process Xt on M of generator

1

2
�M CZ

can be constructed intrinsically through the bundle of orthonormal frames � W
O.M/ ! M . More precisely, let H1; : : : ;Hd be canonical horizontal vector fields
on M , that is, � 0.r/Hi .r/ D r � "i , where f"1; : : : ; "d g is the canonical basis of Rd

and r 2 O.M/ is an isometry Rd ! T�.r/M . We lift Z to a horizontal vector field
QZ on O.M/:

� 0.r/ QZ.r/ D Z�.r/:

Then we can consider the SDE on O.M/:

drt .w/ D
dX
iD1

Hi .rt .w// ı dwit C QZ.rt .w//dt; r0.w/ D r0 (13)

which has a unique strong solution, up to the lifetime 
.w/. Then the process

Xt.w/ D �.rt .w//

admits the generator 1
2
�M CZ.

This construction is well known, due to Eells-Elworthy, Malliavin in the year
1976. Now the question is how to construct such a process when Z in (13) is in a
Sobolev space

Z 2 Dq
1‹

where the Sobolev space is defined with respect to the Riemannian measure dx
on M .
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Note that the essential step to prove the well-posedness of the transport equation
(7) on the Euclidean space Rd

dut
dt

C Vt � rut D 0:

is to establish the following type of estimate:

jjcn.f;Z/jjL1 � C jjf jjLp .jjrZjjLq C jjdiv.Z/jjLq /; (14)

where cn.f;Z/ D .DZf / � �n �DZ.f � �n/, and �n is a sequence of smoothing
functions.

For a function f on a Riemannian manifold M , it is natural to use the heat
semigroup TMt f to regularize it.

For the sake of simplicity, we will assume that M is compact. Consider the SDE
on O.M/:

drt .w/ D
dX
iD1

Hi .rt .w// ı dwit :

Then the heat semigroup admits the representation:

TMt f .x/ D E.f .�.rt /// D E.f .xt //; where xt D �.rt /:

Let V be a smooth vector field on M ; for a function f 2 C1.M/, we set

ct .f; V / D LV .T
M
t f / � TMt .LV f /;

LV denotes the Lie derivative along V .
In the sequel, the spaces Lp are defined with respect to the Riemannian measure

and rV denotes the Riemannian covariant derivative of V and div.V / denotes the
divergence of V with respect to the Riemannian metric.

In contrast to (14), we have the following result.

Theorem 4 ([16]). We have

jjct .f; V /jjL1 � C
�
jjf jjL2p jjrV jjLq C p

t jjf jjL2p jjV jjLq C jjf jjLp jjdiv.V /jjLq
	
:

(15)

To prove the result (15), we have used in [16] two representation formula: Bismut
formula for backward derivative [6] and Driver formula for forward derivative [13]
in stochastic differential geometry.
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Now we will develop Di Perna–Lions method on manifolds: Let Vt 2
Dq
1.M; TM/ be a time-dependent vector field; consider the transport equation

on M

dut
dt

C Vt � rut C 	tut D 0; ujtD0 D u0; (16)

where 	 W Œ0; T � �M ! R is a measurable function.

Theorem 5 ([16]). Let V 2 L1.Œ0; T �;Dq
1/ and assume div.V /; 	 2 L1.Œ0; T �;

L1.M//. Then for any u0 2 Lp \ L2p , (16) admits a unique solution u 2
L1.Œ0; T �; Lp \ L2p/.

Now we are going to solve the ODE

dXt

dt
D Vt .Xt /:

We also have to regularize vector fields. To this end, we use de Rham–Hodge
semigroup T 1" D e�"�1 on differential forms, where �1 D dd� C d�d . Let !
be a differential form and V a vector field. We define the vector field !] and the
differential form V � by

h!x; Vxi D h!]; V iTxM D h!; V �iTxM� :

We define

T 1" V D .T"V
�/]:

In the case of compact manifold, the semigroup T 1" has a good behavior. Let �c be
the lower bound of the Ricci tensor, that is,

Ricx � �c Id:

Then it holds that

jT 1" V j � e"cT M" jV j; div.T 1" V / D TM" .div.V //: (17)

Now consider

V "
t D T 1" Vt :

Then for each " > 0,

Z T

0

kdiv.V "
t /k1 dt �

Z T

0

kdiv.Vt /k1 dt;
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and for 0 � " � 1,

Z T

0

Z
M

jV "
t .x/jq dtdx � ecq

Z T

0

Z
M

jVt .x/jq dtdx:

Therefore, according to (17), the condition

Z T

0

kdiv.Vt /k1 dt C
Z T

0

Z
M

jVt .x/jq dtdx < C1 (18)

implies the nonexplosion of following ODE associated with V "
t :

dX"
t

dt
D V "

t .X
"
t /; X"

0 D x:

And the density k"t of .X"
t /#.dx/ with respect to dx is bounded:

e� R t
0 jjdiv.Vs/jj1ds � k"t � e

R t
0 jjdiv.Vs/jj1ds: (19)

Fix T > 0. Let 
" be the push forward measure on the path space

W.M/ D C.Œ0; T �;M/

of dx by the map x ! X"� .x/. Then the family of finite measures f
"I " > 0g on
W.M/ is tight if q > 2. Let 
 be a limit point.

Let et W W.M/ ! M be the evaluation map : et .�/ D �.t/ and �t D .et /#
.
Then

Z
M

f d�t D lim
n!C1

Z
M

f .X
"n
t .x// dx:

So the density kt of �t with respect to dx exists and by (19),

kt � e
R T
0 jjdiv.Vs/jj1ds:

Under the probability 
 on W.M/, we have

d�.t/

dt
D Vt .�.t//; for a.e. t 2 Œ0; T �: (20)

Now let 
 be any finite measure on W.M/ such that for 
-a.s � 2 W.M/, (20)
holds. If k
t D d.et /#
/=dx exists, then k
t solves the transport equation

dut
dt

C Vt � rut C div.Vt /ut D 0: (21)
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Theorem 6. Let V be a vector field in L1.Œ0; T �;Dq
1/ with q > 2. Assume thatR T

0
jjdiv.Vt /jj1 dt < C1. Then there exists a unique flow of measurable maps

Xt W M ! M such that dXt
dt

D Vt .Xt / and .Xt /#.dx/ admits a density.

Proof. Let d
 D d
x dx. Then 
x is concentrated on integral curves � such that
�.0/ D x. The idea, due to Ambrosio [1], is to prove that 
x is supported by a graph
x ! X�.x/, that is,


x D ıX�.x/:

Otherwise, we could construct two different solutions to the transport equation (21),
with the same initial value, which is in contradiction with Theorem 5 . ut

Now we will construct the diffusion process associated with 1
2
�M C V with

V 2 Dq
1 and with bounded divergence.

We first lift V to a horizontal vector field QV on O.M/ and consider the time-
dependent random vector fields:

QVt .w; �/ D .U�1
t .w; �//� QV ;

where Ut.w; r/ is the stochastic flow of diffeomorphisms on O.M/ associated with

drt .w/ D
dX
iD1

Hi .rt .w// ı dwit :

Then we solve
dYt

dt
D QVt .w; Yt / (see below). The projection on M of Zt D Ut.Yt /

gives the desired process.
In order to lift V to a horizontal vector field QV of Sobolev regularity, we have

to choose a metric on O.M/. Let .�; !/ be the 1- differential form taking values in
Rd ˚ so.d/, called the parallelism.

Define, for a vector field A on O.M/,

jA.r/j2TrO.M/ D j�.A/j2Rd C j!.A/j2so.d/: (22)

The divergence with respect to this metric (22) is identical to the one defined by

Z
O.M/

˚ div.A/ dr D �
Z
O.M/

hr˚.r/; A.r/iTrO.M/ dr; (23)

where dr is the Liouville measure on O.M/. Then for a C1 vector field V on M ,
we have

div. QV / D div.V / ı � and jj QV jjDq1 � C jjV jjDq1 :
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Using (23) and the fact that Ut preserves the measure dr , we have

div. QVt .w; �// D div. QV /.Ut .w; �//:

So that

Z T

0

jjdiv. QVt /jj1dt � T jjdiv.V /jj1:

Finally, we have

Theorem 7 ([16]). Let M be a compact Riemannian manifold. Then for a vector
field V 2 Dq

1 with q > 2 and jjdiv.V /jj1 < C1, we have

Z
Œ0;T ��O.M/

h
j QVt jq C jrO.M/ QVt jq

i
dtdr < C1; (24)

and the SDE on O.M/

dZt D
dX
iD1

Hi .Zt / ı dwi .t /C QV .Zt /dt (25)

has a strong solution, and Xt D �.Zt / has 1
2
�M C V as generator.

Proof. Note that by (24), the condition (18) is satisfied for vector fields QVt onO.M/.

By Theorem 6, the differential equation
dYt

dt
D QVt .w; Yt / admits a unique solution

of measurable maps. So Zt D Ut.Yt / solves (25). ut
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Elementary Pathwise Methods for Nonlinear
Parabolic and Transport Type Stochastic Partial
Differential Equations with Fractal Noise

Michael Hinz, Elena Issoglio, and Martina Zähle

Abstract We survey some of our recent results on existence, uniqueness, and
regularity of function solutions to parabolic and transport type partial differential
equations driven by non-differentiable noises. When applied pathwise to random
situations, they provide corresponding statements for stochastic partial differential
equations driven by fractional noises of sufficiently high regularity order. The
approach is based on semigroup theory.

1 Introduction

In this survey we list several of our recent results on existence, uniqueness,
and regularity of function solutions to linear and nonlinear parabolic stochastic
partial differential equations such as abstract stochastic heat equations [16–18],
stochastic transport-diffusion equations [23], and stochastic Burgers system [15].
Our approach combines semigroup theory [30, 39, 42] and fractional calculus
[14, 31, 36]. This leads to an elementary and easily accessible formulation in the
sense that more sophisticated techniques such as rough path theory [11, 25, 26]
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are avoided, and we obtain explicit formulas in terms of the semigroup. The basic
idea of the studies surveyed here was to formulate a framework for stochastic
partial differential equations using analogs of the pathwise techniques [24, 44–46]
previously employed by the third named author to solve stochastic differential
equations.

General information on stochastic partial differential equations can be found in
[9, 19, 32, 41], results close to our discussion of parabolic equations are for instance
[12,20,27,38]. A transport type equation was investigated in [34], and some results
on stochastic Burgers equation can be found in [3,7,8,13]. Of course there are many
more highly valuable references on these topics.

Classical stochastic calculus allows to integrate predictable processes against
semimartingale integrators. In particular it can be used to study stochastic differ-
ential equations with respect to a given semimartingale process. From a practical
viewpoint both semimartingale properties of the integrator and predictability of the
integrand may be too restrictive in some situations. If the integrator is Gaussian,
we may use methods from Malliavin calculus to define stochastic integrals for
nonanticipating integrands [28]. Alternatively, if almost surely both the integrand
and the integrator are of sufficiently high regularity (for instance in the sense of
Hölder continuity, p-variation or fractional differentiability), then this regularity
can be used to define stochastic integrals in a pathwise sense. In this case they are
of Stieltjes type. By now the most popular approach to this idea probably is Young
integration [43], which later inspired the development of rough path theory [25,26].
Another way to go, although not entirely pathwise, is to use stochastic calculus via
regularization [35]. Yet another technique was introduced in [44, 45] and is based
on fractional calculus.

Let I D .a; b/ be a bounded interval and E be a Banach space. Given 
 > 0

and a function ' 2 L1..a; b/; E/, consider the (forward and backward) Riemann–
Liouville fractional integrals of order 
 by

I
aC'.t/ WD 1

� .
/

Z t

a

'.
/

.t � 
/1�
 d


and

I
b�'.t/ WD .�1/�

� .
/

Z b

t

'.
/

.
 � t /1�
 d
 :

Here for 
 > 0 the powers are understood as usual in the sense of choosing the main
branch of the analytic function �
, � 2 C, with the cut along the positive half axis,
in particular, .�1/
 D ei
� . Here and in the following, the integrals are understood
in the Bochner sense. Let I
aC.Lp..a; b/; E// denote the space of functions f D
I
aC' with ' 2 Lp..a; b/; E/, similarly I
b�.Lp..a; b/; E//. For 0 < 
 < 1 and
functions f 2 I
aC.Lp..a; b/; E//, respectively f 2 I
b�.Lp..a; b/; E//, consider
the left-sided Weyl–Marchaud fractional derivatives of order 
,
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D

aCf .t/ WD 1.a;b/.t/

� .1 � 
/
�

f .t/

.t � a/
 C 


Z t

a

f .t/ � f .
/
.t � 
/
C1 d


�

and the right-sided Weyl–Marchaud fractional derivatives of order 
,

D


b�f .t/ WD .�1/
1.a;b/.t/
� .1 � 
/

 
f .t/

.b � t /
 C 


Z b

t

f .t/ � f .
/
.
 � t /
C1 d


!
;

the convergence of the principal values being pointwise almost everywhere if p D 1

and in Lp..a; b/; E/ if p > 1. Under these assumptions I
aCD

aCf D f in

Lp..a; b/; E/, while D

aCI
aC' D ' is true for any ' 2 L1..a; b/; E/. In the case


 D 1 set D1
aCf D df=dt and D1

b�f D �df=dt and in the case 
 D 0, define D0
aC

and D0
b� to be the identity. See for instance [16, 36].

For a moment assume thatE D R and consider real-valued functions f and g on
.a; b/ such that the limits f .aC/, g.aC/ and g.b�/ exist. Consider the regulated
functions

faC.t/ WD 1.a;b/.t/.f .t/�f .aC// and gb�.t/ WD 1.a;b/.t/.g.t/�g.b�// : (1)

In [44] it had been shown that if faC 2 I
aC.Lp.a; b// and gb� 2 I1�
b� .Lq.a; b// for
some 1=p C 1=q � 1 and 0 � 
 � 1, then the integral

Z b

a

f .s/dg.s/ WD .�1/

Z b

a

D

aCfaC.s/D1�


b� gb�.s/dsC f .aC/.g.b�/� g.aC//
(2)

is well defined, that is, the value of the right-hand side in (2) is a real number that
is independent of the particular choice of 
. Moreover, if f and g are sufficiently
regular such that both (2) and the Lebesgue–Stieltjes integral .LS/

R b
a
f dg exist,

then they agree. For instance, if f and g are Hölder continuous and the sum of their
Hölder orders is greater than one, then (2) exists and equals the Riemann–Stieltjes
integral .RS/

R b
a
f dg. If f and g satisfy the above conditions with 0 � 
 < 1=p,

then the correction terms in (2) may be dropped; more precisely, we have

Z b

a

f .s/dg.s/ D .�1/

Z b

a

D

aCf .s/D

1�

b� gb�.s/ds :

See [44, 45] for details. Integrals of type (2) may for instance be used to investigate
differential equations of the form

(
dx.t/ D a.x.t/; t/dz.t/C b.x.t/; t/dt

x.0/ D x0 ;
(3)
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where z is a non-differentiable function that is Hölder continuous of order greater
than 1=2 and a and b are coefficients that satisfy certain growth and smoothness
assumptions. Equation (3) is made precise by saying that x D .x.t//t�0 solves (3) if

x.t/ D x0 C
Z t

0

a.x.s/; s/dz.s/C
Z t

0

b.x.s/; s/ds

for any t > 0, where the first integral is defined as in (2). As usual, the existence
and uniqueness of solutions x to (3) is obtained by combining a priori estimates on
the integral operator x 7! R �

0
a.x.s/; s/dz.s/ in suitable function spaces and fixed

point arguments [24, 45]. If typical realizations of suitable random processes are
used in place of z, such as for instance the paths of a fractional Brownian motion
BH with Hurst parameter H > 1=2, this yields a stochastic differential equation in
the pathwise sense.

Equation (3) is an evolution problem subject to a perturbation z. Also parabolic
partial differential equations of the form

(
@u
@t
.t/ D �Au.t/

u.0/ D u0

are commonly viewed as evolution problems, now of course in abstract (Banach
or Hilbert) spaces [30], and their behavior is completely governed by a related
semigroup .T.t//t�0 of evolution operators, that is, the solution u to the Cauchy
problem will be of the form u.t/ D T.t/u0, t > 0. We will use an analog of (2)
to incorporate a noise signal z into the equation. A simple linear multiplicative
perturbation would for instance lead to a Cauchy problem of the form

(
@u
@t
.t/ D �Au.t/C u.t/ � Pz.t/

u.0/ D u0 :

If the noise z is random, this yields again a pathwise technique, now for stochastic
partial differential equations. It allows to investigate problems perturbed by signals
that lack semimartingale properties but have sufficiently high regularity in terms of
Hölder and Sobolev norms.

To consider a version of (2) for vector-valued functions, letE and F be separable
Banach spaces and let L.E;F / denote the space of bounded linear operators from
E into F . Given 0 � 
 � 1, an E-valued function z on .a; b/ and an L.E;F /-
valued function U on .a; b/ such that D1�


b� zb� 2 L1..a; b/; E/ and D

aCU 2

L1..a; b/; L.E; F //, the integral

Z b

a

U.s/dz.s/ WD .�1/

Z b

a

D

aCU.s/D

1�

b� zb�.s/ds (4)
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is well defined. More precisely, the right-hand side of (4) is an element of F and
does not depend on the particular choice of 
. The notation zb� is to be understood
as in (1).

2 Semigroups and Function Spaces

Let .X;X; �/ be a � -finite measure space and let Lp.�/, 1 < p < 1 and L1.�/
denote the spaces of (equivalence classes of) p-integrable and essentially bounded
functions on X , respectively.

We assume that T D .T.t//t�0 is a symmetric strongly continuous
semigroup on L2.�/, that is, T.t C s/ D T.t/ ı T.s/, T.0/u D u, and
hT.t/u; viL2.�/ D hu;T.t/viL2.�/ for any s; t � 0 and any u; v 2 L2.�/ and
limt!0 kT.t/u � ukL2.�/ D 0 for any u 2 L2.�/. We further assume that .T.t//t�0
is Markovian, that is, for any t � 0 and any u 2 L2.�/ with 0 � u � 1 �-a.e., we
have 0 � T.t/u � 1 �-a.e. In this case the semigroup .T.t//t�0 is automatically
contractive, kT.t/ukL2.�/ � kukL2.�/, t � 0, u 2 L2.�/.

Let �A denote the infinitesimal L2.�/-generator of .T.t//t�0,

�Au D lim
t!0

1

t
.T.t/u � u/ strongly in L2.�/

for members u of D.A/, the dense subspace of L2.�/ for whose members this limit
exists. Both A and T.t/ are nonnegative definite self-adjoint operators on L2.�/.
In particular, the fractional powers A˛ , ˛ � 0, of A can be defined in the usual way
using the spectral representation [39, 42].

For 0 < ˛ < 1, we can characterize the domain D.A˛/ of A˛ in terms of the
semigroup: u 2 L2.�/ is in D.A˛/ if and only if

A˛u D lim
"!0

1

� .�˛/
Z 1

"

t�˛�1.T.t/ � I/udt (5)

converges in L2.�/; see, e.g., [2]. This may be interpreted as a right-sided Weyl–
Marchaud derivative D˛� of t 7! T.t/u at t D 0, more precisely, D˛�.T.�/u//.t/ D
.�1/˛A˛T.t/u. See [17] or [36]. Now let us temporarily assume that zero is not
an eigenvalue of A. Then the negative fractional powers A�˛ , ˛ > 0, can be
expressed by

A�˛u D 1

� .˛/

Z 1

0

t˛�1T.t/udt ; (6)

what may be read as a right-sided Riemann–Liouville integral I˛� of order ˛ > 0

of the function t 7! T.t/u, i.e., I˛�.T .�/u/.t/ D .�1/�˛A�˛T.t/u. Thus, for
semigroups the language of traditional fractional calculus just leads to special cases
of the usual functional calculus (cf. [36, 37, 42]).



128 M. Hinz et al.

The contractivity implies that .T.t//t�0 is analytic on L2.�/ (cf. [10] or [37],
Chap. III). It also defines analytic semigroups on the spaces Lp.�/, 1 � p < 1;
see [10, Theorem 1.4.1] or [37, Chap. III]. We use the same notation T D .T.t//t�0
for these semigroups, but denote theirLp.�/-generators by �Ap , such that A2 D A.
In these cases (5) and (6) may be used to define their fractional powers; see [42].
Analyticity implies further useful properties: For any u 2 Lp.�/, any ˛ � 0, and
any t > 0, we have

T.t/u 2 D.A˛
p/ : (7)

The operators T.t/ and A˛
p commute on D.A˛

p/. Given ! > 0, the bound

��.!I C Ap/
˛T.t/

�� � c˛e!t t�˛ (8)

holds for t > 0 (in the operator norm on Lp.�/) and the continuity estimate

kT.t/u � ukLp.�/ � c˛t
˛
��.!I C Ap/

˛u
��
Lp.�/

C .1 � e�!t / kukLp.�/

is valid for 0 � ˛ < 1, u 2 D.A˛
p/ and t > 0. See [30].

Given ˛1; ˛2 � 0, we have A˛1C˛2
p D A˛1

p A˛2
p , A˛1

p A�˛1
p D I and A˛1

p W
D.A˛1C˛2

p / ! D.A˛2
p / is an isomorphism between these domains endowed with

the graph norm. For � � 0 we may regard the negative power

J�p.�/ WD .Ap C I/��=2 :

as a generalized Bessel potential operator on Lp.�/. Set

H�
p .�/ WD J�p.�/.Lp.�// ;

� � 0, equipped with the norms

kukH�
p .�/

WD kukLp.�/ C
���A�=2

p u
���
Lp.�/

:

Clearly H0
p.�/ D Lp.�/. If p D 2, we write H�.�/ for H�

2 .�/. Note that D..I C
Ap/

˛/ D D.A˛
p/ D H2˛

p .�/ and that potential operators J�p.�/, � � 0 define
isomorphic mappings from H˛

p .�/ onto H˛C�
p .�/, ˛ � 0. Subspaces of essentially

bounded functions will be denoted by

H�1.�/ WD H�.�/ \ L1.�/ ;

normed by k�kH�
1.�/ WD k�kH�.�/ C k�kL1.�/. We write

H��
p0 .�/ WD ..H�

p .�//
�
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for the duals of the spaces H�
p .�/, 1 < p < 1, � � 0, 1=p C 1=p0 D 1, equipped

with the usual (operator) norm k�kH��
p0 .�/

.

If X D R
n and � is the n-dimensional Lebesgue measure, then the spaces

H�
p .�/, 1 < p < 1, � � 0, coincide with potential spaces defined in terms of

Fourier analysis,

H�
p .R

n/ WD
n
S0.Rn/ W .1C j	j2/�=2 Of /_ 2 Lp.Rn/

o
;

1 < p < 1, � 2 R. Here f 7! Of and f 7! Lf denote the Fourier transform and
the inverse Fourier transform, and S0.Rn/ is the space of Schwartz distributions on
R
n. Given a smooth bounded domain D � R

n, we also consider the spaces

QH�
p .D/ WD

n
f 2 H�

p .R
n/ W suppf � D

o
;

which are defined as subspaces of H�
p .R

n/ for any � > �1=p. We write QH�.D/

if p D 2. The spaces QH�
p .D/ may be regarded as the potential spaces associated

with the operator Ap given as the Lp-generator of the Dirichlet heat semigroup
.T D.t//t�0 for D. For ˛; � 2 R with �1=2 < ˛ and ˛ � � < 3=2 the fractional
power A�=2 maps QH˛.D/ isomorphically onto QH˛�� . If 0 � ˛ < 3

2
and ˛ ¤ 1

2

then D.A˛=2/ D QH˛.D/. See [39]. The analyticity of .TD.t//t�0 also implies that
for �1=2 < ˛; �; � C ˛ < 3=2 the semigroup operators TD.t/ map QH˛.D/ into
QH˛C� .D/. In particular, given f 2 QH˛.D/ we will have supp TD.t/f � D.

In the following we will exclusively use subspaces consisting of real-valued
functions and real-valued dual elements respectively distributions. For simplicity
we will not emphasize this fact by introducing new notation and therefore ask the
reader to keep it in mind.

As we are going to investigate semilinear and transport equations, we need some
preliminaries on composition and multiplication. Let 0 � � � 1. If F 2 C.R/

satisfies F.0/ D 0 and is Lipschitz, then we have

kF.u/kH�
1.�/ � c kukH�

1.�/

for any u 2 H�1.�/. If F 2 C1.R/ is such that F.0/ D 0 and its derivative F 0 is
bounded and Lipschitz, then

kF.u/ � F.v/kH�
1.�/ � c ku � vkH�

1.�/

�kvkH�
1.�/ C 1

�

for any u; v 2 H�1.�/. Finally, if F 2 C2.R/ with F.0/ D 0 and bounded and
Lipschitz second derivative F 00, then

kF.u1/� F.v1/� F.u2/C F.v2/kH�
1.�/ � c

�ku1 � v1 � u2 C v2kH�
1.�/ C ku2 � v2kH�

1.�/

�
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for all u1; v1; u2; v2 2 H�1.�/ with kuikH�
1.�/ � 1 and kvikH�

1.�/ � 1 for i D 1; 2.
These properties basically follow from the Markov property and the mean value
theorem; see [18, Proposition 3.1]). If u; v 2 H�1.�/, 0 � � � 1, then again by the
Markov property the pointwise product uv is again in H�1.�/ and

kuvkH�
1.�/ � c kukH�

1.�/ kvkH�
1.�/ :

Given u 2 H�1.�/ and z 2 .H�1/�, 0 � � � 1, we can define the product uz 2
.H�1.�//� by

.uz/.v/ WD .z; uv/ ; v 2 H�1.�/ ;

where .�; �/ denotes the dual pairing. For z 2 H�� .�/ we observe

kuzk.H�
1.�//� � kzkH�� .�/ kukH�

1.�/ ; (9)

note that H�� .�/ is a subspace of .H�1.�//�.
The semigroup .T.t//t�0 is called (locally) ultracontractive with spectral dimen-

sion dS > 0 if there exist constants c > 0 and 0 < ! � 1 such that for any t > 0

we have

kT.t/kL2.�/!L1.�/ � ct�dS=4e!t : (10)

The estimate (10) is equivalent to several functional inequalities of Nash and
Sobolev type; see [5,6,10,40]. If (10) holds, we can define T.t/z for z 2 .H�1.�//�
by means of dual pairing,

.T.t/z/.v/ WD .z;T.t/v/ ; v 2 L2.�/ ;
where we have implicitly used (7). For z 2 H�� .�/ we obtain

kT.t/zkL2.�/ � ce!t .t��=2 C t�dS=4/ kzkH�� .�/ (11)

by (8) and (10).

3 Integral Operators

Using some of the facts from the preceding section allows to verify the existence of
a version of (4) that is suitable to solve related parabolic problems [18].

Let t > 0 and assume that u is a function on .0; t/ taking values in Hı1.�/ for
some 0 < ı < 1. If moreover w 2 H�ˇ.�/ with 0 < ˇ � ı and G 2 C.R/ is
Lipschitz with G.0/ D 0, then G.u.�//w is a function on .0; t/ taking its values in
.H

ˇ1.�//�. By (11)

s 7! U.t I s/w WD T.t � s/G.u.s//w ; w 2 H�ˇ.�/;
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is seen to define a function s 7! U.t I s/ that takes its values inL.H�ˇ.�/;Hı1.�//.
If s 7! u.s/ is sufficiently regular,

D

0CU.t I s/ WD 1.0;t/.s/

� .1 � 
/
�
U.t I s/
s


C 


Z s

0

U.t I s/ � U.t I 
/
.s � 
/
C1 d


�

converges in an appropriate sense.
To make this more precise, we introduce some additional function spaces. Given

a separable Banach space E with norm k�kE and a number 0 < 
 < 1 let
W 
.Œ0; t0�; E/ denote the space of E-valued functions v on Œ0; t0� such that

kvkW 
.Œ0;t0�;E/
WD sup

0�t�t0

�
kv.t/kE C

Z t

0

kv.t/ � v.
/kE
.t � 
/
C1 d


�
< 1 :

Similarly, let C
.Œ0; t0�; E/, 0 < 
 < 1, denote the space of 
-Hölder continuous
E-valued functions v on Œ0; t0� such that

kvkC
.Œ0;t0�;E/ WD sup
0�t�t0

kv.t/kE C sup
0�
<t�t0

kv.t/ � v.
/kE
.t � 
/� < 1 :

Lemma 1. Let 0 < 
 < 1, t 2 .0; t0/ and let G 2 C2.R/ with G.0/ D 0

and bounded and Lipschitz second derivative G00. If 0 < ˇ � ı < 1, u 2
W 
.Œ0; t �;Hı1.�// and

ı _ dS

2
< 2 � 2
 �

�
ˇ _ dS

2

�
;

then D

0CU.t I �/ converges in L1.Œ0; t �; L.H�ˇ.�/;Hı1.�/// and admits the fol-

lowing representation in terms of the semigroup:

D

0CU.t I s/ DD


0C.T.t � �/G.u.�//.s/

D1.0;t/.s/
�

�A
T.t�s/G.u.s//Cc
T.t � s/
Z 1

s

r�
�1T.r/G.u.s//dr

C c


Z s

0

r�
�1T.r C t � s/ŒG.u.s// �G.u.s � r//�dr


:

Here c
 D 
� .1 � 
/�1 D �� .�
/�1.
Given z 2 C1�˛.Œ0; t0�;H�ˇ.�// and 
 slightly bigger than ˛ we may consider

D1�

t� zt .s/ WD .�1/1�
1.0;t/.s/

� .
/

�
z.s/ � z.t/

.t � s/1�
 C .1 � 
/
Z t

s

z.s/ � z.
/

.
 � s/.1�
/C1 d


�
;
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where zt .s/ WD 1.0;t/.s/.z.s/ � z.t//. Then

w.s/ WD D1�

t� zt .s/ ; s 2 Œ0; t � (12)

defines a function in L1.Œ0; t �;H�ˇ.�//.
The next definition introduces an integral operator that may be seen as a version

of (4). Recall the notation U.t I s/ D T.t � s/G.u.s//.
Definition 1. Given t 2 Œ0; t0�, 0 < 
 < 1 and sufficiently regular functions u and
z on Œ0; t �, put

Z t

0

T.t � s/G.u.s//dz.s/ WD .�1/

Z t

0

D

0CU.t I s/D1�


t� zt .s/ds : (13)

This integral operator is well defined.

Lemma 2. Let t and 
 be as in Definition 1. Assume u is such that D

0CU.t I �/ 2

L1.Œ0; t �; L.H
�ˇ.�/;Hı1.�/// and z is such that D1�


t� zt 2 L1.Œ0; t �;H�ˇ.�//,
where 0 < ˇ � ı < 1. Then the right-hand side of (13) exists as an element of
Hı1.�/ and is independent of the particular choice of 
.

The following contraction property can be used to prove the existence and
uniqueness of function solutions to Cauchy problems related to perturbed parabolic
equations. To establish it we use equivalent norms on the space W 
.Œ0; t0�; E/,
0 < 
 < 1, given by

kvk.%/W 
.Œ0;t0�;E/
WD sup

0�t�t0
e�%t

�
kv.t/kE C

Z t

0

kv.t/ � v.
/kE
.t � 
/
C1 d


�
< 1 ;

where % � 1 is a parameter [17]. This standard technique had been used before in
[27, 29].

Proposition 1. Assume 0 < ˛; ˇ; �; ı < 1, ˛ < � < 1 � ˛, ı � ˇ and

2� C
�
ı _ dS

2

�
< 2 � 2˛ �

�
ˇ _ dS

2

�
:

Let z 2 C1�˛.Œ0; t0�;H�ˇ.�// and let G 2 C2.R/ with G.0/ D 0 and bounded
and Lipschitz second derivative G00. Suppose that R > 0 is given. Then

����
Z �

0

T .� � s/G.u.s//dz.s/

����
.%/

W � .Œ0;t0�;H
ı
1.�//

� C.%/
�
1C kuk.%/

W � .Œ0;t0�;H
ı
1.�//

	
;

(14)

u 2 W �.Œ0; t0�;H
ı1.�//, where C.%/ > 0 tends to zero as % goes to infinity. For

sufficiently large %0 � 1, the closed ball

B.%0/.0; R/ D
n
v 2 W �.Œ0; t0�;H

ı1.�// W kvk.%0/
W 
.Œ0;t0�;H

�
1.�//

� R
o
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is mapped into itself and for % � %0 large enough,

����
Z �

0

T .� � s/G.u.s//dz.s/ �
Z �

0

T .� � s/G.v.s//dz.s/

����
.%/

W � .Œ0;t0�;H
ı
1.�//

� C.%/ ku � vk.%/
W � .Œ0;t0�;H

ı
1.�//

; u; v 2 B.%0/.0; R/:

4 Parabolic Problems on Metric Measure Spaces

One of the classes of problems we are interested in are Cauchy problems associated
with perturbed semilinear equations. Formulated in a general and abstract way, they
read as
(
@u
@t
.t; x/ D �Au.t; x/C F.u/.t; x/CG.u/ � Pz.t; x/ ; t 2 .0; t0/; x 2 X

u.0; x/ D u0.x/ ;
(15)

where �A is the L2.�/-generator of a strongly continuous symmetric Markovian
semigroup .T.t//t�0 on L2.�/ as in Sect. 2, F and G are (generally nonlinear)
functions on R and Pz denotes a space-time perturbation that may be seen as a formal
space-time derivative of a non-differentiable deterministic function z on .0; t0��X .
It is possible to study (15) on general � -finite measure spaces .X;X; �/. We will
focus on cases with u.t; x/ real valued. In a similar manner one can consider
equations with R

k-valued u.t; x/; see Example 1 (ii) and [17].
As mentioned before, we investigate the existence of function solutions to

these equations. More precisely, we aim at results that confirm the existence and
uniqueness of a vector valued function t 7! u.t/ that solves problem (15) in an
evolution sense and takes its values in a space of (equivalence classes of) locally
integrable functions on X . This is to be distinguished from distribution solutions
which are also commonly used to study stochastic partial differential equations.

A function u on .0; t0� � X is called a mild solution to (15) if seen as vector-
valued function u.t/ WD u.t; �/, it satisfies

u.t/ D T.t/u0C
Z t

0

T.t�s/F.u.s//dsC
Z t

0

T.t�s/G.u.s//dz.s/; t 2 .0; t0/ :
(16)

If for any fixed t 2 Œ0; t0�, u.t/ determines a locally integrable function on .X;X; �/,
we call u a function solution. The last term in (16) is the integral operator as defined
in (13). It realizes a temporal differentiation of z by means of fractional calculus, a
spatial differentiation is hidden in the fact that for fixed time s, z.s/ is an element of
the dual of an appropriate potential space.
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The following result is true without any further hypotheses. A proof is given
in [18]; its main ingredient is Proposition 1, which allows to use a contraction
principle.

Theorem 1. Assume .X;X; �/ is a � -finite measure space and t0 > 0. Let �A be
the generator of a strongly continuous symmetric Markovian semigroup .T.t//t�0
on L2.�/ which is ultracontractive with spectral dimension dS > 0.

Suppose 0 < ˛; ˇ; �; ı; " < 1 and z 2 C1�˛.Œ0; t0�;H�ˇ.�//. Let F 2 C1.R/,
F.0/ D 0, have a bounded Lipschitz derivative F 0 and G 2 C2.R/, G.0/ D 0,
have a bounded Lipschitz second derivative G00. Assume f 2 H2�CıC".�/. If ˛ <
� < 1 � ˛, ı � ˇ and

2� C
�
ı _ dS

2

�
< 2 � 2˛ �

�
ˇ _ dS

2

�
: (17)

Then problem (15) has a unique mild solution (16) in W �.Œ0; t0�;H
ı1.�//, which

means in particular that the solution is a function.

In many cases more structural knowledge about the space X and the semigroup
.T.t//t�0 is available. For instance,X may be a metric measure space and .T.t//t�0
may possess transition densities that satisfy some typical estimates [21, 22]. Under
the following assumptions we can improve our results.

Assumption 1. .X; d/ is a locally compact separable metric space, X D B.X/ the
Borel-� -field on X and � a Radon measure on .X; d/.

Assumption 2. The semigroup .T.t//t�0 admits transition densities p.t; x; y/,
that is,

T.t/u.x/ D
Z
X

p.t; x; y/u.y/�.dy/ ;

and the p.t; x; y/ satisfy bounds of the form

t�df =w˚1
�
t�1=wd.x; y/

� � p.t; x; y/ � t�df =w˚2
�
t�1=wd.x; y/

�

for any .x; y/ 2 X � X and t 2 .0; R0/, with bounded decreasing functions ˚i on
Œ0;1/. Here R0 > 0 is a fixed number, df is the Hausdorff dimension of .X; d/
and w � 2 satisfies dS D 2df =w. For a given number ˇ > 0 we further assume the
validity of the integral condition

Z 1

0

sdf Cˇ=2�1˚2.s/ds < 1 :

Under these circumstances we get the following improved result.
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Theorem 2. Let F and G be as in Theorem 1. Suppose 0 < ˛; ˇ; �; ı; " < 1 and
Assumptions 1 and 2 are satisfied. Assume ˛ < � < 1 � ˛ and 0 < ˇ < ı < dS=2.
If f 2 H2�CıC".�/ and z 2 C1�˛.Œ0; t0�;H�ˇ

q .�// for q D dS=ı and

2� C dS

2
< 2 � 2˛ � ˇ ; (18)

then problem (15) has a unique mild solution (16) in W �.Œ0; t0�;H
ı1.�//, which

means in particular that the solution is a function.

Theorem 2 is proved in a similar way as Theorem 1 by verifying the contractivity
of the integral operator and applying a contraction argument. In particular, analogs
of Lemmas 1 and 2 can be used. The only news is the following improved product
estimate that replaces the former (9).

Proposition 2. Let 0 < ˇ < ı < dS=2 ^ 1 and p D dS=.dS � ı/. Let
the semigroup be ultracontractive with spectral dimension dS > 0 and let
Assumptions 1 and 2 be satisfied. Then we have

kuvk
H
ˇ
p .�/

� c kukı kvkı
for any u; v 2 Hı.�/.

Theorem 2 requires dS < 4. For symmetric diffusion semigroups on R
n, we

have dS D n, hence need n � 3. This is typical, because to deal with the nonlinear
transformations F and G we need the solution to be L1.�/-bounded, but only in
low dimensions the singularity of the semigroup at zero is small enough to provide
L1.�/-bounds. The special case of linear F andG allows to remove this restrictive
condition.

Theorem 3. Let F and G be linear. Suppose 0 < ˛; ˇ; �; ı; " < 1 and Assump-
tions 1 and 2 are satisfied. Assume ˛ < � < 1 � ˛ and 0 < ˇ < ı < dS=2. If
f 2 H2�CıC".�/ and z 2 C1�˛.Œ0; t0�;H�ˇ

q .�// for q D dS=ı and

2� C ı < 2 � 2˛ � ˇ ;

then problem (15) has a unique mild solution (16) in W �.Œ0; t0�;H
ı.�//, which

means in particular that the solution is a function.

Examples 1. To consider some examples of stochastic partial differential equations
based on (15), let 0 < H;K < 1 and consider the spatially isotropic fractional
Brownian sheetBH;K on Œ0; t0��Rn with Hurst indicesH andK (see [1]), that is, the
centered real-valued Gaussian random field BH;K on Œ0; t0� � R

n over a probability
space .˝;F;P/ such that for any 0 � s < t � t0 and x; y 2 R

n,

E


BH;K.t; y/�BH;K.t; x/�BH;K.s; y/CBH;K.s; x/

�2 D cH;K.t�s/2H jx�yj2K;
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where jxj denotes the Euclidean norm of x 2 R
n. It is not difficult to see that for

P-a.e. ! 2 ˝ and any 0 < � < H , 0 < � < K and 1 < q < 1, the realization
BH;K.!/ is an element of C�.Œ0; t0�;H

�
q .R

n//. The components of its distributional
(spatial) gradient rBH;K.!/ are elements of C�.Œ0; t0�;H

��1
q .Rn//.

(i) Let n D 1, X D .0; 1/, let .T.t//t�0 be the Dirichlet heat semigroup on .0; 1/
and % the Dirichlet Laplacian. Consider the one-dimensional semilinear heat
equation on .0; t0/ � .0; 1/ driven by a fractional Brownian sheet BH;K ,

@u

@t
.t; x/ D %u.t; x/C F.u.t; x//CG.u.t; x// � @

2BH;K

@t@x
:

It has a unique function solution if 1=2 < H < 1 and 2H CK > 2.
(ii) In [17] we have considered boundary initial value problems on smooth bounded

domains D � R
n associated with parabolic equations of type

@u

@t
.t; x/ D �Au.t; x/C F.u.t; x//C

�
G.u/;

@

@t
rV

�
Rn

.t; x/ :

Here V is a real-valued noise potential, G is an R
n-valued nonlinearity on R ,

and h�; �i
Rn

denotes the scalar product in R
n.

5 Transport Equations on Domains

In this section we consider transport–diffusion equations of the form

8̂
<̂
ˆ̂:

@u
@t
.t; x/ D %u.t; x/C hru;rzi

Rn
.t; x/; t 2 .0; t0�; x 2 D

u.t; x/ D 0; t 2 .0; t0�; x 2 @D
u.0; x/ D u0.x/; x 2 D ;

(19)

where D � R
n is a smooth bounded domain and z is a non-differentiable function

on R
n. Here % denotes the Dirichlet Laplacian for D and the gradient r is

interpreted in distributional sense. As before, h�; �i
Rn

denotes the scalar product in
R
n. In this model z is viewed as a temporally constant perturbation.
Problems of type (19) have been considered by the second named author in [23].

Again we are interested in the existence, uniqueness, and regularity of function
solutions. Now .T.t//t�0 will denote the Dirichlet heat semigroup .TD.t//t�0 for
the domain D.

A function u on .0; t0� � D is called a mild solution to (19) if seen as a vector-
valued function u.t/ WD u.t; �/ it satisfies
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u.t/ D T.t/u0 C
Z t

0

T.t � r/ hru.r/;rzi
Rn

dr; t 2 .0; t0� ;

and a function solution if in addition u.t/ is a locally integrable function on D for
any t . By the following multiplication property (see [33]), the right-hand side in this
definition admits a reasonable interpretation.

Lemma 3. Let w 2 QH1Cı
p .D/, z 2 H

1�ˇ
q .Rn/ with 1 < p; q < 1, q > p _ n=ı,

0 < ˇ < 1=2 and ˇ < ı. Then hrw;rzi
Rn

is a member of QH�ˇ
p .D/ and

khrw;rzi
RnkH�ˇ

p .Rn/
� c kwk

H
1Cı
p .Rn/

kzk
H
1�ˇ
q .Rn/

:

The main result of [23] reads as follows.

Theorem 4. Let t0 > 0 and 0 < ˇ < ı < 1=2 and 0 < 2� < 1 � ˇ � ı. Let
z 2 H

1�ˇ
q for some q > 2 _ d=ı. Then for any u0 2 QH1CıC2� .D/ there exists a

unique mild solution u 2 C�.Œ0; t0�; QH1Cı.D// to (19), which means in particular
that the solution is a function.

The theorem follows by fixed point arguments and the following contractivity
result. Similarly as before it is formulated in terms of equivalent norms. For % � 1

we equip the space C
.Œ0; t0�; E/ of 
-Hölder continuous E-valued functions v on
Œ0; t0� with the equivalent norm

kvk.%/C 
.Œ0;t0�;E/ WD sup
0�t�t0

e�%t
 

kv.t/kE C sup
0�
<t

kv.t/ � v.
/kE
.t � 
/�

!
:

Proposition 3. 0 < ˇ < ı < 1=2 and z 2 H1�ˇ
q .Rd / for some q > 2 _ d=ı. Then

for any � with 0 < 2� < 1 � ˇ � ı we have

����
Z �

0

T.� � s/ hru.s/;rzi
Rn
ds

����
.%/

C � .Œ0;t0�; QH1Cı.D//

� C.%/ kuk.%/
C � .Œ0;t0�; QH1Cı.D//

for any u 2 C�.Œ0; t0�; QH1Cı.D// where C.%/ tends to zero as % goes to infinity.

Examples 2.

(i) If for instance BH is a fractional Brownian field on R
n with Hurst parameter

1=2 < H < 1, that is, a real-valued centered Gaussian random field on R
n with

E


BH.x/ � BH.y/

�2 D cH jx � yj2H ;

then we may consider a typical realization BH.!/ in place of z to obtain results
for stochastic transport equations with fractal noise:

@u

@t
.t; x/ D %u.t; x/C ˝ru;rBH

˛
Rn
.t; x/ :
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(ii) Combining the above with the results of the preceding section we can
investigate a more general form of transport–diffusion equation:

8̂
<̂
ˆ̂:

@u
@t
.t; x/ D %u.t; x/C hru;rziRn .t; x/C

D
F; @

@t
rV

E
Rn
; t 2 .0; t0�; x 2 D

u.t; x/ D 0; t 2 .0; t0�; x 2 @D
u.0; x/ D u0.x/; x 2 D ;

where z is as above, F is a vector in R
n, and V D V.t; x/ is a non-differentiable

noise that may vary in space and time.

6 Some Remarks on Burgers System

We finish our survey with some brief look at a Burgers-type equation [4]. On .0; t0/�
R
n, n � 1, consider the equation

@u

@t
D %u � hu;ri

Rn
u C @

@t
rB (20)

with some deterministic initial condition u.0/ D u0. Here h�; �i
Rn denotes the

Euclidean scalar product in R
n and B D B.t; x/ is a fractional Brownian sheet

on Œ0; t0� � R
n over some probability space .˝;F;P/. Equation (20) is already

a stochastic differential equation and the solution method considered by the first
named author in [15] is not pathwise. However, it is made up from techniques very
similar to those used in the preceding sections. Note that a solution u will be vector
valued, i.e., u.t; x/ 2 R

n for fixed t and x.
We make (20) rigorous by defining weak and mild solutions. A process u D u.t/

is said to be a distributional solution to (20) on .0; t0/ with initial condition u0 if for
any test function ' 2 D.Rn;Rn/ and any t 2 .0; t0/, we P-a.s. have

.u.t/; '/ D .u0; '/C
Z t

0

.%u.s/; '/ds �
Z t

0

.hu.s/;ri
Rn

u.s/; '/ds C .rB.t/; '/ :
(21)

Here % denotes the matrix Laplacian, that is, the n � n diagonal matrix with
the usual Laplacian on the diagonal. B.t/ D B.t; �/ can be seen as a process
taking values in a Sobolev space and the components @B.t/=@xi of rB.t/ D
.@B.t/=@x1; : : : ; @B.t/=@xn/ are defined in the sense of distributions. As the name
indicates, u is considered as a distribution-valued function. However, it turns out
that it also provides a function solution. A process u D u.t/ is called a mild solution
to (20) on .0; t0/ with initial condition u0 if for any t 2 .0; t0/, P-a.s.

u.t/ D T.t/u0 �
Z t

0

T.t � s/ hu.s/;ri
Rn

u.s/ds C
Z t

0

T.t � s/d.rB/.s/ : (22)
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Here .T.t//�0 denotes the Brownian semigroup on R
n, respectively its matrix

version. The stochastic integral in (22) is of Wiener type, defined as the Lp.˝/-
limit

Z t

0

T.t�s/d.rB/.s/ WD lim
"!0

"

Z 1

0

r"�1
Z t

0

T.t�s/rB.s C r/ � rB.s/
r

dsdr ;

(23)

p > 2, of random variables taking values in a certain weighted Sobolev space. It is
closely related to the pathwise integrals (4) and (13). We call u as in (22) a function
solution to (20) if any u.t/, t 2 .0; t0�, is a locally integrable function on R

n.
We follow the standard approach to Burgers equation and employ a stochastic

variant of the Cole–Hopf transformation. First we consider a related stochastic heat
equation,

@w

@t
.t; x/ D %w.t; x/C w.t; x/ � @

@t
B.t; x/; t 2 .0; T /; x 2 R

n ; (24)

with some initial condition w0. The term @B=@t is a half-noise, similar as in [3]:
For fixed x 2 R

n and up to a constant, t 7! B.t; x/ behaves like a one-dimensional
fractional Brownian motion with Hurst parameter H and in (24) we consider its
formal time derivative t 7! @B.t; x/=@t . We say the random process w W .0; t0/ �
R
n �˝ ! R is a pointwise mild solution to (24) if for fixed t 2 .0; t0/ and x 2 R

n,
we have

w.t; x/ D T.t/w0.x/Clim
"!0

"

Z 1

0

r"�1
Z t

0

T.t�s/w.s; x/B.s C r; x/ � B.s; x/
r

dsdr :

(25)

The limit and the equality (25) are considered in Lp.˝/, p > 1. Our results are as
follows:

Theorem 5. Let t0 > 0, 0 < K � 1=2 and 2 < 2H C K. Suppose that u0 is of
form u0.x/ D �rU0.x/, where U0 is a real-valued function on R

n such that

jU0.x/j � b.1C jxj� / ;
ˇ̌
ˇ̌@U0
@xi

.x/

ˇ̌
ˇ̌ � exp.b.1C jxj� // ; i D 1; : : : ; n

for some b > 0, 2K � � � 1, and any x 2 R
n. Then there is a P-a.s. strictly

positive pointwise mild solution w to (24) with w0 D exp.U0=2/ and u WD r log w is
a distributional solution (21)–(20). The process u is also a function solution to (24).

Note that our hypothesis implies H > 3=4. For further details, we refer to [15].



140 M. Hinz et al.

References

1. Ayache, A., Leger, S., Pontier, M.: Drap brownien fractionnaire. Potential Anal. 17, 31–43
(2002)

2. Berens, H., Butzer, P.L., Westphal, U.: Representation of fractional powers of infinitesimal
generators of semigroups. Bull. Am. Math. Soc. 74, 191–196 (1968)

3. Bertini, L., Cancrini, N., Jona-Lasinio, G.: The stochastic Burgers equation. Comm. Math.
Phys. 165, 211–232 (1994)

4. Burgers, J.M.: The Nonlinear Diffusion Equation. Reidel, Dordrecht (1974)
5. Carlen, E.A., Kusuoka, S., Stroock, D.W.: Upper bounds for symmetric Markov transition

functions. Ann. Inst. H. Poincaré 23, 245–287 (1987)
6. Coulhon, T.: Ultracontractivity and Nash type inequalitites. J. Funct. Anal. 141, 510–539

(1996)
7. Da Prato, G., Debussche, A., Temam, R.: Stochastic Burgers equation. Nonlinear Diff. Equat.

Appl. 1 (4), 389–402 (1994)
8. Da Prato, G., Gatarek, D.: Stochastic Burgers equation with correlated noise. Stoch. Stoch.

Rep. 52, 29–41 (1995)
9. Da Prato, G., Zabzcyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University

Press, Cambridge (1992)
10. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge

(1989)
11. Friz, P.K., Victoir, N.: Multidimesnional Stochastic Processes as Rough Paths: Theory and

Applications. Cambridge University Press, Cambridge (2010)
12. Gubinelli, M., Lejay, A., Tindel, S.: Young integrals and SPDE’s. Potential Anal. 25, 307–326

(2006)
13. Gyöngy, I., Nualart, D.: On the stochastic Burgers equation in the real line. Ann. Probab. 27(2),

782–802 (1999)
14. Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore

(2011)
15. Hinz, M.: Burgers system with a fractional Brownian random force. Stochastics 83(1), 67–106

(2011)
16. Hinz, M., Zähle, M.: Gradient type noises I - partial and hybrid integrals. Complex Var. Elliptic

Equat. 54, 561–583 (2009)
17. Hinz, M., Zähle, M.: Gradient type noises II - systems of partial differential equations. J. Funct.

Anal. 256, 3192–3235 (2009)
18. Hinz, M., Zähle, M.: Semigroups, potential spaces and applications to (S)PDE. Potential Anal.

36, 483–515 (2012)
19. Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic Partial Differential Equations:

A Modelling, White Noise Functional Approach. Birkhäuser, Boston (1996)
20. Hu, Y., Nualart, D.: Stochastic heat equation driven by fractional noise and local time. Probab.

Theory Relat. Fields. 143, 285–328 (2009)
21. Hu, J., Zähle, M.: Potential spaces on fractals. Studia Math. 170, 259–281 (2005)
22. Hu, J., Zähle, M.: Generalized Bessel and Riesz potential spaces on metric measure spaces.

Potential Anal. 30, 315–340 (2009)
23. Issoglio, E.: Transport equations with fractal noise: existence uniqueness and regularity of the

solution. J. Anal. Appl. 32(1), 37–53 (2013)
24. Klingenhöfer, F., Zähle, M.: Ordinary differential equations with fractal noise. Proc. Am. Math.

Soc. 127, 1021–1028 (1999)
25. Lyons, T.J.: Differential equations driven by rough signals I: an extension of an inequality by

L.C. Young. Math. Res. Lett. 1, 451–464 (1994)
26. Lyons, T.J.: Differential equations driven by rough signals II. Rev. Iberoam. 14 (2), 215–310

(1998)



Elementary Pathwise Methods for SPDEs with Fractal Noise 141

27. Maslowski, B., Nualart, D.: Evolution equations driven by fractional Brownian motion.
J. Funct. Anal. 202, 277–305 (2003)

28. Nualart, D.: The Malliavin Calculus and Related Topics. Springer, New York (1995)
29. Nualart, D., Rascanu, A.: Differential equations driven by fractional Brownian motion. Collect.

Math. 53(1), 55–81 (2002)
30. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.

Springer, New York (1983)
31. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1998)
32. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations.

Lecture Notes in Mathematics, vol. 1905. Springer, New York (2007)
33. Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Non-linear

Partial Differential Equations. De Gruyter, Berlin (1996)
34. Russo, F., Trutnau, G.: Some parabolic PDE whose drift is an irregular random noise in space.

Ann. Probab. 35(6), 2213–2262 (2007)
35. Russo, F., Vallois, P.: Forward, backward and symmetric stochastic integration. Probab. Theory

Relat. Fields 97, 403–421 (1993)
36. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and

Applications. Gordon and Breach, Yverdon (1993)
37. Stein, E.M.: Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. Annals of

Mathematics Studies. Princeton University Press, Princeton (1970)
38. Tindel, S., Tudor, C.A., Viens, F.: Stochastic evolution equations with fractional Brownian

motion. Probab. Theory Relat. Fields 127, 186–204 (2003)
39. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. J.A. Barth,

Heidelberg (1995)
40. Varopoulos, N.: Hardy-Littlewood theory for semigroups. J. Funct. Anal. 63, 240–260 (1985)
41. Walsh, J.B.: An introduction to stochastic partial differential equations. École d’été de

Probabilités de Saint-Flour, XIV-1984. Lecture Notes in Mathematics, vol. 1180. Springer,
New York (1986)

42. Yosida, K.: Functional Analysis. Springer, New York (1980)
43. Young, L.C.: An inequality of Hölder type, connected with Stieltjes integration. Acta Math.

67, 251–282 (1936)
44. Zähle, M.: Integration with respect to fractal functions and stochastic calculus I. Probab.

Theory Relat. Fields 111, (1998)
45. Zähle, M.: Integration with respect to fractal functions and stochastic calculus II. Math. Nachr.

225, 145–183 (2001)
46. Zähle, M.: Forward integrals and stochastic differential equations. In: Dalang, R.C., Dozzi,

M., Russo, F. (eds.) Seminar on Stochastic Analysis, Random Fields and Applications III.
Progress in Probability, pp. 293–302. Birkhäuser, Basel (2002)



Stochastic Partial Differential Equations Driven
by General Stochastic Measures

Vadym Radchenko

Abstract Stochastic integrals of real-valued functions with respect to general
stochastic measures are considered in the chapter. For the integrator we assume
the � -additivity in probability only. The chapter contains a review of recent results
concerning Besov regularity of stochastic measures, continuity of paths of stochastic
integrals, and solutions of stochastic partial differential equations (SPDEs) driven by
stochastic measure. Some important properties of stochastic integrals are proved.
The Riemann-type integral of random function with respect to the Jordan content
is introduced. For the heat equation in R, we consider the existence, uniqueness,
and Hölder regularity of the mild solution. For a general parabolic SPDE in R

d , we
obtain the weak solution. Integrals of random functions with respect to deterministic
measures in the equations are understood in Riemann sense.

1 Introduction

The aim of the chapter is to give a review of results on the regularity of general
stochastic measures and on stochastic partial differential equations (SPDEs) driven
by such measures. The stochastic term in these SPDEs is given by integral of real
function with respect to (w.r.t.) a stochastic measure (SM) �, and for � we assume
the � -additivity in probability only (see Definition 1 below).

Integration of deterministic functions w.r.t. SMs was considered in [10, Chap. 7],
[2, 13–15]. The results obtained in these publications and auxiliary Lemmas proved
in Sect. 3 help to study SPDEs driven by SMs. Section 4 gives some regularity
results for paths of SM.
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In Sect. 5 we will study the mild solution of a stochastic heat equation, which can
formally be written as

du.x; t/ D a2
@2u.x; t/

@x2
dt C f .x; t; u.x; t//dt C �.x; t/d�.x/; u.x; 0/ D u0.x/;

(1)

where .x; t/ 2 R � Œ0; T �, a 2 R; a ¤ 0, and � is an SM defined on Borel
��algebra of R.

In Sect. 7 we will consider the weak solution of stochastic parabolic equation

dX.x; t/ D AX.x; t/ dt C h.x; t/ d�.t/; X.x; 0/ D 	.x/ ; (2)

where .x; t/ 2 R
d � Œ0; T � and A is a second-order strongly elliptic differential

operator.
Weak form of (2) includes an integral of random function w.r.t. a deterministic

measure (the Jordan content). We interpret this integral as a limit in probability of
Riemann integral sums (Sect. 6). This definition of the integral allows to interchange
the order of integration w.r.t. deterministic and stochastic measures (Theorem 9),
which is important for solving the equation.

Parabolic SPDEs driven by martingale measures had been introduced and
discussed initially in [27]. This approach was developed in [1, 3]. In [5, 12] SPDEs
were studied as stochastic equations in functional spaces. Hölder regularity of
solutions of SPDEs of different types was considered in [4, 6], [27, Chap. 3]. In
these and many other papers the stochastic noise satisfies some special conditions
on distributions and moment existence or has martingale properties. In this chapter,
we consider very general class of possible �. On the other hand, the stochastic term
in (1) and (2) is independent of u and X . A reason is that appropriate definition of
integral of random function w.r.t. � does not exist.

Hölder regularity of mild solution of the heat equation driven by SM on nested
fractal was proved in [23]. Weak solutions of some SPDEs with SM were obtained
in [18].

Some motivating examples for studying SPDEs may be found in [5, Introduc-
tion], [9, Sect. 13.2]. Equations (1) and (2) (for A D %) describe the evolution in
time of the density X of some quantity such as heat or chemical concentration in
a system with random sources. In our model, the random influence can be rather
general.

2 Preliminaries

Let L0 D L0.);F;P/ be a set of (equivalence classes of) all real-valued random
variables defined on a complete probability space .);F;P/. Convergence in L0
means the convergence in probability.

Let X be an arbitrary set and B be a � -algebra of subsets of X.
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Definition 1. Any � -additive mapping � W B ! L0 is called a stochastic measure.

In other words, � is a vector measure with values in L0. We do not assume
positivity or integrability for an SM. In [10] such a � is called a general stochastic
measure. In the following, � always denotes an SM.

Examples of SMs are the following. Let X D Œ0; T � � RC, B be the � -algebra
of Borel subsets of Œ0; T � and Y.t/ be a square integrable martingale. Then �.A/ DR T
0

1A.t/ dY.t/ is an SM. If W H.t/ is a fractional Brownian motion with Hurst
index H > 1=2 and f W Œ0; T � ! R is a bounded measurable function, then
�.A/ D R T

0
f .t/1A.t/ dW H.t/ is also an SM, as follows from [11, Theorem 1.1].

Some other examples may be found in [10, Sect. 7.2]. Kwapień and Woycziński
[10, Theorem 8.3.1] state the conditions under which the increments of a real-valued
Lévy process generate an SM.

For deterministic measurable functions g W X ! R, an integral of the formR
X g d� is studied in [14] (see also [10, Chap. 7], [2, 13]). The construction of this

integral is standard, uses an approximation by simple functions, and is based on
results of [24–26]. In particular, every bounded measurable g is integrable w.r.t.
any �. An analogue of the Lebesgue dominated convergence theorem holds for this
integral (see [10, Proposition 7.1.1] or [14, Corollary 1.2]).

3 Properties of the Integral w.r.t. Stochastic Measure

In this section we prove two technical lemmata for integrals w.r.t. SM. These
statements and results of Kamont [8] will give us the connection of Besov spaces
and sample paths of SMs.

Lemma 1 ([19, 20]). Let fn W X ! R; n � 1 be measurable functions such that
Nf .x/ D P1

nD1 jfn.x/j is integrable w.r.t. �. Then

1X
nD1

�Z
X
fn d�

�2
< 1 a. s.

Proof. Denote �n.!/ D R
X fn d�. Suppose the statement were false. Then

9"0 > 0 8M > 0 9m � 1 W P

 
)m;M D

(
! 2 ) W

mX
nD1

�2n.!/ � M

)!
� "0:

Consider independent Bernoulli random variables "n defined on some other prob-
ability space .)0;F0;P0/, P0."n D 1/ D P0."n D �1/ D 1=2. The following is a
consequence of the Paley–Zygmund inequality

P0
2
4
 

mX
nD1

�n"n

!2
� 1

4

mX
nD1

�2n

3
5 � 1

8
; �n 2 R
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(see, e.g., [10, Lemma 0.2.1] for � D 1=4). Thus

P0
2
4!0 W

 
mX
nD1

"n.!
0/�n.!/

!2
� M

4

3
5 � 1

8

for all ! 2 )m;M . Integrating over set )m;M , we get

P � P0
2
4.!; !0/ W

 
mX
nD1

"n.!
0/�n.!/

!2
� M

4

3
5 � "0

8
:

Hence there exists !0
0 2 )0 such that

P

2
4! W

 
mX
nD1

"n.!
0
0/�n.!/

!2
� M

4

3
5 � "0

8
:

Since "n.!0
0/ D ˙1, for the function Ng.x/ D Pm

nD1 "n.!0
0/fn.x/, we have

j Ng.x/j � Nf .x/; P

"ˇ̌
ˇ̌
Z

X
Ng d�

ˇ̌
ˇ̌ �

p
M

2

#
� "0

8
:

Recall that "0 > 0 is fixed while M is arbitrary. By the dominated convergence
theorem [10, Proposition 7.1.1], the set function

R
B

Nf d�; B 2 B, is an SM.
Applying [13, Lemma 1] (or [14, Theorem 1.2]), we observe a contradiction with
the boundedness in probability of the set of values of the SM (see [25, Theorem A]
or [10, Theorem B.2.1]). ut

Further, we consider isotropic Besov spaces B˛
pq

�
Œ0; 1�d

�
; 1 � p; q < 1; 0 <

˛ < 1. For f 2 Lp
�
Œ0; 1�d

�
, we put

kf k˛p;q D kf kLp.Œ0;1�d / C
�Z 1

0

�
wp.f; t/

�q
t�˛q�1 dt

�1=q
;

where

wp.f; t/ D sup
jzj�t

�Z
Iz

jf .x C z/ � f .x/jp dx

�1=p
;

Iz D ˚
x 2 Œ0; 1�d W x C z 2 Œ0; 1�d� :

We have

B˛
pq

�
Œ0; 1�d

� D
n
f 2 Lp

�
Œ0; 1�d

� W kf k˛pq < C1
o
:

k � k˛pq is the norm in B˛
pq

�
Œ0; 1�d

�
.
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A. Kamont obtained the following discrete characterization of Besov spaces. Let
ei be the i th unit vector in R

d ,

U.n; i/ D
�
y D

�
k1

2n
;
k2

2n
; : : : ;

kd

2n

�ˇ̌
ˇ̌ kj D 0; 1; : : : ; 2n;

1 � j � d I y C 2�nei 2 Œ0; 1�d� :
If f 2 C

�
Œ0; 1�d

�
, then by [8, Corollary 3.3]

kf k˛pp � C

0
B@f .0/C

dX
iD1

0
@ 1X
nD1

2n.˛p�d/ X
y2U.n;i/

jf .y C 2�nei / � f .y/jp
1
A
1=p
1
CA (3)

for some C > 0 independent of f . For d D 1 and .1=p/ < ˛ < 1, the right-hand
side of (3) is equivalent to the norm kf k˛pp [8, Theorem 1.1]. In the sequel, C will
denote a positive constant that is not important for our estimates.

For all n � 0, put

dkn D k2�n; 0 � k � 2n; �kn D �
d.k�1/n; dkn

�
; 1 � k � 2n:

The following statement helps to prove the regularity of sample paths of integrals
w.r.t. SM.

Lemma 2 ([19]). Let � be defined on Borel ��algebra of R,Z be an arbitrary set,
and q.z; x/ W Z � Œ0; 1� ! R be a function such that for some 1=2 < ˛ < 1 and for
each z 2 Z we have q.z; �/ 2 B˛

22 .Œ0; 1�/. Then the random function


.z/ D
Z
Œ0;1�

q.z; x/ d�.x/; z 2 Z;

has a version Q
.z/ such that for some constant C (independent of z; !) and each
! 2 ),

j Q
.z/j � jq.z; 0/� .Œ0; 1�/j C C kq.z; �/kB˛22.Œ0;1�/

8<
:
X
n�1

2n.1�2˛/
X

1�k�2n
j� .�kn/j2

9=
;
1=2

:

Proof. Consider the functions

qn.z; x/ D q .z; 0/ 1f0g.x/C
X

1�k�2n
q
�
z; d.k�1/n

�
1�kn.x/; n � 0 : (4)

From the properties of Besov spaces, it follows that for ˛ > 1=2 we have
B˛
22 .Œ0; 1�/ � C .Œ0; 1�/. The dominated convergence theorem implies that
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Z
Œ0;1�

qn.z; x/ d�.x/
P!
Z
Œ0;1�

q.z; x/ d�.x/; n ! 1;

for each z. Therefore

Q
.z/ D
Z
Œ0;1�

q0.z; x/ d�.x/C
X
n�1

�Z
Œ0;1�

qn.z; x/ d�.x/ �
Z
Œ0;1�

qn�1.z; x/ d�.x/

�

is a version of 
.z/. Using (4) and the Cauchy–Schwartz inequality, we obtain for
any ˇ > 0

X
n�1

ˇ̌
ˇ̌Z
Œ0;1�

qn.z; x/ d�.x/ �
Z
Œ0;1�

qn�1.z; x/ d�.x/

ˇ̌
ˇ̌

�
X
n�1

X
1�k�2n

ˇ̌
q
�
z; d.k�1/n

� � q �z; d.k0�1/.n�1/
�ˇ̌ j� .�kn/j

�
8<
:
X
n�1

X
1�k�2n

22nˇ
ˇ̌
q
�
z; d.k�1/n

� � q �z; d.k0�1/.n�1/
�ˇ̌2
9=
;
1=2

�
8<
:
X
n�1

X
1�k�2n

2�2nˇ j� .�kn/j2
9=
;
1=2

:

(The number k0 is chosen such that �kn � �k0.n�1/.) Applying [8, Theorem 1.1]
for ˛ D ˇ C 1=2, we get the statement of the lemma. ut

Note that by Lemma 1 for ˇ > 0,

X
n�1

X
1�k�2n

2�2nˇ j� .�kn/j2 < C1 a: s: (5)

Further, we formulate two analogues of the Fubini theorem for the product of
SM and real-valued measure.

Let .X;BX/ and .Y;BY/ be measurable spaces, � be an SM on BX, and m be a
finite real nonnegative measure on BY. Set Z D X � Y, and let BZ D BX ˝ BY be
the product � -algebra.

Theorem 1 ([15]). There exists a unique SM � on BZ such that for all A1 2 BX,
A2 2 BY holds �.A1 � A2/ D �.A1/m.A2/. If f W Z ! R is integrable w.r.t. �
on Z, then the function f .x; �/ W Y ! R is integrable w.r.t. m on Y for each x 2 X
excluding�-negligible set; the function

R
Y f .x; y/ dm.y/ is integrable w.r.t.� on X,

and
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Z
Z
f .x; y/ d� D

Z
X

d�.x/
Z

Y
f .x; y/ dm.y/ :

Theorem 2 ([15]). Let X D Œa; b� � R and BX be the Borel � -algebra. Assume
that f W Z ! R be a bounded measurable function such that for some � > 1=2 and
L > 0 holds

jf .x1; y/ � f .x2; y/j � Ljx1 � x2j� : (6)

Then
Z

Z
f .x; y/ d� D

Z
Y

dm.y/
Z

X
f .x; y/ d�.x/ : (7)

Integral w.r.t. dm in (7) is found for each fixed ! 2 ). Note that we need
condition (6) in Theorem 2 because it helps to obtain the regularity of integral w.r.t.
d� in (7).

4 Paths of Stochastic Measures and Stochastic Integrals

4.1 Besov Regularity of Paths of Stochastic Measures

From (3) and (5) we easily get the following result for an SM on subsets of R.

Theorem 3 ([16, 20]). Let X D Œ0; 1�, B be the Borel � -algebra, and the process

Q�.t/ D �.Œ0; t �/ ; 0 � t � 1 ;

has continuous paths. Then for any

1 � p < C1 ; 0 < ˛ < minf1=p; 1=2g ;

the path of Q�.t/; 0 � t � 1 with probability 1 belongs to the Besov space
B˛
pp.Œ0; 1�/.

For an SM on subsets of R
d , d > 1, an analogous result was proved under

additional assumption on integrability w.r.t. �.

Theorem 4 ([20]). Let X D Œ0; 1�d , B be the Borel � -algebra and

Q�.x/ D �

 
dY
iD1
Œ0; xi �

!
; x D .x1; : : : ; xd / 2 Œ0; 1�d ;
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be a pathwise continuous process. Suppose there exists a finite real nonnegative
measure m on

�
Œ0; 1�d ; B

�
such that each

h W Œ0; 1�d ! R;

Z
Œ0;1�d

h2 dm < C1 ;

is integrable w.r.t � on Œ0; 1�d .
Than for any

1 � p < C1; 0 < ˛ < minf1=p; 1=2g

the path of Q�.x/; x 2 Œ0; 1�d , with probability 1 belongs to the Besov
space B˛

pp

�
Œ0; 1�d

�
.

4.2 Continuity of Paths of Parameter Stochastic Integrals

Let X D Œ0; 1�, B be the Borel � -algebra.

Theorem 5 ([17]). Let T be a metric space, and function f W Œ0; 1� � T ! R be
such that for each x 2 Œ0; 1� f .x; �/ is continuous on T, and for some � > 1=2 and
L > 0 holds

jf .x; t/ � f .y; t/j � Ljx � yj� :
Then the random function


.t/ D
Z
Œ0;1�

f .x; t/ d�.x/ ; t 2 T;

has a version with continuous on T paths.

The proof of Theorem 5 is based on Lemma 2. Similar considerations give the
following result.

Theorem 6 ([17]). Let the process Q�.x/ D �.Œ0; x�/; 0 � x � 1 be continuous.
Suppose h W Œ0; 1� ! R is such that for some � > 1=2 and L > 0 holds

jh.x/ � h.y/j � Ljx � yj� :

Then the random function

Q�h.t/ D
Z
Œ0;t �

h.x/ d�.x/; 0 � t � 1;

has a continuous version on Œ0; 1�.
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5 Mild Solution of the Heat Equation Driven
by Stochastic Measure

Using the properties of integrals w.r.t. SM, we can study SPDEs with rather general
integrator in stochastic term.

Let � be an SM on Borel � -algebra on R. Consider the stochastic heat
equation (1) in the following mild sense:

u.x; t/ D
Z
R

p.x � y; t/u0.y/ dy C
Z t

0

ds
Z
R

p.x � y; t � s/f .y; s; u.y; s// dy

C
Z
R

d�.y/
Z t

0

p.x � y; t � s/�.y; s/ ds; x 2 R; t 2 .0; T �; (8)

where p is a Gaussian heat kernel,

p.x; t/ D 1

2a
p
�t

exp
n
� jxj2
4a2t

o
:

Assumption 1. u0.y/ D u0.y; !/ W R � ) ! R is measurable and bounded,
ju0.y; !/j � Cu0 .!/.

Assumption 2. u0.y/ is Hölder continuous in y 2 R,

ju0.y1/ � u0.y2/j � Lu0 .!/ jy1 � y2jˇ.u0/ ; ˇ.u0/ � 1=6:

Assumption 3. f .y; s; z/ W R � Œ0; T � � R ! R is measurable and bounded.

Assumption 4. f .y; s; z/ is uniformly Lipschitz in y; z 2 R,

jf .y1; s; z1/ � f .y2; s; z2/j � Lf .jy1 � y2j C jz1 � z2j/ :

Assumption 5. �.y; s/ W R � Œ0; T � ! R is measurable and bounded.

Assumption 6. �.y; s/ is uniformly Hölder continuous in y,

j�.y1; s/ � �.y2; s/j � L� jy1 � y2jˇ.�/ ; ˇ.�/ > 1=2:

Also denote

Q̌ D minf2ˇ.�/; 3=2g:

Conditions of the existence, uniqueness, and Hölder regularity of solution of (8) are
given in the following theorem.
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Theorem 7 ([19]). Suppose Assumptions 1–6 hold.

(1) Equation (8) has a solution u.x; t/. If v.x; t/ is another solution to (8), then for
each t and x u.x; t/ D v.x; t/ a.s.

(2) Let the function jyj
 be integrable w.r.t. � on R for some 
 > 3=2. Then, for
any fixed

t 2 Œ0; T �; K > 0; �1 <
Q̌ � 1
2 Q̌ ;

stochastic process u.x; t/; x 2 Œ�K;K�; has a Hölder continuous version with
exponent �1.

(3) Let the function jyj
 be integrable w.r.t. � on R for some 
 > 5=2. Then for any
fixed

K > 0; ı > 0; �1 <
Q̌ � 1
2 Q̌ ; �2 <

Q̌ � 1
6 Q̌ ;

the stochastic function u.x; t/ has a version Qu.x; t/ such that for some
LQu.!/ > 0

jQu.x1; t1/�Qu.x2; t2/j �LQu.!/
�jx1�x2j�1 C jt1�t2j�2

�
; x2Œ�K;K�; t2Œı; T �:

The stochastic term in (8) may be written in another form.

Theorem 8 ([21]). Suppose Assumptions 5 and 6 hold, and function jyj
 is inte-
grable w.r.t. � on R for some 
 > 1=2. Then

Z
R

d�.y/
Z t

0

p.x � y; t � s/�.y; s/ ds D
Z t

0

ds
Z
R

p.x � y; t � s/�.y; s/ d�.y/

D
Z
R�Œ0;t �

p.x � y; t � s/�.y; s/ d�.y; s/;

where � is a product of � and ds on R � Œ0; T � (see Theorem 1).

6 Riemann Integral of a Random Function

If we consider the integral of a random function w.r.t. a real measure in pathwise
sense, then the possibility to change the order of integration has been proved under
some restrictive assumptions only (see Theorems 2 and 8). In order to avoid too
restrictive conditions in Fubini-type theorems, we define the integral of random
function w.r.t. real measure (Jordan content) in Riemann sense.
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Let B � R
d be a Jordan measurable set and 	 W B ! L0 be a random function.

We shall say that 	 has an integral on B if for any sequence of partitions

B D [1�k�knBkn; n � 1; max
k

diam Bkn ! 0; n ! 1;

and any xkn 2 Bkn, the limit in probability

p lim
n!1

X
1�k�kn

	.xkn/md .Bkn/ D
Z

B
	.x/ dx

exists. Here md denotes the Jordan content in R
d ; sets Bkn; 1 � k � kn, are

assumed to be Jordan measurable and have no common interior points.

Definition 2. Random function 	 is called integrable on B if 	 has an integral on B
and the set of values f	.x/; x 2 Bg is bounded in probability.

Let QB � R
d be an unbounded set for which there exists a sequence of Jordan

measurable sets B.j / such that

B.j / " QB; 8c > 0 9j W QB \ fjxj � cg � B.j /: (9)

We shall say that 	 is integrable (in improper sense) on QB, if 	 is integrable on
each B.j /, and there exists the limit in probability

p lim
j!1

Z
B.j /

	.x/ dx D
Z

QB
	.x/ dx;

that is independent of choice of B.j /.

Theorem 9 ([22]). Let � be an SM on .X;B/ and QB � R
d be an unbounded set.

Assume that h.x; s/ W QB � X ! R is a measurable deterministic function which
is Riemann integrable on QB in improper sense for each fixed s, and jh.x; s/j �
g.s/;

R
QB jh.x; s/j dx D g1.s/, where g; g1 W X ! R are integrable on X w.r.t. �.

Then the random function 	.x/ D R
X h.x; s/ d�.s/ is integrable on QB in improper

sense, and

Z
QB

dx
Z

X
h.x; s/ d�.s/ D

Z
X

d�.s/
Z

QB
h.x; s/ dx:

Some other properties of the Riemann integral of a random function are
considered in [22].
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7 Parabolic Equation with a General Stochastic Measure

Consider the differential operator

Ag.x/ D
X

1�i;j�d
aij .x/

@2g.x/

@xi@xj
C

X
1�i�d

bi .x/
@g.x/

@xi
C c.x/g.x/;

where x 2 R
d , g W Rd ! R, and aij D aji . Suppose that A is strongly elliptic

(see [7, Equation (4.5)]).

Assumption 7. All functions aij ; bi ; c;
@aij
@xi

, @2aij
@xi @xj

, @bi
@xi

are bounded and Hölder

continuous in R
d .

Let � be an SM on Borel subsets of Œ0; T �. We consider (2) in the weak sense,
i.e.,

Z
Rd

X.x; t/'.x/ dx D
Z
Rd

	.x/'.x/ dx

C
Z
Rd

A�'.x/ dx
Z t

0

X.x; s/ ds

C
Z
Œ0;t �

d�.s/
Z
Rd

h.x; s/'.x/ dx (10)

for all test functions ' 2 S.Rd / (rapidly decreasing Schwartz functions from
C

1.Rd /). For each fixed t 2 Œ0; T �, equality (10) holds a.s. Integrals of random
functions w.r.t. real measures are considered in Riemann sense (see Sect. 6), and A�
denotes the adjoint operator of A.

Assumption 8. 	 W Rd ! L0 such that 	.�; !/ is continuous and bounded in R
d for

each fixed ! 2 ).

Assumption 9. h W Rd � Œ0; T � ! R is Borel measurable,

sup
t

jxj�kjh.x; t/j ! 0; jxj ! 1; for some k > 0;

h.x; �/ is continuous and bounded in R
d for each fixed t 2 Œ0; T �.

By [7, Theorem 1, Sect. 4], under Assumption 7, the equation @g=@t D Ag has
a fundamental solution pA.x; y; t � s/ (recall that coefficients of A do not depend
on t ). Consider the semigroup

S.t/g.x/ D
Z
Rd

pA.x; y; t/g.y/ dy; t > 0; S.0/g.x/ D g.x/:
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Theorem 10 ([22]). Suppose Assumptions 7–9 hold. Then the random function

X.x; t/ D S.t/	.x/C
Z
Œ0;t �

ŒS.t � s/h.x; s/� d�.s/ (11)

is the solution to (10).
In addition, suppose the operator A is self-adjoint, X.x; t/ satisfies (10), is

integrable on R
d � Œ0; T � w.r.t. dx�dt , is integrable on R

d w.r.t. dx for each fixed t ,
and is integrable on Œ0; T � w.r.t. dt for each fixed x. Then X.x; t/ is given by (11).

Example. Let SM � be generated by a continuous square integrable martingale Y ,
�.A/ D R T

0
1A.t/ dY.t/, and � be the Lebesgue measure in R

d . Then Mt.A/ D
Y.t/�.A/, 0 � t � T , A � R

d , is a worthy martingale measure with the dominating
measure

K.A � B � .0; t �/ D ˇ̌hY it
ˇ̌
�.A/ �.B/

(we use the terminology of [27]). In this case, (11) leads to

X.x; t/ D
Z
Rd
pA.x; y; t/	.y/dy C

Z
Œ0;t �

d�.s/
Z
Rd
pA.x; y; t � s/h.y; s/dy

D
Z
Rd
pA.x; y; t/	.y/dy C

Z
Œ0;t ��Rd

pA.x; y; t � s/h.y; s/M.dyds/: (12)

The results of [27, Chap. 2] imply that the integral w.r.t. M.dy ds/ is well defined
and is the limit of integrals of simple functions. For simple function, equality of
two stochastic integrals in (12) is obvious. Further, we can use the dominated
convergence theorem for integral with respect to d�.s/. Thus, for self-adjoint A
and 	 D 0, (12) coincides with the solution given in [27, Theorem 5.1].

Similar solution of parabolic SPDE w.r.t. a general martingale measure we have
in Example 9 and Remark 20 [3].
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Exponential Convergence of Degenerate Hybrid
Stochastic Systems with Full Dependence

Svetlana V. Anulova and Alexander Yu. Veretennikov

Abstract This research stems from a control problem for a suspension device.
For a general class of switching stochastic mechanical systems (including closed-
loop control ones), we establish the following: (1) existence and uniqueness of a
weak solution and its strong Markov property, (2) mixing property in the form
of the local Markov–Dobrushin condition, and (3) exponentially fast convergence
to the unique stationary distribution. These results are proved for discontinuous
coefficients under nondegenerate disturbances in the force field; for (3) a stability
condition is additionally imposed. Linear growth of coefficients is allowed.

1 Introduction

Convergence of marginal distributions of (Markov) stochastic systems to a station-
ary one has been thoroughly studied, and there are classic schemes for proving this
property. At the level of ideas, if two facts are established—a version of Doeblin’s
condition and recurrence—then this provides convergence. As a version of the
former we use the local Markov–Dobrushin condition. Quite often it is provided
by the nondegeneracy of the Wiener disturbance. However, in this paper we deal
with mechanical systems presented by highly degenerate stochastic differential
equations of the Langevin–Smoluchowski type driven by a Wiener noise of “smaller
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dimension”. The Wiener term presents a random force in the velocity component
equation, while the equation for the state component has, naturally, no Wiener
term. Thus, the system is in essence degenerate, and even standard existence and
uniqueness results for it require revision.

The recurrence property of a stochastic system may often be reduced to the
stability of the corresponding deterministic system (with the removed disturbance
term). We establish it in terms of quadratic Lyapunov functions for deterministic
systems with switching. The investigation of existence of such functions for general
systems is still in progress nowadays; see [7]. Eventually, exponential convergence
of marginal distributions in the total variation norm k � kT V will be established.

This work, in fact, stems from the investigation of Campillo and Pardoux into the
issue of a vehicle suspension device; see [8, 9].

Stochastic ergodic control—in particular, with expected average in time with
infinite horizon as cost functional—proved to be a useful tool for constructing
a closed-loop control of a vehicle suspension device; see [8, 12] and references
therein. In [3] we have generalized the model of the suspension device to a multi-
regime one. That is, we admitted several types of the road surface and assumed
that the type of the road surface determines a gear box regime and hence also a
working regime of the suspension device. This object may be described by a hybrid
system (see [6]) with dynamics of a switching diffusion: position of the deviceX , its
velocity Y and the type of the road surface V (the discrete component). Switchings
constitute a Markov chain (see [15,23,24]). The novelty in comparison to the earlier
works is degenerate diffusion and discontinuous coefficients; the former is due to
the nature of the device, while the latter is caused by the control framework—
optimal control is never smooth. Similar equations without switching have been
studied in [1].

The crucial point in applying the technique of ergodic control is establishing
the ergodicity property of the controlled process. Our result in [3] is ergodicity
in the sense of Markov processes, the state space type (see [18], [17, Ch.6.3]).
Moreover, we have shown that under every (homogeneous) admissible control
policy, the distribution of the controlled process converges in time to its limit at
an exponential rate. The rate of convergence is uniform over all admissible control
policies and locally uniform with respect to initial conditions. We emphasize that
control problems themselves are not addressed in the present paper.

We sketch briefly the contents of [3]—and simultaneously some results from [1]
as a partial case—in the next section in order to make intelligible the motivation and
reasoning of the present work and the investigation in progress.

The paper consists of Introduction (Sect. 1), Reminder about an earlier back-
ground model (Sect. 2), Main Results (Sect. 3) and Proofs of Theorems 1 and 2;
Sect. 4 contains the proof of Theorem 3 on just three lines and the proof of
Theorem 4 given as a sketch with references.
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2 Case of Independent Markov Switchings: Reminder

Consider a two-dimensional stochastic differential equation,

dXt D Yt dt; X0 D x;

(1)
dYt D b.Xt ; Yt ; Vt / dt C �.Vt /dWt ; Y0 D y:

Here W and V are independent driving processes: the standard Wiener process and
a Markov chain, taking values in a finite set S D f1; 2; : : : ; N g, t � 0. The generator
of V is a matrix Q D .qij /N�N , which determines transition probabilities over a
small period of time � # 0:

P.VtC� D j jVt D i/ D
(
qij�C o.�/ if i ¤ j;

1C qii�C o.�/ if i D j:

All intensities are positive, qij > 0 for i¤j ; for j D i the value qii is
defined as qii D �Pj W j¤i qij . All trajectories of V are right-continuous step
functions without accumulations of jumps (recall that S is finite and consequently
maxfqij ; i; j 2 S; i ¤ j g < 1).

Further,

b.x; y; v/ D �u.x; y; v/y � ˇ x � �.v/ sign.y/: (2)

Here a function u (the control policy) is Borel measurable and satisfies u 2 Œu1; u2�
with two constants u1 � u2. It is assumed that

u1 > 0; ˇ > 0; min
v
�.v/ > 0; min

v
�.v/ > 0: (3)

System (1) describes a mechanical “semi-active” suspension device in a vehicle
under external stochastic perturbation forces treated as a white noise. The original
model without switching V was suggested in [8]. In [3] it was extended to various
road types by introducing switching.

In [3] the behavior of the stochastic system (1) under a fixed control policy u
was studied, namely, how fast does the system approach its stationary regime. This
may be measured by the distance in total variation. Important preliminary results
about existence and uniqueness of solutions have been established. We have shown
that under our assumptions the stationary regime exists and is unique. It is the
discontinuity of u and the degeneracy of the equation that hinders the derivation
of our results directly from the general theory of stochastic differential equations.

In the following theorems (quoted from [3]) we fix the values x; y; v— initial
conditions for the system (1) and for the driving Markov chain. Existence and
uniqueness are understood in a weak sense; see [14, Chap. IV, Definitions 1.2
and 1.4].
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Proposition 1 ([3]). Under the assumptions (3), the system (1) has a weak solution
on Œ0;1/ unique in distribution. The joint process .X; Y; V / is also unique in
distribution, and these distributions form a strong Markov process.

Denote the marginal distribution of the triple .Xt ; Yt ; Vt / with initial data x; y; v
by �x;y;vt ; t � 0.

Proposition 2 ([3]). Under the assumptions (3), there exists a stationary prob-
ability distribution �1 on R

2 � S and positive constants NC ; Nc depending on
minfˇ.v/; v 2 Sg; minf�.v/; v 2 Sg; minf�.v/; v 2 Sg; maxf�.v/; v 2 Sg;
minfqij I i; j 2 S; i ¤ j g, maxfqij I i; j 2 S; i ¤ j g; u1; u2; N , such that

k�x;y;vt � �1kT V � NC exp.�Nct/.1C x2 C y2/; t � 0: (4)

The specification of NC ; Nc assures the rate of convergence to be uniform over all
admissible control policies and locally uniform with respect to initial conditions, as
stated in the Introduction. Note that although the fixed parameters x, y and v (initial
values) are not shown in the left-hand side of (4), the measure �t does depend on
them.

3 Main Results

3.1 The Model

We want to extend the results of [3] in two directions: (1) to consider general
multidimensional mechanical systems and (2) to allow state- dependent switching.

From the theoretical mechanics point of view, we extend the model (1) from the
case of one point mass to an ensemble of d point masses being under the influence
of a combined force—the resultant of a force field, friction and interaction.

Let d � 1 and consider a system of stochastic differential equations in R
2d :

for given x1; x2 2 R
d , and t � 0,

dX1
t D X2

t dt; X1
s D x1 2 R

d ;

dX2
t D b.X1

t ; X
2
t / dt C dWt ; X2

s D x2 2 R
d :

(5)

Here W is a d -dimensional Wiener process and the drift term b is a d -dimensional
function. The value d > 1 corresponds to the multi-particle case.

Denote X D .X1;X2/ 2 R
2d .

Let us now explain what is state-dependent switching. Consider a process
Xt ; t � 0; which is a solution of a stochastic differential equation with coefficients
additionally depending on a process .Vt ; t � 0/ taking values in a finite set S D
f1; 2; : : : ; N g. The process V is, informally speaking, a conditional Markov chain:
given a “frozen” value of Xt D x, its generator equals Q.x/ D .qij .x//N�N ; x 2
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R
2d . Informally, this matrix determines transition probabilities over a small period

of time given Xt D x,

P.VtC� D j jVt D i; Xt D x/ D
(
qij .x/�C o.�/; i ¤ j;

1C qii .x/�C o.�/; i D j;
(6)

where � # 0. For j D i the value qii .x/ is defined as qii .x/ WD �Pj W j¤i qij .x/.
Finally, consider a hybrid SDE system .X1;X2; V / in R

d � R
d � S D R

2d � S,
d � 1:

for given x1; x2 2 R
d ; v 2 S

dX1
t D X2

t dt;

dX2
t D b.X1

t ; X
2
t ; Vt / dt C �.Vt /dWt ;

t � 0;X1
0 D x1 2 R

d ; X2
0 D x2 2 R

d ; V0 D v 2 S:

(7)

Here W is a d -dimensional Wiener process, the drift term b is a d -dimensional
function, and �.v/ is a nondegenerate d � d�matrix. In order to define this object
rigorously, we should describe it through its two-component generator L�.x; v/ D

�
@�

@x1
.x1; x2; v/; x2

�
C
�
@�

@x2
.x1; x2; v/; b.x1; x2; v/

�

C
dX

i;jD1
�ij .v/

@2�

@x2i @x
2
j

.x1; x2; v/

C
X
j2Snv

.�.x; j / � �.x; v//qvj .x/: (8)

Here generator may be understood in the sense of the martingale problem (see Sect.
5.1 of [4], or [10]); in some papers it is called extended generator. This description
also makes sense for discontinuous intensities qij .

Recall that due to the control origin of the model, no regularity may be assumed
about the drift term b: it is just Borel measurable and of a no more than linear
growth.

3.2 Standing Assumptions

The following assumptions are standing for the system (7).
The values d;N are natural numbers; the points of the euclidean space R

2d are
denoted x D .x1; x2/ (the first and the last d coordinates); S is the set f1; : : : ; N g.
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(SA 1) Dimension and measurability: b.x; v/ W R
2d � S ! R

d ; �.v/ W S !
R
d � R

d and Q W R2d ! R
N � R

N are Borel measurable functions.
(SA 2) Nondegenerate diffusion: the matrix �.i/�.i/� is nondegenerate for any
i 2 S.
(SA 3) Uniform linear growth : there exists a constant C > 0 such that for all

x 2 R
2d and v 2 S,

jb.x; v/j C k�.v/k � C.1C jxj/: (9)

(SA 4) Intensity bounds: there exist constants 0 < cl � cu < 1 such that

cl � qij .x/ � cu for all x 2 R
2d and i; j 2 S; i ¤ j ; also, qii is defined as

qii WD �Pj W j¤i qij ; i 2 S.

3.3 Recurrence Assumption

This assumption about a Lyapunov function will be used only in the Sects. 3.6
and 3.7.

(RA 1) There exist a positive definite quadratic function � W R2d ! Œ0;1/ and
positive constants c1; c2 such that

�
@�

@x1
.x/; x2

�
C
�
@�

@x2
.x/; b.x; v/

�
� �c1�.x/C c2 for all .x; v/ 2 R

2d � S:

(10)

The class of systems satisfying (10) is non-empty: indeed, it includes the system (1)–
(2) under the assumption (3) and other likewise models. Proposition 2 itself,
actually, prompts why we wish to restrict Lyapunov functions to quadratic ones
here. Another argument will be given after the Theorem 3.

3.4 Weak Existence and Uniqueness

Existence and uniqueness are understood in a weak sense; see [14, Chap. IV,
Definitions 1.2 and 1.4].

Theorem 1. Under the assumptions (SA 1)–(SA 4), the system (7) has a weak
solution on Œ0;1/ unique in distribution. This solution forms a strong Markov
process.

Existence and uniqueness for the solution of the considered system may be
explained as follows. Take a process with no switching (constructed in [19]) and
attach to it a random moment, which is a minimum of all stopping times defined
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by the switching intensities of transitions to all other discrete states. That is,
conditioned on the trajectory of the process, all distributions of these stopping times
are “exponential” with corresponding (variable) intensities and independent of each
other. Thus, the switched process is constructed up to the first switching. It is clear
that its distribution up to the switching moment coincides with that of any solution
of the system (7). This construction may be continued further inductively, from
one switching moment to the next, and the scheme can be implemented in terms
of stochastic differential equations with “rare” jumps—analogues of switchings.
Such jumps can be generated with minimal restrictions on jump coefficients—
only measurability is required; see [2, 5] and [14, Chap. IV, Sect. 9]. Strong
Markov property in [19] was deduced from the Krylov selection method [16], more
precisely, due to weak uniqueness. In the present paper, the same idea is helpful and
the pasting construction used for establishing existence does preserve the strong
Markov property. This procedure will be sketched in the proof of Lemma 2 in the
Sect. 4.2.

3.5 Local Markov–Dobrushin Condition

This condition describes the following property of the process satisfying (7). For any
two initial states at time zero, let us consider two corresponding processes; then, fix
some moment of time and compare marginal distributions of the processes at this
moment; then, they are non-singular and in a certain sense even uniformly in initial
states.

This fact is non-trivial, but a simple “philosophical” background for such
non-singularity is Girsanov’s formula. However, the stochastic integral under the
exponent with a non-bounded drift along with degeneracy makes the implementa-
tion of this idea technically involved. Namely, to make sure that expressions like
exp.

R T
0

jbj2.Xr ; Vr // are bounded, we will need to consider restricted measures �R
0

with R0 < 1 instead of simple �; see the next paragraph.
Let us define the following objects: BR D fx 2 R

2d W jxj < RgI
�s;sCT .x; vI dydu/ denotes the transition measure from .s; x; v/ to .sC T I dydu/I
�R

0

s;sCT .x; vI dydu/ is the restriction of the transition measure �s;sCT .x; vI dydu/
to trajectories, whose continuous component does not go beyond the boundary of
BR0 on Œs; s C T �; by definition, BC1 D R

2d .
The local Markov–Dobrushin condition, which we need, is formulated for a fixed

triple T > 0;R > 0;R0 2 ŒR;C1�:

inf
s2Œ0;1/

inf
x;x02BR;

v;v02S
�R

0

s;sCT .x; v/ ^ �R0

s;sCT .x0; v0/.BR0 � S/ > 0: (11)

Here the minimum � ^ � of two measures � and � is understood in the following
way:
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� ^ �.A/ WD
Z
A

�
d�

d.�C �/
^ d�

d.�C �/

�
.!/ .�C �/.d!/:

Remark 1. The local Markov–Dobrushin condition, formulated for non-random
initial conditions, implies immediately the same statement for distributed initial
conditions. Definition (11) suits a nonhomogeneous case; in the homogeneous
situation it suffices to take s D 0 and drop infs2Œ0;1/.

Theorem 2. Under the assumptions (SA 1)–(SA 4), for anyR > 0 there exist T > 0
and R0 > R such that the local Markov–Dobrushin condition (11) holds.

3.6 Recurrence

Recurrence of stochastic systems is closely related to stability of deterministic
systems and often may be reduced to it, although, in some cases, random pertur-
bations may unexpectedly have a positive effect on the recurrence of the system;
see [11, 13, 15]. (It is not unexpectedly that the opposite cases also occur.)

We shall conclude the recurrence from the existence of a quadratic Lyapunov
function for our system with the removed stochastic term. It is interesting that
the problem of existence of quadratic Lyapunov functions is yet unsolved in full
generality even for linear deterministic switching systems.

Theorem 3. Suppose the assumption (RA 1) from the Sect. 3.3 with a function �
is fulfilled. Then, there exist positive constants c0

1; c
0
2 such that for the generator L

given by (8) the following inequality holds:

L�.x; v/ � �c0
1�.x/C c0

2; x 2 R
2d ; v 2 S: (12)

The constants c0
1; c

0
2 depend on a function �; constants c1; c2; a growth constant C

from the inequality (9) and on dimension d .

The proof follows straightforward, as the second-order term in L� adds a constant
to the first-order expression and since limjxj!1 �.x/ D C1. Note that it shows
that c0

1 D c1. ut
Remark 2. One more reason why Lyapunov functions here are restricted to
quadratic ones is our concern not to overcomplicate the presentation. Indeed, in
the quadratic class, the inequality (12) follows easily, while for a general function,
we would need strange additional assumptions; yet, clearly, such a class is wider
than only quadratic functions.

Applying Ito’s or Dynkin’s formula to �.Xt ; Vt /—the latter being equivalent
to the martingale property, at least, for the appropriately stopped process—it is
possible to show the following result. Let 
R WD inf.t � s W jXt j � R/, R > 0.
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Corollary 1. Under the assumptions (SA 1)–(SA 4) and (RA 1), there exist ˛ > 0,
R0 > 0 and C > 0 such that for any R � R0 (and with .X0; V0/ D .x; v/),

Ex;v exp.˛
R/ � C.1C jxj2/; (13)

and also

Ex;vjXt j21.t < 
R/ � C jxj2: (14)

This statement admits some modifications: as an example, “for any ˛ > 0

there exist R0; C > 0 such that for any R � R0 the inequality (13) holds”. The
inequality (14) may be also stated without the indicator in the left-hand side (and
with a right-hand side as in (13)), but the proof of this version is less elementary and
is not necessary for the proof of the Theorem 4 in the next section.

We provide a brief sketch of the proof of the Corollary 1 for the reader’s
convenience. Dynkin’s formula or, equivalently, the integral form of Ito’s formula
applied to the process exp.˛t/�.Xt / by virtue of (12) implies that

Ex;v exp.˛.t ^ 
R//�.Xt^
R / � �.x/

C Ex;v

Z t^
R

0

exp.˛s/.c0
1� � c0

2 � ˛/.Xs/ ds � 0: (15)

If necessary, this procedure may be accomplished by an appropriate localization.
Now, let us choose R so that

inf
jxj�R

.c0
1� � c0

2/.x/ � 1:

Then (13) follows by Fatou’s lemma as t ! 1, at least, if ˛ � 1.
Further, let ˛ D 0. Then it follows from (15) along with c0

1� � c0
2 � 1 > 0 that

Ex;v�.Xt /1.t < 
R/ � Ex;v�.Xt^
R / � �.x/; jxj > R;

and

Ex;v�.Xt /1.t < 
R/ D 0; jxj � R;

the latter because 
R D 0 for jxj � R. Since quadratic form � is positive definite,
this suffices for (14), as required. ut
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3.7 Exponential Convergence

In this section, for the process .X; V / satisfying the system (7) with initial values
.x; v/, its marginal distribution at time is denoted by �x;vt ; t � 0.

There is a routine scheme to deduce exponential—and also many others—
convergence in total variation from two facts: (1) “minorization” condition of local
Markov–Dobrushin type, here provided by the Theorem 2, and (2) recurrence
property, regular returns of the trajectory to a certain set satisfying the “minoriza-
tion” condition, here provided by the Corollary 1. This scheme is expounded in
[20, 21], with the local Markov–Dobrushin condition called differently. Note that
the Theorem 3 may also be used directly, without the Corollary 1.

Theorem 4. Suppose the assumption (SA 1)–(SA 4) and (RA 1) are fulfilled. Then
there exists a stationary probability distribution �1 on R

2d � S and positive
constants NC ; Nc, depending on d; C; �; c1; c2; minf�.v/; v 2 Sg; minfqij I i; j 2 S;

i ¤ j g, maxfqij I i; j 2 S; i ¤ j g; N , such that

k�x;vt � �1kT V � NC exp.�Nct/.1C x2/; t 2 Œ0;1/

(all parameters are described in the Sect. 3.2).

4 Proofs of Theorems 1 and 2

4.1 Proof of Theorem 1

Proof. We shall establish existence on the basis of the paper [5]; another method-
ological source is the paper [10]. The paper [5] uses the language of stochastic
differential equations; thus, we describe our system in such terms. Consider the
system (5) with b.X1;X2/ D b.X1;X2; v/ on a stochastic basis .˝;F; .Ft /;P/;
where it has a solution. Let the basis be extended if necessary, and let us add to the
system (7) the equation for the discrete component

dVt D
Z
R1

K.Xt ; Vt�; z/N.dt; d z/: (16)

Here N is an .Ft /-adapted Poisson random measure with a mean (compensator)
measure ds � d z

z2
independent of the Wiener process. The coefficient K must be

constructed so that it substitutes the intensities Q W for each i 2 S, it takes values in
fj � i; j 2 Sg and

Z
fzWK.x;v;z/Dj�ig

d z

z2
D qij ; j 2 S n i:
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We give now a description (slightly non-rigorous, although, hopefully, comprehen-
sible) how to construct K: For each i 2 S; K.x; i/ takes value 1 � i on Œz1.x/;1/I
value 2 � i on Œz2.x/; z1.x//I . . . ; value �1 on Œzi�1.x/; zi�2.x//I value C1 on
ŒziC1.x/; zi�1.x//I . . . ; value N � i on ŒzN .x/; zN�1.x//I value 0 on the rest of
R
1. The points zj ; j 2 S n fig; are defined by the relations

Z 1

z1

d z

z2
D qi1;

Z z1

z2

d z

z2
D qi2; : : : ;

Z zN�1

zN

d z

z2
D qiN ;

where the term with index i i is excluded. Proposition 1 of [5] provides existence
of a weak solution (its condition 2b is not needed in our case because the jump
intensities are bounded and at the moments of jumps, the component X does not
increase). In fact, Proposition 1 of [5] is proved in style of martingale problems,
with pasting solutions at the moments of jumps.

To prove uniqueness, we use Lemma 2 of [5]. It uses a solution . QXt ; t � 0/ of
the equation (5) without switching. Given this trajectory, the first switching moment

 of the solution .X; V / of the system (7)–(16) has the following distribution (note
that on Œ0; 
/ the trajectories of X and QX coincide by construction):

Lemma 1. Under the assumptions (SA 1)–(SA 4), given the trajectory QXt ; t 2
Œ0;1/; of the solution of (5) with b.X1;X2/ D b.X1;X2; V0/, the conditional
probability of the event f
 > rg equals

exp

8<
:�

Z r

0

X
j2Snv

qvj . QXu/du

9=
; :

Finally, we give a sketch of the proof of strong Markov property. The solution of
system (5) does possess a strong Markov property; see [1] and [19]. This entails a
strong Markov property of the switched process (7). To prove it, adopt the method
of [2, Sect. 4], where nondegenerate diffusions are considered. Instead of making
sequentially infinite number of switchings, let us limit ourselves to the first k
switchings and make no further ones. The result is a distribution on the space of
trajectories (both continuous and discrete). Let us take an arbitrary stopping time 

and calculate the conditional distribution of this distribution given F
 , restricted
to t 2 Œ
;1/. It equals the distribution of the process with initial conditions
.
; X
 ; V
 / switched finitely many times—so many times how many out of the first
k switchings took place after the moment 
 . With k ! 1 the proof is completed—
the limiting conditional distribution is again that of a switching process, and due to
its uniqueness, this provides the strong Markov property. ut
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4.2 Proof of Theorem 2

Proof. Here we shall explain how to deduce Theorem 2 for a general set S from the
statement of this Theorem 2 for S D f1g. Recall that it suffices to take s D 0 in (11).

Let us fix initial state .x; v/; denote by vXu; u 2 Œ0;1/; the corresponding
solution of the equation (5) (without switching) with b.X1;X2/ 	 b.X1;X2; v/. In
some cases it will be convenient to use a more sophisticated notation .vX0;x

u ; u � 0/

for the same process where x is the initial data at 0. Respectively, .vXr;x0

u ; u � r/

signifies a solution of the equation (5) with b.X1;X2/ D b.X1;X2; v/ on the
interval Œr;1/ with initial value x0 at r . Let us inspect what occurs on time interval
Œ0; T �. The discrete component V is a point process with compensator intensities
lying between the given lower and upper bounds. This implies that the probability
that VT equals 1 is bounded away from zero uniformly in all x; v.

We are now going to give a rigorous explanation of this fact, although its
implementation may look a bit more complicated than it actually is, due to the
inevitably involved notations. To simplify the latter a little bit, denote 1 QX.r/

u WD
1Xr;vX

0;x
r

u ; u � r (this will be used only in this subsection); recall that .vX0;x
u ; u � 0/

is a process without switching and emphasize that likewise without switching is the
process .1 QX.r/

u ; u � r/. Then for v ¤ 1 the nonconditional probability of the event
{VT equals 1} is greater than or equal to the expectation of

Z T

0

0
@expf�

Z r

0

X
j2Snv

qvj .
vXu/dug

� expf�
Z T

r

X
j2Sn1

q1j .
1 QX.r/

u /dug
1
A qv1.

vXr/ dr;

or (notations p and q are defined below), equivalently, of

Z T

0

p.r/q.r/qv1.
vXr/dr: (17)

Here the conditional probability that the discrete component remains at state v on
the time interval Œ0; r/ given .vXu; 0 � u < r/ reads

p.r/ D expf�
Z r

0

X
j2Snv

qvj .
vXu/dugI

the conditional probability that the discrete component jumps from state v to state 1
on the time interval Œr; r C dr/ given .vXu; 0 � u < r/ equals

qv1.
vXr/dr I
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the conditional probability that the discrete component remains at state 1 on the time
interval Œr C dr; T � given .vXu; 0 � u < r/ may be presented as

q.r/ D expf�
Z T

r

X
j2Sn1

q1j .
1 QX.r/

u /dug:

Due to the assumptions on all intensities qij , we get a lower bound (exp.�cT /), the
proof of which is based on the Lemma 1. Integration with respect to r in (17) is a
complete probability formula, a rigorous justification for which may be given, for
example, as in [22].

For v D 1 it is even easier to obtain a desired lower bound by virtue of the same
Lemma 1, as in this case the probability in question is greater than or equal to the
expectation of

expf�
Z T

0

X
j2Sn1

q1j .
1Xu/dug:

Further, fix R > 0 and assume that x 2 BR: Copying the reasoning of [19] and [1],
we obtain that there existsR0 2 .R;C1/ such that the continuous component of the
trajectory does not go beyond the boundary of BR0 on Œ0; T � with probability almost
1, and this is uniformly in initial conditions, belonging to BR � S. Combining these
two facts, we conclude that the probability that both events take place is bounded
away from zero uniformly in .x; v/ 2 BR � S.

The conditional distribution of .X; V / admits on these events a useful estimate.
Take T 0 > 0 and consider the distribution of .X; V / on ŒT; T C T 0�; conditioned
on the past time Œ0; T � history. This distribution is minorized by the distribution of
the solution of system (5) with initial conditions T;XT , with a positive constant
multiplier, which follows from the calculus in [1]—more precisely, from the proofs
of the proofs of Lemmas 3 and 4 from [1]—accomplished by the Lemma 2 and its
Corollaries. This suffices for the local Markov–Dobrushin condition (11). Note that
in [1, 19] the initial conditions are assumed non-random; however, the Remark 1
removes this restriction.

To realize this plan, for x 2 R
2d ; v 2 S, let us define the following:

�.x; vI dXdV /—the distribution of the solution of the system (7) on Œ0;1/with
initial conditions x; v;

1�.xI dX/—the distribution of the solution on Œ0;1/ of the system (5) with
b.X1;X2/ D b.X1;X2; 1/ and initial data x.

Lemma 2. Under the assumptions (SA 1)–(SA 4), for any T > 0 there exists

c.cu; T / D e�T .N�1/cu

such that for any x 2 R
2d and any event A defined through the trajectory of X on

the time interval Œ0; T �; the following inequality holds:
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�.x; 1IA � fV ˇ̌
Œ0;T �

	 1g/ � c.cu; T / � 1�.xIA/:

Proof. Let us fix x and construct on a stochastic basis the following objects:

(1) A process 1X D .1X.t/; t 2 Œ0;1//—a solution of the system (5) with
b.X1;X2/ D b.X1;X2; 1/ and initial data x.

(2) A switching process .X; V / satisfying the system (7) with initial conditions
.x; 1/ in such a way that they coincide up to the first switching. For this purpose
take a process 1X satisfying (5) and a random variable 
 such that for t � 0,
the probability of the event f
 � tg given .1Xu; 0 � u < t/ according to the
Lemma 1 equals

1 � expf�
Z t

0

X
j2Sn1

q1j .
1Xu/dug

(this can be done on the product space �Œ0;1/). The moment 
 is the moment
of the first switching, and the value of V
 D j is chosen proportionally
to q1j ; j 2 S n 1. At the moment 
 the switched process X satisfying (7)
acquires the corresponding conditional probability �
;X
 ;V
 ; while the process
1X satisfying (5) develops further in its dynamics. It is easy to see that the
probability of the event f
 > T g conditioned on a trajectory of 1X is uniformly
bounded away from zero on the space of all trajectories: it is greater than or
equal to c.cu; T /. For any event A on time interval Œ0; T �, the probability that
the switched process X lies in A is greater than or equal to the probability of
the event {the process 1X lies in A and the switched process X coincides with
1X}, which, in turn, is greater than or equal to c.cu; T /� {the probability that
1X 2 A}. Thus, it is also greater than or equal to c.cu; T /� {the probability
that 1X 2 A }. ut

Corollary 2. Under the assumptions (SA 1)–(SA 4), for any T > 0 there exists a
constant

c.cu; T / D e�T .N�1/cu

such that for any s 2 Œ0;1/; x 2 R
2d and any event A defined through trajectories

of X; V on the time interval Œ0; T �; the following inequality holds:

�.x; 1IA/ � c.cu; T / � 1�.x;A \ fV ˇ̌
Œ0;T �

	 1g/:

Proof. Indeed, �.x; 1IA/ � �.x; 1IA \ fV ˇ̌
Œ0;T �

	 1g/: ut

Corollary 3. Under the assumptions (SA 1)–(SA 4), for any T > 0 there exists a
constant

c.cu; T / D e�T .N�1/cu ;
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such that for any initial condition x; a measurable � � R
2d � S and R > 0 the

following inequality holds:

�.x; 1I .X; V /T 2 �; Xu 2 BR; u 2 Œ0; T �/
� c.cu; T /

1� .XT 2 � \ fV D 1g; Xu 2 BR; u 2 Œ0; T �/ :

This completes the proof of the Theorem 2. ut

5 Conclusion

We have proved for highly degenerate stochastic mechanical hybrid systems under
quite general conditions (discontinuity and linear growth of coefficients and the
Wiener process perturbations) the following properties:

– Existence and uniqueness theorem and a strong Markov property for solutions of
such systems

– A local mixing property in the Markov–Dobrushin form for these solutions
– Exponential stochastic stability in total variation metric for solutions of such

systems under the additional assumption (10)
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Asymptotic Behaviour of the Distribution
Density of the Fractional Lévy Motion

Victoria P. Knopova and Alexey M. Kulik

Abstract We investigate the distribution properties of the fractional Lévy motion
defined by the Mandelbrot-Van Ness representation:

ZH
t WD

Z
R

f .t; s/dZs;

where Zs , s 2 R, is a (two-sided) real-valued Lévy process, and

f .t; s/ WD 1

� .H C 1=2/

h
.t � s/H�1=2

C � .�s/H�1=2
C

i
; t; s 2 R:

We consider separately the cases 0 < H < 1=2 (short memory) and 1=2 < H < 1

(long memory), where H is the Hurst parameter, and present the asymptotic
behaviour of the distribution density of the process. Some examples are provided,
in which it is shown that the behaviour of the density in the cases 0 < H < 1=2 and
1=2 < H < 1 is completely different.
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1 Introduction

In this chapter we consider the distribution properties of the fractional Lévy motion
(FLM, in the sequel). Various versions of the FLM have been used in a number
of recent publications in order to interpret some experimental data. Apart from the
rigorous mathematical definition, some modifications of the FLM are derived from
the physical point of view; see, for example, [7, 11, 15]. The FLM driven by an
˛-stable Lévy process is used as a model for describing sub-diffusive effects in
physics and biology (see [6, 26]), signal and traffic modelling [10, 18, 19], finance
[5] and geophysics [13, 21, 25]. We refer to [25] for the discussion in which type
of problems the FLM gives an adequate description for the observed phenomena.
In the papers quoted above it was shown that the respective phenomena existing
in nature can be better described by models, containing the FLM rather than the
fractional Brownian motion (FBM). Finally, we refer to [8] for simulations of the
FLM, which can be convenient in practical problems.

Similarly to the FBM, the FLM can be defined in two different ways: via the
Mandelbrot-Van Ness representation (see [2] and [20]) or via the Molchanov-
Golosov representation (see [3]). We also refer to [23] for a bit different definition
of the fractional stable motion. These two representations, being equivalent in the
Gaussian setting, in the Lévy setting lead, in general, to different processes; see
[24]. Note that, in contrast to the FBM, in some cases, the FLM can even be a semi-
martingale ([1, 4]).

In this paper we focus on the FLM ZH
t defined by the Mandelbrot-Van Ness

representation, i.e.

ZH
t WD

Z
R

f .t; s/dZs; (1)

where Zs , s 2 R, is a (two-sided) real-valued Lévy process,H 2 .0; 1/ is the Hurst
parameter and

f .t; s/ WD 1

� .H C 1=2/

h
.t � s/H�1=2

C � .�s/H�1=2
C

i
; t; s 2 R; (2)

where xC WD max.x; 0/. This definition gives a particularly important representa-
tive of the class of the so-called moving-average fractional Lévy motions. Since the
FLM, according to the survey above, is an adequate model to some phenomena in
nature, it would be appropriate to investigate deeply its properties. In particular,
knowledge of the distribution properties of the FLM would naturally make it
possible to solve various problems related to statistical inference, simulation, etc.

In this paper we concentrate on the asymptotic behaviour of the distribution
density of the FLM. In contrast to the FBM case, the study of the distribution
density of the FLM is much more complicated. In the recent paper [17], we
presented the investigation of the distribution density of a FLM in the following
cases: (i) H D 1=2, which means merely ZH

t 	 Zt , and (ii) 1=2 < H < 1,
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which corresponds to the so-called long memory case; see Definition 1.1 in [20].
Both cases can be treated in a unified way using a general result about the
asymptotic behaviour of distribution densities of Lévy-driven stochastic integrals
with deterministic kernels; see Theorem 2.1 in [17]. Since this theorem requires
the respective kernel to be bounded, and the kernel (2) is unbounded when 0 <
H < 1=2, the case (iii) 0 < H < 1=2 cannot be treated in the same way as
in [17] and thus requires a completely different approach, which we present below.
Further, we show that there is a substantial difference in the behaviour of the density
in the cases (i), (ii) on the one hand and the case (iii) on the other hand, namely,
the distribution density in these situations exhibits absolutely different types of the
asymptotic behaviour. We also emphasize that in contrast to the situation studied in
[17], for the case 0 < H < 1=2, we do not require the existence of exponential
moments of the tails of the Lévy measure.

Let us outline the rest of the paper. In Sect. 2 we set the notation and formulate
our main results, Theorems 1 and 2. In Sect. 3 we formulate the general result,
Theorem 3, on the asymptotic behaviour of the distribution density of Lévy
functionals, on which Theorems 1 and 2 are based on. In Sect. 4 we give two
examples which illustrate the effects that may happen in the “extremely heavy-
tailed” case, i.e. when condition (17) (see below) fails. In Appendix we give some
supplementary statements: the necessary and sufficient condition for the integral (1)
to be well defined and the condition for the respective distribution to possess a
density.

2 Settings and the Main Result

Let Zt , t 2 R, be a real-valued (two-sided) Lévy process with the characteristic
exponent  , which means that Z has stationary independent increments, and the
characteristic function of an increment is given by

Eeiz.Zt�Zs/ D e.t�s/ .z/; t > s: (3)

The characteristic exponent  admits the Lévy-Khinchin representation:

 .z/ D iaz � bz2 C
Z
R

�
eiuz � 1 � izu1fjuj�1g

�
�.du/; (4)

where a 2 R, b � 0 and �.�/ is a Lévy measure, i.e.
R
R
.1 ^ u2/�.du/ < 1. To

exclude the trivial cases, we assume that b D 0 and �.R/ > 0; that is, Z does
not contain a diffusion part and contains a non-trivial jump part. To simplify the
notation we also assume without loss of generality that Z0 D 0 and a D 0.

We define the integral (1) as a limit in probability of the respective integral sums;
see [22, Sect. 2]. When H 6D 1=2, the necessary and sufficient condition for this
integral to be well defined is

Z
juj�1

juj2=.3�2H/�.du/ < 1; (5)
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see Proposition 2 in Appendix I. Furthermore, it will be shown in Proposition 3 (see
Appendix II) that under the same conditions and our standing assumption

�.R/ > 0; (6)

the integral (1) possesses for any t 6D 0 a distribution density, which we denote by
pt .x/, and, moreover, pt 2 C1

b .R/. Note that in the Lévy case, i.e. for H D 1=2,
available sufficient conditions for the existence of the density pt 2 C1

b .R/ are
much stronger; see, for example, [14] for the Hartman-Wintner condition.

An important feature of the process ZH
t is that one can explicitly write its

characteristic function �.t; z/ WD EeizZ
H
t (cf. [22, Theorem 2.7]):

�.t; z/ D e�.t;�z/; (7)

where

�.t; z/ D
Z
R

Z
R

�
e�izf .t;s/u � 1C izf .t; s/u1juj�1

�
�.du/ds; z 2 R; t > 0:

(8)

Observe, that if the measure � possesses exponential moments, the function �.t; z/
can be extended with respect to z to the complex plane. Moreover, one can see (cf.
Sect. 3.3) under the assumptions that �.RC/ > 0, the function

H.x; z/ WD izx C �.1; z/

has a unique critical point i	.x/ on the line iR. Put

D.x/ WD H.x; i	.x//; K.x/ WD @2

@	2
H.x; i	/

ˇ̌
ˇ
	D	.x/; (9)

and

Mk.	/ WD
Z
R

uke	u�.du/; k � 2; 	 2 R:

Fix t0 > 0. In what follows, we write f 
 g; if f=g ! 0; and f 
 g, if
f=g ! 1.

Theorem 1. LetZH
t , 1=2 < H < 1, t � t0, be a FLM defined by (1), whereZt is a

Lévy process with the associate Lévy measure �. Suppose that the conditions below
hold true:
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(1) �.RC/ > 0;
(2) for all C 2 R

Z
jyj�1

eCy�.dy/ < 1I (10)

(3) 9� 2 .0; 1/ such that M4.	/ 
 M2
2 .�	/ as 	 ! 1;

(4) ln
�
M4.	/

M2.	/
_ 1

	
C ln lnM2.	/ 
 	 , 	 ! C1.

Then the distribution density pt .x/ of ZH
t exists, pt 2 C1

b , and satisfies the
asymptotic relation

pt .x/ 
 1p
2�t2HK.xt�H�1=2/

etD.xt
�H�1=2/; tCx ! 1; .t; x/ 2 Œt0;1/�RC;

(11)

where D and K are defined in (9).

To formulate the result for 0 < H < 1=2 we need a bit more notation. Let f .s/ WD
f .1; s/; see (2) for the definition of f .t; s/. Observe that f .s/ is strictly decreasing
on .�1; 0/ and maps .�1; 0/ to .�1; 0/, strictly increasing on .0; 1� and maps
.0; 1� to



1

� .HC1=2/ ;C1�
. In addition, the derivative f 0.s/ is well defined and is

continuous on .�1; 0/ and .0; 1/. Hence, we can put

`.y/ WD
8<
:
.f �1/0.y/ D 1

f 0.f �1.y//
; y 2 .�1; 0/ [

h
1

� .HC1=2/ ;C1
	
;

0; otherwise:
(12)

Note that `.y/ is non-negative if y � 0 and is negative otherwise. Define

m.r/ WD
Z 1

�1
1

y
`

�
r

y

�
�.dy/; r > 0: (13)

Recall that (see Definition 4 in [16]) a function g W RC ! RC belongs to the
class Ld of sub-exponential densities, if g.x/ > 0 for large enough positive x, and

lim
x!C1

.g � g/.x/
g.x/

D 2; and lim
x!C1

g.x � y/
g.x/

D 1 for any y 2 R, (14)

where � is a usual definition for the convolution. Fix t > 0.

Theorem 2. Let ZH
t , 0 < H < 1=2, be a FLM defined by (1), where Zt is a Lévy

process with the associate Lévy measure �. Suppose that (5) holds true and

�.R�/ > 0: (15)
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Then for every t > 0 the value of FLM ZH
t defined by (1) possesses a probability

density pt 2 C1
b .R/; which satisfies the following:

(i) If

Z
juj�1

juj2=.1�2H/�.du/ D 1

and m 2 Ld, then for all t > 0,

pt .x/ 
 t 3=2�Hm.t1=2�Hx/; x ! C1: (16)

(ii) If

Z
juj�1

juj2=.1�2H/�.du/ < 1; (17)

then

pt .x/ 
 cH

�Z
R

juj2=.1�2H/�.du/

�
x�.3�2H/=.1�2H/; x ! C1; (18)

where

cH D 2

1 � 2H
�
�
�
H C 1=2

		�2=.1�2H/
: (19)

Remark 1. (a) Apparently, relation (16) holds true when both x and t tend to C1
in such a way that xt�H�1=2 ! C1. To prove such an extension of Theorem 2,
one should have an extension of [16, Theorem 3.2] which applies to a family of
random sums with the variable distribution of the number of summands.

(b) Clearly, results similar to (16) and (18) can be formulated for x ! �1. In that
case, one should assume �.RC/ > 0 instead of �.R�/ > 0.

To illustrate the crucial difference between the cases treated in Theorem 1 and
Theorem 2, consider two particular examples from [17] which concern the case
H > 1=2. First, let the Lévy measure � of the Lévy noise Zt in (1) be supported
in a bounded set. Then (see in [17, Corollary 5.1 and Corollary 5.2]) there exists
a constant c�.�/, defined in terms of the Lévy measure � only, such that for any
constants c1 > c�.�/ and c2 < c�.�/, there exists y.c1; c2/ such that for x >

y.c1; c2/t
HC1=2, we have

pt .x/

8̂
<̂
ˆ̂:

� exp

�
� c1x

� .H C 1=2/tH�1=2 ln
� x

tHC1=2
	�
;

� exp

�
� c2x

� .H C 1=2/tH�1=2 ln
� x

tHC1=2
	�
:

(20)
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Similar statement is available as well when the tails of the Lévy measure admit the
following super-exponential estimates: for u large enough

1

Q.u/
e�buˇ � �.Œu;C1// � Q.u/e�buˇ ; (21)

where b > 0 and ˇ > 1 are some constants and Q is some polynomial. In this case,
instead of (20), we have for any constants c1 > c�.�/ and c2 < c�.�/

pt .x/

8̂
<
:̂

� exp
�
� c1x

� .HC1=2/tH�1=2 ln
ˇ�1
ˇ

�
x

tHC1=2

		

� exp
�
� c2x

� .HC1=2/tH�1=2 ln
ˇ�1
ˇ

�
x

tHC1=2

		
;

(22)

for x > y.c1; c2/t
HC1=2 (again, c�.�/ is defined in terms of the Lévy measure

� only).
Comparing (20) and (22), we see that the asymptotic behaviour of the tails

of the Lévy measure � is substantially involved in the estimates for pt .x/. The
case 0 < H < 1=2 is completely different. In particular, if (17) holds true, then
pt .x/ satisfies (18), where the right-hand side is even independent of t , which is
an interesting and quite an unexpected fact. We also emphasize that under (17) the
polynomial “shape” of the expression in the right-hand side of (18) does not depend
on � and the only impact of � is represented by the multiplier

R
R

juj2=.1�2H/�.du/.
This means that in the case 0 < H < 1=2, the asymptotic behaviour of pt .x/
“mostly” does not depend on�. However, when� is “extremely heavy-tailed”, there
still remains a possibility for the density pt .x/ to be more sensitive with respect to
both the Lévy measure � and the time parameter t . The dichotomy between the
“regular” case (when (17) holds) and the “extremely heavy- tailed” case (when (17)
fails) is illustrated in Sect. 4 below. Such a dichotomy can be informally explained
by the competition between the impacts of the kernel f .t; s/ on the one hand and of
the measure � on the other hand.

3 Proofs

3.1 General Theorem

Before we proceed to the proofs, we formulate a central analytical result on the
behaviour of the inverse Fourier transform for a certain class of functions. This
result plays the key role in the proofs of Theorems 1 and 2.

Let I � R be some interval and T be some set of parameters. Consider a function
f W T � I ! R; a family of subsets C.t; s/ � R, t 2 T, s 2 I and a Lévy measure
� such that
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Z
I

f 2.t; s/ ds < 1; t 2 T; (23)

Z
I

Z
C.t;s/

�jf .t; s/uj2 ^ 1��.du/ds < 1; (24)

Z
I

ˇ̌
ˇ̌
Z
C.t;s/

�
f .t; s/u1jf .t;s/uj�1 � f .t; s/u1juj�1

�
�.du/

ˇ̌
ˇ̌ ds < 1: (25)

Then the following function is well defined:

�.t; z/ D
Z
I

Z
C.t;s/

�
e�izf .t;s/u � 1C izf .t; s/u1juj�1

�
�.du/ds; z 2 R: (26)

Our aim is to investigate the asymptotic behaviour of the function (provided it
exists)

qt .x/ D .2�/�1
Z
R

eixz�.t; z/d z D .2�/�1
Z
R

e�ixzC�.t;z/d z; t > 0; x 2 R;

(27)

as .t; x/ tend to infinity in some appropriate regions. Clearly, when C.t; s/ 	 R, the
function qt .x/ is nothing else but the distribution density of the Lévy functional

Yt D
Z
I

f .t; s/dZs; (28)

where Zs is the Lévy process associated with measure �, without a drift and a
Gaussian component.

Assume in addition that for some � > 0, we have

f .t; s/u � �; t 2 T; s 2 I; u 2 C.t; s/: (29)

Then it can be shown that the function �.t; �/ defined in (26) can be extended to
the half-plane CC WD fz 2 C W Im z � 0g, and respective extension (we denote it
by the same letter � ) is continuous on CC and analytical in the inner part of this
half-plane.

Consider the function

H.t; x; z/ WD izx C �.t; z/; z 2 CC; (30)

and observe that

@

@	
H.t; x; i	/D�xC

Z
I

Z
C.t;s/

uf .t; s/
�
e	f .t;s/u�1juj�1

�
�.du/ds ! 1; 	 ! C1;
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provided that

.� � Leb/
�
f.u; s/ W f .t; s/u > 0g

	
> 0: (31)

Furthermore, under the same condition, @2

@	2
H.t; x; i	/ > 0 for all 	 2 R. Hence,

.0;1/ 3 	 7! @

@	
H.t; x; i	/

is a continuous strictly increasing function with the range .xt � x;1/, where

xt D lim
	!0C�.t; i	/ D

Z
I

Z
C.t;s/

uf .t; s/1juj>1�.du/ds: (32)

Note that by the above conditions on f;� and C.t; s/, the value xt may equal �1,
but is less than C1. Then for any x > xt there exists unique solution 	.t; x/ to the
equation

@

@	
H.t; x; i	/ D 0: (33)

To formulate the result we need some extra notation:

Mk.t; 	/ WD @k

@	k
�.t; i	/; k � 1; (34)

D.t; x/ WD H.t; x; i	.t; x//; K.t; x/ WD M2.t; 	.t; x//; (35)

and

�.t; z; B/ WD
Z
I

Z
fuW f .t;s/u2B; u2C.t;s/g

�
1 � cos.f .t; s/zu/

	
�.du/ds:

Consider a set A � f.t; x/ W t 2 T; x > xtg � T � R and define

T W Dft W 9x 2 .xt ;1/; .t; x/ 2 Ag; B W Df.t; 	/ W 9.t; x/ 2 A; .t; 	/D.t; 	.t; x//g:

Finally, suppose that the function � W T ! .0;C1/ is bounded away from zero
on T and the function � W T ! .0;C1/ is bounded away from zero on every set
ft W �.t/ � cg, c > 0.

Theorem 3. Assume the following:

H1 Conditions (23)–(25), (29) and (31) hold true.
H2 M4.t; 	/ 
 M2

2.t; 	/, �.t/C 	 ! 1, .t; 	/ 2 B.
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H3 For �.t/C 	 ! 1, .t; 	/ 2 B.

ln

��
��2.t/

M4.t; 	/

M2.t; 	/

	
_ 1

�
C ln

��
ln
�
.1 _ ��1.t//M2.t; 	/

� 	 _ 1
	


 ln �.t/C �.t/	:

H4 There exist R > 0 and ı > 0 such that

�.t; z;RC/ � .1C ı/ ln.�.t/jzj/; t 2 T; jzj > R: (36)

H5 There exists r > 0 such that for every � > 0,

inf
jzj>�

�.t; z; Œr�.t/;C1// � c�.t/
�
.��.t//2 ^ 1

	
; t 2 T; c > 0:

Then the function qt .x/ given by (27) is well defined and satisfies

qt .x/ 
 1p
2�K.t; x/

eD.t;x/; �.t/C x ! 1; .t; x/ 2 A: (37)

Up to some straightforward and purely technical modifications, the proof of
Theorem 3 coincides with the proof of [17, Theorem 2.1] and therefore is omitted.
Here we only remark that the proof is based on an appropriate modification of the
saddle point method; see [9] for details.

3.2 Outline of the Proofs

One can prove Theorem 1 using a simplified version of Theorem 3 with C.t; s/ 	 R

and the scaling property of the function f .t; s/:

f .t; s/ D jt jH�1=2f
�s
t

	
; (38)

where

f .s/ D f .1; s/ D 1

� .H C 1=2/

h
.1 � s/H�1=2

C � .�s/H�1=2
C

i
; s 2 RI

see [17] for details.
Let us turn now to the proof of Theorem 2. To make the proof of Theorem 2 more

transparent, we first sketch its main idea. In particular, we show how Theorem 3
applies in the situation when the function f .t; s/ is unbounded.
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According to [22, Theorem 2.7], the characteristic function �.t; z/ (cf. (7)) can
be decomposed for any fixed � > 0 as

�.t; z/ D �1.t; z/�2.t; z/ D e 1.t;z/e 2.t;z/;

where

 1.t; z/ WD
Z t

�1

Z
fuW uf .s=t/��g

�
eizf .t;s/u � 1 � izf .t; s/u1juj�1

�
�.du/ds; (39)

 2.t; z/ WD
Z t

�1

Z
fuW uf .s=t/>�g

�
eizf .t;s/u � 1� �.du/ds C iza.t/; (40)

a.t/ WD
Z t

�1

Z
fuW uf .s=t/>�g

f .t; s/u1juj�1�.du/ds D tHC1=2a.1/: (41)

In the last identity we have used the scaling property (38) of the kernel f .
The function j�1.t; z/j is integrable with respect to z for any t > 0; see Remark 4

in the Appendix II below. Then there exists the distribution density

Qpt .x/ WD 1

2�

Z
R

e�izx�1.t; z/d z; (42)

and thus the required density pt .x/ can be written as the convolution

pt .x/ D . Qpt � Pt/.x/; (43)

wherePt.dy/ is the probability measure corresponding to the characteristic function
�2.t; z/. Define the measure Mt.dy/ by the relation

Z
R

g.y/Mt.dy/ D
Z t

�1

Z
fuW uf .s=t/>�g

g.f .t; s/u/ �.du/ds; (44)

where g is an arbitrary measurable and bounded function. Then, up to the shift
by a.t/, the measure Pt.dy/ is equal to the distribution of the compound Poisson
random variable with the intensity of the Poisson part equal to Mt.dy/. In other
words,

Pt.dy/ D ıa.t/.dy/ �
 
e�Mt .R/ı0.dy/C e�Mt .R/

1X
kD1

1

kŠ
M �k
t .dy/

!
; (45)

where M �k
t .dy/ is the k-fold convolution of Mt.dy/.

It follows from the scaling property (38) that Mt.R/ D t( with

( D
Z 1

�1

Z
fuW uf .s/>�g

�.du/: (46)



186 V.P. Knopova and A.M. Kulik

Furthermore, we prove that the measure Mt.dy/ is absolutely continuous with
respect to the Lebesgue measure with the density

mt.x/ D t 3=2�Hm.t1=2�Hx/1fx>�tH�1=2g; (47)

where the function m is defined by (13). Then (43) can be written in the form

pt .x/ D e�(t Qpt .x � a.t//C
Z
R

�t .x � y/ Qpt .y � a.t//dy; (48)

where

�t .x/ WD e�t(
1X
kD1

m�k
t .x/

kŠ
: (49)

Clearly, �t is the density of a random sum with the distribution of one term
represented by mt . Suppose that the function m is sub-exponential. Then it follows
from [16, Theorem 3.2] that the density �t is sub-exponential as well and

�t .x/ 

 
e�t(

1X
kD1

k

kŠ
.t(/k�1

!
mt.x/ D mt.x/; x ! C1; (50)

where we used that
R1
0
mt .x/ dx D Mt.R/ D t(.

To estimate Qpt .x/we apply Theorem 3. Namely, in Proposition 1 below, we show
that for a given " > 0, there exists y."/ > 0 such that

exp

�
� .1C "/x

�tH�1=2 ln
x

tHC1=2

�
� Qpt .x/ � exp

�
� .1 � "/x
�tH�1=2 ln

x

tHC1=2

�
;

xt�H�1=2 � y."/:
(51)

Since a sub-exponential function decays slower than any exponential function (cf.
[16]), the term mt dominates both Qpt .x/ and the integral term in (48). In such a
way, (48), (50) and (51) provide the required relation (16).

Let us summarize the idea explained above. The distribution of ZH
t is decom-

posed in two parts. For one part, the distribution density is controlled by means
of the respective version of the saddle point method, while for the other part,
the distribution can be evaluated in the form of the series of convolution powers
with the explicitly given law of the first summand. Similarly to Theorem 2.1 in
[17], Theorem 3 provides a flexible version of the saddle point method, which is
applicable to a wide variety of integrals of the form (27). Thus, one can expect that
the approach presented above can be extended to other processes of the form (1)
with unbounded kernels f .t; s/. To keep the exposition reasonably tight, in this
paper, we do not investigate this possibility in the whole generality and restrict our
considerations to the important particular case of the FLM with 0 < H < 1=2.



Asymptotic Behaviour of the Distribution Density of the FLM 187

3.3 Properties of Qpt.x/

Proposition 1. Under (15), for a given " > 0, there exists y."/ > 0 such that Qpt .x/
satisfies (51).

Remark 2. Note that in the above Proposition, we do not assume that t > 0 is fixed.

Proof. We use Theorem 3 with �.t/ D t , �.t/ D tH� 1
2 , T D Œt0;1/, I D .�1; t �,

C.t; s/ D fu W f .t; s/u � �g, and A D f.t; x/ � Œt0;1/ � RC W xt�H�1=2 � cg.
Here t0, c and � are some positive constants. Then condition H1 is satisfied: (29)
holds true by the construction, (31) holds true thanks to (15), and (23)–(25) can be
proved using the same estimates as in the proof of Proposition 2 in Appendix I (we
omit the details).

Recall that f possesses the self-similarity property (38). Then

Mk.t; �/ D �k.t/tMk.�.t/�/; (52)

where

Mk.�/ WD @k

@�k
H.1; x; i�.1; x// D

( R �
�1 u.eu� � 1/N.du/; k D 1;R �
�1 ukeu�N.du/; k � 2:

Here N.du/ WD R 1
�1 Q�s.du/ds, and Q�s.du/ is the image measure of �.du/ under

the mapping u 7! f .s/u. The choice of � above can be made in such a way that
every segment .� � "; �/ has a positive measure N . Then it can be shown (e.g. [17,
Example 3.1]) that for any " > 0,

e�.��"/ 
 Mk.�/; Mk.�/ � �kN.f�g/e�� 
 e��; � ! C1: (53)

Moreover, applying the Laplace method, we get

Mk.�/ 
 �kM0.�/; � ! 1; (54)

where

M0.�/ D
Z �

�1

�
e�u � 1 � �u

	
N.du/:

Note that the solution 	.t; x/ to (33) satisfies

	.t; x/ D ��1.t/�.xt�H�1=2/; where �.x/ WD 	.1; x/: (55)

Since �.x/ is the solution to M1.�.x// D x, we have �.x/ ! 1 as x ! 1. Then
by (55) and the definition of A, we have �.t/	 ! 1 as t C 	 ! 1, .t; 	/ 2 B,
implying

M0.�.t/	/ > 0; as t C 	 ! 1, .t; 	/ 2 B:
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Therefore, by (52) and (54) we have H2:

M4.t; 	/

M2
2.t; 	/


 1

tM0.�.t/	/

 1; t C 	 ! 1; .t; 	/ 2 B:

Analogously, we have

��2.t/
M4.t; 	/

M2.t; 	/

 �2;

ln
��

ln
�
.1 _ ��1.t//M2.t; 	/

� 	 _ 1
	

� C.ln ln t C ln.�.t/	// 
 ln t C �.t/	;

as t C 	 ! 1, .t; 	/ 2 B, which provides H3.
To show H4, take b < 0 and " > 0 such that 0 < �.Œ�=f .b/;�"�/ < 1. Then

by (74) (see Appendix II) we have for jzj � R with some R large enough

�.t; z;RC/ � t

Z 0

�1

Z
fuW 0<f .s/u��g

.1 � cos.�.t/zuf .s///�.du/ds

� t0

Z b

�1

Z �"

�=f .b/

.1 � cos.�.t/zuf .s///�.du/ds

� ct0�.Œ�=f .b/;�"�/ ln.�.t/"jzj/:

Since we can choose in (74) c > 0 arbitrary large, condition H4 holds true. Finally,
estimate (72) (see Appendix II) provides H5: since�.R�/ > 0, there exists .a; b/ �
.�1; 0/, q > 0, such that 0 < �.Œq�=f .b/; �=f .b/�/ < 1 (note that f .b/ < 0),
and

inf
jzj�c

�.t; z; Œ�.t/q;1// � t inf
jzj�c

Z b

a

Z �=f .s/

q�=f .s/

.1 � cos.�.t/zuf .s///�.du/ds

� t inf
jzj�c

Z �=f .b/

q�=f .b/

..z�.t/u/2 ^ 1/�.du/

� c1t..�.t/c/
2 ^ 1/:

Thus, all conditions of Theorem 3 are satisfied, and therefore (37) holds true.
By (53),

lnM1.�/ 
 ��; � ! C1:
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Since �.x/ (cf. (55)) is the solution to M1.�.x// D x, this means that

�.x/ 
 ln x

�
; x ! C1:

Denote D.x/ WD H.1; x; i	.1; x//, then using (54) with k D 1; 2, we get from the
previous relation that

D.x/ 
 �x ln x

�
; M2.�.x// 
 �x; x ! C1: (56)

From (37) and (56), we deduce that for a given " > 0, there exists y."/ > 0 such
that (51) holds true.

3.4 Properties ofMt.dx/ and the Completion of the Proof

Lemma 1. For every t > 0, we have Mt.dx/ D mt.x/dx with mt defined by (47).

Proof. Let g be an arbitrary bounded measurable function. Using the scaling
property (38) of the kernel f .t; s/, we can rewrite (44) as

Z 1

�1
g.y/Mt.dy/ D

Z t

�1

Z
fyf .s=t/>�g

g.tH�1=2f .s=t/y/�.dy/ds

D t

Z 0

�1

Z
fy<��=f .s/g

gt .f .s/y/�.dy/ds

C t

Z 1

0

Z
fy>�=f .s/g

gt .f .s/y/�.dy/ds

DW I� C IC:

Here gt .y/ WD g.tH�1=2y/, and recall that the function f .s/ D f .1; s/ is monotone
on .�1; 0/ and .0; 1/, in particular, f is positive on .0; 1/ and negative on .�1; 0/.
Let us transform the integrals IC and I� separately.

Recall that the range of the restriction of f to .0; 1/ equals
h

1
� .HC1=2/ ;C1

	
.

Then, making the change of variables 
 D 1=f .s/, we get

IC D t

Z � .HC1=2/

0

�Z
fy>�
g

gt

�y



	
�.dy/

�
d



2f 0.f �1. 1


//

D t

Z C1

0

�Z
fy>�
g

gt

�y



	
�.dy/

�
`

�
1




�
d



2
:
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In the second identity we take into account that, according to (12), the function `

vanishes on
�
0; 1

� .HC1=2/
	

. Then the further change of variables r D y=
 and the

Fubini theorem give

IC D t

Z 1

�

gt .r/

�Z 1

0

1

y
`

�
r

y

�
�.dy/

�
dr:

Performing similar calculations, we get

I� D t

Z 1

�

gt .r/

�Z 0

�1
1

y
`

�
r

y

�
�.dy/

�
dr:

Adding the expressions for IC and I�, we get

Z 1

�1
g.y/Mt.dy/ D t

Z 1

�

g.tH�1=2r/m.r/dr

D
Z
�tH�1=2

g.y/
h
t 3=2�Hm.t1=2�Hy/

i
dy:

Let us summarize: we have (48) and (51); in addition, if m is sub-exponential,
we have (50) by Theorem 3.2 in [16]. In such a way, we obtain the proof of part
(i) of Theorem 2. The following lemma completes the proof of the statement (ii).

Lemma 2. If � satisfies (17), then

m.r/ 
 cH

�Z
R

juj2=.1�2H/�.du/

�
r�.3�2H/=.1�2H/; r ! 1; (57)

where the constant cH is defined in (19). In particular, m 2 Ld .

Proof. Write m D m� C mC, where

m�.r/ WD
Z 0

�1
1

y
`
� r
y

	
�.dy/; mC.r/ WD

Z C1

0

1

y
`
� r
y

	
�.dy/: (58)

On the positive half-axis, the function ` can be calculated explicitly:

`.y/ D cHy
�.3�2H/=.1�2H/1fy�1=� .HC1=2/g; (59)

where cH is given by (19). Then

mC.r/ D cH r
�.3�2H/=.1�2H/

Z r� .HC1=2/

0

y2=.1�2H/�.dy/
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 cH

�Z C1

0

y2=.1�2H/�.dy/
�
r�.3�2H/=.1�2H/; r ! C1:

Note that 2=.1 � 2H/ > 2 and � is a Lévy measure (i.e.
R

jyj�1 y
2�.dy/ < 1),

which together with (17) implies that
R C1
0

y2=.1�2H/�.dy/ < 1.
On the negative half-axis, one has

`.y/ 

(

�cH .�y/�.3�2H/=.1�2H/; y ! �1;

�OcH .�y/�.5�2H/=.3�2H/; y ! 0�; (60)

with OcH D 2
3�2H

�
1�2H

2� .HC1=2/
	2=.3�2H/

. Take arbitrary " > 0 and choose a", b" > 0

such that

�`.y/ � . OcH C "/.�y/�.5�2H/=.3�2H/; .�y/ 2 .0; a"/;

�`.y/ � .cH C "/.�y/�.3�2H/=.1�2H/; .�y/ > b":

Then

m�.r/ D
"Z �r=a"

�1
C
Z �r=b"

�r=a"
C
Z 0

�r=b"

#
1

y
`
� r
y

	
�.dy/

� . OcH C "/r�.5�2H/=.3�2H/
Z �r=a"

�1
.�y/2=.3�2H/�.dy/

C sup
y2Œ�b";�a"�

�
� `.y/

	 Z �r=b"

�r=a"

�
� 1
y

�
�.dy/

C .cH C "/r�.3�2H/=.1�2H/
Z 0

�r=b"
.�y/2=.1�2H/�.dy/

D I1.r/C I2.r/C I3.r/:

By condition (17), one has

Z �r=a"

�1
.�y/2=.3�2H/�.dy/ D

Z �r=a"

�1
.�y/2=.1�2H/.�y/�4=..1�2H/.3�2H//�.dy/

�
�a�
r

	4=..1�2H/.3�2H// Z �r=a"

�1
.�y/2=.1�2H/�.dy/

� c1r
�4=..1�2H/.3�2H//;
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which implies

r.3�2H/=.1�2H/I1.r/ ! 0; r ! 1:

Further, since by (17) we have

r2=.1�2H/�..�1;�r�/ �
Z �r

�1
.�y/2=.1�2H/�.dy/ ! 0; r ! 1;

then

r.3�2H/=.1�2H/I2.r/ � c2r
2=.1�2H/�

�� � 1;�r=b"
�	 ! 0; r ! C1:

Thus,

lim sup
r!C1

r.3�2H/=.1�2H/m�.r/ � .cH C "/

Z 0

�1
.�y/2=.1�2H/�.dy/:

The same argument provides the desired lower bound for lim infr!C1 with cH � "
instead of cH C ". Since " is arbitrary, these two estimates lead to the relation

m�.r/ 
 cH

�Z 0

�1
.�y/2=.1�2H/�.dy/

�
r�.3�2H/=.1�2H/; r ! C1;

which completes the proof.

4 Two Examples: The “Extremely Heavy-Tailed” Case

In this section we give two examples which illustrate the behaviour of pt .x/ when
condition (17) fails. In this case we say that the measure � is “extremely heavy-
tailed”.

Example 1. Denote by ��.x/ D �..�1;�x�/, �C.x/ D �.Œx;C1//, x > 0, the
“tails” of the Lévy measure �, and assume that �� and �C are regularly varying at
C1, that is, there exist ˛˙ 2 R and slowly varying functions L˙, such that

�˙.x/ D x�˛˙L˙.x/I

see, for example, [12, Chap. VIII, Sect. 8]. We investigate the behaviour of the
functions m� and mC introduced in the proof of Lemma 2.

We assume

˛˙ 2
� 2

3 � 2H ;
2

1 � 2H
	
: (61)
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Note that condition ˛˙ � 2=.3 � 2H/ is necessary for (5) to hold true, and if
˛˙ > 2=.1�2H/, then (17) holds true and the required behaviour of m� and mC is
already described in Lemma 2. In order to simplify the exposition, we exclude from
the consideration the critical values ˛˙ D 2=.3 � 2H/ and ˛˙ D 2=.1 � 2H/.

The asymptotic behaviour of mC can be obtained almost straightforwardly using
the standard result on the behaviour of the integrals w.r.t. the measures with regularly
varying tails; see [12, Chap. VIII, Sect. 9, Theorem 2]:

mC.r/ 

�
�C.r/
r

�Z C1

0

˚.z/ pC.z/ d z; r ! 1; with pC.z/ D ˛Cz�˛C�1:

(62)
The investigation of the behaviour of m� is slightly more complicated. However,
the argument here is quite standard, and therefore we just sketch it.

Write m� in the form

m�.r/ D r�1
Z 0

�1
˚
�y
r

	
�.dy/; ˚.x/ WD 1

x
`

�
1

x

�
:

It follows from (60) that there exists a constant C such that ˚.x/ � C.�x/2=.1�2H/
for .�x/ small enough and ˚.x/ � C.�x/2=.3�2H/ for .�x/ large enough. Then,
by [12, Chap. VIII, Sect. 9, Theorem 2], (see also Problem 30 in Sect. 10 of the
same Chapter), we have for A small enough and B large enough

Z �Br

�1
˚
�y
r

	
�.dy/ � Cr�2=.3�2H/

Z �Br

�1
.�y/2=.3�2H/�.dy/

� C1
H;˛�

B2=.3�2H/��.Br/;

Z 0

�Ar
˚
�y
r

	
�.dy/ � Cr�2=.1�2H/

Z 0

�Ar
.�y/2=.1�2H/�.dy/

� C2
H;˛�

A2=.1�2H/��.Ar/;

with some explicitly given constant C i
H;˛�

2 .0;1/, i D 1; 2. We have

lim sup
r!C1

A2=.1�2H/
��.Ar/
��.r/

D A2=.1�2H/�˛� lim sup
r!C1

L�.Ar/
L�.r/

D A2=.1�2H/�˛�

and, similarly,

lim sup
r!C1

B2=.3�2H/ ��.Br/
��.r/

D B2=.3�2H/�˛� :
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Then, by condition (61), for every " > 0, one can chooseA and B in such a way that

lim sup
r!C1

1

��.r/

�Z 0

�1
˚
�y
r

	
�.dy/ �

Z �Ar

�Br
˚
�y
r

	
�.dy/

�
� ": (63)

Further, the function ˚ is continuous and positive on Œ�B;�A�. Therefore, there
exists a piece-wise constant function ˚" such that

.1 � "/˚" � ˚ � .1C "/˚": (64)

Clearly, one has for every segment .a; b� � R�

�..ra; rb�/ 
 ��.r/
Z b

a

p�.z/ d z; r ! 1; with p�.z/ D ˛�.�z/�˛��1:

Therefore,

1

��.r/

Z �Ar

�Br
˚"

�y
r

	
�.dy/ !

Z �A

�B
˚".z/ p�.z/ d z; r ! C1:

Combined with (63) and (64), this gives

lim sup
r!C1

1

��.r/

Z 0

�1
˚
�y
r

	
�.dy/ � "C 1C "

1 � "
Z 0

�1
˚.z/ p�.z/ d z:

One can write in the same fashion the lower bound for lim infr!C1 (we omit the
calculation). Then, since " > 0 is arbitrary, we finally arrive at

m�.r/ 

�
��.r/
r

�Z 0

�1
˚.z/ p�.z/ d z; r ! 1:

This and (62) give that the function

m.r/
1
r

�
��.r/

Z 0

�1
˚.z/ p�.z/ d zC�C.r/

Z C1

0

˚.z/ pC.z/ d z

�
; r ! C1;

clearly belongs to the class Ld, and thus the statement (i) of Theorem 2 holds true.
Consider, for instance, the “˛-stable-like” case

��.r/ 
 C�r�˛; �C.r/ 
 CCr�˛; with ˛ 2
� 2

3 � 2H ;
2

1 � 2H
	
:

Then (16) and the above calculations give

pt .x/ 
 t 1�˛.1=2�H/x�˛�1
Z
R

˚.z/�˛;C�;CC
.d z/; x ! C1 (65)
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with

�˛;C�;CC
.d z/ D ˛jzj�˛�1�C�1R�

.z/C CC1RC
.z/
	
d z:

Note that the formal expression for �˛;C�;CC
coincides with that for the Lévy

measure of an ˛-stable distribution, although for ˛ 2 .2; 2=.1� 2H//, an “˛-stable
distribution” itself does not exist.

In contrast to (18), formula (65) contains explicitly the time parameter t .
In addition, the polynomial “shape” of the expression in the right-hand side of (65)
depends on ˛, i.e. on the “shape” of the tails of the Lévy measure �.

Example 2. When the Lévy measure � is “extremely heavy-tailed” in the sense
explained above, the function m may fail to belong to the class Ld at all. Consider
the measure

�.dx/ D ı�1.dx/C
X
k�0

2k�2k=.1�2H/ı2k .dy/:

Then �.R�/ > 0, (17) fails, whereas (5) is satisfied:

Z
R

jyj2=.3�2H/�.dy/D1CX
k�0

22k=.3�2H/2k�2k=.1�2H/D1CX
k�0

2
�k�

1C4H.2�H/
.3�2H/.1�2H/ < 1:

Using (59), we can write m.r/ explicitly:

m.r/ D �`.�r/C cH r
�.3�2H/=.1�2H/ X

kW 2k�r� .HC1=2/
2k; r � 0;

where cH is defined in (19). To shorten the notation, put c WD .� .H C 1=2//�1.
We have for rn WD 2nc and r 0

n WD .2n � 1/c, respectively,

m.rn/ D m.2nc/ D �`.�2nc/C cH .2
nc/�.3�2H/=.1�2H/

nX
kD0

2k

and

m.r 0
n/ D m..2n � 1/c/ D �`.�.2n � 1/c/C cH ..2

n � 1/c/�.3�2H/=.1�2H/
n�1X
kD0

2k:

Note that

`.�.2n � 1/c/ 
 `.�2nc/ 
 �cH .�2nc/�.3�2H/=.1�2H/ and
nX

kD0
2k 
 2nC1
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as n ! 1. Therefore,

lim
n!1

m..2n � 1/c/
m.2nc/

D 1

2
;

and m … Ld.

From these two examples one can see that in the “extremely heavy-tailed” case,
the asymptotic behaviour of the distribution density of ZH

t is more sensitive with
respect to the behaviour of the “tails” of the Lévy measure � than in the case
where the integrability condition (17) holds true. If these tails are regularly varying,
then (16) holds true with the right-hand side depending both on t and on the “shape”
of the “tails” of �. On the other hand, when the “tails” of � are both “heavy” and
“irregular”, the function m may fail to belong to the class Ld, which means that we
cannot apply Theorem 2 at all.

Appendix I: Existence of Integral (1)

Proposition 2. Let 0 < H < 1;H 6D 1=2. Then the integral (1) is well defined for
every t 2 R if, and only if, the Lévy measure � satisfies (5).

Proof. We consider the case 0 < H < 1=2; the calculations in the case
1=2 < H < 1 are analogous. We check the necessary and sufficient condition for
the existence of (1) formulated in [22, Theorem 2.7]. In our case these conditions
can be rewritten as

Z 1

�1
f 2.s/ds < 1; (66)

I1 WD
Z 1

�1

Z
R

�
1 ^ jf .s/xj2��.dx/ds < 1; (67)

and

I2 WD
Z 1

�1

ˇ̌
ˇ
Z
R

.
.f .s/x/ � f .s/
.x// �.dx/
ˇ̌
ˇds < 1; (68)

where


.x/ D
(
x; if jxj � 1;
x

jxj ; if jxj > 1; (69)

and f .s/ WD f .1; s/. Clearly, (66) is satisfied. We show that (a) (67) and (5) are
equivalent, and (b) (68) follows from (5).
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(a) Split

I1 D I11 C I12 C I13 C I14; (70)

where

I11 WD
Z �1

�1

Z
juf .s/j�1

: : : ; I12 WD
Z 1

�1

Z
juf .s/j�1

: : : ;

I13 WD
Z �1

�1

Z
juf .s/j>1

: : : ; I14 WD
Z 1

�1

Z
juf .s/j>1

: : : ;

and estimate the integrals I1i , i D 1; ::; 4, separately.

Since f .s/ 
 � 2H � 1
2� .H C 1=2/

jsjH�3=2 as s ! �1, f .s/ 


� 1

� .H C 1=2/
jsjH�1=2, as s ! 0�, and f .s/ D 1

� .H C 1=2/
.1 � s/H�1=2

for 0 � s < 1, to check the finiteness of I1, it is enough to substitute f .s/ in
the regions .�1;�1� and .�1; 0/ with, respectively, �jsjH�3=2 and �jsjH�1=2,
and to check the finiteness of the integrals QI11 WD R1

1

R
jxj�s3=2�H : : :, QI12 WDR 1

0

R
jxj�s1=2�H : : :, QI13 WD R1

1

R
jxj>s3=2�H : : :, and QI14 WD R 1

0

R
jxj>s1=2�H : : :.

We get:

QI11 D
Z 1

1

1

s3�2H

Z
jxj�s3=2�H

jxj2�.dx/ds

D
Z 1

1

1

s3�2H

Z
jxj�1

jxj2�.dx/dsC
Z 1

1

1

s3�2H

Z
1<jxj�s3=2�H

jxj2�.dx/ds

D 1

2 � 2H
�Z

jxj�1
jxj2�.dx/C

Z
jxj�1

jxj2=.3�2H/�.dx/
�

I

QI12 D
Z 1

0

s2H�1
Z

jxj�s1=2�H
jxj2�.dx/ds � 1

2H

Z
jxj�1

jxj2�.dx/I

QI13 D
Z 1

1

Z
jxj�s3=2�H

�.dx/ds D
Z

jxj�1
.jxj2=.3�2H/ � 1/�.dx/I

QI14 D
Z 1

0

Z
jxj�s1=2�H

�.dx/ds D
Z

jxj�1
jxj2=.1�2H/�.dx/C

Z
jxj�1

�.dx/:

Therefore, I < 1 if and only if (5) holds true.
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(b) Split I2 WD I21 C I22, where I21 WD R 1
�1

R
juf .s/j�1 : : : and I22 WDR 1

�1
R

juf .s/j�1 : : :. Observe that

Z
jxj�1=juj

.ux � u
.x//�.dx/ D
Z
1�jxj�1=juj

.ux � ux

jxj /�.dx/ � 2

Z
1�jxj�1=juj

juxj�.dx/:

Then

I21 � 2

Z �1

�1

Z
1�jxj�1=jf .s/j

jf .s/xj�.dx/ds: (71)

To estimate the right-hand side of (71) it is enough to estimate

QI21 W D
Z 1

1

Z
1�jxj�s3=2�H

jxj
s3=2�H

�.dx/dsD 2

1 � 2H
Z

jxj�1
jxj2=.3�2H/�.dx/:

Thus, (5) implies the finiteness of QI21, and, consequently, of (71).
To estimate I22 observe that

Z
jxj�1=juj

.
xu

jxuj � u
.x//�.dx/

D
Z

jxj�max.1=juj;1/
.
xu

jxuj�u
x

jxj /�.dx/C
Z
1=juj�jxj�1

.
xu

jxuj�ux/�.dx/:

Then

I22 � 2

 Z �1

�1

Z
jxj�1=jf .s/j

�.dx/ds C
Z 1

�1

Z
jxj�1

jf .s/j�.dx/ds

C
Z 1

�1

Z
1=jf .s/j�jxj�1

jf .s/j�.dx/ds
!

� C1

 Z 1

1

Z
jxj�s3=2�H

�.dx/ds C
Z 1

�1
jf .s/jds

Z
jxj�1

�.dx/

C
Z 1

0

Z
s1=2�H�jxj�1

sH�1=2�.dx/ds
!

�C2
�Z

jxj�1
jxj2=.3�2H/�.dx/C

Z
jxj�1

�.dx/C
Z

jxj�1
jxj.1C2H/=.1�2H/�.dx/

�
;

and the finiteness of the right-hand side is implied by (5).
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Appendix II: Existence of the Distribution Density

Proposition 3. Let 0 < H < 1;H 6D 1=2. Then, under (5) and our standing
assumption (6), the integral (1) possesses for any t 6D 0 the distribution density
pt 2 C1

b .R/.

Remark 3. In the non-Markov case H 6D 1=2, the kernel f .t; s/ provides a
strong “smoothifying” effect in the sense that the weakest possible non-degeneracy
assumption (6) is already sufficient for the integral (1) to possess a smooth
distribution density. We refer to [17], Sect. 3, for the detailed discussion of the
various forms of the “smoothifying” effect for Lévy-driven stochastic integrals with
deterministic kernels.

For the proof we use the following statement; see [17, Lemma 3.3].

Proposition 4. (a) For a positive function h.s/ having a continuous non-zero
derivative on some interval Œa; b� � R, one has

Z b

a

�
1 � cos.h.s/x/

�
ds � c.x2 ^ 1/: (72)

(b) For a positive convex on .�1; b/ � R function h.s/, satisfying

lim
s!�1 e��sh.s/ D C1 for all � > 0; (73)

one has
Z b

�1
.1 � cos.xh.s/// ds � c ln jxj (74)

for all c > 0 and jxj big enough.

Proof (Proof of Proposition 3). Recall (cf. (7)) that the characteristic function of
ZH
t is of the form �.t; z/ D e�.t;�z/. For a fixed t , the function h.s/ D �tH�1=2f .s/

satisfies (73) with b D 0. Since �.R/ > 0 (cf. (6)), there exists q > 0 such that

Q WD maxf�..�1;�q�/; �.Œq;1/g > 0:
Then using (74) for jzj large enough, we get

�Re�.t;�z/�t
Z 0

�1

Z
juj�q

.1� cos.tH�1=2f .s/uz//�.du/ds�tcQ ln jqtH�1=2zj:

Since c > 0 is arbitrary, the function jzjnj�.t; z/j D eRe�.t;�z/Cn ln jzj is integrable in
z for any n � 1. Therefore, the density pt is well defined and belongs to C1

b as the
inverse Fourier transform of �.t; z/:

pt .x/ D 1

2�

Z
R

e�izx�.t; z/d z: (75)
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Remark 4. Literally the same argument implies that if the truncation level � > 0 is
chosen small enough, then jzjnj�1.t; z/j D eRe�1.t;�z/Cn ln jzj is integrable in z for any
a > 0, t > 0; see (39). This implies the existence of Qpt .x/; see (42).
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Large Deviations for Random Evolutions
in the Scheme of Asymptotically Small Diffusion

Volodymyr S. Korolyuk and Igor V. Samoilenko

Abstract The theory of large deviations deals with the asymptotic estimations for
probabilities of rare events. The method, used in majority of classical works, is
based on the change of measure and application of the variational formula to the
cumulant of the process under study. Here the large deviations problem is considered
for random evolutions in the scheme of asymptotically small diffusion. The method
of asymptotic analysis for the exponential generator of the Markov process is
used. The limit exponential generators are calculated for random evolution with the
ergodic Markov switching (Sect. 3) and with the split-and-double merging switching
Markov process (Sect. 4). The method proposed here may have applications for the
finite dimensional models arising in the theory of random evolutions in Rd , queuing
theory, etc.

1 Introduction

The theory of large deviations had arisen in the work of H. Cramér [2] and
deals with the asymptotic estimations for probabilities of rare events. The main
problem in the large deviations theory is the construction of the rate functional to
estimate probabilities of rare events. The method, used in the majority of classical
works, is based on the change of measure and application of variational formula
to the cumulant of the process under study. Different aspects and applications of
this problem were investigated by many mathematicians. We discuss the Markov
processes with independent increments, so it is natural to refer a reader to the
fundamental works [3, 16] and [7].
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Another approach arises in works [8] and [1] and is applied to the large deviations
problem in [6]. It is based on the asymptotic analysis of the nonlinear Hamilton-
Jacobi equation corresponding to the process under study. Then, the solution of the
limit nonlinear Hamilton-Jacobi equation is given by the variational formula that
defines the rate functional of the prelimit process. The main problem here is to
prove the uniqueness of the solution of the limit nonlinear equation.

All the technical problems connected to the application of the last method to
different classes of Markov processes are solved in the monograph [5]. The main
idea of this monograph is the following.

Let 
.t/; t � 0 be a Markov process in Euclidean space R, defined by its
linear generator L. The function '.u/ 2 BR. Unlike the classical martingale
characterization of the Markov processes

�t D '.
.t// � '.
.0// �
Z t

0

L'.
.s//ds;

the large deviations theory is based on the exponential martingale characterization
(see [5, Chap. 1]). Namely,

Q�t D expf'.
.t// � '.
.0// �
Z t

0

H'.
.s//dsg

is a martingale.
The exponential (nonlinear) operator H is connected with the linear generator L

of the Markov process 
.t/; t � 0 in a following way:

H'.u/ D e�'.u/Le'.u/; e'.u/ 2 D.L/:

The large deviations problem may be formulated as a limit theorem in the scheme
of series with a small series parameter " ! 0." > 0/. Namely (compare with
[5, Chap. 1])

H"'" ! H'; '" ! '; " ! 0:

Here by definition

H"'.u/ WD e�'.u/=""L"e'.u/=":

The generator L"; " > 0 defines Markov process x".t/; t � 0; " > 0 in the
scheme of series under some scaling transform.

Example 1. The asymptotically small diffusion process is given by
p
"�w.t/; t � 0

with the standard Brownian motion process w.t/; t � 0. The generator of such a
process is the following:

L"'.u/ D "
1

2
B'00.u/; B D �2; '00.u/ WD @2'.u/=@u2:
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The exponential generator of the asymptotically small diffusion process may be
easily calculated:

H"'.u/ D 1

2
BŒ'0.u/�2 C "B'00.u/:

Hence, the limit exponential operator is represented as

H'.u/ D 1

2
BŒ'0.u/�2: (1)

Remark 1. The exponential operator (1) in Euclidean space Rd ; d � 2 is repre-
sented by the quadratic form

H'.u/ D 1

2

dX
k;rD1

Bkr'
0
k.u/'

0
r .u/; '0

k.u/ WD @'.u/=@uk;

B D ŒBkr I 1 � k; r � d� is the variance matrix of w.t/.
To simplify the notations, we present all the following results in R.

The aim of our investigation is the asymptotic analysis of the large deviations
problem for the random evolutions in the scheme of asymptotically small diffusion.

At the beginning (Sect. 2) the large deviations problem is considered for the
processes with locally independent increments under the scaling proposed by A.A.
Mogulskii [12]:


".t/ D "2
.t="3/; t � 0; " > 0: (2)

The generator of the Markov process (2) is given by

� "'.u/ D "�3
Z

R
Œ'.u C "2v/ � '.u/�� .u; dv/; u 2 R; '.u/ 2 BR: (3)

Usually we assume that the Lévy measure � .u; dv/ satisfies the condition

Z
R
eav� .u; dv/ < 1; a > 0; u 2 R: (4)

In the Sect. 3 the large deviations problem is considered for the random evolution
process with Markov switching [9, Chap. 2]. The scheme of asymptotically small
diffusion is considered under additional balance conditions (local and total).

The large deviations problem in the scheme of phase merging is investigated in
Sect. 4.
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2 Processes with Locally Independent Increments

In this section we consider the compound Poisson processes which is supposed to
be defined by the generator (3) under the condition (4) for simplicity.

The balance condition (local) formulates as

(B W b.u/ WD R
R v� .u; dv/ 	 0:

The main part of the asymptotic representation of the generator (3) on smooth
enough test functions is

� "'.u/ D "
1

2
B.u/'00.u/C "ı".u/'.u/;

where

B.u/ D
Z

R
v2� .u; dv/

and the negligible term converges uniformly by u on the functions '.u/ 2 C3.R/:

jı".u/'.u/j ! 0; " ! 0: (5)

The large deviations problem for the processes (2) may be solved using the limit
approximation of the exponential generator [5, Part 1]:

H"'.u/ D e�'.u/=""� "e'.u/=" D "�2
Z

R
Œe�

"' � 1�� .u; dv/;

�"' WD "�1Œ'.u C "2v/ � '.u/� D "v'0.u/C "ı"'.u/:

Hence, due to the (B condition,

H"'.u/ D "�2
Z

R
Œ"v'0.u/C "2

1

2
v2Œ'0.u/�2�� .u; dv/C ı".u/'.u/ D

D 1

2
B.u/Œ'0.u/�2 C ı".u/'.u/

with the negligible term (5).

Conclusion (comp. with [12]): The limit exponential operator for the processes
with locally independent increments in the scheme of asymptotically small diffusion
is given by

H'.u/ D 1

2
B.u/Œ'0.u/�2: (6)



Large Deviations for Random Evolutions 207

3 Random Evolutions in the Scheme of Ergodic Phase
Merging

In this section we investigate the random evolutions with locally independent
increments and switching, so we should note that random evolutions with switching
are also studied in Chap. 11 of [5] by the classical methods of averaging and
homogenization. This approach involves perturbed PDEs operators and perturbed
test functions and arises in the works [11, 13]. Recent monographs [14, 15] include
large bibliography on this problem. Application of this method for the nonlinear
case may also be found in the work [4]. This approach is important for the infinite
dimensional state space models like interacting particles or stochastic PDEs. But in
this case a lot of additional problems appear: correct description of the functional
space for the solutions, the domain of the infinitesimal operators, etc.

We use the generators of Markov processes with a locally compact vector state
space (see [9] for more details). This simplifies the analysis because the generators
are defined for all bounded measurable functions. We lose generality, but can present
obvious algorithms for verification of convergence conditions and calculation of the
limit generators. This approach is important for finite dimensional models arising in
the theory of random evolutions in Rd , queuing theory, etc.

The Markov random evolution process in the scheme of series with a small
series parameter " ! 0." > 0/ is considered as the stochastic additive functional
[9, Sect. 3.4.2]:

	".t/ D 	0 C
Z t

0


".dsI x.s="2//; t � 0 (7)

in the case of local balance condition or

	".t/ D 	0 C
Z t

0


".dsI x.s="3//; t � 0 (8)

in the case of total balance condition.
The family of the processes with locally independent increments 
".t I x/; t � 0;

x 2 E is determined by the generators

� ".x/'.u/ D "�3
Z

R
Œ'.u C "2v/ � '.u/�� .u; dvI x/; '.u/ 2 BR: (9)

The switching Markov process x.t/; t � 0 is given on the standard phase space
.E;E/ by the generator

Q'.x/ D q.x/

Z
E

P.x; dy/Œ'.y/ � '.x/�; '.u/ 2 BE: (10)

The random evolution process is considered as the two-component Markov
process 	".t/; x".t/ WD x.t="2/; t � 0; given by the generator [9, Sect. 5.3.2]

L"('.u; x/ D Œ"�2QC � ".x/�'.u; x/ (11)
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in the case of the local balance condition or as the two-component Markov process
	".t/; x".t/ WD x.t="3/; t � 0; given by the generator

L"T '.u; x/ D Œ"�3QC � ".x/�'.u; x/ (12)

in the case of the total balance condition.
The main assumption in the scheme of ergodic phase merging is the uniform

ergodicity of the switching Markov process x.t/.

EA: There exists the stationary distribution �.dx/ on .E;E/ which defines the
projector

˘'.x/ WD
Z
E

�.dx/'.x/; '.x/ 2 BE

on the null-space of the generator Q:

˘Q D Q˘ D 0:

The main assumption EA provides that the potential operator R0 exists:

QR0 D R0Q D ˘ � I:

So, the Poisson equation

Q'.x/ D  .x/; ˘ .x/ D 0

may be solved as follows:

'.x/ D R0 .x/; ˘'.x/ D 0:

The scheme of asymptotically small diffusion is considered under additional
balance condition (local or total):

(B: b.uI x/ WD R
R v� .u; dvI x/ 	 0:

TB: b.u/ WD R
E
�.dx/b.uI x/ 	 0:

Lemma 1 ([10]). The generator (11) of the random evolution (7) admits the
following asymptotic representation:

L"('.u; x/ D Œ"�2QC "B.x/�'.u; x/C ı".u; x/'.u/;

B.x/'.u/ D 1

2
B.uI x/'00.u/; B.uI x/ D

Z
R
v2� .u; dvI x/

under the local balance condition (B .
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The generator (12) of the random evolution (8) admits the following asymptotic
representation:

L"T '.u; x/ D Œ"�3QC "�1� .x/C "B.x/�'.u; x/C ı".u; x/'.u/;

under the total balance condition TB and the negligible terms converge uniformly
by u; x on the functions '.u/ 2 C3.R/:

jı".u; x/'.u/j ! 0:

The large deviations problem for the random evolutions in the scheme of ergodic
phase merging is solved by the exponential generators described in the following
theorem.

Theorem 1 ([10]). The exponential generators of the large deviations for the
random evolutions (7)–(12) are determined by the relations

H'.u/ D 1

2
B�.u/Œ'0.u/�2: (13)

The variation B�.u/ is determined by

B(.u/ D
Z
E

�.dx/B.uI x/; B.uI x/ D
Z

R
v2� .u; dv/ (14)

under the local balance condition (B , and by

BT .u/ D B(.u/C B0.u/; (15)

B0.u/ D
Z
E

�.dx/B0.uI x/; B0.uI x/ D 2b.uI x/R0b.uI x/;

under the total balance condition TB .

Remark 2. The exponential generators of the large deviations for the random evolu-
tions in the scheme of asymptotically small diffusion are determined exactly as the
exponential generator of the processes with independent increments (compare (2)–
(4), (6) with (7), (8), (13)–(15)).

The proof of the Theorem 1 is based on the following lemma:

Lemma 2 ([10]). The exponential generator on the perturbed test function admits
the following asymptotic representations:

(1) In the case of the local balance condition (B on the perturbed test function
'".u; x/ D '.u/C " lnŒ1C "'1.u; x/�,

H"'".u; x/ D Q'1 C QB.x/'.u/C ı".u; x/'.u/:
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Here the operator

QB.x/'.u/ D 1

2
B.uI x/Œ'0.u/�2:

(2) In the case of the total balance condition TB on the perturbed test function
'".u; x/ D '.u/C " lnŒ1C "'1.u; x/C "2'2.u; x/�:

H"'".u; x/ D "�1ŒQ'1C� .x/'.u/�CŒQ'2 � '1Q'1C QB.x/'.u/�Cı".u; x/'.u/:

In this case the operator

� .x/'.u/ WD b.uI x/'0.u/:

The negligible terms converge uniformly by u; x on the functions '.u/ 2
C3.R/:

jı".u; x/'.u/j ! 0; " ! 0:

4 Large Deviations in the Scheme of Split-and-Double
Merging [9, Sect. 5.7.2]

4.1 Split-and-Double Merging Scheme

We introduce the switching Markov process x".t/; t � 0 on the standard phase
(state) space .E;E/ in the series scheme with a small series parameter " ! 0; " > 0

on the split phase space

E D
N[
kD1

Ek; Ek \Ek0 D ;; k ¤ k0:

The Markov kernel is

Q".x;B; t/ D P ".x; B/Œ1 � e�q.x/t �; x 2 E; B 2 E; t � 0:

We also introduce the following assumptions:

ME1: The transition kernel of the embedded Markov chain x"n; n � 0 has the
following representation:

P ".x; B/ D P.x;B/C "P1.x; B/:
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The stochastic kernel P.x;B/ is coordinated with the split phase space as
follows:

P.x;Ek/ D 1k.x/ WD
�
1; x 2 Ek;
0; x … Ek:

The stochastic kernel P.x;B/ determines the support Markov chain
xn; n � 0 on the separate classes Ek; 1 � k � N . Moreover, the perturbing
signed kernel P1.x; B/ satisfies the conservative condition

P1.x;E/ D 0;

which is a direct consequence of P ".x;E/ D P.x;E/ D 1:

ME2: The associated Markov process x0.t/; t � 0; given by the generator

Q'.x/ D q.x/

Z
E

P.x; dy/Œ'.y/ � '.x/�

is uniformly ergodic in every class Ek; 1 � k � N; with the stationary
distributions �k.dx/; 1 � k � N; satisfying the relations:

�k.dx/q.x/ D qk�k.dx/; qk WD
Z
Ek

�k.dx/q.x/:

ME3: The average exit probabilities

Opk WD
Z
Ek

�k.dx/P1.x;EnEk/ > 0; 1 � k � N

are positive and

0 < q.x/ < C1:

The perturbing signed kernel P1.x; B/ defines the transition probabilities
between classes Ek; 1 � k � N: So, the relation P ".x; B/ D P.x;B/ C
"P1.x; B/ means that the embedded Markov chain x"n; n � 0 spends a long
time in every class Ek and jumps from one class to another with the small
probabilities "P1.x;EnEk/:
Under Assumptions ME1–ME3 the following weak convergence holds
[9, Chap. 5]:

v.x".t// ) Ox.t/; " ! 0; v.x/ D k 2 OE D f1; : : : ; N g; x 2 Ek:
The limit Markov process Ox.t/; t � 0 on the merged phase space OE D
f1; : : : ; N g is determined by the generating matrix

OQ1 D . Oqkr ; 1 � k; r � N/;
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where:

Oqkr D Oqk Opkr ; k ¤ r; Oqk D Opkqk; 1 � k � N:

Opkr D pkr= Opk; pkr D
Z
Ek

�k.dx/P1.x;Er/; 1 � k; r � N; k ¤ r;

Opk D �
Z
Ek

�k.dx/P1.x;Ek/:

ME4: The merged Markov process Ox.t/; t � 0 is ergodic, with the stationary
distribution O� D .�k; k 2 OE/:

Thus, the operator Q" may be presented as

Q" D QC "Q1; Q1.x/ D q.x/

Z
E

P1.x; dy/'.y/:

Let˘ be the projector onto the null-space of the reducible-invertible operatorQ
acting as follows on the test functions ':

˘'.x/ D
NX
kD1

O'k1k.x/; O'k WD
Z
Ek

�k.dx/'.x/:

The contracted operator OQ1 is defined by the relation

OQ1˘ D ˘Q1˘:

Let Ŏ be the projector onto the null-space of the reducible-invertible contracted
operator OQ1:

Ŏ O' WD
X
k2 OE

O�k O'k:

We define the potential matrix OR0 D Œ OR0kl I 1 � k; l � N� by the following relations:

OQ1
OR0 D OR0 OQ1 D Ŏ � I:

4.2 Large Deviations Under the Local Balance Condition �B

The random evolutions are studied under the condition

(B: b.uI x/ WD R
R v� .u; dvI x/ 	 0

with the following scaling:

	".t/ D "2	.t="3/; x"t WD x".t="3/: (16)
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The generator of the random evolution is given by

L"('.u; x/ D Œ"�3QC "�2Q1 C � ".x/�'.u; x/; (17)

� ".x/'.u/ D "�3
Z

R
Œ'.u C "2v/ � '.u/�� .u; dvI x/:

The generator (17) has the following asymptotic representation:

L"('.u; x/ D Œ"�3QC "�2Q1 C "B.x/�'.u; x/C "ı".u; x/'.u; x/:

Here

B.x/'.u/ D 1

2
B.uI x/'00.u/; B.uI x/ D

Z
R
v2� .u; dvI x/:

Theorem 2. The exponential generator of the large deviations for the random
evolutions (16) under the conditions ME1–ME4 and (B is determined by the
relation

H'.u/ D 1

2

OOB.u/Œ'0.u/�2;

OOB.u/ D
NX
kD1

O�k
Z
Ek

�k.dx/B.uI x/; B.uI x/ D
Z

R
v2� .u; dvI x/:

The proof follows from Lemma 3.

Lemma 3. The exponential generator on the perturbed test function

'".u; x/ D '.u/C " lnŒ1C "'1.u; x/C "2'2.u; x/�

admits the following asymptotic representation:

H"'".u; x/ D "�1Q'1 CQ'2 CQ1'1 � '1Q'1 C QB.x/'.u/C ı"H .u; x/'.u/;

and the negligible term converges uniformly by u; x on the functions '.u/ 2 C3.R/:

jı"H .u; x/'.u/j ! 0; " ! 0:

Here the operator

QB.x/'.u/ D 1

2
B.uI x/Œ'0.u/�2: (18)
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Proof. The proof of the lemma is based on the asymptotic analysis of the items

H"
Q'

".u; x/ D e�'.u/="Œ1C"'1C"2'2��1Œ"�2QC"�1Q1�Œ1C"'1C"2'2�e'.u/="

D e�'.u/="Œ1�"'1�Œ"�2QC"�1Q1�Œ1C"'1C"2'2�e'.u/="Cı".x/'.u/
D "�1Q'1 CQ'2 CQ1'1 � '1Q'1 C ı".x/'.u/

and

H"
� '

".u; x/ D e�'.u/="Œ1C "'1 C "2'2�
�1"� ".x/Œ1C "'1 C "2'2�e

'.u/="

D e�'.u/="Œ1 � "'1�"� ".x/Œ1C "'1 C "2'2�e
'.u/=" C ı".u; x/'.u/

D "�2
Z

R
Œe�

"
v'.u/ � 1�� .u; dvI x/C ı".u; x/'.u/:

Here

�"
v'.u/ D "�1Œ'.u C "2v/ � '.u/� D "v'0.u/C "3 O'00

v .u/;

and due to the (B condition, we obtain

"�2
Z

R
Œe�

"
v'.u/ � 1�� .u; dvI x/ D "�2

Z
R

�
"v'0.u/C 1

2
."v/2Œ'0.u/�2

�
� .u; dvI x/

C ı".u; x/'.u/ D QB.x/'.u/C ı".u; x/'.u/:

Thus,

H"
� '

".u; x/ D QB.x/'.u/C ı".u; x/'.u/

with the main term (18). ut
Proof of Theorem 2. To finish the proof of the theorem we should apply the solution
of the singular perturbation problem for the equations:

Q'1.u; x/ D 0

Q'2 CQ1'1 C QB.x/'.u/ D OOB'.u/:
It follows from the first equation that '1.u; x/ D '1.u; Ox/ 2 NQ; thus, from the

solvability condition for the second equation, we obtain a new relation

˘Q1˘'1 C˘ QB.x/˘'.u/ D OOB'.u/;
or

OQ1 O'1 C bQB.x/ O'.u/ D OOB'.u/:
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The solvability condition for the averaged equation gives finally

Ŏ bQB.x/ Ŏ O'.u/ D OOB'.u/:

Thus, the relation

H"'".u; x/ D H'.u/C ı"H .u; x/'.u/

finishes the proof of the theorem. ut

4.3 Large Deviations Under the Total Balance Condition TB

Under the total balance condition:

TB:
b.uI x/ D R

R v� .u; dvI x/ 6	 0;PN
kD1 O�k Obk.u/ D 0; Obk.u/ D R

Ek
�k.dx/b.uI x/; 1 � k � N

we use the following scaling for the random evolutions:

	".t/ D "2	.t="3/; x"t WD x".t="4/: (19)

The generator of the random evolution is given by

L"T '.u; x/ D Œ"�4QC "�3Q1 C � ".x/�'.u; x/; (20)

where

� ".x/'.u/ D "�3
Z

R
Œ'.u C "2v/ � '.u/�� .u; dvI x/:

The generator (20) has the following asymptotic representation:

L"T '.u; x/ D Œ"�4QC "�3Q1 C "�1� .x/C "B.x/�'.u; x/C "ı".u; x/'.u; x/:

Here

� .x/'.u/ WD b.uI x/'0.u/:

Theorem 3. The exponential generator of the large deviations for the random
evolutions defined by (19) under the conditions ME1–ME4 and TB is determined
by the relation

H'.u/ D 1

2

OOBT .u/Œ'0.u/�2; OOBT .u/ D OOB.u/C OOB0.u/:
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Here

OOB.u/ WD
NX
kD1

O�k
Z
Ek

�k.dx/B.uI x/; B.uI x/ D
Z

R
v2� .u; dvI x/;

OOB0.u/ WD Ŏ Ob.u; Ox/ OR0 Ob.u; Ox/ Ŏ D
NX

k;lD1
O�k Obk OR0kl Obl :

Remark 3. The limit exponential generator consists of two parts: the first one is
the averaged diffusion coefficient and the second one is defined by the merged
first moments of jumps, averaged with the potential of the limit merged Markov
switching process.

The proof is based on the following Lemma.

Lemma 4. The exponential generator on the perturbed test function

'".u; x/ D '.u/C " lnŒ1C "'1.u; x/C "2'2.u; x/C "3'3.u; x/�

admits the following asymptotic representation:

H"'".u; x/ D "�2Q'1 C "�1ŒQ'2 CQ1'1 � '1Q'1 C � .x/'.u/�

C ŒQ'3 CQ1'2 � '1Q'2 � '2Q'1 � '1Q1'1 C QB.x/'.u/�
C ı".u; x/'.u/;

and the negligible term converges uniformly by u; x on the functions '.u/ 2 C3.R/:

jı".u; x/'.u/j ! 0; " ! 0:

Here the operators

� .x/'.u/ WD b.uI x/'0.u/; QB.x/'.u/ WD 1

2
B.uI x/Œ'0.u/�2: (21)

Proof. The proof of lemma is based on the asymptotic analysis of the items

H"
Q'

".u; x/ D e�'.u/="Œ1C "'1 C "2'2 C "3'3�
�1Œ"�3QC "�2Q1�

� Œ1C "'1 C "2'2 C "3'3�e
'.u/="

D e�'.u/="Œ1 � "'1 � "2'2 C "2'21 � "3'3�
� Œ"�3QC "�2Q1�Œ1C "'1 C "2'2 C "3'3�e

'.u/=" C ı".x/'.u/
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D "�2Q'1 C "�1ŒQ'2 CQ1'1 � '1Q'1�
C ŒQ'3 CQ1'2 � '1Q'2 � �'2Q'1 C '21Q'1 � '1Q1'1�

C ı".x/'.u/

and

H"
� '

".u; x/ D e�'.u/="Œ1C "'1 C "2'2 C "3'3�
�1"� ".x/Œ1C "'1 C "2'2

C "3'3�e
'.u/="

D e�'.u/="Œ1 � "'1 � "2'2 C "2'21 �"�
".x/Œ1C "'1 C "2'2 C "3'3�e

'.u/="

C ı".u; x/'.u/

D "�2

Z
R
Œe�

"
v'.u/ � 1�� .u; dvI x/

C "2e�'.u/="Œ� ".x/'1e
'.u/=" � '1� ".x/e'.u/="�C ı"� .u; x/'.u/:

Here

�"
v'.u/ D "�1Œ'.u C "2v/ � '.u/� D "v'0.u/C "3 O'00

v .u/;

and due to the TB condition, we obtain

"�2
Z

R
Œe�

"
v'.u/ � 1�� .u; dvI x/ D "�2

Z
R

�
"v'0.u/C 1

2
."v/2Œ'0.u/�2

�
� .u; dvI x/

C ı".u; x/'.u/

D "�1� .x/'.u/C QB.x/'.u/C ı".u; x/'.u/:

Each of the terms in the square brackets is not negligible, for instance,

"2'1e
�'.u/="� ".x/e'.u/=" D "'1e

�'.u/=""� ".x/e'.u/=" D '1� .x/'.u/

Cı".u; x/'.u/:

But their difference is equal to 0 due to the relation

� ".x/e'.u/="'1 D "�3
Z

R
Œe'.uC"2v/="'1.u C "v; x/ � e'.u/="'1.u; x/�� .u; dvI x/

D '1.u; x/�
".x/e'.u/=" C o."2/:

Thus,

H"
� '

".u; x/ D "�1� .x/'.u/C QB.x/'.u/C ı".u; x/'.u/;

with the main terms (21). ut
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Proof of Theorem 3. To finish the proof of the theorem, we should apply the
solution of the singular perturbation problems for the equations

Q'1 D 0;

Q'2 CQ1'1 C b.uI x/'0.u/ D 0;

Q'3 CQ1'2 � '1Q'2 � '1Q1'1 C QB.x/'.u/ D OOB'.u/:

It follows from the first equation that '1.u; x/ D '1.u; Ox/ 2 NQ; thus, from the
solvability condition for the second equation

OQ'2 C OQ1 O'1 C Ob.uI Ox/'0.u/ D 0; OQ'2 D 0; (22)

we obtain a new relation:

OQ1 O'1 C Ob.u; Ox/'0.u/ D 0; Ŏ Ob.uI Ox/ 	 0;

from which we have

O'1.u; Ox/ D OR0 Ob.uI Ox/'0.u/; OQ1 O'1 D � Ob.u; Ox/'0.u/: (23)

Then, the solvability condition for the equation

Q'3 CQ1'2 � '1Q'2 � '1Q1'1 C QB.x/'.u/ D OOB'.u/

gives

OQ1 O'2 � O'1 OQ'2 � O'1 OQ1 O'1 C OQB.x/ O'.u/ D OOB'.u/;

but from (22)

OQ'2 D �Œ OQ1'1 C Ob.u; Ox/'0.u/� D 0;

and using the solution (23), we have

OQ1 O'2 C OBT .x/ O'.u/ D OOB'.u/:

Application of the solvability condition for this equation finishes the proof of the
theorem. ut
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Limit Theorems for Excursion Sets of Stationary
Random Fields

Evgeny Spodarev

Abstract We give an overview of the recent asymptotic results on the geometry
of excursion sets of stationary random fields. Namely, we cover a number of
limit theorems of central type for the volume of excursions of stationary (quasi-,
positively or negatively) associated random fields with stochastically continuous
realizations for a fixed excursion level. This class includes in particular Gaussian,
Poisson shot noise, certain infinitely divisible, ˛-stable, and max-stable random
fields satisfying some extra dependence conditions. Functional limit theorems (with
the excursion level being an argument of the limiting Gaussian process) are reviewed
as well. For stationary isotropic C1-smooth Gaussian random fields similar results
are available also for the surface area of the excursion set. Statistical tests of
Gaussianity of a random field which are of importance to real data analysis as well
as results for an increasing excursion level round up the paper.

1 Introduction

Geometric characteristics such as Minkowski functionals (or intrinsic volumes,
curvature measures, etc.) of excursions of random fields are widely used for data
analysis purposes in medicine (brain fMRI analysis; see, e.g., [5, 55, 60, 62]),
physics and cosmology (microwave background radiation analysis; see, e.g., [41]
and references therein), and materials science (quantification of porous media; see,
e.g., [42, 61]), to name just a few. Minkowski functionals include the volume, the
surface area, and the Euler–Poincaré characteristic (reflecting porosity) of a set with
a sufficiently regular boundary.
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Among the possible abundance of random field models, Gaussian random fields
are best studied due to their analytic tractability. A number of results starting with
explicit calculation of the moments of Minkowski functionals are available for
them since the mid-1970s. We briefly review these results in Sect. 4. However,
our attention is focused on the asymptotic arguments for (mainly non-Gaussian)
stationary random fields. There has been a recent breakthrough in this domain
starting with the paper [15] where a central limit theorem (CLT) for the volume
of excursions of a large class of quasi-associated random fields was proved. We also
cover a number of hard-to-find results from recent preprints and PhD theses.

The paper is organized as follows: After introducing some basic facts on
excursions and dependence structure of stationary random fields in Sect. 2, we
briefly review the limit theorems for excursions of stationary Gaussian processes
(d D 1) in the next section. However, our focus is on the recent results in the
multidimensional case d > 1 which is considered in Sects. 5 and 6. Thus, Sect. 5
gives (uni- and multivariate as well as functional) central limit theorems for the
volume of excursion sets of stationary (in general, non-Gaussian) random fields
over fixed, variable, or increasing excursion levels. In Sect. 6, a similar scope of
results is covered for the surface area of the boundary of excursion sets of stationary
(but possibly anisotropic) Gaussian random fields in different functional spaces. The
paper concludes with a number of open problems.

2 Preliminaries

Fix a probability space .˝;F;P/. Let X D fX.t; !/; t 2 R
d ; ! 2 ˝g be a

stationary (in the strict sense) real-valued measurable (in .t; !/ 2 R
d �˝) random

field. Later on we suppress ! in the notation. For integrable X we assume X to be
centered (i.e., EX.o/ D 0 where o 2 R

d is the origin point). If the second moment
of X.o/ exists, then we denote by C.t/ D E .X.o/X.t//, t 2 R

d the covariance
function of X .

Let k � k2 be the Euclidean norm in R
d and dist2 the Euclidean distance: for two

sets A;B � R
d , we put dist2.A;B/ D inffkx � yk2 W x 2 A; y 2 Bg. Denote by

k � k1 the supremum norm in R
d and by dist1 the corresponding distance function.

Let
d�! mean convergence in distribution. Denote by Ac the complement and by

int.A/ the interior of a set A in the corresponding ambient space which will be clear
from the context. Let card.A/ be the cardinality of a finite set A. Denote by Br.x/
the closed Euclidean ball with center in x 2 R

d and radius r > 0. Let Hk.�/ be
the k-dimensional Hausdorff measure in R

d , 0 � k � d . In the sequel, we use the
notation �j D Hj .B1.o//, j D 0; : : : ; d .

To state limit theorems, one has to specify the way of expansion of windows
Wn � T , where the random field X D fX.t/; t 2 T g is observed, to the whole
index space T D R

d or Zd . A sequence of compact Borel sets .Wn/n2N is called a
Van Hove sequence (VH) if Wn " R

d with
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lim
n!1Vd .Wn/ D 1 and lim

n!1
Vd .@Wn ˚ Br.o//

Vd .Wn/
D 0; r > 0:

A sequence of finite subsets Un � Z
d , n 2 N is called regular growing if

card.Un/ ! 1 and card.ıUn/=card.Un/ ! 0 as n ! 1

where ıUn D fj 2 Z
d n Un W dist1.j; Un/ D 1g is the discrete boundary of Un

in Z
d .

2.1 Excursion Sets and Their Intrinsic Volumes

The excursion set of X at level u 2 R in the compact observation window W � R
d

is given by Au.X;W / D ft 2 W W X.t/ � ug. The sojourn set under the level u is
Su.X;W / D ft 2 W W X.t/ � ug, respectively.

Due to measurability ofX , Au.X;W / and Su.X;W / are random Borel sets. IfX
is a.s. upper (lower) semicontinuous, then Au.X;W / (Su.X;W /, respectively) is a
random closed set (cf. [45, Sect. 5.2.1]).

A popular way to describe the geometry of excursion sets is via their intrinsic
volumes Vj , j D 0; : : : ; d . They can be introduced for various families of sets
such as convex and polyconvex sets [54, Chap. 4], sets of positive reach, and
their finite unions [22], unions of basic complexes [4, Chap. 6]. One possibility
to define Vj .K/, j D 0; : : : ; d for a set K belonging to the corresponding family
is given by the Steiner formula (see, e.g., [53, Sect. 13.3]) as the coefficients in the
polynomial expansion of the volume of the tubular neighborhood Kr D fx 2 R

d W
dist2.x;K/ � rg of K with respect to the radius r > 0 of this neighborhood:

Hd .Kr/ D
dX
jD0

�d�j Vj .K/rd�j

for admissible r > 0 (for convex K, these are all positive r). The geometric
interpretation of intrinsic volumes Vj .K/, j D 1; : : : ; d�2 can be given in terms of
integrals of elementary symmetric polynomials of principal curvatures for convex
setsK with C2-smooth boundary, cf. [53, Sects. 13.5–6]. Without going into details
here, let us discuss the meaning of some of Vj .Au.X;W //, j D 0; : : : ; d in several
dimensions.

For d D 1, V1 .Au.X;W // is the length of excursion intervals and
V0 .Au.X;W // is the number of upcrossings of level u by the random process
X within W .

For dimensions d � 2, Vd .Au.X;W // is always the volume (i.e., the
Lebesgue measure) of Au.X;W / and Vd�1 .Au.X;W // is half the surface area, i.e.,
1=2 � Hd�1 .@Au.X;W //. The Euler characteristic V0 .Au.X;W // is a topological
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measure of “porosity” of excursion set Au.X;W /. For “basic” sets A (e.g.,
nonempty convex sets or sets of positive reach), we set V0.A/ D 1. Then V0 is
defined for unions of basic sets by additivity. One can show that for d D 2, it holds

V0.A/ D cardfconnected components of Ag � cardfholes of Ag:

The existence of Vj .Au.X;W //, j D d; d�1, is clear sinceAu.X;W / is a Borel
set whose Lebesgue and Hausdorff measures are well defined. Intrinsic volumes
Vj of lower orders j D 0; : : : ; d � 2 are well defined, e.g., for excursion sets of
sufficiently smooth (at least C2) deterministic functions (cf. [4, Theorem 6.2.2])
and Gaussian random fields (cf. [4, Theorem 11.3.3]) satisfying some additional
conditions.

2.2 Dependence Concepts for Random Fields

To prove limit theorems for a random field X , some conditions have to be imposed
on the structure of the dependence ofX . Mixing conditions that are usually required
(cf., e.g., [13, 20]) are however rather difficult to check for a particular random
field under consideration. For this practical reason, we follow the books [16], [58,
Chap. 10] and introduce association as well as related dependence concepts.

A random field X D ˚
X.t/; t 2 R

d
�

is called associated (A) if

cov .f .XI / ; g .XI // � 0

for any finite subset I � R
d , and for any bounded coordinatewise non-decreasing

functions f W Rcard.I / ! R, g W Rcard.I / ! R where XI D fX.t/; t 2 I g.
A random field X D ˚

X.t/; t 2 R
d
�

is called positively (PA) or negatively
(NA) associated if

cov .f .XI / ; g .XJ // � 0 .� 0; resp./

for all finite disjoint subsets I; J � R
d , and for any bounded coordinatewise non-

decreasing functions f W Rcard.I / ! R, g W Rcard.J / ! R. It is clear that ifX 2 A,
then X 2 PA.

Subclasses of A (PA; NA)-fields are certain infinitely divisible (e.g., max-stable
and ˛-stable) random fields. In particular, a Gaussian random field with nonnegative
covariance function is associated.

A random field X D ˚
X.t/; t 2 R

d
�

with finite second moments is called quasi-
associated (QA) if

jcov .f .XI / ; g .XJ //j �
X
i2I

X
j2J

Lipi .f /Lipj .g/ jcov .X .i/ ; X .j //j
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for all finite disjoint subsets I; J � R
d , and for any Lipschitz functions f W

R
card.I / ! R, g W R

card.J / ! R where Lipi .f / is the Lipschitz constant of
function f for coordinate i . It is known that if square-integrable X 2 A.PA;NA/,
then X 2 QA, cf. [16, Theorem 5.3].

A real-valued random field X D fX .t/ ; t 2 R
d g is called .BL; �/-dependent if

there exists a nonincreasing sequence � D f�rgr2RC
0

, �r # 0 as r ! 1 such that for

any finite disjoint sets I; J � R
d with dist1 .I; J / D r 2 R

C
0 and any bounded

Lipschitz functions f W Rcard.I / ! R, g W Rcard.J / ! R, one has

jcov .f .XI / ; g .XJ //j �
X
i2I

X
j2J

Lipi .f /Lipj .g/ jcov .X .i/ ; X .j //j �r :

It is often possible to choose � as the Cox–Grimmett coefficient

�r D sup
y2Rd

Z
Rd nB1

r .y/

jcov .X .y/ ;X .t//j dt

where B1
r .y/ D fx 2 R

d W kx � yk1 � rg. It can be easily seen that if X 2
QA and its covariance function is absolutely integrable on R

d , then X is .BL; �/
dependent.

3 Excursions of Stationary Gaussian Processes

Excursions of stochastic processes is a popular research topic in probability theory
since many years; see, e.g., [10] and references in [27]. The vast literature on
this subject for different classes of processes such as Lévy, diffusion, stable, and
Gaussian ones can be hardly covered by one review. For this reason, we concentrate
on the excursions of (mainly stationary) Gaussian processes here.

Let X D fX.t/; t � 0g be a centered real-valued Gaussian process. If X is
a polynomial of degree n with iid N.0; 1/-distributed coefficients, then the mean
number of real roots of the equation X.t/ D 0 was first obtained by M. Kac
[28]. It initiated a substantial amount of papers on the roots of random algebraic
polynomials; see [12] for a review. For C1-smooth stationary Gaussian processes
X , expectation of the number of upcrossings of a level u by X in time interval Œ0; 1�
has been studied in [14, 50, 51], etc. Higher-order factorial moments are considered
in [17]; see also references therein and [7, 8]. For reviews (also including results on
non-Gaussian stationary processes), see [33, Sects. 7.2 and 7.3] and [6, Chap. 3].
In [1] and [2], the notion of the number of upcrossings of level u for random
processes has been generalized to the Euler–Poincaré characteristic of excursion
sets of random fields.

The first proof of a central limit theorem for the number of zeros of a stationary
Gaussian process within an increasing time interval was given in [40]. Cuzick
[18] refined the assumptions given in [40] and proved a central limit theorem
for the number of zeros NX.T / D 2V0.A0.X I Œ0; T �// of a centered separable
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stationary Gaussian process X D fX.t/; t � 0g in the time interval Œ0; T �
as well as analogous results for integrals

R T
0
g
�
X.t/

�
dt as T ! 1. He used

approximations by m-dependent random processes with spectral representation as
a method borrowed from [40]. In more detail, let C.t/ be twice differentiable
with C.0/ D 1, C 00.0/ D ��2, and variogram � of X 0 be given by �.h/ D
C 00.h/ � C 00.0/ D 1=2E.X 0.h/ �X 0.0//, h � 0.

Theorem 1 ([18]). If C , C 00 are square integrable on RC,
R "
0
�.t/=t dt < 1 for

some " > 0 and

VarNX.T /=T ! �2 > 0 as T ! C1 (1)

then

T �1=2 .NX.T / � ENX.T //
d�! N.0; �2/ as T ! C1

where

�2 D ��1
0
@�1=22 C

1Z

0

 
E .jX 0.0/X 0.t/jjX.0/ D X.t/ D 0/p

1�C2.t/
�.E jX 0.0/j/2

!
dt

1
A :

Condition (1) is difficult to check and is substituted in [18, Lemma 5] by a more
tractable sufficient condition involving C and �2. Piterbarg [48] managed to prove
the above theorem by substituting condition (1) with

1Z

0

t
�jC.t/j C jC 0.t/j C jC 00.t/j� dt < 1:

He approximates the point process of upcrossings of X of level u by a strongly
mixing point process.

Theorem 2 ([18]). Let X be a stationary Gaussian process with covariance func-
tion C being integrable on RC. For any measurable function g W R ! R such that
Eg2.X.0// < 1 and g.x/ � g.0/ is not odd, it holds

T �1=2
�Z T

0

g
�
X.t/

�
dt � TEg

�
X.0/

�� d�! N.0; �2/ as T ! C1 (2)

where �2 > 0.

It is clear that the choice g.x/ D 1fx 2 R W x � ug for any u 2 R leads to the
central limit theorem for the length V1.Au.X I Œ0; T �// of excursion intervals of X
in Œ0; T �.
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Elizarov [21] first proved a functional central limit theorem for the sojourn
times of the stationary Gaussian process under the level u, in our terms, for
V1.Su.X I Œ0; T �// if excursion level u is allowed to vary within R. Additionally,
an analogous result for local times

lim
"!C0

1

2"
.V1.SuC".X I Œ0; T �// � V1.Su�".X I Œ0; T �///

was given. Both results were proved in the functional space C Œ0; 1� after the
substitution u 7! f .x/, x 2 Œ0; 1� where f 2 C Œ0; 1� is a monotonously increasing
function with f .0/ D �1, f .1/ D 1.

Belyaev and Nosko [9] proved limit theorems for V1.Au.X I Œ0; T �//, T ! 1
as u ! 1 for stationary ergodic processes X satisfying a number of additional
(quite technical) assumptions. In particular, these assumptions are satisfied if X
is an ergodic Gaussian stationary process with twice continuously differentiable
covariance function such that

ˇ̌
C 00.t/ � C 00.0/

ˇ̌ � a=j log jt jj1C"; t # 0

for some constants a; " > 0.
Slud [57] gave a multiple Wiener- Itô representation for the number of crossings

of a C1-function  by X . In [31], methods of [40] and [18] are generalized to the
case of functionals ofX ,X 0, andX 00. CLTs for the number of crossings of a smooth
curve  by a Gaussian process X as well as for the number of specular points of
X (if X is a Gaussian process in time and space) are given in [32]. For a review
of results on moments and limit theorems for different characteristics of stationary
Gaussian processes, see [30]. In [27], CLTs for the multivariate nonlinear weighted
functionals (similar to those in (2)) of Gaussian stationary processes with multiple
singularities in their spectra, having a covariance function belonging to a certain
parametric family, are proved.

4 Moments of Vj .Au.X;W // for Gaussian Random Fields

We briefly review the state of the art for EVj .Au.X;W // of Gaussian random fields
X . For recent extended surveys, see the books [4] and [6]. For stationary (isotropic)
Gaussian fields X , stratified C2-smooth compact manifolds W � R

d , and any u 2
R, formulae for EVj .Au.X;W //, j D 0; : : : ; d are given in [4, Theorems 13.2.1
and 13.4.1].

Apart from obtaining exact (or asymptotic as u ! 1) formulae for
EVj .Au.X;W //, j D 0; : : : ; d , the possibility of an estimate

ˇ̌
ˇ̌P
�

sup
t2W

X.t/ > u

�
� EV0 .Au.X;W //

ˇ̌
ˇ̌ � g.u/ (3)
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(the so-called Euler–Poincaré heuristic) with g.u/ D o.1/ as u ! 1 is of special
interest. It has been proved in [4, Theorem 14.3.3] with g.u/ D c0 expf�u2.1 C
˛/=2g for some positive constants c0 and ˛ if X is a (non)stationary Gaussian
random field with constant variance on a stratified manifold W as u ! 1. Lower
and upper bounds for the density of supremum of stationary Gaussian random fields
X (which imply relation (3)) for any u 2 R are given in [6, Theorem 8.4]. Similar
bounds are proven in [6, Theorem 8.10] for nonstationary Gaussian random fields
X with a unique point of maximum of variance in int.W / as u ! 1.

In [59], asymptotic behavior of EVj
�
Au.X; Œa; b�

d /
�
, j D 0; d � 1; d of

nonstationary sufficiently smooth Gaussian random fields is studied as the excursion
level u ! 1. The variance of these fields is assumed to attain a global maximum
at a vertex of Œa; b�d . It is shown that the heuristic (3) still holds true.

An interesting rather general formula for the mean surface area of Gaussian
excursions is proven in [24]. Let W be a compact subset of Rd with a nonempty
interior and a finite Hausdorff measure of the boundary. LetX D fX.t/; t 2 W g be
a Gaussian random field with mean �.t/ D EX.t/ and variance �2.t/ D VarX.t/.
For an arbitrary (but fixed) excursion level u 2 R, introduce the zero set r�1

X .0/

of the gradient of the normalized field .X � u/=� by r�1
X .0/ D ft 2 W W

r ..X.t/ � u/=�.t// D 0g:
Theorem 3 ([24]). Assume that X 2 C1.W / a.s., EVd�1

�r�1
X .0/

�
< 1 and

�.t/ > 0 for all t 2 W . Then

EVd�1 .@Au.X;W // D 1

2
p
2�

Z
W

exp

"
� .�.t/ � u/2

2�2.t/

#
E

����r ..X.t/ � u/=�.t//

����
2

dt:

Asymptotic formulae for EVj .Au.X;W //, j D 0; : : : ; d as u ! 1 of
three subclasses of stable random fields (subgaussian, harmonizable, concatenated-
harmonizable ones) are given in [3].

5 Volume of Excursion Sets of Stationary Random Fields

The first limit theorems of central type for the volume of excursion sets (over a
fixed level u) of stationary isotropic Gaussian random fields were proved in [26,
Chap. 2]. There, the case of short- and long-range dependence (Theorem 2.2.4 and
Example 2.2.1, Theorem 2.4.6) was considered. The CLT followed from a general
Berry–Esséen-type bound for the distribution function of properly normed integral
functionals

Z
Br .o/

G
�
X.t/

�
dt (4)



Limit Theorems for Excursion Sets of Random Fields 229

as r ! 1 where G W R ! R is a function such that EG2.X.o// < 1 satisfying
some additional assumptions, cf. also [36]. To get the volume Vd .Au .X;Br.o///

out of (4), set G.x/ D 1.x � u/. The isotropy of X was essential as one used
expansions with respect to the basis of Chebyshev–Hermite polynomials in the
proofs. The cases of

G.x/ D 1.jxj � u/; maxf0; xg; jxj

as well as of G depending on a parameter and of weighted integrals in (4) are
considered as well.

In a remark [26, p. 81], it was noticed that similar CLTs can be expected for
non-Gaussian mixing random fields. The aim of this section is to review the recent
advances in proving such CLTs for various classes of stationary random fields that
include also the (not necessarily isotropic) Gaussian case.

For instance, random fields with singularities of their spectral densities are
considered in [37]. In Sect. 3.2 of that book, noncentral limit theorems for the
volume of excursions of stationary isotropic Gamma-correlated and �2-random
fields over a radial surface (i.e., the level u is not constant anymore, but a function of
ktk2, where t 2 R

d is the integration variable in (4)) are proved. (Non)central limit
theorems for functionals (4) of stationary isotropic vector-valued Gaussian random
fields are given in the recent preprint [34]. There, the case of long- and short-range
dependence is considered as well as applications to F - and t -distributed random
fields.

The asymptotic behavior of tail probabilities

P
�Z

W

eX.t/ dt > x

�
; x ! 1

for a homogeneous smooth Gaussian random field X on a compact W � R
d is

considered in [38]; see [39] for further extensions.

5.1 Limit Theorems for a Fixed Excursion Level

The main result (which we call a methatheorem) can be formulated as follows:

Theorem 4 (Methatheorem). Let X be a strictly stationary random field satis-
fying some additional conditions and u 2 R fixed. Then, for any sequence of
VH -growing sets Wn � R

d , one has

Vd .Au .X;Wn// � P.X.o/ � u/ � Vd .Wn/p
Vd .Wn/

d�! N
�
0; �2.u/

�
(5)

as n ! 1. Here
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�2.u/ D
Z
Rd

cov .1fX .o/ � ug; 1fX .t/ � ug/ dt: (6)

Depending on the class of random fields, these additional conditions will vary. First
we consider the family of square-integrable random fields.

5.1.1 Quasi-Associated Random Fields

Theorem 5 ([15]). Let X D fX .t/ ; t 2 R
d g 2 QA be a stationary square-

integrable random field with a continuous covariance function C such that jC.t/j D
O
�ktk�˛

2

�
for some ˛ > 3d as ktk2 ! 1. Let X.o/ have a bounded density. Then

�2.u/ 2 .0;1/ and Theorem 4 hold true.

Let us give an idea of the proof. Introduce the random field Z D fZ.j /; j 2
Z
d g by

Z.j / D
Z
jCŒ0;1�d

1
˚
X.t/ � u

�
dt � �.u/; j 2 Z

d : (7)

Here �.u/ D P
�
X.o/ > u

�
is the tail distribution function of X.o/. It is clear that

the sum of Z.j / over indices j 2 Wn \ Z
d approximates the numerator in (5).

One has to show that Z can be approximated by a sequence of .BL; �/-dependent
stationary centered square-integrable random fields Z� , � # 0, on Z

d . The proof
finishes by applying the following CLT to Z� for each � > 0.

Theorem 6 ([16], Theorem 3.1.12). Let Z D fZ.j /; j 2 Z
d g be a .BL; �/-

dependent strictly stationary centered square-integrable random field. Then, for any
sequence of regularly growing sets Un � Z

d , one has

S .Un/ =
p

card .Un/
d�! N

�
0; �2

�

as n ! 1, with

�2 D
X
j2Zd

cov .Z .o/ ;Z .j // :

We give two examples of random fields satisfying Theorem 5.

Example 1 ([15]). Let X D fX.t/; t 2 R
d g be a stationary shot noise random

field given by X.t/ D P
i2N 	i'.t � xi / where ˘� D fxig is a homogeneous

Poisson point process in R
d with intensity � 2 .0;1/ and f	ig is a family of

i.i.d. nonnegative random variables with E 	2i < 1 and characteristic function
'	 . Assume that ˘� and f	ig are independent. Moreover, let ' W R

d ! RC
be a bounded and uniformly continuous Borel function with '.t/ � g0.ktk2/ D
O
�ktk�˛

2

�
as ktk2 ! 1 for a function g0 W RC ! RC, ˛ > 3d , and
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Z

Rd

ˇ̌
ˇ̌ exp

�
�

Z
Rd

�
'	.s'.t// � 1� dt


 ˇ̌
ˇ̌ ds < 1:

Then Theorem 5 holds true.

Example 2 ([15]). Consider a stationary Gaussian random field X D fX .t/ ; t 2
R
d g with a continuous covariance function C.�/ such that jC.t/j D O

�ktk�˛
2

�
for

some ˛ > d as ktk2 ! 1. Let X .o/ 
 N
�
a; 
2

�
. Then, Theorem 5 holds true

with

�2.u/ D 1

2�

Z
Rd

Z �.t/

0

1p
1 � s2 e

� .u�a/2


2.1Cs/ ds dt;

where �.t/ D corr.X.o/;X.t//: In particular, for u D a one has

�2.a/ D 1

2�

Z
Rd

arcsin .�.t// dt:

5.1.2 PA- or NA-Random Fields

What happens if the field X does not have the finite second moment? In this case,
another set of conditions for our methatheorem to hold was proven in [29, Theorem
3.59].

Theorem 7. Let X D fX.t/; t 2 R
d g 2 PA.NA/ be stochastically continuous

satisfying the following properties:

1. The asymptotic variance �2.u/ 2 .0;1/ (cf. its definition in (6)),
2. P .X.o/ D u/ D 0 for the chosen level u 2 R.

Then Theorem 4 holds.

The idea of the proof is first to show that the random field Z D fZ.j /; j 2 Z
d g

defined in (7) is PA (NA). Second, use [16, Theorem 1.5.17] to prove that Z is
.BL; �/–dependent. Then apply Theorem 6 to Z.

A number of important classes of random fields satisfy Theorem 7. For instance,
stationary infinitely divisible random fields X D fX.t/; t 2 R

d g with spectral
representation

X.t/ D
Z
E

ft .x/(.dx/; t 2 R
d ;

where ( is a centered independently scattered infinitely divisible random measure
on space E and ft W E ! RC are (-integrable kernels, are associated, and
hence PA by [16, Chap. 1, Theorem 3.27]. The finite susceptibility condition
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�2.u/ 2 .0;1/ can be verified by [29, Lemma 3.71]. Further examples of random
fields satisfying Theorem 7 are stable random fields which we consider in more
detail following [29, Sect. 3.5.3].

Max-Stable Random Fields

Let X D ˚
X.t/; t 2 R

d
�

be a stationary max-stable random field with spectral
representation

X.t/ D max
i2N 	ift .yi /; t 2 R

d ;

where ft W E ! RC is a measurable function defined on the measurable space
.E;�/ for all t 2 R

d with

Z
E

ft .y/�.dy/ D 1; t 2 R
d ;

and f.	i ; yi /gi2N is the Poisson point process on .0;1/�E with intensity measure
	�2d	 � �.dy/. It is known that all max-stable distributions are associated and
hence PA by [49, Proposition 5.5.29]. The field X is stochastically continuous if
kfs � ftkL1 ! 0 as s ! t (cf. [23, Lemma 2]). Condition �2.u/ 2 .0;1/ is
satisfied if

Z
Rd

Z
E

minff0.y/; ft .y/g�.dy/ dt < 1:

˛-Stable Random Fields

Let X D ˚
X.t/; t 2 R

d
�

be a stationary ˛-stable random field (˛ 2 .0; 2/, for
simplicity ˛ ¤ 1) with spectral representation

X.t/ D
Z
E

ft .x/(.dx/; t 2 R
d ;

where ( is a centered independently scattered ˛-stable random measure on space
E with control measure m and skewness intensity ˇ W E ! Œ�1; 1�, ft W E ! RC
is a measurable function on .E;m/ for all t 2 R

d . By [52, Proposition 3.5.1], X
is stochastically continuous if

R
E

jfs.x/ � ft .x/j˛ m.dx/ ! 0 as s ! t for any
t 2 R

d . Condition �2.u/ 2 .0;1/ is satisfied if

Z
Rd

�Z
E

minfjf0.x/j˛; jft .x/j˛gm.dx/
�1=.1C˛/

dt < 1:
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5.2 A Multivariate Central Limit Theorem

If a finite number of excursion levels uk 2 R, k D 1; : : : ; r is considered
simultaneously, a multivariate analogue of Theorem 4 can be proven. Introduce the
notation

Su.Wn/ D �
Vd
�
Au1 .X;Wn/

�
; : : : ; Vd

�
Aur .X;Wn/

��>
; �.u/ D .�.u1/; : : : ; �.ur //

> :

Theorem 8 ([15,29]). LetX be the above random field satisfying Theorem 4. Then,
for any sequence of VH -growing sets Wn � R

d , one has

Vd .Wn/
�1=2 .Su.Wn/ � �.u/ Vd .Wn//

d! N.0;˙.u//

as n ! 1. Here, ˙.u/ D .�lm.u//rl;mD1 with

�lm.u/ D
Z
Rd

cov .1fX .0/ � ulg; 1fX .t/ � umg/ dt:

If X is Gaussian as in Example 2, we have

�lm.u/

D 1

2�

Z
Rd

Z �.t/

0

1p
1� s2

exp

�
� .ul � a/2 � 2r.ul � a/.um � a/C .um � a/2

2
2.1� s2/



ds dt:

However, the explicit computation of the elements of matrix ˙ for the majority
of fields X (except for Gaussianity) seems to be a very complex task. In order to
overcome this difficulty in statistical applications of the methatheorem to testing,
the matrix ˙ can be (weakly) consistently estimated from one observation of a
stationary random field X ; see [47], [58, Sect. 9.8.3] and references therein.

Statistical Version of the CLT and Tests

Let X be a random field satisfying Theorem 4, uk 2 R, k D 1; : : : ; r , and .Wn/n2N
be a sequence of VH -growing sets. Let OCn D . Ocnlm/rl;mD1 be a weakly consistent
estimator for the nondegenerate asymptotic covariance matrix ˙.u/, i.e., for any
l; m D 1; : : : ; r

Ocnlm P! �lm.u/ as n ! 1:
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Then

OC�1=2
n Vd .Wn/

�1=2 .Su.Wn/ � �.u/ Vd .Wn//
d! N.0; I /: (8)

Based on the latter relation, an asymptotic test for the following hypotheses can be
constructed:
H0 W X is a random field satisfying Theorem 4 with tail distribution function �.�/
vs. H1 W negation of H0. As a test statistic, we use

Tn D Vd .Wn/
�1 .Su.Wn/ � �.u/ Vd .Wn//

> OC�1
n .Su.Wn/ � �.u/ Vd .Wn//

which is asymptotically �2r distributed by continuous mapping theorem and relation

(8): Tn
d�! �2r as n ! 1. Hence, reject the null hypothesis at a confidence level

1 � � if Tn > �2r;1�� where �2r;1�� is the .1 � �/-quantile of �2r -law.

5.3 Functional Limit Theorems

A natural generalization of multivariate CLTs is a functional CLT where the
excursion level u 2 R is treated as a variable, which also appears as a (“time”) index
in the limiting Gaussian process. In order to state the main results, introduce the
Skorokhod spaceD.R/ of càdlàg functions on R endowed with the usual Skorokhod
topology, cf. [11, Sect. 12]. Denote by ) the weak convergence in D.R/.

Define the stochastic processes Yn D fYn.u/; u 2 Rg by

Yn.u/ D 1

nd=2

�
Vd
�
Au.X; Œ0; n�

d /
� � nd�.u/� ; u 2 R: (9)

Introduce the following condition:

.?/ For any subset T D ft1; : : : ; tkg � R
d and its partition T D T1[T2, there exist

some constants c.T /; � > 0 such that

cov

0
@Y
ti2T1

�a;b
�
X.ti /

�
;
Y
tj2T2

�a;b
�
X.tj /

�
1
A � c.T / .1Cdist1.T1; T2//�.3dC�/ ;

where �a;b.x/ D 1.a < x � b/ � P.a < X.o/ � b/ for any real numbers
a < b.

The following functional CLT is proven in [43, Theorem 1 and Lemma 1].

Theorem 9. Let X D fX.t/; t 2 R
d g be a real-valued stationary random field

with a.s. continuous sample paths and a bounded density of the distribution ofX.o/.
Let condition .?/ and Theorem 4 be satisfied. Then Yn ) Y as n ! 1 where
Y D fY.u/; u 2 Rg is a centered Gaussian stochastic process with covariance
function
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CY .u; v/ D
Z
Rd

cov .1fX .0/ � ug; 1fX .t/ � vg/ dt; u; v 2 R:

In particular, condition .?/ is satisfied ifX 2 A is square integrable with covariance
function C that admits a bound

jC.t/j � � .1C ktk1/��

for all t 2 R
d and some � > 0, � > 9d . The proofs are quite technical involving a

Móricz bound for the moment of a supremum of (absolute values of) partial sums
of random fields on Z

d , cf. [46, Theorem 2].
For max-stable random fields introduced in Sect. 5.1.2, condition .?/ is satisfied

if for any T D ft1; : : : ; tkg � R
d and its partition T D T1 [ T2, there exist some

constants c.T /; � > 0 such that
Z
E

min

�
max
ti2T1

fti .y/;max
tj2T2

ftj .y/



�.dy/ � c.T / .1C dist1.T1; T2//�.3dC�/ :

(10)

For ˛-stable moving averages, i.e., ˛-stable random fields from Sect. 5.1.2 with
ft .�/ D f .t � �/ for any t 2 R

d , condition (10) should be replaced by

�Z
Rd

min

�
max
ti2T1

f .ti � y/;max
tj2T2

f .tj � y/

 ˛

m.dy/

�1=.1C˛/

� c.T / .1C dist1.T1; T2//�.3dC�/ :

These results are proven (under slightly more general assumptions) in [29, Sect.
3.5.5] together with analogous conditions for infinitely divisible random fields (that
are too lengthy to give them in a review paper) as well as examples of random fields
satisfying them.

Theorem 9 together with the continuous mapping theorem can be used to test
hypotheses of Sect. 5.2 with test statistic

Tn D supu2R Yn.u/p
EY 2n .0/

if a large deviation result for the limiting Gaussian process Y is available, cf. [43,
Corollary 1].

5.4 Limit Theorem for an Increasing Excursion Level

If the level u ! 1, one may also expect that a CLT for the volume of the
corresponding excursion set holds, provided that a particular rate of convergence
of r to infinity is chosen in accordance with the expansion rate of the observation
window.
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First, results of this type were proven in [26, Theorems 2.7.1, 2.7.2, 2.8.1] for
stationary isotropic Gaussian random fields with short- or long-range dependence.
A generalization to the case of stationary PA-random fields is given in a recent
preprint [19]:

Theorem 10. Let X D fX.t/; t 2 R
d g 2 PA be a stationary random field with a

continuous covariance function C such that jC.t/j D O
�ktk�˛

2

�
for some ˛ > 3d

as ktk2 ! 1. Let X.o/ have a bounded density pX.o/. Assume that the variance of
Vd
�
Aun

�
X; Œ0; n�d

��
being equal to

�2n D
Z

Œ0;n�d

Z

Œ�x;n�x�d
cov .1fX .o/ � ung; 1fX .t/ � ung/ dt dx

satisfies

�2n ! 1; n ! 1: (11)

Introduce �.x/ D supy�x pX.o/.y/, x 2 R. Choose a sequence of excursion levels
un ! 1 such that

nd�2=3.un/

�
2.˛C3/=3
n

! 0; n ! 1: (12)

Then it holds

Vd
�
Aun

�
X; Œ0; n�d

�� � ndPs.X.o/ � un/

�n

d�! N .0; 1/ (13)

as n ! 1.

Conditions (11), (12) are checked in [19] explicitly for stationary (non-isotropic)
Gaussian as well as shot noise random fields leading to quite tractable simple
expressions. For instance, it suffices to choose un D O.

p
logn/, n ! 1 in the

Gaussian case.
Student and Fisher–Snedecor random fields are considered in the recent preprint

[34, Sect. 7]. CLTs for spherical measures of excess

Z
@Br .o/

1fX.t/ > u.r/gHd�1.dt/

of a stationary Gaussian isotropic random fieldX over the moving level u.r/ ! 1,
r ! 1 are proved in [37, Sect. 3.3]. For yet another type of geometric measures of
excess over a moving level, see [35].
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6 Surface Area of Excursion Sets of Stationary Gaussian
Random Fields

Limit theorems for Vd�1 .Au.X;Wn// have been first proven for one fixed level u
and a stationary isotropic Gaussian random field X in [31] in dimension d D 2.
There, the expansion of Vd�1 .Au.X;Wn// in Hermite polynomials is used. In higher
dimensions, a multivariate analogue of this result can be proven along the same
guidelines; see [56, Proof of Theorem 1] for a shorter proof. A CLT for the integral
of a continuous function along a level curve @Au.X;W / for an a.s. C1-smooth
centered mixing stationary random field X D fX.t/; t 2 R

2g in a rectangle W
is proved in [25].

6.1 Functional Limit Theorems

Let us focus on functional LTs for Vd�1 .@Au.X;Wn// proven in [44] for the phase
space L2.R; �/ (where � is a standard Gaussian measure in R) and in [56] for the
phase space C.R/.

LetX D fX.t/; t 2 R
d g, d > 1, be a centered stationary and isotropic Gaussian

random field with a.s. C1-smooth paths and covariance function C 2 C2.Rd /

satisfying C.o/ D 1 as well as

jC.t/j C 1

1 � C.t/
dX
iD1

ˇ̌
ˇ̌@C.t/
@ti

ˇ̌
ˇ̌C

dX
i;jD1

ˇ̌
ˇ̌@2C.t/
@ti @tj

ˇ̌
ˇ̌ < g.t/ (14)

for large ktk2 (where t D .t1; : : : ; td /
>) and a bounded continuous function g W

R
d ! RC such that limktk2!1 g.t/ D 0 and

Z
Rd

p
g.t/ dt < 1:

Denote by rX.t/ the gradient of X.t/. Assume that the .2d C 2/-dimensional
random vector .X.o/;X.t/;rX.o/;rX.t//> is nondegenerate for all t 2 R

d n fog.
Let �2 D �@2C.o/=@t21 .

Introduce the sequence of random processes fYng, n 2 N by

Yn.u/ D 2�d=2�1

nd=2

�
Vd�1

�
@Au.X; Œ0; n�

d /
� � EVd�1

�
@Au.X; Œ0; n�

d /
��

(15)

where u 2 R. They will be interpreted as random elements in L2.R; �/. Let *
denote the weak convergence of random elements in L2.R; �/. Let

�.t/ D f
�
X.t/

�
expf�X2.t/=2gkrX.t/k2; t 2 R

d :
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Theorem 11 ([44]). Under the above assumptions on X and C , it holds Yn *
Y as n ! 1 where Y is a centered Gaussian random element in L2.R; �/ with
covariance operator

VarhY; f iL2.R;�/ D 1

2�

Z
Rd

cov .�.o/; �.t// dt; f 2 L2.R; �/:

For d � 3, processes Yn have a continuous modification QYn if conditions on X
starting from (14) are replaced by the following ones:

1. Covariance functionC as well as all its first- and second- order derivatives belong
to L1.R/

2. There exist 
 2 .0; 1/ and ˇ > 0 such that for all h 2 Œ�
; 
� and eh D
.h; 0; 0 : : : ; 0/> 2 R

d , the determinant of the covariance matrix of the vector

�
X.o/;X.eh/;

@X.o/

@t1
;
@X.eh/

@t1

�>

is not less than jhjˇ .

Let + denote the weak convergence of random elements in C.R/. Denote by pX.t/
(pX.o/;X.t/) the density of X.t/ ( .X.o/;X.t//>), t 2 R

d , respectively. Set

Ht.u; v/ D E .krX.o/k2krX.t/k2 jX.o/ D u; X.t/ D v/ ; u; v 2 R; t 2 R
d :

In definition (15), assume � D 1.

Theorem 12 ([56]). Under the above assumptions onX andC , it holds QYn + Y as
n ! 1 for d � 3 where Y is a centered Gaussian random process with covariance
function

cov .Y.u/; Y.v// D
Z
Rd

�
Ht.u; v/pX.o/;X.t/.u; v/ � .EkrX.o/k2/2 pX.o/.u/pX.t/.v/

	
dt

for u; v 2 R.

The case d D 2 is still open.

7 Open Problems

It is a challenging problem to prove the whole spectrum of limit theorems for
Vj .Au.X;Wn// of lower orders j D 0; : : : ; d�2 for isotropicC2-smooth stationary
Gaussian random fields. Functional limit theorems and the case of increasing level
u ! 1 are therein of special interest. Further perspective of research is the
generalization of these (still hypothetic) results to non-Gaussian random fields.
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Another open problem is to prove limit theorems for a large class of functionals
of non-Gaussian stationary random fields that includes the volume of excursion sets.
It is quite straightforward to do this for

Z
Wn

g.X.t// dt

for a measurable function g W R ! R such that Eg2.X.o// < 1. For more general
classes of functionals of the field X and the observation window Wn, it is still terra
incognita.
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Ambit Processes, Their Volatility Determination
and Their Applications

José Manuel Corcuera, Gergely Farkas, and Arturo Valdivia

Abstract In this chapter we try to review the research done so far about ambit
processes and their applications. The notion of ambit process was introduced by
Barndorff-Nielsen and Schmiegel in 2007. Since then, many papers have been
written studying their properties and applying them to model different natural or
economic phenomena. As it is shown in the paper, these processes share their
mathematical structure with the solutions of random evolution equations allowing
them great flexibility for modelling. The goal of this paper is fourfold: to show
the main characteristics of these processes; how to determine their main structural
component: their volatility; how they can be used for modelling different random
phenomena like turbulence or financial prices; and last but not least the mathematics
behind.

1 Introduction

The notion of ambit process was introduced by Barndorff-Nielsen and Schmiegel in
2007; see [12]. Since then, many papers have been written studying their properties
and applying them to model in different natural or economic phenomena; see [5, 7,
8, 12, 23], among others. In the present paper we try to review all this work and to
enlighten the notion of ambit process and its flexibility for modelling. Before giving
the definition of ambit processes, let us justify the generality and, consequently, the
flexibility of such processes. Here we follow [6].
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Let L be a partial differential operator, for instance, the wave operator in
dimension one

Lf D @2f

@t2
� @2f

@x2
;

then, it is well known that there is a function G in .RC;R) such that the solution of
the PDE

Lu D '; u.0; x/ D 0;

where ' is a test function, can be written as

u.t; x/ D
Z

RC�R
G.t � s; x � y/'.s; y/dsdy:

Imagine now we have the SPDE

Lu D W; u.0; x/ D 0 (1)

where W is an L2-noise in RC � R that is a map

B.RC � R) �! L2.˝;F;P/

A 7�! W.A/;

such that

1. W.;/ D 0 a.s.
2. For all disjoint and bounded sets A1;A2; : : : in B.RC � R); W.Ai / are indepen-

dent and

W.[1
iD1Ai / D

1X
iD1

W.Ai /; a:s:

and where the convergence of the series is inL2.P/: Then it is natural to consider
that the solution of (1) is given by

u.t; x/ D
Z

RC�R
G.t � s; x � y/W.ds; dy/: (2)

This kind of solution is named a mild solution. In general, if we have a random
phenomenon with a certain dynamics, the tempo-spatial derivatives of the mag-
nitude in a point will be connected with the driving noise at that point, and this
will imply that the value of the magnitude is related with the value of the driving
noise in other points of the space–time set, as it can be appreciated in (2). Then,
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when modelling random phenomena, we can opt for proposing a kind of global
dependency directly instead of a point-wise dynamical dependency. This is the
motivation for the following definition:

Definition 1. A tempo-spatial ambit field is defined as

Y.t; x/ D �C
Z
A.t;x/

g.t;x/.s; 	/�.s; 	/W.ds; d	/

C
Z
B.t;x/

q.t;x/.s; 	/a.s; 	/dsd	; t � 0; x 2 Rn

where � 2 R, 	 2 Rn, W is a � -finite, L2-valued measure, g.t;x/.�/ and q.t;x/.�/
are deterministic kernels, �.�; �/ � 0; and a.�; �/ are predictable random fields and
A.t; x/ � RnC1 and B.t; x/ � RnC1 are ambit sets. Then, Xt WD Yt .x.t//; for a
curve x.t/; is called an ambit process.

In this definition the stochastic integral is assumed in the sense of Walsh; see,
for instance, [39] and the more recent reference [30]. However a slight extension
of this integral is considered here; in fact, in the integral, time coordinate moves in
R more than in RC: This extension has been studied recently in [19]. Another
extension, now for the case when 	 is infinite dimensional and Ws .d	/ WD
W.Œ0; s�; d	/; s � 0 is a cylindrical Brownian motion, can be found in [17].

The paper is organized as follows. Section 2 contains some properties and
particularities of the ambit processes. Section 3 is devoted to see the application of
ambit processes to modelling in turbulence and to study their statistical properties
in the context on infill asymptotics. Section 4 is devoted to study their applications
in quantitative finance to modelling term structures and energy markets.

2 Ambit Processes

The general concept of ambit field consists of a stochastic field .Y.t; x// in space–
time, t 2 R, x 2 Rn, where the values of Y.t; x/ depend on innovations prior
to or at time t and that happened in a certain subset of Rn: In other words,
Y.t; x/ depends on what happened in a time–space subset (the so-called ambit set),
A.t; x/ D f.s; y/ 2 RnC1; s 2 � � .�1; t �; y 2 (s � Rng: Then, if we take
a curve x.t/ in Rn, we have an ambit process Yt WD Y.t; x.t//. Evidently we can
substitute a more abstract space, like a Hilbert space, for Rn to get a more general
object. Another natural extension is to assume that Y takes values in Rn; or even
a Banach space. In any case we need further mathematical structure if we want
to say something concrete about Y . The structure considered is that given in the
Definition 1,



248 J.M. Corcuera et al.

Y.t; x/ D �C
Z
A.t;x/

g.t;x/.s; 	/�.s; 	/W.ds; d	/

C
Z
B.t;x/

q.t;x/.s; 	/a.s; 	/dsd	; t � 0; x 2 Rn;

where � 2 R, 	 2 Rn, W is a � -finite, L2-noise, g.t;x/.�/ and q.t;x/.�/ are
deterministic kernels, �.�; �/ � 0; and a.�; �/ are predictable random fields and
A.t; x/ � RnC1 and B.t; x/ � RnC1 are ambit sets. Ambit sets can be seen as
areas of influence or causality and this part of the structure could be seen as the
only dynamic condition in these kind of processes or fields. The condition is that
future cannot influence the past. Nevertheless the ambit fields used in practice are
of the form

Y.t; x/ D �C
Z
A.t;x/

gx.t � s; 	/�.s; 	/W.ds; d	/

C
Z
B.t;x/

qx.t � s; 	/a.s; 	/dsd	; t � 0; x 2 Rn;

where A.t; x/ D A C .t; x/; with A involving only negative time coordinates,
in agreement with the causality principle, and analogously for B.t; x/. In such a
situation this class of fields include the class of stationary fields in time and, by this
reason, they are called semistationary. If W is a Lévy noise, the field (or process) is
called Lévy semistationary field (or process) (LSS) and for the particular case where
W is a Gaussian noise is called Brownian semistationary .BSS/. It is also said that

Xt WD
Z
A.t;x/

gx.t � s; 	/�.s; 	/W.ds; d	/

is the core of Y . Moreover � is referred to as the intermittency, volatility or
modulating field or process. It is difficult to say interesting statements for such
general objects. To obtain something remarkable about, for instance, how the
trajectories are or if the ambit process is a semimartingale or not, we need specific
kernels, volatilities and noises.

Consider just the particular case .Xt /t2R of the form

Xt D
Z t

�1
g.t � s/W.ds/;

where W is a Gaussian white noise in R, � an adapted càdlag process and g 2
L2.RC/:

The path properties of the process .Xt /t2R crucially depend on the behaviour of
the weight function g near 0. When g.x/ D x˛Lg.x/ (where Lg.x/ is a slowly
varying function at 0) with ˛ 2 .� 1

2
; 0/ [ .0; 1

2
/, X has r-Hölder continuous paths
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for any r < ˛ C 1
2
: The analysis of the regularity of the sample paths follows the

same routes that in the case of Volterra processes; see [34]. In fact X is a Volterra
process though starting at �1.

Another important fact is thatX is not a semimartingale, because g0 is not square
integrable in the neighbourhood of 0: In fact, observing the decomposition

XtC� �Xt D
Z tC�

t

g.t C�� s/W.ds/C
Z t

�1
fg.t C�� s/� g.t � s/gW.ds/;

we obtain by formal differentiation that

dXt D g.0C/dW.t/C
�Z t

�1
g0.t � s/W.ds/

�
dt;

Then, the Gaussian process X is an Itô semimartingale when g.0C/ < 1 and
g0 2 L2.RC/ and this property also transfers to the BSS process Y under mild
assumptions. It can be shown (see [14]) that the conditions g.0C/ < 1 and
g0 2 L2.RC/ are also necessary conditions for X to be a semimartingale. So, if we
assume that g.x/ D x˛Lg.x/; with ˛ 2 .� 1

2
; 0/[.0; 1

2
/, we have that g0 62 L2.RC/

and the process X , and so the process Y (unless � D 0), is not a semimartingale.
A similar analysis can be done to see if a LSS is a semimartingale. See, for

instance, [9].
Moreover ambit processes can be used as leading noises of stochastic differential

equations and we can construct a stochastic calculus with respect to this processes;
see Sect. 4.1 in [23].

3 Models in Turbulence

In the framework of stochastic modelling in turbulence (see [26] for a description
of this approach), Barndorff-Nielsen and Schmiegel [12, 13] propose to model the
main component of the velocity by a process of the form

Yt D �C
Z t

�1
g.t � s/�sW.ds/C

Z t

�1
q.t � s/asds; (3)

where � is a constant, W is a Gaussian white noise on R, g and q are nonnegative
deterministic functions on R, with g .t/ D q .t/ D 0 for t � 0, and � and a are
adapted càdlàg processes.

Other approaches, out of the scope of this paper, combine the classical Navier–
Stokes equation for a fluid and randomness. The results in this framework are,
however, quite implicit; see, for instance, [15, 32] or the more oriented toward
applications [18].
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3.1 Volatility Determination

One crucial quantity in the model (3) is the volatility and some effort has been done
to estimate �: It is apparent, from [3, 4, 8, 10, 21, 22], that a key tool to estimate �
is the realized multipower variation (RMV) of the process Y: It is an object of the
type

Œnt ��kC1X
iD1

kY
jD1

j�n
iCj�1Y jpj ; �n

i Y D Y i
n

� Y i�1
n
; p1; : : : ; pk � 0 ;

for some fixed number k � 1.
For simplicity of the exposition, we shall consider the core of (3)

Yt D
Z t

�1
g.t � s/�sW.ds/; (4)

where we assume that
Z t

�1
g2.t � s/�2s ds < 1; a:s::

and also that the function g is continuously differentiable on .0;1/, jg0j is
nonincreasing on .b;1/ for some b > 0, and g0 2 L2..";1// for any " > 0.
Moreover, we assume that for any t > 0,

Ft D
Z 1

1

.g0.s//2�2t�sds < 1; a:s::

See [8] for a discussion of this latter conditions.
The process Y is supposed to be observed at time points ti D i=n, i D

1; : : : ; Œnt �. Now, let G be the stationary Gaussian process defined as

Gt D
Z t

�1
g.t � s/W.ds/:

We are interested in the asymptotic behaviour of the functionals

V.Y; p1; : : : ; pk/
n
t D 1

n

pC
n

Œnt��kC1X
iD1

kY
jD1

j�n
iCj�1Y jpj ; p1; : : : ; pk � 0 ;

where �n
i Y D Y i

n
� Y i�1

n
and 
2n D NR.1=n/ with NR.t/ D EŒjGsCt � Gsj2�,

t � 0, and when n goes to infinity, in such a way that we are in the context of
infill asymptotics. We define the correlation function of the increments of G:

rn.j / D cov

�
�n
1G


n
;
�n
1CjG

n

�
D

NR.jC1
n
/C NR.j�1

n
/ � 2 NR.j

n
/

2
2n
; j � 0:
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Next, we introduce a class of measures:

�n.A/ D
R
A
.g.x � 1

n
/ � g.x//2dxR1

0
.g.x � 1

n
/ � g.x//2dx ; A 2 B.R/:

Finally, we define

�.n/p1;:::;pk D E
�ˇ̌
ˇ̌�n

1G


n

ˇ̌
ˇ̌p1 � � �

ˇ̌
ˇ̌�n

kG


n

ˇ̌
ˇ̌pk
�
:

To have a weak law of large numbers, we require the following assumptions:
(LLN): There exists a sequence r.j / with

r2n.j / � r.j / ;
1

n

n�1X
jD1

r.j / ! 0:

Moreover, it holds that

lim
n!1�n..";1// D 0

for any " > 0.
For the CLT we need to introduce another Gaussian process. Let .Qi /i�1 be a

non-degenerate stationary centred (discrete time) Gaussian process with variance 1
and correlation function

�.j / D cor
�
Q1;Q1Cj

�
; j � 1:

Define

VQ.p1; : : : ; pk/
n
t D 1

n

Œnt��kC1X
iD1

kY
jD1

jQiCj�1jpj

and let �p1;:::;pk D E.jQ1jp1 � � � jQkjpk /.
Now we can specify the condition (CLT): Assume (LLN) holds, and

rn.j / ! �.j / ; j � 0;

where �.j / is the correlation function of .Qi /. Furthermore, there exists a sequence
r.j / such that, for any j; n � 1,

r2n.j / � r.j / ;

1X
jD1

r.j / < 1;

and we have

EŒj�t � �sjA� � C jt � sjA� ;
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for any A > 0; with �.p ^ 1/ > 1
2
; and p D min1�i�k;1�j�d .pji /. Finally we

assume that there exists a constant � < � 1
p^1 such that for any "n D O.n��/,

� 2 .0; 1/, we have

�n.."n;1// D O.n�.1��//:

Set pC D Pk
lD1 pl . We have the following main theorem; see [8].

Theorem 1. Consider the process Y given by (4). Assume that the condition (CLT)
holds; then, we obtain the stable convergence

p
n

�
V.Y; p

j
1 ; : : : ; p

j

k /
n
t � �.n/

p
j
1 ;:::;p

j

k

Z t

0

j�sjp
j

Cds

�
1�j�d

st�!
Z t

0

A1=2s dBs;

where B is a d -dimensional Brownian motion independent of F, and A is a d � d -
dimensional process given by

Aijs D ˇij j�sjpiCCpj
C ; 1 � i; j � d ;

with ˇ the d � d matrix given by

ˇij D lim
n!1n cov

�
VQ.p

i
1; : : : ; p

i
k/
n
1; VQ.p

j
1 ; : : : ; p

j

k /
n
1

	
; 1 � i; j � d :

In [8] we worked with the function g

g .t/ D t ��1e��t 1.0;1/ .t/

for � > 0 and with � > 1
2
. For t near 0, g.t/ behaves as t ı with ı D � � 1. If we

check the conditions for the CTL, we have the restriction 1=2 < � < 1. This forced
us to consider higher-order differences:

}n
i X D Xi�n � 2X.i�1/�n CX.i�2/�n :

and to study the multipower variation of the second-order differences of the BSS

process X , i.e.

MPV}.X; p1; : : : ; pk/nt D �n.

}
n /

�pC

Œt=�n��2kC2X
iD2

k�1Y
lD0

j}n
iC2lX jpl ;

where .
}
n /

2 D E.j}n
i Gj2/ and pC D Pk

lD1 pl .
See [10, 24] for the development and application to real turbulence data of the

high-order multipower variation.
It is worthwhile to comment that the limit theory for multipower variation of

Lévy semistationary processes does not yet exist.
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3.1.1 Volatility Determination in an Ambit Field Setting

Now we try to show a relation between the realized quadratic variation (RQV) along
a curve and the volatility of the underlying random field. We refer to [11] for more
details.

Consider a random field

Y.x/ D
Z
A.x/

g.x � 	/�.	/W.d	/;

where x 2 Rn; W is the Gaussian white noise in Rn, g W Rn ! R, with
g.x1; ::; xn/ D 0 if x1 < 0 (the first coordinate indicates time), and � is either
deterministic or independent of W . Then, assume that A.x/ D AC x;

Y.x/ D
Z
A.x/

g.x � 	/�.	/W.d	/ D
Z

Rn
g1�A.v/�.x � v/W.x � dv/;

in such a way that

Y.x C�x/ � Y.x/ D
Z

Rn
.g1�A.v C�x/ � g1�A.v// �.x � v/W.x � dv/;

and

E
h
.Y.x C�x/ � Y.x//2

ˇ̌
ˇ �
i

D
Z

Rn
.g1�A.v C�x/ � g1�A.v//2 �2.x � v/dv:

Then

nX
iD1

E
h
.Y.xi�1 C�xi/ � Y.xi //2

ˇ̌
ˇ �
i

D
Z

Rn

nX
iD1

.g1�A.v C�xi/ � g1�A.v//2 �2.xi � v/dv:

Assume now that �xi D �x.ı/ D .
1.ı/; 
2.ı/; : : : ; 
n.ı// for all i D 1; : : : ; n;

with 
1.ı/ D ı (in particular this happens if we are moving along a straight line).
We take n D Œt=ı�. Then if we define

�ı.dv/ WD .g1�A.v C�x.ı// � g1�A.v//2

c.ı/
dv;

where c.ı/ D R
Rn .g1�A.u C�xi/ � g1�A.u//2 du, we have that
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ı

c.ı/

Œt=ı�X
iD1

E
h
.Y.xi�1 C�xi / � Y.xi //2

ˇ̌
ˇ �
i

D
Z

Rn
ı

Œt=ı�X
iD1

�2.xi .ı/ � v/�ı.dv/

ı!0�!
Z

Rn

�Z t

0
�2.x.s/ � v/ds

�
�0.dv/;

provided that

�ı
ı!0�! �0

and � is continuous. We have also the following result; see [11].

Proposition 1. If �0 is concentrated on �@A, then

var

0
@ ı

c.ı/

Œt=ı�X
iD1
.Y.xi�1 C�xi/ � Y.xi //2

ˇ̌
ˇ̌
ˇ̌ �
1
A ı!0! 0:

As a corollary, we have the convergence in probability

ı

c.ı/

Œt=ı�X
iD1
.Y.xi�1 C�xi/ � Y.xi //2 ı!0�!

Z
Rn

�Z t

0

�2.x.s/ � v/ds
�
�0.dv/:

But when is �0 concentrated on �@A? In [11] authors give some sufficient
conditions for A (bounded, closed, convex with nonempty interior and piecewise
smooth boundary) and g; but they are quite restrictive.

The behaviour of the RQV along smooth curves and for some particular shapes
of A; for instance, A D .RC/n , and memory functions of the kind g .x/ D
jjxjj˛Lg.jjxjj/ is a topic of present research. The purpose is to relate � or some
integral of it, with the limit of the RQV along lines, or surfaces.

To remark that the asymptotic behaviour of the multipower variation of general
tempo-spatial ambit fields is an open problem.

4 Models in Finance

4.1 A Short-Rate Model

4.1.1 The Model

Let .˝;F;F;P/ be a complete probability space with a filtration F D .Ft /t2RC
.

Assume that in this probability space

rt D
Z t

�1
g.t � s/�sW.ds/C �t (5)
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where W is an .Ft /-Gaussian noise in R under the risk-neutral probability, P� 
 P,
g is a deterministic function on RC, g 2 L2..0;1//, and � � 0 and � are also
deterministic. Notice that the process r is not a semimartingale if g0 62 L2..0;1//.
Furthermore, we also assume that

Z t

�1
g2.t � s/�2s ds < 1 a:s:

which ensures that rt is well defined. Then, we consider a financial bond market
with short rate r . Here we follow [23].

4.1.2 Bond Prices

Assume that exp
n
� R T

0
rsds

o
2 L1.P�/ and denote P .t; T / and QP .t; T / the price

and the discounted price at t of the zero coupon bond with maturity time T :

P.t; T / D EP�

�
exp

�
�
Z T

t

rsds


 ˇ̌
ˇ̌Ft

�

QP .t; T / D P.t; T / exp

�
�
Z t

0

rsds



;

where QP .t; T / is a P�-martingale. Then, writing c.uI t; T / WD R T
t
g.s � u/ds for

t � u; and by using Fubini’s theorem, we have

Z T

t

rsds D
Z t

�1
�uc.uI t; T /W.du/

C
Z T

t

�uc.uI u; T /W.du/C
Z T

t

�sds:

Then

P.t; T / D exp

�
A.t; T / �

Z t

�1
�uc.uI t; T /W.du/



;

where

A.t; T / D log EP�

�
exp

�
�
Z T

t

�uc.uI u; T /W.du/ �
Z T

t

�sds


 ˇ̌
ˇ̌Ft

�

D 1

2

Z T

t

�2u c
2.uI u; T /du �

Z T

t

�sds:

and the variance of the yield � 1
T�t logP.t; T / is given by

var

�
� 1

T � t logP.t; T /

�
D 1

.T � t /2
Z t

�1
�2u c

2.uI t; T /du:
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The corresponding forward rates are given by

f .t; T / D �@T logP.t; T /

D �
Z T

t

�2ug.T � u/c.uI u; T /du C
Z t

�1
�ug.T � u/W.du/C �T

and

var .f .t; T // D
Z t

�1
�2ug

2.T � u/du:

Note that

dt f .t; T / D ˛.t; T /dt C �.t; T /W.dt /;

with

�.t; T / D �tg.T � t /;
˛.t; T / D �2t g.T � t /c.t I t; T /:

4.1.3 Completeness of the Market

It is easy to see that

QP .t; T / WD P.t; T /

exp
nR t
0
rsds

o D P.0; T / exp

�
�
Z t

0

�uc.uI u; T /W.du/

�1
2

Z t

0

�2u c.uI u; T /2du



;

so we have

P.t; T / D P.0; T / exp

�
�1
2

Z t

0

�2u c
2.uI u; T /du C

Z t

0

�sds




� exp

�Z 0

�1
�uc.uI 0; t/W.du/ �

Z t

0

�uc.uI t; T /W.du/




and

QP .t; T / D P.0; T / exp

�
�
Z t

0

�uc.uI u; T /W.du/ � 1

2

Z t

0

�2u c
2.uI u; T /du



:
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Therefore,

d QP .t; T / D � QP .t; T /�t c.t I t; T /W.dt /; t � 0;

Let X be a P�-square integrable, FT -measurable payoff. Consider the .Ft /-
martingale

Mt WD EP� ŒX jFt � ; t � 0;

then, by an extension of Brownian martingale representation theorem, we can write

dMt D HtW.dt /;

where H is an adapted square integrable process.
Let

�
�0t ; �

1
t

�
be a self-financing portfolio built with a bank account and a bond

with maturity T ; its value process is given by

Vt D �0t e
R t
0 rsds C �1t P.t; T /;

and, by the self-financing condition, the discounted value process QV satisfies

d QVt D �1t d QP .t; T /:
So, if we take

�1t D � Ht

QP .t; T /�t c.t I t; T /
we can replicate X . In particular the bond with maturity T � can be replicated by
taking

P.t; T �/c.t I t; T �/
P.t; T /c.t I t; T /

bonds with maturity time T � T �:

4.1.4 Examples

Example 1. With g.t/ D e�bt ; �u D � and � D a, we have

rt D r0e
�bt C a.1 � e�bt /C e�bt

Z t

0

ebs�W.ds/;

P.t; T / D exp .A.t; T /C aB.t; T / � rtB.t; T // ;
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with

B.t; T / D 1

b
.1 � e�b.T�t//

and

A.t; T / D �2

2

Z T

t

B.u; T /2du � a.T � t /:

Then,

var

�
� 1

T � t logP.t; T /

�
D �2

2b3
.1 � e�b.T�t//2

.T � t /2 
 T �2;

when T ! 1, and the corresponding instantaneous forward rates and their variance
are given by

f .t; T / D � �2

2b2

�
1 � e�b.T�t/�2 C �e�b.T�t/.rt � a/C a:

var .f .t; T // D �2

2b
e�2b.T�t/ 
 e�2bT ;

when T ! 1: Moreover the volatility of the forward rates is given by �.t; T / D
�e�b.T�t/ and this is not too realistic.

Example 2. Assume that �t D �1ft�0g and

g.t/ D e�b.t/
Z t

0

ebsˇsˇ�1ds;

for ˇ 2 .0; 1=2/: Then

var .f .t; T // D
Z t

�1
�2ug

2.T � u/du 
 T 2ˇ�2:

And the volatility of the forward rates are given by

�.t; T / D �2g.T � t / 
 T ˇ�1;

when T ! 1; that is more realistic (see [20, Sect. 4.1] and also [2]) than the
exponential decay in the Vasicek model. For ˇ 2 .�1=2; 0/ consider the memory
function

g.t/ D e�bt tˇ C ˇ

Z t

0

�
e�b.t�u/ � e�bt� uˇ�1du;
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and then

g.t/ 
 tˇ�1

when x ! 1, in such a way that we obtain analogous asymptotic results to the
previous case.

4.1.5 The Analog of a CIR Model

One of the drawbacks of the previous model is that it allows for negative short rates.
An obvious way of avoiding this is to take

rt D
dX
iD1

�Z t

0

g.t � s/�sdWi.s/

�2
C r0; t � 0; r0 > 0:

where ..Wi /1�i�d / is a Brownian motion in Rd .

Bond Prices

Given

rt D
dX
iD1

Z t

0

Z t

0

g.t � u/g.t � v/�s�udWi.u/dWi.v/;

(where by simplicity we take r0 D 0), we have

Z T

t

rsds D
dX
iD1

Z t

0

Z t

0

�u�vc2.u; vI t; T /dWi.u/dWi.v/

C2
dX
iD1

Z t

0

Z T

t

�u�vc2.u; vI u; T /dWi.u/dWi.v/

C
dX
iD1

Z T

t

Z T

t

�u�vc2.u; vI u _ v; T /dWi.u/dWi.v/;

with c2.u; vI t; T / WD R T
t
g.s � u/g.s � v/ds. Then, using this, we have
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P.0; T / D E
�

exp

�
�
Z T

0

rsds


�

D
dY
iD1

E
�
exp

�
�T

Z 1

0

Z 1

0

�T u�T vc2.T u; T vIT .u _ v/; T /dWi.u/dWi.v/


�

D d .2T /�d=2 ;

where d .�/ is the Fredholm determinant

d.�/ D 1C
1X
nD1

�n

nŠ

Z 1

0

� � �
Z 1

0

ˇ̌
ˇ̌
ˇ̌
ˇ

R .s1; s1/ � � � R .s1; sn/
:::

:::

R .sn; s1/ � � � R .sn; sn/

ˇ̌
ˇ̌
ˇ̌
ˇ
ds1 � � � dsn

where

R .u; v/ D �T u�T vc2.T u; T vIT .u _ v/; T /:

Example 3. Assume that g.t/ D 1ft�0g and �t D �: Then rt is a squared Bessel
process of dimension d (see, for instance, [28]), and

R .u; v/ D �2T .1 � .u _ v//;
consequently

P.0; T / D
�

cosh.
p
2�T /

	� d
2 D 2

d
2

�
e

p
2�T C e�p

2�T

	 d
2

;

see [37] for the calculations of the Fredholm determinant. Another procedure to
calculate the Fredholm determinants is given in [29], where it is shown that provided
the kernel R .u; v/ is of the form

R .u; v/ D M.u _ v/N.u ^ v/
d.�/ D B�.1/;

and therefore

P.0; T / D .B2T .1//
� d
2 ;

where, in our case of having M.t/ D �2T .1 � t / and N.t/ D 1, we obtain

B�.t/ D �2T 2

0
B@.1 � t / e

�
p
�T t � e��p

�T t

�
p
�T

C e�
p
�T t C e��p

�T t

�
�

p
�T
	2

1
CA :
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Note that we can consider squared Bessel processes of dimension d � 0; where
d is not necessarily an integer; see [28] and Corollary 6.2.5.5 therein. Due to the
fact that discount values are in close form under the model, a calibration performs
very fast.

Example 4. Another interesting example is the classical CIR model. In such a case

R.u; v/ D �2
Z T

T .u_v/

e�b.s�u/e�b.s�v/ds D �2

2b
ebT ..u^v/�1/.e�bT ..u_v/�1/ � ebT ..u_v/�1//

D M.u _ v/N.u ^ v/;

where

M.t/ D �p
2b

�
e�bT .t�1/ � ebT .t�1/� ; and N.t/ D �p

2b
ebT .t�1/:

We obtain

B2T .1/ D 1

2
p
b2 C 2�2

�
.b C

p
b2 C 2�2/eT .�bCp

b2C2�2/

C.�b C
p
b2 C 2�2/e�T .bCp

b2C2�2/	 :

4.2 Models in Energy Markets

Like in other traditional commodities or stock markets, in the electricity market one
finds trade in spot, forward/futures contracts as well as European options written
on these (see [33, Capt. 1] for the definition and terminology of these contracts).
Despite this parallelism, the distinctive features of the electricity market lead to
specific problems of pricing and hedging. Let us mention two examples of such
features. On the one hand, power market trades in contracts which deliver power
over a delivery period. This adds an extra dimension to the models for forward
dynamics which generally depend only on the current time and the maturity of
the contract. On the other hand, the electricity spot cannot be stored directly
except via reservoirs for hydro-generated power, or large and expensive batteries.
This implies that prices may vary significatively when demand increases, for
instance, due to a temperature drop. Moreover, due to the non-storability issue,
the electricity spot cannot be held in a portfolio. Hence, the usual buy-and-hold
hedging arguments break down, and the requirement of being a martingale under an
equivalent martingale measure (EMM) is not necessary. Similarly, from a liquidity
point of view, it would be possible to use non-martingales for modelling forward
prices since in many emerging electricity markets, one may not be able to find any
buyer to get rid of a forward contract, nor a seller when one wants to enter into one.
Thus the illiquidity prevents possible arbitrage opportunities from being exercised.
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These features, along with empirical evidence (see [16, 27, 36]) and statistical
studies (see [31]), point to random field models in time and space which, in addition,
allow for stochastic volatility. We present below two examples of modelling spot and
forward prices via ambit processes; these models grant rich flexibility and account
for some of the stylized features in the context of energy markets. We note here that
since spot prices are determined by supply and demand, strong mean reversion can
be observed; the spot prices have clear deterministic patterns over the year, week
and intra-day.

4.2.1 Modelling Spot Prices

In [5] the log-spot price Y� is modelled by means of the Lévy semistationary
processes (LSS) presented in Sect. 2, i.e. processes of the form

Yt WD �C
Z t

�1
g.t � s/�sdLs C

Z t

�1
q.t � s/asds; (6)

where � is a constant; .Lt /t2R is a two-sided Lévy process; g and q are nonnegative
deterministic functions on R, with g.t/ D 0 D q.t/ for t � 0; and �� and a�
are two càdlàg processes. The LSS are analytically tractable and encompasses some
classical models, as that of Schwartz [36], along with a wider class of continuous-
time autoregressive moving-average (CARMA) processes. Note that in (6) the log-
spot price is modelled directly, as opposed to traditional approaches that focus on
modelling the dynamics of the spot price.

Consider a forward contract stating the agreement to deliver electricity at time
T , for a predetermined price Ft.T /, fixed today but payable at T with no other cash
flow at t < T . This price is referred to as forward price, and it is fixed in such a way
that the price of the contract, at the issue time t , is zero. Then by definition

0 D EP�

�
exp

�
�
Z T

t

rudu



.expfYT g � Ft.T //

ˇ̌
ˇ̌Ft

�
:

From this equation and the abstract Bayes’ rule (see [33, Lemma A.1.4]), which
links the risk-neutral measure P� with the T -forward measure

PT , we get, provided integrability conditions on expfYT g,

Ft.T / D EPT ŒexpfYT gj Ft �: (7)

As mentioned before, due to the lack of an underlying, any measure PT equivalent
to P can be chosen as pricing measure. If we assume that under PT , the dynamics of
the log-spot price is given by 6 with .Lt /t2R D .Wt /t2R being a two-sided Brownian
motion, then for a constant volatility �s 	 1, we have the simple expression for the
forward price
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Ft.T / D C.T / exp

�Z t

�1
g.T � s/dWs � 1

2

Z t

�1
g2.T � s/ds



: (8)

We refer to [38] for a multivariate version of (6) and a detailed empirical study using
data from the European Energy Exchange.

4.2.2 Modelling Forward Prices

In [7] forward prices are modelled directly, rather than modelling the spot price and
deducing the forward price from the conditional expectation of the spot at delivery
(cf. 7). Moreover, as opposed to existing literature, the dynamics of the forward
price are not specified; instead, the authors specify an ambit field which explicitly
describes the forward price. More precisely, for each maturity T , the deseasonalized
log-forward price at time t is modelled by

logFt.x/ WD
Z
A.t;x/

g.	; t � s; x/�s.	/L.d	; ds/; (9)

where the spatial component in (9) models the time to maturity, i.e. x WD T � t ,
the ambit set is given by A.t; x/ WD At WD f.	; s/ W 	 > 0; s � tg, and
the kernel g may be chosen in order to capture the so-called Samuelson effect
(see [35]). In addition, the fact that forward contracts close in maturity dates are
strongly correlated may be captured by assuming that the volatility is another ambit
field, independent of L, and with a kernel warranting that Cor.�2t .x/; �

2
t . Nx// is high

for values of x and Nx close to 0.
Traditionally, the forward price is modelled as a semimartingale such that there

is an E(L)MM under which the price dynamics becomes a (local) martingale.
According to [7, Corollary 1], .Ft .T //t2R is an FL-martingale if and only if the
kernel g in (9) is deterministic and does not depend on t . For instance, one can
consider

logFt.T � t / D
Z
At

expf�˛.	 C T � s/g�s.	/W.d	; ds/; (10)

where ˛ > 0 and W a homogeneous Gaussian Lévy basis. Such rather strong
condition rules out many interesting more general ambit fields; however, it still
includes some CARMA and standard models as those of Heath et al. and Audet et al.
(see [1,25], respectively). Nevertheless, it would be possible to use non-martingales
for modelling forward prices without given place to arbitrage opportunities, due to
the specific features of electricity markets mentioned above.

Finally, let us mention that (9) induces a model for the log-spot price Y� which
is consistent with that in (6). In particular (see [7, Example 2]) the example in (10)
leads to

Yt D
Z t

�1
expf�˛.t � s/gdWs:
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Some Functional Analytic Tools for Utility
Maximization

Alexander A. Gushchin, Ruslan V. Khasanov, and Ivan S. Morozov

Abstract The aim of the chapter is to extend the application of convex duality
methods to the problem of maximizing expected utility from terminal wealth. More
precisely, we restrict attention to a dual characterization of the value function
of this problem and to a static setting. A general scheme to solve this problem
is proposed. In the case where the utility function is finite on R, we use the
approach, suggested by Biagini and Frittelli, based on using an Orlicz space
constructed from an investor’s utility function. We reduce the original problem
to an optimization problem in this space in a nontrivial way, which allows us to
weaken essentially assumptions on the model. We also study the problem of utility
maximization with random endowment considered by Cvitanić, Schachermayer,
and Wang. Using the space  L1 with a weight function  constructed from
a random endowment permits us to consider unbounded random endowments.
Another important contribution is that in both problems under consideration, we
provide versions of the dual problem that are free of singular functionals.

1 Introduction

Convex duality is widely used in expected utility maximization; see [3] for a detailed
survey. Here we deal only with the problem of maximizing expected utility from
(discounted) terminal wealth in a static setting, i.e., we consider the problem of
maximizing the functional
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	  E U.x C 	 C B/; 	 2 A ; (1)

over a set A of random variables defined on a probability space .˝;F ;P/, where
x 2 R is a real number, B is a random variable on .˝;F ;P/, and U is a concave
increasing function on R with values in R [ f�1g. Expectation E with respect to
P is assumed to be equal to �1 if it is not defined, i.e., E
 D limn!C1 E.
 ^ n/:
These objects are interpreted as follows. Consider an agent investing in a financial
market. Then

• x is the initial wealth of the agent;
• A is the set of all possible (discounted) incomes (profits) of the agent. An income

comes as a result of applying a certain (admissible) trading strategy. Since a
dynamic structure is not involved, we identify elements of A and strategies
corresponding to them;

• B is a random endowment, i.e., an additional cashflow, received by the agent at
the terminal time;

• U is a utility function describing preferences of the agent.

Thus, the terminal wealth of the agent resulting from a strategy 	 2 A is xC	CB ,
and the aim of the agent is to maximize the expected utility of her terminal wealth
over the set of her admissible strategies, i.e., the problem (1).

A dynamic model may be specified, e.g., by introducing a discounted price
process S of the traded assets and a set H of admissible self-financing trading
strategies H . Then

A D
�
	 D

Z T

0

HtdSt WH 2 H



; (2)

where Œ0; T � is a trading period. The idea of reduction from a dynamic model to a
static model of type (1) goes back to Pliska [18] who first used duality methods in
utility maximization. Advantages of this reduction were fully demonstrated in the
seminal paper by Kramkov and Schachermayer [16], who solved the problem of
maximizing the expected utility of terminal wealth in the framework of a general
incomplete semimartingale model of a financial market deducing their main results
from corresponding results in a static model.

In this paper we consider only the question of a dual characterization of the value
function

u.x/ D sup
	2A

E U.x C 	 C B/

of the problem (1) in terms of the value function of a certain dual problem. More
precisely, the value function u, being concave (if A is convex) and increasing,
admits the representation

u.x/ D inf
y�0 Œv.y/C xy� (3)
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with a convex function v. The question is to find a dual problem whose value
function is v. A standard way of doing this includes two steps. The original
optimization problem (1) is defined on the space L0 of all (equivalence classes of)
random variables, which, typically, is not a locally convex space. So the first step is

[A] To embed the problem into an appropriate space, more precisely, to show that
the value function u.x/ does not change if, in its definition, the set A is replaced
by .A � L0C/ \ L, where L is an appropriate space (say, a Banach space)

Then the second step is

[B] To apply the Fenchel-type duality theorem which allows us to state a dual
optimization problem in the dual spaceL0 and to establish dual relations between
the value functions in the primal and dual problems

However, we would like to mention an additional step which is desirable. It often
happens that the dual space L0 contains singular functionals (e.g., finitely additive
measures if L D L1) entering the dual problem. So, the third step is

[C] To get rid of singular functionals in the dual problem

The main purpose of the paper is to represent the authors’ contribution to these
issues. In our papers [11,14,17], we considered the utility maximization problem in
different settings and developed some new tools, mainly from functional analysis,
which allowed us to strengthen existing results. See also [10] for a special result
connected to Step C. Here we consider two problems of utility maximization
corresponding to [14, 17] and present some of these tools in a refined form:

• Concerning Step A, we provide, following [17], nontrivial arguments allowing
us to embed the original problem (1) into an appropriate functional space.

• Concerning Step B, we propose to add an extra variable to the primal problem.
This idea was firstly used in [11] and then in [17]. In these two papers a robust
setting of utility maximization is considered. The word ‘robust’ means that
instead of probability P, we have a family Q of (subjective) probability measures,
and the functional to be maximized is, e.g., of the form

	  inf
Q2Q



EQ U.x C 	/C �.Q/

�
; 	 2 A :

For such a problem, an additional variable appears naturally in the dual problem.
This justifies the appearance of an extra variable in the primal problem. For the
problem (1), this trick seems to be artificial and complicating the arguments.
However, we shall see that it has some advantages in our setting as well.

• Concerning Step C, we demonstrate, following [10, 14], how to get rid of
singular functionals in the dual problem. For the models under consideration,
this difficulty was not overcome in [7,8]. As a certain drawback of our approach,
we should mention that the dual problem after its transformation may include,
instead of singular functionals, a new optimization problem in primal variables.
This does happen in the models under consideration but does not occur in the
setting considered in [11].
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We shall study the problem (1) separately in the following two cases:

• U is finite everywhere on R, B D 0.
• U is finite on the half-line .0;C1/ and equals �1 on .�1; 0/.

In both cases the convex conjugate V of the utility function U is defined by

V.y/ D sup
x2R

ŒU.x/ � xy�; y 2 R: (4)

In other words, V.y/ is the Fenchel conjugate of �U.�x/. Then V WR ! R [
fC1g is a lower semicontinuous convex function with domV � RC (under
Assumptions 1 or 3 on U ), where domf D fx 2 X Wf .x/ < C1g for a function
f WX ! R [ fC1g. Let us also introduce another notation used throughout the
paper. ıA is the indicator function of a set A in the sense of convex analysis:
ıA.x/ D 0 if x 2 A and ıA.x/ D C1 otherwise. It is always assumed that a
probability space .˝;F ;P/ is given. L0 is the space of equivalence classes (with
respect to equality P-a.s.) of real-valued random variables. ba denotes the space of
bounded finitely additive measures that vanish on P-null sets, with the total variation
norm, i.e., ba is the dual of L1. Correspondingly, we shall write �.	/ for � 2 ba,
	 2 L1, instead of

R
	 d�. ca stands for the subspace of ba consisting of countably

additive measures; baC and caC are the corresponding cones of measures with
nonnegative values. f � means the Fenchel conjugate of f . Bar over a set means
its closure. 1 stands for the function that is equal to 1 identically.

2 The First Problem: U Is Finite on R, B D 0

In this section we impose the following assumptions on the model.

Assumption 1. A utility function U is an increasing concave function on R with
finite values which is not identically a constant.

Assumption 2. A set A of possible incomes is a convex cone.

Now the value function u of the problem (1) is of the form

u.x/ D sup
	2A

EU.x C 	/; x 2 R: (5)

It is well known that an appropriate choice of the class of strategies of an agent
is a difficult task in this setting. In the semimartingale market model, when A is
given by (2), the class H D L.S/, where L.S/ is the set of all predictable H that
are integrable with respect to a semimartingale S , is too rich as it typically leads to
arbitrage opportunities and hence to a degenerate utility maximization problem in
the sense u.x/ 	 U.C1/. On the other hand, the class H b � L.S/ of strategies
H such that the integral processH �S is bounded from below by a constant, may be
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not sufficiently rich. First, it typically fails to contain the optimal solution. Second,
if S is not locally bounded, it may even happen that H b D f0g and u.x/ 	 U.x/,
which can be considered as another degenerate case. There are examples (see, e.g.,
Example 3.2 in [5]) showing that in the last case it is possible to choose the class
of strategies in such a way that U.x/ < u.x/ < U.C1/. We refer the reader to
[4–7,24,25] and to the references therein for different approaches to the problem of
a “good” choice of H .

Our aim is different. We just want to obtain the dual characterization (3) of the
value function using only Assumption 2. Of course, this does not exclude degenerate
cases. Realizing Step A, we shall find an equivalent maximization problem in
the Orlicz space L˚ with a Young function ˚ constructed from the utility function
U similarly to as it was done in [2,7]. In contrast to these papers, we do not assume
that wealth processes (or terminal wealths) are bounded from below by �cW , where
W 2 L˚ is a fixed random variable and c > 0.

A more general robust utility maximization problem was considered in [17],
where an appropriate functional space is an Orlicz space with respect to a family
of measures.

We start with necessary facts concerning Orlicz spaces. More details can be
found in [19].

Let .˝;F ;P/ be a probability space and ˚ WR ! RC [ fC1g a nonzero even
lower semicontinuous convex function with ˚.0/ D 0 (a Young function). Then the
Orlicz space L˚ D L˚.P/ on .˝;F ;P/, associated with ˚ , is defined by

L˚ D f	 2 L0.P/W E ˚."	/ < C1 for some " > 0g:

L˚ is a Banach space (and even a Banach lattice) with respect to the Luxemburg
norm N˚ given by

N˚.	/ D inf

�
K > 0W E˚

�
	

K

�
� 1



; 	 2 L˚:

Let � be the Fenchel conjugate of ˚ :

�.y/ D sup
x2R

Œxy � ˚.x/�;

then � is also a Young function. Note that the Fenchel conjugate of � is˚ . Another
norm on L˚ , equivalent to N˚ , is the Orlicz norm k � k˚ :

k	k˚ D sup
E�.
/�1

jE 	
j:

As an example, let ˚.x/ D jxj, then �.x/ D ıŒ�1:1�.x/. Then L˚ D L1 and
L� D L1; the Luxemburg and Orlicz norms equal each other in both spaces and
coincide with the usual norms in L1 and L1, respectively. In general, if ˚ takes
value C1, then L˚ is just the space L1, the Luxemburg and Orlicz norms being
equivalent to the usual norm in L1.
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It is assumed below that L˚ is equipped with the Luxemburg norm. It follows
from the general theory of Banach lattices that the norm dual space .L˚/0 admits a
decomposition into the direct sum

.L˚/0 D .L˚/0r ˚ .L˚/0s;

where .L˚/0r is the band of regular, i.e., order continuous functionals, and .L˚/0s is
the band of singular functionals that are disjoint to every regular functional. .L˚/0r
can be identified with L� : to every 
 2 L� , there corresponds a functional 	  
E 	
 on L˚ , which belongs to .L˚/0r ; this correspondence is a linear one-to-one
isometry between L� with the Orlicz norm and .L˚/0r with the dual norm. In what
follows it is convenient to consider the above functional associated with 
 as the
measure with the density 
 with respect to P. If ˚ takes value C1, then elements
of .L˚/0s are purely finitely additive measures that vanish on P-null sets. We shall
deal with the case where ˚ takes only finite values. Then elements of .L˚/0s are
characterized by the following property: � 2 .L˚/0s if and only if �.	/ D 0 for
all 	 2 L1. A sufficient condition for .L˚/0s D f0g is the �2-condition: there are
x0 > 0 and K > 0 such that

˚.2x/ � K˚.x/; x � x0:

Let us return to the utility maximization problem. Define a Young function ˚ by

˚.x/ D �U.�jxj/C U.0/; x 2 R: (6)

Put C D .A � L0C/ \ L˚ and introduce the set

R D f� 2 .L˚/0W�.1/ D 1 and �.	/ � 0 for every 	 2 C g

of “separating” functionals. Note that functionals in R are positive since any
negative random variable from L˚ belongs to C . In particular, if � 2 R, then
�r and �s are positive, where � D �r C�s is the decomposition of � into the sum
of regular and singular components.

Here is the main result of this section. As usual, min stands for the infimum that
is attained and min¿ D C1. Recall that V is defined in (4).

Theorem 1. Let Assumptions 1 and 2 be satisfied. Then

u.x/ D min
y�0 Œv.y/C xy�; x 2 R; (7)

where v.0/ D V.0/ and

v.y/ D min
�2R

�
yk�sk C EV

�
y

d�r

dP

��
(8)

D min
Q2Q

�
ya.Q/C E V

�
y

dQ
dP

��
; y > 0; (9)
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where

Q D fQ is a probability measureW Q 
 P; dQ=dP 2 L� ; a.Q/ < 1g;

a.Q/ D sup
	2C WEU.�	�/>�1

EQ	: (10)

It is easy to express � via V and, thus, to rewrite the condition dQ=dP 2 L� in
the definition of Q in terms of V .

The proof of the theorem uses several lemmas. The first one provides a reduction
of our optimization problem to a similar one in the space L˚ .

Lemma 1. We have

u.x/ D sup
	2C ; U.xC	/2L1

E U.x C 	/;

where C is the closure of C in the norm of L˚ .

Proof. Define

Ax D f	 2 A W E U.x � 	�/ > �1g:

Obviously, the supremum in (5) can be taken over Ax . Put also

Cx D .Ax � L0C/ \ L˚;

so we have

u.x/ D sup
	2Ax

EU.x C 	/ D sup
	2Ax ; n2N

EU.x C 	 ^ n/

D sup
	2Cx ; U.xC	/2L1

E U.x C 	/: (11)

Next, we show that the supremum in the last expression does not change if Cx
is replaced by Cx . To this end, let F.	/ D �E U.x C 	/, 	 2 L˚ , be a convex
function on L˚ . Let also B be the open ball of radius 1=2 (in the Luxemburg norm)
centered at 0 2 Cx in L˚ . By the definition of the Luxemburg norm, E˚.2	/ � 1,
	 2 B . Hence, for 	 2 B ,

F.	/ D �
Z
U.x C 	/ dP D

Z
f	��jxjg

C
Z

f	<�jxjg

� jU.x � jxj/j C
Z

f	<�jxjg
�
˚.2	/ � U.0/� dP

� jU.x � jxj/j C jU.0/j C 1;
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i.e., F is bounded from above on B . Applying Lemma 2 below, we obtain that Cx
can be replaced by Cx in (11), i.e.,

u.x/ D sup
	2Cx ; U.xC	/2L1

E U.x C 	/:

Finally, we shall prove that, for every x 2 R,

f	 2 Cx; U.x C 	/ 2 L1g D f	 2 C ; U.x C 	/ 2 L1g:

The inclusion � is trivial. Let 	 2 C and U.x C 	/ 2 L1. Our goal is to show that
	 2 Cx . Choose any ˛ 2 .0; 1/. Since C is a cone, its closure C is also a cone.
Therefore, ˛	 2 C and there are 	n 2 C such that N˚.	n � ˛	/�!

n!10 and, hence,

N˚.	
�
n � ˛	�/�!

n!10. We have

	�
n � x D ˛.	� � x/C .1 � ˛/

�
	�
n � ˛	�

1 � ˛ � x
�
;

hence, due to the convexity of ˚ ,

˚.	�
n � x/ � ˛˚.	� � x/C .1 � ˛/˚

�
	�
n � ˛	�

1 � ˛ � x
�
:

The assumption U.x C 	/ 2 L1 implies ˚.	� � x/ 2 L1. It is also easy to show

that, for n large enough, ˚
�
	�
n �˛	�

1�˛ � x
	

2 L1. Thus, ˚.	�
n �x/ 2 L1 and, hence,

	n 2 Cx . This implies ˛	 2 Cx . Passing to the limit as ˛ " 1, we get 	 2 Cx . ut
Lemma 2. Let X be a topological vector space, A a convex subset of X , and
let F WX ! R [ fC1g be a convex function. If F is bounded from above in a
neighborhood of a point a 2 NA, then

inf
x2AF.x/ D inf

x2 NA
F.x/:

The proof is based on standard arguments and is omitted.
The next lemma will allow us to get rid of singular functionals. The connection

between the existence of a positive element � such that # C � belongs to the polar
coneKı and the boundedness of # on a part ofK was firstly established in Rokhlin
[23, Lemma 2.5] for the space L1. A quantitative version of Rokhlin’s result was
proved in the first version of [11]; however, it did not appear in the final version and
has been published only recently in [12, Lemma 1]. Lemma 8 below taken from [14]
is its generalization. The case of Orlicz spaces needs different arguments comparing
to that of L1. Lemma 3 firstly appeared in [10] in connection with Theorem 21 in
[7], where the dual problem has a form similar to (8). In the lemma ˚ is an arbitrary
Young function with finite values.
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Lemma 3. Let K be a convex cone in L˚ and Kı D f� 2 .L˚/0W�.	/ �
0 for every 	 2 Kg. Fix # 2 .L˚/0. Then

min fk�kW� 2 .L˚/0s; � � 0; # C � 2 Kıg D sup
	2K; E˚.	�/<1

#.	/:

Remark 1. k�k is the dual norm of � 2 .L˚/0. Though we consider the Luxemburg
norm on L˚ , the dual norm of a positive singular functional � is the same if L˚ is
equipped with the Orlicz norm and satisfies

k�k D supf�.	/W 	 � 0; 	 2 L˚; E˚.	/ < C1g; (12)

see [19, Proposition IV.3.4], [7, Proposition 11].

Proof. Put �.	/ D inf f˛ > 0W E˚.	�=˛/ < 1g, 	 2 L˚ . It is easy to see that � is
a convex continuous function, and its Fenchel conjugate ��.�/ D sup	2L˚ Œ�.	/ �
�.	/�, � 2 .L˚/0, satisfies �� D ı�B , where B D f� 2 .L˚/0s W� � 0; k�k � 1g.
Applying Rockafellar’s version [20] of the Fenchel duality theorem, we get .ıK C
r�/� D ıKı�rB for every r > 0. The latter is equivalent to the statement of the
lemma. ut

In the proof of Theorem 1 we shall need to compute the Fenchel conjugate of a
convex integral functional of a special form on the product of Orlicz spaces. This
can be done directly using Theorem 2.6 in [15]; the idea goes back to [22] for the
case of L1. We prefer to discuss this question in a greater generality to establish
a relationship with the notion of f -divergence. In our opinion, an information
theoretical spirit of this notion sheds more light on the subject.

Let f WR ! R [ fC1g be a proper lower semicontinuous convex function with
dom f � RC. Let g be the Fenchel conjugate of f :

g.x/ D sup
y2R

Œxy � f .y/�; x 2 R;

and F the Fenchel conjugate of the convex indicator function ıD , where D D
f.x; y/ 2 R

2Wy C g.x/ � 0g:

F.s; t/ D sup
.x;y/2D

.sx C ty/; .s; t/ 2 R
2: (13)

It can be easily checked (see [9, Lemma 2]) that

F.s; t/ D

8̂
<̂
ˆ̂:

tf
�
s
t

�
; if s � 0 and t > 0,

s
f .1/

1 ; if s > 0 and t D 0,
0; if s D 0 and t D 0,
C1; if s < 0 or t < 0,



276 A.A. Gushchin et al.

where

f .1/

1 D lim
y"C1

f .y/

y
D sup fxW x 2 domgg:

It follows from the formula for the conjugate of a convex integral functional (see
Theorem 2 in [21]) that if � and � are finite positive (countably additive) measures,
then

sup
	;
2L1W
Cg.	/�0

Œ�.	/C �.
/� D EF
�

d�

dP
;

d�

dP

�
: (14)

If domf � .0;C1/, the right-hand side of the above equality is Csiszár’s f -
divergence of � and �. This idea was used in [9] to define the f -divergence
Jf .�; �/ of finitely additive �, � 2 ba as the left-hand side of (14). More
generally, if˚1 and˚2 are Young functions, then one can define the f -divergence of
continuous linear functionals � 2 .L˚1/0, � 2 .L˚2/0 by

Jf .�; �/ D sup
	2L˚1 ; 
2L˚2 W
Cg.	/�0

Œ�.	/C �.
/�: (15)

Being the Fenchel conjugate of the indicator function of the set f.	; 
/ 2 L˚1 �
L˚2 W 
 C g.	/ � 0g, the f -divergence is a convex �..L˚1/0 � .L˚2/0; L˚1 �
L˚2/-lower semicontinuous function on .L˚1/0 � .L˚2/0. The properties of the
f -divergence that we need are gathered in the following lemma.

Lemma 4. Let ˚1 and ˚2 be arbitrary Young functions.

• If � and � are regular functionals, then

Jf .�; �/ D EF
�

d�

dP
;

d�

dP

�
:

• Jf .�; �/ D Jf .�
r ; �r /C Jf .�

s; �s/.

Assume that ˚1 D ˚ , where ˚ is given by (6) and U satisfies Assumption 1,
˚2.x/ 	 jxj, f D V , where V is defined in (4).

• If � is a positive singular functional on L˚ , then Jf .�; 0/ D k�k.
• The level sets of the function �  Jf .�;P/ are weakly� compact, i.e., for

every c 2 R, the set f� 2 .L˚/0W Jf .�;P/ � cg is a compact in the topology
�..L˚/0; L˚/.

A more general case of Orlicz spaces with respect to a family of probability
measures is considered in [17].

Remark 2. A measure � 2 caC can be identified with a regular functional on L˚1

if d�=dP 2 L�1 ; similarly, � 2 caC, if d�=dP 2 L�2 , can be identified with a
regular functional on L˚2 . The first statement of Lemma 4 shows that the quantity
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Jf .�; �/ does not depend on the choice of Orlicz spaces L˚1 and L˚2 . In general,
the notation Jf .�; �/may be ambiguous if underlying spaces L˚1 and L˚2 are not
specified. For example, the expressions Jf .�; 0/ and Jf .�;P/, given� 2 .L˚1/0,
may differ if 0 or P are interpreted as functionals on L1 or on L1 (of course, if �
is not regular).

Proof. For regular � 2 .L˚1/0r , � 2 .L˚2/0r , we have

Jf .�; �/ D sup
	2L˚1 ; 
2L˚2 W
Cg.	/�0

Œ�.	/C �.
/�

� sup
	2L1; 
2L1W
Cg.	/�0

Œ�.	/C �.
/� D EF
�

d�

dP
;

d�

dP

�
;

where the last equality follows from (14). On the other hand, (13) implies that for
	 2 L˚1 , 
 2 L˚2 such that 
C g.	/ � 0,

F

�
d�

dP
;

d�

dP

�
� d�

dP
	 C d�

dP

:

Since d�
dP 2 L�1 , d�

dP 2 L�2 , where �1 and �2 are the corresponding conjugate
functions, the expression on the right in the previous inequality is integrable, and its
expectation is equal to �.	/C �.
/. The first statement follows.

The proof of the second statement goes along the same lines as the proofs of
similar results in [9, 15, 17, 22].

It follows from the definition that

Jf .�; 0/ D sup
	2L˚ ; 
2L1W
�U.�	/

�.	/ D sup
	2L˚ W˚.	C/2L1

�.	/;

and the expression on the right is equal to k�k because of (12).
It remains to prove the last statement. Let 	 be from the unit ball in L˚ . Then

E˚.	/ � 1, hence U.�j	j/ 2 L1. By Jensen’s inequality, EU.	�/ is finite as well.
Thus, U.�	/ 2 L1. From the definition of the f -divergence, Jf .�;P/ � �.	/C
EU.�	/ � �.	/C EU.�j	j/ D �.	/CU.0/� E˚.j	j/ � �.	/CU.0/� 1. This
implies that the level sets are norm bounded. The claim follows from the Banach–
Alaoglu theorem and the lower semicontinuity of the f -divergence. ut
Proof (of Theorem 1). By Lemma 1 and elementary calculations,

u.x/ D sup
	2C ; U.xC	/2L1

EU.x C 	/ D � inf
	2C ; U.xC	/2L1; 
��U.xC	/

E 


D � inf
.	;
/2L˚�L1



E ıf
��U.	/g C ıxCC .	/C E 


�

D � inf
.	;
/2L˚�L1

Œ'1.	; 
/C '2.	; 
/�;
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where

'1.	; 
/ D E ıf
��U.	/g; '2.	; 
/ D ıxCC .	/C E 


We assert that the assumptions of the Attouch–Brezis version [1] of the Fenchel
duality theorem are satisfied for the pair .'1; '2/. Indeed, it is enough to check that
f.	; 
/ 2 L˚�L1WN˚.	/ < 1=2; E j
j < 1=2g � dom '1�dom '2. Put 	1 D xC	 ,
	2 D x, 
1 D �U.	1/, 
2 D 
1 � 
. It was proved in the proof of Lemma 1 that

1 2 L1. Hence, .	1; 
1/ 2 dom'1, .	2; 
2/ 2 dom'2.

By the theorem mentioned above,

u.x/ D min
�2.L˚ /0; �2L1



'�
1 .��;��/C '�

2 .�; �/
�
:

Let us calculate the expression on the right. For .�; �/ 2 .L˚/0 � L1,

'�
2 .�; �/ D x�.1/C ı�

C
.�/C ıf1g.�/:

Next, taking ˚1 D ˚ , ˚2.x/ 	 jxj, f D V (and, hence, g.x/ 	 �U.�x/), we get
from (15) that '�

1 .��;�1/ D JV .�;P/, hence,

u.x/ D min
�2.L˚ /0

h
JV .�;P/C x�.1/C ı�

C
.�/

i
: (16)

Since ı�
C

D ı�
C , we have ı�

C
D ıK , where K D S

y�0 Ky consists of positive
functionals,

Ky D f� 2 .L˚/0W�.1/ D y and �.	/ � 0 for every 	 2 C g:

Thus, (16) implies (7) with

v.y/ D inf
�2Ky

JV .�;P/; y � 0:

Since the sets Ky are weakly� closed, the infimum in the previous formula is
attained by the concluding statement of Lemma 4. By the same lemma,

JV .�;P/ D k�sk C E V
�

d�r

dP

�
:

Moreover, Ky D yR if y > 0, K0 is a cone and contains only singular functionals.
Thus, v.0/ D V.0/ and we have (8) (consider separately the cases R D ¿ and
R ¤ ¿). Finally, since �r.1/ D �.1/ D 1 for every � 2 R, �r is a probability
measure, and (9) follows from Lemma 3. ut
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Remark 3 (cf. [5]). Assume that every 	 2 C satisfies

E˚.�	�/ < 1 for every � > 0;

i.e., 	� belongs to the Orlicz heart M˚ (this happens, in particular, if 	 is bounded
from below). Then

Q D fQ is a probability measureW Q 
 P; dQ=dP 2 L� ; EQ	 � 0 for every 	 2 C g;

a.Q/ D 0 for Q 2 Q, and (9) takes the form

v.y/ D min
Q2Q

�
E V

�
y

dQ
dP

��
; y > 0:

The analysis of the whole proof leads to the following conclusions:

• Since our only aim is to characterize the function v satisfying (7), there is no need
to impose further assumptions on U such as differentiability and strict convexity.
Also, we do not use such assumptions as finiteness of u or v at some point, etc.

• Due to Lemma 1, we succeed to realize Step A with no assumptions on A except
those imposed in Assumption 2. Note that it is not satisfactory to reduce the
original problem to the maximization problem over the set Cx � L˚ (see (11))
or over its closure because these sets are not cones, which is important at Step B.

• At Step B, we introduced an additional variable 
 and applied a version of the
Fenchel duality theorem to obtain the dual characterization of the value function
in (7) and (8). Comparing this part of the proof with a similar proof in [7], we
must admit that the only advantage of introducing this extra variable is a short
proof of the attainment of the minimum in (8).

• Due to Lemma 3, we succeeded to realize Step C, which was not done in [7].
However, instead of singular functionals we obtain the optimization problem (10)
inside the dual problem (9).

3 The Second Problem: U Is Finite on .0;C1/

In this section we impose the following assumptions on the model.

Assumption 3. A utility function U WR ! R [ f�1g is an increasing concave
function, U.x/ is finite on .0;1/ and right-continuous at 0, U.x/ D �1 if x < 0.

Assumption 4. A set A of possible incomes is a convex cone.

Assumption 5. A contingent claim jBj can be superreplicated, that is, there exist
x 2 R and 	 2 A such that x C 	 � jBj; moreover, EU.a / < C1 for some
a > 0, where  D 1C jBj.

It is useful to note that, since U is increasing and concave, Assumption 5 implies
EU.a / < C1 for all a > 0.

Now the value function u has the form
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u.x/ D sup
	2A

EU.x C 	 C B/; x 2 R:

This problem was studied by Cvitanić, Schachermayer, and Wang [8] in the
semimartingale market model with strategies whose wealth process is bounded from
below. A contingent claim B was assumed to be bounded. In this paper we do not
require boundedness assumptions on variables in A and the contingent claim B .
However, we use Assumption 5 which is automatically satisfied if B is bounded.
The idea is to reduce the original problem to a problem in the space L1 with the
weight function  . The use of this space,  L1, which is linearly isometric to L1,
keeps the possibility to use duality approach and allows us to weaken essentially
conditions on the model.

It should be mentioned that Hugonnier and Kramkov [13] suggested another
approach that allowed them to remove the boundedness assumption on B and to
avoid finitely additive measures in the corresponding dual problem as well. Namely,
they extended the original optimization problem considering not only the initial
capital but also the number of units of random endowments as parameters of the
problem.

Let C  D .A � L0C/ \ . L1/. The set of separating functionals is defined by

R D
�
� 2 baCW�

�
1

 

�
D 1; �.	/ � 0 for all 	 2 C  

 



:

Here is the main result of this section. The function V is defined in (4).

Theorem 2. Let Assumptions 3, 4, and 5 be satisfied and R ¤ ¿. Then

u.x/ D min
y�0 Œv.y/C xy�; x 2 M ; (17)

where

M D fx 2 RW there are 	 2 A and " > 0 such that x C 	 C B � " g;

v.0/ D V.0/ and, for y > 0,

v.y/ D min
�2R

�
E
�
V

�
y

 

d�r

dP

��
Cy�

�
B

 

�

(18)

D min
�2 .R�baC/\caC

�
E
�
V

�
y

 

d�

dP

��
Cy�

�
B

 

�
Cyg.�;B/



; (19)

g.�;B/ D sup

C B

 2L1
C

8<
:�.
/� inf

	2 C 

 

ess sup Œ.
�	/ �
9=
;: (20)
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Moreover,

.R � baC/\ caC D
(
� 2 caCW�.	/ � 1 for every 	 2

 
1

 
C
�

C  

 

�!
\ L1C

)
;

where the closure of C 

 
is taken with respect to the norm of L1.

In the proof of the theorem the following lemmas are used. Their proofs are given
in [14].

Lemma 5. Let Assumptions 4 and 5 be satisfied. Then

• �
�
1
 

�
> 0 for every 0 ¤ � 2 K , where

K D
�
� 2 baCW�.	/ � 0 for all 	 2 C  

 



:

• R is a convex compact in the topology �.ba; L1/;
• R D ¿ if and only if C 

 
D L1.

Lemma 6. Let Assumptions 4 and 5 be satisfied and R ¤ ¿. Then, for
� 2 R � baC,

min
�2.R��/\baC

�

�
B

 

�
D sup


C B
 2L1

C

f�.
/ � ı�
R.
/g :

Lemma 7. Let Assumptions 4 and 5 be satisfied and R ¤ ¿. Then, for 
 2 L1,

inf
	2 C 

 

ess sup .
 � 	/ D ı�
R.
/:

Lemma 8. Let Assumptions 4 and 5 be satisfied and R ¤ ¿. Let � 2 ba. The
following statements are equivalent:

• � 2 R � baC;

• �.	/ � 1 for every 	 2
�
1
 

C
�

C 

 

		
\ L1C .

Proof (of Theorem 2). Let x 2 M . Then

u.x/ D sup
	2 C 

 

EU.x C 	 C B/ D sup

	2
�

C 

 

�EU.x C 	 C B/

D sup

	2
�

C 

 

�
; U.xC	 CB/2L1

EU.x C 	 C B/: (21)
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Indeed, the third equality is trivial, and the second one follows from Lemma 2 and
the definition of M . As for the first equality, let 	 2 A be such that EU.x C 	 C
B/ > �1. Then x C 	 C B � 0 and, hence, 	 ^ .n / 2 C  . Now limn EU.x C
	 ^ .n /C B/ D EU.x C 	 C B/ by the monotone convergence theorem.

Similar to the proof of Theorem 1, using (21), we represent u in the form

u.x/ D � inf
.	;
/2L1�L1

f'1.	; 
/C '2.	; 
/g;

where '1; '2WL1 � L1 ! R [ fC1g are defined by

'1.	; 
/ D E ıf
��U.	 /g.	; 
/; '2.	; 
/ D ı
x
 C
�

C 

 

�
C B
 

.	/C E 
:

For these '1, '2, and for x 2 M , the Attouch–Brezis version [1] of the Fenchel
duality theorem can be applied again, which gives

u.x/ D min
.�;�/2ba�L1

f'�
1 .��;��/C '�

2 .�; �/g: (22)

It is easy to see that

'�
2 .�; �/ D ıK .�/C x�

�
1

 

�
C �

�
B

 

�
C ıf1g.�/;

where K is defined in Lemma 5. One can give a general formula for '�
1 ; however,

to calculate the right-hand side of (22), it is enough to find '�
1 .��;��/ only for

� 2 K � baC and � D 1. For such � and �, taking f .y/ D V.y/ and g.x/ D
�U.�x/,

'�
1 .��;��/ D sup

.	;
/2L1�L1; 
Cg.	 /�0
Œ�.	/C E 
�

� sup
.	;
/2L1�L1; 
Cg.	 /�0

Œ�.	/C E 
� D EF
�
1

 

d�r

dP
; 1

�
; (23)

where F is defined in (13) and the last equality follows from Theorem 1 in [22]. On
the other hand, let 	 2 L1, 
 2 L1, 
C g.	 / � 0. Then, in particular, 	 � 0 and,
by the definition of F ,

F

�
1

 

d�r

dP
; 1

�
� d�r

dP
	 C 
;

therefore,

EF
�
1

 

d�r

dP
; 1

�
� �r.	/C E 
 � �.	/C E 
: (24)
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Combining (23) and (24), we get

'�
1 .��;��/ D EV

�
1

 

d�r

dP

�
:

Therefore,

u.x/ D min
�2K

�
E
�
V

�
1

 

d�r

dP

��
C x�

�
1

 

�
C �

�
B

 

�

:

Now (17) with v given by (18) follows from Lemma 5; in particular, the lower bound

in (18) is attained because R is a weak� compact and the function� EV
�
1
 

d�r

dP

	
is weak� lower semicontinuous on ba. An easy way to check the last statement is to
use the facts that EV.d�r=dP/ D JV .�;P/ (where the V -divergence corresponds
to L˚1 D L˚2 D L1) and that the V -divergence is weak� lower semicontinuous in
both variables; see [9].

Using the fact that V is decreasing (since U.x/ D �1 for negative x), (18) can
be rewritten in the form

v.y/ D min
�C�2R;
�2caC;
�2baC

�
E
�
V

�
y

 

d�

dP

��
C y�

�
B

 

�
C y�

�
B

 

�

:

Hence, to prove (19) it remains to note that, by Lemmas 6 and 7,

min
�2.R��/\baC

�

�
B

 

�
D g.�;B/:

The final statement of the theorem is stated in Lemma 8. ut
Finally, we make the following conclusions from the results of this section:

• As in the previous section, we do not need any additional assumptions on the
function U such as differentiability and strict convexity and also on the finiteness
of u or v at some point.

• At Step A, we reduced our problem to an appropriate space (essentially,  L1)
only for x 2 M , which was used when passing to the closure of C 

 
; see (21).

In [14] the proof is different and the closure is not taken; however, the restriction
x 2 M is also needed there to apply a duality theorem.

• At Step B, we introduced an additional variable 
 and applied a version of the
Fenchel duality theorem to obtain the dual characterization of the value function
in (17) and (18). Comparing to the proof in [14], more precisely, comparing the
assumptions that are needed to apply Rockafellar’s result [22] on the conjugate
of a convex integral functional, one can see that this trick permits us to drop an
(rather mild) additional assumption. Again, the proof of the attainment of the
lower bound in (18) is more simple here.
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• As in the previous section, we succeeded to realize Step C, which was not done
in [8]. However, instead of singular functionals we again obtain the optimization
problem (20) inside the dual problem (19).
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Maximization of the Survival Probability
by Franchise and Deductible Amounts
in the Classical Risk Model

Olena Ragulina

Abstract We consider the classical risk model when an insurance company has
the opportunity to adjust franchise amount continuously. The problem of optimal
control by franchise amount is solved from viewpoint of survival probability
maximization. We derive the Hamilton–Jacobi–Bellman equation for the optimal
survival probability and prove the existence of a solution of this equation with
certain properties. The verification theorem gives the connection between this
solution and the optimal survival probability. Then we concentrate on the case of
exponentially distributed claim sizes. Finally, we extend the obtained results to the
problem of optimal control by deductible amount.

1 Introduction

This contribution deals with the problem of survival probability maximization
in the classical risk model when an insurance company has the opportunity to
choose franchise and deductible amounts continuously. A franchise is a provision
in the insurance policy whereby the insurer does not pay unless damage exceeds the
franchise amount, whereas, deductible is a provision whereby the insurer pays any
amounts of damage that exceed the deductible amount. As a rule, these provisions
are applied when the insured’s losses are relatively small to deter the large number
of trivial claims. Moreover, a deductible stimulates the insured to take more care of
the insured property.

Normally, a franchise and a deductible imply also reduction of insurance premi-
ums. Thus, changes in claim and premium sizes have an influence on the survival
probability of an insurance company. Our problem is to maximize the survival

O. Ragulina (�)
Donetsk National University, Universitetskaya 24, 83001 Donetsk, Ukraine
e-mail: lena_ragulina@mail.ru

V. Korolyuk et al. (eds.), Modern Stochastics and Applications, Springer Optimization
and Its Applications 90, DOI 10.1007/978-3-319-03512-3__16,
© Springer International Publishing Switzerland 2014

287

mailto:lena_ragulina@mail.ru


288 O. Ragulina

probability adjusting franchise or deductible amounts. We apply stochastic control
theory to solve this problem. Similar approaches were used to solve optimal control
problems by investment [1, 3, 6, 7, 10], reinsurance [9, 14], or investment and
reinsurance simultaneously [8, 12, 15, 16]. The problems of optimal control by
franchise and deductible amounts are considered in Sects. 2 and 3, respectively.

2 Optimal Control by Franchise Amount

In this section, we solve a problem of optimal control by franchise amount from
viewpoint of survival probability maximization.

2.1 Description of the Model

Let .);F; .Ft /t�0;P/ be a stochastic basis and all objects be defined on it. In the
classical risk model (see [2, 4, 5, 13]) the number of claims in the time interval Œ0; t �
is a Poisson process N.t/ with intensity � > 0, and the claim sizes are nonnegative
i.i.d. random variables Yi , i � 1, independent of N.t/, with a distribution function
F.y/ D PfYi � yg, EYi D � < 1. Let 
i be the occurrence time of the i th claim.
The initial surplus equals x � 0, and c > 0 is a constant premium intensity. We
assume that c > ��. If the insurance company uses the expected value principle for
premium calculation, then the safety loading is defined as � D c=�� � 1.

In addition, we assume that the insurance company uses a franchise and adjusts
its amount dt at every time t � 0 based on the information available just before time
t , i.e. every admissible strategy .dt / of franchise amount choice is a predictable
process with respect to the natural filtration generated by N.t/ and Yi , 1 � i �
N.t/. Moreover, we assume that 0 � dt � dmax. Here dmax is a maximum allowed
amount, and 0 < F.dmax/ < 1. In particular, if dt D 0, then a franchise is not used
at time t . The safety loading � > 0 is constant. In this case the premium intensity is
given by

c.dt / D �.1C �/

Z C1

dt

y dF.y/:

Let X.dt /
x .t/ be a surplus of the insurance company at time t if its initial surplus

is x and the strategy .dt / is used. Then

X.dt /
x .t/ D x C

Z t

0

c.ds/ ds �
XN.t/

iD1 Yi I fYi > d
i g ; (1)
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where I f�g is an indicator of event. The ruin time under the admissible strategy

.dt / is defined as 
.dt /x D inf
n
t � 0 W X.dt /

x .t/ < 0
o
, and the corresponding infinite-

horizon survival probability is given by '.dt /.x/ D P
n


.dt /
x D 1

o
.

Our aim is to maximize the survival probability over all admissible strategies
.dt /, i.e. to find

'�.x/ D sup
.dt /

'.dt /.x/;

and show that there exists an optimal strategy .d�
t / such that '�.x/ D '.d

�
t /.x/ for

all x � 0. We will show later that the optimal strategy is a function of the initial
surplus only.

We apply approaches of [1, 6, 7, 9, 14, 15] for solving this problem. First of
all, we derive the Hamilton–Jacobi–Bellman equation for '�.x/, provided that this
function is differentiable. Next, we prove the existence of a solution of this equation
that satisfies certain conditions. Finally, we establish the connection between this
solution and '�.x/ that gives us a way of finding the optimal survival probability.

2.2 Hamilton–Jacobi–Bellman Equation

For arbitrary h > 0 consider the strategy .dt / such that franchise amount at time t
equals

dt D
(
d if 0 � t � h ^ 
1;
Qdt�.h^
1/

�
X
.d/
x

�
h ^ 
1

�	
if t > h ^ 
1 and h ^ 
1 < 
.d/x ;

where .d/ is an arbitrary admissible constant strategy,
� Qdt .x/

�
is an admissible stra-

tegy such that '. Qdt /.x/ > '�.x/ � ", here " > 0 is an arbitrary fixed number.
For this strategy .dt / by the law of total probability we have

'�.x/ � '.dt /.x/ D e��h'.dt /
�
x C c.d/h

�

C
hZ

0

�e��s
 
F.d/ '.dt /

�
x C c.d/s

�

C
Z d_.xCc.d/s/

d

'.dt /
�
x C c.d/s � y� dF.y/

!
ds

� e��h'��x C c.d/h
�C

hZ

0

�e��s
 
F.d/ '��x C c.d/s

�

C
Z d_.xCc.d/s/

d

'��x C c.d/s � y� dF.y/

!
ds � ": (2)
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Letting " ! 0 and doing elementary calculations in (2) we arrive at

'��x C c.d/h
� � '�.x/

h
e��h � 1 � e��h

h
'�.x/

C1

h

hZ

0

�e��s
 
F.d/'��x C c.d/s

�

C
Z d_.xCc.d/s/

d

'��x C c.d/s � y� dF.y/

!
ds � 0: (3)

Assuming that '�.x/ is differentiable on Œ0;C1/ and letting h ! 0 in (3) we
obtain

.1C �/

Z C1

d

y dF.y/
�
'�.x/

�0 C �
F.d/ � 1�'�.x/

C
Z d_x

d

'�.x � y/ dF.y/ � 0: (4)

Inequality (4) is true for all d 2 Œ0; dmax�, and equality in (4) is attained when
d is optimal at initial time. This yields the Hamilton–Jacobi–Bellman equation for
'�.x/

sup
d2Œ0; dmax�

�
.1C �/

Z C1

d

y dF.y/
�
'�.x/

�0

C �
F.d/ � 1�'�.x/C

Z d_x

d

'�.x � y/ dF.y/

!
D 0: (5)

Note that (5) can be rewritten in the following way:

sup
d2Œ0; dmax�

�
Ad'�.x/

� D 0;

where Ad is an infinitesimal generator of X.dt /
x .t/ as dt 	 d .

Rewrite (5) in a more convenient form. Since 0 < F.dmax/ < 1, then expressing�
'�.x/

�0
from (4) gives

�
'�.x/

�0 D inf
d2Œ0; dmax�

 �
1 � F.d/�'�.x/ � R d_x

d
'�.x � y/ dF.y/

.1C �/
R C1
d

y dF.y/

!
: (6)

Remark 1. Note that if there exists one solution of (5) or (6), then there exist
infinitely many solutions of these equations which differ one from other with a
multiplicative constant.
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2.3 Existence Theorem

Now we prove the existence of a solution to (6).

Theorem 1. If Yi , i � 1, have the density function f .y/, then there exists a
solution V.x/ of (6) which is nondecreasing and continuously differentiable on
Œ0;C1/, with V.0/ D �=.1C �/, and �=.1C �/ � limx!C1 V.x/ � 1.

Proof. Define a sequence of functions Vn.x/, n � 0, on Œ0;C1/ in the following
way. Let V0.x/ D '.0/.x/, where '.0/.x/ is the survival probability under the
strategy dt 	 0, and

V 0
n.x/ D inf

d2Œ0; dmax�

 �
1 � F.d/�Vn�1.x/ � R d_x

d
Vn�1.x � y/ dF.y/

.1C �/
R C1
d

y dF.y/

!
;

Vn.0/ D �=.1C �/; (7)

for n � 1. This gives

Vn.x/ D �

1C �
C
Z x

0

V 0
n.u/ du: (8)

Since Yi , i � 1, have the density function f .y/ and EYi < 1, then V0.x/ is
continuously differentiable on Œ0;C1/ and satisfies the equation

V 0
0 .x/ D V0.x/ � R x

0
V0.x � y/f .y/ dy

.1C �/
R C1
0

yf .y/ dy
; V0.0/ D �

.1C �/
: (9)

Since � > 0, there exists a unique solution of (9) that is nondecreasing function, and
limx!C1 V0.x/ D 1; see [13].

Equation (9) and equality (7) for n D 1 yield V 0
1 .x/ � V 0

0 .x/ for all x � 0.
Therefore, by (8) we arrive at V1.x/ � V0.x/. Besides, (7) for n D 1 and properties
of V0.x/ give that V 0

1 .x/ is nonnegative and continuous on Œ0;C1/.
Let V 0

n.x/ � V 0
n�1.x/ for all x � 0 (this implies Vn.x/ � Vn�1.x/), and V 0

n.x/

is nonnegative and continuous on Œ0;C1/. Then for all d 2 Œ0; dmax� and x � 0,
we have

�
1 � F.d/�Vn�1.x/ �

Z d_x

d

Vn�1.x � y/f .y/ dy

D
Z C1

d_x
Vn�1.x/f .y/ dy C

Z d_x

d

�Z x

x�y
V 0
n�1.u/ du

�
f .y/ dy

�
Z C1

d_x
Vn.x/f .y/ dy C

Z d_x

d

�Z x

x�y
V 0
n.u/ du

�
f .y/ dy

D �
1 � F.d/�Vn.x/ �

Z d_x

d

Vn.x � y/f .y/ dy:
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This together with (7) yields that V 0
nC1.x/ � V 0

n.x/ for all x � 0 (therefore,
VnC1.x/ � Vn.x/), and V 0

nC1.x/ is nonnegative and continuous on Œ0;C1/.
Thus, by induction V 0

n.x/, n � 0, is a nonincreasing sequence of functions, which
are nonnegative and continuous on Œ0;C1/. Hence, there exists a pointwise limit
of these functions. We denote it by v.x/.

By (8) we obtain that Vn.x/, n � 0, is a nonincreasing sequence of nondecreasing
functions, and this sequence is bounded below by the value of these functions at
x D 0, i.e. �=.1 C �/. Hence, there exists a pointwise limit of these functions. By
Cauchy criterion this gives that the number sequence Vn.z/, n � 0, is fundamental
for every fixed z � 0.

Now we show by Cauchy criterion that V 0
n.x/, n � 0, converges uniformly over

every Œ0; z�, where 0 < z < 1. For all m � 1 and n � 1 we have that

sup
x2Œ0; z�

ˇ̌
V 0
m.x/ � V 0

n.x/
ˇ̌

� sup
x2Œ0; z�;

d2Œ0; dmax �

ˇ̌
ˇ̌
ˇ
�
1�F.d/��Vm�1.x/�Vn�1.x/

�
.1C �/

R C1
d

yf .y/ dy

�
R d_x
d

�
Vm�1.x � y/ � Vn�1.x � y/�f .y/ dy

.1C �/
R C1
d

yf .y/ dy

ˇ̌
ˇ̌
ˇ

� sup
d2Œ0; dmax�

 
1 � F.d/

.1C �/
R C1
d

yf .y/ dy

!
sup
x2Œ0; z�

ˇ̌
Vm�1.x/ � Vn�1.x/

ˇ̌

D
ˇ̌
Vm�1.z/ � Vn�1.z/

ˇ̌
.1C �/�

: (10)

Here we used the facts that sup
d2Œ0; dmax�

��
1 � F.d/

�.�
.1C �/

R C1
d

yf .y/ dy
� �

is

attained at d D 0, and moreover

sup
x2Œ0; z�

ˇ̌
Vm�1.x/ � Vn�1.x/

ˇ̌ D sup
x2Œ0; z�

ˇ̌
ˇR x0

�
V 0
m�1.u/ � V 0

n�1.u/
�

du
ˇ̌
ˇ

D
ˇ̌
ˇR z
0

�
V 0
m�1.u/ � V 0

n�1.u/
�

du
ˇ̌
ˇ D ˇ̌

Vm�1.z/ � Vn�1.z/
ˇ̌
:

By (10) V 0
n.x/, n� 0, converges uniformly on any Œ0; z�. Thus, v.x/ is continuous

on any interval; hence, it is continuous on Œ0;C1/. Denote

V.x/ D �

1C �
C
Z x

0

v.u/ du: (11)

This gives that V.x/ is continuously differentiable on Œ0;C1/ and
V 0.x/ D v.x/. Since 0 � v.x/ � V 0

0 .x/, then (11) yields the relations
�=.1C �/ � limx!C1 V.x/ � 1. Furthermore,
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ˇ̌
ˇ̌
ˇ inf
d2Œ0; dmax�

 �
1 � F.d/�Vn�1.x/ � R d_x

d
Vn�1.x � y/ dF.y/

.1C �/
R C1
d

y dF.y/

!

� inf
d2Œ0; dmax�

 �
1 � F.d/�V.x/ � R d_x

d
V .x � y/ dF.y/

.1C �/
R C1
d

y dF.y/

!ˇ̌
ˇ̌
ˇ

� sup
d2Œ0; dmax�

ˇ̌
ˇ̌
ˇ
�
1 � F.d/��Vn�1.x/ � V.x/�
.1C �/

R C1
d

y dF.y/

�
R d_x
d

�
Vn�1.x � y/ � V.x � y/� dF.y/
.1C �/

R C1
d

y dF.y/

ˇ̌
ˇ̌
ˇ

� 1

.1C �/�

Z x

0

ˇ̌
V 0
n�1.u/ � V 0.u/

ˇ̌
du � x

.1C �/�
sup

u2Œ0; x�

ˇ̌
V 0
n�1.u/ � V 0.u/

ˇ̌
;

and limn!1 supu2Œ0; x�
ˇ̌
V 0
n�1.u/ � V 0.u/

ˇ̌ D 0. Letting n ! 1 in (7) yields that
V.x/ is a solution of (6). Thus, the theorem is proved. ut

2.4 Verification Theorem

In this subsection, we prove that '�.x/ coincides with V.x/
ı�

limx!C1 V.x/
�
.

Theorem 2. Let the surplus process X.dt /
x .t/ be defined by (1) and V.x/ be the

solution of (6) that satisfies conditions of Theorem 1. Then for any x � 0 and
arbitrary admissible strategy .dt /, we have

'.dt /.x/ � V.x/
ı�

limx!C1 V.x/
�
; (12)

and equality in (12) is attained under the strategy .d�
t / D �

d�
t

�
X
.d�
t /

x .t�/��, where�
d�
t .x/

�
minimizes the right-hand side of (6), i.e.

'�.x/ D '.d
�
t /.x/ � V.x/

ı�
limx!C1 V.x/

�
:

Proof. Let V.x/ be the solution of (6) that satisfies conditions of Theorem 1 with the
corresponding strategy .d�

t / D �
d�
t .x/

�
; and .dt / is an arbitrary admissible strategy.

Moreover, we suppose that V.x/ D 0 for all x < 0, and V 0.x/ at x D 0means right-
sided derivative of V.x/ at this point. Applying Dynkin’s formula (see [11], p. 11)
to the process V

�
X
.dt /
x

�
t ^ 
.dt /x

��
we get
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E V
�
X
.dt /
x

�
t ^ 
.dt /x

�	

D V.x/C E

0
@ t^
.dt /xR

0

�
.1C �/

R C1
ds

y dF.y/ V 0�X.dt /
x .s/

�	
ds

C
t^
.dt /xR
0

��
Fcl.ds/ � 1�V.X.dt /

x /C R ds_X.dt /x

ds
V
�
X
.dt /
x � y� dF.y/

�
ds

1
A :

Similar formula holds for V
�
X
.d�
t /

x

�
t ^ 


.d�
t /

x

�	
as well. Therefore, for all x � 0

and t � 0

E V
�
X.dt /
x

�
t ^ 
.dt /x

�	 � V.x/ D E V
�
X
.d�
t /

x

�
t ^ 
.d�

t /
x

�	
; (13)

since V.x/ is a solution of (6), and hence it is a solution of (5).
Now we show that for any admissible strategy .dt /, the process X.dt /

x .t/ is
unbounded with probability 1 provided that ruin does not occur, i.e. for all X > 0

P
n
X.dt /
x .t/ � X 8t � 0; 
.dt /x D 1

o
D 0: (14)

The probability of more than .X C c/=dmax claims of size larger than dmax

within any unit time is positive, and the claim process has stationary independent
increments. Hence, by the Borel–Cantelli lemma with probability 1, there exists
integer T > 0 such that there are more than .X C c/=dmax claims of this kind in the
time interval ŒT; T C 1�. If in addition X.dt /

x .t/ � X for all t 2 Œ0; T �, then

X.dt /
x .T C 1/ < X C c � dmax.X C c/=dmax D 0;

i.e. 
.dt /x < 1. This yields (14).
Now we fix arbitrary admissible strategy .dt / and small enough " > 0. Let z > x

be large enough number, such that 1 � '.0/.z/ < ". Denote

Tz D inf
˚
t > 0 W X.dt /

x .t/ D z
�
:

By (14) Tz < 1 with probability 1 provided that 
.dt /x D 1 with probability 1.
Define the strategy

�
d
Tz
t

�
in the following way:

d
Tz
t D

�
dt if t � Tz;

0 if t > Tz:
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Then

P
n

.dt /x D 1; 


�
d
Tz
t

�
x < 1

o
� 1 � '.0/.z/ < ": (15)

Furthermore, P
�

limt!C1X

�
d
Tz
t

�
x .t/ D C1; 


�
d
Tz
t

�
x D 1



D 1 since

PfTz < 1g D 1 and P
n
limt!C1X

.0/
x .t/ D C1; 


.0/
x D 1

o
D 1.

Relation (13), applied to the strategy
�
d
Tz
t

�
, gives

EV
�
X

�
d
Tz
t

�
x

�
t ^ 


�
d
Tz
t

�
x

��
� V.x/ D EV

�
X
.d�
t /

x

�
t ^ 
.d�

t /
x

�	
: (16)

Since V
�
X

�
d
Tz
t

�
x

�



�
d
Tz
t

�
x

�	 D 0 and V
�
X
.d�
t /

x

�


.d�
t /

x

�	 D 0, then by (15) letting

t ! 1 in (16) yields

P
n


.dt /
x D 1

o
� " � P

�


.dt /
x D 1; 


�
d
Tz
t

�
x D 1




� V.x/

limx!C1 V.x/
� P

n


.d�
t /

x D 1
o
; (17)

where �=.1C �/ � limx!C1 V.x/ � 1.
Note that " > 0 is arbitrary in (17), whence the theorem follows. ut

Remark 2. In the proof of Theorem 2 we used arbitrary solution of (6) that satisfies
conditions of Theorem 1. However, notice that Theorem 2 also implies uniqueness
of such solution. The corresponding strategy .d�

t / may not be unique in the
general case.

2.5 Exponentially Distributed Claim Sizes

In this subsection, we consider a case of exponentially distributed claim sizes.

Theorem 3. Let the surplus process X.dt /
x .t/ be defined by (1), claim sizes be

exponentially distributed with mean �, and dmax D �. Then the strategy dt .x/ 	 0

is not optimal.

Proof. If the strategy dt .x/ 	 0 is optimal, then '.0/.x/ is the solution of (6) which
satisfies conditions of Theorem 1, i.e. V 0

1 .x/ D V 0
0 .x/ for all x � 0. Now we show

that this is not true.
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Indeed, note that

V0.x/ D'.0/.x/ D 1 � 1

1C �
exp

�
� �x

.1C �/�

�
;

V 0
1 .x/ D inf

d2Œ0; ��

0
@exp

�
� d
�

	 �
1 � 1

1C� exp
�
� �x
.1C�/�

		

.1C �/.d C �/ exp
�
� d
�

	

�
R d_x
d

�
1 � 1

1C� exp
�
� �.x�y/
.1C�/�

		
1
�

exp
�
� y

�

	
dy

.1C �/.d C �/ exp
�
� d
�

	
1
A :

Let x � 0 be an arbitrary fixed number. Consider two cases.
(1) If d � x (additionally, x 2 Œ0; ��), then

inf
d2Œx; ��

0
@1C � � exp

�
� �x
.1C�/�

	

.1C �/2.d C �/

1
A D

1C � � exp
�
� �x
.1C�/�

	

2�.1C �/2

at d D �.
(2) If d < x, then

inf
d2Œ0; �^x�

0
@exp

�
� �x
.1C�/�

	 �
exp

�
�d

.1C�/�
	

� 1
1C�

	

.1C �/.d C �/

1
A

D �

�.1C �/2
exp

�
� �x

.1C �/�

�

at d D 0 because for all d > 0

0
@exp

�
�d

.1C�/�
	

� 1
1C�

.d C �/

1
A

0

d

D
�
�d
�

� 1
	

exp
�

�d
.1C�/�

	
C 1�

.1C �/.d C �/2
� > 0:

Notice that

1C � � exp
�
� �x
.1C�/�

	

2�.1C �/2
� �

�.1C �/2
exp

�
� �x

.1C �/�

�

for x � x0, where x0 D .1C�/�
�

ln
�
1C �

1C�
�

and

x0 D .1C �/�

�

 
�

1C �
C
X1

kD1
.�1/k
k

�
�

1C �

�k!
< �:



Maximization of the Survival Probability 297

Here we used the fact that
P1

kD1
.�1/k
k

�
�

1C�
�k

is a Leibniz series; therefore, its sum
is negative.

Hence, we arrive at

V 0
1 .x/ D

8̂
ˆ̂̂<
ˆ̂̂̂
:

1C � � exp
�
� �x
.1C�/�

	

2�.1C �/2
if x 2 Œ0; x0�;

�

�.1C �/2
exp

�
� �x

.1C �/�

�
if x 2 .x0;C1/:

This yields V 0
1 .x/ ¤ V 0

0 .x/ for all x 2 Œ0; x0�, which completes the proof. ut
Remark 3. Theorem 3 implies that we can always increase the survival probability
adjusting the franchise amount for exponentially distributed claim sizes.

Example 1. If claim sizes are exponentially distributed with mean � D 10,
dmax D �, and � D 0:1, then

'.0/.x/ � 1 � 0:9090909 e�x=110; x � 0;

'�.x/ �
�
0:111048767 ex=22 if x � 8:93258;

1 � 0:90382792 ex=110 if x > 8:93258;

d�
t .x/ D

�
10 if x � 8:93258;

0 if x > 8:93258:

3 Optimal Control by Deductible Amount

Now we assume that in the classical risk model the insurance company has the
opportunity to use a deductible and adjust its amount Ndt at every time t � 0 based
on the information available just before time t . That is, every admissible strategy� Ndt
�

of deductible amount choice is a predictable process with respect to the
natural filtration generated by N.t/ and Yi , 1� i �N.t/. Furthermore, we assume
that 0 � Ndt � Ndmax, where Ndmax is a maximum allowed deductible amount, and
0 < F

� Ndmax
�
< 1. Let the safety loading � > 0 be constant, and then the premium

intensity is given by

c
� Ndt
� D �.1C �/

Z C1

Ndt

�
y � Ndt

�
dF.y/:

Let X
. Ndt /
x .t/ denote a surplus of the insurance company at time t if its initial

surplus equals x and the strategy
� Ndt
�

is used. Then
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X
. Ndt /
x .t/ D x C

Z t

0

c
� Nds
�

ds �
XN.t/

iD1
�
Yi � Nd
i

�C
; (18)

where
�
Yi � Nd
i

�C D max
˚
Yi � Nd
i ; 0

�
.

The ruin time and the infinite-horizon survival probability under the

admissible strategy
� Ndt
�

are defined as 

. Ndt /
x D inf

�
t � 0 W X. Ndt /

x .t/ < 0



and

'.
Ndt /.x/ D P

�


. Ndt /
x D 1



, respectively.

Our aim is to find

'�.x/ D sup
. Ndt /

'.
Ndt /.x/;

and show that there exists an optimal strategy
� Nd�
t

�
such that '�.x/ D '.

Nd�
t /.x/ for

all x � 0.
Applying the techniques of Sect. 2.2 we arrive at the Hamilton–Jacobi–Bellman

equation for '�.x/

sup
Nd2Œ0; Ndmax�

�
.1C �/

Z C1

Nd
�
y � Nd� dF.y/

�
'�.x/

�0

C �
F
� Nd� � 1�'�.x/C

Z xC Nd

Nd
'� �x C Nd � y� dF.y/

!
D 0

or, that is equivalent,

�
'�.x/

�0 D infNd2Œ0; Ndmax�

0
@
�
1 � F � Nd��'�.x/ � R xC Nd

Nd '� �x C Nd � y� dF.y/

.1C �/
R C1

Nd
�
y � Nd� dF.y/

1
A
(19)

provided that function '� is differentiable on Œ0;C1/.
We can formulate following additional results.

Theorem 4. If Yi , i � 1, have the density function f .y/, then there exists a
solution V.x/ of (19) which is nondecreasing and continuously differentiable on
Œ0;C1/, with V.0/ D �=.1C �/, and �=.1C �/ � limx!C1 V.x/ � 1.

Theorem 5. Let the surplus process X
. Ndt /
x .t/ be defined by (18) and V.x/ be the

solution of (19) that satisfies conditions of Theorem 4. Then for any x � 0 and
arbitrary admissible strategy

� Ndt
�
, we have

'.
Ndt /.x/ � V.x/

ı�
limx!C1 V.x/

�
; (20)
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and equality in (20) is attained under the strategy
� Nd�
t

� D
� Nd�

t

�
X
. Nd�
t /

x .t�/�	, where� Nd�
t .x/

�
minimizes the right-hand side of (19), i.e.

'�.x/ D '.
Nd�
t /.x/ � V.x/

ı�
limx!C1 V.x/

�
:

The proofs of Theorems 4 and 5 are similar to the proofs of Theorems 1 and 2,
respectively.

Note that the solution V.x/ of (19) which satisfies conditions of Theorem 4 can
be found as a limit of the sequence Vn.x/, n � 0, where V0.x/ D '.0/.x/ is the
survival probability under the strategy Ndt 	 0, and

V 0
n.x/ D infNd2Œ0; Ndmax�

0
@
�
1 � F � Nd��Vn�1.x/ � R xC Nd

Nd Vn�1
�
x C Nd � y� dF.y/

.1C �/
R C1

Nd
�
y � Nd� dF.y/

1
A ;

Vn.0/ D �=.1C �/;

for n � 1.

Theorem 6. Let the surplus process X
. Ndt /
x .t/ be defined by (18), and claim sizes

are exponentially distributed. Then '�.x/ D '.
Ndt /.x/ for every admissible strategy� Ndt

�
, i.e. every admissible strategy is optimal.

Proof. If claim sizes are exponentially distributed with mean �, then V0.x/ is given
in the proof of the Theorem 3, and

V 0
1 .x/ D infNd2Œ0; Ndmax�

0
@ exp

�
� Nd
�

	 �
1 � 1

1C� exp
�
� �x
.1C�/�

		

.1C �/
R C1

Nd
�
y � Nd� 1

�
exp

�
� y

�

	
dy

�
R xC Nd

Nd
�
1 � 1

1C� exp
�
� �.xC Nd�y/

.1C�/�
		

1
�

exp
�
� y

�

	
dy

.1C �/
R C1

Nd
�
y � Nd� 1

�
exp

�
� y

�

	
dy

1
CA

D infNd2Œ0; Ndmax�

0
@

1
1C� exp

�
� Nd
�

	
exp

�
� �x
.1C�/�

	

.1C �/� exp
�
� Nd
�

	
1
A

D �

.1C �/2�
exp

�
� �x

.1C �/�

�
D V 0

0 .x/;

where the infimum is attained at arbitrary Nd 2 Œ0; Ndmax�. This yields V.x/ D
'.0/.x/, which completes the proof. ut
Remark 4. Theorem 6 implies that we cannot increase the survival probability
adjusting the deductible amount for exponentially distributed claim sizes.
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Asymptotic Properties of Drift Parameter
Estimator Based on Discrete Observations
of Stochastic Differential Equation Driven
by Fractional Brownian Motion

Yuliya Mishura, Kostiantyn Ral’chenko, Oleg Seleznev,
and Georgiy Shevchenko

Abstract In this chapter, we consider a problem of statistical estimation of an
unknown drift parameter for a stochastic differential equation driven by fractional
Brownian motion. Two estimators based on discrete observations of solution to the
stochastic differential equations are constructed. It is proved that the estimators
converge almost surely to the parameter value, as the observation interval expands
and the distance between observations vanishes. A bound for the rate of conver-
gence is given and numerical simulations are presented. As an auxilliary result
of independent interest we establish global estimates for fractional derivative of
fractional Brownian motion.

1 Introduction

A fractional Brownian motion (fBm) with the Hurst parameter H 2 .0; 1/ is
a centered Gaussian process

˚
BH
t ; t � 0

�
having the covariance E



BH
t B

H
s

� D
1
2
.s2H C t 2H � jt � sj2H /. Stochastic differential equations driven by an fBm have

been a subject of active research for the last two decades. Main reason is that such
equations seem to be one of the most suitable tools to model long-range dependence
in many applied areas, such as physics, finance, biology, and network studies.
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In modeling, the problems of statistical estimation of model parameters are of
a particular importance, so the growing number of papers devoted to statistical
methods for equations with fractional noise is not surprising. We will cite only
few of them; further references can be found in [2, 12, 14]. In [6], the authors
proposed and studied maximum likelihood estimators for fractional Ornstein–
Uhlenbeck process. Related results were obtained in [13], where a more general
model was considered. In [4] the authors proposed a least squares estimator for
fractional Ornstein–Uhlenbeck process and proved its asymptotic normality. The
estimators constructed in these papers have the same disadvantage: they are based
on the whole trajectory of solution to stochastic differential equations, so are not
directly implementable. In view of this, estimators based on discrete observations
of solutions were proposed in [1, 5, 15, 16]. We note that the discretization of the
maximum likelihood estimator is extremely involved in the fractional Brownian
case; see discussion in [15].

It is worth to mention that papers [5, 15] deal with the whole range of Hurst
parameter H 2 .0; 1/, while other papers cited here investigate only the case H >

1=2 (which corresponds to long-range dependence); recall that in the caseH D 1=2,
we have a classical diffusion, and there is a huge literature devoted to it; we refer to
books [8, 9] for the review of the topic. We also mention papers [7, 17], which deal
with parameter estimation in so-called mixed models, involving standard Wiener
process along with an fBm.

This chapter deals with statistical estimation of drift parameter for a stochastic
differential equation driven by an fBm based on discrete observation of its solution.
The model we consider is fully nonlinear, in contrast to [1, 5], which deal with
a simple linear model, [16], devoted to the problem of estimating the parameters
for fractional Ornstein–Uhlenbeck processes from discrete observations, and [15],
which studies a model where the fractional Brownian motion enters linearly. We
propose two new estimators and prove their strong consistency under the so-called
“high-frequency data” assumption that the horizon of observations tends to infinity
while the distance between them goes to zero. Moreover, we obtain almost sure
upper bounds for the rate of convergence of the estimators. The estimators proposed
go far away from being maximum likelihood estimators, and this is their crucial
advantage, because they keep strong consistency but they are not complicated
technically and are convenient for the simulations. This chapter is organized as
follows. In Sect. 2, we give preliminaries on stochastic integration with respect
to an fBm. In this section, we also give some auxiliary results, which are of
independent interest: global estimates for the fractional derivative of an fBm and for
increments of a solution to an fBm-driven stochastic differential equation. In Sect. 3,
we construct estimators for the drift parameter, prove their strong consistency, and
establish their rate of convergence. Section 4 illustrates our findings with simulation
results.
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2 Preliminaries

For a fixed real number H 2 .1=2; 1/, let
˚
BH
t ; t � 0

�
be a fractional Brownian

motion with the Hurst parameter H on a complete probability space .˝;F;P/.
The integral with respect to the fBm BH will be understood in the generalized
Lebesgue–Stieltjes sense (see [18]). Its construction uses the fractional derivatives,
defined for a < b and ˛ 2 .0; 1/ as

�
D˛
aCf

�
.x/ D 1

� .1 � ˛/
�

f .x/

.x � a/˛ C ˛

Z x

a

f .x/ � f .u/
.x � u/1C˛

du

�
;

�
D1�˛
b� g

�
.x/ D e�i�˛

� .˛/

�
g.x/

.b � x/1�˛ C .1 � ˛/
Z b

x

g.x/ � g.u/
.u � x/2�˛ du

�
:

Provided that D˛
aCf 2 L1Œa; b�; D

1�˛
b� gb� 2 L1Œa; b�, where gb�.x/ D g.x/ �

g.b/, the generalized Lebesgue-Stieltjes integral
R b
a
f .x/dg.x/ is defined as

Z b

a

f .x/dg.x/ D ei�˛
Z b

a

�
D˛
aCf

�
.x/
�
D1�˛
b� gb�

�
.x/dx: (1)

It follows from the Hölder continuity of BH that for ˛ 2 .1 � H; 1/, D1�˛
b� BH

b� 2
L1Œa; b� a.s. (we will prove this result in a stronger form further). Then for a
function f with D˛

aCf 2 L1Œa; b�, we can define integral with respect to BH

through (1):

Z b

a

f .x/ dBH.x/ D ei�˛
Z b

a

.D˛
aCf /.x/.D1�˛

b� BH
b�/.x/ dx: (2)

Throughout the paper, the symbol C will denote a generic constant, whose value
is not important and may change from one line to another. If a constant depends on
some variable parameters, we will put them in subscripts.

2.1 Estimate of Derivative of Fractional Brownian Motion

In order to estimate integrals with respect to fractional Brownian motion, we need
to estimate the fractional derivative of BH . Let some ˛ 2 .1 �H; 1=2/ be fixed in
the rest of this paper. Denote for t1 < t2

Z.t1; t2/D
�
D1�˛
t2� B

H
t2�
�
.t1/De�i�˛

� .˛/

 
BH
t1

� BH
t2

.t2 � t1/1�˛ C.1�˛/
Z t2

t1

BH
t1

� BH
u

.u � t1/2�˛ du

!
:

The following proposition is a generalization of [7, Theorem 3].
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Theorem 1. For any � > 1=2, the random variable

	H;˛;� D sup
0�t1<t2�t1C1

jZ.t1; t2/j
.t2 � t1/HC˛�1

�
jlog.t2 � t1/j1=2 C 1

	
.log.t2 C 2//�

(3)

is finite almost surely. Moreover, there exists cH;˛;� > 0 such that E



exp
˚
x	2H;˛;�

� �
< 1 for x < cH;˛;� .

Proof. Let h.s/ D sHC˛�1� jlog sj1=2 C 1
�
, s > 0. Define for T > 0

MT D sup
0�t1<t2�t1C1�T

jZ.t1; t2/j
h.t2 � t1/ :

We will first prove that MT is finite almost surely. Since E

 �
BH
t � BH

s

�2 �
D .t � s/2H , it follows from [11, Theorem 4] that there exists a random variable 	T
such that almost surely for all t1; t2 with 0 � t1 < t2 � t1 C 1

ˇ̌
BH
t1

� BH
t2

ˇ̌ � 	T .t2 � t1/H
�
jlog.t2 � t1/j1=2 C 1

	
:

Then

jZ.t1; t2/j � 	T

� .˛/
.t2 � t1/HC˛�1 �jlog.t2 � t1/j1=2 C 1

	
C I;

where

I D
ˇ̌
ˇ̌
ˇ
Z t2

t1

BH
u � BH

t1

.u � t1/2�˛ du

ˇ̌
ˇ̌
ˇ � 	T

� .˛/

Z t2

t1

.u � t1/HC˛�2 �jlog.u � t1/j1=2 C 1
	
du

� 	T

� .˛/
.t2 � t1/HC˛�1

Z 1

0

zHC˛�2 �jlog zj1=2 C jlog.t2 � t1/j1=2 C 1
	
d z

� C	T .t2 � t1/HC˛�1 �jlog.t2 � t1/j1=2 C 1
	
;

whence finiteness of MT follows. Since MT is a supremum of Gaussian family,
Fernique’s theorem implies that E



e"M

2
T

�
< 1 for some " > 0; in particular, all

moments of MT are finite.
Now observe that from H -self-similarity of BH it follows that for any a > 0

fZ.at1; at2/; 0 � t1 < t2g dD ˚
aHC˛�1Z.t1; t2/; 0 � t1 < t2

�
:

Therefore, for any k � 1
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M1
dD sup
0�t1<t2�1

2�k.HC˛�1/ ˇ̌Z.2kt1; 2kt2/ˇ̌
jt2 � t1jHC˛�1 �jlog.t2 � t1/j1=2 C 1

	

D sup
0�s1<s2�2k

jZ.s1; s2/j
js2 � s1jHC˛�1 �jlog.s2 � s1/ � k log 2j1=2 C 1

	

� sup
0�s1<s2�s1C1�2k

jZ.s1; s2/j
js2 � s1jHC˛�1 �jlog.s2 � s1/ � k log 2j1=2 C 1

	

� sup
0�s1<s2�s1C1�2k

jZ.s1; s2/j
js2 � s1jHC˛�1 �jlog.s2 � s1/j1=2 C .k log 2/1=2 C 1

	

� M2k

.k log 2/1=2 C 1
:

Hence, for any q � 1

E


M

q

2k

� � E


M

q
1

� �
.k log 2/1=2 C 1

�q
:

This implies that for any p > q=2C 1

E

" 1X
kD1

M
q

2k

kp

#
D

1X
kD1

E ŒM2k �
q

kp
� CE



M

q
1

� 1X
kD1

kq=2�p < 1:

In particular, the sum
P1

kD1 jM2k jqk�p is finite almost surely, so M2k D o.kp=q/,
k ! 1, a.s. If we choose some q > .� � 1=2/�1, then q=2C 1 < �q. Hence, we
can take some p 2 .q=2 C 1; �q/ and arrive at M2k D o.k� /, k ! 1, a.s. Thus,
the random variable � D supk M2kk

�� is finite almost surely.
Obviously, for t2 � 2

jZ.t1; t2/j
h.t2 � t1/ log.t2 C 2/

� M2

log 2
:

Now let t2 2 .2k�1; 2k� for some k � 2. Then we have for any t1 2 Œt2 � 1; t2/

jZ.t1; t2/j � M2kh.t2 � t1/ � �k�h.t2 � t1/ � �

�
log t2
log 2

C 1

��
h.t2 � t1/

� 2��.log t2/
�h.t2 � t1/ < 2��.log.t2 C 2//�h.t2 � t1/:

Consequently, 	H;˛;� � max fM2= log 2; 2��g < 1 a.s.
The second statement follows from Fernique’s theorem, since 	H;˛;� is a

supremum of absolute values of a centered Gaussian family.
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2.2 Estimates for Solution of SDE Driven by Fractional
Brownian Motion

Consider a stochastic differential equation

Xt D X0 C
Z t

0

a.Xs/ds C
Z t

0

b.Xs/dB
H
s ; (4)

where X0 is nonrandom. In [10], it is shown that this equation has a unique solution
under the following assumptions: there exist constants ı 2 .1=H � 1; 1�, K > 0,
L > 0 and for every N � 1 there exists RN > 0 such that

(A) ja.x/j C jb.x/j � K for all x 2 R,
(B) ja.x/ � a.y/j C jb.x/ � b.y/j � L jx � yj for all x; y 2 R,
(C) jb0.x/ � b0.y/j � RN jx � yjı for all x 2 Œ�N;N �; y 2 Œ�N;N �.

Fix some ˇ 2 .1=2;H/. Denote for t1 < t2

(ˇ.t1; t2/ D 1 _ sup
t1�u<v�t2

jZ.u; v/j
.v � u/ˇC˛�1 :

Define for a < b

kf ka;b;ˇ D sup
a�s<t�b

jf .t/ � f .s/j
jt � sjˇ :

Theorem 2. There exists a constant M˛;ˇ depending on ˛, ˇ, K, and L such that
for any t1 � 0; t2 2 .t1; t1 C 1�

jXt2 �Xt1 j � M˛;ˇ

�
(ˇ.t1; t2/.t2 � t1/ˇ C(ˇ.t1; t2/

1=ˇ.t2 � t1/
�
:

Proof. The proof follows the lines of [3, Theorem 2].
Fix t1 � 0 and t2 2 .t1; t1 C 1�. Abbreviate ( D (ˇ.t1; t2/. Take any s; t such

that t1 � s < t � t2. Write

jXt �Xsj �
Z t

s

ja.Xu/j du C
ˇ̌
ˇ̌
Z t

s

b.Xu/dB
H
u

ˇ̌
ˇ̌ � K.t � s/C

ˇ̌
ˇ̌
Z t

s

b.Xu/dB
H
u

ˇ̌
ˇ̌ :

Estimate
ˇ̌
ˇ̌
Z t

s

b.Xu/dB
H
u

ˇ̌
ˇ̌ �

Z t

s

ˇ̌�
D˛
sCb.X/

�
.u/
ˇ̌ ˇ̌�
D1�˛
t� BH

t�
�
.u/
ˇ̌
du

� (

Z t

s

ˇ̌�
D˛
sCb.X/

�
.u/
ˇ̌
.t � u/ˇC˛�1du:

(5)
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Now

ˇ̌�
D˛
sCb.X/

�
.u/
ˇ̌ �

� jb.Xu/j
.u � s/˛ C

Z u

s

jb.Xu/ � b.Xv/j
.u � v/1C˛ dv

�

� K.u � s/�˛ C L kXks;t;ˇ
Z u

s

.u � v/ˇ�˛�1dv

� C˛;ˇ
�
.u � s/�˛ C kXks;t;ˇ .u � s/ˇ�˛� :

Hence,

ˇ̌
ˇ̌
Z t

s

b.Xs/dB
H
u

ˇ̌
ˇ̌ � C˛;ˇ(

�
.t � s/ˇ C kXks;t;ˇ .t � s/2ˇ�

and

kXks;t;ˇ � K˛;ˇ(
�
1C kXks;t;ˇ .t � s/ˇ�

with a constantK˛;ˇ depending only on ˛, ˇ,K, andL. Setting� D .2K˛;ˇ(/
�1=ˇ ,

we obtain kXks;t;ˇ � 2K˛;ˇ( whenever t � s < �.
Now, if 0 < t2 � t1 � �, then

jXt2 �Xt1 j � kXkt1;t2;ˇ .t2 � t1/ˇ � 2K˛;ˇ(.t2 � t1/ˇ:
On the other hand, if t2 � t1 > �, then, partitioning the interval Œt1; t2� into k D
Œ.t2 � t1/=�� parts of length � and, possibly, an extra smaller part, we obtain

jXt2 �Xt1 j � jXt1C� �Xt1 j C � � � C ˇ̌
Xt1Ck� �Xt1C.k�1/�

ˇ̌C jXt2 �Xt1Ck�j
� .k C 1/ 2K˛;ˇ(�

ˇ � 4kK˛;ˇ�
ˇ � 4K˛;ˇ(.t2 � t1/�ˇ�1

D 2.2K˛;ˇ(/
1=ˇ.t2 � t1/:

The proof is now complete.

Corollary 1. For any � > 1=2, there exist random variables 	 and � such that for
all t1 � 0, t2 2 .t1; t1 C 1�

jXt2 �Xt1 j � �.t2 � t1/ˇ .log.t2 C 2//� ; (ˇ.t1; t2/ � 	.log.t2 C 2//�ˇ;

where � D �=ˇ. Moreover, there exists some c > 0 such that E



exp
˚
x	2

� �
< 1

and E



exp
˚
x�2ˇ

� �
< 1 for x < c. In particular, all moments of 	 and � are finite.

Proof. From Theorem 1 we have for all u < v

Z.u; v/ � 	H;˛;� .v � u/HC˛�1 �jlog.v � u/j1=2 C 1
	
.log.v C 2//�

� CH;ˇ	H;˛;� .v � u/ˇC˛�1 .log.v C 2//� ;
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Dividing by .v�u/ˇC˛�1 and taking supremum over u; v such that t1 � u < v � t2,
we get

(ˇ.t1; t2/ � 1 _ �CH;ˇ	H;˛;� .log.t2 C 2//�
� � �

1 _ CH;ˇ	H;˛;�
�
.log.t2 C 2//� :

Further, since (ˇ.t1; t2/ � 1 and t2 � t1 � 1, it follows from Theorem 2 that

jXt2 �Xt1 j � 2M˛;ˇ(ˇ.t1; t2/
1=ˇ.t2 � t1/ˇ:

Hence, the desired statement holds with 	 D 1 _ CH;ˇ	H;˛;� and � D 2M˛;ˇ	
1=ˇ .

The following lemma gives a particular case of Corollary 1, suitable for our
needs. Let � > 1=2 and � D �=ˇ be fixed; 	 and � will be the corresponding
random variables from Corollary 1.

Lemma 1. For any n � 2 and any t1; t2 2 Œ0; 2n� such that t1 < t2 � t1 C 1

jXt2 �Xt1 j � �n�.t2 � t1/ˇ; (ˇ.t1; t2/ � 	n� :

Proof. In this case

log.t2 C 2/ � log.2n C 2/ � log 2nC1 D .nC 1/ log 2 � n;

whence the statement follows.

3 Drift Parameter Estimation

Now we turn to problem of drift parameter estimation in equations of type (4).
Let .˝;F/ be a measurable space and X W ˝ ! C Œ0;1/ be a stochastic process.
Consider a family of probability measures

˚
P� ; � 2 R

�
on .˝;F/ such that for each

� 2 R, F is P� -complete, and there is an fBm
n
B
H;�
t ; t � 0

o
on .˝;F;P� / such

that X solves a parametrized version of (4):

Xt D X0 C �

Z t

0

a.Xs/ds C
Z t

0

b.Xs/dB
H;�
s : (6)

Our main problem is to construct an estimator for � based on discrete observations
of X . Specifically, we will assume that for some n � 1 we observe the values Xtnk
at the following uniform partition of Œ0; 2n�: tnk D k2�n, k D 0; 1; : : : ; 22n.

To simplify the notation, in the following we will fix an arbitrary � 2 R and
denote simply BH;� D BH , P� D P. We also fix the parameters ˛ 2 .1 �H; 1=2/,
ˇ 2 .1� ˛;H/, � > 1=2, and � D �=ˇ. Finally, with a slight abuse of notation, let
	 and � be the random variables from Corollary 1 applied to Eq. (6).
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In order to construct a consistent estimator, we need a lemma concerning the
discrete approximation of integrals in (6).

Lemma 2. For all n � 1 and k D 1; 2; : : : ; 22n

ˇ̌
ˇ̌
ˇ
Z tnk

tnk�1

�
a.Xu/ � a.Xtnk�1

/
�
du

ˇ̌
ˇ̌
ˇ � C�n�2�n.ˇC1/

and

ˇ̌
ˇ̌
ˇ
Z tnk

tnk�1

�
b.Xu/ � b.Xtnk�1

/
�
dBH;�

u

ˇ̌
ˇ̌
ˇ � C	�n�C�2�2nˇ:

Proof. Write

ˇ̌
ˇ̌
ˇ
Z tnk

tnk�1

�
a.Xu/ � a.Xtnk�1

/
�
du

ˇ̌
ˇ̌
ˇ �

Z tnk

tnk�1

ˇ̌
a.Xu/ � a.Xtnk�1

/
ˇ̌
du

� K�n�
Z tnk

tnk�1

.u � tnk�1/ˇdu � C�n�.tnk � tnk�1/ˇC1 D C�n�2�n.ˇC1/:

Similarly to (5),

ˇ̌
ˇ̌
ˇ
Z tnk

tnk�1

�
b.Xu/ � b.Xtnk�1

/
�
dBH

u

ˇ̌
ˇ̌
ˇ

� (ˇ.t
n
k�1; tnk /

Z tnk

tnk�1

ˇ̌
ˇD˛

tnk�1C.b.X/ � b.Xtnk�1
//.u/

ˇ̌
ˇ .tnk � u/ˇC˛�1du

� 	n�
Z tnk

tnk�1

ˇ̌
ˇD˛

tnk�1C.b.X/ � b.Xtnk�1
//.u/

ˇ̌
ˇ .tnk � u/ˇC˛�1du;

and

ˇ̌
ˇD˛

tnk�1C.b.X/ � b.Xtnk�1
//.u/

ˇ̌
ˇ �

ˇ̌
b.Xu/ � b.Xtnk�1

/
ˇ̌

.u � tnk�1/˛
C
Z u

tnk�1

jb.Xu/ � b.Xv/j
.u � v/1C˛ dv

� K�n�
�
u � tnk�1

�ˇ�˛ CK�n�
Z u

tnk�1

.u � v/ˇ�˛�1dv � C�n�
�
u � tnk�1

�ˇ�˛
:
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Then we can write the estimateˇ̌
ˇ̌
ˇ
Z tnk

tnk�1

�
b.Xu/ � b.Xtnk�1

/
�
dBH

u

ˇ̌
ˇ̌
ˇ � C	�n�C�

Z tnk

tnk�1

.u � tnk�1/2ˇ�1du

� C	�n�C� �tnk � tnk�1
�2ˇ D C	�n�C�2�2nˇ;

which finishes the proof.

Now we are ready to construct consistent estimators for � . In order to proceed,
we need a technical assumption, in addition to conditions (A)–(C):

(D) There exists a constant M > 0 such that for all x 2 R

ja.x/j � M; jb.x/j � M:

Consider now the following estimator:

O�.1/n D
P22n�1

kD1
�
tnk
�� �

2n � tnk
��
b�1 �Xtnk�1

� �
Xtnk �Xtnk�1

�
P22n�1

kD1
�
tnk
�� �

2n � tnk
��
b�1 �Xtnk�1

�
a
�
Xtnk�1

�
1
2n

;

where � D 1=2 �H .

Theorem 3. With probability one, O�.1/n ! � , n ! 1. Moreover, there exists a

random variable 
 with all finite moments such that
ˇ̌
ˇ O�.1/n � �

ˇ̌
ˇ � 
n�C�2��n, where

� D .1 �H/ ^ .2ˇ � 1/.
Proof. It follows from (6) that

Xtnk �Xtnk�1
D �

Z tnk

tnk�1

a.Xv/dv C
Z tnk

tnk�1

b.Xv/dB
H
v

D �

Z tnk

tnk�1

a
�
Xtnk�1

�
dv C �

Z tnk

tnk�1

�
a.Xv/ � a �Xtnk�1

��
dv

C
Z tnk

tnk�1

b
�
Xtnk�1

�
dBH

v C
Z tnk

tnk�1

�
b.Xv/ � b �Xtnk�1

��
dBH

v :

Then

O�.1/n D � C Bn CEn CDn

An
;

where

An D 2n.2H�3/
22n�1X
kD1

�
tnk
�� �

2n � tnk
��
a
�
Xtnk�1

�
b�1 �Xtnk�1

�
;



Properties of Drift Parameter Estimator for SDE Driven by fBm 313

Bn D 22n.H�1/�
22n�1X
kD1

�
tnk
�� �

2n � tnk
��
b�1 �Xtnk�1

� Z tnk

tnk�1

�
a.Xv/ � a �Xtnk�1

��
dv;

En D 22n.H�1/
22n�1X
kD1

�
tnk
�� �

2n � tnk
�� �

BH
tnk

� BH
tnk�1

	
;

Dn D 22n.H�1/
22n�1X
kD1

�
tnk
�� �

2n � tnk
��
b�1 �Xtnk�1

� Z tnk

tnk�1

�
b.Xv/ � b �Xtnk�1

��
dBH

v :

It is not hard to show that the sequence

�n D 2n.2H�3/
22n�1X
kD1

�
tnk
�� �

2n � tnk
�� D

22n�1X
kD1

�
k

22n

�� �
1 � k

22n

��
1

22n

converges to
R 1
0
x�.1 � x/�dx D B.1 C �; 1 C �/, and, hence, is bounded and

uniformly positive.
Indeed, h.x/ D x�.1 � x/� increases for x 2 �0; 1

2

�
; then

Z 1
2

0

h.x/dx D
22n�1�1X
kD0

Z kC1

22n

k

22n

h.x/dx <

Z 1

22n

0

h.x/dx C
22n�1X
kD1

h

�
k

22n

�
1

22n
:

On the other hand,

Z 1
2

0

h.x/dx D
22n�1X
kD1

Z k

22n

k�1

22n

h.x/dx >

22n�1X
kD1

h

�
k

22n

�
1

22n
:

So

0 <

Z 1
2

0

h.x/dx �
22n�1X
kD1

h

�
k

22n

�
1

22n
<

Z 1

22n

0

h.x/dx ! 0; n ! 1:

Hence,

22n�1X
kD1

h

�
k

22n

�
1

22n
!
Z 1

2

0

h.x/dx; n ! 1:

Similarly one can prove that

22n�1X
kD22n�1C1

h

�
k

22n

�
1

22n
!
Z 1

1
2

h.x/dx; n ! 1:
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By assumption (D), a.x/b�1.x/ is bounded away from zero and keeps its sign.
Therefore,

lim inf
n!1 jAnj � MK�1 lim

n!1 �n D MK�1B.1C �; 1C �/ > 0:

So it is sufficient to estimate Bn, En, and Dn.
By Lemma 2,

jBnj � C j� j �n�M�12n.2H�ˇ�3/
22n�1X
kD1

�
tnk
�� �

2n � tnk
�� � C��n

�2�nˇI

jDnj � C	�n�C�M�12n.2H�2�2ˇ/
22n�1X
kD1

�
tnk
�� �

2n � tnk
�� � C	�n�C�2n.1�2ˇ/:

Finally we estimate En. Start by writing

E


E2
n

� D 24n.H�1/E

2
64
0
@2

2n�1X
kD1

Z tnk

tnk�1

�
tnk
�� �

2n � tnk
��
dBH

s

1
A
2
3
75 :

According to [12, Corollary 1.9.4], for f 2 L1=H Œ0; t � there exists a constant
CH > 0 such that

E

"�Z t

0

f .s/dBH
s

�2 #
� CH

�Z t

0

jf .s/j1=H ds
�2H

:

Hence,

E


E2
n

� � C24n.H�1/
0
@2

2n�1X
kD1

Z tnk

tnk�1

�
tnk
��=H �

2n � tnk
��=H

ds

1
A
2H

D C22n.H�1/
0
@2

2n�1X
kD1

�
k

22n

��=H �
1 � k

22n

��=H
1

22n

1
A
2H

:

As above,

22n�1X
kD1

�
k

22n

��=H �
1 � k

22n

��=H
1

22n
! B .1C �=H; 1C �=H/ ; n ! 1;
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which implies that E


E2
n

� � C22n.H�1/. Since En is Gaussian, E

 jEnjp

� �
Cp2

pn.H�1/ for any p � 1. Therefore, for any � > 1

E

" 1X
nD1

jEnjp
n�2pn.H�1/

#
D

1X
nD1

E

 jEnjp

�
n�2pn.H�1/ � Cp

1X
nD1

n�� < 1:

Consequently,

	 0 WD sup
n�1

jEnj
n�=p2n.H�1/ < 1

almost surely; moreover, by Fernique’s theorem, all moments of 	 0 are finite.
Let us summarize the estimates:

jBnj � C��n
�2�nˇ; jDnj � C	�n�C�2n.1�2ˇ/; jEnj � 	 0nı2n.H�1/;

where ı > 0 can be taken arbitrarily small. We have �ˇ < �1=2 < H � 1,
�ˇ < 1�2ˇ, so jBnj is of the smallest order. Which of the remaining two estimates
wins depends on values of ˇ and H : for H close to 1=2, 1� 2ˇ is close to 0, while
H � 1 is close to �1=2; for ˇ close to 1, 1� 2ˇ is close to �1, whileH � 1 is close
to 0. Thus, we arrive to

jBnj C jEnj C jDnj � 
n�C�2��n;

where 
 � C�.�C	�C	 0/, so all its moments are finite. The proof is now complete.

Consider a simpler estimator:

O�.2/n D
P22n�1

kD1 b�1 �Xtnk�1

� �
Xtnk �Xtnk�1

�
1
2n

P22n�1
kD1 b�1 �Xtnk�1

�
a
�
Xtnk�1

� :

This is a discretized maximum likelihood estimator for � in Eq. (4), where BH

is replaced by Wiener process. Nevertheless, this estimator is consistent as well.
Namely, we have the following result, whose proof is similar to that of Theorem 3,
but is much simpler, so we omit it.

Theorem 4. With probability one, O�.2/n ! � , n ! 1. Moreover, there exists a

random variable 
0 with all finite moments such that
ˇ̌
ˇ�.2/n � �

ˇ̌
ˇ � 
0n�C�2��n.

Remark 1. Using Theorem 1, it can be shown with some extra technical work that

ˇ̌
�.i/n � � ˇ̌ � 
1n

�2�
 n; i D 1; 2; (7)
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where � D 1=2C �.1C 1=H/, 
 D .2H � 1/^ .1�H/; 
1 is a random variable,

for which there exists some c� > 0 such that E
h

exp
n
x


1C1=H
1

o i
< 1 for x < c� .

Moreover, in order to estimate the estimators reliability, the constant c� can be
computed explicitly in terms of H;K;L; � . However, we will not undertake this
tedious task.

4 Simulations

In this section we illustrate quality of the estimators with the help of simulation
experiments. For each set of parameters, we simulate 20 trajectories of the solution
to (6). Then for each of estimators �.i/n , i D 1; 2, we compute the average relative

error ı.i/n , i.e., the average of values
ˇ̌
ˇ�.i/n � �

ˇ̌
ˇ =� . We remind that for a particular

value of n we take 22n equidistant observations of the process on the interval Œ0; 2n�.
We start with a case of relatively “tame” coefficients a.x/ D 2 sin xC 3, b.x/ D

2 cos x C 3. We choose � D 2 (Table 1).
The first observation is that the estimators have similar performance. This means

that �.2/n is preferable to �.1/n , since it does not involveH (which might be unknown)
and is computable faster (for n D 6, computation of �.1/n takes 473microseconds on
Intel Core i5-3210M processor, while that of �.2/n takes 32 microseconds).

The second observation is that the estimate (7) of the convergence rate is probably
not optimal; it seems that the rate of convergence is around 2�n; in particular, it is
independent of H . Now take worse coefficients a.x/ D 2 sin x C 2:1, b.x/ D
2 cos x C 2:1; again � D 2 (Table 2).

The relative errors have increased two to three times due to the coefficients
approaching zero closer. Also observe that in this case the convergence rate seems
better than the estimate (7).

Further we show that, despite condition (D) might seem too restrictive, certain
condition that the coefficients are nonzero is required.

To illustrate this, take first a.x/ D 2 cos xC 1, b.x/ D 2 sin xC 3, � D 2. From
the first sight, it seems that the estimators should work fine here. Such intuition
is based on the observation that the proof of Theorem 3 relies on sufficiently fast

Table 1 Relative errors of estimators �.i/n , i D 1; 2, for a.x/ D
2 sin x C 3, b.x/ D 2 cos x C 3, � D 2

H D 0:6 H D 0:7 H D 0:8 H D 0:9

n ı
.1/
n ı

.2/
n ı

.1/
n ı

.2/
n ı

.1/
n ı

.2/
n ı

.1/
n ı

.2/
n

3 0.093 0.093 0.097 0.094 0.098 0.096 0.091 0.092
4 0.043 0.044 0.047 0.047 0.046 0.046 0.048 0.047
5 0.025 0.024 0.027 0.027 0.029 0.029 0.028 0.028
6 0.011 0.011 0.012 0.012 0.016 0.016 0.016 0.016
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Table 2 Relative errors of �.i/n , i D 1; 2, for a.x/ D 2 sin x C 2:1,
b.x/ D 2 cos x C 2:1, � D 2

H D 0:6 H D 0:7 H D 0:8 H D 0:9

n ı
.1/
n ı

.2/
n ı

.1/
n ı

.2/
n ı

.1/
n ı

.2/
n ı

.1/
n ı

.2/
n

3 0.17 0.18 0.18 0.19 0.18 0.18 0.17 0.17
4 0.096 0.097 0.099 0.102 0.099 0.106 0.095 0.099
5 0.045 0.045 0.052 0.052 0.051 0.053 0.046 0.046
6 0.024 0.024 0.021 0.021 0.027 0.028 0.033 0.033

convergence of the denominator to C1, which somehow should follow from the
fact that positive values of the ratio a.x/=b.x/ are overwhelming. Unfortunately,
this intuition is wrong. Here are ten values of the estimator �.1/n for H D 0:7,
n D 6: 1:3152, 0:6402, 1:9676, 0:9600, 0:4627, 4:7017, 0:8386, 0:8425, 1:0247,
0:3902. Values of the estimator �.2/n are also useless: 0:7499, 0:4081, 1:0179, 0:5725,
0:2668, �3:1605, 0:6556, 0:4413, 0:5586, 0:2115.

Now take a.x/ D 2 cos x C 3, b.x/ D 2 sin x C 1 and keep other parameters,
i.e. � D 2, H D 0:7, n D 6. In this case, here are ten values of the estimator �.1/n :
1:5010, 1:9824, 2:0666, 2:0087, 1:6751, 1:8802, 2:1087, 2:3519, 2:0160, 2:0442;
and ten values of �.2/n : 2:2076, 1:9853, 2:0975, 2:0109, 1:1202, 1:8768, 2:0964,
2:6175, 2:0176, 2:045. Although the performance of the estimators is mediocre, it
is clear that it has improved significantly compared to the previous case. We can
conclude that small values and sign changes of the coefficient a to zero affect the
performance much stronger than those of the coefficient b.
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Minimum Contrast Method for Parameter
Estimation in the Spectral Domain

Lyudmyla Sakhno

Abstract We provide a concise summary on the method of parameter estimation of
random fields in the spectral domain developed in the papers [1–3], which is based
on higher-order information and the minimum contrast principle. The exposition
covers both continuous and discrete-time cases. Minimum contrast estimators are
defined via minimization of a certain empirical spectral functional of kth order
based on tapered data. Conditions for consistency and asymptotic normality of the
estimators are stated.

1 Introduction: Main Assumptions and Definitions

This chapter is concerned with parameter estimation of random fields in the spectral
domain based on higher-order information and minimum contrast method.

Let X .t/ ; t 2 I; be a real-valued measurable strictly stationary zero-mean
random field, where I is R

d or Zd endowed with the measure �.�/ which is the
Lebesgue or the counting measure (�.ftg/ D 1), respectively. We will assume
throughout that all order cumulants of our field exist and also that the field X .t/
has spectral densities of all orders k D 2; 3; : : :, that is, there exist the complex-
valued functions fk .�1; : : :; �k�1/ 2 L1

�
S
k�1� such that the cumulant function of

kth order is given by

ck .t1; : : :; tk�1/ D
Z
Sk�1

fk .�1; : : :; �k�1/ ei
Pk�1
jD1.�j ;tj /d�1: : :d�k�1;
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where S D R
d or .��; ��d for the continuous-parameter or discrete-parameter

cases, respectively;
�
�j ; tj

�
is the inner product of the d -dimensional vectors �j

and tj :
Recall that the cumulant of kth order for a random field X .t/ is defined as

follows:

Qck .t1; : : :; tk/ D .�i/k @k

@x1: : :@x1
lnE exp

8<
:i

kX
jD1

xjX.tj /

9=
;
ˇ̌
ˇ̌
ˇ̌
x1D���DxkD0

D
X

.�1/q�1.q � 1/Šm�1.t�1/: : :m�q .t�q /;

where the sum is taken over all unordered partitions f�1; : : :; �qg of f1; : : :; kg;
m�j .t�j / D EX.tj1/: : :X.tjl / for �j D fj1; : : :; jlg: For the case under
consideration, when the random field is strictly stationary, Qck .t1 C t; : : :; tk C t / D
Qck .t1; : : :; tk/ 8ti ; t 2 I , and we have denoted above ck .t1; : : :; tk�1/ WD
Qck .t1; : : :; tk�1; 0/.

We will further assume that the spectral densities depend on an unknown
parameter vector � 2 � � R

m W

f2 .�/ D f2 .�I �/ ;
fk .�1; : : :; �k�1/ D fk .�1; : : :; �k�1I �/

D Refk .�1; : : :; �k�1I �/C i Imfk .�1; : : :; �k�1I �/
D f

.1/

k .�1; : : :; �k�1I �/C if
.2/

k .�1; : : :; �k�1I �/ ; k � 3I

the parametric set � is a compact and the true value of the parameter vector �0 2
int �, the interior of �: Suppose that fk .�1; : : :; �k�1I �1/ 6	 fk .�1; : : :; �k�1I �2/
for �1 ¤ �2 almost everywhere in S

k�1 with respect to the Lebesgue measure.
Note that parameters of various models of stationary processes and fields often

appear in the expressions for spectral densities in a simple form which makes very
convenient and reasonable their estimation in the spectral domain.

Let the field X.t/ be observed over the domain DT D Œ�T; T �d � I . Extensive
studies have been devoted to the estimation of an unknown parameter � of the
second-order spectral densities f .�/ D f .�; �/ via the minimum contrast method.
Generally, minimum contrast estimators are defined in the following way:

O�T D arg min
�2�

D.f .�; �/; OfT .�//;

whereD.f; g/ D R
S
K.f .�/; g.�//d� is some criterion to measure the distance (or

discrepancy) between f and g, with the corresponding functionK.�; �/, and OfT .�/ is
a nonparametric estimator of the spectral density (see, e.g., [12]).
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Some examples of functions K.f; g/, which are of the form K
�
f

g

	
, can be

found in [12]. In particular, the case when K.x/ D log x C 1
x

leads to the criterion

D.f; OfT / D R
S

n
logf .�; �/ � log OfT .�/C OfT .�/

f .�;�/

o
d�; this criterion is equivalent

to the classical Whittle functional

D.f; OfT / D
Z
S

(
logf .�; �/C

OfT .�/
f .�; �/

)
d�;

which is the most popular in applications. Note that the Whittle functional and
corresponding estimates were originally introduced within maximum likelihood
approach.

We will use more general approach to define minimum contrast estimators
following Guyon ([10]). Within this approach one defines:

(1) A nonrandom real-valued function K.�0; �/, � 2 �, to be called a contrast
function, such that K.�0; �/ � 0 and K.�0; �/ has its unique minimum at
� D �0;

(2) a contrast field for a contrast function K.�0; �/, which is a random field UT .�/,
� 2 �, related to observations fX.t/; t 2 DT g, and such that the following
relation holds:

UT .�/ � UT .�0/ ! U.�/ � U.�0/ D K.�; �0/ (1)

in P0-probability (with P0 D P�0).

The minimum contrast estimator O�T is defined as a minimum point of the
functional UT .�/:

O�T D arg min
�2�

UT .�/ : (2)

With the purpose to use the higher-order information for statistical inference,
the minimum contrast estimation procedure was developed in the series of papers
[1–3], and here we survey the main results presenting them in the most general
form and discussing the conditions used to state the results. The procedure is based
on the minimization of the empirical spectral functional of kth order generalizing
the approach of the paper [11]. We refer a reader to [1–3] for the proofs and all detail
unexplained here.

A number of examples showing the need of higher-order information can be
found in [2, 3]; we just point out here that, for some models of processes and fields,
consideration of covariances and spectral densities of second order is not always
sufficient to estimate all the parameters, or, in some situations, parameters may
appear in spectral densities of higher orders in the form more convenient for their
estimation.
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We will base our analysis on the tapered data. Benefits of tapering the data have
been widely reported in the literature; in particular, the use of tapers leads to the bias
reduction, which is especially important when dealing with spatial data: tapers can
help to fight the so-called edge effects (see, e.g., [10]).

Consider the tapered values

fhT .t/X .t/ ; t 2 DT g ;
where hT .t/ D h .t=T / ; t D .t .1/; : : :; t .d// 2 Rd , and the taper h .t/ factorizes as
h .t/ D Qd

iD1 Qh �t .i/� ; t .i/ 2 R1; with Qh .�/ satisfying the assumption below.

Assumption H.I. Qh .t/ ; t 2 R1; is a positive even function of bounded variation
with bounded support: Qh .t/ D 0 for jt j > 1:
Note. All assumptions concerning the tapers will be enumerated separately, starting
from the letter ‘H’.

Denote

QHk;T .�/ D
Z

QhT .t/ke�i�t� .dt/ ; Hk;T .�/

D
Z
hT .t/

ke�i.�;t/� .dt/ D
dY
iD1

QHk;T .�
.i//I

the integrals above are one-dimensional and d -dimensional with corresponding
measure � .�/ (for the discrete case, we deal actually with sums); QhT .t/ D Qh .t=T /.

Note that evaluation of asymptotic behavior of spectral estimates is based on
the properties of functions QHk;T .�/, which, in its own turn, is based on properties
of functions Qh .t/. For example, the assumption that Qh .t/ is of bounded variation
allows to write down useful upper bounds for QHk;T .�/. Some other assumptions on
Qh .t/ are also of use in the literature, such as some kinds of Lipschitz condition (see,
e.g., [7]).

Define the finite Fourier transform of tapered data fhT .t/X .t/ ; t 2 DT g :

dh
T
.�/ D

Z
hT .t/X.t/e

�i.�;t/�.dt/; � 2 S; (3)

the tapered periodograms of the second and the third orders:

I h2;T .�/ D 1

.2�/d H2;T .0/
dh
T
.�/dh

T
.��/

(provided that H2;T .0/ ¤ 0),

I h3;T .�1; �2/ D 1

.2�/2dH3;T .0/
dh
T
.�1/d

h
T
.�2/d

h
T
.��1 � �2/
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(provided that H3;T .0/ ¤ 0), and the tapered periodogram of kth order (provided
that Hk;T .0/ ¤ 0):

I hk;T .�1; : : :; �k�1/ D 1

.2�/
.k�1/d Hk;T .0/

kY
iD1

dh
T
.�i / ; �i 2 S; (4)

where
Pk

iD1 �i D 0. The statistic (4) is a natural generalization of the second-
order periodogram and can be considered as an estimator for the spectral density
of kth order at the frequencies �1; : : :; �k such that

Pk
iD1 �i D 0 but no proper

subset of �i has sum 0. The hyperplane
Pk

iD1 �i D 0 sometimes is called the
principal manifold; those sets where, moreover, some subset of f�i ; i 2 �g ; � D
fi1; : : :; ilg � f1; : : :; kg has sum zero:

P
i2� �i D 0 are called submanifolds (see,

e.g., [7, 8]).
To define the estimation procedure in the case when k � 3, we need the following

assumptions. (The case k D 2 will be outlined in Sect. 4.)

Assumption I. Let the real-valued functions w.i/k .�/ ; i D 1; 2; wk;0 .�/, � 2 S
k�1,

and the spectral density of kth order satisfy the following conditions:

(i) w.i/k .�/ ; i D 1; 2; and wk;0 .�/ satisfy the same conditions of symmetry as the
kth-order spectral density;

(ii) wk;0 .�/ is nonnegative and wk;0 .�/ 	 0 on all hyperplanes of the formP
i2� �i D 0; where � D fi1; : : :; ilg � f1; : : :; kg and 1 � l < k;

(iii) f .i/

k .�I �/w.i/k .�/wk;0 .�/ 2 L1
�
S
k�1� ; i D 1; 2; for all � 2 �;

(iv) f .i/

k .�I �/w.i/k .�/ � 0; i D 1; 2; .�I �/ 2 S
k�1 ��:

For the case when k D 3 there is no need in the function wk;0 .�/.
Under the Assumption I we set

Z
Sk�1

f
.i/

k .�I �/w.i/k .�/wk;0 .�/ d� D �
.i/

k .�/ ; i D 1; 2 (5)

and represent the real and imaginary parts of the spectral density fk .�I �/ in the
form

f
.i/

k .�I �/w.i/k .�/ D �
.i/

k .�/  
.i/

k .�I �/ ; i D 1; 2; � 2 �; (6)

where

 
.i/

k .�I �/ D f
.i/

k .�I �/w.i/k .�/

�
.i/

k .�/
;

Z
Sk�1

 
.i/

k .�I �/wk;0 .�/ d� D 1:

In what follows we will omit the subscript k in functions w.i/k and wk;0.
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Introduce the contrast field constructed with the use of the periodogram of
kth-order I hk;T .�/:

UT .�/ D �
�
p

Z
Sk�1

ReI hk;T .�/w.1/ .�/w0 .�/ log .1/

k .�I �/ d�

Cq
Z
Sk�1

ImI hk;T .�/w.2/ .�/w0 .�/ log .2/

k .�I �/ d�
�
; (7)

with nonnegative numbers p and q satisfying p C q D 1, and define the minimum
contrast estimator:

O�T D arg min
�2�

UT .�/ : (8)

The corresponding contrast function is of the form

K .�0I �/ D p

Z
Sk�1

f
.1/

k .�I �0/ log
 
.1/

k .�I �0/
 
.1/

k .�I �/
w.1/ .�/w0 .�/ d�

Cq
Z
Sk�1

f
.2/

k .�I �0/ log
 
.2/

k .�I �0/
 
.2/

k .�I �/
w.2/ .�/w0 .�/ d�: (9)

Define also the function

U .�/ D �
�
p

Z
Sk�1

f
.1/

k .�I �0/w.1/ .�/w0 .�/ log .1/

k .�I �/ d�

Cq
Z
Sk�1

f
.2/

k .�I �0/w.2/ .�/w0 .�/ log .2/

k .�I �/ d�
�
: (10)

To establish the consistency of a minimum contrast estimator O�T , which corre-
sponds to a functional UT .�/, one can use the following standard reasonings: to
check that the convergence (1) holds in probability, and then, due to Theorem 3.4.1
[10], it is sufficient to prove that the convergence (1) holds uniformly with respect
to � .

The standard approach to state the asymptotic normality of the estimator O�T is to
consider the relation

r�U
h
T

� O�T
	

D r�U
h
T .�0/C r�r 0

�U
h
T

�
��
T

� � O�T � �0
	
; j��

T � �0j <
ˇ̌ O�T � �0

ˇ̌
;

and then evaluate the asymptotic behavior of r�U
h
T .�0/ and r�r 0

�U
h
T

�
��
T

�
.

Therefore, one needs to study large sample properties of the empirical spectral
functionals of the form

J hk;T .'/ D J hk;T .'I w0/ D
Z
Sk�1

I hk;T .�/ ' .�/w0 .�/ d�;
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where I hk;T .�/ is the periodogram based on tapered data, the function w0 .�/
satisfies Assumption I (ii), and ' .�/ is a weight function.

We consider asymptotic properties of functionals J hk;T .'/ in Sect. 2 and then
state the properties of minimum contrast estimators in Sect. 3. In Sect. 4 we give the
details for the estimation procedure based on the second-order spectral densities.

2 Asymptotic Properties of Empirical Spectral Functionals

Let us first evaluate the asymptotic behavior of the cumulants of the spectral
functionals. In order to calculate the expressions for cumulants of the functionals
J hk;T .'/, the following formula for the cumulants of the finite Fourier transform
dhT .�/ ; � 2 S; is of use:

cum
�
dhT .˛1/ ; : : :; d

h
T .˛k/

�D
Z
Dk
T

kY
jD1

hT .tj /e
�i

Pk
jD1.tj ;˛j / (11)

� cum .X .t1/ ; : : :; X .tk// �.dt1/: : :�.dtk/

D
Z
Sk�1

fk .�1; : : :; �k�1/

Z
Dk
T

kY
jD1

hT .tj /e
�i

Pk�1
jD1.tj ;�j�˛j /

�ei
�
tk ;�

Pk�1
jD1 �j�˛k

	
�.dt1/: : :�.dtk/ d�1: : :d�k�1

D
Z
Sk�1

fk .�1; : : :; �k�1/

k�1Y
jD1

H1;T

�
�j�˛j

�
H1;T

 
�
k�1X
1

�j�˛k
!
d�1: : :d�k�1;

where

H1;T .�/ D
Z
DT

hT .t/e
�i.t;�/�.dt/:

Introduce the next assumption concerning the tapering functions.

Assumption H.II. The functions

˚h
k;T .�1; : : :; �k�1/ D 1

.2�/d.k�1/ Hk;T .0/

k�1Y
jD1

H1;T

�
�j
�
H1;T

0
@�

k�1X
jD1

�j

1
A;

.�1; : : :; �k�1/ 2 S
k�1;
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have properties of ı-type kernels, that is,

lim
T!1

Z
Sk�1

G .u1 � v1; : : :; uk�1 � vk�1/ ˚h
k;T .u1; : : :; uk�1/ du1: : :duk�1

D G .v1; : : :; vk�1/ ; (12)

provided that the function G .u1; : : :; uk�1/ is bounded and continuous at the point
.u1; : : :; uk�1/ D .v1; : : :; vk�1/ :

Note that the above assumption holds in the case when h.t/ 	 1 (no tapering), as
shown, for example, in [6]. In the discrete case it holds for Qh.t/ of bounded variation
(see, e.g., results in [9] for the case d D 1, which straightforwardly extendable for
the case d > 1 for a taper which factorizes).

Using the formula (11) and the formulae giving expressions for the cumulants of
products of random variables via products of cumulants of the individual variables,
the cumulants of the functionals J hk;T can be represented in the form of convolutions
of kernels ˚h

k;T and functions composed with the use of spectral densities of
different orders as follows:

EJhk;T .'/ D
Z
Sk�1

˚h
k;T .u/Gk .uI';w0/ du;

cov
�
J hk;T .'1/ ; J

h
k;T .'2/

� D .2�/n H2k;T .0/ .Hk;T .0//
�2

�
Z
S2k�1

˚h
2k;T .u/G2k .uI'1; '2;w0/ du;

cum
�
J hk;T .'1/ ; : : :; J

h
k;T .'m/

� D .2�/n
.m�1/ Hkm;T .0/ .Hk;T .0//

�m

�
Z
Skm�1

˚h
km;T .u/Gkm .uI'1; : : :; 'm;w0/ du;

where

Gk .u/ D Gk .uI';w0/

D
X

�D.�1;:::;�p/

Z
Sk�p

pY
lD1

fj�l j
�
�j C uj ; j 2 Q�l

�

�' .�/w0 .�/
p�1Y
lD1

ı

0
@X
j2�l

�
�j C uj

�
1
A ı

 
kX
iD1

�i

!
d�0; (13)

where the sum is taken over all unordered partitions
�
�1; : : :; �p

�
of the set

f1; : : :; kg,
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Gkm .u/ D Gkm .uI'1; : : :; 'm;w0/ D
X

�D.�1;:::;�p/

Z
S.k�1/m�pC1

mY
iD1

'i
�
�.i�1/kC1; : : :; �ik

�

�
mY
iD1

w0
�
�.i�1/kC1; : : :; �ik

�
fj�1j

�
uj C �j ; j 2 Q�1

� � � � � � fj�pj
�
uj C �j ; j 2 Q�p

�

�
p�1Y
lD1

ı

0
@X
j2�l

�
uj C �j

�
1
A mY
iD1

ı
�
�.i�1/kC1 C � � � C �ik

�
d�0; (14)

where the summation is taken over all indecomposable partitions � D �
�1; : : :; �p

�
of the table Tm�k with the rows r1 D .1 : : : k/, r2 D .k C 1 : : : 2k/, : : :, rm D
.m.k � 1/C 1 : : : mk/, that is, over those partitions � of the elements of this table
into disjoint sets in which there exist no sets �i1 ; : : :; �in .n < p/ such that for some
rows rj1 ; : : :; rjm .m < k/ of the table, the following equality holds: rj1[: : :[rjm D
�i1 [ : : : [ �in :

Here and in similar formulae below, we use the following notations: having a
set of natural numbers �; we write j�j to denote the number of elements in � and
Q� to denote the subset of � which contains all elements of � except the last one.

In the integrals of the form
R
Sk�p g.u/

Qp

lD1 ı
�P

j2�l uj
	
du0, where .�1; : : :; �p/

is a partition of the set f1; : : :; kg, integration is understood with respect to .k�p/d -
dimensional vector u0, obtained from the vector u D .u1; ::; uk/ in view of p linear
restrictions on k variables uj .

Using the above formulae for cumulants and properties of kernels ˚h
k;T , one can

obtain the following result.

Proposition 1. Let Assumptions H.I, H.II hold:

(1) If the function Gk .u/ given by (13) is bounded and continuous at u D 0; then

EJhk;T .'/ !
Z
Sk�1

fk .�/ ' .�/w0 .�/ d� as T ! 1:

(2) If the function G2k .uI'1; '2;w0/ given by the formula (14) with m D 2 is
bounded and continuous at u D 0; then as T ! 1
cov

�
T d=2J hk;T .'1/ ; T

d=2J hk;T .'2/
� ! .2�/d ek.h/G2k .0I'1; '2;w0/ ; (15)

where

ek.h/ D
 Z

. Qh.t//2kdt
�Z

. Qh.t//kdt
��2!d

: (16)

(3) If the function Gkm .uI'1; : : :; 'm;w0/ given by the formula (14) is bounded,
then as T ! 1,

cum
�
J hk;T .'1/ ; : : :; J

h
k;T .'m/

� D O
�
T d.1�m/

	
:
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Basing on the asymptotic behavior of cumulants stated above, one can derive the
asymptotic normality result. Let us fix the weight functions '1; : : :; 'm and set

J hk;T D ˚
J hk;T .'i /

�
iD1;:::;m D

�Z
Sk�1

I hk;T .�/ 'i .�/w0 .�/ d�



iD1;:::;m

;

Jk D fJk .'i /giD1;:::;m D
�Z

Sk�1

fk .�/ 'i .�/w0 .�/ d�



iD1;:::;m

:

Let 	 D f	igiD1;:::;m be a complex-valued Gaussian random vector with mean zero
and second-order moments

wij D E	i N	j D .2�/d ek .h/G2k
�
0I'i ; 'j ;w0

�
; i; j D 1; : : :; m; (17)

where the tapering factor ek .h/ is given by (16).

Proposition 2. Let the assumptions of Proposition 1 hold and the functions
Gkl

�
uI'm1; : : :; 'ml I w0

�
defined by (14) are bounded for all l D 2; 3; : : : and all

choices .m1; : : :; ml / with 1 � mi � m; i D 1; : : :; l: Then as T ! 1;

T d=2
�
J hk;T �EJhk;T

� D! 	; (18)

and, moreover, if

T d=2
�
EJhk;T .'i / � Jk .'i /

� ! 0 as T ! 1; i D 1; : : :; m; (19)

then as T ! 1;

T d=2
�
J hk;T � Jk

� D! 	: (20)

For the discrete-time case and k D 2; sufficient conditions for (19) were
presented in Guyon [10] in the following form: d D 1; 2; 3 and 'i 2 C.S/; and
the taper h and the spectral density f2 belong to C2.S/.

In view of the importance of the condition (19) for derivation of asymptotic
normality results, we next consider the problem of bias of spectral estimates in more
detail and present below the results from the paper [4], covering both continuous and
discrete-parameter cases (i.e., random field over Rd as well as over Zd ) and spectral
functionals of the second, third, and higher orders.

Assumption H.III. The taper Qh.t/ is a Lipschitz-continuous function on Œ�1; 1�.

Assumption H.IV. The function ~h2 .u/ D
ˇ̌
ˇR Qh .t/ e�i tudt

ˇ̌
ˇ2satisfiesR jujl~h2 .u/ du < 1; l D 1; 2:
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Theorem 1. Let the taper Qh.t/ satisfy the Assumption H.III for the case of
discrete-parameter fields, and for the case of continuous-parameter fields, let the
Assumption H.IV hold.

Suppose further that one of the following conditions holds:

(i) f2 is twice boundedly differentiable and '2 2 L1 .S/;
(ii) '2 is twice boundedly differentiable;

(iii) the convolution g2.u/ DR
S
f2.�/' .�C u/ d� is twice boundedly differen-

tiable at zero.

Then as T ! 1;

EJ h2;T .'2/ � J2 .'2/ D O
�
T �2� : (21)

Assumption H.V. The function ~h3 .u/ D R Qh .t/ e�i tudt
R Qh2 .t/ eitudt satisfiesR jujl~h3 .u/ du < 1; l D 1; 2:

Theorem 2. Let the taper Qh.t/ satisfy the Assumption H.III for the case of
discrete-parameter fields, and for the case of continuous-parameter fields, let the
Assumption V hold.

Suppose further that one of the following conditions holds:

(i) f3 is twice boundedly differentiable and '3 2 L1.R2d /;
(ii) '3 is twice boundedly differentiable;

(iii) the convolution g3 .u1; u2/ D R
S2
'3 .�1; �2/ f3 .�1 C u1; �2 C u2/ d�1d�2 is

twice boundedly differentiable at zero.

Then as T ! 1;

EJ h3;T .'3/ � J3 .'3/ D O
�
T �2� : (22)

As we can see, if the standard normalizing factor T d=2 is applied (under the
conditions of Theorems 1 and 2), then the bias will be of order T d=2�2; that
is, we can handle dimensions d D 1; 2; 3 using the tapered periodogram in the
estimator for J2.'/ and J3.'/. Also, when estimating the integrals of spectrum and
bispectrum, one has a possibility for a trade-off between the smoothness properties
of a spectral density f and that of weight function ': as Theorems 1 and 2 show,
one can relax conditions on f imposing at the same time stronger conditions on '.

For the case k > 3, in order to exclude from consideration the points lying on
submanifolds, as prescribed in the definition of the periodogram of order k > 3 (see
formula (4)), we consider the empirical spectral functional

J �
k;T .'k/ D J �

k;T;" .'k/ D
Z
Sk�1
"

'k .�/ I
h
k;T .�/ d�; (23)

as an estimator for

J �
k .'k/ D J �

k;" .'k/ D
Z
Sk�1
"

'k .�/ fk .�/ d�; (24)
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for all " > 0, where the integration is taken over Sk�1; but avoiding the frequencies
on and neighboring to the submanifolds fPi2� �i D 0, where � D fi1; : : :; ilg �
f1; : : :; kgg: More precisely, S

k�1
" D S

k�1nf� W ˇ̌Pi2� �i
ˇ̌
< " for all � �

f1; : : :; kgg, where jyj D max1�i�d jy.i/j.
Assumption H.VI. The function ~hk .u/ D R Qh .t/ e�i tudt

R Qhk�1 .t/ eitudt
satisfiesR jujl~hk .u/ du < 1; l D 1; 2:

Theorem 3. Let the taper Qh.t/ satisfy the Assumption H.III for the case of
discrete-parameter fields, and for the case of continuous-parameter fields, let the
Assumption H.IV hold. Suppose further that the spectral density of the kth-order
fk.�/ is twice boundedly differentiable, 'k 2 L1.S

k�1/, and the spectral densities
fl.�/2 Lk�2.Sl�1/ for l D 2; : : :; k � 2:

Then as T ! 1;

EJ �
k;T .'k/ � J �

k .'k/ D O
�
T �2� : (25)

Note that in the discrete-time case the domain over which the field is observed
has been traditionally taken to be DT D Œ1; T �d . The presented results remain valid
for such a domain as well; one just needs to adjust the assumptions on a taper Qh.t/.
Namely, Assumption H.I must be modified as follows: Qh.t/ is a positive function
of bounded variation with support on Œ0; 1� and Qh.0/ D 0, Qh.1 � v/ D Qh.v/ for
0 � v � 1

2
.

An example of a taper Qh.t/ satisfying the assumptions introduced in the discrete
case is Qh.t/ D 1

2
.1 C cos.4�t/; t 2 Œ�1; 1�; which is a modification of the well-

known cosine bell (or the Tukey-Hanning taper) Qh.t/ D 1
2
.1�cos.2�t/; t 2 Œ0; 1�;

suitable for the domain DT D Œ1; T �d . For the continuous case, one can consider,
for example, the taper Qh.t/ D 1 � jt j for jt j � 1:

3 Asymptotic Properties of Minimum Contrast Estimators

We return now to consideration of the minimum contrast estimators (8) and
formulate the results on their consistency and asymptotic normality. The derivation
of these results is based on the results of the previous section.

We will need the following assumptions.

Assumption II. The derivatives r� 
.i/

k .�I �/ ; i D 1; 2; exist and

r�

Z
Sk�1

 
.i/

k .�I �/wk;0 .�/ d�
0 D

Z
Sk�1

r� 
.i/

k .�I �/wk;0 .�/ : (26)

Denote 'i .�/ D w.i/ .�/ log .i/

k .�/ :
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Assumption III. For all � 2 �; the functionsGk .uI'i ;w0/ ; i D 1; 2; are bounded
and continuous at the point u D 0;whereGk .uI';w/ is defined by the formula (13).

Assumption IV. The functions G2k .uI'i ; 'i ;w0/ ; i D 1; 2;

(i) are bounded
(ii) are continuous at the point u D 0:

Assumption V. There exist nonnegative functions v1 .�/ and v2 .�/ such that

(i) the functions

a
.i/

k .�I �/ D vi .�/ log .i/

k .�I �/ ; i D 1; 2;

are uniformly continuous in S
k�1 ��:

(ii) the functions Gk
�

uI w.i/

vi
;w0

	
; i D 1; 2; are bounded and continuous at u D 0

and the functions G2k
�

uI w.i/

vi
; w.i/

vi
;w0

	
; i D 1; 2; are bounded.

Assumption VI. w.1/k .�/ReI Tk .�/ � 0; w.2/k .�/ ImI Tk .�/ � 0:

Theorem 4. Let the Assumptions I, III, IV(i), V, VI, and H.I, H.II hold. Then the
function K .�0I �/ given by (10) is the contrast function for the contrast field Uh

T .�/

given by (8). The resulting minimum contrast estimator O�T is a consistent estimator
of the parameter vector �; that is, O�T ! �0 in P0-probability as T ! 1 and the
estimators

O�.1/k;T D
Z
Sk�1

ReI hk;T .�/w.1/ .�/w0 .�/ d� (27)

and

O�.2/k;T D
Z
Sk�1

ImI hk;T .�/w.2/ .�/w0 .�/ d� (28)

are consistent estimators of �.1/k .�/ and �.2/k .�/, respectively.

It should be noted that Theorem 4 actually holds with the use of the untapered
periodogram (h.t/ D 1) in the functional (8) for the multidimensional case as well
as for the one-dimensional case. However, in order to state the result on asymptotic
normality of the estimator (9), tapering is essential (or another adjustment of the
periodogram is needed such as constructing the kth-order periodogram by means of
unbiased estimators of the moments of second and higher orders).

We need some further assumptions to state the result on asymptotic normality of
the estimator O�T .

Assumption VII. The functions  .i/

k .�I �/ ; i D 1; 2; are twice differentiable in
the neighborhood of the point �0 and the functions
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'
ij

l .�I �/ D w.l/ .�/
@2

@�i@�j
log .l/

k .�I �/ ; i; j D1; : : :; m; lD1; 2; � 2 �;
(29)

g
.i/

k .�I �/ D w.1/ .�/
@

@�i
log .1/

k .�I �/ ; i D 1; : : :; m; � 2 �; (30)

g
.iCm/
k .�I �/ D w.2/ .�/

@

@�i
log .2/

k .�I �/ ; i D 1; : : :; m; � 2 �

are such that

(i) the functions Gk.uI'ijl ;w0/; i; j D 1; : : :; m; l D 1; 2; are bounded and
continuous at u D 0 for all � 2 �.

(ii) the functions G2k.uI'ijl ; 'ijl ;w0/; i; j D 1; : : :; m; l D 1; 2; are bounded for
all � 2 �;

(iii) the functions Gkl.uIg.m1/k ; : : : ; g
.ml /

k ;w0/ are bounded for all � 2 �; l D
2; 3; : : : and all choices of .m1; : : : ; ml/; 1 � mi � 2m; i D 1; : : :; l .

(iv) T d=2.E
R
Sk�1 I

h
k;T .�/ g

.i/

k .�/w0 .�/ d� � R
Sk�1 fk .�/ g

.i/

k .�/w0 .�/ d�/ !
0, for i D 1; : : :; 2m and all � 2 �;

(v) the derivatives @2

@�i @�j
log .l/

k .�I �/, i; j D 1; : : :; m, l D 1; 2, are continuous
in � .

Assumption VIII. The matrices Sk .�/ D fs.k/ij .�/gi;jD1;m and Ak .�/ D
fa.k/ij .�/gi;jD1;m are positive definite, where

s
.k/
ij .�/ D p

Z
Sk�1

f
.1/

k .�I �/ 'ij1 .�I �/w0 .�/ d�
0 (31)

Cq
Z
Sk�1

f
.2/

k .�I �/ 'ij2 .�I �/w0 .�/ d�
0

D �
.1/

k .�/ p

Z
Sk�1

 
@2

@�i@�j
 
.1/

k � 1

 
.1/

k

@

@�i
 
.1/

k

@

@�j
 
.1/

k

!
d�0

C�.2/k .�/ q

Z
Sk�1

 
@2

@�i@�j
 
.2/

k � 1

 
.2/

k

@

@�i
 
.2/

k

@

@�j
 
.2/

k

!
d�0;

a
.k/
ij .�/ D 1

2

n
p2Re G2k

�
0Ig.i/

k
; g
.j /

k
;w0

	
C q2Re G2k

�
0Ig.iCm/

k
; g
.jCm/
k

;w0
	

C pqIm G2k

�
0Ig.iCm/

k
; g
.j /

k
;w0

	
� pqIm G2k

�
0Ig.i/

k
; g
.jCm/
k

;w0
	o
: (32)

Theorem 5. Let the Assumptions I–VII, H.I, and H.II be satisfied. Then, as
T ! 1;
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T d=2
� O�T � �0

	
D! Nm

�
0; e.h/S�1

k .�0/ Ak .�0/ S
�1
k .�0/

�
; (33)

where the matrices Sk .�/ and Ak .�/ are given by the formulae (33) and (34),
respectively, and the tapering factor is given by the formula (16)

Note that the condition needed to control the bias is formulated here in the most
general form in the Assumption VIII (iv). For d D 1; 2; 3 and k D 2 or k D 3, this
condition holds if the conditions of Theorems 1 and 2 are satisfied. For the case of
general k > 3 and d D 1; 2; 3, one can consider the modified functional QUT , where
the function w0 is omitted but, instead, the domain of integration is taken to be Sk�1

"

(see (23)); then Assumption VIII (iv) holds under the conditions of Theorem 3. All
the results hold true for such a modified functional.

4 Notes on the Estimation Procedure
for the Second-Order Case

For the case of second-order spectral density, we introduce the following
assumption.

Assumption IX. There exists a nonnegative even function w .�/ ; � 2 S; such that
f .�I �/w .�/ 2 L1 .S/ 8� 2 �:

We set

�2 .�/ D
Z
S

f .�I �/w .�/ d�

and represent the spectral density in the form

f .�I �/ D �2 .�/  .�I �/ ; � 2 S; � 2 �:
For the function  .�; �/ ; � 2 S; � 2 �; we have

Z
S

 .�I �/w .�/ d� D 1

and we additionally suppose the following:

Assumption X. The derivatives r� .�I �/ exist and

r�

Z
S

 .�I �/w .�/ d� D
Z
S

r� .�I �/w .�/ d� D 0:

The contrast field in this case is of the form

UT .�/ D �
Z
S

I h2;T .�/w .�/ log .�I �/ d�; � 2 �: (34)
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Conditions needed for consistency and asymptotic normality of the corresponding
minimum contrast estimator can be written analogously to those presented in the
previous section for the general kth-order case. These conditions become of much
simpler form for Gaussian fields, when we deal only with second-order spectral
density (higher-order (cumulant) spectral densities are zero in this case), and for
linear fields.

We present below the results for linear processes, that is, we consider the
stationary process X.t/ which admits the representation:

X.t/ D
Z

u2I
Oa.t � u/	.du/; t 2 I; (35)

with a square-integrable kernel Oa.t/, t 2 I , with respect to, in continuous-time
case, an independently scattered random measure with finite second moment, that
is a homogeneous random measure 	.A/; A � R

d , with finite second moments and
independent values over disjoint sets, and, in the discrete-time case, 	.u/, u 2 Z,
are independent random variables such that E	.0/ D 0, Ej	.0/jk � ck < 1,
k D 1; 2; : : : (see, e.g., [5]).

In this case we have the explicit representation of cumulants:

Qck.t1; : : :; tk/ D dk

Z
s2I

kY
jD1

Oa.tj � s/ �.ds/;

where dk is the kth cumulant of 	.I1/ with I1 being the unit rectangle in the
continuous case and dk is the kth cumulant of 	.0/ in the discrete case, that is,
in particular,

d2 D E	.I1/
2; d4 D E.	.I1/

4/ � 2ŒE.	.I1/2/�2

or

d2 D E	.0/2; d4 D E.	.0/4/ � 2ŒE.	.0/2/�2

for the continuous and discrete cases, respectively.
For the spectral densities we have the representations:

fk.�1; : : :; �k�1/ D dk a

 
�
k�1X
iD1

�i

!
k�1Y
iD1

a.�i / D dk

kY
iD1

a.�i /ı

0
@ kX
jD1

�j

1
A :

Assumption XI. f .�I �0/w .�/ log .�I �/ 2 L1 .S/ \ L2 .S/ ; 8� 2 �:
Assumption XII. There exists a function v .�/ ; � 2 S; such that

(i) the function h .�I �/ D v .�/ log .�I �/ is uniformly continuous in S ��;
(ii) f .�I �0/ w.�/

v.�/
2 L1 .S/ \ L2 .S/ :
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Theorem 6. Let Assumptions IX–XII be satisfied. Then the minimum contrast
estimator O�T is a consistent estimator of the parameter �; that is, O�T ! �0
in P0-probability as T ! 1; and the estimator O�2T D R

S
IT .�/w .�/ d� is

a consistent estimator of the parameter �2 .�/ ; that is, O�2T ! �2 .�0/ in P0-
probability as T ! 1:

To formulate the result on the asymptotic normality of the minimum contrast
estimator, we need some further assumptions.

Assumption XIII. The function  .�I �/ is twice differentiable in a neighborhood
of the point �0 and

(i) f .�I �/w .�/ @2

@�i @�j
log .�; �/ 2 L1 .S/ \ L2 .S/ ; i; j D 1; : : :; m; � 2 �I

(ii) f .�I �0/ 2 Lp .S/ ; � 2 Lq .S/ ; for some p; q such that 1
p

C 1
q

D 1
2
, i D

1; : : :; m; � 2 �, where � D w .�/ @
@�i

log .�; �/ ;

(iii) T 1=2
R
S
.EIT .�/ � f .�I �0//w .�/ @

@�i
log .�I �/ d� ! 0 as T ! 1; for

all i D 1; : : :; m; � 2 �I
(iv) the second-order derivatives @2

@�i @�j
log .�I �/ ; i D 1; : : :; m; are continuous

in �:

Assumption XIV. The matrices S .�/ D �
sij .�/

�
i;jD1;:::;m and A .�/ D�

aij .�/
�
i;jD1;:::;m are positive definite where

sij .�/ D
Z
S

f .�I �/w .�/
@2

@�i @�j
log .�I �/ d�

D �2 .�/

Z
S

w .�/

"
@2

@�i @�j
 .�; �/ � 1

 .�; �/

@

@�i
 .�; �/

@

@�j
 .�; �/

#
d�;

aij .�/ D 4�

Z
S

f 2 .�I �/w2 .�/
@

@�i
log .�I �/ @

@�j
log .�I �/ d�

C 2�
d4

d22

Z
S

w .�/ f .�I �/
 .�I �/

@

@�i
 .�I �/ d�

Z
S

w .�/ f .�I �/
 .�I �/

@

@�j
 .�I �/ d�

D 4�
�
�2 .�/

	2 Z
S

w2 .�/
@

@�i
 .�I �/ @

@�j
 .�I �/ d�

C 2�
d4

d22

�
�2 .�/

	2 Z
S

w .�/
@

@�i
 .�I �/ d�

Z
S

w .�/
@

@�j
 .�I �/ d�

Theorem 7. Let the Assumptions IX–XIV be satisfied. Then as T �! 1

T 1=2
�b�T � �0

	
D! Nm

�
0; S�1 .�0/ A .�0/ S�1 .�0/

�
;

where Nm .�; �/ denotes the m-dimensional Gaussian law.
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The condition XIII (ii) guarantees that the limiting normal law holds for the
normalized spectral functional of the second-order T 1=2.JT .�i /�EJT .�i //, where
JT .�/ D R

S
IT .�/ �.�/ d� and �i .�/ D w .�/ @

@�i
log .�; �/ (see [5]).

Note that conditions for the asymptotic normal law for quadratic forms (or
spectral functionals of the second order)

R
S
IT .�/�.�/ d.�/, where IT is the

periodogram of the second order, have been intensively studied in the literature.
For the processes all of whose moments exist, one can apply the methods of
moments or cumulants to prove the convergence. Another approach is to reduce
the problem of convergence of the spectral functionals

R
S
IT .�/�.�/ d.�/ to the

convergence of the empirical covariance function (and its integrals), which, in its
own turn, can be reduced to the problem of validity of a central limit theorem for
the process Yu D XtCuXt , and at this point, one can apply the results on the central
limit theorem for stationary processes. Thus, assuming the process to be weakly
dependent (spectral density to be square integrable), we can demand instead of the
Assumption XIII (ii) the asymptotic normality of empirical covariance function and
its weighted integrals, and we note that sufficient conditions for this can be given,
for example, for strongly mixing processes via conditions on mixing coefficients
(demanding, e.g., the exponential decay for the Rosenblatt mixing coefficient ˛).
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Conditional Estimators in Exponential
Regression with Errors in Covariates

Sergiy Shklyar

Abstract In this chapter we deal with a regression model in which there is Gaussian
error in the regressor and the response variable has an exponential distribution.
We consider three methods of estimation: Sufficiency estimator, Conditional Score
estimators developed by Stefanski and Carroll (Biometrika 74, 703–716 1987), and
Corrected Score estimator developed by Stefanski (Commun. Stat. Theory Methods
18, 4335–4358 1989) and Nakamura (Biometrika 77, 127–132 1990). We have
written explicitly the estimating equations for these estimators. Sufficiency and
Corrected Score estimators were compared numerically.

1 Introduction

Canonical generalized linear models are regression models, in which the distribution
of response variable belongs to one-parameter exponential family of distributions,
and the canonical parameter of the distribution is a linear function of regressor.
In such models the log-likelihood function is concave.

We consider a model with Gaussian measurement error in regressor. For the case
where the error-free model is canonical generalized linear, Stefanski and Carroll [8]
developed Sufficiency estimator and a class of Conditional estimators.

The Corrected Score method proposed in Stefanski [7] and Nakamura [5] is
more general. This method does not require that the error-free model is a canonical
generalized linear model. Both Conditional Score and Corrected Score estimators
are described in Chap. 7 of monograph by Carroll et al. [1].

We consider the exponential regression model with measurement errors. In this
model, the estimating functions for Sufficiency, Conditional, and Corrected Score
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estimators can be written explicitly through the error function. We have written these
estimating functions through the cdf of normal distribution.

We compare these estimators numerically. Similar comparison for Poisson
regression model has been made by Stefanski [7].

The chapter is organized as follows. Section 2 includes the definition of one-
parameter exponential family of distributions. The statistical model is set in Sect. 3.
In Sect. 4 we obtained some formulas needed for Sufficiency and Conditional Score
estimators. The estimating equations are obtained in Sects. 5 and 6. In Sect. 7 an
estimating equation for Corrected Score estimator is obtained. In Sect. 8 we compare
the estimators numerically. Section 9 concludes. In Appendix, we have proved a
theorem that implies the uniqueness of solution to the deconvolution problem.

2 Exponential Family of Distributions

One-parameter exponential family of distributions is a family of distributions on
X � R with the following densities with respect to some � -finite measure on a
Borel � -field on X:

p.y; 
/ D exp

�
y
 �D.
/

�
C c.y; �/



; (1)

where 
 is a canonical parameter, � is a dispersion parameter, and D.
/ is a C2-
smooth convex function. Real-valued variable y denotes a point where the density
is taken.

The domain for 
 (which is the parameter space for the exponential family) is
assumed to be an open subset of R. The dispersion parameter � > 0 can be fixed.

Let Y have a distribution from an exponential family with density (1). According
to Lehmann and Casella [4], its expectation and variance equal

EY D D0.
/; DY D �D00.
/:

3 Exponential Regression

We consider a particular case of canonical generalized linear model with measure-
ment error developed by Carroll et al. [1]. Let Xi be nonrandom true regressor. The
response Yi is exponentially distributed, Yi 
 Exp.ˇ0Cˇ1Xi /, where the parameter
ˇ0 C ˇ1Xi depends on Xi :

P.Yi > y/ D e�y.ˇ0Cˇ1Xi /; y � 0:
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Let us remark that the exponential distributions form a one-parameter exponential
family. The parameter of exponential distribution should be positive. Therefore, we
assume

ˇ0 C ˇ1Xi > 0; iD1; 2; : : :

The true regressor Xi is observed with measurement error Ui ; thus, the observed
surrogate data is Wi D Xi C Ui . The measurement error Ui is independent of Yi
and is Gaussian, Ui 
 N.0; �2u /.

We assume that the measurement error variance �2u is known. For observa-
tions f.Wi ; Yi /; iD1; 2; : : : ; ng, we need to estimate the regression parameter
ˇ D .ˇ0; ˇ1/.

4 Some Formulas Needed for Construction of the Estimators

Let us consider a single observation. For simplicity of notation, we omit the index
i . The density of random response Y is

pY .y/ D .ˇ0 C ˇ1X/e
y .ˇ0Cˇ1X/; y>0

(the distribution of Y is concentrated on half-line .0;C1/). The density of the
surrogate regressor is

pW .w/ D 1p
2��u

exp

�
� .w �X/2

2�2u



; w2R:

Since X is assumed to be nonrandom, independence between U and Y implies that
W and Y are stochastically independent. The joint density of W and Y is

pW;Y .w; y/ D ˇ0 C ˇ1Xp
2��u

exp

�
�y .ˇ0 C ˇ1X/ � .w �X/2

2�2u



: (2)

Let us introduce a random variable

� D W � Y�2uˇ1:

The joint density of � and Y is

p�;Y .�; y/ D ˇ0 C ˇ1Xp
2��u

exp

�
�y .ˇ0 C ˇ1�/ � y2�2uˇ

2
1

2
� .� �X/2

2�2u



:

The density of conditional distribution of Y given � is pY j�.y/ D p�;Y .�;y/

p�.�/
, with
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p�.�/ D
Z 1

0

p�;Y .�; y/ dy

D ˇ0 C ˇ1Xp
2��u

exp

�
� .� �X/2

2�2u


 Z 1

0

e�.ˇ0Cˇ1�/� 1
2 y

2�2uˇ
2
1dy:

If ˇ1�u ¤ 0, then

p�.�/ D ˇ0 C ˇ1X

�2u jˇ1j exp

�
� .� �X/2

2�2u



exp

�
.ˇ0 C ˇ1�/

2

2�2uˇ
2
1



ˆ

�
�ˇ0 C ˇ1�

jˇ1j �u

�
:

If ˇ1�u D 0, then � D X a.s.
Let us define a special function

mills.t/ WD
Z 1

0

exp
˚�xt � 1

2
x2
�

dx

D p
2�et

2=2ˆ.�t /:

This function is called Mills ratio for standard normal distribution.
Using this notation, we obtain for ˇ1�u ¤ 0 that

p�.�/ D ˇ0 C ˇ1Xp
2��2u jˇ1j

exp

�
� .� �X/2

2�2u



mills

�
ˇ0 C ˇ1�

jˇ1j �u

�
: (3)

If ˇ1�u ¤ 0, then

pY j�.y/ D jˇ1j�u exp
˚�y .ˇ0 C ˇ1�/ � 1

2
y2�2uˇ

2
1

�
p
2� exp

n
.ˇ0Cˇ1�/2
2�2uˇ

2
1

o
ˆ
�
�ˇ0Cˇ1�

jˇ1j �u

	

D jˇ1j �u exp
˚�y .ˇ0 C ˇ1�/ � 1

2
y2�2uˇ

2
1

�
mills

�
ˇ0Cˇ1�
jˇ1j �u

	 :

Hence, the conditional distribution of Y given� is truncated normal distribution:

ŒY j �Dd� 
 Œ	 j 	>0�; 	 
 N

�
�ˇ0 C ˇ1d

ˇ21�
2
u

;
1

ˇ21�
2
u

�
:

We can see that the conditional distribution of Y given � does not depend on X .
This is consequence from the fact that for the fixed ˇ, the random variable � is a
sufficient statistics for the parameter X .

If ˇ1�u D 0 and ˇ0 C ˇ1� > 0, then

pY j�.y/ D pY .y/ D .ˇ0 C ˇ1�/e
�y .ˇ0Cˇ1�/:

It can be verified that for ˇ0 > 0, pY j�.y/ is a continuous function of ˇ1.
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Now let us evaluate conditional moments of Y given �. We can use formulas
for moments of truncated normal distribution presented in Greene [2]. If ˇ1�u ¤ 0,
then

EŒY j�� D �ˇ0 C ˇ1�

ˇ21�
2
u

C 1

jˇ1j �u mills
�
ˇ0Cˇ1�
jˇ1j �u

	 ;

EŒY 2j�� D .ˇ0 C ˇ1�/
2 C ˇ21�

2
u

ˇ41�
4
u

� ˇ0 C ˇ1�

jˇ1j3�3u mills
�
ˇ0Cˇ1�

jˇ1j�u

	 :

If ˇ1�u D 0, then ˇ0 C ˇ1� > 0 a.s. and

EŒY j�� D 1

ˇ0 C ˇ1�
; EŒY 2j�� D 2

.ˇ0 C ˇ1�/2
:

Denoting m.�;ˇ/ D EŒY j�� (i.e., m.ı;b/ D EˇDbŒY j �Dı�), we obtain

m.�;b/ D �b0 C b1�

b21�
2
u

C 1

jb1j �u mills
�
b0Cb1�jb1j �u

	 if b1�0 ¤ 0;

m.�;b/ D 1

b0 C b1�
if b1�uD0 and b0 C b1� > 0.

With this notation,

EŒY 2j�� D 1

ˇ21�
2
u

� .ˇ0 C ˇ1�/m.�;ˇ/

ˇ21�
2
u

:

Let us denote

v.�;ˇ/ D DŒY j �� D EŒY 2 j �� �m.�;ˇ/2:

The notation v.�;b/ will be used in Sect. 6 in the definition of Quasi-Score
estimator.

The function mills.t/ satisfies the following differential equation:

mills0.t/ D t mills.t/ � 1:
Hence,

d

dt
.ln mills.t// D t � 1

mills.t/
:

For t D b0 C b1�

jb1j�u
, we have

d

dt
.ln mills.t// D �jb1j �um.�;b/:
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5 Sufficiency Estimator

The Sufficiency estimator is defined by the following estimating equations:

8̂
<
:̂

nX
iD1

@

@b

�
lnpŒY j�D�i ;ˇDb�.Yi /

� D 0;

�i D Wi � Yi�2ub1:

(Here evaluating the derivative, we neglect the dependence of �i on ˇ.) For

lnpŒY j�;ˇDb�.y/

D ln jb1j C ln �u � y.b0 C b1�/ � 1

2
y2�2ub

2
1 � ln mills

�
b0 C b1�

jˇ1j�u

�
;

we can evaluate the derivatives

@

@b0

�
lnpŒY j�;ˇDb�.y/

� D �y Cm.�;b/I

@

@b1

�
lnpŒY j�;ˇDb�.y/

� D 1

b1
� y� � y2�2ub1 � b0

b1
m.�;b/:

Hence, the estimating equations become

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

nX
iD1

m.�i ;b/ D
nX
iD1

Yi ;

nX
iD1

�
�Y 2i b1�2u � Yi�i C 1 � b0m.�i ;b/

b1

�
D 0;

�i D Wi � Yi�2ub1:

(4)

(If b1 D 0 and b0 > 0, then the expression 1�b0m.�i ;b/
b1

should be replaced by �i
b0

.)
We add the first equation multiplied by b0 to the second equation multiplied

by b1:

nX
iD1

��Y 2i b21�2u � Yi .b0 C b1�i /C 1
� D 0:

We substitute �i D Wi � Yi�2ub1:
nX
iD1
.�Yi .b0 C b1Wi /C 1/ D 0: (5)
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Combining the first equation in (4) and (5), we obtain that the Sufficiency
estimator satisfies the relations

8̂
ˆ̂̂<
ˆ̂̂̂
:

nX
iD1

m.Wi � Yi�2ub1; b/ D
nX
iD1

Yi ;

nX
iD1

Yi .b0 C b1Wi / D n:

(6)

Equation (6) always has a solution b1 D 0, b0 D nP
Yi

. This solution is
superfluous in general case. Equation (6) may have no other solutions, or it may
have many solutions. If the Eq. (6) has many solutions, we choose one as follows.
If the sample correlation between Wi ’s and Yi ’s corr.Wi ; Yi / < 0, we search for a
solution with smallest positive b1 > 0. If corr.Wi ; Yi / > 0, we search for a solution
with b1 < 0 closest to 0. If corr.Wi ; Yi / D 0, we set b1 D 0 and b0 D nP

Yi
.

6 Conditional Score Estimators

In order to construct the Conditional Score estimator of ˇ, we regress Y on �.
Consider a family of elementary estimating functions

.m.�;b/ � Y /k.�;b/;

with some vector-valued function k.�;b/. Such estimating functions are unbiased.
Choosing different functions k.�;b/, we get different estimators.

Quasi-Score Estimator. For Quasi-Score estimator, the system of estimating
equations is

8̂
<
:̂

nX
iD1

m.�i ;b/ � Yi
v.�i ;b/

@m.�i ;b/
@b

D 0;

�i D Wi � Yi�2ub1; iD1; 2; : : : ; n:

Conditional-Linear Estimator. The system of estimating equations for this
estimator is

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

nX
iD1

m.�i ;b/ D
nX
iD1

Yi ;

nX
iD1

m.�i ;b/�i D
nX
iD1

Yi�i ;

�i D Wi � Yi�2ub1; iD1; 2; : : : ; n:
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This version of Conditional Score estimator is described in Carroll at al. ([1], Sect.
7.3) as the simplest approach to implement.

Optimal Estimator. The Optimal estimator is defined in the structural model, with
random variable as the true regressor X . The joint density of X and � is

pX;�.x;�/ D pX.x/
ˇ0 C ˇ1xp
2��2u jˇ1j

exp

�
� .� � x/2

2�2u



mills

�
ˇ0 C ˇ1�

jˇ1j�u

�
:

Let us evaluate the conditional expectation

t .�/ WD EŒX j �� D
R
xpX.x/.ˇ0 C ˇ1x/ exp

n
� .��x/2

2�2u

o
dx

R
pX.x/.ˇ0 C ˇ1x/ exp

n
� .��x/2

2�2u

o
dx

;

t.d/ D EŒX j �Dı� D EŒX .ˇ0 C ˇ1X/ j WDı�
EŒ.ˇ0 C ˇ1X/ j WDı� :

We define the estimator as a measurable solution to the following system of
estimating equations:

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

nX
iD1

m.�i ;b/ D
nX
iD1

Yi ;

nX
iD1

m.�i ;b/t.�i / D
nX
iD1

Yi t.�i /;

�i D Wi � Yi�2ub1; iD1; 2; : : : ; n:

Stefanski and Carroll (1987) proved that the score function in the latter system of
equations is optimal (in the sense of formal asymptotic covariance matrices) within
certain class of estimating functions.

7 Corrected Score Estimator

The Corrected Score method is described in monograph by Carroll et al. ([1], Sect.
7.4). We are using some notations from Kukush and Schneeweiss ([3], Sect. 5),
where Corrected Score estimator constructed for generalized linear model.

Here are Maximum Likelihood estimating equations in error-free model:

8̂
ˆ̂̂<
ˆ̂̂̂
:

nX
iD1

1

b0 C b1Xi
D

nX
iD1

Yi I
nX
iD1

Xi

b0 C b1Xi
D

nX
iD1

XiYi :
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In order to construct Corrected Score estimator, we have to solve the following
deconvolution problems:

Efc1.W;b/ D 1

b0 C b1x
; Efc2.W;b/ D x

b0 C b1x
(7)

with W 
 N.x; �2u /, i.e., for all x such that b0 C b1x > 0,

Z 1

�1
1p
2��u

fc1.w;b/ exp

�
� .w � x/2

2�2u



dw D 1

b0 C b1x
; (8)

Z 1

�1
1p
2��u

fc2.w;b/ exp

�
� .w � x/2

2�2u



dw D x

b0 C b1x
:

The pdf of the random variable � D Wi �Yi�2uˇ1 is denoted as p�. So, we have

Z 1

�1
p�.w/ dw D 1;

Z 1

�1
ˇ0 C ˇ1Xp
2��2u jˇ1j

mills

�
ˇ0 C ˇ1w

jˇ1j�u

�
e

� .w�X/2

2�2u dw D 1;

1

jˇ1j�u

Z 1

�1
mills

�
ˇ0 C ˇ1w

jˇ1j�u

�
1p
2��u

e
� .w�X/2

2�2u dw D 1

ˇ0 C ˇ1X
:

Hence, we can set

fc1.w;b/ D 1

jb1j �u
mills

�
b0 C b1w

jb1j �u

�
;

since this function satisfies (8) for all x such that b0 C b1x > 0.
As

EŒb0fc1.W;b/C b1fc2.W;b/� D 1; W 
 N.x; �2u /;

we can find fc2.w;b/ from the equation

b0fc1.w;b/C b1fc2.w;b/ D 1: (9)

Hence,

fc2.w;b/ D 1 � b0fc1.w;b/
b1

D 1

b1
� b0

jb1j b1�u
mills

�
b0 C b1w

jb1j�u

�
:

If ˇ1�u D 0, then

fc1.w;b/ D 1

b0 C b1w
; fc2.w;b/ D w

b0 C b1w
:
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Remark 1. The functions fc1.w;b/ and fc2.w;b/ are shown to satisfy Eq. (7).
According to Theorem 1 (see Appendix), if �2u > 0 and b 2 R

2 n f.b0; b1/ j
b0�0; b1D0g, all solutions to (7) coincide almost everywhere.

The system of estimating equations for Corrected Score estimator is

8̂
ˆ̂̂<
ˆ̂̂̂
:

nX
iD1

fc1.Wi ;b/ D
nX
iD1

Yi ;

nX
iD1

fc2.Wi ;b/ D
nX
iD1

YiWi :

(10)

We add the first equation multiplied by b0 to the second one multiplied by b1.
Taking (9) into account, we obtain

n D
nX
iD1

Yi .b0 C b1Wi /: (11)

This equation is equivalent to Eq. (5). Both the Sufficiency estimator and the
Corrected Score estimator satisfy Eq. (11).

System of Eq. (10) may have many solutions. We chose one in the same way as
for Sufficiency estimator.

Remark 2. In error-free model, the Sufficiency estimator and the Corrected Score
estimator, as well as some Conditional Score estimators (Quasi-Score, Conditional-
Linear, and Optimal estimators), coincide with Maximum Likelihood estimator.

8 Simulation

We choose the sample sizes n D 10; 000 and n D 1; 000; 000. Simulate a random
sample of Xi , i D 1; : : : ; n from lognormal law, lnXi 
 N.0; 1/. This sample will
be the same for all simulations.

In each simulation, generate Wi 
 N.Xi ; �
2
u / and Yi 
 exp.ˇ0 C ˇ1Xi / with

true parameters �2u D 0:6, ˇ0 D 2, and ˇ1 D 5. We evaluate Sufficiency estimator
and Corrected Score estimator. Also we evaluate Maximum Likelihood estimator in
error-free model in order to show the impact of errors on quality of estimators. The
estimates are averaged over 1,000 realizations. The simulation results are presented
in Table 1.

In our simulation measurement error essentially degrades the efficiency of the
estimators. The Corrected Score estimator has recognizable bias and larger standard
deviation than the Sufficiency estimator. We mention that for sample size n D
10; 000 for 20 realizations out of 1,000, the estimating equation for Corrected Score
estimator has no solution.
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Table 1 Simulation results

True value ˇ0 D 2 ˇ1 D 5

Sample Error
Means and standard deviations of
estimates over 1,000 simulations

size variance of ˇ0 of ˇ1
n �2u mean std mean std

Maximum Likelihood estimator in error-free model
10,000 0 1.9997 0.0748 5.0004 0.0963
1,000,000 0 2.0001 0.0074 4.9998 0.0100

Sufficiency estimator
10,000 0.6 1.9626 0.2440 5.0459 0.3168
1,000,000 0.6 2.0005 0.0228 4.9999 0.0293

Corrected Score estimator
10,000 0.6 1.3623 0.8823 5.7490 1.0419
1,000,000 0.6 1.8540 0.2097 5.1707 0.2452

9 Conclusion

The estimating functions for the Sufficiency estimator, for the Corrected Score esti-
mator, and for some estimators from Conditional Score class are written explicitly
in exponential regression model with ‘reciprocal’ link function EY D 1

ˇ0Cˇ1X and
Gaussian measurement error in regressor.

The estimating functions for these estimators are unbiased. In structural model,
they are unbiased under some conditions (not shown here) on the distribution of the
true regressor X . However, the proof of consistency of the estimators is a matter of
further investigation.

The Sufficiency estimator and the Corrected Score estimator are compared
numerically. The Sufficiency estimator seems to be better than the Corrected Score
estimator.

Appendix

In this section we show the uniqueness of the solution to deconvolution problem.

Definition 1. Let .˝;F;P� ; �2�/ be a statistical space. The statistics T W ˝ ! A

is called complete if for any Borel measurable function f W A ! R the equality
8� 2 � W E�f .T / D 0 implies 8� 2 � W P� .f .T /D0/ D 1.

Completeness of a statistics characterizes the family of induced distributions
fP�T �1; � 2 �g.

Example 1. Let .˝;F;P
; 
2�/ be a statistical space, and let the parameter set
� � R contain internal points. Let Y be a random variable whose density with
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respect to some � -finite measure on R is defined by formula (1) with known
dispersion parameter �, i.e., the distributions of Y form a one-parameter exponential
family with canonical parameter 
. Then Y is a complete statistics for 
. This is a
particular case of Theorem 6.22 from Lehmann and Casella [4] or Theorem 2.1 from
Shao and Zhang [6].

A family of normal distributions with common variance is a one-parameter
exponential family.

Example 2. Let �2 > 0 be a known number and � D .a; b/ be an interval on R.
The random variable � 
 N.�; �2/ is a complete statistics for the parameter � 2 �.

Theorem 1. Let f W R ! R be a Lebesgue measurable function, and let �2 > 0

and a < b. If

8x 2 .a; b/ W
Z 1

�1
f .t/ exp

�
� .t � x/2

2�2



dx D 0; (12)

where the latter integral is Lebesgue integral (and converges absolutely), then
f .t/ D 0 a.e. on R.

Proof. The function f .t/ is equal to some Borel measurable function a.e. Hence,
we can assume that f .t/ is a Borel measurable function. Equality (12) implies that
for all � 2 .a; b/

Ef .	/ D 0; 	 
 N.�; �2/:

As 	 is a complete statistics for �, f .	/ D 0 a.s. and f .t/ D 0 a.e. ut
Note that both Example 2 and Theorem 1 above hold true for infinite interval

.a; b/. Thus, a and b can be arbitrary such that �1 � a < b � C1.
Theorem 1 is used in the proof of uniqueness of solutions fc1.w;b/ and fc2.w;b/

to the deconvolution problem (7).

Example 3. Consider a single observation (see Sect. 4). Assume that parameters
ˇ and �2 are fixed and known, and X is an unknown parameter satisfying ˇ0 C
ˇ1X > 0. Random variables W 2 R and Y > 0 have joint density (2). Then the
random variable � D W � Yˇ1�

2
u is a complete statistics for X . Indeed, it is clear

from (3) that the distribution of � belongs to an exponential family with canonical
parameter X .
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