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Preface

The present book includes extended and revised versions of a set of selected papers
from the 9th International Conference on Informatics in Control Automation and
Robotics (ICINCO 2012), held in Rome, Italy, from 28 to 31 July 2012. The
conference was organized in four simultaneous tracks: Intelligent Control Systems
and Optimization, Robotics and Automation, Systems Modelling, Signal Pro-
cessing and Control and Industrial Engineering, Production and Management.

ICINCO 2012 received 360 paper submissions from 58 countries in all conti-
nents. From these, after a blind review process, only 40 were accepted as full
papers, of which 20 were selected for inclusion in this book, based on the clas-
sifications provided by the Program Committee. The selected papers reflect the
interdisciplinary nature of the conference as well as the logic equilibrium between
the four above-mentioned tracks. The diversity of topics is an important feature of
this conference, enabling an overall perception of several important scientific and
technological trends. These high-quality standards will be maintained and rein-
forced at ICINCO 2013, to be held in Reykjavíc, Iceland, and in future editions of
this conference.

Furthermore, ICINCO 2012 included four plenary keynote lectures given by
Alessandro De Luca (Università di Roma ‘‘La Sapienza’’, Italy), Munther
A. Dahleh (MIT, United States), Alexandre Dolgui (Ecole des Mines de Saint-
Etienne, France) and Jurek Sasiadek (Carleton University, Canada). We would like
to express our appreciation to all of them and in particular to those who took the
time to contribute with a paper to this book.

On behalf of the conference organizing committee, we would like to thank all
participants. First of all to the authors, whose quality work is the essence of the
conference and to the members of the Program Committee, who helped us with
their expertise and diligence in reviewing the papers. As we all know, producing a
conference requires the effort of many individuals. We wish to thank also all the
members of our organizing committee, whose work and commitment were
invaluable.

March 2012 Jean-Louis Ferrier
Alain Bernard
Oleg Gusikhin

Kurosh Madani
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Chapter 1
Adaptive Flux Observers and Rotor Speed
Sensor Fault Detection in Induction Motors

R. Marino, S. Scalzi, P. Tomei and C. M. Verrelli

Abstract The problem of detecting a rotor speed sensor fault in induction motor
applications with load torque and rotor/stator resistances uncertainties is addressed.
It is shown that in typical operating conditions involving constant rotor speed and flux
modulus and non-zero load torque, a constant non-zero (sufficiently large) difference
between the measured speed and the actual speed may be on-line identified by an
adaptive flux observer which incorporates a convergent rotor resistance identifier
and relies on the measured rotor speed and stator currents/voltages. Simulation and
experimental results illustrate the effectiveness of the proposed solution and show
satisfactory fault detection performances.

Keywords Induction motors · Speed sensor fault · Fault detection · Adaptive
observer

1.1 Introduction

The idea underlying a model-based approach to fault diagnosis (see for instance
[1, 2]) relies on the assumption that certain process signals carry information
about the faults of interest. The gist of the approach is to generate, on the basis

R. Marino · S. Scalzi · P. Tomei · C. M. Verrelli (B)
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4 R. Marino et al.

of measurements from (and knowledge of) the system, a set of “residual signals”
which are zero when no fault is present and non-zero when faults occur [3]. However
several difficulties naturally arise for the specific application to induction motors:
induction motor dynamics are nonlinear; flux measurements are not available; three
critical parameters, namely rotor and stator resistances (which vary during opera-
tions due to motor heating) and load torque (which depends on applications), are
typically uncertain and are required to be on-line estimated. A first intuitive solution
IS to rotor speed sensor fault detection problems relies on designing an adaptive
flux/speed observer which does not use the measured speed but only stator currents
and voltages measurements (see [4, 5]). The gist of the above design is to compare
the measured speed with the estimated one with the aim of identifying the possibly
occurring rotor speed sensor fault. Since suitable identifiers for the uncertain para-
meters (in particular rotor resistance) are to be incorporated in the adaptive observer
in order to avoid false fault detections, the drawback of the above approach is then
constituted by the well-known identifiability and observability issues which arise
when only stator currents and voltages are measured. It is in fact well-established
that when the motor typically operates at constant rotor speed and flux modulus with
non-zero load torque to minimize power losses and maximize power efficiency at
steady-state (see [6]), the simultaneous estimation of rotor speed and rotor resistance
cannot be achieved (see [7, 8] as well as [9] and references therein) since only a
linear combination L = Rr + γω of the rotor resistance Rr and speed ω (along with
the real γ) can be on-line identified by stator currents and voltages measurements.
This structural difficulty may be used to our advantage—and this is the novelty of
this chapter—by noting that when the (constant) measured speed ωm is used by a
suitable adaptive flux observer AFO which provides an exponentially convergent
rotor resistance estimate when ωm ≡ ω, the identifiable linear combination becomes
Le = Rr + γ(ω − ωm). If the rotor speed is measured and no rotor speed sensor
fault occurs, i.e. ω ≡ ωm , estimating Le coincides with estimating Rr ; on the other
hand, in the presence of speed sensor failures, estimating Le coincides with esti-
mating a quantity which, depending on (ω − ωm), may be larger or smaller than
any admissible Rr ∈ [Rrm, Rr M ] for the specific motor in consideration, that is
Rr +γ(ω −ωm) < Rrm or Rr +γ(ω −ωm) > Rr M . In this case a rotor speed sensor
fault may be on-line identified by designing a speed measurement-based adaptive
observer and by monitoring the estimate of Le on the basis of the boundary values
Rrm and Rr M .

The contribution of this chapter is then to show that an adaptive flux observer
AFO which incorporates a convergent rotor resistance identifier and relies on the
measured rotor speed and stator currents/voltages may be effectively used to on-line
identify a constant non-zero (sufficiently large) difference ω − ωm : (i) in typical
operating conditions involving non-zero load torque and constant rotor speed and
flux modulus; (ii) in the presence of load torque and stator resistance uncertainties.
In particular, denoting by α ∈ [αm,αM ] (αm = L−1

r Rrm , αM = L−1
r Rr M ) the ratio

between the rotor resistance Rr and the rotor inductance Lr and by α̂ its estimate
(provided by the AFO), we will show that a residual signal for the rotor speed
sensor fault detection may be chosen as the steady-state distance of α̂(t) from the
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compact set [αm,αM ], i.e. limt→+∞ dist(α̂(t); [αm,αM ]). A similar idea (though
not analytically motivated) has been recently presented in [10] even though it relies
on an observer which is only adaptive with respect to the rotor resistance. In contrast
to [10], we propose a candidate adaptive flux observer belonging to the set of all
adaptive flux observers which provide convergent estimates of the rotor resistance
despite uncertainties in critical parameters such as load torque and stator resistance.
This is to avoid false fault detections which may be related to uncertainties in those
critical parameters. With this respect, among the adaptive observers which have
been proposed in the literature since 1978 (see for instance [10–17] and references
therein), we consider in this chapter the one presented in [16] which is simultaneously
characterized by: (i) an overall structural simplicity with no use of sign functions, high
gains or output time derivatives which lead to well-known implementation difficulties
and high noise sensitivity; (ii) persistency of excitation conditions which are naturally
related to motor observability and parameter identifiability and are guaranteed to be
satisfied in the typical case of constant motor speed and flux modulus and non-
zero electro-magnetic torque; (iii) exponential convergence properties guaranteeing
a certain degree of robustness. It is constituted by an adaptive flux observer which is
able to estimate the motor fluxes and to identify the rotor resistance and by a stator
resistance identifier whose design is performed on a different time scale in order: (i) to
isolate its estimation from the estimation of motor fluxes and rotor resistance (see also
[18, 19] for a similar approach to parameter estimation in induction motors); (ii) to not
destroy the identifiability property owned by the linear combination Le. Simulation
and experimental results illustrate the effectiveness of the proposed solution and
show satisfactory fault detection performances.

1.2 Physical Modeling

Assuming linear magnetic circuits, the dynamics of a balanced non-saturated induc-
tion motor with one pole pair in a fixed reference frame attached to the stator are given
by the well known fifth-order model (see for instance [9] and references therein)

dω

dt
= μ(ψraisb − ψrbisa) − TL

J
dψra

dt
= −αψra − ωψrb + αMisa

dψrb

dt
= −αψrb + ωψra + αMisb (1.1)

disa

dt
= −

( Rs

σ
+ βαM

)
isa + 1

σ
usa + βαψra + βωψrb

disb

dt
= −

( Rs

σ
+ βαM

)
isb + 1

σ
usb + βαψrb − βωψra
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in which: ω is the rotor speed, (ψra,ψrb) are the rotor fluxes, (isa, isb) are the
stator currents, (usa, usb) are the stator voltages in a fixed reference attached to
the stator. The constant model parameters are: load torque TL ; motor moment of
inertia J ; rotor and stator windings resistances (Rr , Rs) and inductances (Lr , Ls);
mutual inductance M . To simplify notations we use the reparameterization: α = Rr

Lr
,

β = M
σLr

, μ = M
J Lr

, σ = Ls(1 − M2

Ls Lr ). The rotor fluxes (ψra,ψrb) are unmeasured
variables since flux sensors are usually not available while the parameters TL , α
and Rs are typically uncertain owing to load torque dependence on applications and
owing to resistance variations which depend on motor heating. We will only assume,
in the following, the boundedness of state and input variables while any restriction
concerning the boundedness of stator currents integrals, which has been proposed
for the design of similar adaptive flux observers in [13, 15], is not required.

1.3 Observer Design

The first idea in [16] is to introduce the variables za = isa + βψra , zb = isb + βψrb

so that the motor electro-magnetic equations in (1.1) become

ża = − Rs

σ
isa + 1

σ
usa

żb = − Rs

σ
isb + 1

σ
usb

disa

dt
= − Rs

σ
isa − α(1 + βM)isa − ωisb + αza + ωzb + 1

σ
usa (1.2)

disb

dt
= − Rs

σ
isb − α(1 + βM)isb + ωisa + αzb − ωza + 1

σ
usb.

The advantage of using the (za, zb) variables, which are physically related to the
stator fluxes, is that their dynamics depend neither on the unmeasured rotor fluxes
nor on the uncertain rotor resistance. On the basis of model (1.2), the following
observer is designed (ki is a positive design parameter):

˙̂isa = − R̂s

σ
isa − α̂(1 + βM)isa − ωîsb + α̂ẑa + ωẑb + usa

σ
+ ki (isa − îsa)

˙̂isb = − R̂s

σ
isb − α̂(1 + βM)isb + ωîsa + α̂ẑb − ωẑa + usb

σ
+ ki (isb − îsb) (1.3)

˙̂za = − R̂s

σ
isa + usa

σ
+ va

˙̂zb = − R̂s

σ
isb + usb

σ
+ vb
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which is a copy of system (1.2)1 with: (i) the estimates (ẑa, ẑb, α̂, R̂s) in place of the
unmeasured/uncertain (za, zb,α, Rs); (ii) stabilizing terms on the current estimation
errors (isa − îsa), (isb − îsb); (iii) the compensating terms va, vb yet to be designed.
According to the stability analysis in [16], the estimation laws for α̂ and R̂s and the
feedback terms va, vb are chosen as

˙̂α = −kα

[ [
(1 + βM)isa − ẑa

]
ĩsa + [

(1 + βM)isb − ẑb
]

ĩsb

]

˙̂Rs = −kR (vaisa + vbisb)

va = −kz

(
ωĩsb − α̂ĩsa

)

vb = kz

(
ωĩsa + α̂ĩsb

)
(1.4)

in which ĩsa = isa − îsa , ĩsb = isb − îsb are the stator current estimation errors,
kz and kα are positive design parameters, kR is a sufficiently small positive design
parameter.

Remark 1 While the design parameter ki directly affects the dynamics of the stator
current estimation errors, kα, kR are the adaptation gains for the estimates α̂, R̂s while
kz characterizes the influence of stator current estimation errors on the dynamics of
the (za, zb)-estimation errors.

The two-time-scale arguments in [16], under certain identifiability assumptions
at steady-state, allow for isolating the estimation of the stator resistance from the
estimation of motor fluxes (achieved through the estimation of (za, zb)) and rotor
resistance so that the following persistency of excitation condition:

Pe : there exist two positive reals tp and K p such that the persistency of excitation
condition (I3 is the 3 × 3 identity matrix)

∫ t+tp

t
Γ T(τ )Γ (τ )dτ ≥ K p I3, ∀ t ≥ 0 (1.5)

holds with

Γ =
[

α ω β (ψra − Misa)

−ω α β (ψrb − Misb)

]

is obtained. Inequality (1.5) is naturally related to motor observability and parameter
identifiability: when the rotor speed and the rotor flux modulus are constant and the

1 The terms −ωîsb and ωîsa in the first two equations of (1.3) compensate for the rotor back electro-
motive forces with the estimates (îsa, îsb) in place of (isa, isb) leading to skew-symmetric terms in
the estimation error dynamics.
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load torque is zero so that ψra = Misa and ψrb = Misb, it cannot be satisfied2;
when a positive load torque is applied3 and when the rotor speed and the rotor flux
modulus are constant4 with ψ2

ra + ψ2
rb = cψ > 0, it is satisfied.

The gist of the estimation design in [16] and the required assumptions can be
simply explained in the following terms: if the adaptive observer (1.3)–(1.4) (with
no stator resistance identifier) is used with a constant value of the stator resistance
that is slightly different from its actual value, then a non-zero steady-state solution
appears that causes a suitable measured output function sπ = vaisa + vbisb to be, in
first approximation, monotone with respect to the Rs-estimation error R̃s = Rs − R̂s ;
thus, by adjusting the Rs-estimate R̂s on the basis of this output function (slowly,
in order not to deviate too much from the steady-state solution) one can obtain the
correct estimation of Rs and the consequent exponential convergence to zero of all
the estimation errors ĩsa , ĩsb, za − ẑa , zb − ẑb, α − α̂, R̃s . Exponential rotor flux
recovering can be finally obtained by

[
ψ̂ra

ψ̂rb

]
= − 1

β

[
îsa − ẑa

îsb − ẑb

]

where the filtered estimates (îsa, îsb) are preferred to the measured (isa, isb) for
practical implementation issues. The following second-order load torque identifier
(kωe and kT are positive design parameters):

˙̂ω = μ(ψ̂raisb − ψ̂rbisa) − T̂L

J
+ kωe(ω − ω̂)

˙̂TL = −kT (ω − ω̂)

is finally proposed in [16]. It can be used in conjunction with the adaptive observer
(1.3)–(1.4) to provide an exponentially convergent estimate of the load torque once
convergent estimates of rotor fluxes have been obtained. The proof, which is reported
in [9], is based on the quadratic function

VT = 1

2kT J
T̃ 2

L + 1

2
ω̃2 + εT ω̃T̃L

in which ω̃ = ω − ω̂, T̃L = TL − T̂L and εT > 0 is a sufficiently small positive real.

2 Recall that in these operating conditions the rotor resistance cannot be identified by stator currents
and rotor speed measurements since the motor equations (1.1) become

ω̇ = 0, ψ̇ra = −ωψrb, ψ̇rb = ωψra,
disa

dt
= −ωisb,

disb

dt
= ωisa

and do not depend on the rotor resistance Rr .
3 A negative load torque (for regenerative brake actions) is also allowed provided that a non-zero
rotor flux vector speed results.
4 It suffices that at least they asymptotically tend to constant values with time derivatives asymp-
totically converging to zero.
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1.4 Speed Sensor Fault Detection

The aim of this section is to prove that a constant non-zero (sufficiently large)
difference between the measured speed and the actual speed may be on-line identified
by the adaptive flux observer (1.3)–(1.4) (in which the measured speed ωm replaces
the actual speed ω) in typical operating conditions involving non-zero load torque
and constant rotor speed and flux modulus. To this purpose, we preliminarily note
that in those conditions we have

˙︷ ︸︸ ︷
ψ2

ra + ψ2
rb ≡ 0

ω̇ ≡ 0,

from which we obtain

Misa = ψra − cψrb

Misb = ψrb + cψra (1.6)

with (ωs is the slip speed see [9])5

c = TL M

Jμcψ
= TL Lr

cψ
= ωs/α.

By adding and subtracting in (1.2) suitable terms proportional to ωe = ω − ωm and
by using (1.6), Eq. (1.2) can be equivalently rewritten as

ża = − Rs

σ
isa + 1

σ
usa

żb = − Rs

σ
isb + 1

σ
usb

disa

dt
= − Rs

σ
isa − ωmisb + ωm zb + 1

σ
usa + α [za − (1 + βM)isa] + ωe (zb − isb)

disb

dt
= − Rs

σ
isb + ωmisa − ωm za + 1

σ
usb + α [zb − (1 + βM)isb] − ωe (za − isa)

with the last two equations reading

disa

dt
= − Rs

σ
isa − ωmisb + ωm zb + 1

σ
usa +

αe︷ ︸︸ ︷(
α + ωe

c

)
(za − (1 + βM)isa)

disb

dt
= − Rs

σ
isb + ωmisa − ωm za + 1

σ
usb +

αe︷ ︸︸ ︷(
α + ωe

c

)
(zb − (1 + βM)isb) .

5 When no load torque is applied (or equivalently when a zero slip speed results), we have Misa =
ψra , Misb = ψrb as preliminarily discussed by footnote 2.
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In other terms, in typical operating conditions involving non-zero load torque and
constant rotor flux modulus and (measured and actual) speeds, an equivalent constant
αe = α + ωe/c appears in the motor model with ωm in place of ω (compare it with
model (1.2)): it incorporates any possibly non-zero difference between the measured
speed and the actual speed.

Remark 2 When ωm ≡ 0 (which is the well-known sensorless scenario in which
only stator currents and voltages are measured), αe reduces to the linear combination
α+ω/c which, as discussed in the Introduction, is the only quantity to be identifiable
by stator currents and voltages measurements (see [7–9] and references therein). Any
solution to rotor speed sensor fault detection problems relying on adaptive flux/speed
observers which do not use the measured speed (but try to estimate it for comparison)
thus becomes unfeasible, at least in typical motor operating conditions with rotor
resistance uncertainties.

By virtue of the same analysis presented in [16] and discussed in Sect. 1.3 (with
ωm in place of ω), the adaptive observer (1.3)–(1.4) is able to guarantee exponential
convergence6 to zero of all the estimation errors ĩsa , ĩsb, za − ẑa , zb − ẑb, αe − α̂, R̃s

(provided that initial errors belong to the region of attraction of the origin for the error
system dynamics7). Exponential estimation of motor fluxes, equivalent α and stator

6 Recall from [16] that the proof of convergence is not constrained to the positiveness of the
parameter αe.
7 Note that in the considered conditions (non-zero load torque and constant rotor speed and (non-
zero) rotor flux modulus) it is possible to only locally identify the uncertain Rr , Rs , TL from the
measured outputs (isa , isb, ω). In fact, according to Sect. 1.3 of [9]:

• Rr , Rs and TL can be expressed in terms of the measured outputs and their time derivatives
(isa,d = disa/dt , isb,d = disb/dt) as solutions to the system of nonlinear equations

P = isa(t∗)
√

u2
sa(t∗) + u2

sb(t∗)

Q = isb(t∗)
√

u2
sa(t∗) + u2

sb(t∗)

ρ̇∗ − Rr TL

ψ2
r

= ω

ρ̇∗ = −isa,d (t∗)isb(t∗) + isb,d (t∗)isa(t∗)
i2
sa(t∗) + i2

sb(t∗)
V2 = u2

sa(t∗) + u2
sb(t∗)

where: P = usd isd + usq isq and Q = −usq isd + usd isq are proportional to the active and

reactive electrical powers, respectively; V =
√

u2
sd + u2

sq is the modulus of the stator voltage

vector; ψr =
√

ψ2
ra + ψ2

rb is the modulus of the rotor flux vector; the constant usd , usq , isd , isq

are the (d, q)-components of the stator voltage and current vectors which are known functions
of ψr , Rr , Rs , TL (see Sect. 1.3 of [9]); t∗ is such that usa(t∗) = V , usb(t∗) = 0;

• there may exist two possible solutions (ψr , Rr1, Rs1, TL1), (ψr , Rr2, Rs2, TL2) with Rr1 = −Rr2
and TL1 = −TL2 to the above system of nonlinear equations to which correspond the same output
and input profiles.
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resistance are therefore achieved. In particular, limt→+∞ dist(α̂(t); [αm,αM ]) may
be used as a residual signal for rotor speed sensor fault detection since when rotor

speed ω and flux modulus
√

ψ2
ra + ψ2

rb are constant along with the measured speed

ωm , the α-estimate α̂(t) is guaranteed to exponentially converge to αe. It is clear
that only the rotor speed sensor faults that lead to a value of αe outside the compact
set [αm,αM ] can be in this way identified. An estimate of ωe (and therefore of the
sensor failure magnitude) can be finally obtained according to TL Lr

cψ
(αe − α) = ωe

once the load torque (through the load torque identifier) and the rotor fluxes have
been estimated.8

Remark 3 Two relevant consequences of the previous analysis are the following:
(i) the rotor fluxes, the load torque (and therefore the motor torque) and the stator
resistance can be actually estimated, in the conditions above, even in the presence
of rotor speed sensor faults (including the sensorless scenario); (ii) the rotor fluxes,
the load torque, the stator resistance and the rotor speed difference ω − ωm (or
equivalently the rotor speed ω in the sensorless scenario) can be actually estimated,
in the conditions above, provided that the rotor resistance (or equivalently α) is
known (see IS and the related results in [20] for the sensorless scenario).

Remark 4 The key idea of the approach presented in this chapter may be alternatively
(equivalently) realized as follows: suppose that no speed information is used by the
adaptive flux observer AFO so that L along with γ are on-line identified (see the
Introduction). Then the information contained in the measured speed ωm (provided
by the sensor) may be successfully employed to compute Le = L− γωm . The rotor
speed sensor fault can be finally identified as before. This constitutes an improved
modification of the previously described intuitive solution IS.9

1.5 Simulation Results

The aim of this section is to illustrate by simulations the previously presented results
even in the presence of time-varying perturbations of the motor resistances and step-
wise variations of the load torque. To this purpose, the nonlinear adaptive observer
(1.3)–(1.4) and the load torque identifier are simulated for the three-phase single
pole pair 0.6-kW induction motor OE-MER 7-80/C in [9] whose parameters are:
J = 0.0075 kgm2, Rs = 5.3 Ohm, Rr = 3.3 Ohm, Ls = 0.365 H, Lr = 0.375 H,
M = 0.34 H. The motor (with initial conditions ψra(0) = ψrb(0) = 0.1 Wb) is
illustratively controlled by the input-output feedback linearizing control reported in
Sect. 2.4 of [9] (which relies on exact rotor speed and stator current measurements

8 Note that, for constant ω and ωm and convergent rotor fluxes estimates, exponential convergence
to zero of T̃L and of ωm − ω̂ can be proved by using the quadratic function VT with ωm − ω̂ in place
of ω̃.
9 When α is known the two approaches are equivalent.
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Fig. 1.1 Rotor speed ω and flux modulus
√

ψ2
ra + ψ2

rb

Fig. 1.2 Rotor fluxes ψra,ψrb (dash) and their estimates ψ̂ra, ψ̂rb (solid); rotor fluxes ψra,ψrb
estimation errors

and on the perfect knowledge of all motor parameters). The rotor speed and the flux
modulus are reported in Fig. 1.1.

The design parameters are chosen as (all the values are in SI units): ki = 120,
kz = 3, kα = 450, kR = 0.1, kω = 200, kT = 1002 J. All the observer initial
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Fig. 1.3 Load torque TL
(dash) and its estimate T̂L
(solid)

Fig. 1.4 Equivalent rotor
resistance Rre (dash) and its
estimate R̂r (solid)

conditions are set to zero excepting for α̂(0) = 9 s−1 and R̂s(0) = 5.4 Ohm. For
t < 1.8 s the measured speed is equal to the actual one (ω ≡ ωm) while for t ≥ 1.8 s
a rotor speed sensor fault occurs leading to ω − ωm = 0.4ω. The equivalent rotor
resistance Re = Lrαe is thus equal to Rr for t < 1.8 s and equal to Rr + ωecψ/TL

for t ≥ 1.8 s. The rotor fluxes, the load torque, the equivalent rotor resistance, the
stator resistance along with the corresponding converging estimates are reported in
Figs. 1.2, 1.3, 1.4, 1.5.

Fast estimation is obtained: the rotor speed sensor fault can be promptly identified
by monitoring the estimated rotor resistance on the basis of the available bounding
values Rrm = Lrαm = 2.8 Ohm, Rr M = LrαM = 6.9 Ohm. In order to illustrate
the possibility of detecting false faults by using adaptive observers with no stator
resistance identifier (as in [10]), the same simulation is carried out in the presence
of no rotor speed sensor fault for the adaptive observer (1.3)–(1.4) with the stator
resistance value 5.4 Ohm in place of R̂s .

As illustrated by Fig. 1.6, a non-zero residual results even in the case of no rotor
speed sensor fault10: this is only due to stator resistance uncertainties and motivates

10 Even though in this case steady-state stator currents estimation errors may appear (as in [10]), the
presence in practice of unavoidable measurements noise which forces those steady-state estimation
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Fig. 1.5 Stator resistance Rs
(dash) and its estimate R̂s
(solid)

Fig. 1.6 Observer with no Rs -adaptation: rotor resistance Rr (dash) and its estimate R̂r (solid)

the use of adaptive observers which provide convergent rotor resistance estimates
despite stator resistance uncertainties.

1.6 Experimental Results

In this section we present the results of three experimental tests which have been car-
ried out with reference to a 0.25 kW C4T34FB5B Leeson induction motor driven
by a 20 kHz PWM-based open loop voltage/frequency control (61 V, 16.7 Hz).
The applied load torque, which is proportional to the induction motor speed, is
provided by the WSM-3-32-1 Sangalli Servomotori DC permanent magnet motor
which is directly connected to the shaft of the induction motor. The nonlinear adaptive
observer (1.3)–(1.4) and the load torque identifier are executed (at 12.5 kHz) when the
motor has reached its steady-state. The nominal values of the parameters (provided

(Footnote 10 continued)
errors to always be not identically zero makes not reliable the approach of using them as additional
residuals.
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Fig. 1.7 First experimental test (ωm = 70 rad/s, ω = 88 rad/s)

by the manufacturer) Ls = 0.268 H, Lr = 0.298 H, M = 0.258 H, J = 0.005 kgm2

are used, the control gains (all the values are in SI units) ki = 600, kz = 3, kα = 10,
kR = 0.65, kω = 100, kT = 5 are chosen while zero initial conditions, excepting
for α̂(0) and R̂s(0) (equal to 12.75 s−1 and 10.45 Ohm), are set. The first test, whose
steady-state results are reported in Fig. 1.7, involves a partial rotor speed sensor fault
(ωm = 70 rad/s, ω = 88 rad/s) occurring at t = 3.84 s.

The second test, whose steady-state results are reported in Fig. 1.8, involves a
larger partial rotor speed sensor fault (ωm = 44 rad/s, ω = 88 rad/s) occurring at
t = 2.02 s.

The third test, whose steady-state results are reported in Fig. 1.9, finally involves
a full rotor speed sensor fault (ωm = 0 rad/s, ω = 88 rad/s) occurring at t = 1.66 s.
All the three tests confirm the theoretical results presented in the chapter: as expected,
the rotor speed sensor fault can be promptly identified (Rr M = 6 Ohm) by monitoring
the estimated rotor resistance which converges to αe.11

11 In accordance with the Pe condition and the related analysis, different transient behaviours result.
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Fig. 1.8 Second experimental test (ωm = 44 rad/s, ω = 88 rad/s)

1.7 Conclusions

A constant non-zero (sufficiently large) difference between the measured speed and
the actual speed may be on-line identified, even in the presence of uncertainties in
load torque and rotor/stator resistances, in typical operating conditions involving non-
zero load torque, constant rotor speed and flux modulus. An adaptive flux observer
which incorporates a convergent rotor resistance identifier and relies on the measured
rotor speed and stator currents/voltages is used to this purpose: it can be incorporated
in induction motors control schemes as an effective detector of rotor speed sensor
faults. Simulation and experimental results illustrate the effectiveness of the proposed
solution and show satisfactory fault detection performances.
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Fig. 1.9 Third experimental test (ωm = 0 rad/s, ω = 88 rad/s)
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Chapter 2
On Visual Analytics in Plant Monitoring

Tim Tack, Alexander Maier and Oliver Niggemann

Abstract This chapter introduces methods from the field of visual analytics and
machine learning which are able to handle high feature dimensions, timed systems
and hybrid systems, i.e. systems comprising both discrete and continuous signals.
Further, a three steps tool chain is introduced which guides the operator from the visu-
alization of the normal behavior to the anomaly detection and also to the localization
of faulty modules in production plants.

Keywords Anomaly detection · Production plant ·Automation system ·Visualiza-
tion technique · Visual analytics

2.1 Introduction

Modern production plants grow more and more complex. A reason for this is the
growing number of sensors and actuators used. Programmable Logic Controllers
(PLCs) process the signals and operate the plant. Supervisory Control and Data
Acquisition (SCADA) systems analyze the data provided by the PLC, to manage the
process automatically. The operators activities on this level change to a passive role;
from actual plant operation to plant monitoring and analysis. Due to the increasing
number of signals, analyzing modern processes and detecting anomalies becomes a
difficult task.
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To tackle this problem, visual analytic approaches from different scientific areas
are adapted to the field of automation. As result, a novel visual anomaly detection
approach is presented. It guides the operator in a top-down manner, starting from a
general overview to a detailed description of identified anomalies. In this approach,
visualizations of a learned reference process behavior and the currently observed
one are placed side-by-side. This side-by-side visualization starts with an abstract
graph computed by means of data dimensionality reduction techniques which give
a coarse, time-independent system overview. The user is then guided to a more
detailed visualization of the system’s timing behavior. In the approach, three main
ideas are combined: (i) the usage of machine learning techniques to give the operator
initially an abstract view onto these complex data, (ii) the usage of machine learning
techniques to visualize the normal behavior (in comparison to the current behavior)
and (iii) a guided interface which leads the user step-by-step to more detailed views
onto anomalous data items.

The chapter is organized as follows: In Sect. 2.2 an overview of the state of the art
is given and the research gap is pointed out. Section 2.3 defines some requirements
for the visualization of technical processes and introduces a new method for the
visualization of high-dimensional discrete data. Based on the defined requirements, in
Sect. 2.4 the visualization techniques are evaluated. For this, real data from the Lemgo
Smart Factory [1] is used. To exploit the advantages found, Sect. 2.5 introduces a new
plant visualization. It combines different techniques in one new approach. With it’s
help, a neat and informative view on the process is provided. Thus, it supports the
anomaly detection performance of the operator. The results are discussed in the
conclusion.

2.2 State of the Art

This section gives an overview about the state of the art and related work. In Sect. 2.2.1
some basics ideas of the visual analytics process are presented.

In Sects. 2.2.2 and 2.2.3 techniques, that can be used to visualize discrete, contin-
uous or hybrid data (a combination of both) are described. These should support an
operator with two features. At first, the high-dimensional data should be visualized
in a neat way, that allows humans to deal with the overwhelming information input
provided through the SCADA system. The second feature is, to enable an operator
to perceive process anomalies visually.

2.2.1 Visual Analytics

In short term, visual analytics can be described as the science of analytical reasoning
facilitated by interactive visual interfaces [2]. According to Keim [3], the visual data
exploration process is organized as follows (see also Fig. 2.1):
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Fig. 2.1 Principle of visual analytics according to [3]

First, the data have to be acquired from the observed system. In many cases the
data needs to be preprocessed (e.g. normalization or feature generation). From this,
a (mathematical) model is created using data mining approaches. The model can
be extended by parameter refinement. In parallel, the data are visualized for further
usage. This visualization is enhanced by user interactions. Very important in this
context is the tight coupling of automated and visual analysis through interaction.
Both steps lead to the requested knowledge, i.e. the needed information about the
systems behavior. Based on this knowledge, the operator is able to detect anomalies.

Visual analytic approaches have been applied for many years. One early example
is the Londoner physician Dr. John Snow in the year 1854. To find the reason for a
cholera pandemic he used a visualization method. He marked each place of occur-
rence in a map and was therefore able to find the reason, which was a contaminated
water fountain [4].

Approaches in visual analytics are considered in different research areas. For
example it is used in the financial sector to visualize and analyze the fall and rise
of stocks and to detect frauds, e.g. in [5]. The study of environment and climate
change also often uses visualization approaches. The temperature and other relevant
parameters are recorded over a long period of time. These data are visualized to
recognize dependencies and to show up the changes over time. Another area of
application would be the prevention of terrorist attacks [6].

There are only few examples where visual analytics has been applied to the
manufacturing industry. Example Frey uses self-organizing maps to generate a two
dimensional map to visualize the observed process [7]. However, there exist many
approaches to create a system’s model using observations. Example in [8] a method
to learn a behavior model by means of hybrid timed automata is presented. In many
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Fig. 2.2 An example dataset
(Figure published in [9])

time f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11

25 0 0 1 1 1 0 1 0,60 993,3 235 1,5

60 0 0 1 0 0 0 1 0,50 983,4 235 1,8

124 0 1 1 1 1 0 0 0,38 983,7 236 2,2

149 0 1 1 0 1 1 0 0,44 982,4 233 2,5

248 0 0 1 1 0 1 1 0,46 980,1 234 2,9

324 1 0 1 1 0 1 1 0,52 978,5 231 3,2

419 1 1 1 1 0 0 0 0,48 980,5 231 3,6

455 1 1 1 0 1 0 0 0,44 990,2 232 3,9

513 1 0 1 1 1 0 0 0,42 993,4 232 4,3

Fig. 2.3 Visualization with
data curves (Figure published
in [9])

cases, especially with high amounts of data, these models are created to be used
by computers and are therefore not easily accessible for humans. In this context,
no appropriate method exists to visualize the plant’s state to the operator. For this,
special visualization methods have to be developed.

2.2.2 Visualization of Multidimensional Data

Figure 2.2 shows an excerpt taken from a process dataset. The dataset comprises a
timestamp and the corresponding process variables f1... f11. The example is rather
small. Yet following the process or detecting an anomaly by viewing this figure is
not easy. It can be seen that monitoring and anomaly detection in high dimensional
process datasets is a tough task for computers and humans. Operators need to react
on changes of large amount of different variables in different value ranges quite fast.

A trivial method to visualize data is to use signal curves in dependency of time.
This simple method helps to get an overview of continuous signal trends e.g. tem-
perature over time. Further, crossing thresholds can be seen very well. However, this
method is only usable for a small number of signals using the same scaling. The visu-
alization of many signals in one diagram leads to an information overflow, such that
the single curves cannot be detected separately. Figure 2.3 shows the visualization
of 30 signals with 300 data points each. Even for this small dataset the single curves
cannot be separated well and it is very difficult to find an anomaly in this figure. This
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Fig. 2.4 Example dataset
with (a) original features
and (b) principal components
(Figure published in [9])
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disadvantage is even worse for binary data, because the constant parts of the signals
overlap and only the signal changes can be seen.

In [10] the method of parallel coordinates is introduced. This technique overcomes
the problem of overlapping signal curves and allows the visualization of multiple
dimensions (as coordinates) in parallel. With this, the dependencies between signals
become visible. As disadvantage, it has to be mentioned, that the quality of the
visualization is highly dependent on the arrangement of the features. Another method
which overcomes overlapping curves in high dimensions, is the plot matrix [11]. In
this, several scatter plots are depicted in a matrix such that the dependency of each
pair of signals is displayed in one figure. However, very high dimensions cannot be
displayed clearly as well. Example an input dimension of 20 leads to a matrix with
400 plots. An overview and comparison of the described visualization methods can
also be found in [12].

2.2.3 Principal Component Analysis

As outlined in Sect. 2.2.2, it is difficult to visualize high-dimensional data. Therefore,
dimensionality reduction methods have to be applied. The Principal Component
Analysis (PCA) was introduced by Pearson and Hotelling and is described in the
following based on [13].

The PCA finds new uncorrelated features, the principal components. The dimen-
sionality of the dataset is then reduced by using just two principal components to
describe the dataset. This is possible, because most of the variance of the original
dataset, i.e. the information, is represented by the first few principal components [13].
In this contribution, a two dimensional approach is used for visualizing (choosing
two principal components), because it is more difficult to extract information from a
figure with three dimensions. It is impossible to create a visualization for more than
three dimensions.

Figure 2.4a shows an example dataset visualized based on its two features X and Y.
In Fig. 2.4b the same dataset is depicted based on its first two principal components.
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We can see, that the most variance is represented by the first principal component
(PC1). The variance represented by the second principal component (PC2) is rather
small. In the notion of feature reduction, only PC1 would be used for data repre-
sentation of the example dataset. The most information of the original dataset is
preserved.

Although the most variance is kept, it must be taken into account how many
information is lost due to the reduction. For example, reducing a dataset from 20
features to two principal components (reduction of 90 %) while keeping 80 % of
the information (loss of 20 %) is a quite effective way of dimensionality reduction.
Nevertheless the informational loss is highly dependent on the dataset and maybe
worse than in the given example. Besides the potential of dimensionality reduction
it has to be considered, that the process is not visualized explicitly with respect to
its time line. Further, the principal component analysis of high dimensional datasets
can lead to interferences. Data and even anomalies, that can be distinguished in the
original feature space, may be not distinguishable in the principal component space.

2.3 Visual Data Exploration

In this section some major requirements for the visualization of technical processes
are given. In Sect. 2.3.2 a new visualization approach, the Discrete State Encoding
(DSE), is introduced. It is especially developed for the visualization of high-
dimensional discrete data.

2.3.1 Requirements for the Automation Domain

Every domain uses different methods to visualize the data. While climate studies
use heat maps indicating the temperature, the financial industry uses curves to show
trends of stocks. Visualizing automation related data, certain requirements have to
be considered:

High Dimensionality. Data of production plants are typically high-dimensional.
This is caused by a large amount of sensors and actuators which are used to realize
production processes. Most of them are controlled by PLCs and need to be monitored
by operation personnel in SCADA systems.

Different Data Types. The variety of sensors and actuators may result in different
types of data. For instance a temperature sensor provides a continuous value, the
temperature. Whereas a switch that activates a conveyor belt provides a discrete
value, the state of the conveyor belt. Each data type sets different requirements on
the visualization.
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Importance of Data. Due to the high amount of data, visualizing all values would
lead to an information overflow. Occurring anomalies may remain undetected. There-
fore, only the most important data have to be visualized. This results in the need of
methods, that distinguish between important and less important data.

Time Dependency. Processes in the automation domain are dependent on the factor
time. The system’s states are usually observed in relation to the process time. There-
fore, the visualization approach should consider and preserve these time information.
The operator should be able to assess the plant state wrt. a certain point in time.

Cyclic Processes. In typical mass production plants, process phases reoccur during
the production of the same product. Therefore, the operator should be able to recog-
nize recurring process phases as such, by examining the process visualization. As a
consequence plant states, that are unusual (maybe anomalies) should be visualized
in a more exposed way, to support the operator’s analysis.

2.3.2 Discrete State Encoding

Since no appropriate method for the visualization of discrete data exists, this section
introduces the Discrete State Encoding (DSE). It can be utilized for the visualization
of datasets which consist of discrete features only. Like the PCA this technique also
compresses high dimensional information. The DSE represents the plant behavior
by one feature only. This new feature is then visualized over time, to provide the
operator with a neat view on the plant state.

A Datasets is represented as a table with N features fi in the columns and the
measured process data, the observations, per row (see also Fig. 2.2). The DSE encodes
each row of the dataset and creates a representative number, the stateID.

The DSE considers only discrete features, continuous features are ignored.
Slightly changing continuous values would result in a new state for each obser-
vation even tough the actual information has not changed significantly. The stateID
computation is based on the following equation.

stateID =
N−1∑
i = 0

fN−1−i · 2i (2.1)

In the next step the stateID values are renumbered. A serial number is assigned to
each unique plant state. The stateID 1 is assigned to the first occurring plant state. To
each newly occurring state, the next unused number is assigned, e.g. 2. To recurring
states, always the same number is assigned.

Renumbering stateIDs is necessary to avoid bias in the visualization. Example a
bit change in a highly weighted feature would affect the visualization with a higher
impact than a bit change in a rather low weighted feature. This misguiding percep-
tion should be avoided, following the notion of the Lie Factor in figures, introduced
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Fig. 2.5 a Discrete state encoding of an example dataset (Figure published in [9]) and b enhanced
discrete state encoding of the same dataset

in [14]. In the dataset, the state change itself is the important information, not the
artificial weight that is introduced for computation purpose. The renumbering pre-
serves the state change information, but removes the bias resulting from the weights.
Figure 2.5a shows a visualized discrete state encoding. The process contained more
than 30 binary features and has a length of about 27,000 time units, i.e. observations.

2.4 Evaluation of Visualization Methods

In this section the visualization techniques described in Sects. 2.2 and 2.3 are eval-
uated. As basis, the requirements from Sect. 2.3.1 are used. While visualizing tech-
nical processes, the most important requirement is the proper visualization of the
high dimensions. Since most visualization techniques (mentioned in Sect. 2.2.2) are
not able to handle high dimensions properly or to reduce to the main information,
only two methods are considered for detailed evaluation: The discrete state encoding
(Sect. 2.4.1) and the principal component analysis (Sect. 2.4.2).

For the evaluation, a dataset from the Lemgo Smart Factory is used. The first
objective is to provide an abstract process overview. The second is to detect anom-
alies. This is done by comparing the visualization of a reference process with the
observed process, which may contain anomalies.

The observed process produces popcorn out of the resource corn. In total 19
continuous and discrete features need to be analyzed online. The production process
is separated into two modules. Module one creates the product. The corn is heated
until it pops. Via exhaustion the popcorn is transferred to a weight cell. In module
two the popcorn is filled into cups or a larger pot, depending on what is available at
time. The whole process works sequentially. First the popcorn is produced, next it is
filled into the cups.
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Fig. 2.6 Discrete state encoded process: a reference and b observed with failure (Figure published
in [9])

2.4.1 Discrete State Encoding of a Production Process

Figure 2.6a shows the discrete encoded stateIDs for one process, visualized over its
time line. Out of the former 19 features, one new feature, the stateID, is created.
As mentioned before, continuous values are not taken into account to compute the
stateIDs.

As depicted in Fig. 2.6a, the visualization provides an abstract process overview.
The operator is able to analyze the process wrt. it’s time line. Without any expert
knowledge, it can be seen that the process has three main operation phases, and some
short transfer phases between time units 285–295. Plant experts confirm, that the
process phases have been identified correctly. The stateID 1 represents the standby
state of the process. In stateID 2 the production phase is displayed. Once enough
popcorn is produced, it is filled into a cup. stateIDs 3–5 represent the cup filling. In
stateID 6, the heating is turned off while the ventilation is still active to cool down
the production module. Afterwards the process returns to standby (stateID 1).

Utilizing the visualization from Fig. 2.6a the operator is able to keep track of the
process in a very convenient way. The operator is able to see the process wrt. its
actual time line. Furthermore, repeating process phases are represented correctly.

In the next step, the anomaly detection performance of the DSE is tested. For
that purpose, an anomaly is induced into the same dataset that has been used before.
A discrete sensor (e.g. a cup filling level sensor) changes its value in an unusual
moment. Figure 2.6b shows the stateID representation of that dataset. As depicted,
the anomaly can be recognized by comparing Fig. 2.6a and b. The operator is also able
to determine the point in time where the anomaly occurred. However, the operator
is not able to interpret the shown anomaly in a semantic way.

Concluding, the discrete state encoding provides a neat view on the process.
Further, discrete anomalies can be detected by comparing the visualizations. Even
repeating process phases can be perceived easily while monitoring the stateIDs.
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Fig. 2.7 PCA based visualization of a process: a reference and b observed with failure (Figure
published in [9])

Nevertheless the operator needs some expert knowledge about the process to benefit
of all information provided. A disadvantage of this visualization technique is the
missing ability of visualizing continuous data.

2.4.2 Visualization of the Principal Components

In contrast to the discrete state encoding, the principal component analysis considers
both continuous and discrete features for computation. In this subsection the prin-
cipal component analysis is utilized to reduce the 19 features of the dataset to two
representative features which are used in the visualization. The timestamp is used
as an additional feature for the principal component computation. In Fig. 2.7a the
process is visualized with the help of two new features, the first and second principal
components. The reduction to two new features, in the given case, preserves about
80 % of the variance former represented by 20 features; the informational loss is
about 20 %.

At first, the operator is able to see a neat process visualization. The process is
grouped into three clusters. Considering the knowledge gained in Sect. 2.4.1, it can
be said that this is the number of the main process phases. However, the operator is
not able to semantically interpret the three clusters. It is not possible to determine
whether the process phases are clustered correctly, nor to see the process phases with
respect to the process time line.

To evaluate the performance in anomaly detection, an anomaly has been induced
into a continuous signal. The power consumption rises without any bit change, i.e.
without actively switching on a consumer. Figure 2.7b shows the visualization of
the anomaly-induced process. Comparing Fig. 2.7a, b, an anomaly is perceptible.
The operator is able to recognize a fourth cluster in the visualization. In addition,
anomalies in discrete and hybrid features were tested. Both were visualized by this
technique.
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Table 2.1 Comparison of DSE, PCA and the new hybrid approach

DSE PCA Hybrid approach

High dimensionality + o +
Time + – +
Continuous data – + +
Discrete data + – +
Hybrid data – + +
Loss of information + – +
Cyclic processes + + +

In summary, the visualization based on the principal components is able to show
anomalies in continuous, discrete or hybrid datasets. However, in the worst case an
anomaly is not depicted by this visualization method. The reason for this can either be
the lack of influence the original feature had on the principal component, the loss of
information during feature reduction, or due to the interferences that are mentioned
in Sect. 2.2.3. To maintain the anomaly detection performance of this visualization
method in large scale datasets, expert knowledge is used to preselect significant
process parts, which are used as input for the principal component analysis.

2.5 Anomaly Detection in Production Plants

The main goal of the proposed visualization approaches is to detect anomalies in the
production process. In Sect. 2.5.1 a new hybrid anomaly detection approach based
on visual analytics is presented. In Sect. 2.5.2 it is evaluated and some experimental
results are given.

2.5.1 Hybrid Visualization and Anomaly Detection Approach

As mentioned in Sect. 2.4, both visualization techniques are able to provide a neat
process overview, but still have issues in visualizing different types or special anom-
alies. The discrete state encoding focuses on anomalies in discrete signals and gives
a process overview with respect to the time line. The principal component analysis
based visualization provides a more abstract process overview and allows the viewer
to detect anomalies in continuous and hybrid data. Yet, the process time line is not
visualized.

Table 2.1 shows the advantages and disadvantages for both methods. It can be
seen that a combination of both methods, the hybrid approach, improves the visual
anomaly detection performance.



30 T. Tack et al.

Current processReference processPCA

DSE

S
ta

te
ID

S
ta

te
ID

Time Time

PC1 PC1

P
C

2

P
C

2

DSE

S
ta

te
ID

S
ta

te
ID

S
ta

te
ID

S
ta

te
ID

Time Time Time Time

Module 1 Module 2 Module 1 Module 2

Sensor PL1

Time

1

2

3

Fig. 2.8 Hybrid visualization and anomaly detection approach (Figure published in [9])

To combine the advantages of both methods, the hybrid visualization and anomaly
detection approach is introduced. The method is organized in three steps. These three
steps are illustrated in Fig. 2.8:

Step (1) Observation of the process and detection of anomalies by comparing the
reference process with the currently running process:
The visualization of the principal components is used to get an abstract view on the
process based on its continuous and discrete values. The discrete state encoding is
used to extend the process visualization with a reference to the point in process time.
Now the operator is able to compare the reference with the observed behavior in a
convenient way.

Anomalies in discrete signals can be seen in the discrete state encoding, anomalies
in continuous signals are displayed in the principal component visualization. To
demonstrate the anomaly detection, in Fig. 2.8, an anomalous process is observed.
The anomaly can be seen in both representations. In the PCA based visualization the
anomalous data items form a new cluster. The discrete state encoding additionally
gives the timing information: the anomaly occurred around the time stamp 20 s.

Step (2) Determination of anomalous module:
In this step, the process is separated based on its modules, to gain a more detailed
insight. Discrete state encoding is utilized again to visualize each module separately.
In this example, it can be seen that the anomaly occurred in the second module.
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Step (3) Determination of anomalous signal(s):
The last element of the hybrid visualization approach refers to the continuous process
values. The difference between values in a reference process and such in an anomaly
induced process is calculated and shown. This allows the operator to determine which
continuous sensor value differs to the process time line. Following the example in
the top down manner, it can be said that the anomaly is based on an unusual energy
consumption; in the signal PL1.

All mentioned visualization methods are internally linked with the help of the
timestamp. Based on Shneidermann’s information seeking mantra Overview first,
zoom and filter, then details-on-demand [15], the operator gets a process overview
and is able to interactively explore the process. Interesting data points can be marked
in one figure and corresponding data points will be highlighted in each other figures.
The operator is able to see the process behavior in different levels of abstraction with
respect to the time line.

In the given case, the visualization enables the operator to determine the point
in time the anomaly occurred precisely. Additionally, the user is able to localize the
module in which the anomaly occurred.

The combination of linkage and different visualization techniques allows the oper-
ator to find anomalies and learn about the dataset. Because of this, the PCA based
visualization could be enriched with labels to provide semantic information.

2.5.2 Discussion

The hybrid visualization approach allows an enhanced visualization, since the
abstract view of the principal components is combined with the temporal process
visualization of the system’s states. Additionally, the hybrid approach is able to
handle all relevant data types for technical processes.

It was confirmed by experts, that the data abstraction using the PCA represents
the normal behavior of the system. Despite these results, it is possible that not all
anomalies will be displayed by the PCA based visualization. Especially in the case
of high dimensional input data, important information may be unconsidered by using
only the first two principal components or by the described interferences. In most
cases tested, the anomalous behavior could be detected and the corresponding module
and signal could be determined correctly.

Latest results in the analysis of more complex plants, larger than the Lemgo
Smart Factory, showed, that the DSE based visualization can be improved further:
The enhanced DSE visualization shown in Fig. 2.5b provides a more abstract view on
the process with the help of stateGroups. One stateGroup represents all stateIds in a
certain main process phase such as ‘idle’, ‘production’ or ‘failure’. Expert knowledge
about the process is used, to determine the stateGroups and to assign particular
stateIDs to its group.
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A minor disadvantage of the proposed approach is that expert knowledge is still
needed to analyze the plant’s behavior in detail. Nonetheless, it is possible to detect
anomalies and the anomalous production module(s) and signal(s) without any expert
knowledge, by assessing the visualization.

Another disadvantage is, that the proposed approach works well for a cyclic
process, but not necessarily for extended production plants which deal with different
variants of products. This will be improved in future work.

2.6 Conclusions

In this chapter a novel visual analytics approach for the visualization of technical
processes is presented. The discrete state encoding gives a neat overview of the
observed process and shows the main process states over the time line. The principal
component analysis gives a more abstract overview of the process and additionally
includes continuous data. Both methods were connected to combine their advantages.

Further, it is shown how the visualization and anomaly detection approach can be
used to analyze a technical process. In three steps the operator is guided through the
observation of the current behavior and the corresponding reference behavior. This
side-by-side visualization allows operators to detect anomalies visually. Different
abstraction levels support a detailed process analysis, by zooming into module or
even signal level. Thus, the operator is guided step by step to the signal, that caused
the anomaly.

In further work some other visualization approaches will be explored. These
shall show the most relevant data in a more intuitive way to give the possibility to
analyze the process behavior without (or at least with less) expert knowledge. To
face the disadvantage of the DSE, continuous values can be discretized using an
n-bit-discretization. This will also be considered in future work.

Furthermore, the reference visualization will consider more than only one process.
This will provide a more generalized view on the plant’s behavior.
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Chapter 3
Global Optimization for 2D SLAM Problem

Usman Qayyum and Jonghyuk Kim

Abstract A globally optimal approach is proposed in this work for map-joining
SLAM problem. Traditionally local optimization based approaches are adapted for
SLAM problem but due to highly non-convex nature of the SLAM problem, they
are susceptible to local minima. In this work, we have exploited the theoretical limit
on the number of local minima. The proposed approach is not dependent upon the
good initial guess whereas existing approaches in SLAM literature requires a good
starting point for convergence to the basin of global minima. Simulation and real
dataset results are provided to validate the robustness of the approach to converge
to global minima. This chapter provides the robotics community to look into the
SLAM problem with global optimization approach by guarantying the global optimal
solution in a least square cost function particularly when covariance matrices are
defined as spherical.

Keywords Local minima · Map-joining · Gauss-Newton optimization · Greedy
random adaptive search procedure · Optimal solution

3.1 Introduction

Simultaneous Localization and Mapping (SLAM) has drawn significant interests
in robotics communities, as it enables the robotic vehicles to be deployed in a fully
autonomous way for various applications. SLAM literature is mostlycategorized into
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two main streams: Filtering based [1] and Maximum likelihood based [2] approaches.
The first stream consists of Extended Kalman filter and Information filter [3] which
requires linearization of process and measurement models with a cost of potential
divergence and inconsistency. FastSLAM [4] is based upon factorization of poste-
rior but, due to limited numbers of particles, it is unable to represent the trajectory
posterior in the long run.

In graph-based SLAM approaches measurements acquired during robot motions
are modeled as constraints. The goal of these approaches is to estimate the con-
figuration of parameters that maximally explain a set of measurements affected by
Gaussian noise (minimizes the nonlinear least square error). The pioneering work in
graph-based SLAM is by [2] in which brute force technique for range scan alignment
was proposed. With the assumption of known rotation [5] introduced a Gauss-Seidel
relaxation. The work was improved by [6] solving a network at different level of
resolution [7]. Came up with QR factorization of information matrix to solve the full
SLAM problem.

Stochastic gradient descent (SGD) was used by [8] to solve the pose only SLAM
problem by addressing each constraint individually and surprises many researcher
as the algorithm can converge to the correct solution with poor initial values. Recent
research [9] has focused on making these algorithms more efficient and robust show-
ing that its online implementation is feasible. Although these approaches perform
efficiently in practice, very little attention has been paid on the convergence con-
dition and none of them can guarantee a global minimum over different initial
guesses. Figure 3.1 shows the results of a Gauss-Newton approach on publicly avail-
able dataset [10] with different random initial guesses, resulting in different local
solutions.

Global optimal solutions to highly nonlinear problems has been shown to NP-hard
[11]. In structure from motion research, the guaranteed global optimal solution is
investigated with known rotation framework for L∞ [12] and branch and bound
based approaches [13] whereas in our work no such assumption of known rotation is
considered (typically the nonlinearity in measurements of mobile robot applications
is due to robot orientation). In recent work [14] proposed a swarm optimization based
approach to estimate (almost) optimal maps. Their work is based upon meta-heuristic
optimization approach which is similar to our work but they present map as a tree of
fragments/maps with particle filtered based sampling approach and finally conducted
an ant colony search to obtain (almost) optimal solution.

In this chapter we provide an approach to get global optimal solution for SLAM
problem in map-joining problem with spherical covariance, which has never been
proposed before to the best of author’s knowledge. Feature based SLAM prob-
lem is decomposed as a problem of joining submaps. Necessary and sufficient
condition for the existence of at most two local minima [15] is exploited by a
meta-heuristic approach called GRASP (greedy randomized adaptivesearch proce-
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Fig. 3.1 Examples of local solution for DLR dataset [10] with different random initial guess

dure) [16] which is combinatorial optimization to obtain global optimal solution.
Meta-heuristic approaches optimize by iteratively refining the candidate solution by
combining randomness with local search methods [17]. Unknown landmark posi-
tions and vehicle pose are considered as initial guess in a planar environment (3DOF
case).

The outline of this chapter is as follows: Sects. 3.2 and 3.3 will provide nonlinear
least square formulation and number of local minima in SLAM problem. Sections 3.4
and 3.5 will provide detailed discussions on nonlinear global optimization based
approach and greedy search strategy. Section 3.6 will briefly explain global opti-
mal approach to map-joining. Results and discussions will be presented in Sect. 3.7
followed by conclusion.



38 U. Qayyum and J. Kim

3.2 Nonlinear Least Square Formulation

The dimension of the SLAM problem is very high when it is formulated as a nonlinear
least square [18] because all vehicle poses and feature locations are considered as
parameters to be determined. The decomposition of SLAM problem into submaps
not only helps to reduce the computational complexity but also helps to improve
consistency by decreasing the nonlinearity of the system [3, 19]. The assumption we
undertake in this research is that, every SLAM problem can be decomposed into local
maps and then solved for global optimal solution. The relative relation of local maps
has fluid behavior whereas the internal structure of each local map is well known and
can be optimized independently with respect to local coordinate [18]. The nonlinear
least square formulation for local map joining is to minimize an objective function
as follows:

F(x) = arg min
x

∑
(||Ep||2U + ||Ef ||2V ), (3.1)

where the state vector is x = {X,M} with X being the poses (position and orientation)
of local maps and M the features positions in absolute coordinate frame. U and V are
corresponding covariance matrices of pose and feature observations respectively. The
poses are composed of {p1,γ1, . . . , pt,γt} where the end pose of each local map is
the start pose of next local map. The N map features are defined as M = {f1, . . . , fN }.
SLAM recasted as a map-joining problem is shown in Fig. 3.2.

Let there be a local map l defined as Xl = ⎧
pl,γl

⎨
with n features Ml = ⎧

f l
1 . . . ,

f l
n

⎨
present in the local coordinate frame. The local map pose Xl is the observation

of relative pose of pl,γl from the global state vector X pose pl−1,γl−1 as

Ep = Xl − Hodo(X), (3.2)

and the observation model for odometry is defined as

Hodo(X) =
⎢

R(γl−1)
T (pl − pl−1)

γl−1 − γl

⎪
. (3.3)

The SO(2) rotation matrix is defined as

R(γ) =
⎢

cos(γ) − sin(γ)
sin(γ) cos(γ)

⎪
. (3.4)

The feature positions Ml = ⎧
f l
1 . . . , f l

n

⎨
in local map l are observation of relative

position of features and are related (assumed data association) to global state vector.
The relative feature position error Ef is defined as

Ef = Ml − Hfeat(X,M), (3.5)
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Fig. 3.2 SLAM is recasted as a map-joining problem: One is a growing global map (navigation
coordinate with solid lines) and the other is a new local map L (represented with ellipses). The
dashed lines indicate the odometry and feature observations

whereas the observation model for relative position of features is a function of M
and X

Hfeat(X,M) =
⎡
⎣

R(γl−1)
T (fl1 − pl−1)

. . .

R(γl−1)
T (fln − pl−1)

⎤
⎦ . (3.6)

The Mahalanobis distance for both relative errors in the cost function with zero-mean
Gaussian noise with covariance U,V can be written as

F(x) =
∑

(Xl − Hodo(X))
T U−1(Xl − Hodo(X)) (3.7)

+
∑

(Ml − Hfeat(X,M))T V−1(Ml − Hfeat(X,M)).

The measurement and process models are both nonlinear functions, and thus
the nonlinear objective function is linearized multiple times to reach local minima.
Generally local approaches solve the objective function F(x) as

F(x + ωx) = F(x) + Jωx, (3.8)
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where J = αF(x)/α(x). Let ψ = (F(x + ωx) − F(x)), then it becomes

Jωx = ψ, (3.9)

The solution can be found using pseudo-inverse of J

JT Jωx = JT ψ

ωx = (JT J)−1JT ψ (3.10)

By including the covariance estimates (U,V ) as σ, Eq. 3.10 becomes

ωx = (JT σ−1J)−1(JT σ−1)ψ. (3.11)

When the Eq. 3.11 is solved only ones by an optimization based approach i.e. [7], it
yields a similar result like the EKF or Extended information filter [1]. The advantage
in optimization based approach comes with repeatability of solution for Eq. 3.11 with
different linearization points.

3.3 Number of Local Minima in MAP Joining SLAM

The SLAM formulation as linearized version of nonlinear objective function assumes
local convexity, that is with a reasonable initial estimate (near the global basin of
attraction), the algorithm will converge to global minima. SLAM is an incremental
process and at each step, small number of new parameters need to be estimated.
However when the odometry and feature observation are not consistent with each
other, then the local optimizer can struck in local minima.

A close lookup at the observation model in Eqs. 3.3 and 3.6 reveals that nonlin-
earity is only due to orientation. Recently [15] provides a theoretical bound on local
minima in map-joining SLAM problem, by deriving a nonlinear equation depending
only on orientation error under the assumption that covariance matrices are spherical
matrices. The research findings in their work suggest at most two and at least one local
minima can occur. The approach, proposed in this chapter, exploits the upper theo-
retical bound under noisy observations to obtain global minima by a meta-heuristic
approach (discussed in following section) hence obtaining a global optimal solution.

3.4 Greedy Random Adaptive Search Procedure

GRASP is a multi-start meta-heuristic approach to solve combinatorial problems
[16]. Previously, it has been successfully deployed in traveling sales man problem
and firstly proposed here for SLAM problem. GRASP basically consist of two phases:
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local search and feasible solution construction. The construction phase builds a fea-
sible solutions (using greedy approach), whose neighborhood is searched by a local
search phase to find local optima. By using different feasible solutions as starting
points for local search in a multi-start procedure will usually lead to good, though,
most often, suboptimal solutions. While in our problem at worst case, we encoun-
tered two local minima when joining two local maps, so the upper bound is searched
by multi-start until global optimal solution is returned, which is the optimal solution.
The pseudo code in Algorithm 1, details the working of GRASP approach, where
local search is performed by the gauss-newton formulation of Eq. 3.11.

Algorithm 1: GRASP-Algorithm: Determination of Optimal Solution.

inputs : observations = ⎧
Xl,Ml

⎨
, x = {pose, landmark}

x∗ = {}
while check local minima condition or max iteration are not reached do

x ← RandomizedGreedyAlgo(.) → Algo2
x ← LocalSearch(x, observations)
if (f(x) < f(x*)) then

x∗ = x
end if

end while
return x∗

3.5 Randomized Greedy Algorithm

We proposed long-term memory based greedy algorithm to determine a feasible
solution. Figure 3.3 (left) details a simple example on 1D in which at most two
local minima are considered.The two feasible solutions (x1, x2) are generated by
GRASP approach and among them two minima are found whereas x1 reveals the
global optimal solution x∗. The generation of feasible solution is the key to obtain
the optimal solution, in timely manner from a high dimensional search space of
parameters. Figure 3.3 (right) describes a search space reduction mechanism in which
the initial guess x1 is first hypothesized, which determines a local optimal x∗ (the
intermediate traversal solution of the local optimizer are stored in long-term memory
for search space x1 to x∗). The next hypothesis of initial guess is being made by greedy
algorithm in consideration with the already traversed solution space in long-term
memory (the goal is to avoid making an initial guess from already traversed space).
The selection of new initial guess is based upon absolute distance criteria (greedy
approach), in which the new initial guess for local optimizer is not from the already
considered search space. The greedy algorithm helps to reduce the search space and
improves the time efficiency as against the exhaustive bruteforce search in solution
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Fig. 3.3 1D problem with 2 local minima revealing possible feasible solutions from local
optimization

space. The pseudo-code in Algorithm 2, describes the greedy algorithm, in which
the long-term memory of all the solution space is maintained. The selection of new
feasible solution is determined similar to 1D explained approach on orientation space
(as vehicle and feature positions are linear with respect to orientation). Selection of
β in radians decides the selection of new hypothesis for initial guess to boot the local
optimizer.

An appealing characteristic of GRASP approach is the ease of implementation
by setting and tuning few parameters. The computation time of the approach does
not vary much from iteration to iteration and increases linearly with the number of
iterations whereas the time increases combinatorially with the increase of searched
spaced parameters.

Algorithm 2: GRASP-Algorithm: Randomized greedy algorithm.

while Initial guess not found | Max iter not reached do
x = random(.)
found = 1
for i=1:num of elements in LTmemoryX do

Oldx = LTmemoryX[i]
if |(x − Oldx)| < β then

found = 0
Break → select another x

end if
end for

end while
return x
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3.6 Global Optimal Solution to Map-Joining

Most of the map joining approaches start with linear approximation of map states and
do optimization as a post processing step to estimate the local solution
[3, 18, 19]. Our approach is not dependent upon the initial guess and bound to search
the optimal results by modified GRASP approach. We initialized each map randomly
(unknown feature and vehicle pose) and solve the map joining problem as illustrated
in pseudo code Algorithm 3. The data association is assumed to be known. Two maps
are considered at each time and provided to GRASP algorithm, which returns the
optimal solution for those two sets of maps observation. The sequential joining is
not necessary and parallel algorithm can be employed for faster computation, if the
running time is bottleneck in a large scale environment. The input to Algorithm 1 will
be set of observations (relative feature and odometry information of local maps l)
and global map state vector X,M to obtain x∗.

3.7 Results and Discussion

The performance of the proposed algorithm is tested on simulated [19] as well on
real dataset [10], which are both available publicly.

Algorithm 3: MAP Joining Optimal: GRASP variant for Map Joining.

x = first local map
while Fuse local map k+1(l) into x do

Data Association assumed to be known
Initialize random pose/landmark for l into x
x= GRASP-Algorithm (x, Local Map l)

end while
return (x*=x)

The 150 × 150 m2 simulation environment [19] containing 2,500 features uni-
formly space in rows and columns is tested first. The robot started from the left
bottom corner of the square and followed a big loop. A sensor with a field of view
of 180◦ and a range of 6 m was simulated to generate relative range and bearing
measurements between the robot and the features. The dataset is divided into two
local maps with unknown initial guess (covariance matrices are set to identity).
Multiple trials were performed with random initial guesses to be processed with the
proposed approach for map-joining, which always converge to global optimal solu-
tion without being affected by variation in initial guess, as shown in Fig. 3.4. The
approach was also tested on a multiple local maps (as the upper bound is available
for joining two individual local maps), so the obtained solution is an approximation
of the original problem. 50 local maps in total with 612 observed features and 1,374
odometry/feature measurements were made from the robot poses. Figure 3.5a shows
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Fig. 3.4 GRASP based
map-joining for simulation
dataset [19] with 2 local maps.
a Random initial guess with
two local maps, b GRASP
based map-joining

the intermediate results of 25th local map where new local map with random initial
guesses of landmark position and pose. The GRASP based smoothing is performed
and approximated optimal results obtained is shown in Fig. 3.5b. Final results with
ground truth result is shown in Fig. 3.6, showing estimated position against the inter-
polated ground truth positions. The GRASP based approach with unknown initial
guess is tested on DLR dataset [10] and compared with the state of the art map-
joining approach [19]. DLR dataset is acquired with a camera attached on a wheeled
robot and odometry. The robot moved around a building detecting scattered artificial
white/black landmarks, placed on the ground. Odometry measurements and relative
position of the observed landmarks are being provided. This dataset is also divided
into two local maps. Figure 3.7 shows the results of the global optimal solution
obtained after joining local maps with unknown initial guess (multiple trials resulted
in the same optimal solution hence showing the independence to good initial guess).
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Fig. 3.5 Intermediate results of simulation dataset [19] with fifty local maps. a Before joining,
b After joining

Fig. 3.6 Ground truth and estimated vehicle/landmark positions for simulation dataset [19] with
50 local maps

The proposed approach is also tested on 200 local maps with 540 observed features
and 1,680 odometry/feature observations is considered with known data association.
Figure 3.8a shows the random initial guess for vehicle pose and feature positions
in global frame of reference, to be processed by GRASP approach. Figure 3.8b, c
shows a visual comparison of proposed approach with [19] (which is booted with
linear initialization whereas our proposed approach is not dependent upon known
initial guess).
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Fig. 3.7 GRASP based map-joining for simulation dataset [10] with 2 local maps. a Random initial
guess with two local maps, b GRASP based map-joining

The performance of the experimental results validates the proposed idea and
makes the SLAM problem solvable by global optimization based approach without
initial guess.
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Fig. 3.8 DLR dataset results
using GRASP with 200 local
maps, showing global con-
vergence (b) with random
initial guesses (a). a Ran-
dom initial guess for local
maps. b GRASP based vehi-
cle/landmark position esti-
mates. c I-SLSJF with EIF
based initialization [19]

3.8 Conclusions and Future Works

A practical approach for finding the globally optimal solution to SLAM is presented.
Local optimization based strategies which are mostly adopted for SLAM problem
are highly susceptible to local minima problem due to non-convex structure of the
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problem. By exploiting the theoretical limit on the number of local minima, we
proposed a framework to estimate a global optima. The proposed approach is not
reliant on good initial guess which is the primary condition of local optimization
based approaches for global convergence. Experimental results are provided on dif-
ferent datasets available online to validate the robustness of approach.

Future work will provide the time/memory comparison of the proposed approach
and an extension to 3D SLAM problem.
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Chapter 4
Stochastic Models and Optimization Algorithms
for Decision Support in Spacecraft Control
Systems Preliminary Design

Eugene Semenkin and Maria Semenkina

Abstract Technological and command-programming control contours of spacecraft
are modelled with Markov chains. These models are used for the preliminary design
of spacecraft control system effective structure with the use of special DSS. Corre-
sponding optimization problems with algorithmically given functions of mixed vari-
ables are solved with a special stochastic algorithm called self-configuring genetic
algorithm that requires no settings determination and parameter tuning. The high
performance of the suggested algorithm is proved by the solving real problems of
the control contours structure preliminary design.

Keywords Spacecraft control contours modelling · Markov chains · Effective
variant choice · Complex optimization problems · Self-configuring genetic
algorithm · Island model

4.1 Introduction

Current efforts by the developers of spacecraft are concentrated upon increasing
the usage effectiveness of existing spacecraft systems and improving the develop-
ment and design process for new ones. One of the ways to achieve these aims is a
rational choice of the effective variants of the developing systems. This requires the
application of adequate models, effective algorithmic tools and powerful computers.
This application will allow multivariant analysis of the developing systems that is
currently not so easy due to their complexity.
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One of the most difficult and under developed problems is that of the synthesis of
a spacecraft’s control systems. These are currently solved with more empirical meth-
ods rather than formalized mathematical tools. Usually, the spacecraft control system
design is a sophisticated process involving the cooperation of numerous experts and
departments each having their own objectives and constraints. Nevertheless, it is
possible to mathematically model some subproblems and to obtain some qualitative
results of computations and tendencies that could provide interesting information
for experts. The usual position of system analyst in such a situation is as media-
tor for high level decision making, dealing with informal problems for which it is
impossible to develop a mathematical model, and lower level computations for which
strong mathematical models exist but the results of them do not always match. If,
in this intermediate position when mathematical models are strong enough but very
complicated for analysis, we intend to implement a decision support system for the
choice of effective variants then we have to realize that the optimization problems
arise here are intractable for the majority of known algorithms.

We suggest modelling the functioning process of a spacecraft’s control subsystems
with Markov chains. We explain the modelling with small models and then give
illustration of large models that are closer to real system. The problem of choosing
an effective variant for a spacecraft’s control system is formulated as a multi-scale
optimization problem with algorithmically given functions. In this chapter, we use
sequential and parallel self-configuring genetic algorithm to solve the optimization
problem.

The rest of the chapter is organized in the following way. Section 4.2 briefly
describes the modeled system. In Sects. 4.3 and 4.4 we describe small size models
for two control contours. Section 4.5 illustrates briefly the view of large models. In
Sect. 4.6 we describe the proposed optimization algorithm and in Sect. 4.7 we evaluate
its performance on the test problems. In Section 4.8, the results of the algorithm
performance evaluation on spacecraft control system optimization problems is given,
and in the Conclusion section the article content is summarized and future research
directions are discussed.

4.2 Problem Description

The system for monitoring and control of an orbital group of telecommunication satel-
lites is an automated, distributed, information-controlling system that includes in its
composition on-board control complexes (BCC) of spacecrafts; telemetry, command
and ranging (TSR) stations; data telecommunication subsystems; and a mission con-
trol center (MCC). The last three subsystems are united in the ground-based control
complex (GCC). GCC interacts with BCC(s) through a distributed system of TCR
stations and data telecommunication systems that include communication nodes in
each TCR, channels and MCC’s associated communication equipment. BCC is the
controlling subsystem of the spacecraft that ensures real time checking and control-
ling of on-board systems including pay-load equipment (PLE) as well as fulfilling



4 Stochastic Models and Optimization Algorithms 53

program-temporal control. Additionally, BCC ensures the interactivity with ground-
based tools of control. The control functions fulfilled by subsystems of the automated
control system are considered to form subsets called “control contours” that contain
essentially different control tasks. Usually, one can consider the technological control
contour, command-programming contour, purpose contour, etc.

Each contour has its own indexes of control quality that cannot be expressed as
a function of others. This results in many challenges when attempting to choose an
effective control system variant to ensure high control quality with respect to all of
the control contours. A multicriterial optimization problem statement is not the only
problem. For most of the control contours, criterion cannot be given in the form of an
analytical function of its variables but exists in an algorithmic form which requires
a computation or simulation model to be run for criterion evaluation at any point.

In order to have the possibility of choosing an effective variant of such a control
system, we have to model the work of all control contours and then combine the
results in one optimization problem with many models, criteria, constraints and
algorithmically given functions of mixed variables. We suggest using evolutionary
algorithms (EAs) to solve such optimization problems as these algorithms are known
as good optimizers having no difficulties with the described problem properties such
as mixed variables and algorithmically given functions. To deal successfully with
many criteria and constraints we just have to incorporate techniques, well known in
the EA community. However, there is one significant obstacle in the use of EAs for
complicated real world problems. The performance of EAs is essentially determined
by their settings and parameters which require time and computationally consuming
efforts to find the most appropriate ones.

To support the choice of effective variants of spacecrafts’ control systems, we
have to develop the necessary models and resolve the problem of EAs settings.

4.3 Technological Control Contour Modelling

The main task of the technological control contour is to provide workability of the
spacecraft for the fulfilment of its purposes, i.e., the detecting and locating of possible
failures and malfunctions of the control system and pay-load and restoring their lost
workability by the activation of corresponding software and hardware tools. The
basic index of the quality for this contour is the so called readiness coefficient, i.e.,
a probability to be ready for work (hasn’t malfunctioned) at each point in time.

We consider simplified control system to describe our modelling approach. Let the
system consist of three subsystems: on-board pay-load equipment, on-board control
complex and ground-based control complex. Let us assume that GCC subsystems
are absolutely reliable but PLE and BCC can fail. If PLE failed, BCC can restore it
using its own software tools with the probability p0 or, otherwise, re-directs restor-
ing process (with the probability 1 − p0) into GCC that finishes restoring with the
probability equal to one. In the case of a BCC malfunction, GCC restores it with the
probability equal to one.
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Fig. 4.1 States graph of
Markov chain for the simpli-
fied model of a technological
control contour
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We can use a Markov chain approach to model a spacecraft’s control system oper-
ation because of its internal features such as high reliability and work stability, e.g.,
two simultaneous failures are almost impossible, there is no aftereffect if malfunc-
tion restoring is finished, etc. That is why we will suppose that all stochastic flows
in the system are Poisson ones with corresponding intensities: λ1 is an intensity of
PLE malfunctions, λ2 is an intensity of BCC malfunctions, µ1 is an intensity of PLE
restoring with BCC, µ2 is an intensity of PLE restoring with GCC, µ3 is an intensity
of BCC restoring with GCC.

In the described situation, there are five possible states of the system:

1. All subsystems are workable.
2. PLE malfunction, BCC is restoring PLE, GCC is free.
3. BCC malfunction, GCC is restoring BCC, PLE is workable.
4. PLE malfunction, BCC is workable and free, GCC is recovering PLE.
5. PLE malfunction, BCC malfunction, GCC is recovering PLE, and BCC is waiting

for recovering.

States graph can be drawn as is shown in Fig. 4.1.
Given final probabilities, that the system remains in the corresponding state, as

the solution of corresponding Kolmogorov’s equation system, the control quality
indicators, i.e., readiness coefficients, can be calculated in following way:

1. Spacecraft readiness coefficient ks = P1.
2. PLE readiness coefficient kPLE = P1 + P3.
3. BCC readiness coefficient kBCC = P1 + P2 + P4.

To have the effective variant of the spacecraft control system we have to maximize
the readiness coefficients subject to constraints on the on-board computer memory
and computational efforts needed for the technological contour functions realization.
Optimization variables are stochastic flow intensities λ1, λ2, µ1, µ2, µ3, as well as
p0, i.e., the distribution of contour functions between BCC and GCC. If they are char-
acteristics of existing variants of software-hardware equipment, we have the problem
of effective variant choice, i.e., a discrete optimization problem. In case of a system
preliminary design, some of the intensities can be real numbers and we will have



4 Stochastic Models and Optimization Algorithms 55

Fig. 4.2 States graph of
Markov chain for simpli-
fied model of command-
programming control contour
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to implement corresponding software and hardware to ensure an optimal solution.
Recall that obtained optimization problem has algorithmically given objective func-
tions so before the function value calculation we must solve the equations system.

4.4 Command-Programming Control Contour Modelling

The main task of this contour is the maintenance of the tasks of creating of the
command-programming information (CPI), transmitting it to BCC and executing it
and control action as well as the realization of the temporal program (TP) regime
of control.

We can use Markov chains for modelling this contour for the same reasons. If we
suppose that BCC can fail and GCC is absolutely reliable, then we can introduce
the following notations: λ1 is the intensity of BCC failures, µ1 is the intensity of
temporal program computation, µ2 is the intensity CPI loading into BCC, µ3 is the
intensity of temporal program execution, µ4 is the intensity of BCC being restored
after its failure. The graph of the states for command-programming contour can be
drawn as in Fig. 4.2.

There are also five possible states for this contour:

1. BCC fulfills TP, GCC is free.
2. BCC is free, GCC computes TP.
3. BCC is free; GCC computes CPI and loads TP.
4. BCC is restored with GCC which is waiting for continuation of TP computation.
5. BCC is restored with GCC which is waiting for continuation of CPI computation.

BCC, restored after any failure in state one, cannot continue its work and has to
wait for a new TP computed with GCC. If BCC has failed in state two or state three
then GCC can continue its computation only after BCC restoring completion.

After solving the Kolmogorov’s system, we can calculate the necessary indexes of
control quality for the command-programming contour. Basic indexes of this contour
are the time interval when the temporal program control can be fulfilled without a
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change of TP, i.e., the duration of the independent operating of the spacecraft for
this contour (T = P1/(µ2 · P3), has to be maximized); the duration of BCC and
GCC interactions when loading TP for the next interval of independent operation
of the spacecraft (t1 = (P3 + P5)/(µ1 · P2), has to be minimized); and the average
time from the start of TP computation till the start of TP fulfillment by BCC (t2 =
(P2 + P3 + P4 + P5)/P1 · (λ1 + µ3), has to be minimized).

All these indicators have to be optimized through the appropriate choice of the
operations intensities that are the parameters of the software-hardware equipment
included in the control system. Corresponding optimization problem has the same
properties as described above.

4.5 Models Generalization

We described above the simplified models of two control contours in order to demon-
strate the modelling technique. The developed models are not adequate for the use in
the spacecraft control system design process because of the unrealistic assumption
of GCC reliability.

If we suppose the GCC can fail then we have to add the states when GCC fails
while the system is in any state.

GCC in our problem description consists of three subsystems groups—TCR sta-
tions, data communication subsystem, and MCC equipment. Considering all three
groups as one unit, we will have three GCC subsystems. If any of them can fail, the
new nodes and possible transitions have to be added into model.

We will not describe the meaning of all notion in details, recall that λi indicate
the intensities of subsystems failures and µj indicate the intensities of subsystems
being restoring by BCC (for PLE) or GCC (for all subsystems including itself).

The states graph for this case consists of 40 states and 146 transitions and is
depicted in Fig. 4.3. Corresponding Kolmogorov’s equation system contains 40 lines.

Under the same conditions, the states graph for the command-programming con-
tour consists of 96 states and more than 300 transitions and cannot be shown here.

Going deeper into the details we must continue dividing the subsystems groups
(TCR stations, telecommunication system, MCC) in parts. Then we must unify mod-
els of all contours of the spacecraft and models of identical contours of different
spacecrafts of the orbital group. Additionally, in some cases we cannot use simple
Markov chain models and need a more sophisticated simulation models. Certainly,
this work cannot be done without an adequate computation tool.

In the next stage of our research we have developed and implemented a decision
support system for spacecraft control systems modelling with stochastic processes
models. This DSS suggests questions to aerospace engineers designing spacecraft
control systems in their terms relative to system structure, its subsystems, possible
states and transitions, executed operations, etc. Giving the answers to these questions
the DSS generates the necessary data structure, the lists of states and transitions with
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Fig. 4.3 States graph of
Markov chain for modelling
technological control con-
tour with unreliable GCC
subsystems

their descriptions in designer terms and definitions, Kolmogorov’s equations system,
etc. [9].

This DSS is able also to solve optimization problems with some adaptive
search algorithms. As has been stressed above, optimization problems arising in the
described situation are hard to solve. That is why we suggest here using our modified
genetic algorithm.

4.6 Optimization Algorithms Description

Evolutionary algorithms (EA), the best known representatives of which are genetic
algorithms (GA), are well known optimization techniques based on the principles
of natural evolution [2]. Although GAs are successful in solving many real world
optimization problems [6], their performance depends on the selection of the GA
settings and tuning their parameters [3]. GAs usually use a bit-string solution rep-
resentation, but other decisions have to be made before the algorithm can run. The
design of a GA consists of the choice of variation operators (e.g. recombination and
mutation) that will be used to generate new solutions from the current population
and the parent selection operator (to decide which members of the population are to
be used as inputs to the variation operators), as well as a survival scheme (to decide
how the next generation is to be created from the current one and outputs of the
variation operators). Additionally, real valued parameters of the chosen settings (the
probability of recombination, the level of mutation, etc.) have to be tuned [3].

The process of settings determination and parameters tuning is known to be a
time-consuming and complicated task. There exist much research devoted to “self-
adapted” or “self-tuned” GA and authors of the corresponding works determine
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similar ideas in very different ways, all of them aimed at reducing the role of human
expert in algorithms designing.

The main idea of the approach used in this chapter relies to automated selecting
and using existing algorithmic components. That is why our algorithms might be
called as self-configuring ones.

In order to specify our algorithms more precisely, one can say that we use
dynamic adaptation on the level of population. The probabilities of applying the
genetic operators are changed “on the fly” through the algorithm execution. Accord-
ing to the classification given in [5] we use centralized control techniques (central
learning rule) for parameter settings with some differences from the usual approaches.
Operator rates (the probability to be chosen for generating off-spring) are adapted
according to the relative success of the operator during the last generation indepen-
dently of the previous results. This is why our algorithm avoids problem of high
memory consumption typical for centralized control techniques [5]. Operator rates
are not included in individual chromosome and they are not subject to the evolution-
ary process. All operators can be used during one generation for producing off-spring
one by one.

Having in mind the necessity to solve hard optimization problems and our intention
to organize GA self-adaptation to these problems, we must first improve the GA
flexibility before it can be adapted. For this reason we have tried to modify the most
important GA operator, i.e., crossover.

The uniform crossover operator is known as one of the most effective crossover
operators in conventional genetic algorithm [1, 11]. Moreover, nearly the beginning,
it was suggested to use a parameterized uniform crossover operator and it was shown
that tuning this parameter (the probability for a parental gene to be included in
off-spring chromosome) one can essentially improve “The Virtues” of this operator
[1]. Nevertheless, in the majority of cases using the uniform crossover operator the
mentioned possibility is not adopted and the probability for a parental gene to be
included in off-spring chromosome is given equal to 0.5 [2, 6].

Thus it seems interesting to modify the uniform crossover operator with an inten-
tion to improve its performance. Desiring to avoid real number parameter tuning, we
suggested introducing selective pressure on the stage of recombination [8] making the
probability of a parental gene to be taken for off-spring dependable on parent fitness
values. Like the usual GA selection operators, fitness proportional, rank-based and
tournament-based uniform crossover operators have been added to the conventional
operator called here the equiprobable uniform crossover.

Although the proposed new operators, hopefully, give higher performance than
the conventional operators, at the same time the number of algorithm setting variants
increases that complicates algorithms adjusting for the end user. That is why we need
suggesting a way to avoid this extra effort for the adjustment.

With this aim, we apply operators’ probabilistic rates dynamic adaptation on the
level of population with centralized control techniques. To avoid real parameters
precise tuning, we use setting variants, namely types of selection, crossover, pop-
ulation control and a level of mutation (medium, low, high). Each of these has its
own probability distribution. E.g., there are five settings of selection—fitness pro-
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portional, rank-based, and tournament-based with three tournament sizes. During
the initialization all probabilities are equal to 0.2 and they will be changed according
to a special rule through the algorithm’s execution in such a way that a sum of
probabilities should be equal to one and no probability could be less than a precon-
ditioned minimum balance. The list of crossover operators includes 11 items, i.e.,
one-point, two-point and four uniform crossovers all with two numbers of parents
(two and seven).

When the algorithm has to create the next off-spring from the current population,
it firstly has to configure settings, i.e. to form the list of operators with the use
of the probability operator distributions. Then the algorithm selects parents with
the chosen selection operator, produces an off-spring with the chosen crossover
operator, mutates this off-spring with the chosen mutation probability and puts it
into the intermediate population. When the intermediate population is filled, the
fitness evaluation is executed and operator rates (the probabilities to be chosen) are
updated according to the operator productivity. Then the next parental population is
formed with the chosen survival selection operator. The algorithm stops after a given
number of generations or if another termination criterion is met.

The productivity of an operator is the ratio of the average off-springs fitness
obtained with this operator and the off-spring population average fitness. The suc-
cessful operator, having maximal productivity, increases its rate obtaining portions
from other operators. There is no necessity for extra computer memory to remember
past events and the reaction of updates are more dynamic.

The second problem of GAs application in the real world problem solving is their
execution time. GAs need enough members of population and evolution generations
to demonstrate high performance. However, the fitness function evaluation in real
world problems is usually time-consuming, e.g. in our case it is necessary to solve
equations system with many tens of equations. We tackle this problem through the
Self CGA parallelization in two ways: simple distribution of individuals’ fitness eval-
uation among many computing cores of usual multicore computer and the application
of island-based GA framework [7].

The first approach admits the SelfCGA speed up proportionally to the number
of cores without advantages in performance (solution quality and reliability) and
serves mainly as a reference base for the second approach. The second approach is
the eight cores based island SelfCGA with clique connection graph between core
populations which allow migration of the 5 % of the best individuals after every 10 %
of the whole amount of generations number. Every population on the computing
core evolves independently between migration time points. It is expected that this
approaches will give not only algorithm speed up but also a positive effect on the
performance.
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Table 4.1 Comparison results of SelfCGA and problem single best algorithms

No Crossover Average Min Max Average Min Max

1 UE 0.818 0.787 0.894 0.838 0.807 0.904
SelfCGA 0.886 0.902

2 UE 0.841 0.808 0.903 0.849 0.851 0.909
SelfCGA 0.866 0.901

3 UE 0.901 0.887 0.921 0.911 0.898 0.951
SelfCGA 0.901 0.946

4 UR 0.925 0.877 0.959 0.941 0.897 0.979
SelfCGA 0.976 0.991

5 UT 0.950 0.901 1.00 0.972 0.911 1.000
SelfCGA 1.000 1.000

6 UE 0.953 0.861 0.999 0.981 0.893 1.000
SelfCGA 1.00 1.000

7 UT 0.897 0.832 0.927 0.911 0.876 0.957
SelfCGA 0.878 0.920

8 UR 0.741 0.667 0.800 0.790 0.693 0.830
SelfCGA 0.830 0.935

9 UT 0.967 0.917 0.983 0.977 0.931 0.990
SelfCGA 0.987 1.000

10 UE 0.853 0.803 0.891 0.865 0.824 0.909
SelfCGA 0.884 0.897

11 UR 0.821 0.734 0.888 0.867 0.793 0.955
SelfCGA 0.892 0.995

12 UR 0.833 0.765 0.881 0.834 0.776 0.898
SelfCGA 0.897 0.995

13 UR 0.956 0.902 0.998 0.976 0.920 1.000
SelfCGA 1.000 1.000

14 UR 0.974 0.935 0.999 0.989 0.985 1.000
SelfCGA 1.000 1.000

4.7 Algorithms Performance Evaluation

The performance of a conventional GA with three additional uniform crossover
operators has been evaluated on the 14 usual test problems for GA [4]. After 1,000
runs and statistical processing of the results, the following observations were found
in terms of algorithm reliability [10]. The best variants are the new rank-based and
conventional (equiprobable) uniform operators. Tournament-based crossover seems
to be weak but it is the only operator having maximum reliability of 100 % on some
test problems where other operators fail. The reliability is the percentage of the
algorithm’s runs that give satisfactorily precise solutions.

The next stage in evaluating the algorithms is a comparison with the proposed
self-configuring GA (SelfCGA). In Table 4.1 one can find the results comparing
SelfCGA with the single best algorithm having had the best performance on the
corresponding problem. In Table 4.1, headers “UE, UT, UP, UR” indicate the type of
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crossover, respectively, uniform equiprobable, uniform tournament-based, uniform
fitness proportional and uniform rank-based crossovers.

Saying “single” algorithm, we mean the group of algorithms with the same
crossover operator but with all variants of other settings. The average reliability of this
“single” algorithm is averaged over all possible settings. “Min” and “Max” mean GA
settings given the worst and the best performance on the corresponding test problem.

Analyzing the first three columns of Table 4.1, related to sequential SelfCGA,
we can see that in four cases (1, 2, 3, 10 numbers are given in italics) SelfCGA
demonstrates better reliability than the average reliability of the corresponding single
best algorithm but worse than the maximal one. In one case (7th problem), the
single best algorithm (with tournament-based uniform crossover) gives better average
performance than SelfCGA. In the remaining nine cases (numbers are given in bold)
SelfCGA outperforms even the maximal reliability of the single best algorithm.
Similar results we can observe in the last three columns related to parallel (islands
based) SelfCGA. Additionally, we can observe that parallel SelfCGA demonstrates
higher reliability than sequential one in all cases.

Having described these results, one can conclude that the proposed way of GA
self-configuration not only eliminates the time consuming effort for determining the
best settings but also can give a performance improvement even in comparison with
the best known settings of conventional GA. It means that we may use the SelfCGA
in real world problems solving.

4.8 Self-Configuring Genetic Algorithm Application
in Spacecraft Control System Design

First of all we evaluate its performance on the simplified models of technological
and command-programming control contours with five states.

To choose an effective variant of the technological control contour we have to
optimize the algorithmically given function with six discrete variables. The opti-
mization space contains about 1.67 × 107 variants and can be enumerated with an
exhaustive search within a reasonable time. In such a situation, we know the best
(k*) and the worst (k−) admissible values of indicators. Executing 100 runs of the
algorithm, we will also know the worst value of indicators (k∗) obtained as a run
result. The best result of the run should be (k*) if the algorithm finds it. We use
20 individuals in one generation and 30 generations for one run for all eight cores.
This means the algorithm will examine 4,800 points of the optimization space, i.e.
about 0.029 % of it. These points are distributed in equal parts between eight cores
for parallel SelfCGA. As the indicators of the algorithm performance we will use
the reliability (the percentage of the algorithm’s runs that give the exact solution k*);
maximum deviation MD (the ratio of k*–k∗ and k* in percentage to the last); and
relative maximum deviation RMD (the ratio of k*–k∗ and k*–k− in percentage to
the last). The comparison is made for five algorithms, namely four conventional GAs
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Table 4.2 Algorithm reliability comparison for technological control contour model with five states
(spacecraft readiness coefficient)

Algorithm Reliability 1 MD ( %) RMD ( %) Reliability 8 MD ( %) RMD ( %)

UE 0.91 0.0020 0.3560 0.93 0.0011 0.3137
UR 0.94 0.0015 0.2805 0.96 0.0012 0.2349
UP 0.86 0.0021 0.3807 0.91 0.0011 0.3287
UT 0.98 0.0007 0.1243 0.98 0.0004 0.1122
SelfCGA 1.00 0.0000 0.0000 1.00 0.0000 0.0000

Table 4.3 Algorithm reliability comparison for command-programming control contour model
with five states

Algorithm Ind. Reliability 1 MD ( %) RMD ( %) Reliability 8 MD ( %) RMD ( %)

UE T 0.87 6.431 9.028 0.91 5.243 7.820
t1 0.76 0.956 3.528 0.81 0.764 2.852
t2 0.83 13.392 26.010 0.87 12.312 24.212

UR T 0.95 3.987 5.600 0.97 3.272 5.010
t1 0.93 0.341 1.258 0.96 0.276 1.004
t2 0.93 11.347 22.040 0.95 11.021 20.64

UP T 0.79 6.667 9.359 0.87 5.468 8.561
t1 0.71 1.156 4.266 0.78 1.007 3.876
t2 0.74 16.321 31.700 0.81 14.241 27.700

UT T 0.91 4.873 6.840 0.94 4.012 5.920
t1 0.81 0.956 3.528 0.88 0.761 2.988
t2 0.86 13.392 26.010 0.90 12.091 22.11

SelfCGA T 1.00 0.000 0.000 1.00 0.000 0.000
t1 0.98 0.092 0.215 1.00 0.000 0.000
t2 1.00 0.000 0.000 1.00 0.000 0.000

with new uniform crossover operators (UE, UR, UP, UT) and SelfCGA. For con-
ventional GAs, the results are given for the best determination of all other settings.
In Table 4.2, the results are shown for single SelfCGA (one core) together with the
island model parallel SelfCGA (eight cores).

Similar evaluations for all three indicators of the command-programming contour
are given in Table 4.3.

The difference exists in the optimization problem size. 4,800 evaluations of the
objective function correspond to 0.456 % of the whole optimization space as the
model has only five discrete variables (about 106 variants).

From Tables 4.2 and 4.3 one can see that SelfCGA outperforms the alternative
algorithms for all problem statements and with all performance measures. Addi-
tionally, parallel algorithms outperform sequential ones having the same number of
fitness evaluations.

Now we have to evaluate the performance of the suggested algorithm on gener-
alized models which have much higher dimensions.
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Table 4.4 Algorithm reliability comparison for technological control contour model with 40 states
(spacecraft readiness coefficient)

Algorithm Reliability 1 MD ( %) RMD ( %) Reliability 8 MD ( %) RMD ( %)

UE 0.83 0.0105 0.2008 0.88 0.0099 0.1787
UR 0.89 0.0089 0.1750 0.92 0.0078 0.1565
UP 0.78 0.0101 0.2102 0.85 0.0093 0.2001
UT 0.90 0.0075 0.1592 0.93 0.0071 0.1471
SelfCGA 0.96 0.0081 0.1442 0.99 0.0009 0.0121

Table 4.5 Algorithm
reliability comparison for
command-programming
control contour model with
96 states

Algorithm Indicator Reliability 1 Reliability 8

UE T 0.76 0.78
t1 0.67 0.71
t2 0.75 0.78

UR T 0.84 0.85
t1 0.81 0.84
t2 0.84 0.87

UP T 0.70 0.76
t1 0.59 0.65
t2 0.63 0.67

UT T 0.83 0.89
t1 0.72 0.77
t2 0.77 0.80

SelfCGA T 0.91 0.98
t1 0.87 0.95
t2 0.89 0.96

The optimization model for the technological control contour has 11 discrete
variables. The corresponding optimization space contains about 1.76 × 1013 points
and cannot be enumerated with an exhaustive search especially if one recalls that
the examination of one point includes solving a linear equations system with 40
variables. The best (k*) and the worst (k−) admissible values of indicators cannot be
given and we use here their best known evaluations after multiple runs consuming
much computational resources. Nevertheless, we still can try to obtain the resulting
table similar to Table 4.2 with statistical confidence. For the algorithms performance
evaluations we use 40 individuals for one generation and 80 generation for one run
on the one core that examines about 1.456×10−6 % of the search space examination
(sequential algorithms have 100 individuals and 256 generation that give same 25600
fitness evaluations). Results of numerical experiments for one core and eight cores
are summarized in Table 4.4.

For the last problem, i.e. for the model of the command-programming control
contour with 96 states and more than 300 transitions, we cannot give detailed infor-
mation as we did above. This problem has 13 variables and contains 4.5×1015 points
in the optimization space. It requires enormous computational efforts to find reliable
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evaluations of the necessary indicators. Instead, we give a smaller table without MD
and RMD measures. It gives us some insight on the comparative reliability of the
investigated algorithms. The algorithms performance evaluation requires the exami-
nation of 1.76×10−9 % of the search space (100 individuals and 100 generations for
one computing core in parallel SelfCGA and 320 individuals and 250 generations
for sequential variant). Results averaged over 100 runs are summarized in Table 4.5.

Tables 4.4 and 4.5 show that the SelfCGA outperforms all alternative algorithms
and it’s parallel variant outperforms sequential one.

We have no place to go into the details with estimations of parallel algorithms
speed up. Nevertheless, we can remark that simple parallelization of SelfCGA on
the eight core computing system accelerates the execution in almost eight times. It
can be explained if we realise that any fitness evaluation is time consuming process
comparing with algorithm operations. We have also to remark that island model
SelfCGA additionally accelerates execution because of the synergetic effect of the
cooperation of independently evolving populations. This effect gives also positive
impact on the algorithm performance.

4.9 Conclusions

In this chapter, the mathematical models in the form of Markov chains have been
developed and implemented for choosing effective variants of spacecraft control
contours. These models contain tens of states and hundreds of transitions that make
the corresponding optimization problems hard to solve.

It is suggested to use the genetic algorithms in such a situation because of their
reliability and high potential to be problem adaptable. As GAs performance is highly
dependent on their setting determination and parameter tuning, the special self-
configuring GA is suggested that eliminates this problem. The high performance
of the suggested algorithm is demonstrated through experiments with test problems
and then is validated by the solving hard optimization problems. The self-configuring
genetic algorithm is suggested to be used for choosing effective variants of spacecraft
control systems as it is very reliable and requires no expert knowledge in evolutionary
optimization from end users (aerospace engineers). We did not try to implement
the best known GA with optimal configuration and optimally tuned parameters.
Certainly, one could easily imagine that the much better GA exists. However, it is
a problem to find it for every problem in hand. The way of the self-configuration
proposed in this chapter that involves all variants of all operators can be easily
expanded by adding new operators or operator variants. The self-configuring process
monitoring gives the additional information for further SelfCGA improving. E.g., if
the high level mutation is always the winner among mutation variants then we can
add some higher level mutation operators in the competitors list instead of lower
level variants.

The future research includes also not only direct expansion in using the simulation
models and multicriterial optimization problem statements but also the improvement
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of SelfCGA adaptability through the population size control and adoption of addi-
tional operators and operator variants as well as effective variants of parallelization.
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Chapter 5
A Heuristic Control Algorithm for Robust
Internal Model Control with Arbitrary
Reference Model

M. G. Skarpetis, F. N. Koumboulis and A. S. Ntellis

Abstract In this chapter the problem of Robust Internal Model Control is considered
for the case of linear plants with nonlinear uncertain structure. The reference com-
mand is produced by an arbitrary reference model. A finite step Heuristic Algorithm
is proposed in order to derive the controller parameters that guarantee robust perfor-
mance under the proposed solvability conditions. The proposed controller is success-
fully applied to a hydraulic actuator uncertain model including uncertain parameters
arising from changes of the operating conditions and other physical reasons. The sat-
isfactory performance of hydraulic actuator variables for all the expected range of the
actuator model uncertainties and external disturbances is illustrated via simulation
experiments.

Keywords Robust internal model control · Arbitrary reference command tracking ·
Hydraulic actuator

5.1 Introduction

The problem of output tracking appears to be one of the most popular control design
problems (see [1–5] and the reference therein). The problem of output tracking for
both non uncertain and uncertain systems (robust tracking) is treated mainly using
stabilizability techniques, e.g. [3, 5–7].
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The problem of robust tracking appears to be of major interest in the design of
controllers for hydraulic actuators. This type of actuators is widely used in many
applications like manufacturing, robotics, constructions and avionics. The dynamics
of fluid power are inherently uncertain. So, robust control strategies are indispensible
if one wishes to guarantee safety and reliability of hydraulic actuators (see [8–12]
and the references therein). Robust asymptotic tracking techniques like those in
[6–8, 12] and robust PI-PID design techniques like those in [10, 11] and the reference
there in, perform satisfactory in many industrial hydraulic plants.

In this chapter a robust tracking controller is proposed in order to satisfy asymp-
totic command following for reference signals produced by an arbitrary reference
model. The design technique is based on the well known Internal Model Principle
[4], appropriately extended using Hurwitz invariability in order to cover the case
of linear uncertain systems with non linear uncertain structure. An arbitrary refer-
ence model that produces desired reference signals is used in the controller structure
and the overall closed loop robust stability is guaranteed under sufficient conditions.
A finite step Heuristic Algorithm is proposed in order to derive the controller para-
meters solving the problem.

The present results are successfully applied to control the position of a hydraulic
actuator model involving uncertain parameters arising from changes of the oper-
ating conditions (temperature, pressure, entrained air or water) as well as physical
uncertainties (loss in the effective area of the actuator piston seal due to wear [9]).
Solvability conditions are established. An analytic finite step algorithm for the com-
putation of the robust controller parameters is proposed. Following the algorithm,
first, robust stability regions are determined. Second, the metaheuristic optimization
algorithm proposed in [13] is applied, inside these regions, to fulfill performance
criteria. The effectiveness of the controller is illustrated through simulations for var-
ious values of the model uncertain parameters. The results appear to be simple and
easily applicable. The present chapter is an extended and upgraded version of [14].

5.2 Preliminary Results

Consider the linear time-invariant SISO system with non linear uncertain structure
described by

ẋ(t) = A(q)x(t) + b(q)u(t) + d(q)w(t), y(t) = c(q)x(t) (5.1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R is the input and y(t) ∈ R is the output

and w(t) ∈ R is external disturbance. A(q) ∈ [
Γ(q)

⎧n×n , b(q) ∈ [
Γ(q)

⎧n×1,

d(q) ∈ [
Γ(q)

⎧n×1 and c(q) ∈ [
Γ(q)

⎧1×n are function matrices depending upon
the uncertainty vector q = [

q1 · · · ql
⎧ ∈ Q (Q denotes the uncertain domain). The

set Γ(q) is the set of nonlinear functions of q. The uncertainties q1, . . . , ql do not
depend upon the time. With regard to the nonlinear structure of A(q), b(q), d(q) and
c(q) no limitation or specification is considered (i.e. boundness, continuity).
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Consider the case where the reference signal yr (t) is the output of a linear model
described by

ẋr (t) = Ar xr (t); yr (t) = cr xr (t) (5.2)

where yr (t) ∈ R, xr (t) ∈ R
r×1 and where

Ar =

⎨
⎢⎢⎢⎢⎢⎪

0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · · ...

0 0 0 · · · 1
−dr −dr−1 −dr−2 · · · −d1

⎡
⎣⎣⎣⎣⎣⎤

, cr = [
1 0 · · · 0

⎧
.

Consider the vector xr,0 denoting arbitrary initial conditions for system (5.2). Clearly,
it holds that

y(r)
r (t) +

r⎦
i=1

di y(r−i)
r (t) = 0. (5.3)

The disturbance is assumed to be of the same type as the reference signal, i.e.

w(r)(t) +
r⎦

i=1

diw
(r−i)(t) = 0. (5.4)

Define the tracking error
ε(t) = y(t) − yr (t). (5.5)

Differentiating the error r-times, we get

ε(r)(t) +
r⎦

i=1

diε
(r−i)(t) = c(q)x (r)(t) + c(q)

r⎦
i=1

di x (r−i)(t). (5.6)

Define the variables

z(t) = x (r)(t) +
r⎦

i=1

di x (r−i)(t), ũ(t) = u(r)(t) +
r⎦

i=1

di u
(r−i)(t). (5.7)

According to (5.3), (5.4), (5.6) and (5.7) the following augmented system is defined:

d

dt
x̃ (t) = Ã (q) x̃ + b̃ (q) ũ (t) (5.8)
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where x̃(t) = [
ε(t) ε(1)(t) . . . ε(r−1)(t) z(t)

⎧T
, Ã (q) =

⎨
⎪

Ar | er c(q)

− − − | − − −
0n×r | A(q)

⎡
⎤,

b̃(q) =
⎞

0r×1
b(q)

⎠
and er =

⎞
0(r−1)×1
1

⎠
.

Consider the static state feedback control law

ũ(t) = f x̃(t) = f1ε̃(t) + f2z(t). (5.9)

where ε̃(t) = [
ε(t) ε(1)(t) . . . ε(r−1)(t)

⎧T
.

According to the aforementioned definitions the robust output command tracking
is formulated as follows [1, 4]: The output of the uncertain system (5.1) follows
the output of the reference system (5.2) while the tracking error (5.5) decreases
asymptotically to zero. This is satisfied using a static state feedback control law of
the form (5.9) guaranteeing robust stability of the polynomial

p̃cl (s, q, f ) = det
[
s Ir+n − Ã(q) − b̃(q) f

]
. (5.10)

The control law (5.9) can be expressed in state space form as follows:

ẋc(t) = Acxc(t) + bcε(t), υ(t) = ccxc(t), u(t) = υ(t) + f2x(t) (5.11a)

Ac =

⎨
⎢⎢⎢⎪

−d1 1 0 · · · 0
−d2 0 1 · · · 0

...
...

...
...

...

−dr 0 0 · · · 0

⎡
⎣⎣⎣⎤ , bc =

⎨
⎢⎢⎢⎪

f1,r

f1,r−1
...

f1,1

⎡
⎣⎣⎣⎤ , cc = [

1 0 · · · 0
⎧
. (5.11b)

where f1,i (i = 1, . . . , r) are the elements of f1.

5.3 Solvability Conditions

The polynomial (5.10) can be rewritten as

p̃cl (s, q, f ) = det [s Ir − Ar ] det [s In − A(q)] − f adj
[
s In+r − Ã(q)

]
b̃(q).

(5.12)
Define:

ã (q) = [
1 ã1 (q) . . . ãr+n (q)

⎧
(5.13)

where ãi (q) (i = 1, . . . , r + n) are the coefficients of the polynomial
det [s Ir − Ar ] det [s In − A(q)]. Also define the polynomial matrix

P̃ (s, q) = ∂(q) [ sμ(q) . . . s0 ]T = adj
[
s In+r − Ã (q)

]
b̃(q)
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where μ(q) ≤ n + r is the maximum degree of the polynomial matrix

adj
[
s In+r − Ã (q)

]
b̃ (q) and

∂(q) = [
ω0 (q) . . . ωμ(q) (q)

⎧ ; ωi (q) = [
ω̃i,1 (q) . . . ω̃i,n+r (q)

⎧T
. (5.14)

According to definitions (5.13) and (5.14) the augmented closed loop characteristic
polynomial (5.12) can equivalently be expressed as follows:

p̃cl (s, q, f ) = [ sn+r . . . s0] A∗∗(q)

⎞
1
f T

⎠
(5.15a)

A∗∗(q) =
[

ãT −∂̃
T
]
, ∂̃ (q) = [

0(n+r)×(n+r−μ(q)) |∂(q)
⎧

(5.15b)

Based on the above definitions and the results in [15–17] the following theorem is
presented.

Theorem 1 The problem of robust output command tracking for the uncertain system
(5.1) and for arbitrary signals produced by the reference model (5.2), is solvable, via
the controller (5.9), if the following conditions are satisfied

(i) The elements of A∗∗ (q)are continuous functions of q for every q ∈ Q

(ii) There exists (n + r + 1)—row submatrix of A∗∗ (q), let A∗ (q) which is positive
antisymmetric.

Proof According to the definition of the problem presented in Sect. 5.2, the problem
of robust output command tracking for the uncertain system (5.1) via the controller
(5.9) is solvable if the polynomial (5.10) or equivalently (5.12) is robustly stable.
According to the results in [15–17] the uncertain polynomial is Hurwitz invariant if
conditions (i) and (ii) of Theorem 1 are satisfied.

In the following theorem necessity is studied.

Theorem 2 For the problem of robust output command tracking for the uncertain
system (5.1) and for arbitrary signals produced by the reference model (5.2), via the
controller (5.9), it is necessary for the roots of the polynomial c(q)adj [s In − A(q)]
b(q) not to be unstable roots of det [s Ir − Ar ] for every q ∈ Q.

Proof The polynomial (5.12) can be rewritten as follows

p̃cl (s, q, f ) = det [s Ir − Ar ] det [s In − A(q)]

+ f1adj [s Ir − Ar ] c(q)adj [s In − A(q)] b(q)−
+ f2adj [s In − A(q)] b(q)det [s Ir − Ar ]
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From the above relation it is clear that if σ(q) ∈ C is a root of c(q)adj [s In − A(q)]
b(q), being unstable for at least one q ∈ Q. Then its value for this q must not be
eigenvalue of det [s Ir − Ar ].

The condition of Theorem 2 is related to the uncontrollable part of the augmented
system ( Ã (q) , b̃ (q)). This condition is useful in choosing the model of the reference
signal.

Remark 1 The class of the systems that satisfy condition (ii) of Theorem 1, can
be widen, if, instead of A∗∗ (q) the matrix A∗∗ (q) T is considered where T is an
appropriate invertible and independent from q matrix.

For the definition of positive antisymmetric matrices see [15–17].

5.4 An Analytic Algorithm for the Computation
of the Controller Parameters

According to [15–17] and under the satisfaction of the solvability conditions the
Hurwitz invariability matrix A∗(q) can be constructed using (n + r + 1) − ξ up or
down augmentations starting from a positive Hurwitz invariant core with ξ rows as
follows: δ1(q) → δ2(q) → · · · → δn+r+1−ξ(q) → δn+r+2−ξ(q) = A∗(q).

Based on the above construction the following heuristic algorithm (Fig. 5.1) based
on the respective results in [13, 15–17] is presented using indicatively up augmen-
tations for the construction of the stability augmentation matrix:

Step 1 (Construction of the augmentation matrices): The core of A∗ (q) is
c̄ (q) = δ1 (q). From δ1 (q) using n + r + 1 − ξ up positive augmentations the
matrices δ2(q), . . . , δn+r+2−ξ(q) = A∗(q) are constructed.
Step 2 (Initialization): Define τ1 = 1, i = 1.
Step 3 (Determination of the region of εi > 0 for which δi+1(q)

[
εi τi

⎧T
is

positive Hurwitz invariant): According to the form of the associated polynomial
of δi+1(q)

[
εi τi

⎧T , find a region of εi , let Mi , where in the robust stability
is guaranteed under the constrains of the stability regions M1, . . . , Mi−1. Let
τi+1 = [

εi 1
⎧
, and i = i + 1.

Step 4: Repeat Step 3 until i ≤ n + r + 1 − ξ.
Step 5: Using the metaheuristic finite step algorithm presented in [13] in the
stability regions Mi (i = 1, . . . , n +r +1−ξ) and for all values of the uncertain
parameters, compute the best values for ε1, ...., εn+r−1−ξ under performance
criteria.
Step 6 (Derivation of the gain vector): Compute the robust tracking controller
from the relation:

f =
[

T
εn+r+1−ξ

([
εn + r + 1−ξ . . . ε1 1

⎧ ⎞
01×(n + r + 1−ξ)

In + r + 1−ξ

⎠)T
]T

.
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Fig. 5.1 Algorithm flow chart
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5.5 Robust Control for Position Tracking of a Hydraulic
Actuator

5.5.1 Actuator Model

Consider a double acting servo valve and piston actuator. The linearized differential
equations that describe the actuator—valve dynamics can be formulated as follows
[9]:

ẋ p(t) = υp(t), υ̇p(t) = 1

m

[
APL(t) − bυp(t) − FL(t)

⎧
, (5.16a)

ṖL(t) = 4β

V

[
K f xυ(t) − Ktp PL(t) − Aυp(t)

⎧
. (5.16b)

where υp is the piston velocity, x p is the piston position, PL is the hydraulic pressure
across the actuator piston, FL is the external load disturbance and xυ is the spool
valve displacement. The parameters A, m,β, b and V are: the piston surface area,
the mass of the load, the effective bulk modulus of the hydraulic fluid, the viscous
damping coefficient and the total volume of hydraulic oil in the piston chamber
and the connecting lines, respectively. The coefficients K f and Ktp arise from the
linearization of the servo valve load flow and the leakage flow.

The valve displacement is usually produced by a solenoid (electrohydraulic valve)
actuated by the input voltage νin(t) of the solenoid. The transfer function of a solenoid
can be approximated by the servo valve spool position gain denoted by ku . Using
(5.16) the following linear system with uncertain structure is derived in state space
form:

ẋ(t) = A0(q)x(t) + B0(q)νin(t) + D0 FL(t), y(t) = C0x(t), (5.17a)

x(t) = [
x p(t) υp(t) PL(t)

⎧T
, C0 = [

1 0 0
⎧
, (5.17b)

A0(q) =
⎨
⎪

0 1 0
0 −b/m A/m
0 −4q1 A/V −4q1q2/V

⎡
⎤ , B0(q) =

⎨
⎪

0
0

4q1q3ku/V

⎡
⎤ , D0 =

⎨
⎪

0
−1/m

0

⎡
⎤

(5.17c)
The parameter q1 = β is an uncertain parameter since the effective bulk modulus of
the hydraulic fluid changes due to temperature, pressure and entrained air or water
fluctuations. The parameter q2 = Ktp changes due to migration of the system’s
operating point and the parameter q3 = K f changes due to migration of the system
operating point and to loss in the effective area of the actuator piston seal, due to wear
[9]. The vector q = [

q1 q2 q3
⎧ ∈ Q is the uncertain vector and Q is the domain

of uncertainty. The nominal values of the system parameters are shown in Table 5.2
and the expected range of variations of the uncertain system parameters is shown in
Table 5.1 [9].
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Table 5.1 Expected range of variations of the uncertain parameters

Symbol Minimum values Nominal values Maximum values

β(Pa) 550 × 106 689 × 106 895 × 106

Ktp
⎫
m3/Pas

⎬
0 0 9.5 × 10−11

K f
⎫
m2/ sec

⎬
1.02 1.02 1.76

Table 5.2 Nominal values for the hydraulic actuator’s parameters

Definition Nominal values

V Volume of hydraulic oil in the piston chamber 468/1003 m3

A Piston surface area 633/10002 m2

β Effective bulk modulus 689 × 106 Pa
Ktp Total flow pressure coefficient 0 m3/Pa-s
b Viscous damping coefficient 1,000 Nm−1s
m Load mass 12 Kg
ku Servo valve spool position gain 0.0406 × 10−3 m/V
K f Servo valve gain 1.02 m2/ sec

5.5.2 Robust Tracking Controller

In this section a robust tracking arbitrary controller for asymptotic tracking of the
piston position will be designed. According to (5.2) the reference output model is
derived for r = 2 to be:

ẋr (t) = Ar xr (t), yr (t) = cr xr (t), xr,0 =
⎞

xr,01
xr,02

⎠

where Ar =
⎞

0 1
−d2 −d1

⎠
and cr = [

1 0
⎧
.

According to definitions of Sect. 5.2 the following augmented system is introduced

d

dt
x̃ (t) = Ã (q) x̃ + b̃ (q) ũ (t)

where x̃ (t) = [
ε (t) ε(1) (t) z (t)

⎧T
and where

Ã (q) =

⎨
⎢⎢⎢⎢⎪

0 1 0 0 0
−d2 −d1 1 0 0

0 0 0 1 0
0 0 0 −b/m A/m
0 0 0 −4q1 A/V −4q1q2/V

⎡
⎣⎣⎣⎣⎤

, b̃ (q) =

⎨
⎢⎢⎢⎢⎪

0
0
0
0

4q1q3kυ/V

⎡
⎣⎣⎣⎣⎤
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Apply the static state feedback law: ũ = f x̃ with f = [
f11 f12 f21 f22 f23

⎧
. The

aforementioned controller can be produced by the original input signal u(t) using
the following state space form:

ẋc(t) = Acxc(t) + bce(t), υ(t) = ccxc(t) (5.18)

where Ac =
⎞−d1 0

−d2 0

⎠
, bc =

⎞
f1,2
f1,1

⎠
, cc = [

1 0
⎧

and u(t) = υ(t) + f2x(t) with

f2 = [
f21 f22 f23

⎧
.

The augmented system closed loop characteristic uncertain polynomial is:

pcl (s, q1, q2, f ) = s5 + γ0s4 + γ1s3 + γ2s2 + γ3s1 + γ4 (5.19)

where

γ0 (q, f ) = d1 + [4mq1(q2 − f23kuq3) + bV ] /mV,

γ1(q, f ) = 1

mV
(4A2q1 − 4A f22kuq1q3 + 4bq1(q2 − f23kuq3)

+ 4d1mq1(q2 − f23kuq3) + bd1V + d2mV )

γ2(q, f ) = 1

mV
(4A2d1q1 − 4A( f21 + d1 f22)kuq1q3 + 4d2mq1(q2 − f23kuq3)

+ b(4d1q1(q2 − f23kuq3) + d2V ))

γ3(q, f ) = 1

mV
(4q1(bd2(q2 − f23kuq3) + A2d2 − A( f12 + d1 f21 + d2 f22)kuq3)),

γ4(q, f ) = − [4A( f11 + d2 f21)kuq1q3] /mV .

According to (5.13) and (5.14) define

ã (q) = [
1 ã1 ã2 ã3 ã4 ã5

⎧
(5.20)

ã1 = d1 + b

m
+ 4q1q2

V
, ã5 = 0

ã2 = 4A2q1 + 4bq1q2 + 4d1mq1q2 + bd1V + d2mV

mV

ã3 = 4A2d1q1 + 4bd1q1q2 + 4d2mq1q2 + bd2V

mV
, ã4 = 4d2q1(A2 + bq2)

mV

[
−∂̃ (q)

]T =

⎨
⎢⎢⎢⎢⎢⎢⎪

0 0 0 0 0
0 0 0 0 ω̃25
0 0 0 ω̃34 ω̃35
0 0 ω̃43 ω̃44 ω̃45
0 ω̃52 ω̃53 ω̃54 ω̃55

ω̃61 0 ω̃63 0 0

⎡
⎣⎣⎣⎣⎣⎣⎤

(5.21)
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where ω̃61 = ω̃52 = ω̃43 = ω̃34 = − 4Akuq1q3
mV , ω̃25 = − 4kuq1q3

V , ω̃53 =
ω̃44 = − 4Ad1kuq1q3

mV , ω̃35 = − 4ku(b + d1m)q1q3
mV , ω̃55 = − 4bd2kuq1q3

mV , ω̃63 = ω̃54 =
− 4Ad2kuq1q3

mV , ω̃45 = − 4ku(bd1 + d2m)q1q3
mV .

According aforementioned definitions the augmented closed loop characteristic
polynomial (5.18) can equivalently be expressed as follows:

p̃cl (s, q, f ) = [
s5 s4 s3 s2 s1 s0

⎧
A∗∗(q)

[
1 f11 f12 f21 f22 f23

⎧T (5.22)

where
A∗∗(q) = [

ãT −∂̃T
⎧

(5.23)

Let T =

⎨
⎢⎢⎢⎢⎢⎢⎪

1 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0
0 0 0 −1 0 0
0 0 −1 0 0 0
0 −1 0 0 0 0

⎡
⎣⎣⎣⎣⎣⎣⎤

and choose the following 6 × 6 row submatrix of

A∗∗ (q) T :

A∗ (q) =

⎨
⎢⎢⎢⎢⎢⎢⎪

1 0 0 0 0 0
φ21 φ22 0 0 0 0
φ31 φ32 φ33 0 0 0
φ41 φ42 φ43 φ44 0 0
φ51 φ52 φ53 φ54 φ55 0
0 0 0 φ64 0 φ66

⎡
⎣⎣⎣⎣⎣⎣⎤

(5.24)

where φ21 = ã0, φ31 (q) = ã1, φ41 = ã2, φ51 = ã3, φ22 = −ω̃25, φ32 = −ω̃35,
φ42 = −ω̃45, φ52 = −ω̃55, φ33 = −ω̃34, φ43 = −ω̃44, φ53 = −ω̃54, φ44 = −ω̃43,
φ54 = −ω̃53, φ64 = −ω̃63, φ55 = −ω̃52, φ66 = −ω̃61.

Theorem 3 The problem of robust output command tracking for the uncertain
hydraulic model (5.17) via the controller (5.18) is always solvable.

Proof Condition (i) can easily be verified. The matrix A∗ (q) is positive antisym-
metric. It can be constructed using the five positive up augmentations (φ66, φ55, φ44,
φ33 and φ22 are positive numbers for all the values of the uncertainties):

δ1(q) → δ2(q) → δ3(q) → δ4(q) → δ5(q) → δ6(q) = A∗(q)
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where δ1 (q) = φ66, δ2 (q) =
⎞

φ56 0
0 φ66

⎠
, δ3 (q) =

⎨
⎪

φ44 0 0
φ54 φ55 0
φ64 0 φ66

⎡
⎤, δ4 (q) =

⎨
⎢⎢⎪

φ33 0 0 0
φ43 φ44 0 0
φ53 φ54 φ55 0
0 φ64 0 φ66

⎡
⎣⎣⎤, δ5(q) =

⎨
⎢⎢⎢⎢⎪

φ22 0 0 0 0
φ32 φ33 0 0 0
φ42 φ43 φ44 0 0
φ52 φ53 φ54 φ55 0
0 0 φ64 0 φ66

⎡
⎣⎣⎣⎣⎤

.

The vector c̄ (q) = δ1 (q) is a Hurwitz invariant core since the associate polynomial
of c̄ (q) ([c̄ (q)]T ) is positive Hurwitz invariant. Hence, condition (ii) of Theorem 1
is satisfied. For reference and disturbance signals of sinusoidal form, condition of
Theorem 2 is also satisfied.

5.5.3 An Analytic Algorithm for the Computation
of the Controller Parameters

Using a reference input of the form yr (t) = 0.02 sin[0.2t] (d1 = 0, d2 = 0.04,
xr,01 = 0, xr,02 = 0.004) and the algorithm presented in Sect. 5.4 the following data
are derived:
Stability Regions: ε1 ∈ M1 = [0.25, 0.55], ε2 ∈ M2 = [0.2, 0.3], ε3 ∈ M3 =
[0.01, 0.015], ε4 ∈ M4 = [

6 × 10−9, 7 × 10−9
⎧
, ε5 ∈ [0.0006, 0.0008]

Values of the Parameters ε1, ε2, ε3, ε4, ε5 : ε1 = 0.5, ε2 = 0.25, ε3 = 0.012,
ε4 = 6 × 10−9 and ε5 = 0.0007.
Derivation of the Controller Parameters: f11 = −1428.57, f12 = −714.286, f22 =
−17.1429, f21 = −357.143, f23 = −8.57143 ∗ 10−6.

5.5.4 Simulation Results

Using Tables 5.2 and 5.1 and for a reference signal and external disturbance as in
Figs. 5.2 and 5.3, the closed loop performance is illustrated in Figs. 5.4, 5.5, and 5.6
and the control signal is illustrated in Fig. 5.7. (Dotted line, Solid line, Dashed line
is for minimum, intermediary, and maximum value of the uncertainties).
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Fig. 5.2 Reference signal
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Fig. 5.3 External disturbance
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Fig. 5.4 The piston position
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Fig. 5.5 The piston velocity
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Fig. 5.6 Hydraulic pressure
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Fig. 5.7 Input voltage of the
solenoid
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5.6 Conclusions

A finite step Heuristic Algorithm is proposed in order to solve the problem of robust
Internal Model control for uncertain systems. Sufficient conditions have been derived
and a finite step algorithm has been proposed for fast and easy computation of the
controller parameters. The results are successfully applied to a hydraulic actuator.
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Chapter 6
A Multi-Signal Variant for the GPU-Based
Parallelization of Growing Self-Organizing
Networks

Giacomo Parigi, Angelo Stramieri, Danilo Pau and Marco Piastra

Abstract Among the many possible approaches for the parallelization of
self-organizing networks, and in particular of growing self-organizing networks, per-
haps the most common one is producing an optimized, parallel implementation of the
standard sequential algorithms reported in the literature. In this chapter we explore an
alternative approach, based on a new algorithm variant specifically designed to match
the features of the large-scale, fine-grained parallelism of GPUs, in which multiple
input signals are processed at once. Comparative tests have been performed, using
both parallel and sequential implementations of the new algorithm variant, in par-
ticular for a growing self-organizing network that reconstructs surfaces from point
clouds. The experimental results show that this approach allows harnessing in a more
effective way the intrinsic parallelism that the self-organizing networks algorithms
seem intuitively to suggest, obtaining better performances even with networks of
smaller size.

Keywords Growing self-organizing networks · Graphics processing unit ·
Parallelism · Surface reconstruction · Topology preservation

6.1 Introduction

From a general point of view a self-organizing network is composed by units that
adapt themselves, through limited and local interactions, to input signals from some
predefined space. In most cases a topology is defined among these units by a set of
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binary connections. At first sight, the adaptation process may look inherently parallel,
since each unit follows the same predetermined behavior and in many cases, as long
as two units are sufficiently far away in the network, they do not interact in any way.

Nonetheless, most of the algorithms in the literature are described as sequential
procedures, in the sense that input signals are submitted one by one to the network
and processed each in a sequential way. This means that, in most cases, also units
will be adapted sequentially, one after the other, even when they can be considered as
mutually independent, i.e. with input signals that are sufficiently distant in the input
space.

In a typical algorithm, each input signal has to be compared to all units in the
network, in order to find the closest one and adapt the latter and its neighbors to
the input signal. For reasons that will be described in detail later on, this operation
is dominant in terms of execution time, and is therefore the obvious focus for par-
allel implementation. In this respect, two main methods emerge: data partitioning
methods, in which the input signals are partitioned across parallel tasks, whereby
each task involves the entire network and processes just one input signal; network
partitioning methods, in which the units of the network are partitioned across parallel
tasks, whereby each task considers all input signals but only in relation to the units
belonging to its partition. These two approaches are thoroughly examined in [2] for
the parallelization of Kohonen’s self-organizing map [3]. In particular, in the former
work, a data partitioning approach is described for the batch version of the algorithm,
and a network partitioning approach for the on-line version of the algorithm, in both
cases for an SP2 parallel computer.

As a matter of fact, perhaps the most common approach for the parallel implemen-
tation of self-organizing networks described in the literature (see for instance [4–7]),
is to adapt the network-partitioning method to the standard, sequential version of the
algorithm.

In an effort to better harness the “latent parallelism” of self-organizing networks,
a new algorithm variant for growing self-organizing networks is proposed in this
chapter. In this multi-signal algorithm variant, a number of signals are submitted to
the network and elaborated at once during each iteration. This variant is explicitly
intended for a data-partitioning approach to parallelization, which, as described in
[2], may offer “the potential for much greater scalability, since the parallel granularity
is determined by the volume of data, which is potentially very large”. In particular the
new algorithm focuses on growing self-organizing networks and this entails dealing
with some further functional aspects, that are not present in the algorithm for self-
organizing maps considered in [2]. This aspect will be described in Sect. 6.2.

The new multi-signal algorithm has been designed to match the features of the
large-scale, fine-grained parallelism of GPUs (Graphics Processing Units). Beside
its computational capabilities, this hardware has gained a large popularity due to
the lower costs compared to those of more traditional high-performance computing
solutions. For instance, in [8], GPUs have been defined “probably today’s most
powerful computational hardware for the dollar”.

The GPU-based implementation of the multi-signal variant, has shown good per-
formances in all the tests performed, reaching noticeable speed-ups even for smaller
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networks. In addition, the new multi-signal algorithm has shown some interesting
differences w.r.t. the standard single-signal algorithm: in the tests performed, the
multi-signal algorithm always required less input signals to reach termination than
the single-signal counterpart. These aspects will be further discussed in Sect. 6.3.

6.2 Methods

6.2.1 Growing Self-Organizing Networks

In the discussion that follows, we consider as reference a network in which each
unit is associated to a reference vector in the input space, and a topology is defined
by a set of binary connections between the units. These connections also define the
local topology, or neighborhood, of each unit. In a self-organizing network units
are progressively adapted during the learning process. In addition, growing self-
organizing networks, like GNG [9], GWR [10] and SOAM [1] have the following
characteristics:

• during the learning process the number of units varies, and can both grow and
shrink;

• the topology of connections between units varies as well, since connections are
both created and destroyed during the learning process.

In general, the learning process of a growing self-organizing network can be
described as a basic iteration, which is repeated until some convergence criterion
is met:

1. Sample
Generate at random one input signal ξ with probability P(ξ). Usually the support
of P(ξ) coincide with the region of interest, i.e. the region of input space to be
considered.

2. Find Winners
Compute the distances ≡ξ − wi≡ between each reference vector and the input
signal and find the k-nearest units. In most cases k = 2, i.e. the nearest (winner)
and second-nearest units are searched for.

3. Update the Network
Create a new connection between the winner and the second-nearest unit, if not
existing, or reset the existing one.1

Adapt the reference vector of the winner unit and of its topological neighbors,
with a law of the type:

Δwb = εb≡ξ − wb≡, (6.1)

Δwi = εiη(i, b)≡ξ − wi≡,

1 An aging mechanism is also applied to connections (see for instance [9]).
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Fig. 6.1 The SOAM [1] reconstructs a surface from the point cloud on left. At the end, all units
converge to the same stable state

where wb is the reference vector of the winner and wi are the reference vectors of
the neighboring units. εb, εi ,∈ [0, 1] are the learning rates, with εb → εi . The
function η(i, b) ∞ 1 determines how neighboring units are adapted. In most cases
η(i, b) = 1 if units b and i are connected and 0 otherwise. During this phase, new
units can be created and old units can be removed, with methods that may vary
depending on the specific algorithm.

The three steps above are iterated until some convergence criterion is met: tipically,
in most self-organizing networks, including growing ones, this criterion is a threshold
on the overall quantization error, i.e. the mean squared distance between input signals
and the corresponding winners. For the purposes of this work we adopted the SOAM
algorithm, that has a termination criterion which does not depend on a threshold. In the
SOAM algorithm, in fact, the learning process terminates when all units have reached
a local topology consistent with that of a surface and therefore the network represents
the triangulation of the surface that has to be reconstructed from input signals (see
Fig. 6.1). The clear termination criterion in the SOAM algorithm is fundamental for
comparing the performances and the different behaviors of the two variants of the
algorithm, i.e. single-signal and multi-signal, and their implementations.

The methods adopted for adding and removing units during the Update phase
greatly vary depending on the algorithm. In GNG, for example, new units are inserted
at regular intervals, in the neighborhood of the unit i that has accumulated the largest
mean squared error. In contrast, in GWR new units are added whenever the distance
between the winner unit and the input signal ξ is greater than a predefined insertion
threshold. The new unit is positioned in proximity of the winner and the network
topology is updated. The SOAM algorithm is similar to the GWR, with the difference
that the insertion threshold may vary during the learning process, in order to reflect
the local feature size (LFS) of the surface being reconstructed (see Sect. 6.3.1).

In terms of time complexity, the Find Winners phase is dominant in general. In
fact, assuming that the number k of nearest neighbors is constant and small, the Find
Winners phase has O(N ) time complexity, where N is the total number of units.
Although the complexity of the Update phase may greatly vary depending on how
the function is defined (see for instance the Neural Gas algorithm [11]), as a matter
of fact in most growing self-organizing networks, including the SOAM algorithm,
this update is local and limited to the connected neighbors of the winner, so that the
Update phase can be assumed to have O(1) time complexity. Furthermore, in this
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Fig. 6.2 Single-phase time to convergence of the SOAM algorithm (average values on the whole
test set)

discussion, we will not consider the Sample phase in detail: sampling methods, in
fact, are application-dependent and not necessarily under the control of the algorithm.

The dominance of the Find Winners phase in terms of time complexity is confirmed
by experiments. The graph in Fig. 6.2 shows the mean values obtained from the
experiments described in Sect. 6.3. These results are in line with the ones reported
in the literature (see for example [4] for a detailed analysis), in that the percentage
of the execution time spent in the Find Winners phase remains as low as 50–60 % of
the total execution time as long as the network remains small (i.e. 250–500 units),
but grows rapidly to 95 % and more as the network size increases and more signals
are processed.

6.2.2 The Multi-Signal Variant

In the multi-signal variant proposed here, at each iteration m → 1 signals are con-
sidered at once. The basic iteration hence becomes:

1. Sample
Generate at random m input signals ξ1, . . . , ξm according to the probability dis-
tribution P(ξ), as described before.

2. Find Winners
For each signal ξ j , compute the distances ≡ξ j − wi≡ between each reference
vector and the input signal and find the k-nearest units.

3. Update the Network
For each signal ξ j , perform the update operations specified in the previous section.

The first two phases in the above iteration pose no particular problems, since
all the involved operations performed for each signal are mutually independent.
In contrast, during the Update phase, the operations performed for different signals
may collide. In particular three kinds of collision can occur:
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Fig. 6.3 Collision caused by two different input signals ξ1 and ξ2. In (a) the two signals share the
same winner, hence all direct neighbors. In (b) and (c) the winner is different, but the neighbors are
shared. All three cases would lead to colliding adaptations

Adapt Position. Two or more signals lead to the adaptation of the same unit in the
network. Collisions of this kind are usually not isolated, since the collision can
happen both for the winner and for the neighboring units, as described in Fig. 6.3.

Modify Neighborhood. Two or more signals lead to modifying the neighborhood
of the same unit. This may be caused by either the insertion/removal of units or
the creation/removal of edges.

Insert Edge. Two or more signals lead to the insertion of the same edge.

In the multi-signal variant presented here, the main concern in choosing the
method for managing the above collisions is maintaining a coherent behavior with
respect to the single-signal algorithm, and allow an unbiased comparison of the
performances. At the same time, the method must be simple enough. The solution
adopted is using an implicit lock on the winner unit: no two or more input signals
having the same winner can cause any of the colliding modifications to be performed,
as only the first incoming signal, in a random order, will produce the corresponding
effect, while other signals for the same winner will just be discarded.

Collisions apart, the behavior of the new variant is different from the original,
single-signal algorithm. In the experiments described in Sect. 6.3, in fact, the multi-
signal variant always required a smaller number of signals to reach convergence,
regardless of the implementation. This aspect will be discussed in more detail in
Sect. 6.3.2.

6.2.3 Graphics Processing Units

Graphics Processing Units (GPUs) are specialized and optimized for graphic applica-
tions, and are typically mounted on dedicated boards with private onboard memories.
During these last years, GPUs have evolved into general-purpose parallel execution
machines [12]. Until not many years ago, in fact, the only available programming
interfaces (API) for GPUs were very specific, forcing the programmer to translate
the task into the graphic primitives provided. Gradually, many general-purpose API
for parallel computing have emerged, which are suitable for GPUs as well. This set
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Fig. 6.4 Standard GPU mem-
ory hierarchy

of API includes, for instance, RapidMind [13], PeakStream [14] or the program-
ming systems owned by NVIDIA and AMD, respectively CUDA (Compute Unified
Device Architecture) [15] and CTM (Close to Metal) [16], together with proposed
vendor-independent standards like OpenCL [17].

Albeit with some differences, all these API adopt the general model of stream
computing: data elements are organized in streams, which are ordered sets of data;
a set of streams is processed by the same kernel, intended as a set of functions to be
computed in parallel, and produces another set of streams as output. Each kernel is
executed on a set of GPU cores in the form of concurrent threads, each executing
the same program on a different stream of data. Within a kernel, threads are grouped
into blocks and each block is executed in sync. In case of branching of the execution,
the block is partitioned in two: all the threads on the first branch are executed in
parallel and then the same is done for all the threads in the second branch. This
general model of parallel execution is often called SIMT (single-instruction multiple-
thread) or SPMD (single-program multiple-data); compared to the older SIMD, it
allows greater flexibility in the flow of different threads, although at the cost of a
certain degree of serialization, depending on the program. This means that, although
independent thread executions are possible, blocks of coherent threads with limited
branching will make better use of the GPU’s hardware.

In typical GPU architectures, onboard and on-chip memories are organized in
a hierarchy (Fig. 6.4): global memory, i.e. accessible by all threads in execution,
shared memory, i.e. a faster cache memory dedicated to each single thread block and
local memory and/or registers, which are private to each thread.

Another noteworthy feature of modern GPUs is the wide-bandwidth access to
onboard memory, on the order of 10x the memory access bandwidth on typical PC
platforms. To achieve best performances, however, memory accesses by different
threads should be made aligned and coherent, in order to coalesce them into fewer,
parallel accesses addressing larger blocks of memory. Incoherent accesses, on the
other hand, must be divided into a larger number of sequential memory operations.
One of the aspects that make GPU programming still quite complex is that, in most
cases, the hierarchy of levels of memory, in particular the shared memory, has to be
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managed explicitly by the programmer. In return, this explicit management is often
an opportunity for further optimizations and better performances.

6.2.4 GPU-Based Parallel Implementation of the Single-Signal
Algorithm

In the work presented here we did not produce a parallel implementation of the single-
signal algorithm, but we relied on the results reported in the literature, instead.

For the parallelization of (single-signal) growing self-organizing network algo-
rithms, a very common approach is applying the well-known map-reduce pattern,
which can be easily parallelized into a two-step method, to the dominant Find Win-
ners phase. In the first step of the map-reduce approach, i.e. the map operation, the
distance from each unit to the input signal is computed in parallel. In the second
step, i.e. the reduce operation, the set of previously computed distances is iteratively
reduced by comparing subsets in parallel, until the k shortest distances are found.
In passing, Buck et al. describe GPU reductions in more detail in the context of
the Brook programming language [18], while Harris does it in [19] for the CUDA
language. The map-reduce pattern has been studied in general [20] and applied to
the search of k nearest neighbors (k-NN) [21]. More specifically this approach has
been used for the parallelization of the GNG algorithm (see [5] and [4]) and of the
Parameter-Less SOM (see [7]).

The map-reduce approach, however, implies a one-to-one correspondence between
network units and GPU threads in the map phase, which becomes even lower in the
reduce phase. This fact becomes a substantial limitation for the parallelization of
growing self-organizing networks, which usually start with a very small number of
units and grow progressively during the execution. As reported (see [5]), unless the
network contains at least 500–1000 units, the sequential execution on a CPU can be
faster than the parallel one. To cope with this problem, a hybrid technique has been
proposed (see [5] and [4]): switching the execution from CPU to GPU only when the
network is sufficiently large and the latter hardware is expected to perform better.
Nevertheless, even with this hybrid solution, the maximum level of parallelization
that can be attained is bound to the number of units in the network.

6.2.5 GPU-Based Parallel Implementation of the Multi-Signal
Variant

For the GPU-based parallel implementation of the algorithm, the main advantage of
the multi-signal variant is that the level of parallelism is bound only by the number
of signals submitted to the network at each iteration. Furthermore this same level of
parallelism can be maintained across entire kernels, since no reduction takes place.
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Fig. 6.5 The two steps of the Find Winners phase in the parallel implementation. a Parallel load,
b Sequential scan

The only limitation of this variant comes from the collisions that can occur during the
Update phase, as explained in Sect. 6.2.2. Nevertheless, if the parallel implementation
focuses on the dominant Find Winners phase, there is in practice no upper limit for
the level of parallelism, beyond that of the hardware.

In the kernel that has been realized for the Find Winners phase, each thread is
assigned to an input signal. The execution is divided in two steps (see Fig. 6.5): first,
all threads in a block load a contiguous batch of reference vectors in the shared
memory with a coalesced access; second, all threads compute the distances from
the reference vectors to the signal through a sequential scan of the shared memory,
in which all threads read the same reference vector in sync. From the point of view
of GPU-based parallelization, this allows harnessing the faster and smaller shared
memory in order to accelerate the access to the global memory, i.e. where the whole
set of reference vectors is stored.

6.3 Experimental Validation

6.3.1 Methods of Comparison

All the experiments described in this section have been performed with the SOAM
algorithm, in four different implementations (see below), applied to the same tasks
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Fig. 6.6 The four point-clouds used in the test phase

of surface reconstruction from point clouds. In each experiment, the point cloud
was taken from a triangular mesh and sampled with uniform probability distribution
P(ξ).

Four different meshes have been used, each having different topological and
geometrical complexity. More precisely, we consider two measures, one for each
type of complexity: the genus of the surface [22], i.e. the number of holes enclosed
by it, and the local feature size (LFS), defined in each point x of the surface as the
minimal distance to the medial axis [23]. In this perspective, a ‘simple’ mesh has
genus zero or very low and high and almost constant LFS values, while a ‘complex’
mesh has higher genus and LFS values that vary widely across different areas.

The four meshes used in the experiments are well-known benchmarks for surface
reconstruction (Fig. 6.6):

• Stanford Bunny. It has genus 0 and some non-negligible variations in the LFS
values that make it non-trivial.

• Eight (also called double torus). It has genus 2 and relatively constant LFS values
almost everywhere.

• Skeleton Hand. It has genus 5 and widly variable LFS values, that in many areas,
e.g. close to the wrist, become considerably low.

• Heptoroid. It has genus 22, and low and variable LFS values over the surface.

Obviously, there is no a priori guarantee that a parallel algorithm should be
faster than a highly-optimized sequential one. Therefore we chose to implement also
a single-signal variant of the algorithm in which the crucial Find Winners phase is
improved through the use of a hash indexing method, similar to that used in molecular
dynamics [24].

The hash index is constructed by defining a grid of cubes of fixed size inside an
axis-parallel bounding box that contains all the input signals in the input space. The
hash index of both signals and reference vectors, which live in the same space, is
obtained from the 3D coordinates. Whenever an input signals is selected, the search
for the reference vectors of the winner and the second nearest units is first performed
on the same cube where the input signal resides, together with its 26 adjacent cubes.
If this search fails, the exhaustive search is performed instead. Even if this method is
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slightly approximate, in that in a few extreme cases it may produce different results
from the exhaustive search, it yields a substantial speed-up, as will be discussed in
Sect. 6.3.3. In addition, being an hash method, the maintenance of the index, which
is performed in the Update phase, does not affect performances in a significant way.

Four different implementations of the SOAM algorithm have been used for the
experiments:

• Single-signal. A reference implementation of the single-signal SOAM algorithm
in C.

• Indexed. The same single-signal algorithm, but using an hash index for the Find
Winners phase.

• Multi-signal. A reference implementation in C of the multi-signal variant of the
algorithm, as described in Sects. 6.2.2 and 6.2.5 but without any actual paralleliza-
tion, in terms of execution.

• GPU-Based. An implementation in C and NVIDIA C/CUDA of the multi-signal
variant of the algorithm, with actual hardware parallelization.

The tests have been performed on a Dell Precision T3400 workstation, with a
NVidia GeForce GT 440, i.e. an entry-level GPU based on the Fermi architecture.
The operating system was MS Windows Vista Business SP2 and all the programs have
been compiled with MS Visual C++ Express 2010, with the CUDA SDK version 4.0.

All the shared input parameters have been set to the same values for all the tests
for the four different implementations, while implementation-specific parameters,
such as the level of parallelism or the index cube size, have been tuned specifically
for maximum performances. Among the shared input parameters, only the crucial
insertion threshold has been tuned for each mesh, for the reasons described in [1],
while every other parameter value has been kept constant for all the four meshes.

In order to avoid discarding an excessive number of signals in the Update phase,
in all parallel implementations the level of parallelism m at each iteration, i.e. the
number of signals processed in the iteration, is set to the minimum power of two
greater than the current number of units in the network. The maximum level of
parallelism has been set to 8192.

Tables 6.1, 6.2, 6.3 and 6.4, at the end of this section, show the numerical results
obtained from the experiments. As it can be seen, for each input mesh, each different
implementation reaches a final configuration which can be either different or very
different, e.g. for the skeleton hand, in terms of number of units and connections.
Note that multi-signal and GPU-based implementations reach exactly the same final
configuration, since they are meant to replicate the same behavior by design.

As expected, there are substantial differences also for execution times. In the
tables these are measured as total time to convergence and time per signal, and
the detail figures are reported for each of the three phases. Time per signal is a
measure of the raw performances that can be obtained with each implementation,
while time to conververgence is the combined result of the implementation and the
different behavior that each implementation induces, as it will be explained in the
next sections.
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Table 6.1 Execution time and statistics on the Stanford Bunny data-set

Algorithm version Single-signal Indexed Multi-signal GPU-based

Network configuration at convergence
Iterations 620,000 616,000 1,296 1,296
Signals 620,000 616,000 580,656 580,656
Discarded signals 0 0 319,054 319,054
Units 330 332 347 347
Connections 984 990 1,035 1,035
Time to convergence
Total time 4.9530 3.369 3.893 2.059
Sample 0.460 0.048 0.009 0.016
Find winners 2.610 1.233 2.448 0.699
Update 1.883 2.088 1.436 1.344
Time per signal
Time per signal 7.9887 × 10−06 5.4692 × 10−06 6.7045 × 10−06 3.5460 × 10−06

Find winners 4.2097 × 10−06 2.0016 × 10−06 4.2159 × 10−06 1.2038 × 10−06

Table 6.2 Execution time and statistics on the Eight data-set

Algorithm version Single-signal Indexed Multi-signal GPU-based

Network configuration at convergence
Iterations 1,100,000 1,100,000 1,128 1,128
Signals 1,100,000 1,100,000 1,100,110 1,100,110
Discarded signals 0 0 562,277 562,277
Units 656 649 658 658
Connections 1,974 1,953 1,980 1,980
Time to convergence
Total time 12.3540 5.5690 11.6070 3.8690
Sample 0.0150 0.0480 0.0620 0.1410
Find winners 8.8600 2.8220 8.5060 0.7650
Update 3.4790 2.6990 3.0390 2.9630
Time per signal
Time per signal 1.1231 × 10−05 5.0627 × 10−06 1.0551 × 10−05 3.5169 × 10−06

Find winners 8.0545 × 10−06 2.5655 × 10−06 7.7320 × 10−06 6.9539 × 10−07

6.3.2 Behavior of the Multi-Signal Algorithm

The first five lines of Tables 6.1, 6.2, 6.3 and 6.4, highlight an aspect that is worth some
further discussion, in particular for the Single-signal and the Multi-signal implemen-
tations.

Regardless of the hardware parallelizaton, the Multi-signal variant always needs
a substantially lower number of input signals than the Single-signal one to con-
verge. This difference becomes even more evident if the discarded signals are not
counted for, approaching a ratio of one to four as the mesh becomes more complex.
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Table 6.3 Execution time and statistics on the Hand data-set

Algorithm version Single-signal Indexed Multi-signal GPU-based

Network configuration at convergence
Iterations 202,988,000 213,800,000 10.264 10.264
Signals 202,988,000 213,800,000 81.092.912 81.092.912
Discarded signals 0 0 33.432.622 33.432.622
Units 5,669 5,766 8.884 8.884
Connections 17,037 17,328 26.688 26.688
Time to convergence
Total time 18, 548.4937 5, 337.2451 12, 422.3738 872.0250
Sample 9.4050 35.9820 8.6120 8.0480
Find winners 17, 763.1367 4, 127.8511 11, 789.8398 241.1750
Update 775.9520 1, 173.4120 623.9220 622.8020
Time per signal
Time per signal 9.1377 × 10−05 2.4964 × 10−05 1.5319 × 10−04 1.0753 × 10−05

Find winners 8.7508 × 10−05 1.9307 × 10−05 1.4539 × 10−04 2.9741 × 10−06

Table 6.4 Execution time and statistics on the Heptoroid data-set

Algorithm version Single-signal Indexed Multi-signal GPU-based

Network configuration at convergence
Iterations 20,714,000 23,684,000 1,244 1,244
Signals 20,714,000 23,684,000 7,683,554 7,683,554
Discarded signals 0 0 2,262,969 2,262,969
Units 14,183 13,937 15,638 15,638
Connections 42,675 41,937 47,040 47,040
Time to convergence
Total time 15, 449.2950 950.0250 2, 172.8009 119.6530
Sample 6.9570 3.4550 0.8010 0.5630
Find winners 15, 294.3330 780.5370 2, 089.6169 34.2640
Update 148.0050 166.0330 82.3830 84.8260
Time per signal
Time per signal 7.4584 × 10−04 4.0113 × 10−05 2.8279 × 10−04 1.5573 × 10−05

Find winners 7.3836 × 10−04 3.2956 × 10−05 2.7196 × 10−04 4.4594 × 10−06

The decrease in the number of signals to convergence is attained despite the growth
in the number of units and connections reached in the final configuration.

Figure 6.7 compares the times to convergence of the Single-signal and Multi-
signal implementations. The performances of Multi-signal implementation are
always better than its Single-signal counterpart, a difference that becomes more sub-
stantial as the complexity of the mesh increases. Overall, this means that the extra
load due to the increase in the number of both units and connections is outbalanced
by the decrease in the number of signals needed to reach convergence.
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Fig. 6.7 Time to convergence
of the Single-signal and Multi-
signal implementations

In a possible explanation, the multi-signal variant has a better inherently distrib-
uted behavior than the original variant. In fact, in each iteration of the multi-signal
variant, a randomly scattered set of units is updated ‘simultaneously’, whereas in the
single-signal variant only the winner unit and its direct neighbors are updated. Appar-
ently, the more distributed update leads to a more effective use of the input signals,
yielding faster convergence. This aspect, however, requires further investigation.

6.3.3 GPU-Based Implementation Performances

Figure 6.8 shows a summary of the total times to convergence for the Single-signal,
Indexed and GPU-based implementations respectively, for the two most complex
meshes, with detail figure per each phase. Remarkably, in the GPU-based imple-
mentation, the Find Winners phase ceases to be dominant, and the Update phase
becomes the most time-consuming. This means that in this implementation any fur-
ther optimization of the Find Winners phase is less relevant unless the execution of
the Update phase is sped up in turn.

More in detail, Fig. 6.9a shows the average times per signal spent in the Find
Winners phase for each of the three implementations. Clearly, these times grow as the
number of the units in the network becomes larger. Figure 6.9b compares the speed-up
factors in average time per signal for the Indexed and GPU-based implementations
with respect to the Single-signal one. As expected, these factors also grow with the
number of units in the network, since the hash index in the Indexed implementation
becomes more effective, while an higher level of parallelism can be achieved in
the GPU-based implementation. Overall, the speed-up factor for the GPU-based
implementation reaches 165x on the Heptoroid mesh.

Figure 6.10a shows the total times to convergence. These results show how the
performances of the SOAM algorithm depend on the variation in the LFS values
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Fig. 6.8 Single-phase time to convergence for the two more complex meshes in the test set

Fig. 6.9 Per-signal performances. a Times per signal in the Find Winner phase for the three imple-
mentations. b Speed-up factors for the Find Winners phase time per signal compared to the Single-
signal implementation

(see Sect. 6.3.1): in fact, the skeleton hand always requires the longest time to con-
vergence, regardless of the implementation. Figure 6.10b shows the speed-up factors
for the time to convergence, for the Indexed and GPU-based implementations, again
with respect to the Single-signal one. These factors grow with the number of units in
the network, and are the combined results of the implementation and of the behavior
induced.

For all input meshes, the total times to convergence for the GPU-based implemen-
tation are much lower than the ones for the Single-signal implementation. Speed-ups
vary from 2.5x (bunny) to 129x (heptoroid), as the complexity of the mesh increases
and the size of the reconstructed network grows. In particular, the results obtained
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Fig. 6.10 Global performances. a Times to convergence for the three implementations. b Speed-up
factors for the times to convergence compared to the Single-signal implementation

with the Stanford Bunny, given in Table 6.1, show non negligible speed-up factors in
both the total time to convergence (2.5x) and the time per signal (3.5x), despite that
the network contains only 330–347 units at most.

This result is particularly relevant if compared to other GPU-based parallel imple-
mentations of growing self-organizing networks (see for example [5]), for which it
is reported that the GPU execution produces noticeable speed-ups only when the
networks contain no less than 500–1000 units.

The Indexed implementation of the algorithm also obtains noticeable speed-ups
on all test cases. Nonetheless, as shown in Fig. 6.8, the Find Winners phase is still
dominant, although with Stanford bunny and Eight the Update times become com-
parable.

6.4 Conclusions and Future Developments

In this chapter we examined the parallelization of growing self-organizing networks
by proposing a multi-signal variant of the original algorithm adopted, in order to
increase its parallel scalability.

In particular, the experiments show that this multi-signal variant adapts naturally
to the GPU architecture in that, besides the advantages deriving from the careful
management of hierarchical memory through perfectly coalesced memory accesses,
it leads to a better usage of the high number of cores by allowing very high numbers
of concurrent threads.

A further interesting, and somehow unexpected, result of the experiments is that,
hardware parallelization apart, the overall behavior of the multi-signal variant is
significantly different from the original, single-signal one. The multi-signal variant
of the algorithm, in fact, seems to better deal with complex meshes, by requiring a
smaller number of signals in order to reach network convergence. This aspect needs
to be further investigated, possibly with more specific and extensive experiments.
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The parallelization described in this chapter is limited to the dominant Find Win-
ners phase and, according to the experimental results, can succesfully make it less
time-consuming than the Update phase. This means that future developments of the
strategy proposed should aim to the parallelization of the Update phase as well,
in order to further improve on performances. This requires some care however, as
the collisions among threads trying to update the data structures involved, must be
managed with care.
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Chapter 7
Office Delivery Robot Controlled by Modular
Behavior Selection Networks with Planning
Capability

Young-Seol Lee and Sung-Bae Cho

Abstract Recently, assistance service using mobile robots becomes one of
important issues. Accordingly, studies on controlling the mobile robots are spread-
ing all over the world. In this line of research, we propose a hybrid architecture
based on hierarchical planning of modular behavior selection networks for generat-
ing autonomous behaviors of the office delivery robot. Behavior selection network
is suitable for goal-oriented problems, but it is too difficult to design a monolithic
behavior network to deal with complex robot control. We decompose it into several
smaller behavior modules and construct sequences of the modules considering the
sub-goals, the priority in each task and the user feedback. The feasibility of the pro-
posed method is verified on both the Webot simulator and Khepera II robot in an
office environment with delivery tasks. Experimental results confirm that a robot can
achieve goals and generate module sequences successfully even in unpredictable and
changeable situations, and the proposed planning method reduces the elapsed time
during tasks by 17.5 %.

Keywords Office delivery robot · Hybrid robot control · Behavior networks

7.1 Introduction

Recent robot studies focus service robots [1] because robot market for service robots
will grow exponentially in the near future. Since service robots are investigated
and made in order to provide various services, they should be controlled to satisfy
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diverse goals [2]. For this reason, much research for controlling service robot appears.
Especially, the mobile robots in the office environment are very helpful for users to
conduct routine tasks. Several control structures for the office delivery robots have
been proposed with various approaches [3–6].

Despite much effort to control service robot, most of conventional approaches
focused on generating behaviors of mobile robots in well-known environments. The
conventional planning-based methods can generate the behavior sequences optimized
in predefined environments, but have the difficulty of low flexibility in complex envi-
ronments. On the while, reactive systems can generate primitive behaviors quickly
based on environmental stimuli in complex domains [7]. But it is also difficult to cre-
ate goal-oriented behaviors to perform a user’s task robustly. In order to overcome
these problems, hybrid behavior generation architectures including the character-
istics of the deliberative and reactive systems are proposed. Chung and Williams
divided the original problem into several sub-problems to perform plans by reducing
the complexity of the problem [4] and Ramachandran and Gupta proposed POMDP-
based reinforcement learning for delivery robot [6]. Some reactive methods look like
similar to the proposed method that can deal with environmental changes without
environmental information. But hey have the limitation to achieve only local goals
and react to current exceptions without any consideration of global goals.

To work out this problem, some hybrid architectures have been proposed. Milford
and Wyeth used different obstacles and experience maps for local and global naviga-
tions, respectively [5]. The method used low-level controls for reactive actions that
were managed by high-level controls. In this chapter, we present hybrid architecture
so that service robots in office environment can provide delivery services to users
and use modular design approach based on several behavior networks and planning
method, which are regarded as the reactive and deliberative levels, respectively. For
the service robot, the behavior-based method is more appropriate because it is more
important to achieve goals and maintain autonomy. In this reason, the proposed
architecture exploits the behavior networks for autonomous behaviors of the office
delivery robot, which have been known as useful in goal-oriented problems [8–11].

This chapter is an updated and extended version of [12] by including additional
experiments for changing environment. The rest of this chapter is organized as fol-
lows: Sect. 7.2 describes the proposed hybrid architecture based on modular behavior
networks and module-sequence planning. Section 7.3 evaluates the proposed archi-
tecture in terms of qualitative and quantitative analysis, and Sect. 7.4 concludes this
chapter and discusses future works.

7.2 Hybrid Architecture

The proposed architecture for the autonomous office delivery robot to generate behav-
iors consists of two levels. Lower level is behavior network-based modules to handle
temporary environmental changes, and upper level is a deliberative system to control
the goals and plans flexibly according to situations. Figure 7.1 shows the proposed
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Fig. 7.1 Architecture of the proposed hybrid behavior network system

architecture of the hybrid behavior network system. The behavior network-based
control includes the specific behavior networks and the common behavior networks,
and the deliberative plan control.

7.2.1 Behavior Network Modules

Unlike the conventional reactive systems, the behavior network can generate behav-
iors instantly as well as goals. The behavior network enables us solve some simple
planning problems. However, as the problem gets more complex, it is difficult to
select behaviors accurately with only one monolithic network [13, 14]. In order to
overcome this shortcoming, the behavior network is divided into several modules.

The objectives of the modularized behavior networks are as follows.

• The modular behavior network is easier to be designed and reused than one mono-
lithic network [8].

• Confusions which can be occurred when selecting behaviors in one large flat
network can be reduced by giving only one goal to each smaller network module
[14].

Each module in the proposed architecture has a behavior network oriented to single
corresponding goal. The behavior network is used as the method for selecting the
most natural and suitable behaviors for the situations. The behavior networks are
the model that consists of relationships between behaviors, a goal, and external
environment, and selects the most suitable behavior for the current situation.

In the behavior network, behaviors, external environments and internal goals are
connected with each other through links. Each behavior contains preconditions, an
add list, a delete list and an activation. The preconditions are a set of conditions that
must be true in order to execute behaviors. The add list is a set of conditions that
are highly likely to be true when behaviors are executed. The delete list is a set of
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conditions that are likely to be false when the behavioral entities are executed. The
activation represents to what extent the behavioral entity is activated.

The activation energies of behaviors firstly induced from external environments
and the goal. The activation of the ith behavior Ai can be presented as follows:

Ai = Ai +
∑

n

we Ei,n +
∑

m

wgGi,m(Ei,n, Gi,m = 0, 1) (7.1)

where we and wg are the weights to induce activation energies from environments
and goal respectively. Ei,n and Gi,m represent whether the nth environment element
and the mth goal are connected with the ith behavior or not, respectively.

After the first induction, behaviors exchange their activation energies with other
behaviors considering the type of their links. The behavior exchange can be presented
as follows:

Ai = Ai +
∑

n

(wp Pi, j + ws Si, j − wcCi, j ) (i ≡= j, Pi, j , Si, j , Ci, j = 0, 1) (7.2)

where wp, ws and wc are the weights to exchange activation energies through prede-
cessor, successor and conflictor links, respectively, and Pi, j , Si, j and Ci, j represent
whether the ith and jth behaviors are connected by each type of links, respectively.

A behavior network module consists of one goal, external environments, and
behavior nodes. Each module is mapped to a sub-goal from the planning system. If
the planning system chooses a single sub-goal to achieve, the corresponding behav-
ior network module is activated and generates behavior sequences. In this chapter,
we designed two behavior network modules—go to a room and find objects—and
two common modules—navigate and avoid obstacles. Figure 7.2 shows the behavior
network modules designed.

7.2.2 Planning of Goal Sequences

In the deliberative control, the system does not plan sequences of all primitive behav-
iors or trajectories, but plans the sequences of sub-goals to control behavior network
modules. Since we designed several small independent behavior modules with sub-
goals, they should be controlled explicitly to achieve the global goal. To plan goal
sequences, the deliberative module and the behavior network-based modules are con-
nected. Since the behavior networks do not have any information about the map of
the environment, it is difficult to perform plans correctly in complex environments.
To deal with this, the deliberative module checks accomplishments of sub-goals and
controls plans when situations are changed, and the plan in each behavior network
module controls only partial behavior sequences to achieve the sub-goal of the cor-
responding module.
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Fig. 7.2 The behavior networks designed

The deliberative control module makes plan by deciding priorities of goal
sequences to achieve the global goal and adjusting priorities when exceptions or
feedbacks are occurred. The module uses the basic behavior library that includes
basic sequences of behaviors required to perform when tasks are given. The library
is defined before the usage, and can be modified by the feedbacks of the user. When
the user gives tasks, the sequences are planned by using the library and inserted into
the queue. At the ‘Check event’ stage, the robot checks changing of situations, and
adjusts the sequences.

To plan and adjust the sequences, the priorities of tasks are used. In this chapter,
the priority is defined as the deadline of the delivery required by the user. For this
process, we define several parameters as follows:

• C = {ci }: command set
• D = {{di } : {di } ∈ C}: decomposed command set
• Q = {qi : qi = dl , . . ., dk, i < maxqueue}: command queue
• X = {Wait, Critical, Minor}: user feedback set
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Firstly, priorities are determined according to the requested deadline and the order
of tasks as shown below:

Pi
Fix = (tMax − ti )

tMax
× 10 + (OMax − Oi ) (7.3)

where ti and Oi indicate the remaining time and the order of the ith task, respectively.
Max means the possible maximum value of the corresponding variable.

Secondly, priorities are adjusted by additionally considering the position of the
robot as follows:

PDynamic(qi ) =
⎧
⎨
⎢

PFix (qi ), if From(i) = S or ti < θ

PFix (q j ), if From(i) ≡= S and → j · ∞ ·From( j) = S
f (S), if S ∈ X

(7.4)

where S is the current state of the robot, From(i) indicates the starting point of the
ith task, and f(S) is the priority decided by the feedback.

The sequence queue contains feedbacks from the user. Each of them consists of
an index of the user, a type of command, a deadline, a point of departure, and a desti-
nation. When the feedback is given, the robot seeks sequences for the corresponding
command and puts the sequences into the queue. If there is no relevant sequence in
the library, the robot requests feedbacks to the user.

The priorities of behavior modules in the sequence are computed with the order
of the task and the deadline by using Eqs. (7.3) and (7.4). Each module is sorted by
the priority in the sequence queue. For this job, the queue has information. The front
four are input by the user, and next five are used to manage the plan flexibly.

Each task has the segmented sequence with subtasks. For example, a single deliv-
ery task is split into the subtask to bring the object from the point of departure and
another subtask to move the object to the destination. Each task has a check point
that indicates which subtask is performed lastly. The check point enables to adjust
the plan flexibly according to the change of situations. The subtask has the sequence
of several behavior modules.

Task adjustments are preceded according to the position of the robot as follows:

Seq(qi ) =

⎧⎪⎪⎨
⎪⎪⎢

qk, if →Posk · ∞ ·Posk = S and ti > θ

q j ≥ dl , if →Pos j · ∞ ·Pos j = S
and (q j ≥ dl = Take or q j ≥ dl = Give and →obj)
qi, otherwise

(7.5)

where Seq(qi ) indicates the target command to be placed instead of qi , Posi is a set
of positions that qi contains, and qi ≥ dl is the lth behavior in qi . For example, the
robot may pass the other room not required for the task during the movement from
the starting point to the destination. In this case, it searches the task which the robot
should fulfill at its current location. If the deadline of the task in progress is greater
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Fig. 7.3 a Khepera II and b Webot simulator

than the threshold, it changes the plan to execute the task found with high priority.
Otherwise, it ignores the task found and continues its previous job.

7.3 Experiments

In order to show the usefulness of the proposed architecture, we performed experi-
ments for the office delivery tasks of the mobile robot.

7.3.1 Experimental Setup

The hybrid behavior generation system is applied to the mobile robot, Khepera II,
which has a wireless camera sensor, eight infra-red sensors, eight light sensors, one
gripper and two motors as shown in Fig. 7.3a. The experiments were performed on
both the Webot simulation environment in Fig. 7.3b and a real-world environment.
Figure 7.4a shows the real world environment setting and Fig. 7.4b illustrates the
constructed real world environment.

For the office delivery tasks, e designed the office environment which includes four
rooms and one aisle. The colors of each pair of the door and the room were colored
identically; therefore, the robot can recognize each room by referring the color of
the corresponding door. If some doors had been closed, we changed colors of them
as blacks. Since the robot does not have any information about the environment, it
should navigate with only recognized colors of rooms.
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Room 2 Room 1

Room 3Room 4

(a) (b)

Fig. 7.4 The experimental environment with four rooms and a corridor

Fig. 7.5 Trajectories of the robot

7.3.2 Analysis of Experimental Result

In this section, we analyzed planned goal sequences from various tasks. We obtained
the rates of success and failure after performing all tasks, and analyzed changing of
the sequences according to errors and feedbacks from the user.

The task of delivering the object from the specific room A to another room B was
given for the experiments. First of all, we obtained the trajectories of the robot during
the task. Figure 7.5a and b are the trajectories for the delivery task from the room 3
to the room 1 and the task from the room 4 to the room 1, respectively.

If the robot had been located in the room or at the corridor, it started the behavior
module for searching the destination and used camera for sensing since it did not
have map information of the environment. When the robot reached the destination
room, it followed the light to find the object.
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Table 7.1 Given seven delivery tasks

Task 1 2 3 4 5 6 7
Deadline 1 1 2 3 1 2 1
Departure (Room #) 1 3 2 3 1 3 4
Destination (Room #) 2 1 3 1 4 2 1

(a) (b)

Room 2 Room 1

Room 3Room 4

Room 2 Room 1

Room 3Room 4

Fig. 7.6 a Original location of door in room 4 b Changed door location of room 4

Additionally, in order to verify the usefulness of the sequence adjusting process,
we designed seven delivery tasks shown in Table 7.1. Experiments were conducted
both with and without sequence adjustments using the tasks. Sequences of chosen
modules and robot’s location were obtained.With sequence adjustment processes, the
robot modified its behavior sequence according to its location. If the robot achieved
its goal in the certain room, it sought the task which can be started at the room.
As the result, it reduced steps wasted at the corridor. The robot finished all the tasks
within 3,956 steps without sequence adjustments, but it completed within 3,264 steps,
17.4 % reduced, with adjustment processes.

Additionally, we changed the location of the door of room to verify the adaptability
of our proposed method to dynamically changing environment as shown in Fig. 7.6.
In this example, delivery tasks are performed from room 2 to room 4. Figure 7.7a
and b show the examples. In Fig. 7.7a, the door of room 4 is located in (−0.2, 0.0).
The location of the door of room 4 in Fig. 7.7b is changed to (−0.3, 0.0). Although
the location of door is changed, the delivery task is successfully performed by our
proposed method.

For quantitative analysis, we obtained the elapsed time during tasks. We initially
located the robot randomly and made it to repeat random delivery tasks 30 times.
Table 7.2 shows minimum, average, and maximum steps after tasks. The task from
the room 4 to the room 2 took the smallest steps. The maximum steps were taken in
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(a) (b)

Fig. 7.7 Trajectories from room 2 to room 4 a door (−0.2, 0.0) b door (−0.3, 0.0)

Table 7.2 Minimum,
average, and maximum steps
after 30 tasks

Minimum Average Maximum

804 1,930 5,370

the case that the robot was initially located at the corridor because it took long time
to find the target room according to the state of the sensors.

7.4 Concluding Remarks

We presented a hybrid behavior system for an autonomous mobile robot for office
delivery tasks. The system is oriented to the behavior network modules which is
useful to perform tasks in real-world environments. Moreover, a method for planning
is attached to supplement them. The planning system generates and manages overall
sequences of behavior modules, and the behavior modules achieve several sub-goals
by generating autonomous behaviors quickly.

Experiments were conducted to verify the usefulness of the proposed architecture.
We implemented a simple office environment in both the simulator and the real-world
with the Khepera II mobile robot, and designed several delivery tasks. As the result,
it is confirmed that the robot can achieve the goal even though there are temporary
exceptions, and it changes its plan when adjustments are required to complete tasks
more efficiently.

For the future works, the method for learning structures of networks and control-
ling them automatically should be investigated. Moreover, the proposed architecture
should be tested on more realistic problems.
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Chapter 8
Worst-Case Performance Analysis in �1-norm
for an Automated Heavy Vehicle Platoon

Gábor Rödönyi, Péter Gáspár, József Bokor and László Palkovics

Abstract Based on model set identification and unfalsification, robust performance
measured in peak-to-peak gain is analyzed for heterogeneous platoons, inter-vehicle
communication delays and actuator uncertainties. The goal is to demonstrate that
safe platooning with acceptable performance can be achieved by utilizing the ser-
vices already available on every commercial heavy truck with automated gearbox.
Experimental verification of a three vehicle platoon is also presented.

Keywords Vehicle platoons · Peak-to-peak gain · Performance unfalsification

8.1 Introduction

Safe control of vehicle platoons requires strict guaranteed bounds on inter-vehicle
spacing errors. In order to avoid collision the sampled errors are best measured
by their Γ≡ norm, so the bounds represent the worst-case peaks of the spacing
errors. Consistent identification tools are the set membership methods in the Γ1
setting, see e.g. [2, 5, 6]. The identified model sets are employed for on-line model
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validation and a priori analysis of the control performance measured by the worst-
case spacing errors.

Controllers for autonomous vehicle platoons usually consist of two levels of feed-
back controllers. At the lower level a local, vehicle specific controller is responsible
for performing acceleration demands. The higher level control law is common for all
vehicles, it is designed for satisfying string stability requirements of the entire pla-
toon. Very short safety gaps can be guaranteed under certain constraints on lead vehi-
cle maneuvers, when detailed engine, gearbox and brake system models are available,
see, e.g., in references [1, 4, 9]. There is, however, some difficulty in the widespread
applicability of these control methods. The required engine/gearbox/brake system
models are usually not available and not reliable for all commercial heavy trucks. In
addition these controllers try to directly excite the brake cylinder pressures and the
throttle valve of the engine, which could also conflict with the existing control units,
such as Electronic Brake System (EBS) and Engine Control Unit (ECU).

In this chapter the goal is to explore the performance of an automated vehicle
string where, in contrast to the former solutions, only the standardized and general
services of the EBS and ECU are used. This work is an extension of the research that
was presented in the conference paper [11], where the focus was placed on model
set identification problems and the analysis of the spacing error bounds subject to
heterogeneity in vehicle dynamics. A method for computing unfalsified performance
in order to analyze the effect of actuator uncertainties is also presented. An illustration
is shown for the brake system.

In Sect. 8.2 the mathematical model of the platoon is presented. The vehicle model
set identification method is provided in Sect. 8.3. The performance of a heteroge-
neous platoon and the effect of actuator uncertainties are analyzed in Sect. 8.4. The
experimental results are shown in Sect. 8.5.

Basic notations. The peak norm of a sequence u(k) is denoted by ∈u∈≡ = supk |u(k)|,
Γ≡ denotes the space of sequences of finite peak norm. The peak-to-peak norm of a
system H is defined by ∈H∈1 = supu →=0

∈Hu∈≡
∈u∈≡ .

8.2 State-Space Model of Vehicle Platoons

In this section a discrete-time, linear time-varying state-space model for the con-
trolled platoon is briefly summarized.

The longitudinal dynamics of a single vehicle is approximated by the following
first order nominal model with sampling time Ts

âi(k + 1) = θ∞
i1âi(k) + θ∞

i2ui(k), i = 0, 1, ..., n (8.1)

ai(k) = âi(k) + νi(k) (8.2)

where ai and ui denote the acceleration and acceleration demand of vehicle i, âi

denotes the acceleration output of the nominal model, θ∞
i1 and θ∞

i2 denote constant
parameters, νi denotes additive disturbance representing actuator uncertainties. The
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spacing error of the ith follower vehicle and relative speed of vehicle i and i − 1 are
defined by

ei(k) = xi(k) + Li − xi−1(k) (8.3)

δi(k) = vi(k) − vi−1(k) (8.4)

where Li denotes the desired intervehicular space. Without loss in generality Li can be
assumed to be zero in the analysis. The position and forward speed of the ith vehicle
are denoted by xi and vi, respectively. By using Euler approximation of integrators,

ei(k + 1) = ei(k) + Tsδi(k) (8.5)

δi(k + 1) = δi(k) + Ts(ai(k) − ai−1(k)) (8.6)

the spacing error dynamics can be written for each follower vehicle as follows


⎧

ei(k + 1)

δi(k + 1)

âi(k + 1)

⎨
⎢ =


⎧

1 Ts 0
0 1 Ts

0 0 θ∞
i1

⎨
⎢


⎧

ei(k)

δi(k)

ai(k)

⎨
⎢ +


⎧

0 0 0 0
−Ts 0 −Ts Ts

0 θ∞
i2 0 0

⎨
⎢


⎪⎪⎧

ai−1(k)

ui(k)

νi−1(k)

νi(k)

⎨
⎡⎡⎢ (8.7)

The open-loop model of the entire platoon

x(k + 1) = Ax(k) + Bu(k) + Bνν(k) + Edr(k)

is constructed by introducing the state vector xT = [â0 e1 δ1 â1 · · · en δn ân], control
input vector uT = [u1 · · · un], disturbance vector νT = [ν0 · · · νn] and reference
signal r = u0.

The platoon controller is a modified version of the constant spacing strategy
presented in [14, Sect. 3.3.4]. The modification resides in that, instead of measured
acceleration, control input is transmitted through the network. Consequently, the gear
change has lower impact in the control signal than in the acceleration, so each vehicle
can change gear without deceiving the followers; the vehicles react quicker to maneu-
ver changes; and no need for filtering the rather noisy acceleration measurements.
The control strategy in a general form is defined by the following equations

u(k) := uL(k) + ûN (k) (8.8)

uL(k) = KLx(k) (8.9)

uN (k) = KN x(k) + GN r(k) + Su(k) + HNν(k) (8.10)

where uL contains the locally available radar information. Gain matrix KL can be
constructed based on the following definition
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uL,1(k) = −k1δ1(k) − k2e1(k) (8.11)

uL,i(k) = −k1βδi(k) − k2βei(k), i > 1 (8.12)

Control signal uN is constructed from the information received from the communi-
cation network

uN,1(k) = u0(k) (8.13)

uN, i(k) = 1

1 + q3
ui−1(k) + q3

1 + q3
u0(k) − k1α

i⎣
j = 0

δj(k) − k2α

i⎣
j = 0

ej(k), i > 1 (8.14)

where k1, k2, k1α, k2α, k1β and k2β are design parameters, see [10] for a possible
choice. Matrices KN , GN , HN and S can be constructed based on (8.11)–(8.14).

The communication network has a sampling time of T = NTs and the packet is
transmitted after h < T constant delay. If uN (k) denotes the variable to be transmitted
at the network input, then

ûN (k) =
⎤

uN (k − h) if k−h
N is an integer

ûN (k − 1) otherwise
(8.15)

denotes the network output at the receiver.
The closed-loop system with the delayed communication is derived in [10]. The

local part uL of the controllers run with the faster sampling rate Ts. By closing the
loop with uL , re-sampling with NTs, then closing the loop with ûN and assuming
r(k) = r(k + 1) = · · · = r(k + N − 1) and ν(k) = ν(k + 1) = · · · = ν(k + N − 1)

we arrive at the following closed-loop model with augmented state vector

z(k + N) = Azz(k) + Bν, zν(k) + Ezr(k), z(k) =
⎦

x(k)

uN (k − N)

⎞
(8.16)

where

Az =
⎦

AN
L + B0(KN + SKL) B1 + B0S

KN + SKL S

⎞
, Ez =

⎦
EN + B0GN

GN

⎞
,

Bν,z =
⎦

BνN + B0HN

HN

⎞

B1 :=
h−1⎣
j = 0

AN−1−j
L B, B0 :=

N−1⎣
j = h

AN−1−j
L B, AL := A + BKL,

EN =
N−1⎣
j = 0

AN−1−j
L E, BνN =

N−1⎣
j = 0

AN−1−j
L Bν,

Notice the dependence of B1 and B0 on communication delay h. The spacing errors
can be observed through matrixes Ci defined by ei(k) = Ciz(k), i = 1, 2, ...n.
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8.3 Identification of Nominal Vehicle Models

Nominal vehicle models defined by (8.1) and (8.2) are identified in the worst-case set-
ting. Two circumstances motivate the application of this identification approach. Both
the brake system and the drive-line are functioning as unknown nonlinear, hybrid
systems with many thousands of program rows organizing finite state machines. An
adequate description of noise statistics is not available and only reduced order mod-
els can be considered. It seems to be reasonable to assume only strict bounds on
disturbances and unmodelled dynamics. Strict bounds are also useful in the worst-
case analysis of spacing error bounds. On the other hand, available performance
analysis tools for model sets with unmodelled dynamics may result in conservative
performance bounds. Uncertainty modelling is, therefore, confined to disturbance
modelling only. The corresponding peak-to-peak system norm computation for LTI
systems is sufficiently accurate.

In order to obtain a preliminary view of the amount of uncertainty in the vehicle
dynamics and actuators including EBS and ECU softwares, uncertainty descriptions
of several different structures are identified in the section. The first one is an ARX-
type model structure with time-varying parameters. The basic concept originating in
the papers [7, 8] is briefly presented in the following subsection. Then, the results
are extended for obtaining minimal worst-case prediction error in Sect. 8.3.2. In the
second method an output error (OE) model structure is identified in Sect. 8.3.5. Both
methods are applied to the experimental data of a heavy truck. The OE model structure
is also applicable for the performance analysis method presented in Sect. 8.4.2.

8.3.1 Identification of the Smallest Unfalsified Parameter
Sets for SISO Transfer Functions

Consider the following discrete-time linear single input single output model structure

G(q) =
⎠m

i = 1 biq
−i

1 + ⎠m
i=1 aiq−i

, θ := [a1, ..., am, b1, ..., bm]T ≥ Pθ(θ
∞, ε) (8.17)

where q is the forward shift operator. Time-varying parameter vector θ is defined in
the cube Pθ(θ

∞, εθ) := {θ : ∈W(θ∞ − θ)∈≡ ∀ ε}, where the a priori given diagonal
matrix W = diag{ 1

εθ, 1
, ..., 1

εθ,2m
} defines the shape of the cube with edges of length

2εθ, i. Given input output data set {u(k), y(k)}l
k = 1, the problem is to find the central

parameter θ∞ and the minimal size ε of the cube such that for every k = m, ..., l there
exists a parameter θ ≥ Pθ(θ

∞, ε) not invalidated by the measurements, i.e.

Pθ(θ
∞, ε) ∗ Dk →= ∅ ∀k = m, ..., l (8.18)

where Dk := {θ : y(k) = ϕT (k)θ(k)} and ϕT (k) = [−y(k − 1), ...,−y(k − m),
u(k −1), ..., u(k −m)]. This problem can be solved by minimizing a convex function
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as follows

ε = min
θ∞ max

m∀k∀l

|y(k) − ϕT (k)θ∞|
∈W−1ϕ(k)∈1

(8.19)

In the following subsection the model structure is augmented by an additive dis-
turbance term, and the worst case prediction error is minimized while an optimal
shape of the parameter cube and a bound for the disturbance are determined.

8.3.2 Unfalsified ARX Model Set of Minimal Prediction
Error in �∞

With the notation of the previous section we can define the following ARX type
model structure, denoted by M

M = { y(k) = ϕT (k)θ(k) + ν(k), θ(k) ≥ Pθ(θ
∞, εθ), ν(k) ≥ Pν(εa), k = 1, ..., l } (8.20)

where εθ = [εθ1, ..., εθ2m]T , W = diag
(

1
εθ,1

, ..., 1
εθ, 2m

)
and

Pθ(θ
∞, εθ) = {θ : ∈W(θ∞ − θ)∈≡ ∀ 1}, (8.21)

Pν(εa) = {ν : |ν| ∀ εa} (8.22)

The shape and size of the uncertainty set characterized by εθ and εa are unknown
parameters. The only information given a priori is the data set {u(k), y(k)}l

k = 1.
In order to characterize consistency of the model set with the data, define hyper-

plane Dk in the n + 1 dimensional extended parameter space of p := [θT ν]T

Dk := {p : y(k) = [ϕT (k) ν(k)]p}

Let P(θ∞, εθ, εa) := {p = [θT ν]T : θ ≥ Pθ(θ
∞, εθ), ν ≥ Pν(εa)} denote the

parameter set defining model set M in the extended parameter space.

Definition 1 (Consistency) Parameter set P(θ∞, εθ, εa) can reproduce the data if

P(θ∞, εθ, εa) ∗ Dk →= ∅ ∀k = m, ..., l (8.23)

For given data ϕ(k) and model set parameters θ∞, εθ and εa the output y(k) that
the model set can generate lies between the bounds, ȳ(k) and y(k)

ȳ(k) := max
θ≥Pθ(θ∞,εθ)

ϕT (k)θ + εa ∀ y(k) ∀ y(k) := min
θ≥Pθ(θ∞,εθ)

ϕT (k)θ − εa (8.24)

With these bounds, the parameter set identification problem can be formulated as
follows.
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Problem 1 Assume that a data set {u(k), y(k)}l
k = 1 is given. Find a model set

characterized by θ∞, εθ and εa such that (8.23) is satisfied and that minimizes
γ := 1

2∈ȳ(k) − y(k)∈≡.

8.3.3 Solution via Linear Programming

It will be shown that Problem 1 leads to the solution of a linear programming (LP)
problem. In contrast to the solution of [8], where for each Dk a minimum neces-
sary size parameter ε = ε(Dk, θ

∞) is determined for a given θ∞, we characterize
consistency with the help of the output bounds

Lemma 1 Consistency condition (8.23) is satisfied if and only if there exist θ∞, εθ

and εa such that

y(k) ∀ ϕT (k)θ∞ + |ϕT (k)|εθ + εa, k = m, ..., l (8.25)

y(k) ≥ ϕT (k)θ∞ − |ϕT (k)|εθ − εa, k = m, ..., l (8.26)

where |.| element-wise takes the absolute value of the argument.

Proof We only need to show that maxθ≥Pθ(θ∞, εθ) ϕT (k)θ = ϕT (k)θ∞ + |ϕT (k)|εθ

and minθ≥Pθ(θ∞,εθ) ϕT (k)θ = ϕT (k)θ∞ − |ϕT (k)|εθ, then the statement follows from
the definitions. The linear function ϕT (k)θ over a convex polytope takes up its
extreme values at the vertices of the polytope. Let the vertex set of Pθ(θ

∞, εθ) be
denoted by V ,

V =




θ : θ = θ∞ +

⎪⎧

±εθ,1
...

±εθ, 2m

⎨
⎡⎢

⎫⎬
⎭

where ± means all combinations. From this the claims follow.

The following theorem summarizes our results.

Theorem 1 The model set M which is consistent with the data set {u(k), y(k)}l
k = 1

and minimizes γ = 1
2∈ȳ(k) − y(k)∈≡ is the solution of the following LP problem.

min
θ∞, εθ, εa

γ subject to (25), (26) and γ ≥ |ϕT (k)|εθ + εa, k = m, ..., l (8.27)

The problem involves 4m + 2 variables and 3(l − m + 1) inequality constraints,
and can be efficiently solved by rutin CLP in the MPT toolbox for Matlab, [3].
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Fig. 8.1 One step ahead prediction with the central model with parameter θ∞ in a braking
experiment. Bounds for the prediction, ȳ and y, are also plotted (thin dotted black lines)

8.3.4 Identification of ARX Vehicle Models

Several braking experiments have been carried out with a Volvo FH, 24 ton three-axle
truck. ARX models of order m = 1 are identified in the following.

The LP method of Theorem 1 is applied to the model structure

a(k) = a(k − 1)θ1(k) + u(k − 1)θ2(k) + ν(k) (8.28)

where θ(k) := [θ1(k) θ2(k)]T ≥ Pθ(θ
∞, εθ), ∈ν(k) − ν∞∈≡ ∀ εa, and a(k) denotes

the longitudinal acceleration and u(k) denotes the acceleration demand. An offset
error of the measurements can be taken into consideration with parameter ν∞. The
unknown parameters of the model are the central parameters θ∞ and ν∞, and the
bounds of the parameter and noise variation, εθ and εa, respectively.

The one-step ahead prediction of the optimal model is plotted in Fig. 8.1. The
central parameters θ∞

1 and θ∞
2 correspond to a time constant of 1.13 s and a gain of 9.5

when the model is transformed to continuous time by zero order hold (Ts = 0.01 s).
For the parameter variation εT

θ = [0.18 0.20] · 10−12 is obtained.
By fixing the maximum allowed noise level εa, the optimization can be performed

in the remaining variables. Figures 8.2 and 8.3 show the dependence of the prediction
error bound and the optimal parameters on the chosen noise levels, respectively. It
can be seen that forcing the model set to represent uncertainty by the time-variation of
parameters will result in overly conservative models. At the optimum, the uncertainty
is described almost entirely by the noise term. A more sophisticated uncertainty
description is necessary which will be provided in Sect. 8.4.2.
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8.3.5 Identification of OE Models of Minimal Error in �∞

In this section an output error model structure is identified with the smallest error in
Γ≡. Suppose, we are given a data set {u(k), y(k)}l

k = 1 and the model structure of LTI
SISO systems in the form

ŷ(k) = G(q)u(k), G(q) =
⎠m

i = 1 biq−i

1 + ⎠m
i=1 aiq−i

(8.29)

y(k) = ŷ(k) + ν(k) (8.30)
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Fig. 8.4 Fit of the OE model with parameter to the measurements in a braking experiment. Bounds
for the error are also plotted (thin dotted black lines)

The set of parameters is divided as θa = [a1, ..., am] and θb = [b1, ..., bm]. We
are looking for θa and θb that minimize γ := ∈y(k) − ŷ(k)∈≡. This optimization
problem is nonlinear in parameter θa, therefore a nonlinear programming method
can be applied. In case of small noises, good initialization for θa and determination
of the model order can be attained by using the recent result [13]. Once θa is fixed,
θb can be computed by linear programming as follows.

1. Simulate yj(k) = q−i

1+⎠m
i=1 aiq−i u(k), i = 1, ..., m and let Y(k) = [y1(k), ...,

ym(k)]T . From this, ŷ(k) = θT
b Y(k).

2. Solve the LP problem

min
θb

γ s.t. − γ ∀ y(k) − θT
b Y(k) ∀ γ, k = m, ..., l (8.31)

8.3.6 Identification of OE Vehicle Models

Experimental data used in Sect. 8.3.4 is applied now for identification of the OE
model structure

a(k) = a(k − 1)θ1 + u(k − 1)θ2 + ν(k) − ν(k − 1)θ1, ∈ν(k) − ν∞∈≡ ∀ εa (8.32)

The LP method presented in Sect. 8.3.5 is applied for identifying θ2, while θ1 is
determined by simple line search. The optimal parameters correspond to a time
constant of 0.9 s and a gain of 1.25 when the model is transformed to continuous
time by zero order hold (Ts = 0.01). The fit of the model and the error bounds
are plotted in Fig. 8.4. This model can serve as nominal models in the performance
analysis of the platoon.
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8.4 Performance Analysis

8.4.1 Effects of Platoon Heterogeneity

For the case of heterogeneous platoons with nominal LTI models, Γ≡-bounds on
spacing errors are analyzed. Assume that the allowable reference input r = u0
satisfies ∈u0∈≡ ∀ umax , where umax is a given bound and there are no actuator
uncertainties, νi = 0. Then, the worst-case peaks of the spacing errors, as functions
of communication delays, can be computed as follows

εi := ∈ei∈≡ =
≡⎣

j=0

|CiA
j
zEz|umax, i = 1, ..., n (8.33)

In the following numerical analysis εi, i = 1, ..., n, are computed when the platoon
is not homogeneous in nominal vehicle parameters θ∞

i . It is assumed that both θ∞
i,1

and θ∞
i,2 may differ from vehicle to vehicle

∂τg := [θ∞
1,1 θ∞

1,2 θ∞
2,1 θ∞

2,2 · · · θ∞
n,1 θ∞

n,2], θ∞
i,1 = 1 − Ts

τi
, θ∞

i,2 = Tsgi
τi

,

τi ≥ {0.6, 0.8}, gi ≥ {0.9, 1.1} (8.34)

where time constant τi and gain gi are parameters of the continuous-time vehicle
models and may take up their extremal values. It can be shown that the worst-case
platoon configuration is the case when the vehicle model parameters are extremal
and alternating in order. This means that if the platoon is of length n+1, it is enough
to compute (8.33) for 4n+1 systems. Taking the maximum and minimum for the
4n+1 systems, Fig. 8.5 shows the worst-case and best-case bounds as functions of
the vehicle index i for dmax = 2 m/s2. The lower bounds are achieved in case of
homogeneous platoons. Upper bounds correspond to platoons of alternating vehicle
dynamics. For a given set of allowable maneuvers, this analysis directly provides
hints on choosing safety gaps between the vehicles in the different control modes,
such as Li > εi, assuming zero initial conditions. The analysis is carried out for a
range of network delays from h = 0 to h = 8Ts, but network delay of this range has
negligible impact on the bounds.

In the case when gain coefficients are estimated on-line, for example with the help
of parameter adaptation methods described in [14], acceleration demand can always
be scaled so that θi2 parameters can be set to gi = 1. Then, for the uncertainty set
characterized by

∂τ := [θ∞
1, 1 θ∞

2,1 · · · θ∞
n, 1], θ∞

i, 1 = 1 − Ts

τi
, θ∞

i, 2 = Ts

τi
, τi ≥ {0.6, 0.8} (8.35)

the spacing errors are bounded as shown in Fig. 8.6. The bounds reduced to about
one meter.
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8.4.2 Effects of Actuator Uncertainties

In this section, homogeneous platoons are assumed and merely the effects of brake
actuator uncertainties are estimated. The appropriate contribution to the spacing
errors is defined by

εν, i :=
≡⎣

j = 0

n⎣
l = 0

|CiA
j
zBν, z, l|νl, max (8.36)
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where the allowable disturbances satisfy ∈νi∈≡ ∀ νi, max , i = 0, ..., n and Bν, z, l
denotes column l of Bν,z. It can be shown that the general case can be approximated by
the sum of bounds εν,i and εi obtained in this and the previous sections, respectively.
For driving experiments, the case is a bit more complicated, see [12].

For some vehicle νj ∀ γj = 1.13 is obtained by the method presented in Sect. 8.3.6
for the identified Γ≡-bound on the output of the nominal model. By assuming that the
same bound holds for every vehicle, (8.36) is calculated for i = 0, ..., n. Figure 8.7
presents, with black solid line, the calculated spacing error bounds corresponding to
this disturbance model. The bound about 19 m indicates that an amplitude bounded
but otherwise arbitrary additive disturbance might be a too conservative model for
evaluating spacing performance. Assume, therefore, that brake actuator disturbance
is generated by the model

νi(k) = Wνi(q)ξi(k), ∈ξi∈≡ ∀ 1, i = 0, .., n (8.37)

where Wνi is a bounded, stable and stable invertible operator satisfying

∈W−1
νi (q)(ai(k) − Vi(q)ui(k))∈≡ ∀ 1, (8.38)

i.e. a consistency condition with available experimental data {ai(k), ui(k)}N
k = 0.

A subset of all consistent models can be finitely parameterized, for example, via
finite impulse response representation, by using Laguerre or Kautz bases or by pole-
zero-gain parametrization of fixed order. Let θνi denote the parameter vector of
model Wνi(q, θνi). Then, performance of the platoon, εν := ⎠n

i = 1 εν,i, not falsified
by measurement data can be obtained as the solution of the following optimization
problem
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Fig. 8.8 Experimental vehicles in project TruckDAS

εν := inf
θνi ,i = 0,...,n

n⎣
i = 1

n⎣
l=0

∈Pν,il(q)Wνl(q, θνl )∈1 s.t. (38) (8.39)

where Pν,il(q) denotes the transfer function from disturbance νl to spacing error i. By
using a pole-zero-gain parametrization for Wνi(q, θνi) with two real and a complex
pair of poles and zeros, respectively, confined to a stable sector of the unit disc, the
optimization provided a significant reduction of spacing error bounds to 6m, see red
dotted line in Fig. 8.7.

8.5 Experimental Results

The control strategy presented in Sect. 8.2 is implemented on a platoon of three heavy
trucks and tested on a 3 km long runway. The leader vehicle, driven by a driver, is
a 18 ton MAN TGA two-axle tractor with load cage. The second vehicle is a 24 ton
Volvo FH three-axle truck. The third one is a 18 ton Renault Magnum two-axle
tractor with a semitrailer, see Fig. 8.8. All vehicles are equipped with automatic gear
change. The communication network consists of radio transceivers operating on the
open 868 MHz ISM narrow-band.

The experimental scenario is started with a ‘joining in’ maneuver in which the
leader vehicle passes the others which are travelling at constant speed. When the
last vehicle in the platoon is caught by the radar of the joining vehicle and its driver
enables autonomous mode, the joining vehicle is accelerated and braked by given
constant values and for sufficient time so that the vehicle arrives approximately at the
prescribed distance and speed close to that of the platoon. After the braking period
the spacing controller is switched on. When both joining maneuvers are finished, the
leader vehicle can freely accelerate and decelerate.



8 Worst-Case Performance Analysis in Γ1-norm 129

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

Communication with both preceding and leader vehicle

sp
ee

d 
[k

m
/h

]

v
0

v
1

v
2

0 20 40 60 80 100 120 140
−15

−10

−5

0

5

10

15

sp
ac

in
g 

er
ro

r [
m

]

e
1

e
2

0 20 40 60 80 100 120 140
−4

−3

−2

−1

0

1

2

C
on

tro
l s

ig
na

l [
m

/s
2 ]

time [s]

u
0

u
1

u
2

Fig. 8.9 Platoon control experiment

Nine experiments of similar maneuvers were carried out on a 3 km long road. One
of them is shown in Fig. 8.9. The maximum spacing error was not greater than 3 m
during braking maneuvers. During driving maneuvers, the maximum leg was not
greater than 8 m.

8.6 Conclusions

Spacing error analysis of heterogeneous platoons with inter-vehicle communication
and actuator uncertainties has been presented. The acceleration and deceleration
commands provided by the implemented controller have been carried out by the
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external demand services of ECU and EBS, respectively. According to our expe-
riences in both unfalsification based model analysis and experimental tests with a
platoon of three vehicles with different types and properties, we can conclude that a
safety gap of 8 m can be safe if the acceleration/deceleration of the leader vehicle is
not greater than 2 m/s2.
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Chapter 9
Visual SLAM Based on Single Omnidirectional
Views

David Valiente, Arturo Gil, Lorenzo Fernández and Óscar Reinoso

Abstract This chapter focuses on the problem of Simultaneous Localization and
Mapping (SLAM) using visual information from the environment. We exploit the
versatility of a single omnidirectional camera to carry out this task. Traditionally,
visual SLAM approaches concentrate on the estimation of a set of visual 3D points
of the environment, denoted as visual landmarks. As the number of visual landmarks
increases the computation of the map becomes more complex. In this work we suggest
a different representation of the environment which simplifies the computation of the
map and provides a more compact representation. Particularly, the map is composed
by a reduced set of omnidirectional images, denoted as views, acquired at certain
poses of the environment. Each view consists of a position and orientation in the
map and a set of 2D interest points extracted from the image reference frame. The
information gathered by these views is stored to find corresponding points between
the current view captured at the current robot pose and the views stored in the map.
Once a set of corresponding points is found, a motion transformation can be computed
to retrieve the position of both views. This fact allows us to estimate the current pose
of the robot and build the map. Moreover, with the intention of performing a more
reliable approach, we propose a new method to find correspondences since it is a
troublesome issue in this framework. Its basis relies on the generation of a gaussian
distribution to propagate the current error on the map to the the matching process.
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We present a series of experiments with real data to validate the ideas and the SLAM
solution proposed in this work.

Keywords Visual SLAM · Omnidirectional images

9.1 Introduction

The problem of Simultaneous Localization and Mapping (SLAM) is a key point
in the field of mobile robots, since a model of the environment is often required for
navigation purposes. The purpose of building a map entails a complex process, since
the robot needs to build a map incrementally, while, simultaneously, computing its
location inside the map. The computation of a coherent map is problematic, since
the sensor data is corrupted with noise that affects the simultaneous estimation of
the map and the path followed by the robot.

Typically, SLAM approaches have been classified according to several facts such
as, the way to estimate the representation of the map, the main algorithm to compute a
solution or the kind of sensor to gather information of the environment. For example,
laser range sensors have been extensively used to construct maps. In this context,
maps were mostly obtained as 2D occupancy grid maps with raw laser [1], and also
2D landmark-based maps with features described from laser measurements [2].

Recently, the tendency has turned to the utilization of visual data provided by
cameras to generate the map. The applications that use these sensors are generally
denoted as visual SLAM. The use of visual information has several benefits that may
be exploited. Vision sensors provide a huge variety of information of the scene, being
less expensive than laser sensors and more efficient in terms of consumption. Inside
this group there exists different alternatives of utilization. For example, stereo-based
approaches in which two calibrated cameras extract relative measurements of a set of
3D visual landmarks, determined by a visual description of its appearance [3]. Other
approaches present their estimation of 3D visual landmarks by using a single camera.
In [4, 5] an inverse depth parametrization is carried out to initialize the coordinates
of each 3D landmark since the distance to the visual landmark cannot be directly
extracted with a single camera. Some other approaches [6] has also combined two
omnidirectional cameras to exploit the benefits of a wider field of view like in the
case of a stereo-pair sensor.

The approach presented in this chapter assumes that the mobile robot is equipped
with a single omnidirectional camera. As shown in Fig. 9.1a, the optical axis of the
camera points upwards, thus a rotation of the robot moving on a plane is equivalent
to a shift along the columns of a panoramic image captured.

In this chapter a different representation of the environment is proposed. To date,
most of the work in visual SLAM dealt with the estimation of the position of a
set of visual landmarks expressed in a global reference frame [3, 4, 7, 8]. In this
work, we concentrate on a different representation of the environment: the map is
formed by the position and orientation of a set of views in the environment. Each
view is composed by an omnidirectional image captured at a particular position,
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Fig. 9.1 a shows the sensor setup used during the experiments. b presents two real omnidirectional
images, with some correspondences indicated and the observation variables φ and β

its orientation in the environment and a set of interest points extracted from it. Each
interest point is accompanied by a visual descriptor that encodes the visual appearance
of the point. With this information stored in the map, we show how the robot is able
to build the map and localize inside it. When the robot moves in the neighbourhood
of any view stored in the map and captures an image with the camera, a set of
interest points will be matched between the current image and the view. Next, a set
of correspondences can be found between the images. This information allows us
to compute the relative movement between the images. In particular, the rotation
between images can be univocally computed, as well as the translation (up to a scale
factor). To obtain these measurements between images we rely on a modification of
the Seven Point Algorithm [9, 10]. This idea is represented in Fig. 9.1b, where
we show two omnidirectional images and some correspondences indicated. The
transformation between both reference systems is also shown. The computation of
the transformation relies on the existence of a set of corresponding points, thus, when
the robot moves away from the position of the stored view, the appearance of the
scene will vary and it may be difficult to find any corresponding points. In this case,
a new view will be created at the current position of the robot. The new initialized
view allows for the localization of the robot around its neighbourhood. It is worth
noting that a visual landmark corresponds to a physical point, such as a corner on
a wall. However, a view represents the visual information that is obtained from a
particular pose in the environment. In this sense, a view is an image captured from a
pose in the environment that is associated with a set of 2D points extracted from it. In
the experiments we rely on the SURF features [11] for the detection and description
of the points.

We consider that the map representation introduced here presents some advantages
compared to previous visual SLAM approaches. The most important is the compact-
ness of the representation of the environment. For example, in [4] an Extended
Kalman Filter (EKF) is used to estimate the position of the visual landmarks, as well
as the position and orientation of the camera. With this representation each visual
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landmarks is represented by six variables, thus the state vector in the EKF grows
rapidly as the number of visual landmarks increases. This fact poses a challenge for
most existing SLAM approaches. In opposition with these, in the algorithm presented
here, only the pose of a reduced set of views is estimated. Thus, each view encap-
sulates information of a particular area in the environment, in the form of several
interest points detected in the image. Typically, as will be shown in the experiments,
a single view may retain a sufficient number of interest points so that the localization
in its neighbourhood can be performed.

On the other hand, we have to deal with the problem of determining a set of
correspondences between two views. Determining a metric transformation between
two omnidirectional images is not trivial in the presence of false data associations.
In Sect. 9.3 we suggest a method to handle this issue. We introduce a gaussian
propagation of the current error of the map in order to come up with a reliable
scheme of matching, so that false correspondences are avoided.

We present a series of experiments and their results obtained trough the acquisition
of real omnidirectional images that demonstrate the validity of the approach. The set
of experiments have been carried out by varying several parameters of the SLAM
filter when using real images captured in an office-like environment. The chapter
is organized as follows: Sect. 9.2 describes the SLAM process using the proposed
framework. Next, the algorithm used to estimate the transformation between two
omnidirectional images is described in Sect. 9.3. Following, Sect. 9.4 presents the
experimental results. Finally, Sect. 9.5 establishes a discussion to analyze the results.

9.2 SLAM

This section describes in detail the representation of the environment as well as the
map building process. As mentioned before, the visual SLAM problem is set out
as the estimation of the position and orientation of a set of views. Thus, the map
is formed by a set of omnidirectional images obtained from different poses in the
environment. In opposition with other solutions, the views do not correspond to any
physical landmarks or element in the environment (e.g. a corner, or the trunk of a tree).
In our case, a landmark (renamed view) will be constituted by an omnidirectional
image captured at the pose xl = (xl , yl , θl) and a set of interest points extracted from
that image.

This map representation can be estimated using different kind of SLAM
algorithms, including online methods such as, EKF [7], Rao-Blackwellized parti-
cle filters [2] or offline algorithms, such as, for example, Stochastic Gradient De-
scent [12]. In this chapter we present the application of the EKF to the proposed map
representation and explain how to obtain correct results using real data.

In addition we consider that the map representation and the measurement model
can be also applied using standard cameras. The reason for using omnidirectional
images is their ability to acquire a global view of the environment in a single image,
due to their large field of view, resulting in a reduced number of variables to represent
the map.
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Fig. 9.2 Main idea for map building. The robot starts the exploration from A by storing a view IA.
While the robot moves and no matches are found between the current image and IA, a new view is
created at the current position of the robot, for instance in B. The process continues until the whole
environment is represented

9.2.1 View-Based Map

The pose of the mobile robot at time t will be denoted as xv = (xv, yv, θv)T . Each
view i ≡ [1, . . . , N ] is constituted by its pose xli = (xl , yl , θl)

T
i , its uncertainty

Pli and a set of M interest points p j expressed in image coordinates. Each point is
associated with a visual descriptor d j , j = 1, . . . , M .

Figure 9.2 describes this map representation, where the position of several views
is indicated. For example, the view A is stored at the pose xlA = (xlA , ylA , θlA )

T in the
map and has a set of M points detected. The view A and C allow for the localization
of the robot in the corridor. The view B represents the first room, whereas the view D
and E represent the second and third room respectively, and make the robot capable
to localize in the environment.

Thus, the augmented state vector is defined as:

x̄ = [
xv, xl1 , xl2 , . . . , xlN

⎧T (9.1)

where xv = (xv, yv, θv)T is the pose of the moving vehicle and xlN = (xlN , ylN , θlN )

is the pose of the N -view that exist in the map.
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9.2.2 Map Building Process

This subsection introduces an example of map building in an indoor environment,
represented in Fig. 9.2. We consider that the robot explores the environment while
capturing images with its omnidirectional camera. The exploration starts at the origin
denoted as A, placed at the corridor. At this time, the robot captures an omnidirec-
tional image IA, that is stored as a view with pose xlA . We assume that, when the
robot moves inside the corridor, several point correspondences can be found between
IA and the current omnidirectional image. Given this set of correspondences, the
robot can be localized with respect to the view IA. Next, the robot continues with
the exploration. When it enters the first room, the appearance of the images vary
significantly, thus, no matches are found between the current image and image IA.
In this case, the robot will initiate a new view named IB at the current robot position
that will be used for localization inside the room. Finally, the robot keeps moving
through the corridor and goes into different rooms and creates new views respec-
tively at these points. The number of images initiated in the map depends directly on
the kind of environment. In the experiments carried out with real data we show that
typically, a reduced number of views can be used while obtaining precise results in
the computation of the map.

In addition, SLAM algorithms can be classified as online SLAM when they esti-
mate the map and the pose xv at time t . Other algorithms solve the full SLAM problem
and estimate the map and the path of the robot until time t , x1:t = [xv1 , xv2 , . . . , xvt ].
The EKF is generally classified in the first group, since, at each time t the filter gives
an estimation of the current pose xv . However, in our case, the position of the view
i coincides with the pose of the robot at any of the views. In consequence the EKF
filter allows to compute the pose of the robot at time t and, in addition, a subset of
the path followed by the vehicle formed by the poses xv, xl1 , xl2 , xlN .

9.2.3 Observation Model

Following, the observation model is described. We consider that we have obtained two
different omnidirectional images captured at two different poses in the environment.
One of the images is stored in the map and the other is the current image captured
by the robot at the pose xv . We assume that given two images we are able to extract
a set of significant points in both images and obtain a set of correspondences. Next,
as will be described in Sect. 9.3, we are able to obtain the observation zt :

zt =
⎨

φ
β

⎢
=

⎪
arctan (

ylN −yv
xlN −xv

) − θv

θlN − θv

⎡
(9.2)

where the angle φ is the bearing at which the view N is observed and β is the relative
orientation between the images. The view N is represented by xlN = (xlN , ylN , θlN ),
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whereas the pose of the robot is described as xv = (xv, yv, θv). Both measurements
(φ,β) are represented in Fig. 9.1a.

9.2.4 Initializing New Views in the Map

We propose a method to add new views in the map when the appearance of the
current view differs significantly from any other view existing in the map. A new
omnidirectional image is stored in the map when the number of matches found in
the neighbouring views is low. Concretely, we use the following ratio:

R = 2m

n A + nB
(9.3)

that computes the similarity between views A and B, being m the total number of
matches between A and B and n A and nB the number of detected points in images
A and B respectively. The robot includes a new view in the map if the ratio R
drops below a pre-defined threshold. To initialize a new view, the pose of the view
is obtained from the current estimation of the robot pose and its uncertainty equals
the uncertainty in the pose of the robot.

9.3 Computing a Transformation Between Omni-Directional
Images

In this section we present the procedure to retrieve the relative angles β and φ
between two omni-directional images, as represented in Fig. 9.1b. As shown before,
these angles compose the observation described in (9.2). Computing the observation
involves different problems: the detection of feature points in both images and finding
a set of point correspondences between images that will be used to recover a certain
camera rotation and translation. Traditional schemes, such as [13–15] apply epipolar
constrains between both images and solve the problem in the general 6DOF case,
whereas in our case, according to the specific motion of the robot on a plane, we
reduce the problem to the estimation of 3DOF.

9.3.1 Detection of Interest Points

SURF features [11] are used to find interest points in the images and to describe their
visual appearance. In [16], SURF features outperform other detectors and descrip-
tors in terms of robustness of the detected points and invariance of the descriptor.
SURF features have been previously used in the context of localization [17] using
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omnidirectional images. We transform the omnidirectional images into a panoramic
view in order to increase the number of valid matches between images due to the
lower appearance variation obtained with this view.

9.3.2 Matching of Interest Points

In order to obtain a set of reliable correspondences between two views, several
restrictions have to be considered. Some authors [10] rely on the epipolar geometry to
restrict the search of correspondences. The same point detected in two images can be
expressed as p = [x, y, z]T in the first camera reference system and p∈ = [x ∈, y∈, z∈]T

in the second camera reference system. Then, the epipolar condition establishes the
relationship between two 3D points p and p∈ seen from different views.

p∈T Ep = 0 (9.4)

where the matrix E is denoted as the essential matrix which can be computed from
a set of corresponding points in two images.

E =
⎣
⎤

0 0 sin(φ)
0 0 − cos(φ)

sin(β − φ) cos(β − φ) 0

⎦
⎞ (9.5)

being φ and β the relatives angles that define a planar motion between two different
views, as shown in Figs. 9.1 and 9.2.

The epipolar restriction (9.4) has been previously used to compute a visual odome-
try from two consecutive views [10], together with some techniques such as RANSAC
and Histogram voting to reject false correspondences. In this sense, the computation
of the whole set of detected points is needed in order to find those which satisfy
the restriction. Moreover, in the context of visual odometry, consecutive images are
close enough to disregard high errors in the pose from where images were taken, so
that the epipolar restriction can be normally applied. However, focusing on a SLAM
framework, there exists uncertainties in the pose of the robot as well as in the pose
of the views that compose the map. For this reason, we consider that is necessary to
propagate this errors to accomplish a reliable data association. We suggest using the
predicted state vector extracted from the Kalman filter, from which we are able to
obtain a predicted observation measurement ẑt by means of (9.2). In order to reduce
the search of valid corresponding points between images, the map uncertainties have
also to be taken into account, so we propagate them to (9.4) by introducing a dynamic
threshold, δ. In a idealistic case, the epipolar restriction may equal to a fixed thresh-
old, meaning that the epipolar curve between images always presents a little static
deviation. On a realistic SLAM approach, we should consider that this threshold
depends on the existing error on the map, which dynamically varies at each step of
the SLAM algorithm. Since this error is correlated with the error on ẑt , we rename δ



9 Visual SLAM Based on Single Omnidirectional Views 139

Fig. 9.3 Given a detected point p1 in the first image reference system, a point distribution is
generated to obtain a set of multi-scale points λi p1. By using the Kalman prediction, they can be
transformed to q′

i in the second image reference system through R → N(β̂,σβ), T → N(φ̂,σφ) and
ρ̂. Finally q′

i are projected into the image plane to determine a restricted area where correspondences
have to be found. Circled points represent the projection of the normal point distribution for the
multi-scale points that determine this area

as δ(ẑt ). In addition, it has to be noted that (9.5) is defined up to a scale factor, which
is another reason to consider δ(ẑt ) as a variable value. As a consequence, given two
corresponding points between images, they must satisfy:

p∈T Ê p < δ(ẑt ) (9.6)

This approach allows us to reduce the search for corresponding points between
images. Figure 9.3 depicts the procedure. Assuming a detected point P(x, y, z), it
may be represented in the first image reference system by a normalized vector p1
due to the unknown scale. To deal with this scale ambiguity, we suggest a generation
of a point distribution to get a set of multi-scale points λi p1 for p1. This distribution
considers a valid range for λi according to the predicted ρ̂. Please note that the
error of the current estimation of the map has to be propagated along the procedure.
According to Kalman filter theory, the innovation is defined as the difference between
the predicted ẑt and the real zt observation measurement:

vi (k + 1) = zi (k + 1) − ẑi (k + 1|k) (9.7)

and the covariance of the innovation:

Si (k + 1) = Hi (k)P(k + 1|k)H T
i (k) + Ri (k + 1) (9.8)
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where Hi (k) relates x̄(k) and zi (k), P(k + 1|k) is a covariance matrix that expresses
the uncertainty on the estimation, and R(k) is the covariance of the gaussian noise
introduced in the process. In addition, Si (k + 1) presents the following structure:

Si (k + 1) =
⎠
σφ

2 σφβ

σβφ σβ
2

]
(9.9)

Next, since the predicted Ê can be decomposed in a rotation R̂ and a translation
T̂ , we can transform the distribution λi p1 into the second image reference system,
obtaining q′

i. In order to propagate the error, we make use of (9.9) to redefine the

transformation through normal distributions, being R → N(β̂,σβ) and T → N(φ̂,σφ).
This fact implies that q′

i is a gaussian distribution correlated with the current map
uncertainty. Once obtained q′

i, they are projected into the image plane of the second
image, seen as circled points in Fig. 9.3. This projection of the normal multi-scale
distribution defines a predicted area in the omnidirectional image which is drawn
in continuous curve line. This area establishes the specific image pixels where cor-
respondences for p1 must be searched for. The shape of this area depends on the
error of the prediction, which is directly correlated with the current uncertainty of
the map estimation. Dash lines represent the possible candidate points located in the
predicted area. Therefore, the problem of matching is reduced to finding the cor-
rect corresponding point for p1 from those candidates inside the predicted area by
comparing their visual descriptor, instead of searching for them at the whole image.

9.3.3 Computing the Transformation

Once a set of interest SURF points have been detected and matched in two images it
is necessary to retrieve the relative angles β and φ. In the Sect. 9.3.2 was introduced
the term Ê for a predicted matrix to find valid correspondences. Now this set of cor-
responding points is known, the real E can be determined by directly solving (9.4).
The essential matrix can be expressed as a specific rotation R and a translation T (up
to a scale factor), where E = R × Tx . The use of a SVD decomposition makes able to
retrieve R and T . Following [18, 19] we obtain the relative angles β and φ that define
a planar motion between images acquired from different poses. It is worth noting
that the motion is restricted to the XY plane, thus only N = 4 correspondences are
sufficient to solve the problem. Nevertheless we use higher number of correspon-
dences in order to get accurate solutions. Notice that now an external algorithm is not
necessary to reject false correspondences since we avoid them through the restricted
matching process, limited to specific image area as recently explained.
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9.4 Results

We present three different experimental sets. Section 9.4.1 firstly presents SLAM
results to verify the validity of this proposed approach of SLAM. In addition, it
presents map building results when varying the number of views that generate the map
in order to extract conclusions in the sense of the compactness of the representation.
Finally, we present results of accuracy in the obtained map, use of computational
resources and their variation with the number of views that conform the map. To
carry out these experiments an indoor robot Pioneer P3-AT has been used, which is
equipped with a firewire 1280 × 960 camera and a hyperbolic mirror. The optical
axis of the camera is installed approximately perpendicular to the ground plane,
as described in Fig. 9.1a, in consequence, a rotation of the robot corresponds to a
rotation of the image with respect to its central point. Besides, in order to obtain
a reference for comparison we use a SICK LMS range finder to generate a ground
truth [1] which provides a resolution of 1 m in position.

9.4.1 SLAM with Real Data

This section presents SLAM results of map building to validate the proposed
approach. The robot is guided through an office-like environment of 32×35 m while it
acquires omnidirectional images and laser range data along the trajectory. Laser data
is only used to generate a ground truth for comparison. The robot initiates the SLAM
process by adding the first view of the map at the origin, as indicated in Fig. 9.4a.
Next, it keeps on moving along the trajectory while capturing omnidirectional
images. The image at the current robot pose is compared to the view in the map
looking for corresponding points in order to extract a relative measurement of its
position as explained in Sect. 9.3. The evaluation of the similarity ratio (9.3) is also
computed, and in case this ratio drops below R < 0.5, a new view is initialized at the
current robot position with an error ellipse. While the mapping continues, the current
image is still being compared with the rest of the views in the map. Figure 9.4a shows
the entire process where the robot finishes the navigation going back to the origin.
The dash-dotted line represents the solution obtained by the proposed approach,
indicating with crosses the points along the trajectory where the robot decided to
initiate new views in the map and their uncertainty with error ellipses. The continue
line represents the ground truth whereas the odometry is drawn with dash line. As it
can be observed, a map for an environment of 32 × 35 m is formed by a reduced set
of N = 9 views, thus leading to a compact representation. Figure 9.4b compares the
errors for the estimated trajectory, the ground truth and the odometry at every step of
the trajectory. The validity of the solution is confirmed due to the accomplishment of
the convergence required by every SLAM scheme, since the solution error is inside
the 2σ interval whereas the odometry error grows out of bounds.
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(a) (b)

Fig. 9.4 a presents results of SLAM using real data. The final map is determined by N = 9 views,
which their positions are represented with crosses and error ellipses. A laser-based occupancy map
has been overlapped to compare with the real shape of the environment. b presents the solution and
odometry error in X , Y and θ at each time step

Once the proposed approach was validated, the following experiments were
carried out with the aim of testing the compactness of the representation of the
environment. Another office-like environment of 42 × 32 m was chosen. In this case
the threshold for the similarity ratio R were varied in order to get different map
representation for the same environment, in terms of the number of views N that
compose the map. The procedure to build up the map follows the steps detailed in
the first experiment, and is depicted in Fig. 9.5. Figure 9.5a, c, e, g shows different
map versions for this environment with N = 5, N = 7, N = 12 and N = 20 views
respectively. Again, the estimated solution is drawn in dash-dotted line, the odom-
etry in dash line, meanwhile the ground truth in continuous line. View’s position
are indicated with crosses and their uncertainty with error ellipses. Figure 9.5b, d, f,
h, present the errors of the estimated solution and the odometry versus 2σ intervals
to test the convergence and validity of the approach for each N -view map. All four
estimations satisfy the error requirements for the convergence of the SLAM method,
since the solution error is inside the 2σ interval, however the odometry tends to
diverge without limit. According to this results, it should be noticed that the higher
values of N the lower resulting error in the map. Nevertheless, with the lower value
N = 5 views, the resulting error is suitable to work in a realistic SLAM problem
in robotics. This fact reveals the compactness of the representation. In some con-
text a compromise solution might be adopted when choosing between N , error and
obviously computational cost. Next paragraph analysis this issue.

The concept of compactness in the representation of the map has been confirmed
by the previous results. It has been observed that lower values of N provide good
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Fig. 9.5 a, c, e, g present results of SLAM using real data obtaining different map representations
of the environment, formed by N = 5, N = 7, N = 12 and N = 20 respectively. The position of
the views is presented with error ellipses. b, d, f, h present the solution and odometry error in X , Y
and θ at each time step for each N -view map



144 D. Valiente et al.

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8
R

M
S

 e
rr

o
r 

(m
)

Number of views N
10 20 30 40 50 60 70 80 90 100

0

0.02

0.04

0.06

0.08

T
im

e
 (

s
)

RMS error (m)
Time (s)

0 0.01 0.02 0.03 0.04 0.05
0.06 0.07 0

20
40

60
80

1000.1

0.2

0.3

0.4

0.5

0.6

Number of views N
Time (s)

R
M

S
 e

rr
o
r 

(m
)

(a) (b)

Fig. 9.6 a and b shows the RMS error (m) and time consumption (s) versus the number of views
N observed by the robot to compute its pose inside different N -view maps

results in terms of error. In addition, the results allow us to analyze the computa-
tional cost and the error in terms of the number of views N composing the map. In
Fig. 9.6 we present these results, showing the RMS error in position and the time
consumption, which reveal that the error decreases when N increases. Consequently,
the accuracy of the estimation is higher since more views are observed, however the
computational cost grows. That is the reason why a compromise solution has to
be reached. Generally, SLAM algorithms are real-time intended, so that the time is
a limiting factor. Despite this fact, the approach presented here provides accurate
results even using a reduced set of views, which is a benefit to consider when there
is a lack of computational resources.

9.5 Conclusions

This work has presented an approach to the SLAM problem using a single omni-
directional camera as a visual sensor. We suggest a different representation of the
environment. In contrast to traditional 3D pose estimation SLAM schemes, we only
estimate the pose and orientation of a set of omnidirectional images, renamed views,
as part of the map. A set of interest points described by visual descriptors are asso-
ciated to each omnidirectional image so that a compact description of the environ-
ment is accomplished. Each omnidirectional image allows the robot to compute its
localization in the image surroundings. A new matching method is suggested to deal
with the problem of finding correspondences. Given two omnidirectional images an
a set of interest points for each one, we model the relative error between them by
means of a gaussian distribution that correlates the current estimation error on the
map to help us to compute a more reliable transformation between images, composed
by a rotation and a translation (up to a scale factor). This transformation allows to
propose an observation model and to compute a trajectory over a map. We append
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map building results using an EKF-based SLAM algorithm with real data acquisition
using an indoor robot, to validate the SLAM approach. In addition we have shown
the compactness of the environment representation by building maps with different
number of views. Finally we presented a set of measurements to test the accuracy
of the solution and the time consumption as a function of the number of views that
conform the map.
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Chapter 10
Metrics for Path Planning of Reconfigurable
Robots in Uneven Terrain

Michael Brunner, Bernd Brüggemann and Dirk Schulz

Abstract In this chapter we present metrics for rough terrain motion planning used
by our hierarchical planner. We employ a two-stage planning approach which allows
us to use different cost functions for an initial path search and a detailed motion
planning step. To quickly find an initial path we use a roughness quantification and
the operating limits of the robot, which allow a fast assessment of the drivability.
We then refine the initial path in rough regions of the environment by planning
the complete robot states. To determine the desired robot configurations our newly
developed metrics consider the system’s actuators, its safety and the time required
for traversal. Real world experiments prove the validity and feasibility of the cost
functions.

Keywords Metrics · Rough terrain · Reconfigurable chassis · Motion planning ·
Mobile robot · Autonomy

10.1 Introduction

Many robot platforms used today have a fixed chassis. Those robotic systems are
limited to mainly flat environments because their design prevents them from tra-
versing structures with sharp edges or steep inclinations. For instance, stairs, boul-
ders, or debris are often untraversable obstacles for such platforms. However, mobile
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Fig. 10.1 The Telemax robot
is a tracked platform with four
actuators. The robot is 60 cm
long, 40 cm wide, and weighs
about 70 kg. It has 4 tracks
which can be rotated 170≡
from entirely folded all the
way down lifting the robot
about 45 cm up. Completely
expanded the robot has a
length of 120 cm. The robot
is equipped with a skid-drive,
and its maximal translational
speed is 1.2 m/s

robots with reconfigurable chassis can alter their configuration, which enhances their
mobility and enables them to traverse a wide variety of obstacles.

Driving a mobile robot across the above mentioned obstacles is a challenging
task even for a trained operator. There are many aspects which have to be considered
when driving over obstacles, most of which can be neglected for 2D navigation on
flat terrain. Especially, the stability of the robot is essential as the robot falls over
more easily. Inertia and momentum are increasingly important when a fast robot is
operated close to its limits. Moreover, the same actuator and driving commands may
lead to varying behavior of the robot caused by different contact points.

Introduced planning and controlling algorithms for traversing rough terrain or
overcoming obstacles depend heavily on the robot’s shape, actuators, and abilities.
This may be comprehensible by considering that these systems ought to traverse very
rough terrain for which they must operate at their limits. This, in turn, requires to
exhaust the often unique capabilities given by their specific actuators.

We developed a two-stage motion planning approach for tracked reconfigurable
robots to traverse rough outdoor environments. We generate a preliminary path using
the platform’s operating limits instead of the complete robot state and, subsequently,
we apply a detailed motion planning step to refine the initial path in rough regions.
Our algorithm is general in the sense that we do not rely on predefined motion
sequences or obstacle classifications. Furthermore, our algorithm can be used for
different robot models with similar locomotion like the Telemax robot (Fig. 10.1).

The metrics used by our motion planner are at the center of this chapter. Many
different metrics and cost functions are proposed for path planning in 2D navigation
as well as for rough terrain traversal. Some quantities, like time or path length, are
applicable to both scenarios. In 2D navigation, aspects like stability, traction, or risk
are usually neglected because they can safely be assumed. In contrast, quantifying
these aspects during planning on rough terrain is essential. In our approach, we use
a roughness quantification to adjust the robot’s actions. If performed solely, actuator
movements do not increase the path length; thus, we measure the path execution time
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to account for these actions. In rough areas we employ to often employed quantities,
e.g. stability or traction, and incorporate them as costs into our approach to determine
appropriate robot configurations.

The remainder of this chapter is structured as follows: Sect. 10.2 provides an
overview of some related work. We give a brief scheme of our algorithm in Sect. 10.3.
Section 10.4 discusses issues of the sensor coverage for obstacle traversal, the neces-
sity of global information, and introduces the roughness quantification. Sections 10.5
and 10.6 illustrate the metrics used for the initial path search and the metrics uti-
lized by the detailed planner in hazardous areas, respectively. We provide real world
experiments in Sect. 10.7 and conclude in Sect. 10.8.

10.2 Related Work

Extensive work has been done on traversability metrics and cost functions for path
planning of mobile robots. A binary notion of traversability and the path length are
generally accepted as sufficient measures in 2D navigation. However, as the terrain
becomes more challenging, more detailed traversability assessments are used and
further aspects, like the stability, the amount of turning, or traction, are considered
during path planning. In this section we outline some of the previous work done in
this area of research.

The National Institute of Standards and Technology (NIST) has introduced step-
fields as a means of repeatable test methods for robot mobility to capture statistically
significant performance information [1]. The NIST also proposed three metrics for
stepfields: two concerning the coverability of the terrain, i.e. a difficulty measure of
the entire region, and one called crossability which depicts the difficulty to move
between two specified locations. While the coverability is based on the variations in
height difference, the crossability is given by the least cost path in terms of the terrain
roughness along the path, the amount of turning and the path length. All metrics are
scaled by the robot size and wheel diameter or track height since these parameters
influence the ability of the robot to overcome obstacles [2]. The NIST’s crossability
metric is based on [3] where the same quantities are used to include the robot model
into the traversability measure. Since we intent to use the traversability measure to
guide our search algorithm, a global definition like the coverability is not suitable.
However, similar to the crossability we consider roughness, the amount of turning
and the path length for planning. In contrast, since the robot size and wheel or track
height are not fix for robots with reconfigurable chassis, we do not include these
parameters. Further, we measure the execution time of a path rather than the path
length to account for actuator movements, which do not influence the path length
but require time.

In the area of planetary rovers most of the proposed traversability concepts are
heavily based on terrain, robot and dynamic models to capture the terrain–vehicle
interactions in detail [4]. Mechanical models are used to identify the cohesion
and internal friction angles of the terrain in order to quantify traversability [5].
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The Traversability Index is a fuzzy rule-based measure quantifying the slope of
the terrain and the roughness with respect to the size and density of rocks within
the camera frame [6]. It was extended in [7], additionally incorporating the terrain
discontinuity (i.e. cliffs) and hardness as it affects traction. In our approach we also
incorporate an estimate of the vehicle traction; however, it is less model based.

Many different stability margins were proposed for measuring the stability of a
mobile robot. A comparative overview can be found in [8]. A common way to measure
the static stability of a system is to project the center of mass onto the supporting
polygon. Other stability margins are more accurate as they consider the height of the
center of mass. In [9] the Force-Angle Stability Margin (FASM) is incorporated as
slowness value into the Fast Marching Method (FMM) to favor more stable paths.
As we do not contemplate any forces at this point we use the Normalized Energy
Stability Margin (NESM) [10], also employed in [11].

Others classify the environment using fuzzy rules and Markov Random Fields
to generate behavior maps which encode preconditions and costs for a skill-based
traversal algorithm [12]. Or they label the terrain through geometric heuristic rules as
flat, vertical, stairs or unknown along with associated costs (penalizing steep slopes
and rough terrain) to apply specific motion primitive planners for each class [13].
However, we do not want to base our motion planning algorithm on a structure
classification scheme as this will limit the algorithm to the set of defined structures.
Hence, our metrics solely use general properties, rather than semantic structure labels.

10.3 Brief Algorithm Overview

In this section we give a short overview of our algorithm. We employ a two-stage
planning algorithm for reconfigurable robots to traverse rough environments and
to overcome obstacles in urban areas. Given a map we first compute the roughness
quantification (Sect. 10.4) and build a motion graph according to the robot’s operating
limits (Sect. 10.5). We perform a Dijkstra search to find the initial path in this motion
graph. Afterwards, we identify the path segments leading through rough terrain
and construct a state graph for a tube-like area around each rough path segment
(Sect. 10.6). Using a Dijkstra search we find sequences of robot states including the
desired actuator positions. Finally, applying a default configuration for segments in
flat areas, all segment paths are combined to provide the final path. The algorithm
and its main features are introduced in [14, 15].

10.4 Map and Roughness Quantification

Whether a given structure is traversable or not is not easily determined. In 2D naviga-
tion this is usually handled with a simple threshold on the height differences; every-
thing above this threshold is untraversable. When aiming at overcoming structures,
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this question becomes very hard to answer. For 2D navigation a 2D laser range
finder is sufficient to gather the necessary information about the surroundings. In
contrast, using a 3D sensor for traversing obstacles and navigating through rough
environments is not enough, due to the still very limited sensor coverage.

First, installing sensors on a mobile robot introduces a very narrow view; second,
determining what will come after successfully climbing onto an obstacle is very
difficult when using common sensors; and third, while traversing an obstacle the
robot’s pose will often orient the sensors in a way that they are unable to cover the
environment. Consider, for example, the traversal of a flight of stairs; the very narrow
view makes it hard to recognize the stairs especially all the way up; and while on
the stairs and close to the top the sensors cover very few of the ground. This means,
deciding on the traversability of an obstacle based on local sensor information is
very hard. Therefore, we use a map to simplify the perceptual task and to be able to
concentrate on the planning aspect of the problem of rough terrain traversal. Means
of how to deduce the traversability of a greater area from local sensor information is
beyond the scope of this work.

Further, discovering that an obstacle is actually untraversable during traversal is
an unpleasant situation. In this case the robot may be on top of an obstacle and be
required to retreat backwards or, worse, since obstacles are generally not traversable
from every angle, the robot may be stuck and, thus, unable to move safely off the
obstacle. A map may help reducing such incidents but certainly cannot account for all
situations, as a map usually is not detailed enough and physical aspects, like friction
coefficients, are generally unavailable.

Also related to the first point, especially for rough environments it cannot be
assumed that a path to a desired goal exists at all. Moreover, a map allows to assess
the risk of a path and, thus, enables to determine whether driving through a hazardous
area is worth the risk or circumventing the obstacle with reasonable additional costs
is more appropriate.

In addition, a map may be used to improve localization by comparing the robot’s
actual pose with the expected pose deduced from the map. However, the localization
and an enhanced controller are subject to future work.

Using a map for motion planning in rugged environments introduces another
problem. The validity of the planning is closely related to the level of detail of the
map. However, large detailed maps are rarely available. This can be addressed by
detailed patches for rough regions and a greater coarse map.

10.4.1 Roughness Quantification

In our approach we use a height map to represent the environment because it is
simple to use and sufficient for our application. In order to assess the difficulty of
a position within the map, we use techniques from image processing to compute a
roughness quantification of the map (Fig. 10.2). As indicator how difficult an area of
the map is, we use the height differences between cells. For a given map cell c(x, y)
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Fig. 10.2 The left images show the roughness quantification of two maps; a real map build by a
laser range finder and an artificial urban map. The colors indicate the degree of roughness, ranging
from dark grey for flat regions to white, high risk areas. The right images show the motion graphs
for two maps; a map of a training hill and an artificial urban map

we determine the maximal height difference within a window w of size kx × ky

around the cell, i.e., we apply a maximum filter

c(x, y) = max
(i1, j1),(i2, j2)∈wx,y

{|c(i1, j1) − c(i2, j2)|}

with
wx,y = {

(i, j) : |x − i | → kx ∞ |y − j | → ky
}
.

However, we prevent a distortion of the range of values through a threshold hmax,
which conveniently can be set to the robot model’s maximal traversable height. Fur-
ther, the values are scaled to [0, 1] using hmax. Subsequently, we perform a Gaussian
blur on this grid of height differences to smooth the transitions and, more importantly,
to propagate the risk, i.e. inflate large heights and sharp edges. The Gaussian kernel
for a two dimensional blur is defined as

G(x, y) = 1

2πσ2 e− x2+y2

σ2 .

Given kernel sizes of kx and ky for both dimensions, this leads to a matrix G ∈
M(kx + 1, ky + 1) with elements

G(i, j) = 1

2πσ2 e−
∣∣∣i− kx

2

∣∣∣2+
∣∣∣∣ j− ky

2

∣∣∣∣
2

σ2 ,

where kx/2 and ky/2 indicate integer divisions. For each cell in the map we convolve
this kernel matrix with the window of the same size around the cell.

Note, comparing, for instance, a flight of stairs to a ramp of the same gradient
angle, the steps provide less contact points for traversal with a tracked robot, and
turning is much more severe on these discrete contacts. Hence, a flight of stairs
should have a higher risk compared to a ramp of the same gradient angle. Using
the introduced formulation allows us to distinguish between those two structures in
exactly this way. Moreover, using an appropriate window size allows us to virtually
inflate the hazardous areas which is commonly done in 2D navigation to keep the
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robot away from obstacles. In contrast, high risk areas are avoided by the robot but, if
required, do not prohibit traversal. Another benefit is that the computation is simple
and highly parallelizable.

We use this roughness quantification in both metrics, for the initial path search
as well as for the detailed motion planning, to adjust the behavior according to the
difficulty of the environment.

10.5 Metrics for the Initial Path Search

Driving with reconfigurable robots on rough terrain and over obstacles introduces a
large search space, and more constraints compared to 2D navigation must be satisfied.
Additionally, the robot’s actuators must be incorporated into the planning process
and the quality of the path must be judged not only by its length but also by the
robot’s stability and traction, the amount of turning and time required for actuator
movements. We, therefore, employ a first path search to quickly find an environment-
driven and fast path to the desired goal location. The path is subsequently used to
restrict the search space for the second planning phase which determines the final
path consisting of the robot configurations including the actuator commands.

Our initial path search employs the introduced roughness quantification. This
roughness quantification is used to steer the robot away from hazardous areas and
to prefer less risky routes. Usually, an environment consists of fairly flat areas as
well as rugged and challenging parts. In flat areas, the consideration of the robot’s
complete configuration including actuator values is not necessary. In contrast, it is
essential in rough areas to increase robot safety and ensure successful traversal. At
this planning phase, we do not know through which parts of the environment the
path will lead; therefore, we omit the complete state during this planning stage. We
rather stick to the operating limits of the mobile base neglecting the actuators. These
operating limits do include the maximal roll and pitch angles before tipover as well
as the maximal traversable height. We identify the least restrictive operating limits
through the most stable configuration on flat ground. However, using a greater set
of configurations generally improves the robot states in terms of stability as more
configurations can compensate for a greater variety of situations.

We build a motion graph Gm = (Vm, Em) which represents the ability of the
mobile robot to traverse the environment (Fig. 10.2). The vertices vi ∈ Vm model
positions pi of a dense1 regular grid. A vertex v is added to Vm if the maximal risk
value r within the robot’s footprint does not exceed some threshold. If the transition
from a position pi to a neighboring position p j does not violate the robot’s limits in
terms of inclination and height differences, the edge eij = (vi , v j ) is included in Em .
By using a graph based formulation and encoding the costs in the edge weights, we
are able to perform a Dijkstra search.

1 The resolution of the grid is usually half the robot size to avoid the requirement of intermediate
validity test. Also, situations in which solutions are lost due to the discretization are few.
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Fig. 10.3 Influence of the safety weight on the initial path search. It determines the primary direction
of the final path. Start and goal position are kept the same and the safety weights set to 0.0, 0.25,
0.5, 0.75 and 1.0 for top left to bottom right. To determine the final robot configurations the second
planning step considers the tube-like area around rough path segments

Using the roughness quantification, we are able to define the required time tv(i, j)
to move from a position pi to a neighboring position p j as a simple function of the
risk. Let dij be the distance between pi and p j , and let rij = 1

2 (ri +r j ) be the average
risk of the involved positions. Then tv is defined as

tv(i, j) = dij

max
(
vmin, (1 − rij · wis) · vmax

) , (10.1)

where vmin and vmax are the minimal and maximal forward velocity, respectively.
wis ∈ [0, 1] is the safety weight for the initial path search; low values will diminish
the influence of the roughness quantification and, hence, lead to possibly shorter yet
more risky paths. In contrast, high values increasingly force the robot to take low
risk paths. The less risky the area, the faster the robot can drive and the shorter is
the time. Therefore, wis determines the main direction of the final path. Figure 10.3
shows the different paths obtained for a given start and goal position and the safety
weights 0.0, 0.25, 0.5, 0.75 and 1.0. For a weight of 0.0 the path becomes a direct
path to the goal position. Increasing the safety weight forces the algorithm to face
the direction of the steepest gradient when climbing inclinations and to avoid more
and more high risk areas. Eventually, the path avoids even less risky regions and
circumvents the hill.

The main purpose of this planning phase is to find a path to the goal which can be
used to restrict the search space for the subsequent detailed motion planner. Therefore,
we differentiate between areas with risk values and slopes below a convenient level,
areas with higher risk levels and convenient slopes, and areas with higher risk values
and higher slopes (see Fig. 10.2).
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Fig. 10.4 The left images show the path segments of the initial paths on two maps. The right
images show the tubes around the initial paths in rough areas

We split the path into segments leading through flat areas with low risk or no
environmental slopes and segments through rough regions with high risks and slopes
(left images of Fig. 10.4). For flat segments the stability of the robot system can be
safely assumed as done in 2D navigation. Further, any robot configuration may be
applied with no or little risk (given the pose is stable in itself). Therefore, we do
not perform a detailed motion planning of the robot’s actuator configurations for
flat segments. However, rough regions require an additional planning of the robot’s
actuator controls and the consideration of the stability to ensure safety and task
completion. This planning phase and the metrics used are described in more detail
in Sect. 10.6. In regions with higher risk values but still convenient slopes we reduce
the velocity of the robot.

Distinguishing between flat and rough areas during this planning stage allows us
to speed up planning since we are avoiding unnecessary planning in a high dimen-
sional space for easily accessible parts of the environment. However, we ensure the
stability and safety of the robot through a detailed planning step for rough path seg-
ments. Disregarding the robot’s state and using the operating limits simplifies the
traversability assessment; hence, the initial path search is fast.

10.6 Metrics for Planning in Rough Areas

Compared to flat environments, driving on rough terrain is more challenging and
exposes the mobile robot to a greater risk. Therefore, using simply the operating
limits of the robot is not sufficient. We need to consider the complete robot config-
uration including actuator values to estimate the robot’s stability and traction. The
configuration of a reconfigurable robot may look like

(x, y, z, θ,ψ,φ, v,ω, v̇, ω̇, a1, . . . , an) ,

where the first part describes the 6D pose of the robot. The translational and rotational
velocities are v and ω, and the corresponding accelerations are depicted by v̇ and ω̇.
ai are the control values of n actuators. The stability or the contact points with the
environment may also be included in this state. Reducing the state vector to the
controllable part leads to
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(x, y, θ, v,ω, v̇, ω̇, a1, . . . , an) .

The controllable states still build a large and high dimensional search space, which
cannot be searched exhaustively. Therefore, we introduce a graph-based approach
using the initial path as basis to restrict the space of robot states to a tube around
this path (right images of Fig. 10.4). We assume that the best path with respect
to the complete robot configurations complies with or is close to the initial path.
This assumption mostly holds. It would be violated primarily if time consuming
actuator movements are necessary by which no distance is gained. This rarely happens
since, first, we favor simultaneous execution of movements (as described later) and,
second, the initial path prefers less risky routes which generally require less actuator
movements. Also the best path considering the robot’s entire configuration must be
a fast path too.

By using a subsequent planner to refine the path in rough areas, we are able to
apply another cost function. This, in turn, allows us to increase the importance of
the robot’s safety. The detailed motion planning accounts for the system’s stability
and traction and for the time consumed by rotation and actuator movements in order
to prevent unnecessary actions. Since the robot’s speed is very low when traversing
hazardous areas, we neglect forces and dynamic stability for now. The terms of the
cost function for this planning phase can be divided into a safety term and a time
term.

First, we define the state graph Gs = (Vs, Es) which models a discrete subspace
Xs ≥ X of the state space. Each vertex vi ∈ Vs corresponds to a state xi ∈ Xs .
Each edge eij ∈ Es models a valid transition from state xi to x j . The validity of
a transition is subject to the movement constraints of the robot model. The edge
weights are given by the cost function derived in this section. In the following we
will use the state space notation to introduce the metrics.

10.6.1 System Safety Metric

The safety of the system is affected by several factors. We incorporate the roughness
quantification, the system stability and an estimate of the traction into the safety
metric. To quantify these values we approximate the robot’s footprint by the best
fitting plane using a least-squares method.

System Stability. We assess the static stability of the robot using the Normalized
Energy Stability Margin (NESM), see [8] for a comparative overview of several
stability margins. In contrast to the commonly used projection of the center of mass
onto the supporting polygon, the NESM directly provides a notion of quality.

We will give a short overview of the Normalized Energy Stability Margin, for a
detailed discussion see [10]. The NESM basically indicates the amount of energy
which must be applied to tip the robot over the “weakest” edge of the supporting
polygon. It is derived from the Energy Stability Margin (ESM) [16], see Fig. 10.5.
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Fig. 10.5 Illustration of the Energy Stability Margin. F1 and F2 represent a border of the supporting
polygon, i.e. a rotation axis within the plane p. R is the vector from the border to the center of mass
(C M). Θ depicts the angle between R and the vertical plane and ψ the inclination of the rotation axis
with respect to the horizontal plane. R∀ is obtained by rotating R around the rotation axis until it is
contained in plane p. D is computed through D = |R|(1−cos(Θ)) and h = |R|(1−cos(Θ))·cos(ψ)

provides the energy stability level. Finally, the NESM is defined as s = mini (hi ) with hi being the
normalized energy level of the i th edge of the supporting polygon

The rotation axis is given by F1 and F2 as a border of the supporting polygon
within the plane p. R is the vector from the border to the center of mass (CM). The
angle between R and the vertical plane is given by Θ , and ψ depicts the inclination
of the rotation axis with respect to the horizontal plane. R∀ is obtained by rotating
R around the rotation axis until it is contained in plane p. D is computed through
D = |R|(1 − cos(Θ)). Finally,

h = |R|(1 − cos(Θ)) · cos(ψ) (10.2)

provides the energy stability level for the given rotation axis. The NESM is now
defined as

s = mini (hi ), (10.3)

where hi is the normalized energy level with respect to the i th boundary of the
supporting polygon. Our stability cost is the stability of a robot state x , i.e.
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Fig. 10.6 Illustration of cost parameters. a Stability, b Traction, c Translation distance, d Rotation
distance, e Actuator distance

S = 1 − ξs · s(x), (10.4)

where ξs = 1
smax

is a normalization term using the maximal stability value of a given
robot model to scale the cost to [0, 1].

The computation of the stability of the system depends on the accuracy of the
center of mass. Therefore, we compute the distributed center of mass, as

C M =
n∑

i=1

ci · mi , (10.5)

where C M is the position of the center of mass of the system. ci and mi are the
centers of mass and the masses of the n body parts, i.e. the chassis and the actuators.
Thereby, we can determine the center of mass with respect to the actuator positions
which increases the accuracy of the position of the center of mass (Fig. 10.6a).

Due to the minimum function in the stability margin the stability value may stay
the same for several actuator positions. In order to reach a more stable configuration
the robot might have to perform a sequence of actuator movements which do not have
an immediate gain in stability. Therefore, we need another quantity which helps to
pass through such sequences. We decided to use an estimate of the robot’s traction.

Traction Estimate. The traction of the robot is increasingly important when travers-
ing rough terrain or obstacles. However, we do not want to use any information about
the surface properties because maps with information accurate enough to aid plan-
ning are very hard to obtain. Therefore, we estimate the actuators’ ground contact
as an indicator of the traction. The ground contact of an actuator ak is defined as its
angle to the surface (Fig. 10.6b). Then, the traction cost T of a state x ∈ Xs is given
as the average over those n angles.

T = ξt · 1

n

n∑
k=1

ψ(ak), (10.6)

whereψ(ak) is a function providing the angle to the surface of an actuator ak . ξt = 1
π/2

normalizes the cost to [0, 1]. Hence, the smaller the angle, the greater the estimated
traction, the safer the robot state in terms of traction. Note, measuring the ground
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contact of the actuators in terms of their angle to the surface provides a qualitative
measure of the traction. It can be viewed as an indicator for traction as the traction
between two objects generally increases with the contact area between those objects.
Also, this estimate serves our purpose of lowering the robot’s actuators on rough
terrain.

The combination of the stability cost, the traction cost and the risk value of the
roughness quantification constitutes the safety term csafety of our cost function. Given
two states xi , x j ∈ Xs the safety cost is defined as

csafety(i, j) = rij + 1
2 (Sij + Tij )

2
, (10.7)

where rij = 1
2 (ri + r j ) is the average risk of both states. Similar, Sij = 1

2 (Si + S j ) is
the average stability cost of both involved states, and Tij = 1

2 (Ti + Tj ) is the average
traction cost.

10.6.2 Execution Time Metric

Besides a save path we also want to find a fast path to the goal. In addition to the initial
path search, we consider the time required for rotation and actuator movements. The
three quantities are illustrated in Fig. 10.6c–e. For the initial path search we defined
the translational velocity as a function of the maximum velocity and the roughness.
Since we now have a better understanding of the risk of a robot state, we use the
safety cost csafety of the previous section to adjust the velocity.

tv(i, j) = ξv · dij

max
(
vmin, (1 − w · csafety(i, j)) · vmax

) , (10.8)

where dij is the distance between xi and x j , and vmin and vmax are the minimal and
maximal forward velocity, respectively. w ∈ [0, 1] is the safety weight of the second
planning phase and controls the impact of the state safety on the planning. This term
is also normalized to [0, 1] using ξv = 1

maxi, j tv
.

The maximal physically possible rotational velocity depends on the ground con-
tact of the robot’s actuators. For instance, if the actuators of the Telemax robot
(Fig. 10.1) are completely stretched with a total length of 1.2 m, rotating is practically
impossible. We performed several experiments to determine the rotational velocities
given the actuator positions and composed a look-up table (for continuous values
this would be a function). Please note, the quantities are sufficient for planning at
this level of detail, even though they are experimentally established on flat ground
and different surface frictions are neglected. The essential information these values
provide is that the maximum rotational velocity varies with the robot configura-
tion, and some configurations are more qualified for turning than others. Using this
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information the time required for turning from state xi to state x j is given by

tω = tω(i, j) = ξω · |θi − θ j |
1
2 (ω(ai ) + ω(a j ))

, (10.9)

where θi and θ j are the orientations of the poses corresponding to xi and x j , respec-
tively. ω(·) provides the rotational velocity of an actuator configuration, i.e. in our
case the value of the look-up table. Further, ai and a j are the actuator configurations
of xi and x j , respectively. ξω = 1

maxi, j tω
normalizes the time values to [0, 1].

Similar to the previous formulas, we define the cost of the actuator movements as
the normalized movement time.

ta = ta(i, j) = ξa · max
k

( |ai,k − a j,k |
vk

)
, (10.10)

where ai,k and a j,k are the values of the kth actuator of xi and x j , respectively. vk is the
actuator velocity of the kth actuator. Again, ξa = 1

maxi, j ta
scales the values to [0, 1].

To save execution time we would like the system to perform actions simulta-
neously. Therefore, the formulation of the time value of our cost function favors
simultaneous execution by implementing the triangle inequality. We omitted the
state variables i and j for simplicity.

ctime(i, j) = t2
v + t2

ω + (1 − w · csafety)
2 · t2

a

tv + tω + (1 − w · csafety) · ta
. (10.11)

The time value measuring the actuator movements is scaled by the inverse safety
cost since in hazardous areas and especially in unstable states we want the system
to apply actuator adjustments which improve the robot state even if they are time
consuming. Note, this cost function is only applied in rough regions and may not be
applicable in flat areas. In flat areas actuator movements are generally unnecessary
and solely introduce costs, thus, should not be favored.

The cost function used to determine the edge weights consists of the safety metric
and the time measure. The trade-off between safety and speed can be adjusted by
w ∈ [0, 1] for different mission goals. Given two neighboring states xi , x j ∈ Xs the
cost of the transition is defined by

c(i, j) = w · csafety(i, j) + (1 − w) · ctime(i, j). (10.12)

Note, since all quantities are normalized, the value of the cost function is also
bound to [0, 1]. It is important to state here, that even though we introduced several
normalization terms, the only arbitrary values are the tube size, the minimal velocity
vmin and the safety weights wis and w. All other values are identified by the robot
model and its abilities. Using a graph-based model with the defined edge weights
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Fig. 10.7 Influence of the safety weight of the detailed motion planning step on the execution time
and safety of the path. The top images show the two paths used for evaluation, the second row shows
the safety costs and the third row the execution time with respect to the safety weight

allows us to perform a Dijkstra search on the state graph Gs to find the most stable,
yet, fastest path to the goal considering the complete robot state.

While the safety weight of the initial path search determines the primary course
of the final path, the safety weight of the detailed motion planning step w influences
the driving velocity and the applied actuator configurations. With growing impor-
tance of the robot safety the translational velocity decreases and changing actuator
positions becomes cheaper. Also, the time required to move the actuators amplifies
the execution time. Therefore, with an increasing safety weight the execution time
rises and the safety cost declines (Fig. 10.7). For these experiments we restricted the
detailed motion planning to the initial path in order to prevent the path adjustments
within the tube to disturb the results and to build a common basis for the comparison.
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Fig. 10.8 The two real-world scenarios. The images show two pictures of a hill of rubble and the
“testing hill”, the point clouds and the processed maps. The sizes of the maps are 36.4 m× 30.45 m
and 43.95 m× 32.95 m, respectively. a First Scenario: Hill of Rubble. b Second Scenario: “Testing
Hill”

10.7 Experimental Results

In this section we present tests on real-world maps with a real robot to prove that our
metrics and plans are valid and executable. To the best of the authors’ knowledge,
there are no other approaches which aim at overcoming arbitrary obstacles with
similar reconfigurable robots. Hence, we do not provide a comparison with other
approaches. However, it would be possible to compare single aspects of our metrics
but we consider this unfit to provide any insight of how well the metrics are suited
as a whole for obstacle traversal compared to others.

We performed tests with the Telerob Telemax robot (Fig. 10.1) in two different
environments (Fig. 10.8) to prove that the plans proposed by our motion planner are
valid and executable by a real robot. Both maps were recorded using a laser range
finder and were subsequently filled and smoothed to facilitate planning. Their sizes
are 36.4 m× 30.45 m and 43.95 m× 32.95 m respectively. For these tests we used the
following values: The robot’s maximal traversable height is hmax = 0.5 m. In high
risk areas it is allowed to drive vmin = 0.2 m/s and on flat ground vmax = 1.2 m/s.
The discretization of the maps was 5 cm and the window size of the filters is 20 × 20
cells. The resolution of the motion graph was 30 cm (half the robot length), and we
considered 8 orientations in each point (corresponding to a resolution of 45≡). By
taking half the robot length we do not need to perform intermediate validity tests
between two neighboring positions. With respect to the actuator values, both front
and both rear actuators were required to be the same. Further, the positions were
limited to [−45≡, 45≡] in steps of 15≡. The safety weights were set to wis = 0.75
and w = 0.5.

On the two outdoor environments, we performed several planning queries of which
we present two, one for each map. Figure 10.9 shows the planned paths and example
pictures of the execution by our robot. In the first scenario (Fig. 10.9a) the robot had
to cross the hill of rubble through the dips, avoiding the high risk elevations. The
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Fig. 10.9 Results of the real-world experiments. The first images depict the plan given to the robot.
The other images show the robot during the execution. If the robot safety permits, configurations
are sometimes applied in advanced or while in motion to avoid stop-and-go movement. a First
Scenario: Hill of Rubble. b Second Scenario: “Testing Hill”

robot was able to follow the proposed path while the planned actuator configurations
prevented the robot from falling over. Problems during the execution where related
to the small-grained material of the rubble, which caused the robot to slip casually.
Equally, our robot traversed the “testing hill” of the second scenario given the motion
plan (Fig. 10.9b). The localization was solely based on GPS. This, in combination
with the inaccuracy of the map, made it difficult for the controller to determine which
part of the plan must be executed.

However, in general, the robot was able to execute all plans of our motion planning
algorithm and successfully traversed the obstacles. Further, the proposed configu-
rations proved to be suited to ensure the safety of the robot. Problems during the
execution were related to terrain parameters or to inaccuracy of the sensor data.

10.8 Conclusions and Future Work

In this chapter we present different metrics used by our hierarchical motion planner
for reconfigurable robots on rough terrain. By introducing a two-phase planner we
are able to use two different cost functions: one to find a low-risk path to the goal and
another suited to achieve safe robot configurations along the path. The metrics include
a roughness quantification, the robot’s stability and traction and the time required
for position and configuration changes. Several experiments prove the validity and
applicability of our measures.
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We will concentrate future work on a more comprehensive search of the state
space by, for instance, using optimal sampling-based algorithms for the detailed
motion planning. We also focus on overcoming more complex obstacles with sharp
edges of heights up to 40 cm. This will require a more detailed identification of the
robot’s contact with the surface to achieve a more accurate estimation of the robot
pose. Also new metrics and a more sophisticated controller may be needed to cope
with the arising challenges.
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Chapter 11
A Combined Direct and Indirect Adaptive
Control Scheme for a Wheeled Mobile Robot
using Multiple Models

Altan Onat and Metin Ozkan

Abstract This chapter presents a method about trajectory tracking control of a
nonholonomic wheeled mobile robot. The main focus of the chapter is to improve
the transient response for the trajectory tracking control of mobile robots including
dynamic parameter uncertainties. An adaptive combined direct and indirect control
scheme is used for compensation of tracking errors in case of dynamic parameter
uncertainties. The transient behavior for the adaptive tracking control is improved by
a multiple models approach. The overall control system includes both a kinematic and
dynamic controller. The kinematic controller produces linear and angular velocities
required for mobile robot to track desired trajectory. The combined direct and indirect
adaptive dynamic controller with adaptive multiple identification models takes these
velocities as inputs and produces torques that will be applied to the robot. Simulation
results indicate effectiveness of the proposed control scheme.

Keywords Combined direct and indirect adaptive control · Trajectory tracking
control · Mobile robots · Multiple models approach

11.1 Introduction

Tracking control of wheeled mobile robots (WMR) is one of the most attractive
research areas for the several decades, and many wheeled mobile robot models and
control schemes have been presented. Generally, the aim of such schemes is either
to utilize a kinematic trajectory tracking controller or to construct and integrate

A. Onat (B)

Electrical and Electronics Engineering Department, Anadolu University, Eskisehir, Turkey
e-mail: altanonat@anadolu.edu.tr

M. Ozkan
Computer Engineering Department, Eskisehir Osmangazi University, Eskisehir, Turkey
e-mail: meozkan@ogu.edu.tr

J.-L. Ferrier et al. (eds.), Informatics in Control, Automation and Robotics, 167
Lecture Notes in Electrical Engineering 283, DOI: 10.1007/978-3-319-03500-0_11,
© Springer International Publishing Switzerland 2014



168 A. Onat and M. Ozkan

kinematic and dynamic controllers for the robot to track a desired trajectory.
Kanayama et al. [1] proposed a control rule to find reasonable target linear and rota-
tional velocities for a stable tracking control. An integrated kinematic controller and
a torque controller with a dynamic extension for a nonholonomic mobile robot have
been presented in [2]. Yun and Yamamoto [3] have studied feedback linearization
of a wheeled mobile robot and its dynamic system. A complete dynamic model of a
wheeled mobile robot which makes it suitable to consider rotational and translational
velocities as control signals has been given by [4].

For tracking control of wheeled mobile robots, there are some studies which use
adaptive control framework. Martins et al. [5] have proposed an adaptive controller
to guide a wheeled mobile robot during trajectory tracking. In this study reference
velocities are generated using a kinematic model, and then these values are processed
to compensate for the robot dynamics. An adaptive trajectory tracking controller for
a nonholonomic wheeled mobile robot with a nonlinear control law based on input-
output feedback linearization has been proposed by [6]. Zhengcai et al. [7] has studied
an adaptive kinematic controller to generate the command of velocity based on back-
stepping method. Similarly, a new kinematic adaptive controller integrated with a
torque controller for the dynamic model of a nonholonomic wheeled mobile robot
has been proposed by [8]. Pourboghrat and Karlsson [9] has used adaptive control
rules for the dynamic control of nonholonomic wheeled mobile robots with unknown
dynamic parameters and a fixed posture backstepping technique for tracking a ref-
erence trajectory and stabilization. Petrov [10] has proposed an adaptive dynamic
based path control for a differential drive mobile robot.

In all of the studies previously mentioned provide convergence proofs. However,
they did not focus on transient behavior and when the parameter errors are very
large, the transient response of the system may include unacceptably large peaks.
Although the system is asymptotically stable, the adaptive control approach may be
inapplicable for some systems due to the transient peaks. To overcome this difficulty,
enhancement of the transient response using multiple models and switching has been
proposed for linear systems by [11]. Multiple models and switching for nonlinear
systems have also been presented in several studies. Narendra and George [12] has
presented a multiple model, switching and tuning methodology which improves the
transient performance for a class of nonlinear systems. A novel approach which
makes use of multiple identification models and switching based on direct adaptive
control scheme has been proposed by [13]. Besides composite approach where both
prediction and tracking errors are used in a combined direct and indirect adaptive
control framework has been studied by [14, 15]. Ye [16] has studied a multiple
model adaptive controller for nonlinear systems in parametric-strict-feedback form.
Transient performance improvement for adaptive control of a class of single-input
single-output (SISO) nonlinear systems, by using multiple models and switching has
been considered by [17–19]. Ciliz and Narendra [20], Ciliz and Tuncay [21] have
used multiple models approach in adaptive control of robotic manipulators.

The purpose of this chapter is to present an integrated kinematic and dynamic
controller for trajectory tracking of a wheeled mobile robot which includes parametric
uncertainties in the dynamics. A composite approach where both prediction and
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Fig. 11.1 Wheeled mobile
robot

tracking errors are used in a combined direct and indirect adaptive control framework
with multiple identification models and switching are used for the estimation of
uncertainties in the dynamics. In the literature, there are few works which makes
use of the multiple models based approach for the control of wheeled mobile robots.
De La Cruz and Carelli [22] have proposed a switching control for novel tracking and
positioning adaptive control of wheeled mobile robots that uses multiple parameter
updating laws with different gains. A method that utilizes multiple models of the
robot for its identification in an adaptive and learning control framework has been
presented by [23].

11.2 Kinematics and Dynamics

The model of a wheeled mobile robot (Fig. 11.1) which is subjected to m constraints
may be derived as

M(q)q̈ + C(q, q̇)q̇ = B(q)Γ + AT (q)∂ (11.1)

where q ≡ Rn is generalized coordinates, Γ ≡ Rr is the input torque vector, ∂ ≡ Rm is
the vector of constraint forces, M(q) ≡ Rn×n is a symmetric positive-definite inertia
matrix, C(q, q̇) ≡ Rn×n is coriolis matrix, B(q) ≡ Rn×r is the input transformation
matrix, and A(q) ≡ Rm×n is the matrix associated with the constraints (Table 11.1).
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Table 11.1 Model parameters of nonholonomic wheeled mobile robot

Parameter Description

r Driving wheel radius
2b Distance between two wheels
d Distance point Pc from point P0

a Distance from P0 to Pa

mc The mass of the platform without the driving wheels and the rotors of the DC motors
mw The mass of each driving wheel plus the rotor of its motor
IC The moment of inertia of the platform without the driving wheels and the rotors of the

motors about a vertical axis through Pc

Iw The moment of inertia of each wheel and the motor rotor about the wheel axis
Im The moment of inertia of each wheel and the motor rotor about a wheel diameter

Assuming that the velocity of P0 is in the direction of x-axis of the local frame
and there is no side slip, and considering q = [

x0 y0 δ
⎧T , the following constraint

with respect to P0 is obtained

ẋ0 sin δ − ẏ0 cos δ = 0 (11.2)

By writing this constraint in matrix form, matrices A(q) and S(q) are given by

A(q) = [
sin δ − cos δ 0

⎧
, S(q) =

⎨
⎢

cos δ 0
sin δ 0
0 1

⎪
⎡ (11.3)

Therefore it can be written as
A(q) · S(q) = 0 (11.4)

It is possible to write the kinematic equation of the wheeled mobile robot in terms
of the pseudo velocities vector V(t) ≡ Rn−m as

q̇ = S(q) · Π(t) (11.5)

where Π(t) ≡ [
Π(t) ω(t)

⎧T is linear and angular velocities. The time derivative of
(11.5)

q̈ = Ṡ(q) · Π + S(q) · Π̇ (11.6)

Next, by replacing (11.5) and (11.6) in (11.1) and multiplying the result by ST and
considering (11.4), the following equation can be obtained

MΠ̇(t) + C(Π)Π(t) = B(q)Γ (11.7)

where M = ST MS, C = ST (MS + CS) and B = ST B. By denoting B(q)Γ as Γ



11 A Combined Direct and Indirect Adaptive Control Scheme 171

MΠ̇(t) + C(Π)Π(t) = Γ (11.8)

M and C matrices obtained as follows:

M =
⎣

m 0
0 I

⎤
, C =

⎣
0 mcdδ̇

−mcdδ̇ 0

⎤
(11.9)

where m = mc + 2mW and I = IC + 2Im + mCd2 + 2mW b2. There is a parametric
vector θ on dynamics that satisfies

MΠ̇(t) + C(Π)Π(t) = Y(q, q̇, Π, Π̇)θ (11.10)

where the parameters θi, i = 1, . . . , 4 are bounded and defined as follows

θ1 = m, θ2 = I, θ3 = mcd (11.11)

11.3 Control Scheme

11.3.1 Kinematic Controller

In this study, a kinematic controller presented in [5] is used. The kinematic controller
is based on kinematic model of the robot. Robot’s kinematic model is given by

⎨
⎢

ẋ
ẏ
δ̇

⎪
⎡ =

⎨
⎢

cos δ −a sin δ

sin δ a cos δ

0 1

⎪
⎡

⎣
Π

ω

⎤
(11.12)

where x, y are the coordinates of the point of interest Pa, and the outputs. Hence

h =
⎣

ẋ
ẏ

⎤
=

⎣
cos δ −a sin δ

sin δ a cos δ

⎤ ⎣
Π

ω

⎤
= T

⎣
Π

ω

⎤
(11.13)

T =
⎣

cos δ −a sin δ

sin δ a cos δ

⎤
(11.14)

The inverse of the matrix T is

T−1 =
⎣

cos δ sin δ

− 1
a sin δ 1

a cos δ

⎤
(11.15)

Therefore, the inverse kinematics is given by
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Fig. 11.2 Block diagram of the control architecture

⎣
Π

ω

⎤
=

⎣
cos δ sin δ

− 1
a sin δ 1

a cos δ

⎤ ⎣
ẋ
ẏ

⎤
(11.16)

and the proposed kinematic controller is given by

⎣
Πref
ωref

⎤
=

⎣
cos δ sin δ

− 1
a sin δ 1

a cos δ

⎤ ⎨
⎢ ẋd + Ix tanh

⎦
kx
Ix

x̃
⎞

ẏd + Ix tanh
⎦

ky
Iy

ỹ
⎞

⎪
⎡ (11.17)

Here, x̃ = xd − x, and ỹ = yd − y are the current position errors in the direction of
x − axis and y − axis, respectively. kx > 0 and ky > 0 are the gains of the controller,
Ix ≡ R, and Iy ≡ R are the saturation constants, and (x, y) and (xd, yd) are the current
and the desired coordinates of the point of interest, respectively. The purpose of this
controller is to generate the reference linear and angular velocities for the dynamic
controller as shown in Fig. 11.2.

11.3.2 Adaptive Dynamic Controller

Let us define a Proportional-Integral (PI) filtered velocity tracking error signal [24]
as

s = eΠ + ∂

⎠
eΠdt (11.18)
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where ∂ is a positive definite control gain and velocity tracking error is defined as

eΠ = Πd − Π (11.19)

Taking the derivative of (11.18),

ṡ = ėΠ + ∂eΠ (11.20)

can be obtained. Considering (11.8) and adding these PI filtered error terms yields

Mṡ + C(Π)s = Y2(Πd, Π̇d)θ − Γ (11.21)

where

Y2(Πd, Π̇d)θ = M(Π̇d + ∂eΠ) + C(Π)(Πd + ∂

⎠
eΠdt) (11.22)

To determine the control law, and adaptive parameter update rule, consider the fol-
lowing Lyapunov like function

V = 1

2
sT Ms + θ̃T �−1θ̃ (11.23)

and differentiating this function with respect to time

V̇ = 1

2
sT Ṁs + sT Mṡ + θ̃T �−1 ˙̃

θ (11.24)

By taking Mṡ from (11.21) and substituting into (11.24), the equation becomes

V̇ = sT (
Y2(Πd, Π̇d)θ − Γ − C(Π)s

) + 1

2
sT Ṁs + θ̃T �−1 ˙̃

θ (11.25)

By choosing the control law

Γ = Y2(Πd, Π̇d)θ̂ + KΠs (11.26)

and inserting this control law to (11.25) the following equation can be obtained

V̇ = sT Y2(Πd, Π̇d)θ̃ − sT KΠs + 1

2
sT

⎦
Ṁ − 2C(Π)

⎞
s + θ̃T �−1 ˙̃

θ (11.27)

Reader should note that the matrix Ṁ −2C(Π)is a skew-symmetric matrix. By choos-
ing the following parameter update rule as

˙̃
θ = −�

(
YT

1 (q,

⎠
Π, Π)Γ̃ f + YT

2 (Πd, Π̇d)s

)
(11.28)
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with an identification error model

Γ̃ f = Y1(q,

⎠
Π, Π)θ̃ (11.29)

and inserting (11.28) into (11.27)

V̇ = sT Y2(Πd, Π̇d)θ̃ − sT KΠs + 1
2 sT

⎦
Ṁ − 2C(Π)

⎞
s

+ θ̃T �−1
⎦
−�

⎦
YT

1 (q,
∫

Π, Π)Γ̃ f + YT
2 (Πd, Π̇d)s

⎞⎞ (11.30)

where Y1(q,
∫

Π, Π) is the filtered regressor matrix and Γ f is the filtered torque term
as given in [20]. Rearranging (11.29)

V̇ = −sT KΠs + 1

2
sT

⎦
Ṁ − 2C(Π)

⎞
s − θ̃T YT

1 (q,

⎠
Π, Π)Γ̃ (11.31)

can be obtained. By considering (11.29) and inserting it to (11.31)

V̇ = −sT KΠs + 1

2
sT

⎦
Ṁ − 2C(Π)

⎞
s − θ̃T YT

1 (q,

⎠
Π, Π)Y1(q,

⎠
Π, Π)θ̃ (11.32)

can be obtained. It should be noted that V̇ is negative definite. It can be stated that Π

in (11.23) is upper bounded and that M(q) is a positive definite matrix also it can be
stated that s and θ̃ are bounded. Standard linear control arguments can be used to state
that eΠ and

∫
eΠ are bounded. Since eΠ,

∫
eΠ, s, θ̃ are bounded it can be shown that ṡ

and V̇ are also bounded. The reader should note that since M(q) is lower bounded, it
can be stated that V is also lower bounded. Since V̇ is lower bounded, V is negative
definite and V̇ is bounded, the Barbalat’s Lemma can be used to state that

lim
t∈→ V̇ = 0 (11.33)

which means that by Rayleigh-Ritz Theorem

lim
t∈→ ∂min {KΠ} ∞s∞2 = 0 or lim

t∈→ s = 0 (11.34)

Using the standard linear control arguments, the following can be written

lim
t∈→

⎠
eΠ = 0 and lim

t∈→ eΠ = 0 (11.35)
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11.3.3 Adaptive Dynamic Controller with Multiple Models

At any given instant identification errors of all the models are available, but only
one of the torque vectors will be chosen as inputs. Identification models have the
following structure

Γ̂ j = M̂j Π̇(t) + Ĉj(Π)Π(t) = Y(q, q̇, Π, Π̇)θ̂j (11.36)

where j = 1, . . . , N , θ̂j denoting the parameter estimate vector and Y(q, q̇, Π, Π̇) is
the non-linear regressor matrix. The regressor matrix common to all models, but the
parameter vector θ̂j has different initializations chosen from a given compact parame-
ter set. Using the filtering technique previously mentioned nonlinear regressor matrix
without acceleration signal can be obtained and will be denoted as Y1(q,

∫
Π, Π). Each

model is updated using simple gradient algorithm as it is in single model case:

˙̃
θj = −�(YT

1 (q,

⎠
Π, Π)Γ̃ fj + YT

2 (Πd, Π̇d)s) (11.37)

based on the error model which is defined as,

Γ̃ fj = eIj = Γ f − Γ̂ fj = Y1(q,

⎠
Π, Π)θ̃j (11.38)

where Γ̃ f is the filtered torque prediction error. Y2(Πr, Π̇r) is the regressor matrix com-
mon to all models which is given in (11.22). The torque vector Γ j of j th identification
model is given as:

Γ j = Y2(Πd, Π̇d)θ̂j + KΠs (11.39)

Substituting (11.39) and (11.21) into (11.8), the closed loop dynamics can be obtained
as:

Mjṡ + Cj(Π)s + KΠs = M̃j(Π̇d + ∂eΠ) + C̃j(Π)(Πd + ∂

⎠
eΠ) (11.40)

which can further be written as

Mjṡ + Cj(Π)s + KΠs = Y2(Πd, Π̇d)θ̃j (11.41)

At any given instant identification errors of the N models are available, but only one
of the torque vectors Γ j will be chosen as the input to the WMR.

In order to choose a switching criterion, first a permissible switching sequence and
a switching rule must be given as in [14, 20]. A finite or infinite sequence Ti : Ti ≡ R+
is defined as a switching sequence if T0 = 0 and ≥i, Ti < Ti+1. Additionally, if there
is a number Tmin > 0 such that ≥i, Ti+1 − Ti ∀ Tmin, then the sequence is called
permissible switching scheme.
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A switching rule is a function of time that takes on values in the set 1, . . . , N
is constant in

[
Ti, Ti+1) and is continuous from right. In other words, a function

h(t) : R+ ∈ 1, . . . , N is called switching rule, if there exists a switching sequence
Tii=0 such that if t ≡ [

Ti, Ti+1) for some i < →, then h(t) = h(Ti). With this
definition torque input in (11.21) can be defined as:

Γ(t) = Γ h(t)(t) t ∀ 0. (11.42)

The torque vector combined with a permissible switching rule given as

Γ h(t) = Y2h(t) (Πd, Π̇d)θ̂j + KΠs (11.43)

For the proof of stability, the same procedure will be followed as in the single model
case. The additional requirement is that under any permissible switching rule, all
signals should remain bounded. We have a Lyapunov like function

Vj = 1

2
sT Mjs + θ̃T

j �−1θ̃j (11.44)

By following the same procedure as in single model case the derivative of (11.44)
can be obtained as in the following equation

V̇j = −sT KΠs + 1

2
sT

⎦
Ṁj − 2Cj(Π)

⎞
s − θ̃T

j YT
1 (q,

⎠
Π, Π)Y1(q,

⎠
Π, Π)θ̃j (11.45)

Note that the matrix Ṁj −2Cj(v) is a skew-symmetric matrix. As in the single model
case V̇j is negative definite. It can be stated that Vj in (11.44) is upper bounded and
that Mj(q) is a positive definite matrix. It can be stated that s and θ̃j are bounded.
Standard linear control arguments can be used to state that eΠ and

∫
eΠ are bounded.

Since eΠ,
∫

eΠ, s, θ̃ are bounded it can be shown that ṡ and V̇j are also bounded. The
reader should note that since Mj(q) is lower bounded, it can be stated that Vj is also
lower bounded. Since V̇j is lower bounded, Vj is negative definite and V̇j is bounded,
the Barbalat’s Lemma can be used to state that

lim
t∈→ V̇j = 0 (11.46)

which means that by Rayleigh-Ritz Theorem

lim
t∈→ ∂min {Kv} ∞s∞2 = 0 or lim

t∈→ s = 0 (11.47)

Using the control arguments as in single model case the following can be written

lim
t∈→

⎠
eΠ = 0 and lim

t∈→ eΠ = 0 (11.48)
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11.3.4 Proof of Stability for the Kinematic Controller

For the details of the proof, readers may read [5]. By considering (11.13) and (11.14):

⎣ ˙̃x
˙̃y
⎤

+
⎣

Ix 0
0 Iy

⎤ ⎨
⎢

tanh
⎦

kx
Ix

x̃
⎞

tanh
⎦

ky
Iy

ỹ
⎞

⎪
⎫⎡ =

⎣
ε1
ε2

⎤
(11.49)

One can see that the error vector ε can also be written as Te, where e is the velocity
tracking error and matrix T is defined previously. Rewriting (11.49)

˙̃h + L(h̃) = Te, L(h̃) =
⎣

Ix 0
0 Iy

⎤ ⎨
⎢

tanh
⎦

kx
Ix

x̃
⎞

tanh
⎦

ky
Iy

ỹ
⎞

⎪
⎫⎡ (11.50)

Now considering Lyapunov candidate function and its derivative

V = 1
2 h̃T h̃,

V̇ = h̃T ˙̃h = h̃T
⎦

Te − L(h̃)
⎞ (11.51)

and a sufficient condition for V̇ < 0 can be expressed as

h̃T L(h̃) >

⎬⎬⎬h̃T Te
⎬⎬⎬ (11.52)

For small values of the control error h̃ following can be written

L(h̃) ∗ Kxyh̃, . . . Kxy =
⎣

kx 0
0 ky

⎤
(11.53)

Now the sufficient condition for V̇ < 0 can be written as

h̃T Kxyh̃ >

⎬⎬⎬h̃T Te
⎬⎬⎬ , min(kx, ky)

⎭⎭⎭h̃
⎭⎭⎭

2
>

⎭⎭⎭h̃
⎭⎭⎭ ∞Te∞ ,

⎭⎭⎭h̃
⎭⎭⎭ >

∞Te∞
min(kx, ky)

(11.54)

It is shown that e tend to zero as t ∈ →, which implies that condition in (11.43) is
verified for any value of h̃. Thus, h̃(t) ∈ 0 as t ∈ →.
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11.3.5 Switching Criterion

A cost function is considered in the form

Jj(t) = eIj (t)
T G1eIj (t) +

t⎠

0

e−∂(t−Γ)eIj (t)
T G2eIj (t)dΓ (11.55)

where Jj is the cost function of the j th model, eIj is the identification error associated
with the j th model, G1, G2 ≡ Rn×n are positive (semi)-definite weight matrices and
∂ ∀ 0 is a scalar forgetting factor. Ja is denoted as the cost function of the current
model. If Ja(t) > Jj(t) with defined switching sequence, it means that adaptive model
must be switched to the jth model according to the switching criterion.

11.4 Simulations

In simulations, a wheeled mobile robot tracks a trajectory given by

xr = xg + 2ωr t, yr = yg + sin (2ωr t) (11.56)

where xg = 0, yg = 2, and ωr = 0.04. Initially robot x0 = 0 and y0 = 1 and robot
has zero velocities and δ = π/2.

Wheeled mobile robot parameters taken as Im = 0.0025 Kg.m2, Ic = 15.625
Kg.m2, r = 0.15 m, b = 0.75 m, a = 0.3 m, d = 0.3 m, L = 0.1 m, mw = 1 Kg,
mc = 36 Kg, Iw = 0.005 Kg.m2, Kv = 10, ∂ = diag(10, 10), � = diag(2, 2, 2),
α = 1, kx = 10, ky = 10, Iy = 1, Ix = 1. Switching sequence has a time step of
5 ms.

The real values of the unknown parameters are θ = [ 38 19.95 10.8 ]T , and the

initial estimates for the parameters are θ̂ = [ 20 7 3 ]T .
In order to show effectiveness of the developed solution, ten identification models

have been chosen as

θ̂1 = [ 29 11 5 ]T , θ̂2 = [ 32 14 7 ]T , θ̂3 = [ 35 17 9 ]T , θ̂4 = [ 38 20 11 ]T ,

θ̂5 = [ 41 23 13 ]T , θ̂6 = [ 44 26 15 ]T , θ̂7 = [ 47 29 17 ]T , θ̂8 = [ 50 32 19 ]T ,

θ̂9 = [ 53 35 21 ]T , θ̂10 = [ 56 38 23 ]T .

It can be seen from the figures that proposed control approach enhances the perfor-
mance of both velocity tracking and trajectory tracking.
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Fig. 11.3 Trajectories for single and multiple model case: (left) wide view, (right) close view

Fig. 11.4 Linear velocity tracking error for both single and multiple model case: (left) wide view,
(right) close view

11.5 Conclusions

A combined direct and indirect adaptive control scheme with a multiple models
approach is proposed for the trajectory tracking of a WMR. The control scheme
includes two stage controllers. The dynamic controller provides fast velocity tracking
under parameter uncertainties. The kinematic controller provides the velocity profile
needed for the trajectory tracking of the WMR in Cartesian coordinates. The sta-
bility of the overall control system was proved. The main focus was to improve the
transient response for the proposed adaptive control scheme. Simulations show that
the proposed control system is applicable to the WMR and it significantly enhances
the transient behavior during the trajectory tracking (Figs. 11.3, 11.4, 11.5, 11.6
and 11.7).
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Fig. 11.5 Angular velocity tracking error for both single and multiple model case: (left) wide view,
(right) close view

Fig. 11.6 Tracking error on the x and y axis: (left) wide view, (right) close view

Fig. 11.7 Estimated parame-
ters: (solid) single model case,
(dashed) multiple model case
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Chapter 12
Real-Time Visual Servoing Based
on New Global Visual Features

Laroussi Hammouda, Khaled Kaaniche, Hassen Mekki
and Mohamed Chtourou

Abstract This chapter proposes a new approach to achieve real-time visual servoing
tasks. Our contribution consists in the definition of new global visual features as a
random distribution of limited set of pixels luminance. The new method, based on
a random process, reduces the computation time of the visual servoing scheme and
removes matching and tracking process. Experimental results validate the proposed
approach and show its robustness regarding to the image content.

Keywords Visual servoing · Global visual features · Mobile robot

12.1 Introduction

Computer vision is progressively playing more important role in service robotic
applications. In fact, the movement of a robot equipped with a camera can be con-
trolled from its visual perception using visual servoing technique. The aim of the
visual servoing is to control a robotic system using visual features acquired by a
visual sensor [1]. Indeed, the control law is designed to move a robot so that the cur-
rent visual features s, acquired from the current pose r , will reach the desired features
s∗ acquired from the desired pose r∗, leading to a correct realization of the task.

The control principle is thus to minimize the error e = s − s∗ where is a vector
containing the current values of the chosen visual information, and s∗ its desired
values. The basic step in image-based visual servoing is to determine the adequate
set of visual features to be extracted from the image and used in the control scheme
in order to obtain an optimal behavior of the robot.
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In the literature several works were concerned with simple objects and the features
used as input of the control scheme were generally geometric: coordinates of points,
edges or straight lines [2, 3].

These geometric features have always to be tracked and matched over frames. This
process has proved to be a difficult step in any visual servoing scheme. Therefore,
in the last decade, the researchers are focused on the use of global visual features.
In fact, in [4] the visual features considered are the luminance of all image pixels
and the control law is based on the minimization of the error which is the difference
between the current and the desired image.

Others works are interested in the application of image moments in visual ser-
voing, like in [5] where the authors propose a new visual servoing scheme based
on a set of moment invariants. The use of these moments ensures an exponential
decoupled decrease for the visual features and for the components of the camera
velocity. However this approach is restricted to binary images. It gives good results
except when the object is contrasted with respect to its environment.

In [6], the authors present a new criterion for visual servoing: the mutual infor-
mation between the current and the desired image. The idea consists in maximizing
the information shared by the two images. This approach has proved to be robust
to occlusions and to very important light variations. Nevertheless, the computation
time of this method is relatively high.

The work of [7] proposes the image gradient as visual feature for visual servoing
tasks. This approach suffers from a small cone of convergence. Indeed, using this
visual feature, the robotic system diverges in the case of large initial displacement.
Another visual seroving approach which removes the necessity of features tracking
and matching step has been proposed in [8]. This method models the image fea-
tures as a mixture of Gaussian in the current and in the desired image. But, using
this approach, an image processing step is always required to extract the visual
features.

The contribution of this chapter consists in the definition of new global visual
features: random distribution of limited set of pixels luminance. Our features improve
the computation time of visual servoing scheme and avoid matching and tracking step.
We illustrate in this work an experimental analysis of the robotic system behavior in
the case of visual servoing task based on our new approach.

This chapter is organized as follows: Sect. 12.2 illustrates our new visual fea-
tures and the corresponding interaction matrix. Section 12.3 recalls the optimization
method used in the building of the control law. Section 12.4 presents the way to per-
form visual servoing for mobile robot. Finally, experimental results are presented in
Sect. 12.5.
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12.2 Random Distribution of Limited Set of Pixels Luminance
as Visual Features

The use of the whole image luminance as global visual features for visual servoing
tasks, as in [9], requires too high computation time. Indeed, the big size of the
interaction matrix related to the luminance of all image pixels leads to a very slow
convergence of the robotic system.

Therefore, we propose in this chapter a new visual feature which is more efficient
in terms of computation time and doesn’t require any matching nor tracking step.

In fact, instead of using the luminance of all image points, we work just with the
luminance of a random distribution of a limited set of image points (n pixels). Thus,
the visual features, at a position r of the robot, are:

si (r) = Ei
I (r) (12.1)

with Ei
I (r) is the luminance of random set of image pixels taken at frame i .

Ei
I (r) = (I i

1, I i
2, I i

3, . . . , I i
n) (12.2)

where I i
k is the luminance of the pixel K taken randomly at the frame i .

For each new frame, we get a new random set of image pixels. Thus, the desired
and the current visual features will continuously change along the visual servoing
scheme. In that case, the error e will be:

ei = E i
I(r) − E i

I∗(r
∗) (12.3)

where E i
I(r) represent the current visual features and E i

I∗(r
∗) the desired ones at the

frame i .
Consequently, in our method, the error used in the building of the control law is

variable, it changes at each frame. This change is like a kind of mutation. Convergence
to global minimum is then guaranteed.

The choice of n is based on the image histogram. We take n equal to the maximum
value of the current image histogram. We can then avoid the fact that the n pixels
randomly chosen will have the same luminance. Hence, we guarantee the good
luminance representation of the image. We note pl the probability that the n pixels
will have the same luminance. It is given by:

pl = Cn
n

Cn
N

= 1
N !

n!(N−n)!
(12.4)

where n is the number of pixels deduced from the image histogram and chosen as
visual features and N is the number of all image pixels. This probability is null (see
Table 12.1).

Since the number n depends on the histogram of the current image, it slightly
changes during the visual servoing scheme. Let us point that n is always very small
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Table 12.1 Examples of images with the corresponding histograms and probabilities

Image Histogram n pl ps

1089 0 0

1979 0 0

940 0 0

compared to the total number of image pixels (in our case 320 × 240). We note that
the more the image is textured, the smaller n is.

Figure 12.1 shows an example of image, the luminance of all its pixels form the
ancient global visual features.

The histogram of this image is illustrated on Fig. 12.2. In our approach, instead
of using all image pixels, we take randomly n pixels as global visual features, with
n is the maximum value of this histogram (in this example n = 2452 which is 3.1 %
of all image pixels).

After ensuring that the n pixels are good representatives of the image luminance,
we can confirm that these n pixels randomly chosen will be well distributed in the
image and not concentred in one particular zone. For that, we compute the probability
that the n pixels will be all in one zone z. This probability is given by:

ps = Cn
z

Cn
N

=
z!

n!(z−n)!
N !

n!(N−n)!
(12.5)

with z is the number of pixels in a compact zone of the image.
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Fig. 12.1 Ancient visual
features: the whole image
luminance

Fig. 12.2 Image histogram
(essential for the choice of n)

In our work, we take z as the half of all image pixels (Beyond this value of z we
assume that good image representation is ensured).

The probability ps is equal to zero (see Table 12.1). This proves that the n pixels
chosen as visual features will always ensure good spatial representation of the scene.

We present in Table 12.1 the histograms and the probabilities (pl and ps) related
to different images.

The visual servoing is based on the relationship between the camera motion and
the consequent change on the visual features. This relationship is expressed by the
well known equation [10]:

ṡ = LsΓc (12.6)

where Ls is the interaction matrix that links the time variation of s to the camera
instantaneous velocity Γc [11].

So, after identification of the visual features, the control law requires the determi-
nation of this matrix which is at the center of the development of any visual servoing
scheme. In our case, we look for the interaction matrix related to the luminance of a
pixel x in the image.

The computation of this matrix is based on the optical flow constraint equation
(OFCE) which is a hypothesis that assumes the temporal constancy of the luminance
for a physical point between two successive images [11].
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If a point x of the image realizes a displacement dx in the time interval dt ,
according to the previous hypothesis we have:

I (x + dx, t + dt) = I (x, t) (12.7)

After development of this equation we get:

∇ I T ẋ + İ = 0 (12.8)

where İ = ∂ I (x)
∂t and ∇ I is the spatial gradient of x.

We know that:
ẋ = LxΓc (12.9)

where Lx is the interaction matrix that relates the temporal variation of x to the
control law.

Using (12.8) and (12.9) we obtain:

İ = −∇ I T LxΓc (12.10)

So the interaction matrix that relates the temporal variation of the luminosity I (x) to
the control law vc is:

L I (x) = −∇ I T Lx (12.11)

In this case, we can write the interaction matrix L I (x) in terms of the interaction
matrices Lx and L y related to the coordinates of x = (x, y) and we obtain:

L I (x) = −(∇ Ix Lx + ∇ Iy L y) (12.12)

with ∇ Ix et ∇ Iy are the components along x and y of ∇ I (x).
In the case of a mobile robotic system, we take into account just the components of

Lx that correspond to three degrees of freedom: Translation along x axis, translation
along z axis and rotation around y axis. Therefore, we have:

Lx =
(

−1

z

x

z
− (1 + x2)

⎧
(12.13)

L y =
(

0
y

z
− xy

⎧
(12.14)

where z is the depth of the point x relative to the camera frame.
We get the interaction matrix related to our new features (L E i

I
) by combining the

interaction matrices related to the n pixels randomly chosen.
Thus, the size of the interaction matrix related to our visual features (L E i

I
) is

very small compared to the size of the interaction matrix related to the whole image
luminance.
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12.3 The Control Law Generation

In our work we use a global photometric visual features. In this case most of classical
control laws fail. Therefore, we have interest in turning the visual servoing scheme
into an optimization problem to get the convergence of the mobile robot to its desired
pose [12, 13]. In fact, the aim of the control law will be the minimization of a cost
function which is the following:

C(r) = (s(r) − s(r∗))T (s(r) − s(r∗)) (12.15)

where s(r) are the current visual features (E i
I(r)) and s(r∗) are the desired ones

(E i
I∗(r

∗)).
The cost function minimization is, essentially, based on the following step:

ri+1 = ri

⎨
d(ri ) (12.16)

where “⊕” denotes the operator that combines two consecutive frame transforma-
tions, ri is the current pose of the mobile robot (at frame i), ri + 1 is the next pose of
the mobile robot and d(ri ) is the direction of descent.

This direction of descent must ensure that d(ri )∇c(ri )< 0. In this way, the move-
ment of the robot leads to the decrease of the cost function.

Optimization methods depend on the direction of descent used in the building of
the control law. The control law usually used in visual servoing context is given by:

Γc = −δL+
s (s(r) − s(r∗)) (12.17)

where δ is a positive scalar and L+
s is the pseudo inverse of the interaction matrix.

This classical control law gives good results in the case of visual servoing task
based on geometric visual features [10].

Since we work with photometric visual features this classical control law fails
and doesn’t ensure the convergence of the robot [4]. Thus, in our work we use the
control law based on the Levenberg-Marquardt approach. The control law generated
to the robot, using our new features, is then given by:

Γi
c = −δ(HE i

I
+ μ diag(HE i

I
))−1LT

E i
I
ei (12.18)

where ei is the error corresponding to these new features:

ei = E i
I(r) − E i

I∗(r
∗) (12.19)

and with
HE i

I
= LT

E i
I
L E i

I
(12.20)
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12.4 Mobile Robot Visual Control

The visual servoing approach described previously will be adapted to control a system
composed from a video camera mounted on a two wheel robot.

Let’s consider a two wheel robot with a pose defined by:

⎢
⎪

x
y
Π

⎡
⎣ (12.21)

Assuming that the motion is done without sliding, the following equations describe
the kinematic behavior of the robot:

ẋ = ΓRcosΠ
ẏ = ΓRsinΠ

Π̇ = ωR

(12.22)

where (ΓR, ωR) is the linear and angular velocity of the mobile robot.
The relation between (ΓR, ωR) and the camera instantaneous velocity is given by:

Γc = Jr ×
(

ΓR

ωR

⎧
(12.23)

with Jr =
⎤
⎦

0 −a
1 0
0 −1

⎞
⎠ and a is the distance between the turret on which the camera

is mounted and the wheels axis.
(

ΓR

ωR

⎧
= (J T

r × Jr )
−1 × J T

r × Γc (12.24)

Having an input (ΓR, ωR) the correspondent velocities of the wheels (right and left)
can be computed from: (

ϕr

ϕl

⎧
=

(
1
r

L
r

1
r − L

r

)
×

(
ΓR

ωR

⎧
(12.25)

where L is the half distance between the robot’s wheels and r is the radius of the
wheel.
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12.5 Experimental Results

12.5.1 Experimental Environment

We present the results of a set of experiments conducted with our visual features.
All the experiments reported here have been obtained using a camera mounted on
a mobile robot. In each case, the mobile robot is first moved to its desired pose r∗
and the corresponding image I ∗ is acquired. From this desired image, we extract
the desired visual features S∗. The robot is then moved to a random pose r and the
initial visual features are extracted. The velocities computed, at each frame, using
the control law, are sent to the robot until its convergence. The interaction matrix is
calculated at each frame of the visual servoing scheme. In a first step we conduct our
experiments on a virtual platform of VRML, therefore we can recuperate, at each
frame, the pose of the mobile robot in terms of position along two translational axes
and around one rotational axe. In a second step we validate our results on a real
mobile robot (Koala robot).

12.5.2 Interpretation

During the experiments conducted on the VRML environment we take as initial
positioning error: �rint = (18 cm, 12 cm, 9◦). We illustrate the results obtained
using our new visual features on Figs. 12.3 and 12.4 (first and second experiment).

Figures 12.3a and 12.4a present the initial scenes. Figures 12.3b and 12.4b depict
the desired scenes. The histograms of the initial images are shown on Figs. 12.3c and
12.4c.

We choose as stopping criterion of our program the following measure: M(r)

which is the proportion of the number of pixels, in the error image (I − I ∗), whose
luminance is below a certain threshold compared to the total number of image pixels.

M(r) = Nthres(r)

Ntotal
× 100 (12.26)

where Nthres(r) is the number of pixels in the error image whose luminance is below
a predefined threshold at pose r of the robot and Ntotal is the total number of pixels
(320 × 240).

In our experiments we choose the luminance value 3 as a threshold. We suppose
that the convergence is achieved and the robotic system reaches its desired pose when
M(r) get at 98 %.

Figures 12.3d and 12.4d depict the behavior of this stopping criterion. The trans-
lational positioning errors (�T x,�Tz) between the current and the desired pose
during the positioning task are shown on Figs. 12.3e and 12.4e. The rotational posi-
tioning errors (�Ry) are illustrated on Figs. 12.3f and 12.4f.
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Fig. 12.3 First experiment with our new global visual features (x axis in frame number for (d),
(e) and (f)): a Initial image, b Desired image, c Initial image histogram, d Stopping criterion
evolution: M(r) in percentage (%), e Translational positioning errors: �T x and �T z in meter (m),
(f) Rotational positioning error: �Ry in radian (rad)

Fig. 12.4 Second experiment with our new global visual features (x axis in frame number for
(d), (e) and (f)): a Initial image, b Desired image, c Initial image histogram, d Stopping criterion
evolution: M(r) in percentage (%), e Translational positioning errors: �T x and �T z in meter (m),
(f) Rotational positioning error: �Ry in radian (rad)
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Fig. 12.5 The Koala mobile
robot

We note that the robotic system converges with good behavior using our global
visual features (s(r) = Ei

I (r)) and it spend very less time compared to the method
of [4].

Indeed, our method reduces the size of the visual features vector s. Thus, the size
of the interaction matrix related to our visual features (L E i

I
) is very small compared to

the size of the interaction matrix related to the whole image luminance. Therefore, our
approach is more suitable to real-time applications. As an example, the experiment
of Fig. 12.3 has demonstrated that, using our approach, the computation time for
each 320 × 240 frame does not exceed 40 ms while it is 270 ms when we work with
the whole image luminance as visual features.

After using the virtual platform of VRML, we validated our new approach using
the Koala mobile robot which is a differential wheeled robot (see Fig. 12.5). In fact,
the visual control algorithm described was implemented, tested and validated using
a real-time servoing system composed from the Koala mobile platform connected
via USB with a PC that has Matlab software.

The results of the experiments conducted on the Koala are illustrated on Fig. 12.6.
We remark that this mobile robot correctly converges to its desired pose using our new
global visual features. The initial and the desired scene are reported respectively on
Fig. 12.6a, b. The evolutions of the velocities of the two robot wheels are illustrated
on Fig. 12.6c where ϕr is the right wheel and ϕl is the left one. The stopping criterion
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Fig. 12.6 Our global visual features (x axis in frame number). a Initial scene, b Desired scene,
c The velocities of the two robot wheels (mm/s), d Stopping criterion evolution: M(r) (%)

evolution is shown on Fig. 12.6d. So, we can confirm that our new visual features
give good results in the case of real conditions of visual servoing task.

12.5.3 Robustness with Respect to Image Content

Our approach does not depend on the image content. In fact, the experiments
demonstrate that the control law converges even in the case of low textured scenes.
Figure 12.7 shows that using different types of scenes the control law converges in
all the cases (we keep the same initial positioning errors). The images presented here
are those used in [14].

The first column in Fig. 12.7 shows the different scenes. The second and the third
column illustrate, respectively, the translational and the rotational positioning errors
during the visual servoing scheme.
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Fig. 12.7 Results of our approach in different cases of scenes. First column scenes considered,
second column translational positioning errors in meter (x axis in frame number), third column
rotational positioning errors in radian (x axis in frame number)

12.6 Conclusions

In this chapter we focused on the importance of global visual features in visual
servoing applications. We found that when the used global feature is u the whole
image luminance the mobile robot takes so much time to reach its desired pose,
therefore we proposed a new approach to achieve fast and real-time visual servoing
tasks. This approach is based on new global feature which is the luminance of a
random distribution of image points. To demonstrate the efficiency of this new method
our works were, firstly, realized on a virtual platform of VRML then on a real mobile
robot. To get the convergence of the robot we have turned the visual servoing problem
into an optimization problem. Thus, we have used the control law based on the
minimization of a cost function since that ensures the convergence in the case of
global visual features.

The new feature has proved to be able to ensure good and fast convergence of
the mobile robot even in the case of low textured scenes. As it is global, it does not
require any matching nor tracking step and there is no image processing step.
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Future works can be intended to verify the robustness of our approach with respect
to partial occlusions and large illumination changes.
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Chapter 13
Compliance Error Compensation
in Robotic-Based Milling

Alexandr Klimchik, Dmitry Bondarenko, Anatol Pashkevich,
Sébastien Briot and Benoît Furet

Abstract This chapter deals with the problem of compliance errors compensation in
robotic-based milling. Contrary to previous works that assume that the forces/torques
generated by the manufacturing process are constant, the interaction between the
milling tool and the workpiece is modeled in details. It takes into account the tool
geometry, the number of teeth, the feed rate, the spindle rotation speed and the proper-
ties of the material to be processed. Due to high level of the disturbing forces/torques,
the developed compensation technique is based on the non-linear stiffness model that
allows us to modify the target trajectory taking into account nonlinearities and to avoid
the chattering effect. Illustrative example is presented that deals with robotic-based
milling of aluminum alloy.
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13.1 Introduction

Currently, robots become more and more popular for a variety of technological
processes, including high-speed precision machining. For this process, external load-
ing caused by the machining force is applied on the robot tool. This force is generated
by the interaction between the tool mounted on the robot end-effector and the work-
piece during the material removal [1]. It is a contact force and it is distributed along
the affected area of the tool cutting part. To evaluate the influence and to analyze the
robot behavior while machining, the cutting force should be defined either experi-
mentally or using accurate mathematical model.

To evaluate the force caused by interaction between the tool and the workpiece, two
approaches can be used. The static approach allows computing the average cutting
force without any consideration of dynamic aspect in machining system. This force
serves as an external loading of the robot. This approach is widely used in analysis
of conventional machining processes using CNC machines [2], where the stiffness is
high. In contrast, robots have relatively low structural stiffness. For this reason, in the
case of robotic-based machining, an additional source of dynamic displacements of
the end-effector with respect to the desired trajectory induced by robot compliance
may arise. Such behavior leads to the variable contact between the machining tool
and the workpiece. Thus, the generated contact force depends on the current position
of the robot end-effector on the trajectory. Consequently, the cutting force cannot
be evaluated correctly using the static approach. In this case, the dynamic approach,
which will be used in the chapter, is required. It is based on computing of the force
at each instant of machining process that defines loading of the robot for the next
instant of processing. As a result, the dynamic aspect of robot motion under such
variable cutting force can be examined for whole process.

Usually, in the robot-based machining this force causes essential deflections that
decrease the quality of the final product. The problem of the robot error compensation
can be solved in two ways that differ in degree of modification of the robot control
software:

(a) by modification of the manipulator model which better suits to the real manip-
ulator and is used by the robot controller (in simple case, it can be limited by
tuning of the nominal manipulator model, but may also involve essential model
enhancement by introducing additional parameters, if it is allowed by a robot
manufacturer);

(b) by modification of the robot control program that defines the prescribed trajec-
tory in Cartesian space (here, using relevant error model, the input trajectory is
generated in such way that under the loading the output trajectory coincides with
the desired one, while input trajectory differs from the target one).

Moreover, with regard to the robot-based machining, there is a solution that does
not require force/torque measurements or computations [1], where the target tra-
jectory for the robot controller is modified by applying the “mirror” technique. An
evident advantage of this technique is its applicability to the compensation of all



13 Compliance Error Compensation in Robotic-Based Milling 199

types of the robot errors, including geometrical and compliance ones. However, this
approach requires carrying out additional preliminary experiments which are quite
expensive. So, it is suitable for the large-scale production only. Another compensa-
tion methodology has been proposed by Eastwood and Webb [3] that was used for
gravitational deflection compensation for hybrid parallel kinematic machines.

This chapter focuses on the modification of control program that is considered to
be more realistic in practice. This approach requires also accurate stiffness model
of the manipulator. From point of view of stiffness analysis, the external and forces
directly influence on the manipulator equilibrium configuration and, accordingly,
may modify the stiffness properties. So, they must be undoubtedly taken into account
while developing the stiffness model. However, in most of the related works the
Cartesian stiffness matrix has been computed for the nominal configuration [4, 5].
Such approach is suitable for the case of small deflections only. For the opposite
case, the most important results have been obtained in [6–8], which deal with the
stiffness analysis of manipulators under the end-point loading.

Thus, to compensate errors caused by the machining process, it is required to
have an accurate stiffness model and precise cutting force model. In contrast to the
previous works, the compliance error compensation technique presented in this work
is based on the non-linear stiffness model of the manipulator [7] and dynamic model
of technological process that generates the cutting force.

13.2 Problem Statement

For the compliance errors, the compensation technique must rely on two components.
The first of them describes distribution of the stiffness properties throughout the
workspace and is defined by the stiffness matrix as a function of the joint coordinates.
The second component describes the forces/torques acting on the end-effector while
the manipulator is performing its machining task (manipulator loading).

The stiffness matrix required for the compliance errors compensation highly
depends on the robot configuration and essentially varies throughout the workspace.
From general point of view, full-scale compensation of the compliance errors requires
essential revision of the manipulator model embedded in the robot controller. In fact,
instead of conventional geometrical model that provides inverse/direct coordinate
transformations from the joint to Cartesian spaces and vice versa, here it is necessary
to employ the so-called kinetostatic model [9]. It is essentially more complicated than
the geometrical model and requires rather intensive computations that are presented
in Sect. 13.3.

The dynamic behavior of the robot under the loading F caused by technological
process can be described as

MCδẗ + CCδṫ + KCδt = F (13.1)
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Fig. 13.1 VJM model of
industrial robot with end-
point and auxiliary loading

where MC is 6 × 6 mass matrix that represents the global behavior of the robot in
terms of natural frequencies, CC is 6 × 6 damping matrix, KC is 6 × 6 Cartesian
stiffness matrix of the robot under the external loading F, δt, δṫ and δẗ are dynamic
displacement, velocity and acceleration of the tool end-point in a current moment
respectively [10].

In general, the cutting force Fc has a nonlinear nature and depends on many factors
such as cutting conditions, properties of workpiece material and tool cutting part, etc
[11]. But, for given tool/workpiece combination, the force Fc could be approximated
as a function of an uncut chip thickness h, which represents the desired thickness to
cut at each instant of machining.

Hence, to reduce the errors caused by the cutting forces in the robotic-based
machining it is required to obtain an accurate elastostatic model of the robot and
elastodynamic model of the machining process. These problems are addressed in
the following sections taking into account some particularities of the considered
application (robotic-based milling).

13.3 Manipulator Model

13.3.1 Elastostatic Model

Elastostatic model of a serial robot is usually defined by its Cartesian stiffness matrix,
which should be computed in the neighborhood of loaded configuration. Let us
propose numerical technique for computing static equilibrium configuration for a
general type of serial manipulator. Such manipulator may be approximated as a
set of rigid links and virtual joints, which take into account elastostatic properties
(Fig. 13.1). Since the link weight of serial robots is not negligible, it is reasonable to
decompose it into two parts (based on the link mass centre) and apply them to the
both ends of the link. All this loadings will be aggregated in a vector G = [G1...Gn],
where Gi is the loading applied to the ith node-point. Besides, it is assumed that
the external loading F (caused by the interaction of the tool and the workpiece) is
applied to the robot end-effector.

Following the principle of virtual work, the work of external forces G, F is equal
to the work of internal forces τ Γ caused by displacement of the virtual springs δ θ
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n∑
j=1

⎧
GT

j · δtj

⎨
+ FT · δt = τT

θ · δθ (13.2)

where the virtual displacements δtj can be computed from the linearized geometrical

model derived from δtj = J(j)
θ δθ, j = 1. . .n, which includes the Jacobian matrices

J(j)
θ = ∂gj (q, θ)/∂θ with respect to the virtual joint coordinates.

So, expression (13.2) can be rewritten as

n∑
j=1

⎧
GT

j · J(j)
θ · δθ

⎨
+

⎧
FT · J(n)

θ · δθ

⎨
= τT

θ · δθ (13.3)

which has to be satisfied for any variation of δθ. It means that the terms regrouping
the variables δθ have the coefficients equal to zero. Hence the force balance equations
can be written as

τθ =
n∑

j=1

J(j)T
θ · Gj + J(n)T

θ · F (13.4)

These equations can be re-written in block-matrix form as

τθ = J(G)T
θ · G + J(F)T

θ · F (13.5)

where J(F)
θ = J(n)

θ , J(G)
θ =

⎢
J(1)T
θ ...J(n)T

θ

⎪T
, G = ⎡

GT
1 ...GT

n

⎣T
. Finally, taking into

account the virtual spring reaction τθ = Kθ · θ, where Kθ = diag
⎤
Kθ1, ..., Kθn

⎦
, the

desired static equilibrium equations can be presented as

J(G)T
θ · G + J(F)T

θ · F = Kθ · θ (13.6)

To obtain a relation between the external loading F and internal coordinates of the
kinematic chain θ corresponding to the static equilibrium, Eq. (13.6) should be solved
either for different given values of F or for different given values of t. Let us solve
the static equilibrium equations with respect to the manipulator configuration θ and
the external loading F for given end-effector position t = g (θ) and the function of
auxiliary-loadings G (θ)

Kθ · θ = J(G)T
θ G + J(F)T

θ F; t = g (θ) ; G = G (θ) (13.7)

where the unknown variables are (θ, F).
Since usually this system has no analytical solution, iterative numerical technique

can be applied. So, the kinematic equations may be linearized in the neighborhood
of the current configuration θi
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ti+1 = g (θi) + J(F)
θ (θi) · (θi+1 − θi) ; (13.8)

where the subscript ‘i’ indicates the iteration number and the changes in Jacobians
J(G)
θ , J(F)

θ and the auxiliary loadings G are assumed to be negligible from iteration
to iteration. Correspondingly, the static equilibrium equations in the neighborhood
of θi may be rewritten as

J(G)T
θ · G + J(F)T

θ · Fi+1 = Kθ · θi+1 (13.9)

Thus, combining (13.8), (13.9) and expression for θ = K−1
θ (J(G)T

θ · G + J(F)T
θ · F),

the unknown variables F and θ can be computed using following iterative scheme

Fi+1 =
⎧

J(F)
θ · K−1

Γ · J(F)T
θ

⎨−1 ⎧
ti+1 − g (θi) + J(F)

θ θi − J(F)
θ K−1

Γ J(G)T
θ Gi

⎨

θi+1 = K−1
θ

⎧
J(G)T
θ · Gi + J(F)T

θ · Fi+1

⎨
(13.10)

The proposed algorithm allows us to compute the static equilibrium configuration
for the serial robot under external loadings applied to any point of the manipulator
and the loading from the technological process.

13.3.2 Stiffness Matrix

In order to obtain the Cartesian stiffness matrix, let us linearize the force-deflection
relation in the neighborhood of the equilibrium. Following this approach, two equi-
libriums that correspond to the manipulator state variables (F, θ, t) and (F + δF, θ+
δθ, t + δt) should be considered simultaneously. Here, notations δF, δt define small
increments of the external loading and relevant displacement of the end-point. Finally,
the static equilibrium equations may be written as

t = g (θ) ; Kθ · θ = J(G)T
θ · G + J(F)T

θ · F (13.11)

and

t + δt = g (θ + δθ) (13.12)

Kθ · (θ + δθ) =
⎧

J(G)
θ + δJ(G)

θ

⎨T · (G + δG) +
⎧

J(F)
θ + δJ(F)

θ

⎨T · (F + δF)

where t, F, G, Kθ, θ are assumed to be known.
After linearization of the function g(θ) in the neighborhood of the loaded equi-

librium, the system (13.11), (13.12) is reduced to equations
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δt = J(F)
θ δθ

Kθ · δθ = δJ(G)
θ G + J(G)

θ δG + δJ(F)
θ F + J(F)

θ δF
(13.13)

which defines the desired linear relations between δt and δF. In this system, small
variations of Jacobians may be expressed via the second order derivatives δJ(F)

θ =
H(F)

θ θ · δθ, δJ(G)
θ = H(G)

θ θ · δθ, where

H(G)
θ θ =

n∑
j=1

∂2gT
j Gj/∂θ

2; H(F)
θ θ = ∂2gT F/∂θ

2 (13.14)

Also, the auxiliary loading G may be computed via the first order derivatives as
δG = ∂G/∂θ · δθ

Further, let us introduce additional notation

Hθ θ = H(F)
θ θ + H(G)

θ θ + J(G)T
θ · ∂G/∂θ (13.15)

which allows us to present system (13.13) in the form

⎞
δt
0

⎠
=

[
0 J(F)

θ

J(F)T
θ −Kθ + Hθ θ

]
·
⎞

δF
δθ

⎠
(13.16)

So, the desired Cartesian stiffness matrices KC can be computed as

KC =
⎧

J(F)
θ (Kθ − Hθ θ)

−1J(F)T
θ

⎨−1
(13.17)

Below, this expression will be used for computing of the elastostatic deflections of
the robotic manipulator.

13.3.3 Reduced Mass Matrix

To evaluate the dynamic behavior of the robot under the loading, in addition to the
Cartesian stiffness matrix KC it is required to define the Cartesian mass matrix MC.
This mass matrix has the same dimension as KC and can be obtained using some
model reduction techniques. Comprehensive analysis and definition of this matrix
have been proposed in [10]. Here, let us summarize the main results that will be used
further.

To reduce the mass matrix dimension, model reduction techniques are applied
for decreasing the size of the link mass matrices and also for the robot total mass
matrix. Two main ways can be followed to reduce the size of the link mass matrices.
The first one consists in discretizing the beam j into pj rigid links and springs and
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Fig. 13.2 Displacements and
elastic deformations of a beam

to express their displacements as a function of the beam extremity displacements.
However, such numerical method must be repeated for each link and, thus, increases
the size of the algorithm and decreases its efficiency. As a result, it is preferred to
use the following procedure which allows analytical expressions to be obtained for
the reduced link mass matrices.

Let us consider the link j, modeled as a beam (Fig. 13.2). At this beam is attached
a local frame represented by the vectors xj, yj and zj. Before any deformation of
the system, the beam j is linked to beams (j − 1) and (j + 1) at points Oj and Oj+1,
respectively (Fig. 13.2). After deformation of the robot, the beam extremity located

at Oj is displaced from δtj−1 =
⎢
δt1

j−1, δt2
j−1, . . . , δt6

j−1

⎪T
and the one located at

Oj+1 is displaced from δtj =
⎢
δt1

j , δt2
j , . . . , δt6

j

⎪T
, where the three first components

of each vector correspond to the translational displacements along local xj, yj and
zj axes, respectively, and the three last components to the rotational displacements
along the same axes.

The general formula for the kinetic energy of an elastic Bernoulli beam is equal
to:

Tj = 1/2

Lj∫

0

Πj δ̇
T
j Qj δ̇jdx; Qj = diag

⎧
Aj, Aj, AjI

p
j , Iy

j , Iz
j

⎨
(13.18)

In this expression, δ̇j represents the velocity of the beam cross-section located at
position x from the local reference frame (Fig. 13.2), Lj is the length of the beam j, Πj

the mass density at cross-section x, Aj its area, Ip
j its torsional constant and Iy

j , Iz
j , the

quadratic momentums along yj and zj, respectively.
For the lth natural mode ωl, the kinetic energy can be rewritten as:

Tjl = 1/2ω2
l cos2 (ωlt + ϕl)

Lj∫

0

Πjδ
T
j Qjδjdx (13.19)



13 Compliance Error Compensation in Robotic-Based Milling 205

δj being the amplitude of the displacement of the beam cross-section located at
position x from the local reference frame (Fig. 13.2).

In the Rayleigh-Ritz approximation, considering that the deformations due to the
natural vibrations are similar to those obtained when an external load is applied at
the robot end-effector only, each link of the structure will deform due to the stresses
transmitted through the robot joints at points Oj. As a result, the deformations εj

of the beam cross-section can be approximated by the deformations of a tip-loaded
beam

εj = diag
⎤
fj, gj, gj, fj, hj, hj

⎦
δθj (13.20)

where δθj = εj
⎤
x = Lj

⎦
represents the deformation of the beam at its tip and

fj (x) = x/Lj, gj (x) = 0.5x2 ⎤
3Lj − x

⎦
/L3

j , hj (x) = 2x
⎤
Lj − 0.5x

⎦
/L2

j (13.21)

As a result, the global displacement δj of the beam cross-section at x can be expressed
as a sum of two terms:

δj =
⎞

I3 D(×)

03 I3

⎠
δtj−1 + εj, with D(×) =




0 0 0
0 0 −x
0 x 0


⎫ (13.22)

In this sum, the left terms corresponds to the displacement of the undeformed beam
due to the displacement of the node located at Oj.

Introducing (13.20–13.22) into (13.9) leads to the following equation:

Tjl = 1/2ω2
l cos2 (ωlt + ϕl)

⎬⎢
δtT

j−1 δtT
j

⎪
Mred

j

⎞
δtj−1
δtj

⎠⎭
(13.23)

where the expressions of each components of matrix Mred
j are given in [10].

Using these results, the total kinetic energy of the system for the lth node is:

Tl =
∑

j

Tjl = 1/2ω2
l cos2 (ωlt + ϕl) δtT Mtotδt (13.24)

with Mtot = diag
⎤
Mred

1 , . . . , Mred
n

⎦
and δtT = ⎡

δtT
0 , δtT

1 , . . . , δtT
n−1, δtT

n

⎣
Then, assuming that the first natural modes of vibrations, i.e. the modes that have

the most energy, lead to deformations that are close to the static deformations of the
robot under a load applied on the end-effector, the mass matrix can be recomputed
into the Cartesian coordinates associated with the tool end-point using the Jacobian
matrix Jθ defined at expression (13.3) (which depend on the robot configuration q
and computed with respect to virtual joint coordinates θ) using following expression

MC = JT
θ MθJθ (13.25)
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Fig. 13.3 Fractional cutting
force model Fc(h)

Thus, using expressions (13.25), it is possible to compute the reduced mass matrix
MC for a given robot configuration q. The performances of this model reduction are
shown in [10].

13.4 Machining Process

Let us obtain the model of the cutting force which depends on the relative position
of the tool with respect to the workpiece at each instant of machining. As follows
from previous works [12], for the known chip thickness h, the cutting force Fc can
be expresses as

Fc (h) = k0
h/hs + r (h/hs)

2

1 + h/hs
ap, h ≡ 0 (13.26)

where ap is a depth of cut, r = k∈/k0 < 1 depends on the parameters k∈, k0
that define the so called stiffness of the cutting process for large and small chip
thickness h respectively (Fig. 13.3) and hs is a specific chip thickness, which depends
on the current state of the tool cutting edge. The parameters k0, hs, r are evaluated
experimentally for a given combination of tool/working material. To take into account
the possible loss of contact between the tool and the workpiece, the above expression
should be supplement by the case of h < 0 as

Fc (h) = 0, if h < 0 (13.27)

For the multi-edge tool the machining surface is formed by means of several edges
simultaneously. The number of working edges varies during machining and depends
on the width of cut. For this reason, the total force Fc of such interaction is a super-
position of forces Fc,i generated by each tool edge i, which are currently in the
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Fig. 13.4 Forces of
tool/workpiece interaction

contact with the workpiece. Besides, the contact force Fc,i can be decomposed
by its radial Fr,i and tangential Ft,i components (Fig. 13.4). In accordance with
Merchant’s model [13], the t-component of cutting force Ft,i can be computed with
the Eq. (13.26). The r-component Fr,i is related with Ft,i by following expression
[14]

Fr,i = krFt,i (13.28)

where the ratio factor kr depends on the given tool/workpiece characteristics.
It should be mentioned that in robotic machining it is more suitable to operate

with forces expressed in the robot tool frame {x, y, z}. Then, the corresponding
components Fx, Fy (Fig. 13.4) of the cutting force Fc can be expressed as follows

Fx =
nz∑

i=1
−Fr,i cos ϕi +

nz∑
i=1

Ft,i sin ϕi

Fy =
nz∑

i=1
Fr,i sin ϕi +

nz∑
i=1

Ft,i cos ϕi

(13.29)

where nz is the number of currently working cutting edges, ϕi is the angular position
of the ith cutting edge (the cutting force in z direction Fz is negligible here). So, the
vector of external loading of the robot due to the machining process can be composed
in the frame {x, y, z} using the defined components Fx, Fy as F= [Fx, Fy, 0, 0, 0, 0]T .

It should be stressed that the cutting force components Fr,i, Ft,i mentioned in
Eqs. (13.26), (13.28) are computed for the given chip thickness hi, which should be
also evaluated. Let us define model for hi using mechanical approach. Then the chip
thickness hi removed by ith tooth depends on the angular position ϕi of this tooth
and it can be evaluated using to the geometrical distance between the position of the
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Fig. 13.5 Meshing of the
workpiece area

given tooth i and the current machining profile (Fig. 13.4). It should be mentioned,
that the main issue here is to follow the current relative position between the ith tooth
and the working material or to define whether the ith tooth is involved in cutting for
given instant of process. Because of the robot dynamic behavior and the regenerative
mechanism of surface formation [15] this problem cannot be solved directly using
kinematic relations. In this case it is reasonable to introduce a special rectangular
grid, which decomposes the workpiece area into segments and allows tracking the
tool/workpiece interaction and the formation of the machining profile (Fig. 13.5).

Here, Steps �sx,�sy between grid nodes are constant and depend on the tool
geometry, cutting condition and time discretization �ε . Each node j (j = 1, Nw, Nw

is the number of nodes) of the grid can be marked as “1” or “0”: “1” corresponds
to nodes situated in the workpiece area with material (rose nodes in Fig. 13.6), “0”
corresponds to nodes situated in workpiece area that was cut away (white nodes in
Fig. 13.6).

In order to define the number of currently cut nodes by the ith tooth, the previous
instant of machining process should be considered. Let us define Ai as an amount of
working material that is currently cut away by the ith tooth (Fig. 13.6). So, if node
j marked as “1” is located inside the marked sector (green nodes in Fig. 13.6), it
changes to “0” and Ai is increasing by �sx�sy. Analyzing all potential nodes and
computing Ai, the chip thickness hi, removed at given instant of the process by the
ith tooth, can be estimated by hi = Ai/R�πi, i = 1, Nz. The angle �ϕi determines
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Fig. 13.6 Evaluating the
tool/workpiece intersection
Ai and computing the corre-
sponding chip thickness hi

Fig. 13.7 Algorithm for
numerical simulation of
robotic machining process
dynamics

the current angular position of the ith tooth regarding to its position at the instant
ε − �ε and referred to the position of TCP at ε − �ε .

Described mechanism of chip formation and the machining force model (13.26)
allow computing the dynamic behavior of the robotic machining process where mod-
els of robot inertia and stiffness are discussed in the Sect. 13.3 of the chapter. The
detailed algorithm that is used in numerical analysis is presented in Fig. 13.7, where
the analysis of the robot dynamics is performed in the tool frame with respect to
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the dynamic displacement of the tool δtdyn fixed on the robot end-effector around its
position on the trajectory.

13.5 Compliance Error Compensation Technique

In industrial robotic controllers, the manipulator motions are usually generated using
the inverse kinematic model that allows us to compute the input signals for actuators
ρ0 corresponding to the desired end-effector location t0, which is assigned assum-
ing that the compliance errors are negligible. However, if the external loading F is
essential, the kinematic control becomes non-applicable because of changes in the
end-effector location. It can be computed from the non-linear compliance model as

tF = f −1 (F | t0) (13.30)

where the subscripts ‘F’ and ‘0’ refer to the loaded and unloaded modes respec-
tively, and ‘|’ separates arguments and parameters of the function f (). Some details
concerning this function are given in our previous publication [7].

To compensate this undeterred end-effector displacement from t0 to tF, the target
point should be modified in such a way that, under the loading F, the end-platform is
located in the desired point t0. This requirement can be expressed using the stiffness
model in the following way

F = f
⎧

t0 | t(F)
0

⎨
(13.31)

where t(F)
0 denotes the modified target location. Hence, the problem is reduced to

the solution of the nonlinear Eq. (13.31) for t(F)
0 , while F and t0 are assumed to be

given. It is worth mentioning that this equation completely differs from the equation
F = f (t | t0), where the unknown variable is t. It means that here the compliance
model does not allow us to compute the modified target point t(F)

0 straightforwardly,
while the linear compensation technique directly operates with Cartesian compliance
matrix [16].

To solve Eq. (13.31) for t(F)
0 , similar numerical technique can be applied. It yields

the following iterative scheme

t(F)→
0 = t(F)

0 + π ·
⎧

t0 − f −1(F | t(F)
0 )

⎨
(13.32)

where the prime corresponds to the next iteration, π ∞ (0, 1) is the scalar parame-
ter ensuring the convergence. More detailed presentation of the developed iterative
routines is given in Fig. 13.8.

Hence, using the proposed computational techniques, it is possible to compensate
a main part compliance errors by proper adjusting the reference trajectory that is
used as an input for robotic controller. In this case, the control is based on the
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Fig. 13.8 Procedure for compensation of compliance errors

Fig. 13.9 Implementation of compliance error compensation technique

inverse kinetostatic model (instead of kinematic one) that takes into account both the
manipulator geometry and elastic properties of its links and joints. Implementation
of developed compliance error compensation technique presented in Fig. 13.9.
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Table 13.1 Initial data for robotic-based milling

Joint coordinates (deg)
q1 q2 q3 q4 q5 q6

90 −50 120 180 25 180
Joint compliances (rad/N m)*10−6

k1 k2 k3 k4 k5 k6

0.26 0.15 0.26 1.79 1.52 2.13
Link masses (kg)
m1 m2 m3 m4 m5 m6

336.8 259.4 85.2 54.5 36.3 18.2

Fig. 13.10 Starting pose
of the KUKA KR270 robot
to perform the operation of
milling

13.6 Experimental Verification

The developed compliance error compensation technique has been verified experi-
mentally for robotic milling with the KUKA KR270 robot along a simple trajectory
in aluminum workpiece. It is assumed that at the beginning of the technological
process the robot is in the configuration q (see Table 13.1, Fig. 13.10). The parame-
ters of the stiffness model for the considered robot have been identified in [17] and
are presented in Table 13.1. Link masses required for the mass matrix of the robot
are presented also in Table 13.1.

For the milling, the cutter with the external diameter D = 20 mm and four teeth
(Nz = 4) distributed uniformly over the tool is used. For the given combination
of the tool and the workpiece material the following parameters correspond to the
cutting force model defined in (13.26): k0 = 5 × 106 N/m, hs = 1.8 × 10−5 m, r =
0.1, kr = 0.3.

Taking into account that the workpiece has a straight borders let us assume that at
the instant t = 0 one of the teeth of the tool is in contact with the workpiece material
as it is shown in the Fig. 13.11. It is also assumed that the machining process is
performing with the constant feed rate vf = 4 m/min (applied in x-direction of the
robot tool frame) and the constant spindle rotation α = 8000 rpm along the straight
line of 80 mm. Experimental verification and numerical simulation of the described
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Fig. 13.11 Starting relative position of the tool with respect to the workpiece

Fig. 13.12 Variation of machining force components Fx (a) and Fy (b) for whole milling process

case of the milling process with KUKA KR-270 robot using the algorithm shown
in Fig. 13.7 allows us to trace the evolution of machining force x, y-components for
the whole process (Fig. 13.12). The corresponding dynamic displacement of the tool
around its current position on the trajectory is shown in Fig. 13.13.

In accordance with the obtained results the system robot/machining process realize
complex vibratory motion. The high frequency component of this motion (about
700 Hz, Fig. 13.12) is related to the spindle rotation and the number of tool teeth Nz.
In certain cases such behavior can excites the dynamics of the robot (natural modes)
but this study remains out the frame of the presented chapter. On the contrary, the
low frequency component of robot/tool motion (about 7 Hz, Fig. 13.13), especially
in the y-direction (that is perpendicular to the applied feed) influences directly the
quality of final product. Such motion is related to the robot compliance and it can
be compensated using the error compensation technique described in the chapter.
Hence, let us form the modified trajectory based on the dynamic displacement of the
robot end-effector in the y-direction (Fig. 13.14).
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Fig. 13.13 Evolution of the
tool dynamic displacement
δtdyn that is composed from
xTCP and yTCP components

Fig. 13.14 Modified trajec-
tory fy and corresponding feed
rate vfy in y-direction, com-
puted based on the original
dynamic displacement of the
tool δtdyn

It should be stressed that the time step between referenced points of this modified
trajectory is limited with the characteristics of the controller used in the robot (in
the presented case this step is chosen 0.05 s). The corresponding feed rate vfy for
the modified trajectory has been computed. So, this new data (feed fy and feed rate
vfy) with the data defined in the beginning of this section allow us to compensate
the trajectory error during machining caused by the robot compliance. The resulted
compensated trajectory in the y-direction (in time domain) is presented in Fig. 13.15.

It should be noted that the part of the trajectory while machining tool is engaging
into the workpiece does not have effect on the quality of final product (surface).
During this stage the contact area between the tool and the workpiece is increasing
progressively. Hence, at each instant of processing the cutter corrects the machining
profile and eliminates trajectory errors produced during all previous instants. On the
contrary, during the stage of machining with the fully engaged tool the trajectory in
x, y-directions define directly the final machining profile and this part of trajectory
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Fig. 13.15 Evolution of
the dynamic displacement
obtained after involving the
error compensation technique
into the analysis of robotic
milling process

Table 13.2 Milling
trajectory accuracy before
and after compliance error
compensation

Performance measure Original Modified
trajectory trajectory

Low frequency (Hz) 6.70 6.70
Static deviation ys (mm) 58.1e−3 0.14e−3
Max deviation yMAX (mm) 63.2e−3 4.70e−3

is analyzed here (Fig. 13.15). Comparison results presented in Figs. 13.13, 13.15 are
summarized in Table 13.2. So after applying error compensation technique the static
deviation in y direction has been reduced from 0.058 to 0.00014 mm (99.8 %). Max-
imum defilation in the machining profile has been reduced from 0.063 to 0.0047 mm
(92.6 %). Low frequency remained the same for both cases.

Hence, obtained results show that the developed compliance error compensation
allows us significantly increase the accuracy of the robotic-based machining.

13.7 Conclusions

In robotic-based machining, an interaction between the workpiece and technological
tool causes essential deflections that significantly decrease the manufacturing accu-
racy. Relevant compliance errors highly depend on the manipulator configuration and
essentially differ throughout the workspace. Their influence is especially important
for heavy serial robots. To overcome this difficulty this chapter presents a new tech-
nique for compensation of the compliance errors caused by technological process. In
contrast to previous works, this technique is based on the non-linear stiffness model
and the reduced elasto-dynamic model of the robotic based milling process.

The advantages and practical significance of the proposed approach are illustrated
by milling with of KUKA KR270. It is shown that after error compensation technique
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significantly increase the accuracy of milling. In future the proposed technique will
be integrated in a software toolbox.
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Chapter 14
A Modified LGMD Based Neural Network
for Automatic Collision Detection

Ana Carolina Silva, Jorge Silva and Cristina Peixoto dos Santos

Abstract Robotic collision detection is a complex task that requires both real time
data acquisition and important features extraction from a captured image. In order
to accomplish this task, the algorithms used need to be fast to process the captured
data and perform real time decisions. Real-time collision detection in dynamic sce-
narios is a hard task if the algorithms used are based on conventional techniques of
computer vision, since these arecomputationally complex and, consequently, time-
consuming, specially if we consider small robotic devices with limited computa-
tional resources. On the other hand, neurorobotic models may provide a foundation
for the development of more effective and autonomous robots, based on an improved
understanding at the biological basis of adaptive behavior. Particularly, our approach
must be inspired in simple neural systems, which only requires a small amount of
neural hardware to perfom complex behaviours and, consequently, becomes easier
to understand all the mechanism behind these behaviours. By this reason, flying
insects are particularly attractive as sources of inspiration due to the complexity
and efficiency of the behaviours allied with the simplicity of a reduced neural sys-
tem. The Lobula Giant Movement Detector (LGMD) is a wide-field visual neuron
located in the Locust optic lobe. It responds selectively to looming objects and can
trigger avoidance reactions when a rapidly approaching object is detected. Based on
the relatively simple encoding strategy of the LGMD neuron, different bio-inspired
neural networks for collision avoidance were developed. In the work presented in
this chapter, we propose a new LGMD model based on two previous models, in
order to improve over them by incorporating other features. To accomplish this goal,
we proceed as follows: (1) we critically analyse different LGMD models proposed
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in literature; (2) we highlight the convergence or divergence in the results obtained
with each of the models; (3) we merge the advantages/disadvantages of each model
into a new one. In order to assess the real-time properties of the proposed model, it
was applied to a real robot. The obtained results have shown the high capability and
robustness of the LGMD model to prevent collisions in complex visual scenarios.

Keywords Bio-inspired model · Lobula Giant Movement Detector neuron ·
Artificial neural networks · Collision avoidance

14.1 Introduction

Many animals extract salient information from complex, dynamic visual scenes
to drive behaviours necessary for survival. Insects are particularly challenging for
robotic systems: they achieve their performance with a nervous system that has less
than a million neurons and weighs only about 0.1 mg. By this reason, some of these
insects provide ideal biological models that can be emulated in artificial systems.
These models have the potential to reproduce complex behaviours with low compu-
tational overhead by using visual information to detect imminent collisions caused
either by a rapidly approaching object or self-motion towards an obstacle.

In locusts, the Lobula Giant Movement Detector (LGMD) is a bilaterally paired
motion sensitive neuron that integrates inputs from the visual system, responding
robustly to images of objects approaching on a collision course [1–4]. This neuron
is responsible for triggering escape and collision avoidance behaviours in locusts.

The first physiological and anatomical LGMD neuron model was developed by
Bramwell in [5]. The model continued to evolve [6–9] and it was used in mobile robots
and deployed in automobiles for collision detection. These connectionist models have
shown that the integration of on and off channels and feed-forward inhibition can
account for aspects of the LGMD neuron looming sensitivity and selectivity when
stimulated with approaching, translating and receding objects. However, further work
is needed to develop more robust models that can account for complex aspects of
visual motion [10].

In this chapter, we are interested in integrating two previous LGMD models in
order to take the advantage of noise immunity proposed in [7] and direction sensi-
tivity proposed in [9]. In a previous study, we implemented the models from [7, 9]
and submitted them to relevant simulated visual data sets. This step enabled us to
understand some of the literature models limitations in relation to obstacle detection
and avoidance. With this knowledge, we herein propose a new model to cope with
the limitations showed by the models implemented. The proposed model is validated
over a set of different visual scenarios. In order to the LGMD network be used as a
robust collision detector for real robotic applications, and based on [7], a new mech-
anism to enhance features of colliding objects was proposed. The model from [7]
favours grouped excitation, which normally indicates the presence of an obstacle, and
ignores isolated excitation, which can be the result of noise present in the captured
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image. This model has the capability to filter out the isolated excitations through
an excitation gathering mechanism, allowing that only parts of the captured image
with bigger excitatory spatial areas can contribute to the excitation of the LGMD
cell. Besides this extraordinary capability of noise reduction, when computationally
implemented, the neural network based on [7] generated false collision alarms when
stimulated with receding objects. The LGMD model proposed in [9] is able to detect
the direction of movement in depth. However, the latter is not imunne to the presence
of noise levels in the captured image, which can lead it to produce false collision
alerts in the presence of noise. Based on [9], we have modified the LGMD model,
so that it can distinguish approaching from receding objects.

Merging the advantages of each model [7, 9], the proposed LGMD model is
more robust in collision detection. The proposed model is tested on simulated and
real video recording environments. The obtained results show that it works very
efficiently in both scenarios. The real performance of the proposed model is judged
by the evaluation of a real robot moving around in a real environment and avoiding
real obstacles (of different shapes, sizes and colours) while processing captured
images (containing real noise, blur, reflections, etc).

The new proposed method increases the precision of obstacle detection, in a way
that this model is robust to the presence/absence of high noise levels in the captured
image, as well as being able to detect the movement direction of the visual stimulus.
Besides that, when tested in a real environment, the results were very satisfactory.
For a better understanding of the work developed, the chapter was organized in the
following way: in Sect. 14.2, we make a detailed description of the proposed LGMD
neural network model. In Sect. 14.3 are presented some experimental results on sim-
ulated and recorded video data. Additionally, it is also presented the experiments
carried out with a robot DRK8000 to test the stability of this model in relation to
collision detection in real scenarios. Finally, in Sect. 14.4 we discuss the conclusions
of the work here described.

14.2 The Proposed LGMD Neural Network

The biological inspired neural network here proposed is based on previous models
described on [6–9]. The modified neural network is shown on Fig. 14.1.

The LGMD neural network here proposed is composed by five groups of cells:
photoreceptor cells (P layer), excitatory cells (E layer), inhibitory cells (I layer), sum-
ming cells (S layer) and noise reduction cells (NR layer). Besides that, it is composed
by five single cells: the direction sensitive system, composed by the approaching cell
(A cell), the receding cell (R cell) and the direction cell (D cell), the feed-forward
inhibition cell (FFI cell) and the LGMD cell.

A grayscale image of the camera current field of view, represented has a matrix
of values (from 0 to 255), is the input to a matrix of photoreceptor units (P layer).

This layer calculates the absolute difference between the luminance of the cur-
rent and of the previous input images, mathematical represented by the following
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Fig. 14.1 Schematic illustra-
tion of the proposed LGMD
model

  P layer
FFI

E layer

S layer

I layer

LGMD cell

NR layer

A cell

R cell

D cell

equation:
Pf (x, y) = ∣∣L f (x, y) − L f −1(x, y)

∣∣ , (14.1)

where Pf (x, y) is the output relative to the cell in the (x, y) position at frame f ,
Lf (x, y) and L f −1(x, y) are the captured luminance at position (x, y) for frames
f and f − 1, respectively. The output of the P layer is the input of two different
layers: the excitatory (E) and the inhibitory (I ) layer. To the excitatory cells of the E
layer, the excitation that comes from the P layer is passed directly to the retinotopic
counterpart at the S layer. And the inhibition layer (or I layer) receives the output of
the P layer and applies a blur effect on it, using:

I f (x, y) =
1⎧

i=−1

1⎧
j=−1

Pf −1(x + i, y + j) · Wl(i, j), i, j ≡= 0, (14.2)

where I f (x, y) is the inhibition relative to the cell in the (x, y) position at frame
f , Wl(i, j), an empirically set kernel, represents the local inhibition weight. The
inhibition from the (x, y) cell only spreads to the nearest neighbors and does not
inhibits itself. This process is strongly supported by the biological nervous systems.
In biology, an excited neuron does not inhibits itself, it inhibits the neighboring
neurons, with a temporal delay associated to the inhibitory synapses (and this is the
reason why we use the P cell excitement corresponding to the previous time-step,
f − 1). Relative to the definition of the values holding by this kernel, the inhibition
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value of a particular cell is given by the distance at which a neighboring cell is
located. The use of such kernel is also based on biological systems, since distant
neurons inhibit a particular neuron with less intensity than those that are closest to a
neuron, due to the decrement of the neuronal signal with increasing distance. Finally,
the excitatory flux from the E cells and the inhibition that comes from the I cells are
summed by the S cells (summing cells), using the following equation:

S f (x, y) = E f (x, y) − wi .I f (x, y), E f (x, y) = Pf (x, y), (14.3)

where wi (a scalar) represents the inhibition strength. Based on [7], a new mechanism
for the LGMD neural network was added to filter background noise. This mechanism,
implemented in the NR layer, takes clusters of excitation in the S units to calculate
the input to the LGMD membrane potential. These clusters provide higher individual
inputs then the ones of isolated S units. The excitation that comes from the S layer is
then multiplied by a passing coefficient Ce f , whose value depends on the surrounding
neighbours of each pixel, calculated as follows:

Ce f (x, y) = 1

9

1⎧
i=−1

1⎧
j=−1

S f (x + i, y + j) (14.4)

The final excitation level of each cell in the NR (Noise-Reduction) layer, at frame
f (NR f ), is given by:

NR f (x, y) = |S f (x, y).Ce f (x, y).w−1| (14.5)

w = max(|Ce f |)C−1
w + ∈c (14.6)

Cw is set to 4, Γc is a small number (0.01) to prevent w from being zero, and
max(|Ce f |) is the largest element in matrix |Ce f |. Within the NR layer, a threshold
filters the decayed excitations (isolated excitations), as:

ÑR f (x, y) =
⎨

NR f (x, y), if NR f (x, y).Cde → Tde

0, i f if f (x, y).Cde < Tde
, (14.7)

where Cde ∞ [0, 1] is the decay coefficient and Tde is the decay threshold (set to 20).
The decay threshold here used was experimentally determined. The NR layer is able
to filter out the background detail that may cause excitation. Hence, only the main
object in the captured scene will cause excitation. The LGMD potential membrane
K f , at frame f , is summed after the NR layer,

LGMD f = K f =
n⎧

x=1

m⎧
y=1

(ÑR f (x, y)), (14.8)



222 A. C. Silva et al.

where n is the number of rows and m is the number of columns of the matrix repre-
senting the captured image. The A (Approaching) and R (Receding) cells (adapted
from [9]) are two grouping cells for depth movement direction recognition. The A
cell holds the mean of three samples of the LGMD cell.

The R cell shares the same structure as the A cell but with a temporal difference,
having one frame delay from A. According to the theory described above, it can
be concluded that if the object is approaching A f > R f and if the object is reced-
ing, R f > A f . The D cell or Direction cell (∞ {−1, 0, 1} in case of receding, no
movement and approaching object, respectively) is used to calculate the direction
of movement.This cell exploits the movement direction in depth. It is based on the
fact that a looming object (approaching) gets larger whereas a receding object gets
smaller. In a way to distinguish the movement direction detected by the D cell, a
threshold mechanism was added, TD(0.05 × n × m), which was experimentally
determined.

D f =

⎢⎪⎡
⎪⎣

1, if |A f | − |R f | → TD

0, if TD < |A f | − |R f | < TD

−1, if |A f | − |R f | ≥ TD

(14.9)

The LGMD membrane potential K f is then transformed to a spiking output k f ∞
[0.5, 1] using a sigmoid transformation,

k f = (1 + e−K f ·ncell−1
)−1, (14.10)

where ncell is the total number of cells in the NR layer. The collision alarm is decided
by the spiking of the LGMD cell.

A spiking mechanism was implemented using an adaptable threshold. This thresh-
old starts with a value experimentally determined, Ts (0.88) and it is updated at each
frame, through the following process,

Ts =

⎢⎪⎡
⎪⎣

Ts + ∈t, if sav > ∂ and (Ts + ∈t) ∞ [Tl , Tu]
Ts − ∈t, if sav < ∂ and (Ts − ∈t) ∞ [Tl , Tu]
Ts, others

, (14.11)

where [Tl , Tu] defines the lower and upper limits for adaptation (Tl is 0.80 and Tu

is 0.90) , δt = 0.01 is the increasing step, Π = 0.72 is a threshold that limits the
averaged spiking output sav, between frame f − 5 and frame f − 2,

sav = 0.25
5⎧

i=2

s f −i . (14.12)

If the sigmoid membrane potential k f exceeds the threshold Ts a spike is produced,
as follows:
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s f =
⎨

1, if k f → Ts

0, others
(14.13)

Finally, a collision is detected when there are nsp spikes in nts time steps (nsp ≥
nts), where nsp is 4 and nts is 5 (values experimentally determined).

C f =
⎨

1, if
⎤ f

f −nts
s f → nsp

0, others
(14.14)

The escape behavior is initialized when a collision is detected. Besides that, the
spikes can be suppressed by the FFI cell when whole field movement occurs. If it is
not suppressed during the tuning of the robot, for example, the network may produce
spikes and even false collision alerts due to sudden changes in the visual scenario.

The FFI cell is a cell which is very similar to the LGMD cell but receives the
output from the P layer (and not from the S layer), as follows:

FFI f =
⎤m

x=1
⎤n

y=1 |Pf −1(x, y)|
ncell

, (14.15)

where Pf −1 is the output of the P layer at frame f − 1. If FFI f exceeds a threshold
TFFI (experimentally set to 25), the spikes produced by the LGMD cell are automat-
ically inhibited.

As described in this section, the proposed neural network for the LGMD neuron
only involves low level image processing. So, the proposed neural network model is
able to work in real time and, besides that, is independent of object classification.

14.3 Experimental Results on the Proposed Model

In a way to test the efficiency of the LGMD neural network here proposed, two
experimental scenarios were used. The first experiment was made on a simulated
data set and, after that, a recorded video was used to prove the capability of the
LGMD neural network here proposed to work in a real environment. In the second
experiment, the LGMD neural network was implemented in a real robot, DRK8000,
located within a real arena. All the model parameters were kept the same during all
the experiments.

14.3.1 Simulated Environment

We developed a simulation environment in Matlab, which enables us to assess the
effectiveness of the proposed LGMD neural network. Objects were simulated accord-
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Fig. 14.2 Artificial visual stimuli, developed in Matlab

ing to their movement and the corresponding data was acquired by a simulated camera
and processed by the LGMD neural network. Image sequences were generated by a
simulated camera with a field of view of 60∀, both in x and y axis, using a sample
frequency of 100 Hz.

The simulated environment enabled us to adjust several parameters, such as: image
matrix dimensions, the camera rate of acquisition, the image noise level, the object
shape, the object texture, as well as other parameters.

The computer used was a Laptop (Toshiba Portegé R830-10R) with 4 GHz CPUs
and Windows 7 operating system. Relative to the parameters used by the LGMD
neural network, they were determined before the experiments.

14.3.2 LGMD Model Validation

Previous to the stimulation of the LGMD model here proposed, several experiments
have been made in order to verify and analyse how the image of a black squared
object grows when it is approaching a simulated camera. For that, we used synthe-
sized black (0) and white (255) images (see Fig. 14.2), with 100 (horizontal) by 100
(vertical) pixels of resolution. The object being observed was a square black filled
rectangle, whose properties as acquisition frequency, velocity, trajectory, shape, tex-
ture, noise level or object size could be changed. The obtained results enabled us
to conclude that the image growing can be approximated by an exponential curve,
whose slope depends on several factors, including the camera acquisition frequency
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Fig. 14.3 Dependence of peak firing time relative to collision on l/|v| ratio obtained with the LGMD
model here proposed

and the object velocity, among other characteristics. However, the curve that approx-
imates this growing is always an exponential curve, whose slope depends on these
aforementioned factors.

As a second step, and in the context of this study, we made an exhaustive analysis
of the response of our LGMD model to a set of standard LGMD stimulation protocols,
which allowed us to validate our model with respect to the biological system [11,
12]. Firstly, we evaluated the proposed LGMD model, by using a looming stimulus
consisting of a solid square with 10 repetitions to each size/velocity = l/|v| pair (where
l stands for the half length of the square object and v for its linear velocity). With
these experiments, we wanted to prove that our model respects the properties verified
by Gabbiani et al. [3, 11] as well as by Badia [13]. These properties, founded in the
locust visual system, include a linear relation between the time of the peak firing rate
of the LGMD neuron and the ratio that correlated the stimulus object size (l) and the
stimulus linear velocity (v) [12]. As a first step, we analysed the LGMD model here
proposed using a looming stimulus in the form of a black square. We repeated this
procedure to ten different l/|v| ratios, from 5 to 95 ms, in steps of 10 ms.

Through the obtained results it was observed that the fit of the TTC (time-to-
collision) of the peak firing rate, obtained through the LGMD neural network, ver-
sus the l/|v| ratios, is consistent with the biological results (Fig. 14.3), showing
a correlation coefficient (r) superior to 0.99. By performing the analysis devel-
oped by Gabbiani [3, 12], based on the regression line represented on Fig. 14.3
(y = −1.8x + 7.5 with a correlation coefficient equal to 0.9981) and comparing it
to the linear regression, represented on Fig. 14.3 (top right) we can conclude that ω

(representing the slope) takes the value −1.8 and the δ (intercept value) takes the
value 7.5 ms. Using these values, and taking in consideration the Gabbiani formu-
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Fig. 14.4 Selected frames from the simulated image sequence. The square object changes its size
from small (10 by 10 cm, l = 5 cm) to big, and moves at 100 cm/s (v = 100 cm/s). The relation l/|v|
is 50 ms. The noise level in all the image sequence is, approximately, 500 pixels. The frame rate
was 100 Hz

lation, which says that angular size (named θthreshold ) subtented by the approach-
ing object δ milisseconds before the LGMD output reach the peaks, is given by:
θthreshold = 2 · atan · 1/ω, we conclude that the peak firing rate always occurred
7.5 ms after the object had reached a full angular size of 60∀ on the camera, for all
l/|v| values.

If the angular threshold is used by the LGMD model to trigger escape responses, it
should be enconded indepently of the looming stimuli particular properties. In order
to verify this hypothesis, ie, the invariant properties of the LGMD model response
to the shape, texture and approaching angle of the visual stimulus, a series of exper-
iments were done. For that, four different stimulus were developed in Matlab: the
first is the one previously described, a single black square, with a white background,
approaching at different l/|v| ratios. The second stimulus developed is a black circle,
with a white background, approaching also at different l/|v| ratios. The third visual
stimulus is a square with a checkerboard texture. Finally, the last visual stimulus is
a simple square deviated 50∀ relatively to the center of the camera that generates the
visual stimuli (see Fig. 14.2).

According to the obtained results, we verify that the linear relation between the
TTC of peak firing rate and the l/|v| ratio was not affected by the shape, texture or
approaching angle of the visual stimuli (r ∗ 0.99). Although, we also observed
that the activity of the LGMD model was significantly reduced for the case of a
misalignment of 75∀ or more, due to the loss of stimulation by the looming stimulus
(as the object approaches, part of the visual stimuli remains outside the screen).

According to the obtained results previously described, we conclude that the
intrinsic linear dependence between the peak firing time and the l/|v| ratio remains
preserved by the LGMD model here proposed.

14.3.3 Results on Simulated Data Set and on Real Recorded Data

After the model validation, we fed the LGMD neural networks proposed by [7, 9]
and the one proposed by us, with simulated image sequences (a representation can
be observed on Fig. 14.4).
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Fig. 14.5 Selected frames from the recorded image sequence used in the experiment. The recorded
video is composed by 44 frames, showing a black approaching ball

Table 14.1 Distances at which collision detection alarms were generated by the LGMD model 1
and LGMD model 2, in five different situations tested

LGMD model 1 (cm) LGMD model 2 (cm)

Stimulus 1 26 14
Stimulus 2 35 –
Stimulus 3 26 20
Stimulus 4 35 11
Real video 24 14

In this point, we used four different simulated visual stimuli: Stimulus 1: composed
by a black approaching square, over a white background, with l/|v| equal to 50 ms,
acquired with a frame rate of 100 Hz, without noise added to the image sequence.
Stimulus 2: composed by a black receding square, over a white background, with
l/|v| equal to 50 ms, acquired with a frame rate of 100 Hz, without noise added to
the image sequence. Stimulus 3: composed by a black approaching square, over a
white background, with l/|v| equal to 50 ms, acquired with a frame rate of 100 Hz,
with 500 pixels of noise added to the image sequence. Stimulus 4: composed by a
black receding square, over a white background, with l/|v| equal to 50 ms, acquired
with a frame rate of 100 Hz, with 500 pixels of noise added to the image sequence.

In addition to these four simulated visual stimuli, and in order to test the LGMD
models in a real environment, we recorded a real video sequence, using a Sony
Cyber shot digital camera 7.2 megapixels to obtain the video clip. The resolution
of the video images was 640 by 480 pixels, with an acquisition frequency of 30
frames/s. In Fig. 14.5 it is represented some selected frames captured by the camera,
showing a real approaching black ball.

After the computational implementation of the LGMD models proposed in [7]
and [9], and after subject those to all the stimuli previously described, we verify that
the collisions were detected, by the different LGMD models, at different time instants
and, consequently, at different distances of the object (simulated or real) relatively
to the camera. For a better understanding and organization of the results, we decided
to call “LGMD model 1” to the model proposed by [7] and “LGMD model 2” to the
model proposed by [9]. The results obtained are resumed in Table 14.1.

As we can observe on Table 14.1, in the approaching situations (stimulus 1, 3 and
real video), the LGMD model 1 detected a collision when the object was located at,
approximately, 24–26 cm relatively to the camera. This model showed its immunity
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to the noise presence since it detected a collision exactly at the same distance when
stimulated with stimulus 1 (absence of noise) and 3 (presence of high noise levels).
However, if we observe the obtained results for the LGMD model 1 when stimulated
with receding objects (stimulus 2 and 4) it detected a false collision when the object
was located at 35 cm relatively to the camera, in both situations tested. Through
these last results one can conclude that the LGMD model 1 is not able to distinguish
between approaching and receding objects, generating false collision alerts in the
presence of receding objects. But we can also conclude that this model has high
immunity to the noise presence in the captured images.

Relatively to the LGMD model 2 and observing Table 14.1, for the stimulus 1 and
3, this model did not detect collisions for the same distance. When stimulated with
stimulus 1, it detected a collision when the object was located at 14 cm relatively to
the camera and when stimulated with stimulus 3, a collision was detected sooner,
when the object was at 20 cm relatively to the camera. This happened due to the fact
that the LGMD model 2 is not immune to the noise presence and the noise pixels,
which were not eliminated by this model, composed an extra excitation to the LGMD
neural network.

In the presence of a receding object, the LGMD model 2 was able to not produce
false collision alerts when stimulated with stimulus 2. However, when we feed the
LGMD model 2 with the stimulus 4, it detected a false collision when the object
was located at 11 cm relatively to the camera. This happened also due to the non-
immunity of the LGMD model 2 to the noise presence, which works as an extra
excitation, leading to the generation of false collision alerts.

After this analysis, relative to the behaviour of the LGMD model 1 and LGMD
model 2 in different situations, we could extract some particular characteristics of
both models. These results leaded us to produce a mixed LGMD model, combining
the advantages of the LGMD model 1 and LGMD model 2. Thus, the LGMD model
here proposed provides noise immunity, as well as a directionally sensitive system.

Figure 14.6 shows the output from the LGMD model here proposed. In this figure,
at each time step we can observe the result of different mathematical processing
(described on Sect. 14.2), corresponding to the layers of the proposed model, executed
sequentially, necessary to detect, with the maximum precision, an imminent collision.

The analysis of these results showed, on Fig. 14.6, that the LGMD neural network
detected a collision at time −0.19 s, i.e., when the object was located at 19 cm rela-
tively to the camera. In relation to the receding object, represented on Fig. 14.7, no
collisions were detected, as expected.

The results previously described showed the efficacy of the LGMD neural network
proposed by us. On Figs. 14.6 and 14.7, it is shown the LGMD model immunity to
high noise levels, as well as the capability of this model in distinguish the direction
of movement between successive frames. Then, to test the capability of the proposed
LGMD model in a more realistic environment, we subjected it to the real video
sequence, represented on Fig. 14.5. In this situation, the model produced a collision
alert when the object was located at 28 cm relatively to the camera.
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Fig. 14.6 LGMD model response to an approaching object which l/|v| set at 50 ms. Spike Rate:
blue graph: is obtained by the ratio of the A cell value and the total number of cells in the NR layer.
Green graph: is obtained by the ratio of the R cell value and the total number of cells in the NR layer.
D cell: output of the direction cell: 1: approaching, 0: no significant movement, −1: receding. Ts:
adaptative threshold represented by the red line; the gray points represent the sav output. LGMD:
Blue graph: output of the LGMD cell (mathematically represented by the kf value). Green points:
output of the LGMD cell after the Feed-forward inhibition. LGMD after Ts: represents the output
of the LGMD cell after the application of the threshold Ts and being in account the output of the D
cell. Collision detected: the output of this graph is one when it is detected four successive spikes in
five successive time-steps. In all these graphs, the zero value corresponds to the time of collision

14.3.4 Results on a Real Robot

In order to assess the capability of the LGMD model here proposed in a real environ-
ment, we used a DRK8000 mobile robot, with a 8-bit CIF (352 by 288 pixels) colour
CMOS camera, working at 10 Hz, having a field-of-view of 70∀, approximately. The
robot was located within an arena, surrounded by four walls with attached objects
with different colours, shapes, textures and sizes. The arena has 16 m2. We used the
dead reckoning process in order to predict the position of the robot at each time
instant.

As Fig. 14.8 shows, the simulation system used comprises four modules: the
LGMD model, the robot control, the tracking and the graphical user interface. The
experiment ran in real-world time, with 10 time steps per second. The LGMD model
module was composed by the different layers observed on Fig. 14.1, and the final
output of this model comprises two different states: “collision detected” or “non-
collision detected”.
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Fig. 14.7 LGMD model response to a receding object which l/|v| was equal to 50 ms. The legend
of this figure is similar to the one described on the Fig. 14.6

Fig. 14.8 Integrated simula-
tion processes used in the real
experiment
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The robot control module consists in the reactive control structure, capable of
controlling the robot, using only the output of the LGMD model module. The behav-
iours comprised by this module, can be divided in two: (1) basic exploratory activity
and (2) collision avoidance of obstacles, triggered by the response of the LGMD
module. If the robot detects an imminent collision, it stops, rotates and, then, contin-
ues the movement in a straight line. The turning speed is 1/3 of the robot speed for
the left wheel and −1/3 of the robot speed to the right wheel. The robot was set to
rotate during 1 s. Finally, in relation to the tracking process, we used dead reckoning
in order to determine the position of the robot at each time step and, then, use this
information to infer about the distance at which the robot deviates of a potential
collision/obstacle.

In the experiment, three long robot movement periods (120 s, speed at 5, 10 and
15 cm/s) were conducted to test and show the mechanism of the collision detector
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Fig. 14.9 Top graph: LGMD model output, running at real time, for different LGMD layers, during
the experiment with the DRK8000 robot, for a robot speed of 5 cm/s. Middle graph: Dead reckoning
of the robot during the initial time steps of the experiment, for a robot speed of 5 cm/s. Categorization
of the collision detections as missed, correct and false positives, for three different robot velocities
tested: 5, 10 and 15 cm/s

in a real environment. After the experiment, and through the analysis of the dead
reckoning relative to the robot movement during all the running time, we could
extract, as well as characterize, the collision detections. Collision detections between
20 and 100 cm away from the wall were classified as correct, those detected closer
than 20 cm from the wall were classified as missed, and collisions detected at a
distance over 100 cm as false positives (see Fig. 14.9).

As represented on Fig. 14.9, as the velocity of the robot increases, the percentage
of collision detections classified as correct decreases, as well as the percentage of
missed and false positives detections increases. The increase of missed collisions to
higher speeds was due to the decrease of the l/|v| ratio (for the same objects within
the arena, l variable keeps the same in different experiments, but as the velocity (v)
increases the ratio decreases), leading the LGMD firing rate reach the peak nearer to
the time predicted to collision (as we can observe on Fig. 14.3). Due to this reason,
more collisions are missed for higher velocities. The increase in the number of
false positives to higher velocities is based on the fact that, at higher velocities, the
difference between successive frames is higher, leading to the production of high
excitation levels and, consequently, a higher number of collision detection alarms.

Although the difference verified in relation to correct collision detections between
different velocities, the results obtained are very satisfactory, as the number of correct
detections are always higher than the sum of missed and false positive detections.
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14.4 Conclusions

In this chapter, we propose a modified LGMD model based on the identified LGMD
neuron of the locust brain. The model proved to be a robust collision detector for
autonomous robots. This model has a mechanism that favours grouped excitation, as
well as two cells with a particular behaviour that provide additional information on
the depth direction of movement. For applications as collision detectors in robotics,
the model proposed is able to remove the noise captured by the camera, as well as
enhance its ability to recognize the direction of the object movement and, by this
way, remove the false collision alarms produced by the previous models when a
nearby object is moving away. Experiments with a DRK8000 robot showed that with
these two new procedures, the robot was able to travel autonomously in real time
and within a real arena. The results illustrate the benefits of the LGMD based neural
network here proposed, and, in the future, we will continue to use and enhance this
approach, using, for that, a combination of physiological and anatomical studies of
the locust visual system, in order to improve our understanding about the relation
between the LGMD neuron output and the locust muscles related to the avoidance
manoeuvres.
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Chapter 15
Vision Based Motion Estimation of Obstacles
in Dynamic Unstructured Environments

Andrei Vatavu and Sergiu Nedevschi

Abstract Modeling static and dynamic traffic participants is an important
requirement for driving assistance. Reliable speed estimation of obstacles is an essen-
tial goal especially when the surrounding environment is crowded and unstructured.
In this chapter we propose a solution for real-time motion estimation of obstacles by
using the pairwise alignment of object delimiters. Instead of involving the whole 3D
point cloud, more compact polygonal models are extracted from a classified digital
elevation map and are used as input data for the alignment process.

Keywords Motion estimation · Polygonal map · Object contour · Iterative closest
point · Driving assistance · Stereo-vision · Object delimiters

15.1 Introduction

In the context of Advanced Driver Assistance Systems, modeling static and dynamic
entities of the environment is a key problem. The detection of moving traffic par-
ticipants is an essential intermediate step for higher level driving technology tasks
such as collision warning and avoidance, path planning or parking assistance. The
problem of dynamic environment representation becomes even more difficult when
the surrounding world is unstructured and heterogeneous, including the cases of
crowded urban centers, traffic intersections or off-road scenarios. The representation
component may be influenced by several factors: noisy measurements, occlusions,
wrong data association or unpredictable nature of the traffic participants. In such
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complex environments, a driver assistance system should be able to detect other
moving traffic entities in real-time and at a high accuracy.

Usually, the classic approaches of dynamic obstacles detection and tracking con-
sist in extracting a set of features from the scene and estimating the motion from their
displacement. Current solutions can directly use 3D points [1], or they can track high
level attributes such as 2D boxes or 3D cuboids [2], stixels [3], free-form polygonal
models [4], object contours [5, 6] etc.

The dynamic obstacle modeling solutions can be classified by the nature of used
sensors. The most common used sensors are vision based [2], laser [7, 8], sonar
[9] or radar. The motion estimation techniques are also distinguished by the level
at which the dynamic features detection is applied. Some of the existing methods
rely on computing motion before generating a model [10, 11], while other methods
are based on extracting some attributes and subsequently estimating their dynamic
parameters [2, 4, 5].

Many of dynamic object detection solutions use intermediate representations as
primary information. A common practice is mapping 3D information into occupancy
grids [10], digital elevation maps [12] or octrees [9].

The data association and identifying correct correspondences steps play an
important role in estimating the motion of the traffic entities. One of the widely
used methods for model fitting in the presence of many data outliers is the RANSAC
algorithm [13]. However, its accuracy depends directly on the number of used sam-
ples. This may lead to a high computational cost.

Direct matching solutions such as Iterative Closest Point (ICP) [14] algorithm
are most common for vehicle localization and mapping [4]. In [15] the convergence
performance for several ICP variants is compared. An optimized ICP method that
uses a constant time variant for finding the correspondences is presented. In [4] a
moving objects map is segmented by assuming that dynamic parts do not fulfill
the constraints of the SLAM. However, the most of scan matching methods do not
take into consideration the ego-motion parameters. The data association of objects
in subsequent scans is hard to be achieved when the traffic participants or the ego
vehicle moves at high speeds or when the measurement uncertainties are not taken
into account.

We propose a solution of representing the dynamic environment in real-time by
using the pairwise alignment of free-form delimiters and considering the advantages
provided by a stereovision system, by inheriting the object information from the
intermediate representation. Instead of registering the whole 3D point cloud, our
method is based on extracting the most visible object cells from the ego car and
using them as input data for the alignment process. We propose an extension of the
classical ICP algorithm by applying a set of improvement heuristics:

• The data association is one of the problems of the classical scan matching tech-
niques. It’s hard to estimate the correspondent models from previous scans only
based on the proximity criterion. In our case we introduce a pre-processing step.
First, we find the correspondence pairs between the model set (contour extracted
in previous frame) and the measurement set (current frame results) by finding
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similarities between object blobs and passing this information at the contour level.
Then, a list of associated contour candidates is generated and is used as the input
for the next steps of the alignment;

• For the registration process we use free-form polygonal models that minimize
the erroneous results caused by occlusions, or by stereo reconstruction errors. The
main idea is that we are taking into account only the most visible points from
the ego-vehicle by performing a radial scanning of the environment [16];

• The previously extracted speeds are used as the initial guess for the ICP algorithm;
• In order to filter the alignment outliers, a rejection metric that includes stereo

uncertainties is proposed;

Our method is based on information provided by a Digital Elevation-Map, but can
be easily adapted for other types of intermediate representations.

The remaining of the chapter is structured as follows: Sect. 15.2 introduces
the architecture of the proposed dynamic environment representation. Section 15.3
presents the pre-processing module with a group of necessary tasks for extracting
object dynamic properties. In Sect. 15.4, the main steps of the motion estimation
component are detailed. The last two sections show the experimental results and
conclusion about this contribution.

15.2 System Architecture

The dynamic environment representation method has been developed and adapted
for crowded environments such as urban city traffic scenes. In this chapter we extend
our previous Dense Stereo-Based Object Recognition System (DESBOR) [17]. The
system architecture (see Fig. 15.1) could be divided in four main blocks: data acquisi-
tion and 3D reconstruction, intermediate representation, pre-processing, and motion
estimation.

Data Acquisition and 3D Reconstruction is the first level of the processing flow. At
this stage the images are acquired from the two cameras, then the 3D reconstruction
is performed using a specialized TYZX [18] board. The resulted point cloud is used
as the input information for computing the Digital Elevation Map.

Intermediate Representation: The raw dense stereo information is mapped into
a Digital Elevation Map (see Fig. 15.2). The resulted intermediate representation
contains three types of cells: road, traffic isle and object. The cells are labeled based on
their height information. More details about the Elevation Map are presented in [19].

Pre-processing: The pre-processing level groups a set of basic tasks that are per-
formed prior the ICP algorithm. At this phase, the object contours are extracted by
radial scanning of the Elevation Map. For the delimiters extraction we use the Bor-
der Scanner algorithm previously developed by us [16]. We apply the ego-motion
compensation for the Elevation Map and contours that are extracted in previous
frame, assuming that we know the odometry information. The ego-vehicle motion is
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Fig. 15.1 System architecture

Fig. 15.2 a An urban traffic
scene. b The elevation map
projected on the left camera
image. c A compact repre-
sentation of the environment.
d The top view of the elevation
map. The elevation map cells
are classified (blue—road,
yellow—traffic isle, red—
obstacles)

compensated in order to separate its speed from the independent motion of the
objects in the traffic scene. Another pre-processing task is to associate the polygonal
models. The data association is achieved by using the maximum overlapping score
of the Elevation Map blobs. Considering that each polygonal model inherits the blob
type, it also inherits the blob association information.

Motion Estimation: As the result of the pre-processing level, a list of candidates is
provided for the ICP module. Each candidate represents a pair of associated contours
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Fig. 15.3 Coordinate system

in the previous stage. For each candidate, a rotation and a translation is estimated by
the ICP algorithm. Then the computed motion information is associated to the static
polygonal models. A dynamic polyline map is generated as the result. Each polyline
element is characterized by a set of vertices describing the polygon, position, height,
type (traffic isle, obstacle), orientation and magnitude.

In our case the two cameras are placed on a moving vehicle. We use a coordinate
system where the z axis points toward the direction of the ego-vehicle, and the x axis
is oriented to the right. The origin of the coordinate system is situated in front of the
car (see Fig. 15.3).

15.3 Pre-Processing Level

The pre-processing stage consists in performing necessary tasks prior the motion
estimation. First, extracting a sufficiently generic model is needed. The extracted
model should allow us the creation of fast subsequent algorithms and as well it
should minimize the representation errors caused by noisy 3D reconstruction or by
occlusions.

A second task is to separate the ego-vehicle speed from the independent motion
of the other objects in the traffic scene. This is achieved by compensating the ego
motion.

And finally, elevation map blob is labeled and is used in data association. As
the result a list of pairs of contours is extracted and is provided subsequently to the
ICP step. Thus, unlike the other classical methods that involve aligning the whole
local maps at once, and then segmenting the dynamic obstacles from the static ones,
we first associate the obstacles at the blob level and then apply the ICP for each
associated candidate.
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15.3.1 Polyline-Based Environment Perception

For the polyline based object representation we use the Border Scanner algorithm
described by us in [16]. The main idea is that we are taking into account only the most
visible points from the ego car and extract object delimiters by radial scanning of
the Elevation Map. Our method is similar to a Ray-Casting approach. The proposed
method consists in determining the first occupied point intersected by a virtual ray
which extends from the ego-car position. The scanning axis moves in the radial
direction, having a fixed center at the ego-vehicle position (the coordinate system
origins). At each step we try to find the nearest visible point from the Ego Car
situated on the scanning axis. In this way, all subsequent cells Pi are accumulated
into a Contour List C, by moving the scanning axis in the radial direction:

C = {P1, P2, . . . Pn} (15.1)

For each object Oi described by a contour Ci we apply a polygonal approximation
of Ci by using a split-and-merge technique described in [20]. The extracted polygon
is used to build a compact 3D model based on the polyline set of vertices as well as
on the object height. A polyline based representation is described in Fig. 15.2d.

15.3.2 Ego-Motion Compensation

Before estimating the motion of the traffic entities, the movement of the ego vehicle
must also be taken into consideration. In order to compensate the ego motion in the
successive frames, for each given point Pt−1(xt−1, yt−1, zt−1) in the previous frame,
the corresponding coordinates Pt (xt , yt , zt ) in the current frame are computed by
applying the following transformation:


⎧

xt

yt

zt

⎨
⎢ = Ry (ψ)


⎧

xt−1
yt−1
zt−1

⎨
⎢ +


⎧

0
0
tz

⎨
⎢ (15.2)

where Ry (ψ) is the rotation matrix around the Y axis with a given angle ψ , and tz is
the translation on the Z axis. The rotation and the translation parameters are provided
by the ego-car odometry. It is considered that the translations on the X and Y axis
are zero.

15.3.3 Data Association

This stage consists in finding the corresponding contours that identify a single object
in consecutive frames. As each extracted contour describes an Elevation Map blob,
finding the associated contour pairs is reduced to find a similarity between the object
blobs.
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Fig. 15.4 The association
between two set of blobs in
the consecutive frames and
the resulting set of associated
pairs

For each object Pi from the previous frame and for each object C j from the
current frame we calculate an overlapping score Ai j . The results are stored into a
score matrix A = {Ai j }. Candidates with the highest score are taken into account in
determining the associations between the two set of objects P and C.

However the association problem may lead only to partial results in the cases when
larger objects from the previous frame are split into smaller blobs in the current frame
and vice versa. In order to find all possible pairs of candidates we perform two types
of associations: a direct association (forward association) finding best overlapping
candidates in the current frame for all blobs in the previous frame, and a reverse
association (backward association) that finds best overlapped objects in the previous
frame for all objects from the current frame (see Fig. 15.4). The final list of candidates
includes all distinct pairs associated in the two steps.

15.4 Motion Estimation

The object motion estimation module receives as input a list of associated contour
pairs. For each distinct pair we compute correspondences between the two contours
and estimate a rotation and a translation which minimize the alignment error. For
the contour pairwise registration we use the Iterative Closest Point (ICP) method.
The ICP algorithm was proposed by Besl and McKay [14] and represents a common
solution especially for scan-matching techniques, but the idea could be adapted for
any kind of models.

For each contour pair that identifies the same object in the consecutive frames we
define two set of points: a model set P = {p1, p2, . . . , pM } that describes the object
contour in the previous frame, and a data set Q = {q1, q2, . . . , qK } that describes
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the object contour in the current frame. For each point q j from Q the corresponding
closest point pi from P is found. We want to find an optimal rotation R and translation
T that minimize the alignment error. The objective function is defined:

E(R, T ) =
N⎪

i=1

≡Rpi + T − qi≡2 (15.3)

where pi and qi are the corresponding point pairs of the two sets and N is the total
number of correspondences.

The proposed alignment method is described by the following main steps:

1. Matching—for each point from data set, the closest point from the model set is
found. A list of correspondent pairs is generated.

2. Outliers Rejection—Rejecting the outliers that could introduce a bias in the
estimation of translation and rotation.

3. Error Minimization—estimating new transformation parameters R and T for the
next iteration.

4. Updating—having the new R and T, a new target set is computed by applying
the new transformation to the model set. A global transformation Mg is updated
with the new R and T values.

5. Testing the Convergence—compute the average point-to-point distance
between the measurement set and transformed model set. Then test if the algorithm
has been converged to a desired result. If the error is greater than a given thresh-
old, the process continues with a new iteration. The algorithm stops when the
computed error is below the selected error threshold or when a maximum number
of iterations have been achieved.

Next we will detail each of these steps.

15.4.1 Matching

At this stage, for each point qi from Q we want to find the closest point from the
model set P:

d(qi , P) = min
j∈{1..Np} d(qi , p j ) (15.4)

Usually this task is the most computationally extensive in the ICP algorithm. The
classical brute force search approach has a complexity of O(Nq · Np), with Np being
the number of points in P and Nq—the number of points in Q. In order to reduce the
complexity to O(Nq · log Np) many solutions employ a KD-Tree [21] data structure.
In our case, for finding closest points problem, we use a modified version of Chamfer
based Distance Transform [22] (see Fig. 15.5).
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Fig. 15.5 Distance trans-
forms and corresponding
masks are computed for
dynamic obstacles (left side),
and for static obstacles (right
side). Data contours (gray
color) and model contours
(white color) are superim-
posed on the distance trans-
form image. Each contour
point in the correspondence
mask is labeled with a unique
color. The colors in the cor-
responding mask identify
uniquely the closest contour
point (having the same color)

A distance transform represents a map that has the property that each map cell
has a value proportional to the nearest obstacle point. In our case, for each separate
model contour we define a region of interest and compute the distance transform.
The difference of our solution is that we use two maps: a distance map that stores
the minimum distances to the closest points, and a correspondence map, storing the
positions of the closest points (see Fig. 15.5). The correspondences from the model
set are identified by superimposing the data contour on the two masks.

15.4.2 Outliers Rejection

The purpose of this stage is to filter erroneous correspondences that could influence
the alignment process. We use two types of rejection strategies: rejection of pairs
whose point-to-point distance is greater than a given threshold, and eliminating the
points where the overlap between the two contours is not complete.

15.4.2.1 Distance Based Rejection

The classical strategy consists in rejection of pairs whose point-to-point distance is
larger than a given threshold Dt :

d(qi , p j ) > Dt (15.5)
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Fig. 15.6 Rejecting the
contour boundary

Because the stereo reconstruction error generally increases with the square of the z
distance, the stereo-system uncertainties must be taken into account. As suggested
by [10], if we assume that the stereo-vision system is rectified, then the z error is
given by the following relation:

σz = z2 · σd

b · f
(15.6)

where z is the depth distance, b is the stereo system baseline; f is the focal length and
σd denotes the disparity error. Thus, for each corresponding pair of points (pi , qi )

from the two sets, the rejection is made if:

d(qi , pj ) > Dt + σz (15.7)

This would mean that the rejecting threshold is increased at once with the z
distance.

15.4.2.2 Boundary Based Rejection

The second type of rejecting is filtering the point correspondences caused by incom-
plete overlap between contours. Usually, these situations appear when one of the
two contours is incompletely extracted due to occlusions, and may lead to incorrect
alignments. A possible solution is to identify the subsets of points from Q that have
the same correspondent point p j in P, and keeping only the pair with the minimum
distance (see Fig. 15.6).

15.4.3 Error Minimization

In this step we determine the optimal rotation R and translation T by minimizing the
objective function defined by Eq. (15.3).

The rotation matrix around the Y axis is linearized, approximating cos α by 1 and
sin α → α by α:
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Ry(α) =

⎧

cos α 0 sin α

0 1 0
− sin α 0 cos α

⎨
⎢ →


⎧

1 0 α

0 1 0
−α 0 1

⎨
⎢ (15.8)

The translation vector is defined as:

T = ⎡
tx ty tz

⎣T (15.9)

We can rewrite the Eq. (15.3) as:

E(R, T ) =
N⎪

i=1

⎤⎤⎤⎤⎤⎤
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1 0 α
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⎢
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2

(15.10)

The E(R, T ) is minimized with respect to α, tx , ty , and tz by setting the partial
derivatives to zero:

⎦⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎠
⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞

∂ E(R,T )
∂α

= 2
N∑

i=1

[
α(p2

i,x + p2
i,z) + ti,x pi,z

−ti,z pi,x − qi,x pi,z + qi,z pi,x

]
= 0

∂ E(R,T )
∂tx

= 2
N∑

i=1

(
ti,x + pi,x + αpi,z − qi,x

) = 0

∂ E(R,T )
∂ty

= 2
N∑

i=1

(
ti,y + pi,y − qi,y

) = 0

∂ E(R,T )
∂tz

= 2
N∑

i=1

(
ti,z + pi,z − αpi,x − qi,z

) = 0

(15.11)

Therefore we can obtain the unknown coefficients:
⎦⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎠
⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞⎞
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15.4.4 Updating

Assuming that we have estimated new R and T parameters in the previous step,
a new target set is computed by applying the new transformation to the model set.

Having the rigid body transformation matrix M:

M =
[

R T
0 1

]
=


⎧

1 0 α tx
0 1 0 ty

−α 0 1 tz
0 0 0 1

⎨
⎢ (15.13)

Each point pi from the model set P is transformed according to the following
relation: 
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(15.14)

Finally, a global transformation MG is updated:

Mk+1
G = Mk

G · M (15.15)

15.4.5 Testing the Convergence

The error metric is estimated by computing the average Euclidean distance (AED)
of every corresponding pair of data set Q and transformed model set.

Err = 1

N

N⎪
i=1

≡pi − qi≡ (15.16)

If the error is greater than a given threshold, the process continues with a new iteration.
The algorithm stops when the computed error is below the selected error threshold
or when a maximum number of iterations have been achieved.

15.5 Experimental Results

The proposed dynamic environment representation method has been tested in
different traffic situations. For our experiment we used a 2.66 GHz Intel Core 2
Duo Computer with 2 GB of RAM. Figure 15.7 presents some qualitative results
obtained in a dynamic urban traffic scenario.
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Fig. 15.7 a An urban traffic scenario. b The alignment result (red color) between the model
delimiter extracted in previous frame (yellow) and the data contour, extracted in the current frame
(blue). c The virtual view of the scene. The static obstacles are represented with green delimiters
while the dynamic obstacles are colored with red. The speed vectors are associated to each dynamic
entity. d The representation result, projected on the left camera image

Fig. 15.8 The computed Error Metric in the case of ICP algorithm that does not use outlier rejection
and ICP method that uses a boundary rejection

In Fig. 15.7b the model delimiter that was extracted in previous frame is colored
with yellow, while the data contour (extracted in the current frame) is drawn with
blue. The result of the alignment is illustrated with red color. It can be observer that in
the case of the incoming vehicle, as well as for the lateral static vehicles, the aligned
model is superimposed almost perfectly on the data set. In the Fig. 15.7c, the virtual
view of the scene is shown. The static obstacles are represented with green delimiters
while the dynamic obstacles are colored with red. The speed vectors are associated
to the each dynamic entity (yellow color). The representation result is also projected
on the left camera image (see Fig. 15.7d). We considered that the obstacles with a
speed greater than 8 km/h are dynamic.

Figure 15.8 shows a comparative result between the ICP algorithm that includes
all correspondence points (blue color) and the alignment method that uses the
Contour Boundary Rejection strategy (red color). We used the Average Euclidean
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Distance (AED) as the error metric. It can be observed that the ICP algorithm based
on Boundary Rejection strategy converge more quickly than the ICP method with-
out a filtering mechanism and proves to be more accurate having a lower alignment
error. For our experiments we used a maximum number of 10 iterations. The average
processing time was about 38 ms.

15.6 Conclusions

In this chapter we propose a method of real-time representation of the dynamic envi-
ronment by using the pairwise alignment of free-form models. Instead of registering
the whole 3D point cloud, the most visible obstacle points from the ego car are
extracted and are subjected to the alignment process. We extend the classical ICP
algorithm with a set of preprocessing tasks. First, we associate the delimiters at the
blob level. Then, a list of associated candidates is passed to the alignment stage.
For the registration process we use free-form polygonal models that minimize the
erroneous results caused by occlusions, or by stereo reconstruction errors. As future
work we propose to improve the stability of the environment perception by extending
our system with a temporal filtering of the estimated speeds.
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Chapter 16
Real-Time Vision-Based Pedestrian Detection
in a Truck’s Blind Spot Zone Using
a Warping Window Approach

Kristof Van Beeck, Toon Goedemé and Tinne Tuytelaars

Abstract In this chapter we present a vision-based pedestrian tracking system
targeting a specific application: avoiding accidents in the blind spot zone of trucks.
Existing blind spot safety systems do not offer a complete solution to this problem.
Therefore we propose an active alarm system, which automatically detects vulner-
able road users in blind spot camera images, and warns the truck driver about their
presence. The demanding time constraint, the need for a high accuracy and the
large distortion that a blind spot camera introduces makes this a challenging task.
To achieve this we propose a warping window multi-pedestrian tracking algorithm.
Our algorithm achieves real-time performance while maintaining high accuracy. To
evaluate our algorithm we recorded several pedestrian datasets with a real blind spot
camera mounted on a real truck, consisting of realistic simulated dangerous blind
spot situations. Furthermore we recorded and performed preliminary experiments
with datasets including bicyclists.
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systems
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16.1 Introduction

Research shows that in the European Union, each year an estimate of 1300 people
die due to blind spot accidents [7]. This so-called blind spot zone, mainly situated
to the right side of the truck, is defined as a zone in which the truck driver has
no or limited view. Existing commercial systems appear unable to completely cope
with the problem. Each type of system has its own specific disadvantages. Currently
the most widely used solution is the blind spot mirror. Since the introduction of
this mirror however, which is obliged by law in the EU since 2003, the number of
casualties did not decrease [13]. This is mainly due to the fact that these mirrors
are often deliberately adjusted incorrect to facilitate maneuvering. Another popular
system is the blind spot camera, a wide-angle camera aimed at the blind spot zone
(see Fig. 16.1), combined with a monitor in the cabin of the truck. The advantage of
the latter system is that the camera is always adjusted correctly, since it is robustly
mounted onto the truck’s cabin. These two types of safety systems are called passive
systems, since they depend on the attentiveness of the truck driver, whereas active
safety systems automatically generate an alarm. An example of such an active system
is found in ultrasonic sensors placed at the side of the truck. When using these kind
of systems, the problem of scene interpretation arises. Since they cannot distinguish
static objects (e.g. traffic signs or trees) and pedestrians, they tend to often generate
unnecessary alarms. In practice the truck driver will find this annoying and turns the
system off. To overcome these problems our final target is to develop an active blind
spot camera system. This driver-independent system automatically detects vulnera-
ble road users in the blind spot zone, and warns the truck driver about their presence.
Such a system has a wide range of advantages as compared to the previous safety
systems: it is always adjusted correctly, is independent of the interpretation of the
truck driver and is easily implementable in existing passive blind spot camera sys-
tems. Building such a system is an extremely challenging task, since vulnerable road
users are a very diverse class. They not only consist of pedestrians but also bicyclists,
mopeds, wheelchair users and children are included. Besides the objects that need
to be detected, the nature of this specific problem introduces another challenge: due
to the position of the camera (which is aimed at the blind spot zone), we have a
highly dynamical background. And since the camera is moving, standard computer
vision techniques like adaptive background estimation or background subtraction,
which can be computed very fast and would largely facilitate the detection task, are
not an option. However, the biggest challenge is the hard real-time constraint of this
application combined with the need for a high precision and recall rate.

In this chapter we present part of such a complete safety system: we developed a
real-time robust multi-pedestrian detector/tracker for real blind spot camera images
which maintains high accuracy. In the future we plan to extend our system to multi-
class. As opposed to the classically used sliding window approach, our algorithm
is based on a warping window approach. In previous work we performed initial
blind spot pedestrian detection experiments using a standard camera, mounted on a
standard car [15]. Here, we present our warping window approach to cope with the
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Fig. 16.1 The blind spot
zone of trucks often creates
dangerous situations

Fig. 16.2 Example frame of
our blind spot camera setup

specific viewing angle of a real blind spot camera mounted on a real truck, and the
distortion that this camera introduces. An example frame of our blind spot camera
setup is displayed in Fig. 16.2. One clearly sees that standard pedestrian detectors
(discussed in the next section), even if they were fast enough, cannot be used on these
images because they are developed for pedestrians that appear upright in the image.
Using our framework we manage to robustly detect and track the pedestrians while
maintaining excellent speed performance. This is briefly done as follows. Using our
warping window method, we can warp the regions of interest in the image and use
a standard pedestrian detector at only one specific scale, which is very fast. We then
integrate this approach in a tracking-by-detection framework, and further speedup the
algorithm using temporal information to reduce the search space. To meet the strict
accuracy demands, we use a pedestrian detector [8] which has very good accuracy
at the cost of high computation time when it is used as is. Using our framework this
detector still achieves high accuracy but at real-time performance (on our dataset
we achieve an average frame rate of 10 fps). Since to our knowledge no truck blind
spot camera datasets are available in the literature, we recorded our own real-life
datasets in which we simulated different dangerous blind spot scenarios using a real
truck. These images are used to evaluate our algorithm regarding both to speed and
accuracy. The outline of this chapter is as follows: Sect. 16.2 discusses related work
on this topic. Section 16.3 describes our pedestrian tracking algorithm in detail. In
Sect. 16.4 we describe the datasets that we recorded together with the result of our
approach. We conclude in Sect. 16.5 with final remarks and future work.
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16.2 Related Work

A vast amount of literature concerning pedestrian detection is available. In [1] the
authors propose the use of Histograms of Oriented Gradients (HOG). This idea
was further extended to a multi part-based model in [9]. Later these authors further
optimized their detection algorithm, and introduced a cascaded version [8]. All of
the mentioned detectors use a sliding window paradigm: across the entire image one
tries to find pedestrians at all possible locations and scales. This approach does not
achieve real-time performance at the moment. To overcome this problem methods
have been proposed that use a detector cascade with a fast rejection of the false
detections [16], whereas others methods use a branch and bound scheme [12]. To
avoid the need to fully construct the scale-space pyramid Dollár et al. proposed a
multiscale pedestrian detector (coined The fastest pedestrian detection in the west
or FPDW) which uses feature responses computed at a specific scale to approximate
features responses at scales nearby [2]. Several comparative works on pedestrian
trackers exist in the literature. In [5] a comparison is given between the Dalal and
Triggs model (HOG combined with a linear SVM classifier) with a wavelet-based
AdaBoost cascade. Their work shows a clear advantage of the HOG-based approach
at the cost of lower processing speeds. In [3] seven pedestrian detectors, all based on
HOG or Haar features trained with a boosting method or SVMs are compared. They
concluded that the HOG detectors perform best for unoccluded pedestrians over
80 pixels high. A multifeature combination (HOG combined with Haar features)
outperforms HOG in more difficult situations at an evidently higher computational
cost. More recently, in [4] the same authors present an exhaustive evaluation of
sixteen state-of-the-art pedestrian detectors. Their evaluation shows that part-based
pedestrian detectors still achieve the highest accuracy, while the FPDW is at least
one order of magnitude faster with only minor loss of accuracy. These results were
our motivation to use the part-based pedestrian detector [8] as a base detector in our
framework. Regarding pedestrian tracking algorithms, most of them rely on a fixed
camera, and use a form of background subtraction [14, 17]. As mentioned this cannot
be used in our application, since we have to work with moving camera images. Due to
the specific blind spot view, which is a backwards/sideways looking view, detecting
and tracking pedestrians is not a trivial task. Existing pedestrian trackers on moving
vehicles mostly use a forward-looking camera [6], thereby reducing the complexity
of the scene. Often a stereo camera setup is used, and the disparity characteristics
are exploited [10]. Since our goal is to develop a system which is easily integrated
into existing blind spot camera systems we need to use a monocular approach. We
differ from all of the trackers mentioned above: we aim to develop a monocular
multi-pedestrian tracking system with field of view towards the blind spot zone of
the vehicle at real-time performance, while maintaining high accuracy.
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16.3 Pedestrian Tracking Algorithm

Our warping window algorithm is mainly based on the following observation. Look-
ing at the blind spot camera example frame in Fig. 16.2 one clearly notices that, due
to the specific position of the blind spot camera and the wide angle lens, pedestrians
appear rotated and scaled. The crux of the matter is that the amount of rotation and
scaling is only dependent on the position in the image. Thus, each pixel coordinate
x = [x, y] represents a specific scale and pedestrian rotation. If at each pixel coor-
dinate the corresponding rotation and scale is known, one can dramatically speedup
pedestrian detection. Instead of a classic full scale-space search we can warp the
region of interest, which is extracted based on the scale at that pixel coordinate, to
upright pedestrians on one standard scale. This way we can use a standard pedestrian
detector at only one scale, which is very fast. Besides our application, this approach
can easily be generalized to other applications where such wide-angle distortion
and/or non-standard camera viewpoints occurs (e.g. surveillance applications). To
get the rotation and scale for each pixel coordinate a one-time calibration step is
needed. To enable robust tracking we integrate this warping window approach into
a tracking-by-detection framework. We use temporal information to predict the next
pedestrian positions, eliminating the need for a full search over the entire image.
The next subsections each describe part of the algorithm. First our warping win-
dow approach is described in detail. We then give a quantitative motivation for our
pedestrian detector choice and the size of our standard scale in Sect. 16.3.2. The last
subsection explains how we integrate our warping window approach into a robust
tracking framework, and thus describes how our complete algorithm works.

16.3.1 Warping Window Approach

The warping window approach is visualized in Fig. 16.3. Given input images as in
Fig. 16.2, the pedestrians appear rotated and scaled at different positions in the image.
If we assume that we have a flat ground-plane, we know that the rotation and the scale
of these pedestrians only depends on their position in the image. Thus if the scale
s and rotation θ are known for each position in the image (visualized in the figure
using the 2D lookup functions or LUF heat map plots), we can warp the pedestrian
ROIs (I) into upright pedestrians at a standard scale (Iwarp), using Iwarp = TI , with
transformation matrix T :

T =

⎧

s cos θ −s sin θ tx
s sin θ s cos θ ty

0 0 1

⎨
⎢ (16.1)

A one-scale detector is used to detect the pedestrians, and the output coordi-
nates of the bounding boxes are retransformed into input image coordinates. These
coordinates are then fed into our tracking framework, to determine the next pedes-
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Fig. 16.3 Our warping window approach. If the scale and rotation are known, we can warp the
ROIs and use a standard pedestrian detector at only one scale

trian ROIs. To determine the scale and rotation for each pixel coordinate, a one-
time calibration step is needed. To achieve this, we manually labeled about 100
pedestrians in the calibration images homogeneously spread over the total image
region. Each pedestrian yields scale and rotation data at that position. Next we fit-
ted a two-dimensional second order polynomial function through the data points:
rotation = fr(x, y) and scale = fs(x, y) where:

fi(x, y) = A + Bx + Cy + Dx2 + Exy + Fy2 (16.2)

These two functions effectively represent a 2D lookup function, i.e. for each pixel
coordinate they give the rotation and scale of that pixel position. If the camera position
is adjusted, we need to perform a recalibration. However, due to the robust camera
mounting on the truck this occurs only rarely.

Thus detecting pedestrians is composed of four steps: extract the pedestrian ROI,
calculate the scale and rotation for that ROI, retransform to an upright pedestrian
with a standard height of 140 pixels and use a pedestrian detector at only one scale.
The choice for this number will be argumented in the next subsection.

16.3.2 Pedestrian Detector

Since we only need to detect pedestrians at a standard scale (140 pixels), our approach
allows the use of a detector with high accuracy which would otherwise be too com-
putationally expensive. Given the extensive comparison results from [3–5] that we
discussed in Sect. 16.2, two pedestrian detectors are applicable in our framework.
Both the part-based detector [8, 9] and the FPDW [2] achieve high accuracy. The
accuracy of the part-based models is slightly higher at the cost of a higher compu-
tation time due to scale-space pyramid construction. Since no scale-space pyramid
needs to be constructed in our application, our choice evidently goes to the part-
based detector. Let us now briefly discuss how this pedestrian detector works if used
out-of-the-box. The object that has to be detected is described using a HOG model.
The model consists of a root filter, representing the pedestrian appearance, and a
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Fig. 16.4 The pedestrian
HOG model. Root filter (Left),
Part Filters (Center), Prior
estimate of position of the part
filters (Right)

number of smaller part filters, representing the head and limbs of the pedestrian (see
Fig. 16.4). The position of each of the parts are latent variables, which are optimized
during the detection. A first step is the construction of a scale-space pyramid from the
original image. This is done by repeated smoothing and subsampling. For each entry
of this pyramid, a feature map is computed, which is built using a variation of the
HOG features presented by Dalal and Triggs [1]. For a specific scale one computes
the response of the root filter and the feature map, combined with the response of the
part filters and the feature map at twice the resolution at that scale. The transformed
responses of the part filters are then combined with the response of the root filter to
calculate a final score.

As a reference, if used out of the box on our images (640 × 480 resolution) this
detector needs an average of 5.2 s per frame (evaluated on a Intel Xeon Quad Core
running at 3 GHz, all implementations are CPU-based only). If we reduce the number
of scales to only contain those needed in our application, detection time decreases to
about 850 ms. Later the authors presented their cascaded version [8]. There, using a
weak hypothesis first, a fast rejection is possible while maintaining accuracy. Using
this detector, again out of the box and only on the scales needed in our application,
the detection time on our images equals 340 ms.

We altered both the default and the cascaded part-based pedestrian detector to
a one-scale detector. In Fig. 16.5 (left) the average calculation times of the four
different implementations, namely the part-based model with reduced scales (further
referenced as Felzenszwalb reduced scales), our one-scale implementation of this
detector (referenced as Felzenszwalb one scale), the cascaded version and our one-
scale implementation of the cascaded version. Needless to say, the detection time
strongly depends on the image resolution. To generate Fig. 16.5 (left), we used a high
resolution pedestrian image and cropped the image to only contain the pedestrian.
This image was then subsampled to the indicated resolutions. Calculation times are
averaged over ten runs. Note that to obtain a fair comparison we deliberately did
not cache any data. For example, the pedestrian model is completely reloaded into
memory on each run. We can clearly see that decreasing the resolution drastically
reduces the calculation time for both the standard Felzenszwalb and the cascaded
detector. The calculation time of our one-scale implementations does decrease with
resolution, but not nearly that fast. Since only one scale is looked at, a double gain
in speed is realized. The scale-space pyramid does not need to be constructed, and
features only need to be calculated and evaluated at one scale. In our warping window
framework we use the cascaded one-scale detector.
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Fig. 16.5 Left The calcu-
lation time for the different
pedestrian detector implemen-
tations. Right The accuracy of
our one-scale cascade detector
implementation in function of
the pedestrian resolution
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Fig. 16.6 Example of three
initial search coordinates,
together with the search
regions that they define

Reducing the resolution implies that the accuracy significantly drops. Therefore
we needed to determine the optimal trade-off point between the detection accuracy
and the resolution to which we warp our pedestrian images. To determine that optimal
resolution we extracted about 1000 pedestrians from our dataset, rescaled them to
fixed resolutions and determined the accuracy of our one-scale cascaded detector for
each resolution. These results are displayed in Fig. 16.5 (right). At higher pedestrian
resolutions the accuracy remains almost constant at around 94 %. When decreasing
the pedestrian resolution the accuracy starts to drop at approximately 135 pixels.
Based on these observations we chose to rescale our pedestrians to a constant standard
height of 140 pixels in our warping window approach. This results in an average
calculation time of 45 ms when using the one-scale cascaded detector. If the model
does not need to be reloaded on each run, calculation time further decreases to about
12 ms.

16.3.3 Tracking Framework

Our complete pedestrian tracking-by-detection algorithm works as follows. We inte-
grate our warping window approach into a reliable tracking-by-detection frame-
work. At positions where pedestrians are expected to enter the blind spot zone in
the frame, standard search coordinates are defined, see Fig. 16.6. Our warping win-
dow approach is used to detect pedestrians at these search locations. If a pedestrian
is detected, tracking starts. We use a linear Kalman filter [11] to estimate the next
position of the pedestrian, based on a constant velocity model. Our experiments
show that this assumption holds and suffices for a robust detection. We define the
state vector xk using the pixel position and velocity of the centre of mass of each
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Fig. 16.7 Example output of our tracking algorithm

pedestrian: xk = ⎪
x y vx vy

⎡T . The Kalman filter implements the following time
update equation x̂−

k = Ax̂k−1. Note that x̂−
k refers to the a priori state estimate at

timestep k, while x̂k refers to the a posterior state estimate at timestep k. The process
matrix A equals:

A =


⎣⎣⎧

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

⎨
⎤⎤⎢ (16.3)

Using this motion model we predict the position of the pedestrian in the next
frame. Around the estimated pedestrian centroid a circular region with a radius based
on the scale at that coordinate, determined from the 2D scale LUF, is computed. In
subsequent frames we use the estimated centroids and the standard search coordinates
as inputs for our warping window approach. For each estimated centroid our warping
window approach warps this ROI and seeks a new pedestrian detection. For every
pedestrian that is being tracked, the algorithm evaluates if a centroid of such a new
detection is found in its circular region. If a matching centroid is found, that Kalman
filter is updated, and a new position is predicted. When multiple centroids are found,
the nearest one is chosen. If for a tracked pedestrian no new detection is found, the
Kalman filter is updated based on the estimated position. This enables tracking of
partially occluded pedestrians or pedestrians where the HOG response is temporarily
lower (e.g. because of background objects). When no new matching detection is
found for multiple frames in a row (4 in our experiments), the tracker is discarded. If
a detection is found with no previous tracked instance, tracking starts from there on.
This approach eliminates the need for a full frame detection, thus limiting processing
time. Figure 16.7 shows the output of our warping window tracking algorithm on one
video sequence.

16.4 Experiments and Results

Due to the specific viewing angle of the blind spot camera no image datasets are
available in the literature. Therefore we constructed such a dataset, consisting of
several simulated dangerous blind spot scenarios. This was done using a real blind
spot camera, mounted on a real truck. We used a commercial blind spot camera
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Fig. 16.8 Our test truck (Left)
with the mounted blind spot
camera circled in red (Right)

(Orlaco CCC115◦), which outputs 640 × 480 images at 15 frames per second. It has
a wide-angle lens with a viewing angle of 115◦. Figure 16.8 indicates the position
of the blind spot camera on our truck. We recorded five different scenarios. At each
scenario the truck driver makes a right turn, and the pedestrians react differently. For
example, in some of the scenario’s the truck driver takes a right turn while stopping
to let the pedestrians cross the street, while in other scenario’s the pedestrians stand
still at the very last moment while the truck continues his turn. These simulations
resulted in a dataset of about 11000 frames. Furthermore we recorded a second
dataset which includes bicyclists, and consists of about 9000 frames. Our evaluation
hardware consists of an Intel Xeon Quad Core, which runs at a clockspeed of 3 GHz.
All implementations are CPU-based, we do not use GPU implementations. The
algorithm is mainly implemented using Matlab, while part of the pedestrian detector
is implemented in standard C-code. The image warping is implemented in OpenCV,
using mexopencv. As mentioned in Sect. 16.3, as a reference, when used out of the
box the Felzenszwalb pedestrian detector needs 5.2 s for a full scale-space detection
over an entire frame. As our goal is to develop a real-time pedestrian tracker with
high accuracy, we evaluated the algorithm with respect to both speed and accuracy.
Our results are presented in the next subsections.

16.4.1 Speed Analysis

For each tracked pedestrian we need to do a new detection in the consequent
frames. Thus if more pedestrians enter the frame, the total calculation time increases.
Figure 16.9 (left) displays the detection time per tracked pedestrian in function of the
rotation. We split up the total detection time in three separate steps: first the image
is warped in an upright fixed scale pedestrian image. Then our pedestrian detector
calculates the HOG features. The last step consists of the actual model evaluation, in
which the image is given a score based on the HOG model. The total detection time
increases if the rotation angle increases. Warping the window is computationally the
least expensive operation. It only slightly depends on the rotational value, and maxi-
mally takes about 3 ms. The feature calculation and the model evaluation take almost
an equal amount of time, and both increase with increasing rotation. This is due to
the fact that the total image area increases with increasing rotation. If no rotation is
needed, both feature calculation and model evaluation time take about 5 ms, resulting
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Fig. 16.9 Left Speed analysis of our warping window approach. The blue line indicates the total
calculation time per pedestrian, in function of the rotation. Right A precision-recall graph of our
algorithm as evaluated over our dataset

Table 16.1 Speed results as
measured over our dataset

Best-case Average Worst-case

FPS 50.8 10.1 7.8
# pedestrians 0 3.1 5

in a total detection time of 12 ms. In the worst-case scenario, occurring at a rotation
of 52◦ (the maximum rotation in our application), the detection time increases to
35 ms. Thus if e.g. two pedestrians are tracked, of which one at low rotation and one
at high rotation, detection time for these pedestrians requires about 45 ms. If two
standard search regions are included at e.g. 15 ms each the total frame detection time
equals 72 ms. In that case the algorithm achieves a frame rate of 14 frames per sec-
ond. If multiple pedestrians are detected, detection speed decreases. Large groups of
pedestrians are however easily noticed by the truck driver and therefore do not pose
a real risk for accidents. Most blind spot accidents occur when only a few (mostly
only one) pedestrian are in the blind spot zone. If only one pedestrian is tracked our
algorithm achieves a frame rate of more than 20 frames per second. Table 16.1 shows
the average, best-case and worst-case frame rate as evaluated over our dataset, and
gives the number of pedestrians that were tracked while achieving these frame rates.
Since in our dataset on average more than 3 pedestrians were visible per frame, the
average calculation time given here is in fact an overestimation of the calculation
time for a real scenario.

16.4.2 Accuracy Analysis

The accuracy of our detector is displayed in the precision-recall graph in Fig. 16.9
(right). They are determined as: precision = TP

TP+FP and recall = TP
TP+FN . For each
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Fig. 16.10 Example output of our tracking algorithm on a bicyclist dataset

pedestrian that our algorithm detects, we look for the centroid of a labeled pedestrian
in the circular region of the detection. If this it the case, the detection is counted as a
true positive. If no labeled pedestrian is found, the detection is indicated as being a
false positive. If a labeled pedestrian is not detected, this is indicated as being a false
negative. Our testset consists of about 1000 pedestrians in very diverse poses and
movements. As can be seen in the figure our algorithm achieves both high precision
and recall rates. At a recall rate of 94 %, we still achieve a precision rate of 90 %.
This is due to the fact that using our warping window approach, the specific scale at
each position is known. Therefore false positives are minimized, while the pedestrian
detection threshold can be set very sensitive. This way difficult to detect pedestrians
can still be tracked. While very good, the accuracy is not perfect yet. Our warping
window approach sometimes fails to track pedestrians due to low responses of the
HOG filter, induced because only a subtle intensity difference between the pedestrian
and the background occasionally occurs. A possible solution for this is the inclusion
of other features, e.g. motion information.

16.4.3 Preliminary Bicycle Experiments

An evident extension of our algorithm is the inclusion of other vulnerable road
users. Here, as a first step towards a complete safety system, we present preliminary
qualitative experimental results that we obtained with our algorithm on a bicyclist
dataset. To conduct these experiments no algorithmic changes were performed. Our
motivation for conducting these experiments is based on the fact that pedestrians and
bicyclists share similar appearance features (e.g. the upperbody). Figure 16.10 shows
the qualitative experimental results. As one can see in the first frames (frame 255
and 263), the appearance of the bicyclist is similar to that of a pedestrian. Therefore
our algorithm performs well in these situations were the bicyclist is relatively far
away. However, in consecutive frames the similarity decreases and the detection is
lost. A merely direct application of the pedestrian detector is not feasible anymore.
In the future, we plan to solve this problem by integrating other information cues,
e.g. color histograms, to enhance the robustness of the detector. Another approach
could be the retraining of the object detector to such specific appearance models.
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16.5 Conclusions and Future Work

We presented a multi pedestrian tracking framework for a moving camera based on
a warping window approach. We introduced this warping window approach to cope
with the specific wide-angle distortion induced by the blind spot camera. Moreover,
this methodology is easily applicable to other object detection applications in situa-
tions where such distortion occurs, e.g. caused by non-standard camera viewpoints
or specific lenses. To evaluate our algorithms we recorded a representative real blind
spot dataset. Experiments where performed evaluating both the speed and accuracy
of our approach. Our algorithm achieves real-time performance while maintaining
both high precision and recall. Furthermore we performed initial qualitative experi-
ments on a bicyclist dataset. In the future we plan to extend our algorithm to refine the
accuracy on other vulnerable road users classes such as bicyclists, mopeds, children
and wheelchair users. We also plan to investigate if the inclusion of other information
cues, e.g. motion features extracted from optical flow information, further increases
the robustness of our detector.
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Chapter 17
A Proposal of Risk Indexes at Signalised
Intersections for ADAS Aimed to Road Safety

Bruno Dalla Chiara, Francesco Paolo Deflorio and Serena Cuzzola

Abstract Statistical data show that road intersections are one of the critical areas for
accidents. The analyses reported are aimed at estimating risk indexes, which might
be provided on-board, when vehicles approach a road intersection regulated by traffic
lights, by an ADAS based on the use of the infrastructure-to-vehicle (I2V) or vehicle-
to-infrastructure (V2I) communication systems. Two possible uses of the risk indexes
can be identified: if data can be detected in real time, the driver could be informed on-
board of a potentially hazardous situation, using algorithms to predict the dynamics
of the vehicle on the basis of the data detected from the monitoring; the other use
would be detecting—in case the vehicle were already within the dilemma zone—the
lowest risk manoeuvre and providing the driver with a message on board. The chapter
also reports the effects which might be generated by this ADAS application.

Keywords ADAS · Safety index · Intersection safety · Driver reaction time

17.1 Introduction

Quantifying the road safety risk and the effects that the Advanced Driver Assistance
Systems (ADAS) can generate on it—i.e. the combined value of reducing the likeli-
hood of an accident and its severity—is a very sensitive theme, which can today resort
to the infrastructure-to-vehicle and/or vehicle-to-vehicle communication systems.
Together with the interest towards the quality and energy efficiency of transport,
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which include—amongst the different technologies—the ADAS. Such perspective
is part of the migration—which has been in progress for years—from the mere pas-
sive safety to the study of systems, tools and applications which can ensure active,
preventive and post-crash safety.

Within this context, attention is progressively concentrating on the cooperative
systems, which can interact to one another, thus setting up communication between
the different vehicles (Vehicle-to-Vehicle, V2V) or between the vehicles and the
infrastructures (Vehicle-to-Infrastructure, V2I, or Infrastructure-to-Vehicle, I2V) to
create ad hoc communication networks. This chapter focuses on the effects of inte-
grating such communication systems with the ADAS with the aim of improving road
safety; special attention is paid to the safety of the road users, in order to reduce both
the number and the severity of the road accidents. The communication technologies
between vehicles and between infrastructure and vehicles are suitable to intervene
at the pre-crash stage, i.e. in emergency-assistance, where the action of the driver
could still prevent the accident or reduce its risk.

It worth reminding a basic definition of crash, slightly reviewing the one which was
proposed in [6]: the crash phase of an accident occurs when the perception-reaction
time of a driver plus the time necessary to actuate the procedure (e.g., braking or
steering) of the vehicle he/she is driving is greater than or equal to the time involved
by the exogenous variation that occurs outside the vehicle; such a perception-reaction
time of the driver plus that of the vehicle is therefore the maximum time available for
the driver to respond to an emergency condition on the road and prevent an accident.

The road intersections are often considered as critical areas for the occurrence
of crashes, because they increase the likelihood of the confluence of traffic streams
from and to different directions.

17.2 State of the Art

During the last years, car manufacturers and researchers experimented many ADAS
[17, 18]. These systems are in-vehicle technologies that provide support to various
aspects of the driving task and they are supposed to improve traffic safety and traffic
efficiency. In this field, the most famous and deployed ADAS systems are the adaptive
cruise control (ACC) and the intelligent speed adaptation (ISA), collision avoidance
systems, adaptive light control, lane departure warning, driver vigilance monitoring,
pre-crash vehicle preparation and parking aid [19, 23].

In order to estimate the future impact of the ADAS development process from
its very early stages, some studies were based on the use of microscopic traffic
simulation. Torday et al. [24] proposed to integrate the output of this tool with a
safety indicator, evaluated during the micro simulation process. The microscopic
level of traffic description grants the opportunity of knowing the relative position
of the vehicles, their speed and deceleration. All of these parameters thus enable
the computation of a safety indicator useful to compare scenarios where ADAS are
activated for vehicles. Other authors [20] provide an overview of micro-simulation



17 A Proposal of Risk Indexes at Signalised Intersections 267

modelling for road safety impact assessment of ADAS. Recent literature and expert
opinions identify driver behaviour sub-models and road safety indicators as key
components. In Benz et al. [2], several existing models—on both the micro and
macro scales—would be adapted and used to assess safety related effects of ITS
measures. Examples of such measures include but are not limited to ADAS and
IVIS (In-vehicle information systems). While the micro-models would determine
the individual vehicles’ safety related behaviour, the macro-models would investigate
the network-wide aspects.

In order to enhance the performance of micro simulator for safety analysis, a
Surrogate Safety Assessment Model (SSAM) has been developed [25]. This tech-
nique combines micro simulation and automated conflict analysis, which analyses
the frequency and type of narrowly averted vehicle-to-vehicle collisions in traffic, to
assess the safety of traffic facilities, without waiting for a statistically valid number
of crashes and injuries to actually occur. Applications of this method to road inter-
section scenarios are reported in [9, 13, 15]. An assessment of the driver behaviour
at the dilemma zone [16] and of the effectiveness of safety indicators based on the
traffic conflict technique at intersection is reported in [1, 10].

Recent international research projects have been investigating both vehicle-based
and road-based monitoring. The European projects SAFESPOT, COOPERS, CVIS
and COVEL aimed at improving road safety by using intelligent vehicles intercon-
nected to each other through a vehicular ad-hoc network (VANET).

As regards the V2V and V2I communication systems and their relationships with
safety and ADAS, they are a primary means for supplying information to drivers. In
recent years, V2V and V2I communication systems have been submitted to intensive
studies, also applied to safety at intersections (INTERSAFE-2).

In this field, FOTSIS was a large-scale field testing of the road infrastructure man-
agement systems needed for the operation of seven close-to-market cooperative I2V,
V2I and I2I technologies (the FOTsis Services), which allowed assessing in detail
both their effectiveness and their potential for a full-scale deployment in European
roads.

We need to recall that the response time of a driver can be split into a mental
processing and reaction time and a muscular time. The former includes the time from
the perception of the external stimulus to the brain’s message to the foot to brake. This
implies the awareness of the hazard, the emotive response and the reaction itself. The
muscular reaction time is needed for the right foot to move onto the brake pedal. The
driver’s reaction time is influenced by quick or slow reflexes, by his/her experience
as well as by the complexity of the dangerous scenario that has to be faced. On the
basis of tests and literature, the median perception-reaction time of a driver results
to be 0.66 s, measured under normal highway driving conditions, with some degree
of braking expectation, since the drivers were expecting the event to happen. From
the moment the driver puts his/her foot onto the pedal, almost 0.1 s pass (inertia of
the system) before the brake starts operating; this value may increase to 0.4 s in the
case of slow and older braking equipment.

The diagram reported in [12], as well as on ISO technical standards and in [6],
in revised editions, represents the distribution of a driver’s brake perception-reaction
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Fig. 17.1 Evocative image
of I2V and V2I at a generic
intersection regulated by
traffic lights (INTERSAFE-2)

time between 0.2 and 2.1 s. The 95th percentile of perception-brake response times
for these same conditions was 2.0≡≡. The findings from this study are consistent
with the relevant literature: most drivers are capable of responding to an unexpected
incident in 2.0≡≡ or less. Thus, the perception-reaction time of 2.5≡≡, adopted by the
American Association of State Highway and Transportation Officials for design
reasons, encompasses most of the driving population.

A driver who might need 0.3≡≡ of perception-reaction time under alerted conditions
might need 1.5≡≡ under normal conditions; such response time may decrease by
approximately 1≡≡ or more in an expected situation: IVC warning systems allow
one to pass from an unexpected to an anticipated situation, and thus influence the
perception-reaction time.

17.3 Safety Analysis at Intersections

This paragraph shows the results of the analyses developed on the effects and benefits
which would be potentially generated by the forthcoming use of the infrastructure-
vehicle (I2V) or vehicle—infrastructure (V2I) communication systems at the road
intersections regulated by traffic lights (Fig. 17.1): a theme that—as it has been
highlighted—is extensively being dealt within the literature.

The effects of the use of the I2V systems are assessed through the proposal of
indicators on the likelihood and/or severity of the risk, which can timely and preven-
tively indicate potentially critical conditions and send more or less intensive alarm
messages—depending upon the criticality—on board the vehicles which are poten-
tially involved by means of the I2V communications.

For the sake of completeness of the analysis, some proposals for the combined
use of sensors to monitor the vehicles which approach the intersections [26] have
been developed in our research.

Our analyses assume that the use of I2V systems would match the increased level
of attention of the driver and—consequently—the dampening of the perception-
reaction-actuation time (tp,r,a) of the driver, with the subsequent increased safety
margin.

The processing concerns the study of the driver’s behaviour when the yellow
light is triggered. All such processes associate the use of the I2V technologies to the



17 A Proposal of Risk Indexes at Signalised Intersections 269

0
2

12

49

92

53

26
28

22

7

13

4
7

2 1 0 0 1 2
0

0.
0%

0.
6%

4.
4%

19
.6

%

48
.3

%

64
.8

%

72
.9

%

81
.6

%

88
.5

%

90
.7

% 94
.7

%

96
.0

%

98
.1

%

98
.8

%

99
.1

%

99
.1

%

99
.1

%

99
.4

%

10
0.

0%

10
0.

0%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

10

20

30

40

50

60

70

80

90

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

P
er

ce
nt

ile

N
um

be
r 

of
 p

eo
pl

e,
f

Time [s]

Median time value: 0.66''

Fig. 17.2 Johansson and Rumar’s distribution of the tp,r highlighting the two values of tp,r which
give tp,r,a = 1.46 s (green arrow) and 1.1 s (red arrow)

Fig. 17.3 Graphic representation of the zone where the vehicle cannot stop in safety conditions
(Cannot Stop) or cannot clear the intersection in full safety conditions (Cannot Go)

maximum perception-reaction—actuation time of the driver (tp,r,a) which—in case
of low levels of attention—has been estimated to 2.3≡≡ (where 0.8≡≡ can be assumed
for the actuation phase), on the basis of Johansson and Rumar’s distribution [12]. The
studies are based upon the assessment of the variation of new road risk indexes as a
result of the reduced tp,r,a; specifically, it is assumed that the I2V communications
are such to send on board indications which can supply two levels of alert, namely:
the former can take the attention of the driver back to normal levels (tp,r,a equal to
1.46 s: green arrow in Fig. 17.2.) and the latter can generate an actual alert (tp,r,a
equal to 1.1 s: red arrow).
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17.4 The Dilemma Zone and Role of Integrated I2V-ADAS

It is worth reminding the concept of dilemma zone, which has been properly described
and analysed in [16]. The so-called dilemma zone is the portion of approach to the
intersection, when the traffic light turns into yellow, where the driver is not able
to either stop in safety conditions before the stop line (or close to it) or to fully
clear the intersection at the end of the yellow light or when the red one is triggered.
Such conditions are critical and generate a potential dilemma to the driver, who
does not know what his/her behaviour should be in order to act safely, not to commit
infractions or cause accidents. Such area can be eliminated with a proper yellow time
calculation and if vehicle speed is lower than the established limit, but sometimes
it exists and its position and length vary depending upon the cases, therefore some
parameters need to be taken into consideration.

In order to clarify the concept of dilemma zone, the behaviour of a driver is
considered independently, i.e. irrespectively on the one adopted by the drivers of any
vehicles which precede his/her own one. When the yellow light is triggered, the driver
is faced with a choice: should he/she stop the vehicle or cross the intersection—even
by accelerating—so that he/she can clear the area before the red light? We should keep
in mind that—usually—the driver does not know how long the yellow light will last
or the so-called clearance time, i.e. the all red time. The solution depends on factors
which characterise the distance and time required to stop the vehicle and/or clear
the intersection: the initial speed of the vehicle, its features, the actual or possible
deceleration, the driver’s perception and reaction time, the distance between the stop
line and the access, the position of the vehicle when the yellow light is triggered
and the extension of the intersection and related geometry. It is obvious that—as a
tendency—the drivers who are far from the intersection choose to stop; those who
are very close to it—instead—normally try to clear the intersection and therefore—if
required and possible—they accelerate.

In either case, the characteristics of the manoeuvres are influenced by the
perception—reaction—actuation time (tp,r,a) of the driver.

The stopping distance (Xs) is the minimum level of the distance, calculated from
the stop line, a vehicle should be within in order to have a comfortable stop and in full
safety conditions; beyond such position, the vehicle cannot be stopped (Fig. 17.3).
By steady and smooth deceleration, the stopping space can be calculated through a
known expression (17.1).

Xs = ν · tp,r,a + ν2/2a (17.1)

where:

• Xs is the stopping distance or stopping space of the vehicle [m];
• ν is the initial speed of the vehicle [m/s];
• tp,r,a is the perception—reaction—actuation time [s];
• a is the deceleration [m/s2].

The clearance distance (Xc) is the maximum distance from the stop line which
identifies a zone where a vehicle can be in order to clear the intersection in full safety
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conditions (Fig. 17.3) within a given yellow light time, usually unknown by the driver.
This was computed through the following formula (17.2), where the acceleration is
an optional term, that means equal to zero in case of a constant speed to cross the
intersection.

Xc = ν · (Y + R) + (a/2) · (Y + R − tp,r,a)
2 − (W + lν) (17.2)

where:

• Xc is the clearance distance [m];
• W is the length of the intersection, measured from the stop line of the approach

and depends on the manoeuvre to be performed [m];
• lv is the length of the vehicle [m];
• ν is the speed of the vehicles approaching the intersection, [m/s];
• Y is the duration of the yellow light phase (yellow light time) related to the access

which is being taken into consideration [s];
• R is the duration of the all red stage (all red time) [s];
• tp,r,a is the perception-reaction-actuation time [s];

a is the value of the acceleration (assumed as constant) adopted to clear the intersec-
tion. In default of more accurate data, such as the ones generated by monitoring, the
value of this parameter is assumed through Gazis’s equation [14], i.e.: a[m/s2] =
4.9 – (0.213*v[m/s])

Three different conditions can occur on the basis of the relationship between the
two distances which have been defined above.

In the first case (Xs >Xc), the dilemma zone results from the overlapping of the
Cannot Stop and Cannot Go portions. The position and length of such areas vary
from case to case.

The second case (Xs = Xc) represents an ideal situation: the dilemma and optional
zones disappear; a driver which would find him/herself in those conditions could stop
the vehicle or clear the intersection comfortably and in full safety conditions, with
no doubts at all on the behaviour to be adopted.

In the last case (Xs <Xc), an “optional zone” would generate, i.e. a portion of the
access lane where the driver of the vehicle in it may select whether to stop comfortably
and safely at the stop line or to clear the intersection in safety conditions.

It is worth mentioning that the dilemma zone for an intersection approach depends
on the kinematic parameters of the vehicle (i.e. speed, deceleration or acceleration)
besides on the yellow light time, calculated for a specific approach of the intersection.
The most appropriate strategy to minimise the issue caused by the presence of the
dilemma zone consists of determining a yellow or all red time which allows clearing
the intersection from the limit position available to stop. Nevertheless, the variability
in the conditions of motion, of the drivers and adherence of the carriageway might
determine different circumstances than the ones which are defined a priori. These
variations can be observed by means of position detection systems located either
on-board the vehicle (GPS-with WAAS, as EGNOS) or on the infrastructure (VIP,
Inductive Loops, WSN based on magnetometers, pyroelectric infrared sensors, etc.).
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The analyses illustrated hereinunder are aimed at providing a real time estimate of
the risk of accident for an approach of road intersections regulated by traffic lights.
This information can then be used by an ADAS, which supplies the driver with a
risk indicator on the instrument panel; such indicator should be able to resort to
information which is usually not available to the driver or which—in any case—
he/she cannot calculate in real time, namely: the road in front of him/her (navigator
instrument panel), the residual time to the triggering of the red light and the clearance
time (I2V), the comparison between the driving dynamics and the safe crossing
or stopping conditions. This would allow assessing whether or not a situation is
hazardous and—if it is—trying to avoid the potential collision by transmitting alert
messages to the potentially involved vehicles.

In the analysis of the safety conditions, we have applied risk indexes formulated
on the basis of the vehicle position and speed information.

17.5 Driver’s Behaviour and Risk Indexes

The study of the risk of the single vehicle approaching the intersection is strictly
linked to the study of the dilemma zone and—subsequently—to the distances
required to clear the area and stop depending upon the course state adopted by
the vehicle. Two specific indicators have therefore been formulated: the former is
relevant to the overall clearance of the intersection and latter refers to the complete
stop of the vehicle in correspondence to the stop line. Literature proposes various
approaches to risk assessment [21], yet those hereafter described have been origi-
nated by our proposal, having in mind a simple approach, at least at this level of
analysis.

On the grounds of the analyses described, ratios have been formulated to
determine—as a result of the identification of the dilemma zone—simple risk indexes
on the basis of specific input data.

With reference to a determined time instant (at a given spatial position D), the
risk index relevant to the stop manoeuvre (IR_stop or IR1) is defined by:

IR1 = IR_stop = D_stop/ D (17.3)

where:

• D_stop is the distance—computed from the stop line—the vehicle needs to stop—
in full safety conditions—before or in correspondence to the stop line (stopping
distance as previously defined);

• D is the distance—measured from the stop line—where the vehicle is at the time
taken into consideration.

According to the report we have presented above, a null or almost null risk index
represents the fully safe condition (D>>D_stop), since the vehicle can stop without
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the risk of occupying the intersection, even if partially. Values of IR_stop ∈1, on the
other hand, detect potentially hazardous conditions (D<<D_stop) for safe stopping.
Values of IR_stop included between 0 and 1 indicate almost totally safe or almost
risky conditions, depending on whether they are closer to zero or to one.

Likewise, a risk index has been defined as related to complete intersection clear-
ance manoeuvre (IR_clearance or IR2):

IR2 = IR_clearance = D/ D_clearance (17.4)

where:

• D is the distance—measured from the stop line, where the vehicle is at the instant
taken into account;

• D_clearance is the clearance distance; such distance, which is computed start-
ing from the stop line, ensures the vehicle the complete clearance of the whole
intersection, in full safety conditions, during the yellow light stage (relevant to its
manoeuvre) or—in case—during the all red stage. For simplicity, the all red stage
has been considered equal to zero in our tests: an all red stage is usually present
in real cases, even though it is rather limited in time; in case an all red phase was
actually present, the conditions would be implicitly safer than our tests.

Values of IR_clearance close to zero identify fully safety conditions (D<<D_clear-
ance) for the clearance manoeuvre point of view—i.e. where the vehicle can fully
clear the intersection by the end of the yellow light stage relevant to its manoeuvre.
On the other hand, high values of risk related to clearance which are greater than
or equal to one would identify potentially risky situations (D>>D_clearance) for
the overall clearance of the area in full safety conditions. Values of IR_clearance
included between 0 and 1 indicate intermediate conditions.

This section of analysis focused on the behaviour—and relevant criticalities—
of the different drivers who approach intersections governed by traffic lights at the
moment the yellow light is triggered. The analysis of a single vehicle is not aimed
at assessing the consequences of the potential accident; it merely intends to evaluate
how much a vehicle—depending upon its dynamics and on the driver’s behaviour—
is exposed to the risk of accidents: it is a kind of assessment of the exposure to the
risk, rather than an estimate of the risk itself.

A numerical tool has been built for such study so that—after the input of specific
data of the case examined—the presence and extensions of the dilemma zone could
be assessed (Fig. 17.4), as well as the value of the risk indexes (of not completing the
manoeuvres of either stop or complete clearance of the intersection by the end of the
yellow light or—in case—all red stages) and if there is the actual risk of accident.
The tool reproduces the motion of a single vehicle approaching a traffic signal and
provides also graphic outputs for the variation of the risk indexes as a function of the
initial speeds which can be assumed for the vehicle in exam.

With reference to the three tp,r,a values which have been taken into consideration
in the analyses (i.e. 2.3–1.46–1.1 s), the presence and variation of the dilemma area
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Fig. 17.4 Dilemma zone presence versus vehicle speed in the cases of tp,r,a = 2.3 s (left) and 1.1 s
(right)

Fig. 17.5 Trend of the risk
indexes relevant to the clear-
ance and stop manoeuvres
related to a given section and
to a specific tp,r,a as a function
of the speed
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have been investigated to reach the definition of risk indexes relevant to both the
clearance and stop manoeuvres; such indexes highlight what the most advantageous
or least disadvantageous manoeuvres would be for the drivers of the analyzed vehicle
(see the analysis of a specific situation in Fig. 17.5).

In order to detect the risk of the vehicle when approaching the traffic signal, we
can assume to update its risk level at different positions before the stop bar, keeping
always in mind that the driver has to compare the extension of the crossroad with the
stopping distance from his position when he makes the decision either to cross the
intersection or to stop. Since the feasible deceleration rates for vehicles fall usually
in a quite limited range (a typical range might be between 3 and 5 m/s2), progressive
sections along the approaching lanes can be defined to trace its speed and compare
it with the expected value in case of stopping from that distance.

The first of these checking points (named section “A”) is defined assuming a
deceleration rate of 3 m/s2 and is 64 m before the stopping bar, for a vehicle moving
with a speed of 50 km/h. Figure 17.5 shows—as related to this specific section (section
“A”)—how IR_stop (IR1) grows linearly with the increase of the speed even though
the other conditions remain the same, whilst IR_clearance (IR2) decreases in an
almost exponential trend.
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Fig. 17.6 Comparison dia-
gram of the risk indexes as a
function of the speed, relevant
to a given section, according
to the three tp,r,a which have
been taken into consideration
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It is worth noticing that the portions of curves above the threshold of IR = 1
(which is displayed in red in the diagrams) identify risky situations. If—at a given
speed—at least one of the two IR were below such threshold, the manoeuvre to be
recommended would be the one which corresponds to it (by a communication on
board the vehicle).

If both the IR’s were below such thresholds, then either manoeuvre would not be
severely risky and—in any case—it would be appropriate to provide indications on
board to apply the safest one, i.e. the one which is farther from the threshold. In those
cases where—at a given speed—both indexes were exceeding the IR=1 threshold,
then—even though the safety conditions are lacking—it would be appropriate to
provide communications on board to apply only the manoeuvre that—between the
two ones—would involve lower risk (i.e. the one which is closer to the threshold) or
to communicate the risk condition to the other vehicles which are approaching the
intersection.

Although here only the risk indexes related to section “A” have been reported,
an ADAS can easily update this simple estimation, while the vehicle is approaching
the intersection and recognise critical cases by following the evolution of these risk
indexes over space/time.

Two typologies of use of the information on the risk indexes above can then be
identified. In particular, if the data can be detected in real time, the driver could be
informed onboard of a potentially hazardous situation (which might occur if he/she
keep such driving behaviour) using—if required and with this purpose—allocated
algorithms to predict the trend of the vehicle on the basis of the data detected from
the monitoring; another use, which is strictly linked to the utilisation of the diagrams
obtained, would be detecting—in case the vehicle were already within the dilemma
zone—the lowest risk manoeuvre and sending a message on board to inform the
driver.

Furthermore, the effects of using communication technologies between the
infrastructure and the vehicle have been assessed reducing—in the analysed
situations—the driver’s tp,r,a from 2.3 to 1.46 and 1.1 s, leaving the other conditions
unchanged.
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Figure 17.6 reports an example of a diagram which summarises the curves of the
risk indexes assessed for the three different tp,r,a. It is worth noticing how—as a
result of the reduced tp,r,a—the risk indexes relevant to both the clearance and stop
manoeuvres result to be reduced as well.

17.6 Conclusions

In this work an ADAS for traffic signal approaching has been analysed and two main
roles have been considered:

• provide a risk estimation for alternative manoeuvres (stopping or clearance) and
then communicate the driver the less hazardous manoeuvre on the basis of known,
measured or estimated parameters;

• reduce the risk level, by reducing the driver perception and reaction time, since
I2V/IVC can increase the level of attention of the driver.

The experiments run in simulation by means of a spreadsheet have led to
acknowledge—as a result of the reduction in the tp,r,a,—a corresponding reduction
in the estimated risk of accidents. The positive effects of the infrastructure-vehicle
communication have been ascertained in terms of reduced exposure to the risk by a
single vehicle (analyses of the trend of the single vehicle approaching the intersection
regulated by traffic lights). More specifically, as related to the behaviour of a driver
at the moment the yellow light is triggered for his/her traffic stream, the application
of I2V systems (corresponding to a reduction in the tp,r,a), the following effects have
been observed:

• a reduction of the dilemma zone extension;
• the disappearance of the dilemma zone and growth of the zone of choice: in some

cases, as a result of the increased level of attention in order to attain standard
values, i.e. tp,r,a equal to 1.46 s and—in a large number of cases relevant to the
forwarding of alert messages—tp,r,a equal to 1.1 s;

• the decreasing of the risk indexes referred to the stop (IR1 o IR_stop) and clearance
(IR2 o IR_clearance) manoeuvres, mainly at the speed values corresponding to IR
which were far greater than the safety threshold (IR=1);

• the advanced knowledge of IR1 and IR2, with the subsequent opportunity to warn
the drivers on board (possibly before they enter the dilemma zone) about the lowest
risk manoeuvre to be undertaken;

• the opportunity to reduce instantaneously, and therefore in real time, the risk or—
better—the exposure to the risk—of not completing in full safety conditions the
manoeuvre which is intended to be undertaken by the end of the yellow light stage.

In short, the results of the analyses show that the use of the I2V e V2I communication
systems in the intersections regulated by traffic lights—assumed in the processing
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as directly related to a reduction of the tp,r,a—has beneficial effects on road safety
as related to the reduction of risks of accidents.

We have also intended to allocate the all red as safeguard fraction for those drivers
whose behaviour—perhaps because of slower reflexes—is not within the average one
which was computed in these analyses; an advanced ADAS system may include the
transmission on board of the all red time, consequently modifying the risk conditions.

Furthermore, the analyses performed allow supporting also the combined use of
sensors, to enable the most viable continuous monitoring and assess the dilemma
zone and the potential risk of accident instantaneously and in real time.

It is also worth specifying that the analyses did not consider any actual data on
the use of the I2V technologies—since they are not available to date—or any active
intervention on the vehicle in case of need.

The presented risk index is related to the change of phase of the traffic lights and
it can be used with other risk indexes, based on the conflict analysis, as those of
the frontal, rear end or crossing collision, which are already related to the vehicle
trajectories output of traffic micro-simulation models.

To clear or cross a crossroad could be a suggestion suitable for those vehicles
which are closer to the stopping line, but it should not generate confusing cases for
drivers, such as suggesting to cross to a following vehicle, while suggesting the leader
to stop.

The subject is in evolution and many questions remain open. For example, an
investigation of vehicle behaviour, when it is not isolated in approaching the traffic
signal, need more tests, possibly also with a traffic micro-simulation tool. It can
be assumed that the actual potential of the systems which have been taken into
consideration could be assessed once said technologies are widely spread on the
market.
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Chapter 18
A Component-Oriented Model for Wastewater
Pumping Plants

Mohamed Abdelati, Felix Felgner and Georg Frey

Abstract A typical wastewater pumping plant comprises a screening process and
a pumping process. The first process separates coarse material out of wastewater,
while the second one boosts the wastewater toward a treatment facility. Appropri-
ate component models for such plants are hardly found in literature. Indeed, there
exist standard component models in all-purpose fluid simulation tool libraries; their
generality, however, makes those models too complex to be used for wastewater
pumping plants. The lack of models forces engineers to test their control scenar-
ios on real implemented systems, which may lead to unexpected delays and painful
costs. In this work, easily manageable component-oriented models are derived and
applied to the modeling and simulation of a real wastewater pumping system. The
model derived here is implemented in the component-oriented Modelica language,
and it helps better understand the system dynamics. Thereby, a tool is provided for
evaluating the performance of possible control schemes.

Keywords Modelica · Wastewater · Modeling · Simulation · Automation.

18.1 Introduction

Daily amounts of about 15,000 m3 of partially treated wastewater are pumped through
the new terminal pumping station (NTPS) located at northern Gaza to the new waste-
water treatment plant (WWTP). Once the construction of this new treatment plant
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Fig. 18.1 New terminal pumping station (NTPS)

is completed, the pumping rate will reach an average of 35,000 m3/day. The trans-
mission pipe has 7.6 km length, 80 cm diameter and 26 m static head. At the present
phase a group of ponds near the pumping station are used to buffer and partially
treat the wastewater collected from northern Gaza [1]. Operators of the pumping
station manually control the intake amount of these ponds and allow it to be pumped
to the wastewater treatment plant. The manual operation should be replaced by an
automation system. To this end, models for evaluating different control schemes
are necessary. These models should allow efficient simulation of the overall system
over long time horizons, to validate the system behavior especially under abnormal
conditions like e.g. power outages which are quite common in Gaza.

The pumping station is equipped with 5 booster pumps from ABS. Each pump has
a power rating of 315 kW and an expected head of 38 m. It has a pumping capacity of
360 kg/s while running safely at a maximum speed of 1,300 rpm. The suction chamber
of the booster pumps has a capacity of 500 m3 and equipped with a level transmitter
which is used to control the operation of the booster pumps [2]. In [3], a model of
the wastewater recovery system was developed. The work presented here continues
the project by presenting a component-oriented model of the wastewater pumping
plant. The control scheme of the pumping process will be detailed in Sect. 18.2
and modeled in Sect. 18.3. The simulation results will be presented in Sect. 18.4
and finally, in Sect. 18.5, we will give concluding remarks and outline the future
application of the model.

18.2 Functional Description

The new terminal pumping station (cf. process flow diagram in Fig. 18.1) transports
wastewater from the northern part of Gaza city to the new wastewater treatment plant
for Northern Gaza. It basically consists of a screen station and a pump station [4].
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18.2.1 Screen Station

The screen chamber receives the wastewater from the source pond by gravity force.
The manual valve (V1) allows setting the intake flow rate. The screen separates
coarse material out of wastewater. The coarse material is loaded into a conveyor
system. The rack screen and the conveyor starts at a signal due to difference in
levels of level transmitters (LT1) and (LT2) located in front of and behind the screen
respectively. They run during a preset time to leave at pause position. If the outtake
of the screen fails to compensate the intake, wastewater starts to accumulate in the
screen chamber. Overflow occurs if accumulation reaches a specific level (1.6 m).
The overflow is collected in a dedicated pond where it is recharged to the plant by a
minor process that is not addressed in this chapter.

18.2.2 Pump Station

This station pumps the wastewater from the suction chamber to the new wastewater
treatment plant. The bottom of the suction chamber is placed 2.3 m below the bottom
of the screen chamber. The booster pumps are controlled and operated by a signal
from level transmitter (LT3). Due to efficiency concerns, pumps are not allowed to
run at speeds below one third their nominal speeds. The first pump in operation
starts at level L6. When one pump is in operation, a flow of about 120–360 kg/s
(corresponding to 33–100 % rotational speed) will be pumped using the frequency
converter to keep a preset value of the level (L5) in the suction chamber. The first
pump stops at level L1.

If the first pump operates at 100 % capacity and the level increases, the second
pump starts at level L7. When two pumps are in operation, a flow of about
360–720 kg/s (corresponding to 50–100 % rotational speed) will be pumped using
the frequency converters to keep a preset value of the level (L5) in the suction cham-
ber. Each pump in operation will pump 180–360 kg/s equal. The second pump stops
at level L2.

If two pumps operate at 100 % and the level increases up to level L8, the third
pump starts. When three pumps are in operation, a flow of about 720–1,000 kg/s
(corresponding to 66–100 % rotational speeds) will be pumped using the frequency
converters to keep a preset value of the level (L5) in the suction chamber. Each pump
in operation will pump 240–333 kg/s. The third pump stops at level L3.

If three pumps operate at 100 % and the level increases up to level L9 the forth
pump starts. When four pumps are in operation, a flow of about 1,000–1,200 kg/s
(corresponding to 75–100 % rotational speeds) will be pumped using the frequency
converters to keep a preset value of the level (L5) in the suction chamber. Each pump
in operation will pump 250–300 kg/s. The forth pump stops at level L4. It should be
noted that the previous flow rates are predicted values. Actual quantities depend on
the resulting dynamic head which is almost proportional to the square value of the
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Table 18.1 Level threshold settings

Level No. Activity Setting (m)

L9 Start level P4 2.3
L8 Start level P3 2.1
L7 Start level P2 1.9
L6 Start level P1 1.8
L5 Set point level 1.8
L4 Stop level P4 1.7
L3 Stop level P3 1.6
L2 Stop level P2 1.4
L1 Stop level P1 1.2

flow rate as will be highlighted in the simulations. A maximum of four pumps can
be concurrently operated leaving the fifth one as standby unit. Typical values for the
level setting are summarized in Table 18.1.

18.3 Model Derivation

For the modeling of large fluid systems, standard component models as found in sim-
ulation tool libraries [5] are very complex [6]. The generic concept behind these mod-
els makes them widely applicable for different systems. However, this also leads to a
complex parameterization and large simulation overhead. In the presented project, it
is not intended to build a sophisticated model for detailed investigations rather to con-
clude with a manageable working model. The desired simulation model is required
to provide better understanding of the pumping process dynamics. Moreover, it is
intended to be a tool for testing and improving proposed control schemes. To this
end, we used the modeling and simulation environment Dymola which is based on
the component-oriented modeling language Modelica [7].

In [3] a water recovery system has been modeled using the same approach. The
system included source/sink, pipes, pumps and other components. The water network
components are interconnected through a liquid connector, where conservation of
mass flow is assumed. The pressure of the liquid (wastewater in our case) at the
connector is referred by p and the mass flow rate is referred by q. In the following
subsections the new components necessary to build the system model will be derived.

18.3.1 Screening Process

The screening process may be decomposed to the following components: two buffer-
ing chambers (one after the inlet and one before the outlet), a Bar screen crossing
between the buffer chambers, and a screen controller. This is illustrated in Fig. 18.2.
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Fig. 18.2 Screening process

The buffer chamber model has two water connectors at its base and a third one
located at the overflow level (hof ) measured from the chamber’s base. Another con-
nector of type real output is added to deliver the liquid height (h) to the screen
controller.

The pressure at the base connectors c1 and c2 is given by:

p1 = p2 = ρgh (18.1)

where ρ is the wastewater density, g is the acceleration due to gravity, and h is
the wastewater level in the chamber. The pressure at the overflow connector c3 is
discontinuous at the threshold height hof (equals 1.6 m in our case) as follows:

p3 =
{

0, h ≤ hof

ρg(h − hof ), h > hof
(18.2)

The wastewater level is related to the mass flow rate in the ports as follows:

dh

dt
= q1 + q2 + q3

ρ A
(18.3)

where A is the cross sectional area of the chamber.
The bar screen is the interface located between the two buffering champers. The

wastewater flow across this section may be visualized as shown in Fig. 18.3.
At a given time, the screen collects an amount of coarse material causing a friction

resistance to the water flow. This results in a difference in the wastewater levels across
the screen. The waste water flow has two components; the first one (qa) for which
the flow crosses the screen facing atmospheric pressure (from h2 to h1). The other
remaining component is referred by (qb) as illustrated in Fig. 18.4.
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Fig. 18.4 Decomposing the
flow across the screen
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The values of these components may be derived from the Bernoulli equation.
Under the assumption that the screen area is much less than the area of the inlet
buffer base, the following results are obtained:

qa = 2

3
G Bρ

√
2g(h1 − h2)

3/2 (18.4)

qb = G Bρ

√
2gh2(h1 − h2)

1/2 (18.5)

where B is the screen width and G is a transparency coefficient that represents the
screen conductivity ranging between one and zero. At a given time instant it is related
to the amount of the coarse material accumulated on the screen. Therefore, it is a
function of the total mass flow (Q) across the screen and a function of the wastewater
quality. In analogy with charging a capacitor, we model G as

G = e−Q/Q0 (18.6)

where Q0 is a factor that reflects the wastewater quality. In simulations, we treated
it as a constant equal to 8,64,000, forcing G to be about 1 % after working for 5 h at
the maximum mass flow rate.
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The total mass flow since t = t0 and the connectors’ signals are related as follows:

p1 = ρgh1 (18.7)

p2 = ρgh2 (18.8)

q1 = q2 = qa + qb (18.9)

d

dt
Q = q1; Q(t0) = 0 (18.10)

where Q(t0) is the initial value. When the screen is triggered by a digital signal (D)

to discharge accumulated coarse material, at t = t0 , Q is re-initialized by 0. The bar
screen module is graphically represented as illustrated in Fig. 18.5.

The screen controller senses the amount of accumulated coarse material by means
of the wastewater levels in the buffer champers. The controller activates the discharge
signal (D) whenever h1 − h2 > ht where ht is a preset value taken 20 cm in the
simulations.

18.3.2 Pumping Process

This process contains a suction chamber, booster pumps and a controller as illustrated
in Fig. 18.6. The suction chamber model is governed by the following equations:

p1 =
{

0, L ≤ 2.3
ρg(L − 2.3), L > 2.3

(18.11)
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Fig. 18.7 Pumping process
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p2 = ρgL (18.12)

d L

dt
= q1 + q2

ρ A
(18.13)

The level signal (L) is measured relative to the chamber’s bottom, which is located
2.3 m below the inlet connector. A liner head-flow characteristic around the nominal
operating point is used for the booster pumps [3] as follows:

q1 = s

sn

[
qn − a

(
p2 − p1

ρg
− hn

)]
(18.14)

where a is the additive inverse of the slope of the flow-versus-head curve at the
nominal operating point (hn, qn), is the respective pump’s speed, and sn is the nom-
inal speed. The specific data for the installed pumps are: a = 8.3 kg/s/m, hn =
38 m, qn = 360 kg/s, and sn = 1, 300 rpm.

In order to implement the control scheme specified in Sect. 18.2.2, the calcula-
tion of the speed vector, s = (s1, s2, s3, s4)

T , according to the level signal (L) is
decomposed as shown in Fig. 18.7. The controller has a PID module with limited
output, anti-windup compensation and set point weighting [8]. Its output specifies
the required pumping capacity, which has a minimum of 0 when all pumps are off
and a maximum of 4 × 1, 300 when 4 booster pumps run at their full speed. The
hysteresis module decides on enabling or disabling each pump and calculates the
number of enabled pumps (N). The implementation of this module will be described
later. The distributer divides the PID output value by this number and assigns the
result to the enabled pumps taking into account that the result has a saturation value
of 1,300 rpm. The hysteresis module is a sequential circuit which uses the state of
pumps (enabled/disabled), their assigned speed, and the wastewater level to calcu-
late their next states. Then it calculates the number of enabled pumps and delivers it
to the distributer module. The state equation of a pump is simply the characteristic
equation of an RS flip flop which is set whenever wastewater level exceeds the set
level of the pump and reset whenever the level drops below the stop level or its speed
drops below its minimum allowed speed. The minimum speed limits of pumps are
433, 650, 866, and 975 rpm, respectively. This ensures exempting a pump whose
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Fig. 18.8 System model

load share can be carried by the other running pumps. The Variable Frequency Drive
(VFD) is modeled by a first-order block with a time constant of 5 s resulting in an
acceleration time of about half a minute to move forward or backward between zero
speed and rated speed states.

18.3.3 Complementary Modules

Encapsulating the screening and pumping processes into two stand alone modules,
the system model will be as illustrated in Fig. 18.8. Connectors of the overflow pond
and the sink pond are located above the surfaces of the ponds. Therefore, they have
the atmospheric pressure value which is our reference (p = 0). On the other hand,
the connector of the source pond is located at the bottom of the pond. The wastewater
level in the source pond may vary along the year depending on the collected sewage.
However, the pond is so huge that its level is safely considered as constant on weekly
or even monthly bases. Consequently, the pressure at the source pond connector is
treated as constant. This constant is taken as the value found during the month of
June which is about 0.25 bar.

The gate valve is adjusted manually to control the daily transmitted wastewater
and indirectly decide on the pumping capacity. If the inlet wastewater rate exceeds
the feasible pumping capacity, then the automation system should signal a high
level alarm prior to overflow. The operator in turn, should react immediately by
decreasing the gate valve opening and vice versa. Operator interaction is expected
to be on weakly bases in case pumping is done all the day. A linear relation between
flow and pressure drop is used for the valve model. The control signal of the valve is
named opening and its value ranges from 0 at full closure to 1 at full opening. The
nominal hydraulic conductance of a valve, k , is defined as the ratio of nominal flow
to nominal pressure drop at full opening. Assuming linear pressure drop, then the
flow is governed by the following equation:
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q1 = opening × k × (p1 − p2) (18.15)

The Bernoulli equation is used to derive the model of notches. Since they always
have inlet pressure greater than or equal to the corresponding outlet pressure, their
equation reduces to

q1 = B

g

√
2

ρ

[
2

3
(p1 − p2)

3/2 + p2(p1 − p2)
1/2

]
(18.16)

whereB is the width of the notch.
The transmission pipe is modeled according to the Hazen-Williams equation [9].

The resulting model is

p1 − p2 = 10.67gl

C1.85ρ0.85d4.87
q1.85

1 + ρgH (18.17)

where d is the diameter, l is the length, H is the static head, and C is the roughness
coefficient of the pipe. This coefficient is about 140 for most pipes as it does not
depend so much on the roughness of the material itself, but on the roughness of the
bacterial slime layer which grows on the pipe wall.

18.3.4 The Implementation Procedure

This section describes briefly how the models were implemented in Modelica using
the Dymola tool [10]. The first step was implementing the liquid connector (c). Its
icon is represented by a small blue square and it is defined as follows:

connector c
Modelica.SIunits.Pressure p;
flow Modelica.SIunits.MassFlowRate q;

end c;

Then, the components necessary to build the top level module are implemented one
by one. For example, the suction chamber has two liquid connectors (c1 and c2)
in addition to an output connector (L) of type real. Being governed by Eqs. 18.11,
18.12, and 18.13, its Modelica code will be as shown in Fig. 18.9. Only the equations
section along with the necessary parameters and constants need to be written by
the programmer. The instantiations of connectors are simply done by dragging-and-
dropping in the graphical interface of Dymola. Moreover, the tool allows drawing
a graphical icon to represent the component. It also generates code for graphically
interconnected components that build a higher level module. For example, Fig. 18.10.
illustrates the Modelica code that corresponds to the screening process shown in
Fig. 18.2.
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Fig. 18.9 Modelica code of
the suction chamber

Fig. 18.10 Code generated
by the graphical tool

A good modeling methodology starts by implementing simple models, which can
be easily verified by intuition. It continues with models of increasing complexity until
reaching the top-level module. At each stage, created components are connected to
form system models whose simulation results can be compared to expectations from
the mind model [11]. If they agree, the model is verified. Otherwise, the mathematical
model is revised or the mind model is adjusted through gaining new physical insight.

18.4 Simulation Results

The aim of simulations is to validate the consistency of the derived model and to
investigate the behavior of the system under unfavorable scenarios. Power failure,
excess flow, and operator inattentiveness may lead to overflow. The implemented
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Fig. 18.11 Simulation scenario

control algorithm is widely used in pumping stations and claims to minimize the
number of restarts of pumps and the number of running pumps given a desired
daily flow. The running period and the number of restarts have direct impact on
the depreciation of pumps and their power consumption. Deriving a formula for the
cost function, which also includes overflow cost and operator satisfaction (utility),
is intended to be done in a future work. The scope of this chapter is to create a
working model and simulate normal and unfavorable running conditions leaving the
evaluation and improvement of the control algorithm to a complementary work. To
this end, the opening signal of the gate valve and the availability of electric power
are assigned the functions shown in Fig. 18.11.

The opening signal function represents possible flows along the year. The failure
of electric power supply during the time period [3,600 s, 4,800 s] is intended to
investigate overflow behavior during a relatively high flow period. The failure is
implemented by suppressing the controllers’ outputs during the failure period.

Simulation results which lie within our interest are shown in Fig. 18.12. As
expected, they are consistent with real world data observed in the plant. In Fig. 18.12a,
the waste water levels in the screen chambers are depicted. Shortly after the power
failure, the levels in the chambers reach the level of the overflow notches (1.6 m)
and eventually cause flood to the overflow pond as shown in Fig. 18.12b. In the
same figure, the inlet and transmitted flows are depicted. It is worth to highlight the
value of the outlet flow when the pumps run at their full capacity. It is about 380,
720, 982, and 1,186 kg/s while the number of pumps equals 1, 2, 3, and 4, respec-
tively. Figure 18.12c illustrates the time instances when the screen discharge signal is
enabled. This happens whenever the level difference in the screen chambers reaches
0.2 m. The wastewater level in the suction chamber is depicted in Fig. 18.12d. Apart
from the starting and the power failure periods, the level in the suction chamber is
almost equal to the reference value which is 1.8 m. The overshoot is expected as it
is necessary to trigger the starting of the pumps. The load share of these pumps is
shown in Fig. 18.12e. Running pumps always have equal shares, as desired, and it is
notable that sudden increase in the pump speeds occurs at screen cleaning instants.



18 A Component-Oriented Model for Wastewater Pumping Plants 293

Fig. 18.12 Simulation output
results
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Keeping the wastewater level in the suction chamber around the reference value
implies adjusting the outlet flow to meet the inlet flow. However, this does not insure
running the plant in the most efficient way. A controller is required which optimizes a
proper performance measure. In [12], we applied the models to compare two control
schemes (cyclic on/off control and variable speed control), while the performance
was measured by respecting the loss in the motors’ drivers and the number of restarts
(which affect the maintenance cost). The simulation showed that cyclic on/off control
yields an average energy saving of 167 kWh/day (2 %).
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18.5 Summary and Outlook

This work presents an easily manageable model for a wastewater pumping station
in northern Gaza. The resultant model provides a practical tool for examining the
system control under different running conditions, such as pump failure and changing
flow rates. This simulation model assists in adjusting the control reference points
and parameters to cope with regular and undesired situations. The simulated control
algorithm is widely used in pumping stations and it is believed that it works to
minimize maintenance and running costs by minimizing the number of running
pumps and limiting the number of their restarts for a certain inlet rate.

At the present phase, the ponds of the old treatment plant serve as a buffer for
the wastewater before being pumped via the NTPS to the new treatment plant. This
buffering stage will not be available by the completion of the project as the old plant
will be removed and incoming wastewater is planned to be transmitted directly to the
new treatment plant. Only one small size pond will be left for collecting emergency
overflows at the pumping station. As a result, the real challenge of the control problem
is not the present phase where a fixed daily amount of wastewater needed to be
transported. In the final phase, the pump station must handle instantaneous variation
of the wastewater flow. Accidental overflow will result in an additional repumping
cost and undesired environmental consequences. Therefore, an estimate of the daily
diurnal flow pattern is necessary to examine the plant controller under daily variation
of wastewater flow.

In a future work, we will employ simulations over long time horizons to respect
special conditions found in Gaza but also many other developing areas. For example,
frequent failure in the main electric power supply is common in Gaza city nowa-
days and requires intensive operator supervision. Moreover, power produced by the
standby generators is much more expensive than the power of the main supply. This
is a point normally not considered in deriving the control laws. Models implement-
ing functions to derive the total cost of operation similar to models presented in [13]
combined with predictive—simulation-based—hybrid control schemes as in [14] are
expected to be of great value under these conditions.

Acknowledgments The authors would like to express their gratitude to Alexander von Humboldt
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Abstract Machine Learning is being widely applied to problems that are difficult
to model using fundamental building blocks. However, the application of machine
learning in powertrain modeling is not common because existing powertrain systems
have been simple enough to model using simple physics. Also, black box models
are yet to demonstrate sufficient robustness and stability features for widespread
powertrain applications. However, with emergence of advanced technologies and
complex systems in the automotive industry, obtaining a good physical model in a
short time becomes a challenge and it becomes important to study alternatives. In
this chapter, support vector machines (SVM) are used to obtain identification models
for a gasoline homogeneous charge compression ignition (HCCI) engine. A machine
learning framework is discussed that addresses several challenges for identification
of the considered system that is nonlinear and whose region of stable operation is
very narrow.
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19.1 Introduction

In recent years, the requirements on automotive performance, emissions and safety
have become increasingly stringent. In spite of advanced concepts entering the auto-
motive industry, achieving fuel economy, emission and cost targets simultaneously
still remains an arduous task. Homogeneous Charge Compression Ignition (HCCI)
engines gained the spotlight from traditional spark ignited and compression ignited
engines owing to the ability to reduce emissions and fuel consumption significantly
[1]. In spite of its known advantages, HCCI combustion poses several challenges for
use in an automobile. A major challenge is achieving stable combustion over a wide
operating range. HCCI control is a challenging problem and a predictive model is
typically used to make decisions [2]. Hence it becomes important to develop accu-
rate HCCI models that can operate with manageable computational demand so that it
can be implemented on-board for controls and diagnostics purposes. HCCI combus-
tion is characterized by complex nonlinear chemical and thermal dynamics, which
necessitates significant development times and expert labor to develop models using
physics. Also, the model may be required to predict several steps ahead of time with
reasonable accuracy for analysis and optimal control. Hence a key requirement is to
develop a model quickly that can capture the required dynamics for control purposes
and has the potential to be implemented on-board.

Identification could be an effective alternative for developing control oriented
models quickly. Identification models have the advantages that simple models can
be built quickly without much expert knowledge about the system. Also, the models
developed based on real measurements can capture the behavior of the system up
to the desired level of fidelity. However, such black box models rarely give insights
into the system. Also, if the system to be identified is nonlinear having many degrees
of freedom with a very narrow stable region of operation, it becomes an almost
impossible task to identify the system completely. Hence it is not surprising that
related literature is scarce for HCCI identification. A subspace based identification
was the only reported work [3] where linear models were developed for HCCI model
predictive control. However, for stable engines like spark ignited and compression
ignition engines, a few applications of neural networks for engine modeling and
control have been reported [4]. This chapter [5] aims to be the first application of a
machine learning approach for nonlinear identification of the HCCI combustion.

For the HCCI identification problem considered in this chapter, a Support Vector
Machine based regression was selected for its good approximation capabilities and
robustness to fit nonlinear data [6, 7]. The application of SVR to system identification
[8–10], time series modeling [11] and predicting chaotic behavior [12] has been
reported in the literature though major practical implementations were less abundant
[8–10]. Also, when SVR is trained on real-world data, it represents the real system
and makes no simplifying assumptions of the underlying process. The dynamics of
sensors, actuators and other complex processes, which are usually overlooked/hard
to model using physics, can be captured using the identification method. In addition,
for a system like the combustion engine, prototype hardware is typically available,
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and sufficient experimental data can be collected. However, design of experiments
and data preprocessing becomes a challenge for nonlinear and partially stable system
like the HCCI engine.

This chapter is organized as follows. The basic idea and formulation of the SVR
model is presented in Sect. 19.2, HCCI system description and data collection in
Sect. 19.3. A framework for HCCI identification using SVR has been discussed in
Sect. 19.4 followed by performance evaluations and model validation results.

19.2 Support Vector Regression for Nonlinear Identification

The Support Vector Regression (SVR) [13] was developed as an extension to the
Support Vector Machines (SVM) originally developed for classification. The SVR
model approximates the given input-output data by forming an error boundary (error
tube) [13] around the data by solving a convex constrained optimization problem. An
important property of the SVR method is that the obtained model could be a sparse
representation of the nonlinear system which can have benefits in terms of storage.

A generic nonlinear identification using the nonlinear auto regressive model with
exogenous input (NARX) is considered as follows

y(k) = f [u(k − 1), ..., u(k − nu), y(k − 1), ..., y(k − ny)] (19.1)

where u(k) ≡ R
ud and y(k) ≡ R

yd represent the inputs and outputs of the system
respectively, k represents the discrete time index, f (.) represents the nonlinear func-
tion mapping specified by the model, nu , ny represent the number of past input and
output samples required (order of the system) for prediction while ud and yd repre-
sent the dimension of inputs and outputs respectively. Let x represent the augmented
input vector obtained by appending the input and output measurements from the
system.

x = [u(k − 1), ..., u(k − nu), y(k − 1), ..., y(k − ny)]T (19.2)

The input measurement sequence can be converted to the form of training data as
required by SVR

{(x1, y1), ..., (xn, yn)} ≡ (X ,Y⎧
(19.3)

where X denotes the space of the input features (Here X = R
ud nu+yd ny and Y = R).

The goal of SVR is to approximate the underlying input-output function mapping
f (.) by minimizing a risk functional with respect to the model parameters

R(w) = 1

n

n⎨
i=1

L(yi − ŷi (x, w)) + 1

2
wTw (19.4)

where ŷ(x, w) represents the model prediction given by
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ŷ(x, w) = ∈w,γ(x)→ + b (19.5)

Here, w ≡ R
ud nu+yd ny and b ≡ R represents the model parameters, γ is a function

that transforms the input variables to a higher dimension feature space H and ∈., .→
represents inner product in H. The first term of Eq. (19.4) represents the error mini-
mizing term while the second term accounts for regularization. The SVR model deals
only with the inner products of γ and a kernel function can be defined that takes into
account the inner products implicitly as

K (xi , x j ) = ∈γ(xi ),γ(x j )→ (19.6)

The function γ is not required to be known but any kernel function that satisfies
the Mercer’s condition such as radial basis functions (19.7), polynomial (19.8) and
sigmoidal functions (19.9) can be used. In this study, along with the above kernels,
the linear kernel (pure inner product) (19.10) is also used. The kernel transforms the
input variables to a high dimension space H and aids in converting a nonlinear map
in the X –Y space to a linear map in H space. This is known as kernel trick in the
literature.

K (xi , x j ) = e−ω∞xi −x j ∞2
,ω > 0 (19.7)

ccc
K (xi , x j ) = (ω∈xi , x j → + c0)

deg,ω > 0 (19.8)

K (xi , x j ) = tanh(ω∈xi , x j → + c0),ω > 0 (19.9)

K (xi , x j ) = ∈xi , x j → = xT
i x j (19.10)

The α-SVR model is considered in this study, as the tradeoff between model
complexity and accuracy (controlled by α) can be tuned to the required accuracy
and sparseness. Sparseness is the ratio of the number of support vectors to the total
number of data observations in the model. The following ψ-insensitive loss function
is used.

L(y − ŷ)ψ =
⎢

0 if | y − ŷ | ≥ ψ

ψ− | y − ŷ | otherwise
(19.11)

The goal of SVR training is to determine the optimal model parameters (w∀, b∀)
that minimizes the risk function (19.4) which reduces to minimizing the slack vari-
ables σ and σ∀ which leads into the following optimization problem.

min
w,b,ψ,σi ,σ

∀
i

1

2
wTw + C(αψ + 1

n

n⎨
i=1

(σi + σ∀
i )) (19.12)
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subjected to

⎪⎡⎣
⎡⎤

yi − (∈w,γ(xi )→ + b) ≥ ψ + σi

(∈w,γ(xi )→ + b) − yi ≥ ψ + σ∀
i

σi , σ
∀
i , ψ ∗ 0

(19.13)

for i = 1, ..., n. It should be noted that the slack variables take values of zero
when the points lie inside the error tube. Also, separate slack variables σ and σ∀
are assigned for points lying outside the error tube on either side of the function.
The above optimization problem is usually referred as the primal problem and the
variables w, b, σ, σ∀ and ψ are the primal variables. In the above formulation (19.12),
ψ is considered as a variable to be optimized along with the model parameters. This
allows α to set a lower bound on the fraction of data points used in parameterizing
the model [14] and hence by tuning α one can achieve a tradeoff between model
complexity (sparseness) and accuracy. A value of α close to unity tries to shrink the ψ
tube and reduce sparseness (all data points become support vectors) while reducing
α close to zero will result in a sparse model (very few data points are used in model
parametrization) with possible under-fitting. This flexibility is the prime reason for
selecting the α-SVR algorithm for this study.

The lagrangian can be formulated as follows

L(w, b, σ, σ∀, ψ,β,β∀,τ,τ∀, π) = 1

2
wTw + C(αψ + 1

n

n⎨
i=1

(σi + σ∀
i ))

+
n⎨

i=1

βi (yi − (∈w,γ(xi )→ + b) − ψ − σi )

+
n⎨

i=1

β∀
1((∈w,γ(xi )→ + b) − yi − ψ − σ∀

i )

−
n⎨

i=1

(τiσi + τ∀
i σ∀

i ) −
n⎨

i=1

πψ (19.14)

where β,β∀,τ,τ∀, π are the lagrange multipliers or the dual variables. Applying
first order optimality conditions we can convert the primal problem (Eqs. (19.12) and
(19.13)) to the following dual optimization problem

max
βi ,β

∀
i

n⎨
i=1

(β∀
i − βi )yi − 1

2

n⎨
i=1

n⎨
j=1

(β∀
i − βi )(β

∀
j − β j )K (xi , x j ) (19.15)

subjected to

⎪⎡⎡⎡⎣
⎡⎡⎡⎤

⎦n
i=1 (β

∀
i − βi ) = 0⎦n

i=1 (β
∀
i + βi ) ≥ αC

0 ≥ βi ≥ C
n

0 ≥ β∀
i ≥ C

n

(19.16)
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Table 19.1 Specifications of
the experimental HCCI
engine

Engine type 4-stroke In-line
Fuel Gasoline
Displacement 2.0 L
Bore/Stroke 86/86
Compression ratio 11.25:1
Injection type Direct injection
Valvetrain Variable valve timing

with hydraulic cam phaser
(0.25 mm constant lift,
119∅ constant duration
and 50∅ crank angle
phasing authority)

HCCI strategy Exhaust recompression
using negative valve overlap

for i = 1, ..., n. Solving the dual problem yields βi and β∀
i giving the following

SVR model

f (x) =
n⎨

i=1

(β∀
i − βi )K (xi , x) + b (19.17)

where ψ and b can be determined using (19.13). This is the well known SVR model
and the following are some known properties. The parameter w can be completely
described as a linear combination of functions of the training data (xi ). The model
is independent of the dimensionality of X and the sample size n and the model can
be described by dot products between the data.

19.3 HCCI System and Experiments

The data for system identification is collected from a variable valve timing gaso-
line HCCI engine whose specifications are listed in Table 19.1. HCCI is achieved
by auto-ignition (without spark initiation) of the gas mixture in the cylinder. High
volumes of exhaust gas residuals (EGR) are inducted into the cylinder to maintain
low combustion temperatures for reduced nitrous oxide emissions. A variable valve
timing capability allows the closure of the exhaust valve and opening of the intake
valve to be modified so as to create a negative valve overlap (NVO) to trap the desired
quantity of EGR in the cylinder. The fuel injection also happens during the NVO
event. The EGR and fuel injected directly influences the temperature and concentra-
tion of the gas mixture entering the next combustion cycle. The pressure trace during
one combustion cycle along with valve events and fuel injection events are shown
in Fig. 19.1. The smaller pressure peak represents the NVO event. The variables that
indicate HCCI performance are net mean effective pressure (IMEP), combustion
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phasing measured as crank angle at 50 % mass fraction burned (CA50), combustion
roughness measured by maximum rate of pressure rise (Rmax ) in the cylinder and
equivalent air-fuel ratio (λ) defined as

λ = (A/F)

(A/F)s
(19.18)

where A/F = mass of air per cycle/mass of fuel per cycle and (A/F)s = (A/F) at
stoichiometric condition.

The design of excitation signals and data measurement are well explained in [5].
For the HCCI system, the fuel mass (FM), crank angle at intake valve opening (IVO),
crank angle at exhaust valve closing (EVC) and crank angle at start of injection (SOI)
were considered as input signals following the amplitude modulated pseudo random
binary sequence (A-PRBS) pattern. Engine variables such as IMEP, CA50, Rmax , λ,
intake manifold temperature (Tin), intake manifold pressure (Pin), exhaust manifold
pressure (Pex ), mass flow rate at intake (ṁin), exhaust manifold temperature (Tex ),
coolant temperature (Tc), λ etc. are measured using the on-board engine control unit
on a combustion cycle basis.

19.4 SVR Modeling Framework

This section details the training procedure using the SVR method described in
Sect. 19.2. A good definition of the regressor variables as well as an optimal selec-
tion of hyper-parameters are necessary for developing robust models. Also, data
preprocessing is required so that the data can be efficiently used for machine learn-
ing. This section discusses the above tasks specifically for the HCCI identification
problem.
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Fig. 19.2 A-PRBS inputs and outputs showing misfire regions

19.4.1 Data Preprocessing

For any machine learning task, the data needs to be appropriately scaled and centered.
This includes normalization of all data to lie between −1 and +1 to ensure the
model parameters to be of the same order improving numerical stability. For the
HCCI system, additional preprocessing needs to be done before the data becomes
meaningful for learning. The unstable nature of HCCI and designing experiments to
reduce unstable data collection has been discussed in [5]. However, it is not possible to
eliminate misfires during the experiments. Hence, the data corresponding to misfires
needs to be removed before using it for learning. Figure 19.2 shows misfire regions
along with stable HCCI measurements. From a physical point of view, during a
misfire, the cylinder is filled with unburnt (or partially burnt) fuel along with some
exhaust from the previous cycle. Hence the value of λ increases indicating high
concentration of air and less fuel. Also, the IMEP (indicator for work output) drops
to zero as combustion failed to occur. The value of CA50 drops to −30 (set by the
measurement system during no combustion) while Rmax drops to 0 as there is no
pressure rise. During a regular combustion event, some of the exhaust gas is trapped
by the NVO for the next cycle but when a misfire occurs, there is not enough exhaust
gas in the NVO trapped mixture for the subsequent cycles. Hence even if the next
input in the PRBS sequence is stable during regular operation, after a misfire the
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Table 19.2 The minimum and maximum values of regression variables x and y determined based
on expert knowledge for HCCI conditions

x y
FM IVO EVC SOI Tc Tin Tex Pin Pex (ṁin) IMEP CA50 Rmax λ

Min 6.9 78 −119 270 89.00 49.00 349.00 0.85 1.00 91.00 0.50 1.00 0.00 1.00
Max 11.2 128 −69 380 93.00 70.00 440.00 1.40 1.20 370.00 4.00 11.00 6.00 2.00

combustion behavior does not represent regular HCCI operation. Hence along with
the misfire data, some of the post-misfire data needs to be eliminated.

It is not trivial that a portion of data can be removed from a time series and still
maintain the time connection. However the combustion variables can be used to
determine the validity of regular HCCI operation. The misfire itself can be labeled
using a combination of IMEP and CA50. The identification model structure (19.1)
and regressor definition (19.2) allows time series data to be converted to feature
vectors to be mapped on to the output variable. Hence after the regressor conversion
the data can be treated as static (no time connection between observations). It is
for the same reason that it becomes possible to use a static regression model like
the SVR for time series data. The static data {(x1, y1), ..., (xn, yn)} can be filtered
using expert knowledge about the engine. The minimum and maximum limits of
the vectors x and y are used to identify and eliminate data that might not represent
HCCI combustion. The minimum and maximum limits of the variables are shown in
Table 19.2. The data is normalized based on the variable limits to lie between −1 and
+1. Any pair (x , y) whose normalized value lies outside −1 and +1 is considered
inappropriate data and removed from the data set.

19.4.2 Regressor Variables

In an identification problem, the regressor variables can include several input vari-
ables (features) but not all of them may be required. For instance, in the HCCI
combustion engine, several sensors measure temperatures, pressures and flows in
and around the combustion chamber. However, it is understood from physics that
only a few are responsible for the variables of interest. Hence the regressor variables
can be defined using expert knowledge about the system. The primary variables
affecting HCCI combustion include temperature, concentration of gas mixture at the
time of intake valve closing (see Fig. 19.1). Since these quantities are not measured
directly, the secondary variables that affect the primary variables are included in the
regressor definition. The temperature, pressure and air flow rate before the intake
manifold, the temperature at the exhaust manifold along with the injected fuel mass,
valve events, injection events and coolant temperature has a major influence on the
temperature and concentration of the gas mixture in the cylinder. Hence the regressor
variable is defined to include the history of the measurements of the above quantities.
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19.4.3 Model Selection

For each output, the model has four hyper-parameters namely the system order (num-
ber of past data from history, no = nu = ny , assumed to be the same), the cost
parameter C , kernel parameter ω and SVR parameter α. To obtain a model that gen-
eralizes well and captures the right order of dynamics, the above hyper-parameters
need to be optimized based on cross-validation. The data set comprising of (x, y) is
divided into a training set that constitutes 70 % of the data while the remaining 30 %
is separated out for testing. Furthermore, the training data is divided into validation
training and validation testing data sets for tuning the model hyper-parameters. The
validation data consists of a randomly sampled subset of the training data (20 % of
the training set). The testing data set is never seen by the model during the training
and validation phases.

The parameter α determines the tradeoff between the spareness and accuracy of
the models. An optimal value of α results in the minimum model parameters required
for the given accuracy level. The cost parameter C determines the relative importance
given to the outliers and hence the sensitivity to measurement noise. A large value of C
tries to fit the model for outliers thereby over-fitting the data. The kernel parameter ω
is required to be tuned for the same reason of having good generalization. The system
order no determines the number of previous measurements required to predict the
future output. An optimal value of the order represents the system dynamics correctly
and a large value not only makes the model complex by increasing the dimension of
x but also gives a bad prediction of the system’s response.

A full grid search was performed over all possible combinations of no,C,ω, α
in the selected range and the combination that had the minimum validation error
was chosen as the optimal hyper-parameters. A detailed procedure on tuning the
model hyper-parameters using cross-validation is explained in [5]. Table 19.3 lists
the best combination of hyper-parameters for IMEP, CA50, Rmax and λ which had
the minimum validation errors. The training times were very long for polynomial
kernel models while the training time for linear, sigmoidal and gaussian kernels were
comparable. Hence the models with linear, sigmoidal and gaussian kernels were
retrained with the optimal hyper-parameters on the entire training data set while the
ones with polynomial kernels were retrained on a subset of the training set.

19.4.4 SVR Prediction Results

The SVR models are simulated with the unseen test data set and performance of the
models are measured using root mean squared error (RMSE) given by (19.19). Note
that the RMSE is different from the loss function (19.11) used in SVR modeling.
Table 19.4 compares the performance of the models in terms of training and testing
RMSE, memory units and the number of parameters required. The memory units
represent the number of sequential data history that needs to be stored in the memory
as defined by x and y. The number of parameters represent the sparsity as controlled
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Table 19.3 The optimal values of system order (no = nu = ny , assumed to be the same), cost
parameter C , kernel parameter ω and SVR parameter α determined using cross-validation from the
range of listed values

Kernel type Hyper- IMEP CA50 Rmax λ Range
parameter
no 2 5 5 4 {1, 2, 3, 4, 5}

Linear C 1 0.1 0.1 100 {0.01, 0.1, 1, 10, 100}
α 0.2 0.6 0.4 0.2 {0.1, 0.2, ..., 1}
no 2 3 4 4 {1, 2, 3, 4, 5}

Polynomial ω 1 1 1 1 {0.001, 0.01, 0.1, 1, 10, 100}
of degree 2 C 1 1 10 1 {0.01, 0.1, 1, 10, 100}

α 0.4 0.4 0.3 0.5 {0.1, 0.2, ..., 1}
no 2 2 1 3 {1, 2, 3, 4, 5}

Polynomial ω 0.5 0.2 1 0.5 {0.01, 0.1, 0.2, ..., 1, 5, 10}
of degree 3 C 0.5 0.5 1 1.5 {0.01, 0.1, 0.2, ..., 2}

α 0.5 0.4 0.4 0.3 {0.1, 0.2, ..., 1}
no 2 5 5 3 {1, 2, 3, 4, 5}

Sigmoidal ω 0.01 0.01 0.01 0.01 {0.001, 0.01, 0.1, 1, 10, 100}
C 1 1 1 1 {0.01, 0.1, 1, 10, 100}
α 0.6 0.4 0.4 0.4 {0.1, 0.2, ..., 1}
no 2 3 1 2 {1, 2, 3, 4, 5}

Gaussian ω 0.1 0.1 1 0.1 {0.001, 0.01, 0.1, 1, 10, 100}
C 1 1 1 1 {0.01, 0.1, 1, 10, 100}
α 0.3 0.4 0.4 0.3 {0.1, 0.2, ..., 1}

by the parameter α.

RMSE =
⎞⎠⎠√1

n

n⎨
i=1

(yi − ŷi )2 (19.19)

It can be seen from Table 19.4 that all the models capture the dynamics of IMEP,
CA50, Rmax and λ to a reasonable accuracy but with different memory and storage
requirements. Gaussian kernel outperforms all the other kernels in terms of both
achieving minimum accuracy as well as with relatively low memory and storage
requirements. This can also be seen in Table 19.3 where gaussian kernel identifies
the system with a relatively lower order (no) for all the response variables considered.

The performance of all the kernels are comparable for IMEP with similar memory
requirements. Indeed, the linear kernel uses less parameters compared to the gaussian
kernel. This may be attributed to the simpler mechanism behind IMEP which strongly
depends on the fuel mass injected [2] and can be potentially identified using linear
models. It should be noted that the polynomial kernel models are tested on a smaller
data set and hence the number of parameters are low. Overall, the gaussian kernel
is chosen as the appropriate one for modeling the HCCI engine behavior. The noise
distribution for the engine output variables are shown in Fig. 19.3. It can be seen
that the noise amplitude levels are an indication of the expected performance error.
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Table 19.4 Performance comparison of SVR

Kernel type IMEP CA50 Rmax λ

Training RMSE 0.0686 0.2621 0.2571 0.0173
Linear Testing RMSE 0.0735 0.2678 0.2555 0.0173

nm 20 50 50 50
n p 73502 330825 280335 168212
Training RMSE 0.0693 0.2451 0.2398 0.0127

Polynomial Testing RMSE 0.0663 0.2793 0.3098 0.0155
of degree 2 nm 20 30 40 40

n p 46486 70455 79200 125488
Training RMSE 0.0707 0.2651 0.2494 0.0141

Polynomial Testing RMSE 0.0671 0.2691 0.2583 0.0173
of degree 3 nm 20 20 10 30

n p 57068 45012 22517 56265
Training RMSE 0.0742 0.3082 0.3103 0.0245

Sigmoidal Testing RMSE 0.0693 0.3093 0.3055 0.0245
nm 20 50 50 30
n p 218372 220330 279400 192456
Training RMSE 0.0632 0.2396 0.2079 0.0173

Gaussian Testing RMSE 0.0608 0.2525 0.2181 0.0173
nm 20 30 10 20
n p 113652 149787 69861 102982

nm and n p represents number of memory units and number of parameters (support vectors) required
by the models
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Fig. 19.3 Noise distribution of the engine output variables
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Fig. 19.4 Comparison of IMEP (engine output and SVR prediction)

0 50 100 150 200
0

5

10

15

Engine Combustion Cycles
0 50 100 150 200

0

5

10

15

Engine Combustion Cycles

0 50 100 150 200
0

5

10

15

Engine Combustion Cycles
0 50 100 150 200

0

5

10

15

Engine Combustion Cycles

Prediction
Experimental

Fig. 19.5 Comparison of CA50 (engine output and SVR prediction)
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Fig. 19.6 Comparison of Maximum rate of pressure rise (engine output and SVR prediction)

For instance, λ is a filtered signal within the engine control unit and hence noise
amplitude is lower than the other signals, hence the error magnitude for λ as shown
in Table 19.4. CA50 on the other hand, has a higher noise magnitudes and hence high
estimation error. The noise distribution is gaussian and hence the ψ-insensitive loss
function (19.11) also appears to be appropriate for the data.

19.4.5 Multi-Step-Ahead Predictions

In order to observe the multi-step-ahead predictions for the selected gaussian kernel
model, a completely separate data set is used wherein the input trajectories are given
to the model along with the initial conditions of the outputs (delay initial conditions).
The response of the model is fed back to construct the regressor for subsequent cycles
representing a discrete dynamic system simulation. The 200 cycle ahead predictions
of IMEP, CA50, Rmax and λ are compared against measured data from the engine
in Figs. 19.4, 19.5, 19.6 and 19.7 respectively. Each figure shows predictions of an
output variable for four different cases as validations in different operating conditions.
It can be observed from the figures that the model can simulate the HCCI dynamics
to a good accuracy and can be used as predictors of transients multiple steps ahead
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Fig. 19.7 Comparison of Lambda (engine output and SVR prediction)

in time. It can also be observed that both the steady state values and the transients
are well captured by the models except for a few regions where there is a bias offset
owing to poor approximations. Lack of excitations near such input combinations
could be a reason for the bad predictions of the model. The α parameter in Table 19.3
shows that only a small fraction of the training data set is used to represent the model
efficiently and these data observations constitute the support vectors in this method.

19.5 Conclusions and Future Work

Support Vector Machines are one of the state of the art methods for robust learning
but the application of SVR to nonlinear system identification is not abundant in spite
of its attractive properties. In this chapter1 a complex nonlinear dynamic system such

1 Acknowledgements and disclaimer: This material is based upon work supported by the Department
of Energy [National Energy Technology Laboratory] under Award Number(s) DE-EE0003533.
This work is performed as a part of the ACCESS project consortium (Robert Bosch LLC, AVL
Inc., Emitec Inc.) under the direction of PI Hakan Yilmaz, Robert Bosch, LLC. This report
was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,
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as the HCCI combustion engine is identified using α-SVR method. Data collection
within the stable boundary of HCCI combustion has been accomplished by pre-
screening the input sequence using the steady state model of the engine and by using
a feedback loop to minimize unstable excitations. A machine learning framework has
been described giving insights into experiment design for the partially stable system,
data pre-screening to handle the corrupted data, a cross-validation based systematic
model selection, regressor definition etc.

A comparative study of different kernels—linear, quadratic, cubic, sigmoid and
gaussian kernels has been performed showing benefits of gaussian kernel for the
HCCI system in terms of accuracy and memory/storage requirements. The dynamics
of IMEP, CA50, Rmax and λ of naturally aspirated gasoline HCCI combustion at
constant speed is modeled using SVR to a good accuracy. Distinguishing features of
α-SVR including global optimality and sparseness make the method very attractive
compared to traditional neural networks based identification. Future research would
focus on controller development using the SVR models to analyze the suitability
and effectiveness compared to both existing physics based and neural network based
controllers.
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