
Chapter 6
A Multi-Signal Variant for the GPU-Based
Parallelization of Growing Self-Organizing
Networks

Giacomo Parigi, Angelo Stramieri, Danilo Pau and Marco Piastra

Abstract Among the many possible approaches for the parallelization of
self-organizing networks, and in particular of growing self-organizing networks, per-
haps themost common one is producing an optimized, parallel implementation of the
standard sequential algorithms reported in the literature. In this chapter we explore an
alternative approach, based on a new algorithm variant specifically designed tomatch
the features of the large-scale, fine-grained parallelism of GPUs, in which multiple
input signals are processed at once. Comparative tests have been performed, using
both parallel and sequential implementations of the new algorithm variant, in par-
ticular for a growing self-organizing network that reconstructs surfaces from point
clouds. The experimental results show that this approach allows harnessing in a more
effective way the intrinsic parallelism that the self-organizing networks algorithms
seem intuitively to suggest, obtaining better performances even with networks of
smaller size.

Keywords Growing self-organizing networks · Graphics processing unit ·
Parallelism · Surface reconstruction · Topology preservation

6.1 Introduction

From a general point of view a self-organizing network is composed by units that
adapt themselves, through limited and local interactions, to input signals from some
predefined space. In most cases a topology is defined among these units by a set of
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binary connections. At first sight, the adaptation processmay look inherently parallel,
since each unit follows the same predetermined behavior and in many cases, as long
as two units are sufficiently far away in the network, they do not interact in any way.

Nonetheless, most of the algorithms in the literature are described as sequential
procedures, in the sense that input signals are submitted one by one to the network
and processed each in a sequential way. This means that, in most cases, also units
will be adapted sequentially, one after the other, even when they can be considered as
mutually independent, i.e. with input signals that are sufficiently distant in the input
space.

In a typical algorithm, each input signal has to be compared to all units in the
network, in order to find the closest one and adapt the latter and its neighbors to
the input signal. For reasons that will be described in detail later on, this operation
is dominant in terms of execution time, and is therefore the obvious focus for par-
allel implementation. In this respect, two main methods emerge: data partitioning
methods, in which the input signals are partitioned across parallel tasks, whereby
each task involves the entire network and processes just one input signal; network
partitioningmethods, in which the units of the network are partitioned across parallel
tasks, whereby each task considers all input signals but only in relation to the units
belonging to its partition. These two approaches are thoroughly examined in [2] for
the parallelization of Kohonen’s self-organizing map [3]. In particular, in the former
work, a data partitioning approach is described for the batch version of the algorithm,
and a network partitioning approach for the on-line version of the algorithm, in both
cases for an SP2 parallel computer.

As amatter of fact, perhaps themost common approach for the parallel implemen-
tation of self-organizing networks described in the literature (see for instance [4–7]),
is to adapt the network-partitioning method to the standard, sequential version of the
algorithm.

In an effort to better harness the “latent parallelism” of self-organizing networks,
a new algorithm variant for growing self-organizing networks is proposed in this
chapter. In this multi-signal algorithm variant, a number of signals are submitted to
the network and elaborated at once during each iteration. This variant is explicitly
intended for a data-partitioning approach to parallelization, which, as described in
[2],may offer “the potential formuch greater scalability, since the parallel granularity
is determined by the volume of data, which is potentially very large”. In particular the
new algorithm focuses on growing self-organizing networks and this entails dealing
with some further functional aspects, that are not present in the algorithm for self-
organizing maps considered in [2]. This aspect will be described in Sect. 6.2.

The new multi-signal algorithm has been designed to match the features of the
large-scale, fine-grained parallelism of GPUs (Graphics Processing Units). Beside
its computational capabilities, this hardware has gained a large popularity due to
the lower costs compared to those of more traditional high-performance computing
solutions. For instance, in [8], GPUs have been defined “probably today’s most
powerful computational hardware for the dollar”.

The GPU-based implementation of the multi-signal variant, has shown good per-
formances in all the tests performed, reaching noticeable speed-ups even for smaller



6 A Multi-Signal Variant for the GPU-Based Parallelization 85

networks. In addition, the new multi-signal algorithm has shown some interesting
differences w.r.t. the standard single-signal algorithm: in the tests performed, the
multi-signal algorithm always required less input signals to reach termination than
the single-signal counterpart. These aspects will be further discussed in Sect. 6.3.

6.2 Methods

6.2.1 Growing Self-Organizing Networks

In the discussion that follows, we consider as reference a network in which each
unit is associated to a reference vector in the input space, and a topology is defined
by a set of binary connections between the units. These connections also define the
local topology, or neighborhood, of each unit. In a self-organizing network units
are progressively adapted during the learning process. In addition, growing self-
organizing networks, like GNG [9], GWR [10] and SOAM [1] have the following
characteristics:

• during the learning process the number of units varies, and can both grow and
shrink;

• the topology of connections between units varies as well, since connections are
both created and destroyed during the learning process.

In general, the learning process of a growing self-organizing network can be
described as a basic iteration, which is repeated until some convergence criterion
is met:

1. Sample
Generate at random one input signal ξ with probability P(ξ). Usually the support
of P(ξ) coincide with the region of interest, i.e. the region of input space to be
considered.

2. Find Winners
Compute the distances ‖ξ − wi‖ between each reference vector and the input
signal and find the k-nearest units. In most cases k = 2, i.e. the nearest (winner)
and second-nearest units are searched for.

3. Update the Network
Create a new connection between the winner and the second-nearest unit, if not
existing, or reset the existing one.1

Adapt the reference vector of the winner unit and of its topological neighbors,
with a law of the type:

Δwb = εb‖ξ − wb‖, (6.1)

Δwi = εiη(i, b)‖ξ − wi‖,

1 An aging mechanism is also applied to connections (see for instance [9]).
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Fig. 6.1 The SOAM [1] reconstructs a surface from the point cloud on left. At the end, all units
converge to the same stable state

where wb is the reference vector of the winner and wi are the reference vectors of
the neighboring units. εb, εi ,∈ [0, 1] are the learning rates, with εb � εi . The
function η(i, b) ≤ 1 determines how neighboring units are adapted. In most cases
η(i, b) = 1 if units b and i are connected and 0 otherwise. During this phase, new
units can be created and old units can be removed, with methods that may vary
depending on the specific algorithm.

The three steps above are iterated until someconvergence criterion ismet: tipically,
inmost self-organizing networks, including growing ones, this criterion is a threshold
on the overall quantization error, i.e. themean squared distance between input signals
and the corresponding winners. For the purposes of this work we adopted the SOAM
algorithm, that has a termination criterionwhichdoes not dependona threshold. In the
SOAMalgorithm, in fact, the learning process terminates when all units have reached
a local topology consistent with that of a surface and therefore the network represents
the triangulation of the surface that has to be reconstructed from input signals (see
Fig. 6.1). The clear termination criterion in the SOAM algorithm is fundamental for
comparing the performances and the different behaviors of the two variants of the
algorithm, i.e. single-signal and multi-signal, and their implementations.

The methods adopted for adding and removing units during the Update phase
greatly vary depending on the algorithm. InGNG, for example, new units are inserted
at regular intervals, in the neighborhood of the unit i that has accumulated the largest
mean squared error. In contrast, in GWR new units are added whenever the distance
between the winner unit and the input signal ξ is greater than a predefined insertion
threshold. The new unit is positioned in proximity of the winner and the network
topology is updated. The SOAMalgorithm is similar to the GWR,with the difference
that the insertion threshold may vary during the learning process, in order to reflect
the local feature size (LFS) of the surface being reconstructed (see Sect. 6.3.1).

In terms of time complexity, the Find Winners phase is dominant in general. In
fact, assuming that the number k of nearest neighbors is constant and small, the Find
Winners phase has O(N ) time complexity, where N is the total number of units.
Although the complexity of the Update phase may greatly vary depending on how
the function is defined (see for instance the Neural Gas algorithm [11]), as a matter
of fact in most growing self-organizing networks, including the SOAM algorithm,
this update is local and limited to the connected neighbors of the winner, so that the
Update phase can be assumed to have O(1) time complexity. Furthermore, in this
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Fig. 6.2 Single-phase time to convergence of the SOAM algorithm (average values on the whole
test set)

discussion, we will not consider the Sample phase in detail: sampling methods, in
fact, are application-dependent and not necessarily under the control of the algorithm.

Thedominance of theFind Winners phase in termsof time complexity is confirmed
by experiments. The graph in Fig. 6.2 shows the mean values obtained from the
experiments described in Sect. 6.3. These results are in line with the ones reported
in the literature (see for example [4] for a detailed analysis), in that the percentage
of the execution time spent in the Find Winners phase remains as low as 50–60% of
the total execution time as long as the network remains small (i.e. 250–500 units),
but grows rapidly to 95% and more as the network size increases and more signals
are processed.

6.2.2 The Multi-Signal Variant

In the multi-signal variant proposed here, at each iteration m � 1 signals are con-
sidered at once. The basic iteration hence becomes:

1. Sample
Generate at random m input signals ξ1, . . . , ξm according to the probability dis-
tribution P(ξ), as described before.

2. Find Winners
For each signal ξ j , compute the distances ‖ξ j − wi‖ between each reference
vector and the input signal and find the k-nearest units.

3. Update the Network
For each signalξ j , perform the update operations specified in the previous section.

The first two phases in the above iteration pose no particular problems, since
all the involved operations performed for each signal are mutually independent.
In contrast, during the Update phase, the operations performed for different signals
may collide. In particular three kinds of collision can occur:
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Fig. 6.3 Collision caused by two different input signals ξ1 and ξ2. In (a) the two signals share the
same winner, hence all direct neighbors. In (b) and (c) the winner is different, but the neighbors are
shared. All three cases would lead to colliding adaptations

Adapt Position. Two or more signals lead to the adaptation of the same unit in the
network. Collisions of this kind are usually not isolated, since the collision can
happen both for the winner and for the neighboring units, as described in Fig. 6.3.

Modify Neighborhood. Two or more signals lead to modifying the neighborhood
of the same unit. This may be caused by either the insertion/removal of units or
the creation/removal of edges.

Insert Edge. Two or more signals lead to the insertion of the same edge.

In the multi-signal variant presented here, the main concern in choosing the
method for managing the above collisions is maintaining a coherent behavior with
respect to the single-signal algorithm, and allow an unbiased comparison of the
performances. At the same time, the method must be simple enough. The solution
adopted is using an implicit lock on the winner unit: no two or more input signals
having the samewinner can cause any of the collidingmodifications to be performed,
as only the first incoming signal, in a random order, will produce the corresponding
effect, while other signals for the same winner will just be discarded.

Collisions apart, the behavior of the new variant is different from the original,
single-signal algorithm. In the experiments described in Sect. 6.3, in fact, the multi-
signal variant always required a smaller number of signals to reach convergence,
regardless of the implementation. This aspect will be discussed in more detail in
Sect. 6.3.2.

6.2.3 Graphics Processing Units

Graphics ProcessingUnits (GPUs) are specialized and optimized for graphic applica-
tions, and are typically mounted on dedicated boards with private onboardmemories.
During these last years, GPUs have evolved into general-purpose parallel execution
machines [12]. Until not many years ago, in fact, the only available programming
interfaces (API) for GPUs were very specific, forcing the programmer to translate
the task into the graphic primitives provided. Gradually, many general-purpose API
for parallel computing have emerged, which are suitable for GPUs as well. This set
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Fig. 6.4 Standard GPUmem-
ory hierarchy

of API includes, for instance, RapidMind [13], PeakStream [14] or the program-
ming systems owned by NVIDIA and AMD, respectively CUDA (Compute Unified
Device Architecture) [15] and CTM (Close to Metal) [16], together with proposed
vendor-independent standards like OpenCL [17].

Albeit with some differences, all these API adopt the general model of stream
computing: data elements are organized in streams, which are ordered sets of data;
a set of streams is processed by the same kernel, intended as a set of functions to be
computed in parallel, and produces another set of streams as output. Each kernel is
executed on a set of GPU cores in the form of concurrent threads, each executing
the same program on a different stream of data. Within a kernel, threads are grouped
into blocks and each block is executed in sync. In case of branching of the execution,
the block is partitioned in two: all the threads on the first branch are executed in
parallel and then the same is done for all the threads in the second branch. This
generalmodel of parallel execution is often called SIMT (single-instructionmultiple-
thread) or SPMD (single-program multiple-data); compared to the older SIMD, it
allows greater flexibility in the flow of different threads, although at the cost of a
certain degree of serialization, depending on the program. This means that, although
independent thread executions are possible, blocks of coherent threads with limited
branching will make better use of the GPU’s hardware.

In typical GPU architectures, onboard and on-chip memories are organized in
a hierarchy (Fig. 6.4): global memory, i.e. accessible by all threads in execution,
shared memory, i.e. a faster cache memory dedicated to each single thread block and
local memory and/or registers, which are private to each thread.

Another noteworthy feature of modern GPUs is the wide-bandwidth access to
onboard memory, on the order of 10x the memory access bandwidth on typical PC
platforms. To achieve best performances, however, memory accesses by different
threads should be made aligned and coherent, in order to coalesce them into fewer,
parallel accesses addressing larger blocks of memory. Incoherent accesses, on the
other hand, must be divided into a larger number of sequential memory operations.
One of the aspects that make GPU programming still quite complex is that, in most
cases, the hierarchy of levels of memory, in particular the shared memory, has to be
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managed explicitly by the programmer. In return, this explicit management is often
an opportunity for further optimizations and better performances.

6.2.4 GPU-Based Parallel Implementation of the Single-Signal
Algorithm

In thework presented herewe did not produce a parallel implementation of the single-
signal algorithm, but we relied on the results reported in the literature, instead.

For the parallelization of (single-signal) growing self-organizing network algo-
rithms, a very common approach is applying the well-known map-reduce pattern,
which can be easily parallelized into a two-step method, to the dominant Find Win-
ners phase. In the first step of the map-reduce approach, i.e. the map operation, the
distance from each unit to the input signal is computed in parallel. In the second
step, i.e. the reduce operation, the set of previously computed distances is iteratively
reduced by comparing subsets in parallel, until the k shortest distances are found.
In passing, Buck et al. describe GPU reductions in more detail in the context of
the Brook programming language [18], while Harris does it in [19] for the CUDA
language. The map-reduce pattern has been studied in general [20] and applied to
the search of k nearest neighbors (k-NN) [21]. More specifically this approach has
been used for the parallelization of the GNG algorithm (see [5] and [4]) and of the
Parameter-Less SOM (see [7]).

Themap-reduce approach, however, implies a one-to-one correspondencebetween
network units and GPU threads in the map phase, which becomes even lower in the
reduce phase. This fact becomes a substantial limitation for the parallelization of
growing self-organizing networks, which usually start with a very small number of
units and grow progressively during the execution. As reported (see [5]), unless the
network contains at least 500–1000 units, the sequential execution on a CPU can be
faster than the parallel one. To cope with this problem, a hybrid technique has been
proposed (see [5] and [4]): switching the execution from CPU to GPU only when the
network is sufficiently large and the latter hardware is expected to perform better.
Nevertheless, even with this hybrid solution, the maximum level of parallelization
that can be attained is bound to the number of units in the network.

6.2.5 GPU-Based Parallel Implementation of the Multi-Signal
Variant

For the GPU-based parallel implementation of the algorithm, the main advantage of
the multi-signal variant is that the level of parallelism is bound only by the number
of signals submitted to the network at each iteration. Furthermore this same level of
parallelism can be maintained across entire kernels, since no reduction takes place.
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Fig. 6.5 The two steps of the Find Winners phase in the parallel implementation. a Parallel load,
b Sequential scan

The only limitation of this variant comes from the collisions that can occur during the
Updatephase, as explained in Sect. 6.2.2.Nevertheless, if the parallel implementation
focuses on the dominant Find Winners phase, there is in practice no upper limit for
the level of parallelism, beyond that of the hardware.

In the kernel that has been realized for the Find Winners phase, each thread is
assigned to an input signal. The execution is divided in two steps (see Fig. 6.5): first,
all threads in a block load a contiguous batch of reference vectors in the shared
memory with a coalesced access; second, all threads compute the distances from
the reference vectors to the signal through a sequential scan of the shared memory,
in which all threads read the same reference vector in sync. From the point of view
of GPU-based parallelization, this allows harnessing the faster and smaller shared
memory in order to accelerate the access to the global memory, i.e. where the whole
set of reference vectors is stored.

6.3 Experimental Validation

6.3.1 Methods of Comparison

All the experiments described in this section have been performed with the SOAM
algorithm, in four different implementations (see below), applied to the same tasks
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Fig. 6.6 The four point-clouds used in the test phase

of surface reconstruction from point clouds. In each experiment, the point cloud
was taken from a triangular mesh and sampled with uniform probability distribution
P(ξ).

Four different meshes have been used, each having different topological and
geometrical complexity. More precisely, we consider two measures, one for each
type of complexity: the genus of the surface [22], i.e. the number of holes enclosed
by it, and the local feature size (LFS), defined in each point x of the surface as the
minimal distance to the medial axis [23]. In this perspective, a ‘simple’ mesh has
genus zero or very low and high and almost constant LFS values, while a ‘complex’
mesh has higher genus and LFS values that vary widely across different areas.

The four meshes used in the experiments are well-known benchmarks for surface
reconstruction (Fig. 6.6):

• Stanford Bunny. It has genus 0 and some non-negligible variations in the LFS
values that make it non-trivial.

• Eight (also called double torus). It has genus 2 and relatively constant LFS values
almost everywhere.

• Skeleton Hand. It has genus 5 and widly variable LFS values, that in many areas,
e.g. close to the wrist, become considerably low.

• Heptoroid. It has genus 22, and low and variable LFS values over the surface.

Obviously, there is no a priori guarantee that a parallel algorithm should be
faster than a highly-optimized sequential one. Therefore we chose to implement also
a single-signal variant of the algorithm in which the crucial Find Winners phase is
improved through the use of a hash indexingmethod, similar to that used inmolecular
dynamics [24].

The hash index is constructed by defining a grid of cubes of fixed size inside an
axis-parallel bounding box that contains all the input signals in the input space. The
hash index of both signals and reference vectors, which live in the same space, is
obtained from the 3D coordinates. Whenever an input signals is selected, the search
for the reference vectors of the winner and the second nearest units is first performed
on the same cube where the input signal resides, together with its 26 adjacent cubes.
If this search fails, the exhaustive search is performed instead. Even if this method is
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slightly approximate, in that in a few extreme cases it may produce different results
from the exhaustive search, it yields a substantial speed-up, as will be discussed in
Sect. 6.3.3. In addition, being an hash method, the maintenance of the index, which
is performed in the Update phase, does not affect performances in a significant way.

Four different implementations of the SOAM algorithm have been used for the
experiments:

• Single-signal. A reference implementation of the single-signal SOAM algorithm
in C.

• Indexed. The same single-signal algorithm, but using an hash index for the Find
Winners phase.

• Multi-signal. A reference implementation in C of the multi-signal variant of the
algorithm, as described in Sects. 6.2.2 and 6.2.5 but without any actual paralleliza-
tion, in terms of execution.

• GPU-Based. An implementation in C and NVIDIA C/CUDA of the multi-signal
variant of the algorithm, with actual hardware parallelization.

The tests have been performed on a Dell Precision T3400 workstation, with a
NVidia GeForce GT 440, i.e. an entry-level GPU based on the Fermi architecture.
The operating systemwasMSWindowsVistaBusinessSP2 and all the programs have
been compiled withMSVisual C++ Express 2010, with the CUDA SDK version 4.0.

All the shared input parameters have been set to the same values for all the tests
for the four different implementations, while implementation-specific parameters,
such as the level of parallelism or the index cube size, have been tuned specifically
for maximum performances. Among the shared input parameters, only the crucial
insertion threshold has been tuned for each mesh, for the reasons described in [1],
while every other parameter value has been kept constant for all the four meshes.

In order to avoid discarding an excessive number of signals in the Update phase,
in all parallel implementations the level of parallelism m at each iteration, i.e. the
number of signals processed in the iteration, is set to the minimum power of two
greater than the current number of units in the network. The maximum level of
parallelism has been set to 8192.

Tables 6.1, 6.2, 6.3 and 6.4, at the end of this section, show the numerical results
obtained from the experiments. As it can be seen, for each input mesh, each different
implementation reaches a final configuration which can be either different or very
different, e.g. for the skeleton hand, in terms of number of units and connections.
Note that multi-signal and GPU-based implementations reach exactly the same final
configuration, since they are meant to replicate the same behavior by design.

As expected, there are substantial differences also for execution times. In the
tables these are measured as total time to convergence and time per signal, and
the detail figures are reported for each of the three phases. Time per signal is a
measure of the raw performances that can be obtained with each implementation,
while time to conververgence is the combined result of the implementation and the
different behavior that each implementation induces, as it will be explained in the
next sections.
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Table 6.1 Execution time and statistics on the Stanford Bunny data-set

Algorithm version Single-signal Indexed Multi-signal GPU-based

Network configuration at convergence
Iterations 620,000 616,000 1,296 1,296
Signals 620,000 616,000 580,656 580,656
Discarded signals 0 0 319,054 319,054
Units 330 332 347 347
Connections 984 990 1,035 1,035
Time to convergence
Total time 4.9530 3.369 3.893 2.059
Sample 0.460 0.048 0.009 0.016
Find winners 2.610 1.233 2.448 0.699
Update 1.883 2.088 1.436 1.344
Time per signal
Time per signal 7.9887 × 10−06 5.4692 × 10−06 6.7045 × 10−06 3.5460 × 10−06

Find winners 4.2097 × 10−06 2.0016 × 10−06 4.2159 × 10−06 1.2038 × 10−06

Table 6.2 Execution time and statistics on the Eight data-set

Algorithm version Single-signal Indexed Multi-signal GPU-based

Network configuration at convergence
Iterations 1,100,000 1,100,000 1,128 1,128
Signals 1,100,000 1,100,000 1,100,110 1,100,110
Discarded signals 0 0 562,277 562,277
Units 656 649 658 658
Connections 1,974 1,953 1,980 1,980
Time to convergence
Total time 12.3540 5.5690 11.6070 3.8690
Sample 0.0150 0.0480 0.0620 0.1410
Find winners 8.8600 2.8220 8.5060 0.7650
Update 3.4790 2.6990 3.0390 2.9630
Time per signal
Time per signal 1.1231 × 10−05 5.0627 × 10−06 1.0551 × 10−05 3.5169 × 10−06

Find winners 8.0545 × 10−06 2.5655 × 10−06 7.7320 × 10−06 6.9539 × 10−07

6.3.2 Behavior of the Multi-Signal Algorithm

Thefirst five lines ofTables 6.1, 6.2, 6.3 and 6.4, highlight an aspect that isworth some
further discussion, in particular for the Single-signal and the Multi-signal implemen-
tations.

Regardless of the hardware parallelizaton, the Multi-signal variant always needs
a substantially lower number of input signals than the Single-signal one to con-
verge. This difference becomes even more evident if the discarded signals are not
counted for, approaching a ratio of one to four as the mesh becomes more complex.
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Table 6.3 Execution time and statistics on the Hand data-set

Algorithm version Single-signal Indexed Multi-signal GPU-based

Network configuration at convergence
Iterations 202,988,000 213,800,000 10.264 10.264
Signals 202,988,000 213,800,000 81.092.912 81.092.912
Discarded signals 0 0 33.432.622 33.432.622
Units 5,669 5,766 8.884 8.884
Connections 17,037 17,328 26.688 26.688
Time to convergence
Total time 18, 548.4937 5, 337.2451 12, 422.3738 872.0250
Sample 9.4050 35.9820 8.6120 8.0480
Find winners 17, 763.1367 4, 127.8511 11, 789.8398 241.1750
Update 775.9520 1, 173.4120 623.9220 622.8020
Time per signal
Time per signal 9.1377 × 10−05 2.4964 × 10−05 1.5319 × 10−04 1.0753 × 10−05

Find winners 8.7508 × 10−05 1.9307 × 10−05 1.4539 × 10−04 2.9741 × 10−06

Table 6.4 Execution time and statistics on the Heptoroid data-set

Algorithm version Single-signal Indexed Multi-signal GPU-based

Network configuration at convergence
Iterations 20,714,000 23,684,000 1,244 1,244
Signals 20,714,000 23,684,000 7,683,554 7,683,554
Discarded signals 0 0 2,262,969 2,262,969
Units 14,183 13,937 15,638 15,638
Connections 42,675 41,937 47,040 47,040
Time to convergence
Total time 15, 449.2950 950.0250 2, 172.8009 119.6530
Sample 6.9570 3.4550 0.8010 0.5630
Find winners 15, 294.3330 780.5370 2, 089.6169 34.2640
Update 148.0050 166.0330 82.3830 84.8260
Time per signal
Time per signal 7.4584 × 10−04 4.0113 × 10−05 2.8279 × 10−04 1.5573 × 10−05

Find winners 7.3836 × 10−04 3.2956 × 10−05 2.7196 × 10−04 4.4594 × 10−06

The decrease in the number of signals to convergence is attained despite the growth
in the number of units and connections reached in the final configuration.

Figure6.7 compares the times to convergence of the Single-signal and Multi-
signal implementations. The performances of Multi-signal implementation are
always better than its Single-signal counterpart, a difference that becomes more sub-
stantial as the complexity of the mesh increases. Overall, this means that the extra
load due to the increase in the number of both units and connections is outbalanced
by the decrease in the number of signals needed to reach convergence.
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Fig. 6.7 Time to convergence
of the Single-signal andMulti-
signal implementations

In a possible explanation, the multi-signal variant has a better inherently distrib-
uted behavior than the original variant. In fact, in each iteration of the multi-signal
variant, a randomly scattered set of units is updated ‘simultaneously’, whereas in the
single-signal variant only thewinner unit and its direct neighbors are updated. Appar-
ently, the more distributed update leads to a more effective use of the input signals,
yielding faster convergence. This aspect, however, requires further investigation.

6.3.3 GPU-Based Implementation Performances

Figure6.8 shows a summary of the total times to convergence for the Single-signal,
Indexed and GPU-based implementations respectively, for the two most complex
meshes, with detail figure per each phase. Remarkably, in the GPU-based imple-
mentation, the Find Winners phase ceases to be dominant, and the Update phase
becomes the most time-consuming. This means that in this implementation any fur-
ther optimization of the Find Winners phase is less relevant unless the execution of
the Update phase is sped up in turn.

More in detail, Fig. 6.9a shows the average times per signal spent in the Find
Winners phase for each of the three implementations. Clearly, these times grow as the
number of the units in the network becomes larger. Figure6.9b compares the speed-up
factors in average time per signal for the Indexed and GPU-based implementations
with respect to the Single-signal one. As expected, these factors also grow with the
number of units in the network, since the hash index in the Indexed implementation
becomes more effective, while an higher level of parallelism can be achieved in
the GPU-based implementation. Overall, the speed-up factor for the GPU-based
implementation reaches 165x on the Heptoroid mesh.

Figure6.10a shows the total times to convergence. These results show how the
performances of the SOAM algorithm depend on the variation in the LFS values
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Fig. 6.8 Single-phase time to convergence for the two more complex meshes in the test set

Fig. 6.9 Per-signal performances. a Times per signal in the FindWinner phase for the three imple-
mentations. b Speed-up factors for the Find Winners phase time per signal compared to the Single-
signal implementation

(see Sect. 6.3.1): in fact, the skeleton hand always requires the longest time to con-
vergence, regardless of the implementation. Figure6.10b shows the speed-up factors
for the time to convergence, for the Indexed and GPU-based implementations, again
with respect to the Single-signal one. These factors grow with the number of units in
the network, and are the combined results of the implementation and of the behavior
induced.

For all inputmeshes, the total times to convergence for theGPU-based implemen-
tation are much lower than the ones for the Single-signal implementation. Speed-ups
vary from 2.5x (bunny) to 129x (heptoroid), as the complexity of the mesh increases
and the size of the reconstructed network grows. In particular, the results obtained
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Fig. 6.10 Global performances. a Times to convergence for the three implementations. b Speed-up
factors for the times to convergence compared to the Single-signal implementation

with the Stanford Bunny, given in Table 6.1, show non negligible speed-up factors in
both the total time to convergence (2.5x) and the time per signal (3.5x), despite that
the network contains only 330–347 units at most.

This result is particularly relevant if compared to other GPU-based parallel imple-
mentations of growing self-organizing networks (see for example [5]), for which it
is reported that the GPU execution produces noticeable speed-ups only when the
networks contain no less than 500–1000 units.

The Indexed implementation of the algorithm also obtains noticeable speed-ups
on all test cases. Nonetheless, as shown in Fig. 6.8, the Find Winners phase is still
dominant, although with Stanford bunny and Eight the Update times become com-
parable.

6.4 Conclusions and Future Developments

In this chapter we examined the parallelization of growing self-organizing networks
by proposing a multi-signal variant of the original algorithm adopted, in order to
increase its parallel scalability.

In particular, the experiments show that this multi-signal variant adapts naturally
to the GPU architecture in that, besides the advantages deriving from the careful
management of hierarchical memory through perfectly coalesced memory accesses,
it leads to a better usage of the high number of cores by allowing very high numbers
of concurrent threads.

A further interesting, and somehow unexpected, result of the experiments is that,
hardware parallelization apart, the overall behavior of the multi-signal variant is
significantly different from the original, single-signal one. The multi-signal variant
of the algorithm, in fact, seems to better deal with complex meshes, by requiring a
smaller number of signals in order to reach network convergence. This aspect needs
to be further investigated, possibly with more specific and extensive experiments.
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The parallelization described in this chapter is limited to the dominant Find Win-
ners phase and, according to the experimental results, can succesfully make it less
time-consuming than the Update phase. This means that future developments of the
strategy proposed should aim to the parallelization of the Update phase as well,
in order to further improve on performances. This requires some care however, as
the collisions among threads trying to update the data structures involved, must be
managed with care.
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