
Chapter 3
Parameter Control

3.1 Introduction

Parameter control is an essential aspect of successful evolutionary search. Various
parameter control and tuning methods have been proposed in the history of evo-
lutionary computation, cf. Fig. 3.1 for a short taxonomy. The importance of para-
meter control has become famous for mutation rates. Mutation is a main source of
evolutionary changes. Mutation rates control the magnitude of random changes of
solutions. At the beginning of the history of evolutionary computation, researchers
argued about proper settings. De Jong’s [1] recommendation was the mutation
strength σ = 0.001, Schaffer et al. [2] recommended the setting 0.005 ≤ σ ≤ 0.01,
and Grefenstette [3] σ = 0.01. Mühlenbein [4] suggested to set the mutation proba-
bility to σ = 1/N depending on the length N of the representation. But early, the idea
appeared to control the mutation rate during the optimization run, as the optimal rate
might change during the optimization process, and different rates are reasonable for
different problems. Objective of this chapter is to compare the parameter tuning and
control techniques of a simple evolutionary algorithm (EA) on a simple function,
i.e., OneMax, to allow insights into the interplay of mutation rates and parameter
control mechanisms. OneMax is a maximization problem defined on {0, 1}N → N

that counts the number of ones in bit string x

OneMax(x) =
N∑

i=1

xi . (3.1)

The optimal solution is x∗ = (1, . . . , 1)T with fitness f (x) = N .

O. Kramer, A Brief Introduction to Continuous Evolutionary Optimization, 27
SpringerBriefs in Computational Intelligence,
DOI: 10.1007/978-3-319-03422-5_3, © The Author(s) 2014



28 3 Parameter Control

Taxonomy of parameter setting

parameter setting

control

self-adaptative

adaptive

deterministic

tuning

by hand meta-evolution

Fig. 3.1 Taxonomy of parameter setting of this work oriented to Eiben et al. [5] and complemented
on the parameter tuning branch (cf. Kramer [6])

3.2 The (1+1)-EA

The (1 + 1)-EA works on bit string representations x = (x1, . . . , xN )
T ∈ {0, 1}N

with only one individual, which is changed with bit-flip mutation. Bit-flip mutation
means that each bit xi of bit-string x is flipped with probability σ = 1/N . No
recombination is employed, as no population is used. Furthermore, the selection
operator can be reduced to a simple selection of the better one of two solutions. The
pseudocode can be found in Algorithm 1. The number of fitness function calls of a
(1+1)-EA complies with the number of generations.

Algorithm 1 Standard (1 + 1)-EA
1: choose x ∈ {0, 1}N uniform at random
2: repeat
3: produce x′ by flipping each bit of x with probability 1/N
4: replace x with x′ if f (x′) ≤ f (x)
5: until termination condition

For the (1 + 1)-EA, a runtime analysis on the simple OneMax problem demon-
strates its properties. The runtime analysis is based on the method of fitness-based
partitions, and shows that the (1+1)-EA’s runtime is upper bounded by O(N log N )

on OneMax [7].

Theorem 3.1 The expected runtime of a (1 + 1)-EA on OneMax is O(N log N ).

The solution space {0, 1}N is divided into N + 1 sets A0, . . . , AN . A partition Ai

contains all solution with OneMax(x) = i . If the currently best solution x belongs to
AN−k , still k 0-bits have to be flipped leading to improvements. The probability for



3.2 The (1+1)-EA 29

another bit not to be flipped is 1− 1
N , i.e., the probability that the ones are not flipped

is (1− 1
N )(N−k). Hence, the probability for success is at least k

N (1− 1
N )(N−k) ≥ k

eN
for the next step. The expected runtime is upper bounded by eN/k. For different
values of k, we get

N∑

k=1

eN

k
= eN ·

N∑

k=1

1

k
= O(N log N ). (3.2)

�
In the remainder of this chapter, we will experimentally analyze and compare a
selection of important parameter control and tuning techniques.

3.3 A Study on Mutation Rates

The question comes up, if our experiments can confirm the theoretical result, i.e.,
if the mutation rate 1/N leads to N log N generations in average. For this sake, we
test the (1 + 1)-EA with various mutation rates on OneMax with various problem
sizes. This extensive analysis is similar to tuning by hand, which is probably the most
frequent parameter tuning method. Figure3.2 shows the analysis with problem sizes
N = 10, 20, and 30. The results show that the optimal mutation rate is close to 1/N ,
which leads to the runtime of O(N log N ). Our experiments confirm this result with
the exception of a multiplicative constant, i.e., the runtime is about two times higher
than N log N . In the the following section, we employ evolutionary computation to
search for optimal mutation rates, an approach called meta-evolution.

3.4 Meta-Evolution

Meta-evolution is a parameter tuningmethod that employs evolutionary computation
to tune evolutionary parameters. The search for optimal parameters is treated as
optimization problem. We employ a (μ + λ)-ES [8] to tune the mutation rate of an
inner (1 + 1)-EA. The (μ + λ)-ES employs arithmetic recombination and isotropic

.00 0.10 0.20 0.30 0.40 σ

ge
ne

ra
tio

ns

10 1

10
2

10
3 OneMax

.00 0.10 0.20 0.30 0.40 σ

ge
ne

ra
tio

ns

102

10
3

10
4 OneMax

.00 0.10 0.20 0.30 0.40 σ

ge
ne

ra
tio

ns

10 2

10
4

10
7 OneMax

(a) (b) (c)

Fig. 3.2 Analysis of mutation strength σ for (1 + 1)-EA on OneMax for three problem sizes.
a (1 + 1)-EA, N = 10, b (1 + 1)-EA, N = 20, c (1 + 1)-EA, N = 30



30 3 Parameter Control

Table 3.1 Experimental results of meta-evolutionary approach of a (10 + 100)-EA tuning the
mutation rates of a (1 + 1)-EA on OneMax

N t σ∗ Gen.

5 8.80 0.252987 37
10 31.84 0.134133 14
20 90.92 0.071522 42
30 170.60 0.055581 41

Gaussianmutation x′ = x + N (0,σ)with a decreasing σ depending on generation t .
Algorithm 2 shows the pseudocode of the meta-evolutionary approach.

Algorithm 2 Meta-(1 + 1)-EA
1: initialize mutation rates σ1, . . . ,σμ ∈ P, τ
2: repeat
3: for i = 1 to λ do
4: select ρ parents from P
5: create σi by recombination
6: decrease τ
7: mutate σi = σi + τ · N (0, 1)
8: run (1 + 1)-EA with σi
9: add σi to P ′
10: end for
11: select μ parents from P ′ → P
12: until termination condition

In our experimental analysis, we employ a (10+100)-ES optimizing the mutation
rate of the underlying (1+ 1)-EA that solves problem OneMax for various problem
sizes N . The ES starts with an initial mutation rate of τ = 0.2. In each generation, τ
is decreased deterministically by multiplication, i.e., τ = τ ·0.95. The inner (1+1)-
EA employs the evolved mutation rate σ of the upper ES and is run 25 times with
this setting. The average number of generations until the optimum of OneMax is
found employing the corresponding σ is the fitness f (σ). The ES terminates after
50 generations. Table3.1 shows the experimental results of the meta-evolutionary
approach. The table shows the average number t of generations until the optimum
has been found by the (1+1)-EA in the last generation of the ES, the evolvedmutation
rate σ∗ and the number of generations, the ES needed to find σ∗. The achieved speed
of convergence by the inner (1+ 1)-EA, e.g., 170.6 generations for N = 30 is a fast
result.

3.5 Rechenberg’s 1/5th Rule

An example for an adaptive control of endogenous strategy parameters is the 1/5th
success rule for ES by Rechenberg [9]. The idea of Rechenberg’s 1/5th rule is to
increase the mutation rate, if the success probability is larger than 1/5th, and to



3.5 Rechenberg’s 1/5th Rule 31

decrease it, if the success probability is smaller. The success probability can be
measured w.r.t. a fix number G of generations. If the number of successful genera-
tions, i.e., the offspring employs a better fitness than the parent, of a (1 + 1)-EA is
g, then g/G is the success rate. If g/G > 1/5, σ is increased by σ = σ · τ with
τ > 1, otherwise, it is decreased by σ = σ/τ . Algorithm 3 shows the pseudocode of
the (1+ 1)-EA with Rechenberg’s 1/5th rule. The objective is to stay in the so called
evolution window guaranteeing nearly optimal progress.

Algorithm 3 (1 + 1)-EA with Rechenberg’s 1/5th rule

1: choose x ∈ {0, 1}N uniform at random
2: repeat
3: for i = 1 to G do
4: produce x′ by flipping each bit of x with probability σ
5: replace x with x′ if f (x′) ≤ f (x) and set g+ = 1
6: end for
7: if g/G > 1/5 then
8: σ = σ · τ
9: else
10: σ = σ/τ
11: end if
12: until termination condition

Figure3.3 shows the corresponding experimental results for various values of
τ and N = 10, 20, and 30. The results show that Rechenberg’s rule is able to
automatically tune the mutation rate and reach almost as good results as the runs with
tuned settings. We can observe that smaller settings for τ , i.e., settings close to 1.0
achieve better results than larger settings in all cases. Further experiments have shown
that settings over τ > 10.0 lead to very long runtimes (larger than 105 generations).
In such cases, σ cannot be fine-tuned to allow a fast approximation of the optimum.

(a) (b) (c)

Fig. 3.3 Experimental results of parameter control with Rechenberg’s 1/5th rule. a Rechenberg,
N = 5, b Rechenberg, N = 10, c Rechenberg, N = 20



32 3 Parameter Control

3.6 Self-Adaptation

Self-adaptation is an automatic evolutionary mutation rate control. It was originally
introduced by Rechenberg and Schwefel [10] for ES, later independently in the
United States by Fogel [11] for evolutionary programming. The most successful
self-adaptively controlled parameters aremutation parameters. This is a consequence
of the direct influence of the mutation operator on the exploration behavior of the
optimization algorithm: Large mutation strengths cause large changes of solutions,
decreasing mutation strengths allow an approximation of the optimum, in particular
in continuous solution spaces.

The mutation rate σ is added to each individual x and is at the same time subject
to recombination, mutation and selection. For a (1 + 1)-EA, self-adaptation means
that the mutation rate σ is mutated with log-normal mutation

σ′ = σ · eτN (0,1) (3.3)

with a control parameter τ . Afterwards, themutation operator is applied. Appropriate
mutation rates are inherited and employed in the following generation. The log-
normal mutation allows an evolutionary search in the space of strategy parameters.
It allows the mutation rates to scale in a logarithmic kind of way from values close
to zero to infinity. Algorithm 4 shows the pseudocode of the SA-(1 + 1)-EA with
σ-self-adaptation.

Algorithm 4 SA-(1 + 1)-EA
1: choose x ∈ {0, 1}N uniform at random
2: choose σ ∈ {0, 1} at random
3: repeat
4: produce σ′ = σ · eτN (0,1)

5: produce x′ by flipping each bit of x with probability σ′
6: replace x with x′ and σ with σ′, if f (x′) ≤ f (x)
7: until termination condition

Figure3.4 shows typical developments1 of fitness f (x) and mutation rate σ of
the SA-(1 + 1)-EA on N = 10, 50, and 100 for τ = 0.1. Due to the plus selection
scheme, the fitness is decreasing step by step. The results show that the mutation
rate σ is adapting during the search. In particular, in the last phase of the search
for N = 100, σ is fast adapting to the search conditions and accelerates the search
significantly.

Table3.2 shows the experimental results of theSA-(1+1)-EAwith various settings
for τ on OneMax with problem sizes N = 10, 20, 30, 50, and 100. The results
show that the control parameter, i.e., the mutation rate τ of the mutation rate σ, has
a significant impact on the success of the SA-(1 + 1)-EA. Both other setting, i.e.,

1 employing a logarithmic scale



3.6 Self-Adaptation 33

(a) (b) (c)

Fig. 3.4 SA-(1 + 1)-EA on OneMax with N = 10,50, and 100. a SA, N = 10, b SA, N = 50,
c SA, N = 100

Table 3.2 Number of generations the SA-(1 + 1)-EA needs to reach the optimum

N 10 20 30 50 100

τ = 0.01 48.3 ± 29.03 162.0 ± 83.1 359.0 ± 175.0 2.4e3 ± 552.8 > 105

τ = 0.1 46.1 ± 36.3 142.9 ± 47.1 274.0 ± 97.4 1.0e3 ± 770.7 3.6e3 ± 3.3e3
τ = 1.0 2.7e3 ± 4.9e3 5.0e3 ± 1.2e4 8.9e3 ± 9.5e3 1.9e4 ± 1.4e4 > 105

τ = 0.01 and τ = 1.0 lead to worse results. In particular on the large problem
instance with N = 100, both settings fail and lead to long optimization runs.

3.7 Conclusions

The success of evolutionary algorithms depends on the choice of appropriate
parameter settings, in particular mutation rates. Although a lot of studies are known
in literature, only few compare different parameter control techniques employing the
same algorithmic settings on the same problems. But only such a comparison allows
insights into the underlying mechanisms and common principles. The analysis has
shown that optimally tuned mutation rates can automatically be found with meta-
evolution. The effort spent into the search is comparatively high, but the final result
is competitive or better than the control techniques. But more flexible and still pow-
erful is the adaptive mutation rate control with Rechenberg’s rule. Self-adaptation
turns out to be the most flexible control technique with its automatic mutation rate
control. Although self-adaptation depends on the control parameter τ , it is quite ro-
bust w.r.t. the problem size. It became famous in ES for continuous optimization and
also has shown the best results in our parameter control study. As future work, we
plan to extend our analysis to further EA variants, parameter control techniques, and
problem types.



34 3 Parameter Control

References

1. K.A.D. Jong, An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis,
University of Michigan, 1975

2. J.D. Schaffer, R. Caruana, L.J. Eshelman, R. Das, A study of control parameters affecting
online performance of genetic algorithms for function optimization, in Proceedings of the 3rd
International Conference on Genetic Algorithms (ICGA), pp. 51–60, 1989

3. J. Grefenstette, Optimization of control parameters for genetic algorithms. IEEE Trans. Syst.
Man Cybern. 16(1), 122–128 (1986)

4. H.Mühlenbein,Howgenetic algorithms reallywork:Mutation andhillclimbing, inProceedings
of the 2nd Conference on Parallel Problem Solving from Nature (PPSN), pp. 15–26, 1992

5. A.E. Eiben, R.Hinterding, Z.Michalewicz, Parameter control in evolutionary algorithms. IEEE
Trans. Evol. Comput. 3(2), 124–141 (1999)

6. O. Kramer, Self-Adaptive Heuristics for Evolutionary Computation, Studies in Computational
Intelligence (Springer, Heidelberg, 2008)

7. S. Droste, T. Jansen, I. Wegener, On the analysis of the (1+1) evolutionary algorithm. Theoret.
Comput. Sci. 276(1–2), 51–81 (2002)

8. H.-G. Beyer, H.-P. Schwefel, Evolution strategies—A comprehensive introduction. Nat.
Comput. 1, 3–52 (2002)

9. I. Rechenberg, Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der
Biologischen Evolution (Frommann-Holzboog, Stuttgart, 1973)

10. H.-P. Schwefel, Adaptive Mechanismen in der biologischen Evolution und ihr Einfluss auf die
Evolutionsgeschwindigkeit (Interner Bericht der Arbeitsgruppe Bionik und Evolutionstechnik
am Institut für Mess- und Regelungstechnik, TU Berlin, 1974)

11. D.B. Fogel, L.J. Fogel, J.W. Atma, Meta-evolutionary programming, in Proceedings of 25th
Asilomar Conference on Signals, Systems and Computers, pp. 540–545, 1991


	3 Parameter Control
	3.1 Introduction
	3.2 The (1+1)-EA
	3.3 A Study on Mutation Rates
	3.4 Meta-Evolution
	3.5 Rechenberg's 1/5th Rule
	3.6 Self-Adaptation
	3.7 Conclusions
	References


