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Abstract. Monitoring file integrity and preventing illegal modifications
is a crucial part of improving system security. Unfortunately, current
research focusing on isolating monitoring components from supervised
systems can often still be thwarted by tampering with the hooks placed
inside of Virtual Machines (VMs), thus resulting in critical file operations
not being noticed. In this paper, we present an approach of relocating
a supervised VM’s entire filesystem into the isolated realm of the host.
This way, we can enforce that all file operations originating from a VM
(e.g., read and write operations) must necessarily be routed through the
hypervisor, and thus can be tracked and even be prevented. Disabling
hooks in the VM then becomes pointless as this would render a VM in-
capable of accessing or manipulating its own filesystem. This guarantees
secure and complete active file integrity monitoring of VMs. The exper-
imental results of our prototype implementation show the feasibility of
our approach.

Keywords: File Integrity Protection, Active File Integrity Monitoring,
Paravirtualized Filesystem.

1 Introduction

Protecting the integrity of file objects is a fundamental security objective for
building trustworthy systems and for counteracting malware threats. A promi-
nent example of achieving file integrity protection is the Host-based Intrusion
Detection System (HIDS) Tripwire [1], which detects manipulations to filesys-
tem objects by comparing their hash values to reference hash values in periodic
intervals. However, the problem with Tripwire and similar approaches, including
Linux Security Modules (LSM) based approaches like SELinux [2], is that criti-
cal security components (e.g., the monitoring components) are not encapsulated
from the supervised system. This allows malware to attack and disable the mon-
itoring components in order to conceal attack traces or to hide their presence
altogether.
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Researchers have proposed architectures utilizing virtualization to encapsu-
late the critical security components from the supervised system. The supervised
system is moved into a separate VM while the monitoring components are iso-
lated and placed outside of the VM [3, 4]. This prevents malware located in
the VM from attacking and disabling the external monitoring components. In
order to bridge the semantic gap introduced by the virtualization layer, Virtual
Machine Introspection (VMI) techniques are being deployed for monitoring the
VMs. Security tools such as [5, 6] build upon VMI and similar techniques for su-
pervising guest VMs. However, these tools realize only passive monitoring. This
means that security-relevant events occurring within a VM will be recognized
after they have happened. In particular, passive monitoring is unable to inter-
cept on events and prevent them from happening. To overcome this problem,
researchers have proposed active monitoring where hooks are placed inside the
monitored VMs. These hooks allow to interrupt the control flow within a VM
and give control to the hypervisor before a critical event actually happens [7–9].
However, malware can often circumvent active monitoring by tampering with
the hooks placed inside the VMs, thus resulting in critical file operations not
being noticed on the hypervisor-level.

In this paper, we present our approach of relocating a supervised VM’s entire
filesystem into the isolated realm of the host. The only way of accessing and
manipulating a VM’s filesystem is by communicating with a privileged compo-
nent located in the hypervisor which has exclusive access to the VM’s filesystem.
Therefore, the hypervisor is guaranteed that all file operations originating from
a VM (e.g., read and write operations) are necessarily routed through the hy-
pervisor. This allows us to actively monitor all file I/O operations within a VM
in real-time from “outside of the box” and to possibly prevent them from hap-
pening. Furthermore, this approach solves the aforementioned problem of having
malware disable hooks in the VM as this would render the VM (and as such the
malware itself) incapable of accessing or manipulating the VM’s filesystem. The
communication between guest VMs and the hypervisor is done over the paravir-
tualized Plan 9 filesystem protocol [10], which has the advantage of efficiently
bridging the semantic gap and preserving all relevant file operation information.
Finally, we build upon and improve the work done in [11] to securely measure
all executed binaries of all VMs and store these measurements in a single, multi-
plexed Trusted Platform Module (TPM). This allows for attesting the integrity
of individual VMs in the course of a remote attestation. Another key feature of
our approach is that we enable regular users of VMs to autonomously install
and upgrade software packages in a secure and controlled manner without the
need of requiring the intervention of the administrator of the physical system.

The rest of this paper is organized as follows. Section 2 states our assumptions
and attacker model. Section 3 explains in detail our concept for active monitor-
ing of guest VMs. Section 4 describes our prototype implementation. Section 5
presents our performance evaluation results. Section 6 gives the security analysis.
Section 7 discusses related work. Section 8 concludes this paper.
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Fig. 1. Paravirtualized monitoring architecture with externalized guest filesystems

2 Assumptions and Attacker Model

We assume a virtualized platform where attackers have full access to their re-
spective guest VMs, but no direct physical hardware access. We consider remote
attackers as well as legitimate users of guest VMs that try to compromise the
guest VM and gain control of the guest user space and kernel. We focus on
preventing malicious file manipulations, which includes temporary as well as
persistent file modifications that survive reboots (e.g., the installation of mal-
ware). Another objective is to prevent the execution of unknown and malicious
executables, respectively. We do not consider runtime attacks, e.g., in-memory
modifications, buffer overflow attacks, and code injection.

3 Active Monitoring of Guest VMs

The key aspect of our concept is that we relocate a guest VM’s entire filesystem
from the guest VM to the isolated realm of the host. We then grant only a
privileged component, located in the hypervisor, exclusive access to the guest
filesystems. This means that for all guest VMs, the only way of accessing and
manipulating their own filesystems is by communicating with this privileged
component located in the hypervisor. Therefore, the hypervisor is guaranteed
that all file operations originating from a VM (e.g., read and write operations) are
necessarily routed through the hypervisor. This allows the hypervisor to actively
monitor all file operations of all guest VMs and to possibly prevent them before
they actually happen. Furthermore, this makes sure that it is impossible for an
attacker to bypass the hypervisor (and as such circumvent the monitoring), even
in the event of a completely compromised VM – since otherwise there is no way
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of accessing the VM’s filesystem. This is an advantage over other approaches
(e.g., [7] and [8]) where disabling hooks in the VM still allows for manipulation
of filesystem objects.

For our concept, we make use of the Plan 9 (P9) filesystem protocol in order
to relocate a guest VM’s filesystem to the host. The P9 protocol is designed as a
distributed filesystem protocol that may be used over the network and which op-
erates on a file-based granularity. The client-server protocol uses messages that
reflect ordinary file operations (for example, messages originating from read or
write system calls). In our case, a P9 client resides in each guest VM and coop-
erates with the P9 server located in the hypervisor. The actual communication
between the P9 clients and the P9 server is done over virtio [12], which is the
de-facto standard of a paravirtualizing framework for Linux. This allows us to
efficiently bridge the semantic gap and to preserve all relevant file operation
information.

Our paravirtualized monitoring architecture is shown in Fig. 1. The hypervisor
runs one or more guest VMs, which are subject to monitoring. Each guest VM
contains a P9 client that translates ordinary file operation requests originating
from within the VM to P9 request messages. These messages will be forwarded
by the respective P9 client to the P9 server located in the realm of the hypervisor.
The P9 server has exclusive access to the filesystems of the guest VMs. The guest
filesystems are located on the filesystem of the host. The P9 server processes the
P9 requests accordingly, for example, by reading a file (and providing it to the
P9 client) or by writing to the filesystem. Note that we prohibit the loading
of kernel modules within VMs in order to prevent attacks utilizing filesystem
caching (cf. Section 6). In particular, we prevent the loading of kernel modules
supporting other filesystems, including virtual and stacked filesystems, as well
as modules enabling filesystems in userspace (e.g., FUSE).

There are four components responsible for monitoring and enforcing file in-
tegrity of the guests. The monitoring components are encapsulated from the
guest VMs (and the hypervisor) in a special security VM (cf. Fig. 1). We place
hooks in all relevant parts of the request handlers of the P9 server in order to
inform the monitoring components of all relevant file operations. This enables
the security VM to monitor all requests originating from a VM’s P9 client try-
ing to access its guest filesystem. The components process the P9 requests and
decide – based on an access control policy – whether a request will be granted
or denied. In particular, the monitoring components are:

File Operation Monitor (FOM). Receives and analyzes all hooked P9 re-
quest messages from the P9 server. Relevant requests will be forwarded to
EDE and PME (see below). The details are described in Section 3.1.

Execution Detection Engine (EDE). Detects when a guest VM is trying to
execute a file based on a heuristic approach which is based on recognizing
distinct sequences of P9 requests. Execution of files will be securely recorded
by storing a corresponding SHA1 hash value in a secure element, in partic-
ular, a TPM [13]. The details are described in Section 3.3.
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Table 1. Critical Requests of the Plan 9 9P2000.L protocol

P9 Request Potential Impact

write Writing new files or modifying the content of existing files, e.g.,
altering configuration files or executables

rename, renameat Moving files, thus effectively deleting them from one location
within the filesystem and possibly replacing other files with the
content of the renamed file

remove, unlinkat Removing files or directories, e.g., changing the behavior of pro-
grams by deleting their configuration files or hiding traces by delet-
ing log files

lcreate, mkdir Creating new files or directories; may be misused to truncate ex-
isting files

link, symlink Creating a hardlink or symbolic link, e.g., creating a link in a
directory like /bin to a malicious executable in /tmp (where the
creation of arbitrary files may be allowed)

Package Maintenance Engine (PME). Detects when a guest VM is trying
to install, remove, upgrade, or downgrade software packages, and handles
it by utilizing a special VM, called the Complementary Privileged Virtual
Machine (CPVM). The details are described in Section 3.4.

File Protection Enforcer (FPE). Decides whether a P9 request will finally
be granted or denied. The decision is based on whitelist policy rules. The
details are described in Section 3.2.

3.1 Monitoring and Analyzing File Operation Requests

The File Operation Monitor (FOM) is responsible for analyzing P9 request mes-
sages forwarded by the P9 server. In particular, FOM scans for all critical requests
of the utilized 9P2000.L1 protocol [14]. A request is considered critical if it has
the potential to impact the integrity of the guest’s filesystem. Table 1 lists all
critical P9 requests that are handled by FOM along with a description of their
potential impacts.

Note that Table 1 does not list the P9 read request since it cannot be used
to affect a file’s integrity. However, read requests still play an important part
in our concept as they occur as a distinct sequence of P9 requests whenever a
file in the guest VM is going to be executed. Since the P9 filesystem protocol
does not incorporate a dedicated execute request itself, we take advantage of
this sequence of read signature requests in order to come up with a heuristic to
detect the execution of files. The details are described in Section 3.3.

Shadow Copy Write. The P9 write request requires further consideration.
A special case of the write request is that it may exceed the message size of

1 9P2000.L includes the core 9P2000 requests as a subset.
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the P9 client or the P9 server implementation (or both). The reason is that the
entire (to be written) payload data has to be sent from the P9 client to the P9
server. In such cases, the P9 client splits up a write request w[f, d] (containing
the payload data d for a file f) into several sub-requests w1[f, d1], . . . , wn[f, dn]
[14]. This poses a problem for monitoring write requests because FPE may
not be able to decide upon the partial information of a sub-request wi[f, di] (in
particular, the first sub-request w1[f, d1]) on whether the overall request w[f, d]
should be granted or not. In particular, if FPE only allows a file f to be written
if its future content (i.e., the content of f after applying the write operation
w[f, d]) matches a certain hash value (cf. Section 3.2), knowledge of the entire
future content of f is required in order to be able to calculate the hash value of
f . Note that in this regard, it is not sufficient to only consider the payload data
d. The reason is that a write request may only partially write a file f . In this
case, the payload data d differs from the content of the resulting file f .

We solve this problem by introducing a technique called shadowing, which
works in three phases:

1. FOM detects a write sub-request w1[f, d1] by inspecting the request’s header
data. If f already exists on the guest’s filesystem, FOM creates a shadow copy
f ′ with the same content as f . If f does not exist, FOM creates an empty file
f ′. The shadow copy f ′ is located outside of the guest’s filesystem and only
accessible by FOM. Depending on the size of f , and possibly other factors
(e.g., hardware and performance constraints), the shadow copy may be kept
entirely in RAM.

2. FOM applies the sub-request w1[f, d1] along with all other corresponding
sub-requests w2[f, d2], . . . , wn[f, dn] exclusively to the shadow copy f ′. When
all sub-requests w1[f, d1], . . . , wn[f, dn] have been processed (which is de-
tected by a terminal clunk or fsync operation [10]), FOM signals to FPE
that there is a new write request w[f, d] and passes a pointer to f ′.

3. FPE is then able to calculate the hash value of f ′, which resembles the
potential future content of f , and to finally decide whether the overall
write request w[f, d] should be granted or denied. If it is granted, the
P9 server eventually gets signaled to allow and process all sub-requests
w1[f, d1], . . . , wn[f, dn]. Finally, the shadow copy f ′ gets discarded.

3.2 Enforcing File Protection

The File Protection Enforcer (FPE) is responsible for deciding whether a P9 re-
quest will be granted or denied. The decision making is based on Access Control
List (ACLs) that define which filesystem operations are allowed within guests
and which ones are prohibited. An ACL consists of arbitrarily many Access Con-
trol Entries (ACEs) which determine for a given file f whether certain operations
on f are allowed or denied. There exists one ACL for each VM. The ACL im-
plements a whitelist approach that prohibits all filesystem operations within a
VM unless an operation is explicitly granted by an ACE.
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Table 2. Critical requests mapped to policy checks using only predicates

P9 Request Predicate Policy Check

write(f,d) f ′ ← w[f, d] : W (f) ∧H(f ′)
rename(f1,f2), renameat(f1,f2) W (f2) ∧D(f1) ∧H(f1)

remove(f), unlinkat(f) D(f)

lcreate(f) W (f)

link(f1,f2), symlink(f1,f2) W (f2) ∧H(f1)

exec(f) (*) E(f) ∧H(f)

(*) virtual request

Policy Predicates and P9 Request Mapping. We define a minimal set of
four predicates that may be used to construct an ACE. All predicates evaluate
to either true or false. The predicates are:

W (f) : (partial) writing of file f allowed?
D(f) : deletion of file f allowed?
E(f) : execution of file f allowed?
H(f) : hash sum of the content of file f matches a reference hash value?

The objective of exclusively using this minimal set of predicates in the ACEs,
is to abstract from the actual P9 requests and to come up with simpler, more
generic ACEs. This has the advantage that one does not have to create ACEs
for each specific P9 request. Instead, it is only required to define for a file f
whether writing W (f), deletion D(f), and execution E(f) is allowed or denied
(the latter of which is the default) – possibly in conjunction with reference hash
values that have to be matched (H(f)). In particular, a file may be associated
with a list of one or more reference hash values 〈h1, . . . , hn〉. The predicate H(f)
evaluates to true iff the content of f matches one of the hash values hi or if the
list of reference hash values contains the wildcard character “∗”. Otherwise,H(f)
always evaluates to false.

For example, an ACE for a file f may define that writing of f is allowed (W
predicate) if the resulting content matches one of several reference hash values
(H predicate). Such an ACE may then evaluate to true not only for P9 write

requests but also for rename, renameat, lcreate, link, and symlink requests,
respectively, as will be explained in the following.

For the actual policy enforcement, the FPE internally maps all critical P9
requests (cf. Table 1) to corresponding policy checks using only these predicates.
The mapping is shown in Table 2 (for clarity, we only illustrate the policy checks
for files and omit the checks for directories). If the overall expression of such a
policy check evaluates to true, the respective P9 request will be granted by FPE.
Otherwise, it will be denied. Note that a write request w[f, d] (which might be a
partial write) will first be applied to a temporary file f ′ (denoted by f ′ ← w[f, d]
in Table 2). This is similar to shadowing as described in Section 3.1. If the content
of the resulting file f ′ matches a valid reference hash value, H(f ′) evaluates to
true. Also note that exec is not an actual P9 request but a virtual request which
is propagated by EDE. This is explained in Section 3.3.
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Package Policy Rules. We also define predicates to determine which software
package maintenance operations may be autonomously issued by legitimate guest
VM users (cf. Section 3.4). The predicates are:

Pi(p) : installing, upgrading, or downgrading package p allowed?
Pr(p) : removing package p allowed?
Ph(p) : hash sum of the package p matches a reference hash value?

Whenever PME detects an installation, upgrading, or downgrading attempt
of a package p (cf. Section 3.4), respectively, it is propagated to FPE which,
in turn, will check whether the predicate Pi(p) evaluates to true. Furthermore,
the predicate Ph(p) may be used – analogously to H(f) as described above – to
restrict the installation, upgrading, and downgrading of a package p to packages
that match a reference hash value. This allows to selectively permit only certain
packages (and package versions) while prohibiting others, e.g., older versions
with known vulnerabilities. For removing attempts of p, FPE will check whether
the predicate Pr(p) evaluates to true.

3.3 Detecting Program Execution

Detecting and possibly preventing the execution of files within VMs is an impor-
tant part of our concept. Unfortunately, having EDE detect executed programs
from outside of the guest VMs is not straight forward due to the fact that P9
does not distinguish between reading a file and executing a file. Instead, in both
cases a read request is sent by the P9 client and only the VM decides afterwards
whether the read file will be executed. Note that we cannot just extend the
P9 clients (and server) such that they distinguish between read and execute re-
quests (e.g., an executable-bit). The reason is that this information would not be
trustworthy since an attacker may tamper with it (e.g., setting the executable-
bit from 1 to 0) once the VM is compromised. Therefore, we incorporate EDE
which is able to detect the execution of a file within a VM by utilizing a heuristic
approach. EDE is protected from the aforementioned attacks since it is located
in the security VM (cf. Fig. 1) and monitors the VMs from “outside of the box”,
without relying on auxiliary (untrustworthy) information sent from the VM.

Whenever a program is going to be executed within a VM, there will be a
distinct sequence of preceding Plan 9 requests in a defined chronological order,
as described in the following. EDE recognizes this sequence of signature requests
and deduces which file is intended to be executed. FPE may then grant or deny
the execution based on policy rules as described in Section 3.2.

For the execution detection, we consider the Executable and Linking Format
(ELF) [15], which is the standard binary format for executables on many Unix-
like operating systems, including Linux. The heuristic for detecting the execution
of ELF files under Linux, consists of the following signature requests (in their
chronological order of occurrence):
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1. The execve system call first reads in 128 bytes to determine the binary type
of a file f . Consequently, EDE scans for the corresponding P9 read requests.

2. The ELF loader of the Linux kernel invokes the function kernel read, which
reads 224 bytes from f , starting from offset 52.

3. A subsequent invocation of kernel read reads 19 bytes from f , starting
from offset 276, which gets treated as the path to an interpreter [15].

The above signature requests are usually followed by multiple read requests
that attempt to map the entire file f into memory. Note that EDE is also able
to detect the loading of ELF libraries, which generate signature requests similar
to that of executed binaries. We consider the detection of executed script files
(e.g., shell scripts) out of the scope of this paper. This will be addressed in future
research.

Secure Storage of Integrity Measurements. We build upon and improve
the work done in [11] to measure all executed binaries of all VMs and store
these measurements in a single, multiplexed TPM. This allows for attesting
the integrity of individual VMs (remote attestation). In [11], each VM runs
an adapted version of the Integrity Measurement Architecture (IMA) [16] that
monitors the execution of files, calculates integrity measurements, and forwards
them to a TPM multiplexing agent located in the hypervisor. We improve this
solution by relocating and consolidating the IMA measurement components from
the guest VMs to the well encapsulated security VM. This has the advantage
that only a single measurement agent is required for monitoring the execution of
files of all VMs from “outside of the box” and for storing integrity measurements
(SHA1 values) in the TPM. Additionally, this prevents attackers from tampering
with the monitoring and measuring components, respectively, since they are out
of reach of the guest VMs. In our case, measuring all monitored executables and
storing them in the TPM is done by EDE.

3.4 Autonomous Software Package Installation and Upgrade

Another key feature of our approach is that it is possible for legitimate users
of guest VMs to autonomously install, remove, upgrade, or downgrade software
packages without the need of any manual intervention by the administrator of the
physical system. However, these package maintenance operations are not allowed
to be done in an arbitrary manner, but all such operations have to adhere to
the policy rules enforced by FPE as described in Section 3.2. Also note that it is
not possible for a guest VM user to directly manipulate the package contents as
they are write protected. This prevents illegal modifications of the guest VM by
attackers – which includes legitimate but maliciously acting VM users. Finally,
note that PME may also actively enforce the upgrading of (outdated) packages
within VMs.
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Fig. 2. Installation and upgrading of packages via CPVM

The work flow for installing, removing, upgrading, and downgrading software
packages is depicted in Fig. 2 and will be described in the following.

i) Signaling of Package Maintenance Request. First, a legitimate user
of the guest VM executes the package manager within the VM with the cor-
responding maintenance action a (and parameters) for a package p (step 1 of
Fig. 2). The request is forwarded by the P9 client to the P9 server. The Package
Maintenance Engine (PME) located in the security VM catches and analyzes
the package maintenance request (step 2). In this regard, it is important to note
that PME considers all information gathered from the guest VM as untrustwor-
thy. This means that even if an attacker compromised the guest VM, it is not
possible for him to use the package manager to send fake information in a way
that would allow the circumvention of the policy rules or the malfunctioning of
any other security-critical component outside of the guest VM.

ii) Checking Package Integrity and Permissions. PME sends a query to
FPE in order to determine whether p is a known and valid package on which
the requested action a may be applied. Hence, FPE first checks if the action
a on package p is allowed for the respective VM by evaluating the Pi and Pr

predicates of the corresponding ACE. Following this, FPE verifies the integrity
of the package p by evaluating the Ph(p) predicate of the corresponding ACE
(cf. Section 3.2). The usage of reference hash values allows to selectively permit
only certain packages – and package versions – while prohibiting others (e.g.,
older versions with known vulnerabilities) that may otherwise be exploited by
an attacker to compromise the system. If the hash value is not valid, the main-
tenance process is aborted and an error is signaled to the package manager of
the guest VM.
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iii) Executing Package Maintenance Request. The package maintenance
process for all guest VMs is executed in a special VM, called the Complementary
Privileged Virtual Machine (CPVM). The CPVM runs in parallel to the guest
VMs and has exclusive permission to install, remove, upgrade, or downgrade
packages of all VMs. A key feature of the CPVM is that it operates (via the
P9 protocol) on the same filesystem (located in the host) as the guest VM vm
that triggered the respective package maintenance request. This is achieved by
attaching vm’s filesystem (on the fly) to CPVM, for the duration of the pack-
age management process. This way, all package management operations done by
CPVM are immediately visible to vm, and vice versa. This prevents synchroniza-
tion problems and guarantees that both VMs always operate on the same state
of the VM (e.g., information on which packages are installed, package versions,
configuration file settings, etc.). Note that the guest VMs only require minimal
(non-security critical) user space modifications of the package management tools
(cf. Section 4.1) but no kernel modifications.

In the following, we justify the execution of the package maintenance opera-
tions within CPVM as opposed to executing them in the guest VM itself. The
latter case could be achieved by having FPE properly adjust the policy rules
such that the creation, deletion, modification etc. of files belonging to a cer-
tain package would be temporarily permitted for a certain VM. However, many
modern package managing tools also allow packages (e.g., Debian packages, as
used in our prototype implementation in Section 4.1) to contain script files that
will be executed before and after a package maintenance operation, respectively.
Parsing these script files (which may contain arbitrarily complex commands) and
extracting their complete semantics (in order to be able to have FPE temporar-
ily grant the corresponding file operations) is a highly complex task. Possible
workarounds include disallowing such scripts or imposing certain constraints on
their contents. However, this would prevent taking advantage of real-life pack-
ages as shipped with modern Unix-like operating systems. Our CPVM approach
solves the aforementioned problems, yet it is fully compatible with full-fledged
Unix-like operating systems (e.g., Linux distributions such as Debian).

Note that our approach does not require to suspend or pause a guest VM vm
while CPVM is executing its software management operations on vm’s filesystem
but both VMs can run in parallel. This is due to the fact that both VMs commu-
nicate with the same P9 server – which deals with the correct synchronization
of P9 requests. As such, the functioning of vm and CPVM is comparable to two
(especially encapsulated) processes operating on the same filesystem within the
realm of an ordinary operating system.

4 Implementation

We have implemented a prototype using the Native Linux KVM Tool (KVM)
[17], version 3.1.rc7, with enabled KVM full virtualization support. In contrast
to QEMU-KVM [18, 19], KVM has the goal to provide a clean, from-scratch,
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lightweight KVM host tool with only the minimal amount of legacy device em-
ulation [17]. KVM ships with a P9 file server utilizing the virtio framework [12]
for communicating with the P9 clients residing in the guest VMs. The P9 client
functionality is provided by the v9fs client of the Linux kernel, which supports
both the standard 9P2000 protocol and the extended 9P2000.L protocol, the
latter of which we use.

Our host system runs Ubuntu 12.10. Each guest VM runs Debian 6.0 with
Linux kernel 3.5.0 and enabled virtio and P9 support. The Linux guest ker-
nel images reside on the host filesystem and will be passed as a parameter to
KVM whenever a new VM is started. The security VM and CPVM also run
Debian 6.0 with Linux kernel 3.5.0. The attached guest filesystem of CPVM is
passed to KVM as a reference to a symbolic link. PME redirects this symbolic
link dynamically to other guest filesystems as required by package maintenance
requests.

The P9 server hooking functionality is realized by patching all relevant request
handlers of the P9 virtio implementation so that FOM gets signaled and for-
warded all required information. FOM and EDE are implemented in C. PME and
FPE are implemented using a combination of Python scripts and shell scripts.
Furthermore, FPE utilizes SQLite3 for efficiently managing our policy rules.

4.1 Installation and Upgrading of Packages via CPVM

As already mentioned, the guest VMs run Debian, which ships with the package
management tools dpkg and apt-get. Since we do not allow guests to directly in-
stall, remove, upgrade, or downgrade packages on their own (cf. Section 3.4), we
replace the user space tools dpkg and apt-get with our own versions dpkgR and
apt-getR, respectively, both of which forward all package maintenance requests
to PME via the P9 protocol. To avoid having to modify or extend the P9 proto-
col, we just take advantage of regular P9 requests (that will be treated specially
by PME) in order to pass the information of package management action, pa-
rameters, and package name. In particular, we utilize the P9 mkdir request (cf.
Table 1) because it allows us to transfer all required information. PME parses
the request and queries FPE on whether the action for package p is allowed and
whether p is a valid package. If the request gets granted by FPE, PME places a
file (called a job) in a special directory which is only accessible by CPVM. The
job contains the respective command that will be executed by the privileged
CPVM as soon as CPVM gets scheduled by PME. PME attaches the filesystem
of the respective guest VM to CPVM and schedules CPVM. Eventually, CPVM
detects the new job and executes it. Upon successful completion of the job, PME
grants the P9 mkdir request to signal to dpkgR and apt-getR, respectively, that
the package maintenance request has been successfully executed.

5 Performance Evaluation

We assess the performance of our prototype implementation by measuring
its write and read performance, and by comparing the results to three other



Active File Integrity Monitoring Using Paravirtualized Filesystems 65

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

2
20

2
22

2
24

Block size in B

10
-1

10
0

10
1

10
2

10
3

10
4

T
im

e
 i
n
 m

s

Native I/O

Virtio w/o Plan 9

Plan 9 (unmodified)

Plan 9 (our prototype)

(a) write performance

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

2
20

2
22

2
24

Block size in B

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

T
im

e
 i
n
 m

s

Native I/O

Virtio w/o Plan 9

Plan 9 (unmodified)

Plan 9 (our prototype)

(b) read performance

Fig. 3. Comparison of write and read performance of different environments

environments. The testing hardware consists of a PC with an Intel Core i7-
2640M 2.8GHz CPU, 4 GB RAM, and an Intel SSDSA2BW160G3L solid-state
drive containing an ext4 filesystem with a block size of 4kB.

Fig. 3 shows our testing results of the (a) write performance and (b) read
performance benchmarks. We conducted the write and read operations with
block sizes from 1B of up to 16MB (224B) and disabled caching.

The write performance is depicted in Fig. 3a. The time (in ms) to write data is
given as a function of the block size (in bytes). All four examined environments –
native I/O, virtio block without P9, unmodified P9 (plain P9), and our prototype
– perform similarly up to block sizes of approx. 8kB (213B). For larger block sizes,
the P9 environments perform worse than native I/O and virtio block. However,
in our usage scenario such larger block sizes are negligible since I/O operations
are usually done in block sizes of typical filesystems – which normally lie in the
range of 512B to 4kB (which is also the maximum block size for ext4 on most
architectures). There is no significant performance difference between plain P9
and our prototype.

As for the read performance (Fig. 3b), the results look as expected: native
I/O takes the least time to read blocks, followed by virtio block, followed by
the P9 environments – which inherently have the biggest performance overhead.
However, analogous to the write performance, there is no significant performance
difference between plain P9 and our prototype.

6 Security Analysis

In the following, we discuss attacks that target the persistent and non-persistent
manipulation of files as well as the circumvention of the execution detection.
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An attacker may try to persistently manipulate files within a VM and pre-
vent the propagation of the changes to the P9 server, thus undermining active
monitoring. A possible approach would be to compromise the guest kernel and
tamper with the P9 client such that certain (or all) P9 messages will be blocked
from being propagated to the P9 server. However, as explained in Section 3, all
file operation requests must necessarily be routed through the P9 server because
otherwise it is impossible for a guest VM to access the VM’s filesystem.

For non-persistent file manipulations, an attacker may cache the filesystem (or
parts thereof) locally in RAM and only work on this cached data (e.g., writing
files in memory), thus undermining active monitoring. We protect against these
kind of attacks by prohibiting the loading of kernel modules. In particular, we
prevent the loading of kernel modules supporting other filesystems, including vir-
tual and stacked filesystems, as well as modules enabling filesystems in userspace
(e.g., FUSE). Attacking the kernel itself is only possible with runtime attacks
(e.g., code injection), which is excluded by our attacker model (cf. Section 2).

For circumventing execution detection by EDE (cf. Section 3.3), an attacker
might also employ stacked filesystems. However, we prevent attacks involving
stacked filesystems by prohibiting the loading of kernel modules as described
above. An attacker may also try to circumvent the execution detection by first
mapping an entire file into memory and then executing it from RAM. There
exist orthogonal techniques for preventing such attacks (e.g., [20, 21]), which we
consider out of the scope of this paper. As mentioned in Section 3.3, we currently
do not consider the detection of executed script files (e.g., shell scripts). However,
this is not due to a limitation of our architecture but is rather a matter of effort
to extend the heuristic in future research.

7 Related Work

Tripwire [1] is a commonly known HIDS, which detects changes to filesystem
objects by checking the filesystem in periodic intervals. However, there is no
support for real-time checking. Hence, Tripwire cannot prevent attacks but just
detect them after they have happened. Furthermore, Tripwire is not encapsulated
from the monitored system and as such is susceptible to attacks. I3FS [22] tries
to improve Tripwire by adding real-time integrity checks. However, since the
supervising agent and the relevant databases are located within the realm of the
monitored system, I3FS is also vulnerable to attacks.

In [9], Zhao et al. implement active monitoring in a virtualized environment.
They try to bridge the semantic gap between disk blocks and logic files with the
help of the block tap library blktap [6]. However, they still allow the modifica-
tion of files in security-critical directories (e.g., /etc) while only logging these
modifications, thus being incapable of preventing potential attacks. Our active
monitoring approach allows VMs to autonomously upgrade software packages in
a controlled manner, thus implicitly enabling the secure and restricted modifi-
cation of files in security-critical directories.

HIMA [23] provides hypervisor-based active monitoring of critical guest
events and guest memory protection. However, their described approach requires
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considerable effort for bridging the semantic gap. In contrast, our approach is
very efficient in preserving the semantic knowledge of file operation events within
VMs on a high-level abstraction by utilizing the Plan 9 protocol.

Lares [7] and Xenprobe [8] place hooks in the guest VMs in order to trace
syscalls. However, these hooks can be attacked and disabled from within the VM.
Hence, the hypervisor is not able to reliably monitor the VMs. Our approach of
relocating the guest VM’s filesystem from the realm of the guest VM to the host
guarantees that all file operations originating from a VM are necessarily routed
through the hypervisor in order to implement reliable monitoring.

8 Conclusion

In this paper, we presented our virtualized architecture that allows for active
file integrity monitoring. The key idea of our approach is to relocate a super-
vised VM’s entire filesystem into the isolated realm of the host such that all
file operations must necessarily be routed through the hypervisor. This allows
for complete active monitoring and the prevention of critical filesystem events.
In contrast to existing active monitoring approaches, our technique has the ad-
vantage that hooks placed inside the VMs are not prone to manipulation by
malware. The reason is that disabling hooks in a VM inevitably renders the
VM incapable of accessing or manipulating its own filesystem (provided by the
respective hook). Another key feature of our approach is that we enable regular
users of VMs to autonomously install and upgrade software packages in a secure
and controlled manner, without the need of requiring the intervention of the
administrator of the physical system. Finally, we securely measure all executed
binaries of all VMs and store these measurements in a single, multiplexed TPM.
The experimental results of our prototype implementation show the practicality
of our approach.
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