
Qualitative Evaluation of Software
Reliability Considering Many Uncertain
Factors

Peng Cao, Guo-chun Tang, Yu Zhang and Zi-qiang Luo

Abstract There are many uncertainty factors affecting software reliability in
software development. This chapter proposed a modified Delphi hierarchy process
based on cloud model to determine the weights of the factors affecting software
reliability, and then, we can obtain software reliability qualitative rules using
standard weighted association rule mining algorithm. Thus, software reliability
qualitative evaluation can be achieved through uncertainty reasoning based on
cloud model.

Keywords Software reliability � Uncertainty � Cloud model � Qualitative
evaluation

1 Introduction

Traditional software reliability models are often founded on failure data from the
software testing or the actual running phase, ignoring the influence of various
uncertainty factors in the software development process. If there is very few data

P. Cao
Department of Mathematics and Physics, Qiongtai Teachers College, Haikou, China
e-mail: lanyuan97@163.com

G. Tang
Department of Information Technology, Qiongtai Teachers College, Haikou, China
e-mail: tangguochun@163.com

Y. Zhang � Z. Luo (&)
College of Information Science and Technology, Hainan Normal University, Haikou
571158, China
e-mail: luo_letian@163.com

Y. Zhang
e-mail: 344248003@qq.com

B.-Y. Cao et al. (eds.), Ecosystem Assessment and Fuzzy Systems Management,
Advances in Intelligent Systems and Computing 254, DOI: 10.1007/978-3-319-03449-2_20,
� Springer International Publishing Switzerland 2014

199



or no information related to software failure, we can indirectly evaluate software
reliability by means of investigating some uncertain factors which determine the
level of software reliability in the software development process. Abundance of
uncertain information for software reliability engineering requires a formal symbol
system to portray. Concepts and the overall characteristics of things are perceived
through language, not by precise calculation of some values. There is a very good
relationship between the uncertainty inherent in natural language and fuzzy
prevalent in the objective world. Cloud model [1] can be used to describe language
atoms and then just to reflect this relationship.

For comprehensive analysis of the relationship between several uncertain fac-
tors affecting software reliability and software reliability level, we will first
determine the weighs of the factors, and then, we can obtain software reliability
qualitative rules using standard weighted association rule mining algorithm [2].
Thus, software reliability qualitative evaluation can be achieved through uncer-
tainty reasoning based on cloud model.

2 Uncertain Factors Affecting Software Reliability

Software development is a very complex dynamic process including people,
development tools, and application background. Researchers [3, 4] realized that
the implied useful knowledge, which can be dug out from the various factors
affecting the software reliability, software application features, and software
failure data in the software development process, may be used for qualitative and
quantitative software reliability assessment process. Thus, more credible and
accurate software evaluation results can be obtained. Because software reliability
is subjected to common effect of numerous uncertainties factors, we need to
analyze comprehensively such factors to assess. The degree of the factors
impacting on the software reliability need to be determined by means of engi-
neering experience and subjective judgment, inevitably bearing subjectivity and
uncertainty. Cloud model theory is suitable for processing the information with
uncertain attributes.

According to the survey of existing research and analysis, there are 32 uncer-
tainty factors affecting software reliability during the entire software development
process. These factors constitute a qualitative evaluation index system for software
reliability. Here mainly introduce the six most important factors.

1. Program Complexity, abbreviated as PC: the more complex the software is, in
the development and maintenance process, the more resources are consumed,
and the greater possibility of errors are introduced in the design. The program
size, function modules themselves, and the connections between modules are
the main factors determining software complexity.

2. Programmer Skills, abbreviated as PS: programmer skills mainly depend on the
programmer’s level, number of developed software products, the scale of the

200 P. Cao et al.



developed software, and the experience of developing software. In general, the
programmer skills directly affect software reliability. Due to personal pro-
gramming experience, work stress, and personal qualities, programmers often
make errors in the program modules.

3. Testing Efforts, abbreviated as TEF: the number of test cases, test workload,
and test time reflect the testing efforts.

4. Testing Coverage, abbreviated as TC: the proportion of source code covered by
test cases.

5. Testing Environment, abbreviated as TE: in order to find more software bugs in
the testing phase, testing environment should be as close as possible to the
actual operating environment.

6. Frequency of Specification Change, abbreviated as FSC: because users have
new requirements, or developers do not properly understand the user’s needs,
specification needs to add or correct during the period of software development.
This will certainly affect the subsequent software development. The more the
number of changes or the later change occurs, the greater the impact on
reliability.

Because the factors affecting software reliability, which are taken from the
software development process at all stages, are closely related to software reli-
ability levels, can truly reflect the software reliability from different angles. But
various factors have primary and secondary points, so you need to assigning
weights to highlight the main factors.

3 Delphi Hierarchy Process Based on Cloud Model

Delphi hierarchy process based on cloud model [5, 6], DHP for short, synthesizing
a number of experts’ opinion on many factors affecting software reliability,
cleaning up and selecting factors, and assigning weights can implement visualized
heuristic optimization n of the complex data objects.

By using DHP method, we can select factors affecting software reliability and
calculate initial weights with Delphi method, and then, using the analytic hierarchy
process, known as AHP, we can obtain hierarchical factors and determine the final
weights.

DHP is briefly introduced as follows: First, the issues to be assessed and the
necessary background material in the form of communication may be sent to
experts, and then, the replies should be synthesized and concluded based on cloud
model. Once again back to the experts for further advice, so repeatedly 2–4 times,
until we get satisfactory results. Second, the relative weights of each level can be
calculated, and the combined weights of the elements can also be calculated.
Finally, the total weight can be calculated.

Qualitative Evaluation of Software Reliability 201



4 The Mining Approach of Software Reliability
Qualitative Rules

4.1 Establishment and Transformation of Related Databases

For some factors affecting software reliability, we cannot get the real data, but with
qualitative description language, such as ‘‘programmer skills are ordinary’’ and
‘‘testing method is good’’. These language values can be represented appropriately
by the cloud model in the domain of [0, 1], which can be converted to a numeric
representation through a forward cloud generator. Thus, by some typical case
studies, we can get numeric databases about factors and software reliability, as
shown in Table 1.

Obviously, using raw numeric data for data mining, it will be hard to find useful
rules. Therefore, firstly, adopt cloud transformation method for discretization of
continuous attributes, raise the basic concepts to the appropriate concept hierarchy,
and then make a soft partition to the original data set by maximum determination
principle according to the gained concept sets. The six most important factors
using qualitative language values may be constructed with evaluation concept sets
including five grades, such as follows:

PC {very low, low, medium, high, very high};
PS {very poor, poor, average, good, very good};
TEF {very few, few, average, many, a great many};
TC {very small, small, medium, large, very large};
TE {not very close, not close, medium, close, very close};
FSC {very few, few, average, many, a great many}.

Other factors affecting software reliability can be similarly constructed. Of
course, we can get more coarse or fine division according to the specific situation.

Table 2 shows the soft partition for original attribute values based on concept
sets. Because of the uncertainties of soft partition based on cloud model, the
percentage of the value attribute table is slightly different in different times, and
then, we can calculate the mean result for multiple soft partitions. Clearly, the
amount of data is substantially reduced, and the intrinsic correlation between
attributes is also highlighted after the soft partition. According to the requirement
of the association rule mining algorithm, the category type attribute Table 2 can be
converted to a Boolean database as shown in Table 3.

Table 1 Databases about factors and software reliability

PC PS TEF TC TE FSC … Software
reliability

0.01 0.96 0.98 0.99 0.999 0.02 … 0.99
0.2 0.99 0.97 0.98 0.997 0.03 … 0.78
… … … … … … … …

202 P. Cao et al.



4.2 Standard Weighted Association Rules Mining Based
on Cloud Model

When the weighs of the factors affecting software reliability are gained, for a given
level of soft support threshold and soft confidence threshold, we can get a standard
weighted association rules list with ‘‘software reliability’’ as rule consequent using
standard weighted association rules algorithm mining based on cloud model.

If the conjunction of ‘‘PC,’’ ‘‘PS,’’ and ‘‘TEF’’ is the rule antecedent, ‘‘software
reliability’’ as the rule consequent, the following six qualitative rules are assumed
to be produced on the above conceptual granularity:

If PC is ‘‘very low,’’ PS is ‘‘very good,’’ and TEF is ‘‘a great many,’’ then
software reliability is ‘‘very high’’;

If PC is ‘‘low,’’ PS is ‘‘very good,’’ and TEF is ‘‘a great many,’’ then software
reliability is ‘‘high’’;

If PC is ‘‘medium,’’ PS is ‘‘very good,’’ and TEF is ‘‘a great many,’’ then
software reliability is ‘‘high’’;

If PC is ‘‘medium,’’ PS is ‘‘good,’’ and TEF is ‘‘many,’’ then software reliability
is ‘‘medium’’;

If PC is ‘‘high,’’ PS is ‘‘average,’’ and TEF is ‘‘a great many,’’ then software
reliability is ‘‘low’’;

Table 3 Boolean database from the converted category type attribute Table 2

PC Very low Low Medium High Very high
1 0 0 0 0
0 1 0 0 0
… … … … …

PS Very poor Poor Average Good Very good
0 0 0 0 1
0 0 0 0 1
… … … … …

Software reliability Very low Low Medium High Very high
0 0 0 0 1
0 0 0 1 0
… … … … …

Table 2 Soft partition for the attribute values table

PC PS TEF TC TE FSC … Software
reliability

Count/
%

Very
low

Very good A great many Very large Very close Very few … Very high 4

Low Very good Many Large Close Very few … High 9
… … … … … … … … …

Qualitative Evaluation of Software Reliability 203



If PC is ‘‘very high,’’ PS is ‘‘average,’’ and TEF is ‘‘many,’’ then software
reliability is ‘‘very low.’’

These rules reflect the relationships between qualitative concepts such as
software complexity, programmer skills, testing efforts, and software reliability
(also available for other software reliability indexes).

We might as well set [0, 1] as the three factors’ domain U, cloud representations
of the given five qualitative concepts in the domain of software complexity are as
follows:

CA11 ¼ Cð0; 0:08; 0:0008Þ; CA12 ¼ Cð0:25; 0:08; 0:0008Þ;
CA13 ¼ Cð0:5; 0:08; 0:0008Þ; CA14 ¼ Cð0:75; 0:08; 0:0008Þ;
CA15 ¼ Cð1; 0:08; 0:0008Þ:

Cloud representations of the given five qualitative concepts in the domain of PS
are as follows:

CA21 ¼
1 x 2 ½0; 0:6�

Cð0:6; 0:03; 0:0003Þ else

�
;

CA22 ¼ Cð0:7; 0:03; 0:0003Þ; CA23 ¼ Cð0:8; 0:03; 0:0003Þ;
CA24 ¼ Cð0:9; 0:03; 0:0003Þ; CA25 ¼ Cð1; 0:03; 0:0003Þ:

Cloud representations of the given five qualitative concepts in the domain of
TEF are as follows:

CA31 ¼
1 x 2 ½0; 0:9�

Cð0:9; 0:03; 0:0003Þ else

�
;

CA32 ¼ Cð0:99; 0:003; 3� 10�5Þ; CA33 ¼ Cð0:999; 3� 10�4; 3� 10�6Þ;
CA34 ¼ Cð0:9999; 3� 10�5; 3� 10�7Þ; CA35 ¼ Cð1; 3� 10�5; 3� 10�7Þ;

where A11, A21, and A31 are descending half-clouds, and A15, A25, and A35 are
ascending half-clouds.

5 Software Reliability Qualitative Evaluation

The summary steps of software reliability qualitative evaluation method are as
follows:

1. clean up, select, and assign weights for the 32 factors affecting software reli-
ability, using DHP method based on cloud model;

2. generate some association rules about the factors and software reliability, using
standard weighted association rule mining method based on cloud model;

204 P. Cao et al.



3. give a new determined input, activate the corresponding rules based on these
qualitative rules, and then generate uncertainty output from the rule generator
based on cloud model;

Based on multi-conditions and multi-rules reasoning mechanism, firstly, acti-
vate these six qualitative rules using the input values through quantitative analysis;
secondly, synthesize the above generated clouds using geometric cloud technol-
ogy; and finally, the expected value Ex of the generated geometric cloud C(Ex, En,
He) can be set as the quantitative assessment of software reliability. Reference to
the software reliability evaluation conception set, the quantitative evaluation of the
software cloud reliability is actually a virtual cloud in software reliability domain
[0, +1]. With the input of expectation Ex, X condition cloud generators may
individually output the certain degrees corresponding to the different evaluation
concepts. Finally, according to maximum determination principle for membership
concept may judge the software reliability.

Acknowledgments This work is supported by Grants of Higher School Scientific Research Project
of Hainan Province (Nos. Hjkj2012-14, Hjkj2013-17), National Natural Science Foundation of
Hainan Province (Nos. 613161, 613162), International Science & Technology Cooperation
Program of China (No. 2012DFA11270), Hainan International Cooperation Key Project
(No. GJXM201105), and Qiongtai Teachers College Scientific Research Project (No. qtky 201111).

References

1. Li, D., Du, Yi.: Artificial Intelligence with Uncertainty. National Defense Industry Press,
Beijing (2005)

2. Du, Y.: Research and application of association rules in data mining. PhD Thesis for PLA
University of Science and Technology, Nanjing (2000)

3. Zhang, X., Hoang, P.: An analysis of factors affecting software reliability. J. Syst. Softw. 50,
43–56 (2000)

4. Wang, T., Li, M.: A fuzzy comprehensive evaluation model for software reliability. Comput.
Eng. Appl. 38(20), 23–26 (2002)

5. Wang, S.: Data field and cloud model based spatial data mining and knowledge discovery. PhD
Thesis for Wuhan University, Wuhan (2002)

6. Li, D., Wang, S., Li, D.: Spatial Data Mining Theories and Applications. Science Press,
Beijing (2006)

Qualitative Evaluation of Software Reliability 205


	20 Qualitative Evaluation of Software Reliability Considering Many Uncertain Factors
	Abstract
	1…Introduction
	2…Uncertain Factors Affecting Software Reliability
	3…Delphi Hierarchy Process Based on Cloud Model
	4…The Mining Approach of Software Reliability Qualitative Rules
	4.1 Establishment and Transformation of Related Databases
	4.2 Standard Weighted Association Rules Mining Based on Cloud Model

	5…Software Reliability Qualitative Evaluation
	Acknowledgments
	References


