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Abstract While Voronoi diagram has been used in many fields, most vector-based
methods of generating Voronoi diagrams focus mostly on point features, but they
have difficulties in handling generators like lines or areas, which can be easily
generated by raster-based methods, however, with substantial calculation cost. For
the sake of integrating Voronoi diagram models with Web GIS, which inevitably
encounters generators like lines and areas, we present a parallel algorithm with
MapReduce for generating raster-based multiplicatively weighted Voronoi
diagrams. The experiments and case studies show that the algorithm significantly
improves the efficiency of generating Voronoi diagrams on large-scale raster data
with potential use in urban public green space planning and optimal path planning.

Keywords Weighted Voronoi diagram � Parallel algorithm � Hadoop �
MapReduce

1 Introduction

In mathematics, a weighted Voronoi diagram (WVD) in n dimensions is a Voronoi
diagram for which the Voronoi cells are defined in terms of a distance defined by
some common metrics modified by weights assigned to generator points. The
multiplicatively weighted Voronoi diagram (MWVD) is defined when the distance
between points is multiplied by positive weights [1].
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The dominance region defined by subsequent Voronoi regions is generalized by
the type of generator, such as points, lines, and polygons, various weights, plane
constraints, and metric space used. Many researchers have focused on issues of
WVD generation.

Hu et al. [2] used map algebra method to solve the problem of generating
MWVDs for point, line, and polygon features on raster data. Wang et al. [3]
presented a raster-based algorithm supported by the ArcInfo, which is capable to
generate Voronoi diagrams for points, lines, and polygons in two-dimensional space.
On the basis of Ref. [4], Dong [5, 6] provided a discrete algorithm for generating line
segment WVD. However, the algorithm did not consider more complex generators
such as line features with an arbitrary shape. Wu and Luo [7] proposed an algorithm
based on cellular automata for constructing Voronoi diagram of complex entities in
grid space. Dong [8] noted applications of MWVDs for points, polylines, and
polygons using ArcGIS. Fan [9] presented a vector-based algorithm for generating
WVDs, which, however, is also not suitable for complex spatial objects. Gong et al.
[10] developed a vector-based algorithm to generate and update MWVDs for points,
polylines, and polygons in C# and present several examples. However, like all other
vector-based methods, when dealing with complex generators such as lines and
areas, the algorithm needs to first decompose them into simpler elements, which
may violate spatial integrity. Very recently, many researchers have used graphics
hardware to improve the performance of computing Voronoi diagram. Rong et al.
[11] presented a GPU-assisted Voronoi diagram algorithm for computing centroidal
Voronoi tessellation (CVT). Xu et al. [12] proposed a raster-based algorithm to
construct WVDs with GPU, which is capable to generate discrete WVDs in real time.
Besides, Afsin et al. [13] proposed an approach of generating spatial index, Voronoi
diagram, and efficient processing of a wide range of geospatial queries.

Although theoretical and computational aspects of WVDs have been exten-
sively discussed, there are still some problems especially in case of complex
generators. There are three major issues of generating WVDs: (1) Vector-based
algorithms handle so many factors in calculation and storage, that it is difficult to
generate WVDs for complex generators directly. (2) Raster-based approaches
involve judging and computing distances for each grid, so it costs large amount of
calculation and has to tolerate precision limitation. (3) Since sequential algorithms,
especially raster-based approaches are inefficient to handle large-scale massive
map data, parallel and high-efficiency methods for complex spatial features based
on cloud computing are reasonable. Hence, considering types of generators and
various weights, we present a raster-based parallel approach with Hadoop to
generate MWVDs for polygons.

The remainder of this chapter is organized as follows. In Sect. 2, we first
provide a review of relevant concepts of Voronoi diagrams, which build the
foundation of proposed method in the chapter. In Sect. 3, raster-based parallel
algorithm with pseudo-code is discussed. Section 4 presents experimental results
to verify the performance and scalability of proposed approach. Potential appli-
cations of proposed approach are discussed in Sect. 5. Finally, Sect. 6 gives
conclusions of the chapter and directions for future work.
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2 Background: Voronoi Diagram

Voronoi diagram divides a space into disjoint polygons where the nearest neighbor
of any generator inside a polygon is the generator of the polygon. In this section,
we review the relevant concepts of the Voronoi diagrams [14].

2.1 Ordinary Voronoi Diagram

Consider a set of limited number of points, called generator points, in the
Euclidean plane (in general, generators can be any type of spatial object). Every
location in the plane can be assigned to the closest generator(s) with a certain
distance metric. The set of locations assigned to each generator forms Voronoi
polygon of that generator. The set of Voronoi polygons associated with all the
generators is called the Voronoi diagram. The Voronoi polygon and Voronoi
diagram can be formally defined as follows: Assume a set of generators
G ¼ fg1; g2; . . .; gng, where 2\n\1 and gi 6¼ gj for i 6¼ j; i; j 2 In ¼ f1; . . .; ng.
For each generator, the set of Voronoi polygon given by

VðgiÞ ¼
\

j6¼i

fp dðp; giÞ\dðp; gjÞ
�� g ð1Þ

where dðp; giÞ specifies the minimum distance between p and gi and is called the
Voronoi diagram generated by G.

2.2 Weighted Voronoi Diagram

In many applications, not only the location but also the weight (or importance) and
the spatial extent of a site should be taken into account. The influence of different
generators on the surrounding is different, so the ordinary Voronoi diagram always
cannot meet the needs of general spatial analysis. We need to improve and gen-
eralize the approach. WVDs can be divided into two types: MWVDs [15] and
additively WVDs. For the former, the distance between points is multiplied by
positive weights. For the latter, positive weights are subtracted from the distances
between points. Based on the above concept, now we add the weight value of
distance to ordinary Voronoi diagram.

Let gi 2 G be an element with positive weight xi. The weight distance dxðg; giÞ
between p and gi is dxðp; giÞ ¼ dðp; giÞ=xi. Then, the dominance of generators,
called VxðgiÞ, can be represented by

VxðgiÞ ¼
\

j 6¼i

fp dxðp; giÞ\dxðp; gjÞ
�� g: ð2Þ

Raster-Based Parallel Multiplicatively Weighted Voronoi Diagrams Algorithm 179



2.3 Weighted Voronoi Diagram for Polygons

In general, generators can be any type of spatial object, such as points, lines, and
polygons. WVD for polygons [9, 16] is an important generalization of the ordinary
Voronoi diagram in two sides of generator and weight. Most methods of
computing Voronoi diagrams have some difficult in handling complex generators
(not points). Many scholars have discussed the Voronoi diagram for lines or for
polygons. Next, we focus on the WVD for polygons.

Assume a set of polygons P ¼ fp1; p2; . . .; png; dðp; piÞ specifies the minimum
distance between p and pi, and then, the Voronoi Diagram generated by P can be
represented by

VxðPiÞ ¼
\

j6¼i

p
dðp; piÞ

xi

���� \
dðp; pjÞ

xj

� �
: ð3Þ

3 Raster-Based MWVDs Parallel Algorithm
with MapReduce

The general idea of the raster-based method [17] is to calculating raster distance of
points and obtaining neighbor relationship between generators based on the idea of
distance transformation. After map rasterization, all spatial features are translated
into grid points. In the raster metric space, points, lines, and polygons are pro-
cessed at spatial raster. All diagrams can be represented by a discrete grid lattice of
size N � N, which gives N2 points in the plane. A unique identifier was placed in
each grid cell. But there have some difference between three situations. Our
approach focus on finding the raster point sets of polygons. Taking polygon feature
as an example, our method increases the process of edge points extraction which is
based on traditional Voronoi diagrams generation for points.

3.1 Raster-Based Weighted Voronoi Diagram Generation

After rasterization of primitive data, complex generators, such as polygons, can
translate into lots of grid cells. Then, it makes huge computational burden and
increases the time, especially if a large number of features are involved for gen-
erating Voronoi diagrams. While calculating the distance, we only need to get the
minimum distance between polygons and other points. On the other hand, assume
area features without internal voids, let a raster point specifies any grid cell except
generators, the minimum distance can be the distance between the point and
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generator edge. Therefore, we need to get a simplified treatment of polygons to
shorten the calculation time.

Edge points extraction of polygon namely judge whether a raster point is a
boundary point or not. Our proposed approach uses a simple rule of criteria for
determining pixels based on judging its four-neighbor points. If there are blank
cells, the raster point can be a boundary point, otherwise delete it (Fig. 1).
In the raster space, point Pðm; nÞ is any other blank cell and Aði; jÞ is one raster
point; the shadow part is its four-neighbor. If its four-neighbor is all not blank cell,
so point A is not a boundary point, then the distance between Pðm; nÞ and Aði; jÞ
cannot be the minimum distance between the five distances. So it is unnecessary to
compute the distance between internal points (like A) and blank cells. We just need
compute the distance between boundary points and blank points.

The steps of the method are as follows:

Step 1. Rasterization of primitive data. For every area generator, use a limited
number of raster points to approach its region. And other regions are
translated into blank cells.

Step 2. Edge points extraction of polygon. Traverse all raster points of generators.
Judge its four-neighbor points are blank cells or not. If it is, mark the point
as a boundary point and record it.

Step 3. Computing the weight distance and deciding each grid’s character.
Calculate the weighted distance between every blank cell and set of
boundary points. Label the character of boundary point of nearest distance
until values of all blank cells are determined.

Step 4. Output the final matrix.

P

A

22d (P, A) = (i − m)  + ( j − n)

Fig. 1 Distance calculation
from point to polygons
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Taking a discrete grid lattice of size 10� 10 as an example, Fig. 2 shows the
evolution process of generating WVD for polygons. There are two area features as
generators which are marked by 1 and 2 (Fig. 2a). After rasterization, they
translate into 37 cells. The distance between P and polygon 1 can be represented
by D1ðp; p1Þ ¼ dðp; p1Þ=x1. To get minfD1ðp; p1Þ;D2ðp; p2Þg, there would be 37
calculation times. After edge points extraction of polygon (Fig. 2b), the times of
computation is 24. The computation cost is greatly reduced by using this method.
Let x1 : x2 ¼ 3 : 2.

3.2 MapReduce Parallelization

MapReduce programming model is simply represented in two functions, namely a
map function and a reduce function. The MapReduce job processes a key/value
pair to generate a set of intermediate key/value pairs in the map function, while
merges all intermediate values associated with the same intermediate key [18]. The
two functions are written by the user. It makes programmers design parallel and
distributed applications easily. In our Hadoop implementation, the generation of
WVD is implemented in one MapReduce job (Tables 1 and 2).

The task of map function is to determine the minimum distance between blank
cells and generators and deciding each grid’s character. We choose two files as
input data, one is the original raster data file, another records boundary points. The
map function takes as input a \i; recordLine [ pair in which i is the line number
of the original matrix. Every recordLine deposit a row of grid cells. The map
function must read record file for getting the location of generators in the original
matrix. Finally, it outputs the \i; newLine [ pair as intermediate output. The
output value deposits a row of grid’s character.

In reduce function, the intermediate results are merged, sorted, and summed to
output the final matrix. It takes as input a \i; recordLine [ pair. The output of
the function is the same as the input. Because the MapReduce model has ranked
the record lines following keys in map function, so reduce function only need to
output the final data.

1 1
1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1

2 2 1 1
2
2

2 2 2
2 2 2
2 2 2 2

2 2 2

1 1
1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1

2 2 1 1
2 2 2 2
2 2 2 2
2 2 2 2

2 2 2

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
2 2 1 1 1 1 1 1 1 1
2 2 1 1 1 1 1 1 1 1
2 2 2 2 1 1 1 1 1 1
2 2 2 2 2 1 1 1 1 1
2 2 2 2 2 1 1 1 1 1
2 2 2 2 2 2 1 1 1 1
2 2 2 2 2 2 1 1 1 1

(a) (b) (c)

Fig. 2 Weighted Voronoi diagrams generation for polygons
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3.3 Analysis

In practice, the MapReduce implementation of the method runs on multiple
machines in parallel. When discussing the method complexity, we consider the fact
that it runs in parallel and discuss the parallel method complexity. In the MapRe-
duce job, the computational complexity of the associated reduction is as follows:

ðm� n� gkÞ � gk � O=nodes

Table 1 Algorithm: VoronoiMapper (key, value)

Table 2 Algorithm: VoronoiReducer(key, value)
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where m� n is the total number of grid cells, k is the number of generators, gk is
the total number of boundary points after edge points extraction of polygon, nodes
is the number of the Hadoop nodes, and O is the computational complexity of
weight distance computing.

4 Results and Discussion

In this section, we evaluate the performance impact of algorithm implementation
and not its accuracy on our cluster system. The core idea of Apache Hadoop [19] is
the MapReduce programming model. Our experimental hardware consists of nine
nodes cluster: one namenode and eight datanode. Each node in the cluster is
equipped with four quad-core 3.10 GHZ Intel Core(TM) i5-2400 processors, 4 GB
of memory and 500 G of disk, runs Fedora15, and is connected with fast Ethernet.
In this chapter, all experiments described are obtained using Hadoop version
0.20.2 and Java 1.7.0.04, while the data are stored with two replicas per block in
HDFS.

4.1 Single Machine Environment Versus Hadoop
Pseudo-Distributed Environment

When there are same data scales and same hardware configuration environments,
we compare the time of generating WVDs under single machine environment and
Hadoop pseudo-distributed environment. From the experimental results, the
algorithm running in the single machine environment needs less time when the
data scale is small. But when the scale of data increases to a certain extent, it
reports out of memory and cannot complete calculation tasks, where the tasks can
be treated successfully under Hadoop pseudo-distributed environment.

In our analysis, the control between nodes and task schedule take most part of
resources when there is a small scale of data. So the time of calculation tasks is
longer. When the scale of data increases, the single machine environment cannot
meet the demand of computing because of many reasons such as the growth of
memory resource consumption. However, the Hadoop platform can easily handle
large datasets (Table 3).

4.2 Experiment Analysis for Cluster System

In the following experiments, we choose three gigabit-scale datasets as original
datum: DS1, DS2, and DS3. The datasets are described in detail in Table 4.
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In light of three datasets, kill the certain quantity of datanodes every time and
the running time of each experiment is shown in Fig. 3. We can see that the time
decreased with the growth of node numbers. Increasing the number of nodes can
significantly improve the processing ability of the cluster when the data scale is the
same. The running speed is similar to linear growth with the increase of data
nodes. It shows that the speed of generating WVDs for polygons is increased
markedly on Hadoop distributed environment.

5 Case Study

In the former section, we verify the performance efficiency of parallel algorithm.
Now we make a trial to use our approach in some practical application. Because of
the limit of experiment condition, we only choose some part of maps as original
map data. Our original datasets are the raster data are obtained by map raster-
ization using ArcGIS software.

Table 3 Contrast of execution time between single and parallel systems

Times File size/MB Record lines Serial s1=s Hadoop s2=s

1 2 1,750 1.716 22
2 6 5,000 4.805 26
3 24 20,000 18.548 43
4 45 37,450 Out of memory 61
5 90 75,000 Out of memory 73

Table 4 Experimental datasets

Datasets Size of original data/
MB

Record lines/
105

Polygons Numbers of boundary
points

Data
blocks

DS1 1,116.4 9.3 3 5,786 18
DS2 2,233.6 18.6 3 5,786 35
DS3 4,468.4 37.2 3 5,786 70
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Fig. 3 Running time
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5.1 Case One: Green Space Planning

According to the green space planning in Xi’an city, the city will vigorously
develop the green space system to become a national garden city. The city
greenbelt element can appear as green space blocks in various shapes and size.
Park, shelter-forest, and water conservation district are strip or area features. The
affection of greenbelts on the environment depends on varied factors such as area,
size, tree species, and purification ability. Now we abstract greenbelts into poly-
gons and assign generators’ weight. Then generate the WVDs for greenbelts for
the decision of green construction.

Our chapter takes greenbelt in Xi’an as an example and analyzes the sphere of
influence of greenbelts. Fig. 4a shows the original map data from part area of
Xi’an city. It chooses nine greenbelts as generators. Set weight according to the
size of greenbelts, we can get the raster WVD in Fig. 4b. Figure 4c is the final
vector diagram. It marks off the sphere of influence for every greenbelt. Regions A
and B are located at the interface of several greenbelts and in a position of the
edge. They are weakly influenced by the greenbelts. So we suggest increasing
greenbelt in these regions.

5.2 Case Two: Optimal Path Planning Problem

Given some obstacles in space or in a plane, the retraction method for motion
planning uses the Voronoi diagram to determine whether there exists an optimal
path from an initial posit onto a final position. If obstacle can be approximately
regarded as particle, the safest path can follow Voronoi edges. If obstacle cannot
be approximately expressed by particle, the expansion of Voronoi diagram can be
employed (Generators are lines, polygons, or polyhedrons). On the other hand, for
different obstacles, they may have different criticality. So their weights are dif-
ferent. For example, when obstacles are contaminated zones or danger, the path
need to be away from them. So, their weights should be smaller than safe
obstacles. Our approximate fast algorithm computes the WVDs for polygons to get
the Voronoi edges, which are the final optimal path. Figure 5a gives distribution of
some obstacles with different weights. Then, we will get the optimal path by
following the Voronoi edges (Fig. 5b).

Fig. 4 WVDs for polygons of greenbelts
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6 Conclusion and Future Work

The chapter presents a parallel approach for generating weighted raster-based
Voronoi diagrams on Hadoop platform. The presented approach is based on
traditional distance transformation and MapReduce model. Considering type and
weight of generators, distance computation is simplified by extracting edge points
of polygon. The experiments show that the approach significantly improves the
performance with a linear scale-up in response to the increase in nodes. Appli-
cation cases show that the approach is successfully applied in urban green space
planning. Some further work can also be expected with the presented method:
selecting reasonable weights for different cases and applying the algorithm to
applications such as data collection in sensor networks, emergency modeling, and
Voronoi-based geospatial query.
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