
Chapter 13
Compliance Error Compensation
in Robotic-Based Milling
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Sébastien Briot and Benoît Furet

Abstract This chapter deals with the problem of compliance errors compensation in
robotic-basedmilling. Contrary to previousworks that assume that the forces/torques
generated by the manufacturing process are constant, the interaction between the
milling tool and the workpiece is modeled in details. It takes into account the tool
geometry, the number of teeth, the feed rate, the spindle rotation speed and the proper-
ties of thematerial to be processed. Due to high level of the disturbing forces/torques,
the developed compensation technique is based on the non-linear stiffness model that
allowsus tomodify the target trajectory taking into account nonlinearities and to avoid
the chattering effect. Illustrative example is presented that deals with robotic-based
milling of aluminum alloy.
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13.1 Introduction

Currently, robots become more and more popular for a variety of technological
processes, including high-speed precisionmachining. For this process, external load-
ing caused by themachining force is applied on the robot tool. This force is generated
by the interaction between the tool mounted on the robot end-effector and the work-
piece during the material removal [1]. It is a contact force and it is distributed along
the affected area of the tool cutting part. To evaluate the influence and to analyze the
robot behavior while machining, the cutting force should be defined either experi-
mentally or using accurate mathematical model.

To evaluate the force causedby interactionbetween the tool and theworkpiece, two
approaches can be used. The static approach allows computing the average cutting
force without any consideration of dynamic aspect in machining system. This force
serves as an external loading of the robot. This approach is widely used in analysis
of conventional machining processes using CNCmachines [2], where the stiffness is
high. In contrast, robots have relatively low structural stiffness. For this reason, in the
case of robotic-based machining, an additional source of dynamic displacements of
the end-effector with respect to the desired trajectory induced by robot compliance
may arise. Such behavior leads to the variable contact between the machining tool
and the workpiece. Thus, the generated contact force depends on the current position
of the robot end-effector on the trajectory. Consequently, the cutting force cannot
be evaluated correctly using the static approach. In this case, the dynamic approach,
which will be used in the chapter, is required. It is based on computing of the force
at each instant of machining process that defines loading of the robot for the next
instant of processing. As a result, the dynamic aspect of robot motion under such
variable cutting force can be examined for whole process.

Usually, in the robot-based machining this force causes essential deflections that
decrease the quality of the final product. The problem of the robot error compensation
can be solved in two ways that differ in degree of modification of the robot control
software:

(a) by modification of the manipulator model which better suits to the real manip-
ulator and is used by the robot controller (in simple case, it can be limited by
tuning of the nominal manipulator model, but may also involve essential model
enhancement by introducing additional parameters, if it is allowed by a robot
manufacturer);

(b) by modification of the robot control program that defines the prescribed trajec-
tory in Cartesian space (here, using relevant error model, the input trajectory is
generated in such way that under the loading the output trajectory coincides with
the desired one, while input trajectory differs from the target one).

Moreover, with regard to the robot-based machining, there is a solution that does
not require force/torque measurements or computations [1], where the target tra-
jectory for the robot controller is modified by applying the “mirror” technique. An
evident advantage of this technique is its applicability to the compensation of all
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types of the robot errors, including geometrical and compliance ones. However, this
approach requires carrying out additional preliminary experiments which are quite
expensive. So, it is suitable for the large-scale production only. Another compensa-
tion methodology has been proposed by Eastwood and Webb [3] that was used for
gravitational deflection compensation for hybrid parallel kinematic machines.

This chapter focuses on the modification of control program that is considered to
be more realistic in practice. This approach requires also accurate stiffness model
of the manipulator. From point of view of stiffness analysis, the external and forces
directly influence on the manipulator equilibrium configuration and, accordingly,
maymodify the stiffness properties. So, theymust be undoubtedly taken into account
while developing the stiffness model. However, in most of the related works the
Cartesian stiffness matrix has been computed for the nominal configuration [4, 5].
Such approach is suitable for the case of small deflections only. For the opposite
case, the most important results have been obtained in [6–8], which deal with the
stiffness analysis of manipulators under the end-point loading.

Thus, to compensate errors caused by the machining process, it is required to
have an accurate stiffness model and precise cutting force model. In contrast to the
previous works, the compliance error compensation technique presented in this work
is based on the non-linear stiffness model of the manipulator [7] and dynamic model
of technological process that generates the cutting force.

13.2 Problem Statement

For the compliance errors, the compensation techniquemust rely on two components.
The first of them describes distribution of the stiffness properties throughout the
workspace and is defined by the stiffnessmatrix as a function of the joint coordinates.
The second component describes the forces/torques acting on the end-effector while
the manipulator is performing its machining task (manipulator loading).

The stiffness matrix required for the compliance errors compensation highly
depends on the robot configuration and essentially varies throughout the workspace.
Fromgeneral point of view, full-scale compensation of the compliance errors requires
essential revision of the manipulator model embedded in the robot controller. In fact,
instead of conventional geometrical model that provides inverse/direct coordinate
transformations from the joint to Cartesian spaces and vice versa, here it is necessary
to employ the so-called kinetostatic model [9]. It is essentiallymore complicated than
the geometrical model and requires rather intensive computations that are presented
in Sect. 13.3.

The dynamic behavior of the robot under the loading F caused by technological
process can be described as

MCδẗ + CCδṫ + KCδt = F (13.1)
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Fig. 13.1 VJM model of
industrial robot with end-
point and auxiliary loading

where MC is 6 × 6 mass matrix that represents the global behavior of the robot in
terms of natural frequencies, CC is 6 × 6 damping matrix, KC is 6 × 6 Cartesian
stiffness matrix of the robot under the external loading F, δt, δṫ and δẗ are dynamic
displacement, velocity and acceleration of the tool end-point in a current moment
respectively [10].

In general, the cutting forceFc has a nonlinear nature and depends onmany factors
such as cutting conditions, properties of workpiece material and tool cutting part, etc
[11]. But, for given tool/workpiece combination, the force Fc could be approximated
as a function of an uncut chip thickness h, which represents the desired thickness to
cut at each instant of machining.

Hence, to reduce the errors caused by the cutting forces in the robotic-based
machining it is required to obtain an accurate elastostatic model of the robot and
elastodynamic model of the machining process. These problems are addressed in
the following sections taking into account some particularities of the considered
application (robotic-based milling).

13.3 Manipulator Model

13.3.1 Elastostatic Model

Elastostaticmodel of a serial robot is usually defined by its Cartesian stiffnessmatrix,
which should be computed in the neighborhood of loaded configuration. Let us
propose numerical technique for computing static equilibrium configuration for a
general type of serial manipulator. Such manipulator may be approximated as a
set of rigid links and virtual joints, which take into account elastostatic properties
(Fig. 13.1). Since the link weight of serial robots is not negligible, it is reasonable to
decompose it into two parts (based on the link mass centre) and apply them to the
both ends of the link. All this loadings will be aggregated in a vector G = [G1...Gn],
where Gi is the loading applied to the ith node-point. Besides, it is assumed that
the external loading F (caused by the interaction of the tool and the workpiece) is
applied to the robot end-effector.

Following the principle of virtual work, the work of external forces G, F is equal
to the work of internal forces τ θ caused by displacement of the virtual springs δ θ
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n∑

j=1

(
GT

j · δtj

)
+ FT · δt = τT

θ · δθ (13.2)

where the virtual displacements δtj can be computed from the linearized geometrical

model derived from δtj = J(j)
θ δθ, j = 1. . .n, which includes the Jacobian matrices

J(j)
θ = ∂gj (q, θ)/∂θ with respect to the virtual joint coordinates.
So, expression (13.2) can be rewritten as

n∑

j=1

(
GT

j · J(j)
θ · δθ

)
+

(
FT · J(n)

θ · δθ

)
= τT

θ · δθ (13.3)

which has to be satisfied for any variation of δθ. It means that the terms regrouping
the variables δθ have the coefficients equal to zero. Hence the force balance equations
can be written as

τθ =
n∑

j=1

J(j)T
θ · Gj + J(n)T

θ · F (13.4)

These equations can be re-written in block-matrix form as

τθ = J(G)T
θ · G + J(F)T

θ · F (13.5)

where J(F)
θ = J(n)

θ , J(G)
θ =

[
J(1)T
θ ...J(n)T

θ

]T
, G = [

GT
1 ...GT

n

]T
. Finally, taking into

account the virtual spring reaction τθ = Kθ · θ, where Kθ = diag
(
Kθ1, ..., Kθn

)
, the

desired static equilibrium equations can be presented as

J(G)T
θ · G + J(F)T

θ · F = Kθ · θ (13.6)

To obtain a relation between the external loading F and internal coordinates of the
kinematic chain θ corresponding to the static equilibrium, Eq. (13.6) should be solved
either for different given values of F or for different given values of t. Let us solve
the static equilibrium equations with respect to the manipulator configuration θ and
the external loading F for given end-effector position t = g (θ) and the function of
auxiliary-loadings G (θ)

Kθ · θ = J(G)T
θ G + J(F)T

θ F; t = g (θ) ; G = G (θ) (13.7)

where the unknown variables are (θ, F).
Since usually this system has no analytical solution, iterative numerical technique

can be applied. So, the kinematic equations may be linearized in the neighborhood
of the current configuration θi
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ti+1 = g (θi) + J(F)
θ (θi) · (θi+1 − θi) ; (13.8)

where the subscript ‘i’ indicates the iteration number and the changes in Jacobians
J(G)
θ , J(F)

θ and the auxiliary loadings G are assumed to be negligible from iteration
to iteration. Correspondingly, the static equilibrium equations in the neighborhood
of θi may be rewritten as

J(G)T
θ · G + J(F)T

θ · Fi+1 = Kθ · θi+1 (13.9)

Thus, combining (13.8), (13.9) and expression for θ = K−1
θ (J(G)T

θ · G + J(F)T
θ · F),

the unknown variables F and θ can be computed using following iterative scheme

Fi+1 =
(

J(F)
θ · K−1

θ · J(F)T
θ

)−1 (
ti+1 − g (θi) + J(F)

θ θi − J(F)
θ K−1

θ J(G)T
θ Gi

)

θi+1 = K−1
θ

(
J(G)T
θ · Gi + J(F)T

θ · Fi+1

)
(13.10)

The proposed algorithm allows us to compute the static equilibrium configuration
for the serial robot under external loadings applied to any point of the manipulator
and the loading from the technological process.

13.3.2 Stiffness Matrix

In order to obtain the Cartesian stiffness matrix, let us linearize the force-deflection
relation in the neighborhood of the equilibrium. Following this approach, two equi-
libriums that correspond to the manipulator state variables (F, θ, t) and (F + δF, θ+
δθ, t + δt) should be considered simultaneously. Here, notations δF, δt define small
increments of the external loading and relevant displacement of the end-point. Finally,
the static equilibrium equations may be written as

t = g (θ) ; Kθ · θ = J(G)T
θ · G + J(F)T

θ · F (13.11)

and

t + δt = g (θ + δθ) (13.12)

Kθ · (θ + δθ) =
(

J(G)
θ + δJ(G)

θ

)T · (G + δG) +
(

J(F)
θ + δJ(F)

θ

)T · (F + δF)

where t, F, G, Kθ, θ are assumed to be known.
After linearization of the function g(θ) in the neighborhood of the loaded equi-

librium, the system (13.11), (13.12) is reduced to equations
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δt = J(F)
θ δθ

Kθ · δθ = δJ(G)
θ G + J(G)

θ δG + δJ(F)
θ F + J(F)

θ δF
(13.13)

which defines the desired linear relations between δt and δF. In this system, small
variations of Jacobians may be expressed via the second order derivatives δJ(F)

θ =
H(F)

θ θ · δθ, δJ(G)
θ = H(G)

θ θ · δθ, where

H(G)
θ θ =

n∑

j=1

∂2gT
j Gj/∂θ

2; H(F)
θ θ = ∂2gT F/∂θ

2 (13.14)

Also, the auxiliary loading G may be computed via the first order derivatives as
δG = ∂G/∂θ · δθ

Further, let us introduce additional notation

Hθ θ = H(F)
θ θ + H(G)

θ θ + J(G)T
θ · ∂G/∂θ (13.15)

which allows us to present system (13.13) in the form

[
δt
0

]
=

[
0 J(F)

θ

J(F)T
θ −Kθ + Hθ θ

]
·
[

δF
δθ

]
(13.16)

So, the desired Cartesian stiffness matrices KC can be computed as

KC =
(

J(F)
θ (Kθ − Hθ θ)

−1J(F)T
θ

)−1
(13.17)

Below, this expression will be used for computing of the elastostatic deflections of
the robotic manipulator.

13.3.3 Reduced Mass Matrix

To evaluate the dynamic behavior of the robot under the loading, in addition to the
Cartesian stiffness matrix KC it is required to define the Cartesian mass matrix MC.
This mass matrix has the same dimension as KC and can be obtained using some
model reduction techniques. Comprehensive analysis and definition of this matrix
have been proposed in [10]. Here, let us summarize the main results that will be used
further.

To reduce the mass matrix dimension, model reduction techniques are applied
for decreasing the size of the link mass matrices and also for the robot total mass
matrix. Two main ways can be followed to reduce the size of the link mass matrices.
The first one consists in discretizing the beam j into pj rigid links and springs and
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Fig. 13.2 Displacements and
elastic deformations of a beam

to express their displacements as a function of the beam extremity displacements.
However, such numerical method must be repeated for each link and, thus, increases
the size of the algorithm and decreases its efficiency. As a result, it is preferred to
use the following procedure which allows analytical expressions to be obtained for
the reduced link mass matrices.

Let us consider the link j, modeled as a beam (Fig. 13.2). At this beam is attached
a local frame represented by the vectors xj, yj and zj. Before any deformation of
the system, the beam j is linked to beams (j − 1) and (j + 1) at points Oj and Oj+1,
respectively (Fig. 13.2). After deformation of the robot, the beam extremity located

at Oj is displaced from δtj−1 =
[
δt1j−1, δt2j−1, . . . , δt6j−1

]T
and the one located at

Oj+1 is displaced from δtj =
[
δt1j , δt2j , . . . , δt6j

]T
, where the three first components

of each vector correspond to the translational displacements along local xj, yj and
zj axes, respectively, and the three last components to the rotational displacements
along the same axes.

The general formula for the kinetic energy of an elastic Bernoulli beam is equal
to:

Tj = 1/2

Lj∫

0

ρj δ̇
T
j Qj δ̇jdx; Qj = diag

(
Aj, Aj, AjI

p
j , Iy

j , Iz
j

)
(13.18)

In this expression, δ̇j represents the velocity of the beam cross-section located at
position x from the local reference frame (Fig. 13.2), Lj is the length of the beam j, ρj

the mass density at cross-section x, Aj its area, Ip
j its torsional constant and Iy

j , Iz
j , the

quadratic momentums along yj and zj, respectively.
For the lth natural mode ωl, the kinetic energy can be rewritten as:

Tjl = 1/2ω2
l cos

2 (ωlt + ϕl)

Lj∫

0

ρjδ
T
j Qjδjdx (13.19)
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δj being the amplitude of the displacement of the beam cross-section located at
position x from the local reference frame (Fig. 13.2).

In the Rayleigh-Ritz approximation, considering that the deformations due to the
natural vibrations are similar to those obtained when an external load is applied at
the robot end-effector only, each link of the structure will deform due to the stresses
transmitted through the robot joints at points Oj. As a result, the deformations εj

of the beam cross-section can be approximated by the deformations of a tip-loaded
beam

εj = diag
(
fj, gj, gj, fj, hj, hj

)
δθj (13.20)

where δθj = εj
(
x = Lj

)
represents the deformation of the beam at its tip and

fj (x) = x/Lj, gj (x) = 0.5x2
(
3Lj − x

)
/L3

j , hj (x) = 2x
(
Lj − 0.5x

)
/L2

j (13.21)

As a result, the global displacement δj of the beam cross-section at x can be expressed
as a sum of two terms:

δj =
[

I3 D(×)

03 I3

]
δtj−1 + εj,with D(×) =

⎡

⎣
0 0 0
0 0 −x
0 x 0

⎤

⎦ (13.22)

In this sum, the left terms corresponds to the displacement of the undeformed beam
due to the displacement of the node located at Oj.

Introducing (13.20–13.22) into (13.9) leads to the following equation:

Tjl = 1/2ω2
l cos

2 (ωlt + ϕl)

([
δtT

j−1 δtT
j

]
Mred

j

[
δtj−1
δtj

])
(13.23)

where the expressions of each components of matrix Mred
j are given in [10].

Using these results, the total kinetic energy of the system for the lth node is:

Tl =
∑

j

Tjl = 1/2ω2
l cos

2 (ωlt + ϕl) δtT Mtotδt (13.24)

with Mtot = diag
(
Mred

1 , . . . , Mred
n

)
and δtT = [

δtT
0 , δtT

1 , . . . , δtT
n−1, δtT

n

]

Then, assuming that the first natural modes of vibrations, i.e. the modes that have
the most energy, lead to deformations that are close to the static deformations of the
robot under a load applied on the end-effector, the mass matrix can be recomputed
into the Cartesian coordinates associated with the tool end-point using the Jacobian
matrix Jθ defined at expression (13.3) (which depend on the robot configuration q
and computed with respect to virtual joint coordinates θ) using following expression

MC = JT
θ MθJθ (13.25)
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Fig. 13.3 Fractional cutting
force model Fc(h)

Thus, using expressions (13.25), it is possible to compute the reduced mass matrix
MC for a given robot configuration q. The performances of this model reduction are
shown in [10].

13.4 Machining Process

Let us obtain the model of the cutting force which depends on the relative position
of the tool with respect to the workpiece at each instant of machining. As follows
from previous works [12], for the known chip thickness h, the cutting force Fc can
be expresses as

Fc (h) = k0
h/hs + r (h/hs)

2

1 + h/hs
ap, h ≥ 0 (13.26)

where ap is a depth of cut, r = k∞/k0 < 1 depends on the parameters k∞, k0
that define the so called stiffness of the cutting process for large and small chip
thickness h respectively (Fig. 13.3) and hs is a specific chip thickness, which depends
on the current state of the tool cutting edge. The parameters k0, hs, r are evaluated
experimentally for a given combination of tool/workingmaterial. To take into account
the possible loss of contact between the tool and the workpiece, the above expression
should be supplement by the case of h < 0 as

Fc (h) = 0, if h < 0 (13.27)

For the multi-edge tool the machining surface is formed by means of several edges
simultaneously. The number of working edges varies during machining and depends
on the width of cut. For this reason, the total force Fc of such interaction is a super-
position of forces Fc,i generated by each tool edge i, which are currently in the
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Fig. 13.4 Forces of
tool/workpiece interaction

contact with the workpiece. Besides, the contact force Fc,i can be decomposed
by its radial Fr,i and tangential Ft,i components (Fig. 13.4). In accordance with
Merchant’s model [13], the t-component of cutting force Ft,i can be computed with
the Eq. (13.26). The r-component Fr,i is related with Ft,i by following expression
[14]

Fr,i = krFt,i (13.28)

where the ratio factor kr depends on the given tool/workpiece characteristics.
It should be mentioned that in robotic machining it is more suitable to operate

with forces expressed in the robot tool frame {x, y, z}. Then, the corresponding
components Fx, Fy (Fig. 13.4) of the cutting force Fc can be expressed as follows

Fx =
nz∑

i=1
−Fr,i cosϕi +

nz∑
i=1

Ft,i sin ϕi

Fy =
nz∑

i=1
Fr,i sin ϕi +

nz∑
i=1

Ft,i cosϕi

(13.29)

where nz is the number of currently working cutting edges, ϕi is the angular position
of the ith cutting edge (the cutting force in z direction Fz is negligible here). So, the
vector of external loading of the robot due to the machining process can be composed
in the frame {x, y, z} using the defined componentsFx, Fy asF= [Fx, Fy, 0, 0, 0, 0]T .

It should be stressed that the cutting force components Fr,i, Ft,i mentioned in
Eqs. (13.26), (13.28) are computed for the given chip thickness hi, which should be
also evaluated. Let us define model for hi using mechanical approach. Then the chip
thickness hi removed by ith tooth depends on the angular position ϕi of this tooth
and it can be evaluated using to the geometrical distance between the position of the
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Fig. 13.5 Meshing of the
workpiece area

given tooth i and the current machining profile (Fig. 13.4). It should be mentioned,
that the main issue here is to follow the current relative position between the ith tooth
and the working material or to define whether the ith tooth is involved in cutting for
given instant of process. Because of the robot dynamic behavior and the regenerative
mechanism of surface formation [15] this problem cannot be solved directly using
kinematic relations. In this case it is reasonable to introduce a special rectangular
grid, which decomposes the workpiece area into segments and allows tracking the
tool/workpiece interaction and the formation of the machining profile (Fig. 13.5).

Here, Steps �sx,�sy between grid nodes are constant and depend on the tool
geometry, cutting condition and time discretization �τ . Each node j (j = 1, Nw, Nw

is the number of nodes) of the grid can be marked as “1” or “0”: “1” corresponds
to nodes situated in the workpiece area with material (rose nodes in Fig. 13.6), “0”
corresponds to nodes situated in workpiece area that was cut away (white nodes in
Fig. 13.6).

In order to define the number of currently cut nodes by the ith tooth, the previous
instant of machining process should be considered. Let us define Ai as an amount of
working material that is currently cut away by the ith tooth (Fig. 13.6). So, if node
j marked as “1” is located inside the marked sector (green nodes in Fig. 13.6), it
changes to “0” and Ai is increasing by �sx�sy. Analyzing all potential nodes and
computing Ai, the chip thickness hi, removed at given instant of the process by the
ith tooth, can be estimated by hi = Ai/R�αi, i = 1, Nz. The angle�ϕi determines



13 Compliance Error Compensation in Robotic-Based Milling 209

Fig. 13.6 Evaluating the
tool/workpiece intersection
Ai and computing the corre-
sponding chip thickness hi

Fig. 13.7 Algorithm for
numerical simulation of
robotic machining process
dynamics

the current angular position of the ith tooth regarding to its position at the instant
τ − �τ and referred to the position of TCP at τ − �τ .

Described mechanism of chip formation and the machining force model (13.26)
allow computing the dynamic behavior of the robotic machining process where mod-
els of robot inertia and stiffness are discussed in the Sect. 13.3 of the chapter. The
detailed algorithm that is used in numerical analysis is presented in Fig. 13.7, where
the analysis of the robot dynamics is performed in the tool frame with respect to
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the dynamic displacement of the tool δtdyn fixed on the robot end-effector around its
position on the trajectory.

13.5 Compliance Error Compensation Technique

In industrial robotic controllers, the manipulator motions are usually generated using
the inverse kinematic model that allows us to compute the input signals for actuators
ρ0 corresponding to the desired end-effector location t0, which is assigned assum-
ing that the compliance errors are negligible. However, if the external loading F is
essential, the kinematic control becomes non-applicable because of changes in the
end-effector location. It can be computed from the non-linear compliance model as

tF = f −1 (F | t0) (13.30)

where the subscripts ‘F’ and ‘0’ refer to the loaded and unloaded modes respec-
tively, and ‘|’ separates arguments and parameters of the function f (). Some details
concerning this function are given in our previous publication [7].

To compensate this undeterred end-effector displacement from t0 to tF, the target
point should be modified in such a way that, under the loading F, the end-platform is
located in the desired point t0. This requirement can be expressed using the stiffness
model in the following way

F = f
(

t0 | t(F)
0

)
(13.31)

where t(F)
0 denotes the modified target location. Hence, the problem is reduced to

the solution of the nonlinear Eq. (13.31) for t(F)
0 , while F and t0 are assumed to be

given. It is worth mentioning that this equation completely differs from the equation
F = f (t | t0), where the unknown variable is t. It means that here the compliance
model does not allow us to compute the modified target point t(F)

0 straightforwardly,
while the linear compensation technique directly operates with Cartesian compliance
matrix [16].

To solve Eq. (13.31) for t(F)
0 , similar numerical technique can be applied. It yields

the following iterative scheme

t(F)′
0 = t(F)

0 + α ·
(

t0 − f −1(F | t(F)
0 )

)
(13.32)

where the prime corresponds to the next iteration, α ∈ (0, 1) is the scalar parame-
ter ensuring the convergence. More detailed presentation of the developed iterative
routines is given in Fig. 13.8.

Hence, using the proposed computational techniques, it is possible to compensate
a main part compliance errors by proper adjusting the reference trajectory that is
used as an input for robotic controller. In this case, the control is based on the
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Fig. 13.8 Procedure for compensation of compliance errors

Fig. 13.9 Implementation of compliance error compensation technique

inverse kinetostatic model (instead of kinematic one) that takes into account both the
manipulator geometry and elastic properties of its links and joints. Implementation
of developed compliance error compensation technique presented in Fig. 13.9.



212 A. Klimchik et al.

Table 13.1 Initial data for robotic-based milling

Joint coordinates (deg)
q1 q2 q3 q4 q5 q6
90 −50 120 180 25 180
Joint compliances (rad/N m)*10−6

k1 k2 k3 k4 k5 k6
0.26 0.15 0.26 1.79 1.52 2.13
Link masses (kg)
m1 m2 m3 m4 m5 m6

336.8 259.4 85.2 54.5 36.3 18.2

Fig. 13.10 Starting pose
of the KUKA KR270 robot
to perform the operation of
milling

13.6 Experimental Verification

The developed compliance error compensation technique has been verified experi-
mentally for robotic milling with the KUKA KR270 robot along a simple trajectory
in aluminum workpiece. It is assumed that at the beginning of the technological
process the robot is in the configuration q (see Table13.1, Fig. 13.10). The parame-
ters of the stiffness model for the considered robot have been identified in [17] and
are presented in Table13.1. Link masses required for the mass matrix of the robot
are presented also in Table13.1.

For the milling, the cutter with the external diameter D = 20mm and four teeth
(Nz = 4) distributed uniformly over the tool is used. For the given combination
of the tool and the workpiece material the following parameters correspond to the
cutting force model defined in (13.26): k0 = 5× 106 N/m, hs = 1.8× 10−5 m, r =
0.1, kr = 0.3.

Taking into account that the workpiece has a straight borders let us assume that at
the instant t = 0 one of the teeth of the tool is in contact with the workpiece material
as it is shown in the Fig. 13.11. It is also assumed that the machining process is
performing with the constant feed rate vf = 4m/min (applied in x-direction of the
robot tool frame) and the constant spindle rotation � = 8000 rpm along the straight
line of 80 mm. Experimental verification and numerical simulation of the described
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Fig. 13.11 Starting relative position of the tool with respect to the workpiece

Fig. 13.12 Variation of machining force components Fx (a) and Fy (b) for whole milling process

case of the milling process with KUKA KR-270 robot using the algorithm shown
in Fig. 13.7 allows us to trace the evolution of machining force x, y-components for
the whole process (Fig. 13.12). The corresponding dynamic displacement of the tool
around its current position on the trajectory is shown in Fig. 13.13.

In accordancewith the obtained results the system robot/machiningprocess realize
complex vibratory motion. The high frequency component of this motion (about
700Hz, Fig. 13.12) is related to the spindle rotation and the number of tool teeth Nz.
In certain cases such behavior can excites the dynamics of the robot (natural modes)
but this study remains out the frame of the presented chapter. On the contrary, the
low frequency component of robot/tool motion (about 7 Hz, Fig. 13.13), especially
in the y-direction (that is perpendicular to the applied feed) influences directly the
quality of final product. Such motion is related to the robot compliance and it can
be compensated using the error compensation technique described in the chapter.
Hence, let us form the modified trajectory based on the dynamic displacement of the
robot end-effector in the y-direction (Fig. 13.14).
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Fig. 13.13 Evolution of the
tool dynamic displacement
δtdyn that is composed from
xTCP and yTCP components

Fig. 13.14 Modified trajec-
tory fy and corresponding feed
rate vfy in y-direction, com-
puted based on the original
dynamic displacement of the
tool δtdyn

It should be stressed that the time step between referenced points of this modified
trajectory is limited with the characteristics of the controller used in the robot (in
the presented case this step is chosen 0.05 s). The corresponding feed rate vfy for
the modified trajectory has been computed. So, this new data (feed fy and feed rate
vfy) with the data defined in the beginning of this section allow us to compensate
the trajectory error during machining caused by the robot compliance. The resulted
compensated trajectory in the y-direction (in time domain) is presented in Fig. 13.15.

It should be noted that the part of the trajectory while machining tool is engaging
into the workpiece does not have effect on the quality of final product (surface).
During this stage the contact area between the tool and the workpiece is increasing
progressively. Hence, at each instant of processing the cutter corrects the machining
profile and eliminates trajectory errors produced during all previous instants. On the
contrary, during the stage of machining with the fully engaged tool the trajectory in
x, y-directions define directly the final machining profile and this part of trajectory
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Fig. 13.15 Evolution of
the dynamic displacement
obtained after involving the
error compensation technique
into the analysis of robotic
milling process

Table 13.2 Milling
trajectory accuracy before
and after compliance error
compensation

Performance measure Original Modified
trajectory trajectory

Low frequency (Hz) 6.70 6.70
Static deviation ys (mm) 58.1e−3 0.14e−3
Max deviation yMAX (mm) 63.2e−3 4.70e−3

is analyzed here (Fig. 13.15). Comparison results presented in Figs. 13.13, 13.15 are
summarized in Table13.2. So after applying error compensation technique the static
deviation in y direction has been reduced from 0.058 to 0.00014mm (99.8%). Max-
imum defilation in the machining profile has been reduced from 0.063 to 0.0047mm
(92.6%). Low frequency remained the same for both cases.

Hence, obtained results show that the developed compliance error compensation
allows us significantly increase the accuracy of the robotic-based machining.

13.7 Conclusions

In robotic-based machining, an interaction between the workpiece and technological
tool causes essential deflections that significantly decrease the manufacturing accu-
racy. Relevant compliance errors highly depend on themanipulator configuration and
essentially differ throughout the workspace. Their influence is especially important
for heavy serial robots. To overcome this difficulty this chapter presents a new tech-
nique for compensation of the compliance errors caused by technological process. In
contrast to previous works, this technique is based on the non-linear stiffness model
and the reduced elasto-dynamic model of the robotic based milling process.

The advantages and practical significance of the proposed approach are illustrated
bymillingwith of KUKAKR270. It is shown that after error compensation technique
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significantly increase the accuracy of milling. In future the proposed technique will
be integrated in a software toolbox.
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