A Delay Fractioning Approach to Global
Synchronization of Delayed Complex
Networks with Neutral-Type Coupling

Hongli Wu, Ya-peng Zhao, Huan-huan Mai and Zheng-xia Wang

Abstract The global issues of synchronization of complex networks with neutral-
type coupling are investigated in this chapter, which is not adequately considered
in existing literatures. Based on these new complex models, we derive asymp-
totical and exponential criterions via delay fraction approach. Numerical examples
are then given to illustrate the effectiveness of our scheme and to compare with the
recent proposals. We also make (some) attempts to explore the relationship
between delay fraction numbers and the conservatism of our criterions.
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1 Introduction

Synchronization is a ubiquitous and interesting phenomenon in nature. For
example, how dose thousands of neurons or fireflies or crickets suddenly fall into
step with one another, all firing or flashing or chirping at the same time, without
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any leader or signal from the environment [1]? A complex network is a large set of
interconnected nodes, in which each node is a fundamental unit with specific state.
Recently, many attempts devoting to a better understanding of synchronization take
advantage of the topology of complex networks, and they also contribute to the
understanding of general emergent properties of networked systems. In fact, syn-
chronization of complex networks has allured much attention as an interdisciplinary
subject and provoked various applications in lots of fields such as neuroscience,
engineering, computer science, economy, and social sciences.

It is well known that the way we connecting nodes plays an important role in
the efficiency of synchronization in large networks. Li et al. studied the global
synchronization of complex networks without delays [2—4]. Many researchers
believed that there must be some time delays in spreading and responding due to
the finite speed of transmission as well as traffic congestions, so delayed coupling
should be modeled in order to simulate more realistic networks [5—10]. Moreover,
it is natural and important to consider the neutral-type coupling delay in complex
dynamical networks. Dai gave an example on it that when complex dynamical
networks are used to model a stock transaction system, each node’s state is defined
as a behavior of the agent such as buying, selling, or holding. And the stock
transaction system dynamically in terms of the current and historical fluctuating
rate records [11]. On the other hand, the neutral-type coupling may be essential in
specific applications such as secure communication. Solis-Perales founded that the
derivative term under certain network topology leads to the chaotic synchronous
behavior, whereas the standard coupling network reaches the equilibrium or a limit
cycle [12]. To the authors’ best knowledge, there are only two literatures [11, 12]
that introduced the derivative term into the coupling of complex networks. By
numerical simulations, [12] illustrated that the derivative terms in coupling have a
significant influence on the synchronization. However, the impact of time delay is
curtly neglected. While [11] considered the asymptotically synchronization of the
neutral-type delay coupling complex networks by classical Lyapunov method.

In this chapter, we will introduce the synchronization of the new complex
models first. Combining several techniques such as delay fraction method, the free-
weighting matrices approach, Lyapunov—Krasovskii functional, and linear matrix
inequality (LMI), we then study the asymptotically synchronization conditions and
exponentially synchronization conditions of them. Finally, some simulations will
be exercised to demonstrate the effectiveness and applicability of the proposed
criterions together with some attempts to discuss the fraction number’s influence on
the criterions.

2 Model Description and Preliminaries

Notations: R" denotes the n dimensional Euclidean space, and R™*" is the set of all

m x n real matrices. || - || denotes the Euclidean norm in R" or R™*". Let the

Euclidian norm be ||¢||, = sup |[x(0)], ||¢"||, = sup [|x(6)]| for a given
0 0

—1<0< —1<0<
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continuous function. AT denotes the transpose of matrix A, Ay (M) denotes the
maximum eigenvalue of M, and Jy;,(M) denotes the minimum eigenvalue of M.

Consider the following continuous-time complex dynamical network with
neutral-type coupling.

N
5i(t) = f(0),0) + ¢ Gy(Ax(t—h) + Biy(t—1)), i=1,..,N. (1)
j=1
With the initial condition x(z) = ¢(t), t € [~hmax, 0], imax = max{h, 7} where
f: R" — R" is continuously x; = (x;,Xp, - - .,xin)Te R" are the state variables of
node i, the constant ¢ > 0 is the coupling strength, &, T are the retarded delay and
the neutral delay, respectively. A = (a;j) € R™" is a constant inner-coupling
matrix of the nodes about the retarded delay, and B = (b;;) € R™*" regarding to
the neutral one. G = G; € RV*N is the outer-coupling configuration matrix of the
network, in which G;; is defined by:

N N
Gi = — Z Gj = — Z G, i=1,..,N.

=L =L

Suppose that the network (1) is connected in the sense that there are no isolated
clusters. That is, G is an irreducible matrix.

Definition 1 The synchronized state of the entire networks is denoted by s(7) € R"
is a solution of an isolate node, namely §(¢) = f(s(¢)), s(¢) may be a limit cycle, or
a chaotic orbit in the phase space.

Definition 2 The dynamical network (1) is said to achieve asymptotic synchro-
nization if

x1(t) = x(t) =...= xn(t) = s(r) as t — o0, (2)

Definition 3 The dynamical network (1) is said to be globally exponentially
synchronized if, for any solution x(f), if there exist constants ¢ > 0 and o > 0
such that

tim [l (1) — ()| < pemax{[|gl..|4°[l.}, i = 1L2.cn  (3)

t—0o0

Lemma 1 ([5]) Suppose that an irreducible matrix G = (Gij) Ny Satisfies the
above conditions. Then, 0 is an eigenvalue of matrix G, associated with eigen-
vector (1,1,..., 1)T;

All the other eigenvalues of G are real-valued and are strictly negative.

Let 4;, i=1,2,...,N be the nonzero eigenvalues of G. Lemma 1 is, without
loss of generality, all the eigenvalues of G are real numbers and ordered as

O=4L>20hL>...2 W
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Lemma 2 ([13]) For scalar r > 0, let M € R™*™ be a positive semi-definite
matrix and p : [0,r] — R™ be a vector function. If the interactions concerned are
well defined, then the following inequity holds

r r T r

r [ o s)Mp(s)ds > ([ pls)ds | M [ pls)ds )
/ / /

0 0 0

Lemma 3 ([14]) The following LMI { SQT(();)) Ii((i))} > 0 where Q(x) = 07 (x),

R(x) = RT(x), and S(x) depend affinely on x, is equivalent to R(x) > 0,
O(x) — S(x)R'(x)ST(x) > 0.

Lemma 4 If the following (N — 1) x n dimensional neutral-type delay differ-
ential  equations  wi(t) = J(t)wi(t) + cAi(Awi(t — h) + Bwi(t — 1)) i =
2,...N where J(t) is the Jacobian of f(x(t),t) at synchronized state s(t) are
asymptotically stable about their zero solution, then the synchronization states are
asymptotically stable for the complex networks.

Lemma 5 [f the following (N — 1) X n dimensional neutral-type delay differ-
ential equations

Wi(t) = J(Owi(t) + cii(Awit — h) + Bii(t — 1)) i=2,...,N (5)

where J(¢) is the Jacobian of f(x(¢), ) at synchronized state s(t) are exponentially
stable about their zero solution, then the synchronization states are exponentially
stable for the complex networks (1).

Proof In order to investigate the stability of the synchronized states (2),
Set

x(t) = s(t) + et), i=1,2,...,N.

Substituting (5) into (1), we have

N
&t) = f(s(0) + e0)) — fs() + ¢ GylAejt — h) + Bgj(t — 1)),
=1
i=1,...,N.
Since fis continuous differentiable, then we obtain

éi(t) = J(t)ei(t) + cAei(t — h)G" + cBéi(t — 1)G,

there exists a nonsingular matrix, @ = (¢y,...,¢y) € RN such that GTA =
oA with A = diag(4y,...,Ay). Using the nonsingular transform w(t) =
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(wi(t),...,wn(t)) € R™N,  we have the following matrix equation:
w(t) = J(O)w(t) + c(Aw(t — h) + Bw(t — 1))A i =2,...,N.
Namely,

wi(t) = J(Owi(t) + chi(Awi(t — h) + Bw;(t — 1)) i =2,...,N.

Then, the global exponential synchronization problem of the dynamical net-
works (1) is equivalent to the problem of global exponential stabilization of the
error dynamical system (5).

3 Main Results

Theorem 1 The synchronous state s(t) of complex networks with neutral-type
coupling (1) is globally asymptotically stable if there exist matrices O;, i =
1,2, 3,4 and symmetrical positive definite matrices P, positive definite matrices Z,
Ri, i = 1,2,3, and Q, € R xmt4) quch that

[ 2PJ(t) + R+ Ry — mZ
mZ mZ .. mZ  cAiPA2 + cAJT(H)R3A + cXi0\A + JT(Z)O;
+201J(t) + T (1)R3J (1)
mZ"” —2mZ 0 e 0 0
mZ" 0 —2mzZ - 0 0
Q = mz" 0 0 0 —2mzZ 0
0 0 0 0 0 (c/i)*ATR;A — mZ — R,
0 0 0 0 0 0
0,J(1) — OF 0 0 0 0 0
c/iBTPT + 04J(1) 5
0 0 0 2(c%)*B'RIA + BTOY + 044
+2¢2B"R3J (1)c1,0\B

0 J'(0OL — 0y 2c2J7(1)R3Bc20\B + JT(1)O} + c4;PB |
0 0 0
0 0 0
0 0 0 <0.
0 0 2(c4)*ATR3B + O3B + ATOT
R, 0 0
0 KZ-20, 0
0 0 (¢2;)*BTR3B — Rs + 2¢2;04B

(6)
Proof Select a Lyapunov—Krasovskii functional as

Viwi(1)) = Va(wi(?)) + Va(wi(t)) + Vis(wi(t)) + Via(wi(1)) + Vis(wi(t)),
(7)
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where

Vit (wi(t)) =w] (1)Pwi(t),

‘/[Z(Wl‘(t)) = WlT(t + é)RIWi(l + é)df,

Wt + ERswi(t + &)dé,

0

/

0
Vis(wilt)) = / Wt + ORpwi(t + e,
Va(wi(1)) = /

(m=h
m

Vstu() =h [ [ il (@zin(E)dedo
—h  t+0
(m-2)h

T m t

m

+ h / / W} (E)Zwi(E)dEdo

(m=1h 140

m

(

3)h
+h Wl (82 (E)dEd0 + -
7

m

2)h 40

m=3)h
?
m

_h
ot

+h/ | +/0 Wl (E)Zwi(E)dEdo
+h /0 / Wi (8)Zvni(€)dEdo,

)
n

The derivative of V;;(w(z)) along the solution of the dynamic system (5)

Vii(w(t)) = 2w! (t)Pwi(1)
= 2w] ()P(J()wi(t) + chiAwi(t — h) + ciBWwi(t — 1)),  (8)

l

Via(wi(t)) = wiT(t)lei(t) - wiT(t — h)Ryw;(t — h) 9)

Vis(wi(t)) = wiT(t)szi(t) - WiT(t — D)Ryw;i(t — 1), (10)
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Via(wi(1)) = W] (NRawi(r) — wi (t — DRswWi(t — 1)
= [J(Owi(t) + chAwi(t — h) + c\iBwi(t — 1)]"
R3[J(t)wi(t) + cALAwi(t — h) + cABw;(t — 1)]
— v'viT(t — T)Raw;(t — 1)
=wi ()" (1)RsJ (1)wi(t)
(c)~)2 T(t — WATRsAwi(t — h) (11)
(1 — ¢ ( VBTR\B — R3)w,-(t — 1)
+ 2¢2wi (1)JT (H)RsAwi(t — h)
+ 2¢2w] ()T (1) R3Bw;(t — 1)
+2(ch)*wl (t — B)ATR3Bw;(t — 1),

_ (m=Dh
T

Vis(wi(t)) =hw! ()Zwi(t) — h / W (t + EZwi(t + &)d¢
—hy

(m=2)h
T

—h / W (t 4+ E)Zwi(t + €)dé

“n / WLt + E)Zin(t + EdE— -

_h / Wt + OZini(t + E)dé

_2h
m

0

—h / Wt + OZint + E)de,

_h
m

According to Lemma 2, we immediately get

_h f wi(t + &Zwi(t + &dE < — m( }_ wi(t + i)dé)2< ot + 5)d<f)

+|/ _(i+Dh
. ; T . .
< = e =2 (e = ) 2]l = ) — (e - S5,

then

=
|
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For any real matrices O;, i = 1,2,3,4 with compatible dimensions

2[wl(@r) wl@) wi(t—h) W (-]
04
(= ne) + J(O)wilt) + cas(Awilt — B) + Bin(t — 1))
= —2y"(1)01J (1)y(1)

+ 2w/ (1) (JT(1)OF — O)wi(t) — 2w] (1)Oniw;(t)

+ 20T (1) (chi0rA + T ()07 )wi(t — h) (13)
+ 2w (1) (c401B + J" ()0} )wi(t — 1)

+ 20/ (1) (c:02A — O%)wi(t — h)

+ 20! (t)(c4:0.B — O} )wi(t — 1)

+ 2c,wl (t — h)O3Aw(t — h)

+ 2c/w! (t — h) (03B + ATO} )wi(t — 1)

+ 2cWl (t — T)04BWi(t — 1)

Adding (8)—(13), by Lemma 3, we immediately obtain

V(1) < nf (0)Qim (1),

where

h 2h 3h
T — |7 rf, "% T, <t T 22
n (f) = {wi (), w; <t m),w, <t m)’w’ (t m), ,

— 1h
of (1 = P = ot - 809 - )
m
If Q; holds, then V;(w;(1)) < 0, Vi(w;(t)) < Vi(w;(0)), and it implies the global
asymptotic stability of the system (5). So by Lemma 4, the synchronized states (2)
of network (1) are asymptotically stable. The proof is thus completed.

Theorem 2 The synchronous state s(f) of complex networks with neutral-type
coupling (1) is globally exponentially stable and has the exponential synchroni-
zation rake « if there exist matrices Q,N;, i = 1,2,3,....m, O;, i = 1,2, sym-
metrical positive definite matrices P, positive definite matrices Z,
M;, i=1,2,3,....m,R;, i = 1,2,3, where m is to be determined, and

Q€ R(2m+3)><(2m4r3),(23 c R(m+!)><(m+!)7Xi € Rerl7 i=1,2,...m+2;

such that
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r 93 X
X —e R,
x7 0
X7 0
Q= | xI 0
X! 0
el 0
X7 0
L X2 0
where
X =
X3
Xy
Xe

X, X3 Xs X5 X
0 0 0 0 0
—20, 0B 0 0 0
(c/)*B"R3B — ¢ PRy
0 0 0 0
+ (ck)*B"zB
0 0 -Z 0 0
0 0 0 -Z 0
0 0 0o 0 -z
0 0 0 0 0
0 0 0 0 0
c)iPB T [JT(H)0F — 0,
0 0
0 0
,Xo = )
0 0
cAiOrA | L 0 ]
[ cAiPB + c2JT (t)R3B + c/J (t)ZB + ¢,01B ]
0
0
0

(c2)*ATR3B + (c4;)*ATZB

W = T)o
0
0

0
0

(m—1)h (m—2)h
h(ezﬂT — )Nz

0
0

h<e2ﬁh _ ezﬁ%) N

0

X7
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Xm+2 ]

S O o o

<0,
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\/h (62ﬁ<m;’2)h _ ez/}(’”l’#)]\,3 h(&/}i—g _ 1>Nm
0 0
X7 = 0 Xm+2 = 0 )
0 0
I 0 ] I 0 ]
and
I 2BP +2PJ(t) + Ry + R,
+JT(O)R3J (1) + hMyy + hQ +21/2F  \/2ZPh(Ny—1 — Ny)
h(N, — Q) + 212JT (1) ZJ (1) + 20, (1)
Q3 = 2mh(N£—l *er) he_z/%(Mm—l - M)
2V2Bh(N}_, —NL_,) 0
2VZBh(N] — NY) 0
cXATR3J (1) + /2Bh(QT — NY) 0
cZiPA + \/2Bh(Q — Ny) |
V2Bh(Ny—2 —Ny_1) -+ /2Bh(N) — Ny) +cliJT (HR3A
+c2ildT(1)ZA + c1,0,A
0 . 0 0
he 2P (My—y — My_y) -+ 0 0
0 e he S (MY — M) 0
_R1672ﬁh
+(ck)*ATR;A
0 .. 0 I
he™ " (M, + Q)
+(ck)*ATzA

Proof Select a Lyapunov—Krasovskii functional as

Viwi(#)) = Va(wi(t)) + Va(wi(t)) + Via(wi(t))
+ Via(wi()) + Vis(wi(t)) + Vie(wi(1)),

where
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Vi (wi(1)) = P! (6)Pwi(1),

0
Via WI / eZ/f +9) T(f + C)RIW,(Z + 6)(]6

Via(wi(t)) = ezﬁ(tﬂ)wir(l + ERywi(t + &)dE

oi‘\o‘*

Via(wi(t)) = / PHEOGT (1 4 &Ryt + E)dE,

_(m=Dh
“m

ViS(Wi(t)) =h / Ezﬁ(H—é)WlT(l + é)lei(l + é)dé

—h

(m-2)h
T

+ h / ezﬁ(’+§)wiT(t + EMywi(r 4 £)dé
e

m

(=3
T

+h / PP (1 4 Myt + E)de

(=2
T

+ ot h / PN (1 4 EYM,, it + E)dE

Y / T (14 ) Qwi(r + E)dE,

—h
Vie(wi(t)) = h / / PP (e (£)dEdd
—h 1+0
EETI
+h / / PG (i (£)dEd
EST)
ETR
+h / / P (Wi (E)dEd0 + - -
fm ’J/t 1+0
+h / / W (Ewi(€)dédo
t+0

0 t
b [ [ ez,

Znoiro
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the time derivative of Lyapunov—Krasovskii functional along the trajectories of
system (5)
Vir(wi(t)) = 2B w; (1) Pwi(t) + 22" w;(8) " P(J (1) w;(t)
+ cZiAw;i(t — h) 4+ c;Bw;(t — 1))
= ®wi(1)" (2BP + 2PJ(1))wi(t) + 2c2ie*P'wi(1)" PAWi(t — h)
+ 2¢2:€®wi(1) PByw;(1 — 1)

Vo (wi(2)) = Pwl () Rywi(t) — 2P (r — MRywi(t — k) (17)

Vis(wi(t)) = ezﬁ’wiT(t)szi(t) - ezﬁ(’_r)wiT(t — T)Ryw;(t — 1) (18)

Vis(wi(2)) = PWI (1) R3wi(1) — 2P0 (1 — 1) R3wi(t — 1)
=PI (t)wi(t) + clAwi(t — h) + cLiBw;(t — 1)]"
Rs[J (t)wi(t) + cAiAw;(t — h) 4+ c2;BWw;(t — 1)]
— PN (1 — D) Rywi(t — 1)
= 2w (0)JT (1) R3J (1) wi(t)
+ P (chi)Pwl (1 — YA RsAw,( — h) (19)
+ W (t—1) ((cli)zem’BTRgB —~ e2ff<'*f>R3>
Wwi(t — 1) + 2P wT (1)J7T (1) RsAwi(t — h)
+ 2¢2,62P W (0)J7 (£)RsBwi (1 — 7)
+2(ck)*e®Pwl (t — h)ATR3Byw; (1 — 1)
Vis(wi(6)) = h {ezlf(t—“"%) W (z _{m=Dh 1)h> (M — Ma)w; (z _{m=Dh 1)h>

i

m m
L) (; _ (’”—QVZ) (My — My)w, (t _ (m—z)h>
m m
- ezlj(t_’%)w"r (t - ﬁ) (M1 — M) w; (t - ﬁ)
m m

+eXPWT (1) (M, + Q)wi(t)
—ezﬁ(’_h)wiT(t _ h)(Ml + Q)Wj(t — h):|7
(20)

The popular way of introducing free-weighting matrices is to denote the rela-
tionship between the items in the Leibniz—Newton formula. Here, we introduced
O, N;, i = 1,2,3,...,m, to less comparatively conservativeness condition.
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then

Vie(wi(t))

=Vig(wi(t))

2R /2B W ( [ <t(m_l)h>

m

_(m=Dh

—wi(t —h) — / WiT(t + i)dé}

—hy

+ 2h/2 e W] ( [ <t(m_2)h>

m

_(m=2)h

M pELER) /" Tt e
G
e [f(f%

MQ%)/aﬂHéM%
m

+2h / eZﬁt T (t)

_wi<,_£> _ /wa(t+¢f)dé]

h

— 2h\/2BePw! (1) Q[wi(t)
0
—w;(t —h) — / WiT(t + f)dé] )

—h
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Vig (wl () < he*Pwl (1) [(ezﬁh - ezﬂwmnh)NlTZ’lNl
n (82/;(11.“,1»1 _
(2 APEINTZ N
+ ( Wi — 2/”’7’)1\/,7"-7127][\],"71
(¢

25 I)N;Z"Nm

(m—2)h _
) NIZ7'N,

+ (e — 1)NTZ7'N]wi(r)
+ 202 [T (1)wi(t) + chidwi(t — h) + cliBwi(r — T)]”
Z[J(t)wi(t) + cAiAw;(t — h) + c2:Bw;(t — 1))

+21/2BheP W (1) (N) — Ny)w <t (m = 1)h>
+2/2Bhe W (1) (N —N’;)W;( h>
4 2\/ﬁhe2ﬁ’WiT(’)(N3 — Ny)w; <t h>

h
<+ 20/ 2BhePWT (£) (N, 17N,,,)w,<t7;)

2 BB (1) (N — Qw1
+ Z@hez/”wf(t)(Q — Ny)wi(t —h)

_(m=)h
m

— P / [\/ﬁe’ﬁéwT(Z)Nl + PN (1t + cf)Z} (21)
Zn
r

z! [\/ﬁe*/’fw,?(t)zvl + T (e + g’)Z] dé

_(m-2h
m

— P / [\/Z—ﬁe’ﬁéw?(l)Nz + PNl (1t + f)Z}

(-1
T

2 [VaPe Pt (N + el (14 017 "ae

_h
m

= [ [VaBe POy + 1+ 0]

2%
0

. . T
z! [\/we*/‘éwf(t)zvm,l PN (1 + g)z} dé
0

— P /[\/_ﬂe BwI ()N, +eﬁ‘wr(t+f)]

h

m

z! [\/ﬁe’ﬁfwf(t)Nm + P (e + é)z] "ae

0
- [ [V Pl (0 - il e+ 2]
Zh

2 [VaBe Pul (00 — P91+ )7 "ae,



236 H. Wu et al.

Since Z > 0, the last m + 1 parts are less than 0. We can omit them here for
the LMI’s simplicity, although it may bring more conservatism.

Vig(wi(r)) < hePa] (1) [ (" — P55 )NTZ Ny + (255 — T ) NTZ

(m-2) m=3) 2 )
+ (ezﬁT” — "'M>N3Tz*'1v3 +ot (e”f - ezﬂ*)Nﬁ_lz"Nmfl
(= )NLZ N + (= 1)07Z 0] wilr)

+2/2Bhe*W! (1) (N) — Na)w; (: _m= 1)h>

m

+ 2B ) 4 — Ve (1 - 7 2)
+ 24/2BheP W (1) (N3 — Ny)w; (, _ @) (22)

+ 4 20/ 2BRPWT (1) (Nt — Ny Wi (t - %)
+23/2Bhe* W] (1) (N — Q)wi1) + 24/2Bhe*P W] (1)(Q — Ny)wi(t — h)
+on2e [W,.T ()T () ZI (8)wi(t) + (i)W (¢ — h)AT ZAw;(t — )
+ (chi)®WI (t — ©)BTZBWi(t — ) 4 2¢ 4w (£)J7 (1) ZAwi(t — h)
+2c2w (10)JT (1) ZBvwi(t — 7) + 2(cli)*w (t — h)AT ZBwi(1 — 1)

The another popular way of introducing free-weighting matrices is to denote the

relationship between the items in the dynamic systems.
Here, we introduced O;,i = 1,2,

2 x e RAGERAGN {gl } (= wi(t) + J(O)wi(t) + cLiAw;(t — h) + c2iBw;(t — 7))

=2 x (Wl ()0 +W! (£)02) (—wi(t) + J(O)wi(t) + cliAwi(t — h) + cLiBWi(t — 1))
= 2e"MW] (1)01J (t)w;(t) + 2P W] (1) (JT (1) OF — O1)wi(r) — 2*PW] (1) O (1)

+ 2¢2,62PWT (1) 01Awi(t — h) + 2c2,e*P'WT (1) 0 Bwi(t — 1)

+ 2c4:eP W (1) 024w (1 — h) + 2c4:PWT (1) 02BW; (1 — 7).

(23)
Adding (16)—(20), (22)—(23), by Lemma 1, we give
Vi(w(1)) < e (1) Qama (1),
where
ng(t) = {wf(t)w{(t f%)wf(t *%),Wf(l‘*%),...,W{(I*W>7W?(I —h),

wi (t — ), Wl (6), W] (t — 7),wl (£) x Lw](£) x 12, wl (t) x 1],
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However
Vit(wi(0)) + Via(wi(0)) + Vis(wi(0)) + Vig(wi(0)) + Vis(wi(0)) + Vis(wi(0))

Vi(wi(0)) =
0 0
wiT(O)Pw;(O)-l-/ezﬁéwir(é)lei(é)df-‘r/ezﬁiwiT(f)sz,-(é)dg

-1 —h
(m—1)h
T

0
+ / PG () Ravin (E)dE + h / PPET (M (£)de

—h

_(m=2h
T

+h e2/}§wiT(g”)Mzw,-(§”)dé

(m=Dh
e
_i

_(m=3)h
+h / W EOMawi(E)dE+ -+ h [ W (M, wi(E)dé
_2h

(m=2)h
TTm

0 0
PP (M E)dE + / PP () Owi()de
A

oy

_h
_(m=1h _(m=2h
AT (E)zwi(E)dédo

+h / AP (E)ZVi(E)dEdO + h

S—_

|
=
=

B
=
o

PN (E)2wi(E)dEdO+ -+ h /

w0
+h / / PN (&) 2wi(£)dEdo
_2 0

+ himax (Q) /

—h

-1

=29
0 0
+h / / APNT(E)ZWi(E)dédo
)
0 0 0
S |:;LMax(P)+;~Max(Rl) / ezﬁédé“v’/lMax(RZ) / ezﬂidf‘l’h/lMax(MMax) / ezﬁédé
—1 —h —h
0 0 0 0
eZﬁidf}nmﬁH{AMax(Ra) [ eFacrmmie [ [ eZﬁédéd%M
-7 0

_ 2Pt
= |:;LMax (P) + % (/’LMax (Rl) + ;vMax (RZ) + h;hMax(MMax) + h/lMax(Q)):| ||¢Hf
_ —2ft _ o2t
# @ ] 1971,

Since
P ngin (P) Wi (1)) < Vilwi(2)),
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then, we immediately obtain that

1 . 1— -2t . .
Wi([) S /Li(P) |:/LMax (P) + % (/LMax(Rl) + /LMax(RZ) + hAMax(MMax) + thdX(Q))
Min
2t — 1 4 e ] o
+2/1Max(Z)T max{||o|[,, [|¢7[| Fe™™
And
lim [[3:(1) — ()| < e max{[[ ]l 6711}, i=1.2 o0 (24)
where
1 1 —e 2
n= W ;vMax(P) + T(AMM(RI) + )LMax(RZ) + h)vMax(MMax)
Min
_ 2pe73
+ h/lMax(Q))'i'z/lMax(Z) mc% )

x=p

Finally, by Definition 3 and (24), it is obvious that the globally exponential
stability of the system (5). So by Lemma 4, the synchronized states of network (1)
are asymptotically stable. The proof is thus completed.

Remark 1 Both Theorem 1 and Theorem 2’s assumptions are in forms of LML
The conditions 7 are linear to O;, i = 1,2,3,4 P, Z, R;, i = 1, 2, 3, and condi-
tions 15 are linear to Q,N,i=1,23,...m0;,i=12 P, Z
M;,i=1,2,3,....m, R;,i=1,2,3.

When we use the matlab LMI toolbox, we always assume that the m and « is to
be a specific value.

Remark 2 Both theorem 1 and theorem 2 use the delay fraction method. In
Theorem 2, the number of the free-weighting matrices that denote the relationship
between the items in the Leibniz—Newton formula is not any equal to fraction
number m, but also is equal to the missed number of negative part

_ih
m

oy, / [V/2Be P ()N 4+ P (1 + )]

_(i+Dh

. ) T
z! [\/Zﬂe’/jng(t)Nm,i + PN (e + 5)2} dé

We are not sure that the bigger value of m will lead less conservative results.
We want to depend on experiments to find the right m so that we can get the
better results.
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4 A Numerical Example

Consider a three-dimensional stable linear system described by Dai et al. [11]

X1 —X
fCQ = —2)C2
.5(?3 —3)63

which is asymptotically stable at s(¢) = 0, and its Jacobian is

-1 0 O
J={0 -2 0
0 0 -3

Case 1 Assume that the inner-coupling matrices are

1 00 02 -01 05
A=1({0 1 0|, B=|-03 009 -0.15
0 0 1 0.3 0.1 0.2

The outer-coupling matrix is

-2 1 0 O 1
1 -3 1 1 0
G=|0 1 -2 1 0
0 1 1 -3 1
1 0 0 I -2

Obviously, Gy is an irreducible symmetrical matrix. The eigenvalues of G| are
4i =0,—1.382,-2.382,-3.618, —4.618.

Case 2 Assume that the inner-coupling matrices are

1 00 02 =01 05
A=10 1 0|, B=|-03 0.09 -0.15
0 0 1 0.3 0.1 0.2

The outer-coupling matrix is

—4 1 1 o 0 0 0 o0 1 117
1 -4 1 1 o o0 0 0 o0 1
1 1 -4 1 1 o o0 0 0 O
0 1 1 -4 1 1 o o0 0 O
G, = 0o o0 1 I -4 1 1 o 0 O
0o 0 O 1 I -4 1 1 0 0
o 0 0 O 1 1 -4 1 1 0
o 0 0 0 O 1 1 -4 1 1
1 o o0 0 0 O 1 1 -4 1
L1 1 o o0 0 0 o0 1 1 —4
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Table 1 Simulation result for ¢ = 0.3 with the outer-coupling matrix G,

h T [11] Theorem 1
0-1 0.1 S S
1.1 0.1 U S
0.1 0-c0 S S
0.15 0.15 S S
0.15 0.19 S S
0.15 0.20 U S
0.16 0.19 U S

Table 2 Simulation result for ¢ = 0.2 with the outer-coupling matrix G,

h T [11] Theorem 1
0.2 0—00 S S
0.22 0-00 N S
0.23 0.7 S S
0.23 0.8 U S
0.3 0.3 N S
0.3 0.31 U S
0.34 0.3 S S
0.35 0.3 U S

Table 3 Simulation result of theorem 1
m=2 m=23 m=4 m=>5 m=26
Case l with h=1t=03173 h=1t=03173 h=1t=03173 h=1t=03235 h=1=03235
c=03

Case 2with h=1=0.6849 h=1=06849 h=1=06849 h=1=0689 h=1=0.6869
c=02

The eigenvalues of G, are
A =0,-1.7639, —-1.7639, -4, -5, -5, -5, -5, —6.2361, —6.2361.

The results of Theorems in this letter and those in [11] are listed in Table 1,
where “S” means that the criterion is applicable to the corresponding case and
“U” means that the criterion is not applicable to the corresponding case.

Obviously, both Tables 1 and 2 illustrated the correctness and efficiency of our
results. Furthermore, if we assume that the 2 = t, the maximum bound of the
delays obtained by Theorem 1 and Theorem 2 are listed as in the Tables 3 and 4,
respectively.

Form these two tables, we can see that the m = 5, 6 in Theorem 1 and m = 2 in
Theorem 2 are better choices. It may be concluded that in Theorem 1 which
omitted nothing, the bigger value of fraction number leads better results, whereas it
isn’t work in Theorem 2.
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Table 4 Simulation result of theorem 2 with « = f# = 0.01
m=2 m=73 m=4 m=>5 m=06
Case l with h =1 =0.0658 h=1=0.065 h=1=0.0656 h=r1=0.0656 h=r1t=0.0656
c=03
Case 2 with h =1=02338 h=1=02337 h=1=02337 h=1=02337 h=r1=02337
c=02

5 Conclusion

In this chapter, we have investigated the globally asymptotically synchronization
and the globally exponentially synchronization of complex networks with neutral-
type coupling by combining several techniques such as delay fraction method, the
free-weighting matrices approach, Lyapunov—Krasovskii functional, and LML
Numerical examples are given to show their effectiveness and advantages over
others.
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