

E. Garoufallou and J. Greenberg (Eds.): MTSR 2013, CCIS 390, pp. 48–59, 2013.
© Springer International Publishing Switzerland 2013

CMSs, Linked Data and Semantics: A Linked Data
Mashup over Drupal for Personalized Search

Aikaterini K. Kalou, Dimitrios A. Koutsomitropoulos, and Georgia D. Solomou

High Performance Information Systems Laboratory (HPCLab),
Computer Engineering and Informatics Dpt., School of Engineering,

University of Patras, Building B, 26500 Patras-Rio, Greece
{kaloukat,kotsomit,solomou}@hpclab.ceid.upatras.gr

Abstract. Semantic mashups are a representative paradigm of Web applications
which highlight the novelties and added-value of Semantic Web technologies,
especially Linked Data. However, Semantic Web applications are often lacking
desirable features related to their ‘Web’ part. On the other hand, in the world of
traditional web-CMSs, issues like front-end intuitiveness, dynamic content ren-
dering and streamlined user management have been already dealt with, elabo-
rated and resolved. Instead of reinventing the wheel, in this paper we propose
an example of how these features can be successfully integrated within a se-
mantic mashup. In particular, we re-engineer our own semantic book mashup
by taking advantage of the Drupal infrastructure. This mashup enriches data
from various Web APIs with semantics in order to produce personalized book
recommendations and to integrate them into the Linked Open Data (LOD)
cloud. It is shown that this approach not only leaves reasoning expressiveness
and effective ontology management uncompromised, but comes to their benefit.

1 Introduction

Traditional mashups [7] are Web applications that aggregate data or functionality
from various online third-party sources, especially Web APIs. With the prevalence of
the Semantic Web, mashups are ‘transformed’ to semantic mashups which consume
data from interlinked data sources on the cloud. Nevertheless, a semantic mashup can
be considered as any mashup that employs semantic web technologies and ideas in
any part of its design, architecture, functionality or presentation levels.

The Linked Open Data (LOD) project [10] has successfully brought a great amount
of data to the Web. The availability of interlinked data sets encourages developers to
reuse content on the Web and alleviates them from the need to discover various data
sources. In the case of semantic mashups, contribution to the LOD effort can come by
appropriately combining data from Web APIs with semantics and then providing
them as Linked Data.

As is often the case with any Semantic Web application, semantic mashup devel-
opment usually puts too much effort in the bottoms-up construction of elaborate,
knowledge intensive set-ups. This kind of applications often dwells on high-end
reasoning services, efficient rule processing and scalability over voluminous data,
thus hardly leaving any room for traditional Web development.

 CMSs, Linked Data and Semantics: A Linked Data Mashup over Drupal 49

This gap can be bridged by traditional web content management systems (CMSs)
which offer an up-to-date and tailored web infrastructure and leave more room for the
designer to concentrate on successful content production and delivery, rather than
technical details. As they form the spearhead of Web 2.0, it might then feel natural
to employ them as a basis for Semantic Web applications, but this presents a series of
challenges that it is not always straightforward to overcome.

In this paper, we therefore propose how such applications and CMSs can be inte-
grated, by presenting Books@HPClab, a semantic mashup application, which we
purposely establish on top of the Drupal CMS. Books@HPClab [6, 13] has been ini-
tially developed from scratch and offers personalization features to users searching for
books from various data sources. The key concept of this mashup is that it gathers
information from Amazon and Half eBay Web APIs, enriches them with semantics
according to an ontology (BookShop ontology) and then employs OWL 2 reasoning to
infer matching preferences. The triplified book metadata are also linked to other re-
sources, thus becoming more reusable and effectively more sharable on the LOD
cloud.

The following text is organized as follows: in Section 2, we start by discussing the
desirable properties of CMSs that make them suitable as a basis for developing Se-
mantic Web applications. In Section 3, we describe in detail the BookShop ontology.
Furthermore, in Section 4, we explain how we proceeded with the actual integration
and discuss how we addressed the problems arising in this process, putting particular
focus on the data workflow, reasoner integration and provision of Linked Data. Next,
in Section 5, we briefly illustrate the features and the functionality of our application,
now completely re-engineered over Drupal, by outlining an indicative application
scenario. Finally, Section 6 summarizes our conclusions and future work.

2 CMS as a Semantic Web Infrastructure

A typical CMS generally comes with the ability to help and facilitate the user, even
the non-technical one, in various ways. It always ensures a set of core features [12]
such as:

─ Front-end Interface: The developer community of all available CMSs invests sig-
nificantly in the layout, appearance and structure of the content that is created and
delivered by a CMS. Therefore, content remains completely separate from appear-
ance. To this end, users of CMSs can select from a great variety of well-designed
templates.

─ User management: CMSs offer also considerable advantages in regard to user ad-
ministration and access issues. It can be easily controlled whether users are al-
lowed to register on a web application as well as what kind of privileges they can
have, by providing access layers and defining sections of the web application as
public or private. Moreover, CMSs allow for assigning roles to users so as to
involve them in the workflow of web content production.

─ Dynamic content management: Usually a CMS relies on an RDBMS to efficiently
store and manage data and settings, which are then used to display page content.

50 A.K. Kalou, D.A. Koutsomitropoulos, and G.D. Solomou

So, the installation of a CMS always involves setting-up a database schema in the
corresponding SQL server. The database schema actually used, varies depending
on the CMS.

─ Modular design: CMSs follow architecture styles such as Model-View-Controller
(MVC) or Presentation-Abstraction-Control (PAC) that permit the organization of
code in such a way that business logic and data presentation remain separate. This
enables the integration of small, standalone applications, called modules, which ac-
complish a wide variety of tasks. These artifacts can be easily and simply
installed/uninstalled and enabled/disabled in the core of CMSs. Modularity is one
of the most powerful features and the one that saves the most development effort.

─ Caching: It is also important that most CMSs offer cache capabilities to us-
ers/developers. Thus, CMS-based web applications can have fast response times by
caching frequently requested content and reducing their overhead.

Features such as these, that contemporary CMSs unsparingly offer, are exactly the
ones sometimes neglected by Semantic Web applications. In the case of our work, we
chose to integrate Books@HPClab within the core of Drupal CMS [14]. Regardless of
Drupal’s semantic character, other significant advantages such as flexibility and sca-
lability make it stand out from the large pool of CMSs. Besides, Drupal has been used
before as a basis for offering Linked Data services [4]. Finally, Drupal can be viewed
not only as a CMS, but also as a content management framework, by accommodating
development of any type of web application.

3 Ontology Design

Taking into account the kind of metadata offered by Amazon and Half eBay re-
sponses, we designed the core ontology BookShop shown partially in Figure 1.
BookShop contains five main classes Book, Author, Offer, User and Modality.

Fig. 1. BookShop Ontology

 CMSs, Linked Data and Semantics: A Linked Data Mashup over Drupal 51

In our ontology, the class User is meant to express user profiles. We capture the
preferences of each user in this class, such as preferable condition, preferable mini-
mum availability, preferable minimum publication year and preferable maximum
price (preference criteria). All this data about users are represented as datatype
properties.

The class Book represents all book items that are gathered from Amazon and Half
eBay sales markets. A reasoner is responsible for entailing which books match what
criteria in the current user profile and classifies them accordingly (BooksByAvailabil-
ity, BooksBycondition, BooksByPrice, BooksByYear). The kind of a matched criterion
is represented by the members of the Modality class. Given the cardinality restrictions
on the hasModality property, the books are finally classified depending on the number
of satisfied preference criteria (Books...Books4). For example, the Books1 class
contains all the books that match at least one of the preference criteria.

4 System Design and Integration

In this section, we present the overall design of our application and its interaction with
all necessary external and embedded components. We also describe thoroughly the
main issues we had to put up with and how we addressed each one of them.

4.1 Architecture and Integration Challenges

Τhe modular philosophy of a CMS allows us to extend its capabilities with ready-
made modules and to reuse them for our purposes. To this end, we utilize the Ama-
zonStore module1 that offers an attractive wrapper and front-end for the Amazon Web
API. We have extended this module so as to include support for eBay as well. We
also make use of the WebForm module2, which supports form-based data collection
and is used as the initiating point for constructing user profiles. The architecture of
our re-engineered mashup is illustrated in Figure 2.

In order to re-engineer our semantic mashup on top of Drupal so as to leverage all
CMSs’ core features mentioned in Section 2, we encountered a series of challenges,
originating from the fact that CMSs are usually not semantics-aware. Although latest
versions of Drupal offer some inherent semantic features [3], in our implementation
we needed to put a strong focus on reasoning, ontology management as well as data
interlinking, which is beyond Drupal’s state-of-the-art (or any other CMS’s for that
matter). All these issues are analysed in the following subsections and summarized
below:

─ User profile construction and maintenance: Managing users as well as their pro-
files are common issues that have already been addressed within a web CMS. In
the context of our application, the issue is how we can map and maintain the rela-
tional user profiles in terms of OWL 2 expressions (see section 4.2).

1 http://drupal.org/project/amazon_store
2 http://drupal.org/project/webform

52 A.K. Kalou, D.A. Koutsomitropoulos, and G.D. Solomou

─ Synchronizing relational and ontology back-ends: Semantic Web applications deal
with content that needs to be semantically expressed. The manipulation of semantic
data should be consistent with web content management and delivery policies
which are based on robust relational back-ends in the context of a web-CMS (see
Section 4.2).

─ Reasoner integration: Once embedded within a CMS, a Semantic Web application
must pay special attention to the efficient and interoperable communication with a
reasoning service (see Section 4.3).

─ Data linking: A semantic mashup, which aggregates a significant amount of onto-
logical data, can be a worthy contribution to the LOD cloud, even though it is
implemented within a CMS framework (see Section 4.4).

Fig. 2. Architecture and communication flow for integrating Semantic Mashup with Drupal

4.2 Data Collection and Storage

In the context of our application, with the term data, we mean the conjunction of user
profiles, externally collected information and ontological data before and after the
reasoning process. In this sub-section, we review in detail the data collection and
storage workflow, and all the existing Drupal modules that we have exploited to this
end.

Regarding user profile construction, user preferences are collected using web
forms, designed with the aid of the WebForm module. A unique ID is assigned to
each user. In addition to user preferences, each user has to set his unique password
and username, as well as his e-mail address so as to get notifications from the applica-
tion. All this user-related information is stored in tables of the relational database.

In order to perform reasoning however, these preferences have to be translated into
semantically rich expressions, which form the ontological profile of each user.

D r u p a l

S e m a n t i c
M a s h u p

Web APIs
Requests

POST
Requests

Cache

Pellet

XML data

OWL data

Reasoning data

O W L L I N K

Amazon Store Module

WebForm Module

LOD cloud

 CMSs, Linked Data and Semantics: A Linked Data Mashup over Drupal 53

In our case, we retrieve user preferences from the database and then we construct the
profile on-the-fly, by mapping preferences to a set of OWL 2 expressions.

In order to collect book data from Amazon and Half eBay, we have extended the
existing functionality of AmazonStore module by adding communication ability with
the Half eBay Web API. Whenever a user types a keyword and sends a searching
call, the searching process starts to query data from Amazon Web Services (AWS),
and especially from the US E-Commerce Service (ECS) via functions available by the
AmazonStore module. In general, a request to Amazon may have many thousands of
results. Returning all these items at once may be inefficient and impractical. To this
end, it is defined that Amazon operations return paginated results, 10 results per page.

Once our application completes the search process at Amazon, it starts searching
Half eBay: for each book returned by Amazon, we find additional offers that may be
available at Half eBay. We use the eBay shopping Web Services and particularly, the
FindHalfProducts operation. The interaction with the eBay shopping API is based on
the REST-protocol and the exchange of URL requests and XML files-responses. By
augmenting the data storage policy of AmazonStore module, we save the Amazon
XML results, enriched with additional book-offers from Half eBay, in the XML data
cache (see Figure 2).

Next, search results need to be transformed into the OWL word in order to enable
inferences. This conversion adheres to our BookShop ontology schema and is
achieved via XSLT. The transformed ontological data are cached in the OWL data
cache. In order to achieve personalization, OWL data as well as the ontological user
profile are sent to the remote reasoning service. Finally, the inferred knowledge is
stored at the reasoning cache.

An algorithm (shown in Table 1) is responsible for synchronizing between the
caches, which, apart from checking for repeating queries, additionally expunges rea-
soning cache whenever a user updates his profile. Note that the cache can be flushed
after a configurable amount of time (in this case, 24 hours). A profile update initiated
by a user causes the removal from cache of all reasoning results related to the particu-
lar profile u, i.e. ℛ → ℛ / {כݎ,௨}, where * denotes all oq.

Table 1. Algorithm for the synchronization of data storage ℬ: XML book data cache, bq: XML book data for query q ࣩ: Ontological book data cache, oq: ontological book data for query q ℛ: Reasoner results cache, ݎ௢೜,௨: reasoner results for oq and user profile u

if {bq} ⊈ ℬ
then bq → get_amazon_data (q)
 bq → get_ebay_data (q)
 ℬ → ℬ ∪ {bq}
 oq → triplify (bq)
 ࣩ → ࣩ ∪ {oq}
 ௢೜,௨ → invoke_reasoner (oq, u)ݎ

 ℛ → ℛ ∪ ሼݎ௢೜,௨ሽ

 return ݎ௢೜,௨

if {bq} ⊆ ℬ, {oq} ⊆ ࣩ and r୭౧,୳ ⊈ ℛ

//since bq is in ℬ, oq will always be in ࣩ
then ݎ௢೜,௨ → invoke_reasoner (oq, u)

 ℛ → ℛ ∪ ሼݎ௢೜,௨ሽ

 return ݎ௢೜,௨

if {bq} ⊆ ℬ, {oq} ⊆ ࣩ and ݎ௢೜,௨ ⊆ ℛ

then return ݎ௢೜,௨

54 A.K. Kalou, D.A. Koutsomitropoulos, and G.D. Solomou

The adoption of the database caching and data replication strategy allows CMS
modules to remain oblivious to the ontology data and lets them to operate on their
own data cache. This caching idea, which is also carried over to reasoning results,
actually improves the effective reasoning throughput by keeping reasoner engagement
to a minimum.

4.3 Reasoner Integration

Most OWL 2 reasoners (like, Pellet, FaCT++ and HermiT) are traditionally deployed
directly in-memory and interaction is performed by means of a java-based API. Al-
though a PHP-to-Java bridge3 is available, there are many reasons why one may want
to keep reasoning services logically and/or physically separated [8]. Among them, the
need for interoperability and independence from the actual programming language are
of particular importance for integration with a CMS.

In our implementation, we use OWLlink [9] as the reasoner communication proto-
col of choice and its implementation, the OWLlink API [11] that helps us deploy a
true 3-tier architecture. OWLlink offers a consistent way of transmitting data to and
receiving responses from the most popular Semantic Web reasoners, in a REST-like
manner and over HTTP. Potential communication overhead that may be introduced
with this approach can be alleviated by freeing up resources as a consequence of
delegating computationally hard reasoning tasks to another tier [8]. Moreover, Drupal
offers us generic function implementations that can be used to wrap and construct
HTTP requests, like drupal_http_request. Messages are encoded in XML
format and Pellet is used as the inference engine of choice.

The interaction between the OWLlink server and our client-application consists of
four main request-response messages. Firstly, we allocate a Knowledge Base (KB)
within the OWLlink server by sending a CreateKB request. The unique user id is
assigned as an identifier to the KB, in order to logically separate knowledge bases
under the same reasoner. In the same message, we embed a LoadOntologies
request so as to load the BookShop ontology schema into the given KB by reading the
ontology file.

Next, we add the ontological user profile and the OWL data results for a specific
query by sending two distinct Tell requests to the OWLlink server. At this point
user preferences are fetched from the DB and are used to construct the ontological
user profile on the fly, which amounts to a set of OWL 2 restrictions (see Table 2).
Both user profile and OWL data are encoded in OWL/XML syntax. In order to get the
inferred knowledge from the reasoner, we send a GetFlattenedInstances
request. Its purpose is to retrieve all books that satisfy up to four preference criteria
(instances of Books1, Books2, Books3 and Books4 classes). The direct=true pa-
rameter ensures that the above sets will be mutually disjoint, i.e. they will include
only unique book instances. Finally the KB is destroyed by issuing a ReleaseKB
request within the same message.

3 http://php-java-bridge.sourceforge.net/pjb/

 CMSs, Linked Data and Semantics: A Linked Data Mashup over Drupal 55

Table 2. Interaction with OWLlink server

 No. 1 No. 2 No. 3 No. 4

R
eq

ue
st

CreateKB
kb=[User_ID]
LoadOntologies

IRI=[BookShop
ontology]

Tell preferences
BooksByPrice ≡ ∃hasOffer.(∃offerP
rice.[≤user_pref])
BooksByCondi-
tion…
BooksByAvailabili-
ty...
BooksByYear...

Tell data
OWL Book data
from cache (query
results)

GetFlat-
tenedInstances

direct=″true″
class
IRI={Books1,
Books2, Books3,
Books4}

ReleaseKB
kb=[User_ID]

R
es

po
ns

e

ResponseMessage
OK

ResponseMessage
OK

ResponseMessage
OK

SetofIndividu-
als {1..4}
NamedIndividu-
als

IRI=[Book re-
source URL]

Table 2 summarizes all the messages that are exchanged between our application

and the OWLlink server.

4.4 Linked Data Service

Usually, LOD can be considered as a significant data source and a Semantic Web tool
can consume them in order to construct a mashup application. The reverse is also
desirable and in the case of Books@HPCLab, we interlink aggregated data with other
available web resources, thus contributing to the LOD cloud.

In order to publish Linked Data, we follow the Linked Data principles, as they are
explicitly described in [5]. In order to identify real-world entities, either people or
abstract concepts, we assign HTTP URIs to them. To encompass the book items, we
mint HTTP URIs using the following pattern that is based on the application’s name-
space: First, each book item is uniquely identified by a single URI, describing the
item itself. Then, we assign to each book another URI that describes the item and has
an HTML representation, appropriate for consumption by humans. Next, another URI
is given to the book item in order to describe it and provides an RDF/XML represen-
tation for machine readbility.

Following this URI pattern, for the case where a book item has ASIN number
0890425558, we end up with the three next URIs:

─ http://levantes.hpclab.ceid.upatras.gr:8000/bookmashup/resour
ce/0890425558

─ http://levantes.hpclab.ceid.upatras.gr:8000/bookmashup/item/0
890425558 (HTML)

─ http://levantes.hpclab.ceid.upatras.gr:8000/bookmashup/data/0
890425558 (RDF)

56 A.K. Kalou, D.A. Koutsomitropoulos, and G.D. Solomou

Fig. 3. A complete example of content negotiation

Moreover, these HTTP URIs are dereferenceable by using HTTP content
negotiation (HTTP 303 See Other redirects, see Fig. 3).

To associate our data with other data sets on the Web, we interlink our entities with
others by adding RDF external links. More precisely, in the case of book offers,
relationship links are added so as to point to the bookstore origin. We also inject
DBpedia HTTP URIs into author RDF descriptions originally available from the Web
APIs. The following figure (Fig. 4) depicts an excerpt of published RDF data with the
external RDF links.

Fig. 4. Interlinking data set of Books@HPClab with external data sets

<bs:Book rdf:about="http://levantes.hpclab.ceid.upatras.gr:8000/bookmashup/resource/0385537859">
<bs:title rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Inferno</bs:title>
<bs:detailPageURL rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://www.amazon.com/Inferno‐Dan‐Brown/dp/

0385537859%3FSubscriptionId%3DAKIAIZGZGOKFV3GTMEKQ%26tag%3D3483‐1862‐
5390%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D0385537859</bs:detailPageURL>

<bs:isbn10 rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0385537859</bs:isbn10>
...
<bs:similarItems rdf:resource="http://levantes.hpclab.ceid.upatras.gr:8000/bookmashup/resource/1400079144"/>
<bs:similarItems rdf:resource="http://levantes.hpclab.ceid.upatras.gr:8000/bookmashup/resource/1781162646"/>
<bs:hasOffer rdf:resource="#0385537859_1"/>
...

</bs:Book>
<bs:Author rdf:about="#Author_0385537859_1">

<foaf:firstName rdf:datatype="http://www.w3.org/2001/XMLSchema#Literal">Dan</foaf:firstName>
<foaf:surname rdf:datatype="http://www.w3.org/2001/XMLSchema#Literal">Brown</foaf:surname>
<foaf:page rdf:resource="http://dbpedia.org/resource/Dan_Brown"/>
<bs:isAuthorOf rdf:resource="http://levantes.hpclab.ceid.upatras.gr:8000/bookmashup/resource/0385537859"/>

</bs:Author>
<bs:Offer rdf:about="#0385537859_1">

<bs:merchantName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">ok71sales</bs:merchantName>
<bs:bookCondition rdf:datatype="http://www.w3.org/2001/XMLSchema#string">New</bs:bookCondition>
<bs:offerPrice rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">12.73</bs:offerPrice>

<bs:offerPriceCurrency rdf:datatype="http://www.w3.org/2001/XMLSchema#string">USD</bs:offerPriceCurrency>
<bs:maximumAvailability rdf:datatype="http://www.w3.org/2001/XMLSchema#string">48</bs:maximumAvailability>
<bs:moreOffersURL rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://www.amazon.com/gp/offer‐listing/

0385537859%3FSubscriptionId%3DAKIAIZGZGOKFV3GTMEKQ%26tag%3D3483‐1862‐
5390%26linkCode%3Dxm2%26camp%3D2025%26creative%3D386001%26creativeASIN%3D0385537859</bs:moreOffersURL>
<bs:isOfferOf rdf:resource="http://levantes.hpclab.ceid.upatras.gr:8000/bookmashup/resource/0385537859"/>

</bs:Offer>

 CMSs, Linked Data and Semantics: A Linked Data Mashup over Drupal 57

5 A Usage Scenario

When a user visits our app for the first time, he has to register by filling a form with
his username and e-mail. An administrator then enables the account and a password is
sent to the user at the specified mail address.

Fig. 5. Collecting user preferences

After successful authorization, logged users can set their profile using the
WebForm module. The form fields correspond to user preferences and include: book
condition (“new” or “used”), maximum book price, earliest publication year and
maximum availability (Fig. 5). A user can update his profile at any time. Note also
that if a user does not define preferences, the application behaves as a standard book
mashup and the reasoner is never engaged.

Fig. 6. Result list and preference ranking (stars)

58 A.K. Kalou, D.A. Koutsomitropoulos, and G.D. Solomou

6 Conclusions and Future Work

Integration of Semantic Web applications with a CMS is not always straightforward.
In order to achieve a seamless alignment, a series of issues has first to be resolved,
and in this paper we have indicated exactly how this can be achieved in the case of
our semantic mashup. Primarily, the semantic-oblivious nature of most CMSs calls
for the explicit manipulation of semantically enriched data, which can be far from
trivial, especially when their robust relational back-end is to be taken advantage of.
Additionally, incorporating a reasoning infrastructure needs to be carefully designed
as there may be substantive trade-offs involved.

Nevertheless, by combing the best of both worlds, the developer can genuinely fo-
cus on the internals of the Semantic Web implementation and assign web content
management and delivery on tried and true existing frameworks, instead of wasting
time and effort. It turns out that, by investing in this integration, even the semantic
aspects can benefit e.g. from data caching or reasoner delegation, thus making a virtue
of necessity. In addition, the CMS infrastructure can be inexpensively utilized in or-
der to align our ontological data with the Linked Data principles, associate them with
additional resources and make them available to the LOD cloud.

As a next step, we intend to pay a closer look at the deeper integration with rela-
tional data in a means to avoid data replication and to save storage space in the data-
base. Although our caching approach appears to work well in practice, it is not clear
whether the separate cache maintenance really compensates for on-the-fly transforma-
tions or how does it compare with virtualized graph access as in D2RQ [2]. The
RESTful style of reasoner communication also allows for investigating potential al-
ternatives with a view on scalability, like rule-based triple stores [13]. To this end, an
assessment of our system’s performance and efficiency is in order. We also intend to
wrap additional RESTful web service functionality around our semantic mashup as a
means for other applications to consume and exchange Linked Data without manual
intervention. Finally, we plan to package our prototype as a totally independent CMS
module, thus allowing its smooth installation and reuse by other developers.

References

1. Berrueta, D., Phipps, J. (eds.): Best Practice Recipes for Publishing RDF Vocabularies.
W3C Working Group Note (2008)

2. Bizer, C., Seaborne, A.: D2RQ-treating non-RDF databases as virtual RDF graphs. In: 3rd
Int. Semantic Web Conference (2004)

3. Bratsas, C., Bamidis, P., Dimou, A., Antoniou, I., Ioannidis, L.: Semantic CMS and Wikis
as Platforms for Linked Learning. In: 2nd Int. Workshop on Learning and Education with
the Web of Data – 24th Int. World Wide Web Conference (2012)

4. Corlosquet, S., Delbru, R., Clark, T., Polleres, A., Decker, S.: Produce and Consume
Linked Data with Drupal! In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 763–778. Springer, Heidelberg (2009)

 CMSs, Linked Data and Semantics: A Linked Data Mashup over Drupal 59

5. Heath, T., Bizer, B.: Linked Data: Evolving the Web into a Global Data Space, 1st edn.
Synthesis Lectures on the Semantic Web: Theory and Technology, vol. 1, pp. 1–136. Mor-
gan & Claypool (2011)

6. Kalou, K., Pomonis, T., Koutsomitropoulos, D., Papatheodorou, T.S.: Intelligent Book
Mashup: Using Semantic Web Ontologies and Rules for User Personalisation. In: 4th
IEEE Int. Conference on Semantic Computing - Int. Workshop on Semantic Web and Rea-
soning for Cultural Heritage and Digital Libraries, pp. 536–541. IEEE (2010)

7. Koschmider, A., Torres, V., Pelechano, V.: Elucidating the Mashup Hype: Definition,
Challenges, Methodical Guide and Tools for Mashups. In: 2nd Workshop on Mashups, En-
terprise Mashups and Lightweight Composition on the Web (2009)

8. Koutsomitropoulos, D., Solomou, G., Pomonis, T., Aggelopoulos, P., Papatheodorou, T.S.:
Developing Distributed Reasoning-based Applications for the Semantic Web. In: 24th
IEEE Int. Conference on Advanced Information and Networking - Int. Symposium on
Mining and Web, pp. 593–598. IEEE (2010)

9. Liebig, T., Luther, M., Noppens, O., Wessel, M.: OWLlink. Semantic Web Journal 2,
23–32 (2011)

10. Linked Open Data Project, http://linkeddata.org/
11. Noppens, O., Luther, M., Liebig, T.: The OWLlink API-Teaching OWL Components a

Common Protocol. In: 7th Workshop on OWL: Experiences and Directions. CEUR Work-
shop Proceedings, vol. 614 (2010)

12. Patel, S.K., Rathod, V.R., Prajapati, J.B.: Performance Analysis of Content Management
Systems-Joomla, Drupal and WordPress. International Journal of Computer Applica-
tions 21, 39–43 (2011)

13. Solomou, G., Kalou, K., Koutsomitropoulos, D., Papatheodorou, T.S.: A Mashup Persona-
lization Service based on Semantic Web Rules and Linked Data. In: 7th Int. Conference on
Signal Image Technology and Internet Information Systems, pp. 89–96. IEEE (2011)

14. Tomlinson, T.: Beginning Drupal 7. Apress (2010)

	CMSs, Linked Data and Semantics: A Linked Data Mashup over Drupal for Personalized Search
	1 Introduction
	2 CMS as a Semantic Web Infrastructure
	3 Ontology Design
	4 System Design and Integration
	4.1 Architecture and Integration Challenges
	4.2 Data Collection and Storage
	4.3 Reasoner Integration
	4.4 Linked Data Service

	5 A Usage Scenario
	6 Conclusions and Future Work
	References

