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Abstract Quantum-behaved particle swarm optimization (QPSO) algorithm is a
global-convergence-guaranteed algorithm, which outperforms original PSO in
search ability but has fewer parameters to control. But QPSO algorithm is to be
easily trapped into local optima as a result of the rapid decline in diversity. So this
paper describes diversity-maintained into QPSO (QPSO-DM) to enhance the
diversity of particle swarm and then improve the search ability of QPSO. The
experiment results on benchmark functions show that QPSO-DM has stronger
global search ability than QPSO and standard PSO.

Keywords Diversity � Quantum-behaved particle swarm optimization �
Diversity-maintained � Benchmark function

1 Introduction

Particle swarm optimization (PSO) is a kind of stochastic optimization algorithms
proposed by Kennedy and Eberhart [1] that can be easily implemented and is
computationally inexpensive. The core of PSO is based on an analogy of the social
behavior of flocks of birds when they search for food. PSO has been proved to be
an efficient approach for many continuous global optimization problems. How-
ever, as demonstrated by Van Den Bergh [2], PSO is not a global-convergence-
guaranteed algorithm because the particle is restricted to a finite sampling space
for each of the iterations. This restriction weakens the global search ability of the
algorithm and may lead to premature convergence in many cases.
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Several authors developed strategies to improve on PSO. Clerc [3] suggested a
PSO variant in which the velocity to the best point found by the swarm is replaced
by the velocity to the current best point of the swarm, although he does not test this
variant. Clerc [4] and Zhang et al. [5] dynamically change the size of the swarm
according to the performance of the algorithm. Eberhart and Shi [6], He et al. [7]
adopted strategies based on dynamically modifying the value of the PSO param-
eter called inertia weight. Various other solutions have been proposed for pre-
venting premature convergence: objective functions that change over time [8];
noisy evaluation of the function objective [9]; repulsion to keep particles away
from the optimum [10]; dispersion between particles that are too close to one
another [11]; reduction in the attraction of the swarm center to prevent the particles
clustering too tightly in one region of the search space [12]; hybrids with other
metaheuristic such as genetic algorithms [13]; ant colony optimization [14], etc.
An up-to-date overview of the PSO is introduced in [15].

Recently, a new variant of PSO, called quantum-behaved particle swarm
optimization (QPSO) [16, 17], which is inspired by quantum mechanics and
particle swarm optimization model. QPSO has only the position vector without
velocity, so it is simpler than standard particle swarm optimization algorithm.
Furthermore, several benchmark test functions show that QPSO performs better
than standard particle swarm optimization algorithm. Although the QPSO algo-
rithm is a promising algorithm for the optimization problems, like other evolu-
tionary algorithm, QPSO also confronts the problem of premature convergence
and decreases the diversity in the latter period of the search. Therefore, a lot of
revised QPSO algorithms have been proposed since the QPSO had emerged. In
Sun et al. [18], the mechanism of probability distribution was proposed to make
the swarm more efficient in global search. Simulated annealing is further adopted
to effectively employ both the ability to jump out of the local minima in simulated
annealing and the capability of searching the global optimum in QPSO algorithm
[19]. Mutation operator with Gaussian probability distribution was introduced to
enhance the performance of QPSO in Coelho [20]. Immune operator based on the
immune memory and vaccination was introduced into QPSO to increase the
convergent speed using the characteristic of the problem to guide the search
process [21].

In this chapter, QPSO with diversity-maintained (QPSO-DM) is introduced.
This strategy is to prevent the diversity of particle swarm declining in the search of
later stage.

The rest of the chapter is organized as follows. In Sect. 2, the principle of the
PSO is introduced. The concept of QPSO is presented in Sect. 3, and the QPSO
with diversity-maintained is proposed in Sect. 4. Section 5 gives the numerical
results on some benchmark functions and discussion. Some concluding remarks
and future work are presented in the last section.
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2 PSO Algorithm

In the original PSO with M individuals, each individual is treated as an infini-
tesimal particle in the D-dimensional space, with the position vector and velocity
vector of particle i, XiðtÞ ¼ ðXi1ðtÞ; Xi2ðtÞ; . . .; XiDðtÞÞ, and ViðtÞ ¼
ðVi1ðtÞ;Vi2ðtÞ; . . .;ViDðtÞÞ. The particle moves according to the following
equations:

Vijðt þ 1Þ ¼ VijðtÞ þ c1 � r1 � ðPijðtÞ � XijðtÞÞ þ c2 � r2 � ðPgjðtÞ � XijðtÞÞ ð1Þ

Xijðt þ 1Þ ¼ XijðtÞ þ Vijðt þ 1Þ ð2Þ

for i ¼ 1; 2; . . . M; j ¼ 1; 2 . . .;D. The parameters c1 and c2 are called the accel-
eration coefficients. Vector Pi ¼ ðPi1; Pi2; . . .; PiDÞ known as the personal best
position is the best previous position (the position giving the best fitness value so
far) of particle i; vector Pg ¼ ðPg1 ;Pg2 ; . . .; PgDÞ is the position of the best
particle among all the particles and is known as the global best position. The
parameters r1 and r2 are two random numbers distributed uniformly in (0, 1), that
is, r1; r2�Uð0; 1Þ. Generally, the value of Vij is restricted in the interval
½�Vmax; Vmax�.

Many revised versions of PSO algorithm are proposed to improve the perfor-
mance since its origin in 1995. Two most important improvements are the version
with an Inertia Weight [22] and a Constriction Factor [23]. In the inertia-weighted
PSO, the velocity is updated by using

Vijðt þ 1Þ ¼ w � VijðtÞ þ c1 � r1ðPijðtÞ � XijðtÞÞ þ c2 � r2 � ðPgj � XijðtÞÞ ð3Þ

while in the Constriction Factor model, the velocity is calculated by using

Vijðt þ 1Þ ¼ K � ½VijðtÞ þ c1 � r2 � ðPijðtÞ � XijðtÞÞ þ c2 � r2 � ðPgj � XijðtÞÞ� ð4Þ

where

k ¼ 2

2� u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � 4/
p

�

�

�

�

�

�

u ¼ c1 þ c2; u [ 4 ð5Þ

The inertia-weighted PSO was introduced by Shi and Eberhart [6] and is known
as the standard PSO.

3 QPSO Algorithm

Trajectory analyses in Clerc and Kennedy [24] demonstrated the fact that con-
vergence of PSO algorithm may be achieved if each particle converges to its local
attractor pi ¼ ðpi1; pi2; . . . piDÞ with coordinates
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pijðtÞ ¼ ðc1r1PijðtÞ þ c2r2PgjðtÞÞ=ðc1r1 þ c2r2Þ; or pijðtÞ
¼ u � PijðtÞ þ ð1� uÞ � PgjðtÞ ð6Þ

where u ¼ c1r1=ðc1r1 þ c2r2Þ: It can be seen that the local attractor is a stochastic
attractor of particle i that lies in a hyper-rectangle with Pi and Pg being two ends of
its diagonal. We introduce the concepts of QPSO as follows.

Assume that each individual particle moves in the search space with a
dpotential on each dimension, of which the center is the point pij. For simplicity,
we consider a particle in one-dimensional space, with point p the center of
potential. Solving Schrödinger equation of one-dimensional d potential well, we
can get the probability distribution function DðxÞ ¼ e�2 p�xj j=L: Using Monte Carlo
method, we obtain

x ¼ p� L

2
lnð1=uÞ; u�Uð0; 1Þ ð7Þ

The above is the fundamental iterative equation of QPSO.
In Sun et al. [17], a global point called Mainstream Thought or Mean Best

Position of the population is introduced into PSO. The mean best position, denoted
as C, is defined as the mean of the personal best positions among all particles. That
is

CðtÞ ¼ ðC1ðtÞ; C2ðtÞ; . . .; CDðtÞÞ

¼ 1
M

P

M

i¼1
Pi1ðtÞ; 1

M

P

M

i¼1
Pi2ðtÞ; . . .; 1

M

P

M

i¼1
PiDðtÞ

� �

ð8Þ

where M is the population size and Pi is the personal best position of particle i. Then,
the value of L is evaluated by L ¼ 2a � CjðtÞ � XijðtÞ

�

�

�

�, and the position is updated by

Xijðt þ 1Þ ¼ pijðtÞ � a � CjðtÞ � XijðtÞ
�

�

�

� � lnð1=uÞ ð9Þ

where parameter a is called Contraction–Expansion (CE) Coefficient, which can be
tuned to control the convergence speed of the algorithms. Generally, we always
call the PSO with Eq. (9) quantum-behaved particle swarm optimization (QPSO).
In most cases, a decrease linearly from can be controlled to a0 to a1ða0\a1Þ.We
outline the procedure of the QPSO algorithm as follows:

Procedure of the QPSO algorithm:

Step 1: Initialize the population;
Step 2: Computer the personal position and global best position;
Step 3: Computer the mean best position C;
Step 4: Properly select the value of a;
Step 5: Update the particle position according to Eq. (9);
Step 6: While the termination condition is not met, return to Step 2;
Step 7: Output the results.
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4 QPSO-DM Algorithm

QPSO is a promising optimization problem solver that outperforms PSO in many
real application areas. First of all, the introduced exponential distribution of
positions makes QPSO global convergent. In the QPSO algorithm in the initial
stage of search, as the particle swarm initialization, its diversity is relatively high.
In the subsequent search process, due to the gradual convergence of the particle,
the diversity of the population continues to decline. As the result, the ability of
local search ability is continuously enhanced, and the global convergence ability is
continuously weakened. In early and middle search, reducing the diversity of
particle swarm optimization for contraction efficiency improvement is necessary;
however, in late stage of search, because the particles are gathered in a relatively
small range, particle swarm diversity is very low, the global search ability
becomes very weak, the ability for a large range of search has been very small, and
the phenomenon of premature will occur in this algorithm.

To overcome this shortcoming, we introduce diversity-maintained into QPSO.
The population diversity of the QPSO-DM is denoted as diversityðpbestÞ and is

measured by average Euclidean distance from the particle’s personal best position
to the mean best position, namely

diversistyðpbestÞ ¼ 1
M � Aj j

X

M

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

D

j¼1

ðpbesti;j � pbestjÞ

v

u

u

t ð10Þ

where M is the population of the particle, Aj j is the length of longest the diagonal
in the search pace, and D is the dimension of the problem. Hence, we may guide
the search of the particles with the diversity measures when the algorithm is
running.

In the QPSO-DC algorithm, only low-bound dlow is set for diversityðpbestÞ to
prevent the diversity from constantly decreasing. The procedure of the algorithm is
as follows. After initialization, the algorithm is running in convergence mode. In
process of convergence, the convergence mode is realized by Contraction–
Expansion (CE) Coefficient a. On the course of evolution, if the diversity measure
diversityðpbestÞ of the swarm drops to below the low-bound dlow, the particle
swarm turns to be in explosion mode in which the particles are controlled to
explode to increase the diversity until it is larger than dlow.

5 Experiment Results and Discussion

To test the performance of the QPSO with diversity-maintained (QPSO-DM), six
widely known benchmark functions listed in Table 1 are tested for comparison
with standard PSO (SPSO), QPSO. These functions are all minimization problems
with minimum objective function values as zeros. The initial range of the
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population listed in Table 2 is asymmetry as used in Shi and Eberhart [25].
Table 2 also lists Vmax for SPSO. The fitness value is set as function value, and the
neighborhood of a particle is the whole population.

As in Angeline [22], for each function, three different dimension sizes are
tested. They are dimension sizes 10, 20, and 30. The max number of generations is
set as 1,000, 1,500, and 2,000 corresponding to the dimensions 10, 20, and 30 for
first six functions, respectively. The maximum generation for the last function is
2,000. In order to investigate whether the QPSO-DM algorithm is good or not,
different population sizes are used for each function with different dimension.
They are population sizes 20, 40, and 80. For SPSO, the acceleration coefficients
are set to be c1 ¼ c2 ¼ 2, and the inertia weight is decreasing linearly from 0.9 to
0.4 as in Shi and Eberhart [25]. In experiments for QPSO, the value of CE
Coefficient varies from 1.0 to 0.5 linearly over the running of the algorithm as in
[18], while in QPSO-DM, the value of CE Coefficient is listed in Table 3. From the
Table 3, we also obtain the CE cofficient of QPSO-DM decreases from 0.8–0.5
linearly. We had 50 trial runs for every instance and recorded mean best fitness and
standard deviation.

The mean values and standard deviations of best fitness values for 50 runs of
each function are recorded in Tables 4, 5, 6, 7, and 8.

The results show that both QPSO and QPSO-DM are superior to SPSO except
on Schwefel and Shaffer’s f6 function. On Sphere Function, the QPSO works
better than QPSO-DM when the warm size is 40 and dimension is 10, and when
the warm size is 80 and dimension is 20. Except for the above two instances, the
best result is QPSO-DM. The Rosenbrock function is a monomodal function, but

Table 1 Expression of the five tested benchmark functions

Function expression Search domain

Sphere f1ðXÞ ¼
Pn

i¼1 x2
i �100� xi� 100

Rosenbrock f2ðXÞ ¼
Pn�1

i¼1 ð100 � ðxiþ1 � x2
i Þ

2 þ ðxi � 1Þ2Þ �100� xi� 100

Rastrigrin f3ðXÞ ¼
Pn

i¼1 ðx2
i � 10 � cosð2pxiÞ þ 10Þ �10� xi� 10

Greiwank f4ðXÞ ¼ 1
4000

Pn
i¼1 x2

i �
Qn

i¼1 cos xi
ffi

i
p
� �

þ 1 �600� xi� 600

Ackley
f5 ¼ 20þ e� 20e�

1
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

i¼1
x2

i

p

� e�
1
n

Pn

i¼1
cosð2pxiÞ �30� xi� 30

Schwefel f6 ¼ 418:9829n�
Pn

i¼1 ðxisin
ffiffiffiffiffiffi

xij j
p

Þ �500� xi� 500

Table 2 The initial range of
population for all the tested
algorithms and Vmax for spso

Initial range Vmax

f1 (50, 100) 100
f3 (15, 30) 100
f3 (2.56, 5.12) 10
f4 (300, 600) 600
f5 (15, 30) 30
f6 (250, 500) 500
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its optimal solution lies in a narrow area that the particles are always apt to escape.
The experiment results on Rosenbrock function show that the QPSO-DM out-
performs the QPSO. Rastrigrin function and Griewank function are both multi-
modal and usually tested for comparing the global search ability of the algorithm.
On Rastrigrin function, it is also shown that the QPSO-DM generated best results
than QPSO. On Griewank function, QPSO-DM has better performance than QPSO
and PSO algorithms. On Ackley function, QPSO-DM has best performance when
the dimension is 10; except for these, the QPSO-DM has minimal value. On the
Schwefel function, SPSO has the best performance in any situation. QPSO-DM is
better than QPSO. Generally speaking, the QPSO-DM has better global search
ability than SPSO and QPSO.

Figure 1 shows the convergence process of the three algorithms on the first four
benchmark functions with dimension 30 and swarm size 40 averaged on 50 trail
runs. It is shown that, although QPSO-DM converges more slowly than the QPSO

Table 3 Parameter value of QPSO-dM

CE coefficient Sphere function Rosenbrock function Rastrigrin function

Mean best St. dev. Mean best St. dev. Mean best St. dev.

(1.0, 0.5) 1.2237e-013 1.9534e-013 75.0328 52.2408 88.5367 14.3207
(0.9, 0.5) 2.4890e-017 2.6749e-017 54.3227 69.7425 90.7490 18.2660
(0.8, 0.5) 3.2054e2026 1.6573e-025 33.2065 28.2984 78.4024 11.3524
(0.7, 0.5) 9.7934e-022 4.2890e-021 76.4626 88.0403 77.6020 9.8336
(1.0, 0.4) 4.6827e-012 2.1674e-011 39.7421 36.8124 69.7656 15.9507
(0.9, 0.4) 1.9889e-014 6.3148e-014 71.6725 89.3760 92.8337 13.6210
(0.8, 0.4) 5.9680e-015 2.5249e-014 69.5267 97.4625 83.3520 9.8675
(0.7, 0.4) 1.5027e-018 4.2109e-018 86.2217 122.5409 73.4665 17.6453
(1.0, 0.3) 1.8963e-010 4.5227e-010 56.3226 68.2468 59.2417 18.6628
(0.9, 0.3) 2.0527e-011 5.3745e-011 70.6849 98.7489 47.5948 15.0963
(0.8, 0.3) 5.6849e-014 6.1342e-013 90.3573 92.5246 61.0499 16.4421
(0.7, 0.3) 2.5864e-013 8.3346e-013 121.7752 145.4575 40.7232 18.3726

CE coefficient Griewank function Ackley function Schwefel function

Mean best St. dev. Mean best St. dev. Mean best St. dev.

(1.0, 0.5) 0.0328 0.0307 3.0209e-013 4.3354e-013 4.9953e ? 003 216.7453
(0.9, 0.5) 0.0243 0.0152 3.2649e-014 8.3201e-014 4.8774e ? 003 206.1504
(0.8, 0.5) 0.0065 0.0064 1.1453e-014 8.4250e-015 2.8249e 1 003 415.4217
(0.7, 0.5) 0.0187 0.0097 3.9826e-014 5.6935e-014 4.1370e ? 003 336.8420
(1.0, 0.4) 0.0651 0.0086 3.7380e-011 1.3192e-010 4.9682e ? 003 209.5413
(0.9, 0.4) 0.0281 0.0170 1.5916e-012 3.8720e-012 5.1393e ? 003 278.3024
(0.8, 0.4) 0.0106 0.0107 8.0437e-013 1.2495e-012 4.9504e ? 003 255.6286
(0.7, 0.4) 0.0164 0.0165 0.0213 0.1634 4.5336e ? 003 492.6527
(1.0, 0.3) 0.0137 0.0136 4.0969e-010 7.6405e-010 4.9972e ? 003 252.7829
(0.9, 0.3) 0.0190 0.0190 7.0642e-011 1.1408e-010 5.0918e ? 003 213.0963
(0.8, 0.3) 0.0151 0.0182 1.3296e-010 2.2764e-010 4.0437e ? 003 324.4462
(0.7, 0.3) 0.0137 0.0126 0.1862 0.1324 3.8596e ? 003 264.1462
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during the early stage of search, it may catch up with QPSO at later stage and
could generate better solutions at the end of search.

From the results above in the tables and figures, it can be concluded that the
QPSO-DM has better global search ability than SPSO and QPSO.

Table 5 Numerical results on Rosenbrock function

M Dim. Gmax SPSO QPSO QPSO-DM

Mean best St. dev. Mean
best

St. dev. Mean
best

St. dev.

20 10 1,000 51.0633 153.7913 9.5657 16.6365 6.7435 1.6753
20 1,500 100.2386 140.9822 82.4294 138.2429 30.2483 22.5409
30 2,000 160.4400 214.0316 98.7948 122.5744 64.2516 48.3277

40 10 1,000 24.9641 49.5707 8.9983 17.8202 3.0418 2.4972
20 1,500 59.8256 95.9586 40.7449 41.1751 12.4916 10.3762
30 2,000 124.1786 269.7275 43.5582 38.0533 34.5349 21.8962

80 10 1,000 19.0259 41.6069 6.8312 0.3355 4.0263 3.2651
20 1,500 40.2289 46.8491 33.5287 31.6415 14.8572 1.3806
30 2,000 56.8773 57.8794 44.5946 31.6739 20.5704 1.6127

Table 6 Numerical results on rastrigrin function

M Dim. Gmax SPSO QPSO QPSO-DM

Mean
best

St. dev. Mean
best

St. dev. Mean best St. dev.

20 10 1,000 5.8310 2.5023 4.0032 2.1409 1.8261 0.3362
20 1,500 23.3922 6.9939 15.0648 6.0725 11.0704 10.5382
30 2,000 51.1831 12.5231 28.3027 12.5612 20.4728 3.6157

40 10 1,000 3.7812 1.4767 2.6452 1.5397 0.9504 1.3854
20 1,500 18.5002 5.5980 11.3109 3.5995 10.3207 6.4872
30 2,000 39.5259 10.3430 18.9279 4.8342 13.4697 5.7639

80 10 1,000 2.3890 1.1020 2.2617 1.4811 0.9650 1.0348
20 1,500 12.8594 3.6767 8.4121 2.5798 5.7236 3.7684
30 2,000 30.2140 7.0279 14.8574 5.0408 11.6570 4.1366

Numerical results on griewank function
20 10 1,000 0.0920 0.0469 0.0739 0.0559 0.0425 0.0652

20 1,500 0.0288 0.0285 0.0190 0.0208 0.0163 0.0216
30 2,000 0.0150 0.0145 0.0075 0.0114 0.0077 0.0516

40 10 1,000 0.0873 0.0430 0.0487 0.0241 0.0468 0.0724
20 1,500 0.0353 0.0300 0.0206 0.0197 0.0122 0.0364
30 2,000 0.0116 0.0186 0.0079 0.0092 0.0013 0.0108

80 10 1,000 0.0658 0.0266 0.0416 0.0323 0.0388 0.0528
20 1,500 0.0304 0.0248 0.0137 0.0135 0.0041 0.0086
30 2,000 0.0161 0.0174 0.0071 0.0109 1.0273e-006 4.9264e-006
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