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Abstract. This paper presents the novel humanoid postural control (PC) 
architecture for the humanoid robot TEO. It is outlined the high level and 
human inspired system for improving task performance. The study of the 
human PC system has inspired all processes involved in the control system. The 
information coming from sensors is interpreted applying neurophysics concepts 
and, then, the resulting perceptual parameters are applied for task performance 
improvement. The new PC system is an anticipative module complementing an 
existing reactive subsystem. This design tries to replicate the operation of the 
human case. In this way, the reactions can be more complex and higher 
perturbations levels can be overcome.  

1 Introduction 

Lots of human-like mechanical designs have been developed during last fifty years, 
from first prototype Wabot-1 [1] to cutting-edge humanoid robots ASIMO [2], HUBO 
[3] and HRP-3 [4]. From a mechanical point of view, the development of these robots 
has taken the advantage of leading technologies existing in their time but the concepts 
used were based on traditional mechanical solutions. For instance, joint designs have 
been mainly created with rotary motors joined to mechanical transmissions to increase 
velocity and torque at their output. But mechanical limitations and the desire of high 
human appearance favour the searching for new solutions for the humanoid robot 
design. In this sense, the field of bionics seeks to design technology by mimicking the 
salient features of biological structures [5]. Lessons learned from bionics state that 
success of natural inspired designs relies on effective embodiment: on clever 
morphology and use of material properties [6]. Taking this in account, it is obvious 
that it is necessary to develop new human inspired technologies to enable this 
embodiment. In this way, full body humanoid robot development has been slowing 
down during last decade and the mechatronics research efforts have been redirected to 
solve more focused problems: artificial muscles, advanced materials, etc. 

It has been demonstrated the feasibility of building full body humanoid robots. 
However, it has been recently paid attention to the second main issue involved in 
human being replication: the imitation of human behaviour.  
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This paper presents a different point of view when talking about the development 
of control architectures for humanoid robots. Specifically, the postural control (PC) 
architecture proposed is inspired by the study of the human PC system. The research 
carried out shows that there are two main sub-systems involved in human PC: a 
reactive one, and other predictive or anticipatory. The aim of the work is to replicate 
these control systems for the humanoid robot TEO. In this way, the work has been 
oriented to establish a predictive system complementing the reactive existing one. 

The anticipative control system has been analysed in the human case and it has 
been extrapolated to the architecture for controlling the humanoid robot TEO. The 
operation of this control system is based on the composition of sensorial perceptions; 
then, the evaluation of the resulting stimulus through the use of the psychophysics 
theory of the surprise and, finally, the creation of events that can be used for 
activating determined motor reaction strategies (synergies).     

The performance of the anticipative system for PC is being tested through 
simulations and the application of the results in the humanoid robot TEO from the 
RoboticsLab research group in the Systems Engineering and Automation Department 
from the Carlos III University of Madrid. 

2 Principles of Human Posture Control  

The PC correspond to a complex motor response that involves the integration of a 
variety of sensorial information, elaboration and execution of movement patterns [7]. 
The human PC system is continuously being developed from birth and it is critically 
influenced by sensor system maturation and the development of the Central Nervous 
System (CNS). During the growth process, humans learn to control posture by means 
of experience acquired in response to sensorial inputs. So, the human posture control 
system is basically composed by a sensor input system which collects information, an 
integration system which process this information, and an end-effector system which 
performs the movements to keep the right posture (Fig. 1). 

 

 

Fig. 1. Basic human PC system components 
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PC is performed continuously because it is the foundation of any kind of task. That 
is, one task can be considered as a sequence of controlled and learned postures. 
During the execution of each posture of the sequence, the sensorial inputs are 
evaluated to generate appropriate CNS stimuli that are transmitted to the neural 
processor centres. Depending on the result of the evaluation, different levels of PC 
could be fired if it would be necessary. These reactions are classified in reflex, 
automatic or voluntary movements depending on the response velocity required. 

Table 1. Properties of the three motor systems in balance movement control 

 Motor System 
Reflex Automatic Voluntary 

Activation External stimulus External stimulus External stimulus 
Self-generator 

Role in PC Muscle force 
regulation 

Resist disturbances Purposeful 
movements 

Latency Fixed 20-60ms Fixed, 130-170ms Variable >150ms 
 
Another factor influencing response velocity is the operation type of the human PC 

system. There exist two basic modes of operation of the system when a disturbance is 
detected: reactive and predictive. Specifically, this paper is centered on the study of 
the predictive PC mechanism, in which the sensorial inputs are used to predict the 
possible consequences from perturbations. According to the human system operation, 
the main function of this predictive system is preparing the effector system to apply a 
reaction. It is essential when higher level disturbances are detected or faster reactions 
are required than the feedback control loop can manage or trigger.  

2.1 Basic Operational Mechanisms of the Human Postural Control System  

Different theories were developed in the past to explain how the human body controls 
its posture. But nowadays, PC has been oriented to a systemic point of view. Today 
researchers recognize that PC is complex and context-dependent and that all levels of 
the nervous system must be examined to account for this complexity [8]. Although 
some controversy exists regarding the range of subsystems involved, there is general 
agreement that the neurological system, the musculoskeletal system, the sensory 
system, the environmental context, and the task demands are important contributors to 
PC [9].  

Besides relying on their feedback systems, humans also maintain balance using 
anticipatory motor actions. During human movement, two control actions are 
performed continuously and in parallel: movement and PC. Meanwhile movement 
control system commands body limbs position, the PC performs actions to maintain 
balance taking in account the proprioceptive information. Fig. 2 shows this basic idea, 
but this control system is defective in the sense that it only provides information about 
the feedforward anticipative and feedback reactive postural adjustments produced by 
voluntary movements. 



606 S. Martinez, A. Jardón, and C. Balaguer 

 

 

Fig. 2. Postural adjustment scheme from [10] 

It is important to state that posture and movement are close related but they are 
essentially different. From a biomechanical point of view, the movement can be 
described as the combination of motor gestures. Purposeful or voluntary motor acts 
are performed moving one or several body segments towards a goal [11]; meanwhile 
other segments must be positioned in order to regain posture and equilibrium. It is 
ease to point out that voluntary movements are one source of postural perturbations.  

Therefore, posture poses a static and dynamic dual nature. The former, static or 
postural fixation, is a local mechanism to maintain the body segments in stationary 
positions against internal (e.g. weight) or external forces (e.g. load ported) [12]. The 
latter, dynamic posture component is the continuous looking for keeping the desired 
target according to the task performed. 

2.2 Sensorimotor Integration in Postural Control 

To maintain PC during both static and dynamic situations, individuals rely on their 
sensory systems (visual, vestibular and somatosensory) to provide information such as 
their limbs locations and movement with respect to the surrounding environment. The 
CNS then interprets the sensory information and commands the musculoskeletal  
systems to adjust the body parts position trying to keep a desired or stable posture. 
However, since human beings are constantly interacting with their surroundings, one 
must not ignore the environment when studying PC. The influence of environmental 
factors such as light conditions, concurrent distracting factors, special surface 
characteristics, etc. are affecting the requirements to the PC. Similarly, it is easily 
understood that the PC demands during the task of walking and other locomotive 
activities are different from the demands when humans perform manipulation tasks 
(Fig. 3). 

 

Fig. 3. PC is influenced by factors related to the individual, the task, and the environment 
adapted from [13] 
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Since PC has been defined as the control of the body’s position in space, it must be 
performed adjusting parameters such as centre of mass, base of support, joint 
momentum, etc. The adjustments are counterbalancing actions of the limbs, the head 
and the trunk influenced by the muscular strength, previous experience, etc.  

2.3 Interpretation of Sensorial Incomes for Postural Control 

One key point of the human PC system is the way in which the disturbances are 
sensed and how this perception commands body reactions. Using psychophysical 
principles, it is possible to model these disturbances as unexpected events or surprise 
events produced depending on the task context [14].  

Since surprise depends on the ‘unexpectedness’ of the stimulus [15], at least the 
three following layers and each corresponding test must be distinguished in order to 
provide an exhaustive model of surprisingness generated by expectation failure [16].  

• Mismatch-based Surprise: based on sensory-motor expectations, it is 
generated by the mismatch between active knowledge and disturbance 
perception, exceeding some threshold value [17], [18] (function of 
Unexpectedness). It is based on some form of 'statistical' learning [19] and its 
intensity is function of the degree of certainty and the value of the goal. 

• Passive Prediction-based Surprise: surprise results from a conflict or 
inconsistency between the updated set of knowledge and the perceived 
sensation [15]. Passive expectations are formed after the surprising event has 
occurred [20]. 

• Implausibility-based Surprise: This refers to those (quite numerous) 
situations in which the input proposition expresses information related to 
non-existent knowledge (function of Incredulity). 

Summarizing, capture surprise events or feeling surprise seems to play several 
functions: 

• Redirecting attention on the mismatching facts, concentrating cognitive 
processing resources on them. 

• Activating resources for possible practical activity; physical arousal, bodily 
preparation for fast reaction.  

• There are also long term effects (and functions) of the perceived surprise for 
a bad prediction (e.g. increasing controls before and during the actions). 

2.4 Motor Strategies Used in Postural Control   

The motor reactions during PC have been extensively studied in order to try to 
understand the mechanisms that humans use to overcome any kind of ‘postural 
perturbation’. One of the main conclusions is the existence of learned patterns that are  
automatically triggered in response to determined stimuli. These patterns are called 
motor strategies or ‘synergies’ (e.g. [21], [22]). According to Sherrington, the control 
of the movement related to the synergies is composed by a reflex motor unit above the 
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voluntary motor unit. Such reflex movements are organised more naturally into 
collective functional units defined over groups of muscles and joints [23]. By the 
other side, Bernstein suggests that a restricted number of programs may underlie most 
of our behaviour. 

For any given perturbation, one or more muscle synergies may be activated so that 
their combined influences define the resulting muscle activation pattern [24]. 
Extending the concept, complex synergies can be in general considered as programs 
for controlling some distinctive motor performance extended in space and time, built 
upon basic synergies of coordinated reflexes as substrate [25]. In summary, the 
establishment of a synergy is based on a common assumption that regularity in the 
behaviour of a set of elements is a sufficient sign to claim an existence of a synergy 
[26]. 

3 The Humanoid Anticipative Postural Control Architecture  

The human PC system, outlined in previous sections, is the result of millions of years 
of evolution. Its complex operation and physiology are still being researched and they 
are far from being completely understood. Although technology evolution is much 
faster than biology evolution, the same problems must be addressed and they are 
continuously under development. The main studies regarding physiology and human 
behaviour date back the turn of 20th Century. The advances achieved in the 
knowledge of the human organism during the last decades have made possible a better  
understanding of the underlying mechanisms that produce the different human 
behaviours. There is a variety of human behaviours and their classification is 
complex. Attending to their nature, behaviours can be classified as innate or learned.  

Innate or instinctive behaviours will be those, conscious or unconscious, that have 
a biological and genetic basis, are performed naturally, and are reinforced by practice. 
The human being has acquired this kind of innate behaviours thanks to thousands 
years of evolution, and they are “hard-wired” in the CNS. In general, instinctive 
behaviours are considered as “pre-programmed" responses triggered by external 
stimuli. They usually fit into one of the following categories [27]: 

• Reflex: it is the most basic innate behaviour. Correspond to the basic reflex 
arc involving only a few neurons. 

• Orientation behaviours: they are coordinated movements like walking, etc. 
• Kinesis: it is a change on the speed of movement or a change rate of turn 

which are directly proportional to the stimuli intensity. 
• Taxis: it is a movement directly toward (positive) or away from (negative) a 

stimulus. 

Learned behaviours are skills acquired or modified by the experience resulting 
from a learning procedure. Taking this into account, it is obvious to conclude that 
innate and learned behaviours are close related by means of experience. The human 
being acquires new skills and knowledge through trial and error, observation of other 
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individuals or memory of past events.  In general, learned behaviours will always be 
[27]: 

• Non-heritable: behaviour acquired only through observation or experience. 
• Extrinsic: it is caused by social interaction. 
• Permutable: pattern or sequence may change over time. 
• Adaptable:  it is capable of modification to suit changing conditions. 
• Progressive: subject to improvement or refinement through practice. 

The better understanding of the human PC system operation has enabled the 
development of a large number of control schemes in cybernetic/robotic and 
biomechanical fields. In the former, theoretical and experimental situations as 
standing posture and free fall [28], walking [29], run-to-walk and vice versa [30], 
[31], have been studied considering static or dynamic 2D/3D problems. In the latter 
field, studies are focused on experimental postural analysis [32], organization of the 
PC [33] or biomechanical modelling to study PC [34], gait initiation [35], 
musculoskeletal control [36] or jumping [37].  

These works are contributions for a better human motor behaviour understanding. 
These studies deal more generally with the selection of strategies to balance the 
external perturbation (force and moment) acting on the human structure. In these 
cases, the matter under control is the desirable posture during and after the 
performance of a voluntary movement. From the initial posture, the movement is  
the succession of instantaneous postures subjected to external perturbations. Then, the 
reactions against these perturbations are computed and deployed according to the 
response velocity required and the origin of the disturbance.      

The development of humanlike machines has motivated a deeper research in 
human PC systems. Early developments of humanoid prototypes were built to 
research the first postural problem humans must face up in the first year of their life: 
the equilibrium maintenance. The increase in computer processing power has enabled 
the fast development of these prototypes and the construction of full size humanoid 
platforms, which are able of performing complex postural tasks. 

The step up in mechatronics and computing has favoured the development of high 
complexity control schemes and their transformation into ‘human inspired’ control 
systems. The final goal of these control schemes is to imitate the human behaviour as 
much as possible.  

This human inspiration has caused a change in how the researcher considers the 
humanoid platform. The humanoid robot was only a mechatronic platform to test 
tasks and control schemes. Now, new robotic platforms have been developed to study 
the cognitive aspect of the human nature. In these platforms, the understanding of 
cognition and the analysis of how humans perceive the environment, how they 
interact within it and how the information is processed and applied, are the key point 
of control.  This is one of the reasons why techniques, derived from the study of 
human behaviour, are taking more importance in PC. Genetic algorithms, neuro-fuzzy 
controllers, etc. used in Artificial Intelligence are being applied in control, due to their 
similarity with real human processing.  

During the last decade, the RoboticsLab research group has been introduced in the 
development of humanoid robots. The prototype RH-1 [38], [39], [40] was the first 
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Table 2. Human vs. humanoid exoceptive perception 

Exoceptive Humanoid System Exoceptive Human System 
Inertial Measurement Unit (IMU) Vestibular System 

Force / Torque Sensors (F/T) Muscles / Skin 
Vision (3D cameras) Vision 

 
The proprioceptive perception measures the internal body status. The sensorial data 

is provided by joint position and velocity sensors (Table 3).  

Table 3. Human vs. humanoid proprioceptive perception 

Proprioceptive Humanoid System Proprioceptive Human System 
Relative Encoder Joint Velocity 
Absolute Encoder Joint Position 

 
The result of the sensor data evaluation depends highly on the task being performed. 

It means that the resulting perception will not be the same if the task performed is, for 
instance, pure manipulation or pure locomotion. It is the task oriented perceptual 
system which filters the information and uses it in the proper way. Taking this into 
account, two premises can be established for TEO robot perceptual evaluation: 

• Same sensorial inputs will produce different perception depending on the 
task performed. 

• Exoceptive and proprioceptive perceptions will be composed by different 
sensorial sources depending on the task performed. 

The first premise means, following psychophysical principles, that the processor 
centres filters the sensorial information to speed the result of the evaluation up and to 
produce an accurate response (detection, identification, discrimination and scaling). 
Second premise remarks the task dependant nature of the perception production as 
well. For instance, the use of data related with equilibrium is unnecessary in a 
manipulation task when the robot is seated.  

Summarizing, not all information might be used in all cases and the information 
might not be applied in the same way in every task. Fig. 7 shows the modules in 
charge of perceptive evaluation in TEO control architecture. Sensations composed by 
the information captured by sensory devices are evaluated forming the proprioceptive 
and exoceptive perceptions. Both sets of perceptual information is then available in 
the system to be used depending of the PC necessities.  

3.4 Surprise Generation 

It has been described how sensory information can be processed and converted into 
perceptions. They are parameters that relate posture and sensorial incomes. In this 
stage the main problem is how to apply all this information in PC.   
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3.5 Behaviour Decision System 

At this stage, there has been described how perturbations are perceived by the 
sensorial system. After that, it has been introduced the system which transforms 
sensations into ‘understandable’ information (perceptions). At last, perceptual 
information is interpreted and converted into surprise events that will be used by the 
control system to act against perturbations.  

However, the anticipated actions deployed by the decision system can be defined 
as reactions against future consequences evoked by sensorial stimuli. That is, given a 
determinate task, it is possible to know so the correct behaviour as the deviation 
caused by determined perturbations. It means that the perceptual knowledge will drive 
the decision because the consequence of the perturbation is previously known. Then, 
it is possible to say that the anticipative PC system reacts against the future task state. 

Therefore, inside the behaviour decision module, the surprise events are processed 
to decide: 

• If any kind of future action or reaction is needed. 
• The kind of reaction that would be the most appropriate. 
• How the selected reaction should be performed. 

By means of evaluating the information from active and passive expectations 
(surprise events), it can be determined if a reaction might be selected and executed. 
The reaction is selected among all available motor synergies related with the 
corresponding task. These synergies are motion patterns that will be filled in using the 
results from the expectations evaluation (surprise task parameters). The outcome of 
this module will be a parameterized synergy that could be executed to enhance PC.  

4 Conclusions 

This paper presents the novel high level PC architecture for the humanoid robot TEO. 
Specifically, it has been exposed the guidelines for the development of the new 
human inspired anticipative system. It has been outlined the human PC system as 
design basis of a novel humanoid anticipative control system. From perturbations and 
sensation detection to control signal generation, the new control system established 
taking into account the way human’s body performs these processes. This high level 
architecture is the framework to develop all necessary human reasoning inspired sub-
systems to process task information.  
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