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Abstract. Applications with large teams of robots are becoming more
and more useful. If the scenario is very crowded or very dynamic, conflict
resolution when using a shared workspace is a challenging problem. In
this paper, an scalable, decentralized and reactive approach for collision
avoidance is presented. The robots can navigate in a 2D environment
avoiding each other and without high computational requirements. In
addition to the conflict resolution algorithm, a multi-robot simulator is
presented. The system is flexible and can be used to simulate different
algorithms with realistic robots. Finally, an extension of the simulator
is proposed in order to operate real robots in a multi-robot testbed.
Results of the collision avoidance approach are shown with both real
and simulated robots.
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1 Introduction

The use of multi-robot teams shows a clear trend in the last decade. Advances in
swarm robotics make it possible to use large teams of robots in different applica-
tions such air-traffic control, multi-UAV missions, logistics, etc. If the scenarios
are highly dynamic or the number of robots is variable, the problem of conflict
resolution becomes challenging. In particular, this paper focuses on multi-robot
systems for conflict resolution in crowded environments. We consider teams that
can vary dynamically during operation, adding new robots and removing others.

Although there are centralized algorithms that can tackle collision avoidance
with multiple vehicles [4], they are not usually suitable for dynamic applications,
since they take many resources when computing the solution (online recomputa-
tion becomes infeasible). This paper opts for a decentralized conflict resolution
approach in which robots can reach their goals in a reactive manner, sharing as
little information as possible and requiring low computational resources. In par-
ticular, robots detect potential collisions with local information and solve them
assuming that the others will follow the same rules. Each robot only needs to
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know the position of its neighbouring robots, but not their velocities, orienta-
tions or goals. Therefore, the algorithm scales well with the number of robots
and adapts when robots are missing.

This paper includes several contributions. First, the paper proposes a decen-
tralized state machine to control the robots and avoid collisions. In particular,
the state machine is designed for robots with differential drive which can ro-
tate in situ. The approach is decentralized and scalable because each robot runs
its own state machine accessing only local information. Second, a simulation
framework with Matlab/Simulink has been developed in order to test multi-
robot systems in realistic scenarios. The framework is general and flexible and
allows us to deal with different kinds of robots and algorithms but, in this pa-
per, it is illustrated to simulate the proposed conflict resolution approach. This
tool is quite relevant in order to reduce the gap between theory and real multi-
robot systems, since models of real robots and controllers can be used together
with the conflict resolution scheme. Third, a framework to operate multiple
robots in a real testbed has been developed. This framework allows users to
run collision avoidance experiments with a team of Pioneer robots in a testbed
scenario.

Regarding related work, many authors solved collision avoidance in the past
by means of mathematical programming or control theory [4,1,8,11]. In par-
ticular, [1] provides a thorough review of these kind of approaches. Although
these methods can obtain optimal solutions, they are complex and in many
cases, do not allow for online re-planning. Navigation functions based on po-
tential field can also be used to solve multi-robot collision avoidance [13,6]. If
the navigation functions are decentralized, some approaches [12] propose to use
rules of the road to assign priorities to the vehicles. Others achieve collision-
free trajectories by reasoning with velocity profiles [5,2]. In [14], Optimal Re-
ciprocal Collision Avoidance is introduced to select in a decentralized fashion
velocities that guarantee collision-free movements. The algorithm is extended
in [3] to cope with certain kinds of non-holonomic vehicles. Most approaches
based on velocities assume that the velocities of the other robots can be shared
or sensed. Finally, the work in this paper is similar to that in [10], but it of-
fers advantages against their Generalized Roundabout Policy (GRP). Although
the GRP can be applied to any kind of vehicles (it was originally developed
for airplanes), it is not efficient for vehicles that can stop and turn at zero
forward speed, like differential drive robots, helicopters or quad-rotors. Our
method takes advantage of this kind of mobility and reduces the area required
by the robots to navigate avoiding each other. Also, we present an implementa-
tion in a multi-robot testbed of our approach, showing the algorithm with real
robots.

The paper is organized as follows: Section 2 presents the conflict resolution
approach; Section 3 details the simulation framework with multiple robots;
Section 4 explains the multi-robot system in a real testbed; and Section 5
includes conclusions and future work.
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2 Collision Avoidance Approach

2.1 Preliminaries

This section presents a decentralized algorithm to avoid collisions among
multiple robots working in a shared environment. The main objective is the
following: Given a team of robots in a 2-D workspace, and given their initial
positions and their goal destinations, they should be able to navigate to the final
configuration avoiding collisions. Mathematically, there is a set of robots N =
{1, . . . , n(t)} with positions {pi(t)|pi(t) ∈ R

2}i=1,...,n and headings {θi(t)|θi(t) ∈
[0, 2π]}i=1,...,n. Besides, there is an initial configuration I = {p1(0), . . . , pn(0)},
a goal configuration G = {g1, . . . , gn}, and a set of static obstacles S = {1, . . . ,
m(t)}. Each robot has an omnidirectional perception system that allows it to
detect obstacles (static or moving) in a circle of radius Rs. Note that the number
of robots n(t) can vary throughout time, since new robots could appear or some
robots could stop working and become static obstacles. The algorithm makes
the following assumptions:

1. Robots are able to localize themselves globally in the scenario, so each robot
i has its position pi(t) available.

2. Robots have differential drive, so they can rotate in situ with zero linear
velocity.

3. Obstacles around each robot can be sensed and also positioned. The sensing
radius is Rs for each robot.

4. Each robot has access to the positions of its neighbouring robots (those
within its sensing radius Rs). These positions could be transmitted or sensed
with the local perception system.

In order to operate, each robot needs to define two regions around itself: a
Safety Disk and a Reserved Disk.

Definition 1. The Safety Disk is a circle of radius Rsd around each robot that
determines the area in which that robot could stop safely (assuming maximum
velocity) without hitting a hypothetical obstacle. For obstacles beyond this circle,
the robot can assure a safe stop before colliding. Rsd can be defined depending
on the robot dynamics and size. Therefore, a collision is considered to take place
whenever two or more safety disks overlap.

Definition 2. The Reserved Disk is a circle of radius Rrd around each robot
such that Rrd > Rsd, and it is used to detect conflicts. A conflict is considered
to take place whenever two or more reserved disks overlap. Moreover, we define
the conflictive neighbours of a robot as the subset of neighbours that are in conflict
with it.

It is important to note that Rs must be greater than 2Rrd in order to be able
to detect all possible conflicts in the system. Otherwise, obstacles in conflict may
be out of the sensing range. The idea of using a safety disk to define a collision
allows the robots to operate safely even under uncertainties in their positions.
Moreover, artificial safety and reserved zones can be defined for all the static
obstacles, so that moving robots and other obstacles are treated seamlessly.



410 E. Ferrera et al.

2.2 State Machine

This section describes the decentralized state machine that defines the behaviour
of the robots. Each robot runs the state machine locally and tries to reach its
goal reactively, without having information about others’ goals, orientations or
velocities. In order to detect and solve conflicts, only obstacles in the neighbour-
hood are considered. In the following, the behaviours for the different modes of
the state machine (see Fig. 1) are described.

Fig. 1. The robot behaviour is defined by a state machine with five states

Goal-reached. When the robot gets to its destination point, the state switches
to Goal-reached. In this state, the robot stops and waits until a new goal is
assigned. Moreover, since the positioning systems of the robots have always some
error, a distance threshold dth is defined: a robot is considered to be at its goal
if its distance to it is lower than dth. Otherwise, robots may not converge to the
destination due to minor inaccuracies. This threshold is usually lower than Rsd

and its value depends on the accuracy of the positioning system of the robot.

Rencontre. In this state1, the robot detects one or more conflicts that need
to be solved, so it stops immediately its movement in order to prevent possible

1 Rencontre is a word derived from French that means meeting someone unexpectedly.
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Fig. 2. Different conflictive situations. The safety and reserved disks are drawn around
the robots. (a) Rencontre situation for robot 1, which has conflicts with robots 2 and
3. Its navigable area is shown in white. (b) Robot in the middle is in Blocked state.
The other robots will surround it counter-clockwise until it is released. (c) Robot 1 is
in Free state. Despite the conflicts, the robot can still drive towards the goal without
collisions with heading θg.

collisions. Then, an avoidance heading is necessary in order to surround the
obstacles. For that, all conflictive obstacles around the robot must be analysed.

For a given robot i and conflictive obstacle j, the space is split into two semi-
planes defined by a separator line Lij . If Bij is the closest point to pi of the
intersection of the two reserved disks, Lij is the line that contains Bij and is

perpendicular to the vector
−−−→
piBij . The semi-plane defined by Lij that contains

the obstacle j is the forbidden area FAij for the robot, while the other is the
navigable area NAij . After processing all the obstacles causing conflicts, the
total forbidden area of the robot i is defined by the union of all the individual
forbidden areas FAi =

⋃
j∈Ci

FAij . The remaining area is the total navigable
area, since the robot can move in it without provoking collisions. This partition
of the workspace is depicted in Fig. 2a. Note that only positions of the obstacles
in the robot local coordinate frame are needed for the computation, but not their
velocities nor orientations.

If the navigable area is an open space (infinite area), the robot can find an
avoidance direction that allows it to surround the current obstacles preventing
collisions. In particular, for each line Lij two possible avoidance directions can be
proposed, those parallel to the line. The robot only considers avoidance directions
that drive it into the navigable area, and selects the one that will allow it to
surround the associated obstacle counter-clockwise. For instance, in Fig. 2a each
obstacle for robot 1 defines an avoidance direction moving the robot into the
navigable area (vectors with solid lines) and one moving it into the forbidden
area (vectors with dashed lines). In this case, θa is selected as avoidance heading
because it also allows robot 1 to surround robot 3 counter-clockwise.

In the Rencontre state, the robot performs an in-situ turn in order to orien-
tate towards its selected avoidance direction θa without moving into the forbid-
den area. Once it is oriented correctly, the avoidance manoeuvre is safe and the
robot switches to the Rendezvous state.
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Rendezvous. If the robot is performing an avoidance manoeuvre with any con-
flictive obstacle, it is in this state2. This means that a conflict has occurred
but the navigable area is open, which allows the robot to look for an avoidance
heading. Indeed, after the Rencontre state, the robot is oriented to an avoidance
heading, so it can start the Rendezvous operation safely. The robot will move
forward keeping the heading θa, which will vary in real time as the navigable
area does.

Blocked. In case that the conflicts produce a navigable area that is a closed
polygon (finite area), the robot is Blocked and surrounded by obstacles (see
Fig. 2b). In this state, the robot stops and waits until any of the moving obstacles
is gone. It is important to note that each robot assumes that the others will follow
the same rules, so they will move away eventually if there is free space in the
scenario.

Free. This is the normal operation mode, where the robot can go freely towards
its goal. This situation will only happen if there are no conflicts or there are
conflicts but the goal is still in the navigable area. Therefore, the robot will be
commanded to go to the goal in a straight line without avoiding obstacles (see
Fig. 2c). If the robot reaches its goal, it switches to the Goal-reached state, but
if the goal gets out of the navigable area an obstacle avoidance will be required.

2.3 Discussion

All the static obstacles in the environment can be surrounded by a safety and
a reserved zone as it was explained before. Therefore, collisions will always be
avoided. Regarding the moving obstacles, in addition to the other robots in the
scenario, there may be external agents that are not controlled by the system,
such as other vehicles and people. In this case, the algorithm is no longer guar-
anteed to find the solution. The reason is that those external obstacles do not
behave according to the system rules, so they may trap robots and lead them
to deadlocks. However, robots stop whenever they detect collisions, so a safe
navigation is assured, at least from our system’s side.

Since we are considering robots that could fail and stop anywhere, there may
be situations in which they occupy the goals of some other robots or block others’
paths. To solve these situations, the inclusion of a higher level planner will be
considered for future works. Deadlocks could be detected and solved by sending
new destinations to the robots involved.

So far, only homogeneous robots with similar reserved and safety disks have
been considered. However, the approach would work even in the case of hetero-
geneous robots. In that case, different robots would have different safety and

2 Rendezvous is a word derived from French that means meeting someone at a specified
time and place.
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Fig. 3. Block diagram of the multi-robot simulator. A Matlab Manager is in charge of
managing the individual Simulink blocks for each robot.

reserved disks, each of them according to their characteristics. Besides, neigh-
bouring robots would also have to communicate that information, since others
would need it to discover and solve possible conflicts.

3 Multi-robot Simulator

In order to test the capabilities of the system for different scenarios, a multi-robot
simulator has been developed with Matlab/Simulink. The simulator is generic,
so the algorithm proposed in this paper as well as alternative approaches can be
tested easily. For the design, the following specifications were taken into account:

1. The simulator should consider large teams of robots coexisting in the same
workspace.

2. All the simulated robots should have realistic dynamics.
3. The system should be flexible, allowing the user to configure new dynamic

models or different control schemes.
4. The simulator should provide a friendly human-machine interface.

In the architecture, a Matlab Manager plays the relevant role of controlling the
coordination among individual simulations for each robot (see Fig. 3), which are
run in parallel. For a multi-robot experiment, the simulation is divided into time
steps of Tstep seconds and each robot is simulated individually with a Simulink
model that is initialized with the last saved state. The simulator also implements
a communication system that allows robots to share messages. In particular, a
maximum delay of Tstep in the reception of the messages is considered.

The Simulink model used to model each robot (see Fig. 4) adds some flexi-
bility to the system, since it is prepared to include different dynamics. The only
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Fig. 4. Simulink block diagram of one of the simulated robots. Dynamics and low-level
controllers for the motors are modelled, as well as the reactive state machine.

restriction is that the model should include the possibility of being initialized
in a point p with an orientation θ and a speed v at any time. The architecture
allows the user to change the whole configuration of the robot, giving to the
system enough flexibility to emulate all kind of ground robots and control sys-
tems. Moreover, the Matlab Manager is in charge of allocating memory for all
the Simulink modules and initializing them. The resulting state for each time
step is saved in a logging file so that the experiment can be replayed later.

A friendly user interface was implemented to help the user to design fully
controlled scenarios, challenging scenarios or randomly crowded scenarios. The
user is also allowed to define a queue of simulations that can be combined and
executed sequentially in a predefined or random order. This feature is quite
useful for experiments with many trials, such as Monte-Carlo simulations.

In order to illustrate the simulator, an experiment evaluating the performance
of the conflict resolution approach presented in this paper is shown. In particular,
multiple simulations were run (Tstep = 0.1s) with initial configurations drawn
from a uniform distribution in a scenario of size 14× 14m (only initial configu-
rations without conflicts were considered). The parameters of the algorithm for
this experiment were Rs = 5m, Rsd = 0.4m, Rrd = 0.6m and dth = 0.25m.

The results of the simulations in terms of travelled distance are depicted in
Fig. 5, where teams with different number of robots are considered. For each team
200 samples of distances are taken. All distances are normalized with respect to
the unconstrained case, in which each robot can travel alone in the workspace
straight to its goal. If the scenario is not very crowded, the travelled distances
are close to the unconstrained case. When the number of robot increases the
distances also do, but a nice degradation can be observed.

Finally, it is important to note that many other simulations were run with the
system, testing complex initial configurations and crowded environments. They
are not shown in the paper due to space constraints. Indeed, in a stress test for
the simulator, it was able to run successfully simulations of up to 100 robots
coexisting in a crowded workspace.
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Fig. 5. Normalized travelled distances of simulations in a workspace of 14 × 14m,
varying the number of robots. Each box plot represents the median (red line), and the
first and third quartiles (blue box) for 200 simulations.

4 Multi-robot Testbed

In addition to the simulations, we have performed a number of real experiments
using a testbed with multiple robots. For this purpose, an extension to the
simulation tools has been developed in order to use the user interface of the
simulator with the multi-robot integrated testbed of CONET3 [9]. The CONET
testbed is installed at the University of Seville (Spain) and was designed to test
and validate collaborative algorithms with different levels of decentralization,
including fully distributed and centralized systems. The testbed also allows users
to operate experiments remotely by the Internet.

The testbed is set in a room of more than 500m2 (22×24m) with three columns
in the middle and an IP camera that provides remote users a general view. There
are 5 skid-steered holonomic robots (Pioneer 3-AT). The robots are equipped
with several sensors including an Hokuyo 2D laser and one Microsoft Kinect
RGB-D sensor. A Netbook PC with an Intel Atom processor, 1,024 MB SDRAM
and a IEEE 802.11 a/b/g/n Wireless bridge provides enough computational
capacity at each robot to perform experiments.

The software architecture of the testbed is based on the open-source mid-
dleware Player [7]. The Matlab Manager in Section 3 is extended in order
to interact with the testbed. In particular, a VPN direct connection is estab-
lished with Player in order to command the Pioneers 3-AT. The same user

3 Cooperating Objects Network of Excellence (INFSO-ICT-224053). Available online:
http://www.cooperating-objects.eu/

http://www.cooperating-objects.eu/
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Fig. 6. In blue: Path of a Pioneer 3-AT using the proposed algorithm to avoid three
static obstacles. In red: Path of a simulated robot initialized with the same conditions
in the simulator. The circle is the initial position and the cross the goal.

interface as before can be used here to define the scenario and the experi-
ments. Then, the Manager is in charge of managing the Player connections with
the robots, initialize them and run the experiments autonomously. Moreover,
after each experiments data are logged and the robots are sent to their idle
positions. It is important to note that this architecture allows the user to per-
form real experiments in the testbed remotely, without the need for physical
presence.

A test of the reactive conflict resolution algorithm presented in this paper was
performed with a real robot in the testbed.4 The experiment consists of a robot
that has to cross the room avoiding the three columns in the middle, that are
static obstacles. The same experiment was simulated with the system in Section
3 to compare the results, which are shown in Fig. 6. In both cases, the robot
reaches the goal avoiding the obstacles, and it can be seen that the behaviour
of the simulated robot is quite similar to the real one. The parameters of the
algorithm for this experiment were Rs = 5m, Rsd = 0.4m, Rrd = 0.6m and
dth = 0.25m.

A second test using five real robots was also performed. The experiment con-
sists of five robots placed forming a circle in the free part of the room. The
goal of each robot is placed at its antipodal position, enforcing a crowded con-
frontation in the center of the circle. The results of this experiment are shown
in Fig. 7. It can be seen how each robot reaches its goal avoiding any collision
with the others. This experiment uses the same parameters as above except for
Rrd, that was increased to Rrd = 0.7m in order to make the avoidance more
conservative.

4 In all the experiments, the robots were localized using a map of the testbed and the
Hokuyo readings. Also, robots shared their positions to each other.
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(a) Starting positions t = 0s. (b) Going to the conflictive point t = 4s.

(c) Avoiding the confrontation t = 29s. (d) Ending the confrontation t = 47s.

(e) Final positions t = 59s. (f) Paths of the robots.

Fig. 7. Five Pioneer 3-AT using the proposed algorithm to solve a conflictive situation
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5 Conclusions

This paper has presented a multi-robot system for conflict resolution. A decen-
tralized and reactive algorithm for collision avoidance in crowded scenarios is
proposed. The computational requirements for the robots are low, so the ap-
proach can be run in small robots in dynamic environments that require on-
line recomputation. Besides, the algorithm is decentralized and scalable with
the number of robots in the team. Although the paper focuses on robots with
differential drive, future work will extend the method to Ackermann vehicles,
including forward and backward manoeuvres.

A multi-robot simulator based on Matlab/Simulink is also presented. The idea
is to exploit its flexibility in order to test different kinds of robots and controllers
in a realistic manner. To complete the system, the simulator architecture is
extended to be able to test algorithms in a real testbed. Experiments with real
robots and simulations are shown to illustrate the performance of the collision
avoidance method.

Future work will consider the adaptation of the multi-robot system to ROS5,
in order to be able to interact with other testbeds and make the system more
portable. Moreover, using distributed computers to run the simulated robots in
parallel can be of interest.
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