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Abstract

Practical optimization problems are often hard to solve, in particular when they are
black boxes and no further information about the problem is available except via
function evaluations. This work introduces a collection of heuristics and algo-
rithms for black box optimization with evolutionary algorithms in continuous
solution spaces. The book gives an introduction to evolution strategies and
parameter control. Heuristic extensions are presented that allow optimization in
constrained, multimodal, and multiobjective solution spaces. An adaptive penalty
function is introduced for constrained optimization. Meta-models reduce the
number of fitness and constraint function calls in expensive optimization problems.
The hybridization of evolution strategies with local search allows fast optimization
in solution spaces with many local optima. A selection operator based on reference
lines in objective space is introduced to optimize multiple conflictive objectives.
Evolutionary search is employed for learning kernel parameters of the Nadaraya-
Watson estimator, and a swarm-based iterative approach is presented for opti-
mizing latent points in dimensionality reduction problems. Experiments on typical
benchmark problems as well as numerous figures and diagrams illustrate the
behavior of the introduced concepts and methods.

xi



Part I
Foundations



Chapter 1
Introduction

Many optimization problems that have to be solved in practice are black box
problems. Often, not much is known about an optimization problem except the infor-
mation one can get via function evaluations. Neither derivatives nor constraints are
known. In the worst case, nothing is even known about the characteristics of the
fitness function, e.g., whether it is uni- or multimodal. This scenario affords the
application of specialized optimization strategies often called direct search methods.
Evolutionary algorithms that mimic the biological notion of evolution and employ
stochastic components to search in the solution space have grown to strong optimiza-
tion methods. Evolutionary methods that are able to efficiently search in large opti-
mization scenarios and learn from observed patterns in data mining scenarios have
found broad acceptance in many disciplines, e.g., civil and electrical engineering.
The methods have been influenced from various disciplines: robotics, statistics,
computer science, engineering, and the cognitive sciences. This might be the rea-
son for the large variety of techniques that have been developed in the last decades.
The employment of computer simulations has become outstandingly successful in
engineering within the last years. This development includes the application of
optimization and learning techniques in the design and prototype process. Simu-
lations allow the study of prototype characteristics before the product has actually
been manufactured. Such a process allows an entirely computed-based optimization
of the whole prototype or of its parts and can result in significant speedups and
savings of material and money.

Learning and optimization are strongly related to each other. In optimization, one
seeks for optimal parameters of a function or system w.r.t. a defined objective. In
machine learning, one seeks for an optimal functional model that allows to describe
relations between observations. Pattern recognition and machine learning problems
also involve solving optimization problems. Many different optimization approaches
are employed, from heuristics with stochastic components to exact convex methods.

The goal of this book is to give a brief introduction to latest heuristics in evolu-
tionary optimization for continuous solution spaces. The beginning of the work gives
a short introduction to the main problem classes of interest: optimization, super-, and
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Fig. 1.1 Survey of problem
classes the methods in this
work belong to: evolutionary
optimization, super-, and
unsupervised learning

Problem classes

evolutionary
optimization

supervised 
learning

unsupervised
learning

unsupervised learning, see Fig. 1.1. Optimization is the problem of finding optimal
parameters for arbitrary models and functions. Supervised learning is about find-
ing functional models that best model observations with given label information.
Unsupervised learning is about learning functional models only based on the struc-
ture of the data itself, i.e., without label information. The following three paragraphs
give a short introduction to the three problem classes.

1.1 Optimization

Optimization is the search for optimal parameters of a system. The parameters are
known as design or objective variables. We assume a set S of solutions that we call
solution space or search space. A typical example for a solution space is the set R of
continuous values. In most cases, not only one, but many values have to be optimized
at the same time resulting in an N -dimensional search problem, or search problem
dimensionality, respectively. For continuous solution spaces, this means we search
in R

N . A famous optimization problem is the traveling salesperson problem. The
salesperson has to find the shortest tour through a set of cities and go back to the
city, where he started from. In this scenario, a solution consists of a sequence of
cities. A feasible solution must contain all cities. Obviously, the solution space has
a different structure than the set of continuous solutions. For such solution spaces,
special operators have to be employed. We focus on continuous optimization in this
book.

Optimality can only be defined w.r.t. some quality measure. We measure the
quality of a solution with the help of a quality function f that we also call fitness
function. An optimal solution x∗ has a better fitness f (x∗) than all other solutions x
in the solution spaceRN , i.e., for an optimal solution x∗ ∈ R

N it holds f (x∗) ≤ f (x)

for all x ∈ R
N . This definition holds for single-objective optimization problems and

has to be extended for multi-objective problems via the concept of Pareto optimality,
see Chap. 6. Without loss of generality, I concentrate on minimization problems.
Maximization problems can easily be transformed into minimization problems by
inversion of the objective function

http://dx.doi.org/10.1007/978-3-319-03422-5_6
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fmin(x) = − fmax(x). (1.1)

A solution x∗ with a better fitness f (x∗) < f (x) than the solutions in its environment
x ∈ R

N with ‖x −x∗‖ < κ for an κ > 0 is called local optimum. Objective variables
can be discrete (i.e., they are defined over a discrete set) or continuous (defined over
R

N ). This work concentrates on continuous black box optimization problems, where
no derivatives or functional expressions are explicitly given. This is a reasonable
assumption, as many optimization problems in practice are black boxes.

For unconstrained solution spaces, the conditions for optimal solutions can also be
formulated via the first and the second partial derivatives. The necessary condition for
a solution x∗ to be a minimum is that the gradient vanishes at x∗, i.e., ∇ f (x∗) = 0.
To exclude saddle points, the second derivative at x∗ has to change the sign. The
condition can conveniently be formulated with the Hessian matrix H that comprises
the second partial derivatives

H( f ) = ∇2 f =
[

∂2 f

∂xi∂x j

]
i, j=1,...,N

(1.2)

when H is positive-definite, i.e., xT Hx is positive for all non-zero column vectors
x ∈ R

N . In many non-black box cases, an analytic solution via the above conditions
can be obtained by solving the equations. This work concentrates on black box
scenarios, where H is not available.

If certain conditions for objective functions and constraints are fulfilled, the opti-
mization problem can efficiently be solved. In case of linearity of objective functions
and constraints, i.e., the objective function is of the form

f (x) = cT x, (1.3)

with a vector c ∈ R
N , decision variable vector x ∈ R

N , and constraints of the form

gi (x) = Ax + b ≤ 0, i = 1, . . . , n1, (1.4)

and
h j (x) = Bx + d = 0, j = 1, . . . , n2, (1.5)

with matrices A, B ∈ R
N×N , the problem is called linear programming problems.

It can efficiently be solved with sequential linear programming techniques. If the
objective function is quadratic, i.e.,

f (x) = 1

2
xT Hx + cT x, (1.6)

under the above constraints 1.4 and 1.5, sequential quadratic programming techniques
can be applied to efficiently solve the problem.
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1.2 Evolutionary Optimization

Evolutionary optimization is a class of black box optimization algorithms that mimics
the biological process of optimization known as evolution. Evolutionary algorithms
are based on evolutionary operators that model problem-specific processes in natural
evolution, of which the most important are

1. crossover,
2. mutation, and
3. selection.

Basis of most evolutionary methods is a set of candidate solutions. Crossover
combines the most promising characteristics of two or more solutions. Mutations adds
random changes, while carefully balancing exploration and exploitation. Selection
chooses the most promising candidate solutions in an iterative kind of way, alternately
with recombination and mutation. Evolutionary algorithms have developed to strong
optimization algorithms for difficult continuous optimization problems. An example
for a hard optimization problem is Kursawe’s function, which is defined as

fKur(x) =
N∑

i=1

(
|xi |0.8 + 5 · sin(xi )

3 + 3.5828
)

. (1.7)

The search for the minimum of Kursawe’s function is difficult as it suffers from many
local optima, see Fig. 1.2. The long line of research on evolutionary computation

Fig. 1.2 Plot of the multimodal Kursawe function
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was motivated by the goal of applying evolutionary algorithms to a wide range of
problems. Applying evolutionary algorithms is comparatively easy, if the modeling
of the problem is conducted carefully and appropriate representations and parameters
are chosen. Chapter 2 will introduce evolutionary algorithms in more detail.

1.3 Machine Learning

The two problem classes supervised and unsupervised learning belong to the field of
pattern recognition and machine learning. The idea of machine learning algorithms is
to learn from observations. If one observes patterns xi ∈ R

q with i = 1, . . . , N , and
a label yi (which may be a class) can be assigned to each pattern, the set of labeled
patterns (x1, y1), . . . , (xN , yN ) can be used to train a functional model f . The label
can be a discrete class label or a continuous value yi ∈ R (later also a vector). As
the true distribution of patterns and labels is typically not known, the search for f
can be performed by minimizing the empirical risk

Eemp( f ) = 1

N

N∑
i=1

L( f (xi ), yi ) (1.8)

based on the available observations with loss function L(·) measuring the devia-
tions between predictions f (xi ) and labels yi . This problem is also known as model
selection. The optimal result is guaranteed, if the search takes place in the set of all
functions F

f ∗ = arg min
f ∈F

Eemp( f ). (1.9)

In practice, it is not reasonable to search in the whole setF . Instead, it is reasonable to
choose a certain method corresponding to a function subset F ⊂ F and to optimize
its free parameters w.r.t. the empirical risk resulting in model f . If the function
space F is large, overfitting may occur, and it is a reasonable approach to restrict
it by penalizing the complexity of model f with a regularizer, which is often a
functional norm ‖ f ‖. Then, the objective becomes to minimize the regularized risk

Ereg( f, λ) = Eemp( f ) + λ‖ f ‖, (1.10)

where λ ∈ R
+ is a regularization parameter balancing between empirical risk mini-

mization and smoothness of the function.
A comparatively simple classifier is K-nearest neighbor (KNN) classification [1].

For an unknown pattern x j , it assigns the class label of the K -closest patterns in data
space. For this sake, a distance measure has to be defined in the space of patterns.
In R

q , it is reasonable to employ the Minkowski metric (p-norm)

http://dx.doi.org/10.1007/978-3-319-03422-5_2
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SVM, linear kernel SVM, RBF-kernel(a) (b)

Fig. 1.3 Illustration of SVM classification on two overlapping Gaussian data clouds a with linear
kernel and b with RBF-kernel

δ(x j , xk) =
( q∑

i=1

|(xi ) j − (xi )k |p

)1/p

, (1.11)

which corresponds to the Euclidean distance for p = 2. In other solution spaces,
adequate distance functions have to be chosen, e.g., the Hamming distance in B

N .
With the help of the distance function, it is now possible to define KNN

f (x√) =
{

1 if
∑

i∈NK (x√) yi > 0
−1 if

∑
i∈NK (x√) yi ≤ 0,

(1.12)

with set NK (x√) containing the indices of the K-nearest neighbors of x√ and neigh-
borhood size K . The choice of K defines how local KNN is. For K = 1, little
neighborhoods arise in regions, where patterns from different classes are scattered.
For larger neighborhood sizes, patterns with labels in the minority are ignored. Fur-
ther prominent classification methods are decision tress like ID3 [2], backpropagation
networks [3, 4], and support vector machines (SVMs) [5, 6]. Figure 1.3 shows the
SVM learning results for the classification of two overlapping Gaussian data clouds:
(a) with a linear kernel and (b) with an RBF-kernel. The linear kernel SVM has chosen
the separating decision boundary that maximizes the margin, i.e., the distance to the
closest patterns of both classes. The RBF-kernel learns a non-linear decision bound-
ary that is able to better separate both classes using a feature space. For a detailed
introduction to SVMs, we refer the reader to Bishop [7] and Hastie et al. [8].

The question arises how to choose the parameters of supervised learning methods,
e.g., kernel parameters of an SVM and neighborhood sizes of KNN. Various tech-
niques like cross-validation can be used to choose the best model. Cross-validation
divides the set of observed patterns into training and validation sets and successively
computes the error w.r.t. different settings to avoid overfitting. Outlier or novelty
detection is a special variant of supervised learning. The task is to learn an estimator
of patterns with given labels and to let this classifier determine, if novel patterns
belong to the same distribution, or if they can be classified as outliers.
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Simulation models can be expensive. Optimization procedures in design processes
may require a large number of function (response) evaluations. Often, due to com-
plex relationships between models, analytic relationships cannot be determined lead-
ing to the black box optimization scenario. A significant reduction of computation
effort (e.g., spent on complex simulation models) can be achieved employing meta-
modeling techniques. Meta-models are machine learning models that are used as sur-
rogates of the real simulation model. Based on past response evaluations, a statistical
model is built that serves as basis for response evaluation estimates. This idea is
related to the standard supervised learning scenario.

1.4 Hybrid Strategies

To overcome algorithmic shortcomings and achieve synergetic effects, hybridization
of different methods can be an effective strategy. In recent years, a lot of research
contributions concentrated on hybrid solution strategies. Many stem from the inter-
section of evolution strategies and machine learning, and most led to an improvement
in comparison to the native strategies. But what are the common driving forces of
the success of hybrid strategies?

The no-free-lunch theorem of Wolpert and Macready [9] states that there is no
optimal algorithm for every problem. Algorithms must be tailored to special problem
instances. A powerful strategy is to exploit the abilities of more than one algorithm.
Two main principles hybrid strategies have in common are:

• Committee of experts: The combination of predictions in classification and the
exchange of successful candidate solutions in optimization improves both classi-
fiers and optimization techniques. The combination of results of more than one
algorithm may lead to an improvement, instead of relying on a single expert.

• Informing search: Search can be improved by incorporating as much information
about the solution space as possible. For example, in evolutionary computation
candidate solutions should be initialized with a good guess of an optimal solution.
Genetic operators should be employed that are tailored to the solution space.
Machine learning and pattern recognition can deliver useful information that can
hardly be modeled with genetic operators.

On the one hand machine learning methods turn out to be advantageous in inform-
ing and accelerating black box search. On the other hand, evolutionary and swarm-
based search has been employed to optimize machine learning problems. Also in
machine learning, hybridization has proven to be an effective way to improve the
robustness of classifiers.

Algorithms in optimization can be divided into two categories: exact techniques
and heuristics. Exact algorithms find local optimal solutions in guaranteed time, but
the computational efficiency deteriorates significantly with the problem dimension.
Heuristics and meta-heuristics that are design patterns for heuristics usually approx-
imate the solution on the basis of stochastic components, but do not guarantee to
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Hybrid meta-heuristics

hybrid

collaborative

sequential intertwined

coevolutionary

local in EA EA in local

Fig. 1.4 Survey of hybridization strategies [10]. Hybrids can be divided into collaborative
approaches that run successively (sequentially or intertwined) and coevolutionary approaches that
employ further algorithms in each iteration (e.g., local search methods embedded in evolutionary
optimizers or vice versa)

find the optimum in every case. However, their runtime on large problem instances is
often more acceptable. The hybridization of meta-heuristics and local search meth-
ods is motivated by the combination of the advantages of the exact and the heuristic
world.

An important design decision for hybrid techniques is the way of information
exchange between their components. In which order shall the components work
together, which information is shared and when? For a systematic overview, Talbi [11]
and Raidl [12] introduced a taxonomy of hybrid meta-heuristics. Figure 1.4 shows
a similar view on hybrid meta-heuristics based on their taxonomy. Hybrids can be
classified into collaborative techniques that work successively or intertwined. A
sequential hybrid employs a simple successive execution of two or more algorithmic
components. The main idea is: A stochastic method preoptimizes coarsely, while the
local search performs fine-tuning and approximates local optima. The intertwined
collaborative hybrid is alternately running various optimizers. The coevolutionary
hybrids represent the other branch of the taxonomy and are nested approaches. Typi-
cally, a local search method is embedded into an evolutionary optimizer. In each itera-
tion, the local method optimizes the offspring solutions until a predefined termination
condition is fulfilled. Information is passed alternately between the components in
the concurrent approach. The local search method can use a separate termination
condition that can be specified by the embedding optimizer. The alternative, i.e., to
integrate evolutionary optimization into a local optimizer is rather unusual.

1.5 Overview of Chapters

The objective of this work is to offer extensions of evolutionary optimization and
learning methods for special problem classes with an emphasis on continuous
optimization. Most of the methodological advancements are based on hybridiza-
tions. This section gives an overview of the chapters.
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Chapter 2

Chapter 2 gives an introduction to evolution strategies (ES). ES are nature-inspired
meta-heuristics for optimization problems. The idea of translating evolutionary prin-
ciples into an algorithmic framework for optimization has a long history. First,
I introduce the classic evolution strategy, i.e., the (μ +, λ)-ES, which is the most
famous evolution strategy variant employing intermediate or dominant recombina-
tion and Gaussian mutation. The self-adaptive control of step sizes allows to adapt
to local solution space characteristics. The covariance matrix self-adaptation evolu-
tion strategy (CMSA-ES) by Beyer and Sendhoff [13] will also be introduced. An
experimental evaluation of the CMSA-ES on a set of numerical black box functions
completes Chap. 2 and will guide as reference for the later chapters.

Chapter 3

The success of many optimization algorithms depends on proper parameter choices.
Although there are lot of studies on parameter control and specifically on muta-
tion rates, there is no broad and comprehensive comparison of parameter control
techniques that allows to give recommendations for certain scenarios. In Chap. 3, a
comprehensive comparison of tuning and control techniques of continuous mutation
rates employing the same algorithmic setting on a simple discrete unimodal problem
is presented. After an analysis of various mutation rates for a (1 + 1)-EA on OneMax,
I compare meta-evolution to Rechenberg’s 1/5th rule and self-adaptation.

Chapter 4

In Chap. 4, I introduce an adaptive penalty function oriented to Rechenberg’s 1/5th
success rule to handle constraints. If less than 1/5th of the candidate population
is feasible, the penalty is increased, otherwise, it is decreased. Experiments on the
tangent problem demonstrate that this simple strategy leads to very successful results
for the high-dimensional constrained sphere function. I accelerate the approach with
two regression meta-models, one for the constraint and one for the fitness function.

Chapter 5

Direct search method like Powell’s method are efficient black box optimization strate-
gies for unimodal optimization problems. In case of multimodal optimization prob-
lems, the hybridization with ES turns out to be a fruitful strategy. In Chap. 5, we
employ Powell’s method as local search method in an ES-based global optimiza-
tion process. A step size control strategy will be introduced that allows to search in
multimodal solution spaces.

http://dx.doi.org/10.1007/978-3-319-03422-5_2
http://dx.doi.org/10.1007/978-3-319-03422-5_2
http://dx.doi.org/10.1007/978-3-319-03422-5_3
http://dx.doi.org/10.1007/978-3-319-03422-5_4
http://dx.doi.org/10.1007/978-3-319-03422-5_5
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Chapter 6

In practical optimization, often two or more conflictive objectives have to be opti-
mized at the same time. In Chap. 6, I present an approach that allows to select Pareto
optimal solutions a posteriori based on reference lines in objective space. Reference
lines define regions of interest in objective space that are basis of the selection of
Pareto optimal solutions.

Chapter 7

The Nadaraya-Watson estimator, also known as kernel regression, is a successful
density-based regression technique. Densities are measured with kernel functions
that depend on bandwidth parameters. The choice of appropriate kernel parameters
is an important problem in machine learning. In Chap. 7, an evolutionary kernel shape
optimizer for kernel regression is presented. The approach is based on parameter-
ized kernel density functions, leave-one-out cross-validation, and the CMSA-ES as
optimization engine. A comparison to grid search shows that evolutionary search is
an effective alternative for kernel parameter optimization.

Chapter 8

Learning mappings from high-dimensional data spaces to low-dimensional latent
spaces is usually an computationally expensive optimization problem. Chapter 8
presents an iterative approach that constructs a solution using particle swarm
optimization based steps in each iteration. Based on the framework of unsupervised
regression, KNN regression is used for the dimensionality reduction mapping.

Appendix

The appendix gives an overview of optimization test problems used in this work that
are typical test problems from evolutionary optimization literature. Furthermore, the
appendix presents the machine learning data sets of the corresponding evolutionary
learning chapters.

1.6 Preliminary Work

This work is a collection of heuristic extensions for ES to handle various classes
of black box optimization and learning problems. Parts of this work are based on
preliminary peer-reviewed publications of original research articles in international

http://dx.doi.org/10.1007/978-3-319-03422-5_6
http://dx.doi.org/10.1007/978-3-319-03422-5_7
http://dx.doi.org/10.1007/978-3-319-03422-5_8
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conferences and journals. The work provides a consistent view on the past research
activities and highlights important preliminary work.

• Chapter 2 is based on a book chapter that gives an introduction to derivative-free
optimization [14], complemented by an experimental analysis of the CMSA-ES.

• Chapter 3 is based on a publication on the German Conference on Artificial Intel-
ligence (KI) 2013 [15].

• The Rechenberg penalty function of Chap. 4 has been introduced on the Congress
on Evolutionary Computation (CEC) 2013 in Cancun, Mexico.

• An article on the Powell ES of Chap. 5 has been introduced in Springer’s Memetic
Computing Journal in 2009 [10, 16].

• The rake selection approach of Chap. 6 has been introduced on the German Con-
ference on Artificial Intelligence (KI) 2009 [17].

• The kernel regression approach of Chap. 7 is partly based on an article that has
been published in the Expert Systems and Applications Journal in 2010 [18] with
new experimental results.

• The particle swarm embedding algorithm of Chap. 8 has been introduced on the
Ant Colony Optimization and Swarm Intelligence (ANTS) 2012.

This work is a cumulative and consistent depiction of the published research results,
presenting various extended results and descriptions. The remainder of this work will
be written in a scientific style with the use of “we” rather than “I”.
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Chapter 2
Evolution Strategies

2.1 Introduction

Many real-world problems are multimodal, which renders an optimization problem
difficult to solve. Local search methods, i.e., methods that greedily improve solutions
based on search in the neighborhood of a solution, often only find an arbitrary local
optimum that is not guaranteed to be the global one. The most successful methods
in global optimization are based on stochastic components, as they allow to escape
from local optima and overcome premature stagnation. A famous class of global
optimization methods are evolution strategies that are successful in real-valued solu-
tion spaces. Evolution strategies belong to the most famous evolutionary methods
for black box optimization, i.e., for optimization scenarios, where no functional
expressions are explicitly given and no derivatives can be computed. In the course
of this work, evolution strategies will play an important role. They are oriented to
the biological principle of evolution [1] and can serve as an excellent starting point
to methods in learning and optimization. They are based on three main mechanisms
that are translated into evolutionary operators:

1. recombination,
2. mutation, and
3. selection.

First, we define an optimization problem formally. Let f : S ∗ R be the fitness
function to be minimized in the space of solutions S. The problems we consider in
this work are minimization problems unless explicitly stated. High fitness means low
fitness values. The task is to find an element x∈ ≤ S such that f (x∈) ≤ f (x) for
all x ≤ S. A desirable property of an optimization method is to find the optimum x∈
with fitness f ∈ within a finite and preferably low number of function evaluations.
In most parts of this work, we consider continuous optimization problems, i.e., the
solution space S = R

N . Problem f can be an arbitrary optimization problem, e.g.,
a civil engineering system like a simulation or a mathematical model.

O. Kramer, A Brief Introduction to Continuous Evolutionary Optimization, 15
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2.2 Evolutionary Algorithms

If derivatives are available, Newton methods and variants are recommendable
algorithmic choices. From this class of methods, the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm belongs to the state-of-the-art techniques [2]. This work
concentrates on black box optimization problems. In black box optimization, the
problem does not have to fulfill any assumptions or limiting properties. For such
general optimization scenarios, evolutionary methods are a good choice. Evolution-
ary algorithms (EAs) belong to the class of stochastic derivative-free optimization
methods. Their biological motivation has made them very popular. After decades of
research, a long history of applications and theoretical investigations have proven
their success.

In Germany, the history of evolutionary computation began with evolution strate-
gies, which were developed by Rechenberg and Schwefel in the sixties and seventies
of the last century in Berlin [3–5]. At the same time, John Holland introduced the evo-
lutionary computation concept in the United States known as genetic algorithms [6].
Today, advanced mutation operators, step size mechanisms, and methods to adapt the
covariance matrix like the CMA-ES [7] have made them one of the most successful
optimizers in derivative-free global optimization.

Many methods have been presented in evolutionary continuous optimization like
the work by Deb et al. [8], who developed a generic parent-centric crossover oper-
ator, and a steady-state, elite-preserving population-alteration model. Herrera et al.
[9, 10] proposed to apply a two-loop EA with adaptive control of mutation sizes.
The algorithm adjusts the step size of an inner EA and a restart control of a mutation
operator in the outer loop. Differential evolution (DE) is another branch of evolu-
tionary methods for continuous optimization. Price et al. [11] give an introductory
survey to DE. Qin et al. [12] proposed an adaptive DE that learns operator selection
and associated control parameter values. The learning process is based on previ-
ously generated successful solutions. Particle swarm optimization (PSO) is a famous
methodology that concentrates on continuous global optimization [13, 14]. PSO is
inspired by the movement of swarms in nature, e.g., fish schools or flocks of birds.
It simulates the movement of candidate solutions using flocking-like equations with
locations and velocities. A learning strategy variant has been proposed by Liang et
al. [15], who uses all particles’ past best information to update the particle history.
A PSO-like algorithm will be employed in Chap. 8.

Evolutionary search is based on a set P = {x1, . . . , xμ} of parental and a
set P ∇ = {x1, . . . , xλ} of offspring candidate solutions, also called individuals. The
individuals are iteratively subject to random changes and selection of the best solu-
tions. Algorithm 1 shows the pseudocode of a general evolutionary algorithm. The
optimization process consists of three main steps:

1. The recombination operator selects ρ parents and combines their parts to λ new
solutions.

2. The mutation operator adds random changes (e.g. noise) to the preliminary candi-
date solution. The quality of the individuals in solving the optimization problem

http://dx.doi.org/10.1007/978-3-319-03422-5_8
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Algorithm 1 Evolutionary Algorithm
1: initialize solutions x1, . . . , xμ ≤ P
2: repeat
3: for i = 1 to λ do
4: select ρ parents from P
5: create xi by recombination
6: mutate xi
7: evaluate xi ∗ f (xi )

8: add xi to P ∇
9: end for

10: select μ parents from P ∇ ∗ P
11: until termination condition

is called fitness. The fitness of the new offspring solution is evaluated on fitness
function f . All individuals of a generation are put into offspring population P ∇.

3. Then, μ individuals are selected and constitute the novel parental population P
of the following generation.

The process is repeated until a termination condition is reached. Typical termination
conditions are defined via fitness values or via an upper bound on the number of
generations.

In the following, we will give a short survey of evolutionary operators and go
deeper into evolution strategies that have proven well in practical optimization
scenarios. The evolution strategy operators intermediate and dominant recombina-
tion as well as Gaussian mutation are introduced.

2.3 Recombination

In biological systems, recombination, also known as crossover, mixes the genetic
material of two parents. Most evolutionary algorithms also make use of a recombi-
nation operator and combine the information of two or more individuals x1, . . . , xρ

to a new offspring solution. Hence, the offspring carries parts of the genetic mate-
rial of its parents. Many recombination operators are restricted to two parents, but
also multi-parent recombination variants have been proposed in the past that combine
information ofρparents. The use of recombination is discussed controversially within
the building block hypothesis by Goldberg [16, 17]. The building block hypothesis
assumes that good substrings of the solutions called building blocks of different par-
ents are combined, and their number increases. The good genes are spread over the
population in the course of the evolutionary process.

Typical recombination operators for continuous representations are dominant and
intermediate recombination. Dominant recombination randomly combines the genes
of all parents. Dominant recombination with ρ parents (x)1, . . . , (x)ρ ≤ R

N creates
the offspring vector x∇ = (x ∇

1, . . . , x ∇
N )

T by randomly choosing the i-th component

x ∇
i = (xi )k, k ≤ random{1, . . . , ρ}. (2.1)
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Intermediate recombination is appropriate for numerical solution spaces. Given ρ
parents x1, . . . , xρ each component of the offspring vector x∇ is the arithmetic mean
of the components of all ρ parents

x ∇
i = 1

ρ

ρ∑
k=1

(xi )k . (2.2)

The characteristics of offspring solutions lie between their parents. Integer represen-
tations may require rounding procedures for generating valid solutions.

2.4 Mutation

Mutation is the second main source of evolutionary changes. According to Beyer
and Schwefel [3], a mutation operator is supposed to fulfill three conditions. First,
from each point in the solution space each other point must be reachable. Second, in
unconstrained solution spaces a bias is disadvantageous, because the direction to the
optimum is unknown, and third, the mutation strength should be adjustable, in order
to adapt exploration and exploitation to local solution space conditions.

In the following, we concentrate on the famous Gaussian mutation operator for
optimization in R

N . Solutions are vectors of real values x = (x1, . . . , xN )
T ≤ R

N .
Random numbers based on the Gaussian distribution N (0, 1) fulfill these conditions
in continuous domains.1 With the Gaussian distribution, many natural and artifi-
cial processes can be described. The idea is to mutate each individual applying the
mutation operator

x∇ = x + z, (2.3)

with a mutation vector z ≤ R
N based on sampling from the Gaussian distribution

z ⊂ N (0,σ2I) = (N (0,σ2), . . . ,N (0,σ2))T ⊂ σN (0, I) (2.4)

with identity matrix I. The standard deviation σ plays the role of the mutation strength
and is also known as step size. The isotropic Gaussian mutation with only one step
size uses the same standard deviation for each component xi . Of course, the step
size σ can be kept constant, but the convergence to the optimum can be improved by
adapting σ according to local solution space characteristics. In case of high success
rates, i.e., a large number of offspring solutions being better than their parents, big
step sizes are advantageous, in order to explore the solution space as fast as possible.
This is often reasonable at the beginning of the search. In case of low success rates,
smaller step sizes are appropriate. This is often adequate in later phases of the search
during convergence to the optimum, i.e., when approximating solutions should not

1 N (m,σ2) represents a randomly drawn Gaussian distributed number with expectation value m
and standard deviation σ.
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Fig. 2.1 Gaussian mutation: a isotropic Gaussian mutation employs one step size σ for each
dimension, b multivariate Gaussian mutation allows independent step sizes in each dimension, and
c correlated mutation allows a rotation of the mutation ellipsoid, (a) isotropic, (b) multivariate, (c)
correlated

be destroyed. An example for an adaptive control of step sizes is the 1/5-th success
rule by Rechenberg [4] that increases the step sizes, if the success rate is over 1/5-th,
and decreases it, if the success rate is lower.

Isotropic Gaussian mutation can be extended to multivariate Gaussian mutation
by allowing independent scalings of the components

N (0,D2) = (N (0,σ2
1), . . . ,N (0,σ2

N ))
T ⊂ DN (0, I). (2.5)

This multivariate mutation employs N degrees of freedom that are saved in a diagonal
matrix D = diag(σ1, . . . ,σN ) corresponding to a step size vector for the independent
scalings.

Figure 2.1 illustrates the differences between (a) isotropic Gaussian mutation and
(b) multivariate Gaussian mutation. The multivariate variant allows the development
of a Gaussian ellipsoid that flexibly adapts to local solution space characteristics.
Even more flexibility, i.e., N (N − 1)/2 degrees of freedom, allows the correlated
mutation presented by Schwefel [18]

N (0,C) = √
CN (0, I) (2.6)

with covariance matrix C, which contains the covariances describing the multivariate
normal distribution. The components are correlated, see Fig. 2.1c. The square root,
or Cholesky decomposition,

√
C of the covariance matrix C corresponds to a rota-

tion matrix for the mutation ellipsoid axes. The question arises, how to control the
mutation ellipsoid rotation. Instead of a rotation matrix N (N − 1)/2 angles can be
used. In practical optimization, these angles are often controlled self-adaptively [19].
Also the CMA-ES and variants [7, 20] are based on an automatic alignment of the
coordinate system (cf. Sect. 2.7).

A step towards the acceleration of the step size control is σ-self-adaptation. Before
the application of the mutation operator (cf. Eqs. 2.3 and 2.4), the log-normal muta-
tion operator for step sizes σ and step size vectors (σ1, . . . ,σN )

T is applied. The
log-normal mutation operator has been proposed by Schwefel [18] and has become
famous for self-adaptation in continuous solution spaces. It is defined as
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σ∇ = σ · eτ ·N (0,1). (2.7)

The problem-dependent learning rate τ has to be chosen adequately. For the muta-
tion strengths of evolution strategies on the continuous Sphere model, theoretical
investigations [3] lead to the optimal setting

τ = 1√
N
, (2.8)

which may not be optimal for other problems, and further parameter tuning is recom-
mended. Strategy parameter σ cannot become negative and scales logarithmically
between values close to 0 and infinity.2 A more flexible approach is to mutate each
of the N dimensions independently

σ∇ = e(τ0N (0,1)) ·
(
σ1e(τ1N (0,1), . . . ,σN e(τ1N (0,1)

)
, (2.9)

with
τ0 = c√

2 · N
, (2.10)

and
τ1 = c√

2
√

N
. (2.11)

Setting parameter c = 1 is a recommendable choice. Kursawe [21] analyzed para-
meters τ0 and τ1 using a nested evolution strategy on various test problems. His
analysis shows that the choice of mutation parameters is problem-depended, and
general recommendations are difficult to give.

The EA performs the search in two spaces: the objective and the strategy parameter
space. Strategy parameters influence the genetic operators of the objective variable
space, in this case the step sizes of the Gaussian mutation. The optimal settings may
vary depending on the location of the solution in the fitness landscape. Only the
objective variables define the solution and have an impact on the fitness. Strategy
parameters have to take part in the evolutionary process to evolve them dynamically
during the optimization process.

2.5 Selection

The counterpart of the variation operators mutation and recombination is selection.
Selection gives the evolutionary search a direction. Based on their fitness, a subset of
the population is selected, while the worst individuals are rejected. In the evolution-
ary framework, the selection operator can be employed at two steps. Mating selection

2 i.e., high values w.r.t. the data structure.
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selects individuals for the recombination operator. In nature, the attraction of sexual
partners as well as cultural aspects influence the mating selection process. The second
famous selection operator is survivor selection corresponding to the Darwinian prin-
ciple of survival of the fittest. Only the individuals selected by survivor selection are
allowed to inherit their genetic material to the following generation. The probability
of a solution to be selected is also known as selection pressure.

Evolution strategies usually do not employ a competitive selection operator for
mating selection. Instead, parental solutions are randomly drawn from the set of
candidate solutions. But for survivor selection, the elitist selection strategies comma
and plus selection are used. They choose the μ-best solutions as basis for the parental
population of the following generation. Both operators, plus and comma selection,
can easily be implemented by sorting the population w.r.t. the individuals’ fitness.
Plus selection selects the μ-best solutions from the union P ∪ P ∇ of the last parental
population P and the current offspring population P ∇, and is denoted by (μ+λ)-ES.
In contrast, comma selection in a (μ,λ)-ES selects exclusively from the offspring
population, neglecting the parental population, even if the parents have a superior
fitness. Forgetting superior solutions may seem to be disadvantageous. But potentially
good solutions may turn out to be local optima, and the evolutionary process may
fail to leave them without the ability to forget.

2.6 Particle Swarm Optimization

Similar to evolutionary algorithms, PSO is a population approach with stochastic
components. Introduced by Kennedy and Eberhart [13], it is inspired by the move-
ment of natural swarms and flocks. The algorithm utilizes particles with a position
x that corresponds to the optimization variables and a velocity v, which is similar to
the mutation strengths in evolutionary computation. The principle of PSO is based
on the idea that the particles move in solution space influencing each other with
stochastic changes, while previous successful solutions act as attractors. Figure 2.2
illustrates the PSO concept in N = 2 dimensions, while Algorithm 2 shows the PSO
algorithm in pseudocode.

In each iteration the position of particle x is updated by adding a velocity v̂

Fig. 2.2 Illustration of PSO
concept
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Algorithm 2 Particle Swarm Optimization Algorithm
1: initialize parameters, and particles
2: repeat
3: for i = 1 to κ do
4: compute x∈

p , and x∈
s

5: update velocity v̂
6: update position x̂
7: compute fitness f (x̂)
8: end for
9: until termination condition

x̂ = x + v̂, (2.12)

which is updated as follows

v̂ = v + c1r1(x∈
p − x) + c2r2(x∈

s − x), (2.13)

where x∈
p, and x∈

s denote the best previous positions of the particle, and of the swarm,
respectively. The weights c1, c2 ≤ [0, 1] are acceleration coefficients that determine
the bias of the particle towards its own, and the swarm history. The recommendation
given by Kennedy and Eberhart is to set both parameters to c1 = c2 = 0.5 [13]. The
random components r1, and r2 are uniformly drawn from the interval [0, 1], and can
be used to control exploitation and exploration of the solution space.

2.7 Covariance Matrix Adaptation Evolution Strategies

In the following, we introduce an algorithm from the family of covariance matrix
adaptation evolution strategies (CMA-ES). The covariance matrix self-adaptation
evolution strategy (CMSA-ES) by Beyer and Sendhoff [20] is the historically latest
covariance matrix adaptation-based strategy, but is a variant that reflects well the main
idea of the family of CMA-ES. The basic idea is to align the coordinate system for
the mutation operator to the distribution of the selected solutions in each generation.
The aligned coordinate system guarantees that mutations in the following generation
are similar to the best of the previous generation. The CMSA-ES is a variant of the
famous CMA-ES by Hansen and Ostermeier [7] with an emphasis on self-adaptation.

The CMSA-ES is based on a self-adaptive step control of step sizes, similar to
the (μ +, λ)-ES introduced in the previous section. After initialization, λ candi-
date solutions x1, . . . , xλ are generated. With the help of the global self-adaptive,
N -dimensional step size σ̂ = 1

μ

∑μ
j=1 σ j :λ, which is the arithmetic mean of the step

sizes from the μ-best solutions of λ offspring solutions3 of the previous generation,
each individual gets a log-normally mutated step size

3 The index j denotes the index of the j-th ranked individual of the λ offspring individuals w.r.t.
an increasing sorting based on fitness f (x j ).



2.7 Covariance Matrix Adaptation Evolution Strategies 23

σ j = σ̂ · eτσN (0,1). (2.14)

The main idea of the approach is to align the coordinate system by changing the
coordinates x j with the help of the current mean x̂ of the population and a covariance
matrix C based on the best solutions and the past optimization process. From C the
correlated random directions s j are generated by multiplication of the Cholesky
decomposition

√
C with the standard normal vector N (0, I)

s j ⊂ √
CN (0, I). (2.15)

This random direction is scaled in length w.r.t. the self-adaptive step size σ j

z j = σ j s j . (2.16)

The resulting vector z j is added to the global parent x̂, i.e.

x j = x̂ + z j . (2.17)

Finally, fitness f j = f (x j ) of solution x j is evaluated. When λ offspring solu-
tions have been generated, the μ-best solutions are selected and their components z j

and σ j are recombined. Beyer and Sendhoff [20] apply global recombination, i.e.,
the arithmetic mean of each parameter is computed. The outer product ssT of the
search directions is an estimation of the covariance matrix of the best mutations and
is computed for each of the μ-best solutions and averaged afterwards

S = 1

μ

μ∑
j=1

s j :λsT
j :λ. (2.18)

Last, the covariance matrix C is updated based on the current covariance matrix and
the new estimation S. The covariance matrix update

C =
(

1 − 1

τc

)
C + 1

τc
S (2.19)

is a composition of the last covariance matrix C and the outer product of the search
direction of the μ-best solutions balanced by learning parameter τc. Adapted in such
a kind of way, sampling from a Gaussian distribution based on C increases the
likelihood of successful steps. Beyer and Sendhoff recommend to set

τc = N (N + 1)

2μ
(2.20)

for the learning parameter. All steps are repeated until a termination condition is
satisfied. The CMSA-ES combines the self-adaptive step size control with a simul-
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Algorithm 3 CMSA-ES
1: initialize solution x̂
2: repeat
3: for i = 1 to λ do
4: σ j ⊂ σ̂ · eτσN (0,1)

5: s j ⊂ √
CN (0, I)

6: z j = σ j s j
7: x j = x̂ + z j
8: f j = f (x j )

9: end for
10: sort population w.r.t. fitness f j :λ
11: ẑ = 1

μ

∑μ
j=1 z j :λ

12: σ̂ = 1
μ

∑μ
j=1 σ j :λ

13: S = 1
μ

∑μ
j=1 s j :λsT

j :λ
14: x̂ = x̂ + ẑ
15: C = (1 − 1

τc
)C + 1

τc
S

16: until termination condition

taneous update of the covariance matrix. Algorithm 3 shows the pseudocode of the
CMSA-ES. Initially, the covariance matrix C is chosen as the identity matrix C = I.
The learning parameter τσ defines the mutation strength of the step sizes σ j . For the
Sphere problem, the optimal learning parameter is τσ = 1√

2·N [3].
In the following, we present an experimental analysis of the CMSA-ES concen-

trating on typical test problems known in literature [22] (cf. Appendix A). We use the
following performance measure. The experimental results show the number of fit-
ness function evaluations until the optimum is reached with accuracy fstop, i.e., if the
difference between the best achieved fitness f (x∇) of the algorithm and fitness f (x∈)
of the known optimum x∈ is smaller than fstop, i.e.,

| f (x∇) − f (x∈)| ≤ fstop. (2.21)

This performance measure is focused on the convergence abilities of the approach.
The figures of Table 2.1 show the best, median, worst, and mean (with standard
deviation) number of generations until the termination condition has been reached.
The termination condition is set to fstop = 10−10.

The results confirm that the CMSA-ES is a strong method for derivative-free
multimodal optimization. It is able to find the optima of all test problems. In case of
the unimodal problems Sphere and Doublesum, no restarts have been necessary. The
performance comparison in the later chapters will allow a detailed interpretation.
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Table 2.1 Experimental analysis of CMSA-ES with restarts

Best Median Worst Mean Dev
N = 10
fSp 2,120 2,195 2,350 2,204.5 7.0e1
fDou 2,280 2,355 2,490 2,358.3 6.2e1
fRos 7,060 10,550 18,080 11,292.0 4.1e3
fRas 36,360 90,540 203,120 103,456.0 5.7e4
fGri 2,150 4,375 13,090 5,579.7 4.1e3
fKur 10,780 21,960 81,370 29,670.9 22.0e3
N = 30
fSp 5,684 5,880 6,118 5,896.8 1.4e2
fDou 7,770 8,092 8,302 8,075.2 1.6e2
fRos 45,976 51,681 109,984 58,595.6 1.9e4
fRas 360,990 699,846 721,224 576,511.6 1.7e5
fGri 6,370 6,755 17,374 8,764 4.4e3
fKur 55,244 89,138 138,670 93,518.6 37.4e3

2.8 Conclusions

Evolution strategies, in particular the covariance matrix adaptation variants, belong to
the most successful evolutionary optimization algorithms for solving black box opti-
mization problems. If no derivatives are given and no assumptions about the fitness
function are available, the application of evolutionary algorithms is a recommendable
undertaking. Theoretical results and a huge variety of applications have proven their
success in the past. But the success of evolutionary search also depends on proper
parameter settings before and during the search. We will concentrate on the parame-
ter control problem in the next chapter. We have already introduced σ-self-adaptation
as parameter control techniques for steps sizes in evolution strategies, which is based
on evolutionary search in the space of step sizes. This mechanism has significantly
contributed to the success of evolutionary optimization methods.
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Chapter 3
Parameter Control

3.1 Introduction

Parameter control is an essential aspect of successful evolutionary search. Various
parameter control and tuning methods have been proposed in the history of evo-
lutionary computation, cf. Fig. 3.1 for a short taxonomy. The importance of para-
meter control has become famous for mutation rates. Mutation is a main source of
evolutionary changes. Mutation rates control the magnitude of random changes of
solutions. At the beginning of the history of evolutionary computation, researchers
argued about proper settings. De Jong’s [1] recommendation was the mutation
strength σ = 0.001, Schaffer et al. [2] recommended the setting 0.005 ∗ σ ∗ 0.01,
and Grefenstette [3] σ = 0.01. Mühlenbein [4] suggested to set the mutation proba-
bility to σ = 1/N depending on the length N of the representation. But early, the idea
appeared to control the mutation rate during the optimization run, as the optimal rate
might change during the optimization process, and different rates are reasonable for
different problems. Objective of this chapter is to compare the parameter tuning and
control techniques of a simple evolutionary algorithm (EA) on a simple function,
i.e., OneMax, to allow insights into the interplay of mutation rates and parameter
control mechanisms. OneMax is a maximization problem defined on {0, 1}N ∈ N

that counts the number of ones in bit string x

OneMax(x) =
N∑

i=1

xi . (3.1)

The optimal solution is x≤ = (1, . . . , 1)T with fitness f (x) = N .

O. Kramer, A Brief Introduction to Continuous Evolutionary Optimization, 27
SpringerBriefs in Computational Intelligence,
DOI: 10.1007/978-3-319-03422-5_3, © The Author(s) 2014
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Taxonomy of parameter setting

parameter setting

control

self-adaptative

adaptive

deterministic

tuning

by hand meta-evolution

Fig. 3.1 Taxonomy of parameter setting of this work oriented to Eiben et al. [5] and complemented
on the parameter tuning branch (cf. Kramer [6])

3.2 The (1+1)-EA

The (1 + 1)-EA works on bit string representations x = (x1, . . . , xN )
T ∈ {0, 1}N

with only one individual, which is changed with bit-flip mutation. Bit-flip mutation
means that each bit xi of bit-string x is flipped with probability σ = 1/N . No
recombination is employed, as no population is used. Furthermore, the selection
operator can be reduced to a simple selection of the better one of two solutions. The
pseudocode can be found in Algorithm 1. The number of fitness function calls of a
(1+1)-EA complies with the number of generations.

Algorithm 1 Standard (1 + 1)-EA
1: choose x ∈ {0, 1}N uniform at random
2: repeat
3: produce x∇ by flipping each bit of x with probability 1/N
4: replace x with x∇ if f (x∇) ∗ f (x)
5: until termination condition

For the (1 + 1)-EA, a runtime analysis on the simple OneMax problem demon-
strates its properties. The runtime analysis is based on the method of fitness-based
partitions, and shows that the (1+1)-EA’s runtime is upper bounded by O(N log N )

on OneMax [7].

Theorem 3.1 The expected runtime of a (1 + 1)-EA on OneMax is O(N log N ).

The solution space {0, 1}N is divided into N + 1 sets A0, . . . , AN . A partition Ai

contains all solution with OneMax(x) = i . If the currently best solution x belongs to
AN−k , still k 0-bits have to be flipped leading to improvements. The probability for
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another bit not to be flipped is 1− 1
N , i.e., the probability that the ones are not flipped

is (1 − 1
N )(N−k). Hence, the probability for success is at least k

N (1 − 1
N )(N−k) ⊂ k

eN
for the next step. The expected runtime is upper bounded by eN/k. For different
values of k, we get

N∑
k=1

eN

k
= eN ·

N∑
k=1

1

k
= O(N log N ). (3.2)

�
In the remainder of this chapter, we will experimentally analyze and compare a
selection of important parameter control and tuning techniques.

3.3 A Study on Mutation Rates

The question comes up, if our experiments can confirm the theoretical result, i.e.,
if the mutation rate 1/N leads to N log N generations in average. For this sake, we
test the (1 + 1)-EA with various mutation rates on OneMax with various problem
sizes. This extensive analysis is similar to tuning by hand, which is probably the most
frequent parameter tuning method. Figure 3.2 shows the analysis with problem sizes
N = 10, 20, and 30. The results show that the optimal mutation rate is close to 1/N ,
which leads to the runtime of O(N log N ). Our experiments confirm this result with
the exception of a multiplicative constant, i.e., the runtime is about two times higher
than N log N . In the the following section, we employ evolutionary computation to
search for optimal mutation rates, an approach called meta-evolution.

3.4 Meta-Evolution

Meta-evolution is a parameter tuning method that employs evolutionary computation
to tune evolutionary parameters. The search for optimal parameters is treated as
optimization problem. We employ a (μ + λ)-ES [8] to tune the mutation rate of an
inner (1 + 1)-EA. The (μ + λ)-ES employs arithmetic recombination and isotropic
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Fig. 3.2 Analysis of mutation strength σ for (1 + 1)-EA on OneMax for three problem sizes.
a (1 + 1)-EA, N = 10, b (1 + 1)-EA, N = 20, c (1 + 1)-EA, N = 30
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Table 3.1 Experimental results of meta-evolutionary approach of a (10 + 100)-EA tuning the
mutation rates of a (1 + 1)-EA on OneMax

N t σ≤ Gen.

5 8.80 0.252987 37
10 31.84 0.134133 14
20 90.92 0.071522 42
30 170.60 0.055581 41

Gaussian mutation x∇ = x + N (0,σ)with a decreasing σ depending on generation t .
Algorithm 2 shows the pseudocode of the meta-evolutionary approach.

Algorithm 2 Meta-(1 + 1)-EA
1: initialize mutation rates σ1, . . . ,σμ ∈ P, τ
2: repeat
3: for i = 1 to λ do
4: select ρ parents from P
5: create σi by recombination
6: decrease τ
7: mutate σi = σi + τ · N (0, 1)
8: run (1 + 1)-EA with σi
9: add σi to P ∇
10: end for
11: select μ parents from P ∇ ∈ P
12: until termination condition

In our experimental analysis, we employ a (10+100)-ES optimizing the mutation
rate of the underlying (1 + 1)-EA that solves problem OneMax for various problem
sizes N . The ES starts with an initial mutation rate of τ = 0.2. In each generation, τ
is decreased deterministically by multiplication, i.e., τ = τ ·0.95. The inner (1+1)-
EA employs the evolved mutation rate σ of the upper ES and is run 25 times with
this setting. The average number of generations until the optimum of OneMax is
found employing the corresponding σ is the fitness f (σ). The ES terminates after
50 generations. Table 3.1 shows the experimental results of the meta-evolutionary
approach. The table shows the average number t of generations until the optimum
has been found by the (1+1)-EA in the last generation of the ES, the evolved mutation
rate σ≤ and the number of generations, the ES needed to find σ≤. The achieved speed
of convergence by the inner (1 + 1)-EA, e.g., 170.6 generations for N = 30 is a fast
result.

3.5 Rechenberg’s 1/5th Rule

An example for an adaptive control of endogenous strategy parameters is the 1/5th
success rule for ES by Rechenberg [9]. The idea of Rechenberg’s 1/5th rule is to
increase the mutation rate, if the success probability is larger than 1/5th, and to
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decrease it, if the success probability is smaller. The success probability can be
measured w.r.t. a fix number G of generations. If the number of successful genera-
tions, i.e., the offspring employs a better fitness than the parent, of a (1 + 1)-EA is
g, then g/G is the success rate. If g/G > 1/5, σ is increased by σ = σ · τ with
τ > 1, otherwise, it is decreased by σ = σ/τ . Algorithm 3 shows the pseudocode of
the (1 + 1)-EA with Rechenberg’s 1/5th rule. The objective is to stay in the so called
evolution window guaranteeing nearly optimal progress.

Algorithm 3 (1 + 1)-EA with Rechenberg’s 1/5th rule

1: choose x ∈ {0, 1}N uniform at random
2: repeat
3: for i = 1 to G do
4: produce x∇ by flipping each bit of x with probability σ
5: replace x with x∇ if f (x∇) ∗ f (x) and set g+ = 1
6: end for
7: if g/G > 1/5 then
8: σ = σ · τ
9: else
10: σ = σ/τ
11: end if
12: until termination condition

Figure 3.3 shows the corresponding experimental results for various values of
τ and N = 10, 20, and 30. The results show that Rechenberg’s rule is able to
automatically tune the mutation rate and reach almost as good results as the runs with
tuned settings. We can observe that smaller settings for τ , i.e., settings close to 1.0
achieve better results than larger settings in all cases. Further experiments have shown
that settings over τ > 10.0 lead to very long runtimes (larger than 105 generations).
In such cases, σ cannot be fine-tuned to allow a fast approximation of the optimum.

(a) (b) (c)

Fig. 3.3 Experimental results of parameter control with Rechenberg’s 1/5th rule. a Rechenberg,
N = 5, b Rechenberg, N = 10, c Rechenberg, N = 20
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3.6 Self-Adaptation

Self-adaptation is an automatic evolutionary mutation rate control. It was originally
introduced by Rechenberg and Schwefel [10] for ES, later independently in the
United States by Fogel [11] for evolutionary programming. The most successful
self-adaptively controlled parameters are mutation parameters. This is a consequence
of the direct influence of the mutation operator on the exploration behavior of the
optimization algorithm: Large mutation strengths cause large changes of solutions,
decreasing mutation strengths allow an approximation of the optimum, in particular
in continuous solution spaces.

The mutation rate σ is added to each individual x and is at the same time subject
to recombination, mutation and selection. For a (1 + 1)-EA, self-adaptation means
that the mutation rate σ is mutated with log-normal mutation

σ∇ = σ · eτN (0,1) (3.3)

with a control parameter τ . Afterwards, the mutation operator is applied. Appropriate
mutation rates are inherited and employed in the following generation. The log-
normal mutation allows an evolutionary search in the space of strategy parameters.
It allows the mutation rates to scale in a logarithmic kind of way from values close
to zero to infinity. Algorithm 4 shows the pseudocode of the SA-(1 + 1)-EA with
σ-self-adaptation.

Algorithm 4 SA-(1 + 1)-EA
1: choose x ∈ {0, 1}N uniform at random
2: choose σ ∈ {0, 1} at random
3: repeat
4: produce σ∇ = σ · eτN (0,1)

5: produce x∇ by flipping each bit of x with probability σ∇
6: replace x with x∇ and σ with σ∇, if f (x∇) ∗ f (x)
7: until termination condition

Figure 3.4 shows typical developments1 of fitness f (x) and mutation rate σ of
the SA-(1 + 1)-EA on N = 10, 50, and 100 for τ = 0.1. Due to the plus selection
scheme, the fitness is decreasing step by step. The results show that the mutation
rate σ is adapting during the search. In particular, in the last phase of the search
for N = 100, σ is fast adapting to the search conditions and accelerates the search
significantly.

Table 3.2 shows the experimental results of the SA-(1+1)-EA with various settings
for τ on OneMax with problem sizes N = 10, 20, 30, 50, and 100. The results
show that the control parameter, i.e., the mutation rate τ of the mutation rate σ, has
a significant impact on the success of the SA-(1 + 1)-EA. Both other setting, i.e.,

1 employing a logarithmic scale
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(a) (b) (c)

Fig. 3.4 SA-(1 + 1)-EA on OneMax with N = 10,50, and 100. a SA, N = 10, b SA, N = 50,
c SA, N = 100

Table 3.2 Number of generations the SA-(1 + 1)-EA needs to reach the optimum

N 10 20 30 50 100

τ = 0.01 48.3 ± 29.03 162.0 ± 83.1 359.0 ± 175.0 2.4e3 ± 552.8 > 105

τ = 0.1 46.1 ± 36.3 142.9 ± 47.1 274.0 ± 97.4 1.0e3 ± 770.7 3.6e3 ± 3.3e3
τ = 1.0 2.7e3 ± 4.9e3 5.0e3 ± 1.2e4 8.9e3 ± 9.5e3 1.9e4 ± 1.4e4 > 105

τ = 0.01 and τ = 1.0 lead to worse results. In particular on the large problem
instance with N = 100, both settings fail and lead to long optimization runs.

3.7 Conclusions

The success of evolutionary algorithms depends on the choice of appropriate
parameter settings, in particular mutation rates. Although a lot of studies are known
in literature, only few compare different parameter control techniques employing the
same algorithmic settings on the same problems. But only such a comparison allows
insights into the underlying mechanisms and common principles. The analysis has
shown that optimally tuned mutation rates can automatically be found with meta-
evolution. The effort spent into the search is comparatively high, but the final result
is competitive or better than the control techniques. But more flexible and still pow-
erful is the adaptive mutation rate control with Rechenberg’s rule. Self-adaptation
turns out to be the most flexible control technique with its automatic mutation rate
control. Although self-adaptation depends on the control parameter τ , it is quite ro-
bust w.r.t. the problem size. It became famous in ES for continuous optimization and
also has shown the best results in our parameter control study. As future work, we
plan to extend our analysis to further EA variants, parameter control techniques, and
problem types.
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Chapter 4
Constraints

4.1 Introduction

Constraints can make a hard optimization problem even harder. They restrict the
solution space to a feasible subspace. In practice, constraints are typically not con-
sidered available in their explicit formal form, but are assumed to be black boxes:
a vector x ∗ R

N fed to the black box just returns a numerical or boolean value
stating the constraint violation. In this chapter, we concentrate on constraints that
are not given explicitly, a case often encountered in complex simulation models.
The constrained real-valued optimization problem is to find a solution x ∗ R

N in
the N -dimensional solution space R

N that minimizes the objective function, i.e.:

minimize f (x), x ∗ R
N subject to

inequalities gi (x) ∈ 0, i = 1, . . . , n1, and
equalities h j (x) = 0, j = 1, . . . , n2 .

(4.1)

We measure the constraint violation with

G(x) =
n1∑

i=1

max(0, gi (x)) +
n2∑
j=1

|h j (x)|. (4.2)

Coello [1] and Kramer [2] are good starting points for literature surveys on constraint
handling methods for EAs. Most methods fall into the category of penalty functions,
e.g., the penalty function proposed by Kuri and Quezada et al. [3] that allows the
search process to discover the whole solution space, penalizing the infeasible part.
Other approaches are based on decoders, see Michalewizc [4].

Penalty functions deteriorate the fitness of infeasible solutions by taking the num-
ber of unfulfilled constraints or the distance to feasibility into account [3, 5–7]. In
this chapter, we introduce an adaptive penalty function that allows to handle difficult
constrained problems. The adaptation process weakens and strengthens the penalty
based on the number of feasible and infeasible solutions in one generation.

O. Kramer, A Brief Introduction to Continuous Evolutionary Optimization, 37
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An early penalty function is the sequential unconstrained minimization technique
by Fiacco and McCormick [5]. It is based on minimizing a sequences of constrained
problems with stepwise intensified penalty factors. Similar approaches employ static
penalty factors, e.g., the one proposed by Homaifar et al. [6] or intensify the penalty
w.r.t. the number of satisfied constraints, e.g., Kuri and Quezada’s approach [3].
Dynamic penalty functions intensify the penalty depending on the number of gener-
ations, e.g., the penalty function by Joines and Houck [7]

f̃ (x) = f (x) + γ · G(x) (4.3)

with γ = (C · t)α at generation t and user-defined parameters C and α. Typical
settings are C = 0.5 and α = 1. Penalties can also be adapted according to an
external cooling scheme [7]. In the segregated genetic algorithm by Le Riche et al.
[8], two penalty functions, a weak and an intense one, are computed in order to
surround the optimum.

Adaptive penalties employ features collected during the evolutionary search. The
adaptive penalty approach of this work is based on the number of feasible solutions.
An early adaptive penalty function is the approach by Bean and Hadj-Alouane [9]
that adapts the penalty factor as follows

γ≤ =
⎧⎨
⎩
(1/τ1) · γ, if G(x∗

j ) = 0 for all t − k + 1 ∈ j ∈ t
τ2 · γ, if G(x∗

j ) > 0 for all t − k + 1 ∈ j ∈ t
γ, else

(4.4)

with parameters τ1, τ2 > 1 and x∗
j being the best solution w.r.t. f̃ (·) in the last k

generations, i.e., generations j = t − k + 1, . . . , t .

4.2 Adaptive Penalty Function

The adaptive penalty function that is core of our constraint handling approach is
introduced in this section. It will be experimentally analyzed before it is integrated
into a meta-model learning process. The penalty function is oriented to Rechenberg’s
1/5th success rule, cf. Chap. 4. Often, the optimal solution of a constrained problem
lies in the vicinity of the feasible solution space. To let the search explore this region,
penalty functions have to balance the penalty factors. This can be accomplished with
a Rechenberg-like rule. If less than 1/5th of the population is feasible, the penalty
factor γ is increased to move the population into the feasible region

γ = γ · τ (4.5)

with τ > 1. Otherwise, i.e., if more than 1/5th of the population of candidate
solutions is feasible, the penalty is weakened

http://dx.doi.org/10.1007/978-3-319-03422-5 _4
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g(x)

x *

g(x)

x *

(a) (b)

Fig. 4.1 Penalties are a increased, if less than 1/5th of the population is feasible and b decreased,
if more than 1/5th is feasible

γ = γ/τ (4.6)

to allow to move into the infeasible part of the solution space. The success rate of
1/5th allows the fastest progress towards the optimal solution. Figure 4.1 illustrates
the situation. In Fig. 4.1a, less than 1/5th of the population is feasible. The penalty
should be increased to move the search into the feasible solution space. Figure 4.1b
shows the situation that more than 1/5th of the population is feasible. To move the
search into the infeasible region, the penalty factor should be decreased.

In our experimental analysis, we focus on the difficult Tangent problem ( fTR),
cf. Appendix. The Tangent problem is difficult to solve, as the linear constraint is
a tangent to the contours of the Sphere function [10] (cf. Fig. 4.2). The closer the
search comes to the constraint, the more parallel are the contour lines of the Sphere
function to the tangent and the more does the gradient point into the direction of the
infeasible solution space.

4.3 Experimental Analysis

In this section, we perform an experimental analysis of the proposed Rechenberg
penalty function based on an (μ,λ)-ES with isotropic σ-self-adaptive step sizes. The
adaptive penalty function depends on the magnitude of the penalty factor change. In
the first part of our experimental analysis, we analyze the influence of τ systemati-
cally. We employ the following experimental settings:

• (μ,λ)-ES,
• isotropic σ-self-adaptation,
• initial candidate solution interval x ∗ [−104, 104]N ,
• initial candidate step size σ = 10.0,
• initial penalty factor γ = 24,
• termination, if the best feasible solution reaches the optimum with accuracy

θ = 10−10.



40 4 Constraints

close to optimum
g(x)

x*

countour lines

feasible 
solution
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infeasible 
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Fig. 4.2 Contour lines at two situations near the optimum of fTR with N = 2. If the search is
comparatively far away from the optimum (red), the gradient, i.e., the direction to the unconstrained
optimum is approximately pointing into the direction of the real optimum x∗, while the gradient is
almost orthogonally pointing to the constraint boundary, if the search takes place at the constraint
boundary (blue), closely to the optimum

Table 4.1 shows the analysis of the number of fitness function evaluations w.r.t.
different problem space dimensions on fTR. We can observe that the simple evolution
strategy with isotropic Gaussian mutation is able to approximate the optimum of fTR,
even with high dimensions. The adaptive Rechenberg-like penalty factor adaptation
mechanism is obviously able to balance the search at the boundary of the infeasible
solution space. However, it turns out that the choice of appropriate values for τ has
an important part to play for this success. Only settings very close to τ = 2.0 allow
the approximation of the optimal solution.

We tested the same experimental setting on problem f2.40 and discovered that
different values for τ are necessary. Table 4.2 shows the experimental results. The
most important observation is that the adaptive penalty function allows the evolution
strategy to approximate the optimum. It turns out that the best setting is τ = 30.
We analyze the evolutionary runs with adaptive penalty function and different
parameterizations on the Tangent problem with varying dimensions. For this sake,
the same settings are used like in the pervious section. Figure 4.3 shows the develop-

Table 4.1 Analysis of evolution strategy with dynamic penalty function on the Tangent problem
with increasing dimensions, the mean values of fitness function and constraint function evaluations
of 100 runs of the best fitness achieved are shown

N 2 10 50

ffe cfe ffe cfe ffe cfe
fTR 84,816 85,870 407,002 412,068 1,408,138 1,425,669
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Table 4.2 Analysis of the influence of parameter τ on mean number of fitness and constraint
function evaluation of 100 runs on problem f2.40

τ 20.0 30.0 40.0

ffe cfe ffe cfe ffe cfe
f2.40 5,000,394 5,061,894 4,397,045 4,451,343 7,004,593 7,090,978

(a) (b)

Fig. 4.3 Analysis of the adaptive penalty function on the Tangent problem w.r.t. two problem
dimensions, i.e., N = 10 and N = 50. The plots show typical runs of the development of the best
and worst fitness, step sizes, and γ on a log-scale w.r.t. the generation number. a fTR, N = 10;
b fTR, N = 50

(a) (b)

Fig. 4.4 Analysis of the adaptive penalty function on problem f2.40 with settings τ = 30 and
τ = 40. a f2.40, τ = 30.0 b f2.40, τ = 40.0

ment on the fTR problem, while Fig. 4.4 shows the corresponding results on problem
f2.40 for two settings of τ .

Remarkable is the first part of the search on the tangent problem. Step sizes are in-
creasing, i.e., the self-adaptive step size mechanism allows bigger steps. The penalty
factor is deceased, and the search moves into the infeasible region. Obviously, too
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few solutions are in the infeasible solution space. Then, the steps are decreasing,
while the penalty factor is increased again to move the search into the feasible
region. Afterwards, the search performs a perfect log-linear approximation of the
optimum.

4.4 Meta-Modeling

In this section, we decrease the number of fitness and constraint function evalua-
tions with two meta-models, i.e., a fitness function and a constraint meta-model.
Optimization procedures in design processes may require a large number of function
(response) evaluations. Often, due to complex relationships between models, analytic
relationships cannot be determined, leading to the black box optimization scenario.
A significant reduction of computational effort (e.g., spent on complex simulation
models) can be achieved employing meta-modeling techniques. Meta-models are
machine learning models used as surrogates of the real simulation model. Based on
past response evaluations, a statistical model is built that serves as basis for response
evaluation estimates. This idea is related to the standard supervised learning scenario.
A meta-model of a constrained test function will be used to handle constraints more
effectively. To learn an effective meta-model, strategies to generate sampling points
are necessary. For this sake, various methods have been presented, e.g., methods
from design of experiments that try to maximize the information between input and
functional response, or active learning methods. A very successful meta-model that
has often been applied in computational engineering is Kriging [11], which belongs
to the class of linear least squares estimation algorithms.

The meta-model we employ is KNN for fitness and constraint function meta-
modeling. KNN is a supervised machine learning algorithm that predicts the label
of unknown patterns based on the pattern-label pairs in a training set corresponding
to a regression function f : Rq ∇ R

d .

fK N N (x≤) = 1

K

∑
i∗NK (x≤)

yi (4.7)

with set NK (x≤) containing the indices of the K-nearest neighbors of x≤. We em-
ploy two KNN regression meta-models, one for the fitness function and one for the
constraint violation.

They are integrated into the optimization process as follows. Both employ an
archive of the last n = 100 fitness function and constraint violation values. Let
x1, . . . , xt be the sequence of solutions, which have been evaluated on f (·) and
G(·). For a new function evaluation f (xt+1), the archive A f of fitness function
evaluations is updated as follows

A f = {(xt−n+2, f (xt−n+2)), . . . , (xt+1, f (xt+1))} (4.8)
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Table 4.3 Analysis of ES with fitness function and constraint function meta-models in combination
with the adaptive penalty function in 100 runs on problem fTR with three dimensions and three
settings for β

mm no 20

N ffe cfe ffe cfe
2 99,925 101,197 64,562 65,580
5 160,974 199,232 189,830 192,914
10 372,294 377,013 321,438 326,713

30 50
2 61,869 62,934 64,124 67,345
5 152,783 155,520 170,264 173,817
10 405,972 413,281 305,514 311,969

and the corresponding update of the archive of constraint evaluations

Ac = {(xt−n+2,G(xt−n+2)), . . . , (xt+1,G(xt+1))}, (4.9)

respectively. Every 100 function evaluations, β evaluations are evaluated on the
meta-models. We test various settings for β in the next section.

In this section, we analyze the evolution strategy with adaptive penalty function
and two meta-models. Table 4.3 shows the corresponding experimental results (me-
dian of fitness and constraint function evaluations) on the Tangent problem with three
different dimensions, i.e., N = 2, 5, 10 and various settings for β. We can make the
following observations. The meta-models decrease the number of fitness and con-
straint function evaluations. The advantage of the employment of meta-models is
higher for small N than for larger N . The savings of function evaluations are a good
reason to employ meta-models in constrained solution spaces.

4.5 Conclusions

The difficult Tangent problem can be solved with the proposed simple adaptive
Rechenberg-like penalty function. Penalties are increased, if less than 1/5th of the
population is feasible, while they are decreased otherwise. An experimental analysis
has proven the capabilities of the approach. The adaptive penalty function allows
the approximation even for higher problem dimensions, which has been shown to
be very difficult in previous work. Also on the difficult problem f2.40, the penalty
function has shown comparatively good results. The two meta-models accelerate
the search in terms of fitness and constraint function evaluations. Our future work
will concentrate on multi-objective and dynamic constrained problems, where the
adaptive penalty function is potentially a promising approach.
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Chapter 5
Iterated Local Search

5.1 Introduction

Hybridization has developed to an effective strategy in algorithm design. Hybrid
algorithms can become more efficient and more effective than their native counter-
parts. This observation holds true for many problem classes, in particular in optimiza-
tion, where hybrid techniques of meta-heuristics and local search are often called
hybrid meta-heuristics. In this chapter, we show how Powell’s conjugate gradient
search, which is a fast and powerful black box optimization strategy for convex
problems, can be integrated into an ES [1]. Further, we show how to employ a spe-
cialized step size adaptation technique that allows to guide the optimization process
and to escape from local optima that Powell’s method may successively find.

5.2 Iterated Local Search

Iterated local search (ILS) is based on a simple but successful idea. Instead of repeat-
ing local search and starting from initial solutions like restart approaches do, ILS
begins with a solution x and successively applies local search and perturbation of the
local optimal solution x̂. This procedure is repeated iteratively until a termination
condition is fulfilled. Algorithm 1 shows the pseudocode of the ILS approach. Initial
solutions should use as much information as possible to be a good starting point for
local search. Most local search operators are deterministic. Consequently, the per-
turbation mechanism should introduce non-deterministic components to explore the
solution space. The perturbation mechanism performs global random search in the
space of local optima that are approximated by the local search method. Blum and
Roli [2] point out that the balance of the perturbation mechanism is quite important.
Perturbation must be strong enough to allow the escape from basins of attraction, but
weak enough to exploit knowledge from previous iterations. Otherwise, the ILS will
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become a simple restart strategy. The acceptance criterion of Line 6 may vary from
always accept to only accept in case of improvement. Approaches like simulated
annealing may be adopted.

Algorithm 1 Iterated Local Search
1: initialize solution x
2: produce x̂ with local search
3: repeat
4: perturbation of x
5: produce x̂ with local search
6: apply acceptance criterion
7: until termination condition

There are many examples in literature for the successful application of ILS vari-
ants on combinatorial optimization problems. A survey of ILS techniques has been
presented by Lourenco et al. [3]. The authors also provide a comprehensive intro-
duction [4] to ILS. A famous combinatorial instance, many ILS methods have been
developed for, is the traveling salesperson problem. Stützle and Hoos [5] introduced
an approach that combines restarts with a specific acceptance criterion to maintain
diversity for the TSP, while Katayama and Narihisa [6] use a perturbation mecha-
nism that combines the heuristic 4-opt with a greedy method. Stützle [7] uses an
ILS hybrid to solve the quadratic assignment problem. The technique is enhanced by
acceptance criteria that allow moves to worse local optima. Furthermore, population-
based extensions are introduced. Duarte et al. [8] introduce an ILS heuristic for the
problem of assigning referees to scheduled games in sports based on greedy search.
Our perturbation mechanism is related to their approach. Preliminary work on the
adaptation of the perturbation algorithm has been applied by Mladenovic et al. [9]
for variable neighborhood search and tabu search by Glover et al. [10].

5.3 Powell’s Conjugate Gradient Method

The hybrid ILS variant introduced in this chapter is based on Powell’s optimiza-
tion method. Preliminary experiments revealed the efficiency of Powell’s method in
comparison to continuous evolutionary search methods. However, in the experimen-
tal section, we will observe that Powell’s method can get stuck in local optima in
multimodal solution spaces. An idea similar to the hybridization of local search has
been presented by Griewank [11], who combines a gradient descent method with a
deterministic perturbation term.

Powell’s method belongs to the class of direct search methods, i.e., no first or
second order derivatives are required. It is based on conjugate directions and is
similar to line search. The idea of line search is to start from search point x ∗ R

N

along a direction d ∗ R
N , so that f (x + λt d) is minimized for a λt ∗ R

+. Powell’s
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method [12, 13] adapts the directions according to a gradient-like information from
the search.

Algorithm 2 Powell’s Method
1: repeat
2: for t = 1 to N do
3: find λt that minimizes f (xt−1 + λt dt )

4: set xt = xt−1 + λt dt
5: for j = 1 to N − 1 do
6: update vectors d j = d j+1
7: end for
8: set dN = xN − x0
9: find λN that minimizes f (xN + λN dN )

10: set x0 = x0 + λN dN
11: end for
12: until termination condition

It is based on the assumption of a quadratic convex objective function f (x)

f (x) = 1

2
xT Hx + bT x + c. (5.1)

with Hessian matrix H. Two directions di ,d j ∗ R
N , i ∈= j are mutually conjugate,

if
dT

i Hd j = 0 (5.2)

holds with mutual conjugate directions that constitute a basis of the solution
space R

N . Let x0 be the initial guess of a minimum of function f. In iteration t ,
we require an estimation of the gradient gt = g(xt ). Let t = 1 and let dt = −gt be
the steepest descent direction. For t > 1, Powell applies the equation

dt = −gt + βt dt−1, (5.3)

with the Euclidean vector norms

βt = ≤gt≤2

≤gt−1≤2 . (5.4)

The main idea of the conjugate direction method is to search for the minimal value
of f (x) along direction dt to obtain the next solution xt+1, i.e., to find the λ that
minimizes

f (xt + λt dt ). (5.5)

For a minimizing λt , set
xt+1 = xt + λt dt . (5.6)
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Algorithm 2 shows the pseudocode of the conjugate gradient method that is the basis
of Powell’s strategy. In our implementation, the search for λt is implemented with
line search. For a more detailed introduction, we refer to the depiction of Powell [12]
and Schwefel [14].

At first, we analyze Powell’s method on the optimization test suite (cf. Appen-
dix A). Solutions are randomly initialized in the interval [−100, 100]N . Each exper-
iment is repeated 30 times. Powell’s method terminates, if the improvement from
one to the next iteration is smaller than φ = 10−10 with comma selection, or if the
optimum is found with accuracy fstop = 10−10. As Powell’s method is a convex
optimization technique, we expect that only the unimodal problems can be solved.
Table 5.1 confirms these expectations. On unimodal functions, Powell’s method is
exceedingly fast. On the Sphere problem with N = 10, a budget of only 101.7 fit-
ness function evaluations in mean is sufficient to approximate the optimum. These
fast approximation capabilities can also be observed on problems Doublesum and
Rosenbrock, also for higher dimensions, i.e. N = 30.

The results also show that Powell’s method is not able to approximate the optima
of the multimodal function Rastrigin. On the easier multimodal function Griewank,
the random initializations allow to find the optimum in some of the 30 runs. The fast
convergence behavior on convex function parts motivates to perform local search
as operator in a global evolutionary optimization framework. It is the basis of the
Powell ES that we will analyze in the following.

Table 5.1 Experimental comparison of Powell’s method on the test problems with N = 10 and
N = 30 dimensions

Best Median Worst Mean Dev #

N = 10
fSp 100 102 102 101.7 0.67 30
fDou 91 92 92 91.8 0.42 30
fRos 2,947 4,617 12,470 5,941.87 3,353.14 24
fRas – – – – – 0
fGri 329 329 329 329 0 1
fKur – – – – – 0
N = 30
fSp 299 302 302 301.3 1.05 30
fDou 291 291.5 292 291.5 0.52 30
fRos 14,888 33,315 59,193 36,455.85 16,789.41 21
fRas – – – – – 0
fGri 904 997 1,001 967.33 54.88 3
fKur – – – – – 0

Best, median, worst, mean, and dev provide statistical information about the number of fitness
function evaluations of 30 runs until the difference between the fitness of the best solution and the
optimum is smaller than fstop = 10−10. Parameter # states the number of runs that reached the
optimum.
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5.4 Powell Evolution Strategy

The Powell ES [1] presented in this section is based on four key concepts, each
focusing on typical problems in real-valued solution spaces. Powell’s method is a
fast direct optimization method, in particular appropriate for unimodal fitness land-
scapes. It is integrated into the optimization process using ILS, in order to prevent
Powell’s method from getting stuck in local optima. ILS approach is based on the
successive repetition of Powell’s conjugate gradient method as local search technique
and a perturbation mechanism. A population of candidate solutions is employed for
exploration similar to evolution strategies. The strength of the ILS perturbation is
controlled by means of an adaptive control mechanism. In case of stagnation, the
mutation strength is increased, in order to leave local optima, and decreased other-
wise.

Algorithm 3 shows the pseudocode of the Powell ES. At the beginning, μ solu-
tions x1, . . . , xμ ∗ R

N are randomly initialized and optimized with the strategy of
Powell. In an iterative loop λ, offspring solutions x1, . . . , xλ are produced by means
of Gaussian mutations with the global mutation strength σ by

x′
j = x j + z j , (5.7)

with
z j ∇ (σ1N (0, 1), . . . ,σNN (0, 1))T . (5.8)

Afterwards, each solution x′
j is locally optimized with the strategy of Powell, leading

to x̂′
j for j = 1, . . . ,λ. After λ solutions have been produced this way, the μ-best

are selected according to their fitness with comma selection. Then, we apply global
recombination, i.e., the arithmetic mean ⊂x̂t √ at generation t of all selected solutions
x̂1, . . . , x̂μ is computed. The fitness of this arithmetic mean is evaluated and compared
to the fitness of the arithmetic mean of the last generation t−1. If the search stagnates,
i.e., if the condition

| f (⊂x̂√t ) − f (⊂x̂√t−1)| < θ (5.9)

becomes true, the mutation strength is increased via

σ = σ · τ (5.10)

with τ > 1. Otherwise, the mutation strength σ is decreased by multiplication
with 1/τ .

An increasing mutation strength σ allows to leave local optima. Powell’s method
drives the search into local optima, and the outer ILS performs a search within
the space of local optima controlling the perturbation strength σ. A decrease of
step size σ lets the algorithm converge to the local optimum in a range defined
by σ. This technique seems to be in contraposition to the 1/5th success rule by
Rechenberg [15]. Running a simple (1 + 1)-ES with isotropic Gaussian mutations
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Algorithm 3 Powell ES
1: initialize μ solutions
2: apply Powell’s method
3: repeat
4: for j = 1 to λ do
5: mutate solution x j
6: apply Powell’s method
7: end for
8: select μ-best solutions
9: if fitness improvement < θ then

10: σ = σ · τ
11: else
12: σ = σ/τ
13: end if
14: until termination condition

and constant mutation steps σ, the optimization process will become very slow after
a few generations. Rechenberg’s rule adapts the mutation strengths in the opposite
kind of way. If the ratio g/G of successful generations g after G generations is larger
than 1/5th, the step size should be increased. The increase is reasonable, because
bigger steps towards the optimum are possible, while small steps would be a waste
of time. If the success ratio is less than 1/5th, the step size should be decreased. This
rule is applied every G generations. The goal of Rechenberg’s approach is to stay
in the evolution window guaranteeing nearly optimal progress. Optimal progress is
problem-dependent and can be stated theoretically on artificial functions [16].

However, in our approach the strategy of Powell approximates local optima, not
the evolution strategy. The step control of the Powell ES has another task: leaving
local optima, when the search stagnates. Basins of attractions can be left because
of the increasing step size. Hence, the probability of finding the global optimum
is larger than 0. With this mechanism, also the global optimum may be left again.
But if the vicinity of the optimum has been reached, it is probable that it will be
successively reached again. The problem that the global optimum may be left, if not
recognized, can be compensated by saving the best found solution in the course of
the optimization process.

5.5 Experimental Analysis

In the following, we will experimentally analyze the Powell ES on a set of test
problems, cf. Appendix A. Again, initial solutions are generated in the inter-
val [−100, 100]N , and the step sizes are set to σinit = 1.0. Each experiment is
repeated 30 times. For the Powell ES, we employ the settings λ = 8 and μ = 2. Each
solution is mutated and locally optimized with Powell’s method. Again, Powell’s
method terminates, if the improvement from one to the next iteration is smaller
than φ = 10−10, or if the optimum is found with accuracy fstop = 10−10. If the
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search on the ILS level stagnates, i.e., if the achieved improvement is smaller than θ,
the mutation strength is increased with mutation parameter τ = 2.0. We allow a
maximal budget of ffemax = 2.0 × 106 fitness function evaluations.

Table 5.2 shows the results of the analysis of the Powell ES on the test problems
with N = 10 and N = 30 dimensions. The results have shown that Powell’s method is
very fast on unimodal problems. Of course, the Powell ES shows the same capabilities
and approximates the optimum in the first Powell-run on the Sphere problem and
Doublesum. We have already observed that Powell gets stuck in local optima of
multimodal problems (e.g. Rastrigin). The Powell ES perturbates a solution, when
getting stuck, and applies Powell’s method again with the perturbation mechanism of
Eq. (5.10). The results show that the iterated application of Powell’s method in each
generation allows to approximate the global optimum, also on Rastrigin. The Powell
ES is able to approximate the optimum in comparison to its counterpart without ILS.

It convergences significantly faster than the CMSA-ES (cf. Chap. 2). A statistically
significant superiority of the Powell ES can also be observed on Griewank. On
Rosenbrock, no superiority of any of the two algorithms can be reported. Although
the worst runs of the Powell ES cause a fitness deterioration in mean, the best runs
are still much faster than the best runs of the CMSA-ES. The CMSA-ES is more
robust with smaller standard deviations, but does not offer the potential to find the
optimal solution that fast. A similar behavior can be observed on the test problems
with N = 30 dimensions, see the lower part of Table 5.2. The CMSA-ES takes
about 17 times more evaluations. This also holds true for the other unimodal test
problems, where the Powell ES is superior. On the multimodal test problems in
higher dimensions, similar results as for N = 10 can be observed. The Powell ES

Table 5.2 Experimental analysis of the Powell ES on the test problems with N = 10 and N = 30
dimensions

Best Median Worst Mean Dev #

N = 10
fSp 99 100 153 105.1 1.6e1 30
fDou 89 92 178 108.6 3.6e1 30
fRos 3,308 5,074.5 29,250 7,772.6 7.8e3 30
fRas 2,359 14,969.5 38,550 15,682.5 9.1e3 30
fGri 477 1,506 6,572 2,240 2.2e3 30
fKur 4,300 196,218 316,528 165,325 9.9e4 30
N = 30
fSp 290 295.5 299 295.3 2.83 30
fDou 283 286.5 479 305.6 6.0e1 30
fRos 25,363 61,768 385,964 95,339 1.0e5 30
fRas 58,943 78,537.5 191,489 102,429 4.4e4 30
fGri 971 5,994.5 20,913 9,629.6 7.6e3 30
fKur >2.0e6 >2.0e6 >2.0e6 >2.0e6 – 0

The figures show the number of fitness function evaluations until the difference between the fitness
of the best solution and the fitness of the optimum is smaller than fstop = 10−10. This termination
condition has been reached in every run except on fKur with N = 30.

http://dx.doi.org/10.1007/978-3-319-03422-5_2
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Fig. 5.1 Development of fitness and step sizes on the multimodal problem Kursawe employing
N = 10. When the search gets stuck in local optima, the perturbation mechanism increases σ and
lets the Powell ES escape from basins of attraction [1]

is statistically better on Rastrigin. The CMSA-ES’s mean and median are better on
Rosenbrock and Griewank. On Kursawe, the optimum has been found in every run
for N = 10, but in no run for N = 30.

Figure 5.1 shows fitness curves and step sizes of typical runs on the multimodal
problem Kursawe with N = 10. It can be observed that the search successively
gets stuck. But the perturbation mechanism always allows to leave the local optima
again. When the search gets stuck in a local optimum, the strategy increases σ until
the local optimum is successfully left, and a better local optimum is found. The
approach moves from one local optimum to another controlling σ, until the global
optimum is found. The fitness development reveals that the search has to accept
worse solutions to approximate the optimal solution. The figures confirm the basic
idea of the algorithm. ILS controls the global search, while Powell’s method drives
the search into local optima. Frequently, the hybrid is only able to leave local optima
by controlling the strength σ of the Gaussian perturbation mechanism. ILS conducts
a search in the space of local optima.

5.6 Perturbation Mechanism and Population Sizes

For deeper insights into the perturbation mechanism and the interaction with popu-
lation sizes, we conduct further experiments on the multimodal problem Rastrigin
with N = 30, where the Powell ES has shown successful results. The strength of the
perturbation mechanism plays an essential role for the ILS. In case of stagnation, the
step size is increased as described in Eq. (5.10) with τ > 1 to let the search escape
from local optima. Frequently, a successive increase of the perturbation strength is
necessary to prevent stagnation. In case of an improvement, the step size is decreased
with τ < 1. The idea of the step size reduction is to prevent the search process from
jumping over promising regions of the solution space. In the following, we ana-
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Table 5.3 Analysis of the Powell ES perturbation parameter τ and the population sizes on Rastrigin
with N = 30 using the same initial settings, performance measure, and termination condition like
in the previous experiments

(μ,λ) Best Median Worst Best Median Worst

τ = 1.5 τ = 2.0
(1, 4) 53,913 92,544 130,675 31,686 78,214 121,170
(2, 8) 56,074 100,835 143,642 65,540 112,643 242,983
(4, 16) 149,350 162,083 210,384 77,481 117,972 163,693
(8, 32) 156,517 295,457 370,320 193,259 209,725 244,325

τ = 5.0 τ = 10.0
(1, 4) 53,465 105,513 406,495 >2 × 109 >2 × 109 >2 × 109

(2, 8) 48,274 104,461 285,651 32,773 680,363 1,473,097
(4, 16) 67,241 103,142 202,447 52,991 208,088 338,922
(8, 32) 109,820 189,676 221,069 123,838 309,169 802,285

lyze the perturbation mechanism and the population sizes on Rastrigin. We try to
determine useful parameter settings for τ and for population parameters μ and λ.

Table 5.3 shows the corresponding results. The best result has been achieved
with τ = 2.0 and population sizes (1, 4). Also the best median has been achieved with
this setting, while the second best has been achieved with τ = 1.5 and population
sizes (1, 4). With parameter setting τ = 10.0, the Powell ES achieves a satisfying
best solution, but the variance of the results is high. The worst solution is comparably
bad. In general, the results for τ = 10.0 are quite weak, for (1, 4) the algorithm does
not converge within reasonable time. For low mutation strengths, the best results
can be observed for small population sizes. In turn, for higher mutation strengths,
i.e., τ = 5.0, larger population sizes are necessary to compensate the explorative
effect. Further experiments on other problems led to the decision that a (2, 8)-Powell
ES is a good compromise between exploration and efficiency, while a (4, 16)-Powell
ES is a rather conservative, but stable choice with reliable results.

5.7 Conclusions

Combining the world of local search with the world of global evolutionary opti-
mization is a promising undertaking. It reflects the original idea of evolutionary
computation. If we do not know anything about the problem, evolutionary algo-
rithms are an appropriate choice. In multimodal fitness landscapes, we typically
know nothing about the landscape of local optima. The Powell ES only assumes that
attractive local optima lie closely together. Hence, the search might jump from one
basin of attraction to a neighbored one. To move into local optima, Powell’s method
turns out to be fairly successful. Furthermore, the adaptation of the perturbation
strength is a natural enhancement in real-valued solution spaces. A population-based
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implementation allows to run multiple Powell searches in parallel and to achieve a
crucial speedup in distributed computing environments.
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Chapter 6
Multiple Objectives

6.1 Introduction

In many design process scenarios, the optimization of more than one objective at
once is a frequent problem. This setting is a particularly difficult task, when the
optimization objectives are conflictive, i.e., minimization of one objective poten-
tially results in maximization of another. Strategies that allow the optimization of
two or more conflictive objectives at a time are based on evolving a set of non-
dominated solutions, i.e., solutions that are better in at least one objective than the
other solutions in the set. Evolutionary algorithms have proven to be very popular
solution strategies for multi-objective optimization problems. One reason is that evo-
lutionary algorithms are quite easy to implement and to use. The second reason is
that a set-based optimization framework is very appealing, as we seek for a set of
Pareto-optimal solutions. The is often not a single unique solution that is optimal,
but a whole set of solutions.

Prominent examples for evolutionary multi-objective algorithms (EMOAs)1 are
NSGA-ii [1] and SMS-EMOA [2]. In this chapter, we present a heuristic for selec-
tion of non-dominated solutions that is based on rakes, which are reference lines in
objective space [3]. After the formal introduction of a multi-objective optimization
problem, we present related work and introduce the rake approach. The approach
will be experimentally analyzed and compared on a set of reference problems.

6.2 Multi-Objective Optimization

Many planning and decision making problems involve multiple conflictive objec-
tives that have to be optimized simultaneously, in operations research also known as
multiple criteria decision making. The unconstrained multi-objective optimization

1 EMOAs are also known as multi-objective evolutionary algorithms (MOEAs).

O. Kramer, A Brief Introduction to Continuous Evolutionary Optimization, 55
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problem in R
N to minimize m conflictive objectives f(x) = ( f1(x), . . . , fm(x))T is

defined as
min

x∗R
N

f(x) = min
x∗R

N
( f1(x), f2(x), . . . , fm(x))T (6.1)

with fi (x) : R
N ∈ R, i = 1, . . . ,m. In most cases, the decision maker is interested

in a set of Pareto optimal solutions. To define Pareto optimality, we need the following
relations for solutions in multi-objective minimization scenarios. Solution x weakly
dominates solution x≤, written as

x � x≤, (6.2)

if it holds
∇ i ∗ {1, . . . ,m} : f (xi ) ⊂ f (x ≤

i ). (6.3)

Solution x dominates solution x≤, written as

x √ x≤, (6.4)

if it holds
x � x≤ and ∪ i ∗ {1, . . . ,m} : f (xi ) < f (x ≤

i ). (6.5)

The solutions are incomparable, written as x‖x≤, if neither x � x≤ nor x≤ � x holds.
With these definitions, Pareto optimality can be defined. We seek for a set of solutions
that in objective space defines a Pareto front

PF = {f(x∗) ∗ R
m |�x ∗ R

N : x √ x∗}. (6.6)

The corresponding set of solutions in the solution space is the Pareto set

PS = {x∗ ∗ R
N |f(x∗) ∗ PF}. (6.7)

Figure 6.1 shows the partitioning of objective space induced by a solution x for a
minimization problem. The solution would be dominated by a solution in the blue part
and would dominate solutions in the red part. The other two quadrants of objective
space contain solutions that cannot be compared to x, i.e., they are neither better nor
worse.

Pareto optimal solutions are also known as non-inferior solutions. After a Pareto
set has been generated, the decision maker can select the solutions that fit best to
the preferences. Simple ways to handle multi-objective optimization problems are to
concentrate on the most important objective, while treating all others as constraints
or to aggregate all objectives to a composite function. The first alternative is based
on first selecting the most important objective function, which is called preference
function

f (x) = fi with i ∗ {1, . . . ,m}. (6.8)
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Fig. 6.1 Illustration of partitioning of a 2-dimensional objective space by a solution x for a mini-
mization problem. Solutions in the red area are dominated by a solution x, while solutions in the
blue area dominate solution x. Solutions in the white part of objective space are incomparable. The
set of Pareto-optimal solutions contains incomparable solutions

For each remaining objective function, a constraint

g j (x) = f j (x)with j ∗ {1, . . . ,m} \ i (6.9)

is introduced. The composite method allows to handle multi-objective problems with
single-objective methods without constraints. This idea will be combined with the
rake idea in Sect. 6.6.

Research on multi-objective optimization has a long tradition beginning in the
nineteenth century with the work of Edgeworth [4], Kuhn and Tucker [5], and
Pareto [6]. EMOAs have shown outstanding success in the last decades. Algorithms
like NSGA-ii by Deb et al. [1], SPEA by Zitzler and Thiele [7], and the SMS-EMOA
by Emmerich et al. [8] are able to generate Pareto sets of solutions in non-linear and
multimodal scenarios. Most EMOAs generate a population of non-dominated solu-
tions to approximate the Pareto set. A comprehensive introduction to evolutionary
multi-objective optimization is presented in the book by Coello et al. [9].

Goldberg [10] was the first who introduced domination as selection objective.
To maintain diversity, he introduced a niching-based approach. Also Horn et al.
[11], as well as Fonseca and Fleming [12] use niching approaches. Many Pareto
sampling techniques have been introduced: MOGA by Fonseca and Fleming [12],
MOMGA, the multi-objective messy genetic algorithm by Veldhuizen and Lam-
ont [13], MOMGA-ii by Zydallis et al. [14], and SPEA by Zitzler and Thiele [7],
as well as its successor SPEA2 by Zitzler et al. [15]. One of the most famous
approaches in this line of research is the non-dominated sorting genetic algo-
rithm NSGA by Srinivas and Deb [16] and its successor NSGA-ii by Deb et al.
[1]. The idea of non-dominated sorting is to rank solutions according to their
non-domination level, see Sect. 6.3. An indicator in objective space is the basis for
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Fig. 6.2 The dominated vol-
ume in objective space is
called S-metric. The SMS-
EMOA selects a set of so-
lutions that maximizes the
S-metric
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a second-level selection of NSGA-ii: best ranked solutions with maximum crowding
distance values are added to the population of the next generation. The crowding
distance selection is a diversity preserving mechanism in objective space. It is based
on the average Manhattan distance to neighbored non-dominated solutions.

The S-metric is an indicator for the approximation of the Pareto front by computing
the dominated hypervolume of a population. The metric has been introduced as basis
of the SMS-EMOA. For an introduction, we refer to Emmerich et al. [8] and Beume
et al. [2]. We will use the S-metric in the experimental analyses of this work as
indicator for the ability to approximate the Pareto front. Figure 6.2 illustrates the
S-metric that is defined as the part in objective space dominated by a set of non-
dominated solutions w.r.t. a reference point.

6.3 Non-Dominated Sorting

In this section, non-dominated sorting is briefly introduced. All solutions that are not
dominated are assigned to the first rank. In a next step, they are removed from the
population, and the non-dominance check is conducted again. Both steps are repeated
until all individuals have been assigned to a rank according to their non-domination
level. The non-dominated subset of a population P is defined as

N D(P) = {x ∗ P|�x≤ ∗ P with x≤ √ x}. (6.10)

The result of non-dominated sorting is a hierarchical partitioning of the population
P into disjoint non-dominated sets J1, . . . ,Jv with

1. J1 = N D(P),
2. ∇ i with 2 ⊂ i ⊂ v : Ji = N D(P \ ∪1⊂ j<iJ j ),
3. N D(Jv) \ Jv = ∅,



6.3 Non-Dominated Sorting 59

with rank i . A similar result can be obtained, if we define thatJi contains all solutions
that are dominated by i solutions. But solutions that are dominated by more than one
solution, which do not dominate each other generate errors in comparison to the
standard definition.

6.4 Rake Selection

If the decision maker wants to select solutions a posteriori, i.e., after the Pareto
set has been generated, the question arises how the Pareto front should look like.
Rake selection is an evolutionary multi-objective selection operator for selection of
a subset of solutions from a set of non-dominated solutions presented by Kramer and
Koch [3]. The idea is to define reference lines called rakes in objective space that
define preference areas solutions are biased towards. Let μ be the number of rakes
l1, . . . , lμ in objective space. Let N D({x1, . . . , xκ}) be the set of non-dominated
offspring solutions. For each rake li , rake selection chooses the closest solution from
N D({x1, . . . , xκ}). Rakes can arbitrarily be placed in objective space. A reasonable
placement is to distribute the rakes perpendicularly and equidistantly on a rake base,
which is the line between the corner points. The corner points are solutions that are
minimal w.r.t. each objective c j = f(x∗

j ) with j = 1, . . . ,m. The rakes cut the rake
base in the intersection points pi with i = 1, . . . ,μ − 2 for m = 2. Algorithm 11
shows the pseudocode that generates the rake placement.

Algorithm 11 Rake Generation
1: minimize objectives f1(x), . . . , fm(x)
2: compute corner points c1, . . . , cm
3: compute rake normal vector
4: compute intersection points pi

Figure 6.3 illustrates, how rakes are employed for the selection of non-dominated
solutions. The blue dots and green squares are the non-dominated solutions. The
red dots represent dominated solutions. The rakes are distributed on the rake base
between the two corner points c1 and c2 intersecting the rake base in points p1–p5.
For each rake, the closest non-dominated solution is selected, i.e., the green squares
represent the candidate solutions that are finally chosen by rake selection.

Various experiments have shown that the exploration capabilities can be enhanced
by shifting the rakes at the boundaries to the outside. Otherwise, the explorative
character of the approach can be limited, as the rakes are only distributed between
the corner points, and not the whole Pareto front may be covered. The outer rakes in
the neighborhood of the corner points have an explorative character, while the inner
points exploit the knowledge about the location of the already explored Pareto front.



60 6 Multiple Objectives

Fig. 6.3 Illustration of rake selection with parallel distribution, orthogonal to the line between the
corner points for m = 2

Table 6.1 Experimental comparison between rake selection and SMS-EMOA in terms of S-metric
on the multi-objective problems ZDT1, ZDT2, and ZDT6

Problem EMOA Best Median Worst Dev

ZDT1 Rake 99.6558 99.65 99.64 0.003
SMS 99.6572 99.65 99.65 0.0002

ZDT2 Rake 99.3233 99.32 99.31 0.003
SMS 99.3235 99.32 90.00 3.901

ZDT6 Rake 96.7411 96.72 96.69 0.014
SMS 95.6742 95.43 95.29 0.153

6.5 Experimental Study

In this section, we present an experimental study of the approach on the multi-
objective ZDT test problems with m = 2 objectives. Minimization of the single
objectives yield the corner points. We use μ = 50 parental solutions, k = 50 rakes,
and the mutation settings τ0 = 5.0 and τ1 = 5.0. Figure 6.4 shows the experimental
results of typical runs of rake selection on the problems ZDT1 to ZDT4 with N = 30
dimensions (N = 10 for ZDT4) and random initialization after 1,000 iterations. We
can observe that rake selection places the non-dominated solutions directly on the
rakes and converges towards the Pareto front. The results are stable, i.e., the Pareto
front is reached in almost every run.

We show the behavior of rake selection with a (μ + λ)-ES and self-adaptive
step sizes [17] on the ZDT problems ZDT1, ZDT2, and ZDT6 in Table 6.1. The
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ZDT 1 ZD  T 2

ZDT 3 ZDT 4

Fig. 6.4 Experimental results of typical runs of rake selection on the multi-objective problems
ZDT1–ZDT4. The rake base connects the corner points. The perpendicular lines define the rakes
in objective space. Due to different scalings of the axes, rake base and rakes do not appear to be
orthogonal. After 1,000 iterations, i.e., 50,000 objective function evaluations, the solutions lie on
the rakes and on the curves of the Pareto fronts

figures compare rake selection and SMS-EMOA w.r.t. the S-metric in 50 runs. We
can observe that rake selection achieves high S-metric values. In case of ZDT6, rake
selection even achieves higher values than the SMS-EMOA in average, although the
fitness criterion of the SMS-EMOA is to explicitly maximize the S-metric.

6.6 Properties and Extensions

As the Pareto front is cone-convex [18], the condition of an approximately equidis-
tant distribution will be fulfilled for most Pareto fronts. The solutions can easily be
distributed equidistantly, if the Pareto front is linear. To improve the rake distribution
in case of a strong curvature of the Pareto front, the intersection points pi on the rake
base can arbitrarily be adapted during the run, automatically or by hand.
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Fig. 6.5 Result of ES on
ZDT1 with aggregated sum
(9,715 evaluations), see
Eq. 6.13

For the search with two objectives, rake selection requires μ rake lines depend-
ing on the density of solutions required for the Pareto front. To achieve a similar
density of solutions in higher dimensional objective spaces with m objectives, μm−1

rake lines are required. This exponential increase is a consequence of the curse of
dimensionality in multi-objective optimization space. Neglecting that an equidistant
distribution with constant distances into all directions of the objective space increases
exponentially with the number of objectives leads to a loss of density in objective
space.

In our experiments, the movement of solutions towards the Pareto front is achieved
with non-dominated sorting. In case of the SMS-EMOA, the movement towards the
Pareto front is achieved by maximizing the hypervolume in objective space w.r.t. to
a dominated reference point r with

∇ x ∗ ∪1⊂i⊂tPi : x √ r (6.11)

with population Pi at generation i . The concept of a reference point can also be
used for rake selection by maximizing the distance to the reference point. This can
be achieved by minimizing the weighted sum

f̂ (x) = α · d(l∗, f(x)) + (1 − α)/‖f(x) − r‖2 (6.12)

with weight α ∗ (0, 1) and d(l∗, f(x)) yielding the distance to the closest rake l∗
and point f(x) in objective space. This mechanism was not necessary to achieve a
movement towards the Pareto front of the ZDT-problems in the experimental analysis
of Sect. 6.5, but has successfully been applied in further experiments.

To apply other single-objective optimizers, the aggregation of objectives may
become necessary. Rake selection can be employed as summand for aggregating
objectives in a weighted sum (composite) approach. Figure 6.5 illustrates, how rake
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selection can be combined with the weighted sum to approximate a single point on a
line in objective space. Aggregating the distance to the closest rake d(l∗, ·) with the
weighted sum and weights w ∗ R

m , w≤ results in

f̂ (x) = wT f(x) + w≤ · d(l∗, f(x)). (6.13)

We employed an ES on ZDT1 with N = 150 dimensions. The result is a solution on
the Pareto front with a distance of only ≈ 10−9 to the rake.

6.7 Conclusions

Rake selection is an evolutionary multi-objective algorithm based on non-dominated
sorting. The distance to reference lines in objective space is used as indicator for the
selection of Pareto optimal solutions. The reference lines can arbitrarily be placed in
objective space. The selection is oriented to the distance to equidistantly distributed
lines in objective space. Birth surplus allows the application of σ-self-adaptation.
The experimental analysis has shown that the population follows the rakes and at
the same times approximates the Pareto front. A weighted sum approach allows the
employment of fast single-objective optimizers with rake selection. In [19], exten-
sions of rake selection have been introduced that allow the approximation of equiv-
alent Pareto subsets. The approach is based on the hybridization with clustering
techniques and on mechanisms to trigger the clustering process.
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Part III
Learning



Chapter 7
Kernel Evolution

7.1 Introduction

In supervised learning scenarios, the objective is to learn a functional model f that
best explains a set of observed patterns with their corresponding labels. Classification
is the discrete and regression the continuous variant of this learning problem (cf.
Chap. 1). The Nadaraya-Watson estimator [1, 2], also known as kernel (density)
regression, is a famous regression method. Important parts of kernel regression are
kernel density functions that estimate densities of patterns in data space. The densities
are used as distribution estimates in the regression function formulation.

The model quality of kernel regression significantly depends on the choice of
kernel parameters. Formulated as optimization problem evolution strategies are used
for optimizing parameters of the Nadaraya-Watson estimator, which are used for
searching in the space of kernel density parameters. They are integrated into a frame-
work of leave-one-out cross-validation (LOO-CV) and arbitrary loss functions that
can also be non-differentiable. An extension to local models with separate kernel
parameters allows the adaptation to local data space characteristics.

7.2 Kernel Density Regression

Kernel density regression is a regression technique that has already been introduced
in the sixties of the last century [1, 2]. With the success of kernel methods like
SVMs, also kernel density regression got more attention, e.g., in unsupervised
kernel regression [3]. Kernel regression weights the output values yi ∗ R

d of
patterns xi ∗ R

q , i = 1, . . . , N with relative kernel densities in input space. The
idea has been introduced by Nadaraya and Watson [1, 2] and is known as Nadaraya-
Watson estimator. It is based on kernel density estimation with kernel density func-
tions, which share similarities with histograms. Figure 7.1 shows two histograms for
a sample of 100 Gaussian points. Histograms count the number of samples that fall
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Fig. 7.1 Histograms count the number of points that fall into a bin of defined width. The larger the
width the coarser-grained are the bins and consequently, the worse is the resolution of the histogram,
a histogram, coarse bins, b histogram, fine bins

into intervals of defined widths. The length of a histogram bin is proportional to the
number of points that fall into its bin. The influence of the histogram widths is illus-
trated. The larger the interval width, the coarser-grained are the bins and the worse
is the resolution of the histogram. In kernel regression, each point is represented
by a kernel function with a bump-like shape, e.g., a Gaussian function. The sum of
the small bumps at each pattern delivers a continuous estimate of the distribution of
points. The curvature of the bumps is defined by kernel functions.

Let p(x, y) = (X = x,Y = y) be the joint distribution of patterns with dis-
tribution X and labels with distribution Y . The optimal mapping f ∈ is known as
regression function and can be expressed in terms of the distributions p(x, y) and
p(x) (cf. Bishop [4] and Hastie et al. [5])

f ∈(x) =
∫

yp(y|x)dy =
∫

y
p(x, y)

p(x)
dy. (7.1)

The idea of kernel regression is to express the joint distribution p(x, y) with its
kernel density estimate

p̂(x, y) = 1

N

N∑
i=1

Kwx (x − xi )Kwy (y − yi ) (7.2)

with a kernel density function Kwx in data space and a kernel density function Kwy

in output space. This expression for the joint density p̂(x, y) and a similar expression
for density p̂(x) inserted into Eq. 7.1 yield

f̂ (x) =
N∑

i=1

Kwx (x − xi )∑N
j=1 Kwx (x − x j )

∫
yKwy (y − yi )dy. (7.3)
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The solved integral is also known as Nadaraya-Watson estimator and weights the
output values of the training samples with their relative kernel densities. The multi-
variate Nadaraya-Watson estimator is defined as

f(x,W) =
N∑

i=1

yi
KW(x − xi )∑N

j=1 KW(x − x j )
(7.4)

with matrix W containing the bandwidths. The bandwidth is an important parameter
that controls the smoothness of the functional model. Small values lead to an overfit-
ted prediction function, while high values tend to overgeneralize. The task to adapt
the bandwidth has an important part to play. Let N be the number of patterns. For
the prediction of one pattern label, N kernel densities have to be computed.

Kernel regression is based on a density estimate of patterns with a kernel func-
tion K : Rq ≤ R. In the experimental section, we will employ the Gaussian and the
Epanechnikov kernel that are shortly introduced in the following. A typical kernel
function is the multivariate Gaussian kernel

KG(z) = 1

(2λ)q/2det(W)
e− 1

2

∣∣W−1z
∣∣2

(7.5)

with bandwidth matrix W = diag(w1, w2, . . . , wq). Another frequent kernel is the
Epanechnikov kernel

KE (z) = DE

( |z|
w

)
(7.6)

with

DE (t) = 3

4
[1 − t2]+ =

{ 3
4 · (1 − t2) |t | < 1
0 |t | ≥ 1

(7.7)

Here, the bandwidthw defines the radius of the supported region, similar to the band-
width of the Gaussian kernel. But unless the Gaussian kernel, it has a finite support
and becomes 0 outside. For h ≤ 0, the Nadaraya-Watson estimator reconstructs the
patterns, for h ≤ ∇, it averages the over all N patterns [6].

The result of the kernel density estimation significantly depends on the choice
of proper kernel bandwidths. Small values lead to an overfitted prediction function,
while high values result in an overgeneralization. LOO-CV is a technique to regu-
larize the model. Various bandwidth selection methods are known in literature. A
simple and good working choice is the Silverman’s rule of thumb

w = ρ̂cμ−1/5 (7.8)

with μ solutions, the sample standard deviation ρ̂ and c = 1.06 for a Gaussian
distribution, cf. Silverman [7]. The resulting choice of bandwidth w is known to
be a good recommendation in many applications. A combination of LOO-CV and
evolution strategies will be employed in the following.
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In regression, typically different loss functions are used that weight the residuals.
In the best case, the loss function is chosen according to the requirements of the data
mining model and the application domain. With the design of a loss function, the
emphasis of outliers can be controlled. Let L : Rd × R

d ≤ R be the loss function.
In the univariate case d = 1, a loss function is defined as L = ∑N

i=1 Lk(yi , f (xi )).
The L1 loss is defined as L1 = |y − f (x)| and L2 is defined as L2 = (y − f (x))2.
Huber’s loss [8] is a differential alternative to the L1 loss and makes use of a trade-off
point σ between the L1 and the L2 characteristic

Lh(r) =
{ 1

2·σ r2 |r | < σ

|r | − 1
2σ |r | ≥ σ

(7.9)

with residual r = y − f (x). Parameter σ allows a problem specific adjustment to
certain problem characteristics. In the experimental part of this chapter, we employ
Huber’s loss with setting σ = 0.01.

7.3 Kernel Shape Optimization

There are many examples in literature showing that evolutionary methods are suc-
cessful in kernel-based machine learning. Stoean et al. [9, 10] directly solve the
primal optimization problem of SVMs to find the optimal discriminant function for
regression and classification tasks by means of evolution strategies. Mierswa and
Morik [11] investigated simple data sets, where feature spaces induced by usual
kernel functions fail. They employ a generic kernel learning scheme that is based
on non-convex optimization. Furthermore, Mierswa [12] explicitly optimizes the
tradeoff between training error and model complexity of SVMs by means of multi-
objective evolutionary algorithms, i.e. NSGA-ii [13]. An example for the application
of evolutionary methods to combinatorial problems in kernel-based machine learning
stems from Gieseke et al. [14]. They solve the combinatorial problem of assigning
elements to proper clusters with a (1 + 1)-EA. The approach aims at finding an opti-
mal partitioning of data into two classes, which can be formulated as mixed integer
problem. With the help of a kernel matrix approximation shortcut, computational
costs can be reduced during approximation, and the evaluation of a huge set of solu-
tions is possible within reasonable time. In our preliminary work, we used evolution
strategies to adapt kernel parameters for the Nadaraya-Watson estimator and fit local
models to energy consumption data [15].

Basis of the kernel shape optimization approach is a parameterized kernel density
function that will be introduced in the following. To avoid overfitting, an LOO-CV
scheme is employed. In this chapter, we have introduced standard kernel functions
that are typically used for the Nadaraya-Watson estimator. To increase the flexi-
bility, we extend the kernel functions to hybrid parameterized kernels that allow a
greater flexibility to adapt to local data space characteristics. Bishop [4] states valid
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Fig. 7.2 Illustration of kernel density functions. Left Gaussian kernel KG and Epanechnikov
kernel KE with two bandwidths w = 1.0, 2.0, right hybrid kernel K H with τ = 0.2, 0.5, and 0.8

combinations of kernel functions. The following kernel density function, which is
the weighted sum of the Gaussian and the Epanechnikov kernel

K H (z) = τKG(z) + (1 − τ)KE (z) (7.10)

with τ ∗ [0, 1], is used. The novel kernel function can morph between both kernel
density functions with parameter τ. Figure 7.2 shows the shape of the novel hybrid
kernel in comparison to the Gaussian and the Epanechnikov kernel in q = 1 for three
settings of parameter τ. For example, this can be useful, if only a limited support is
necessary, and a Gaussian-similar shape is required.

If the model is trained w.r.t. the bandwidth diagonal matrix W on the training set,
it may overadapt to the training examples and loose the ability to generalize. This
effect called overfitting is likely to happen, if the training set size is small, or if the
number of free parameters of a model is comparatively large. To avoid overfitting,
Clark [16] selects the bandwidth matrix W as result of LOO-CV. The idea of LOO-CV
is to apply the Nadaraya-Watson estimator, leaving out the pattern (xi , yi ) for each
summand. The resulting error function that has to be minimized is

E = 1

N

N∑
i=1

⊂yi − f−i (xi ,W)⊂2. (7.11)

Here, f−i denotes the Nadaraya-Watson estimator leaving out the i-th pattern. All
points, with exception of data sample (xi , yi ) itself, contribute to the estimation
of f(xi ). For kernel shape optimization, i.e., choice of bandwidths and optimization
of other kernel parameters, the CMA-ES is applied as alternative to grid search and
Silverman’s rule of thumb. As population sizes, the settings μ = 8 and κ = 16 are
chosen. The CMA-ES terminates after 100 fitness function evaluations, which is the
same budget like grid search to allow a fair comparison.
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Table 7.1 Analysis of search for optimal kernel parameters with Silverman’s rule of thumb, grid
search, and CMA-ES

Data d Silver Grid CMA-ES
KG KE KG KE KG KE K H

fSp 8 0.080 >10.0 0.079 0.079 0.072 0.073 0.070
fSp 16 0.114 >10.0 0.094 0.094 0.091 0.093 0.091
fSp 32 0.134 >10.0 0.114 0.114 0.113 >10.0 0.112
fDou 8 0.160 >10.0 0.165 0.155 0.141 0.143 0.135
fDou 16 0.327 >10.0 0.280 0.280 0.264 0.276 0.271
fDou 32 0.614 >10.0 0.518 0.518 0.461 >10.0 0.484
fRos 8 1.156 >10.0 1.144 1.086 1.062 1.033 1.032
fRos 16 1.528 >10.0 1.353 1.371 1.317 1.330 1.307
fRos 32 2.185 >10.0 1.787 1.788 1.740 1.873 1.752
fRas 8 0.453 >10.0 0.356 0.356 0.347 0.348 0.352
fRas 16 0.585 >10.0 0.480 0.480 0.462 0.467 0.455
fRas 32 0.655 >10.0 0.549 0.549 0.541 0.597 0.539
fGri 8 0.032 >10.0 0.031 0.031 0.022 0.0221 0.021
fGri 16 0.034 >10.0 0.030 0.030 0.023 0.024 0.021
fGri 32 0.035 >10.0 0.028 0.028 0.023 0.030 0.024

7.4 Experimental Analysis

In the following, we analyze evolutionary kernel regression experimentally on a set
of test functions, cf. Appendix A. The data sets have been created by sampling 100
patterns randomly with uniform distribution on the test problems with q = 8, 16, 32
dimensions in the unit cube xi ∗ [−1, 1]q , i = 1, . . . , 100. We compare the intro-
duced parameterized kernel density function in optimization scenarios employing
Silverman’s bandwidth rule, grid search, and the CMA-ES.

Table 7.1 shows the experimental results. For the evolutionary methods, the
median of 50 runs is presented. The best results of each row are marked in bold,
the second best in italic numbers. We can observe that the CMA-ES with hybrid
kernel achieves the best LOO-CV error in 11 of the 15 cases. Consequently, the
application of a hybrid kernel employing the CMA-ES can be recommended. The
CMA-ES achieves the best result with Gaussian kernel in four cases. With one excep-
tion, grid search is always better than Silverman’s rule of thumb. But Silverman’s
rule does not require any search (only one evaluation) and achieves significantly
lower training errors than random parameterization. Silverman with Epanchnikov
kernel fails, i.e., LOO-CV errors have been achieved that are much worse than the
other results (>10.0). This is probably due to the fact that too low bandwidths are
generated and can also be observed twice in the case of the CMA-ES optimization
approach. Further, the CMA-ES with Epanechnikov kernel tends to be better than
grid search with Epanechnikov kernel.
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7.5 Local Models

In the previous kernel regression model, one global bandwidth matrix W has been
used for the whole data space. This section enhances evolutionary kernel regression
by the concept of local models that allow the adaptation of machine learning methods
to local data space characteristics and as a consequence, results in high prediction
precision in local data space areas [15, 17]. For each model, kernel density function
parameters can be optimized w.r.t. local loss functions.

To handle varying data space characteristics at different data space regions, we
present the concept of locality of the kernel regression methods based on codebook
vectors. Each Nadaraya-Watson model is defined by a codebook vector ck ∗ R

q , k =
1, . . . , K from the set of codebook vectorsC = {c1, . . . , cK }. A pattern (xi , yi ), i =
1, . . . , N is assigned to the Nadaraya-Watson model fk∈(xi ,Wk∈) with minimal dis-
tance to its codebook vector k∈. The purpose of local Nadaraya-Watson models is to
allow independent bandwidths and kernel parameterizations for increasing the adap-
tation flexibility in data space. For initialization, codebook vectors are distributed in
data space according to the local kernel density. They are placed in regions with high
kernel densities, but with a least distance to neighbored previously found regions with
high kernel densities. For this sake, the patterns with the highest relative kernel density

kd(x j ) =
N∑

i=1,i √= j

KW(xi − x j ) > θ (7.12)

are identified iteratively with a minimum kernel density θ ∗ R
+ and a minimum dis-

tance β ∗ R
+ to the previously computed codebook vectors ck ∗ C with d(x j , ck) >

β. These points are added to the set C of codebook vectors. The initialization proce-
dure is similar to kernel density clustering [18, 19], as it is based on the assignment
of each point to the closest local optimum of the kernel density estimate [18, 19].

After initialization, the training phase starts. During training, the parameters of
the local models are adapted. The optimization goal is to minimize the mean squared
error of all local models w.r.t. the codebook vector set C and the local bandwidth
matrices Wk

Elocal = 1

N

N∑
i

⊂yi − fk∈(xi ,Wk∈)⊂2, (7.13)

with
k∈ = arg min

k=1, ..., K
⊂xi − ck⊂2. (7.14)

As a side effect, the assignment of patterns to local models results in a significant
speedup. If we assume that the patterns are uniformly distributed to all K models,
which is only an idealized assumption, the computation time for the prediction of
one pattern can be reduced to 1/K -th. This also holds for the computation of the
LOO-CV.



74 7 Kernel Evolution

Table 7.2 Comparison between local evolutionary kernel regression (local EKR) and kernel
regression (KR) employing grid search on a test data set with varying data densities

Regression Train Test Local1 Local2

KR 0.4449 2.1397 2.1260 4.1634
Local EKR 0.4159 2.0615 1.9873 4.0694

Varying data densities and noise might afford separate parameterizations [15, 17].
First, we concentrate on local data densities. For this sake, we consider a trigonomet-
ric function f (x) = x1 · cos(x1) sin(x2) that consists of K = 2 uniformly at random
distributed data clouds with q = 5 and d = 1. Each cloud consists of Nk = 100 pat-
terns. While the first cloud consist of patterns that are uniformly at random generated
in the interval [0.0, 1.0], the second cloud is generated in the interval [100.0, 110.0].
The function value is not disturbed with noise. The resulting different pattern densi-
ties afford separate parameterizations. Table 7.2 confirms this expectation. It shows
the comparison of training and test errors from local evolutionary kernel regression
and kernel regression with grid search for w in the interval [0, 100] in steps of 0.01.

For the codebook vector initialization with kernel density clustering, we use the
least kernel density θ = 10−20 and the radius β = 200 to identify the set of model
centers C. Each local bandwidth matrix is initialized with diagonal entries wi =
20.0, i = 1, . . . , q. We use a population size of κ = 4 · N depending on the
problem dimension N . It can be observed that local EKR finds two model centers
that lie within the clouds. Local EKR achieves a lower training LOO-CV error using
Huber’s loss and also lower test errors on the whole test sets and for each local model.

An analysis of local EKR with varying noise magnitudes is the second experi-
mental study we perform [15, 17]. The trigonometric function of the last section is
used with the same data density, but different noise magnitudes disturbing the func-
tion value. Again, we generate two clouds of patterns, each consisting of Nk = 100
patterns. Noise can be modeled by adding Gaussian distributed random numbers to
the original function value

ŷi = yi + τ j · N (0, 1) (7.15)

with noise magnitude τ j in the j-th cloud. We set τ1 = 0.01 for the first cloud
and τ2 = 1.0 for the second one. For Huber’s loss function, we use the set-
ting σ = 0.01. Table 7.3 shows the corresponding experimental results. The local
EKR approach is again able to achieve a lower LOO-CV error in the training phase
than KR. Also the corresponding local test errors local1 and local2, as well as the
overall test error are smaller than the results achieved by KR.

Table 7.3 Comparison between local EKR and KR with grid search on a test data set with varying
noise magnitudes

Regression Train Test Local1 Local2

KR 0.9844 18.6759 2.2763 38.0403
Local EKR 0.9658 17.7813 2.0840 36.2236
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7.6 Conclusions

The choice of kernel density functions and kernel bandwidths is a multimodal opti-
mization problem that we solved with the CMA-ES. The approach evolves kernel
shapes with a flexible parameterized kernel density function and LOO-CV. We have
compared the LOO-CV error of the CMA-ES to the LOO-CV error of other common
approaches like grid search with the same budget of function calls and Silverman’s
rule of thumb. In the majority of the test cases, the CMA-ES with hybrid kernel
turned out to be the best optimization algorithm. The CMA-ES is a good choice
for parameter tuning of the Nadaraya-Watson estimator. The experiments on simple
functions show that the application of hybrid kernels is recommendable. Further-
more, the approach allows the application of arbitrary, also non-differentiable kernel
density functions. We could demonstrate that the application of local models with
independent parameterizations is a recommendable approach to handle data space
conditions like varying noise and pattern densities.
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Chapter 8
Particle Swarm Embeddings

8.1 Introduction

In big data scenarios, large numbers of high-dimensional patterns have to be
processed. Efficient dimensionality reduction (DR) methods are required for algo-
rithms that can only handle low-dimensional data like weak classifiers. With increas-
ing data sets, DR methods becomes an important problem class in machine learning.
Surprisingly, not many swarm-based algorithms for DR have been introduced in the
past. DR methods compute a mapping from high-dimensional data space to a latent
space of lower dimensionality. Latent point in this space should preserve the topo-
logical characteristics of their high-dimensional counterparts like neighborhood and
distance relations. This chapter presents a novel iterative swarm-inspired approach
for DR tasks. The particle swarm embedding algorithm (PSEA) combines the itera-
tive construction of solutions with PSO equations. PSO is inspired by the movement
of swarms in nature like fish schools or flocks of birds, and simulates the movement
of candidate solutions using flocking-like equations with locations and velocities
[1, 2]. The experimental part shows that PSEA is a powerful DR method.

8.2 Related Work

The idea of DR methods is to learn low-dimensional representations of high-
dimensional patterns losing as little information as possible. Many DR methods
seek for a mapping F : Rd ∗ R

q from a high-dimensional data space Rd to a latent
space of lower dimensionalityRq with q < d. Non-parametric dimensionality reduc-
tion methods compute a set of low-dimensional representations X = (x1, . . . , xN )

∈ R
q×N for N high-dimensional observed patterns Y = (y1, . . . , yN ) ∈ R

d×N .
The decision, which information can be lost, and which has to be preserved in

the mapping F depends on the purpose of the DR process and the error function
defined for the employed method. Many DR methods use an implicit definition of
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the optimization problem they solve. However, the problem to learn the functional
model F can be a hard optimization problem, because the latent variables X are
unknown. Learning a reconstruction mapping f : Rq ∗ R

d back from latent to data
space can also be desirable. Some methods learn this mapping automatically. Famous
DR methods for non-linear dimensionality reduction are linear embedding (LLE) [3]
and isometric mapping (ISOMAP) [4].

The framework for unsupervised regression has been introduced by Meinicke [5].
It is based on optimizing latent variables to reconstruct high-dimensional data.
Unsupervised regression has first been applied to kernel density regression [6] and
later to Gaussian processes [7] and neural networks [8]. Recently, we fitted nearest
neighbor regression to the unsupervised regression framework [9], and introduced
extensions w.r.t. robust loss functions [9]. Unsupervised nearest neighbors (UNN) is
a fast approach that allows to iteratively construct low-dimensional embeddings in
O(N 2), and has been introduced for latent sorting [9]. The approach we introduce
in this work extends UNN with a PSO-like mechanism to handle arbitrary latent
dimensionalities, i.e., 1 ≤ q < d. An introduction to UNN will be given in Sect. 8.3.

In nature, systems can be observed, in which comparatively simple units orga-
nize in groups. This form of collective and coordinated organization is known as
swarm intelligence. The disadvantage of simple behaviors is compensated by their
large number and massive parallelism. Swarms consist of a large number of sim-
ple entities that cooperate to act goal-oriented. Natural and artificial system have
shown to implement successful solution strategies. To the best of our knowledge,
no swarm-based methods have yet been proposed for embedding of patterns in low-
dimensional latent spaces. But related work in other fields of unsupervised learning
with swarm methods has been published, e.g., methods for PSO and ant colony
optimization-based clustering. Kao and Cheng [10] have introduced an ACO algo-
rithm for clustering that employs pheromones and distances between elements as
heuristic clustering information. The combination of population-based search and
stochastic elements allows to overcome local optima, and find optimal clustering
results. Further methods for swarm-based clustering can be found in the book by
Abraham et al. [11]. O’Neill and Brabazon [12] have introduced a hybrid approach
of PSO, and self-organizing maps (SOMs) by Kohonen [13] that control the weights
of a SOM employing a PSO-similar update rule. Also ant colony optimization has
been employed to improve the topographic SOM mapping [14].

8.3 Iterative Particle Swarm Embeddings

PSEA combine K-nearest neighbor regression with the concept of unsupervised
regression. The problem is to predict labels y ∈ R

d to given patterns x ∈ R
q

based on sets of N pattern-label examples (x1, y1), . . . , (xN , yN ). The goal is to
learn a functional model f : Rq ∗ R

d known as regression function. We assume
that a data set consisting of observed pairs (xi , yi ) ∈ X × Y is given. For a novel
pattern x′, KNN regression computes the mean of the function values of its K-nearest
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patterns, see Eq. 4.7. The idea of KNN is based on the assumption of locality in
data space: In local neighborhoods of x patterns are expected to have similar label
information f(x) like observed patterns y. Consequently, for an unknown x′ the
label must be similar to the labels of the closest patterns, which is modeled by
the average of the output value of the K nearest samples. KNN has been proven
well in various applications, e.g., in the detection of quasars based on spectroscopic
data [15]. We define the output of function fK N N given the pattern matrix X as a
matrix fK N N (X) = [fK N N (x1), . . . , fK N N (xN )], collecting all KNN mappings from
patterns in X to R

d .
The concept of unsupervised regression [5] is based on mapping from latent space

to data space. The latent variables are the free parameters that have to be optimized to
reconstruct the observed patterns in data space. Hence, the objective is to minimize
the data space reconstruction error (DSRE):

minimize E(X) = 1

N
∇Y − fK N N (X)∇2

F , (8.1)

with Frobenius norm ∇·∇2
F . We define e(x, y, X) as the contribution of latent position

x′ to the DSRE
e(x, y, X) = ∇y − fK N N (x′)∇2. (8.2)

The question comes up how to optimally place the latent positions. Figure 8.1a illus-
trates the unsupervised regression variant we proposed for sorting high-dimensional
data [9]. It shows the N̂ + 1 possible embeddings of a data sample into an existing
order of points in latent space (yellow/bright circles). The position of element x3
results in a lower DSRE with K = 2 than the position of x5, as the mean of the two
nearest neighbors of x3 is closer to y than the mean of the two nearest neighbors of x5.
Figure 8.1b shows an example of a UNN embedding of the 3D-S (upper part shows
colorization of the unsorted S, lower part after UNN embedding), similar colors
correspond to neighbored positions in latent space, i.e., a meaningful neighborhood
preserving embedding has been computed. In the following, we extend the approach
to arbitrary latent dimensionalities, in which the latent variables can be placed in
latent space without geometric constraints.

There are two reasons to employ a direct search method to solve the UNN
optimization problem. First, the problem is highly multimodal, second, E(X) is
not steady, and not differentiable due to the employment of KNN. To illustrate the
search for optimal latent positions, we visualize the DSRE space in Fig. 8.2. It shows
the DSRE w.r.t. the first pattern y1 for two neighborhood sizes, i.e., K = 5 (left), and
K = 30 (right) after a run of UNN with N = 300. Bright areas represent parts of
latent space with low errors, while dark colors represent a large DSRE. The compar-
ison of both figures shows that in case of increasing neighborhood sizes the problem
has larger, but less areas with similar fitness. The number of local optima decreases,
and the optimization problem becomes easier. In the experimental section we will
observe that the variance of the outcome of multiple experiments is smaller for large
neighborhood sizes.

http://dx.doi.org/10.1007/978-3-319-03422-5_4
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Fig. 8.1 Left Illustration of UNN embedding of a low-dimensional point to a fixed latent space
topology testing all N̂ + 1 positions. Right Example of UNN result of a 3D-S before (upper right)
and after embedding (lower right) with UNN and K = 10 [9]

(a) DSRE space, K = 5 (b) DSRE space, K = 30

Fig. 8.2 Visualization of DSRE space e(·, y1, X) w.r.t. the first pattern y1 for K = 5, and K = 30
after a run of UNN with N = 300 embedded patterns. a DSRE space, K = 5. b DSRE space,
K = 30

The PSEA optimization approach is based on the following two ideas:

1. Iteratively construct a solution (an embedding X) to cope with the large number
of free parameters, and

2. perform PSO-like black box search steps in each iteration to embed the latent
point at an optimal position.
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As the problem to minimize E(X) scales linearly with the number of patterns N ,
which may be a very large number in practice, the iterative solution construction is
the key concept for efficiently learning the manifold. The approach is described in
the following (cf. Algorithm 1).

Algorithm 1 Particle Swarm Embedding Algorithm
1: input: Y, K , κ

2: repeat
3: choose y ∈ Y
4: look for closest pattern y⊂ with latent position x⊂
5: for i = 1 to κ do
6: update velocity (cf. Eq. 8.4)
7: update latent position (cf. Eq. 8.3)
8: evaluate E(X) or e(x′, y, X)

9: update best position x̃
10: end for
11: embed x̃
12: Y = Y\y
13: until Y = √

In each step the pattern that has to be embedded is randomly chosen y ∈ Y. In
the particle swarm step we seek for the optimal position, where the particle x should
be embedded. For this reason, a loop of PSO-like steps is repeated for κ iterations:

x′ = x + v′ (8.3)

with velocity
v′ = v + c1r1(x̃ − x) + c2r2(x⊂ − x) (8.4)

Here, x̃ is the best position w.r.t. the DSRE the latent particle has found so far, and
x⊂ is the latent position of the embedded pattern y⊂ ∈ Ŷ that is closest to the pattern
y that we want to embed:

x⊂ = arg min
i=1,...,|Ŷ|

∇y − yi∇2, (8.5)

with the Euclidean distance ∇ · ∇2. The parameters c1, c2 ∈ [0, 1] are constants that
define the orientation to the best latent particle, and the closest already embedded
one. Variables r1, r2 ∈ [0, 1] are uniform random values. Figure 8.3 illustrates the
particle swarm embedding step. The new candidate latent point x′ is generated with
velocity v′, and the two scaled vectors.

In the following, we analyze the PSEA variant that takes into account the recon-
struction error e(·, y, X) (cf. Eq. 8.2) of the pattern y that has to be embedded. A
greedy, but slower variant of PSEA is possible that employs the overall DSRE (cf.
Eq. 8.1) for each latent position.
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Fig. 8.3 Illustration of PSEA:
The new candidate latent point
x′ is generated with velocity
v′, and the two scaled vectors
x̃ − x and x⊂ − x
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8.4 Experimental Analysis

We analyze the results of the novel PSEA experimentally. To evaluate the quality of
the embeddings we employ the DSRE and a co-ranking matrix measure introduced
by Lee and Verleysen [16]. It is based on the comparison of ranks (sorting w.r.t.
distances from patterns) in data space and latent space. It defines a co-ranking matrix
Q that explicitly states the deviations of ranks in data and latent space, c.f. [16] for a
definition of Q. In this matrix rank errors correspond to off-diagonal entries. A point
y j with lower rank w.r.t. a point yi in latent space is called intrusion, a higher rank is
called extrusion. From the co-ranking matrix the following quality measure can be
derived that counts the number of proper ranks within a neighborhood of size K :

EN X (K ) = 1

K N

K∑
k=1

K∑
l=1

qkl (8.6)

This term restricts the measure to neighborhoods of size K . High values for EN X

show that the high-dimensional neighborhood relations are preserved in latent space,
a perfect embedding achieves a value of one.

First, we analyze the influence of neighborhood size K on the results of PSEA,
LLE and ISOMAP on two test data sets, i.e., Digits and Boston. For the PSEA, we
choose the following settings. The particle swarm embedding process runs κ = 50
iterations. The initial velocity is randomly generated with a Gaussian distribution
v0 = N (0, 1), the initial position starts from the latent position of the closest
embedded point x0 = x̃. The constants are both set to c1 = c2 = 0.5. Table 8.1 shows
the experimental results w.r.t. the DSRE and EN X for the settings K = 5, 10, 15,
and 30. Each PSEA experiment has been repeated 25 times. The best results, i.e.,
low DSRE and high EN X are shown in bold, the second best are shown in italic
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Table 8.1 Comparison of DSRE and EN X with PSEA (mean values of 25 runs with standard
deviation), LLE, and ISOMAP on the two test data sets Digits and Boston

PSEA LLE ISOMAP
K DSRE EN X DSRE EN X DSRE EN X

Digits
5 15.87±0.23 0.47±0.01 24.17 0.25 16.67 0.41
10 18.77± 0.29 0.42±0.01 19.29 0.41 18.96 0.42
15 20.89±0.64 0.40±0.01 19.98 0.44 19.52 0.47
30 24.17 ±0.48 0.39 ±0.01 25.511 0.34 21.97 0.51
Boston
5 29.81±1.86 0.45±0.01 45.29 0.30 34.06 0.42
10 37.35±6.40 0.43±0.03 62.81 0.29 81.57 0.35
15 53.59 ±2.94 0.40 ±0.03 69.35 0.20 44.24 0.43
30 53.03±3.23 041±0.04 33.32 0.55 27.69 0.66

numbers. The results show that a low DSRE correlates with a high EN X . The DSRE
is increasing with the neighborhood size. PSEA achieves the best results of all meth-
ods in case of small neighborhood sizes K = 5, and K = 10 on both data sets. In
case of larger neighborhoods, ISOMAP shows better results, but PSEA still computes
competitive embeddings, and achieves the second best results in half of the cases.
LLE and ISOMAP win in performance for larger neighborhoods. The results of LLE
are worse than the results of PSEA in three of the four cases, in particular EN X tends
to be much worse. Surprising is the bad result of ISOMAP on the Boston data set for
K = 10.

In Fig. 8.4, we compare the PSEA results of embedding N = 500 patterns of
the Digits data set employing varying settings for neighborhood size K and invested
numbers of iterations κ . The figures show that for a small neighborhood size of K = 1
the embedding are worse that for the larger setting K = 30. Also if more search is
invested, i.e., κ = 100 iterations instead of κ = 20, the quality of the embeddings
cannot be improved significantly. For the larger neighborhood size K = 30, the
lower two figures show that reasonable embeddings have been computed. More
search invested (κ = 100) even slightly deteriorates the embedding with outliers.
This is probably due to the effect that too greedy embeddings in each step can produce
locally optimal outliers that deteriorate the overall scaling.

8.5 Conclusions

In unsupervised regression, the optimization problem of placing latent variables
scales with the number of patterns and becomes impractical for large data sets. In
this chapter, we have introduced a novel optimization approach that is based on the
hybridization of iteratively constructing a solution and PSO-like optimization in each
iteration. The proposed method belongs to the first particle swarm approach that
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(a)  PSEA, K = 1,    = 20κ

(c)  PSEA, K = 10,    = 20κ (d)  PSEA, K = 10,    = 100κ

(b)  PSEA, K = 1,    = 100κ

Fig. 8.4 Comparison of embeddings of 500 patterns, and 6 classes of the Digits data set. PSEA
results for a K = 1, κ = 20, and b K = 1, κ = 100. c K = 30, κ = 20, and d
K = 1, κ = 100

allows learning of low-dimensional embeddings from high-dimensional patterns.
The results are competitive to embeddings of established methods like LLE and
ISOMAP. The experiments have shown that the PSEA embedding fulfills conditions
like neighborhood preservation and low DSRE. As extension of the PSEA approach, it
is reasonable to parallelize the embedding process and thus allow to learn embeddings
of large data sets. Another prospective research direction is to employ further DR
criteria for the fitness evaluation of the optimization process like kernel density
regression criteria.
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Appendix A
Test Problems

This work makes use of experimental test problems to evaluate the introduced
approaches. Here, we give a survey of the used test suites that range from opti-
mization problems to machine learning test data sets.

A.1 Optimization

The optimization problems introduced in the following are used for the experimental
analysis of the evolution strategies and the Powell ES. The experimental analysis
concentrates on typical test problems known in literature on optimization.

OneMax

Maximize

OneMax(x) =
N∑

i=1

xi with x ∈ {0, 1}N . (A.1)

The optimal solution is x = (1, . . . , 1)T .

Sphere Model

Minimize

fSp(x) =
N∑

i=1

x2
i with x ∈ R

N , (A.2)

in matrix form
fSp(x) = xT x (A.3)

with properties:
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Fig. A.1 Left plot of the unimodal Sphere function. Right plot of the multimodal Doublesum
function

• unimodal, separable,
• scalable,
• minimum x∗ = (0, . . . , 0)T with f (x∗) = 0.

Doublesum

Minimize

fDou(x) =
N∑

i=1

⎛

⎝
i∑

j=1

(x j )

⎞

⎠
2

with x ∈ R
N (A.4)

with properties

• unimodal, non-separable,
• scalable,
• minimum x∗ = (0, . . . , 0)T with f (x∗) = 0 (Fig. A.1).

Rosenbrock

Minimize

fRos(x) =
N−1∑

i=1

(
100(x2

i − xi+1)
2 + (xi − 1)2

)
with x ∈ R

N (A.5)

with properties:

• multimodal for N > 4,
• non-separable, scalable,
• very narrow valley from local optimum to global optimum,
• minimum x∗ = (1, . . . , 1)T with f (x∗) = 0. For higher dimensions, the function

has a local optimum at x = (−1, . . . , 1)T .
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Fig. A.2 Left plot of the Rastrigin function. Right plot of the multimodal Griewank function

Rastrigin

Minimize

fRas(x) =
N∑

i=1

(
x2

i − 10 cos(2πxi ) + 10
)

with x ∈ R
N (A.6)

with properties

• multimodal, separable,
• large number of local optima,
• scalable,
• solution space x ∈ [−5, 5]N ,
• minimum x∗ = (0, . . . , 0)T with f (x∗) = 0.

Griewank

Minimize

fGri(x) =
N∑

i=1

x2
i

4,000
−

N∏

i=1

cos

(
xi√

i

)
+ 1 with x ∈ R

N (A.7)

with properties

• multimodal, non-separable,
• scalable,
• minimum x∗ = (0, . . . , 0)T with f (x∗) = 0 (Fig. A.2).
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Kursawe

Minimize

fKur(x) =
N∑

i=1

(
|xi |0.8 + 5 · sin(xi )

3 + 3.5828
)

(A.8)

with properties

• highly multimodal

TR-Tangent Problem

Minimize

fTR(x) =
N∑

i=1

x2
i (N-dim. Sphere model) (A.9)

constraints

g(x) =
N∑

i=1

xi − t > 0, t ∈ R (tangent) (A.10)

• for N = k and t = k,
• minimum x∗ = (1, . . . , 1)T with f (x∗) = k.

Problem f 2.40

Problem f2.40 minimizes f2.40(x) = −
5∑

i=1
xi subject to the following six constraints

gk(x) =
⎧
⎨

⎩

xk ≥ 0, for k = 1, . . . , 5

−
5∑

i=1
(9 + i)xi + 50,000 ≥ 0, for k = 6.

(A.11)

minimum x∗ = (5,000, 0, 0, 0, 0)T with f (x∗) = −5,000.

Problem ZDT1

Problem ZDT1 minimizes the two objective functions f1(x) and f2(x) with

f1(x) = x1, (A.12)

and
f2(x, z) = g(z)h( f1(x), g(z)), (A.13)

with
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g(z) = 1 +
N∑

i=1

zi/N , (A.14)

and
h( f1(x), g(z)) = 1 − √

f1(x)/g(z) (A.15)

Problem ZDT2

Problem ZDT2 is like ZDT1, except

h( f1(x), g(z)) = 1 − ( f1(x)/g(z))2 (A.16)

Problem ZDT6

Problem ZDT6 is a bi-objective problem with

f1(x) = 1 − e−4x1 sin6(6πx1) (A.17)

with

g(z) = 1 + 9

(
N∑

i=1

zi/N

)0.25

, (A.18)

h( f1(x), g(z)) = 1 − ( f1(x)/g(z))2 (A.19)

and
f2(x, z) = g(z)h( f1(x), g(z)) (A.20)

For the definition of problems ZDT3 and ZDT4, we refer to Coello et al. [1].

A.2 Machine Learning Problems

Boston

The Boston housing data set stems from 506 census tracts of Boston in 1970. It
consists of N = 506 patterns with d = 13 features (positive real values), e.g.,
proportion of owner-occupied units built prior to 1940 and weighted distances to
five Boston employment centers. The original data has been published by Harrison and
Rubinfeld [2]. The data set was taken from the StatLib library, which is maintained
at Carnegie Mellon University.
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Fig. A.3 Visualization of a
collection of images from the
Digits data set

Digits

The Digits data set [3] comprises handwritten digits and is often employed as
reference problem related to the recognition of handwritten characters and digits.
Figure A.3 shows a collection of images from the Digits data set.
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