
Roderick Bloem
Peter Lipp (Eds.)

 123

LN
CS

 8
29

2

5th International Conference, INTRUST 2013
Graz, Austria, December 2013
Proceedings

Trusted Systems



Lecture Notes in Computer Science 8292
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Roderick Bloem Peter Lipp (Eds.)

Trusted Systems
5th International Conference, INTRUST 2013
Graz, Austria, December 4-5, 2013
Proceedings

13



Volume Editors

Roderick Bloem
Peter Lipp
Graz University of Technology
Institute for Applied Information Processing and Communications
Graz, Austria
E-mail: {rbloem; plipp}@iaik.tugraz.at

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-03490-4 e-ISBN 978-3-319-03491-1
DOI 10.1007/978-3-319-03491-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013951997

CR Subject Classification (1998): D.4.6, E.3, K.6.5, C.2, K.4.4, J.1, H.4

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer International Publishing Switzerland 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This volume contains the papers presented at InTrust13: the 5th International
Conference on Trusted Systems held during December 4–5, 2013 in Graz, Aus-
tria.

The InTrust conference focuses on the theory, technologies, and applications
of trusted systems. It is devoted to all aspects of trusted computing systems,
including trusted modules, platforms, networks, services and applications, from
their fundamental features and functionalities to design principles, architecture,
and implementation technologies. The goal of the conference is to bring academic
and industrial researchers, designers, and implementers together with end-users
of trusted systems, in order to foster the exchange of ideas in this challenging
and fruitful area.

InTrust 2013 built on the four previous successful conferences in the series,
held in Beijing in December 2009 (LNCS 6163), December 2010 (LNCS 6802),
and November 2011 (LNCS 7222). InTrust 2012 was held at Royal Holloway,
London, in December 2012 (LNCS 7711).

This year, InTrust was collocated with ETISS, the 7th European Trusted
Infrastructure and Systems School, which had its second visit to Graz. The
ETISS topics have a wide overlap with INTRUST covering a variety of fields
related to creating a trusted infrastructure to cope with the demands of current
and future information processing. Joint ETISS/INTRUST sessions gave ETISS
students the chance to listen and talk to top researchers in this field.

We would like to thank the Steering Commitee, in particular Liqun Chen for
her help in organizing the conference. We would like to thank Andrei Voronkov
for EasyChair and Springer for their help in publishing the proceedings. We are
very grateful to the Beijing Institute of Technology for providing the best paper
award. The conference would not have taken place but for Martina Piewald,
Martin Pirker, and Ronald Toegl.

Finally, we would like to thank the Program Committee members, the sub-
reviewers, the authors, and the attendees.

September 2013 Roderick Bloem
Peter Lipp



Organization

Program Committee

Roderick Bloem Graz University of Technology, Austria
Liqun Chen HP Laboratories, Bristol, UK
Zhong Chen Peking University, China
Xuhua Ding SMU, Singapore
Loic Duflot ANSSI, France
Dieter Gollmann Hamburg University of Technology, Germany
Sigrid Gürgens Fraunhofer Institute for Secure Information

Technology, Germany
Stefan Katzenbeisser TU Darmstadt, Germany
Dirk Kuhlmann HP Laboratories, Bristol, UK
Xuejia Lai Shanghai Jiaotong University, China
Mario Lamberger NXP Semiconductors, Austria
Jiangtao Li Intel Corporation, USA
Peter Lipp Graz University of Technology, Austria
Javier Lopez University of Malaga, Spain
Stefan Mangard Infineon, Germany
Andrew Martin University of Oxford, UK
Shin’ichiro Matsuo NICT, Japan
Chris Mitchell Royal Holloway, University of London, UK
Yi Mu University of Wollongong, Australia
Martin Pirker Graz University of Technology, Austria
Graeme Proudler HP Laboratories, Bristol, UK
Scott Rotondo Oracle, USA
Mark Ryan University of Birmingham, UK
Willy Susilo University of Wollongong, Australia
Ronald Toegl Graz University of Technology, Austria
Claire Vishik Intel Corporation, UK
Jian Weng Jinan University, China
Marcel Winandy Ruhr University Bochum, Germany
Xinwen Zhang Samsung, USA
Yongbin Zhou Institute of Information Engineering, Chinese

Academy of Sciences, China
Liehuang Zhu Beijing Institute of Technology, China
Yan Zhu University of Science and Technology Beijing,

China



VIII Organization

Additional Reviewers

Biedermann, Sebastian
Hiller, Matthias
Jiang, Haiqing



Building Secure Systems with

Software-Based Attestation

(Invited Keynote)

Adrian Perrig

Institute of Information Security,
Eidgenössische Technische Hochschule Zürich,
F85.1, CNB F, CH-8092 Zurich, Switzerland

adrian.perrig@inf.ethz.ch

Abstract. Attestation is a promising approach for building secure sys-
tems. The recent development of a Trusted Platform Module (TPM) by
the Trusted Computing Group (TCG) that is starting to be deployed in
common laptop and desktop platforms is fueling research in attestation
mechanisms.

In this talk, I will present an alternative approach for attestation that
does not rely on trusted hardware called Software-based Attestation. Our
approach enables a verifier to obtain the property of untampered code
execution on legacy hardware. I will present constructions and applica-
tions of Software-based Attestation.



Table of Contents

Session 1: Hardware-Based Security and Applications

Para-Virtualizing the Trusted Platform Module: An Enterprise
Framework Based on Version 2.0 Specification . . . . . . . . . . . . . . . . . . . . . . . 1

Jiun Yi Yap and Allan Tomlinson

The PACE|CA Protocol for Machine Readable Travel Documents . . . . . . 17
Jens Bender, Marc Fischlin, and Dennis Kügler

A Spatial Majority Voting Technique to Reduce Error Rate
of Physically Unclonable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Patrick Koeberl, Jiangtao Li, and Wei Wu

Session 2: Access Control, Integrity and Policy
Enforcement

Active File Integrity Monitoring Using Paravirtualized Filesystems . . . . . 53
Michael Velten, Sascha Wessel, Frederic Stumpf, and Claudia Eckert

Remote Policy Enforcement for Trusted Application Execution
in Mobile Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Fabio Martinelli, Ilaria Matteucci, Andrea Saracino, and
Daniele Sgandurra

Towards Policy Engineering for Attribute-Based Access Control . . . . . . . . 85
Leanid Krautsevich, Aliaksandr Lazouski, Fabio Martinelli, and
Artsiom Yautsiukhin

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



R. Bloem and P. Lipp (Eds.): INTRUST 2013, LNCS 8292, pp. 1–16, 2013. 
© Springer International Publishing Switzerland 2013 

Para-Virtualizing the Trusted Platform Module:  
An Enterprise Framework Based on Version 2.0 

Specification 

Jiun Yi Yap and Allan Tomlinson 

Information Security Group 
Royal Holloway, University of London 

Egham, Surrey 
TW20 0EX, United Kingdom 

Jiun.Yap.2012@live.rhul.ac.uk, Allan.Tomlinson@rhul.ac.uk 

Abstract. This paper introduces a framework for para-virtualizing the newer 
Trusted Platform Module (TPM) version 2.0. The framework covers the design 
of a para-virtualized TPM 2.0 and the considerations when deploying it for use 
in an Enterprise Information Technology (IT) infrastructure. To develop this 
framework, a quick study of the TPM 2.0 specification was undertaken and a 
survey of para-virtualizing TPM techniques was carried out. The study found 
that TPM 2.0 core functions are suitable for para-virtualization. A set of 
requirements was then developed to guide the design of this framework. The 
framework includes components to support the para-virtualized TPM. The 
framework also covers external components that are essential for the proper 
functioning of the para-virtualized TPM in an Enterprise IT environment. 
Research challenges for this framework are then discussed at the end of the 
paper.  

Keywords: Trusted Platform Module 2.0, Para-Virtualization, Framework,  
Enterprise IT. 

1 Introduction 

Virtualization is a fundamental technology that is widely used in Enterprise IT infra-
structures. Users of virtualization technology need some level of assurance about the 
expected behavior of a virtual machine (VM) and its ability to protect confidential 
information from unauthorized disclosure. The TPM specified by the Trusted Compu-
ting Group (TCG) offers security properties that can be leveraged by the users of 
virtualization technology to increase the protection of the system and data from cyber 
security threats [1].  

However, the TPM was originally designed for use with a computing system in a 
one to one relationship. In a virtualized system, the design will require enhancements 
to the TPM in order for it to work in an environment where a computer hardware 
platform hosts several VM. There are generally two types of technique to enable a 
TPM hardware chip to support multiple VM. The first type is full virtualization of the 



2       J.Y. Yap and A. Tomlinson 

TPM which is exemplified by the work of Vincent Scarlata et al. [4]. In that paper, the 
authors described the creation of software virtual TPM instances contained in a privi-
leged VM. Each virtual TPM will support a unique VM. This design is aligned to the 
virtual TPM framework proposed in TCG’s Virtualized Trusted Platform Architecture 
Specification [5] and Open Trusted Computing’s VTPM Architecture [6]. Although 
the designs often extend the root of trust from the TPM hardware chip to the virtual 
TPM, the security protection for confidential data provided by the TPM’s hardware 
based protected storage location is not offered. A probable reason could be that  
these designs are based on the older TPM 1.2 specification and the limited amount of 
TPM memory is unable to support the requirements of the virtualized environment.  
In addition, the long chain of trust from the TPM hardware chip to the virtual TPM 
can be fragile as the attack surface is now wider compared to a non-virtualized  
implementation. 

This paper will analyze the other type of technique which is para-virtualizing TPM. 
Paul England et al. wrote that TPM para-virtualization refers to the method of mediat-
ing guest VM access to hardware TPM using a software component [7]. The design 
will require no change to most of TPM functionality but some aspects of the device 
interface may change. A major advantage offered by this technique is the availability 
of TPM hardware based protected storage location and this feature is desired by or-
ganizations that requires hardware based security; for example, government Enter-
prise IT. Moreover, the chain of trust is now shorter as the VM can access the TPM 
hardware chip in a more direct manner. However, in a para-virtualization design, the 
use of the resources belonging to a single TPM by multiple VM has to be managed to 
ensure fair sharing and prevent cross-interference. On the other hand, the TPM has to 
provide sufficient resource to support the operation of several VM. With the advent of 
the newer TPM 2.0 specification, it is timely to examine if the newer specification can 
better support para-virtualization requirement. This para-virtualization framework 
will introduce components that leverage on new capabilities offered by TPM 2.0. The 
framework will also address the challenges for achieving TPM para-virtualization in 
Enterprise IT, for example, backup and migration. 

This is a research paper rather than a presentation of an actual implementation. It 
contains a quick study of the new TPM 2.0 specification from the TCG and analyzes 
the state of the art regarding para-virtualizing the TPM. With this background know-
ledge, the paper will then examine the extent to which TPM 2.0 core functions are 
suitable for para-virtualizing. This is followed by a proposed framework for para-
virtualizing TPM 2.0 in the context of an Enterprise IT infrastructure. The paper will 
end with a discussion on research challenges for the proposed framework. 

2 Introducing TPM 2.0 

The Trusted Computing Group (TCG) wrote in the Trusted Platform Module (TPM) 
version 2.0 specification [2] that trust conveys an expectation of behaviour from the 
computer system. In other words, a user can trust a computer if it always behaves as it 
is intended to. The assessment of trust always begins from some baseline, or “root of 



 Para-Virtualizing the Trusted Platform Module 3 

trust”. In a computing platform, the three roots of trust for measurement, storage and 
reporting provide the minimum functionality required to describe the attributes that 
contribute towards its trustworthiness. The TPM and supporting components aim to 
provide these 3 roots of trust.  

TPM 2.0 is the latest specification from the TCG and it replaces the previous TPM 
1.2 specification. The changes and enhancements to TPM 2.0 compared to the pre-
vious TPM version include: support for additional cryptographic algorithms, en-
hancements to the availability of the TPM to applications, enhanced authorization 
mechanisms, simplified TPM management and additional capabilities to enhance the 
security of platform services. 

2.1 Architecture 

TPM 2.0 is designed to be a self-contained computing device. This allows the TPM 
device to be trusted to carry out computations without relying on external computing 
resources. The following are short descriptions of the subsystems in a TPM 2.0 device 
while detailed explanation can be obtained from TPM 2.0 specification [2]. 
 

I/O Buffer – This component enables the host computing system to communicate 
with the TPM. It can be a shared memory. Data to be processed by the TPM will be 
validated at this point. 

Cryptography Subsystem – The cryptographic engine supports commonly used 
cryptographic functions like hashing, asymmetric operations such as digital signature 
and key exchange, symmetric encryption, random number generator and key deriva-
tion function. These cryptographic functions can be used by the other TPM compo-
nents or the host computer. 

Authorization Subsystem – Before a TPM command is executed, this subsystem 
checks that proper authorization data has been given by the calling application. 

Volatile Memory – This memory holds transient TPM data, including Platform Con-
figuration Registers (PCR), data objects and session data. PCR contains the integrity 
measurements of critical components in the host computer. A data object can either be 
a cryptographic key or other data. The TPM uses sessions to manage the execution of 
a series of commands. 

Non-Volatile (NV) Memory – This memory is used to store persistent TPM data that 
includes the platform seed, endorsement seed, storage seed and monotonic counter.  
Additional PCR banks can be created in this memory. 

Management Subsystem – This subsystem oversees the operation of the various 
TPM states. Basic TPM states include power-off, initialization, start up, shut down, 
self-test, failure and field upgrade.  

Execution Engine – This firmware contains the program instructions and data struc-
tures that are required to run a TPM command. These program instructions and data 
structures cannot be altered by the host computing platform. In the event of a firm-
ware upgrade, there are security mechanisms to ensure that the update is authorized 
and the new firmware is checked for authenticity and integrity. 



4       J.Y. Yap and A. Tomlinson 

2.2 Core Functions 

A Trusted Computing Base (TCB) can be a BIOS, Virtual Machine Monitor (VMM) 
or operating system that has proved to be highly secure and hence trustworthy. When 
a TCB is made to work together with a TPM, they can offer the capabilities of integri-
ty measurement and reporting, protected data storage, certification and attestation and 
authentication. In integrity measurement, a hash function is performed by the BIOS 
on the first software component that is started when the computer powers up. The 
hash function will produce a digest of that software component. If that software com-
ponent is altered, the digest will be different from the one obtained when the software 
component was first measured. This digest can be stored in the PCR located in either 
the volatile or non-volatile memory of the TPM. TrustedGRUB [3] is an application 
that implements this integrity measurement at system start. A TPM can have an au-
thenticity certificate from the manufacturer and this feature is used in conjunction 
with the integrity measurement to report the “trustworthiness state” of a computing 
platform.  

A unique feature of the TPM is the use of primary seeds to generate hierarchies of 
keys for use in cryptographic functions. The intention of this feature is to provide the 
flexibility to support different types of cryptographic functions without increasing the 
storage memory requirement. To establish trust in a key derived from a TPM primary 
seed, the TPM can produce with a certificate indicating that the processes used for 
creating and protecting the key meet the necessary security requirements. During 
attestation, a TPM can vouch for the authenticity and properties of either the host 
computing platform, a piece of software or a cryptographic key. 

TPM non-volatile memory is typically used to store cryptographic keys that protect 
sensitive data. In this method, the sensitive data is encrypted with a cryptographic key 
derived from a root key inside the TPM chip. This cryptographic key is usually stored 
into the non-volatile memory of the TPM chip. To read the sensitive data, the user has 
to provide authorization data to the TPM chip and only upon successful authorization 
will the cryptographic key be released from the TPM chip. This is known as protected 
storage. 

3 State of the Art for Para-Virtualizing the TPM 

The following sub-sections will give brief descriptions of two projects on para-
virtualizing TPM. It is important to note that these two projects are based on the older 
TPM 1.2 specification. 

3.1 Para-Virtualized TPM Sharing 

In this paper [7], the authors describe a para-virtualization design that allows a VMM 
to time share a TPM among its VM. The concept of associating a TPM context to a 
particular VM is proposed. A TPM context will contain the important data that de-
fines a TPM state, for example, keys and sessions.  When a particular VM wishes to 
use the physical TPM, the associated TPM context is loaded into that physical TPM. 



 Para-Virtualizing the Trusted Platform Module 5 

The loaded TPM context can be saved and cleared from the physical TPM to allow 
other TPM context to be loaded when required. TPM contexts are saved in the hyper-
visor. As a result, the design is able to support most TPM applications.  

To implement this design, the authors located the TPM para-virtualization man-
agement software in the hypervisor. Figure 1 gives a high level view of this design. 

 

Fig. 1. Architecture for para-virtualizing TPM sharing from [7] 

The TPM para-virtualization management software contains the following components:  

Scheduler – Rosters shared access to the physical TPM. 
Command Blocking – Filters TPM commands based on a pre-determined list of 
allowed commands. This is to ensure the safe operation of the TPM by disallowing 
applications in VM from executing certain TPM commands. 
Virtual PCR – Each VM is assigned a set of virtual PCR and they are managed by 
the hypervisor. 
Context Manager - This component inspects every TPM command and load the 
associated context into the physical TPM so that the VM can only access its own 
TPM resources. 
Resource Virtualization – Certain limited TPM resources are virtualized, for exam-
ple, key slots, authorization session and transport sessions. These virtualized TPM 
resources are tied to a context that is provided by the context manager. 

The use of virtual PCR to store integrity measurements of the VM is not desired by 
organizations that require hardware based protected storage location. Furthermore, the 
authors do not elaborate on TPM migration and management of TPM endorsement 
credentials in this paper. 



6       J.Y. Yap and A. Tomlinson 

3.2 Enhancing TPM with Hardware-Based Virtualization Techniques 

This paper [8] presented the design of a TPM that supports hardware-based virtualiza-
tion. In this design, the VMM time multiplexes the hardware TPM in a manner  
similar to [7]. However, a difference is that the hardware TPM has to be modified to 
include additional non-volatile memory to store the various TPM contexts. The layout 
of this multi-context TPM is shown in figure 2. 

 

Fig. 2. Layout of the multi-context TPM from [8] 

The VMM manages the transition of one TPM context to another using the TPM 
control structure. The VMM links every TPM context to its own TPM control struc-
ture. Figure 3 shows the content of the TPM control structure. When a new TPM con-
text is to be loaded, the VMM will store the previous TPM control structure and load 
the new TPM control structure. To protect the confidentiality of the TPM control 
structure, it is encrypted and the cryptographic key is stored in the TPM root data 
structure.  

 

Fig. 3. TPM control structure from [8] 

Another difference is the introduction of the concept of protection rings into the 
TPM. This TPM protection ring has a two level hierarchy that differentiate a  
privileged TPM mode from a non-privileged TPM mode. The TPM protection ring 
leverages the Intel VT architecture and hence can be considered as a form of hard-
ware-based protection. There are two forms of CPU operation in the Intel VT archi-
tecture. The VMX root operation in which the VMM runs and the VMX non-root 
operation in which the VM runs. Only VMX root can run the privileged TPM mode 



 Para-Virtualizing the Trusted Platform Module 7 

while the VMX non-root can only run in the non-privileged TPM mode. In addition, 
the authors extended the TCG specification for TPM to include extra commands to 
manage the transition between TPM modes and to control the different TPM contexts. 
These extra TPM commands can only be executed by VMX root.  

For VM migration, the authors described that their TPM context migration protocol 
is similar to the concept TCG introduced for migratable keys. On TPM credentials, 
the authors proposed to establish a certificate chain with the root Endorsement Key 
(EK). For every TPM context, the TPM generates a new EK which is then certified by 
the root EK. When the TPM context is migrated, the EK will then be re-certified with 
the root EK of the destination platform. 

This design covers many technical aspects of para-virtualizing TPM. However, 
there are still gaps to cover before this design can be implemented in an Enterprise IT 
virtualization environment. For example, the support for business continuity plan has 
to be developed.  

4 Examining TPM 2.0 Suitability for Para-Virtualizing 

TPM 2.0 core functions are found to be generally suitable for use in a para-virtualized 
design and only some typical virtualization functions are required at the VMM level 
to allow a single TPM 2.0 device to support multiple VM. Based on a quick study of 
TPM 2.0 specification, the extent to which the core functions can be para-virtualized 
are described in the following paragraphs. 

4.1 Endorsement and Storage Keys 

Figure 4 shows how the TPM keys can be distributed to multiple VM. An endorse-
ment key is derived from the endorsement primary seed located inside the TPM and it 
is the basis for the root of trust of reporting. Several endorsement keys can be gener-
ated and assigned to the various VM hosted on the computing platform. However, an 
endorsement key be migrated together with the associated VM. Although this may 
seem to be unfavorable, attestation, for example, will have to be done again, it is  
actually better to obtain a new endorsement key after VM migration from the destina-
tion TPM since the host computing platform has changed. Meanwhile, a new certifi-
cate will have to be obtained for the new endorsement key after VM migration. 

For keys derived from the storage root key, they can be created to be migratable by 
setting the duplication flag. These keys are assigned to the VMs and kept outside the 
TPM. As an example, when a VM wishes to use the TPM for certification, the certify-
ing key is loaded into the TPM using the command TPM2_Load. At the end of the 
session, the certifying key is unloaded from the TPM. The TPM can then start a new 
session with another VM. During VM migration, a certifying key can be packaged as 
a duplicable data object using TPM2_Duplicate and then migrated over to the desig-
nated TPM. TPM2_Import will load the migrated data object into the destination 
TPM. Meanwhile, the use of a TPM authorization session will ensure that only the  
 



8       J.Y. Yap and A. Tomlinson 

 

Fig. 4. TPM 2.0 keys distribution for multiple VM  

right VM can access its certifying keys. The resulting effect is comparable to the no-
tion of process and resource isolation between VM. Nevertheless, the credential for a 
certifying key may have to be re-issued after a migration as the host computer has 
changed. 

4.2 Protected Storage 

There are various TPM 2.0 commands that can move data in and out of either the 
volatile or non-volatile memory: for example, TPM2_Load, TPM2_LoadExternal, 
TPM2_Unseal, TPM2_NV_Write and TPM2_NV_Read. The use of a TPM authori-
zation data will ensure that only the right VM can access its data in the protected sto-
rage location. The mechanism for the migration of these data in protected storage 
location is the same as those for certifying keys. For data that are encrypted and the 
access control depends on the host computing platform integrity measurements, this 
can cause a problem during VM migration when the host computer platform is differ-
ent. The use of TPM 2.0 Enhanced Authorization will allow a more flexible access 
control policy for this type of protected data.  For example, the authorization policy 
can either check the host platform integrity measurements or other security properties. 
In the meantime, the amount of volatile and non-volatile memory has to be managed 
to avoid a situation whereby there is insufficient memory for use by all the VM on 
that host computer. 

4.3 Integrity Measurement and Reporting 

TPM2_NV_DefineSpace can be used to create PCR banks in the NV memory. 
TPM2_PCR_Extend will then be used to record the integrity measurements  
of the VM into the PCR located in the NV memory. For the host machine, 
TPM2_PCR_Extend will be used to record the integrity measurements into the PCR 



 Para-Virtualizing the Trusted Platform Module 9 

located in the volatile memory. This arrangement will allow the integrity measure-
ment of both the virtual and host machine be stored inside the TPM at the same time. 
As above, the amount of NV memory has to be managed to avoid the situation whe-
reby there are more VM than the TPM can support. TPM2_Quote is used to report the 
integrity measurement stored in a particular PCR. When reporting the integrity mea-
surements to a requestor, TPM2_Load is used to insert the relevant attestation key 
into the TPM. This key is then used to sign the integrity measurement. The mechan-
isms for the migration and access control of PCR are the same for those for certifying 
keys. 

In addition to the points above, TPM 2.0 is designed with a context management 
feature that is intended to be used to manage TPM resources among various applica-
tions. In a virtualized environment, this feature can instead be used to manage TPM 
resources among various VM. TPM 2.0 specification states that the structure of the 
context is decided by the vendor. In other words, there can be a customized context 
structure to support TPM 2.0 para-virtualization requirements. 

As with most hardware virtualization, TPM 2.0 will require some software compo-
nents at the VMM level to allow it to support multiple VM. For example, a software 
component is required to provide some form of usage management to ensure that 
every VM has fair use of the TPM. Another software component is required to block 
state altering TPM commands issued by non-management VM. The architectures 
described in TCG’s virtualized trusted platform specification [5] are more suited to 
the full virtualization technique although certain aspects such as TPM migration are 
applicable to this para-virtualized TPM framework. 

5 Requirements for Para-Virtualizing TPM 2.0 

As discussed in section 4, TPM 2.0 core functions are generally able to support para-
virtualization. However, we noted that there has to be mechanisms to assign and en-
sure the fair use of TPM resources to multiple VM. In addition, issues pertaining to an 
Enterprise IT environment, such as migration, certification and logging have to be 
addressed as well. To this end, the design requirements presented in [1], [4], [7] and 
[8] were considered and we will like to suggest the following:   

1. The way that an application uses the para-virtualized TPM should be the same as 
for a hardware TPM. 

2. The para-virtualized TPM should be always available for use by the VM. 
3. Strong association between the VM and its TPM resources. This association 

should be maintained after the migration of the VM. 
4. TPM resources belonging to a VM should not be accessible by another VM. 
5. The size of both volatile and non-volatile memory in the TPM should support the 

additional memory required to host multiple VM on a single physical computer. 
6. Data stored in protected storage locations should be preserved unless instructed by 

their owners. These data should be moved together with the VM during migration 
and then stored into the protected storage location of the destination TPM. 



10       J.Y. Yap and A. Tomlinson 

7. The security strength of protected storage location in a para-virtualized TPM 
should be the same as for hardware TPM. 

8. The activity of the para-virtualized TPM should be logged. The log file associated 
with a particular VM should be moved to the destination host computing platform 
during VM migration. 

9. Non-privileged VM cannot execute commands that can alter the state of the TPM. 
10. The para-virtualized TPM should have verifiable credentials at all times. 
11. Individual VM interaction with para-virtualized TPM should be isolated from each 

other to avoid interference. 
12. The para-virtualized TPM should be able to support business continuity plans. 

6 An Enterprise Framework for Para-Virtualizing TPM 2.0 

The framework shown in figure 5 contains components at the VMM and hardware 
level to support the para-virtualization of TPM 2.0. This framework allows the mul-
tiplexing of TPM 2.0 functions and resources for use by VM and their applications at  
 

 

Fig. 5. Enterprise framework for para-virtualizing TPM 2.0 



 Para-Virtualizing the Trusted Platform Module 11 

the same time while preserving the hardware based protected storage location.  
The development of this framework is based on the survey of TPM para-virtualizing 
works in section 3, the analysis of para-virtualizing TPM 2.0 core functions in  
section 4 and the design requirements from section 5 of this paper. 

As shown in section 4, TPM 2.0 core functions are generally suitable for use in a 
para-virtualized design. Hence, the software components at the VMM level do not 
emulate TPM functions but instead focus on ensuring fair usage of TPM and to ad-
dress requirement such as migration and logging.  

A major difference from existing concepts is the removal of virtual PCR as the 
store for integrity measurements of VM because they will be stored in TPM NV 
memory. As a result, VM integrity measurements enjoy the security of hardware 
based protected storage location.  In addition, a privileged VM is used to manage the 
hardware TPM and para-virtualized TPM service. This gives the system administrator 
a separate conduit to control the hardware TPM and para-virtualized TPM service. 
There are also provision for TPM hardware enhancements and a log manager. These 
are security features desired by a high security Enterprise IT infrastructure. Moreover, 
this framework covers external components that are essential for the proper function-
ing of the para-virtualized TPM in an Enterprise IT environment. The following para-
graphs describe the components in this framework. 

6.1 Extended Functions and Additional Memory 

The framework allows modifications to be carried out on the TPM hardware to sup-
port the requirements of the virtualized environment. For example, the amount of 
memory can be increased to include more PCR banks to store the integrity measure-
ments of multiple VM. Although hardware modifications can be costly, certain high 
security requirement, for example, government Enterprise IT, may demand and pay 
for this enhancement. In addition, the modified hardware can contain extended func-
tions to support new virtualization technique such as the single root I/O virtualization 
standard specified by the PCI-SIG [12]. Hardware technique such as the use of field-
programmable gate array described in [9] can be used to implement the modifications. 
Depending on security requirements and the amount of modification, a new platform 
certificate may have to be issued for the modified TPM to vouch that the platform 
contains a genuine TPM and that the communication path between the TPM and the 
host computer is trusted.  

6.2 Command Filter 

As there are commands that can alter the TPM state, for example TPM2_Shutdown, it 
is necessary that only the TPM manager in the privileged VM can execute such com-
mands. All commands from the VM to the hardware TPM will be inspected and any 
state altering command from non-privileged VM will be blocked from execution. The 
command filter can make use of the hardware based virtualization technique de-
scribed in [8] to enforce the restriction on using selected TPM commands. 



12       J.Y. Yap and A. Tomlinson 

6.3 Scheduler 

This component sequences VM access to the hardware TPM in a time division mul-
tiplexing manner. This will ensure that every VM has an opportunity to use the TPM. 
The algorithm for sequencing can be either round robin or demand based. In round 
robin, the scheduler can poll every VM and ask if it likes to use the TPM. Alternative-
ly, the scheduler can arrange access to the TPM whenever the VM makes a request. 
The time that a VM can use the TPM will be limited. If the TPM is currently servic-
ing a request, any new request will be queued in a first-in-first-out memory cache. 

6.4 Resource Manager 

To achieve strong association between VM and their TPM resources, the resource 
manager will administer the assignment of TPM resources such as keys. It is envi-
sioned that the VM will use keys derived from the primary seed in the hardware TPM. 
In turn, each VM will build their key hierarchy based on their assigned key. Mean-
while, the resource manager will create PCR banks in the TPM NV memory and as-
sign them to the VM. PCR in the TPM volatile memory will be reserved for use by 
the host computer and VMM. For the purpose of attestation, the resource manager can 
provide the PCR contents in the TPM volatile memory to the VM. The other task 
carried out by the resource manager is to work together with the scheduler to isolate 
the TPM processes and resources of the VM. The mechanisms used to achieve this 
effect can include the use of TPM context management feature and authorization 
session. TPM commands such as TPM2_ContextSave, TPM2_ContextLoad, 
TPM2_FlushContext and TPM2_StartAuthSession will be used. This will prevent one 
VM from accessing the TPM resources of another VM. TPM contexts are saved  
in the VMM. 

6.5 Migration Manager 

During VM migration, this component will work together with the resource manager 
to oversee the packing of the associated TPM resources into duplicable data objects. 
The command TPM2_duplicate will be used to prepare the data object for migration. 
This component will also work with the migration authority to operate a migration 
protocol that securely moves the duplicated data object to the designated TPM. On the 
other hand, if the host computer is to receive a migrated VM, the migration manager 
can carry out the task of authenticating and verifying the trustworthiness of the mi-
grating VM. 

6.6 Log Manager 

The availability of a log is crucial to forensic investigation in the event of a security 
incident. The log manager will log down all the operations performed by the VM on 
the hardware TPM. The log manager can make frequent integrity measurements  
of the log file and store the measurements in the hardware TPM. This will allow the 



 Para-Virtualizing the Trusted Platform Module 13 

detection of unauthorized changes to the log file. Meanwhile, the log manager with 
work together with the migration manager and migration authority to move the log 
file associated with a particular VM to the destination host computing platform during 
VM migration. 

6.7 TPM Manager 

This resides in a privileged VM and is primarily used to manage the hardware TPM 
and configure the para-virtualized TPM service. The privilege status of this VM can 
either be enforced from the VMM or controlled by hardware based virtualization 
technique described in [8]. The TPM manager can check the integrity of the VMM 
components by querying the hardware TPM.   

6.8 TPM and Virtual TPM Driver 

The TPM driver contains the software stack that enables the VMM to communicate 
with the hardware TPM while the Virtual TPM driver contains the software stack that 
enables the VM to communicate with para-virtualized TPM service in the VMM. To 
detect unauthorized changes to these two components, integrity measurements are 
carried out when they are started. The integrity measurements are then stored in the 
TPM.  

6.9 Backup Manager 

This and the next two components are external to the computer platform but part of 
the Enterprise IT infrastructure. To support business continuity planning, the TPM 
keys for the VM should be archived and stored securely in a physically separate loca-
tion. In the event of an incident that cause the TPM keys to be lost, the backup TPM 
keys can be retrieved to support the continuation of business operation. 

6.10 Migration Authority 

Besides administrating the migration of VM, the migration authority can work with 
the TPM migration manager to ensure that the accompanying TPM resources are 
moved to the correct destination TPM. 

6.11 Certificate Authority 

This component will verify the credentials of TPM keys provided by the VM and 
issue the appropriate certificates when it is satisfied with the credentials. After a VM 
has been migrated, it can work with the migration authority to recheck the credentials 
of the TPM keys and issue new certificates. More importantly, the certificate authori-
ty can revoke a particular certificate when required. 



14       J.Y. Yap and A. Tomlinson 

7 Requirements Revisited 

To assess the thoroughness of the design of this framework, it is compared to the 
requirements listed in section 5. Firstly, there are no changes to the TPM commands 
and most TPM commands are available to the VM except for those that can alter TPM 
state. This meets the requirement of retaining the same TPM usage model. Secondly, 
the scheduler will sequence the TPM commands issued by the virtual commands. 
Besides ensuring that every VM can interact with the TPM, it works in conjunction 
with the resource manager to switch from one VM’s TPM session to another session. 
The resource manager will link the TPM resource to the VM and access control is 
achieved by using authorization session. The resulting effect is equivalent to isolating 
each VM’s interaction with TPM.  

Meanwhile, the migration manager works with the resource manager to maintain 
the association between a TPM resource and its VM during migration. In addition, 
this framework allows for modifying the TPM hardware and this provision gives the 
flexibility to complement TPM hardware with additional memory to meet the TPM 
memory requirement of multiple VM. TPM 2.0 NV memory is a protected data sto-
rage location of this framework. The resource manager can store a certain amount of 
integrity measurements from numerous VM into this hardware memory. Hence, the 
security protection of integrity measurement in this para-virtualized TPM is the same 
as for a plain hardware TPM. The other requirement relating to logging is fulfilled by 
the log manager while the backup manager is used as part of the business continuity 
plan. As for certification, this framework uses an external certificate authority to 
check on the credentials of TPM keys. When it is satisfied with the credentials, it will 
issue a certificate to vouch for the TPM keys. Last of all, the command filter makes 
sure that non-privileged VM cannot execute commands that can alter the TPM state. 
To conclude, this framework meets the requirements set forth in the section 5. 

8 Research Challenges 

This framework is based on a paper study of TPM 2.0 specification. From the view 
point of a high level design, this framework can be considered to be reasonable. To 
validate this framework, the components in the VM monitor have to be implemented 
and tested. An ideal candidate for the VM monitor is the open source Xen hypervisor 
[10]. The Xen hypervisor can support para-virtualization and hardware based virtuali-
zation technology such as Intel VT and AMD V CPU architecture extension. The 
hypervisor has a driver for the TPM although it is for TPM 1.2 specification.   

The techniques described in [7] and [8] can be redeployed and used to implement 
this framework but significant challenges still exist. The performance of this para-
virtualized TPM design is one area to be investigated further. Research can be carried 
to develop better algorithms in the scheduler to sequence VM requests for TPM re-
sources. The strength of the isolation between each VM interaction with the para-
virtualized TPM is another research area to be studied. The commonly used integrity 
measurement method of obtaining a digest from hashing a software component can be 



 Para-Virtualizing the Trusted Platform Module 15 

difficult to implement in a virtualized environment. This is because VM migration can 
take place and the configuration of host computing platforms can differ. Attestation in 
such an environment will be tedious as there will be a variety of measurements to 
contend with. Hence, further research can be under taken to look at other approaches, 
for example property-based attestation in [11], to obtain a measure of the state of 
trustworthiness.  

The development of use case for this framework is a task not to be neglected. It 
will be difficult to persuade organizations to take up this framework if there are no 
functional use scenarios. Meanwhile, threat modeling can be conducted on these sce-
narios. The results can be used by researchers to harden the design and organizations 
who wish to adopt the framework can put in mitigation measures recommended from 
the threat model to avoid the pitfalls.  Lastly, the use of TPM monotonic counter by 
VM is not addressed in the proposed framework and further work can be done to 
study this matter. 

9 Conclusion 

The availability of hardware based protected storage location is an advantage that is 
desired by organizations that require high security for their Enterprise IT infrastruc-
ture. This paper found that TPM 2.0 core functions are generally suitable for  
para-virtualization. This indicates that the technical barrier to using TPM 2.0 in a 
virtualization environment can be potentially lowered. The proposed framework is 
holistic as it covers important considerations at different level of the virtualization 
environment. Differences from existing concepts include storing integrity measure-
ments of VM in TPM NV memory and using a privileged VM to manage the  
hardware TPM and para-virtualized TPM service. There are also provision for TPM 
hardware enhancements and a log manager. Moreover, this framework covers exter-
nal components that are essential for the proper functioning of the para-virtualized 
TPM in an Enterprise IT environment. To conclude, the studies and framework  
expressed in this paper provide a comprehensive basis for future work in para-
virtualizing TPM 2.0 and integrating the design to an Enterprise IT virtualization 
environment. 

References 

1. Scarlata, V., Rozas, C., Wiseman, M., Grawrock, D., Vishik, C.: TPM Virtualization: 
Building a General Framework. In: Norbert, P., Helmut, R. (eds.) Trusted Computing, pp. 
43–56. Vieweg (2007) 

2. Trusted Computing Group: Trusted Platform Module Library Family “2.0” Level 00 Revi-
sion 00.96, March 15 (2013) 

3. TrustedGRUB, http://www.trust.rub.de/projects/trustedgrub/ 
4. Berger, S., Caceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn, L.: vTPM: Virtu-

alizing the Trusted Platform Module. In: Proceedings of the 15th Conference on USENIX 
Security Symposium, vol. 15, pp. 305–320. USENIX (2006) 



16       J.Y. Yap and A. Tomlinson 

5. Trusted Computing Group: Virtualized Trusted Platform Architecture Specification “1.0” 
Revision 0.26, September 27 (2011) 

6. Open Trusted Computing: VTPM Architecture Revision Final 1.0 Update, May 29 (2009) 
7. England, P., Loeser, J.: Para-Virtualized TPM Sharing. In: Lipp, P., Sadeghi, A.-R., Koch, 

K.-M. (eds.) TRUST 2008. LNCS, vol. 4968, pp. 119–132. Springer, Heidelberg (2008) 
8. Stumpf, F., Eckert, C.: Enhancing Trusted Platform Modules with Hardware-Based Virtua-

lization Techniques. In: Cotton, A., Dini, O., Skarmeta, A.F.G., Ion, M., Popescu, M., Ta-
kesue, M. (eds.) Proceedings of the Second International Conference on Emerging Security 
Information, Systems and Technologies, SECURWARE 2008, pp. 1–9. IEEE Computer 
Society (2008) 

9. Pirker, M., Winter, J.: Semi-Automated Prototyping of a TPM v2 Software and Hardware 
Simulation Platform. In: Huth, M., Asokan, N., Čapkun, S., Flechais, I., Coles-Kemp, L. 
(eds.) TRUST 2013. LNCS, vol. 7904, pp. 106–114. Springer, Heidelberg (2013) 

10. Xen Hypervisor, http://www.xenproject.org/ 
11. Sadeghi, A.-R., Stüble, C., Winandy, M.: Property-Based TPM Virtualization. In: Wu, T.-

C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 1–16. Sprin-
ger, Heidelberg (2008) 

12. PCI-SIG: Single Root I/O Virtualization and Sharing Specification Revision 1.1, January 
20 (2010) 



The PACE|CA Protocol for Machine Readable

Travel Documents

Jens Bender1, Marc Fischlin2, and Dennis Kügler1

1 Bundesamt für Sicherheit in der Informationstechnik (BSI), Germany
2 Darmstadt University of Technology, Germany

Abstract. The International Civil Aviation Organization (ICAO) has
adopted the password-based connection establishment protocol (PACE)
for securing the contactless communication between the machine-readable
travel documents and the readers at border controls. This Diffie-Hellman
based protocol achieves impersonation resistance at password strength.
To reinforce authentication of the travel documents beyond this low-
entropy security, the challenge-response based active authentication pro-
tocol could be executed afterwards. However, this optional protocol is
often omitted for efficiency reasons. In order to salvage strong security
we investigate the possibility to provide active authentication almost “for
free” with the PACE|CA protocol, by re-using some of the randomness
from the PACE protocol for authentication.

1 Introduction

The password-based connection establishment protocol (PACE), introduced by
the German Federal Office for Information Security in [8], is supposed to protect
the contactless communication between identity cards and readers. It is effec-
tively used on the new German identity cards since November 2010. The PACE
protocol has also been standardized by the International Civil Aviation Organi-
zation (ICAO) through ISO/IEC JTC1 SC17 WG3/TF5 for machine-readable
travel documents (MRTDs) when used at border controls.

PACE implements a secure Diffie-Hellman key exchange protocol, allowing
the MRTD and the reader to establish a secure channel based on a password
provided by the card holder (or deduced from the machine readable zone on
the MRTD). As such, PACE helps to secure the subsequent communication,
but nonetheless provides “only” a password-based form of authentication and
does not, for example, prevent attacks in which the adversary clones cards and
guesses the low-entropy password. To ensure stronger forms of authentication
and increase the trustworthiness, the ICAO suggests to run the Active Authen-
tication (AA) protocol afterwards in which the card signs a challenge sent by
the terminal under a certified key (see Figure 1). This step is, however, costly
for the card and only optional according to the ICAO 9303 standard [12] for the
border control scenario.

R. Bloem and P. Lipp (Eds.): INTRUST 2013, LNCS 8292, pp. 17–35, 2013.
c© Springer International Publishing Switzerland 2013



18 J. Bender, M. Fischlin, and D. Kügler

Fig. 1. PACE Protocol for Machine Readable Travel Documents, with additional card
authentication. The goal of the proposals PACE|AA, SPACE|AA, and PACE|CA here
is to securely re-use randomness and intermediate results from the PACE protocol to
speed-up the authentication process.

1.1 Augmenting PACE by Cost-Effective Authentication

To bridge the problem of having to perform the additional authentication step,
Bender et al. [5] recently suggested the PACE|AA protocol which combines the
PACE and AA protocol steps, saving the card from some of the signature genera-
tion steps in AA by re-using the randomness from the PACE part. Roughly, since
PACE is a Diffie-Hellman based key exchange protocol their combined protocol
works with both Schnorr signatures as well as DSA for the authentications step.
Rather than performing a modular exponentiation, a hash computation, and a
modular multiplication and addition as for Schnorr signatures computed from
scratch, it spares the card the exponentiation by using its contribution to the
Diffie-Hellman key from PACE instead. In [5] it has been shown that this does
not diminish the security of PACE as a password-based key-exchange protocol
(as expressed in [6]), but rather adds strong impersonation resistance against
active attacks excluding basically only man-in-the-middle attacks of the pure
relaying type.

Subsequently, the German Federal Office for Information Security proposed a
yet more simplified version of the PACE|AA protocol [4], which was also inde-
pendently suggested by Hanzlik et al. [11] and called SPACE|AA there. In their
protocol, the card only needs to perform a modular division to authenticate (e.g.,
the hashing and the modular addition as in the Schnorr case for PACE|AA dis-
appears). Hanzlik et al. also proposed a so-called leakage-resilient version where
they change the original PACE protocol slightly, such that the card needs to
perform an additional modular multiplication during the PACE steps, but can
later authenticate without performing an additional operation.The drawback of
this protocol is that it interferes with the PACE step and thus makes the derived
protocol incompatible with the ICAO standards.

While the simplified PACE|AA proposals by [4] and by Hanzlik et al. [11] im-
prove over the [5] suggestions in terms of efficiency, they nonetheless currently
come with seemingly weaker security guarantees. That is, the presentation in [4]
has not been accompanied by a cryptographic analysis. The authors in [11] define



The PACE|CA Protocol for Machine Readable Travel Documents 19

Protocol efficiency adversary remark

PACE|AA [5] HASH, 1MUL, 1 SUB active

SPACE|AA [4,11] 1DIV passive

leakage-res. SPACE|AA [11] 1MUL passive modifies PACE

additive PACE|CA (here) 1 SUB active

multiplicative PACE|CA (here) 1DIV active =SPACE|AA

Fig. 2. Overview over different protocols combining PACE with card authentication.
Efficiency refers to the additional operations for the card to perform authentica-
tion (HASH=hash computation, MUL=multiplication over Zq, DIV=division over Zq,
SUB=subtraction over Zq). Adversary type refers to impersonation resistance for the
authentication step. Note that the table does not take the underlying cryptographic
assumptions into account.

several security notions similar to standard notion of key secrecy for password-
based schemes [3] and for impersonation resistance as in [5]. Unfortunately, they
do not relate their notions to these standard definitions. Moreover, consulting
the security proof reveals that they more or less only consider security against
passive (i.e., eavesdropping) adversaries: in the proofs they rely on a simula-
tor which is able to generate transcripts of communication for honest parties
and use the simulator to show that their security notions are met. We remark
that achieving passive security is often much easier than dealing with active ad-
versaries. As an example, note that the (plain) PACE protocol, despite being
password-based, provides strong cryptographic security under the Diffie-Hellman
assumption against passive adversaries.

For an overview over the known protocols and their main characteristic see
the upper part of the table in Figure 2.

1.2 Authentication with Strong Cryptographic Guarantees

Here we show that we can achieve the best of both worlds: a combination of
PACE with authentication which essentially guarantees impersonation resistance
for free, with efficiency even beyond the solution in [4, 11], and still achieving
security against active adversaries. In our protocol PACE|CA (CA for chip au-
thentication) the card needs to perform an additional modular subtraction to
authenticate, without changing the “core” PACE protocol. Our solution comes
at a small price, though. We rely on the knowledge-of-exponent assumption (to
be precise, KEA1 [2, 10]) which says that one needs to know the discrete loga-
rithm of one of the two values X,Y in order to compute the DH key of X and Y .
Due to the structure of the PACE protocol we also need to introduce a related
variant, called knowledge-of-base assumption (KBA), which says that if given
X one can compute Y and the DH key of X and Y relative to some generator
g, one must know g in order to do so. The KBA at first glance appears to be
weaker than KEA1, but due to technical details this is not necessarily so. As a
kind of sanity check we nonetheless show that KBA holds for generic algorithms.



20 J. Bender, M. Fischlin, and D. Kügler

As mentioned, in our PACE|CA protocol the card only needs to perform
an additional modular subtraction to authenticate in a strong sense. In terms
of performance this even outdoes the proposals in [4,11] which require modular
multiplications or divisions. Nonetheless, we can view the SPACE|AA proposal as
a multiplicative version of our PACE|CA protocol where the card authenticates
by an extra modular division (instead of a subtraction). By the similarity to
the additive version we obtain a strong security proof for the multiplicative
version against active adversaries as well, and therefore also this stronger security
guarantee for the SPACE|AA protocol in [4, 11].

In summary, the (additive and multiplicative version of the) PACE|CA pro-
tocol neither conflicts with the description of the original PACE protocol nor its
(password-based) security. At the same time it gives impersonation resistance
for free, against active adversaries. Although this security proof requires some-
what strong assumptions, namely KEA1 and KBA, we emphasize that using this
approach is advantageous over simply omitting authentication in the signature-
based case because of the computational effort. Consult again Figure 2 for a
comparison to the other protocols.

2 Security Model

As for the previous results for PACE we use the real-or-random security model
for password-based key exchange protocols of Abdalla et al. [1] which extends
the model of Bellare et al. [3]. We refer the reader to [5] for a comprehensive
description, including some minor adaptations for covering long-term secrets as
the card’s signing key. Here we give a brief outline. The model for key secrecy
also serves as a basis for the security model for impersonation resistance.

Key Secrecy. We consider security against active attacks in which the adversary
has full control over the network. Basically, the adversary can send messages to
honest parties via a Send command, also allowing for man-in-the-middle kind
of attacks, and it receives the parties’ answer immediately. The adversary can
decide upon delivery of the reply to another honest party, again via the Send
command. The adversary can also eavesdrop on executions between two honest
parties via the Execute command which returns the transcript. The adversary
has two further commands available, the Reveal and Test command. The first
one, when called about a session of an honest user which has terminated and
accepted, reveals the session key of that party. This models the leakage of the
session keys. When testing a completed session of an honest party via the Test
command, the adversary either gets the session key of that party, or receives
random and independent session keys, the choice made according to a secret bit
b. The adversary’s goal is to tell the two cases apart and to predict b. If the
adversary cannot distinguish the two cases this means that the genuine session
key derived in that execution “looks random” and is secure.

In addition, the adversary can gain control over an honest party during the
attack via the Corrupt query. If used, then the adversary obtains the secrets of an



The PACE|CA Protocol for Machine Readable Travel Documents 21

honest party. As in [5] we devide this query into a Corrupt.pw and a Corrupt.key
query where the former reveals the password only, and the latter reveals the
long-term key only (in case of a chip). In both cases, the other secret remains
private. An honest party gets adversarially controlled if it does not have any
secrets left (i.e., if the adversary issues both Corrupt query types for a chip, or
the Corrupt.pw query for the terminal). The extra command Register allows the
adversary to register a public key pk∗ in the name of a new user (identity). The
user is immediately considered to be adversarial controlled and the password of
the user is revealed to (or even chosen by) the adversary.

To prevent trivial attacks we assume that tested sessions are still fresh in the
sense that, at the end of the attack, if there has been no Reveal query at any
point to this session, neither has there been a Reveal query to a partner to Ui (to
be defined next), nor has somebody been corrupted (i.e., neither kind of Corrupt
query has been issued). Put differently, fresh sessions require that the session key
has not been leaked (by neither partner) and that no Corrupt-query took place.
Here, two sessions are partnered if both have terminated in accepting state with
the same session identifies sid and the same partner identifier pid. Both values
are defined by the protocol and the former should be basically some quasi unique
information about the session, typically (parts of) the communication transcript,
and the partner id should identify the intended partner.

We say that an adversary A, running in time t (including the steps of the
honest parties) and initiating at most qe sessions and making at most qh queries
to the random oracle, wins if it predicts b correctly and all the instances in
the Test queries have been fresh. Define the AKE advantage of an adversary A
against the key agreement protocol P by

Advake
P (A) := 2 · Prob[A wins]− 1

Advake
P (t, Q) := max

{
Advake

P (A)
∣∣∣A is (t, Q)-bounded for Q = (qe, qh)

}

We note that PACE also achieves the notion of forward secrecy which basically
says that it should not help the adversary if it corrupts some party after the
Test query, and that even if corruptions take place before Test queries, then
executions between honest users are still secure (before or after a Test-query).

The advantage here is defined analogously and denoted by Advake−fs
P (t, Q).

Impersonation Resistance. This security property says that the adversary, in the
above attack, successfully impersonates if an honest reader in some session ac-
cepts with partner identity pid and session id sid, but such that (a) the intended
partner U in pid is not adversarially controlled or the public key in pid has not
been registered, and (b) no Corrupt.key command to U has been issued before
the reader has accepted, and (c) the intended partner U does not successfully
complete another session while session sid is running. This roughly means that
the adversary managed to impersonate an honest chip or to make the reader
accept a fake certificate, without knowing the long-term secret or relaying the
data in a trivial man-in-the-middle kind of attack.



22 J. Bender, M. Fischlin, and D. Kügler

We note that requirement (c) is slightly stronger here than in the case of
PACE|AA [5]. There, it is only demanded that the session id sid has not appeared
in another accepting session. Here, we rather need to take into account the point
in time in which this value sid could have been generated.

Define now the IKE advantage (I for impersonation) of an adversary A for a
key agreement protocol P by

Advike
P (A) := Prob[A successfully impersonates]

Advike
P (t, Q) := max

{
Advike

P (A)
∣∣∣A is (t, Q)-bounded

}

Note that we do not need to define a forward secure version here.

3 The PACE|CA Protocol

3.1 Protocol Description: Additive Version

Figure 3 illustrates the (additive version of the) PACE|CA protocol. PACE is
a password-based Diffie-Hellman key exchange protocol over an elliptic curve
with parameters G = (a, b, p, q, g, k). It consists of a first Diffie-Hellman step (for
values g, YA, YB) in which a nonce s is also shared, encrypted under the joint
password. The nonce is mixed via gs to the Diffie-Hellman key for YA, YB to
derive a generator ĝ. This generator is used in a subsequent DH key exchange
(for ĝ, Y ′

A, Y
′
B) to derive another key K, and the parties finally use this key K

to derive the session keys and to authenticate (some of) the transmitted values
via deterministically computed MACs TA, TB.

In the combined protocol with card authentication, PACE|CA, after the
completion of the PACE step the card then authenticates by intertwining its
contribution yA to the first DH key with its long-term secret xA by a simple
subtraction, σ = yA − xA mod q. It sends this value σ together with the cer-
tificate for the public key XA = gxA over the already established channel. Note
that this part is the crucial difference to the previous proposal PACE|AA [5],
where the card computed a Schnorr or DSA signature based on yA, xA, requiring
hashing and modular multiplication and addition. In contrast, here we merely
need a modular subtraction.

We note that there are different suggestions on how to implement the step to
derive the generator ĝ. The DH step as above, sometimes called generic mapping,
currently appears to be the most prominent instantiation. A few instantiations
use the alternative hashing-into-the-curve mapping [7,9,13]. The intertwining of
PACE with the certification as above, however, is only know to work with the
DH-based generic mapping.

3.2 Protocol Description: Multiplicative Version

As explained in the introduction, both the German Federal Office for Information
Security [4] and Hanzlik et al. proposed a multiplicative version of the above



The PACE|CA Protocol for Machine Readable Travel Documents 23

A : B :
password π password π
secret xA, public XA = gxA

certificate certC for XA, and pkCA pkCA
authenticated group parameters G = (a, b, p, q, g, k)

PACE
Kπ = H(0||π) Kπ = H(0||π)
choose s← Zq

z = Enc(Kπ, s)
G, z−−−−−−−−−−−−−−→ abort if G incorrect

s = Dec(Kπ, z)
choose yA ← Z

∗
q choose yB ← Z

∗
q

YA = gyA YB = gyB

YB←−−−−−−−−−−−−−−
abort if YB �∈ 〈g〉 \ {1}

YA−−−−−−−−−−−−−−→ abort if YA �∈ 〈g〉 \ {1}
h = Y yA

B h = Y yB
A

ĝ = h · gs ĝ = h · gs
choose y′

A ← Z
∗
q choose y′

B ← Z
∗
q

Y ′
A = ĝy

′
A Y ′

B = ĝy
′
B

Y ′
B←−−−−−−−−−−−−−−

check that Y ′
B �= YB

Y ′
A−−−−−−−−−−−−−−→ check that Y ′

A �= YA

K = (Y ′
B)

y′
A K = (Y ′

A)
y′
B

KENC = H(1||K) KENC = H(1||K)
K′

SC = H(2||K) K′
SC = H(2||K)

KMAC = H(3||K) KMAC = H(3||K)
K′

MAC = H(4||K) K′
MAC = H(4||K)

TA = MAC(K′
MAC, (Y

′
B,G)) TB = MAC(K′

MAC, (Y
′
A,G))

TB←−−−−−−−−−−−−−−
abort if TB invalid

TA−−−−−−−−−−−−−−→
abort if TA invalid

σ = yA − xA

Send(K′
SC, (σ, certC))−−−−−−−−−−−−−−→ recover and validate certificate

abort if gσ �= YAX
−1
A

key=(KENC,KMAC) key=(KENC,KMAC)
sid = (Y ′

A, Y
′
B,G) sid = (Y ′

A, Y
′
B,G)

pid = certC pid = certC

Fig. 3. The PACE|CA protocol (all operations are modulo q resp. over the curve)

protocol, which is identical to the additive one, except that the card finally
transmits σ = yA ·x−1

A and the reader checks that Xσ
A = YA. The full description

is given in Appendix A.



24 J. Bender, M. Fischlin, and D. Kügler

4 Security Analysis

In our theorems we quantify the adversary’s success probability in terms of the
advantage against the deployed primitives, denoting in general by Advatt

S (t∗, Q)
an upper bound on the success probability of any adversary against scheme S,
running in time at most t∗ and making at most Q queries of the correspond-
ing type. For secure channels, for example, we consider a simultaneous attack
in which the adversary either tries to distinguish messages sent through the
channel or to successfully inject or modify transmissions. We denote the ad-
versary’s advantage for an attack with u users and q challenge queries in this
case by Advlor

SC (t∗, u, q). Formal definitions for all primitives can be found in
Appendix B.

4.1 Key Secrecy

We first note that both the additive as well as the multiplicative PACE|CA
protocol inherit their AKE security (i.e., key secrecy) from the original PACE
protocol, just as in the case of PACE|AA [5]. That is,

Theorem 1. The (additive and multiplicative) protocol PACE|CA satisfies:

AdvakePACE|CA(t, Q) ≤ q2e
2q

+AdvlorSC (t
∗, qe, qe) +AdvakePACE(t

∗, Q)

where t∗ = t + O(kq2e + kq2h + kq2ic + k2) and Q = (qe, qic, qh), where qe is
the number of executions, qic the number of ideal cipher queries, and qh is the
number of random oracle queries.

The same argument holds in the forward-secure case.
The more intriguing proof is the one for impersonation resistance. In the

PACE|AA case, with a Schnorr or DSA signature, i.e., where yA was used as
the randomness for creating the additional signatures, the security proof heavily
relied on the chosen-message security of the underlying signature scheme. This
basically allowed to create signatures for sessions in which the adversary com-
municated with an honest card. At the same time, when the adversary tried to
impersonate as the card, one could extract a signature forgery. This option is
not available anymore here, and hence we need a more sophisticated argument
and somewhat stronger assumptions.

4.2 Assumptions for Impersonation Resistance

We use the standard notion of unforgeability for certificates, the success prob-
ability of any adversary running in time t∗ and adaptively asking for at most
q certificates denoted here as Advforge

CA (t∗, q). We also use the common no-
tion of MAC unforgeability, with the advantage of any adversary running in
time t∗ and making at most qm MAC resp. qv verification queries, denoted by
Advforge

M (t∗, qm, qv)).



The PACE|CA Protocol for Machine Readable Travel Documents 25

Another assumption we need is about the hardness of finding collisions in the
(deterministic) MAC. That is, we denote by Advcoll

M (t∗) the probability of any
algorithm running in time t∗ to output a message m and a key k such that for a
random key k′, sampled afterwards, it happens that MAC(k,m) = MAC(k′,m).
We evaluate this assumption in more detail in Section 5.

Knowledge-of-Exponent Assumption. Besides these definitions we use the follow-
ing KEA1 (knowledge of exponent) assumption [2, 10] in its basic version. This
assumption roughly says that, if one can compute a Diffie-Hellman key then one
already knows the discrete logarithm of one of the two values.

Definition 1 (KEA1). The (t, t′, ε)-KEA1 assumption holds if for any adver-
sary B running in time t there exists an adversary B′ running in time t′ such
that the following experiment has probability at most ε to return 1 for any (G, g):

pick y ← Zq and compute Y = gy

let (Z,K) ← B(G, g, Y )
let z ← B′(G, g, Y )
return 1 iff K = DHg(Y, Z) but K �= Y z.

We let AdvKEA1(t, t′) denote a (bound on the) value ε for which the KEA1
assumption holds for (t, t′, ε).

Knowledge-of-Base Assumption. Unfortunately, the KEA1 assumption alone
does not suffice in our setting. We need a somewhat “dual” assumption which
says that, if one can complement a generator G and random group element Y by
pair (Z,K) to a DH tuple then one already knows the base G. Put differently,
the only way to compute the DH key K is by raising G to the z-th power, thus
knowing z = logG Z and therefore also G = Z1/z, and then computing K = Y z .
In other words, one cannot ignore G and not rely on knowledge about it. In
this sense, our KBA (knowledge-of-base assumption) is somewhat weaker than
KEA1 (also, because one does not need to compute the discrete logarithm z but
only a group element). On the other hand, we require that one can compute
G from the Diffie-Hellman tuple (Y, Z,K) only, i.e., not receiving G as input,
making the assumption somewhat stronger than KEA1 where the generator is
given as input. In any case, our KBA seems to be close in spirit to KEA1 in the
sense that both say that one needs to know how Z was generated.

In the definition below we need to exclude z = 0 and Z = 1, or else G would
not be uniquely determined. Indeed, if Z = 1 then the tuple (Y, 1, 1) would then
information-theoretically hide G. The same is true for Y = 1. Indeed, when
considering two bases G,G′ and Y = Gy , Z = Gz and K = Gyz = (G′)yz logG′ G,

we have DHG′(Y, Z) = (G′)yz log2
G′ G. For y, z �= 0 these two values can only be

equal if logG′ G = 0 or logG′ G = 1. In the latter case the two elements G,G′ are
equal, and in the former case G = 1 which cannot happen for Y, Z �= 1.

Definition 2 (KBA). The (t, t′, ε)-KBA holds if for any adversary B running
in time t there exists an adversary B′ running in time t′ such that the following
experiment has probability at most ε to return 1 for any (G, g) and any G ∈ 〈g〉:



26 J. Bender, M. Fischlin, and D. Kügler

pick y ← Zq and compute Y = Gy

let (Z,K) ← B(G, g, G, Y )
let G′ ← B′(G, g, Y, Z,K)
return 1 iff Y, Z �= 1 and K = DHG(Y, Z), but G �= G′.

We let AdvKBA(t, t′) denote a (bound on the) value ε for which the KBA as-
sumption holds for (t, t′, ε).

We elaborate on the soundness of this assumption in Section 5.

4.3 Impersonation Resistance

We state security for both protocol versions simultaneously (as the claims are
identical) but proof the additive version in full detail and then discuss that the
same proof strategy applies to the multiplicative version, too:

Theorem 2 (Impersonation Resistance). Both the additive and the multi-
plicative version of the protocol PACE|CA satisfy:

AdvikeP (t, Q) ≤ q2e
2q

+AdvforgeCA (t, qc) + qe ·AdvforgeM (t∗, 0) + qhqe ·AdvcollM (t∗)

qcqe ·
(
AdvKEA1(t, t∗) +AdvKBA(t, t∗)

)
where t∗ = t + O(kq2e + kq2h + k2) and Q = (qe, qc, qh), where qe is the number
of executions, qc is the number of cards, and qh is the number of random oracle
queries.

Proof. Recall that we prove security of the additive version here. We first note
that we can exclude the case that impersonation succeeds for a valid certificate
for some key X which has not been certified by the CA. This would straightfor-
wardly contradict the unforgeability of the cerification scheme, noting that we
can simulate A’s attack when knowing the secret keys of the cards and following
the prescribed protocol description for all honest parties (including the ability
to decrypt the certificates in the final message of the impersonation attempts).

We continue to exclude further attack strategies of the adversary. First note
that we can assume that all keys K computed in sessions by honest cards are
distinct. This follows as Y ′

A is chosen at random after the adversary has provided
Y ′
B and we check that Y ′

B �= 1. Then the key is a random group element and we
therefore “lose” a collision probability of at most 1

2q q
2
e if we assume that no two

keys in such executions are identical. Note that we cannot have the same key in
the (fresh) impersonation attempt as in (at most) one of the other executions
of the honest card, because for a fresh impersonation attempt the honest card
cannot successfully complete an execution and compute such a key.

We next conclude that, most likely, the adversary, in an execution with an
honest card, cannot send a valid MAC TB without having queried the random
oracle about the corresponding key K before. This follows from the (key-only)
unforgeability of the MAC scheme: it would be straightforward to build a suc-
cessful attacker against the MAC scheme, emulating the impersonation attack



The PACE|CA Protocol for Machine Readable Travel Documents 27

with the help of the secrets of all parties. Guess one of the executions with the
honest cards and, when A sends TB for (Y ′

A,G), output this pair as a forgery
attempt. If the guess was correct then, since the key K is not used elsewhere, we
can assume that the random oracle maps to the external (unknown) key K′

MAC

such that the pair constitutes a valid forgery. We lose a success probability of at
most qe ·Advforge

M (t∗, 0).
We next show that in an execution with an honest card there cannot exist two

MAC keys K′
MAC, returned as random oracle queries to the adversary, such that

TB verifies under both keys. Else it would be straightforward to contradict the
collisions resistance of the MAC scheme. That is, we claim that the probability
that for some TB valid under K′

MAC the probability that another randomly
sampled key K′′

MAC in some other execution of the honest card also verifies TB

as valid, is bounded from above by qhqe · Advcoll
M (t∗). To this end, simulate

again the impersonation attack with all secrets and also pick one of the at most
qe executions with the honest card at random, and also one of the qh hash
queries the adversary makes. Wait for the adversary receive Y ′

A in the predicted
execution, before computing the MAC key, and output m = (Y ′

A,G) as the
collision attempt together with the MAC key derived in the qh-th hash query
(if this hash query has not been made yet then pick a random key instead).
Since all DH keys in executions with the honest card are distinct, any further
key, also the one in the predicted execution, is independent and has not been
queried before m is output. It follows that, if A accidentally finds K′

MAC,K′′
MAC

and the value TB computed from K′
MAC, (Y

′
A,G), we get a collision against the

MAC scheme. Since we guess the right keys with probability 1/qhqe the claim
follows.

Note that the former two restrictions say that the adversary queries the right
DH key, and that this key is uniquely determined by the MAC in the execution
via the hash queries.

We next note that we can restrict ourself to a single impersonation attempt;
the case of more attempts can be reduced to the single-attempt case via guessing,
losing a factor 1/qe in the success probability. This is possible since we can easily
simulate the terminal’s side in the other attempts with the help of the public
data. Similarly, we can also assume that there is only one honest card; else we
again guess the right card which the adversary is going to attack in the single
attempt (which is identified by the fact that the adversary only uses a certified
public key). We again lose a factor of 1/qc in the probability.

Computing Discrete Logarithms. Given an active attacker A on impersonation
resistance, now in the presence of a single card and making only one imperson-
ation attempt and with the further restrictions on successful attacks as above,
we show how to construct a discrete-log finder D which on input G, g,X returns
x = DLOGg(X). Algorithm D operates as follows. It initializes the attack sce-
nario for A with the data G, g as the system’s parameters, and XA = X as
the card’s public key. It also plays the certification authority and creates the
certificate for X . D also hands over the password of the card to the adversary
immediately. It initially picks an index i between 1 and qH , the number of A’s



28 J. Bender, M. Fischlin, and D. Kügler

hash queries, at random. Basically, this index i will be the guess for the hash
query about the key computed in the impersonation attempt. In the course of
the simulation we assume that D simulates the random oracle via lazy sampling,
with one exception discussed below.

To simulate one of the concurrent interactions of the adversary A with the
honest card, D proceeds as follows:

– Pick s ← Zq as in the protocol and send G and z = Enc(Kπ, s) on behalf of
the card.

– Wait for the adversaryA to send some YB (and check that YB is well-formed;
abort if not).

– Pick yA ← Zq but now compute and send YA = gyA · X . (In the unlikely
case that YA = 1 we have already found DLOGgX = yA and can abort; we
assume for simplicity therefore that YA �= 1 is well formed.)

– Wait for the adversary to send Y ′
B (and check its correctness).

– Pick a random ỹA
′ ← Zq and compute Y ′

A = gỹA
′
.

– Wait for the adversary to send TB. Search through all hash queries of A for
a query 4||K such that TB verifies for the answer K′

MAC. If there is no such
key, abort this execution. If there are two or more such keys, then abort
the whole simulation with an error message. Else, we may assume that K is
the DH key to Y ′

A and Y ′
B, and D can complete the simulation by using the

key K and following the card’s strategy, except when computing yA − xA;
instead use the value yA directly (without subtracting xA).

It is easy to see that, if D uses the right key K —which it does according to the
fact that the adversary must have queried about the key and that this key for
which verification succeeds is unique— then the distribution of the simulated
data is identical to the one of the actual card.

Now suppose A makes the impersonation attempt. Then D emulates the ter-
minal’s side in the attempt as follows:

– Initially, A sends some G, z on behalf of the honest card. Act like the honest
terminal with the help of the password to decrypt z to s and to check the
validity of G.

– Pick a random YB and send it to the adversary.
– Upon receiving YA and checking that YA �= 1, reply with a random Y ′

B .
– When receiving Y ′

A we let D check whether the i-th query ofA to the random
oracle has already been made or not. If so, then we take the corresponding
key K from the query and ask our own simulated random oracle about 4||K
to derive the MAC key K′

MAC. Else we pick a fresh key K′
MAC for this at

random (and will later supply these keys as responses in the i-th query and
all subsequent queries about the same input key 4||K). Faithfully compute
the MAC with the help of this session key K′

MAC and send the MAC TB to
the adversary.

– Upon receiving a MAC TA from the adversary, together with the final en-
crypted value w, verify the correctness of the MAC and check and de-
crypt to recover w with the corresponding keys derived from K. Verify that
gw = YAX

−1.



The PACE|CA Protocol for Machine Readable Travel Documents 29

Assume for the moment that D does not abort, that A at some point queries
the random oracle about the Diffie-Hellman keyK in the impersonation attempt,
and that D correctly guesses the right query. Then, according to the KEA1
assumption, we can view the combined A-D execution as an algorithm B which
receives G, g and Y ′

B as a power for some G = ĝ (possibly unknown to us) as
input and outputs (Y ′

A,K) where, assuming a good guess for the hash query, K
is the Diffie-Hellman key of Y ′

A, Y
′
B relative to G = ĝ. By the KBA there exists

then an algorithm B′ which, when run on input (G, g, Y ′
B, Y

′
A,K), returns G = ĝ,

except with some small error probability.
Analogously, we can imagine that we view YA and ĝg−s as a Diffie-Hellman

completion for g, YB. Hence, by KEA1 and if we view the joint execution of A-D
and the KBA algorithm B′ as an algorithm B, we can conclude that there exists
a KEA1 algorithm B′′ which, on input (G, g, YB) outputs yA = logg YA with
roughly the same probability. But then we have

x = logg X = logg XA = yA − w.

We can thus compute the discrete logarithm of X .

Analysis. Note that D perfectly simulates the environment of A’s attack (with
all stipulations) if it predicts the i-th random oracle correctly. Since up the point
where the query is made the simulation is perfectly indistinguishable it follows
that the probability of a good guess is at least 1/qh. Conditioning on this, D
perfectly simulates a random oracle and gets a valid output from A (under the
restrictions). Running the KBA and KEA1 algorithms then yields the discrete
logarithm with high probability. �	

Note that the same proof strategy above applies to the multiplicative version
as well. Basically, to simulate a communication with the honest card for the
multiplicative version, algorithm D generates YA now as YA = XyA

A (instead of
YA = gyA ·XA as in the additive case) such that it can later provide yA directly as
σ. Vice versa, algorithm D eventually receives w from the impersonation attempt
and checks that Xw

A = YA (instead of gw = YAX
−1
A ). By the KEA1 and KBA

assumptions, algorithm D obtains yA = logg YA, too, such that x = logg X =
yA · w−1 mod q. Here we can assume that w �= 0 because of the verifications
Xw

A = YA and YA �= 1.

5 Security Considerations

5.1 On the Generic Hardness of KBA

Note that, unlike the KEA1 problem which has been investigated before in [2,10],
the KBA problem is new. To support the correctness of the assumption we dis-
cuss that the KBA problem is hard for generic algorithms, i.e., algorithms which
do not exploit special properties of underlying group except for performing basic
operations. More precisely, we work in Shoup’s model [14] where the algorithm



30 J. Bender, M. Fischlin, and D. Kügler

B receives as input group elements g,G, Y (with logarithms δ = logg G �= 0 and
γ = logg Y �= 0 because G, Y �= 1) and can “only” compute any linear poly-
nomial P in δ, γ. These polynomials represent the exponents of the derivable
group elements, created by multiplication of group elements and exponentiation
with constants (corresponding to additions of variables and multiplications with
scalars in the exponent). In particular, the output values Z,K of algorithm B
must be representable as polynomials

PZ(δ, γ) = a+ bδ + cγ for Z

for known a, b, c ∈ Zq, and,

PK(δ, γ) = d+ eδ + fγ for K

for known d, e, f ∈ Zq. For a successful run, we must have that K matches the
Diffie-Hellman key of Y and Z relative to G, i.e., the value Z raised to the power
γ/δ. As a polynomial, PK must match

PDH(δ, γ) = aγ/δ + bγ + cγ2/δ

and we must thus have that

Δ(δ, γ) = PDH(δ, γ)− PK(δ, γ) = aγ/δ + (b − f)γ + cγ2/δ − eδ − d.

is 0. Note that this polynomial can only be the zero-polynomial if a = c = e =
d = 0 and b = f . In this case we have that Z = Gb for a known b such that we
can have algorithm B′ simply output Z1/b, where we use the fact that b �= 0, or
else for a = b = c = 0 the value Z would be 1 which is not an admissible output.

Finally, assume that Δ is not the zero-polynomial. It is then of degree at
most 3 in the unknowns γ and 1/δ (where we can substitute 1/δ by δ′ = 1/δ).
Then, according to Shoup’s result the probability that this polynomial vanishes,
if B makes at most m group operations, is at most O((3m +m2)/q). This also
takes into account the collision probability O(m2/q) It follows that B’ finds the
generator G by using b, except with probability ε at most O((3t + t2)/q), and
within the same number of steps (plus the time to compute the inverse to b and
raising Z to this power).

5.2 On the Necessity of KEA1 and KBA

Note that we show the KEA1 and KBA assumptions to be sufficient to prove
PACE|CA to be secure. Still, we remark that it is currently unclear if they are
also necessary. Suppose for example that an adversary would be able to refute
the KEA1 assumption, i.e., would be able to compute DH keys without knowing
the discrete logarithm of one of the values explicitly. Then we are not aware how
this fact could be used to effectively attack the protocol. Indeed, the signature
value σ = yA − xA would still not necessarily leak the card’s secret key xA,
because the blinding term yA is not revealed in clear (but still used to compute
a DH key).



The PACE|CA Protocol for Machine Readable Travel Documents 31

5.3 On the Collision Resistance of the MAC

We briefly discuss the collision resistance property of the suggested MACs for
PACE [8] for the terminal’s authentication token. PACE suggests to use either
an AES-based CMAC according to NIST 800-38b, or a 3DES retail mode MAC
according to ISO/IEC 9797-1 (algorithm 3, padding method 2 with block cipher
DES, and IV = 0.) Note that both MAC algorithms are deterministic such that
a MAC value is uniquely determined given the key k and the message m.

First note that CMAC, in the final step, adds a (sub)key k1 or k2 before enter-
ing the final block cipher evaluation, depending on whether the padded message
is aligned to block length or not. Assuming for simplicity that these subkeys
are truly random (instead of pseudorandom) it follows that for a fixed message
m the final block cipher invocation under independent main keys k, k′ are also
independent, the strength of the block cipher is irrelevant in this case. It follows
that the probability that the MACs for such keys coincide, is 2−output length.
Here it must be said, though, that PACE truncates the MAC to 8 bytes, such
that we achieve a security level of 2−64 in this case (minus the amount for using
pseudorandom subkeys). Still, note that this term is multiplied with qhqe in our
impersonation resistance theorem.

In the 3DES case the padded message is processed in CBC mode for key k1,
but in an additional final step one first decrypts the CBC value with another
key k2 first, before encrypting under k1 again. This implies that, once m is
fixed, assuming that the block cipher is (pseudo)random and that the subkey
k2 is independent of k1, the probability of hitting a collision is again at most
2−output length. Since the output size is already 8 bytes we again achieve a bound
of 2−64 (minus the amount for the “pseudorandomness assumptions”)

We note that finding a collision in the MACs is not known to yield an imme-
diate attack. We show that ruling them out is sufficient to make our simulation
go through; it is open if this assumption is also necessary. In fact, our results
show that the adversary must have queried the hash oracle about the correct
key before sending TB such that it (implicitly) knows the correct key; it may not
explicitly know which of the evaluations yielded the correct key, though. Indeed,
the adversary may try to learn itself the correct key only through the card’s
resp. simulator’s reply. We are not aware how one can take advantage of such a
behavior. If we assume that the attacker is well aware of the correct key (and
we can formally forward these information to the simulator) then this collision
probability disappears from the security bound.

Acknowledgments. We thank the anonymous reviewers of InTrust 2013 for
helpful comments.

References

1. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 65–84. Springer, Heidelberg (2005)



32 J. Bender, M. Fischlin, and D. Kügler

2. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 273–289. Springer, Heidelberg (2004)

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

4. Bender, J.: Chip authentication for ICAO. ISO/IEC JTC1 SC17 WG3 Meeting
(March 2012)

5. Bender, J., Dagdelen, Ö., Fischlin, M., Kügler, D.: The PACE|AA protocol for
machine readable travel documents, and its security. In: Keromytis, A.D. (ed.) FC
2012. LNCS, vol. 7397, pp. 344–358. Springer, Heidelberg (2012)

6. Bender, J., Fischlin, M., Kügler, D.: Security analysis of the PACE key-agreement
protocol. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009.
LNCS, vol. 5735, pp. 33–48. Springer, Heidelberg (2009)

7. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient
indifferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 237–254. Springer, Heidelberg (2010)

8. BSI: Advanced security mechanism for machine readable travel documents ex-
tended access control (EAC). Tech. Rep (BSI-TR-03110) Version 2.05 Release
Candidate, Bundesamt fuer Sicherheit in der Informationstechnik, BSI (2010)

9. Coron, J.-S., Gouget, A., Icart, T., Paillier, P.: Supplemental access control
(PACE v2): Security analysis of PACE integrated mapping. In: Naccache, D.
(ed.) Cryphtography and Security: From Theory to Applications. LNCS, vol. 6805,
pp. 207–232. Springer, Heidelberg (2012)

10. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 408–423. Springer,
Heidelberg (1998)

11. Hanzlik, L., Krzywiecki, �L., Kuty�lowski, M.: Simplified PACE|AA protocol. In:
Deng, R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 218–232. Springer,
Heidelberg (2013)

12. ICAO: Machine readable travel documents. Tech. Rep. Doc 9303, Part 1 Machine
Readable Passports, 6th edn., International Civil Aviation Organization, ICAO
(2006)

13. Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 303–316. Springer, Heidelberg (2009)

14. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)



The PACE|CA Protocol for Machine Readable Travel Documents 33

A Multiplicative Version of PACE|CA

A : B :
password π password π
secret xA, public XA = gxA

certificate certC for XA, and pkCA pkCA
authenticated group parameters G = (a, b, p, q, g, k)

PACE
Kπ = H(0||π) Kπ = H(0||π)
choose s← Zq

z = Enc(Kπ, s)
G, z−−−−−−−−−−−−−−→ abort if G incorrect

s = Dec(Kπ, z)
choose yA ← Z

∗
q choose yB ← Z

∗
q

YA = gyA YB = gyB

YB←−−−−−−−−−−−−−−
abort if YB �∈ 〈g〉 \ {1}

YA−−−−−−−−−−−−−−→ abort if YA �∈ 〈g〉 \ {1}
h = Y yA

B h = Y yB
A

ĝ = h · gs ĝ = h · gs
choose y′

A ← Z
∗
q choose y′

B ← Z
∗
q

Y ′
A = ĝy

′
A Y ′

B = ĝy
′
B

Y ′
B←−−−−−−−−−−−−−−

check that Y ′
B �= YB

Y ′
A−−−−−−−−−−−−−−→ check that Y ′

A �= YA

K = (Y ′
B)

y′
A K = (Y ′

A)
y′
B

KENC = H(1||K) KENC = H(1||K)
K′

SC = H(2||K) K′
SC = H(2||K)

KMAC = H(3||K) KMAC = H(3||K)
K′

MAC = H(4||K) K′
MAC = H(4||K)

TA = MAC(K′
MAC, (Y

′
B,G)) TB = MAC(K′

MAC, (Y
′
A,G))

TB←−−−−−−−−−−−−−−
abort if TB invalid

TA−−−−−−−−−−−−−−→
abort if TA invalid

σ = yA · x−1
A

Send(K′
SC, (σ, certC))−−−−−−−−−−−−−−→ recover and validate certificate

abort if Y σ
A �= YA

key=(KENC,KMAC) key=(KENC,KMAC)
sid = (Y ′

A, Y
′
B,G) sid = (Y ′

A, Y
′
B,G)

pid = certC pid = certC

Fig. 4. The multiplicative PACE|CA protocol (all operations are modulo q resp. over
the curve)



34 J. Bender, M. Fischlin, and D. Kügler

B Definitions

This part of the paper here is almost verbatim from the full version of [5].

Message Authentication Codes. A message authentication code M consists of
three efficient algorithms (KGen,MAC,Vf) where we assume again that keys are
just random strings in the range of the hash function —making KGen obsolete—
and that MAC(k,m) maps any message to a MAC (resp. tag) T which is veri-
fiable with the help of Vf(k,m, T ) with binary output. Completeness demands
again that for any key k and any message m the value T ← MAC(k,m) makes
Vf(k,m, T ) return 1.

We require that the message authentication code M is unforgeable under
adaptively chosen-message attacks. That is, the adversary is granted oracle ac-
cess to MAC(k, ·) and Vf(k, ·, ·) for random key k and wins if it, at some point,
makes a verification query (m,T ) about a message m which has not been sent
previously to MAC, and such that Vf returns 1 for this message. We denote by
Advforge

M (t, qm, qv) a (bound on the) value ε for which no attacker in time t
can win (making at most qm MACs queries and qv verification queries) with
probability more than ε.

Signatures and Certificates. A signature scheme S = (SKGen, Sig, SVf) con-
sists of efficient algorithms for creating key pairs (sk, pk), signing messages s ←
Sig(sk,m), and verifying signatures, d ← SVf(pk,m, s) with d ∈ {0, 1}. It must
be that for signatures created under valid key pairs SVf always returns 1 (cor-
rectness). Unforgeability says that no algorithm should be able to forge the
signer’s signature. That is, a signature scheme S = (SKGen, Sig, SVf) is (t, qs, ε)-
unforgeable if for any algorithm A running in time t the probability that A
outputs a signature to a fresh message under a public key is Advforge

S (t, qs)
(which should be negligible small) while A has access (at most qs times) to
a singing oracle. We note that for Schnorr signatures and DSA signatures, we
actually need a stronger notion discussed in the next section.

We also assume a certification authority CA, modeled like the signature
scheme through algorithms CA = (CKGen,Certify,CVf), but where we call the
“signing” algorithm Certify. This is in order to indicate that certification may
be done by other means than signatures. We assume that the keys (skCA, pkCA)
of the CA are generated at the outset and that pkCA is distributed securely to
all parties (including the adversary). We also often assume that the certified
data is part of the certificate. We define unforgeability for a certification scheme
CA analogously to signatures, and denote the advantage bound of outputting a
certificate of a new value in time t after seeing qc certificates by Advforge

CA (t, qc).
We assume that the certification authority only issues unique certificates in the
sense that for distinct parties the certificates are also distinct; we besides assume
that the authority checks whether the keys are well-formed group elements and
that certificates are of a fixed length (depending on the security parameter only).

Secure Channel. A secure channel SC = (KGen, Send,Rec) consists of algorithms
for generating keys KGen (we assume in this paper that the keys are random



The PACE|CA Protocol for Machine Readable Travel Documents 35

strings and that the hash function H maps to such strings), a sending algorithm
Send(k,m) wrapping the message usually in an encrypted and authenticated
container C, and a recover algorithm Rec(k, C) which on input a key k and a
container C returns a message m or an error symbol ⊥. We assume the usual
notion of completeness that any faithfully wrapped message under any key is
recovered through the recover algorithms. Roughly, we demand that a secure
channel hides messages (as encryption schemes) but at the same time also pro-
vides authenticity of the sent messages (as in MAC schemes). Below we cover
both notions in a single security experiment.

As for security of the secure channel, we consider left-or-right security in the
multi-user setting. That is, we assume that u users pick random keys k1, k2, . . . , ku
and that a secret challenge bit b ← {0, 1} is chosen. The adversary A gets
no input and can then access a sending oracle OSend(b, k1, . . . , ku, ·, ·, ·) which
for triples (i,m0,m1) returns a container Send(ki,mb) of the left or right mes-
sage under the i-th key. Here, we assume that 1 ≤ i ≤ u and that m0 and
m1 are of equal length. In addition, the adversary can ask a recovering oracle
ORec(k1, . . . , ku, ·, ·) about indices i and containers C of its choice, recovering
either a message under key ki or the error symbol. The adversary eventually
outputs a guess a ∈ {0, 1} for the challenge bit b. To measure simultaneously
successful attacks against the authenticity property we set a ← b if at some point
during the attack the adversary manages to submit a container C to the recover
oracle ORec such that it receives m �= ⊥ and such that C has not been created
by oracle OSend for the same user before.

Let Advlor
E (A) be the probability that a = b minus the pure guessing prob-

ability 1/2, taking also into account the deliberate switch of a to b in case of
successful attacks against the authenticity. Let Advlor

E (t, u, q) be the maximal
advantage for any adversary running in time t, with access to at most u users,
and making in total q queries. We note that a standard hybrid argument shows
that the advantage increases only by a factor u when moving to the single-user
case, i.e., Advlor

E (t, u, q) ≤ u ·Advlor
E (t, 1, q). Hence, the common notion of se-

curity for symmetric schemes implies security in the multi-user setting (with a
loss of a factor u).



A Spatial Majority Voting Technique to Reduce

Error Rate of Physically Unclonable Functions

Patrick Koeberl, Jiangtao Li, and Wei Wu

Intel Labs, Intel Corporation
{patrick.koeberl,jiangtao.li,wei.a.wu}@intel.com

Abstract. The Physically Unclonable Function (PUF) is a promising
hardware security primitive with a wide range of applications, such as
secure key generation, device authentication, IP protection, and hard-
ware entangled cryptography. Due to their physical construction, PUF
responses are inherently noisy. Error correction codes can be used to
turn noisy PUF responses into keys or static values for these applica-
tions. However, a general construction of error correction is expensive
and could introduce high entropy loss for PUFs with high error rates.
Some PUF pre-processing techniques have been proposed, such as tempo-
ral majority voting and dark bit schemes, applied before error correction.
In this paper, we introduce a simple and yet effective method to reduce
PUF error rate called Spatial Majority Voting (SMV). The idea is to
group PUF bits together to produce a single, more stable bit from the
group. Experimental data show that SMV works very well, reducing the
mean error rate from 6.5% to 0.3% with a group size of 9 on SRAM
PUFs implemented in 65 nm CMOS. We also show that SMV can be
combined with the dark bits method to further reduce the error rate to
less than 0.01%, thus avoiding the need for expensive error correction
schemes.

1 Introduction

A Physically Unclonable Function (PUF) can be described as a physical system
which when measured provides unique, unpredictable, and repeatable responses.
Creating a physical copy of the PUF with an identical behavior is hard, thus
resulting in a structure which is unclonable even by the manufacturer. Pappu
introduced the PUF concept in his thesis [19]. In 2002, Gassend et al. introduced
silicon PUFs in [6]. Silicon PUFs exploit the uncontrollable manufacturing vari-
ations which are a result of the integrated circuit fabrication process. Manufac-
turing variation of process parameters such as dopant concentrations and line
widths manifest themselves as differences in timing behavior between physical
instances of the same integrated circuit design.

Since the first development of silicon PUFs, a number of silicon PUF con-
structions have been proposed. Lee et al. [12] proposed the first arbiter PUF in
2004. Guajardo et al. [7] proposed the SRAM PUF in 2007. In 2008 Kumar et
al. [11] introduced Butterfly PUFs and Maes et al. [17] proposed D type Flip-
Flop PUFs. In 2012 Simons et al. [20] proposed Buskeeper PUFs. Note that

R. Bloem and P. Lipp (Eds.): INTRUST 2013, LNCS 8292, pp. 36–52, 2013.
c© Springer International Publishing Switzerland 2013



A Spatial Majority Voting Technique to Reduce Error Rate of PUFs 37

SRAM PUFs, Butterfly PUFs, D type Flip-Flop PUFs, and Buskeeper PUFs
are all memory based PUFs.

PUFs have become a promising security primitive with a wide range of
applications. For example, PUFs are used for secure key generation in sili-
con [14,21,7,16], which eliminates the need for storing keys in non-volatile mem-
ory. It was stated in [18] that PUF based key generation provides advantages
like physical unclonability and tamper evidence, compared to storing the keys
in non-volatile memory. PUF has been proposed for online device authentica-
tion in a challenge-response authentication protocol [22] and for offline device
authentication [10]. Recently, PUFs have been used in various hardware entan-
gled cryptographic schemes and protocols, such as a PUF-based block cipher [1]
and PUF-based oblivious transfer and key exchange protocols [4]. Many of these
applications can be used for trusted computing or building trusted systems.

Since PUF responses are inherently noisy and may not be uniformly random, a
post-processing algorithm is needed to convert noisy PUF responses into keys or
static values in these applications. This process is known as the fuzzy extractor
or helper data algorithm in the literature. Part of the fuzzy extractor is error
correction. Several practical fuzzy extractor schemes [3,18] have been proposed
for memory-based PUFs using various error correction codes, such as BCH,
Reed-Muller, Golay codes, or repetition codes. It is easy to see that the higher
error rate in the PUF response, the more error correction is required. Complex
error correction codes are capable of correcting high error rates, but are much
more expensive to build in hardware. Furthermore a general construction of
error correction could introduce high entropy loss [5]. Therefore it is important
to reduce the PUF bit error rate before applying the fuzzy extractor.

In this paper, we introduce a new technique to reduce the PUF error rate
called Spatial Majority Voting (SMV). This technique is effective and simple
to implement. The idea is to group a few PUF response bits together from
which a subgroup is chosen. A more stable bit from the group is produced based
on majority voting of the subgroup. Experimental data show SMV works well,
reducing the mean error rate from 6.5% to 0.3% with a group size of 9 on
SRAM PUFs implemented in 65 nm CMOS. Combining SMV with the dark
bits method [1], the noisy rate in PUF can be reduced to less than 0.01%. A
simple hardware implementation of Hamming codes, BCH codes (with small code
size), or repetition codes can be used to remove the remaining PUF errors. Our
solution opens a wide possibility of applications where expensive error correction
codes are not possible, such as RFID and resource-constrained devices.

1.1 Related Work

There are techniques in the literature to reduce PUF noise rate before applying
error correction or a fuzzy extractor to the PUF responses, namely, Temporal
Majority Voting (TMV) [1], dark bits [1], and index based syndromes [23]. In
this paper we term these methods pre-processing techniques and consider SMV
similarly.



38 P. Koeberl, J. Li, and W. Wu

The basic idea of TMV [1] is as follows: each PUF bit is evaluated multiple
times and if most of the time it is evaluated as 1, then we set this PUF bit value
to 1; otherwise, we set this bit value to 0. Observe that if a PUF bit is relatively
stable and only flips its value occasionally, TMV can effectively stabilize this bit.
However, if a PUF bit is very unstable (e.g., probability of one half of being 0
and 1 respectively), TMV does not work well on this bit.

In the dark bits method presented by Armknecht et al. [1], each PUF bit is
evaluated multiple times during the setup phase. If a PUF bit is not stable, we
mark it as a “dark bit”. In the evaluation phase, the PUF is evaluated again
and the dark bits are discarded, as these bits were noisy during the setup phase.
Observe that if a PUF bit is very unstable, it will very likely be detected as a
dark bit. It is easy to see that filtering the PUF responses dark bits results in a
lower error rate.

Yu and Devadas [23] provided a different technique called index based syn-
drome. This approach assumes the PUF output is a real value instead of a single
bit. The idea is that only PUF bits with a strong representation of a “1” or a
“0” are chosen. In other words, only relatively stable PUF bits are picked. This
technique is only applicable to some PUF designs such as the Ring Oscillator
PUF, but not applicable to memory-based PUFs with binary outputs.

Both TMV and the dark bits method require multiple PUF measurements
which could be impractical in many applications according to [13]. The index
based syndrome method only works for a few type of PUFs with real-valued
output. In contrast, our SMV method does not require multiple PUF measure-
ments and is applicable to all PUF types. Furthermore, the SMV method is
complementary to these three techniques. We shall show in Section 5 that SMV
can be combined with the dark bits method to further reduce PUF error rate
significantly.

Another approach to reduce PUF error rate is to use a repetition code [3,18,2].
Using a repetition code of length n, a random bit b is repeated n times into an
n-bit string and then XORed with an n-bit PUF response as the helper data. In
the evaluation phase, the random bit b is recovered by XORing the helper data
and the PUF response and then running a majority voting on the XORed result.
Repetition codes are indeed more efficient than our SMV method in terms of
PUF error rate reduction. However, there are two limitations to the repetition
code method. First, repetition codes suffers high entropy loss. For an n-bit PUF
response, the entropy loss is n − 1 and there is at most one bit of leftover
entropy [5]. For low entropy PUFs, there could be zero leftover entropy using
repetition coding. We believe there is less entropy loss in our SMV approach.
Detailed analysis of entropy loss in SMV remains an open question and is future
work. Second, the repetition code method can only be used in the code-offset
construction (also known as fuzzy commitment [8] in the literature). In the
application of PUF-based key generation using repetition codes, the key has to
be chosen external to the device by a trusted manufacturer. In our SMV scheme,
the key can be completely “unknown” to the manufacturer which is an attractive
property for many applications.



A Spatial Majority Voting Technique to Reduce Error Rate of PUFs 39

1.2 Our Contributions

We summarize our contributions of this paper as follows: we provide an efficient
pre-processing method to reduce PUF error rate using Spatial Majority Voting.
Our SMV method is efficient to implement in hardware. We provide both theo-
retical analysis and experimental data to show that the SMV method works well.
We note that if the raw PUF responses are biased, SMV would increase the bias
in the processed PUF response. We provide an alternative SMV scheme such
that the bias in PUF is not be amplified. We also present how to combine SMV
with dark bits method such that the PUF error rate can be further reduced.

1.3 Organization of the Paper

The rest of this paper is organized as follows. We first introduce our SMV scheme
in Section 2 with a theoretical analysis. We show the effectiveness of SMV with
experimental studies on real SRAM PUF data in Section 3. We present an alter-
native SMV scheme for PUFs with biased responses in Section 4. In Section 5,
we show that the SMV scheme can be combined with the dark bits method to
further reduce the PUF error rate. We discuss the potential applications of our
SMV scheme in Section 6 and conclude our paper in Section 7.

2 Basic Spatial Majority Voting Scheme

In this section, we first review a simplified PUF model and define the PUF pre-
processing process. We then describe our Spatial Majority Voting (SMV) scheme
and provide some theoretical analysis to show the effectiveness of SMV.

2.1 PUF Model and PUF Pre-processing Process

Roughly speaking, a PUF is a random function based on a physical system with
a small amount of noise. Although there have been earlier attempts at formal
definitions of PUF [19,6,7,1], we use a simplified PUF definition based on [1] with
a focus on PUF stability. The other properties of PUF such as unclonablity,
randomness, and tamper evidence are neglected from the following simplified
model.

Definition 1 (Physically Unclonable Functions). A (n,m, pe)-family of
physically unclonable functions is a set of probabilistic algorithms with the fol-
lowing procedures:

Instantiate. The output of the Instan procedure is a unique probabilistic func-
tion f : {0, 1}n → {0, 1}m.

Evaluate. Given a physically unclonable function f , the Eval procedure on each
challenge x ∈ {0, 1}n outputs a noisy response f(x) ∈ {0, 1}m.



40 P. Koeberl, J. Li, and W. Wu

On two separate evaluations of same f and challenge x, denoted as r1 and r2,
the noise vector between two evaluations is r1 ⊕ r2. The pe is the average noise
rate between any two PUF measurements.

Assuming the PUF noise is randomly distributed and is drawn independently
for each bit of the PUF response, then the PUF noise rate pe is also called the
PUF bit error rate. In other words, the noise vector between two PUF measure-
ments is a vector of m independent Bernoulli distributed random variables with
probability pe. This is commonly assumed in the PUF literature [7,1,9].

Katzenbeisser et al. [9] show that the average PUF bit error ranges from 2%
to 30% for various silicon PUF constructions. As we discussed earlier, many
applications of PUF require static PUF outputs. It is expensive to use gen-
eral constructions of error correction or fuzzy extractors to reduce the PUF
noise. We define the following “pre-processing” process to reduce PUF noise.
The pre-processing process has two procedures: setup and processing. Let f be
a physically unclonable function with parameters (n,m, pe). The optional setup
procedure outputs a helper data h, given f and a challenge x as input. The
processing procedure outputs a pre-processed PUF response w, given f , x, and
h as input.

Setup Procedure. On input of a PUF f and an n-bit challenge x, this proce-
dure outputs a helper data h.

Processing Procedure. On input of a PUF f , a challenge x, and a helper
data h, this procedure outputs pre-processed PUF response w.

In the setup or processing procedure, PUF may be evaluated once or multiple
times. The goal of the pre-processing function is to reduce the noise in the “pre-
processed” PUF responses for any given PUF f and challenge x, i.e., to reduce
Hamming distance between two processed responses w and w′.

For example, Temporal Majority Voting (TMV) can be defined as follows. Let
k be a small odd number and t = (k+1)/2 be the majority voting threshold. The
TMV process has no setup procedure and has the following processing procedure.

TMV Processing. On input of a PUF f and a challenge x, f is evaluated k

times and k responses obtained w(1), . . . , w(k). Let w
(j)
i be the i-th bit of w(j).

This procedure outputs w = w1 · · ·wm, where wi = 1 if w
(1)
i + · · ·+w

(k)
i ≥ t

and wi = 0 otherwise, for i = 1, . . . ,m.

Similarly the dark bits method can be defined as follows. Let k be a parameter
for identifying dark bits. The idea of this method is to filter the noisy PUF
bits that were observed during the setup procedure. These noisy PUF bits are
recorded as a dark bits mask.

Dark Bits Setup. On input of a PUF f and a challenge x, f is evaluated k
times and k responses obtained w(1), . . . , w(k). Compute helper data h =
(w(1) ⊕w(2)) ∨ · · · ∨ (w(1) ⊕w(k)), where ⊕ is bitwise XOR and ∨ is bitwise
OR. This h is called the dark bits mask.



A Spatial Majority Voting Technique to Reduce Error Rate of PUFs 41

Dark Bits Processing. On input of the PUF f , challenge x, and dark bits
mask h. The processing procedure first evaluates f and obtains w̃, then
discards the all bits marked in h from w̃, and produces a shorter output w.

2.2 Our SMV Scheme

In TMV, the PUF is measured multiple times and majority voting is applied on
each bit location to filter the PUF noise. Inspired by TMV, we propose SMV in
this section. The idea of SMV is to group a few PUF bits together to produce a
more stable bit. A näıve method is to perform majority voting on the group, i.e.,
if there is more ‘1’ in the group, set the group bit as 1, otherwise, set the group
bit as 0. Unfortunately, this approach increases the PUF error rate as shown in
Figure 1(right) instead of reducing the error rate. The analysis of the näıve SMV
method is given in Appendix A.

The basic idea of our SMV scheme is that we divide PUF responses into
groups and extract a stable bit from each group as follows: choose a majority
subgroup from each group during the setup procedure, and then do majority
voting on the subgroup. In the processing procedure, only the bits in subgroup
are used for majority voting. Observe that all the bits in the subgroup have the
same value in the setup procedure. If there is a small noise in the PUF response,
e.g., only a small number of bits in the group flip, the majority voting would
filter the noise.

We now formally describe the basic SMV method with the following param-
eters: k as the group size, k′ as the subgroup size, and t as the voting threshold
value. For our basic SMV scheme, we set k = 2k′ − 1 and k′ = 2t + 1. For
example, k = 9, k′ = 5, and t = 2.

SMV Setup. On input of a PUF f with parameters (n,m, pe) and an n-bit
challenge x, it runs the following steps:

1. Evaluate f on challenge x and obtains an m-bit PUF response w.
2. Divide w into l groups G1, . . . , Gl of size k, where l = �m/k�.
3. For each group Gi, where i = 1, . . . , l, do the following steps:

(a) Let group bit bi be the majority bit of the group Gi.
(b) Let hi be a k-bit mask that marks the majority subgroup, i.e., the

location of first k′ bits of bi in Gi.

4. This function outputs the helper data h = h1, . . . , hl.

SMV Processing. On input of the PUF f , challenge x, and helper data h =
h1, . . . , hl, it runs the following steps:

1. Evaluate f and obtains PUF response w.
2. Divide w into l groups G1, . . . , Gl of size k, where l = �m/k�.
3. For each group Gi, where i = 1, . . . , l, do the following steps:

(a) Set ti as the number of ‘1’ in the subgroup of Gi marked by hi.
(b) Set the group bit bi = 1 if ti > t and set bi = 0 otherwise.

4. Output b1, . . . , bl as processed PUF response.



42 P. Koeberl, J. Li, and W. Wu

For example, if the PUF bits in a group Gi are read as {0, 0, 1, 0, 1} during
the setup procedure, the majority subgroup is the 1st, 2nd, and 4th bits of the
group, and hi is output as {1, 1, 0, 1, 0}. If PUF bits are read as {0, 1, 1, 0, 1}
in the processing procedure, the majority voting is conducted on {0, 1, ∗, 0, ∗},
where ∗ denotes the bits outside the voting subgroup. As a result, the group bit
bi is evaluated as 0.

We now calculate how SMV would reduce the PUF error rate. The raw PUF
error rate is pe. Observe that all the k′ bits in the subgroup are the same during
the setup procedure. The group bit in the setup procedure is the majority bit in
the group. In the processing procedure, the group bit changes only if more than
t bits in the subgroup flip their values during the PUF evaluation. Let us define
binocdf as a binomial cumulative distribution function:

binocdf(t, n, p) =

t∑
i=0

(
n

i

)
pi(1 − p)n−i.

The error rate after SMV is then 1−binocdf(t, k′, pe). We plot the error rate on
the PUF response after SMV in Figure 1(left) and list a few error rate values in
Table 1.

0%

5%

10%

15%

20%

25%

30%

1% 3% 5% 7% 9% 11% 13% 15% 17% 19%

Raw PUF Error Rate (in %)

Er
ro

r R
at

e 
Af

te
r S

M
V 

Group Size 
1

5

9

17

33

0%

5%

10%

15%

20%

25%

30%

1% 3% 5% 7% 9% 11% 13% 15% 17% 19%

Raw PUF Error Rate (in %)

Er
ro

r R
at

e 
Af

te
r N

aï
ve

 S
M

V 

Group Size 

1

5

9

17

33

Fig. 1. Error rate reduction using our SMV (left) and näıve SMV (right)

Table 1. Estimated error rate after SMV with k = 9, 13, 17, respectively

Raw error rate .01 .03 .05 .07 0.09 .11 .13 .15 .17

k = 9 .000010 .00026 .0012 .0031 .0063 .011 .018 .027 .037

k = 13 .000000 .000026 .00019 .00071 .0018 .0039 .0072 .012 .019

k = 17 .000000 .000003 .000033 .00017 .00055 .0014 .0030 .0056 .0098

Clearly, SMV is very effective even for a small group size, e.g., k = 5 or 9.
It can quickly reduce the PUF error rate. Take k = 9 as example, if the raw
PUF error rate is 15%, the error rate after SMV becomes 2.7% which is a 5x
improvement. If the raw error rate is 5%, the error rate after SMV drops to
0.12% which is more than 40x improvement. As we shall see in Section 3, our
theoretical analysis matches the SMV performance on real PUF data closely.



A Spatial Majority Voting Technique to Reduce Error Rate of PUFs 43

3 Experimental Result

We evaluate the performance of our SMV scheme using data collected from a
silicon PUF implementation in 65 nm CMOS [15]. The dataset comprises 280
SRAM PUF measurements obtained across 96 device instances over a range
of voltage supply and ambient temperature conditions. Table 2 tabulates the
number of measurements collected at each operating condition.

Table 2. Number of test measurements recorded per device operating condition

V=1.08V V=1.2V V=1.32V

T=25oC 30 60 30

T=+85oC 20 40 20

T=-40oC 20 40 20

The metrics of inter-distance and intra-distance are used as a measure of
PUF performance both of the raw SRAM PUF and our SMV scheme. Intra-
distance is a measure of the hamming distance between PUF responses taken
from the same physical PUF instance. This metric is a measure of the PUF
noise rate and should be as close as possible to zero. In the rest of this paper,
we use the intra-distance μintra to refer the average PUF error rate in the PUF
experimental data. Inter-distance measures the Hamming distance between two
PUF responses taken from different physical PUF instances. The inter-distance
metric is a measure of the uniqueness of a PUF response and ideally should
be 50%.

Inter-distance and intra-distance results for the raw SRAM PUF on 96 devices
using the operating conditions described above are shown in Figure 2. We chose
an SRAM PUF size of 8704 bits, i.e., m = 8704. The results show near-ideal
behavior with a mean fractional intra-distance of 6.5% and standard deviation
of 0.010. The fractional intra-distance is 49.5% with a standard deviation of
0.006.

With the baseline performance of the raw SRAM PUF determined we now
evaluate the performance of our SMV scheme for parameters of l = 512 and
k = 9, 13, 17. Table 3 tabulates the results. In addition to the mean and stan-
dard deviation results for inter- and intra-distance we give the maximum intra-
distance and mean bias in terms of ones in the SMV output. The intra-distance
results show that SMV gives a significant reduction over the raw PUF noise rate,
reducing the raw error rate from 6.5% to 0.31%, 0.09%, and 0.02%, respectively,
with k = 9, 13, and 17. This aligns well with our theoretical analysis in Table 1,
where if the raw PUF error rate is 7%, the error rate after SMV improves to
0.31%, 0.071%, and 0.017%, respectively, with k = 9, 13, and 17. Figure 3 shows
the inter- and intra-distance results for the k = 13 and k = 17 case.



44 P. Koeberl, J. Li, and W. Wu

Fig. 2. Inter- vs intra-distances for raw SRAM PUF data (8704 bits)

Table 3. Experimental results before (raw PUF) and after SMV processing

μintra σintra maxintra μinter σinter μbias(ones)

Raw PUF .065119 .009900 .085133 .495468 .006009 .502098

SMV, k=9 .003080 .002653 .019531 .484900 .023696 .506249

SMV, k=13 .000852 .001350 .011718 .483650 .023797 .504457

SMV, k=17 .000241 .000691 .007812 .485729 .023695 .507814

4 Alternative SMV Scheme for Biased PUF Responses

Note that if the raw PUF responses are biased, then the bias will be amplified
after SMV processing. For example, if the PUF response is biased toward 1, then
it is more likely that the majority bit from the group has a similar bias. Let p1
be the probability that a PUF bit response is 1. For our basic SMV scheme with
parameters k, k′, t,

Pr [group bit = 1] = Pr [number of ‘1’ bits in the group ≥ k′]
= 1− binocdf(k′ − 1, k, p1)

Figure 4(left) shows that the bias rate quickly increases to 1 or decreases to 0 if
the raw PUF bit is biased. This property makes our basic SMV scheme unusable
for highly-biased PUFs, in particular for a large group size k. Studies have shown
that [9] some PUF constructions (e.g., SRAM PUFs) are unbiased while other
PUF constructions (e.g., Latch PUFs or Flip-Flop PUFs) exhibit a strong bias.

In this section, we provide an alternative SMV scheme for PUFs, such that
SMV does not exacerbate an existing bias. The basic idea is as follows: let k be
the group size, k′ be the subgroup size, and t be the voting threshold value, where
k′ = 2t + 1. Instead of choosing k = 2k′ − 1, choose a larger k, e.g., k = 3k′.



A Spatial Majority Voting Technique to Reduce Error Rate of PUFs 45

Fig. 3. Inter- vs intra-distances for SMV, k=13 (left) and k=17 (right)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 10 20 30 40

Bi
as

 R
at

e 
Af

te
r S

M
V 

SMV Group Size 

Bias Rate 
20%

30%

40%

50%

60%

70%

80% 0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 20 40 60

Bi
as

 R
at

e 
Af

te
r S

M
V 

SMV Group Size 

Bias Rate 
20%

30%

40%

50%

60%

70%

80%

Fig. 4. Bias rate after basic SMV (left) and our alternative SMV (right)

During the setup procedure, for a group Gi, instead of setting the group bit
as the majority bit, choose a random bit bi as the group bit and choose the
subgroup based on bi. For cases where there are not enough bi in the group, i.e.,
the number of bi bits in the group is less than k′, then we have to choose the
opposite bit as the group bit. The processing procedure in the alternative SMV
method is the same as the basic SMV method, i.e., conduct a majority voting
on the subgroup. The alternative SMV setup procedure is as follows:

Alternative SMV Setup. On input of a PUF f and an n-bit challenge x, it
runs the following steps:
1. Evaluate f on challenge x and obtains an m-bit PUF response w.
2. Divide w into l groups G1, . . . , Gl of size k, where l = �m/k�.
3. For each group Gi, where i = 1, . . . , l, do the following steps:

(a) Choose a random bit bi.
(b) If the number of bi in Gi is less than k′, set bi = 1− bi.
(c) Randomly choose k′ number of bi from Gi as the subgroup and use

hi to mask the subgroup location.
4. This function outputs the helper data h = h1, . . . , hl.

In both basic SMV and alternative SMV, the majority voting is conducted on
the subgroup. Therefore, the noise rate reduction depends on the subgroup size



46 P. Koeberl, J. Li, and W. Wu

k′. For the same k′ value, the alternative SMV scheme requires a larger group
size k, thus it is less efficient than the basic SMV. We now analyze the bias of
the group bit. We use b to denote the group bit and b′ to denote the random bit
chosen in step 3(a) above. Let t1 be the number of ‘1’ bits in the group and t0
be the number of ‘0’ bits in the group.

Pr [b = 1] = Pr [b = 1 ∨ b′ = 1] · Pr [b′ = 1] + Pr [b = 1 ∨ b′ = 0] · Pr [b′ = 0]

= 0.5 · Pr [t1 ≥ k′] + 0.5 · Pr [t0 < k′]
= 0.5(1− binocdf(k′ − 1, k, p1)) + 0.5(1− binocdf(k − k′, k, p1))

Figure 4(right) plots the bias rate of the group bit with respect to different bias
rates in the raw PUF response and different group sizes. We use k = 3k′ and
k′ = 3, 5, . . . , 21. Observe that if the bias rate in the raw PUF response is 60%,
the bias rate after the alternative SMV decreases. However, if the raw PUF
response is very biased, the bias rate in the group bit increases. This shows that
the alternative SMV scheme is fairly effective for slightly biased PUF but less
effective for highly biased PUF.

5 Combining SMV with the Dark Bits Method

We observe from Figure 1(left) that for a given group size SMV is more efficient
at low raw error rates. In other words, SMV achieves a super-linear rather than
linear error-rate reduction. Taking k = 9 as an example, Table 1 shows that if
the raw PUF error rate is 15%, the error rate after SMV becomes 2.7% which is
a 5x improvement. If the raw error rate is 5%, the error rate after SMV drops
to 0.12% which is more than 40x improvement. The reduction ratio continues to
increase with decreasing raw error rate. The same trend is observed analytically
for other group sizes.

In order to exploit the efficiency of SMV at low raw error rates, we propose
to combine SMV with other techniques, for example using a dark bit scheme.
The dark bit method is a way to remove unstable PUF bits. More specifically,
we run multiple PUF measurements during the setup procedure. If a PUF bit
is noisy, we mark it as a dark bit and exclude it from further processing. The
resultant dark bit mask is stored externally as part of the helper data. We apply
the dark bit technique first and reduce the raw error rate to a reasonably low
level. SMV is subsequently applied to further reduce the overall error rate.

A formal description of the dark bit augmented SMV method follows. It has
the following two parameters o as the number of PUF measurements in the setup
procedure and k as the SMV group size. We use DarkSMV(o, k) to denote this
method with parameters o and k.

DarkSMV Setup. On input of a PUF f and a challenge x, f is obtained

1. f is evaluated o times and o responses obtained w(1), . . . , w(o). Compute
dark-bit mask mask = (w(1) ⊕ w(2)) ∨ · · · ∨ (w(1) ⊕ w(o)).

2. Divide w(1) into l groups G1, . . . , Gl of size k, where l = �m/k�.



A Spatial Majority Voting Technique to Reduce Error Rate of PUFs 47

3. Divide mask into l groups of masks mask1, . . . ,maskl of size k.
4. For each group Gi, where i = 1, . . . , l, do the following steps:

(a) Discard the dark bits in Gi using the dark bits mask maski.
(b) Let group bit bi be the majority bit of the group Gi, after the dark

bits have been discarded. If there is a tie, choose bi randomly.
(c) Let hi be a k-bit mask that marks the majority subgroup, i.e., the

location of bits with value bi in Gi without the dark bits.

5. This function outputs the helper data h = h1, . . . , hl.

DarkSMV Processing. On input if the PUF f , challenge x, and and helper
data h = h1, . . . , hl.

1. Evaluate f and obtains PUF response w.
2. Divide w into l groups G1, . . . , Gl of size k, where l = �m/k�.
3. For each group Gi, where i = 1, . . . , l, do the following steps:

(a) Set ti as the number of ‘1’ in the subgroup of Gi marked by hi.
(b) Set ui as the size of subgroup hi, i.e., number of ‘1’ in hi.
(c) Set the group bit bi = 1 if ti > ui/2 and set bi = 0 if ti < ui/2. If

ti = ui/2, set ti randomly because of voting tie.

4. Output b1, . . . , bl as processed PUF response.

Note that in the DarkSMV method above, the size of the voting subgroup is
not fixed. It depends on the number of dark bits in the group. Since the size of
the subgroup may not be an odd number, we may need to break the voting tie
using a random value, as in step 3(c) above.

We now evaluate the performance of our DarkSMV method using the dataset
introduced in Section 3. For the dark-bit mask generation we choose 20 dark-bit
reference measurements from the T=25oC, V=1.2V operating condition. Using
the dark bit technique in isolation results in an mean intra-distance or error rate
0.75%, a reduction of more than 8x over the raw PUF error rate of 6.5%. The
results of combining SMV with the dark bit technique are shown in Table 4 for
DarkSMV parameters of n = 512 and k = 9, 13, 17.

Table 4. Experimental results for DarkSMV(20, k)

μintra σintra maxintra μinter σinter μbias(ones)

k=9 .000202 .000652 .007812 .483790 .023894 .503783

k=13 .000028 .000242 .003906 .481679 .024121 .504234

k=17 .000012 .000179 .003906 .483748 .024117 .509123

The results show that DarkSMV results in significant further reductions in
error rate over that obtained from dark bits in isolation. The mean intra-distance
μintra shows reductions of over 90% while the max intra-distance maxintra is
reduced to the sub-bit level even for k = 9. Figure 5 shows the inter- and intra-
distance results for the k = 13 and k = 17 case.



48 P. Koeberl, J. Li, and W. Wu

Fig. 5. Inter- vs intra-distances for DarkSMV, k=13 (left) and k=17 (right)

6 Applications of SMV

As we have shown in the last few sections, SMV can significantly reduce the
PUF error rate. In this section, we discuss how low PUF error rates can benefit
specific PUF applications. We use PUF-based key generation as a representative
PUF application. According to [21,7,18], PUF-based key generation eliminates
the need to store keys in the clear in non-volatile memory technologies such
as fuses or flash. They are thus attractive in applications where high-assurance
design techniques such tamper-resistant hardware are too expensive to deploy
due to cost or form-factor considerations. Let C[n, k, d] be an error correcting
code, where n is the length of the code, k is the size of message, and d is the
minimum distance of the code. In order to extract a 128-bit key from the PUF,
Bösch et al. suggested some fuzzy extractor constructions to extract 171-bit
entropy from SRAM PUFs [3]. We list a few parameters from [3] in Table 5.
We need approximately 4000 bits of PUF in order to extract 128 bits, assuming
that PUF raw error rate is 15%. The failure probability represents the expected
failure rate of the overall PUF-based key generation scheme.

Table 5. Parameters to extract a 128-bit cryptographic key for SRAM PUFs [3]

Error Correction Codes PUF Size Failure Probability

BCH[1020, 43, 439] 4080 1.44E-8

RM[32, 6, 16] & Rep[5, 1, 5] 4640 1.49E-6

Golay[24, 13, 7] & Rep[11, 1, 11] 3696 5.41E-7

Using the combined SMV and dark bits method described in Section 5, we
can reduce the error rate significantly, thus reducing the need for expensive error
correction codes. For example, using the result from Table 4, the error rate is
reduced to 0.0002, 0.000028, and 0.000012, respectively, with k = 9, 13, and 17.



A Spatial Majority Voting Technique to Reduce Error Rate of PUFs 49

Table 6 shows the PUF and error correction parameters required to extract a
128-bit cryptographic key from an SRAM PUF. Note that, using the SMV group
size k = 9, we only need a 2349-bit PUF and a simple BCH code BCH[29, 19, 5]
to correct up to 2 bit errors per 29 bits. Using the SMV group size k = 13, we
can use a simple Hamming code Hamming[7, 4, 3] as the error correction scheme,
due to the low error rate. Implementing such Hamming code is almost free in
hardware.

Table 6. Parameters to extract a 128-bit cryptographic key for SRAM PUFs using
SMV and dark bits method

Method Error Correction Codes PUF Size Failure Probability

DarkSMV(20, 9) BCH[29, 19, 5] 2349 2.62E-7

DarkSMV(20, 13) Hamming[7, 4, 3] 3913 7.08E-7

DarkSMV(20, 17) Hamming[63, 57, 3] 3213 8.43E-7

Based on these results we believe that SMV is a valuable PUF pre-processing
technique in situations where non-volatile storage is cheap (and may be off-chip)
while the area cost for logic is expensive. In these scenarios it is beneficial to
reduce the cost of ECC to a minimum.

7 Conclusion

In this paper we introduce a new PUF pre-processing technique we term Spatial
Majority Voting (SMV). We show analytically SMV if effective in reducing the
raw error rate of SRAM PUF responses to low levels and empirically confirm
these results using test data obtained from a 65 nm SRAM PUF characteriza-
tion vehicle. An alternative SMV scheme is introduced for biased PUF responses
and shown to be effective for bias rates of up to 60%. Finally, we combine SMV
with the dark bits method and show empirically that this approach is capable of
reducing the PUF error rate to the sub-bit level where the required ECC com-
plexity is significantly lowered, resulting in a reduced system cost for applications
where minimizing logic-cost is the primary design constraint.

Acknowledgement. We thank Intrinsic-ID and EU FP7 programme UNIQUE
for providing the SRAM PUF data which enabled the evaluation of our scheme.
We thank the anonymous reviewers for providing helpful comments to this paper.

References

1. Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., Tuyls, P.: Memory leakage-
resilient encryption based on physically unclonable functions. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 685–702. Springer, Heidelberg (2009)



50 P. Koeberl, J. Li, and W. Wu

2. Böhm, C., Hofer, M., Pribyl, W.: A microcontroller SRAM-PUF. In: 5th Interna-
tional Conference on Network and System Security, pp. 269–273. IEEE (2011)

3. Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient helper
data key extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)

4. Brzuska, C., Fischlin, M., Schröder, H., Katzenbeisser, S.: Physically uncloneable
functions in the universal composition framework. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 51–70. Springer, Heidelberg (2011)

5. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EU-
ROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

6. Gassend, B., Clarke, D., vanDijk,M., Devadas, S.: Silicon physical random functions.
In:ACMConference onComputer andCommunications Security, pp. 148–160. ACM
Press, New York (2002)

7. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA Intrinsic PUFs and
Their Use for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

8. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: ACM Conference on
Computer and Communications Security (CCS), pp. 28–36. ACM (1999)

9. Katzenbeisser, S., Kocabaş, Ü., Rožić, V., Sadeghi, A.-R., Verbauwhede, I., Wachs-
mann, C.: PUFs: Myth, fact or busted? A security evaluation of physically unclon-
able functions (PUFs) cast in silicon. In: Prouff, E., Schaumont, P. (eds.) CHES
2012. LNCS, vol. 7428, pp. 283–301. Springer, Heidelberg (2012)

10. Koeberl, P., Li, J., Rajan, A., Vishik, C., Wu, W.: A practical device authenti-
cation scheme using SRAM PUFS. In: McCune, J.M., Balacheff, B., Perrig, A.,
Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) TRUST 2011. LNCS, vol. 6740, pp.
63–77. Springer, Heidelberg (2011)

11. Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: The butterfly PUF:
Protecting IP on every FPGA. In: IEEE International Workshop on Hardware-
Oriented Security and Trust (HOST), pp. 67–70 (June 2008)

12. Lee, J.W., Lim, D., Gassend, B., Edward Suh, G., van Dijk, M., Devadas, S.: A
technique to build a secret key in integrated circuits for identification and au-
thentication application. In: Proceedings of the Symposium on VLSI Circuits, pp.
176–179 (2004)

13. van der Leest, V., Preneel, B., van der Sluis, E.: Soft decision error correction for
compact memory-based PUFS using a single enrollment. In: Prouff, E., Schaumont,
P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 268–282. Springer, Heidelberg (2012)

14. Lim, D., Lee, J.W., Gassend, B., Edward Suh, G., van Dijk, M., Devadas, S.:
Extracting secret keys from integrated circuits. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 13(10), 1200–1205 (2005)

15. Maes, R., Rozic, V., Verbauwhede, I., Koeberl, P., van der Sluis, E., van der Leest,
V.: Experimental evaluation of physically unclonable functions in 65 nm cmos. In:
2012 Proceedings of the ESSCIRC (ESSCIRC), pp. 486–489 (September 2012)

16. Maes, R., Van Herrewege, A., Verbauwhede, I.: PUFKY: A fully functional PUF-
based cryptographic key generator. In: Prouff, E., Schaumont, P. (eds.) CHES
2012. LNCS, vol. 7428, pp. 302–319. Springer, Heidelberg (2012)

17. Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic PUFs from flip-flops on reconfig-
urable devices. In: 3rd Benelux Workshop on Information and System Security
(WISSec 2008), Eindhoven, NL, p. 17 (2008)



A Spatial Majority Voting Technique to Reduce Error Rate of PUFs 51

18. Maes, R., Tuyls, P., Verbauwhede, I.: Low-overhead implementation of a soft deci-
sion helper data algorithm for SRAM PUFs. In: Clavier, C., Gaj, K. (eds.) CHES
2009. LNCS, vol. 5747, pp. 332–347. Springer, Heidelberg (2009)

19. Pappu, R.S.: Physical one-way functions. PhD thesis, Massachusetts Institute of
Technology (March 2001)

20. Simons, P., van der Sluis, E., van der Leest, V.: Buskeeper PUFs, a promising alter-
native to D Flip-Flop PUFs. In: 2012 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), pp. 7–12 (June 2012)

21. Simpson, E., Schaumont, P.: Offline hardware/Software authentication for recon-
figurable platforms. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
pp. 311–323. Springer, Heidelberg (2006)

22. Edward Suh, G., Devadas, S.: Physical unclonable functions for device authentica-
tion and secret key generation. In: Design Automation Conference, pp. 9–14. ACM
Press, New York (2007)

23. Yu, M.-D., Devadas, S.: Secure and robust error correction for physical unclonable
functions. IEEE Design Test of Computers 27(1), 48–65 (2010)

A Analysis of Näıve SMV

In this section, we analyze the efficiency of the näıve SMV scheme. In näıve SMV,
majority voting is performed on all bits in a group: if there are more ‘1’, then ‘1’
is output as the group bit, otherwise ‘0’. Since the PUF results are random and
exhibit little bias, a single flip in the bits with the majority value will overturn
the result of majority voting.

Let p be the PUF bit error rate. Let l0 be the total number of zeros in the
group. Let x be the total number of bit flips in the group, among them x0 is
the number of 0 → 1 flips and x1 is for 1 → 0 flips, where x0 + x1 = x. The
number of zeros in an evaluated result of the group equals to �′0 = �0 − x0 + x1.
A majority voting fault is defined as the condition of ’0’ as majority bit differing
before and after the evaluation.

Flip(�, �0, x0, x1) = ((�0 > ��/2�)⊕ (�0 − x0 + x1) > ��/2�) = true)

The probability of a group bit error which is the probability of a majority
voting flip is defined as:

Pgroup =
∑

0≤�0≤�

∑
0≤x≤�

∑
0≤x0≤x

Flip(�, �0, x0, x− x0) · p1 · p2 · p3

Where the three conditional probabilities are defined as following, and P0 and
P1 are the probability that a bit is equal to 0 and 1 respectively:

1. p1: the probability of having �0 0’s out of �-bit voting group:
(
�
�0

)
P �0
0 P �−�0

1

2. p2: the probability of having x bit flips in a �-bit group:
(
�
x

)
px(1 − p)�−x

3. p3: the probability of having x0 flips to be 0 → 1 flip:
(
�0
x0

)(
�−�0
x−x0

)
/
(
�
x

)



52 P. Koeberl, J. Li, and W. Wu

Figure 1 (right) shows the Pgroup under different group sizes and PUF error
rate p ranging from 1% to 20%. The PUF evaluation results are evenly dis-
tributed, i.e. P0 = P1 = 0.5. The larger PUF bit error rate leads to a larger
group error rate. The blue dashed line illustrates the error rate with group size
1 or no grouping. It’s obvious that grouping is bad in terms of error rate, as the
grouping size increases the rate increases as well. Due to the small bias of the
PUF bit value, the number of ‘0’ and ‘1’ are so close that voting is performed
at the borderline, any small disturbance may easily change the voting result.



Active File Integrity Monitoring

Using Paravirtualized Filesystems

Michael Velten1, Sascha Wessel1, Frederic Stumpf1, and Claudia Eckert2

1 Fraunhofer Research Institution for Applied and Integrated Security
Munich, Germany

{michael.velten,sascha.wessel,frederic.stumpf}@aisec.fraunhofer.de
2 Technische Universität München, Computer Science Department

Munich, Germany
claudia.eckert@in.tum.de

Abstract. Monitoring file integrity and preventing illegal modifications
is a crucial part of improving system security. Unfortunately, current
research focusing on isolating monitoring components from supervised
systems can often still be thwarted by tampering with the hooks placed
inside of Virtual Machines (VMs), thus resulting in critical file operations
not being noticed. In this paper, we present an approach of relocating
a supervised VM’s entire filesystem into the isolated realm of the host.
This way, we can enforce that all file operations originating from a VM
(e.g., read and write operations) must necessarily be routed through the
hypervisor, and thus can be tracked and even be prevented. Disabling
hooks in the VM then becomes pointless as this would render a VM in-
capable of accessing or manipulating its own filesystem. This guarantees
secure and complete active file integrity monitoring of VMs. The exper-
imental results of our prototype implementation show the feasibility of
our approach.

Keywords: File Integrity Protection, Active File Integrity Monitoring,
Paravirtualized Filesystem.

1 Introduction

Protecting the integrity of file objects is a fundamental security objective for
building trustworthy systems and for counteracting malware threats. A promi-
nent example of achieving file integrity protection is the Host-based Intrusion
Detection System (HIDS) Tripwire [1], which detects manipulations to filesys-
tem objects by comparing their hash values to reference hash values in periodic
intervals. However, the problem with Tripwire and similar approaches, including
Linux Security Modules (LSM) based approaches like SELinux [2], is that criti-
cal security components (e.g., the monitoring components) are not encapsulated
from the supervised system. This allows malware to attack and disable the mon-
itoring components in order to conceal attack traces or to hide their presence
altogether.

R. Bloem and P. Lipp (Eds.): INTRUST 2013, LNCS 8292, pp. 53–69, 2013.
c© Springer International Publishing Switzerland 2013



54 M. Velten et al.

Researchers have proposed architectures utilizing virtualization to encapsu-
late the critical security components from the supervised system. The supervised
system is moved into a separate VM while the monitoring components are iso-
lated and placed outside of the VM [3, 4]. This prevents malware located in
the VM from attacking and disabling the external monitoring components. In
order to bridge the semantic gap introduced by the virtualization layer, Virtual
Machine Introspection (VMI) techniques are being deployed for monitoring the
VMs. Security tools such as [5, 6] build upon VMI and similar techniques for su-
pervising guest VMs. However, these tools realize only passive monitoring. This
means that security-relevant events occurring within a VM will be recognized
after they have happened. In particular, passive monitoring is unable to inter-
cept on events and prevent them from happening. To overcome this problem,
researchers have proposed active monitoring where hooks are placed inside the
monitored VMs. These hooks allow to interrupt the control flow within a VM
and give control to the hypervisor before a critical event actually happens [7–9].
However, malware can often circumvent active monitoring by tampering with
the hooks placed inside the VMs, thus resulting in critical file operations not
being noticed on the hypervisor-level.

In this paper, we present our approach of relocating a supervised VM’s entire
filesystem into the isolated realm of the host. The only way of accessing and
manipulating a VM’s filesystem is by communicating with a privileged compo-
nent located in the hypervisor which has exclusive access to the VM’s filesystem.
Therefore, the hypervisor is guaranteed that all file operations originating from
a VM (e.g., read and write operations) are necessarily routed through the hy-
pervisor. This allows us to actively monitor all file I/O operations within a VM
in real-time from “outside of the box” and to possibly prevent them from hap-
pening. Furthermore, this approach solves the aforementioned problem of having
malware disable hooks in the VM as this would render the VM (and as such the
malware itself) incapable of accessing or manipulating the VM’s filesystem. The
communication between guest VMs and the hypervisor is done over the paravir-
tualized Plan 9 filesystem protocol [10], which has the advantage of efficiently
bridging the semantic gap and preserving all relevant file operation information.
Finally, we build upon and improve the work done in [11] to securely measure
all executed binaries of all VMs and store these measurements in a single, multi-
plexed Trusted Platform Module (TPM). This allows for attesting the integrity
of individual VMs in the course of a remote attestation. Another key feature of
our approach is that we enable regular users of VMs to autonomously install
and upgrade software packages in a secure and controlled manner without the
need of requiring the intervention of the administrator of the physical system.

The rest of this paper is organized as follows. Section 2 states our assumptions
and attacker model. Section 3 explains in detail our concept for active monitor-
ing of guest VMs. Section 4 describes our prototype implementation. Section 5
presents our performance evaluation results. Section 6 gives the security analysis.
Section 7 discusses related work. Section 8 concludes this paper.



Active File Integrity Monitoring Using Paravirtualized Filesystems 55

...

Fig. 1. Paravirtualized monitoring architecture with externalized guest filesystems

2 Assumptions and Attacker Model

We assume a virtualized platform where attackers have full access to their re-
spective guest VMs, but no direct physical hardware access. We consider remote
attackers as well as legitimate users of guest VMs that try to compromise the
guest VM and gain control of the guest user space and kernel. We focus on
preventing malicious file manipulations, which includes temporary as well as
persistent file modifications that survive reboots (e.g., the installation of mal-
ware). Another objective is to prevent the execution of unknown and malicious
executables, respectively. We do not consider runtime attacks, e.g., in-memory
modifications, buffer overflow attacks, and code injection.

3 Active Monitoring of Guest VMs

The key aspect of our concept is that we relocate a guest VM’s entire filesystem
from the guest VM to the isolated realm of the host. We then grant only a
privileged component, located in the hypervisor, exclusive access to the guest
filesystems. This means that for all guest VMs, the only way of accessing and
manipulating their own filesystems is by communicating with this privileged
component located in the hypervisor. Therefore, the hypervisor is guaranteed
that all file operations originating from a VM (e.g., read and write operations) are
necessarily routed through the hypervisor. This allows the hypervisor to actively
monitor all file operations of all guest VMs and to possibly prevent them before
they actually happen. Furthermore, this makes sure that it is impossible for an
attacker to bypass the hypervisor (and as such circumvent the monitoring), even
in the event of a completely compromised VM – since otherwise there is no way



56 M. Velten et al.

of accessing the VM’s filesystem. This is an advantage over other approaches
(e.g., [7] and [8]) where disabling hooks in the VM still allows for manipulation
of filesystem objects.

For our concept, we make use of the Plan 9 (P9) filesystem protocol in order
to relocate a guest VM’s filesystem to the host. The P9 protocol is designed as a
distributed filesystem protocol that may be used over the network and which op-
erates on a file-based granularity. The client-server protocol uses messages that
reflect ordinary file operations (for example, messages originating from read or
write system calls). In our case, a P9 client resides in each guest VM and coop-
erates with the P9 server located in the hypervisor. The actual communication
between the P9 clients and the P9 server is done over virtio [12], which is the
de-facto standard of a paravirtualizing framework for Linux. This allows us to
efficiently bridge the semantic gap and to preserve all relevant file operation
information.

Our paravirtualized monitoring architecture is shown in Fig. 1. The hypervisor
runs one or more guest VMs, which are subject to monitoring. Each guest VM
contains a P9 client that translates ordinary file operation requests originating
from within the VM to P9 request messages. These messages will be forwarded
by the respective P9 client to the P9 server located in the realm of the hypervisor.
The P9 server has exclusive access to the filesystems of the guest VMs. The guest
filesystems are located on the filesystem of the host. The P9 server processes the
P9 requests accordingly, for example, by reading a file (and providing it to the
P9 client) or by writing to the filesystem. Note that we prohibit the loading
of kernel modules within VMs in order to prevent attacks utilizing filesystem
caching (cf. Section 6). In particular, we prevent the loading of kernel modules
supporting other filesystems, including virtual and stacked filesystems, as well
as modules enabling filesystems in userspace (e.g., FUSE).

There are four components responsible for monitoring and enforcing file in-
tegrity of the guests. The monitoring components are encapsulated from the
guest VMs (and the hypervisor) in a special security VM (cf. Fig. 1). We place
hooks in all relevant parts of the request handlers of the P9 server in order to
inform the monitoring components of all relevant file operations. This enables
the security VM to monitor all requests originating from a VM’s P9 client try-
ing to access its guest filesystem. The components process the P9 requests and
decide – based on an access control policy – whether a request will be granted
or denied. In particular, the monitoring components are:

File Operation Monitor (FOM). Receives and analyzes all hooked P9 re-
quest messages from the P9 server. Relevant requests will be forwarded to
EDE and PME (see below). The details are described in Section 3.1.

Execution Detection Engine (EDE). Detects when a guest VM is trying to
execute a file based on a heuristic approach which is based on recognizing
distinct sequences of P9 requests. Execution of files will be securely recorded
by storing a corresponding SHA1 hash value in a secure element, in partic-
ular, a TPM [13]. The details are described in Section 3.3.



Active File Integrity Monitoring Using Paravirtualized Filesystems 57

Table 1. Critical Requests of the Plan 9 9P2000.L protocol

P9 Request Potential Impact

write Writing new files or modifying the content of existing files, e.g.,
altering configuration files or executables

rename, renameat Moving files, thus effectively deleting them from one location
within the filesystem and possibly replacing other files with the
content of the renamed file

remove, unlinkat Removing files or directories, e.g., changing the behavior of pro-
grams by deleting their configuration files or hiding traces by delet-
ing log files

lcreate, mkdir Creating new files or directories; may be misused to truncate ex-
isting files

link, symlink Creating a hardlink or symbolic link, e.g., creating a link in a
directory like /bin to a malicious executable in /tmp (where the
creation of arbitrary files may be allowed)

Package Maintenance Engine (PME). Detects when a guest VM is trying
to install, remove, upgrade, or downgrade software packages, and handles
it by utilizing a special VM, called the Complementary Privileged Virtual
Machine (CPVM). The details are described in Section 3.4.

File Protection Enforcer (FPE). Decides whether a P9 request will finally
be granted or denied. The decision is based on whitelist policy rules. The
details are described in Section 3.2.

3.1 Monitoring and Analyzing File Operation Requests

The File Operation Monitor (FOM) is responsible for analyzing P9 request mes-
sages forwarded by the P9 server. In particular, FOM scans for all critical requests
of the utilized 9P2000.L1 protocol [14]. A request is considered critical if it has
the potential to impact the integrity of the guest’s filesystem. Table 1 lists all
critical P9 requests that are handled by FOM along with a description of their
potential impacts.

Note that Table 1 does not list the P9 read request since it cannot be used
to affect a file’s integrity. However, read requests still play an important part
in our concept as they occur as a distinct sequence of P9 requests whenever a
file in the guest VM is going to be executed. Since the P9 filesystem protocol
does not incorporate a dedicated execute request itself, we take advantage of
this sequence of read signature requests in order to come up with a heuristic to
detect the execution of files. The details are described in Section 3.3.

Shadow Copy Write. The P9 write request requires further consideration.
A special case of the write request is that it may exceed the message size of

1 9P2000.L includes the core 9P2000 requests as a subset.



58 M. Velten et al.

the P9 client or the P9 server implementation (or both). The reason is that the
entire (to be written) payload data has to be sent from the P9 client to the P9
server. In such cases, the P9 client splits up a write request w[f, d] (containing
the payload data d for a file f) into several sub-requests w1[f, d1], . . . , wn[f, dn]
[14]. This poses a problem for monitoring write requests because FPE may
not be able to decide upon the partial information of a sub-request wi[f, di] (in
particular, the first sub-request w1[f, d1]) on whether the overall request w[f, d]
should be granted or not. In particular, if FPE only allows a file f to be written
if its future content (i.e., the content of f after applying the write operation
w[f, d]) matches a certain hash value (cf. Section 3.2), knowledge of the entire
future content of f is required in order to be able to calculate the hash value of
f . Note that in this regard, it is not sufficient to only consider the payload data
d. The reason is that a write request may only partially write a file f . In this
case, the payload data d differs from the content of the resulting file f .

We solve this problem by introducing a technique called shadowing, which
works in three phases:

1. FOM detects a write sub-request w1[f, d1] by inspecting the request’s header
data. If f already exists on the guest’s filesystem, FOM creates a shadow copy
f ′ with the same content as f . If f does not exist, FOM creates an empty file
f ′. The shadow copy f ′ is located outside of the guest’s filesystem and only
accessible by FOM. Depending on the size of f , and possibly other factors
(e.g., hardware and performance constraints), the shadow copy may be kept
entirely in RAM.

2. FOM applies the sub-request w1[f, d1] along with all other corresponding
sub-requests w2[f, d2], . . . , wn[f, dn] exclusively to the shadow copy f ′. When
all sub-requests w1[f, d1], . . . , wn[f, dn] have been processed (which is de-
tected by a terminal clunk or fsync operation [10]), FOM signals to FPE
that there is a new write request w[f, d] and passes a pointer to f ′.

3. FPE is then able to calculate the hash value of f ′, which resembles the
potential future content of f , and to finally decide whether the overall
write request w[f, d] should be granted or denied. If it is granted, the
P9 server eventually gets signaled to allow and process all sub-requests
w1[f, d1], . . . , wn[f, dn]. Finally, the shadow copy f ′ gets discarded.

3.2 Enforcing File Protection

The File Protection Enforcer (FPE) is responsible for deciding whether a P9 re-
quest will be granted or denied. The decision making is based on Access Control
List (ACLs) that define which filesystem operations are allowed within guests
and which ones are prohibited. An ACL consists of arbitrarily many Access Con-
trol Entries (ACEs) which determine for a given file f whether certain operations
on f are allowed or denied. There exists one ACL for each VM. The ACL im-
plements a whitelist approach that prohibits all filesystem operations within a
VM unless an operation is explicitly granted by an ACE.



Active File Integrity Monitoring Using Paravirtualized Filesystems 59

Table 2. Critical requests mapped to policy checks using only predicates

P9 Request Predicate Policy Check

write(f,d) f ′ ← w[f, d] : W (f) ∧H(f ′)
rename(f1,f2), renameat(f1,f2) W (f2) ∧D(f1) ∧H(f1)

remove(f), unlinkat(f) D(f)

lcreate(f) W (f)

link(f1,f2), symlink(f1,f2) W (f2) ∧H(f1)

exec(f) (*) E(f) ∧H(f)

(*) virtual request

Policy Predicates and P9 Request Mapping. We define a minimal set of
four predicates that may be used to construct an ACE. All predicates evaluate
to either true or false. The predicates are:

W (f) : (partial) writing of file f allowed?
D(f) : deletion of file f allowed?
E(f) : execution of file f allowed?
H(f) : hash sum of the content of file f matches a reference hash value?

The objective of exclusively using this minimal set of predicates in the ACEs,
is to abstract from the actual P9 requests and to come up with simpler, more
generic ACEs. This has the advantage that one does not have to create ACEs
for each specific P9 request. Instead, it is only required to define for a file f
whether writing W (f), deletion D(f), and execution E(f) is allowed or denied
(the latter of which is the default) – possibly in conjunction with reference hash
values that have to be matched (H(f)). In particular, a file may be associated
with a list of one or more reference hash values 〈h1, . . . , hn〉. The predicate H(f)
evaluates to true iff the content of f matches one of the hash values hi or if the
list of reference hash values contains the wildcard character “∗”. Otherwise,H(f)
always evaluates to false.

For example, an ACE for a file f may define that writing of f is allowed (W
predicate) if the resulting content matches one of several reference hash values
(H predicate). Such an ACE may then evaluate to true not only for P9 write

requests but also for rename, renameat, lcreate, link, and symlink requests,
respectively, as will be explained in the following.

For the actual policy enforcement, the FPE internally maps all critical P9
requests (cf. Table 1) to corresponding policy checks using only these predicates.
The mapping is shown in Table 2 (for clarity, we only illustrate the policy checks
for files and omit the checks for directories). If the overall expression of such a
policy check evaluates to true, the respective P9 request will be granted by FPE.
Otherwise, it will be denied. Note that a write request w[f, d] (which might be a
partial write) will first be applied to a temporary file f ′ (denoted by f ′ ← w[f, d]
in Table 2). This is similar to shadowing as described in Section 3.1. If the content
of the resulting file f ′ matches a valid reference hash value, H(f ′) evaluates to
true. Also note that exec is not an actual P9 request but a virtual request which
is propagated by EDE. This is explained in Section 3.3.



60 M. Velten et al.

Package Policy Rules. We also define predicates to determine which software
package maintenance operations may be autonomously issued by legitimate guest
VM users (cf. Section 3.4). The predicates are:

Pi(p) : installing, upgrading, or downgrading package p allowed?
Pr(p) : removing package p allowed?
Ph(p) : hash sum of the package p matches a reference hash value?

Whenever PME detects an installation, upgrading, or downgrading attempt
of a package p (cf. Section 3.4), respectively, it is propagated to FPE which,
in turn, will check whether the predicate Pi(p) evaluates to true. Furthermore,
the predicate Ph(p) may be used – analogously to H(f) as described above – to
restrict the installation, upgrading, and downgrading of a package p to packages
that match a reference hash value. This allows to selectively permit only certain
packages (and package versions) while prohibiting others, e.g., older versions
with known vulnerabilities. For removing attempts of p, FPE will check whether
the predicate Pr(p) evaluates to true.

3.3 Detecting Program Execution

Detecting and possibly preventing the execution of files within VMs is an impor-
tant part of our concept. Unfortunately, having EDE detect executed programs
from outside of the guest VMs is not straight forward due to the fact that P9
does not distinguish between reading a file and executing a file. Instead, in both
cases a read request is sent by the P9 client and only the VM decides afterwards
whether the read file will be executed. Note that we cannot just extend the
P9 clients (and server) such that they distinguish between read and execute re-
quests (e.g., an executable-bit). The reason is that this information would not be
trustworthy since an attacker may tamper with it (e.g., setting the executable-
bit from 1 to 0) once the VM is compromised. Therefore, we incorporate EDE
which is able to detect the execution of a file within a VM by utilizing a heuristic
approach. EDE is protected from the aforementioned attacks since it is located
in the security VM (cf. Fig. 1) and monitors the VMs from “outside of the box”,
without relying on auxiliary (untrustworthy) information sent from the VM.

Whenever a program is going to be executed within a VM, there will be a
distinct sequence of preceding Plan 9 requests in a defined chronological order,
as described in the following. EDE recognizes this sequence of signature requests
and deduces which file is intended to be executed. FPE may then grant or deny
the execution based on policy rules as described in Section 3.2.

For the execution detection, we consider the Executable and Linking Format
(ELF) [15], which is the standard binary format for executables on many Unix-
like operating systems, including Linux. The heuristic for detecting the execution
of ELF files under Linux, consists of the following signature requests (in their
chronological order of occurrence):



Active File Integrity Monitoring Using Paravirtualized Filesystems 61

1. The execve system call first reads in 128 bytes to determine the binary type
of a file f . Consequently, EDE scans for the corresponding P9 read requests.

2. The ELF loader of the Linux kernel invokes the function kernel read, which
reads 224 bytes from f , starting from offset 52.

3. A subsequent invocation of kernel read reads 19 bytes from f , starting
from offset 276, which gets treated as the path to an interpreter [15].

The above signature requests are usually followed by multiple read requests
that attempt to map the entire file f into memory. Note that EDE is also able
to detect the loading of ELF libraries, which generate signature requests similar
to that of executed binaries. We consider the detection of executed script files
(e.g., shell scripts) out of the scope of this paper. This will be addressed in future
research.

Secure Storage of Integrity Measurements. We build upon and improve
the work done in [11] to measure all executed binaries of all VMs and store
these measurements in a single, multiplexed TPM. This allows for attesting
the integrity of individual VMs (remote attestation). In [11], each VM runs
an adapted version of the Integrity Measurement Architecture (IMA) [16] that
monitors the execution of files, calculates integrity measurements, and forwards
them to a TPM multiplexing agent located in the hypervisor. We improve this
solution by relocating and consolidating the IMA measurement components from
the guest VMs to the well encapsulated security VM. This has the advantage
that only a single measurement agent is required for monitoring the execution of
files of all VMs from “outside of the box” and for storing integrity measurements
(SHA1 values) in the TPM. Additionally, this prevents attackers from tampering
with the monitoring and measuring components, respectively, since they are out
of reach of the guest VMs. In our case, measuring all monitored executables and
storing them in the TPM is done by EDE.

3.4 Autonomous Software Package Installation and Upgrade

Another key feature of our approach is that it is possible for legitimate users
of guest VMs to autonomously install, remove, upgrade, or downgrade software
packages without the need of any manual intervention by the administrator of the
physical system. However, these package maintenance operations are not allowed
to be done in an arbitrary manner, but all such operations have to adhere to
the policy rules enforced by FPE as described in Section 3.2. Also note that it is
not possible for a guest VM user to directly manipulate the package contents as
they are write protected. This prevents illegal modifications of the guest VM by
attackers – which includes legitimate but maliciously acting VM users. Finally,
note that PME may also actively enforce the upgrading of (outdated) packages
within VMs.



62 M. Velten et al.

vm

vm

...

a
p

a 
p

p

vm
a

  p
a

  p
vm

Fig. 2. Installation and upgrading of packages via CPVM

The work flow for installing, removing, upgrading, and downgrading software
packages is depicted in Fig. 2 and will be described in the following.

i) Signaling of Package Maintenance Request. First, a legitimate user
of the guest VM executes the package manager within the VM with the cor-
responding maintenance action a (and parameters) for a package p (step 1 of
Fig. 2). The request is forwarded by the P9 client to the P9 server. The Package
Maintenance Engine (PME) located in the security VM catches and analyzes
the package maintenance request (step 2). In this regard, it is important to note
that PME considers all information gathered from the guest VM as untrustwor-
thy. This means that even if an attacker compromised the guest VM, it is not
possible for him to use the package manager to send fake information in a way
that would allow the circumvention of the policy rules or the malfunctioning of
any other security-critical component outside of the guest VM.

ii) Checking Package Integrity and Permissions. PME sends a query to
FPE in order to determine whether p is a known and valid package on which
the requested action a may be applied. Hence, FPE first checks if the action
a on package p is allowed for the respective VM by evaluating the Pi and Pr

predicates of the corresponding ACE. Following this, FPE verifies the integrity
of the package p by evaluating the Ph(p) predicate of the corresponding ACE
(cf. Section 3.2). The usage of reference hash values allows to selectively permit
only certain packages – and package versions – while prohibiting others (e.g.,
older versions with known vulnerabilities) that may otherwise be exploited by
an attacker to compromise the system. If the hash value is not valid, the main-
tenance process is aborted and an error is signaled to the package manager of
the guest VM.



Active File Integrity Monitoring Using Paravirtualized Filesystems 63

iii) Executing Package Maintenance Request. The package maintenance
process for all guest VMs is executed in a special VM, called the Complementary
Privileged Virtual Machine (CPVM). The CPVM runs in parallel to the guest
VMs and has exclusive permission to install, remove, upgrade, or downgrade
packages of all VMs. A key feature of the CPVM is that it operates (via the
P9 protocol) on the same filesystem (located in the host) as the guest VM vm
that triggered the respective package maintenance request. This is achieved by
attaching vm’s filesystem (on the fly) to CPVM, for the duration of the pack-
age management process. This way, all package management operations done by
CPVM are immediately visible to vm, and vice versa. This prevents synchroniza-
tion problems and guarantees that both VMs always operate on the same state
of the VM (e.g., information on which packages are installed, package versions,
configuration file settings, etc.). Note that the guest VMs only require minimal
(non-security critical) user space modifications of the package management tools
(cf. Section 4.1) but no kernel modifications.

In the following, we justify the execution of the package maintenance opera-
tions within CPVM as opposed to executing them in the guest VM itself. The
latter case could be achieved by having FPE properly adjust the policy rules
such that the creation, deletion, modification etc. of files belonging to a cer-
tain package would be temporarily permitted for a certain VM. However, many
modern package managing tools also allow packages (e.g., Debian packages, as
used in our prototype implementation in Section 4.1) to contain script files that
will be executed before and after a package maintenance operation, respectively.
Parsing these script files (which may contain arbitrarily complex commands) and
extracting their complete semantics (in order to be able to have FPE temporar-
ily grant the corresponding file operations) is a highly complex task. Possible
workarounds include disallowing such scripts or imposing certain constraints on
their contents. However, this would prevent taking advantage of real-life pack-
ages as shipped with modern Unix-like operating systems. Our CPVM approach
solves the aforementioned problems, yet it is fully compatible with full-fledged
Unix-like operating systems (e.g., Linux distributions such as Debian).

Note that our approach does not require to suspend or pause a guest VM vm
while CPVM is executing its software management operations on vm’s filesystem
but both VMs can run in parallel. This is due to the fact that both VMs commu-
nicate with the same P9 server – which deals with the correct synchronization
of P9 requests. As such, the functioning of vm and CPVM is comparable to two
(especially encapsulated) processes operating on the same filesystem within the
realm of an ordinary operating system.

4 Implementation

We have implemented a prototype using the Native Linux KVM Tool (KVM)
[17], version 3.1.rc7, with enabled KVM full virtualization support. In contrast
to QEMU-KVM [18, 19], KVM has the goal to provide a clean, from-scratch,



64 M. Velten et al.

lightweight KVM host tool with only the minimal amount of legacy device em-
ulation [17]. KVM ships with a P9 file server utilizing the virtio framework [12]
for communicating with the P9 clients residing in the guest VMs. The P9 client
functionality is provided by the v9fs client of the Linux kernel, which supports
both the standard 9P2000 protocol and the extended 9P2000.L protocol, the
latter of which we use.

Our host system runs Ubuntu 12.10. Each guest VM runs Debian 6.0 with
Linux kernel 3.5.0 and enabled virtio and P9 support. The Linux guest ker-
nel images reside on the host filesystem and will be passed as a parameter to
KVM whenever a new VM is started. The security VM and CPVM also run
Debian 6.0 with Linux kernel 3.5.0. The attached guest filesystem of CPVM is
passed to KVM as a reference to a symbolic link. PME redirects this symbolic
link dynamically to other guest filesystems as required by package maintenance
requests.

The P9 server hooking functionality is realized by patching all relevant request
handlers of the P9 virtio implementation so that FOM gets signaled and for-
warded all required information. FOM and EDE are implemented in C. PME and
FPE are implemented using a combination of Python scripts and shell scripts.
Furthermore, FPE utilizes SQLite3 for efficiently managing our policy rules.

4.1 Installation and Upgrading of Packages via CPVM

As already mentioned, the guest VMs run Debian, which ships with the package
management tools dpkg and apt-get. Since we do not allow guests to directly in-
stall, remove, upgrade, or downgrade packages on their own (cf. Section 3.4), we
replace the user space tools dpkg and apt-get with our own versions dpkgR and
apt-getR, respectively, both of which forward all package maintenance requests
to PME via the P9 protocol. To avoid having to modify or extend the P9 proto-
col, we just take advantage of regular P9 requests (that will be treated specially
by PME) in order to pass the information of package management action, pa-
rameters, and package name. In particular, we utilize the P9 mkdir request (cf.
Table 1) because it allows us to transfer all required information. PME parses
the request and queries FPE on whether the action for package p is allowed and
whether p is a valid package. If the request gets granted by FPE, PME places a
file (called a job) in a special directory which is only accessible by CPVM. The
job contains the respective command that will be executed by the privileged
CPVM as soon as CPVM gets scheduled by PME. PME attaches the filesystem
of the respective guest VM to CPVM and schedules CPVM. Eventually, CPVM
detects the new job and executes it. Upon successful completion of the job, PME
grants the P9 mkdir request to signal to dpkgR and apt-getR, respectively, that
the package maintenance request has been successfully executed.

5 Performance Evaluation

We assess the performance of our prototype implementation by measuring
its write and read performance, and by comparing the results to three other



Active File Integrity Monitoring Using Paravirtualized Filesystems 65

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

2
20

2
22

2
24

Block size in B

10
-1

10
0

10
1

10
2

10
3

10
4

T
im

e
 i
n
 m

s

Native I/O

Virtio w/o Plan 9

Plan 9 (unmodified)

Plan 9 (our prototype)

(a) write performance

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

2
20

2
22

2
24

Block size in B

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

T
im

e
 i
n
 m

s

Native I/O

Virtio w/o Plan 9

Plan 9 (unmodified)

Plan 9 (our prototype)

(b) read performance

Fig. 3. Comparison of write and read performance of different environments

environments. The testing hardware consists of a PC with an Intel Core i7-
2640M 2.8GHz CPU, 4 GB RAM, and an Intel SSDSA2BW160G3L solid-state
drive containing an ext4 filesystem with a block size of 4kB.

Fig. 3 shows our testing results of the (a) write performance and (b) read
performance benchmarks. We conducted the write and read operations with
block sizes from 1B of up to 16MB (224B) and disabled caching.

The write performance is depicted in Fig. 3a. The time (in ms) to write data is
given as a function of the block size (in bytes). All four examined environments –
native I/O, virtio block without P9, unmodified P9 (plain P9), and our prototype
– perform similarly up to block sizes of approx. 8kB (213B). For larger block sizes,
the P9 environments perform worse than native I/O and virtio block. However,
in our usage scenario such larger block sizes are negligible since I/O operations
are usually done in block sizes of typical filesystems – which normally lie in the
range of 512B to 4kB (which is also the maximum block size for ext4 on most
architectures). There is no significant performance difference between plain P9
and our prototype.

As for the read performance (Fig. 3b), the results look as expected: native
I/O takes the least time to read blocks, followed by virtio block, followed by
the P9 environments – which inherently have the biggest performance overhead.
However, analogous to the write performance, there is no significant performance
difference between plain P9 and our prototype.

6 Security Analysis

In the following, we discuss attacks that target the persistent and non-persistent
manipulation of files as well as the circumvention of the execution detection.



66 M. Velten et al.

An attacker may try to persistently manipulate files within a VM and pre-
vent the propagation of the changes to the P9 server, thus undermining active
monitoring. A possible approach would be to compromise the guest kernel and
tamper with the P9 client such that certain (or all) P9 messages will be blocked
from being propagated to the P9 server. However, as explained in Section 3, all
file operation requests must necessarily be routed through the P9 server because
otherwise it is impossible for a guest VM to access the VM’s filesystem.

For non-persistent file manipulations, an attacker may cache the filesystem (or
parts thereof) locally in RAM and only work on this cached data (e.g., writing
files in memory), thus undermining active monitoring. We protect against these
kind of attacks by prohibiting the loading of kernel modules. In particular, we
prevent the loading of kernel modules supporting other filesystems, including vir-
tual and stacked filesystems, as well as modules enabling filesystems in userspace
(e.g., FUSE). Attacking the kernel itself is only possible with runtime attacks
(e.g., code injection), which is excluded by our attacker model (cf. Section 2).

For circumventing execution detection by EDE (cf. Section 3.3), an attacker
might also employ stacked filesystems. However, we prevent attacks involving
stacked filesystems by prohibiting the loading of kernel modules as described
above. An attacker may also try to circumvent the execution detection by first
mapping an entire file into memory and then executing it from RAM. There
exist orthogonal techniques for preventing such attacks (e.g., [20, 21]), which we
consider out of the scope of this paper. As mentioned in Section 3.3, we currently
do not consider the detection of executed script files (e.g., shell scripts). However,
this is not due to a limitation of our architecture but is rather a matter of effort
to extend the heuristic in future research.

7 Related Work

Tripwire [1] is a commonly known HIDS, which detects changes to filesystem
objects by checking the filesystem in periodic intervals. However, there is no
support for real-time checking. Hence, Tripwire cannot prevent attacks but just
detect them after they have happened. Furthermore, Tripwire is not encapsulated
from the monitored system and as such is susceptible to attacks. I3FS [22] tries
to improve Tripwire by adding real-time integrity checks. However, since the
supervising agent and the relevant databases are located within the realm of the
monitored system, I3FS is also vulnerable to attacks.

In [9], Zhao et al. implement active monitoring in a virtualized environment.
They try to bridge the semantic gap between disk blocks and logic files with the
help of the block tap library blktap [6]. However, they still allow the modifica-
tion of files in security-critical directories (e.g., /etc) while only logging these
modifications, thus being incapable of preventing potential attacks. Our active
monitoring approach allows VMs to autonomously upgrade software packages in
a controlled manner, thus implicitly enabling the secure and restricted modifi-
cation of files in security-critical directories.

HIMA [23] provides hypervisor-based active monitoring of critical guest
events and guest memory protection. However, their described approach requires



Active File Integrity Monitoring Using Paravirtualized Filesystems 67

considerable effort for bridging the semantic gap. In contrast, our approach is
very efficient in preserving the semantic knowledge of file operation events within
VMs on a high-level abstraction by utilizing the Plan 9 protocol.

Lares [7] and Xenprobe [8] place hooks in the guest VMs in order to trace
syscalls. However, these hooks can be attacked and disabled from within the VM.
Hence, the hypervisor is not able to reliably monitor the VMs. Our approach of
relocating the guest VM’s filesystem from the realm of the guest VM to the host
guarantees that all file operations originating from a VM are necessarily routed
through the hypervisor in order to implement reliable monitoring.

8 Conclusion

In this paper, we presented our virtualized architecture that allows for active
file integrity monitoring. The key idea of our approach is to relocate a super-
vised VM’s entire filesystem into the isolated realm of the host such that all
file operations must necessarily be routed through the hypervisor. This allows
for complete active monitoring and the prevention of critical filesystem events.
In contrast to existing active monitoring approaches, our technique has the ad-
vantage that hooks placed inside the VMs are not prone to manipulation by
malware. The reason is that disabling hooks in a VM inevitably renders the
VM incapable of accessing or manipulating its own filesystem (provided by the
respective hook). Another key feature of our approach is that we enable regular
users of VMs to autonomously install and upgrade software packages in a secure
and controlled manner, without the need of requiring the intervention of the
administrator of the physical system. Finally, we securely measure all executed
binaries of all VMs and store these measurements in a single, multiplexed TPM.
The experimental results of our prototype implementation show the practicality
of our approach.

Acknowledgements. We would like to thank our colleagues Julian Horsch and
Steffen Wagner for fruitful discussions and valuable comments. This work was
partly supported by the Federal Ministry of Economics and Technology (BMWi)
through grant 01MD11012.

References

1. Kim, G.H., Spafford, E.H.: The design and implementation of Tripwire: A file
system integrity checker. In: Proceedings of the 2nd ACM Conference on Computer
and Communications Security, pp. 18–29. ACM (1994)

2. Smalley, S., Vance, C., Salamon, W.: Implementing SELinux as a Linux security
module. NAI Labs Report 1, 43 (2001)

3. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architec-
ture for Intrusion Detection. In: Proc. Network and Distributed Systems Security
Symposium, pp. 191–206 (2003)



68 M. Velten et al.

4. Nance, K., Bishop, M., Hay, B.: Virtual machine introspection: Observation or
interference? IEEE Security & Privacy 6(5), 32–37 (2008)

5. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Antfarm: Tracking pro-
cesses in a virtual machine environment. In: Proceedings of the USENIX Annual
Technical Conference, pp. 1–14 (2006)

6. Payne, B.D., de Carbone, M.D.P., Lee, W.: Secure and flexible monitoring of virtual
machines. In: Twenty-Third Annual Computer Security Applications Conference,
ACSAC 2007, pp. 385–397 (2007)

7. Payne, B.D., Carbone, M., Sharif, M., Lares, W.L.: An architecture for secure ac-
tive monitoring using virtualization. In: IEEE Symposium on Security and Privacy,
SP 2008, pp. 233–247. IEEE (2008)

8. Quynh, N.A., Suzaki, K.: Xenprobes, a lightweight user-space probing framework
for xen virtual machine. In: USENIX Annual Technical Conference Proceedings
(2007)

9. Zhao, F., Jiang, Y., Xiang, G., Jin, H., Jiang, W.: VRFPS: A Novel Virtual
Machine-Based Real-time File Protection System. In: Proceedings of the 2009 Sev-
enth ACIS International Conference on Software Engineering Research, Manage-
ment and Applications, SERA 2009, Washington, DC, USA, pp. 217–224 (2009)

10. Van Hensbergen, E., Minnich, R.: Grave Robbers from outer space using 9P2000
under Linux. In: Proceedings of the Annual Conference on USENIX Annual Tech-
nical Conference, ATEC 2005, p. 45. USENIX Association, Berkeley (2005)

11. Velten, M., Stumpf, F.: Secure and Privacy-Aware Multiplexing of Hardware-
Protected TPM Integrity Measurements among Virtual Machines. In: Kwon, T.,
Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 324–336. Springer,
Heidelberg (2013)

12. Russell, R.: Virtio: towards a de-facto standard for virtual I/O devices. ACM
SIGOPS Operating Systems Review 42(5), 95–103 (2008)

13. Trusted Platform Module, Main Specification, Level 2, Version 1.2, Revision 116
(2011), http://www.trustedcomputinggroup.org/resources/
tpm main specification

14. Plan 9 – 9P2000.L Protocol, https://code.google.com/p/diod/w/list
15. Tool Interface Standard (TIS) – Executable and Linking Format (ELF) Specifica-

tion (May 1995), http://refspecs.linuxbase.org/elf/elf.pdf
16. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of a

TCG-based integrity measurement architecture. In: Proceedings of the 13th Con-
ference on USENIX Security Symposium, SSYM 2004, vol. 13. USENIX Associa-
tion, Berkeley (2004)

17. Native Linux KVM Tool, https://github.com/penberg/linux-kvm
18. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: the Linux virtual

machine monitor. In: OLS 2007: Proceedings of the Linux Symposium, vol. 1, pp.
225–230 (June 2007)

19. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings of
the Annual Conference on USENIX Annual Technical Conference, ATEC 2005.
USENIX Association, Berkeley (2005)

20. Wessel, S., Stumpf, F.: Page-based Runtime Integrity Protection of User and Kernel
Code. In: 5th European Workshop on System Security (2012)

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
https://code.google.com/p/diod/w/list
http://refspecs.linuxbase.org/elf/elf.pdf
https://github.com/penberg/linux-kvm


Active File Integrity Monitoring Using Paravirtualized Filesystems 69

21. Litty, L., Lagar-Cavilla, H.A., Lie, D.: Hypervisor support for identifying covertly
executing binaries. In: Proceedings of the 17th Conference on Security Symposium,
SS 2008, pp. 243–258. USENIX Association, Berkeley (2008)

22. Patil, S., Kashyap, A., Sivathanu, G., Zadok, E.: I3FS: An in-kernel integrity
checker and intrusion detection file system. In: Proceedings of the 18th Annual
Large Installation System Administration Conference, LISA 2004 (2004)

23. Azab, A.M., Ning, P., Sezer, E.C., Zhang, X.: HIMA: A Hypervisor-Based Integrity
Measurement Agent. In: ACSAC, pp. 461–470. IEEE Computer Society (2009)



Remote Policy Enforcement for Trusted Application
Execution in Mobile Environments�

Fabio Martinelli2, Ilaria Matteucci2,
Andrea Saracino1,2, and Daniele Sgandurra2

1 Dipartimento di Ingegneria dell’Informazione,
Università di Pisa, Pisa, Italy

name.surname@iet.unipi.it
2 Istituto di Informatica e Telematica,

Consiglio Nazionale delle Ricerche, Pisa, Italy
name.surname@iit.cnr.it

Abstract. Both in the cloud and mobile environments, a large number of online
services is daily accessed through smartphones and tablets. Since several secu-
rity, safety and trust concerns may arise when using these services, providers
may require a usage policy to be enforced on the devices while accessing these
services. This kind of policy enforcements enables service providers to have as-
surance that remote devices are in an acceptable state when using the provided
service, according to their terms and conditions.

In this paper, we propose a framework which allows service providers to have
assurance about the enforcement of some functional policies directly on the de-
vice. The proposed framework inserts an enforcer into the client’s device, which
is responsible for enforcing the provider’s policy to abide by the terms and con-
ditions of the service. To assure the integrity of the enforcer and of the policy,
the framework exploits Trusted Computing techniques to remotely attest the en-
forcer’s measurements. Preliminary experiments and a first prototype implemen-
tation for Android-based smartphones suggest that the approach is both viable
and effective.

1 Introduction

Mobile devices are used to access a large number of online services, such as e-banking,
multimedia streaming, location services, videogames and social networking. Since some
security and safety concerns may be raised when using these online services, providers
may be willing to have some assurance that, when using them, devices are in a well-
know, and acceptable, state. As an example, it is safe if no key-logging software is
active on the device during an e-bank transaction, due to the sensitive data exchanged.
Hence, a safe usage of online services may require the definition of specific behaviors

� The research leading to these results has received funding from the EU Seventh Framework
Programme (FP7/2007-2013) under grant n. 256980 (NESSoS), n. 257930 (Aniketos), from
PRIN Security Horizons funded by MIUR with D.D. 23.10.2012 n. 719, and EIT ICT Labs
activity 13077.

R. Bloem and P. Lipp (Eds.): INTRUST 2013, LNCS 8292, pp. 70–84, 2013.
© Springer International Publishing Switzerland 2013



Remote Policy Enforcement for Trusted Application Execution 71

for the remote clients. These behaviors forbid actions that are incompatible with the
service itself.

The set of the correct expected behaviors defined by a provider constitutes a provider
policy. The definition and enforcement of a policy should provide a safe service usage
both from the user and provider point of view and may also be part of an agreement
on the service conditions between the user and the provider. In fact, in this scenario,
the provider may grant a determined Quality of Service (QoS) only if the user behavior
is compliant with a certain specification. For example, a video-streaming provider may
grant the streaming of high definition videos with a negligible latency, assuming that the
available bandwidth is higher than a predefined threshold. However, supposing that the
user is filling the bandwidth using other network-exhausting programs (e.g., through
torrent, download manager, etc.), the QoS of the agreement cannot be provided. The
monitoring of the effective behaviors, to discover if there are policy violations, can be
hard to implement in real-scenarios since (i) provider policies may concern behaviors
of third-party applications, OS, users or other components that are not controlled by the
provider itself; (ii) it may be deceived by malicious applications installed on a device.

To overcome these issues, we propose a provider policy enforcement framework
based upon remote attestation. The proposed framework allows providers to have assur-
ance that service policies are enforced by remote devices when using their services. To
this end, policy compliance is applied by a global enforcer running on the device, which
monitors all the security-relevant events on a mobile device. The enforcer periodically
submits policy reports to the service provider. To ensure that both the enforcer and the
policies have not been compromised, or faked, the framework exploits a Trusted Plat-
form Module (TPM) on the device to build a chain-of-trust. In this way, the provider
can have assurance that, when enforcing the policy, the remote device is in a trusted
state.

Contributions. The contributions of the paper are multifold and include the following:

– we propose a remote measurement framework to provide assurance to service
providers about the enforcement of policies on remote devices when accessing their
services;

– we discuss the format of the policy to be globally enforced on remote devices: the
policy is sealed with the application, and it specifies acceptable behaviors that are
compliant with the terms of service;

– we provide a protocol for both attesting the initial state of the device and to alert
the provider in case of policy violations;

– we discuss the first prototype implementation and the first results.

Outline of the Paper. The paper is organized as follows. Section 2 recalls some back-
ground notions related to the Trusted Computing Platform and to the Android Frame-
work. In Sect. 3 we describe in detail the architecture of the proposed framework. Section
4 presents the first prototype of the framework along with some examples of the policies
instantiated to some real use cases. Section 5 discusses some related works while Sect. 6
concludes by proposing further extensions.



72 F. Martinelli et al.

2 Background

In this section we recall some notions about Trusted Computing, Android system, and
the main components requested to build a remote attestation service.

2.1 Trusted Computing

One prominent framework of integrity measurement is promoted by the Trusted Com-
puting Group (TCG), which is an industry consortium that defines specifications for
hardware and software components [1]. The standard TCG measurement basically re-
quires the computation of SHA-1 cryptographic hash of critical software components as
soon as they are loaded into the system. The TCG guidance for measurement includes
the Trusted Platform Module (TPM) as a hardware device to securely store and report
measurement values through SHA-1 hash. This architecture provides a good framework
for determining the integrity during software initialization. Since the TCG framework
is pretty complex, we detail here some of its main components:

– RTM (Root-of-Trust for Measurement) is a on-device chip capable of performing
reliable integrity measurements. This is the root of the chain of transitive trust.

– CRTM (Core Root-of-Trust for Measurement) is the small set of instructions that
are executed by the platform when it acts as the RTM.

– RTS (Root-of-Trust for Storage) is the part of the framework responsible for main-
taining a not-modifiable summary of values of integrity digests and the sequence
of digests.

– RTR (Root-of-Trust for Reporting) is the part of the framework that reliably reports
information held by the RTS.

– PCR (Platform Configuration Register) are the set of physical, and tamper-proof,
registers containing a digest of integrity digests.

– TPM (Trusted Platform Module) is used to implement all the functions defined in
the TCG specification and includes the set of Root-of-Trust with shielded locations
and protected capabilities.

– TSS (TPM Software Stack) is a library used by higher-level services that facilitates
the use of the TPM.

In the following, we describe in more detail the TPM functionalities.

TPM and MTM. The TPM acts as a root-of-trust in the process that builds and con-
figures the software environments and it ensures that a system has loaded its software
properly. Moreover, it protects secrets such as asymmetric and symmetric keys. The
TPM has a set of registers that are protected from the system software. The TPM im-
plements two operations on each register content: extend and quote. The extend
operation takes a value V as input and computes the SHA-1 hash of the current register
content and V. This function is used to compute and store the hash of new values. In-
stead, in a quote operation, the TPM generates a message with the register contents
and signs it with a private key protected by the TPM.



Remote Policy Enforcement for Trusted Application Execution 73

Fig. 1. Android Architecture (From [2])

The Mobile Trusted Module (MTM) is both a security device and an approved TCG
specification [3] [4] for mobile devices. The specification for mobile devices differs
from TPM specifications by introducing the concept of secure boot and by specifying
the implementation of the MTM as a functionality rather than as a physical implemen-
tation in hardware and, finally, by taking into account the support of several coexisting
MTMs in the same device. As an example, some of these may enforce discretionary
policies (e.g.., MTMs exposed to user applications) whereas others may enforce manda-
tory security policies(e.g., the device manufacturer MTM).

2.2 Android

Android is an open source Operating System (OS) designed for mobile devices, such
as smartphones and tablets, which currently has the largest share of the mobile device
market. Android is a complex framework divided in several functional blocks and levels
(Figure 1). The lowest level is a Linux kernel, cross-compiled through a toolchain, in
order to run on mobile device architectures, i.e. ARM processors. Some binaries that can
be commonly found on desktop distributions have been removed, to produce a lighter
kernel more suitable to mobile devices. Applications (apps) run at higher level (Ap-
plication Level) in a sandboxed environment. Each application runs in a virtual ma-
chine called Dalvik Virtual Machine (DVM), which is a Java Virtual Machine optimized
to run on mobile devices. Every instance of the DVM is handled as a different Linux
user, with its own storage and virtual memory space. This ensures application isolation,



74 F. Martinelli et al.

Fig. 2. Client-Provider Architecture

i.e. each application runs in its sandbox and cannot interfere with other running or idle
applications.

Both the application framework and the libraries level offer a large number of APIs
to allow applications to interact with device components and kernel functions. The num-
ber of applications available for Android systems is continuously growing. The official
online market for applications, i.e., Google Play, distributes more than 700K apps. Sev-
eral applications require Internet access to provide a service and are based on a classical
client-server paradigm, where the server provides a service to all the clients (mobile de-
vices) requesting it.

3 Architecture

This section describes the architecture of the proposed framework, and it specifies the
components that have to be ported on Android systems. The architecture is composed
of two main parts: the client-side, i.e. the on-device enforcement mechanism, and the
provider-side part, i.e. the provider policy specification. A high-level view of the system
is shown in Fig. 2.

We first start by describing some real-world use cases to show the viability and the
benefits of the proposed architecture.

Secure Driving. Consider a street navigation software, e.g. Google Maps, which
allows users, e.g. in cars, to continuously receive route directions while driving. The
provider of such a software may require that while driving texting and app-browsing are
forbidden to avoid possible distractions while driving that may pose serious risks to the
safety of the driver1. In fact, if the application is used, this means that the user may be

1 This could be based upon the speed of the user/device, e.g. to avoid forbidding messaging apps
while walking.



Remote Policy Enforcement for Trusted Application Execution 75

in a potential dangerous situation. Hence, an example of a remote policy enforcement
is to block all the operations that require a user manual interaction to avoid possible
distractions while driving.

Flight Mode. Usually, while on board of a plane passengers are asked to keep their mo-
bile phones in Flight Mode (radio interface down) for the entire duration of the flight,
as the radio interface may interfere with the airplane system. In such a situation, the air-
line company may enable users to download an application that constantly updates their
phones through Wi-Fi on the current plane position2, weather condition of the final desti-
nation, delay if any. In such a scenario, a policy to be enforced on the device is to disable
the telephony radio interface and only allow Wi-Fi to access on-board services while
flying.

Real Location. The provider of a location-based service may require that no services of
location obfuscation are active on the device. Location-based services provide a reliable
service only if the given location is correct. In such a scenario, a policy to be locally
enforced on the device may be based on a black-list of applications, known to obfuscate
the location, that cannot run on the device while the location-based service is active

Game Fairness. Online games are known to be populated by unfair players that try to
cheat to gain more popularity / points or simply to provide denial of service both to the
service provider and other players. As an example, users may exploit some applications
to simulate a heavy network latency, slowing the reaction of their adversaries. In this
scenario, a game-provider would like to forbid the usage of cheating applications when
the user is playing its online video-game.

3.1 Provider-Side Architecture

Service providers may require to have some assurance that, when using their online
services, remote devices are in a well-known, and acceptable, state. Hence, in the pro-
posed framework, users access online services through apps developed and distributed
by the provider itself that are shipped together with a policy to be enforced. A policy
is a formal complete specification of the acceptable security-relevant behavior allowed
to applications executed on the platform [5]. Policies may also concern user or OS be-
haviors and may be expressed using (i) several formalisms, such as formal specification
languages [6], (ii) high-level or natural language, or (iii) execution graphs. To enforce
a policy, the behaviors that are of interest should be constantly monitored, by verifying
that they match the ones described in the policy, otherwise they should be forbidden.

Policy Format. Each provider policy is written in eXtensible Markup Language (XML)
using a nested tag structure to specify allowed and disallowed actions. In the current im-
plementation the full list of XML tags enables control on the following elements:

– Blacklist and whitelist of installed or running applications.
– Usage of network interfaces, such as data connection, Wi-Fi, Bluetooth and NFC.

2 E.g., on Windows Phone devices, during flight mode it is possible to enable Wi-Fi.



76 F. Martinelli et al.

Table 1. Policy Specification

<policy default_reaction={deny, report, lower_trust}>
<networking>

<wifi reaction={deny, report, lower_trust}> {enabled,disabled} </wifi>
<radio reaction={deny, report, lower_trust}> {enabled,disabled} </radio>
<bluetooth reaction={deny, report, lower_trust}> {enabled,disabled} </

bluetooth>
<nfc reaction={deny, report, lower_trust}> {enabled,disabled} </nfc>

</networking>
<telephony>

<call reaction={deny, report, lower_trust} time_per_day=[1,1440]
number_per_day=[1,inf] direction={outgoing, incoming}> {enabled,
disabled} </call>

<sms reaction={deny, report, lower_trust} number_per_day=[1,inf] direction={
outgoing, incoming}> {enabled,disabled} </sms>

<mms reaction={deny, report, lower_trust} number_per_day=[1,inf] direction={
outgoing, incoming}> {enabled,disabled} </mms>

</telephony>
<location>

<gps reaction={deny, report, lower_trust} time_per_day=[1,1440]> {enabled,
disabled} </gps>

<cell_location reaction={deny, report, lower_trust}> {enabled,disabled} </
cell_location>

<ip_location reaction={deny, report, lower_trust}> {enabled,disabled} </
ip_location>

</location>
<input>

<touchscreen reaction={deny, report, lower_trust}> {enabled,disabled} </
touchscreen>

<keyboard reaction={deny, report, lower_trust}> {enabled,disabled} </
keyboard>

<side_button reaction={deny, report, lower_trust}> {enabled,disabled} </
side_button>

<voice_input reaction={deny, report, lower_trust}> {enabled,disabled} </
voice_input>

</input>
<output>

<ringtone reaction={deny, report, lower_trust}> {enabled,disabled} </
ringtone>

<speakerphone reaction={deny, report, lower_trust}> {enabled,disabled} </
speakerphone>

</output>
<app_running>

<app1 package_name={package_name1}> {enabled,disabled} </app1>
<app2 package_name={package_name2}> {enabled,disabled} </app2>
...
<appn package_name={package_name1}> {enabled,disabled} </appn>

</app_running>
<app_installed>

<app1 package_name={package_name1}> {enabled,disabled} </app1>
<app2 package_name={package_name2}> {enabled,disabled} </app2>
...
<appn package_name={package_name1}> {enabled,disabled} </appn>

</app_installed>
</policy>

– Enabled input mechanisms, e.g. touch-screen, physical keyboard, voice commands,
etc.

– Outgoing voice traffic, SMS/MMS messages, raw data through network interfaces.
– Black list and white list of contacts.
– Usage of location providers.



Remote Policy Enforcement for Trusted Application Execution 77

The full policy specification language is described in Table 1. The policy can also be ex-
tended by adding new XML tags to control more smartphone elements. Each XML tag
specifies the policy for a critical device component using a nested structure. The possi-
ble value for each tag is either enabled or disabled, where disabledmeans that
the component cannot be used. Through attributes it is possible to define finer grained
policies. By default each component is enabled. The attribute default reaction
of the policy tag specifies the default reaction for policy violations. This reaction can
be customized for each component using the reaction attribute of each policy sub-
tag. The criticality order is, from the less critical to the most critical: lower trust,
report, deny.

To implement these specifications on Android devices, the framework needs to
update the AndroidManifest.xml file. In Android, every application comes in
the form of an APK file. Android application package file (APK) is the file for-
mat used to distribute and install application software. Every APK must have an
AndroidManifest.xml file in its root directory. The manifest presents essential
information about the application components and security relevant authorization that
the application requires to work correctly. Since the policy is part of the applica-
tion (APK), we have decided to express the policy in XML so to be included in the
AndroidManifest.xml file. This file is bound to the application by means of digi-
tal signature, to ensure the integrity of both application and policy. When installing the
application, the user accepts the provider policy, which will be enforced on the device.

3.2 Client-Side Architecture

In this section we detail the on-device components required to support the integrity
measurement/reporting and policy enforcement.

Enforcer. The enforcer is a multi-layer component, which monitors the action per-
formed on the device, and enforces the provider policy. In the current implementation,
the monitoring is performed both at application-level and kernel-level, but this compo-
nent can be extended to enforce policies and monitor behaviors at any level. When the
enforcer detects a behavior that is non-compliant with a policy, the enforcer executes a
reaction, which is an action specified in a policy to react to a performed misbehavior.
Examples of reactions are:

– Deny: the misbehavior is blocked before it takes place;
– Report: the provider is notified about the non-compliance of the device/application

with the policy;
– Trust Lowering: the trust level of the client is lowered. Different strategies may be

applied towards clients with low trust levels.



78 F. Martinelli et al.

Fig. 3. Remote Attestation Protocol

In the current prototype, the enforcer has been implemented by modifying the system
at the application level and inserting a Linux module at kernel-level. The part of the
enforcement at application level monitors the device interfaces activities, like GPS,
Wi-Fi, Bluetooth and NFC. This component also controls and handles the events of
outgoing and incoming phone calls and SMS/MMS messages. The kernel module tracks
all the running processes and is responsible of stopping (or reporting, or lowering the
trust level of, according to the policy) the applications that violate a policy.

Trusted Policy Enforcement. Integrity of the client-side architecture is assured through
usage of Trusted Computing. The Trusted Computing building blocks that have to be
included on the Android platform have been described in [16], and are the following:
a Root-of-Trust for Measurement (RTM), a Root-of-Trust for Storage and Reporting
(RTS/RTR) and a Static Chain of Trust (SCoT). To build the Chain-of-Trust, the Linux
kernel is enhanced by including the Integrity Measurement Architecture (IMA). The
enforcer exploits a minimal TSS implementation for PCR extend operations, to al-
low its measurement functions to communicate the results to the TPM, and for PCR
quote to enable the trustworthy reporting of the stored value registers of the PCR to
the remote provider.

The framework requires a verification of the initial device integrity through a set of
measurements on its configuration, which includes a set of hash computations of the
code of its kernel and of the running applications. The root-of-trust is rooted to the
physical platform TPM. Hence, to measure the initial integrity of the device, starting
with the TPM, the following steps are required. Firstly, the TPM applies a set of mea-
surements on the boot-loader, so that from now on, all the steps can be measured from
boot to kernel loading and its modules. Attestation requires that the measurements of
the device are certified by the keys stored in the TPM and that the provider can establish
trust in the device’s integrity based upon these measurements. By computing the hash of
the running software, signed by the private key of the TPM, the provider can be assured
of the trustworthiness of the data received. Then, further integrity measurements are
performed by IMA, ported for Android, which communicates with the TPM to safely
measure, and store the results of, all the executables loaded on the device as well as the
Dalvik VM, run-time libraries and the enforcer.



Remote Policy Enforcement for Trusted Application Execution 79

Fig. 4. Trusted Chain

These steps establish the first chain-of-trust up to the Dalvik VM and the enforcer.
Then, the enforcer is responsible for ensuring that the chain-of-trust reaches the con-
sidered application. To this end, the enforcer continuously monitors the device status
according to the received policy, i.e. by forbidding any unacceptable behavior and/or
by reporting the misbehavior to the service provider. Once the attestation tokens (PCR
quote and measurements logs) are received by the service provider, which acts as a
challenger, the service provider needs to verify the trustworthiness, and policy compli-
ance, of the remote device. This basically means to validate the digital signature on the
quotes. This step is necessary to verify that a genuine TPM vouches for the measure-
ments logs that, hence, are not fake and unmodified. To verify this, the service provider
requires the public portion of Attestation Identity Key (AIK), which is issued using by
a certification authority. The AIK is used for platform authentication, platform attesta-
tion and certification of keys. The whole chain-of-trust of the proposed framework is
depicted in Fig. 4.

4 Preliminary Tests

This section reports a brief description of the current implementation on Android de-
vices and presents some experiments with some example policies.

4.1 Current Prototype

In the current prototype, since no Android devices include a MTM module, some MTM
emulators exist that implement their functionalities in software. Since we only need few



80 F. Martinelli et al.

Fig. 5. On-Device Framework Architecture

of these functionalities, we have implemented a simple MTM emulator that provides
TPM quote and protected storage only as a kernel module, called kTPM. The functions
exported by kTPM can be called either by the kernel itself, through the IMA (modi-
fied to call these functions, i.e. the communication with the TPM is emulated through
these two functions) and the enforcer, which includes the TSS (Trusted Software Stack)
that communicates directly with kTPM. This communication is implemented by a pro-
tocol on a shared buffer in the /proc/ directory, where basically the TSS writes the
requested action and the parameters, then it loops until results are written by the kTPM.

As shown in Fig. 5, the enforcer is composed of several components, divided in two
parts. The first part is the enforcer at the application-level (aEnforcer), and the second
one at the kernel-level (kEnforcer). The aEnforcer includes the policyReader, which
takes as input the policy in XML format. The aEnforcer also includes the sensorCon-
troller and interfaceController, which are used to monitor and control the activities of
the various sensors and network interface. As an example, it can shutdown interfaces on
request if the policy requests so. Finally, the aEnforcer also includes the minimal TSS
implementation to directly communicate with kTPM.

The kernel-level part of the enforcer, i.e. the kEnforcer, communicates bidirection-
ally with the application-part through the /proc/kenf file. As an example of policy
enforcement, the kEnforcer may kill all the processes related to an application that vio-
lates a policy.

4.2 Experimentations

We have tested the prototype in all the use-cases described in Sect. 3 by simulating the
environment. To this end, we first have coded four simple applications that emulate the



Remote Policy Enforcement for Trusted Application Execution 81

functionalities requested by each scenario, e.g. a simple game for the Game Fairness
scenario and the corresponding policy. The provider is emulated through a simple PHP
server that sends the APK file of the tested applications with the manifest file including
the policy and communicates with the emulator and then listens for communications
through an exported interface of a Web Service.

In all of the four tests, the policy has been correctly enforced: as an example, as soon
as an action violates the policy, the application has been killed by the the kEnforcer or
the aEnforcer has reported the misbehavior to the server/provider. In the following, we
report all the XML policies used in the tests.

Table 2. Policy Specification of Secure Driving Use-Case

<policy default_reaction="deny">
<telephony>

<call direction="outgoing">disabled</call>
<sms direction="outgoing">disabled</sms>
<mms direction="outgoing">disabled</mms>

</telephony>
<input>

<touchscreen>disabled</touchscreen>
<keyboard>disabled</keyboard>
<side_button>disabled</side_button>

</input>
</policy>

Secure Driving. This policy is active only when the navigation mode of the software
is active, which is after the user has chosen the destination and is driving. To avoid
that the user get distracted by the smartphone, all interaction that require an active user
interaction have been disabled. The user can only interact with the device using voice
controls. The full policy is described in Table 2.

Table 3. Policy Specification of Flight Mode Use-Case

<policy default_reaction="report">
<networking>

<radio>disabled</radio>
</networking>
<app_installed>

<app_1 package_name="com.myflightcompany.surfandfly">enabled</app_1>
</app_installed>

</policy>

Flight Mode. This policy mandates that the user keeps the radio interface of her phone
disabled during flight. This is a safety requirement that should be enforced when the
user is on-board. The policy is violated if the user enables the radio interface or unin-
stall the application, e.g. trying to avoid the policy enforcement. In both cases, the
enforcement strategy is report so that the server, together with the cabin crew of the
airplane, will know if the policy has been violated and who is violating the policy.
The full policy is described in Table 3.



82 F. Martinelli et al.

Table 4. Policy Specification of Game Fairness and Real Location Use-Cases

<policy default_reaction="deny">
<app_running>

<app_1 package_name="com.myfakelocator.fakelocator">disabled</app_1>
</app_running>

</policy>

Real Location and Game Fairness. This policy forbids programs able to forge the user
location to run while the provider location service is running. Similarly, a list of known
cheating programs for online videogames may be blacklisted using the same technique.
The full policy is described in Table 4.

5 Related Work

The design and implementation of Integrity Measurement Architecture (IMA), a secure
integrity measurement system for Linux, is discussed in [8]. IMA enables automatic
measurement of all software, such as program, libraries, and kernel modules, and it
can also be used to measure static data files when specified by the software. [9] dis-
cusses an access control architecture that enables corporations to verify the integrity
of a remote client and establish trust into its ability to enforce a security policy before
allowing the client to access corporate Intranet services. Property based attestation [10]
[11] is a framework to describe the behavior of the platform to be attested with respect
to security-related requirements. As an example, a property may state that a platform
has built-in mechanisms to conform to the privacy laws, or that it strictly separates pro-
cesses from each other. With property attestation, a verifier is securely assured of secu-
rity properties of the execution environment of the verified platform without receiving
detailed configuration data. Semantic integrity [12] is a measurement approach targeting
the dynamic state of the software during execution and, therefore, providing fresh mea-
surement results. This approach can provide increased flexibility for the challenger, be-
cause the integrity monitor can examine the current state of a system to detect semantic
integrity violations. Prima [13] is an extension of the Linux IMA system, that measures
information flow integrity and can be verified by remote parties. [14] presents a frame-
work to protect a mobile application at run-time through the use of TCG technologies.
Application developers define an application policy that is enforced locally on the de-
vice. Examples of such policies are controlling which users can run the applications or
what kind of results they can observe. A framework for remote attestation, implemented
on the Android platform is presented in [15]. However, the presented framework is only
used to verify the device integrity, ensuring that no unknown software is running on the
device. [16] proposes an attestation approach for Android smartphones that integrates
TCG and the Android’s permission system, in particular by attesting the permissions
used by the installed applications to a remote party at run-time. The authors of [17]
propose a malware prevention architecture for smartphones that exploits applications
signatures, process authentication and verification. The proposed framework allows a
smartphone to run only trusted applications, e.g., signed applications, and those that are



Remote Policy Enforcement for Trusted Application Execution 83

not modified. The trust of an application is a function of the application signature and
MTM and is propagated through the processes through process authentication. Differ-
ently from the previous approach, the framework proposed in this paper is the first one
that exploits Trusted Computing to verify the remote enforcement of provider policies.
Finally, Mobile device management (MDM) [18] is a way to monitor and manage mo-
bile devices deployed across mobile operators, enterprises by distributing applications,
data and configuration settings over-the-air.

6 Conclusion and Future Work

In this paper we have presented a policy enforcement system for Android applications
that access online services. Policies are given by service providers, to enforce both
safety and security for the device and for the user. Policy enforcement is assured through
an enforcement module included in the Android system and a Trusted Computing Plat-
form, which ensures the integrity of reports sent to the server. We have presented a
policy specification formalism that exploits XML language and the modification re-
quested to include our system on Android devices. The proposed approach enables the
definition and enforcement of provider policies, which users have to accept to access the
service. The current implementation exploits an emulated MTM to implement the func-
tions of Trusted Computing, which are requested to assure authenticity and integrity of
the reported device status.

A first future extension of this work consists in including our framework on mobile
devices with a real MTM. To the best of our knowledge, currently there are no de-
vices that include both the MTM and the Android OS. Afterward we are planning to
test our framework in an enterprise environment that uses the Bring Your Own Device
paradigm with employers, by considering finer grained policies that takes in account
context information. Finally, we plan to reduce the number of modifications requested
to a standard device by requiring the provider to include into a single bundle both the
application and the enforcer, along with the policy.

References

1. Pearson, S.: Trusted Computing Platforms, the Next Security Solution. Trusted Computing
Group Administration, Beaverton (2002)

2. Wikipedia: Android operating system (2013),
http://en.wikipedia.org/wiki/Android_(operating_system)

3. Trusted Computing Group: Mobile phone work group mobile trusted module specification,
version 1.0, revision 7.02 (2013)

4. Trusted Computing Group: Mobile phone work group mobile reference architecture (2013)
5. Greci, P., Martinelli, F., Matteucci, I.: A framework for contract-policy matching based on

symbolic simulations for securing mobile device application. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2008. CCIS, vol. 17, pp. 221–236. Springer, Heidelberg (2008)

6. Aktug, I., Naliuka, K.: Conspec – a formal language for policy specification. Electron. Notes
Theor. Comput. Sci. 197(1), 45–58 (2008)

http://en.wikipedia.org/wiki/Android_(operating_system)


84 F. Martinelli et al.

7. Bente, I., Dreo, G., Hellmann, B., Heuser, S., Vieweg, J., Von Helden, J., Westhuis, J.: To-
wards permission-based attestation for the android platform. In: McCune, J.M., Balacheff,
B., Perrig, A., Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) TRUST 2011. LNCS, vol. 6740, pp.
108–115. Springer, Heidelberg (2011)

8. Sailer, R., Zhang, X., Jaeger, T.: Design and implementation of a TCG-based integrity mea-
surement architecture. In: Proceedings of the 13th Conference on USENIX Security Sympo-
sium, vol. 13, p. 16 (2004)

9. Sailer, R., Jaeger, T., Zhang, X., van Doorn, L.: Attestation-based policy enforcement for
remote access. In: CCS 2004: Proceedings of the 11th ACM Conference on Computer and
Communications Security, pp. 308–317. ACM, New York (2004)

10. Sadeghi, A.R., Stüble, C.: Property-based attestation for computing platforms: caring about
properties, not mechanisms. In: NSPW 2004: Proceedings of the 2004 Workshop on New
Security Paradigms, pp. 67–77. ACM, New York (2004)

11. Chen, L., Landfermann, R., Löhr, H., Rohe, M., Sadeghi, A., Stüble, C.: A protocol for
property-based attestation. In: Proceedings of the First ACM Workshop on Scalable Trusted
Computing, pp. 7–16. ACM, New York (2006)

12. Petroni Jr., N., Fraser, T., Walters, A., Arbaugh, W.: An Architecture for Specification-Based
Detection of Semantic Integrity Violations in Kernel Dynamic Data. In: Proc. of the 15th
USENIX Security Symposium (2006)

13. Jaeger, T., Sailer, R., Shankar, U.: PRIMA: policy-reduced integrity measurement architec-
ture. In: Proceedings of the Eleventh ACM Symposium on Access Control Models and Tech-
nologies, pp. 19–28. ACM, New York (2006)

14. Zhang, X., Parisi-Presicce, F., Sandhu, R.: Towards remote policy enforcement for runtime
protection of mobile code using trusted computing. In: Yoshiura, H., Sakurai, K., Rannen-
berg, K., Murayama, Y., Kawamura, S. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 179–195.
Springer, Heidelberg (2006)

15. Nauman, M., Khan, S., Zhang, X., Seifert, J.-P.: Beyond kernel-level integrity measurement:
Enabling remote attestation for the android platform. In: Acquisti, A., Smith, S.W., Sadeghi,
A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 1–15. Springer, Heidelberg (2010)

16. Bente, I., Dreo, G., Hellmann, B., Heuser, S., Vieweg, J., Von Helden, J., Westhuis, J.: To-
wards permission-based attestation for the android platform. In: McCune, J.M., Balacheff,
B., Perrig, A., Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) TRUST 2011. LNCS, vol. 6740, pp.
108–115. Springer, Heidelberg (2011)

17. Ugus, O., Westhoff, D.: An mtm based watchdog for malware famishment in smartphones.
In: Eichler, G., Küpper, A., Schau, V., Fouchal, H., Unger, H. (eds.) IICS. LNI, vol. P-186,
pp. 251–262. GI (2011)

18. Joseph, A.: Mobile device management-brave new horizon or basic plumbing? (2013),
http://www.devicemanagement.org/content/view/20754/152/

http://www.devicemanagement.org/content/view/20754/152/


Towards Policy Engineering for Attribute-Based

Access Control�

Leanid Krautsevich, Aliaksandr Lazouski,
Fabio Martinelli, and Artsiom Yautsiukhin

Istituto di Informatica e Telematica Consiglio Nazionale delle Ricerche
name.surname@iit.cnr.it

Abstract. Attribute-based Access Control (ABAC) was recently pro-
posed as a general model which is able to capture the main existing
access control models. This paper discusses the problems of configuring
ABAC and engineering access policies. We question how to design at-
tributes, how to assign attributes to subjects, objects, actions, and how
to formulate access policies which bind subjects to objects and actions
via attributes.

Inspired by the role mining problem in Role-based Access Control, in
this paper we propose the first attempt to formalise ABAC in a matrix
form and define formally a problem of access policy engineering. Our
approach is based on the XACML standard to be more practical.

Keywords: ABAC, policy engineering, access control, attributes,
attribute mining problem (AMP), role mining.

1 Introduction

Attribute-based Access Control (ABAC) [1] was recently proposed as a gen-
eral model which is able to capture the main existing access control models,
like Discretionary Access Control (DAC), Mandatory Access Control (MAC),
and Role-based Access Control (RBAC). The core components of ABAC are
attributes assigned to all entities, e.g., subjects, objects, actions. Access policies
define conditions (predicates over attributes) when access requests are permit-
ted. Although ABAC provides a rich flexibility in defining access policies, there
are a lot of challenges regarding a conceptual and formal definition of the model.

This paper discusses problems of configuring ABAC and engineering access
policies. We question how to design attributes, how to assign attributes to sub-
jects, objects, actions, and how to formulate access policies which bind subjects
to objects and actions via attributes. To the best of our knowledge, currently
there is not even a formal definition of these problems for ABAC neither solu-
tions. We see a role mining in RBAC [2] as the most relevant problem which
might be extrapolated and used to address similar problems of ABAC.

� This work was partly supported by EU-FP7-ICT NESSoS (256980) and PRIN Se-
curity Horizons funded by MIUR with D.D. 23.10.2012 n. 719, and EIT ICT Labs
activity 13083.

R. Bloem and P. Lipp (Eds.): INTRUST 2013, LNCS 8292, pp. 85–102, 2013.
c© Springer International Publishing Switzerland 2013



86 L. Krautsevich et al.

Role mining, introduced in 2003 [3], gained a lot of attention in last years and
a large number of different approaches to the problem were proposed [4–6]. Role
mining is generally considered as the automatic creation of roles, assignment of
subjects to roles and roles to permissions (object-action pairs). Frank et al. [2]
specify three aspects of a role mining problem: (i) a formal definition, (ii) an
algorithm, and (iii) quality measures of the algorithm.

It is convenient to use matrices for defining the role-mining problems formally
[4, 2, 6]. Matrices help to capture relations between subjects and permissions
(UPA), subjects and roles (UA), and roles and permissions (PA). Operations
on matrices allow expressing the required relations (e.g., UPA = UA × PA)
and perform simplifications, if necessary.

Inspired by the role mining problem, in this paper we propose the first attempt
to formalise ABAC in a matrix form and define formally a problem of engineering
access policies. Our approach is based on XACML model, an open standard of
ABAC proposed by OASIS [7] and widely used in industry and research. We
define only the most general problem, and leave the space for further detailed
elaboration of the problem for future research, when concrete scenarios are to
be considered. We only propose a definition of the problem, and leave possible
algorithms and their quality measurements for the future work. We show that
the role mining problem is a specific case of policy engineering problem.

The paper is structured as follows. In Section 2 we provide a simple for-
malisation of ABAC model, based on XACML. Section 3 contains the basics
for multidimensional matrix used for our model. We provide a matrix form of
ABAC formalisation in Section 4. In Section 5 the policy engineering problem for
ABAC is defined and exemplified for RBAC case. Finally, we provide discussion
(Section 6), related work (Section 7), and conclusions (Section 8).

2 General ABAC Model

We recall important notions relevant to the ABAC model. Currently, there is
not a formal definition of the general ABAC model. However, the first steps
towards definition were done by Jin et al. [1] where the authors presented ABACα

model. ABACα is developed to include existing models for access control such
as DAC, MAC, and RBAC. Moreover, there is an OASIS standard XACML [7]
that defines a language for access control policies for ABAC. Jin et al. [1] focus
on the basic, minimal features of ABAC, when the XACML standard is ready
for a practical use. In this paper we formalise the core ABAC features close to
the XACML standard to make our approach closer to practice. Naturally, we are
not able to capture all features of XACML. In the paper we focus on attribute
assignment, rules definition, and simple policy decision making. Moreover, we
operate with four possible decisions used in XACML. We leave formalisation of
policies for the future work.

The essential goal of any access control model is to guarantee that only legit-
imate subjects have permission to access objects. Following XACML, suppose
there is a set S of subjects s ∈ S, a set O of objects o ∈ O, a set Act of possible



Towards Policy Engineering for Attribute-Based Access Control 87

actions act ∈ Act (e.g., “read”). We also may add environment to the model,
but skip this part for simplicity. We define a set of all entities in the system as
E = S ∪O ∪Act. We assume an attribute as a function ATTR which assigns a
value to an entity e ∈ E such that:

ATTR : E �→ D (1)

where D is a finite set of values, i.e., the domain of the attribute. For example,
an attribute function mapping S �→ N may specify the age of the subject.

The set of rules maps attributes into one of four possible outcomes:

RULE :

n⊗
∀ia=1

(Dia) �→ {⊥,�,�,∅} (2)

where by
n⊗

∀ia=1

we mean, that a RULE function requires n attribute values of

entities. It is important to note, that to identify the used value precisely we need
to specify a triple: the entity (to which the attribute belongs to), the attribute
(we consider), and the value. In Equation 2 the information about the entity
and the attribute is present only implicitly, but in the following we will need to
specify the triple explicitly. Note, that a rule does not bind a value to a specific
entity when it speaks about the subject, object, or action of a request. We say
that an attribute is bound by a rule if the rule states exactly to which entity the
attribute belongs to. For example, consider the following rule “access is allowed
only if user John is on vacations”. Here we know, that the value “is on vacation”
of “current work status” attribute must belong to John. Consider a rule “access
is allowed only if the subject has an e-mail from iit.cnr.it domain”. Here we know
that the attribute “e-mail” belongs to a subject, but we do not know in advance
who the subject is. Thus, in the first example we have a bound (to a specific
entity) attribute, when in the second case we speak about a free attribute.

The result of the RULE function is one of four possible values of domain
� = {⊥,�,�,∅}, where � means positive result (e.g., allow access), ⊥ means
negative result (deny access), � means undefined result (e.g., caused by division
by zero), and ∅ means not available or not applicable result. Rules are further
aggregated in policies (and further in policy sets) in XACML, but we skip this
part in our initial model.

Finally, a Policy Decision Point (PDP) should consider all rules (policies and
policy sets in the original XACML standard) and provide the final decision. In
short PDP collects all authorisation decisions provided by the rules and returns
“permit” if at least one rule returns “permit” decision, and “deny” otherwise.

PDP :

nr⊗
∀ir=1

(�ir ) �→ � (3)

Ideally, the result of the PDP should be either � or ⊥, but � and ∅ are also
possible and leave the decision for Policy Enforcement Point.



88 L. Krautsevich et al.

Since matrix form has proven to be convenient for solving the role mining
problem, we aim for a similar matrix form for ABAC model. Indeed, the input
information for the attribute mining problem is simply the number of triples
(direct access control assignments): subject-object-actions, which were allowed
(or denied) in the latest period of time. Such information is a three-dimensional
matrix with dimensions denoting subjects, objects, and actions. Therefore, the
matrix form should explicitly link all functions defined in the current section
and result in direct access control assignments. Such assignments explicitly show
whether a user can perform an action on an object. Finally, using such form we
will be able to define the attribute mining problem.

3 Mathematical Basis

Before we will be able to define our model we would like to specify the math-
ematical basis for our model. In the paper we use multidimensional matrices,
i.e., the matrices which may have an arbitrary number of dimensions. Multidi-
mensional matrices are usually considered as tensors. In contrast, we build our
theory using Multidimensional Matrix Mathematics proposed by Solo [8]. This
mathematics adopts all operations from tensor analysis and keeps it simple and
close to the classical (2-dimensional) matrix mathematics.

In the paper we denote matrixes with bold capital capital letters e.g.,A (when
functions are denoted with capital letters not in bold, e.g., RULE), and minus-
cule letters to denote elements of this matrix, a. Elements always contain indexes
to specify the element, e.g., ai,j . Indexes denote the dimensions of matrices. We
use indexes for matrices (e.g., Ai,j) only when we would like to specify the di-
mensions of the matrix explicitly. In this section we also use sets of indexes. For
example, if we have matrix Ai1,i2,i3 with elements ai1,i2,i3 for brevity we write
AI , where I = {i1, i2, i3}. Let IJK denote any combination of indexes from
sets I = {i1, i2}, J = {j1, j2}, and K = {k1, k2} preserving the order for every
set (e.g., i1, j1, j2, k1, i2, k2) and IJK denote the ordered set of indexes where
all indexes from I are followed by all indexes of J and then are followed by all
indexes of K (e.g., i1, i2, j1, j2, k1, k2).

In the paper we use summation of matrixes, two types of multiplication [8]
and a special diag operation, defined as follows.

Definition 1. Let AI and BI be two matrices of |I| dimensions. Then C =
A+B is also an |I|-dimensional matrix with values cI = aI + bI ;

Definition 2. The multidimensional matrix outer product is multiplication of
every element of one matrix by every element of another matrix. The multidi-
mensional matrix outer product AI ⊗ BK is a multidimensional matrix CIK

every element of which is computed as: cIK = aI ∗ bK .

Definition 3. The multidimensional matrix inner product is defined as a con-
tracted multiplication of elements of both matrixes with different indexes. The
multidimensional matrix inner product AIJ × BJK is a multidimensional ma-
trix CIK every element of which is computed as: cIK =

∑
∀j∈J aIJ ∗ bJK .



Towards Policy Engineering for Attribute-Based Access Control 89

In our work, the elements of all matrices belong to a specific domain of results
� = {∅,�,⊥,�} (we also use �′ = {∅,�} ⊂ � ). Thus, we have to define the
“∗” and “

∑
” (or “+”) operation on the elements of the domain to be able to

apply operations defined in Definitions 1, 2, and 3 on matrices.

Definition 4. Multiplication (“*”) and addition (“+” or
∑

) operations are
defined by two corresponding tables

“*” “+”
� ⊥ � ∅

� � ⊥ � ∅

⊥ ⊥ ⊥ � ∅

� � � � ∅

∅ ∅ ∅ ∅ ∅

� ⊥ � ∅

� � � � �
⊥ � ⊥ ⊥ ⊥
� � ⊥ � �
∅ � ⊥ � ∅

(4)

In the following we will use multiplication of elements to indicate whether
a specific element should be considered (e.g., whether a rule should check the
value of an attribute). The addition operation indicates how considered elements
should be combined (e.g., whether there is at least one value of an attribute
satisfying a rule). Since a rule may result in either ⊥ and � if applicable we will
never meet the addition of ⊥ and � values in our work. For the final combination
of rules (see Equation 3) we use a simple algorithm, which allows access if at
least one rule allows it (similar to deny-unless-permit rule-combining algorithm
in XACML). One observation is useful here: if the access control system only
specifies when access is allowed (�) and simply ignores the rest (∅) then denoting
� as 1 and ∅ as 0 we get usual boolean operations for and and or.

Proposition 1. The operations defined in Definition 4(proofs are in Appendix):

1. ∗ and + are commutative,
2. ∗ and + are associative,
3. ∗ is distributive over +.

Proposition 2. Let us have three multidimensional matrices AIJK , BIML,
CJMN and IJK

⋂
IML

⋂
JMN = ∅.

1. (C×B)×A = C× (B×A).
2. (C ×B)×A = ((C ×A) ×B)T (K;L), where DT (K;L) means transposition,

i.e., interchanging of positions, of indexes from set K and L preserving order.

Two points can be derived from Proposition 2. First, if I = ∅ then B×A =
B ⊗ A, since there are no indexes for contraction. Second, changing the order
of matrices does not change the elements of the resulting matrix, but only the
order of dimensions.

Finally, we define an operation diag which reduces a set of dimensions J of a
matrix to one dimension, using only the diagonal elements of J .

Definition 5. Let A be a multidimensional matrix with dimensions IJK, where
∀jt ∈ J, t = 1...k for some finite k. Then,

C = diagJ(AIJK) ; cI{j}J = aI{j1=j,j2=j,...,jk=j}K (5)

Proposition 3. If matrix AIJK has only one dimension J = {j1}, then
diagJ(AIJK) = AIJK



90 L. Krautsevich et al.

4 Matrix Form for ABAC Model

In this section we define a matrix form of ABAC similar to the one used for
the role engineering [2]. This form is required in order to explicitly link such
entities as subject, object and allowed actions. In other words, at the end of the
modelling process we should get a way to easily say which subject has access
to which object and which action it is allowed to do on the object. Note, that
although a similar link also exists in XACML policies, it is not explicit. For
example, a rule which says that every user from an IT department which has a
permanent position may access a document of a project requires some analysis
before saying that John may access description of work of the project.

4.1 Attribute Assignment

First we consider attribute assignments to different entities specified by functions
ATTR in Equation 1. Let A be a set of all attributes considered in the system,
i.e., for an a ∈ A we have one corresponding ATTR. All functions ATTR may
be considered as a three dimensional boolean matrix:

ATTR = (attrie,ia,id); attrie,ia,id ∈ {∅,�} (6)

ie = 1...|E|; ia = 1...|A|; id = 1...|Dia |
which assigns � to an element if an entity ie = index(e) e ∈ E has the value of
an attribute ia = index(a) a ∈ A equals to id = index(d) d ∈ Dia . By index()
we mean a function which returns the index of the input. In the following we
simply write ia = a. It is very important to note, that in our notations indexes
also explicitly point out the kind of dimension they refer to. This means, that we
should not care much about the order of indexes, since we always can identify
them using the name of indexes.

When we define a matrix we first specify its name and element with all
indexes, e.g., ATTR = (attrie,ia,id), then we specify the values of the ele-
ments (attrie,ia,id ∈ {∅,�}) and finally, we list the ranges of indexes. Indexes
of matrices, also denoting the dimensions, are specified as i with a subscript
pointing to the nature of the dimension, e.g., ie denotes an entity dimension.
Because of this explicit binding the order of indexes is not important in our
work. If we want to refer to a specific element we assign values to the indexes:
attrie=“John′′,ia=“age′′,id=“22′′ . We use superscripts in brackets for subjects (s),
objects (o), actions (act) to denote the corresponding subsets of entities (e.g.,
S = E(s) ⊆ E), attributes (e.g., A(s) ⊆ A), and domains (D(s) ⊆ D). We also
use a specific notation for indexes used only for a subset of entities (e.g., index
(i) for attributes (a) of subjects (s) is ias).

Note, that for computational reasons values are considered specific for each
attribute (i.e., Dia). In this case, one dimension of ATTR matrix will be differ-
ent for different attributes, but this deviation from the classical representation
of matrices does not affect further discussion (but simply requires careful con-
sideration when operations on matrices are defined). Also note, that although



Towards Policy Engineering for Attribute-Based Access Control 91

some attribute domains may be infinite we almost always can make them finite,
e.g., a domain of natural numbers may be truncated at some value (e.g., 100)
and a special value (≥ 100) added to denote the other possible values.

We would like to separate subjects, objects, actions as it is done in XACML
(w.l.o.g., we do not use environmental types):

ATTR(s) = (attr
(s)
is,ias ,ids

); attr
(s)
is,ias ,ids

∈ {∅,�}; (7)

is = 1...|E(s)|; ias = 1...|A(s)|; ids = 1...|D(s)
ias

|
ATTR(o) = (attr

(o)
io,iao ,ido

); attr
(o)
io,iao ,ido

∈ {∅,�} (8)

io = 1...|E(o)|; iao = 1...|A(o)|; ido = 1...|D(o)
iao

|
ATTR(act) = (attr

(act)
iact,iaact ,idact

); attr
(act)
iact,iaact ,idact

∈ {∅,�} (9)

iact = 1...|E(act)|; iaact = 1...|A(act)|; idact = 1...|D(act)
iaact

|

4.2 Rules Definition

Now we need to specify the matrix for RULE functions. For this matrix we need
a set of rules r ∈ R. Every element of set R relates to one RULE function. We
also need to capture the parameters of the RULE function. Here we would like
to recall, that for precise description of the parameters of RULE function we
need to use triples: entity-attribute-value (or separate triples for subject, object,
and action; see Equations 7, 8, and 9). We define RULES matrix for RULE
functions (using the specified triples) as:

RULES = (rulesir ,i1as
...ins

as ,i
1
ds

...ins
ds

,i1ao
...ino

ao ,i1do ...i
no
do

(10)

,i1aact
...i

nact
aact ,i

1
dact

...i
nact
dact

,i1e...i
na
e ,i1a...i

na
a ,i1d...i

na
d
);

rules... ∈ {⊥,�,�,∅}; ir = 1...|R|;
∀ias = 1...|A(s)|; ∀ids = 1...|D(s)|; ∀iao = 1...|A(o)|; ∀ido = 1...|D(o)|;
∀iaact = 1...|A(act)|; ∀idact = 1...|D(act)|;
∀ie = 1...|A|; ∀ia = 1...|A|; ∀id = 1...|D|;

The amount of dimensions in this most generic case is 1 + 2 ∗ ns + 2 ∗ no +
2 ∗ nact + 3 ∗ na, where ns, no, nact, na are the maximal number of attributes
for subject, object, action and bound attributes used for one rule. Since every
rule must be stated for a subject-object-action triple, ns, no, nact cannot be 0,
while bound attributes are optional and na can be 0. For example, if we want
to express a policy, consisting of one rule stating that “a user may get an object
only if the sum of his money at present and possible credit is higher than the
cost of the object”, we have 2 attributes of a subject (money the user has now,
possible amount of a credit for the user) and 1 attribute of an object (cost of
this object), one for action (type of action, e.g., “get”). Thus, ns = 2, no = 1,
and nact = 1 and the amount of dimensions to consider is 1 + 4 + 2 + 2 = 9.



92 L. Krautsevich et al.

It is important to note, that in practice, the table itself should not be defined
manually (unless specific modifications are required), but should be either au-
tomatically derived from the defined rules or found using attribute mining with
different heuristic methods (and then transformed to usual XACML policies).

Now, we are able to see which subject-object-action triples satisfy defined
rules. For this purpose we need to provide the required parameters for RULE
functions. In the matrix form, this means that we need to multiply RULES
matrix by a corresponding ATTR(s), ATTR(o), ATTR(act) or/and ATTR
matrix one time for a required attribute. Thus, in the case of the previous exam-
ple, we need to multiply RULES by ATTR(s) twice, by ATTR(o) once, and
once by ATTR(act). First we consider bound attributes (we hide all dimensions
which do not take part in the multiplication for brevity). Let RULES RES′,
RULES RES′′, RULES RES′′′ be three auxiliary matrices.

RULES RES′ = (...((RULES ×ATTR)×ATTR)× ...×ATTR) = (11)

RULES× (ATTR)na

rules res′ir ,... = (
∑

∀i1e,...,ina
e

∑
∀i1a,...,ina

a

∑
∀i1

d
,...,ina

d

rulesir ,...,i1e...i
na
e ,i1a...i

na
a ,i1d...i

na
d
∗

∗ attri1e...ina
e ,i1a...i

na
a ,i1d...i

na
d

By (ATTR)na we denote the outer matrix product applied several times to
the same matrix (Proposition 2 for the proof). Although i1e and i2e denote the
same dimension (i.e., entity) they refer to different entity-attribute-value triples.
Thus, we cannot apply contraction to them computing (ATTR)na .

When we multiply the resulting matrix on ATTR(s), ATTR(o), ATTR(act)

we do not simply do contraction of all indexes, as it was in case ofATTR matrix.
In these cases the dimensions denoting the entities to which the attributes belong
to (i.e., free dimensions) are added to the resulting matrix. Since we would like
to consider one subject, one object and one type of actions we should take the
elements with the same indexes (i.e., apply diag function to Is = {its|t = 1...ns}).

RULES RES′′
ir ,is,... = diagIs(RULES RES′ × (ATTR(s))ns) = (12)

diagIs(RULES RES′′′
ir ,i1s...i

ns
s ,...)

Let Io = {ilo|l = 1...no} and Iact = {ikact|k = 1...nact}. The matrix of result of
rules for subjects performing actions on objects is:

RULES RESir ,is,io,iact = diagIact(diagIo(diagIs(RULES× (ATTR)na)

× (ATTR(s))ns)× (ATTR(o))no)× (ATTR(act))nact (13)

Note, that according to Proposition 2 the order of multiplication changes
only the order of dimensions in the resulting matrix, but not the elements of
the matrix. Thus, we may apply multiplications in any order, respecting the
converged dimensions and diag operations.



Towards Policy Engineering for Attribute-Based Access Control 93

4.3 Access Control Matrix

We know the decisions for every rule with respect to a subject-object-action
triple. A Policy Decision Point (PDP) should consider all rules and provide the
final decision. Let PDPir be the final rules-combining matrix, used by PDP to
combine all rules and make an authorisation decision.

PDP = (pdpir ); pdpir = �; ir = 1...|R| (14)

In short PDP simply collects all authorisation decisions provided by the rules.
Thus, the access control matrix (ACM), which defines which action a subject
may perform on which objects, can be found as follows:

ACMis,ia,iact = RULES RESir ,is,ia,iact ×PDPir (15)

4.4 Example

Assume we consider access control policies for a hospital. We consider four
subjects S = {John, Peter, Paul, Eve} which may access three records
O = {rec1, rec2, rec3} of three different patients {Ada, Felix,Rebecca}. In this
small hospital there are only two departments (surgery and infection departments

(D
(s)
1 = {sur, inf}) in which two doctors {John, Peter} and two nurses {Paul,

Eve}work (D(s)
2 = {doctor, nurse}). Three rules are defined for the access control:

1. rule1: Doctors are allowed to write all patient records ;
2. rule2: Nurses from surgery are not allowed to write the record of Rebecca;
3. rule3: Anyone from infection department can read all records ;

We see, that there are 2 attributes of subjects we should consider: the role
in the hospital and the department the subject belongs to. For object we have
only one parameter: name of the patient. Finally, we would like to consider two
types of access: read and write. Thus, the three matrixes of attributes are:

ATTR(s) =
s1(John)
s2(Peter)
s3(Paul)
s4(Eve)

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣

doctor nurse
� ∅

� ∅

∅ �
∅ �

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

sur inf
� ∅

∅ �
� ∅

∅ �

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎦ (16)

ATTR(o) =
rec1
rec2
rec3

⎡
⎢⎢⎣
Ada Felix Rebecca
� ∅ ∅

∅ � ∅

∅ ∅ �

⎤
⎥⎥⎦ATTR(act) = actw

actr

⎡
⎣write read

� ∅

∅ �

⎤
⎦

(17)

Now we need to model RULES table. We see that we use at most 2 attributes
of a subject in rule 2. As for attributes of object and action we use only one of



94 L. Krautsevich et al.

them maximum. Thus, we need 1 + 2 ∗ 2 + 1 ∗ 2 + 1 ∗ 2 = 9 dimensions. On the
other hand, since we have only one attribute for object and action we can skip
dimensions for them, using only the dimensions for the values of these attributes.
We also see that rules 1 and 2 are defined for the write action only, when rule
3 is defined for the read action. Thus, all elements related to rule 3 for action
read and 1 and 2 for action write are ∅. Therefore, for brevity, we show only
the meaningful parts of the RULES matrix (see Equation 18).

If one wants to read Equation 18 we propose to start unwrapping it from the
middle. Consider any smallest two-by-two matrix with elements easily singled
out in any place of the RULES matrix. Every row in such matrix means either
the role of the subject (marked as “role” for the corresponding rows) or the
department a subject belongs to (we use a mark “dep” for the corresponding

rows). The columns contain values of role (“doctor” for the first (d
(s)
1 ) row and

“nurse” for the second (d
(s)
2 )) or department (d

(s)
1 = sur or d

(s)
1 = inf). We

should not be scared by different meanings (and even different size) of domains
for different rows, since we will apply operations only with rows of similar kind.
Thus, the element of the matrix says whether a subject with a specific value of
an attribute is allowed to do something.

Next, we see these smallest two-by-two matrices are combined in other two-by-
two matrices (for which the smallest matrices are just elements). We see that the
rows again denote roles and departments, and columns denote possible values.
We should not be surprised because we considered the attributes of subjects
twice. Finally, we see that there are three such higher rank matrices (for Ada,
Felix, and Rebecca), which are obviously related to the only object attribute we
consider and its three possible values.

Naturally, we should not forget about action value dimension (read and write)
and three rules. Thus, Equation 19 shows the final matrix. This matrix explicitly
indicates how a rule is applied to a subject-object-action triple.

Finally, the ACM matrix is (using Equation 15):

ACMis,io,iact = (20)
⎡
⎢⎢⎢⎣ rec1

rec2
rec3

⎡
⎢⎢⎢⎣

actw
s1 s2 s3 s4
� � ∅ ∅

� � ∅ ∅

� � ⊥ ∅

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

actr
s1 s2 s3 s4
∅ � ∅ �
∅ � ∅ �
∅ � ∅ �

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦

5 Engineering Access Control Policies for ABAC

Role engineering is a set of activities which aim at finding a suitable set of roles,
user-role and role-permission assignments. Role engineering is considered either
like a top-down approach (when external information about possible roles exists)
or as a bottom-up approach, usually referred to as role mining [4, 2]. Similar to
role engineering for RBAC we specify a policy engineering problem for ABAC.
Here we focus on an attribute mining problem.



Towards Policy Engineering for Attribute-Based Access Control 95

RULES = (18)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
(act)
1 = write; rule1

role
dep

role
dep

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
(o)
1 = Ada

role⎡
⎢⎢⎣

doctor

d
(s)
1 d

(s)
2� �

∅ �

⎤
⎥⎥⎦

⎡
⎢⎢⎣

nurse

d
(s)
1 d

(s)
2

∅ ∅

∅ ∅

⎤
⎥⎥⎦

department⎡
⎢⎢⎣

sur

d
(s)
1 d

(s)
2� ∅

∅ ∅

⎤
⎥⎥⎦

⎡
⎢⎢⎣

inf

d
(s)
1 d

(s)
2� ∅

∅ ∅

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
(o)
2 = Felix

role⎡
⎢⎢⎣

doctor

d
(s)
1 d

(s)
2� �

∅ �

⎤
⎥⎥⎦

⎡
⎢⎢⎣

nurse

d
(s)
1 d

(s)
2

∅ ∅

∅ ∅

⎤
⎥⎥⎦

department⎡
⎢⎢⎣

sur

d
(s)
1 d

(s)
2� ∅

∅ ∅

⎤
⎥⎥⎦

⎡
⎢⎢⎣

inf

d
(s)
1 d

(s)
2� ∅

∅ ∅

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
(o)
3 = Rebecca

role⎡
⎢⎢⎣

doctor

d
(s)
1 d

(s)
2� �

∅ �

⎤
⎥⎥⎦

⎡
⎢⎢⎣

nurse

d
(s)
1 d

(s)
2

∅ ∅

∅ ∅

⎤
⎥⎥⎦

department⎡
⎢⎢⎣

sur

d
(s)
1 d

(s)
2� ∅

∅ ∅

⎤
⎥⎥⎦

⎡
⎢⎢⎣

inf

d
(s)
1 d

(s)
2� ∅

∅ ∅

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
(act)
1 = write; rule2

role
dep

role
dep

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
(o)
1 = Ada

role⎡
⎢⎢⎣

doctor

d
(s)
1 d

(s)
2

∅ ∅

∅ ∅

⎤
⎥⎥⎦

⎡
⎢⎢⎣

nurse

d
(s)
1 d

(s)
2

∅ ∅

∅ ∅

⎤
⎥⎥⎦

department⎡
⎢⎢⎣

sur

d
(s)
1 d

(s)
2

∅ ∅

∅ ∅

⎤
⎥⎥⎦

⎡
⎢⎢⎣

inf

d
(s)
1 d

(s)
2

∅ ∅

∅ ∅

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
(o)
2 = Felix

role⎡
⎢⎢⎣

doctor

d
(s)
1 d

(s)
2

∅ ∅

∅ ∅

⎤
⎥⎥⎦

⎡
⎢⎢⎣

nurse

d
(s)
1 d

(s)
2

∅ ∅

∅ ∅

⎤
⎥⎥⎦

department⎡
⎢⎢⎣

sur

d
(s)
1 d

(s)
2

∅ ∅

∅ ∅

⎤
⎥⎥⎦

⎡
⎢⎢⎣

inf

d
(s)
1 d

(s)
2

∅ ∅

∅ ∅

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
(o)
3 = Rebecca

role⎡
⎢⎢⎣

doctor

d
(s)
1 d

(s)
2

∅ ∅

∅ ∅

⎤
⎥⎥⎦

⎡
⎢⎢⎣

nurse

d
(s)
1 d

(s)
2

∅ ∅

⊥ ∅

⎤
⎥⎥⎦

department⎡
⎢⎢⎣

sur

d
(s)
1 d

(s)
2

∅ ⊥
∅ ∅

⎤
⎥⎥⎦

⎡
⎢⎢⎣

inf

d
(s)
1 d

(s)
2

∅ ∅

∅ ∅

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
(act)
2 = read; rule3

role
dep

role
dep

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
(o)
1 = Ada

role⎡
⎢⎢⎣

doctor

d
(s)
1 d

(s)
2

∅ ∅

∅ �

⎤
⎥⎥⎦

⎡
⎢⎢⎣

nurse

d
(s)
1 d

(s)
2

∅ ∅

∅ �

⎤
⎥⎥⎦

department⎡
⎢⎢⎣

sur

d
(s)
1 d

(s)
2

∅ ∅

∅ �

⎤
⎥⎥⎦

⎡
⎢⎢⎣

inf

d
(s)
1 d

(s)
2� �

� �

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
(o)
2 = Felix

role⎡
⎢⎢⎣

doctor

d
(s)
1 d

(s)
2

∅ ∅

∅ �

⎤
⎥⎥⎦

⎡
⎢⎢⎣

nurse

d
(s)
1 d

(s)
2

∅ ∅

∅ �

⎤
⎥⎥⎦

department⎡
⎢⎢⎣

sur

d
(s)
1 d

(s)
2

∅ ∅

∅ �

⎤
⎥⎥⎦

⎡
⎢⎢⎣

inf

d
(s)
1 d

(s)
2� �

� �

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
(o)
3 = Rebecca

role⎡
⎢⎢⎣

doctor

d
(s)
1 d

(s)
2

∅ ∅

∅ �

⎤
⎥⎥⎦

⎡
⎢⎢⎣

nurse

d
(s)
1 d

(s)
2

∅ ∅

∅ �

⎤
⎥⎥⎦

department⎡
⎢⎢⎣

sur

d
(s)
1 d

(s)
2

∅ ∅

∅ �

⎤
⎥⎥⎦

⎡
⎢⎢⎣

inf

d
(s)
1 d

(s)
2� �

� �

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

RULES RESir,is,io,iact = diagiact (diagio (diagis (RULES × (ATTR(s))2) (19)

× ATTR
(o)

) × ATTR
(act)

) =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rule1 rec1
rec2
rec3

⎡
⎢⎢⎢⎣

actw
s1 s2 s3 s4
� � ∅ ∅

� � ∅ ∅

� � ∅ ∅

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

actr
s1 s2 s3 s4
∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

⎤
⎥⎥⎥⎦

rule2 rec1
rec2
rec3

⎡
⎢⎢⎢⎣

actw
s1 s2 s3 s4
∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

∅ ∅ ⊥ ∅

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

actr
s1 s2 s3 s4
∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

⎤
⎥⎥⎥⎦

rule3 rec1
rec2
rec3

⎡
⎢⎢⎢⎣

actw
s1 s2 s3 s4
∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

actr
s1 s2 s3 s4
∅ � ∅ �
∅ � ∅ �
∅ � ∅ �

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



96 L. Krautsevich et al.

Definition 6. (Basic Attribute Mining Problem (AMP)). Given a set of users
S, a set of objects O, a set of possible actions Act, a set of considered attributes
A and a subject-object-action assignments ACM, find:

– ATTR matrix (or ATTR(s), ATTR(o), ATTR(act) matrixes), i.e., the
values of the attributes entities have.

– RULES matrix, i.e., the amount of attributes used at most for one rule
(ns, no, nact, na); attributes required for every rule; the bound entities the
attributes belong to; values of all attributes required for satisfaction of rules;

The basic AMP is a general and complex problem. One may find a large num-
ber of variations of this problem assuming, that some information is available.
In some cases, ATTR matrix may be known (or at least partially known) a
priori [3]. For example, such information as age of a subject, its position in the
organisation, time of access, a level of criticality of an object may be known in
advance. Naturally, in these cases also the domains of the attributes are known.
Sometimes also ns, and no values may be known (or assumed, or bound). Further
elaborations on the problem, similar to [4] are possible.

The problem for engineering access control policies in more general, can be
defined similar to AMP, where instead of (or in addition to) ACM any rele-
vant information is available (e.g., business process, a structure of an enterprise,
possible losses of incorrect access granting/denying, etc).

5.1 Role Engineering in ABAC

Here we show how your model can be adapted for RBAC case. RBAC assigns
a role to a subject and then maps the role with permissions. Here we consider
RBAC without hierarchy, i.e., so called flat model [9]. Although ABAC model
also is able to use the role as an attribute, it also may work with other attributes
(also attributes of an object, an action, etc.) without the need to create (often
meaningless) auxiliary roles.

First, RBACmodel specifies only when a subject is allowed (i.e., “Permit” deci-
sion) to access an object, anduses “deny” decision otherwise. It does not use neither
explicit “deny” decision, i.e., ⊥, nor “undefined”, i.e., �. Thus, all operations for
matrices are boolean “and” for multiplication and “or” for addition.

There is one attribute we should consider in this case: a role of a subject. Thus,
ATTR(s) contains 3 dimensions, one of which, i.e., attribute dimension, has only
one element, e.g., “role”. Therefore, w.l.o.g., we may consider this matrix as a
two-dimensional boolean matrix which assigns subjects to their roles. ATTR(o)

and ATTR(act) are simple unit matrices, which simply state, that an object is
this object and an action is this action. We need only one attribute for specifying
this. Thus, these two matrixes are also two dimensional unit matrices (similar
to Section 4.4).

RULES matrix needs 1+2∗1+2∗1+2∗1+3∗0 = 7 dimensions. Note, that
attribute dimensions for subject, object, and action have only one element and we
can remove them for simplicity. Thus, we have 4 domains: role, attribute values



Towards Policy Engineering for Attribute-Based Access Control 97

of subject (i.e., role values), attribute values of object (i.e., objects themselves),
attribute values of action (i.e., actions themselves).

Let M be a set of permissions m ∈ M , which may be defined as a pair of an
object and an action allowed on the object [2, 4]. We may define two matrices
RULES PERM and PERM OBJ to break RULES in two:

RULES PERM = (rule permir ,ids ,im
); rule permir ,ids ,im

∈ {∅,�}
PERM OBJ = (perm objim,ido ,idact

); perm objim,ido ,idact
∈ {∅,�}

ir = 1...|R|; ids = 1...|D(s)
1 |; im = 1...|M |; (21)

ido = 1...|D(o)
1 |; idact = 1...|D(act)

1 |;
RULES = RULES PERM×PERM OBJ (22)

rulesir ,ids ,ido ,idact
=

∑
∀im

rule permir ,ids ,im
∗ perm objim,ido ,idact

We define RULES PERM matrix as a three-dimensional binary matrix as-
signing � to the element rule permir=r,ids=d(s),im=m if a rule r assigns a per-

mission m to every subject with an attribute value (i.e., a role) d(s) ∈ D
(s)
1 ,

and ∅ otherwise. Let also define PERM OBJ which assigns � to an element
perm objim=m,ido=d(o),idact=d(act) if a permission m is defined for the attribute

value of object (i.e., object itself) d(o) ∈ D
(o)
1 and for the attribute value of

action (i.e., action itself) d(act) ∈ D
(act)
1 .

In this section we do not strictly keep the required order of indexes to sim-
plify the discussion. This relaxation does not violate the computation, but only
changes the order of indexes (which can be always changed by transposition).

First, consider Equation 19:

RULES RESir ,is,io,iact = ((RULES ×ATTR(s))×ATTR(o))×ATTR(act)

= (RULES PERM×PERM OBJim,io,iact)×ATTR(s) (23)

We removed diag operation, since there is only one dimension which has to be
considered in all three cases (see Proposition 3). For representation reasons, we
use the same matrix PERM OBJ for the result of operation (PERM OBJ×
ATTR(o)) × ATTR(act) denoted as PERM OBJim,io,iact , since in fact, this

operation does not change the matrix (because ATTR(o) and ATTR(act) are
unit matrices), but simply renames the dimensions ido to io and idact to iact.

Now, we add the result of Equation 23 to Equation 15:

ACM = (RULES PERM×PERM OBJ)×ATTR(s))×PDP (24)

= (RULES PERM×PDP)×ATTR(s))×PERM OBJ

Let ROLE PERM = RULES PERM × PDP. We see that this two di-
mensional matrix assigns value � if there is a role-permission assignment, and
∅ otherwise.



98 L. Krautsevich et al.

In role engineering matrixPERM OBJ is considered given. Now, letACM =
ACM′ × PERM OBJ, where ACM′ is a two-dimensional boolean matrix
which means that a subject has a permission. Then, we have, that:

ACM = ACM′ ×PERM OBJ

= (RULES PERM×PDP)×ATTR(s))×PERM OBJ (25)

ACM′ = ROLE PERM×ATTR(s) (26)

Equation 26 is equivalent to RBAC model in a matrix form UPA = UA×PA
[2] which has a number of solutions presented in the literature [4–6].

6 Discussion

The first and the main point we would like to discuss is the complexity of the pro-
posed approach. Indeed, usage of multidimensional matrices makes the compu-
tation and representation hard. The following observation is useful here. Looking
to the matrixes required for role engineering to take into account one attribute
(role) we see that there is a need to specify all subject-role and role-permission
relations, which also highly increase complexity of the task, but this approach
proved to be useful in practice. In this paper we proposed a technique, which
should take into account any number of attributes. Thus, we should not be sur-
prised of increased complexity. Moreover, the process of creation of such matrices
should be automatic, rather than manual. Furthermore, computations can be sig-
nificantly simplified by marking the dimensions, which contain only ∅ symbols.
Thus, there is no need to compute every operation, but only meaningful ones.

One thing we did not consider in the paper is different environmental con-
ditions. Thus, access may be allowed during the working hours, and forbidden
in other time of the day. XACML uses environmental attributes together with
attributes of subject, object and action for analysis of access requests. Such di-
mension can be easily added to the model using the same strategy we apply for
subjects, objects, and actions.

XACML also assumes, that sometimes several subjects may be considered
for one access request. In this case we cannot simply apply diag function in
Equations 13, but must consider all subjects separately. In this article we do not
consider this sophisticated case, but simply note, that our framework requires
little changes for taking this possibility into account.

All in all, the proposed model is the first attempt, to our knowledge, to define
the policy engineering problem for ABAC using a matrix form. Thus, we ac-
knowledge that the proposed model may be simplified (e.g., in defining RULES
matrix) especially, when specific cases of policy engineering problem for ABAC
are used (e.g., when we model RBAC case). We also acknowledge that the model
can be tuned to address the features of XACML more accurately (e.g., addition
of policies and policy sets), but the current version had the main goal to take
into account the core concept of ABAC.



Towards Policy Engineering for Attribute-Based Access Control 99

7 Related Work

ABAC is a generalisation of traditional access control models [1]. It is capable to
express complex security policies and it is resistant against scalability problems
which occur when a number of subjects accessing a resource is enormous. The
recent Usage Control (UCON) model [10, 11] is also an example of ABAC. The
specific features of the UCON model are mutable attributes and continuous
policy enforcement. The XACML framework [7], an open standard proposed by
OASIS, is an example of application-independent ABAC for access control. In
fact, XACML provides a language to express security policies and an enforcement
architecture. Recently, XACML was extended in order to encode usage control
policies and to support the continuous policy enforcement, i.e., it was extended
to capture features of the UCON model [12].

There were several attempts to formalise ABAC. A logic-based formalisation
of ABAC for access control is given in [13]. Crampton and Morisset proposed a
formal language for ABAC that addresses the same problem space as XACML
[14]. UCON formalisation based on temporal logic can be found in [15]. Martinelli
et al. [16] proposed a formalisation based on a process algebra. Although these
approaches are fruitful for automatic evaluation and enforcement of security
policies, they are not suitable for management of attributes and for engineering
of security policies. Management of mutable attributes in UCON was addressed
in [17, 18]. Authors described how the decision making is affected by uncertain
attribute values and how often mutable attributes should be refreshed.

Benefits, shortcomings, and open problems of ABAC models were surveyed
in [19]. Attribute design and engineering of security policies were named as
problems there. Our paper gives a first step towards defining and solving them.

We consider role mining in RBAC as a starting point. Indeed, the role can be
just considered as an attribute, and roles to permissions assignments as a policy.
Role mining, introduced in 2003 [3], gained a lot of attention in last years and
a large number of different approaches to the problem were proposed [4–6, 20].
The authors of these approaches showed that it is convenient to use matrices for
defining formally and solving automatically the role-mining problems.

8 Conclusions and Future Work

In this work we made the first steps towards defining access control policy en-
gineering problem for ABAC. We proposed a matrix-based formalisation of the
ABAC model. Our formalisation is based on the XACML standard, which should
help adapting our findings in practice. We provided the basic attribute mining
problem definition using our formalisation and showed how this bottom-up ap-
proach can be generalised for the policy engineering problem for ABAC.

In the paper we specified a large number of directions for future work: closer
adaptation of the approach to XACML, considering policies and rules-combining
algorithms; elaboration of policy engineering problem for ABAC; reducing the
complexity of the model, etc. Naturally, solutions for the specified problem is
the main future work we need to consider.



100 L. Krautsevich et al.

References

1. Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control model
covering dac, mac and rbac. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-Alfaro,
J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 41–55. Springer, Heidelberg (2012)

2. Frank, M., Buhmann, J.M., Basin, D.: On the definition of role mining. In: Pro-
ceedings of SACMAT 2010, pp. 35–44. ACM (2010)

3. Kuhlmann, M., Shohat, D., Schimpf, G.: Role mining - revealing business roles for
security administration using data mining technology. In: Proceedings of SACMAT
2003, pp. 179–186. ACM (2003)

4. Vaidya, J., Atluri, V., Guo, Q.: The role mining problem: Finding a minimal de-
scriptive set of roles. In: Proceedings of SACMAT 2007, pp. 175–184. ACM (2007)

5. Vaidya, J., Atluri, V., Guo, Q.: The role mining problem: A formal perspective.
ACM TISSEC 13(3), 27:1–27:31 (2010)

6. Lu, H., Vaidya, J., Atluri, V., Hong, Y.: Constraint-aware role mining via extended
boolean matrix decomposition. IEEE TDSC 9(5), 655–669 (2012)

7. OASIS: extensible access control markup language (xacml) version 3.0. (January
2013),
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

8. Solo, A.M.G.: Multidimensional matrix mathematics. In: Proceedings of the World
Congress on Engineering, vol. I, pp. 1824–1850. International Association of Engi-
neers, Newswood Limited (2010)

9. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
nist standard for role-based access control. ACM TISSEC 4(3), 224–274 (2001)

10. Sandhu, R., Park, J.: Usage control: A vision for next generation access control.
In: Gorodetsky, V., Popyack, L.J., Skormin, V.A. (eds.) MMM-ACNS 2003. LNCS,
vol. 2776, pp. 17–31. Springer, Heidelberg (2003)

11. Lazouski, A., Martinelli, F., Mori, P.: Usage control in computer security: A survey.
Elsevier Computer Science Review 4(2), 81–99 (2010)

12. Lazouski, A., Mancini, G., Martinelli, F., Mori, P.: Usage control in cloud systems.
In: Proceedings of ICITST 2012, pp. 202–207. IEEE (2012)

13. Wang, L., Wijesekera, D., Jajodia, S.: A logic-based framework for attribute based
access control. In: Proceedings of FMSE 2004, pp. 45–55. ACM (2004)

14. Crampton, J., Morisset, C.: PTaCL: A language for attribute-based access control
in open systems. In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS, vol. 7215,
pp. 390–409. Springer, Heidelberg (2012)

15. Zhang, X., Parisi-Presicce, F., Sandhu, R., Park, J.: Formal model and policy
specification of usage control. ACM TISSEC 8(4), 351–387 (2005)

16. Martinelli, F., Mori, P., Vaccarelli, A.: Towards continuous usage control on grid
computational services. In: Proceedings of ICAS-ICNS 2005. IEEE (2005)

17. Krautsevich, L., Lazouski, A., Martinelli, F., Mori, P., Yautsiukhin, A.: Integra-
tion of quantitative methods for risk evaluation within usage control policies. In:
Proceedings of ICCCN 2013. IEEE (to appear, 2013)

18. Krautsevich, L., Lazouski, A., Martinelli, F., Yautsiukhin, A.: Cost-effective en-
forcement of access and usage control policies under uncertainties. IEEE Systems
Journal 7(2), 223–235 (2013)

19. Sandhu, R.S.: The authorization leap from rights to attributes: maturation or
chaos? In: Proceedings of SACMAT 2012, pp. 69–70. ACM (2012)

20. Colantonio, A., Di Pietro, R., Ocello, A., Verde, N.V.: Mining stable roles in RBAC.
In: Gritzalis, D., Lopez, J. (eds.) SEC 2009. IFIP AICT, vol. 297, pp. 259–269.
Springer, Heidelberg (2009)

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf


Towards Policy Engineering for Attribute-Based Access Control 101

Appendix

Proposition 4. The operations defined in Definition 4:

1. ∗ and + are commutative,

2. ∗ and + are associative,

3. ∗ is distributive over +.

Proof. The commutative property of + and ∗ follows from the symmetry of
tables defined in Definition 4.

Now consider associative property of “+”: a+(b+c)=(a+b)+c

– Let a = �, then the result of the left part is � is annihilating element of
“+”. The right part is also �, since now we apply annihilating element twice
(a + b and ((a + b) + c)). Note, that this means that if any of the elements
is � then the property holds.

– Let a = ⊥ and b �= � and c �= �. Then ⊥ is an annihilating elements for the
three values which are left and we have the same reasoning that we had for
a = 1.

– Let a = � b �= � b �= ⊥ and c �= � and c �= ⊥. Now � is an annihilating
element

– Let a = b = c = ∅. Trivial.

The proof for associative property of “*” is the same but we should do it other
way round (start with ∅, which is annihilating element for “*”).

Now we prove that a ∗ (b+ c) = a ∗ b+ a ∗ c.

– Let a = �. From the definition of multiplication operator we see that 1∗d = d
for any d. Thus, a ∗ (b+ c) = b+ c = a ∗ b+ a ∗ c).

– Let a = ⊥ and a ∗ c and a ∗ b can be anything, but �.

• Let b be either � or ⊥ then a ∗ b = ⊥. ⊥ plus anything, but � is equals
to ⊥. Then, since b+ c = ⊥ or b+ c = � then a ∗ (b+ c) = ⊥. The same
holds for c = � or c = ⊥

• Let b = �. Then a∗b = � and b+c = �. Thus, a∗(b+c) = � = a∗b+a∗c.
The same holds for c = �

• Let b = c = ∅. a ∗ (b + c) = ∅ = a ∗ b+ a ∗ c.
– Let a = �.

• Let b be either � or ⊥ or � then a ∗ b = �. Moreover, b + c = is
� or ⊥ or � and a ∗ (b + c) = �. Since a ∗ c is either � or ∅, then
a ∗ b+ a ∗ c = � = a ∗ (b+ c). The same holds if c is either � or ⊥ or � ;

• Let b = c = ∅. a ∗ (b + c) = ∅ = a ∗ b+ a ∗ c.
– Let a = ∅ . From the definition of multiplication operator we see that

∅ ∗ d = ∅ for any d. Thus, taking into account that ∅+∅ = ∅ a ∗ (b+ c) =
∅ = a ∗ b+ a ∗ c).

�



102 L. Krautsevich et al.

Proposition 5. Let us have three multidimensional matrices AIJK , BIML,
CJMN and IJK

⋂
IML

⋂
JMN = ∅.

1. (C×B)×A = C× (B×A).

2. (C ×B)×A = ((C ×A) ×B)T (K;L), where DT (K;L) means transposition,
i.e., interchanging of positions, of indexes from set K and L preserving order.

Proof. Let the result of (C×B)×A be D.
dNLK =

∑
IJ(

∑
M (cJMN ∗bIML)∗aIJK) =

∑
IJM ((cJMN ∗bIML)∗aIJK) by

distributive property of ∗ over +. Now, by the associative property of ∗ we have,
that

∑
IJM ((cJMN ∗bIML)∗aIJK) =

∑
JM (cJMN ∗∑I(bIML∗aIJK)) = dNLK

by distributive property of ∗ in reverse direction and commutative property of
+. Thus, D = C× (B×A)

We also see, that dNLK =
∑

IJM ((cJMN ∗bIML) ∗ aIJK) =
∑

IJM ((cJMN ∗
aIJK)∗bIML) =

∑
MN (

∑
J(cJMN ∗aIJK)∗bIML) = d’NKL. Thus, D’

T (K;L)

NKL
=

((C×A)×B)T (K;L) = DNLK �

Proposition 6. If matrix AIJK has only one dimension J = {j1}, then
diagJ(AIJK) = AIJK

Proof. Let C = diagJ(AIJK), then cI{j}J = aI{j1=j}K = aI{j}K . Thus,
C = AIJK �



Author Index

Bender, Jens 17

Eckert, Claudia 53

Fischlin, Marc 17

Koeberl, Patrick 36
Krautsevich, Leanid 85
Kügler, Dennis 17

Lazouski, Aliaksandr 85
Li, Jiangtao 36

Martinelli, Fabio 70, 85
Matteucci, Ilaria 70

Saracino, Andrea 70
Sgandurra, Daniele 70

Stumpf, Frederic 53

Tomlinson, Allan 1

Velten, Michael 53

Wessel, Sascha 53
Wu, Wei 36

Yap, Jiun Yi 1
Yautsiukhin, Artsiom 85


	Preface
	Organization
	Table of Contents
	Session 1: Hardware-Based Security and Applications
	Para-Virtualizing the Trusted Platform Module:An Enterprise Framework Based on Version 2.0 Specification
	1 Introduction
	2 Introducing TPM 2.0
	2.1 Architecture
	2.2 Core Functions

	3 State of the Art for Para-Virtualizing the TPM
	3.1 Para-Virtualized TPM Sharing
	3.2 Enhancing TPM with Hardware-Based Virtualization Techniques

	4 Examining TPM 2.0 Suitability for Para-Virtualizing
	4.1 Endorsement and Storage Keys
	4.2 Protected Storage
	4.3 Integrity Measurement and Reporting

	5 Requirements for Para-Virtualizing TPM 2.0
	6 An Enterprise Framework for Para-Virtualizing TPM 2.0
	6.1 Extended Functions and Additional Memory
	6.2 Command Filter
	6.3 Scheduler
	6.4 Resource Manager
	6.5 Migration Manager
	6.6 Log Manager
	6.7 TPM Manager
	6.8 TPM and Virtual TPM Driver
	6.9 Backup Manager
	6.10 Migration Authority
	6.11 Certificate Authority

	7 Requirements Revisited
	8 Research Challenges
	9 Conclusion
	References

	The PACE|CA Protocol for Machine ReadableTravel Documents
	1 Introduction
	1.1 Augmenting PACE by Cost-Effective Authentication
	1.2 Authentication with Strong Cryptographic Guarantees

	2 Security Model
	3 ThePACE| CA Protocol
	3.1 Protocol Description: Additive Version
	3.2 Protocol Description: Multiplicative Version

	4 Security Analysis
	4.1 Key Secrecy
	4.2 Assumptions for Impersonation Resistance
	4.3 Impersonation Resistance

	5 Security Considerations
	5.1 On the Generic Hardness of KBA
	5.2 On the Necessity of KEA1 and KBA
	5.3 On the Collision Resistance of the MAC

	References

	A Spatial Majority Voting Technique to ReduceError Rate of Physically Unclonable Functions
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions
	1.3 Organization of the Paper

	2 Basic Spatial Majority Voting Scheme
	2.1 PUF Model and PUF Pre-processing Process
	2.2 Our SMV Scheme

	3 Experimental Result
	4 Alternative SMV Scheme for Biased PUF Responses
	5 Combining SMV with the Dark Bits Method
	6 Applications of SMV
	7 Conclusion
	References


	Session 2: Access Control, Integrity and PolicyEnforcement
	Active File Integrity MonitoringUsing Paravirtualized Filesystems
	1 Introduction
	2 Assumptions and Attacker Model
	3 Active Monitoring of Guest VMs
	3.1 Monitoring and Analyzing File Operation Requests
	3.2 Enforcing File Protection
	3.3 Detecting Program Execution
	3.4 Autonomous Software Package Installation and Upgrade

	4 Implementation
	4.1 Installation and Upgrading of Packages via CPVM

	5 Performance Evaluation
	6 Security Analysis
	7 Related Work
	8 Conclusion
	References

	Remote Policy Enforcement for Trusted ApplicationExecution in Mobile Environments
	1 Introduction
	2 Background
	2.1 Trusted Computing
	2.2 Android

	3 Architecture
	3.1 Provider-Side Architecture
	3.2 Client-Side Architecture

	4 Preliminary Tests
	4.1 Current Prototype
	4.2 Experimentations

	5 Related Work
	6 Conclusion and Future Work
	References

	Towards Policy Engineering for Attribute-Based�Access Control
	1 Introduction
	2 General ABAC Model
	3 Mathematical Basis
	4 Matrix Form for ABAC Model
	4.1 Attribute Assignment
	4.2 Rules Definition
	4.3 Access Control Matrix
	4.4 Example

	5 Engineering Access Control Policies for ABAC
	5.1 Role Engineering in ABAC

	6 Discussion
	7 Related Work
	8 Conclusions and Future Work
	References


	Author Index



