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Chapter 8 
ReaderBench (2) – Individual Assessment 
through Reading Strategies and Textual 
Complexity  
ReaderBenc h (2) – Individual Assessment through Reading Strategies 

As an overview, in terms of individual learning, ReaderBench encompasses the 
functionalities of both CohMetrix (McNamara et al. 2010) (see 2.2.2 Textual 
Complexity Computational Approaches) and iStart (McNamara et al. 2007a; 
Graesser et al. 2005) (see 2.3 Reading Strategies), as it provides teachers and 
learners information on their reading/writing activities: initial textual complexity 
assessment, assignment of texts to learners, capture of metacognitions reflected in 
one’s textual verbalizations, and reading strategies assessment (a detailed 
comparison is presented at the end of this chapter). Moreover, ReaderBench 
encompasses textual complexity measures similar to Dmesure (François and 
Miltsakaki 2012; François 2012), but with emphasis on more in-depth, semantic 
factors. The main differentiators between ReaderBench and the previous systems 
consist of the following (see 8.3 Comparison of ReaderBench to iSTART, Dmesure 
and Coh-Metrix for more details):  

 Emphasis on comprehension extracted from the automatic analysis of 
metacognitions (Dascalu et al. 2013a), based on two preliminary studies 
(Oprescu et al. in press; Dessus et al. 2012). 

 A different educational purpose, as ReaderBench validation was 
performed on primary school pupils, whereas iStart mainly targets high 
school and university students (Nardy et al. in press). 

 Different factors, measurements and the use of SVMs (Cortes and Vapnik 
1995; François and Miltsakaki 2012) for increasing the validity of textual 
complexity assessment (Dascalu et al. 2012). 

8.1   Identification of Reading Strategies  

The use of reading strategies is widely recognized as a crucial determinant of 
reading comprehension (see 2.3 Reading Strategies). Second degree and high 
school pupils who are good comprehenders are mostly strategic readers (Graesser 
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2007). These strategies can be elicited through self-explanations (Chi et al. 1994) 
and have been categorized by McNamara (2004) as follows: comprehension 
monitoring, paraphrasing, elaboration, prediction, and bridging. One important skill 
that these strategies exploit is to be able to establish semantic and causal 
relationships between the read sentences (Wolfe et al. 2005).  

Based on these findings, McNamara et al. (2007a) developed iSTART, a 
cognitive tutor that automatically categorizes self-explanations, partly using Latent 
Semantic Analysis (Landauer and Dumais 1997). Any thorough analysis of 
self-explanations reports it is a very demanding and subjectivity-oriented activity, 
and the use of systems like iSTART to detect pupils’ reading strategies is more than 
challenging. Since a cognitive tutor guides the reader through predefined steps 
alternating between reading and verbalizations, a similar computer-based 
scenarization is made possible through the wide range of reading strategies and the 
feedback possibilities (Vitale and Romance 2007). Nevertheless, as our focus was 
to automatically assess verbalizations and to identify reading strategies, multiple 
alternatives were explored: two initial studies addressed in extent the identification 
of paraphrases (Dessus et al. 2012; Oprescu et al. in press), while an integrated view 
targeting the automatic identification of all proposed reading strategies (both 
low-level – causality, control, paraphrasing – and high-level, cognitive strategies – 
knowledge inference and bridging) was first introduced in ReaderBench (Dascalu et 
al. 2013a).  

The data gathering and evaluation method applied a priori was the same for all 
experiments, but the corpus of evaluated verbalizations consisted of different 
sub-sets of the entire collection. In the end, during the ANR DEVCOMP project, 84 
pupils from 3

rd 

to 5
th 

grades, from the same school and from a middle socio-economic 
background participated in our experiments. The pupils read a narrative text 
consisting of 453 words, the story “Matilda” by Dahl (2007), and explained what 
they understood up to that point at 6 predefined breakpoints (see Appendix D – 
Input Examples, Sample Document – Matilda by for complete text). The text was 
chosen to be within the reading level of participants, so that differences in 
verbalizations would indicate differences in reading strategies instead of 
comprehension difficulties. In order to perform a fine-grained analysis, the initial 
text was split in 45 segments (of about 1 sentence each). A causal analysis was 
performed so that both local (when the causal antecedent is close to the reference 
sentence) and distal antecedents (when the causal antecedent is somewhat farther, 
out of the reader’s working memory) of sentences were determined in accordance to 
Millis et al. (2006). Finally, a propositional analysis of the text was proposed that 
allowed us to extract macro-propositions and to support the coding of what was 
remembered by the participants.  

Participants individually read the text out loud and stopped at predetermined 
breaks to self-explain the text segment just read, the whole activity being recorded. 
The task was explained to pupils as follows: “During your reading you will stop at 
each icon to tell out loud what you have understood, just at this time”. Their 
verbalizations were then transcribed and each self-explanation was semantically 
compared using different natural language processing techniques. Pupils’ 
verbalizations were analyzed proposition by proposition and were categorized by 
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experts according to a coding scheme adapted from McNamara (2004). 
Disagreements between experts in terms of identified reading strategies were 
discussed and resolved by consensus (Nardy et al. in press). As technical 
specificity, the first two studies were conducted using LSA vector spaces trained on 
the “TextEnfants” corpus (Denhière et al. 2007) (approx. 4.2 M words) with no 
specific NLP or Information Retrieval optimizations (only stop words elimination), 
while ReaderBench also integrated “Le Monde” corpus (French newspaper, approx. 
24 M words) with all optimizations mentioned in 7.2 Cohesion-based Discourse 
Analysis.  

8.1.1   The Initial Study of Analyzing Paraphrases  

The first study (Dessus et al. 2012) focused on how two main kinds of sentences are 
paraphrased: focal (the latest sentence before a verbalization) and causal sentences 
(identified by a hand-made causal analysis of the text), because it was worth 
distinguishing the mere paraphrase of the latest read sentence and more elaborated 
paraphrases, involving a deeper comprehension of the read text. For this 
experiment, we used a subset of the aforementioned participants sample, consisting 
of 22 third and 22 fifth grade pupils. Moreover, this study does not involve 
ReaderBench, but it provided a strong experimental base in terms of analyzing 
paraphrases.  

Our research questions were: 1/ to compare human expert categorization of 
paraphrases to the semantic similarity between text sentences and self-explanations, 
obtained by means of LSA; 2/ to highlight an expected “recency effect”, stating that 
the information children self-explain most often pertains to very close sentences to 
the verbalization break; 3/ to investigate the way pupils account for causal relations 
(either local or distal) in retelling causally related text sentences.  

Firstly, we computed accuracy measures in order to compare human vs. LSA 
values of sentence relatedness and to check the validity of the computer-based 
measures. Pearson correlations between the number of paraphrases per 
verbalization (Vn) detected by the two raters and LSA similarities between each 
verbalization and the previous sentences were as follows: V1: r = .48; V2: r = .58; 
V3: r = .74; V4: r = .29; V5: r = .57; V6: r = .61, which shows that human judgments 
of paraphrases expressed by children on each paragraph are moderately to strongly 
related to LSA measures of similarities.  

Secondly, we investigated the extent to which each self-explanation was related 
to the last read sentence (focal) (see Figure 41). We observed that the recency effect 
varies across verbalization plots, indicating that this effect is dependent of the 
content conveyed by the last sentences. Moreover, the focal sentence, in general, 
does not have a higher similarity with the related verbalization than the average of 
other previous sentences, except for V4: t(43) = 7.5, p < .0005. Two-way ANOVAs 
showed a significant difference between grades for V6, F(1, 42) = 7.01; p < .05 and 
a tendency for V2, F(1, 42) = 3.22, p < .09. Although grade 3 pupils tended to recall 
the last sentence at these points more frequently, the semantic content of the last 
sentence seems to be the main determinant of focal recall.  
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Fig. 41 Matilda – Mean LSA-based values for similarity of focal sentences by grade 

Thirdly, we initially expected that 1/ the semantic content of local and distal 
sentences, as determined by the causal analysis, is more often verbalized than the 
rest of the previous text and the focal sentence and 2/ the local-centered causal 
sentences are better recalled than the distal-centered ones (see Figure 42). Results 
first showed that local and distal causal sentences are, in all cases but two (local vs. 
V1 and V5), significantly more verbalized than the rest of the text. Moreover, the 
content of local causal sentences was significantly better recalled than focal 
sentences in V1 and V3 (resp. t(43) = 3.11, p < .005; t(43) = 9.45, p < .0005). 
Unexpectedly, the content of distal causal sentences was better recalled than local 
causal sentences for V1: t(43)=6.09, p < .0005; V2: t(43)=8.49, p < .0005. Two-way 
 

 

Fig. 42 Matilda – Mean LSA-based values for similarity of causal sentences, by grade. 
Lines: local causality; bars: distal causality 
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ANOVAs showed significant differences between grades for V1 (distal), F(1, 42) = 
4.43, p < .05; and a tendency for V6 (distal), F(1, 42) = 3.90, p < .06 and for V3 

(local), F(1, 42) = 2.91; p < .1. Overall, participants’ strategies focused on causality, 
rather than recency. 

In conclusion, the initial study presented a first attempt to set up the foundations 
of a cognitive reading tutor aiming at analyzing pupils’ verbalizations to get some 
traces of their strategies. The results showed that LSA-based analyses of 
verbalizations correlate moderately to high with those of human experts and 
therefore founding our analysis on LSA derived metrics is meaningful. 
Additionally, and as also shown by Trabasso and van den Broek (1985), 
participants tended to recall sentences they read according to causality-driven, 
rather than recency-driven strategies, which reveal to some extent their 
comprehension strategies. Eventually, there was also a grade effect on the way 
distal and local causal sentences are recalled that required further investigations.  

8.1.2   The Second Study of Analyzing Paraphrases  

The second study (Oprescu et al. in press; Oprescu et al. 2012) focused on 
evaluating paraphrases by enforcing different natural processing techniques and by 
comparing two heuristics – word-based and LSA similarity – in order to establish 
further research paths. For implementing the word-based heuristic, Tree Tagger 
(Schmidt 1994, 1995) and WOLF (Sagot 2008; Sagot and Darja 2008) are used for 
creating lists of relevant words, classified by corresponding part of speech, for each 
paragraph and verbalization. Then the fraction between the words in the paragraph 
and the words in the verbalization is computed for each category by considering 
also synonymy relations from WOLF. Four fractions are obtained and a weighted 
average of the four is returned as an overall rating (see Equation 27).  

=   
                        (27) 

where 
! 
is the rating returned by the function, !, !, !" and !" are the number 

of nouns, verbs, adjectives and respectively adverbs in the verbalization that can be 
found in the list of relevant nouns of the paragraphs, !, !, !" and !" are the 
length of these lists and, and !, !, !" and !" are their weights in the 
average. All these predefined weights were determined experimentally, after 
running multiple iterations with incremental values.  

The LSA similarity heuristic compares each sentence of the paragraph to the 
entire verbalization and a weighted average of the values is computed, ignoring the 
two smallest values due to the fact that each verbalization usually contains one or 
more control phrases that are irrelevant to the comparison and may alter the results 
(e.g., “j’ai compris que”, “je me rappelle que”). The weight of an utterance is equal 
to the number of words it contains. The whole paragraph is also compared to the 
verbalization, as we know that the meaning of the paragraph as a whole can be 
slightly different from the meaning of each sentence individually. In this manner we 
cover both cases when a verbalization focuses on the whole paragraph or only on 
some sentences within.  
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At this point we had introduced two metrics, both indicating the degree of 
resemblance of two paragraphs, but we had to decide whether the results of these 
two metrics are coherent or not, so we tried to evaluate the correspondence between 
the two metrics (see Figure 43). Based on these observations, we decided that the 
best way to combine these two metrics was to multiply them. The combined metrics 
is also represented in the same chart.  
 

 
Fig. 43 Comparison between the LSA similarity and word-based heuristics 

The Pearson correlation between our metrics was rather low (r = .34) since they 
addressed paraphrasing at lexical and semantic levels, but, as expected, the 
correlations of each individual heuristic and the aggregated function are much 
higher (rLSA = .88, rword-based = .68); in the end, the LSA metric had a bigger influence 
on the final similarity score. By observing these results, we decided to establish a 
threshold for paraphrases around 0.07, determined experimentally. This value 
allowed us to identify 19 out of the 27 paraphrases identified by human evaluators, 
which means that we were able to correctly identify 70% of the paraphrases.  

Additionally, as a preliminary step to identifying other types of verbalizations, 
we compared the values of the current paragraph with the previous and the future 
ones in order to determine the similarity between verbalizations of the same type. 
As a particularity of this analysis, all initial paragraphs in-between two adjacent 
verbalizations were merged into a single block of text for better grasping the extent 
to which different significant text fragments were recalled.  

Figure 44 shows the values returned by the word-based metrics for ten 
paraphrases, which represent about one third of the total number of paraphrases of 
our test corpus, when compared to the previous, the current and the next segment of 
text that consists of a merge of all paragraphs in-between two adjacent 
self-explanations. It is obvious that there is higher resemblance between the current 
textual segment and the verbalization (so the one just in front of the metacognition 
break, recalled by the pupil), while the similarity between the verbalization and 
other surrounding textual segments is close to zero. There are some exceptions, 
mainly highlighting different types of verbalizations, but no straightforward 
conclusion could be drawn and further experiments needed to be conducted.  
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Fig. 44 Comparison of verbalizations containing paraphrases, using the word-based 
heuristic 

Figure 45 depicts a similar analysis using the LSA similarity function. We notice 
that the graphic has the same characteristics as Figure 44, a similar coefficient of 
variation (cv = 0.7), but follows more strictly the pattern of positive slope followed 
by a negative one, which led us to conclude that the LSA method is more accurate 
than word-based heuristic, although the average similarity values were quite low. 
Therefore, in this second study we used LSA and a word-based heuristic to compare 
the verbalizations with nearby paragraphs and this approach provided encouraging 
results, as we were able to identify paraphrases with good precision. As 
conclusions, we decided to focus on extracting reading strategies only by 
comparing the verbalizations to the previous blocks of texts, in-between the 
previous and the current verbalization. Moreover, the combination of semantic 
distances from ontologies and LSA seemed a good practice that lead to the 
aggregated cohesion function integrated in ReaderBench.  

 

 

Fig. 45 Comparison of verbalizations containing paraphrases, using the LSA-based 
heuristic 

 



168 8   ReaderBench (2) – Individual Assessment through Reading Strategies 

 

8.1.3   Reading Strategies Identification Heuristics  

Starting from the two previous studies and the five types of reading strategies used 
by McNamara et al. (2007b), our aim was to integrate within ReaderBench 
automatic extraction methods designed to support tutors at identifying various 
strategies and to best fit the aligned annotation categories. The automatically 
identified strategies within ReaderBench comprise monitoring, causality, bridging, 
paraphrase and elaboration due to 2 observed differences: 1/ very few predictions 
were used, perhaps due to the age of the pupils, compared to McNamara’s subjects; 
2/ there is a distinction in ReaderBench between causal inferences and bridging, 
although a causal inference can be considered a kind of bridging, as well as a 
reference resolution, due to their different computational complexities. Moreover, 
our objective was to define a fine-grained analysis in which different valences 
generated by both the identification heuristics and the hand coding rules were taken 
into consideration when defining the strategies taxonomy. In addition, we have 
tested various methods of identifying reading strategies and we will focus solely on 
presenting the alternatives that provided in the end the best overall human-machine 
correlations.  

In ascending order of complexity, the simplest strategies to identify are causality 
(e.g., “parce que”, “pour”, “donc”, “alors”, “à cause de”, “puisque”) and control 
(e.g., “je me souviens”, “je crois”, “j’ ai rien compris”, “ils racontent”) for which 
cue phrases have been used. Additionally, as causality assumes text-based 
inferences, all occurrences of keywords at the beginning of a verbalization have 
been discarded, as such a word occurrence can be considered a speech initiating 
event (e.g., “Donc”), rather than creating an inferential link. Afterwards, 
paraphrases, that in the manual annotation were considered repetitions of the same 
semantic propositions by human raters, were automatically identified through 
lexical similarities. More specifically, words from the verbalization were 
considered paraphrases if they had identical lemmas or were synonyms (extracted 
from the lexicalized ontologies – WordNet/WOLF) with words from the initial text. 
In addition, we experimented identifying paraphrases as the overlap between 
segments of the dependency graph (combined with synonymy relations between 
homologous elements), but this was inappropriate for French as there is no support 
within the Stanford Log-linear Part-Of-Speech Tagger (Toutanova et al. 2003).  

In the end, the strategies most difficult to identify are knowledge inference and 
bridging, for which semantic similarities have to be computed. An inferred concept 
is a non-paraphrased word for which the following three semantic distances were 
computed: the distance from word w1 from the verbalization to the closest word w2 

from the initial text (expressed in terms of semantic distances in ontologies, LSA 
and LDA) and the distances from both w1 and w2 to the textual fragments in-between 
consecutive self-explanations. The latter distances had to be taken into 
consideration for better weighting the importance of each concept, with respect to 
the whole text. In the end, for classifying a word as inferred or not, a weighted sum 
of the previous three distances is computed and compared to a minimum imposed 
threshold which was experimentally set at 0.4 for maximizing the precision of the 
knowledge inference mechanism on the used sample of verbalizations.  
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As bridging consists of creating connections between different textual segments 
from the initial text, cohesion was measured between the verbalization and each 
sentence from the referenced reading material. If more than 2 similarity measures 
were above the mean value and exceeded a minimum threshold experimentally set 
at 0.3, bridging was estimated as the number of links between contiguous zones of 
cohesive sentences. Compared to the knowledge inference threshold, the value had 
to be lowered, as a verbalization had to be linked to multiple sentences, not 
necessarily cohesive one with another, in order to be considered bridging. 
Moreover, the consideration of contiguous zones was an adaptation with regards to 
the manual annotation that considered two or more adjacent sentences, each 
cohesive with the verbalization, members of a single bridged entity.  

We ran an experiment with pupils aged from 9 to 11 who had to read aloud a 450 
word-long story, Matilda by Dahl (2007), and to stop in-between at six predefined 
markers and explain what they understood up to that moment. Their explanations 
were first recorded and transcribed, then annotated by two human experts (PhD in 
linguistics and in psychology), and categorized according to scoring scheme. 
Disagreements were solved by discussion after evaluating each self-explanation 
individually. In addition, automatic cleaning had to be performed in order to 
process the phonetic-like transcribed verbalizations.  

 

Fig. 46 ReaderBench (2) Visualization of automatically identified reading strategies.The 
grey sections represent the pupil’s self-explanations, whereas the white blocks represent 
paragraphsfrom “Matilda” by Dahl (2007). Causality, control and inferred concepts (that 
through their definition are not present within the original text) are highlighted only in the 
verbalization, whereas paraphrasesare coded in both the self-explanation and the initial text 
for a clear traceability of lexical proximity oridentity. Bridging, if present, is highlighted only 
in the original text for pinpointing out the textualfragments linked together through cohesion 
in the pupil’s meta-cognition. 
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Verbalizations from 12 pupils were transcribed and manually assessed as a 
preliminary validation. The results for the 72 verbalization extracts in terms of 
precision, recall and F1score are as follows: causality (P = .57, R = .98, F = .72), 
control (P = 1, R = .71, F = .83), paraphrase (P = .79, R = .92, F = .85), inferred 
knowledge (P = .34, R = .43, F = .38) and bridging (P = .45, R = .58, F = .5) 
(Dascalu et al. in press). As expected, paraphrases, control and causality 
occurrences were much easier to identify than information coming from pupils’ 
experience (Graesser et al. 1994).  

Figure 46 depicts the cohesion measures with previous paragraphs from the story 
in the last column and the identified reading strategies for each verbalization 
marked in the grey areas, coded as follows: control, causality, paraphrasing [index 
referred word from the initial text], inferred concept [*] and bridging over the 
inter-linked cohesive sentences from the reading material. The initial text of the 
verbalization, including the corresponding manual coding scheme, can be found in 
Appendix D – Input Examples, Sample Verbalization.  

Moreover we have identified multiple particular cases in which both approaches 
(human and automatic) covered a partial truth that in the end is subjective to the 
evaluator. For instance, many causal structures close to each other, but not adjacent, 
were manually coded as one, whereas the system considers each of them separately. 
For example, “fille” (“daughter”) does not appear in the text and is directly linked to 
the main character, therefore marked as an inferred concept by ReaderBench, while 
the evaluator considered it as a synonym. Additionally, when looking at manual 
assessments, discrepancies between evaluators were identified due to different 
understandings and perceptions of pupil’s intentions expressed within their 
metacognitions. Nevertheless, our aim was to support tutors and the results are 
encouraging (correlated also with the previous precision measurements and with the 
fact that a lot of noise existed in the transcriptions), emphasizing the benefits of a 
regularized and deterministic process of identification.  

As extensions, we are envisioning two directions: 1/ generalizing the evaluations 
to the whole corpus of pupils’ metacognitions (84 verbalizations), but this is a 
time-consuming process as manual adjustments need to be made to the transcribed 
verbalizations (e.g., adding punctuation signs in order to facilitate parsing) and 2/ 
building an automatic classification model based on Support Vector Machines 
(Cortes and Vapnik 1995) in order to predict the comprehension level of each 
learner based on his/her reading strategies; post-tests were administered to each 
pupil, comprehension scores were manually determined using these 
tests/questionnaires and our aim is to estimate a comprehension level class using as 
inputs the automatically identified reading strategies.  

8.2   Textual Complexity Analysis Model  

Assessing textual complexity can be considered a difficult task due to different 
reader perceptions primarily caused by prior knowledge and experience, cognitive 
capability, motivation, interests or language familiarity (for non-native speakers) 
(see 2.1.3 Cohesion and Coherence versus Textual Complexity and 2.2 Textual 
Complexity). Nevertheless, from the tutor perspective, the task of identifying 
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accessible materials plays a crucial role in the learning process since inappropriate 
texts, either too simple or too difficult, can cause learners to quickly lose interest.  

In this context, we propose a multi-dimensional analysis of textual complexity, 
covering a multitude of factors integrating classic readability formulas, surface 
metrics derived from automatic essay grading techniques, morphology and syntax 
factors (Dascalu et al. 2012), as well as new dimensions focused on semantics 
(Dascalu et al. 2013a). In the end, subsets of specific factors are aggregated through 
the use of Support Vector Machines (Cortes and Vapnik 1995), which has proven to 
be the most efficient method (François and Miltsakaki 2012; Petersen and 
Ostendorf 2009). In order to provide an overview, the textual complexity 
dimension, with their corresponding performance scores, are presented in Table 27, 
whereas the following subsections describe each dimension with its complexity 
factors.  

8.2.1   Surface Analysis  

Surface analysis addresses lexical and syntactic levels and consists of measures 
computed to determine factors like fluency, complexity, readability taking into 
account lexical and syntactic elements (e.g., words, commas, phrase length, 
periods).  

A   Readability  

Traditional readability formulas (Brown 1998) are simple methods for evaluating a 
text’s reading ease based on simple statistical factors as sentence length or word 
length. Although criticized by discourse analysts (Davison and Kantor 1982) as 
being weak indicators of comprehensibility and for not closely aligning with the 
cognitive processes involved in text comprehension, their simple mechanical 
evaluation makes them appealing for integration in our model. Moreover, by 
considering the fact that reading speed, retention and reading persistence are greatly 
influenced by the complexity of terms and overall reading volume, readability 
formulas can provide a viable approximation of the complexity of a given text, 
considering that prior knowledge, personal skills and traits (e.g., intelligence), 
interest and motivation are at an adequate level or of a similar level for all 
individuals of the target audience. In addition, the domain of texts, itself, must be 
similar because subjectivity increases dramatically when addressing cross-domain 
evaluation of textual complexity.  

Starting from simple lexical indicators, numerous mathematical formulas were 
developed to tackle the issue of readability. The following three measures can be 
considered the most famous:  

 The Flesch Reading Ease Readability Formula (see Equation 28) is one 
of the oldest and most accurate readability formulas, providing a simple 
approach to assess the grade-level of chat participants or the difficulty of 
a reading material; the higher the score, the easier the text is considered in 
terms of reading, not necessarily understanding (Flesch 1948). 
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= 206,835 − (1,015 ∗ ) − (84,6 ∗ )            (28) 
 

Where: RE = Readability Ease; ASL = Average Sentence Length (the number of 
words divided by the number of sentences); ASW = Average number of Syllables 
per Word (he number of syllables divided by the number of words).  

 The Gunning’s Fog Index (or FOG) Readability Formula (see Equation 
29) is based on the opinion of Gunning (1952) that certain documents 
were full of ”fog” and unnecessary complexity; the index estimates the 
number of years of education needed to understand the text while reading 
it for the first time. Although approximating hard words as words with 
more than two syllables can be seen as a drawback, we chose this 
estimation due to its simplicity (Gunning 1952). = ( + ) ∗ 0,4                            (29) 

Where: ASL = Average Sentence Length (the number of words divided by the 
number of sentences); PHW = Percentage of Hard Words (in current 
implementation words with more than 2 syllables and not containing a dash).  
 
 The Flesch Grade Level Readability Formula (see Equation 30) rates 

documents on U.S. grade school level, therefore simplifying the process 
of assigning certain materials to a targeted grade of pupils/students. As 
practical applications, this formula is integrated in Microsoft Word and is 
used as a standard test by the US Government Department of Defense 
(Kincaid et al. 1975). = (0,39 ∗ ) + (11,8 ∗ ) − 15,59             (30) 

Where: FKRA = Flesch-Kincaid Reading Age; ASL = Average Sentence Length 
(the number of words divided by the number of sentences); ASW = Average number 
of Syllable per Word (the number of syllables divided by the number of words).  

B   Trins and Proxes  

Page’s initial study was centered on the idea that computers can be used to 
automatically evaluate and grade student essays using only statistically and easily 
detectable attributes, as effective as human teachers (Page 1966, 1968; Wresch 
1993). In order to perform a statistical analysis, Page correlated two concepts: 
proxes (computer approximations of interest) with human trins (intrinsic variables – 
human measures used for evaluation) for better quantifying an essay’s complexity. 
A correlation of .71 proved that computer programs could predict grades quite 
reliably, similar to the inter-human correlation. Starting for Page’s metrics of 
automatically grading essays and taking into consideration Slotnick’s method 
(Slotnick 1972; Wresch 1993) of grouping proxes based on their intrinsic values, 
the following categories were used within our model for estimating textual 
complexity (see Table 25).  
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Table 25 ReaderBench (2) Surface analysis factors 

 
 

Normalization is inspired from data-mining and information retrieval (Manning 
et al. 2008) and our results improved by applying the logarithmic function on some 
of the previous factors in order to smooth results, while comparing documents of 
different size. All the above proxes determine the average consistency of sentences 
and adequately model their complexity at surface/lexical level.  

C   Entropy  

Entropy, derived from Information Theory (Shannon 1951, 1948), models the text 
in an ergodic manner and provides relevant insight regarding textual complexity at 
character and word level by ensuring diversity among the elements of the analysis 
(see Equation 31). The assumption of induced complexity pursues the following 
hypothesis: a more complex text contains more information and requires more 
memory and more time for the reader to process. Therefore, disorder modeled 
through entropy is reflected in the diversity of characters and of word stems used, 
within our implemented model, as analysis elements. The use of stems instead of 
actual concepts is argued by their better expression of the root form of related 
concepts, more relevant when addressing syntactic diversity.  

                    

(31)

 

8.2.2   Metrics for Word Complexity  

From a different perspective, word complexity was treated as a combination of the 
following factors: syllable count, distance between the inflected form, lemma and 

Quality Proxes 

Fluency Normalized number of commas 

 Normalized number of words 

 Average number of words per sentence 

Diction Average word length 

 Average number of syllables per word 

 Percent of hard words (extracted from FOG 
Formula) 

Structure Normalized number of blocks (paragraphs) 

 Average block (paragraph) size 

 Normalized number of sentences 

 Average sentence length 
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stem, whereas specificity is reflected in inverse document frequency from the 
training corpora, the distance in hypernym tree and the word polysemy count from 
the ontology. As an overview of the entire discourse, all these metrics are computed 
in a simple manner, by summing up the relevant values for all the words within text 
(only dictionary words after the initial NLP pipe processing) and then dividing the 
sum by the total number of words.  

The relevance of using the mean syllable count per word resides in the intuition 
that the number of syllables of a word correlates directly with its difficulty. In 
general, the more syllables a word has, the harder it is to pronounce. When learning 
a language, for instance, speakers tend to use words with fewer syllables that are 
easier to say out loud. As the learner’s proficiency in a language increases, the 
usage of more difficult, multisyllabic words also increases. Anyway, although 
pronunciation is linked to textual complexity, it differs greatly from comprehension 
in the sense that only a shallow analysis cannot be sufficient to grasp text difficulty 
(Benjamin 2012).  

In terms of the mean polysemy count per word, we operate under the assumption 
that the more possible senses a word has, the more difficult it would be to use in a 
text and to correctly identify its sense. Therefore, simpler texts will contain words 
that are less ambiguous, while more complex texts, on the whole, will use more 
words with a higher sense count.  

The distance within the hypernym tree to the ontology root can be seen as a 
measure of word specialization and specificity. In other words, the more elaborated 
the path to the root of the ontology hierarchy, the more specific the text can be 
considered, covering more peculiar terms. The farther a word is from the hypernym 
tree root, the more specialized it is. From a computational perspective, due to 
multiple possible paths and word senses, we determine this distance using a 
backtracking algorithm (Cormen et al. 2009).  

While addressing the differences between the inflected form, the lemma and the 
stem of a word, it becomes clear that a correlation exists between the complexity of 
a word’s derivation and its overall complexity – as multiple prefixes and suffixes 
are juxtaposed, the more complex the word can be considered.  

8.2.3   Morphology and Syntax  

A   Complexity, Accuracy and Fluency  

Complexity, accuracy, and fluency (CAF) measures of texts have been used in 
linguistic development and in second language acquisition (SLA) research (House 
and Kuiken 2009). Complexity captures the characteristic of a learner’s language, 
reflected in a wider range of vocabulary and grammatical constructions, as well as 
communicative functions and genres (Schulze 2010). Accuracy highlights a text’s 
conformation to our experience with other texts, while fluency, in oral 
communication, captures the actual volume of text produced in a certain amount of 
time. Similar to the previous factors, these measures play an important role in 
automated essay scoring and textual complexity analysis. Schulze (2010) 
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considered that selected complexity measures should be divided into two main 
facets of textual complexity: sophistication (richness) and diversity (variability of 
forms). The defined measures depend on six units of analysis: letter (l), word form 
(w), bigram (b – groups of two words) and period unit (p), word form types (t) and 
unique bigrams (u). Additionally, textual complexity is devised into lexical and 
syntactic complexity:  

Lexical Complexity:  

 Diversity is measured using Carroll’s Adjusted Token Type Ratio (see 
Equation 32) (Schulze 2010). = √ , ℎ √ ≤ ≤                                (32) 

 Sophistication estimates the complexity of a word’s form in terms of 
average number of characters (see Equation 33) (Schulze 2010).  = , ℎ 1 ≤ ≤                                          (33) 

Syntactic Complexity:  

 Diversity captures syntactic variety at the smallest possible unit of two 
consecutive word forms (see Equation 34). Therefore Token Type Ratio 
is also used, but at a bigram level (Schulze 2010).  

 = √ , ℎ √ ≤ ≤                            (34) 



 Sophistication is expressed in terms of mean number of words per period 
unit length and its intuitive justification is that longer clauses are, in 
general, more complex than short ones (see Equation 35) (Schulze 2010).  

 = (0,39 ∗ ) + (11,8 ∗ ) − 15,59              (35) 
 

All the previous measures can be integrated into a unique measure of textual 
complexity at lexical and syntactic levels. Following this idea, these factors were 
balanced by computing a rectilinear distance (Raw Complexity, RC) as if the 
learner had to cover the distance along each of these dimensions. Therefore, in order 
to reach a higher level of textual complexity, the learner needs to improve on all 
four dimensions (see Equation 36) (Schulze 2010).  

 = − √ + | − 1| + − √ + | − 1|                (36) 
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Afterwards, CAF is computed as a balanced complexity by subtracting the range 
of the four complexity measures (max – min) from the raw complexity measure (see 
Equation 37).  

 = − ( ( , , , ) − ( , , , ))             (37) 
 

The ground argument for this adjustment is that if one measure increases too 
much, it will always be to the detriment of another. Therefore, the measure of raw 
complexity is decreased by a large amount if the four vector measures vary widely 
and by a small amount if they are very similar. Moreover, the defined measure 
captures lexical and syntactic complexity evenly, provides two measures for 
sophistication and two measures for diversity and, in the end, compensates for large 
variations of the four vector measures.  

B   Part-of-Speech Statistics and Parsing Tree Structure  

Starting from different linguistic categories of lexical items, our aim is to convert 
morphological information regarding the words and the sentence structure into 
relevant metrics to be assessed in order to better comprehend textual complexity. In 
this context, parsing and part of speech (POS) tagging play an important role in the 
morphological analysis of texts, in terms of textual complexity, by providing two 
possible vectors of evaluation: the normalized frequency of each part of speech and 
the structural factors derived from the parsing tree. Although the most common 
parts of speech used in discourse analysis are nouns and verbs, our focus was aimed 
at prepositions, adjectives and adverbs that dictate a more elaborate and complex 
structure of the text. Moreover, pronouns, that through their use indicate the 
presence of co-references, also indicate a more intertwined and complex structure 
of the discourse. On the other hand, multiple factors can be derived from analyzing 
the structure of the parsing tree: an increased number of leafs, a greater overall size 
of the tree and a higher maximum depth indicate a more complex structure, 
therefore an increased textual complexity (Gervasi and Ambriola 2002).  

8.2.4   Semantics  

Firstly, as seen in 2.1 Coherence and Comprehension, textual complexity is linked 
to cohesion in terms of comprehension; in other words, in order to understand a text, 
the reader must first create a well-connected representation of the information 
withheld, a situation model (van Dijk and Kintsch 1983) (see Figure 2). This 
connected representation is based on linking related pieces of textual information 
that occur throughout the text. Therefore, cohesion reflected in the strength of 
inner-block and inter-block links extracted from the cohesion graph influences 
readability, as semantic similarities govern the understanding of a text. In this 
context, discourse cohesion is evaluated at a macroscopic level as the average value 
of all links in the constructed cohesion graph (Dascalu et al. 2013a; Trausan-Matu 
et al. 2012a).  
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Secondly, a variety of metrics based on the span and the coverage of lexical 
chains (Galley and McKeown 2003) provide insight in terms of lexicon variety and 
of cohesion, expressed in this context as the semantic distance between different 
chains. Moreover, we imposed a threshold of minimum of 5 words per lexical chain 
in order to consider it relevant in terms of overall discourse; this value was 
determined experimentally after running simulations with increasing values and 
observing the correlation with predefined textual complexity levels.  

Thirdly, entity-density features proved to influence readability as the number of 
entities introduced within a text is correlated to the working memory of the text’s 
targeted readers. In general, entities consisting of general nouns and named entities 
(e.g., people’s names, locations, organizations) introduce conceptual information 
by identifying, in most cases, the background or the context of the text. More 
specifically, entities are defined as a union of named entities and general nouns 
(nouns and proper nouns) contained in a text, with overlapping general nouns 
removed. These entities have an important role in text comprehension due to the 
fact that established entities form basic components of concepts and propositions on 
which higher level discourse processing is based (Feng et al. 2010). Therefore, the 
entity-density factors focus on the following statistics: the number of entities 
(unique or not) per document or sentence, the percentages of named entities per 
document, the percentage of overlapping nouns removed or the percentage of 
remaining nouns in total entities.  

Finally, another dimension focuses on the ability to resolve referential relations 
correctly (Lee et al. 2013; Lee et al. 2011; Raghunathan et al. 2010) as co-reference 
inference features also impact comprehension difficulty (e.g., the overall number of 
chains, the inference distance or the span between concepts in a text, number of 
active co-reference chains per word or per entity).  

8.2.5   Combining Textual Complexity Factors through Support 
Vector Machines  

All the measures previously defined capture in some degree different properties of 
the analyzed text (readability, fluency, language diversity and sophistication, 
morphological structure, cohesion, etc.) and therefore can be viewed as attributes 
that describe the text. In order to use these attributes to estimate the complexity of 
the text, we have used a classifier that accepts as inputs text attributes and outputs 
the minimum grade level required by a reader to comprehend the specified text. In 
our integrated textual complexity analysis model we have opted for Support Vector 
Machine (SVM) classifiers that have been proven to be the most appropriate 
(François and Miltsakaki 2012; Petersen and Ostendorf 2009). A SVM (Cortes and 
Vapnik 1995; Press et al. 2007) is typically a binary linear classifier that maps the 
input texts seen as d-dimensional vectors to a higher dimensional space 
(hyperspace) through the mapping of a kernel function, in which, hopefully, these 
vectors are linearly separable by a hyperplane (see Figure 47).  

Due to the fact that binary classifiers can map objects only into two disjoint 
classes, our multiclass problem can be solved using multiple Support Vector 
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Machines, each classifying a category of texts with different predefined classes of 
complexity (Duan and Keerthi 2005; Hsu and Lin 2002). A one-versus-all approach 
implementing the winner-takes-all strategy is used to deal with the problem of 
multiple SVM returning 1 for a specific text (the classifier with the highest output 
function assigns the class).  

 

 

Fig. 47 General binary SVM mapping and separation through a hyperplane – adapted from 
Kozak et al. (2009) 

LIBSVM (Chang and Lin 2011) was used to ease the implementation of the 
classifier and integrated in ReaderBench. An RBF kernel with degree 3 was 
selected and a Grid Search method (Bergstra and Bengio 2012; Hsu et al. 2010) was 
enforced to increase the effectiveness of the SVM through the parameter selection 
process for the Gaussian kernel. Exponentially growing sequences for  and  
were used ( ∈ 2 , 2 , … , 2 , 2 , ∈ 2 , 2 , … , 2 , 2 )  and each 
combination of parameter choices was checked using the testing corpora; in the end, 
the parameters with the best precision were selected. 

8.2.6   Validation of the Integrated Textual Complexity Analysis 
Model  

In order to train our complexity model, we have opted to automatically extract 
English texts from TASA, using its Degree of Reading Power (DRP) score, into six 
classes of complexity (McNamara et al. in press) of equal frequency, as no corpus 
was available for French (see Table 26).  
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Table 26 Ranges of the DRP scores as a function of defining the six textual complexity 
classes (afterMcNamara et al. in press) 

 
 

This validation scenario consisting of approximately 1,000 documents was 
twofold: we wanted, on one hand, to prove that the complete model is adequate and 
reliable and, on the other, to demonstrate that high level semantic features provide 
relevant insight that can be used for automatic classification. In the end, k-fold cross 
validation (Geisser 1993) was applied for extracting the following performance 
features (see Table 27 and Figure 48): precision or exact agreement (EA) and 
adjacent agreement (AA) (François and Miltsakaki 2012), as the percent to which 
the SVM was close to predicting the correct classification (Dascalu et al. in press; 
Dascalu et al. 2013a).  

By considering the granular factors, although simple in nature, readability 
formulas, the average number of words per sentence, the average length of 
sentences/words and balanced CAF provided the best alternatives at lexical and 
syntactic level; this was expected as the DRP score is based solely on shallow 
evaluation factors. From the perspective of word complexity factors, the average 
polysemy count and the average word syllable count correlated well with the DRP 
scores. In terms of parts of speech tagging, nouns, prepositions and adjectives had 
the highest correlation of all types of parts of speech, whereas depth and size of the 
parsing tree provided also a good insight of textual complexity.  

In contrast, semantic factors taken individually had lower scores because the 
evaluation process at this level is mostly based on cohesive or semantic links 
between analysis elements and the variance between complexity classes is lower in 
these cases. Moreover, while considering the evolution from the first class of 
complexity to the latest, these semantic features don’t necessarily have an upward 
gradient; this can fundamentally affect a precise prediction if the factor is taken into 
consideration individually. Only 2 entity-density factors had better results, but their 
values are directly connected to the underlying part of speech (noun) that had the 
best EA and AA of all morphology factors. Also, the most difficult classes to 
identify were the second and the third because the differences between them were 
less noteworthy. The complete results list for all evaluation factors, with detailed 
information for each dimension, is presented in Appendix C – Textual Complexity.  

Complexity Class Grade Range DRP Minimum DRP Maximum 

1 K-1 35.38 45.99 

2 2-3 46.02 51.00 

3 4-5 51.00 56.00 

4 6-8 56.00 61.00 

5 9-10 61.00 64.00 

6 11-CCR 64.00 85.80 
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Table 27 ReaderBench (2) Textual complexity dimensions 

 
 

 
Fig. 48 ReaderBench (2) Textual complexity evaluation.Starting from a pre-processed corpus, 
the user has the opportunity to perform the following measurements applied on: 1/ the complete 
SVM model with all factors integrated; 2/ each individualcomplexity dimension (a predefined 
subset of textual complexity metrics); 3/ a specific set of selectedcomplexity factors, on which 
individual measurements or a single combined evaluation can beperformed. In the end, a table 
is automatically generated including the used factor (individual, textualcomplexity dimension 
or specific aggregation), exact and adjacent agreements for each complexity classfrom the 
corpus, as well as the average agreement values 

Depth of metrics Factors for evaluation Avg. 
EA 

Avg. 
AA 

Surface Analysis Readability formulas .71 .994 

 Fluency factors .317 .57 

 Structure complexity factors .716 .99 

 Diction factors .545 .907 

 Entropy factors (words vs. characters) .297 .564 

 Word complexity factors .546 .926 

Morphology & Syntax Balanced CAF (Complexity, Accuracy, 
Fluency) 

.752 .997 

 Specific POS complexity factors .563 .931 

 Parsing tree complexity factors .416 .792 

Semantics Cohesion through lexical chains, LSA and 
LDA 

.526 .891 

 Named entity complexity factors .575 .922 

 Co-reference complexity factors .366 .738 

 Lexical chains  .363 .714 
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Moreover, besides the factors presented in detail in Dascalu et al. (2012) that 
were focused on a more shallow approach, of particular interest was how semantic 
factors correlate to classic readability measures (Dascalu et al. 2013a). In this 
context, two additional measurements were performed. Firstly, an integration of all 
metrics from all textual complexity dimensions proved that the SVMs results are 
compatible with the DRP scores (EA = .779 and AA = .997), and that they provide 
significant improvements as they outperform any individual dimension precisions. 
The second measurement (EA = .597 and AA = .943) used only morphology and 
semantic measures in order to avoid a circular comparison between factors of 
similar complexity, as the DRP score is based on shallow factors. This result 
showed a link between low-level factors (also used in the DRP score) and in-depth 
analysis factors, which can also be used to accurately predict the complexity of a 
reading material (Dascalu et al. in press).  

In terms of usability, besides the possibility to train and evaluate new textual 
complexity models on a given corpora (see Figure 48), ReaderBench enables tutors 
to assess the complexity of new reading materials based on the selected complexity 
factors and a pre-assessed corpus of texts, pertaining to different complexity 
dimensions. By comparing multiple loaded documents, tutors can better grasp  
each evaluation factor, refine the model to best suit their interests in terms of the 
targeted measurements and perform new predictions using only their features (see 
Figure 49).  
 

 

Fig. 49 ReaderBench (2) Document complexity evaluation. Based on a pre-trained corpus, 
the user selects the complexity factors to be automatically used within the SVM model (by 
default all factors are pre-selected) and ReaderBench generates a complexity prediction for 
each loaded document, as well as all values corresponding to the selected individual factors 
in order to have a comparison of the evolution of specific metrics between different 
documents 
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8.3   Comparison of ReaderBench to iSTART, Dmesure and 
Coh-Metrix  

This section addresses in extent the comparison between ReaderBench and 3 
systems that seemed most close to its goals: iStart in terms of reading strategies (see 
2.3 Reading Strategies), whereas Dmesure and Coh-Metrix are representative for 
textual complexity (see 2.2 Textual Complexity).  

Table 28 ReaderBench versus iSTART (McNamara et al. 2007a; Graesser et al. 2005; O'Reilly  
et al. 2004) 

 
 

Benefits of ReaderBench Benefits of iStart 

Educational perspective 

Adaptation of the proposed methodology to the 
specificity of the undergone experiments 

Initial methodology designed for assessing 
reading comprehension 

Refinement of the reading strategies in terms of 
the observed pupil’s behavior (no prediction, 
elaboration was generalized to knowledge 
inference) 

Initial taxonomy of reading strategies 

Separate identification of reading strategies and a 
more fine-grained comparison to the gold 
standard, without a direct liaison to predicting 
learner comprehension 

Assignment of an overall relevance score on a [1; 
4] scale, easily linkable to comprehension 

The evaluation targeted primary school pupils – 
elliptical expressions, pauses and repetitions in 
oral speech that impacted the transcription 
process 

Analysis of student self-explanations – adequate 
and coherent language, direct recording of textual 
representation 

Retrospective view, with focus on accurate 
identification of different strategies 

Proactive perspective, with emphasis on the 
impact of the system on students’ comprehension 

Tutor inquiry oriented analysis, with accent on the 
demarcation of different strategies 

The use of different animated agents to present a 
warmer, more interactive and more user friendly 
perspective of the analysis  

Technical perspective 

In-depth methods of extracting reading strategies 
using multiple heuristics (word- and LSA- 
heuristics were analyzed in the first two studies, 
later refined in ReaderBench) 

Word-based and LSA centered extraction of 
strategies 

French corpus, much more difficult to analyze in 
terms of natural language processing; moreover, 
the system enables applying the NLP pipe to both 
French and English texts 

English self-explanations analyzed within a web-
form, with no NLP specific processing 

Preprocessing and cleaning of verbalizations was 
required after manual phonetic transcription 
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Table 29 ReaderBench versus Dmesure (François and Miltsakaki 2012; François 2012) 

 
 
 

Benefits of ReaderBench Benefits of Dmesure 

Educational perspective 

Broad view covering multiple analysis levels, 
from surface analysis to semantics 

Focalized analysis, granting a comprehensive 
view of lexical, syntactic and morphological 
factors 

Shift of perspective towards demonstrating that 
high – level factors can be also used to accurately 
predict the complexity of a document 

 

Technical perspective 

Integration of a complete NLP pipe for both 
French and English 

Application of specific NLP techniques, but 
limited due to the use TreeTagger (Schmidt 
1995), a language independent parser 

Integration of the most commonly used factors, 
plus a multitude of new factors extracted from the 
cohesion graph  

Exhaustive analysis of possible factors (more than 
300 factors), therefore enhancing the chance of 
accurately predicting the complexity class by 
combining multiple inputs; similar to some extent 
to Kukemelk and Mikk (1993) regarding the 
spread of statistics; mostly surface, lexical and 
morphological factors, with only two factors 
derived from LSA 

The use of solely SVMs for classifying 
documents as multiple studies consider them the 
most accurate classifiers, efficient also when 
addressing non-linear separable variables 

A comprehensive analysis of multiple 
classification algorithms 

Intuitive user interface, enabling the training and 
the evaluation of a new textual complexity model 
based on the factors selected by the user, plus a 
comparison of different document features 

No visual interface 

1,000 documents used for training the SVM; 
Drawback: the comparison was made using the 
DRP scores from TASA 

FFL corpus, manually annotated, which greatly 
improved the overall relevance of the analysis 

Greater agreement values and near perfect 
adjacent agreement, as results are compared to 
automatic scores that induced a normalization of 
the initial documents classification; experiments 
performed on approx. 250 online reading 
assignments (Dascalu et al. 2012) proved that 
correlations dramatically decrease when using 
inconsistent initial classifications 

Lower scores, meaningful nevertheless and 
completely justifiable while considering the used 
corpus and its specificity 

ReaderBench Dmesure Coh-Metrix iSTART,
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Table 30 ReaderBench versus Coh-Metrix (McNamara et al. 2010; Graesser et al. 2004) 
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Benefits of ReaderBench Benefits of Coh-Metrix 

Educational perspective 

Explicit extraction of reading strategies and 
assessment of textual complexity using cohesion 
as a central measure (ingoing links with regards to 
cohesion) 

Emphasis on coherence from which multiple 
analysis dimension emerge (outgoing links from 
coherence) 

Extensible cohesion-based model applicable to 
both general texts and CSCL conversations, more 
specifically chats and forum discussion threads 

 

Technical perspective 

Multi-hierarchical analysis, integrating multiple 
natural language analysis techniques  

Extensive use of LSA and of other relevant 
measures 

Internal discourse structure built as the cohesion 
graph  

Most commonly, similarity is expressed as LSA 
cosine similarity between adjacent analysis 
elements 

Broader view, integrating factors identified as 
adequate within other studies 

A more detailed analysis of possible factors, 
covering more scenarios 

 Aggregation of results and visualization of 
multiple graphs 
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