
A Spatial Majority Voting Technique to Reduce

Error Rate of Physically Unclonable Functions

Patrick Koeberl, Jiangtao Li, and Wei Wu

Intel Labs, Intel Corporation
{patrick.koeberl,jiangtao.li,wei.a.wu}@intel.com

Abstract. The Physically Unclonable Function (PUF) is a promising
hardware security primitive with a wide range of applications, such as
secure key generation, device authentication, IP protection, and hard-
ware entangled cryptography. Due to their physical construction, PUF
responses are inherently noisy. Error correction codes can be used to
turn noisy PUF responses into keys or static values for these applica-
tions. However, a general construction of error correction is expensive
and could introduce high entropy loss for PUFs with high error rates.
Some PUF pre-processing techniques have been proposed, such as tempo-
ral majority voting and dark bit schemes, applied before error correction.
In this paper, we introduce a simple and yet effective method to reduce
PUF error rate called Spatial Majority Voting (SMV). The idea is to
group PUF bits together to produce a single, more stable bit from the
group. Experimental data show that SMV works very well, reducing the
mean error rate from 6.5% to 0.3% with a group size of 9 on SRAM
PUFs implemented in 65 nm CMOS. We also show that SMV can be
combined with the dark bits method to further reduce the error rate to
less than 0.01%, thus avoiding the need for expensive error correction
schemes.

1 Introduction

A Physically Unclonable Function (PUF) can be described as a physical system
which when measured provides unique, unpredictable, and repeatable responses.
Creating a physical copy of the PUF with an identical behavior is hard, thus
resulting in a structure which is unclonable even by the manufacturer. Pappu
introduced the PUF concept in his thesis [19]. In 2002, Gassend et al. introduced
silicon PUFs in [6]. Silicon PUFs exploit the uncontrollable manufacturing vari-
ations which are a result of the integrated circuit fabrication process. Manufac-
turing variation of process parameters such as dopant concentrations and line
widths manifest themselves as differences in timing behavior between physical
instances of the same integrated circuit design.

Since the first development of silicon PUFs, a number of silicon PUF con-
structions have been proposed. Lee et al. [12] proposed the first arbiter PUF in
2004. Guajardo et al. [7] proposed the SRAM PUF in 2007. In 2008 Kumar et
al. [11] introduced Butterfly PUFs and Maes et al. [17] proposed D type Flip-
Flop PUFs. In 2012 Simons et al. [20] proposed Buskeeper PUFs. Note that

R. Bloem and P. Lipp (Eds.): INTRUST 2013, LNCS 8292, pp. 36–52, 2013.
c© Springer International Publishing Switzerland 2013



A Spatial Majority Voting Technique to Reduce Error Rate of PUFs 37

SRAM PUFs, Butterfly PUFs, D type Flip-Flop PUFs, and Buskeeper PUFs
are all memory based PUFs.

PUFs have become a promising security primitive with a wide range of
applications. For example, PUFs are used for secure key generation in sili-
con [14,21,7,16], which eliminates the need for storing keys in non-volatile mem-
ory. It was stated in [18] that PUF based key generation provides advantages
like physical unclonability and tamper evidence, compared to storing the keys
in non-volatile memory. PUF has been proposed for online device authentica-
tion in a challenge-response authentication protocol [22] and for offline device
authentication [10]. Recently, PUFs have been used in various hardware entan-
gled cryptographic schemes and protocols, such as a PUF-based block cipher [1]
and PUF-based oblivious transfer and key exchange protocols [4]. Many of these
applications can be used for trusted computing or building trusted systems.

Since PUF responses are inherently noisy and may not be uniformly random, a
post-processing algorithm is needed to convert noisy PUF responses into keys or
static values in these applications. This process is known as the fuzzy extractor
or helper data algorithm in the literature. Part of the fuzzy extractor is error
correction. Several practical fuzzy extractor schemes [3,18] have been proposed
for memory-based PUFs using various error correction codes, such as BCH,
Reed-Muller, Golay codes, or repetition codes. It is easy to see that the higher
error rate in the PUF response, the more error correction is required. Complex
error correction codes are capable of correcting high error rates, but are much
more expensive to build in hardware. Furthermore a general construction of
error correction could introduce high entropy loss [5]. Therefore it is important
to reduce the PUF bit error rate before applying the fuzzy extractor.

In this paper, we introduce a new technique to reduce the PUF error rate
called Spatial Majority Voting (SMV). This technique is effective and simple
to implement. The idea is to group a few PUF response bits together from
which a subgroup is chosen. A more stable bit from the group is produced based
on majority voting of the subgroup. Experimental data show SMV works well,
reducing the mean error rate from 6.5% to 0.3% with a group size of 9 on
SRAM PUFs implemented in 65 nm CMOS. Combining SMV with the dark
bits method [1], the noisy rate in PUF can be reduced to less than 0.01%. A
simple hardware implementation of Hamming codes, BCH codes (with small code
size), or repetition codes can be used to remove the remaining PUF errors. Our
solution opens a wide possibility of applications where expensive error correction
codes are not possible, such as RFID and resource-constrained devices.

1.1 Related Work

There are techniques in the literature to reduce PUF noise rate before applying
error correction or a fuzzy extractor to the PUF responses, namely, Temporal
Majority Voting (TMV) [1], dark bits [1], and index based syndromes [23]. In
this paper we term these methods pre-processing techniques and consider SMV
similarly.



38 P. Koeberl, J. Li, and W. Wu

The basic idea of TMV [1] is as follows: each PUF bit is evaluated multiple
times and if most of the time it is evaluated as 1, then we set this PUF bit value
to 1; otherwise, we set this bit value to 0. Observe that if a PUF bit is relatively
stable and only flips its value occasionally, TMV can effectively stabilize this bit.
However, if a PUF bit is very unstable (e.g., probability of one half of being 0
and 1 respectively), TMV does not work well on this bit.

In the dark bits method presented by Armknecht et al. [1], each PUF bit is
evaluated multiple times during the setup phase. If a PUF bit is not stable, we
mark it as a “dark bit”. In the evaluation phase, the PUF is evaluated again
and the dark bits are discarded, as these bits were noisy during the setup phase.
Observe that if a PUF bit is very unstable, it will very likely be detected as a
dark bit. It is easy to see that filtering the PUF responses dark bits results in a
lower error rate.

Yu and Devadas [23] provided a different technique called index based syn-
drome. This approach assumes the PUF output is a real value instead of a single
bit. The idea is that only PUF bits with a strong representation of a “1” or a
“0” are chosen. In other words, only relatively stable PUF bits are picked. This
technique is only applicable to some PUF designs such as the Ring Oscillator
PUF, but not applicable to memory-based PUFs with binary outputs.

Both TMV and the dark bits method require multiple PUF measurements
which could be impractical in many applications according to [13]. The index
based syndrome method only works for a few type of PUFs with real-valued
output. In contrast, our SMV method does not require multiple PUF measure-
ments and is applicable to all PUF types. Furthermore, the SMV method is
complementary to these three techniques. We shall show in Section 5 that SMV
can be combined with the dark bits method to further reduce PUF error rate
significantly.

Another approach to reduce PUF error rate is to use a repetition code [3,18,2].
Using a repetition code of length n, a random bit b is repeated n times into an
n-bit string and then XORed with an n-bit PUF response as the helper data. In
the evaluation phase, the random bit b is recovered by XORing the helper data
and the PUF response and then running a majority voting on the XORed result.
Repetition codes are indeed more efficient than our SMV method in terms of
PUF error rate reduction. However, there are two limitations to the repetition
code method. First, repetition codes suffers high entropy loss. For an n-bit PUF
response, the entropy loss is n − 1 and there is at most one bit of leftover
entropy [5]. For low entropy PUFs, there could be zero leftover entropy using
repetition coding. We believe there is less entropy loss in our SMV approach.
Detailed analysis of entropy loss in SMV remains an open question and is future
work. Second, the repetition code method can only be used in the code-offset
construction (also known as fuzzy commitment [8] in the literature). In the
application of PUF-based key generation using repetition codes, the key has to
be chosen external to the device by a trusted manufacturer. In our SMV scheme,
the key can be completely “unknown” to the manufacturer which is an attractive
property for many applications.



A Spatial Majority Voting Technique to Reduce Error Rate of PUFs 39

1.2 Our Contributions

We summarize our contributions of this paper as follows: we provide an efficient
pre-processing method to reduce PUF error rate using Spatial Majority Voting.
Our SMV method is efficient to implement in hardware. We provide both theo-
retical analysis and experimental data to show that the SMV method works well.
We note that if the raw PUF responses are biased, SMV would increase the bias
in the processed PUF response. We provide an alternative SMV scheme such
that the bias in PUF is not be amplified. We also present how to combine SMV
with dark bits method such that the PUF error rate can be further reduced.

1.3 Organization of the Paper

The rest of this paper is organized as follows. We first introduce our SMV scheme
in Section 2 with a theoretical analysis. We show the effectiveness of SMV with
experimental studies on real SRAM PUF data in Section 3. We present an alter-
native SMV scheme for PUFs with biased responses in Section 4. In Section 5,
we show that the SMV scheme can be combined with the dark bits method to
further reduce the PUF error rate. We discuss the potential applications of our
SMV scheme in Section 6 and conclude our paper in Section 7.

2 Basic Spatial Majority Voting Scheme

In this section, we first review a simplified PUF model and define the PUF pre-
processing process. We then describe our Spatial Majority Voting (SMV) scheme
and provide some theoretical analysis to show the effectiveness of SMV.

2.1 PUF Model and PUF Pre-processing Process

Roughly speaking, a PUF is a random function based on a physical system with
a small amount of noise. Although there have been earlier attempts at formal
definitions of PUF [19,6,7,1], we use a simplified PUF definition based on [1] with
a focus on PUF stability. The other properties of PUF such as unclonablity,
randomness, and tamper evidence are neglected from the following simplified
model.

Definition 1 (Physically Unclonable Functions). A (n,m, pe)-family of
physically unclonable functions is a set of probabilistic algorithms with the fol-
lowing procedures:

Instantiate. The output of the Instan procedure is a unique probabilistic func-
tion f : {0, 1}n → {0, 1}m.

Evaluate. Given a physically unclonable function f , the Eval procedure on each
challenge x ∈ {0, 1}n outputs a noisy response f(x) ∈ {0, 1}m.



40 P. Koeberl, J. Li, and W. Wu

On two separate evaluations of same f and challenge x, denoted as r1 and r2,
the noise vector between two evaluations is r1 ⊕ r2. The pe is the average noise
rate between any two PUF measurements.

Assuming the PUF noise is randomly distributed and is drawn independently
for each bit of the PUF response, then the PUF noise rate pe is also called the
PUF bit error rate. In other words, the noise vector between two PUF measure-
ments is a vector of m independent Bernoulli distributed random variables with
probability pe. This is commonly assumed in the PUF literature [7,1,9].

Katzenbeisser et al. [9] show that the average PUF bit error ranges from 2%
to 30% for various silicon PUF constructions. As we discussed earlier, many
applications of PUF require static PUF outputs. It is expensive to use gen-
eral constructions of error correction or fuzzy extractors to reduce the PUF
noise. We define the following “pre-processing” process to reduce PUF noise.
The pre-processing process has two procedures: setup and processing. Let f be
a physically unclonable function with parameters (n,m, pe). The optional setup
procedure outputs a helper data h, given f and a challenge x as input. The
processing procedure outputs a pre-processed PUF response w, given f , x, and
h as input.

Setup Procedure. On input of a PUF f and an n-bit challenge x, this proce-
dure outputs a helper data h.

Processing Procedure. On input of a PUF f , a challenge x, and a helper
data h, this procedure outputs pre-processed PUF response w.

In the setup or processing procedure, PUF may be evaluated once or multiple
times. The goal of the pre-processing function is to reduce the noise in the “pre-
processed” PUF responses for any given PUF f and challenge x, i.e., to reduce
Hamming distance between two processed responses w and w′.

For example, Temporal Majority Voting (TMV) can be defined as follows. Let
k be a small odd number and t = (k+1)/2 be the majority voting threshold. The
TMV process has no setup procedure and has the following processing procedure.

TMV Processing. On input of a PUF f and a challenge x, f is evaluated k

times and k responses obtained w(1), . . . , w(k). Let w
(j)
i be the i-th bit of w(j).

This procedure outputs w = w1 · · ·wm, where wi = 1 if w
(1)
i + · · ·+w

(k)
i ≥ t

and wi = 0 otherwise, for i = 1, . . . ,m.

Similarly the dark bits method can be defined as follows. Let k be a parameter
for identifying dark bits. The idea of this method is to filter the noisy PUF
bits that were observed during the setup procedure. These noisy PUF bits are
recorded as a dark bits mask.

Dark Bits Setup. On input of a PUF f and a challenge x, f is evaluated k
times and k responses obtained w(1), . . . , w(k). Compute helper data h =
(w(1) ⊕w(2)) ∨ · · · ∨ (w(1) ⊕w(k)), where ⊕ is bitwise XOR and ∨ is bitwise
OR. This h is called the dark bits mask.



A Spatial Majority Voting Technique to Reduce Error Rate of PUFs 41

Dark Bits Processing. On input of the PUF f , challenge x, and dark bits
mask h. The processing procedure first evaluates f and obtains w̃, then
discards the all bits marked in h from w̃, and produces a shorter output w.

2.2 Our SMV Scheme

In TMV, the PUF is measured multiple times and majority voting is applied on
each bit location to filter the PUF noise. Inspired by TMV, we propose SMV in
this section. The idea of SMV is to group a few PUF bits together to produce a
more stable bit. A näıve method is to perform majority voting on the group, i.e.,
if there is more ‘1’ in the group, set the group bit as 1, otherwise, set the group
bit as 0. Unfortunately, this approach increases the PUF error rate as shown in
Figure 1(right) instead of reducing the error rate. The analysis of the näıve SMV
method is given in Appendix A.

The basic idea of our SMV scheme is that we divide PUF responses into
groups and extract a stable bit from each group as follows: choose a majority
subgroup from each group during the setup procedure, and then do majority
voting on the subgroup. In the processing procedure, only the bits in subgroup
are used for majority voting. Observe that all the bits in the subgroup have the
same value in the setup procedure. If there is a small noise in the PUF response,
e.g., only a small number of bits in the group flip, the majority voting would
filter the noise.

We now formally describe the basic SMV method with the following param-
eters: k as the group size, k′ as the subgroup size, and t as the voting threshold
value. For our basic SMV scheme, we set k = 2k′ − 1 and k′ = 2t + 1. For
example, k = 9, k′ = 5, and t = 2.

SMV Setup. On input of a PUF f with parameters (n,m, pe) and an n-bit
challenge x, it runs the following steps:

1. Evaluate f on challenge x and obtains an m-bit PUF response w.
2. Divide w into l groups G1, . . . , Gl of size k, where l = �m/k�.
3. For each group Gi, where i = 1, . . . , l, do the following steps:

(a) Let group bit bi be the majority bit of the group Gi.
(b) Let hi be a k-bit mask that marks the majority subgroup, i.e., the

location of first k′ bits of bi in Gi.

4. This function outputs the helper data h = h1, . . . , hl.

SMV Processing. On input of the PUF f , challenge x, and helper data h =
h1, . . . , hl, it runs the following steps:

1. Evaluate f and obtains PUF response w.
2. Divide w into l groups G1, . . . , Gl of size k, where l = �m/k�.
3. For each group Gi, where i = 1, . . . , l, do the following steps:

(a) Set ti as the number of ‘1’ in the subgroup of Gi marked by hi.
(b) Set the group bit bi = 1 if ti > t and set bi = 0 otherwise.

4. Output b1, . . . , bl as processed PUF response.



42 P. Koeberl, J. Li, and W. Wu

For example, if the PUF bits in a group Gi are read as {0, 0, 1, 0, 1} during
the setup procedure, the majority subgroup is the 1st, 2nd, and 4th bits of the
group, and hi is output as {1, 1, 0, 1, 0}. If PUF bits are read as {0, 1, 1, 0, 1}
in the processing procedure, the majority voting is conducted on {0, 1, ∗, 0, ∗},
where ∗ denotes the bits outside the voting subgroup. As a result, the group bit
bi is evaluated as 0.

We now calculate how SMV would reduce the PUF error rate. The raw PUF
error rate is pe. Observe that all the k′ bits in the subgroup are the same during
the setup procedure. The group bit in the setup procedure is the majority bit in
the group. In the processing procedure, the group bit changes only if more than
t bits in the subgroup flip their values during the PUF evaluation. Let us define
binocdf as a binomial cumulative distribution function:

binocdf(t, n, p) =

t∑

i=0

(
n

i

)
pi(1 − p)n−i.

The error rate after SMV is then 1−binocdf(t, k′, pe). We plot the error rate on
the PUF response after SMV in Figure 1(left) and list a few error rate values in
Table 1.

0%

5%

10%

15%

20%

25%

30%

1% 3% 5% 7% 9% 11% 13% 15% 17% 19%

Raw PUF Error Rate (in %)

Er
ro

r R
at

e 
Af

te
r S

M
V 

Group Size 
1

5

9

17

33

0%

5%

10%

15%

20%

25%

30%

1% 3% 5% 7% 9% 11% 13% 15% 17% 19%

Raw PUF Error Rate (in %)

Er
ro

r R
at

e 
Af

te
r N

aï
ve

 S
M

V 

Group Size 

1

5

9

17

33

Fig. 1. Error rate reduction using our SMV (left) and näıve SMV (right)

Table 1. Estimated error rate after SMV with k = 9, 13, 17, respectively

Raw error rate .01 .03 .05 .07 0.09 .11 .13 .15 .17

k = 9 .000010 .00026 .0012 .0031 .0063 .011 .018 .027 .037

k = 13 .000000 .000026 .00019 .00071 .0018 .0039 .0072 .012 .019

k = 17 .000000 .000003 .000033 .00017 .00055 .0014 .0030 .0056 .0098

Clearly, SMV is very effective even for a small group size, e.g., k = 5 or 9.
It can quickly reduce the PUF error rate. Take k = 9 as example, if the raw
PUF error rate is 15%, the error rate after SMV becomes 2.7% which is a 5x
improvement. If the raw error rate is 5%, the error rate after SMV drops to
0.12% which is more than 40x improvement. As we shall see in Section 3, our
theoretical analysis matches the SMV performance on real PUF data closely.



A Spatial Majority Voting Technique to Reduce Error Rate of PUFs 43

3 Experimental Result

We evaluate the performance of our SMV scheme using data collected from a
silicon PUF implementation in 65 nm CMOS [15]. The dataset comprises 280
SRAM PUF measurements obtained across 96 device instances over a range
of voltage supply and ambient temperature conditions. Table 2 tabulates the
number of measurements collected at each operating condition.

Table 2. Number of test measurements recorded per device operating condition

V=1.08V V=1.2V V=1.32V

T=25oC 30 60 30

T=+85oC 20 40 20

T=-40oC 20 40 20

The metrics of inter-distance and intra-distance are used as a measure of
PUF performance both of the raw SRAM PUF and our SMV scheme. Intra-
distance is a measure of the hamming distance between PUF responses taken
from the same physical PUF instance. This metric is a measure of the PUF
noise rate and should be as close as possible to zero. In the rest of this paper,
we use the intra-distance μintra to refer the average PUF error rate in the PUF
experimental data. Inter-distance measures the Hamming distance between two
PUF responses taken from different physical PUF instances. The inter-distance
metric is a measure of the uniqueness of a PUF response and ideally should
be 50%.

Inter-distance and intra-distance results for the raw SRAM PUF on 96 devices
using the operating conditions described above are shown in Figure 2. We chose
an SRAM PUF size of 8704 bits, i.e., m = 8704. The results show near-ideal
behavior with a mean fractional intra-distance of 6.5% and standard deviation
of 0.010. The fractional intra-distance is 49.5% with a standard deviation of
0.006.

With the baseline performance of the raw SRAM PUF determined we now
evaluate the performance of our SMV scheme for parameters of l = 512 and
k = 9, 13, 17. Table 3 tabulates the results. In addition to the mean and stan-
dard deviation results for inter- and intra-distance we give the maximum intra-
distance and mean bias in terms of ones in the SMV output. The intra-distance
results show that SMV gives a significant reduction over the raw PUF noise rate,
reducing the raw error rate from 6.5% to 0.31%, 0.09%, and 0.02%, respectively,
with k = 9, 13, and 17. This aligns well with our theoretical analysis in Table 1,
where if the raw PUF error rate is 7%, the error rate after SMV improves to
0.31%, 0.071%, and 0.017%, respectively, with k = 9, 13, and 17. Figure 3 shows
the inter- and intra-distance results for the k = 13 and k = 17 case.



44 P. Koeberl, J. Li, and W. Wu

Fig. 2. Inter- vs intra-distances for raw SRAM PUF data (8704 bits)

Table 3. Experimental results before (raw PUF) and after SMV processing

μintra σintra maxintra μinter σinter μbias(ones)

Raw PUF .065119 .009900 .085133 .495468 .006009 .502098

SMV, k=9 .003080 .002653 .019531 .484900 .023696 .506249

SMV, k=13 .000852 .001350 .011718 .483650 .023797 .504457

SMV, k=17 .000241 .000691 .007812 .485729 .023695 .507814

4 Alternative SMV Scheme for Biased PUF Responses

Note that if the raw PUF responses are biased, then the bias will be amplified
after SMV processing. For example, if the PUF response is biased toward 1, then
it is more likely that the majority bit from the group has a similar bias. Let p1
be the probability that a PUF bit response is 1. For our basic SMV scheme with
parameters k, k′, t,

Pr [group bit = 1] = Pr [number of ‘1’ bits in the group ≥ k′]
= 1− binocdf(k′ − 1, k, p1)

Figure 4(left) shows that the bias rate quickly increases to 1 or decreases to 0 if
the raw PUF bit is biased. This property makes our basic SMV scheme unusable
for highly-biased PUFs, in particular for a large group size k. Studies have shown
that [9] some PUF constructions (e.g., SRAM PUFs) are unbiased while other
PUF constructions (e.g., Latch PUFs or Flip-Flop PUFs) exhibit a strong bias.

In this section, we provide an alternative SMV scheme for PUFs, such that
SMV does not exacerbate an existing bias. The basic idea is as follows: let k be
the group size, k′ be the subgroup size, and t be the voting threshold value, where
k′ = 2t + 1. Instead of choosing k = 2k′ − 1, choose a larger k, e.g., k = 3k′.



A Spatial Majority Voting Technique to Reduce Error Rate of PUFs 45

Fig. 3. Inter- vs intra-distances for SMV, k=13 (left) and k=17 (right)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 10 20 30 40

Bi
as

 R
at

e 
Af

te
r S

M
V 

SMV Group Size 

Bias Rate 
20%

30%

40%

50%

60%

70%

80% 0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 20 40 60

Bi
as

 R
at

e 
Af

te
r S

M
V 

SMV Group Size 

Bias Rate 
20%

30%

40%

50%

60%

70%

80%

Fig. 4. Bias rate after basic SMV (left) and our alternative SMV (right)

During the setup procedure, for a group Gi, instead of setting the group bit
as the majority bit, choose a random bit bi as the group bit and choose the
subgroup based on bi. For cases where there are not enough bi in the group, i.e.,
the number of bi bits in the group is less than k′, then we have to choose the
opposite bit as the group bit. The processing procedure in the alternative SMV
method is the same as the basic SMV method, i.e., conduct a majority voting
on the subgroup. The alternative SMV setup procedure is as follows:

Alternative SMV Setup. On input of a PUF f and an n-bit challenge x, it
runs the following steps:
1. Evaluate f on challenge x and obtains an m-bit PUF response w.
2. Divide w into l groups G1, . . . , Gl of size k, where l = �m/k�.
3. For each group Gi, where i = 1, . . . , l, do the following steps:

(a) Choose a random bit bi.
(b) If the number of bi in Gi is less than k′, set bi = 1− bi.
(c) Randomly choose k′ number of bi from Gi as the subgroup and use

hi to mask the subgroup location.
4. This function outputs the helper data h = h1, . . . , hl.

In both basic SMV and alternative SMV, the majority voting is conducted on
the subgroup. Therefore, the noise rate reduction depends on the subgroup size



46 P. Koeberl, J. Li, and W. Wu

k′. For the same k′ value, the alternative SMV scheme requires a larger group
size k, thus it is less efficient than the basic SMV. We now analyze the bias of
the group bit. We use b to denote the group bit and b′ to denote the random bit
chosen in step 3(a) above. Let t1 be the number of ‘1’ bits in the group and t0
be the number of ‘0’ bits in the group.

Pr [b = 1] = Pr [b = 1 ∨ b′ = 1] · Pr [b′ = 1] + Pr [b = 1 ∨ b′ = 0] · Pr [b′ = 0]

= 0.5 · Pr [t1 ≥ k′] + 0.5 · Pr [t0 < k′]
= 0.5(1− binocdf(k′ − 1, k, p1)) + 0.5(1− binocdf(k − k′, k, p1))

Figure 4(right) plots the bias rate of the group bit with respect to different bias
rates in the raw PUF response and different group sizes. We use k = 3k′ and
k′ = 3, 5, . . . , 21. Observe that if the bias rate in the raw PUF response is 60%,
the bias rate after the alternative SMV decreases. However, if the raw PUF
response is very biased, the bias rate in the group bit increases. This shows that
the alternative SMV scheme is fairly effective for slightly biased PUF but less
effective for highly biased PUF.

5 Combining SMV with the Dark Bits Method

We observe from Figure 1(left) that for a given group size SMV is more efficient
at low raw error rates. In other words, SMV achieves a super-linear rather than
linear error-rate reduction. Taking k = 9 as an example, Table 1 shows that if
the raw PUF error rate is 15%, the error rate after SMV becomes 2.7% which is
a 5x improvement. If the raw error rate is 5%, the error rate after SMV drops
to 0.12% which is more than 40x improvement. The reduction ratio continues to
increase with decreasing raw error rate. The same trend is observed analytically
for other group sizes.

In order to exploit the efficiency of SMV at low raw error rates, we propose
to combine SMV with other techniques, for example using a dark bit scheme.
The dark bit method is a way to remove unstable PUF bits. More specifically,
we run multiple PUF measurements during the setup procedure. If a PUF bit
is noisy, we mark it as a dark bit and exclude it from further processing. The
resultant dark bit mask is stored externally as part of the helper data. We apply
the dark bit technique first and reduce the raw error rate to a reasonably low
level. SMV is subsequently applied to further reduce the overall error rate.

A formal description of the dark bit augmented SMV method follows. It has
the following two parameters o as the number of PUF measurements in the setup
procedure and k as the SMV group size. We use DarkSMV(o, k) to denote this
method with parameters o and k.

DarkSMV Setup. On input of a PUF f and a challenge x, f is obtained

1. f is evaluated o times and o responses obtained w(1), . . . , w(o). Compute
dark-bit mask mask = (w(1) ⊕ w(2)) ∨ · · · ∨ (w(1) ⊕ w(o)).

2. Divide w(1) into l groups G1, . . . , Gl of size k, where l = �m/k�.



A Spatial Majority Voting Technique to Reduce Error Rate of PUFs 47

3. Divide mask into l groups of masks mask1, . . . ,maskl of size k.
4. For each group Gi, where i = 1, . . . , l, do the following steps:

(a) Discard the dark bits in Gi using the dark bits mask maski.
(b) Let group bit bi be the majority bit of the group Gi, after the dark

bits have been discarded. If there is a tie, choose bi randomly.
(c) Let hi be a k-bit mask that marks the majority subgroup, i.e., the

location of bits with value bi in Gi without the dark bits.

5. This function outputs the helper data h = h1, . . . , hl.

DarkSMV Processing. On input if the PUF f , challenge x, and and helper
data h = h1, . . . , hl.

1. Evaluate f and obtains PUF response w.
2. Divide w into l groups G1, . . . , Gl of size k, where l = �m/k�.
3. For each group Gi, where i = 1, . . . , l, do the following steps:

(a) Set ti as the number of ‘1’ in the subgroup of Gi marked by hi.
(b) Set ui as the size of subgroup hi, i.e., number of ‘1’ in hi.
(c) Set the group bit bi = 1 if ti > ui/2 and set bi = 0 if ti < ui/2. If

ti = ui/2, set ti randomly because of voting tie.

4. Output b1, . . . , bl as processed PUF response.

Note that in the DarkSMV method above, the size of the voting subgroup is
not fixed. It depends on the number of dark bits in the group. Since the size of
the subgroup may not be an odd number, we may need to break the voting tie
using a random value, as in step 3(c) above.

We now evaluate the performance of our DarkSMV method using the dataset
introduced in Section 3. For the dark-bit mask generation we choose 20 dark-bit
reference measurements from the T=25oC, V=1.2V operating condition. Using
the dark bit technique in isolation results in an mean intra-distance or error rate
0.75%, a reduction of more than 8x over the raw PUF error rate of 6.5%. The
results of combining SMV with the dark bit technique are shown in Table 4 for
DarkSMV parameters of n = 512 and k = 9, 13, 17.

Table 4. Experimental results for DarkSMV(20, k)

μintra σintra maxintra μinter σinter μbias(ones)

k=9 .000202 .000652 .007812 .483790 .023894 .503783

k=13 .000028 .000242 .003906 .481679 .024121 .504234

k=17 .000012 .000179 .003906 .483748 .024117 .509123

The results show that DarkSMV results in significant further reductions in
error rate over that obtained from dark bits in isolation. The mean intra-distance
μintra shows reductions of over 90% while the max intra-distance maxintra is
reduced to the sub-bit level even for k = 9. Figure 5 shows the inter- and intra-
distance results for the k = 13 and k = 17 case.



48 P. Koeberl, J. Li, and W. Wu

Fig. 5. Inter- vs intra-distances for DarkSMV, k=13 (left) and k=17 (right)

6 Applications of SMV

As we have shown in the last few sections, SMV can significantly reduce the
PUF error rate. In this section, we discuss how low PUF error rates can benefit
specific PUF applications. We use PUF-based key generation as a representative
PUF application. According to [21,7,18], PUF-based key generation eliminates
the need to store keys in the clear in non-volatile memory technologies such
as fuses or flash. They are thus attractive in applications where high-assurance
design techniques such tamper-resistant hardware are too expensive to deploy
due to cost or form-factor considerations. Let C[n, k, d] be an error correcting
code, where n is the length of the code, k is the size of message, and d is the
minimum distance of the code. In order to extract a 128-bit key from the PUF,
Bösch et al. suggested some fuzzy extractor constructions to extract 171-bit
entropy from SRAM PUFs [3]. We list a few parameters from [3] in Table 5.
We need approximately 4000 bits of PUF in order to extract 128 bits, assuming
that PUF raw error rate is 15%. The failure probability represents the expected
failure rate of the overall PUF-based key generation scheme.

Table 5. Parameters to extract a 128-bit cryptographic key for SRAM PUFs [3]

Error Correction Codes PUF Size Failure Probability

BCH[1020, 43, 439] 4080 1.44E-8

RM[32, 6, 16] & Rep[5, 1, 5] 4640 1.49E-6

Golay[24, 13, 7] & Rep[11, 1, 11] 3696 5.41E-7

Using the combined SMV and dark bits method described in Section 5, we
can reduce the error rate significantly, thus reducing the need for expensive error
correction codes. For example, using the result from Table 4, the error rate is
reduced to 0.0002, 0.000028, and 0.000012, respectively, with k = 9, 13, and 17.



A Spatial Majority Voting Technique to Reduce Error Rate of PUFs 49

Table 6 shows the PUF and error correction parameters required to extract a
128-bit cryptographic key from an SRAM PUF. Note that, using the SMV group
size k = 9, we only need a 2349-bit PUF and a simple BCH code BCH[29, 19, 5]
to correct up to 2 bit errors per 29 bits. Using the SMV group size k = 13, we
can use a simple Hamming code Hamming[7, 4, 3] as the error correction scheme,
due to the low error rate. Implementing such Hamming code is almost free in
hardware.

Table 6. Parameters to extract a 128-bit cryptographic key for SRAM PUFs using
SMV and dark bits method

Method Error Correction Codes PUF Size Failure Probability

DarkSMV(20, 9) BCH[29, 19, 5] 2349 2.62E-7

DarkSMV(20, 13) Hamming[7, 4, 3] 3913 7.08E-7

DarkSMV(20, 17) Hamming[63, 57, 3] 3213 8.43E-7

Based on these results we believe that SMV is a valuable PUF pre-processing
technique in situations where non-volatile storage is cheap (and may be off-chip)
while the area cost for logic is expensive. In these scenarios it is beneficial to
reduce the cost of ECC to a minimum.

7 Conclusion

In this paper we introduce a new PUF pre-processing technique we term Spatial
Majority Voting (SMV). We show analytically SMV if effective in reducing the
raw error rate of SRAM PUF responses to low levels and empirically confirm
these results using test data obtained from a 65 nm SRAM PUF characteriza-
tion vehicle. An alternative SMV scheme is introduced for biased PUF responses
and shown to be effective for bias rates of up to 60%. Finally, we combine SMV
with the dark bits method and show empirically that this approach is capable of
reducing the PUF error rate to the sub-bit level where the required ECC com-
plexity is significantly lowered, resulting in a reduced system cost for applications
where minimizing logic-cost is the primary design constraint.

Acknowledgement. We thank Intrinsic-ID and EU FP7 programme UNIQUE
for providing the SRAM PUF data which enabled the evaluation of our scheme.
We thank the anonymous reviewers for providing helpful comments to this paper.

References

1. Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., Tuyls, P.: Memory leakage-
resilient encryption based on physically unclonable functions. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 685–702. Springer, Heidelberg (2009)



50 P. Koeberl, J. Li, and W. Wu

2. Böhm, C., Hofer, M., Pribyl, W.: A microcontroller SRAM-PUF. In: 5th Interna-
tional Conference on Network and System Security, pp. 269–273. IEEE (2011)

3. Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient helper
data key extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)

4. Brzuska, C., Fischlin, M., Schröder, H., Katzenbeisser, S.: Physically uncloneable
functions in the universal composition framework. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 51–70. Springer, Heidelberg (2011)

5. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EU-
ROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

6. Gassend, B., Clarke, D., vanDijk,M., Devadas, S.: Silicon physical random functions.
In:ACMConference onComputer andCommunications Security, pp. 148–160. ACM
Press, New York (2002)

7. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA Intrinsic PUFs and
Their Use for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

8. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: ACM Conference on
Computer and Communications Security (CCS), pp. 28–36. ACM (1999)

9. Katzenbeisser, S., Kocabaş, Ü., Rožić, V., Sadeghi, A.-R., Verbauwhede, I., Wachs-
mann, C.: PUFs: Myth, fact or busted? A security evaluation of physically unclon-
able functions (PUFs) cast in silicon. In: Prouff, E., Schaumont, P. (eds.) CHES
2012. LNCS, vol. 7428, pp. 283–301. Springer, Heidelberg (2012)

10. Koeberl, P., Li, J., Rajan, A., Vishik, C., Wu, W.: A practical device authenti-
cation scheme using SRAM PUFS. In: McCune, J.M., Balacheff, B., Perrig, A.,
Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) TRUST 2011. LNCS, vol. 6740, pp.
63–77. Springer, Heidelberg (2011)

11. Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: The butterfly PUF:
Protecting IP on every FPGA. In: IEEE International Workshop on Hardware-
Oriented Security and Trust (HOST), pp. 67–70 (June 2008)

12. Lee, J.W., Lim, D., Gassend, B., Edward Suh, G., van Dijk, M., Devadas, S.: A
technique to build a secret key in integrated circuits for identification and au-
thentication application. In: Proceedings of the Symposium on VLSI Circuits, pp.
176–179 (2004)

13. van der Leest, V., Preneel, B., van der Sluis, E.: Soft decision error correction for
compact memory-based PUFS using a single enrollment. In: Prouff, E., Schaumont,
P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 268–282. Springer, Heidelberg (2012)

14. Lim, D., Lee, J.W., Gassend, B., Edward Suh, G., van Dijk, M., Devadas, S.:
Extracting secret keys from integrated circuits. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 13(10), 1200–1205 (2005)

15. Maes, R., Rozic, V., Verbauwhede, I., Koeberl, P., van der Sluis, E., van der Leest,
V.: Experimental evaluation of physically unclonable functions in 65 nm cmos. In:
2012 Proceedings of the ESSCIRC (ESSCIRC), pp. 486–489 (September 2012)

16. Maes, R., Van Herrewege, A., Verbauwhede, I.: PUFKY: A fully functional PUF-
based cryptographic key generator. In: Prouff, E., Schaumont, P. (eds.) CHES
2012. LNCS, vol. 7428, pp. 302–319. Springer, Heidelberg (2012)

17. Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic PUFs from flip-flops on reconfig-
urable devices. In: 3rd Benelux Workshop on Information and System Security
(WISSec 2008), Eindhoven, NL, p. 17 (2008)



A Spatial Majority Voting Technique to Reduce Error Rate of PUFs 51

18. Maes, R., Tuyls, P., Verbauwhede, I.: Low-overhead implementation of a soft deci-
sion helper data algorithm for SRAM PUFs. In: Clavier, C., Gaj, K. (eds.) CHES
2009. LNCS, vol. 5747, pp. 332–347. Springer, Heidelberg (2009)

19. Pappu, R.S.: Physical one-way functions. PhD thesis, Massachusetts Institute of
Technology (March 2001)

20. Simons, P., van der Sluis, E., van der Leest, V.: Buskeeper PUFs, a promising alter-
native to D Flip-Flop PUFs. In: 2012 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), pp. 7–12 (June 2012)

21. Simpson, E., Schaumont, P.: Offline hardware/Software authentication for recon-
figurable platforms. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
pp. 311–323. Springer, Heidelberg (2006)

22. Edward Suh, G., Devadas, S.: Physical unclonable functions for device authentica-
tion and secret key generation. In: Design Automation Conference, pp. 9–14. ACM
Press, New York (2007)

23. Yu, M.-D., Devadas, S.: Secure and robust error correction for physical unclonable
functions. IEEE Design Test of Computers 27(1), 48–65 (2010)

A Analysis of Näıve SMV

In this section, we analyze the efficiency of the näıve SMV scheme. In näıve SMV,
majority voting is performed on all bits in a group: if there are more ‘1’, then ‘1’
is output as the group bit, otherwise ‘0’. Since the PUF results are random and
exhibit little bias, a single flip in the bits with the majority value will overturn
the result of majority voting.

Let p be the PUF bit error rate. Let l0 be the total number of zeros in the
group. Let x be the total number of bit flips in the group, among them x0 is
the number of 0 → 1 flips and x1 is for 1 → 0 flips, where x0 + x1 = x. The
number of zeros in an evaluated result of the group equals to �′0 = �0 − x0 + x1.
A majority voting fault is defined as the condition of ’0’ as majority bit differing
before and after the evaluation.

Flip(�, �0, x0, x1) = ((�0 > ��/2�)⊕ (�0 − x0 + x1) > ��/2�) = true)

The probability of a group bit error which is the probability of a majority
voting flip is defined as:

Pgroup =
∑

0≤�0≤�

∑

0≤x≤�

∑

0≤x0≤x

Flip(�, �0, x0, x− x0) · p1 · p2 · p3

Where the three conditional probabilities are defined as following, and P0 and
P1 are the probability that a bit is equal to 0 and 1 respectively:

1. p1: the probability of having �0 0’s out of �-bit voting group:
(
�
�0

)
P �0
0 P �−�0

1

2. p2: the probability of having x bit flips in a �-bit group:
(
�
x

)
px(1 − p)�−x

3. p3: the probability of having x0 flips to be 0 → 1 flip:
(
�0
x0

)(
�−�0
x−x0

)
/
(
�
x

)



52 P. Koeberl, J. Li, and W. Wu

Figure 1 (right) shows the Pgroup under different group sizes and PUF error
rate p ranging from 1% to 20%. The PUF evaluation results are evenly dis-
tributed, i.e. P0 = P1 = 0.5. The larger PUF bit error rate leads to a larger
group error rate. The blue dashed line illustrates the error rate with group size
1 or no grouping. It’s obvious that grouping is bad in terms of error rate, as the
grouping size increases the rate increases as well. Due to the small bias of the
PUF bit value, the number of ‘0’ and ‘1’ are so close that voting is performed
at the borderline, any small disturbance may easily change the voting result.


	A Spatial Majority Voting Technique to Reduce
Error Rate of Physically Unclonable Functions
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions
	1.3 Organization of the Paper

	2 Basic Spatial Majority Voting Scheme
	2.1 PUF Model and PUF Pre-processing Process
	2.2 Our SMV Scheme

	3 Experimental Result
	4 Alternative SMV Scheme for Biased PUF Responses
	5 Combining SMV with the Dark Bits Method
	6 Applications of SMV
	7 Conclusion
	References




