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Abstract. In this paper we present a symmetry breaking bifurcation-
based analysis of a Lotka-Volterra model of competing populations. We
describe conditions under which equilibria of the population model can
be uninvadable by other phenotypes, which is a necessary condition for
the solution to be evolutionarily relevant. We focus on the first branching
process that occurs when a monomorphic population loses uninvadability
and ask whether a symmetric dimorphic population can take its place, as
standard symmetry-breaking scenarios suggest. We use Gaussian com-
petition functions and consider two cases of carrying capacity functions:
Gaussian and quadratic. It is shown that uninvadable dimorphic coali-
tions do branch from monomorphic solutions when carrying capacity is
quadratic, but not when it is Gaussian.

Keywords: Symmetry breaking bifurcation, population model, evolu-
tionary stability.

1 Introduction

Polymorphic population models, that is models in which organisms with more
than one value of a specified physical trait can coexist asymptotically in time,
can arise from models that allow only organisms with a single specified trait value
via steady state bifurcations. The states in these bifurcations are the physical
traits and the bifurcation parameters are environmental variables. This kind
of phenomena is typical of systems that exhibit spontaneous symmetry breaking.
Since it is known that spontaneous symmetry breaking is generic for systems with
symmetry [1] (as many common population models such as the Levene model
or the Lotka-Volterra models do), the possibility presents itself that speciation
processes may be driven by symmetry breaking bifurcations. The process by
which a population can split is referred to as disruptive selection by biologists
(see the review by [2]) who often study the evolutionary mechanisms of branching
using complicated stochastic “individual-based” simulations. The work in this
paper shows that many features of population equilibrium models are fixed by
the stability properties of the deterministic dynamical model.

In this paper we present a bifurcation-theoretic analysis of a Lotka-Volterra
model to show how the possibility of stable branching from a monomorphic
population to dimorphic depends on the details of the competition and carrying
capacity functions. In particular, we consider Gaussian competition functions as
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is commonly done, and take two cases for carrying capacity functions: Gaussian
and a quadratic function. An interesting feature is that though the two carrying
capacity models are essentially identical at quadratic order, so that the local
bifurcation behavior near the origin of phenotype space might be expected to be
similar. In fact, the two cases give quite different results.

The basic model under consideration can be written

dnj

dt
= rj [K(xj)−

M∑

k=1

C(xj , xk)nk]nj , (1)

where j = 1, 2, . . . ,M indexes the competing phenotypes, and nj is the popula-
tion of organisms that have phenotype xj , which we assume to be a real number.
The functions C(xj , xk) describe competition between the jth and kth pheno-
types and the function K(xj) gives the carrying capacity for the jth phenotype;
these functions will be discussed below. The function rj is the growth rate, which
has been scaled by K(xj) relative to a normal logistic model in order to simplify
the analysis. Since the basic growth rates and the carrying capacity are all pos-
itive, it follows that the rj ’s have no effect on the stability issues which are the
main topic of this analysis.

We are interested in describing the simplest splitting event: monomorphism to
dimorphism. Therefore it is sufficient to consider a model with three competing
phenotypes (i.e., M = 3), though the results presented for this case generalize to
arbitrary M . More competitors can lead to different long term results, and can
alter the rate at which the morphic types of the population change, but if the
phenomenon of an uninvadable dimporhism cannot occur for three competitors,
it will not be able to occur no matter how many competitors exist, so the present
analysis can be thought of as a necessary conditition for branching that any more
realistic model must be consistent with.

The remainder of this section will be organized as follows. First, general expres-
sions will be derived for the eigenvalues of the jacobian of the system for monomor-
phic and dimorphic populations in terms of the as yet unspecified competition and
carrying capacity functions. Then the idea of invadability of asymptotically stable
equilibria will be discussed. Finally, detailed analyses will be presented for specific
competition and carrrying capacity functions to show that the possibility of stable
branching depends on the specifics of these functions.

2 Stability and Invadability of Equilibria

Before proceeding, we note a property of (1), namely symmetry [1]. This term
refers to a specific mathematical property that has profound effects, but which
will be used only cursorily here. The basic operation of symmetry in this con-
text amounts to the relabeling of phenotypes, which can be thought of as a
permutation of the M indices. Mathematically, the set of such rearrangements
comprises the group SM of permutations on M objects. The key observation is
that the set of M equations (1) is invariant under the operations of Sn. That is,
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the particular equations are permuted among themselves in the same way that
the indices are permuted.

The usefulness of this observation in the current case is that it means that all
equilibrium solutions with a fixed number of nonzero phenotypes, (for example, all
monomorphic solutions) are equivalent, in that each such solution is the image of
all other such solutions under the action of some element of Sn (just pair-wise in-
terchanges in the monomorphic situation). Therefore, only one such solution need
be analyzed, say the solution with n1 = K(x1) and all other nj = 0. Similarly only
one dimorphic solution need be studied, say the one with n1 and n2 nonzero.

2.1 Monomorphism

The local stability of the monomorphic solution nMon
j = K(xj)δj1 is determined

by the eigenvalues of the jacobian matrix evaluated at the monomorphic equi-
librium:

JMon =

⎛
⎝

−2r1K(x1) −r1C(x1, x2)K(x1) −r1C(x1, x3)K(x1)
0 r2(K(x2)− C(x2, x1)K(x1)) 0
0 0 r3(K(x3)− C(x3, x1)K(x1))

⎞
⎠

(2)

which are just the diagonal elements of the matrix, since it is triangular.
The (1, 1) element of JMon is clearly negative, and amounts to the fact that

if an organism with any phenotype is introduced into the environment with no
other organisms present, the population will grow. The (2, 2) and (3, 3) elements
contain the same information as each other, which refers to whether an invading
phenotype x2 or x3 can out-compete a resident population with phenotype x1.
That is, the condition that a resident with phenotype x will be stable against
invasion by a phenotype y can be written

ΛMon(x, y) = K(y)− C(y, x)K(x) < 0. (3)

Note that this result is the same as would be obtained for any number of com-
petitors M .

A property of particular interest is whether the monomorphic equilibrium is
uninvadable, see, e.g., [3], which will be so for some phenotype x = x∗ if the
condition (3) holds for all y �= x∗. Note that ΛMon(x, x) = 0 for all x, which
is intuitively obvious since it amounts to the statement that “invasion” by an
identical phenotype can always occur, so a necessary condition for phenotype
x∗ to be uninvadable is that the function ΛMon(x∗, y) have a critical point as a
function of y for y = x∗, that is,

∂Λ

∂y
(x∗, y)|y=x∗ = 0. (4)

Moreover, the critical point x∗ will, in fact, be univadable if the local extremum
is a maximum, that is, if
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∂2Λ

∂y2
(x∗, y)|y=x∗ < 0, (5)

and will be invadable by all nearby phenotypes if the opposite sign condition
holds. Examples for specific cases will be shown below, but a useful property
that holds for a wide class of competition functions can be seen as follows. We
assume that C(y, x) ≤ 1 for all phenotypes x, y and that equality hold only for
y = x. This is not a strong assumption and can be thought of a a normalization
condition since species with the same phenotype will be maximally competitive.
Under this assumption, ∂C

∂y (y, x)|y=x = 0, and a necessary condition for any

such competition function (such as a Gaussian function) to allow the existence
of an uninvadable monomorphism x∗, is that x∗ must be a critical point of the
carrying capacity function,

K ′(x∗) = 0. (6)

and a sufficient condition for uninvadability is that

∂2ΛMon

∂y2
(x∗, y)|y=x∗ = K ′′(x∗)− ∂2C

∂y2
(y, x∗)|y=x∗K(x∗) < 0. (7)

The opposite sign condition indicates that a resident population with phenotype
x∗ can be invaded by all nearby phenotypes.

2.2 Dimorphism

We next present an analysis that parallels the previous case for the case of di-
morphic solutions. As above, we assume that only phenotypes x1 and x2 have
nonzero populations, the analysis for other pairs of nonzero populations is equiv-
alent. The solution can easily be found to be

nDi
1 =

K(x1)− C(x1, x2)K(x2)

1− C(x1, x2)C(x2, x1)
(8)

nDi
2 =

K(x2)− C(x2, x1)K(x1)

1− C(x1, x2)C(x2, x1)
(9)

nDi
3 = 0. (10)

Note that the numerators of the nonzero populations are identical to the stability
eigenvalue function ΛMon, above, so that the dimorphic solution becomes feasible
(positive) when the monomorphic solution loses stability. This is the signal of a
transcritical bifurcation.

After some simplification, the jacobian matrix at the dimorphic solution can
be written

JDi =

( −r1n
Di
1 −r1C(x1, x2)n

Di
1 −r1C(x1, x3)n

Di
3

−r2C(x2, x1)n
Di
2 −r2n

Di
2 −r2C(x2, x3)n

Di
2

0 0 r3(K(x3) − C(x3, x1)n
Di
1 − C(x3, x2)n

Di
2 )

)

(11)
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Two of the stability eigenvalues of the dimorphic equilibrium are the eigenvalues
of the 2× 2 matrix

( −r1n
Di
1 −r1C(x1, x2)n

Di
1

−r2C(x2, x1)n
Di
2 −r2n

Di
2

)
(12)

which are easily seen to be positive as long as nDi
1 and nDi

2 are positive and
C(x1, x2) < 1 as long as x1 �= x2. The third eigenvalue measures the ability
of a third phenotype (say z) to invade an existing dimorphic population (with
phenotypes x and y), and its sign is determined by the function

ΛDi(x, y, z) = K(z)− C(z, x)−C(z, y)C(y, x)

1− C(x, y)C(y, x)
K(x)− C(z, y)−C(z, x)C(x, y)

1− C(x, y)C(y, x)
K(y).

(13)

As before, note that for fixed x and y, ΛDi(x, y, x) = ΛDi(x, y, y) = 0, so
again, in order for a dimorphic population with phenotypes x∗ and y∗ to be
uninvadable by a third phenotype z, it must be true that Λ(x∗, y∗, z) viewed
as a function of z must have critical points for z = x∗ and z = y∗, and they
must be local maxima. Before considering specific examples, we consider some
issues of a general character relative to the issue of critical behavior for dimor-
phic solutions which is a necessary condition for uninvadability. We assume that
the competition functions C(x, y) obey the conditions C(x, y) = C(y, x) and
∂C
∂x (x, y) = −∂C

∂y (x, y), which are true for many important special cases, such

as any function that depends on x and y through the quantity (x − y)2, i.e.,
C(x, y) = C((x − y)2), of which a Gaussian function is a familiar special case.
Under these assumptions, there is always a class of symmetric dimorphic solu-
tions that satisfies y∗ = −x∗, and for definiteness and simplicity, we will focus on
these solutions in this paper. For the symmetric branching solution, he stability
eigenvalue becomes

ΛDi∗(x, z) = K(z)− C(z, x) + C(z,−x)

1 + C(x,−x)
K(x), (14)

and in this case, the two criticality conditions become identical. Specifically, if
C∗ = C(−x∗, x∗) and C∗′

= ∂C
∂y (y, x

∗)|y=−x∗ , then the critical value x∗ must
satisfy

K ′(x∗)− C∗′

1 + C∗K(x∗) = 0. (15)

Further, if C∗′′
= ∂2C

∂y2 (y, x
∗)|y=−x∗ and C0′′ = ∂2C

∂y2 (x
∗, x∗), a sufficient condi-

tion that ensures that the critical points defined by (2.2) describe an uninvadable
dimorphism is

K ′′(x∗)− C0′′ + C∗′′

1 + C∗ K(x∗) < 0, (16)

and if the opposite sign condition holds then all nearby phenotypes can invade
the dimorphism.
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As a final comment in this section, we mention that including more com-
petitors in the system (1) does not change the previous conclusions. Additional
eigenvalues occurring in such cases are equivalent to ΛDi.

3 Gaussian Competition Functions

In the previous section, we derived conditions for univadable monomorphism
and uninvadable dimorphism in an ecological models of competing populations
with particular values of some phenotype. So far, no assumptions whatsoever
have been made about the carrying capacity function K(x), and only minimal
assumptions about the competition functions C(x, y), specifically that C is a
function of the square of the distance in phenotype space C(x, y) = C((x− y)2),
and that C(x, x) = 1 for all phenotypes x. To proceed, we must be more specific.
In this paper we will take the approach of specifying the competition function
once and for all, and then considering various subcases of carrying capacity. In
particular, we will assume the competition function to be Gaussian C(x, y) =

e
−(x−y)2

2σ2
C , as is commonly done in the biological literature [4,5]. In this case,

the conditions for existence of uninvadable mono- and dimorphism are given
below. Recall from above that for each class of polymorphism, there are two
conditions: a criticality condition in the form of an equation that a phenotype
corresponding to an uninvadable population must satisfy which in practice is
what must be solved for x∗, and an inequality that states that the curvature of
the eigenvalue at the critical point is such that the critical phenotype is a local
maximum of the eigenvalue.

3.1 Univadable Monomorphism

Criticality: K ′(x∗) = 0 (17)

Recall that this condition for uninvadability depends only on the requirement
that C(x, x) = 1 for all x.

Curvature: K ′′(x∗) +
1

σ2
C

K(x∗) < 0 (18)

3.2 Uninvadable Dimorphism

Criticality: K ′(x∗)− x∗

σ2
C

(
tanh(

x∗ 2

σ2
C

)− 1

)
K(x∗) = 0 (19)

Curvature: K ′′(x∗) +
2x∗

σ2
C

K ′(x∗) +
1

σ2
C

K(x∗) < 0 (20)
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4 Gaussian Carrying Capacity: Competitive Exclusion
Principle

We now specialize to Gaussian carrying capacity functions. That is, we will
consider the two carrying capacity functions

K
(1)
G (x) = K0e

−x2

2σ2
K (21)

which describes a single Gaussian distribution centered about the location x = 0
(chosen without loss of generality). There is a great deal of work on the model
above. This is a classic example where the competitive exclusion principle would
be expected to hold, wherein two species competing for a single resource must
result in one species outcompeting the other. We will see that monomorphic
uninvadability can happen in this context, but this univadable state can also lose
stability as ecological parameters are varied, and, as we will see, no uninvadable
dimorphism exists emerges to take its place.

From (17), the only possible uninvadable phenotype is x = 0, and the curva-
ture condition there is

1

σ2
C

− 1

σ2
K

, < 0 (22)

that is, the state that maximizes the carrying capacity is uninvadable as long as
the variance of the carrying capacity is less than the variance of the competition
function. This is well known in the biology literature, [6,4]. If we define the
ecological parameter whose variation we study to be ρ = (σK

σC
)2, the condition

for an uninvadable monomorphism at x = 0 to exist can be written ρ < 1. This
is a well known result.

Next we consider dimorphic solutions. Recall that dimorphic solutions become
asymptotically stable in the subspace associated with the dimorphic phenotypes
when the monomorphic solution loses asymptotic stability. As mentioned pre-
viously, this occurs by virtue of a transcritical bifurcation as ρ crosses one.
However, as we will see, none of the symmetric dimorphisms can possibly be
uninvadable, meaning that when the monomorphic solutions become unstable
due to variation of a parameter, no stable, univadable dimorphism emerges from
a branching event as we will see does occur in the two resource case.

To see all this, note that the condition (19) that determines possible critical
symmetric dimorphisms x∗ becomes

K ′(x∗)
K(x∗)

= − x∗

σ2
K

=
1

σ2
C

[tanh(
x∗ 2

σ2
C

)− 1] (23)

which can be solved to obtain

x∗ =
σC√
2

√

ln(
2σ2

K − σ2
C

σ2
C

) =
σC√
2

√
ln(2ρ− 1) (24)

from which it is seen that the critical symmetric dimorphic solution exists only
if ρ > 1, which is the same as the condition for the monomorphism with x = 0 to
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become unstable. The curvature condition for uninvadability of the symmetric
dimorphism at x∗ can be written

K(x∗)
σ2
K

[ρ− 1 + ln(2ρ− 1)
1− 2ρ

2ρ
] < 0 (25)

or

k(ρ)
.
= [ρ− 1 + ln(2ρ− 1)

1− 2ρ

2ρ
] < 0 (26)

and it is seen in Figure (1) that the condition is never satisfied for ρ > 1, meaning
that the dimorphic solution can be invaded by all nearby phenotypes. This result
is also known by biologists who suggest that the end result of this property might
be a population with a continuum of phenotypes [5,6,7,8].

0.5 1 1.5 2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

ρ

k(
ρ)

Fig. 1. Curvature of critical branching dimorphism as a function of ρ =
(

σK
σC

)2

. Since

k(ρ) > 0 for all ρ > 1, the dimorphism is always invadable.

This result implies that no evolutionarily stable coalitions with more than one
phenotype can exist.

5 Quadratic Carrying Capacity: Stable Coexistence

To conclude, we show that if instead of Gaussian, the carrying capacity is a
quadratic function

K(x) =

{
K0(1− (xa )

2), |x| ≤ a
0, |x| > a

(27)

where a is a measure of the region of parameter space where the capacity is
nonzero, that there can be a bifurcation in which an uninvadable monomorphism
loses stability as an uninvadable dimorphism branches from the monomorphic
critical point. Since the quadratic function is identical to a Gaussian at quadratic
order near the critical point when a√

2
is identified with σK , it is interesting that
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the details of the functions away from the bifurcation point can result in such
different evolutionary behavior.

For the quadratic carrying capacity, the critical point is again x∗ = 0, and
the curvature condition 17 becomes

σC >
a√
2

(28)

so we again obtain the result that the critical monomorphism is uninvadable for
sufficiently large variance of the competition function σC .

Turning to the symmetric dimorphism, the criticality condition for the phe-
notype of the dimorphism 19 becomes

2
σ2
C

a2

1− x
a
2 = 1− tanh (

x

σC
)2. (29)

Since the left side of 29 for x < a has a minimum at x = 0, while the right hand
side has a maximum at x = 0, it is obvious that solutions to this equation for
x < a must bifurcate off the origin as σC decreases. The curves achieve tangency
at x = 0 when σC = a√

(2)
, so that a critical symmetric dimorphism begins to

exist exactly when the critical monomorphism at x∗ = 0 becomes invadable, just
as in the case of Gaussian carrying capacity. See figure 2
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Fig. 2. The left hand side (solid curve) and right hand side (dashed curve) of 29 for
a = 1. Figure A is for σC = .65 and Figure B is for σC = .75.

The curvature condition for uninvadability of the critical dimorphism 20 be-
comes

1− 2σ2
C

a2
− 5x2

a2
< 0, (30)

and unlike the case of Gaussian carrying capacity, the condition 30 does hold on
the critical symmetric dimorphism for values of σC less than the critical value
a√
2
, so that in this case, the population does exhibit an uninvadable dimorphism.

See Figure 20
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Fig. 3. The value of x∗ (solid curve) and the curvature condition 30 (dashed curve
plotted against σC

An interesting feature of Figure 3 is that the critical dimorphism becomes
invadable around σC = 0.4410 which also is where the critical nonzero phenotype
x∗ achieves its maximum value. This suggests that the branching process will
continue as σC continues to decrease with uninvadable coalitions with more
and more phenotypes present as the competition between nearby phenotypes
becomes weaker. The analysis becomes somewhat more complicated since there
is not obvious what kind of coalition might replace the dimorphism when it
becomes invadable. For example, the critical dimorphism could split into a four-
phenotype population if a branching process similar to that shown in Figure 2
occurs. On the other hand, a non-local bifurcation could result in a trimorphic
coalition including possibly the a phenotype with x = 0. This will be investigated
in future work.

6 Discussion

The fact that such different evolutionary behavior is exhibited by carrying capac-
ity functions that are so similar near the critical point is unexpected. Most likely,
there is something degenerate about the case of Gaussian competition in combi-
nation with Gaussian carrying capacity that prevents an univadable dimorphic
coalition from emerging when an uninvadable dimorphism loses uninvadabil-
ity. Therefore, it is possible that the speculation that a real population would
approach a continuous distribution of phenotypes may not be accurate. The
mathematically generic behavior of branching processes suggest that symmetry
breaking cascades may be the mechanism by which multi-phenotype populations
arise in real populations.
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