
Chapter 5
Iterated Local Search

5.1 Introduction

Hybridization has developed to an effective strategy in algorithm design. Hybrid
algorithms can become more efficient and more effective than their native counter-
parts. This observation holds true formany problem classes, in particular in optimiza-
tion, where hybrid techniques of meta-heuristics and local search are often called
hybrid meta-heuristics. In this chapter, we show how Powell’s conjugate gradient
search, which is a fast and powerful black box optimization strategy for convex
problems, can be integrated into an ES [1]. Further, we show how to employ a spe-
cialized step size adaptation technique that allows to guide the optimization process
and to escape from local optima that Powell’s method may successively find.

5.2 Iterated Local Search

Iterated local search (ILS) is based on a simple but successful idea. Instead of repeat-
ing local search and starting from initial solutions like restart approaches do, ILS
begins with a solution x and successively applies local search and perturbation of the
local optimal solution x̂. This procedure is repeated iteratively until a termination
condition is fulfilled. Algorithm 1 shows the pseudocode of the ILS approach. Initial
solutions should use as much information as possible to be a good starting point for
local search. Most local search operators are deterministic. Consequently, the per-
turbation mechanism should introduce non-deterministic components to explore the
solution space. The perturbation mechanism performs global random search in the
space of local optima that are approximated by the local search method. Blum and
Roli [2] point out that the balance of the perturbation mechanism is quite important.
Perturbation must be strong enough to allow the escape from basins of attraction, but
weak enough to exploit knowledge from previous iterations. Otherwise, the ILS will
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become a simple restart strategy. The acceptance criterion of Line 6 may vary from
always accept to only accept in case of improvement. Approaches like simulated
annealing may be adopted.

Algorithm 1 Iterated Local Search
1: initialize solution x
2: produce x̂ with local search
3: repeat
4: perturbation of x
5: produce x̂ with local search
6: apply acceptance criterion
7: until termination condition

There are many examples in literature for the successful application of ILS vari-
ants on combinatorial optimization problems. A survey of ILS techniques has been
presented by Lourenco et al. [3]. The authors also provide a comprehensive intro-
duction [4] to ILS. A famous combinatorial instance, many ILS methods have been
developed for, is the traveling salesperson problem. Stützle and Hoos [5] introduced
an approach that combines restarts with a specific acceptance criterion to maintain
diversity for the TSP, while Katayama and Narihisa [6] use a perturbation mecha-
nism that combines the heuristic 4-opt with a greedy method. Stützle [7] uses an
ILS hybrid to solve the quadratic assignment problem. The technique is enhanced by
acceptance criteria that allowmoves to worse local optima. Furthermore, population-
based extensions are introduced. Duarte et al. [8] introduce an ILS heuristic for the
problem of assigning referees to scheduled games in sports based on greedy search.
Our perturbation mechanism is related to their approach. Preliminary work on the
adaptation of the perturbation algorithm has been applied by Mladenovic et al. [9]
for variable neighborhood search and tabu search by Glover et al. [10].

5.3 Powell’s Conjugate Gradient Method

The hybrid ILS variant introduced in this chapter is based on Powell’s optimiza-
tion method. Preliminary experiments revealed the efficiency of Powell’s method in
comparison to continuous evolutionary search methods. However, in the experimen-
tal section, we will observe that Powell’s method can get stuck in local optima in
multimodal solution spaces. An idea similar to the hybridization of local search has
been presented by Griewank [11], who combines a gradient descent method with a
deterministic perturbation term.

Powell’s method belongs to the class of direct search methods, i.e., no first or
second order derivatives are required. It is based on conjugate directions and is
similar to line search. The idea of line search is to start from search point x ∈ R

N

along a direction d ∈ R
N , so that f (x + λt d) is minimized for a λt ∈ R

+. Powell’s
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method [12, 13] adapts the directions according to a gradient-like information from
the search.

Algorithm 2 Powell’s Method
1: repeat
2: for t = 1 to N do
3: find λt that minimizes f (xt−1 + λt dt )

4: set xt = xt−1 + λt dt
5: for j = 1 to N − 1 do
6: update vectors d j = d j+1
7: end for
8: set dN = xN − x0
9: find λN that minimizes f (xN + λN dN )

10: set x0 = x0 + λN dN
11: end for
12: until termination condition

It is based on the assumption of a quadratic convex objective function f (x)

f (x) = 1

2
xT Hx + bT x + c. (5.1)

with Hessian matrix H. Two directions di ,d j ∈ R
N , i �= j are mutually conjugate,

if
dT

i Hd j = 0 (5.2)

holds with mutual conjugate directions that constitute a basis of the solution
space R

N . Let x0 be the initial guess of a minimum of function f. In iteration t ,
we require an estimation of the gradient gt = g(xt ). Let t = 1 and let dt = −gt be
the steepest descent direction. For t > 1, Powell applies the equation

dt = −gt + βt dt−1, (5.3)

with the Euclidean vector norms

βt = ‖gt‖2
‖gt−1‖2 . (5.4)

The main idea of the conjugate direction method is to search for the minimal value
of f (x) along direction dt to obtain the next solution xt+1, i.e., to find the λ that
minimizes

f (xt + λt dt ). (5.5)

For a minimizing λt , set
xt+1 = xt + λt dt . (5.6)
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Algorithm 2 shows the pseudocode of the conjugate gradient method that is the basis
of Powell’s strategy. In our implementation, the search for λt is implemented with
line search. For a more detailed introduction, we refer to the depiction of Powell [12]
and Schwefel [14].

At first, we analyze Powell’s method on the optimization test suite (cf. Appen-
dix A). Solutions are randomly initialized in the interval [−100, 100]N . Each exper-
iment is repeated 30 times. Powell’s method terminates, if the improvement from
one to the next iteration is smaller than φ = 10−10 with comma selection, or if the
optimum is found with accuracy fstop = 10−10. As Powell’s method is a convex
optimization technique, we expect that only the unimodal problems can be solved.
Table5.1 confirms these expectations. On unimodal functions, Powell’s method is
exceedingly fast. On the Sphere problem with N = 10, a budget of only 101.7 fit-
ness function evaluations in mean is sufficient to approximate the optimum. These
fast approximation capabilities can also be observed on problems Doublesum and
Rosenbrock, also for higher dimensions, i.e. N = 30.

The results also show that Powell’s method is not able to approximate the optima
of the multimodal function Rastrigin. On the easier multimodal function Griewank,
the random initializations allow to find the optimum in some of the 30 runs. The fast
convergence behavior on convex function parts motivates to perform local search
as operator in a global evolutionary optimization framework. It is the basis of the
Powell ES that we will analyze in the following.

Table 5.1 Experimental comparison of Powell’s method on the test problems with N = 10 and
N = 30 dimensions

Best Median Worst Mean Dev #

N = 10
fSp 100 102 102 101.7 0.67 30
fDou 91 92 92 91.8 0.42 30
fRos 2,947 4,617 12,470 5,941.87 3,353.14 24
fRas – – – – – 0
fGri 329 329 329 329 0 1
fKur – – – – – 0
N = 30
fSp 299 302 302 301.3 1.05 30
fDou 291 291.5 292 291.5 0.52 30
fRos 14,888 33,315 59,193 36,455.85 16,789.41 21
fRas – – – – – 0
fGri 904 997 1,001 967.33 54.88 3
fKur – – – – – 0

Best, median, worst, mean, and dev provide statistical information about the number of fitness
function evaluations of 30 runs until the difference between the fitness of the best solution and the
optimum is smaller than fstop = 10−10. Parameter # states the number of runs that reached the
optimum.
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5.4 Powell Evolution Strategy

The Powell ES [1] presented in this section is based on four key concepts, each
focusing on typical problems in real-valued solution spaces. Powell’s method is a
fast direct optimization method, in particular appropriate for unimodal fitness land-
scapes. It is integrated into the optimization process using ILS, in order to prevent
Powell’s method from getting stuck in local optima. ILS approach is based on the
successive repetition of Powell’s conjugate gradientmethod as local search technique
and a perturbation mechanism. A population of candidate solutions is employed for
exploration similar to evolution strategies. The strength of the ILS perturbation is
controlled by means of an adaptive control mechanism. In case of stagnation, the
mutation strength is increased, in order to leave local optima, and decreased other-
wise.

Algorithm 3 shows the pseudocode of the Powell ES. At the beginning, μ solu-
tions x1, . . . , xμ ∈ R

N are randomly initialized and optimized with the strategy of
Powell. In an iterative loop λ, offspring solutions x1, . . . , xλ are produced by means
of Gaussian mutations with the global mutation strength σ by

x′
j = x j + z j , (5.7)

with
z j ∼ (σ1N (0, 1), . . . ,σNN (0, 1))T . (5.8)

Afterwards, each solution x′
j is locally optimized with the strategy of Powell, leading

to x̂′
j for j = 1, . . . ,λ. After λ solutions have been produced this way, the μ-best

are selected according to their fitness with comma selection. Then, we apply global
recombination, i.e., the arithmetic mean 〈x̂t 〉 at generation t of all selected solutions
x̂1, . . . , x̂μ is computed.Thefitness of this arithmeticmean is evaluated and compared
to the fitness of the arithmeticmean of the last generation t−1. If the search stagnates,
i.e., if the condition

| f (〈x̂〉t ) − f (〈x̂〉t−1)| < θ (5.9)

becomes true, the mutation strength is increased via

σ = σ · τ (5.10)

with τ > 1. Otherwise, the mutation strength σ is decreased by multiplication
with 1/τ .

An increasing mutation strength σ allows to leave local optima. Powell’s method
drives the search into local optima, and the outer ILS performs a search within
the space of local optima controlling the perturbation strength σ. A decrease of
step size σ lets the algorithm converge to the local optimum in a range defined
by σ. This technique seems to be in contraposition to the 1/5th success rule by
Rechenberg [15]. Running a simple (1 + 1)-ES with isotropic Gaussian mutations
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Algorithm 3 Powell ES
1: initialize μ solutions
2: apply Powell’s method
3: repeat
4: for j = 1 to λ do
5: mutate solution x j
6: apply Powell’s method
7: end for
8: select μ-best solutions
9: if fitness improvement < θ then

10: σ = σ · τ
11: else
12: σ = σ/τ
13: end if
14: until termination condition

and constant mutation steps σ, the optimization process will become very slow after
a few generations. Rechenberg’s rule adapts the mutation strengths in the opposite
kind of way. If the ratio g/G of successful generations g after G generations is larger
than 1/5th, the step size should be increased. The increase is reasonable, because
bigger steps towards the optimum are possible, while small steps would be a waste
of time. If the success ratio is less than 1/5th, the step size should be decreased. This
rule is applied every G generations. The goal of Rechenberg’s approach is to stay
in the evolution window guaranteeing nearly optimal progress. Optimal progress is
problem-dependent and can be stated theoretically on artificial functions [16].

However, in our approach the strategy of Powell approximates local optima, not
the evolution strategy. The step control of the Powell ES has another task: leaving
local optima, when the search stagnates. Basins of attractions can be left because
of the increasing step size. Hence, the probability of finding the global optimum
is larger than 0. With this mechanism, also the global optimum may be left again.
But if the vicinity of the optimum has been reached, it is probable that it will be
successively reached again. The problem that the global optimum may be left, if not
recognized, can be compensated by saving the best found solution in the course of
the optimization process.

5.5 Experimental Analysis

In the following, we will experimentally analyze the Powell ES on a set of test
problems, cf. Appendix A. Again, initial solutions are generated in the inter-
val [−100, 100]N , and the step sizes are set to σinit = 1.0. Each experiment is
repeated 30 times. For the Powell ES, we employ the settings λ = 8 and μ = 2. Each
solution is mutated and locally optimized with Powell’s method. Again, Powell’s
method terminates, if the improvement from one to the next iteration is smaller
than φ = 10−10, or if the optimum is found with accuracy fstop = 10−10. If the
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search on the ILS level stagnates, i.e., if the achieved improvement is smaller than θ,
the mutation strength is increased with mutation parameter τ = 2.0. We allow a
maximal budget of ffemax = 2.0 × 106 fitness function evaluations.

Table5.2 shows the results of the analysis of the Powell ES on the test problems
with N = 10 and N = 30dimensions.The results have shown that Powell’smethod is
very fast on unimodal problems.Of course, the Powell ES shows the same capabilities
and approximates the optimum in the first Powell-run on the Sphere problem and
Doublesum. We have already observed that Powell gets stuck in local optima of
multimodal problems (e.g. Rastrigin). The Powell ES perturbates a solution, when
getting stuck, and applies Powell’s method again with the perturbationmechanism of
Eq. (5.10). The results show that the iterated application of Powell’s method in each
generation allows to approximate the global optimum, also on Rastrigin. The Powell
ES is able to approximate the optimum in comparison to its counterpart without ILS.

It convergences significantly faster than theCMSA-ES (cf.Chap. 2).A statistically
significant superiority of the Powell ES can also be observed on Griewank. On
Rosenbrock, no superiority of any of the two algorithms can be reported. Although
the worst runs of the Powell ES cause a fitness deterioration in mean, the best runs
are still much faster than the best runs of the CMSA-ES. The CMSA-ES is more
robust with smaller standard deviations, but does not offer the potential to find the
optimal solution that fast. A similar behavior can be observed on the test problems
with N = 30 dimensions, see the lower part of Table5.2. The CMSA-ES takes
about 17 times more evaluations. This also holds true for the other unimodal test
problems, where the Powell ES is superior. On the multimodal test problems in
higher dimensions, similar results as for N = 10 can be observed. The Powell ES

Table 5.2 Experimental analysis of the Powell ES on the test problems with N = 10 and N = 30
dimensions

Best Median Worst Mean Dev #

N = 10
fSp 99 100 153 105.1 1.6e1 30
fDou 89 92 178 108.6 3.6e1 30
fRos 3,308 5,074.5 29,250 7,772.6 7.8e3 30
fRas 2,359 14,969.5 38,550 15,682.5 9.1e3 30
fGri 477 1,506 6,572 2,240 2.2e3 30
fKur 4,300 196,218 316,528 165,325 9.9e4 30
N = 30
fSp 290 295.5 299 295.3 2.83 30
fDou 283 286.5 479 305.6 6.0e1 30
fRos 25,363 61,768 385,964 95,339 1.0e5 30
fRas 58,943 78,537.5 191,489 102,429 4.4e4 30
fGri 971 5,994.5 20,913 9,629.6 7.6e3 30
fKur >2.0e6 >2.0e6 >2.0e6 >2.0e6 – 0

The figures show the number of fitness function evaluations until the difference between the fitness
of the best solution and the fitness of the optimum is smaller than fstop = 10−10. This termination
condition has been reached in every run except on fKur with N = 30.

http://dx.doi.org/10.1007/978-3-319-03422-5_2
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Fig. 5.1 Development of fitness and step sizes on the multimodal problem Kursawe employing
N = 10. When the search gets stuck in local optima, the perturbation mechanism increases σ and
lets the Powell ES escape from basins of attraction [1]

is statistically better on Rastrigin. The CMSA-ES’s mean and median are better on
Rosenbrock and Griewank. On Kursawe, the optimum has been found in every run
for N = 10, but in no run for N = 30.

Figure5.1 shows fitness curves and step sizes of typical runs on the multimodal
problem Kursawe with N = 10. It can be observed that the search successively
gets stuck. But the perturbation mechanism always allows to leave the local optima
again. When the search gets stuck in a local optimum, the strategy increases σ until
the local optimum is successfully left, and a better local optimum is found. The
approach moves from one local optimum to another controlling σ, until the global
optimum is found. The fitness development reveals that the search has to accept
worse solutions to approximate the optimal solution. The figures confirm the basic
idea of the algorithm. ILS controls the global search, while Powell’s method drives
the search into local optima. Frequently, the hybrid is only able to leave local optima
by controlling the strength σ of the Gaussian perturbation mechanism. ILS conducts
a search in the space of local optima.

5.6 Perturbation Mechanism and Population Sizes

For deeper insights into the perturbation mechanism and the interaction with popu-
lation sizes, we conduct further experiments on the multimodal problem Rastrigin
with N = 30, where the Powell ES has shown successful results. The strength of the
perturbation mechanism plays an essential role for the ILS. In case of stagnation, the
step size is increased as described in Eq. (5.10) with τ > 1 to let the search escape
from local optima. Frequently, a successive increase of the perturbation strength is
necessary to prevent stagnation. In case of an improvement, the step size is decreased
with τ < 1. The idea of the step size reduction is to prevent the search process from
jumping over promising regions of the solution space. In the following, we ana-
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Table 5.3 Analysis of the Powell ES perturbation parameter τ and the population sizes onRastrigin
with N = 30 using the same initial settings, performance measure, and termination condition like
in the previous experiments

(μ,λ) Best Median Worst Best Median Worst

τ = 1.5 τ = 2.0
(1, 4) 53,913 92,544 130,675 31,686 78,214 121,170
(2, 8) 56,074 100,835 143,642 65,540 112,643 242,983
(4, 16) 149,350 162,083 210,384 77,481 117,972 163,693
(8, 32) 156,517 295,457 370,320 193,259 209,725 244,325

τ = 5.0 τ = 10.0
(1, 4) 53,465 105,513 406,495 >2 × 109 >2 × 109 >2 × 109

(2, 8) 48,274 104,461 285,651 32,773 680,363 1,473,097
(4, 16) 67,241 103,142 202,447 52,991 208,088 338,922
(8, 32) 109,820 189,676 221,069 123,838 309,169 802,285

lyze the perturbation mechanism and the population sizes on Rastrigin. We try to
determine useful parameter settings for τ and for population parameters μ and λ.

Table5.3 shows the corresponding results. The best result has been achieved
with τ = 2.0 and population sizes (1, 4). Also the bestmedian has been achievedwith
this setting, while the second best has been achieved with τ = 1.5 and population
sizes (1, 4). With parameter setting τ = 10.0, the Powell ES achieves a satisfying
best solution, but the variance of the results is high. The worst solution is comparably
bad. In general, the results for τ = 10.0 are quite weak, for (1, 4) the algorithm does
not converge within reasonable time. For low mutation strengths, the best results
can be observed for small population sizes. In turn, for higher mutation strengths,
i.e., τ = 5.0, larger population sizes are necessary to compensate the explorative
effect. Further experiments on other problems led to the decision that a (2, 8)-Powell
ES is a good compromise between exploration and efficiency, while a (4, 16)-Powell
ES is a rather conservative, but stable choice with reliable results.

5.7 Conclusions

Combining the world of local search with the world of global evolutionary opti-
mization is a promising undertaking. It reflects the original idea of evolutionary
computation. If we do not know anything about the problem, evolutionary algo-
rithms are an appropriate choice. In multimodal fitness landscapes, we typically
know nothing about the landscape of local optima. The Powell ES only assumes that
attractive local optima lie closely together. Hence, the search might jump from one
basin of attraction to a neighbored one. To move into local optima, Powell’s method
turns out to be fairly successful. Furthermore, the adaptation of the perturbation
strength is a natural enhancement in real-valued solution spaces. A population-based
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implementation allows to run multiple Powell searches in parallel and to achieve a
crucial speedup in distributed computing environments.
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