Chapter 17
Emerging Biology-based CI Algorithms

Abstract In this chapter, a group of (more specifically 56 in total) emerging
biology-based computational intelligence (CI) algorithms are introduced. We first,
in Sect. 17.1, describe the organizational structure of this chapter. Then, from
Sects. 17.2 to 17.57, each section is dedicated to a specific algorithm which falls
within this category, respectively. The fundamentals of each algorithm and their
corresponding performances compared with other CI algorithms can be found in
each associated section. Finally, the conclusions drawn in Sect. 17.58 closes this
chapter.

17.1 Introduction

Several novel biology-based algorithms were detailed in previous chapters. In
particular, Chap. 2 detailed the bacteria inspired algorithms, Chap. 3 was dedicated
to the bat inspired algorithms, Chap. 4 discussed the bee inspired algorithms,
Chap. 5 introduced the biogeography-based optimization algorithm, Chap. 6 was
devoted to the cat swarm optimization algorithm, Chap. 7 explained the cuckoo
inspired algorithms, Chap. 8 focused on the luminous insect inspired algorithms,
Chap. 9 concentrated on the fish inspired algorithms, Chap. 10 targeted on the frog
inspired algorithms, Chap. 11 studied the fruit fly optimization algorithm, Chap. 12
addressed the group search optimizer algorithm, Chap. 13 worked on the invasive
weed optimization algorithm, Chap. 14 covered the music inspired algorithms,
Chap. 15 talked about the imperialist competition algorithm, and Chap. 16
described the teaching-learning-based optimization algorithm. Apart from those
quasi-mature biology principles inspired CI methods, there are some emerging
algorithms also fall within this category. This chapter collects 56 of them that are
currently scattered in the literature and organizes them as follows:

e Section 17.2: Amoeboid Organism Algorithm.
e Section 17.3: Artificial Searching Swarm Algorithm.

B. Xing and W.-J. Gao, Innovative Computational Intelligence: 217
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_17, © Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-03404-1_2
http://dx.doi.org/10.1007/978-3-319-03404-1_3
http://dx.doi.org/10.1007/978-3-319-03404-1_4
http://dx.doi.org/10.1007/978-3-319-03404-1_5
http://dx.doi.org/10.1007/978-3-319-03404-1_6
http://dx.doi.org/10.1007/978-3-319-03404-1_7
http://dx.doi.org/10.1007/978-3-319-03404-1_8
http://dx.doi.org/10.1007/978-3-319-03404-1_9
http://dx.doi.org/10.1007/978-3-319-03404-1_10
http://dx.doi.org/10.1007/978-3-319-03404-1_11
http://dx.doi.org/10.1007/978-3-319-03404-1_12
http://dx.doi.org/10.1007/978-3-319-03404-1_13
http://dx.doi.org/10.1007/978-3-319-03404-1_14
http://dx.doi.org/10.1007/978-3-319-03404-1_15
http://dx.doi.org/10.1007/978-3-319-03404-1_16

218

Section 17.4:
Section 17.5:
Section 17.6:
Section 17.7:
Section 17.8:
Section 17.9:

Section 17.10:
Section 17.11:
Section 17.12:
Section 17.13:
Section 17.14:
Section 17.15:
Section 17.16:
Section 17.17:
Section 17.18:
Section 17.19:
Section 17.20:
Section 17.21:
Section 17.22:
Section 17.23:
Section 17.24:
Section 17.25:
Section 17.26:
Section 17.27:
Section 17.28:
Section 17.29:
Section 17.30:
Section 17.31:
Section 17.32:
Section 17.33:
Section 17.34:
Section 17.35:
Section 17.36:
Section 17.37:
Section 17.38:
Section 17.39:
Section 17.40:
Section 17.41:
Section 17.42:
Section 17.43:
Section 17.44:
Section 17.45:
Section 17.46:
Section 17.47:
Section 17.48:

17 Emerging Biology-based CI Algorithms

Artificial Tribe Algorithm.
Backtracking Search Algorithm.

Bar Systems.

Bean Optimization Algorithm.

Bionic Optimization.

Blind, Naked Mole-Rats.

Brain Storm Optimization Algorithm.
Clonal Selection Algorithm.
Cockroach Swarm Optimization Algorithm.
Collective Animal Behaviour.
Cultural Algorithm.

Differential Search.

Dove Swarm Optimization.

Eagle Strategy.

Fireworks Optimization Algorithm.
FlockbyLeader.

Flocking-based Algorithm.

Flower Pollinating Algorithm.

Goose Optimization Algorithm.

Great Deluge Algorithm.

Grenade Explosion Method.

Group Leaders Optimization Algorithm.
Harmony Elements Algorithm.
Human Group Formation.

Hunting Search.

Krill Herd.

League Championship Algorithm.
Membrane Algorithm.

Migrating Birds Optimization.

Mine Blast Algorithm.

Monkey Search Algorithm.

Mosquito Host-Seeking Algorithm.
Oriented Search Algorithm.

Paddy Field Algorithm.
Photosynthetic Algorithm.

Population Migration Algorithm.
Roach Infestation Optimization.
Saplings Growing Up Algorithm.
Seeker Optimization Algorithm.
Self-Organizing Migrating Algorithm.
Sheep Flock Heredity Model.

Simple Optimization.

Slime Mould Algorithm.

Social Emotional Optimization Algorithm.
Social Spider Optimization Algorithm.

17.1 Introduction 219

Section 17.49: Society and Civilization Algorithm.
Section 17.50: Stem Cells Optimization Algorithm.
Section 17.51: Stochastic Focusing Search Algorithm.
Section 17.52: Swallow Swarm Optimization.
Section 17.53: Termite-hill Algorithm.

Section 17.54: Unconscious Search.

Section 17.55: Wisdom of Artificial Crowds.

Section 17.56: Wolf Colony Algorithm.

Section 17.57: Wolf Pack Search.

The effectiveness of theses newly developed algorithms are validated through
the testing on a wide range of benchmark functions and engineering design
problems, and also a detailed comparison with various traditional performance
leading CI algorithms such as particle swarm optimization (PSO), genetic algo-
rithm (GA), differential evolution (DE), evolutionary algorithm (EA), fuzzy sys-
tem (FS), ant colony optimization (ACO), and simulated annealing (SA).

17.2 Amoeboid Organism Algorithm

In this section, we will introduce an emerging CI algorithm that is derived from the
amoeboid related studies (Reece et al. 2011).

17.2.1 Fundamentals of Amoeboid Organism Algorithm

Amoeboid organism algorithm (AOA) was recently proposed in Zhang et al.
(2007, 2013a) and Nakagaki et al. (2000). To implement AOA for find the shortest
path problem, the following steps need to be performed (Zhang et al. 2007, 2013a;
Nakagaki et al. 2000):

e Step 1: Removing the edges with conductivity equals to zero.

e Step 2: Calculating the pressure of each node based on each node’s current
conductivity and length which can be obtained through Eq. 17.1 (Zhang et al.
2007, 2013a; Nakagaki et al. 2000):

-1 j=1
D; .

EL—{(pi—pj): 1 j=2 . (17.1)

i Y 0 otherwise

e Step 3: Using the pressure of each node acquired via Step 2 to compute each node’s
conductivity based on Eq. 17.2 (Zhang et al. 2007, 2013a; Nakagaki et al. 2000:

220 17 Emerging Biology-based CI Algorithms

Dy
0 == (pi — pj); (17.2)

Ly
where p; represents the pressure at the node N;, D;; denotes the conductivity of
the edge Mj;, and Q;; is used to express the flux through tube M;; from N; to N;.

e Step 4: Evaluating the value of each edge’s conductivity. If it equals to 1,
moving to Step 5; otherwise, jumping to Step 7.

e Step 5: Calculating the next time flux and conductivity based on the current flux
and conductivity value via Eq. 17.3 (Zhang et al. 2007, 2013a; Nakagaki et al.
2000):

ZQil +1p=0
> 0n—1h=0 : (17.3)
@Dy =1(|Qy]) — Dy

e Step 6: Returning to Step 1.
e Step 7: Outputting the solution and terminating the algorithm.

17.2.2 Performance of AOA

Six benchmark test problems with various dimensions were employed in Zhang
et al. (2013a) to test the performance of the proposed AOA. From the simulation
results it can be observed that AOA was able to find the optimal solutions for all
cases, in particular, AOA offers better results that are reported so far in the
literature.

17.3 Artificial Searching Swarm Algorithm
In this section, we will introduce an emerging CI algorithm that is based on the

simulation of the natural biology system.

17.3.1 Fundamentals of Artificial Searching Swarm
Algorithm

Artificial searching swarm algorithm (ASSA) was recently proposed in Chen
(2009), Chen et al. (2009a, b, ¢, 2010a). The procedures of implementing ASSA
are outlined as below (Chen 2009):

17.3 Artificial Searching Swarm Algorithm 221

e Step 1: Setting up the parameters, generating the initial population, and eval-
uating the fitness value.

e Step 2: Dealing with the individual swarm member in turn as follows: Moving
toward the calling peer by one step if a signal is received from such peer;
otherwise implementing the reconnaissance mechanism. Sending a signal to
other peers if a better is found; otherwise moving one step randomly.

e Step 3: Calculating the fitness value and comparing it with the best value found
so far.

e Step 4: Checking whether the terminating criterion is met. If yes, stopping the
algorithm; otherwise, going back to Step 2.

17.3.2 Performance of ASSA

Chen (2009) tested the ASSA on a typical optimal design optimization problem for
the purpose of verifying its effectiveness. The preliminary experimental results
showed that ASSA outperforms GA and offers better solution quality. Chen (2009)
claimed at the end of the study that the small swarm size will help ASSA to
achieve a good searching capability.

17.4 Artificial Tribe Algorithm

In this section, we will introduce an emerging CI algorithm that is inspired by the
natural tribe’s survival mechanism (Magstadt 2013).

17.4.1 Fundamentals of Artificial Tribe Algorithm

Artificial tribe algorithm (ATA) was recently proposed in Chen et al. (2012). The
basic inspiration of ATA is renewing the tribe through the strategies of propa-
gation and migration, and relocating the tribe by moving to a better living envi-
ronment if the current one is getting worse. The two unique characteristics of ATA
make it different to other popular swarm intelligence techniques: First, if the
present living condition is good, the tribe will tend to propagate, through propa-
gation strategy, the nest generation which is similar to the feature found in genetic
algorithm; Second, on the contrary, if the current living situation is bad, the tribe
will intend to relocate, by using migration strategy, to another place. Once they are
settled, the tribe will continue to propagate. This feature of ATA and the position
changing policy used in PSO are alike. Built upon the aforementioned concepts,
the running flow of ATA can be described as follows (Onwubolu 2006; Chen et al.
2006, 2012; Coelho and Bernert 2009):

222 17 Emerging Biology-based CI Algorithms

e Step 1: Setting parameters, initializing the tribe, and computing the fitness value.

e Step 2: Adding one to iteration counter, evaluating the current living condition
of the tribe, and making decisions according to a simple rule (i.e., if living
condition is good, then propagation; otherwise, migration).

e Step 3: Calculating the fitness value.

e Step 4: Determining whether the terminating criteria is met (if so, then stopping
the iteration; otherwise, returning to Step 2).

17.4.2 Performance of ATA

Seven benchmark test functions were employed in Chen et al. (2012) to test the
performance of the proposed ATA. From the simulation results it can be observed
that the tribe size is an important factor for a successful implementation of ATA.
In general, the larger size we set for a tribe, the better performance we can obtain
but with the cost of a reduced ATA’s efficiency. On the other hand, the ATA is
able to run fast with a small tribe size but which unfortunately results in low
population diversity.

17.5 Backtracking Search Algorithm

In this section, we will introduce an emerging CI algorithm that simulates the
movement exhibited by an migrating organism, namely, Brownian-like random-
walk (Bolstad 2012; Durrett 1984; Shlesinger et al. 1999).

17.5.1 Fundamentals of Backtracking Search Algorithm

Backtracking search algorithm (BSA) was originally proposed in Civicioglu
(2013). The motivation of developing BSA is to design simpler and more effective
search algorithms. Therefore, unlike many other optimization algorithms, BSA has
only one controlling variable and its initial value also does affect the BSA’s overall
problem-solving ability. To implement BSA, the following five processes need to
be performed (Civicioglu 2013):

e Process 1: Initialization. In BSA, the initial population P can be defined through
Eq. 17.4 (Civicioglu 2013):

Pij~U(lowj,up;), i=1,2,..,Nandj=1,2,...,D, (17.4)

17.5 Backtracking Search Algorithm 223

where the population size and problem dimension are denoted by N and D,
respectively, U represents a uniform distribution, and P; stands for a target
individual in the population P.

e Process 2: Selection-I. In BSA, the historical population oldP is determined at
this stage for computing the search direction. The initial historical population is
computed through Eq. 17.5 (Civicioglu 2013):

oldP;j~ U (lowj,up;), i=1,2,...,Nandj=1,2,...,D. (17.5)

At the start of each iteration, an oldP redefining mechanism is introduced in
BSA through the if-then rule defined by Eq. 17.6 (Civicioglu 2013):

if a<b then oldp := Pla,b~ U(0, 1), (17.6)

where := denotes the updating operation.
e Process 3: Mutation. At this stage, the initial form of the trial population Mutant
is created by Eq. 17.7 (Civicioglu 2013):

Mutant = P + F - (oldP — P). (17.7)

e Process 4: Crossover. The final form of the trial population T is generated at this
stage.

e Process 5: Selection-II. At this step, a set of T;s which have better fitness values
than the corresponding P;s are utilized to renew the P;s according to a greedy
selection mechanism.

17.5.2 Performance of BSA

To verify the proposed BSA, Civicioglu (2013) employed 3 test function sets in
which the Set-1 involves 50 widely recognized benchmark functions, the Set-2
contains 25 benchmark problems that used in CEC 2005, and the Set-3 consists of
three real-world cases used in CEC 2011. Through a detailed comparison and
analysis, the results showed that BSA can solve a greater number of benchmark
problems and can offer statistically better outcomes than its competitors.

17.6 Bar Systems Algorithm

In this section, we will introduce an emerging CI algorithm that is based on a
common phenomenon observed from human social life (Ramachandran 2012a, b, c;
Carlson 2013).

224 17 Emerging Biology-based CI Algorithms

17.6.1 Fundamentals of Bar Systems Algorithm

Bar systems (BSs) algorithm was recently proposed in Acebo and Rosa (2008).
The BSs algorithm was inspired by the social behaviour of the staffs or bartenders,
and can be enclosed in the broader class of swarm intelligence. In the bar, bar-
tenders have to act in a highly dynamic, asynchronous and time-critical environ-
ment, and no obvious greedy strategy (such as serving first the best customer,
serving first the nearest customer or serving first the customer who has arrived
first) gives good results (Acebo and Rosa 2008). Thus, the multi-agent system
provides a good framework to rise to the challenge of developing a new class of
adaptive and robustness systems.

In general, the crucial step in BSs algorithm is the choice of the task which the
agent has to execute for the next time step. In BSs, acting as bartenders, agents
operate concurrency into the environment in a synchronous manner; execute the
task where they should pour the drinks. After an initial phase, the “bartenders”
make their decisions according to the different problem-dependent properties (e.g.,
weight, speed, location, response time, maximum load, etc.), instead of making
decisions randomly. Over time, if an agent is unable to adapt the environment to
the preconditions of the task (such as the cost for agent to execute the task in the
current state of the environment) or if it is unable to carry the task out by itself then
it will be eliminated. Briefly, the BSs algorithm can be defined as a quadruple
(E, T, A, F) where (Acebo and Rosa 2008):

e E is a (physical or virtual) environment. The state of the environment at each
moment is determined by a set of state variables (Vg). One of those variables is
usually the time, due to the major objective of bartenders is to keep the cus-
tomers waiting for a shorter time. The set of all possible states of the envi-
ronment is defined as S which is the set of all the possible simultaneous
instantiations of the set of state variables (V).

o T ={n,ts,...,ty} is a set of tasks to be accomplished by the agents within the
environment. Each task (#;) has associated: pre(z;) denotes a set of preconditions
over Vg which determine whether the task (#;) can be done; imp(t;) stands for a
non-negative real value which reflects the importance of the task (#;); and urg(t;)
denotes a function of Vg which indicates the urgency of task (#;) in the current
state of the environment. It will usually be a non-decreasing function of time.

e A={aj,ay,...,ay} is a set of agents situated into the environment. Each agent
(a;) can have different objective (e.g., weight, speed, location, response time,
maximum load, etc.). A cost, cost(a;,t;), is associated with each agent. If an
agent is unable to adapt the environment to the preconditions of the task or if it
is unable to carry the task out by itself, then the cost(a;, #;) will be defined as
infinite. In general, this cost can be divided in two parts: the cost for a; to make
the environment fulfil the preconditions of task (z;), usually this can include the
cost of stop doing his current tasks; and the cost for a; to actually execute ;.

e F:S x A xT — Ris the function which reflects the degree to which agents are
“attracted” by tasks. Overall, given a state of the environment, an agent and a

17.6 Bar Systems Algorithm 225

task, F(s,a;, t;), must be defined in a way such that it increases with imp(z;) and
urg(;) and it decreases with cost(a;, t;).

17.6.2 Performance of BSs

At the end of their work, Acebo and Rosa (2008) tested the applicability and
efficiency of the proposed BSs algorithm on a NP-hard problem in which a group
of loading robots in a commercial harbour has to be well scheduled so that all
required containers are transported to the targeted ship while keeping the trans-
portation cost as low as possible. The experiments results indicated that BSs can
provide much better results than other greedy algorithms.

17.7 Bean Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on some
studies of bean (Marcus 2013; Sizer and Whitney 2014; Maathuis 2013; Reece
et al. 2011).

17.7.1 Fundamentals of Bean Optimization Algorithm

Bean optimization algorithm (BeOA) was recently proposed in Zhang et al.
(2008b, 2013b, c). It has shown good performance in solving some difficult
optimization problems such as travelling salesman problem (Zhang et al. 2012a; Li
2010) and scheduling problem (Zhang et al. 2010; Wang and Cheng 2010).

Just like other CI algorithms, a potential solution of problem space is firstly
encoded into BeOA representation of search space. Situation of each individual
bean can thus be expressed as vector like X = {x;,x2,x3,...,%,} indicating the
current state of each bean, where n is determined by the scale of problem to be
resolved. The environment in which the beans are sown is mainly the solution
space and the states of other beans. The basic equation of implementing BeOA is
shown in Eq. 17.8 (Zhang et al. 2012a):

X[i] = {X[i] if X[i]is a father bean (17.8)

Xomp + Distribution(X,,,) - A if X[i]is not a father bean’

where X[i] is the position of bean i, X,; is the position of the father bean.
Distribution(X,,;) is the random variable with a certain distribution of father bean
in order to get the positions of its descendants. Parameter A can be set according to
the range of the problem to be resolved.

In addition, when the descendant beans finished locating, their fitness values are
to be evaluated. The beans with most optimal fitness value will be selected as the

226 17 Emerging Biology-based CI Algorithms

candidates of father beans in the next generation. The candidates of father beans
should also satisfy the condition that the distance between every two father beans
should be larger than the distance threshold. This condition assures that the father
beans can have a fine distribution to avoid premature convergence and enhance the
performance of the BeOA for global optimization. If all the conditions can be
satisfied, the candidate can be set as the father bean for next generation.

17.7.2 Performance of BeOA

In general, the BeOA shares many common points inspired from models of the
natural evolution of species. For example, they are population-based algorithms
that use operators inspired by population genetics to explore the search space (the
most typical genetic operators are reproduction, mutation, and crossover). In
addition, they update the population and search for the optimum with random
techniques. Differences among the different biology-based CI algorithms concern
the particular representations chosen for the individuals and the way genetic
operators are implemented. For example, unlike GA, BeOA does not use genetic
operators like mutation, they update themselves with distance threshold.

17.8 Bionic Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on studies
related to the bionic research (Levin 2013a, b, c, d, e, f).

17.8.1 Fundamentals of Bionic Optimization Algorithm

Bionic optimization (BO) algorithm was recently proposed in Song et al. (2013)
for dealing with turbine layout optimization problem in a wind farm. The core
concept of BO is to treat each turbine as an individual bion, attempting to be
repositioned where its own power outcomes can be increased. There are several
BO related studies available in the literature (Zang et al. 2010; Steinbuch 2011;
Wei 2011). In Song et al. (2013), the authors defined the BO as a two-stage
optimization process in which the Steps 1-6 are included in the Stage 1 and the
Stage 2 contains the Steps 7-11. The detailed descriptions about each corre-
sponding step are provided as below (Song et al. 2013):

e Step 1: When a turbine is being added to an existing wind farm, an evaluation
function will be employed to assess each discretized points for the newly
introduced turbine. In Song et al. (2013), the evaluation function is defined by
Eq. 17.9:

17.8 Bionic Optimization Algorithm 227

a@:_;§+§:mw_gm. (17.9)

i=1

Calculating u(x) through Eq. 17.10 to obtain the flow field for empty layout
(Song et al. 2013).

P(x) = F(d (x)) = F(u(x)[1 — Be(x)]). (17.10)

e Step 2: Computing the evaluation values for all the discretized points through
Eq. 17.11 (Song et al. 2013):
P(x) | ¢

E(x) = -7 + Y " D([[x = xil)- (17.11)
max i=1

e Step 3: Adding a turbine at the point where the evaluation value is the least.

e Step 4: Terminating the Stage 1 if the turbine numbers pass a specified
boundary.

e Step 5: Through the particle model mechanism, simulating the wake flow for all
turbines and computing c(x) through Eq. 17.12 (Song et al. 2013):

P(x) = F(u/(x)) = F(u(x)[1 - fe(x)]). (17.12)
e Step 6: Going back to Step 2.

e Step 7: Since the wake flow created by the later added turbines could still
influence the former existing turbines, there is a necessity to further optimize the
layout. At this step, one turbine with the same order as in the adding process will
be removed.

e Step 8: Calculating the wake flow through the particle model mechanism.

e Step 9: Computing the evaluation values for all points.

e Step 10: Re-adding a turbine into the layout at the point with the least evaluation
value.

e Step 11: Going back to Step 7.

17.8.2 Performance of BO

In BO, the layout adjustment strategy within each step is controlled by the eval-
vation function without any randomness which make BO require much less
computational time in comparison with other CI algorithm, e.g., GA and PSO.
Through several case studies such as flat terrain scenario, complex terrain scenario,
and grid dependency of time cost context, Song et al. (2013) claimed at the end of
their study that, for the considered cases, the BO produced better solution quality,
in particular for complex terrain case.

228 17 Emerging Biology-based CI Algorithms

17.9 Blind, Naked Mole-Rats Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
blind naked mole-rats’ social behaviour in looking for food resources and pre-
venting the whole colony from the potential invasions (Mills et al. 2010).

17.9.1 Fundamentals of Blind, Naked Mole-Rats Algorithm

Blind, naked mole-rats (BNMR) algorithm was recently proposed by Taherd-
angkoo et al. (2012a). For the purpose of simplification, the BNMR algorithm does
not distinguish the soldier moles from the employed moles, i.e., these two types of
moles are simply placed in one single group which is called employed moles in
BNMR. To implement BNMR algorithm, the following steps need to be performed
(Taherdangkoo et al. 2012a):

e First, randomly generating the initial population of the blind naked mole-rats
colony across the whole problem space. In BNMR, the number of the population
is designed twice as much as the food resources where each of the food
resources denotes a response for target problem space. According to Taherd-
angkoo et al. (2012a), some parameters can be defined by Eq. 17.13:

xp =M B — XM=, (17.13)

l

where x; denotes the ith food source, f represents a random variable which falls
within [0, 1], and S is the total number of food sources.

e In addition, the underground temperature is also taken into account as defined by
Eq. 17.14 (Taherdangkoo et al. 2012a):

H(x) = p(x)C(x) —ATA(f”)
pC = fi(pC)Hfa(pC) ,+fiu(pC),, > (17.14)
L+fatfv=1

where H(x) stands for the soil temperature which changes with the depth x, p(x)
and C(x) denotes the soil’s thermal properties (e.g., the density and the specific
heat capacity). Although p(x) and C(x) are variables vary with the changing of
environment, in BNMR, they are treated as constant which falls within [2, 4],
AT (x,t)/At is the rate of the soil temperature varying with the time, f stands for
the volumetric contribution of each element in the compound, and the three
subscripts (i.e., s, a, and w) indicate the soil components (e.g., sand, air, and
water).

e During the search of neighbours for food sources, the attenuation coefficient A
has to be updated in each iteration. The Eq. 17.15 is used to express such fact
(Taherdangkoo et al. 2012a):

17.9 Blind, Naked Mole-Rats Algorithm 229

—or

Agzzﬁ—‘b-—expﬁﬁr)} (17.15)

where o denotes a random number which falls within [0, 1] (in BNMR, a fixed
value of o = 0.95 is employed for simplicity), and ¢ represents the iteration step.

e Then, for each food source, two employed moles will be dispatched. The
acquired food sources are grouped by queen mole according to the probability of
P which is calculated via Eq. 17.16 (Taherdangkoo et al. 2012a):

Fitness; = FS; X R;
P, = e
>_j— Fitness;

(17.16)

where Fitness; is assessed by its employed moles, FS; is relative to the best food
sources, R; represents the route to the food source, and N stands for the food
sources number.

e Finally, BNMR algorithm also takes the colony defence into account which is
calculated through Eq. 17.17 (Taherdangkoo et al. 2012a):

Bl =(xB", (17.17)

where { is a user defined coefficient ({>1), and B} denotes the number of
eliminated points for the ith food source during the rth iteration.

17.9.2 Performance of BNMR

In order to show how the BNMR algorithm performs, Taherdangkoo et al. (2012a)
used 24 benchmark test functions such as Shifted Sphere function, Shifted Rotated
High Conditioned Elliptic Function, Shifted Rosenbrock’s Function, Shifted
Rotated Griewank’s Function without Bounds, and Shifted Rastrigin’s Function.
Compared with other CI techniques (e.g., GA, PSO, SA, etc.), the BNMR algo-
rithm has better convergence than its competitive algorithms which demonstrates
that BNMR is capable of getting out of local minimum in the problem space and
reaching the global minimum.

17.10 Brain Storm Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
outputs of human brain related research (Gross 2014; Wilson 2013; Taylor 2012).

230 17 Emerging Biology-based CI Algorithms

17.10.1 Fundamentals of Brain Storm Optimization
Algorithm

Brain storm optimization algorithm (BSOA) was recently proposed by Shi
(2011a). Since the human beings are among on of the most intelligent social
animals on earth, the BSO was engineered to have the ability of both convergence
and divergence. The process of brainstorming (or brainwaving) is often utilized in
dealing with a set of complicated problems which are not always solvable for an
individual person. A detailed description about the natural human being brain
storm process can be found in Shi (2011b). A typical brain storm process generally
follows the eight steps (Shi 2011b; Xue et al. 2012; Zhan et al. 2012; Zhou et al.
2012; Krishnanand et al. 2013):

e Step 1: Getting together a brainstorming group of people with as diverse
background as possible.

e Step 2: Generating many ideas according to the four principles (i.e., suspend
judgment, anything goes, cross-fertilize, and go for quantity) of idea generation
guidance.

e Step 3: Having several customers act as the owners of the problem to pick up a
couple of ideas as better ideas for solving the targeted problem.

e Step 4: Using the fact that the ideas (selected in Step 3) enjoy a higher chosen
probability than their competitor ideas as an evidence to generate more ideas
based again on the four principles.

e Step 5: Having the customers to select several better ideas again as they did in
Step 3.

e Step 6: Picking up an object randomly and using the intrinsic characteristics of
the object as the indication to create more ideas (still based on the four prin-
ciples of idea generation guidance).

e Step 7: Letting the customers choose several better ideas as they did in Step 3.

e Step 8: Obtaining a fairly good enough problem solution at the end of the brain
storm process.

Although the three-round brain storm process, participated by a group of real
human beings, can not last for too long, in a computer simulation environment, we
can set the round of idea generation to a very large number as we desire.

17.10.2 Performance of BSOA

To test the performance of BSOA, Shi (2011b) chose ten benchmark functions
(among them, five are unimodal functions, while the other five are multimodal
functions). The simulation results indicated that BSOA algorithm performed rea-
sonably well.

17.11 Clonal Selection Algorithm 231

17.11 Clonal Selection Algorithm

In this section, we will introduce an emerging CI algorithm that is based on
Darwin’s evolutionary theory and clone related studies (Gamlin 2009; Mayfield
2013; Woodward 2008; Steinitz 2014).

17.11.1 Fundamentals of Clonal Selection Algorithm

Clonal selection algorithm (CSA) was recently proposed in Castro and Zuben
(2000). There are several CSA related variants and applications can be found in the
literature (Castro and Zuben 2002; Campelo et al. 2005; Gao et al. 2013; Wang
et al. 2009; Batista et al. 2009; Ding and Li 2009; Riff et al. 2013). Interested
readers are referred to two excellent reviews (Brownlee 2007; Ulutas and Kulturel-
Konak 2011) for updated information. To implement CSA, the following steps
need to be performed (Castro and Zuben 2000):

e Step 1: Creating a set of candidate solutions (denoted by P), composing of the
subset of memory cells (represented by M), and adding to the remaining pop-
ulation (P,), i.e., P =P, + M.

e Step 2: According to an affinity measure, choosing the n best individuals of the
population, named P,.

e Step 3: Cloning the population of these n best individuals and giving rise to a
intermediate population clones, called C. The clone size is regarded as an
increasing function of the affinity with the antigen.

e Step 4: Submitting the population of clones to a hypermutation mechanism. A
maturated antibody population is then generated and denoted by C*.

e Step 5: Reselecting the improved individuals from C* to compose the memory
set, i.e., M.

e Step 6: Replacing d andibodies by novel ones (introduced through diversity
strategy). In CSA, the replacement probability of lower affinity cells is in
general high.

17.11.2 Performance of CSA

To verify the CSA, three problem sets are considered in Castro and Zuben (2000),
namely, binary character recognition task, multimodal optimization problem, and
the classic travelling salesman problem. In comparison with GA, the simulation
results demonstrated that CSA is a very promising CI algorithm which has showed
a fine tractability regarding the computational cost.

232 17 Emerging Biology-based CI Algorithms

17.12 Cockroach Swarm Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
behaviours observed through cockroach studies (Bell et al. 2007; Lihoreau et al.
2010; Lihoreau et al. 2012; Chapman 2013; Bater 2007; Reece et al. 2011).

17.12.1 Fundamentals of Cockroach Swarm Optimization
Algorithm

Cockroach swarm optimization algorithm (CSOA) was recently proposed in Chen
and Tang (2010, 2011; Cheng et al. 2010). The basic concept of CSOA is that
located in the D-dimensional search space RP, there is a swarm of cockroaches
which contains N cockroach individuals. The ith individual denotes a D-dimen-
sional vector X(i) = (xi1, X2, ..., xip) for (i =1,2,...,N), the location of each
individual is a potential solution to the targeted problem. The model of CSOA
consists of three behaviours, namely, chase-swarming, dispersing, and ruthless
which are explained as below (Chen and Tang 2010, 2011; Cheng et al. 2010).

e Chase-swarm behaviour: Each individual cockroach X(i) will run after (within
its visual range) a cockroach P(i) which carries the local optimum. This
behaviour is modelled as Eq. 17.18 (Chen and Tang 2010, 2011; Cheng et al.
2010):

X'() - {X(i) + step - rand - [P(i) — X(i)] i X(i) # P(i)

X(i) + step - rand - [P, — X(i)] if X(i) = P(i)’ (17.18)

where P, = Opt;{X(i), i =1, ..., N} denotes the global optimum individual
cockroach, P(i) = Opt;{X(j)||X(i) — X(j)|| <visual, i =1,...,N and j =1,
..., N}, step represents a fixed value, and rand stands for a random number within
the interval of [0, 1].

e Dispersing behaviour: During a certain time interval, each individual cockroach
will be randomly dispersed for the purpose of keeping the diversity of the
current swarm. This behaviour is modelled through Eq. 17.19 (Chen and Tang
2010, 2011; Cheng et al. 2010):

X'(i) = X(i) + rand(1, D), i=1,...,N, (17.19)

where rand(1, D) is a D-dimensional random vector which falls within a certain
interval.

e Ruthless behaviour: At a certain time interval, the cockroach which carries the
current best value substitute another cockroach in a randomly selection manner.

17.12 Cockroach Swarm Optimization Algorithm 233

This behaviour is modelled through Eq. 17.20 (Chen and Tang 2010, 2011;
Cheng et al. 2010):

X(k) = P,, (17.20)
where k is a random integer within the interval of [1, N].

Built on these three behaviours, the working procedure of the CSOA algorithm
can be classified into the following steps (Chen and Tang 2010, 2011; Cheng et al.
2010):

Step 1: Setting parameters and initializing population;

Step 2: Search P(i) and Py;

Step 3: Performing chase-swarming and updating P,;

Step 4: Executing dispersing behaviour and updating P,;

Step 5: Running ruthless behaviour;

Step 6: Checking stopping criterion. If yes, generate output; otherwise, go back
to step 2.

17.12.2 Performance of CSOA

In Chen and Tang (2011), the authors made an attempt to employ CSOA to solve
vehicle routing problem (VRP), more specifically, the VRP with time windows
(VRPTW for short). In general the VRPTW can be stated as follows: Products are
to be delivered to a group of customers by a fleet of vehicles from a central depot.
The locations of the depot and the customers are known. The object is to find a
suitable route which minimizes the total travel distance or cost subject to the
constraints listed below.

e Each customer is visited only once by exactly one vehicle;

e Each vehicle has the fixed starting and ending point (i.e., the depot);

e The vehicles are capacitated which means the total demand of any route should
not exceed the maximum capacity of an assigned vehicle;

e The visit to a customer is time restrict, i.e., each customer can only be served
during a certain time period.

To test the effectiveness of the CSOA for focal problem, Chen and Tang (2011)
conducted a study on VRP and VRPTW separately. The experimental results were
compared with PSO and the improved PSO. Through the comparison, the authors
claimed that CSOA is able to explore the optimum with higher optimal rate and
shorter time.

234 17 Emerging Biology-based CI Algorithms

17.13 Collective Animal Behaviour Algorithm

In this section, we will introduce a new CI algorithm which inspired by the
collective decision-making mechanisms among the animal groups (Sulis 1997;
Tollefsen 2006; Nicolis et al. 2003; Schutter et al. 2001; You et al. 2009; Couzin
2009; Aleksiev et al. 2008; Stradner et al. 2013; Zhang et al. 2012b, Niizato and
Gunji 2011; Oca et al. 2011; Eckstein et al. 2012; Petit and Bon 2010).

17.13.1 Fundamentals of Collective Animal Behaviour
Algorithm

Collective animal behaviour (CAB) algorithm was originally proposed by Cuevas
et al. (2013). In CAB, each animal position is viewed as a solution within the
search space. Also, a set of rules that model the collective animal behaviours will
be employed in the proposed algorithm. The main steps of CAB are outlined below
(Cuevas et al. 2013):

e Initializing the population. Generate a set A of N, animal positions
(A ={ay,a,,... aNp}) randomly in the D-dimensional search space as defined
by Eq. 17.21 (Cuevas et al. 2013):

ajﬁi = a;‘”" + rand(O, 1) : (a;ligh - Q;OW) (17 21)
j=1,2,...D;i=1,2,..,N,.

where a}”w and a]]-”gh represent the lower bound and upper bound, respectively,

and a;; is the jth parameter of the ith individual.

e Calculating and sorting the fitness value for each position. According to the
fitness function, the best position (B) which is chosen from the new individual
set X = {x1,Xa,...,Xy, } will be stored in a memory that includes two different
elements as expressed in Eq. 17.22 (Cuevas et al. 2013):

for maintaining the best found positions
in each generation

for storing the best history positions
during the complete evolutionary process

g -
(17.22)
ho-

e Keep the position of the best individuals. In this operation, the first B elements
of the new animal position set A({a,ay,...,ap}) are generated. This behaviour
rule is modelled via Eq. 17.23 (Cuevas et al. 2013):

a=m, +v, (17.23)

17.13 Collective Animal Behaviour Algorithm 235

where / € {1,2,..., B} while mél represents the historic memory My, and v is a
random vector holding an appropriate small length.

e Move from or to nearby neighbours. This operation can be defined by Eq. 17.24
(Cuevas et al. 2013):

X; £ - (mpmet —x;) with probability H
a; = (17.24)

Xt (mgemest - x,») with probability (1 — H)’

where i € {B +1,B+2,.. .,N,,}, mj*™est and mgeames‘ represent the nearest
elements of My, and M, to x;, respectively, and r is a random number between
[—1,1].

e Move randomly. This rule is defined by Eq. 17.25 (Cuevas et al. 2013):

(17.25)

a—4F with probability P
"7 | x; with probability (1 —P)’

where i € {B +1,B+2,.. ‘,N,,}, and r is a random vector defined within the
search space.

e Updating the memory. The updating procedure is as follows (Cuevas et al.
2013):
Two memory elements are merged together as shown in Eq. 17.26 (Cuevas et al.
2013):

My (My = M, UM). (17.26)

Based on the parameter (p), the elements of the memory My is calculated. The
p value is computed via Eq. 17.27 (Cuevas et al. 2013):

D high —_low
I~ ("j 4

10-D ’
where a]l."w and a;'igh represent the pre-specified lower bound and the upper
bound, respectively, within a D-dimensional space.

e Optimal determination. It is defined by Eq. 17.28 (Cuevas et al. 2013):

p= (17.27)

_ MaXﬁtness(Mh)
6 b
where Th represents a threshold value that decide which elements will be

considered as a significant local minimum, and Maxﬁ,ms(Mh) represent the best
fitness value among M, elements.

Th (17.28)

236 17 Emerging Biology-based CI Algorithms

17.13.2 Performance of CAB

In order to evaluate the performance of CAB, a set of multimodal benchmark
functions were adopted in Cuevas et al. (2013), namely, Deb’s function, Deb’s
decreasing function, Roots function, two dimensional multimodal function, Ras-
tringin’s function, Shubert function, Griewank function, and modified Griewank
function. Compared with other CI algorithms, computational results showed that
CAB outperforms the other algorithms in terms of the solution quality.

17.14 Cultural Algorithm

In this section, we will introduce an CI algorithm that is based on the human social
evolution (Mayfield 2013).

17.14.1 Fundamentals of Cultural Algorithm

Cultural algorithm (CA) was originally proposed in Reynolds (1994, 1999). There
are several variants and application can be found in the literature (Digalakis and
Margaritis 2002; Alexiou and Vlamos 2012; Ochoa-Zezzatti et al. 2012; Srini-
vasan and Ramakrishnan 2012; Silva et al. 2012). In CA, the evolution process can
be viewed as a dual-inheritance system in which two search spaces (i.e., the
population space and the belief space) are included.

In general, the population space is used to represent a set of behavioural traits
associated with each individual. On the other hand, the belief space is used to
describe different domains of knowledge that the population has of the search
space and it can be delivered into distinct categories, such as normative knowl-
edge, domain specific knowledge, situational knowledge, temporal knowledge,
and spatial knowledge. In other words, the belief space is used to store the
information on the solution of the problem.

Furthermore, at each iteration, two functions (i.e., acceptance function and
influence function) and two operators (i.e., crossover and mutation) are employed
to maintain the CA algorithm. The acceptance function is used to decide which
knowledge sources influence individuals. On the other hand, the influence function
is used to determine which individuals and their behaviours can impact the belief
space knowledge. Also, the crossover and mutation operators are used to support
the population space that control the beliefs’ changes in individuals.

17.14 Cultural Algorithm 237

The main steps of CA can be outlined as follows (Reynolds 1994):

e Step 1: Generate the initial population.

o Step 2: Initialize the belief space. In CA, if only two knowledge components,
i.e., situational knowledge component and normative knowledge component are
employed, the belief space can be defined by Eq. 17.29 (Reynolds 1994, 1999):

B(t) = (S(1),N(1)), (17.29)

where the situational knowledge component is represented by S(z), and N(z)
denotes the normative knowledge component.

e Step 3: Evaluate the initial population.

e Step 4: Iterative procedure. First, update the belief space (with the individuals
accepted). Second, apply the variation operators (under the influence of the
belief space). Third, evaluate each child. Fourth, perform selection.

e Step 5: Check termination criteria.

17.14.2 Performance of CA

To verify CA, a set of studies are conducted in Reynolds (1994). The experiments
results demonstrated that CA is indeed a very promising solver for dealing with
optimization problems.

17.15 Differential Search Algorithm

In this section, we will introduce an emerging CI algorithm that simulates the
movement exhibited by an migrating organism, namely, Brownian-like random-
walk (Bolstad 2012; Durrett 1984; Shlesinger et al. 1999).

17.15.1 Fundamentals of Differential Search Algorithm

Differential search (DS) algorithm was originally proposed in Civicioglu (2012).
To implement DS, the following features need to be considered (Civicioglu 2012;
Sulaiman 2013):

e Feature 1: In DS, a set of artificial organisms making up a super-organism,
namely, Superorganism,, g = {1,2,. .., maxgeneration} in which the number of
organisms is equivalent to the size of the problem (i.e., x;;, j = {1,2,...,D}).

e Feature 2: In DS, a member of a super-organism (i.e., an artificial organism) in
its initial position can be defined through Eq. 17.30 (Civicioglu 2012):

238 17 Emerging Biology-based CI Algorithms

x;j = rand - (up; — low;) + low;, (17.30)

where X; = [x;;| represents a group of artificial organism, and the artificial
super-organism can thus be expressed by Superorganismg, = [X;].

e Feature 3: In DS, the movement style for an artificial super-organism finding a
stopover site is modelled by Brownian-like random walk. Several randomly
chosen individuals within an artificial super-organism move forward to the
targets of donor which equals to [andomvshuﬁzmg(i)] for the purpose of discov-
ering stopover sites which is generated through Eq. 17.31 (Civicioglu 2012):

StopoverSite = Superorganism + Scale - (donor — Superorganism). (17.31)

e Feature 4: In DS, in order to generate the scale value, a gamma-random number
creator (i.e., randg) controlled by an uniform-random number creator (i.e., rand)
and both falling within the range of [0, 1] are employed.

e Feature 5: In DS, the numbers of individual artificial organism to join the
stopover site search process are decided in an random manner.

e Feature 6: In DS, if a more fertile stopover site is discovered, a group of artificial
organisms will move to the newly founded place, while the artificial super-
organism will keep searching.

e Feature 7: There are only two controlling variables (i.e., p; and p,) are used in
DS. Through conducting a set of detailed tests, Civicioglu (2012) suggested the
following values (see Eq. 17.32) can provide the best solutions for the respec-
tive problems.

p1 =p2=0.3"rand. (17.32)

17.15.2 Performance of DS

To verify the proposed DS, Civicioglu (2012) employed two test function sets in
which the Test Set-1 consists of 40 benchmark functions (e.g., Shubert function,
Stepint function, Trid function, etc.) and the Test Set-2 is composed of 12
benchmark test functions which include such as Shifted Sphere function, Shifted
Schwefel’s function, Shifted Rastrigin Function, and Shifted Rosenbrock function.
In comparison with other 8 widely used optimization algorithms through the use of
statistical approaches, the experimental results demonstrated that DS is a very
attractive solver for numerical optimization problems. At the end of the study,
Civicioglu (2012) further applied DS to the problem of transforming the geocentric
cartesian coordinates into geodetic coordinates. Compared with the other 9 clas-
sical methodologies and 8 CI algorithms which have been previously reported in
dealing with the same problem, the results also confirmed the practicability and
high level of accuracy of DS.

17.16 Dove Swarm Optimization Algorithm 239

17.16 Dove Swarm Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on
foraging behaviours observed from a dove swarm (Mills et al. 2010).

17.16.1 Fundamentals of Dove Swarm Optimization
Algorithm

Dove swarm optimization (DSO) algorithm was recently proposed in Su et al.
(2009). The basic working principles of DSO are listed as follows (Su et al. 2009):

e Step 1: Initializing the number of doves and deploying the doves on the 2-
dimensional artificial ground.

e Step 2: Setting the number of epochs (¢ = 0), and the degree of satiety, ;=0
for j=1,...,M x N. Initializing the multi-dimensional sense organ vector, w;
forj=1,....M xN.

e Step 3: Computing the total amount of the satiety degrees in the flock,
T(e) = 5" f

e Step 4: Presenting an input pattern (i.e., piece of artificial crumb) X to the
M x N doves.

e Step 5: Locating the dove by closest to the crumb X according to the minimum-
distance criterion shown in Eq. 17.33 (Su et al. 2009):

by = argmjnHic'k - v'&j(k)H, forj=1,...,M x N, (17.33)
J
The dove with the artificial sense organ vector which is the most similar to the

artificial crumb, X, is claimed to be the winner.

e Step 6: Updating each dove’s satiety degree through Eq. 17.34 (Su et al. 2009):

[= %, ()]

TR —ww] +4ff(old), forj=1,....MxN. (17.34)
J

[(new) =

e Step 7: Selecting the dove, by, with the highest satiety degree based on the
following criterion expressed as Eq. 17.35 (Su et al. 2009):

by = arg]<I/Ilall)/l(><Nfi (17.35)

e Step 8: Updating the sense organ vectors and the position vectors via Egs. 17.36
and 17.37, respectively (Su et al. 2009):

240 17 Emerging Biology-based CI Algorithms

7 _ [Wu (k) + m,y (R — Wy, (k) for j = by
e { (k) for j # by’ (17.36)

Bilk + 1) = p;(k) + n,B(Py, (k) — pj(k)), forj=1,...,M xN. (17.37)

e Step 9: Returning to Step 4 until all patterns are processes.
e Step 10: Stopping the whole training procedure if the following criterion (see
Eq. 17.38) is met (Su et al. 2009):

MxN

Zjﬁ —T(e)

Otherwise, increasing the number of epochs by one (¢ = e + 1), and go back to
Step 3 until the pre-defined limit for the number of epochs is met. The satisfaction
of the criterion given above means that the total amount of satiety degree has
converged to some extent.

<e. (17.38)

17.16.2 Performance of DSO

In general there are two main obstacles encountered in data clustering: the geo-
metric shapes of the clusters are full of variability, and the cluster numbers are not
often known a priori. In order to determine the optimal number of clusters, Su et al.
(2009) employed DSO to perform data projection task, i.e., projecting high-
dimensional data onto a low-dimensional space to facilitate visual inspection of
the data. This process allows us to visualize high-dimensional data as a 2-
dimensional scatter plot. The basic idea in their work can be described as follows
(Su et al. 2009): In a data set, each data pattern, X, is regarded as a piece of
artificial crumb and these artificial crumbs (i.e., data patterns) will be sequentially
tossed to a flock of doves on a two-dimensional artificial ground. The flock of
doves adjusts its physical movements to seek these artificial crumbs. Individual
members of the flock can profit from discoveries of all of the other members of the
flock during the foraging procedure because an individual is usually influenced by
the success of the best individual of the flock and thus has a desire to imitate the
behaviour of the best individual. Gradually, the flock of the doves will be divided
into several groups based on the distributions of the artificial crumbs. Those
formed groups will naturally correspond to the hidden data structure in the data set.
By viewing the distributions of the doves on the 2-dimensional artificial ground,
we may quickly find out the number of clusters inherent in the data set. However,
many practical data sets have high-dimensional data points. Therefore, the
aforementioned idea has to be generalized so that it can process high-dimensional
data. In the real world, each dove has a pair of eyes to find out where crumbs are,
but in the artificial world, a virtual dove does not have the capability to perceive a

17.16 Dove Swarm Optimization Algorithm 241

piece of multi-dimensional artificial crumb that is located around it. In order to
cope with issue, Su et al. (2009) equipped each dove with functionalities, i.e., a
multi-dimensional artificial sense organ represented as a sense organ vector, w,
which has the same dimensionality as a data pattern, X, and a 2-dimensional
position vector, p, which represents its position on the 2-dimensional artificial
ground. In addition to these two vectors, w and p, a parameter called the satiety
parameter is also attached to each dove. This special parameter endows a dove
with the ability of expressing its present satiety status with respect to the food, that
is, a dove with a low degree of satiety will have a strong desire to change its
present foraging policy and be more willing to imitate the behaviour of the dove
which performs the best among the flock.

To test the performance of DSO, five (two artificial and three real) data sets
were selected in the study. These data sets include Two-Ellipse, Chromosomes,
Iris, Breast Cancer, and 20-Dimensional Non-Overlapping. The projection capa-
bility of DSO was compared with the other popular projection algorithms, e.g.,
Sammon’s algorithm. For DSO, the maximum number of epochs for every data set
(excluding Iris and 20-Dimensional data sets) were set to be 5, while for the Iris
and 20-Dimensional data sets, were set to be 10 and 20, respectively. The case
studies showed that DSO can fulfil the projection task. Meanwhile, the perfor-
mance of DSO is not so sensitive to the size of dove swarm.

17.17 Eagle Strategy

In this section, we will introduce an emerging strategy or search method that is
based on the eagle search (hunting) behaviour.

17.17.1 Fundamentals of Eagle Strategy

Eagle strategy (ES) algorithm was proposed in Yang and Deb (2010, 2012) and
Gandomi et al. (2012). It is a two-stage method, i.e., exploring the search space
globally using Lévy flight random walks and then employing an intensive local
search mechanism for optimization, such as hill-climbing and the downhill sim-
plex method. The main steps of ES can be described as follows (Yang and Deb
2010, 2012; Gandomi et al. 2012):

e Step 1: Initialize the population and parameters.
e Step 2: Iterative procedure. First, perform random search in the global search
space defined by Eq. 17.39 (Yang and Deb 2010):

Lévy~u=1" (1 <A<3), (17.39)

242 17 Emerging Biology-based CI Algorithms

where 4 = 3 corresponds to Brownian motion, while 1 = 1 has a characteristics
of stochastic tunnelling.

Second, evaluate the objective functions. Third, make an intensive local search
with a hypersphere via any optimization technique such as downhill simplex (i.e.,
Nelder-Mead) method. Fourth, calculate the fitness and keep the best solutions.
Fifth, increase the iteration counter. Sixth, calculate means and standard
deviations.

e Step 3: Post process results and visualization.

17.17.2 Performance of ES

To evaluate the efficiency of ES, the Ackley function is adopted in Yang and Deb
(2010). Compared with other CI algorithms (such as PSO and GA), the results
showed that ES outperforms the others in finding the global optima with the
success rates of 100 %. As all CI algorithms require a balance between the
exploration and exploitation, this strategy can be combined into any algorithms
[such as firefly algorithm (Yang and Deb 2010) and DE (Gandomi et al. 2012)] to
improve the computational results.

17.18 Fireworks Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is derived from the
explosion process of fireworks, an explosive devices invented by our clever ancestor,
which can produce striking display of light and sound (Lancaster et al. 1998).

17.18.1 Fundamentals of Fireworks Optimization Algorithm

Fireworks optimization algorithm (FOA) was recently proposed in Tan and Zhu
(2010). The basic idea was when we need to find a point x; satisfying f (x;) =y, a set
of fireworks will be continuously fired in the potential search space until an agent
(i.e., a spark in fireworks context) gets to or reasonably close to the candidate point
x;. Based on this understanding, to implement FOA algorithm, the following steps
need to be performed (Janecek and Tan 2011; Pei et al. 2012; Tan and Zhu 2010):

e Step 1: Fireworks explosion process designing. Since the number of sparks and
their coverage in the sky determines whether an explosion is good or not, Tan
and Zhu (2010) first defined the number of sparks created by each firework x;
through Eq. 17.40:

17.18 Fireworks Optimization Algorithm 243

—m- Ymax *f(xi)+f
Z;l:l [)’max _f(xi)] + é’

where m is a parameter used to control the total number of sparks created by the
n fireworks, ymax = max(f(x;)) (for i = 1,2, ..., n) stands for the maximum value
of the objective function among the yn.x fireworks, and ¢ represents a small
constant which is used to avoid zero-division-error. Meanwhile, in order to get rid
of the overwhelming effects of the splendid fireworks, bounds s; are also defined
by Eq. 17.41 (Tan and Zhu 2010):

(17.40)

Si

round(a -m) if s;<am
5 =< round(b-m) if s; >bm, a<b<l1, (17.41)
round(s;) otherwise

where a and b are constant parameters.
Next, Tan and Zhu (2010) also designed the explosion amplitude via Eq. 17.42:

. f(xi) — Ymin + é
Z?:l [f(xi) - ymin] + é,

where A represents the maximum amplitude of an explosion, and ypni, =
min(f(x;)) (for i = 1,2,...,n) denotes the minimum value of the objective func-
tion among the n fireworks.
Finally, the directions of the generated sparks are computed using Eq. 17.43
(Tan and Zhu 2010):

A=A (17.42)

z = round(d - rand(0, 1)), (17.43)

where d denotes the dimensionality of the location x, and rand(0, 1) represents an
uniformly distributed number within [0, 1].

e Step 2: In order to obtain a good implementation of FOA, the locations of
where we want the fireworks to be fired need to be chosen properly. According
to Tan and Zhu (2010), the general distance between a location x and other
locations can be expressed as Eq. 17.44:

R(x;) = Zd(xi» %) = Z [l = %], (17.44)

where K denotes a group of current locations of all fireworks and sparks. The
selection probability of a location x; is then defined via Eq. 17.45 (Tan and Zhu
2010):

plx) = =——2—. (17.45)

244 17 Emerging Biology-based CI Algorithms

17.18.2 Performance of FOA

To validate the performance of the proposed FOA, 9 benchmark test functions
were chosen by Tan and Zhu (2010) and the comparisons were conducted among
the FOA, the standard PSO, and the clonal PSO. The experiment results indicated
that the FA clearly outperforms the other algorithms in both optimization accuracy
and convergence speed.

17.19 FlockbyLeader Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
leadership pattern found in flocks of pigeon birds (Couzin et al. 2005; Giraldeau
et al. 1994).

17.19.1 Fundamentals of FlockbyLeader Algorithm

The FlockbyLeader algorithm was proposed by Bellaachia and Bari (2012) in
which the recently discovered leadership dynamic mechanisms in pigeon flocks
are incorporated in the normal flocking model [i.e., Craig Reynolds’ Model
(Reynolds 1987)]. In every iteration, the algorithm starts by finding flock leaders.
The main steps are illustrated as follows (Bellaachia and Bari 2012):

e Calculating fitness value of each flock leader (L;) according to the objective
function (i.e., d%_). It will be defined by Eq. 17.46 (Bellaachia and Bari 2012):

max

d“ = max {p(x;,0)}, (17.46)

max 0E€kNB;(x;)

where kNB,(x;) is the k-neighbourhood of x; at iteration ¢, ern"aX as radius asso-
ciated with leader L; at iteration ¢, x; is a node in the feature graph, and p(x;, 0) is
the given distance function between objects x; and o.

e Ranking the LeaderAgent (A;). This procedure is defined by Eqs. 17.47-17.49,

respectively (Bellaachia and Bari 2012):

N;
Rank,(A;) = L0g<‘|N’l|‘ * 10) * ARF,(A;), (17.47)
12
DR_kNB,(x;
ARF,(A)) [DR_KNB (x;)| (17.48)

" |IDR_KNB,(x;)| + |D_kNB,(x;)|’

{ if ARF,(A;)>0.5, then x; is a flockleader

if ARF;(A;)<0.5, then x; is a follower ’ (17.49)

17.19 FlockbyLeader Algorithm 245

where DR_kNB;(x;) represents the dynamic reverse k-neighbourhood of x; at
iteration ¢, ARF,(4;) is the dynamic agent role factor of the agent A; at iteration
t, N,-J’ is the number of the neighbours A; at iteration ¢, and |N,| is the number of
unvisited nodes at iteration ¢.

e Performing the flocking behaviour.

e Updating the FindFlockLeaders (Gy).

17.19.2 Performance of FlockbyLeader

To test the efficiency of the proposed algorithm, two large datasets that one is
consists of 100 news articles collected from cyberspace, and the other one is the
iris plant dataset were adopted by Bellaachia and Bari (2012). Compared with
other CI algorithms, the proposed algorithm is significant improve the results.

17.20 Flocking-based Algorithm

In this section, we will introduce an emerging CI algorithm that is derived from the
emergent collective behaviour found in social animal or insects (Lemasson et al.
2009; Ballerini et al. 2008; Luo et al. 2010; Kwasnicka et al. 2011).

17.20.1 Fundamentals of Flocking-based Algorithm

Flocking-based algorithm (FBA) was originally proposed in Cui et al. (2006),
Picarougne et al. (2007) and Luo et al. (2010). The basic flocking model is
composed of three simple steering rules (see below) that need to be executed at
each instance over time, for each individual agent.

e Rule 1: Separation. Steering to avoid collision with other boids nearby.

e Rule 2: Alignment. Steering toward the average heading and speed of the
neighboring flock mates.

e Rule 3: Cohesion. Steering to the average position of the neighboring flock
mates.

e In the proposed algorithm, a fourth rule is added as below:

e Rule 4: Feature similarity and dissimilarity rule. Steering the motion of the boids
with the similarity among targeted objects.

All these four rules can be formally express by the following equations (Cui
et al. 20006):

246 17 Emerging Biology-based CI Algorithms

e The function of separation rule is to act as an active boid trying to pull away
before crashing into each other. The mathematical implementation of this rule is
thus can be described by Eq. 17.50 (Cui et al. 2006):

Ve+V

AP, Py) <db = Ty = Z:M, (17.50)
where vy, is velocity driven by Rule 1, d5 is the distance pre-defined, v, and v,
are the velocities of boids B and X.

e The function of alignment rule is to act as the active boid trying to align its
velocity vector with the average velocity vector of the flock in its local
neighbourhood. The degree of locality of this rule is determined by the sensor
range of the active flock boid. This rule can be presented in a mathematical way
through Eq. 17.51 (Cui et al. 2006):

1 n
d(Py, Py) <di Nd(Py, Py) > dy = Vur == ¥, (17.51)
n
X

where v, is velocity driven by Rule 3, d; and d, are pre-defined distance, and
(P, — Pyp) calculates a directional vector point.

e The flock boid tries to stay with the other boids that share the similar features
with it. The strength of the attracting force is proportional to the distance
(between the boids) and the similarity (between the boids’ feature values) which
can be expressed as Eq. 17.52 (Cui et al. 2006):

n

vas = Y (S(B,X) x d(Py,Py)), (17.52)

X

where vy, is the velocity driven by feature similarity, S(B,X) is the similarity
value between the features of boids B and X.

e The flock boid attempts to stay away from other boids with dissimilar features.
The strength of the repulsion force is inversely proportional to the distance
(between the boids) and the similarity value (between the boids’ features) which
are defined by Eq. 17.53 (Cui et al. 2006):

4 1
Yd = ;sw,x) X d(Py, Py)’

(17.53)

where v, is the velocity driven by feature dissimilarity. To get comprehensive
flocking behavior, the actions of all the rules are weighted and summed to obtain
a net velocity vector required for the active flock boid using Eq. 17.54 (Cui et al.
2006):

V = WeVsr + WarVar + WerVer + WasVds + WddVad, (1754)

where v is the boid’s velocity in the virtual space, and wy,, Wy, Wer, Was, Waq are
pre-defined weight values.

17.20 Flocking-based Algorithm 247

17.20.2 Performance of FBA

Document clustering is an essential operation used in unsupervised document
organization, automatic topic extraction, and information retrieval. It provides a
structure for organizing large bodies of data (in text form) for efficient browsing
and searching. Cui et al. (20006) utilized FBA for document clustering analysis. A
synthetic data set and a real document collection (including 100 news articles
collected from the Internet) were used in their study. In the synthesis data set, four
data types were included with each containing 200 2-dimensional (x,y) data
objects. Parameters x and y are distributed according to Normal distribution
N(u, 0); while for the real document collection data set, 100 news articles col-
lected from the Internet at different time stages were categorized by human experts
and manually clustered into 12 categories such as Airline safety, Iran Nuclear,
Storm Irene, Volcano, and Amphetamine. In order to reduce the impact of the
length variations of different documents, Cui et al. (2006) further normalized each
file vector to make it in unit length. Each term stands one dimension in the
document vector space. The total number of terms in the 100 stripped test files is
thus 4,790 (i.e., 4,790 dimensions). The experimental studies were carried out on
the synthetic and the real document collection data sets, respectively, among FBA
and other popular clustering algorithms such as ant clustering algorithm and K-
means algorithm. The final testing results illustrated that the FBA can have better
performance with fewer iterations in comparison with the K-means and ant
clustering algorithm. In the meantime, the clustering results generated by FBA
were easy to be visualized and recognized even by an untrained human user.

17.21 Flower Pollinating Algorithm

In this section, we will introduce an emerging CI algorithm that is derived from the
findings related to pollination studies (Acquaah 2012; Alonso et al. 2012)

17.21.1 Fundamentals of Flower Pollinating Algorithm

Flower pollinating algorithm (FPA) was originally proposed in Yang (2012). To
implement FPA, the following four rules need to be followed (Yang 2012; Yang
et al. 2013):

e Rule I: Treating the biotic and cross-pollination as a global pollination process,
and pollen-carrying pollinators following Lévy flights. In FPA, this rule can be
defined by Eq. 17.55 (Yang 2012; Yang et al. 2013):

248 17 Emerging Biology-based CI Algorithms

X =x+9L(2) (x! — g.), (17.55)

where x! denotes the pollen i or solution vector x; at the rth iteration, g, stands
for the best solution found so far among all solutions at the current generation.

e Rule 2: For local pollination, abiotic and self-pollination are employed.

e Rule 3: Insects can play the role of pollinators for developing flower constancy.
In FPA, the value of flower constancy is set equivalent to a probability called
reproduction which is proportional to the similarity of two flowers involved.
For modelling the local pollination, both Rule 2 and Rule can be expressed as
Eq. 17.56 (Yang 2012; Yang et al. 2013):

X = x4 g(x; - xfk), (17.56)

where the pollen from different flowers of the same plant species is denoted by
x; and x;, respectively.

e Rule 4: Controlling the interaction or switching between the local and global
pollination through a switch probability parameter p which falls within the range
of [0, 1]. In FPA, a slightly biased mechanism is added here for local pollination.

17.21.2 Performance of FPA

The FPA was originally developed in Yang (2012) for dealing with single
objective optimization problems. Ideally, it would be great that a new algorithm
can be verified on all available test function. Nevertheless, this is quite a time-
consuming job. Therefore, Yang (2012) selected a set of benchmark testing
functions to check the effectiveness of FPA. The preliminary experimental results
demonstrated that FPA is indeed a very effective optimization algorithm.

17.22 Goose Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
characteristics of Canada geese flight (Hagler 2013) and the PSO algorithm.
17.22.1 Fundamentals of Goose Optimization Algorithm

Goose optimization algorithm (GOA) was proposed by Liu et al. (2006). Since
then, this and similar ideas have attracted a steadily increasing amount of

17.22 Goose Optimization Algorithm 249

researchers, such as Sun and Lei (2009), Cao et al. (2012) and Dai et al. 2013). The
main steps of GOA are described as follows (Sun and Lei 2009):

Step 1: Initialize the population.

Step 2: Calculate each goose’s current fitness and ascertain each goose’s indi-
vidual optimum (pfbest) and its corresponding position (pbest).

Step 3: Update each goose’s local optimum (pbest;)

Step 4: Sort the population according to each goose’s historical individual
optimum (pfbest;) in every generation and receive the sorted population (spop).
Step 5: Replace the ith goose’s global optimal with the (i — 1)th goose’s indi-
vidual optimum of the sorted population.

Step 6: Improve the velocity-location as defined by Egs. 17.57 and 17.58,
respectively (Sun and Lei 2009):

Vift = w Vi + aspoply — b)) + ﬁ(pbestl(‘ifl)d — xfd), (17.57)
Xt = Vi (17.58)

where a(spop’, — x%,) can be regarded as a crossover operation between the ith
goose of the current population and the ith goose of the stored population,
/3’(pbest’(‘F1 i xk)) can be viewed as a crossover operation between the fore-
going acquired goose position and the (i — 1)th goose position of the stored
population, and o - %, can be perceived as a mutation operation by which the
crossed geese are disturbed randomly.

Step 7: Rank the solutions and store the current best as optimal fitness value as
defined by Eq. 17.59 (Sun and Lei 2009):

if f(Xiemp) —f(x:) <0, then Xemp
{lffg ; —f(xi) > O, then Xi ’ (1759)

where X;emp is the new goose position that is generated by mutation operator.
Step 8: Check the termination criteria.

Xtemp

17.22.2 Performance of GOA

To test the efficiency of GOA, a set of travelling salesman benchmark problems
were adopted in Sun and Lei (2009). Compared with other CI algorithms (such as
GA, SA), computational results showed that GOA outperforms the others in terms
of convergence speed and the quality of the solutions.

250 17 Emerging Biology-based CI Algorithms

17.23 Great Deluge Algorithm

In this section, we will introduce a new CI algorithm that is based flood related
research (Samuels et al. 2009).

17.23.1 Fundamentals of Great Deluge Algorithm

Great deluge algorithm (GDA) was originally proposed by Dueck (1993). There
are several GDA related variants and applications can be found in the literature
(Burke et al. 2004; Ravi 2004; Weigert et al. 2006; Sacco et al. 2006; AL-Milli
2010; Nahas et al. 2010; Ghatei et al. 2012; Abdullah et al. 2009). In order to
implement GDA, the following facts need to be taken into account (Weigert et al.
2006; Dueck 1993):

e Normally, every place within in the search space can be reached at the begin-
ning of the GDA.

e With the time advances, the landscape of the search space will be divided into
several islands according to Eq. 17.60 (Weigert et al. 2006; Dueck 1993):

pi=0(L; - C)

: (17.60)
Li=L_; — AL

where the water level is denoted by L, and the rain quantity is represented by AL.

e When the GDA is used to deal with the minimization problem, it can be
renamed to great drought algorithm, through not technically necessary. In such
situation, AL will actually refer to the water evaporation quantity. The “walker”
in the original GDA will have be replaced by an artificial “fish” which con-
tinuously search for a place with sufficient water.

e The water level and rain quantity are controlling variables which play a key role
in GDA. While the probability of satisfaction is independent of AC which
depends only on the absolute value of the objective function C.

17.23.2 Performance of GDA

In order to evaluate the performance of GDA, two typical travelling salesman
problems, i.e., the 442-city problem and the 532-city problem were selected in
Dueck (1993). The experimental results demonstrated that GDA has the ability of
finding the equally good results reported in the literature, but with much easier
implementation effort. By further testing GDA on much harder problem such as
chip placement case, the GDA generated better results than other known methods
(including the results obtained by SA).

17.24 Grenade Explosion Method 251

17.24 Grenade Explosion Method

In this section, we will introduce a new CI algorithm that is inspired by the
mechanism of grenade explosion. In general, there are three types of grenade, i.e.,
explosive grenades, chemical grenades, and gas grenades (Adams 2004). Although
it is a small bomb that is hurled by hand, it is particularly effective in knocking out
enemy positions.

17.24.1 Fundamentals of Grenade Explosion Method

Grenade explosion method (GEM) was proposed in Ahrari et al. (2009) and Ahrari
and Atai (2010). The core idea behind GEM is when grenade explodes, the thrown
pieces of shrapnel destruct the objects near the explosion location. The main pro-
cedures of GEM are listed as follows (Ahrari et al. 2009; Ahrari and Atai 2010):

o Initializing the population. The initial grenades (N,) are generated in random

locations in an n-dimension search space X; € [—1,1]", (i=1,...,N,).
e Generate a point (X') around the jth grenade through Eq. 17.61 (Ahrari et al.
2009; Ahrari and Atai 2010):

Xj'. = {X,, + sign(ry) - |rml”- L}, j=1,2,...,Ny, (17.61)

where X = {X,,}, m=1,2,...,n is the current location in the n-dimension
search space, r,, is a uniformly distributed random number in [—1, 1], L, is the
length of explosion along each coordinate, and p is a constant that defined as
Eq. 17.62 (Ahrari et al. 2009; Ahrari and Atai 2010):

p—max{l,n-l()li(gfz}{vL)J}, (17.62)

where T,, is the probability that a produced piece of shrapnel collides an object
in n-dimension hyper-box which circumscribes the grenade’s territory, and R, is
the territory radius.

If X' is outside the feasible space, transport it to a new location inside the
feasible region (i.e., [—1,1]") as defined by Eq. 17.63 (Ahrari et al. 2009; Ahrari
and Atai 2010):

252 17 Emerging Biology-based CI Algorithms

. ! n /)(j/
it X;¢[-L1]" = (Bj "~ |Largest component of x! in value|>

— B]// = r]’ . (B]/ —X) + X (17.63)
j =1 to N, (Shrapnel Number)
0<r;< + 1 (Random Number)’

where Xj’ is the collision location outside the feasible space, Bj’.’ is the new
location inside the feasible space, and N, is the number of shrapnel pieces.

o Evaluate the distance between each grenade based on the territory radius (R;). If
X' is a distance of at least R, apart from the location of grenades (1,2,...,i — 1),
then X’ is accepted.

e Calculate the fitness of the new generated points around the jth grenade. If the
fitness of the best point is better than current location of the jth grenade, move
the grenade to the location of the best point.

e Reduce R;. For increasing the ability of global investigation, the territory radius
will be reduced according to Eq. 17.64 (Ahrari et al. 2009; Ahrari and Atai
2010):

Ri—initial

R = (17.64)

(iteration No [total No of iterations) ’
(R rd)

where R,; is user defined (set before the algorithm starts).

Also, the length of explosion (L) is reduced via Eq. 17.65 (Ahrari et al. 2009;
Abhrari and Atai 2010):

Le - (Le—initial)m (Rt)l_m7 O S m S 17 (1765)

where m can be constant during the algorithm, or reduced from a higher value to a
lower one.

17.24.2 Performance of GEM

To demonstrate the efficiency of GEM, a set of optimization benchmark functions
such as De Jong’s function, Goldstein and Price function, Branin function, Martin
and Gaddy function, Rosenbrock function, Schwefel function, and Hyper Sphere
function were employed in Ahrari and Atai (2010). Compared with other CI
methods (e.g., GA, ACO), computational results showed that GEM can perform
well in finding all global minima.

17.25 Group Leaders Optimization Algorithm 253

17.25 Group Leaders Optimization Algorithm

In this section, we will introduce a new CI algorithm that inspired by the influence
of the leaders in social groups and cooperative co-evolutionary mechanism (Creel
1997; Theiner et al. 2010; Mosser and Packer 2009).

17.25.1 Fundamentals of Group Leaders Optimization
Algorithm

Group leaders optimization algorithm (GLOA) was proposed by Daskin and Kais
(2011). In order to implement GLOA, the following procedure need to be followed
(Daskin and Kais 2011):

Step 1: Generate p number of population for each group randomly.
Step 2: Calculate fitness values for all members in all groups.

Step 3: Determine the leaders for each group.

Step 4: Mutation and recombination.

Step 5: Parameter transfer from other groups (one way crossover).
Step 6: Repeat Steps 3—5 until a termination criterion is satisfied.

17.25.2 Performance of GLOA

To demonstrate the efficiency of GLOA, a set of single and multi-dimensional
optimization functions were adopted in Daskin and Kais (2011), namely Beale
function, Easom function, Goldstein-Price’s function, Shubert’s function, Rosen-
brock’s Banana function, Griewank’s function, Ackley’s function, Sphere func-
tion, and Rastrigin function. Computational results showed that GLOA is very
flexible and rarely gets trapped in local minima.

17.26 Harmony Elements Algorithm

In this section, we will introduce an emerging CI algorithm that is inspired by the
human life model in traditional Chinese medicine and graph theory.

254 17 Emerging Biology-based CI Algorithms

17.26.1 Fundamentals of Harmony Elements Algorithm

Harmony elements algorithm (HEA) or five-element string algorithm was recently
proposed in Cui et al. (2008, 2009) and Rao et al. (2009). The five-elements theory
posits wood, fire, earth, metal, and water as the basic elements of the material
world, such as people, companies, games, plants, music, art and so on. In terms of
traditional Chinese medicine, this theory is used to interpret the relationship
between the physiology and pathology of the human body and the natural envi-
ronment. In other words, they are metaphors for describing how things interact and
relate with each other. To implement HEA, the following steps need to be fol-
lowed (Cui et al. 2008, 2009):

e Step 1: Random initialization: Stochastically creating 2N five-element strings as
candidate solutions, then grouping the candidate solutions into two string vec-
tors (two element matrices) where the first one is denoted by Qni, and the
second one is represented by Onax. The searching range for the ith component of
the system state x iS [Umin, Umax)-

e Step 2: 2N string cycles generation. By applying A[] t0 Omin and QOmax,
respectively, ten string vectors can be created by Eq. 17.66 (Cui et al. 2009):

Qi = 2"V [Omin], i=1,2,3,4,5

, (17.66)
Qi =" 0nw], i=6,7,8,9,10.

e Step 3: Ranking the strings. Fitness checking and best-worst string vectors
generation.

e Step 4: Best element selection and worst element removal. Performing packed-
rolling operation and worst elements excising operation.

e Step 5: Checking whether the stopping criterion is met. If yes, terminating the
HEA and outputting the results; otherwise, return to Step 1.

17.26.2 Performance of HEA

To verify the proposed HEA, Cui et al. (2009) employed 3 benchmark test
functions, namely, Rosenbrock function, Rastrigin function, and Griewank func-
tion. In comparison with other CI algorithms (e.g., GA), the experimental results
demonstrated that HEA’s excellent global searching ability with very attractive
speed and impressive solution quality. All these make HEA a quite promising
optimization algorithm.

17.27 Human Group Formation Algorithm 255

17.27 Human Group Formation Algorithm

In this section, we will introduce an emerging CI algorithm that is derived from a
common phenomenon of individuals classification observed from human society
(Frank 1998; Magstadt 2013; Ramachandran 2012a, b, c; Mayfield 2013; Howell
2014).

17.27.1 Fundamentals of Human Group Formation
Algorithm

Human group formation (HGF) algorithm was recently proposed in Thammano
and Moolwong (2010). The key concept of this algorithm is about the behaviour of
in-group members that try to unite with their own group as much as possible, and
at the same time maintain social distance from the out-group members. To
implement HGF algorithm, the following steps need to be performed (Thammano
and Moolwong 2010):

e Step 1: Cluster centres representation refers to the number of classes, number of
available input patterns, and number, type, and scale of the features available to
the clustering algorithm. At first, there are a total of Q clusters, which is equal to
the number of target output classes.

e Step 2: Accuracy selection is usually measured by a distance function defined on
pairs of patterns as shown in Eq. 17.67 (Thammano and Moolwong 2010):

P X
Accuracy = @
Ai = 0, otherwise ’ ()
J = arg;min(d;(X;)), d;(X;) = HX,- — sz

where P denotes the total number of patterns in the training data set; J represents
the index of a cluster whose reference pattern is the closest match to the
incoming input pattern X;; ¥; stands for the target output of the ith input pattern;
z; refers to the centre of the jth cluster; and d;(X;) states the Euclidean distance
between the input pattern X; and the centre of the jth cluster.

e Step 3: The grouping/formation step can be performed in a way that in-group
member try to unite with their own group and maintain social distance from the
non-members as much as possible, update the centre value of each cluster (Z;)
by using Eq. 17.68 (Thammano and Moolwong 2010):

er]n{ew — Z;;(ld + AZ]k
A2 = S M Zoi — 2) — Bz — 7). (1769

meq né¢q

256 17 Emerging Biology-based CI Algorithms

where k (k =1,2,3,...,k) is the number of features in the input pattern; ¢ is
2
the class to which the jth cluster belongs; n;, = el @=zu) /o] and Nin =

67[(2,%2,,‘.)/ ”}2 have values between 0 and 1which determine the influence of
mth and nth clusters on the jth cluster. In general, the further apart mth and nth
clusters are from the jth cluster, the lower the values of Njm and Njns ﬂj is the
velocity of the jth cluster with respect to its own ability to move in the search
space; and 0, is the parameter to prevent clusters of the same class from being
too close to one another and normally with respect to two factors: (1) the
distance between the jth cluster and the mth cluster, and (2) the territorial
boundary of the clusters (7). If the distance between the jth cluster and the mth
cluster is less than 7, the value of d;, will be decreased by a predefined amount.
After each centre is updated, if the accuracy is higher, save this new center value
and then continue updating the next cluster centre; if it is lower, discard the new
center value and return to the previous centre; and if it does not change, save the
new center value and decrease the value of f8; by a predefined amount.

e Step 4: Cluster validity analysis is the assessment of clustering procedure’s
output. The cluster which satisfies the Eq. 17.69 will be deleted (Thammano and
Moolwong 2010):

1

4 j X/ —z
- (”—’) (vafeq I Z’“) <p, (17.69)
2log, (';)—f) 1 n;

where n; is the number of input patterns in the jth cluster; njq is the number of

input patterns in the jth cluster whose target outputs (Y) are g; Xl’ is the ith input
pattern in the jth cluster; and p is the vigilance parameter.

e Step 5: Recalculating the accuracy of the model according to Eq. 17.67
(Thammano and Moolwong 2010):

e Step 6: For each remaining cluster, if the distance between the new centre
updated in step 3 and the previous centre is less than 0.0001
([1Zg — Z]f,’fd” <0.0001), randomly pick k small numbers between —0.1 and
0.1, and then add them to the centre value of the cluster. The purpose of this step
is to prevent the premature convergence of the proposed algorithm to sub-
optimal solutions.

e Step 7: Terminating process is to check the end condition, if it is satisfied, stop
the loop; if not, examine the following conditions: (1) if the accuracy of the
model improves over the previous iteration, randomly select one input pattern
from the training data set of each target output class that still has error. Then go
to step 2; and (2) if the accuracy does not improve, randomly select the input
patterns, a number equal to the number of clusters deleted in step 4, from the
training data set of each target output class. Then go to step 2.

17.27 Human Group Formation Algorithm 257

17.27.2 Performance of HGF

To test the performance of HGF, Thammano and Moolwong (2010) employed 16
data sets (4 artificial and 12 real-world). The experimental results were compared
with the fuzzy neural network, the radial basis function network, and the learning
vector quantization network. The performance comparisons demonstrated that the
validity of the proposed HGF algorithm.

17.28 Hunting Search Algorithm

In this section, we will introduce an emerging CI algorithm that is inspired by the
group hunting of animals, such as African wild dogs (Gusset and Macdonald
2010), rodents (Ebensperger 2001), and wolves (Muro et al. 2011). Although these
hunters have difference behavioural patterns during the hutting process, they are
share a natural phenomenon in which all of them look for a prey in a group.

17.28.1 Fundamentals of Hunting Search Algorithm

Hunting search (HuS) algorithm was recently proposed in Oftadeh et al. (2010). To
implement HuS algorithm, the following steps need to be performed (Oftadeh et al.
2010):

e Step 1: Initialize the optimization problem and algorithm parameters [such as
hunting group size (HGS), maximum movement toward the leader (MML), and
hunting group consideration rate (HGCR)].

o Step 2: Initialize the hunting group (HG) based on the number of hunters (HGS).

e Step 3: Moving toward the leader. The new hunters’ positions are generated via
Eq. 17.70 (Oftadeh et al. 2010):

X, =x; +rand - MML - (xf — x;), (17.70)

where x' = (x},x},...,x},) represents the new hunters’ positions, MML is the
maximum movement toward the leader, rand is a uniform random number
which varies between 0 and 1, and xiL is the position value of the leader for the
ith variable.

e Step 4: Position correction-cooperation between members. The updating rule of
the real value correction and digital value correction are given by Eqgs. 17.71
and 17.72 respectively (Oftadeh et al. 2010):

258 17 Emerging Biology-based CI Algorithms

g K € {x!,x2,..., xS with probability HGCR
’ X =xl +R, with probability (1 — HGCR) = (17.71)
i=1,...,N;
i=1,..,N;
»d, di'ﬁ € {c‘lilk, di,...,d%%} with probability HGCR
d,=dj ta with probability (1 — HGCR)
i=1,...,N; . (17.72)
j=1,...,HGS
k= 1 M (number of digits in each variable)

where HGCR is the probability of choosing one value from the hunting group
stored in the HG, (1 — HGCR) is the probability of doing a position correction,
a can be any number between 1 and 9, and R, is an arbitrary distance radius for
the continuous design variable as defined by Eq. 17.73 (Oftadeh et al. 2010):

Ln (Ramm) . lt
R,(it) = R, (max(x;) — min(x;)) exp ::7’: : (17.73)

where if is the iteration number, max(x;) and min(x;) are the maximum or
minimum possible value of variable x;, respectively, R, and R, are the
maximum and minimum of relative search radius of the hunter, respectively,
and itm is the maximum number of iterations in the optimization process.

e Step 5: Reorganizing the hunting group. The rule for members’ recognition is
defined by Eq. 17.74 (Oftadeh et al. 2010):

X, = le + rand - (max(x;) — min(x;)) - aexp(—f - EN), (17.74)

where le is the position value of the leader for the ith variable, rand is a uniform
random number which varies between 0 and 1, max(x;) and min(x;) are the
maximum and minimum possible values of variable x;, respectively, EN counts
the number of times that the group has been trapped until this step, and « and f§
are positive real values.

e Step 6: Termination. Repeat Steps 3—5 until the termination criterion is satisfied.

17.28.2 Performance of HuS

In order to show how the HuS algorithm performs, different unconstrained and
constrained standard benchmark test functions were adopted in Oftadeh et al.
(2010). Compared with other CI techniques (e.g., EA, GA, PSO, ACO, etc.), the
performance of HuS algorithm is very competitive.

17.29 Krill Herd Algorithm 259

17.29 Krill Herd Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
krill swarm related studies (Verdy and Flierl 2008; Brierley and Cox 2010;
Goffredo and Dubinsky 2014).

17.29.1 Fundamentals of Krill Herd Algorithm

Krill herd (KH) algorithm was recently proposed in Gandomi and Alavi (2012). In
order to implement the KH algorithm, the following steps need to be followed
(Gandomi and Alavi 2012; Wang et al. 2013):

e Step 1: Defining the simple boundaries, algorithm parameters, and so on.

e Step 2: Initialization. Stochastically creating the initial population within the
search space.

e Step 3: Fitness evaluation. Evaluating each individual krill based on its position.

e Step 4: Calculating motion conditions. In KH algorithm, the motion caused by
the presence of other individual krill is computed via Eq. 17.75 (Gandomi and
Alavi 2012):

NI'W = N™g; 4 9, N (17.75)

where o; equals to o/ 4 o[*"**' and N™* represents the maximum induced
speed, N° denotes the last induced motion. Meanwhile, the foraging motion for
the ith krill individual is defined by Eq. 17.76 (Gandomi and Alavi 2012):

F; = ViBi + o FOX, (17.76)

where f3; is equivalent to ,-00‘1 + ﬁf“’, and the foraging speed is denoted by V.
Finally, the physical diffusion motion of the krill is treated as a random process.
This motion can be expressed in Eq. 17.77 (Gandomi and Alavi 2012):

D; = D™, (17.77)

where D™** denotes the maximum diffusion speed, and ¢ represents a random
direction vector. All three motions can be defined by using the following
Lagrangian model (see Eq. 17.78) (Gandomi and Alavi 2012):
dX;
== N;+F;+D;, (17.78)
dt
where N; denotes the motion induced by other individual krills.
e Step 5: Implementing the genetic operators.
e Step 6: Updating the position of each individual krill within the search space.

260 17 Emerging Biology-based CI Algorithms

e Step 7: Checking whether the stopping condition is met. If not, returning to Step
3; otherwise, terminating the algorithm.

17.29.2 Performance of KH

In order to show how the KH algorithm performs, 20 benchmark test functions
such as Sphere function, Goldstein and Price function, Griewank function, and
Ackley function are employed in Gandomi and Alavi (2012). Compared with other
CI techniques, the performance of KH algorithm is very competitive.

17.30 League Championship Algorithm

In this section, we will introduce an emerging CI algorithm that is based on some
interesting findings relative to sports science (Smolin and Grosvenor 2010;
Abernethy et al. 2013).

17.30.1 Fundamentals of League Championship Algorithm

League championship algorithm (LCA) was recently proposed in Kashan (2009).
In order to model an artificial championship environment, there are the following 6
idealization rules employed in LCA (Kashan 2009, 2011; Kashan and Karimi
2010):

e Rule 1: In LCA, playing strength is defined as the capability of one team
defeating the other team.

e Rule 2: The game results is not predictable even if the team’s playing strength is
know perfectly.

e Rule 3: The winning probability of a team i over the other team j is assumed to
be the same, no matter from which team’s viewpoint.

e Rule 4: In the basic version of LCA, tie is not taken into account which means
win or loss will be the only game result option.

e Rule 5: Teams only concentrate on the forthcoming math and with no interest of
the other distant future game.

e Rule 6: When team i defeats the other team j, any strength of assisting team i in
winning will have a dual weakness in causing team j to lose.

In order to implement LCA algorithm, the following modules need to be well
designed (Kashan 2009, 2011; Kashan and Karimi 2010):

17.30 League Championship Algorithm 261

e Module 1: Creating the league timetable. In LCA, an important step is to
simulate a real championship environment by establishing a schedule which
forms a “virtual season”. For instance, a single round-robin schedule mecha-
nism can be employed for ensuring that each team plays against every other
team once in each virtual season.

e Module 2: Confirming the winner or loser. Using the playing strength criterion,
the winner or loser in LCA is identified in a random manner. Based on the
abovementioned Rule 1, the expected chance of winning for team i (or j) can be
defined as Eq. 17.79 (Kashan 2011):

r(xi) -7
F(X0) +r0x) -2

t

pPi =

(17.79)

e Module 3: Deploying a suitable mixture of team members. Since the strengths
and weaknesses of the each individual team member are not the same, it is often
important for coach to generate a good team members mixture by taking various
constraint into account. In LCA, a similar process is also performed through an
artificial analysis mechanism, more specifically, an artificial SWOT (denoting
strengths, weaknesses, opportunities, and threats) analysis is utilized for gen-
erating a suitable focus strategy. Based on a thorough analysis, in order to get a
new formation of team, the random number of changes made in B§ (i.e., best
team formation for team i at week f) can be computed through Eq. 17.80
(Kashan 2011):

ln<1 - (1 (1 —pc)"*%“)r)

In(1 —p)

qf: +q0_17 456{4076104'1’---’”}7

(17.80)

where r denotes a random number which falls within the range of [0, 1], and
pe <1, p. # 0 represents a controlling variable.

17.30.2 Performance of LCA

To verify the capability of LCA, Kashan (2009) employed 5 benchmark test
functions which include such as Sphere function, Rosenbrock function, Rastrigin
function, Ackley function, and Schwefel function. In comparison with other CI
techniques (e.g., PSO), the simulation results proved that LCA is a dependable
method which can converge very fast to the global optimal.

262 17 Emerging Biology-based CI Algorithms

17.31 Membrane Algorithm

In this section, we will introduce an emerging CI algorithm that is based on some
studies relative to biological membrane (Reece et al. 2011; Yeagle 2005) and some
of its basic features inspired membrane computing (Paun 2000, 2002; Gheorghe
et al. 2012; Xiao et al. 2013; Maroosi and Muniyandi 2013; Muniyandi and Zin
2013; Kim 2012; Gofman 2012; Nabil et al. 2012; Zhang et al. 2011; Murphy
2010; Aman 2009; Sedwards 2009; Paun 2007; Nguyen et al. 2008; Woodworth
2007; Ishdorj 2006; Zaharie and Ciobanu 2006; Ciobanu et al. 2003).

17.31.1 Fundamentals of Membrane Algorithm

Membrane algorithm (MA), an approach built on membrane system or P-system
diagram (Paun 2000, 2002), was initially proposed in Nishida (2005):

e Component 1: A set of regions which are normally divided by nested
membranes.

e Component 2: Each individual region contains a sub-algorithm and several
tentative solutions of the targeted optimization problem.

e Component 3: Solution transferring strategy between adjacent regions.

Once the initial settings are done, the following steps need to be performed for
implementing MA algorithm (Nishida 2005):

e Step 1: Simultaneously updating the solutions by using the sub-algorithm
existing in each individual region.

e Step 2: Sending the best and worst solutions to all the adjacent inner and outer
regions, respectively. This mechanism is performed for each region.

e Step 3: Repeating the solutions updating and transferring procedure until a
stopping criterion is met.

e Step 4: Outputting the best solution found in the innermost region.

17.31.2 Performance of MA

Nishida (2005) employed the classic travelling salesman problem as a benchmark
for verifying the performance of MA. The simulation results demonstrated that the
performance of MA is very attractive. As Nishida (2005) commented in the work:
On one hand, since other CI algorithms such as GA and SA can be used to play the
role of sub-algorithm, an MA is likely to be able to avoid the local optimal. On the
other hand, since different sub-algorithms are separated by membranes and the
communications happen only among adjacent regions, MA can be easily imple-
mented in other types of computing systems such as parallel, distributed, and grid

17.31 Membrane Algorithm 263

computing. All these merits make MA a promising candidate in defeating “No
Free Lunch Theorem (Wolpert and Macready 1997)”.

17.32 Migrating Birds Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is inspired by the
v-flight formation of the migrating birds. It gets this name because of the similarity
of the shape the birds that, through one bird leading the flock and two lines of other
birds following it, make to the letter “V” (Shettleworth 2010). In addition, the v-
formation is one example of the fluid dynamics at work (Hagler 2013). Also, it is
believed as a very efficient way for long distance flying due to it is possible to save
energy and it can help birds avoid collisions (Badgerow and Hainsworth 1981;
Cutts and Speakman 1994; Lissaman and Shollenberger 1970).

17.32.1 Fundamentals of Migrating Birds Optimization
Algorithm

Migrating birds optimization (MBO) algorithm was proposed by Duman et al.
(2012). In MBQO, it is assumed that after flying fro some time, when the leader
birds gets tired, it goes to the end of the line and one of the birds following it takes
the leader position. As a result, MBO is capable of finding more areas of the
feasible solution space by looking at the neighbour solutions. The main steps of
MBO are outlined below (Duman et al. 2012):

e Step 1: Initializing the population and parameters.

e Step 2: Repeating the following procedure till stopping criteria met. First,
randomly select a leading bird (i). Second, calculate its fitness function. Third,
randomly select a neighbour bird among k available neighbour birds (e.g., j).
Fourth, if (F; > Fj) then replace the j by the new solution. Fifth, improve each
solution (s,) in the flock (except leader) by evaluating neighbours’ wing-tip
spacing (WTS) through Eq. 17.81 (Duman et al. 2012):

WIS, = —0.05b, (17.81)

where WTS,,; represents the optimum WTS, and b is the wing span. Sixth,
calculate fitness and keep the best solutions. Seventh, rank the solutions and
store the current best as optimal fitness value.

e Step 3: Posting process and visualizing results.

264 17 Emerging Biology-based CI Algorithms

17.32.2 Performance of MBO

To test the performance of the MBO algorithm, a series of quadratic assignment
problems were taken as the benchmarks (Duman et al. 2012). Compared with other
CI algorithm (e.g., TS, SA, and GA), MBO obtained very successful results.

17.33 Mine Blast Algorithm

In this section, we will introduce a new CI algorithm that is based on the obser-
vation of the mine bombs (a notorious invention by human) explosion in real
world. Just like the volcano or earthquake (Rose 2008), with such force, the mine
bombs will be blasted into billions of tiny pieces. In addition, the thrown pieces of
shrapnel remain bore with other mine bombs near the explosion area resulting in
their explosion.

17.33.1 Fundamentals of Mine Blast Algorithm

Mine blast algorithm (MBA) was proposed by Sadollah et al. (2012, 2013). The
main steps of MBA are listed as follows (Sadollah et al. 2012, 2013):

e Step 0: Initializing the population. The initial population is generated by a first

shot (X{)) explosion producing a number of individuals. The first shot point
value is updated via Eq. 17.82 (Sadollah et al. 2012, 2013):

X" = LB + rand - (UB — LB), (17.82)

where LB and UB are the lower and upper bonds of the problem, respectively,
and X3 is the new generated first shot point.

e Step 1: Initializing the parameters.

e Step 2: Check the condition of exploration constant (p).

e Step 3: If condition of exploration constant is satisfied, calculate the distance of
shrapnel pieces and their location, otherwise, go to Step 10. The calculating
equations are given by Eq. 17.83 (Sadollah et al. 2012, 2013):

Ay = (\mndnn, n=0,12,...
f ; (17.83)
Xe(n+1) COS(B), n=20,1,2,...
where Xe(41y 1s the location of exploding mine bomb, dfl .1 is the distance of the

thrown shrapnel pieces in each iteration, and randn is normally distributed
pseudorandom number (obtained using randn function in MATLAB).

17.33 Mine Blast Algorithm 265

e Step 4: Calculate the direction of shrapnel pieces through Eq. 17.84 (Sadollah
et al. 2012, 2013):

, F _F
f n+1 n

m , =— n=0,1,2,3,..., 17.84
XL - X (17:34)

where F is the function value of the X, and m’; 41 is the direction of shrapnel
pieces.

e Step 5: Generate the shrapnel pieces and compute their improved locations via
Eq. 17.85 (Sadollah et al. 2012, 2013):

n,
X=X exp| =[5 X, n=0,1,2,3,.., (17.85)
n+1
where XJ; ,(n L1y dfl 41> and ,; 1 are the location of exploding mine bomb collided

by shrapnel, the distance of shrapnel and the direction (slope) of the thrown
shrapnel in each iteration, respectively.

e Step 6: Check the constraints for generated shrapnel pieces.

e Step 7: Save the best shrapnel piece as the best temporal solution.

e Step 8: Does the shrapnel piece have the lower function value than the best
temporal solution?

e Step 9: If true, exchange the position of the shrapnel with the best temporal
solution. Otherwise, go to Step 10.

e Step 10: Calculate the distance of shrapnel pieces and their locations, then return
to Step 4. The calculating equations are given by Eq. 17.86 (Sadollah et al.
2012, 2013):

, . N2 . N2
— f of of —
&, = \/(xn+l —Xn) +(Fn+l —Fn) =012 (17.86)
XZ(WH):dfn-mnd-cos(Q), n=0,1,2,...
where X’: (1) is the location of exploding mine bomb, rand is a uniformly

distributed random number, and 0 is the angle of the shrapnel which is calcu-
lated through Eq. 17.87 (Sadollah et al. 2012, 2013):

0 = 360/N;, (17.87)

where N is the number of shrapnel pieces which are produced by the mine
bomb explosion.

e Step 11: Reduce the distance of the shrapnel pieces according to Eq. 17.88
(Sadollah et al. 2012, 2013):

266 17 Emerging Biology-based CI Algorithms

f df+1
d =—"1— =1,2,3,... 17.88
n exp(k/a)v n y <y ’ ()

where o and k are the reduction constant which is user parameter and depends on
the complexity of the problem and iteration number, respectively.

e Step 12: Check the convergence criteria. If the stopping criterion is satisfied, the
algorithm will be stopped. Otherwise, return to Step 2.

17.33.2 Performance of MBA

To test the efficiency of MBA, five well-known truss structures problems were
adopted in Sadollah et al. (2012), namely, 10-bar truss, 15-bar truss, 52-bar truss,
25-bar truss, and 72-bar truss. Compared with other CI algorithms (e.g., PSO),
computational results showed that MBA clearly outperforms the others in terms of
convergence speed and computational cost.

17.34 Monkey Search Algorithm

In this section, we will introduce an emerging CI algorithm that is inspired by the
monkey foraging behaviour (King et al. 2011; Mills et al. 2010; Sueur et al. 2010;
Lee and Quessy 2003; Taffe and Taffe 2011).

17.34.1 Fundamentals of Monkey Search Algorithm

Monkey search algorithm (MSA) was proposed by Mucherino and Seref (2007). In
MSA, the food is viewed as the desirable solutions and the branches of the trees
are illustrated as perturbations between two neighbouring feasible solutions. In
addition, at each iteration, the starting solution is viewed as the root of a branch
and the new neighbour solution is given at the tip of the same branch. The height
of the trees (i.e., the functional distance between the two solutions, /;) is deter-
mined by the random perturbation. Also, it is assumed that when the monkeys look
for food, they will also learn which branches lead to better food resources. The
main steps of MSA are described as follows (Mucherino and Seref 2007):

e Step 1: Initialize populations and parameters.

e Step 2: Repeat till stopping criteria met. First, randomly select a branch of a tree
(ny) as root. Second, calculate its fitness function. Third, perform the pertur-
bations process to generate a new solution at the tip of the same branch as
follows (Mucherino and Seref 2007): (1) Random changes to X,,,, as in the SA
methods; (2) Crossover operator applied for generating a child solution from the

17.34 Monkey Search Algorithm 267

parents X,,, and Xp., as in GA; (3) The mean solution built from X, and Xpey;,
inspired by ACO; (4) Directions that lead X, to Xp.s, as in directional evo-
lution; (5) Creating solutions from X, and X, and introducing random notes,
as in harmony search.

e Step 3: Check the termination criteria.

In addition, for avoiding local optima, the predetermined number of n,, best
solutions (i.e., the memory bank) are updated by each successive tree.

17.34.2 Performance of MSA

To test the performance of MSA, two global optimization problem of finding
stable conformations of clusters of atoms’ energy functions (i.e., Lennard Jones
potential energy and Morse potential energy) were adopted in Mucherino and
Seref (2007). In addition, a protein folding problem (i.e., the tube model) is also
considered as test function. Compared with other CI algorithms (such as SA),
computational results showed that the proposed algorithm outperforms others in
terms of the quality of solutions.

17.35 Mosquito Host-Seeking Algorithm

In this section, we will introduce an emerging CI algorithm that is inspired by the
host-seeking behaviour of mosquitoes (Levin 2013d).

17.35.1 Fundamentals of Mosquito Host-Seeking Algorithm

Mosquito host-seeking algorithm (MHSA) was proposed by Feng et al. (2009).
According to the observation of mosquito host-seeking behaviour, there is only
female mosquitoes search the host to attract (Woodward 2008). Recently, based on
mosquito host-seeking behaviour, Cummins et al. (2012) proposed a new mathe-
matical model to describe the effect of spatial heterogeneity. Furthermore, it is
possible to design artificial female mosquitoes that, by seeking towards the hosts
which emit an odor (e.g., CO,), find the shortest path between the two nodes
corresponding to the nest and to the food source. The following description, which
is developed using the travelling salesman problem as a running example, is
completed for implementing the proposed algorithm.

e Step 1: Initializing the population and parameters.

268 17 Emerging Biology-based CI Algorithms

o Step 2: Calculate the distance between (u;(¢)) between an artificial mosquito
and the host at time ¢ in parallel as defined by Eq. 17.89 (Feng et al. 2009):

uyi(1) = exp(—c;(t)r(1)x;(1)), (17.89)

where x; is the sex value of each artificial mosquito (m;) as defined by
Eq. 17.90 (Feng et al. 2009):

{xij =1, my is female (17.90)

x; =0, my; is male

and c¢;; represents the relative strength of the artificial mosquito. It can be defined
as Eq. 17.91 (Feng et al. 2009):

t=0, c;=maxd;—d;
ij X , (1791)

t>0, CUE[O,I]

where c;; represents the distance between city pair (Ci, C j) , and dj; is defined by
Eq. 17.92 (Feng et al. 2009):

dij = \/(x,- _Xj)2+()’i - yj)zo (17.92)

The utility of all artificial mosquitoes will be summarized as Eq. 17.93 (Feng
et al. 2009):

J(t) = Zn:iu,j(;). (17.93)

i=1 j=1

e Step 3: Calculating the motion of artificial mosquitoes via Eqs. 17.94—-17.96,
respectively (Feng et al. 2009):

W _ 1)+ 00, (17.94)
1 (6) = —ugle) +), (17.95)

- oI () OP(1) o0(t)
Yo(r) = [—7” — /2 dug(1) & duy(t) M @uzy(t)}

: 17.96
o), o)’ 7%0)
Grij(t) aCij([)
where y > 1, and v;(r) is a piecewise linear function of u;(f) defined by
Eq. 17.97 (Feng et al. 2009):

17.35 Mosquito Host-Seeking Algorithm 269

0 if u(r)<0
vii(t) = < w(r) if 0 <uy(r)<1, (17.97)
1 if (1) > 1
and P(r) and Q(¢) represent the attraction functions as defined by Eqs. 17.98 and
17.99, respectively (Feng et al. 2009):

)=c¢ anZexp[uj;(/28 } — & Innn, (17.98)

i=1 j=

(e)x(1) — 22— Z/ 1+ exp(10x)]*1—0.5}dx,

(17.99)

where 0 <¢<1, and r;(¢) is defined by Eq. 17.100 (Feng et al. 2009):

ryj = 17 Z pass pij;
{rij:(), Z not pass p;;’ (17.100)

where Z is the shortest path through » cities, and pj; is the path between C; and
C.

The general hybrid attraction function for artificial mosquito can be defined by
Eq. 17.101 (Feng et al. 2009):

Ej(t) = —lquy(t) — JaJ (1) — 23P(t) — 240(1), (17.101)

where Ej;(t) = is the hybrid attrition function, and 0 </, 42, 43, A4 <1.

e Step 4: For each artificial mosquito, calculate the value of dr;(f) and dcy;(t) in
order to increase the problem’s dynamically according to Egs. 17.102 and
17.103, respectively (Feng et al. 2009):

dry(t) Ouyi(1) oJ (1) OP(1) 00(1)
a P o Pen Menwr %
dey(t) Qu;(t) , dJ(1) oP(t) , 00(1)
a M dci(r) Pocy(t) % dcy(t) 4 dcy(t)’ (17.103)
where 652,]((?) —{ [1+ exp(—10(t)uy(t))]‘1_0.5}.

e Step 5: Updating the both value of (r;(r)) and (c;(r)) in parallel through
Egs. 17.104 and 17.105 (Feng et al. 2009):

dr;
rij(t+1) = ry(1) + ';’h(t), (17.104)

270 17 Emerging Biology-based CI Algorithms

dc;i(t
cijt+1) = ¢;(1) + Cét(), (17.105)
du;;

e Step 6: If all % = 0, then finish successfully; otherwise, go to Step 2.

17.35.2 Performance of MHSA

The travelling salesman problem has attracted many researchers from different
fields. Recently, Feng et al. (2009) used MHSA for finding near-optimum solutions
to the travelling salesman problem. Computational results showed that the pro-
posed algorithm performs well and easy to jump into local optimal. Also, it is easy
to adapt to a wide range of the travelling salesman problem.

17.36 Oriented Search Algorithm

In this section, we will introduce an emerging algorithm that is inspired by the
human helping behaviour. Helping behaviours are activities where people intend
to assist other person to solve the problems, such as to relieve distress (Stukas and
Clary 2012).

17.36.1 Fundamentals of Oriented Search Algorithm

Oriented search algorithm (OSA) was proposed by Zhang et al. (2008a) that
mimics the helping behaviour of a little girl when she lost her way in deep forest.
In OSA, the optimal solution of the objective function is the lost girl who can
transmit information for help in order to be found immediately. The main steps of
OSA are illustrated as follows (Zhang et al. 2008a):

e Step I: Initialization the population and parameters. For example, the objective
function for each search individuals (f (xq;;)) and the position of search individuals
(x0;i) are defined by Eqs. 17.106-17.108, respectively (Zhang et al. 2008a):

Xoji = KXini + (Xmaxi — Xmini) * randomji(O, 1), (17106)
Xoji = Ci where ¢; € [Xminiyxmaxi}; (17107)
Xoji = Ci, where ¢; € [XmianmaxiL (17108)

where aj; and ¢; are constants.

17.36 Oriented Search Algorithm 271

e Step 2: Exploration walks procedure. First, generate the strategy of updating
Axyi; via Egs. 17.109 and 17.110, respectively (Zhang et al. 2008a):

Xiji = Xoji + Axyji, (17.109)
Axyji = (Xyi_gtovar - (1 4+ w - randng;(0, 1) — xy;) - random(0, 1)), (17.110)

where X;i_0par denotes the current optimal position of the objective function,
and w is a variable which can adjust the variable trend of oriented-neighbour-
space.

Second, explore new position of the current search individual (x,ji). Third,
evaluate the quality of the objective function (f; = f (x,j,-)). Fourth, if f; <f(;-1),
then xo; = x5;. Fifth, update the current position of the objective function optimal
solution (xyj;_giopar). Sixth, check the termination criteria.

e Step 3: Posting process and visualizing results.

17.36.2 Performance of OSA

To test the performance of OSA, a reactive power optimization problem was
adopted in Zhang et al. (2008a). Compared with other algorithms, computational
results showed that OSA has better convergence property and precision. Also, it is
capable of escaping from the local optima.

17.37 Paddy Field Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
concept of sowing is carried out in accordance with individual fitness value and
neighbour numbers of seed so that they will grow towards the best environment
(optimal solution) (Maathuis 2013; Acquaah 2012).

17.37.1 Fundamentals of Paddy Field Algorithm

Paddy field algorithm (PFA) was recently proposed in Premaratne et al. (2009). In
general, situation of each individual seed or plant can be illustrated as vector
X = (x1,x2,...,x) and the fitness or objective function of X is denoted by
Y = f(X). Depending on the nature of the parameter space each dimension of the
seed can be bonded such that Eq. 17.111 holds (Premaratne et al. 2009; Wang
et al. 2011):

272 17 Emerging Biology-based CI Algorithms

Xj € [(xj)min’ (xj)max]' (17111)

To implement PFA algorithm, the following steps need to be performed
(Premaratne et al. 2009):

e Sowing behaviour: The algorithm operates by initially scattering seeds (initial
population pg) at random in an uneven field. The values of seed dimensions are
uniformly distributed depending on the bounds of the parameter space.

e Selection behaviour: When the seeds produce plants, the best plants are selected
depending on a threshold (y,), which can be used to determine the number of
seeds of a plant. The reason for having a threshold is to control the population of
the system. That means, a plant will be selected to the next iteration only if its
fitness value (y) is greater than the threshold as defined by Eq. 17.112 (Pre-
maratne et al. 2009).

Y=y (17.112)

e Seeding behaviour: In this stage, each plant develops a number of seeds pro-
portional to its health. The total quantity of seeds (s) produced by any plant
would be a function of the plant fitness function and the maximum number of
seeds (gmax) as defined by Eq. 17.113 (Premaratne et al. 2009):

§ = QIF(x), g, (17.113)

In general, the fitness function is depending on its fitness in proportion to the
fittest plant of the population (ymax) as shown in Eq. 17.114 (Premaratne et al.
2009):

§ = Gumax L—y_yt] (17.114)

max — Yt

e Pollination behaviour: In any paddy field, the strong ones (best solution) have
greater opportunity to pass their seeds to future generations via pollination
behaviour. This behaviour is a major factor either via animals or through wind.
High population density would increase the chance of pollination for pollen
carried by the wind. That means, the plant with more neighbours (i.e. neigh-
bourhood function N) will be better pollinated. The number of viable seeds (s,)
produced by a plant can be expressed as Eq. 17.115 (Premaratne et al. 2009):

v = NO[f(x), gmax], O<N<I. (17.115)

In order to satisfy this condition, a sphere of radius (a) is used. For two plants x;
and xg, the perimeter formula (see Eq. 17.116) (Premaratne et al. 2009)

n(g.x) = [Py — 2l —a, (17.116)

is used. If the two are within the sphere, then n <0. From this for a particular
plant, the number of neighbours (v;) can be determined. Once this is done, the

17.37 Paddy Field Algorithm 273

pollination factor for that plant can be obtained from Eq. 17.117 (Premaratne
et al. 2009),

N; = el (17.117)

where vp.x 1s maximum neighbour number of the plant.

e Dispersion behaviour: In order to prevent getting stuck in local minima, the
seeds of each plant are dispersed and then the cycle stars again from the
selection stage. In PFA, when dispersing, the dimension values take a Gaussian
distribution which could provide a faster convergence in local search. The new
seed will land on a location in the parameter space given by Eq. 17.118 (Pre-
maratne et al. 2009):

X =F(x o), (17.118)

where ¢ is the coefficient of dispersion, which can determine the dispersion
degree of produced seeds.

17.37.2 Performance of PFA

The difference between PFA and other nature-inspired algorithms (such as evo-
lutionary algorithms) is PFA uses pollination and dispersal between individuals as
mainly operators. In addition, unlike the basic version of PSO, in PFA, the random
numbers are not generated by applying the uniform distribution function. Instead,
the Gaussian probability distribution function is applied. This offers the advantage
of enhanced search capability while maintaining adequate exploitation capability
(Premaratne et al. 2009).

17.38 Photosynthetic Algorithm

The process of which the carbon atoms in CO, are incorporated into glucose,
CsH120g, in green plants is normally referred to as photosynthesis (Whitten et al.
2014). It is often regarded as one of the key biological process in the biosphere
(Dubinsky 2013; Carpentier 2011). Normally, oxygenic photosynthesis can be
found occurring in cyanobacteria, algae and land plants (Dubinsky 2013).
Although the actual process is quite complex, the following net equation (see
Eq. 17.119) can be used to simply describe the phenomenon of photosynthesis
(Whitten et al. 2014; Reece et al. 2011; Jelinek 2013; Hobbs et al. 2013):

sunlight

6CO; + 6H,0 CeH1206 + 605, (17.119)

chlorophyll

274 17 Emerging Biology-based CI Algorithms

where chlorophyll contains magnesium ions which are bond to porphyrin rings and
it is critical substance for photosynthesis.

In nature, ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco for short)
is the most abundant protein on Eearth, comprising almost the half of the protein in
leaves. Basically Rubisco catalyses the carboxylation of ribulose-1, 5-bishosphate
(RuBP), generating two molecules of 3-phosphoglycerate (3-PGA). Rubisco is a
vary useful bifunctional enzyme that fixes the liberated CO; in the chloroplasts of
photosynthetic organism through its carboxylase activity (Dubinsky 2013). This
irreversible first step of photosynthesis is therefore the entering point for carbon
into the biosphere (Carpentier 2011).

On our planet, most of the energy required to develop and sustain life is
supplied by the capture of sunlight by photosynthetic organisms (Carpentier 2011).
Photosynthesis is thus often treated as the source of global food, feed, fibre, and
timber production as well as biomass-based bio-energy. The renewability is
the main characteristic of each of these products of photosynthesis. For instance
the main products photosynthesis are starch and sucrose where the latter is also the
main form of carbon translocated from leaves to other organs in plants (Dubinsky
2013). Since photosynthesis is, in itself, a multidisciplinary research area which
involves such as agriculture, environmental sciences, forestry, plant genetics,
photobiology, photophysics, plant physiology, and biochemistry, the detailed
explanation of many of its general and fundamental research methods and recent
advances is out of the scope of the present book, interested readers are referred to
the corresponding studies, e.g., (Acquaah 2012; Carpentier 2011; Dubinsky 2013;
Maathuis 2013), for more relative information.

For the rest of this section, we will introduce an emerging CI algorithm which is
based on the findings extracted from photosynthesis research.

17.38.1 Fundamentals of Photosynthetic Algorithm

Motivated by the principle of Benson-Calvin cycle Phase-1 and the reaction that
happens in the chloroplast subcellular compartment for photorespiration, photo-
synthetic algorithm (PA) was originally proposed in Murase (2000). To perform
the PA, the following calculation processes need to be followed (Murase 2000):

e First, randomly generating the intensity of light.

e Second, evaluating the fixation rate of CO, via the following equation (also refer
to as the stimulation function in the PA algorithm) based on the light intensity
(Murase 2000). This is a unique characteristic of the PA algorithm. Such
stimulation often happens as a result of randomly changed light intensity which
in turn adjusts the influential degree on the elements of RuBP [i.e., ribulose-1, 5-
bishosphate (Carpentier 2011)] by photorespiration as shown in Eq. 17.120.

17.38 Photosynthetic Algorithm 275

vmax

— _max 17.120
c 1 +A/L ()

where the CO; fixation rate is denoted by C, Viax represents the maximum CO,
fixation rate, A stands for the affinity of CO,, and L is used to express the light
intensity.

e Third, based on the fixation rate obtained from the stage above, one of two
cycles, either Benson-Calvin or photorespiration will be selected at this stage.
For both cycles, Murase (2000) utilized 16-bit strings which shuffles based on
carbon molecules recombination rule in photosynthetic pathways.

e Then after certain rounds of iterations, an amount of GAPs, i.e., glyceraldehyde-
3-phosphate (Dubinsky 2013), are generated for representing intermediate
knowledge strings in the PA algorithm. Each GAP is composed of 16 bits. The
fitness of these GAPs will be evaluated at this stage. The best fit GAP will
remain as a DHAP [i.e., di-hydroxyacetone phosphate (Carpentier 2011)] which
is referred to as the current estimated value.

Taking into account the fundamental process described above, the steps of
implementing PA can be summarized as follows (Murase 2000; Alatas 2011; Yang
2005):

e Step 1: Initializing the following problem parameters such as f(x) (the object
function), x; (the decision variable), N (the number of decision variables), and
the boundary of constraints.

e Step 2: Initializing the following problem parameters such as DHAPs, and CO,
fixation parameters (e.g., affinity A, maximum fixation rate Vi, and light
intensity L).

e Step 3: Calculating CO, concentration, determining O,/CO, concentration
ration, and setting Benson-Calvin/photorespiration frequency ratio.

e Step 4: Evaluating if the stopping criteria are met. If yes, the algorithm stops;
otherwise, go to the next step.

e Step 5: Depending the fixation rate of CO,, the 16-bit strings are shuffled in
either Benson-Calvin or photorespiration cycle.

e Step 6: Comparing the fitness value where the poor results will be removed and
the desired DHAP strings and results will be remained.

e Step 7: Updating the light intensity and the next round of iteration of the PA
algorithm starts.

17.38.2 Performance of PA

In order to verify the proposed PA, the finite element inverse analysis problem was
employed in Murase (2000). The prediction of the elastic moduli of the finite
element model via PA was quite satisfied. The overall performance demonstrated
by this preliminary application make PA a very attractive optimization algorithm.

276 17 Emerging Biology-based CI Algorithms

17.39 Population Migration Algorithm

In this section, we will introduce an emerging CI algorithm that is inspired by the
population migrating mechanism (Ramachandran 2012a, b, c).

17.39.1 Fundamentals of Population Migration Algorithm

Population migration algorithm (PMA) was originally proposed in Zhou and Mao
(2003). There are several variants and application can be found in the literature
(Zhang et al. 2009; Zhang and Zhou 2009; Wang et al. 2010; Lu and Liu 2011;
Zhao and Liu 2009, 2011). To implement PMA, the following components need to
be considered (Zhang and Zhou 2009; Zhou and Mao 2003):

e Component 1: In PMA, the social-cooperation strategy of PMA can be defined
by Eq. 17.121 (Zhang and Zhou 2009):

o = [Xpess, 1, population migration, xpeg]. (17.121)

e Component 2: In PMA, the self-adaptation strategy can be divided into two
parts, namely, population flow and population proliferation. Mathematically, the
self-adaptation mechanism can be defined as Eq. 17.122 (Zhang and Zhou
2009):

B = [(POPftow: POPproiiferarion) Shrinkage the beneficial region]. (17.122)

e Component 3: Competition, i.e., population updating strategy can be described
as Eq. 17.123 (Zhang and Zhou 2009):

Y= [u=14,(n,A), record and update xp.5; and f(xpes)]- (17.123)

17.39.2 Performance of PMA

To verify the proposed PMA, a set of experimental studies were conducted in
Zhou and Mao (2003). The simulation results demonstrated that PMA is a very
attractive optimization problem solver.

17.40 Roach Infestation Optimization

In this section, we will introduce an emerging CI algorithm that is based on the
collective behaviour of some insects, e.g., roach (Bater 2007; Chapman 2013).

17.40 Roach Infestation Optimization 271

17.40.1 Fundamentals of Roach Infestation Optimization
Algorithm

Roach infestation optimization (RIO) algorithm was proposed by Havens et al.
(2008) that inspired by the recent observation of cockroaches’ social (both col-
lective and individual) behaviours. Typically, there are three types of behaviour
are employed in RIO, i.e., search behaviour, social behaviour, and hungry (for-
aging) behaviour. Each one is outlined as follows (Havens et al. 2008):

o Search behaviour (Find_Darkness): As RIO is a cockroach-inspired PSO, this
behaviour is defined as Eq. 17.124 (Havens et al. 2008):

;i - C();i + Cmaxﬁb * (131 - }i)v (17124)

where v; is the velocity of the ith agent (cockroach), x; is the current location, p;

is the best location found by the ith agent, {Cy, Cinax} are parameters, Rl is a
vector of uniform random numbers and .x is element-by-element vector
multiplication.

e Social behaviour (Find_Friends): The agents will socialize and share their

information by setting the darkest local location (7) as shown in Eq. 17.125
(Havens et al. 2008):

I =1;=arg rnkin{F<ﬁk) } k= {i,j}, (17.125)

where 7,~ is the group best solution, {i,;j} are the indices of the two socializing
cockroaches, and p, is darkest known location for the individual cockroach
agent (i.e., the best personal location).

e Hunger behaviour (Find_Food): To model this behaviour, a parameter called
hunger counter (hunger;) is employed. The main procedure deals with the
hungry degree checking of the agents which based on a threshed (thunger). If not
(i.e., hunger; <tjung.r), update the agent’s velocity as shown in Eq. 17.125
(Havens et al. 2008):

G,-:Cﬁi—l—Cme?.*(1—&)—1—me§.*<?,~—?¢,~>
0 ax\1 p ax 2 (17126)
Xi = X; + Vi,

otherwise, the agent will be transported to other food location (E) randomly.
Also, this piece of food is randomly relocated.

278 17 Emerging Biology-based CI Algorithms

17.40.2 Performance of RIO

To check the efficiency of RIO, a number of numerical examples were adopted in
Havens et al. (2008), such as Sphere function, Rastrigin function, Rosenbrock
function, Ackley function, Griewank function, Michalewicz function, Easom
function, and Hump function. Compared with other CI algorithms (e.g., PSO), the
proposed algorithm is more effective for optimizing highly-modal function.

17.41 Saplings Growing Up Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
behaviours observed from saplings (Schnell and Priyadarshan 2012; Tidball and
Krasny 2014; Reece et al. 2011).

17.41.1 Fundamentals of Saplings Growing Up Algorithm

Saplings growing up algorithm (SGuA) was originally proposed in Karci (2007a,
b, ¢) and Karci and Alatas (2006). To implement SGuA, the following steps need
to be performed (Karci 2007a, b, c; Karci and Alatas 2006):

e Sowing phase: In sowing phase, a uniform population method and divide-and-
generate paradigm was proposed for initial population generating. Initially, two
saplings are set where So = {u;,ua,...,u} and Sy = {li,b,...,1,}, n is the
length of sampling and this case the dividing factor (k) is considered as k = 1,
u;and [; are upper and lower bounds for corresponding variables. Then the factor
k is determined. For kK = 2 and two extra S, and S3 are divided from S, and S; as
shown in Eqs. 17.127 and 17.128, respectively (Karci 2007a, b, c¢; Karci and
Alatas 2006):

S = {r17r27 <o /2 Tnfa15 Tnj2425 - - ~arn}7 (17127)

S3 = {r S TR P R ST R YL SR S Ty, ST PN o un}, (17.128)

where 7 is a random number such as 0 <r < 1. Let us consider the population P
size as |P| and the number of elements in the set of generated saplings S as |S]|.
So if |S|<|P|, then the value of k is increased by 1, and 2° —2=8-2=6
saplings can be derived from Sy and §;, which are not in S, since Sy and S| are
divided into three parts. The remaining saplings in the garden will be obtained
by applying same method with increasing the value of k. This process goes on
until |S| > |P|. Hereafter, the first |P| elements of the set S are taken as saplings’
population.

17.41 Saplings Growing Up Algorithm 279

e Growing up phase: This phase contains three operators: mating, branching, and
vaccinating operators.
The aim of mating to generate a new sapling from currently existing saplings
(global search) by interchanging current exist information between temporary
solutions. In general, the distance between two saplings affects the mating
process’ taking place or not, and it depends on the distance between current pair
(i.e., it has greater probability for near saplings and has small probability for
saplings far away to each other). Let P,,(S1,S,) can be computed in the fol-
lowing two ways as shown in Eqs. 17.129 and 17.130, respectively (Karci
2007a, b, c; Karci and Alatas 2006):

(S0 (1 =22)°)

Pm(ShSZ):l_ R)

(17.129)

(St)?) ([(S b))

Pm 9 = b)
(81,52) R R

(17.130)

where R = (ZL] (u; — li)2>2, u; and [; are upper and lower bounds for corre-
sponding variables.

Branching: each sapling consists of branches, and initially each sapling contains
no branches (P(s1J|s17i) = 1) and it is a body. In order to grow up a branch on
any point (i.e., a new sapling) from currently exist saplings, the author used
probabilistic method for determination of branch position depending on the
currently exist branches position. It aims at embedding/removing new knowl-
edge into/from the current solutions set. Let S = s1,1512. . .51,...51,, be a sap-
ling. If a branch occurs in point s;;, then the probability of this pint could be
calculated in two ways listed below (see Eqs. 17.131 and 17.132, respectively)
(Karci 2007a, b, c; Karci and Alatas 2006): linear and non-linear. The distance
between s ; and s;; (Where i # j) can be considered as |j — i| or |i —j|.

1

(lj—ih*

1
non-linear case: P (s |s1;) =1 — e i (17.132)
e —1

linear case: P(sl_j’slﬁi) =1- i #J, (17.131)

Vaccinating: aims to generate new saplings from currently exist saplings which
are similar; since the dissimilarity of saplings affects the success of vaccinating
process (i.e., vaccinating success is proportional to the dissimilarity of both
saplings). In SGuA, if Dis(S;, S,) > threshold, the dissimilarity of saplings is
computed in the following two ways shown in Egs. 17.133 and 17.134,
respectively (Karci 2007a, b, c; Karci and Alatas 2006):

280 17 Emerging Biology-based CI Algorithms

— s]A,i lf S]A’i = S2,i
S1= {random(l) if 514 # 52, (17.133)

_ 82 if 82 = S1,i
S2 - {randOm(l) if s27i 7é S]J" (17134)

where S; and S, are obtained as consequence of applying vaccinating process to
Sy and Sy; random(1) generates a random number which is 0 or 1.

The initial value of threshold depends on the problem solvers. For example, G
and H are saplings and the similarity of S; and S, is Dis (5,5,) = > 1,
|s17,~ — s27i|/u,~ —1I;. If Dis (S1,5;)>n-¢, where ¢ is a user-defined constant
(0<e<1), then S; and S, are vaccinated through Egs. 17.135 and 17.136,
respectively (Karci 2007a, b, c; Karci and Alatas 2006):

|Sl.i_52.i|

sy if <eg
s =4"" u=l =0 (17.135)
. |Su—3'2.f|
§2.i lfT > &
Y if |S|.ﬁ$2,i| <e
S=4¢ " Wb = (17.136)

51 if |blu:3;| > ¢

In fact, the vaccinating process is opposite to mating process, since vaccinating
operator uses dissimilarity in the garden. Thus, the vaccinating operator can also
compute the distance between saplings and then compute the probability of
saplings as defined by Eq. 17.137 (Karci 2007a, b, c; Karci and Alatas 2006):

(Z:’:l (s1,i - S2,i)2) v

R Y

Py(S1,5,) = (17.137)

where P,(S1,S,) is the probability of S; and S, to be vaccinated.

17.41.2 Performance of SGuA

Compare with GA, the SGuA has some unique characteristics (Karci 2007b): (1) it
uses objective function for determination of quality of saplings in contrast to GA
due to the difficulty of defining fitness function; (2) the SGuA uses less parameter
determined by the user (only one for vaccinating operator) and obtained better
results with less time steps with respect to GA; (3) it uses similarity and dissim-
ilarity properties in to current solutions set with property of new information not
adding in neighbor points which GA did; (4) GA is a global search method but
SGuA contains both local and global search steps. Furthermore, one of the unique

17.41 Saplings Growing Up Algorithm 281

features of the PA is that the operator within SGuA can be applied in two different
ways: sequentially and separately. Those processes allow the SGuA more flexible
and faster than others.

17.42 Seeker Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is inspired by the
act of human searching behaviour.

17.42.1 Fundamentals of Seeker Optimization Algorithm

Seeker optimization algorithm (SeOA) was originally proposed in Dai et al. (2006,
2007). There are several variants and applications can be found in the literature
(Dai et al. 2009a, b, 2010a, b; Shaw et al. 2011)

e Step 1: Initialization. Creating S positions which are described as Eq. 17.138
(Dai et al. 2007):

{x,-(t)\xi(t) = (x,-l,x,-g,...,x,-D); i=1,2,...,8; IZO} (17138)
The positions are randomly and uniformly distributed in the parametric space.

e Step 2: Computing and evaluating each seeker’s fitness value.

e Step 3: Performing searching strategy. Giving search variables which includes
centre position vector, searching direction, searching radius, and trust degree.

e Step 4: Updating position. The new position of each seeker can be computed
through Eq. 17.139 (Dai et al. 2007):

Xt+1)=2+d-7 \/—log(fi). (17.139)

e Step 5: Checking whether the stopping criterion is met. If yes, terminating the
algorithm; otherwise, return to Step 3.

17.42.2 Performance of SeOA

To verify the proposed SeOA, 6 typical testing functions with varying complex-
ities and number of variables were employed in Dai et al. (2007). These functions
included such as Goldstein and Price function, De Jong’s function 2, and
Griewangk’s function. In comparison with other CI algorithms (e.g., GA, PSO),
SeOA outperformed its competitors in all cases.

282 17 Emerging Biology-based CI Algorithms

17.43 Self-organising Migrating Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
competitive-cooperative behaviour of intelligent creatures.

17.43.1 Fundamentals of Self-organising Migrating
Algorithm

Self-organising migrating algorithm (SOMA) was first proposed in Zelinka and
Lampinen (2000). There are several variants and applications can be found in the
literature (Nolle et al. 2005; Senkerik et al. 2010; Zelinka et al. 2009; Davendra
and Zelinka 2009; Davendra et al. 2013). Two evolutionary operators (i.e.,
mutation and crossover) are employed in SOMA to maintain the perturbation of
individuals and movement of an element. The main steps of SOMA are outlined as
follows (Davendra et al. 2013):

e Step 1: Initializing the parameters.
e Step 2: Creation the populations. The population is generated via Eqs. 17.140
and 17.141, respectively (Davendra et al. 2013):

p— {Xg,xg,...,xg}, (17.140)
X! = (x;l,xgg,...,xl’._”), where x;; : {le i::lﬁ\f’ (17.141)

where f is the number of individuals, x; , Tepresents the element in each indi-

vidual, and N is the dimension of the problem.

e Step 3: Iterative procedure. First, Evaluate the cost function of each individual
as follows (Davendra et al. 2013):

Ci=f(X)),i=1,....p (17.142)

Second, create the perturbation matrix (A;;(PRT)) for each element (x}) in an
individual (X!) as defined by Eq. 17.143 (Davendra et al. 2013):

|1 ifrand()<PRT [i=1,2,...,f
Aij = {0 otherwise {j =1,2,..,N’ (17.143)

where PRT € [0, 1] is a parameter that to achieve perturbation.
Third, all individuals perform their run towards the selected individual (leader),
which has the best fitness for the migration as follows (Davendra et al. 2013):

17.43 Self-organising Migrating Algorithm 283

xEJ. = x;l + (x}:jl —xfdfl)sAi’,», (17.144)
where xﬁ j is new candidate individual, xﬁ;l is the original individual, x’ijl is the
leader individual, s € [0, path length], and A;; is perturbation matrix.

Fourth, Calculate the cost function and keep the best solutions.

e Step 4: Post process and visualize results.

17.43.2 Performance of SOMA

To test the performance of SOMA, a set of experimental studies are conducted in
Zelinka and Lampinen (2000). Computational results showed that SOMA is very
competitive.

17.44 Sheep Flock Heredity Model Algorithm

In this section, we will introduce an emerging CI algorithm that is based on some
observations from sheep herd (Mills et al. 2010).

17.44.1 Fundamentals of Sheep Flock Heredity Model
Algorithm

Sheep flock heredity model (SFHM) algorithm was originally proposed in Nara
et al. (1999) and Kim and Ahn (2001). There are several applications can be found
in the literature (Chandrasekaran et al. 2006; Subbaiah et al. 2009; Anandaraman
2011; Venkumar and Sekar 2012; Anandaraman et al. 2012; Mukherjee et al.
2012). The natural evolution phenomenon of sheep flocks can be associated to the
genetic operations of string which we can define the following two kinds of genetic
operation: (1) Traditional genetic operations between two strings; and (2) Genetic
operations between sub-strings within one string. This kind of genetic operation is
referred to as the “multi-stage genetic operation”. In summary, to implement
SFHM algorithm, the following steps need to be performed (Chandrasekaran et al.
2006; Nara et al. 1999; Mukherjee et al. 2012; Kim and Ahn 2001):

e Step 0: Initializing the population of artificial sheep herd.

e Step 1: Selecting the parent, setting the probability of sub-chromosome level
crossover, performing the sub-chromosome level of crossover.

e Step 2: Selecting two sequences from population, setting crossover probability,
performing chromosome level of crossover.

e Step 3: Checking the termination condition.

284 17 Emerging Biology-based CI Algorithms

17.44.2 Performance of SFHM

To verify the proposed SFHM, Kim and Ahn (2001) tested it on a 23 generators’
maintenance scheduling problem. It was assumed in the study that the system load
will increase by 2 % per annual. The simulation results showed that the proposed
SFHM outperform its competitor algorithm with a better solution quality and
almost twice of the calculation times’ reduction.

17.45 Simple Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on two
very simple mechanisms, namely, exploration and exploitation.

17.45.1 Fundamentals of Simple Optimization Algorithm

Simple optimization (SPOT) algorithm, a population-based approach, was recently
proposed in Hasancebi and Azad (2012). Briefly, the SPOT algorithm can be
summarized as follows (Hasancebi and Azad 2012):

e Step 1: Generating a population of stochastically proposed candidate solutions
and initiating the exploration procedure.

e Step 2: Evaluating the members of population according to an objective
function.

e Step 3: Determining the best candidate solution among the whole population
group.

e Step 4: Calculating the standard deviation of each column of population.

e Step 5: Starting the exploitation process and creating a set of new candidate
solutions through Eq. 17.145 (Hasancebi and Azad 2012):

Xnew(i) = Xbest(i) + /2 'R(i); (17145)

where /1, = 0.54, in comparison with the exploration stage.

Step 6: Evaluating the newly created candidate solutions.

Step 7: Replacing the worst population members with the better new ones.
Step 8: Determining the best candidate solution within the population.

Step 9: Calculating the standard deviation again for each column of population.
Step 10: Activating the exploration procedure and creating a set of new can-
didate solutions through Eq. 17.146 (Hasangebi and Azad 2012):

Xnew(i) = Xbest(i) T 41 Rp) (17.146)

17.45 Simple Optimization Algorithm 285

where A; stands for a positive constant, and R(; represents a normal distributed
random number with a mean zero and a stand deviation of ;).

e Step 11: Evaluating the newly created candidate solutions.

e Step 12: Checking whether the stopping criterion is met. If not, repeating the
algorithm from Step 3; otherwise, terminates the algorithm.

17.45.2 Performance of SPOT

Hasangebi and Azad (2012) employed two well-known benchmark engineering
optimization problems, namely, welded beam and pressure vessel design optimi-
zation, to verify the proposed SPOT algorithm. Compared with the best available
methods found in the literature, the results obtained by SPOT is very attractive.

17.46 Slime Mold Algorithm

In this section, we will introduce an emerging CI algorithm that is based on slime
mold related studies (Newell 1978).

17.46.1 Fundamentals of Slime Mold Algorithm

Slime mold algorithm (SMA) was recently proposed in Li et al. (2011). There are
several slime mold related applications can be found in the literature (Umedachi
et al. 2010; Tero et al. 2010; Adamatzky and Oliveira 2011; Li et al. 2011; Shann
2008) To implement SSOA, the following steps need to be performed (Li et al.
2011):

e Step 1: Initializing slime mold around the one or more food sources.

e Step 2: The slime mold will stream towards a newly introduced food source
based on a gradient descent rule. The total field ¢ is computed via Eq. 17.147
(Li et al. 2011):

0= " (i—7) ~ln(|x—x,»|2>, (17.147)

where the number of discovered food sources is denoted by N, f; is the remaining
nutrient amount found at the ith food source, and f is the mean of all f;.

e Step 3: Once slime mold arrives at a newly discovered food resource, such food
resource will be linked to the network. Nutrient values of the new connected
food resources will gradually decay.

286 17 Emerging Biology-based CI Algorithms

e Step 4: Checking whether the stopping criterion is met. If yes, the algorithm
terminates; otherwise, i.e., unconnected food sources still existing, return to
Step 2.

17.46.2 Performance of SMA

Based on the proposed SMA, Li et al. (2011) presented two self-organizing routing
protocols for wireless sensor networks by considering both efficiency and
robustness. The simulation conducted in their study proved that the proposed
protocol is effective in building network connectivities, with a trade-off between
efficiency and robustness.

17.47 Social Emotional Optimization Algorithm

In this section, we will introduce an emerging CI algorithm which is inspired from
the human society. As we know, group decisions are very important for us and
they have been studied for millennia. They are range from small-scale decisions,
e.g., some advices taken by groups of relatives, friends or colleagues, to large-
scale decisions, e.g., nation-wide democratic electrons and international agree-
ments (Conradt and List 2009).

17.47.1 Fundamentals of Social Emotional Optimization
Algorithm

Social emotional optimization algorithm (SEOA) was originally proposed in Xu
et al. (2010), Wu et al. (2011), Wei et al. (2010), Cui and Cai (2010), Chen et al.
(2010b) and Cui et al. (2010, 2011). Each person is viewed as a solution. Through
cooperation and competition mechanisms, the personal social status will be
increased and the best one will win and output as the final solution. The main steps
of SEOA are outlined as follows:

e Step 1: Initializing all individuals randomly in the search space. In the fist step,
all individuals’ emotion indexes are set to 1 as shown in Eq. 17.148 (Cui et al.
2012):

xj(1) = x;(0) & Manner, (17.148)

17.47 Social Emotional Optimization Algorithm 287

where x;(1) represents the social position of the jth individual in the initiali-
zation period, € means the operation. The movement phase of Manner; is
defined by Eq. 17.149 (Cui et al. 2012):

L
Manner, = —; - rand; -y (}W(O) - x,(O)), (17.149)
w=1

where k; is a parameter used to control the emotion changing size, rand is a
random number with uniform distribution, L represents the worst individuals
that are selected to provide a remainder for the jth individual to avoid the wrong
behaviour.

e Step 2: Computing the fitness value of each individual according to the objective
function.

e Step 3: For the jth individual, determining the value)A(L;,M(O).

e Step 4: For all population, determining the value Statusp,s (0).

e Step 5: Determining three emotional index via Eq. 17.150 (Cui et al. 2012):

xj(t+1) = xj(t) ® Manner, If BI;(t+ 1) <TH,
xj(t+1) = x;(t) ® Manner; If TH, <BI;(t + 1)<TH,, (17.150)
xj(t +1) = xj(r) ® Manner, otherwise

where TH| and TH; are two thresholds aiming to restrict the different behaviour
manner.

e Step 6: Determining different decisions according to Eqgs. 17.151-17.153,
respectively (Cui et al. 2012):

Manner, = ks - rands - (f(_,-,,,es,(t) - z,.(t)) + ks - rands - (StatuEbm(t) - 2,.(;)),

(17.151)
Manner; = k3 - rands - (S(jvbest(l) — ;Cj(t))
+ ky - rand, - (Stamgbesz(f) - ?Cj(t)> (17.152)
—ky - rand, - i (EW(O) — 76,‘(0)),
w=1
Manner, = ks - rands - (;}jybm(,) - ;,.(t)> —ky - rand, XL: (}W(o) - xj(O)),
w=1

(17.153)

where Status.(t) represents the best society status position obtained from all

people previously, and X i best () denotes the best status value obtained by the jth

288 17 Emerging Biology-based CI Algorithms

individual previously. Both can be defined by Eqgs. 17.154 and 17.155,
respectively (Cui et al. 2012):

StatiSpes (1) = arg min{f (fcw(h) n1<h< t) } (17.154)

X pex (1) = arg min{f<5cj(h)|1 < h<t) } (17.155)

e Step 7: Making mutation operation.
e Step 8: Checking termination criteria, if it is satisfied, output the best solution;
otherwise, go to Step 3.

17.47.2 Performance of SEOA

To test the performance of SEOA, a set of benchmark functions were adopted in
Cui et al. (2012). Compared with other CI algorithms, SEOA has a remarkable
superior performance in terms of accuracy and convergence speed.

17.48 Social Spider Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on some
findings regarding the spider colony (Bater 2007; Chapman 2013; Levin 2013a, b,
c,d, e, o).

17.48.1 Fundamentals of Social Spider Optimization
Algorithm

Spider algorithm has been around for a while for dealing with like search engine
optimization (Whitehouse and Lubin 1999; Jonassen 2006; Du et al. 2005). Social
spider optimization algorithm (SSOA) was recently proposed in Cuevas et al.
(2013). To implement SSOA, the following steps need to be performed (Cuevas
et al. 2013):

e Step 1: Setting the total number of n-dimensional colony members as N and
defining the number of male N,,y, and female Np,,q. spiders in the entire colony
S based on Eq. 17.156 (Cuevas et al. 2013):

Nyate = N — Nfemale

(17.156)
Nfemate = floor[(0.9 — rand - 0.25) - N],

17.48 Social Spider Optimization Algorithm 289

where rand stands for a random number which falls within the range of [0, 1],
and floor(-) indicates the mapping between a real and an integer numbers.

e Step 2: Initializing stochastically the female and male members and computing
the mating radius according to Eq. 17.157 (Cuevas et al. 2013):

Z’}:] <p1fligh _plpW>
P i v (17.157)
2-n

e Step 3: Calculating the weight of each spider in colony S through Eq. 17.158
(Cuevas et al. 2013):

J(s;) — 1,
.= J(si) —worsts (17.158)
besty — worstg

where J(s;) denotes the fitness value acquired through the evaluation of the
spider position s; with regard to the objective function J(-).
e Step 4: Moving female spiders according to the female cooperative operator

modelled as shown in Eq. 17.159 (Cuevas et al. 2013):

£ + o - Vibe; - (sc — £F) + B - Vibb; - (s, —)
el +0 - (rand — 1) with probability PF
P) = Vibe - (se — £F) — B Vibb; - (s, — £F)
+9 - (rand — 1) with probability 1 — PF

(17.159)

where a, f3, J, and rand are random numbers which fall within the range of [0, 1].
e Step 5: Similarly moving male spiders according to the male cooperative
operator expressed as Eq. 17.160 (Cuevas et al. 2013):

m! + o Vibf; - (s —mf) 4+ 6 - (rand — 1) if WNmate+i = WiNiomate+m
Nmale
ml_<+1 _ Z m]f,w"’/pmule*h ,
mf‘ +oa- ’1,:\,’11"&4 - mi{ if Wi mate+i < WiNjoato +m

WNfemate +h
=

(17.160)

where s; indicates the nearest female spider to the male individual.

e Step 6: Performing the mating operation.

e Step 7: Checking whether the stopping criterion is satisfied. If yes, the algorithm
terminates; otherwise, return to Step 3.

290 17 Emerging Biology-based CI Algorithms

17.48.2 Performance of SSOA

Different to other evolutionary algorithms, in SSOA, each individual spider is
modelled by taking its gender into account. This design allows incorporating
computational mechanisms to avoid critical flaws and incorrect exploration-
exploitation trade-off. In order to show how the SSOA performs, Cuevas et al.
(2013) collected a comprehensive set of 19 benchmark test function from the
literature. In comparison with other CI algorithms (e.g., PSO), the experimental
results confirmed an acceptable performance of the SSOA in terms of the solution
quality.

17.49 Society and Civilization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on some
findings regarding the human social behaviour (Irvine 2013; Miiller 2013; Gross
2014; Bhugra et al. 2013; Adair 2007; Chen and Lee 2008; Savage 2012; Magstadt
2013; Chalmers 2010).

17.49.1 Fundamentals of Society and Civilization Algorithm

Society and civilization algorithm (SCA) was recently proposed in Ray and Liew
(2003). To implement US algorithm, the following steps need to be performed
(Ray and Liew 2003):

e In SCA, for each individual, ¢ indicates the constraint satisfaction vector
denoted by ¢ = [c1, ¢z, ..., ¢s] as shown in Eq. 17.161 (Ray and Liew 2003):

if ith constraint satisfied
i=1,2,...8
if ith constraint violated
i=1,2,...,
if ith constraint v?olated ’ (17.161)
i=q+1,q+2,...,q+r
if ith constraint violated
i=q+r+1l,g+r+2,...,s

0

Ci =

o — h,’(X)

e Creating N random individuals standing for a civilization.
e Evaluating each individual according to the computed objective function value
and constraints.

17.49 Society and Civilization Algorithm 291

e Building societies so that U,K:(i) Soci(t) = Civ(t) and Soc;(t) N Socj(t) = ¢,
for i #j.

e Identifying society leaders so that Soc_L;(t) C Soc;(t), i =1,2,...,K(t).

e Performing move function Move().

17.49.2 Performance of SCA

In order to show how the SCA algorithm performs, Ray and Liew (2003)
employed 4 well-studied benchmark engineering design optimization problems
such as welded beam design, spring design, speed reducer design, and the three-bar
truss design. Compared with the best results obtained from the literature, the
proposed SCA performed consistently well on all cases. Meanwhile, the algorithm
exhibits a robust convergence for all selected problems which make it a very
attractive optimization algorithm.

17.50 Stem Cells Optimization Algorithm

During the past three decades, our understanding of embryonic cells has increased
dramatically. The humbling beginning started thirty years ago when embryonic
stem cells were first cultured from mouse embryos. It was only 15 years later, we
were able to derive human embryonic stem cells from human embryos that were
donated from early blastocysts which are no more need for in vitro fertilization
(Sell 2013). Throughout all creature’s life, the balance between cell birth and death
is largely regulated by complex genetic systems in response to various growth and
death signals. During this dynamic procedure, stem cells are present within most if
not all multicellular organisms and are crucial for developing, tissue repairing, as
well as aging and cancer (Resende and Ulrich 2013; Sell 2013). Briefly, stems cells
can be defined as biological cells which have the ability of self-renewal and the
capability in differentiating into various cell types (Sell 2013). They are thus
regarded as one of the most important biological components which is essential to
the proper growth and development in the process of embryogenesis. Since the
detailed information regarding the stem cells is out of the scope of the present
book, interested readers are referred to the corresponding studies, e.g., (Resende
and Ulrich 2013; Sell 2013), for more recent advancement in this field.

For the rest of this section, we will introduced an emerging CI algorithm which
is based on the findings of some important characteristics of stem cells.

292 17 Emerging Biology-based CI Algorithms

17.50.1 Fundamentals of Stem Cells Optimization Algorithm

Stem cells optimization algorithm (SCOA) was originally proposed in Taherd-
angkoo et al. (2011, 2012b). To perform the SCOA algorithm, the following
procedure needs to be followed (Taherdangkoo et al. 2012b):

o First, dividing the problem space into sections. The process can be accomplished
totally in a random manner;

e Second, generating the initial population randomly and uniformly distributed in
the whole search space of the target problem. At this stage, similar to most
optimization algorithms, a variable matrix needs to be established for the pur-
pose of obtaining a feedback with respect to problem variables. In SCOA, the
key stem cells features are used to form the initial variable matrix. Such features
may include liver cells, intestinal cells, blood cells, neurons, heart muscle cells,
pancreatic islets cells, etc. Basically, the initial matrix can be express as
Eq. 17.162 (Taherdangkoo et al. 2012b):

Xi

. Xo
Population = | ~~ (17.162)

Xy

where X; = Stem Cells = [SC},S8C,,...,SCy]; i=1,2,...,N.

In SCOA, some initialized parameters are defined as follows: M represents the
maximum of stem cells; P stands for population size (10 <P <M); Coprimum
indicates the best of stem cell in each iteration; y denotes the penalty parameter
which is used to stop the growth of stem cell; and sc' is the ith stem cell in the
population.

e Third, the cost of each stem cell is obtained a criterion function which is
determined based on the nature of the target problem. In SCOA, two types of
memory, namely, local- and global-memory, are defined for each cell in which
the local-memory is used to store the cost of each stem cell, and the global-
memory stores the best cost among all locally stored cost values;

e Then, a self-renewal process will be performed which involves only the best
cells of each area. At this stage, the information of each area’s best cells will be
shared and the cell that possesses the best cost will thus be chosen. In SCOA,
such cell is designed to play a more important role than other cells. Briefly, the
stem cells’ self-renewal operation is computed through Eq. 17.163 (Taherd-
angkoo et al. 2012b):

SCOptimum(t + 1) = CSCOptimum(t)a (17163)

where the iteration number is denoted by f, SCopimum represents the best stem
cell found in each iteration, and { is a random number which falls within [0, 1].

17.50 Stem Cells Optimization Algorithm 293

e Next, the above mentioned procedure will continue until the SCOA arrives at
the goal of getting the best cell while keeping the value of cost function as low
as possible. This is acquired via Eq. 17.164 (Taherdangkoo et al. 2012b):

xi(t 4+ 1) = py + @ (i (1) — (1)), (17.164)

where the ith stem cell position for the solution dimension j is represented by x;;,
the iteration number is denoted by ¢, two randomly selected stem cells for the
solution dimension j are denoted by w; and u;, respectively, and o(t) Gf
14;(t) — py;(t) = 7) generates a random variable falls within [—1, 1].

e Finally, the best stem cell is selected when it has the most power relative to
other cells. The comparative power can be computed via Eq. 17.165 (Taherd-
angkoo et al. 2012b):

N COptimum

2% Optimuum 17.165
S, SC; (:

~—
¢ =

where ¢ stands for stem cells’ comparative power, SCopimam denotes the stem
cells selected in terms of cost, and N represents the final population size, i.e.,
when the best solution is obtained and the SCOA algorithm terminates.

17.50.2 Performance of SCOA

Similar to other optimization algorithms, SCOA is also a population-based algo-
rithm. But the difference between SCOA and other CI algorithms lies in that it
employs minimal constraints and thus has a simpler implementation. The con-
verging speed of SCOA is faster than other algorithms in virtue of its simplicity
and its capability of escaping from local minima (Taherdangkoo et al. 2012b).

17.51 Stochastic Focusing Search Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
behaviours observed from human randomized search.

17.51.1 Fundamentals of Stochastic Focusing Searching
Algorithm

Stochastic focusing searching (SFS) algorithm was recently proposed in Zheng
et al. (2009). In order to implement SFS, the following steps need to be considered
(Zheng et al. 2009; Wang et al. 2008):

294 17 Emerging Biology-based CI Algorithms

e In SFS, the targeted optimization problems are regarded as minimization
problems, and the particles are controlled according to Eqgs. 17.166—17.168,
respectively (Zheng et al. 2009).

i(t) = {Rand()[Ry — Xi(r = 1)] %ffun[)_c',-(t = 1)] > fun[X;(r — 2)]
l Vi(t —1) if fun[X;(t — 1)] < fun[X;(t — 2)]’
(17.166)
)?,'(l‘) = 17,‘(1‘) —‘rf,(l‘ — 1), (17167)
Xi(t) =Xt — 1) if fun[X;(1)] > fun[X;(t — 1)], (17.168)

where fun[¥;(¢)] denotes the objective function value of X;(¢), and R; represents a
random chosen position in the neighbour space R, of gp.q-

e It can be observed that each individual particle search in a decreasing R;.
Therefore, an appropriate selection of wis crucial not only to the convergence of
particles, but also to the avoidance of local optimal. Accordingly w can be
defined by Eq. 17.169 (Zheng et al. 2009):

W= (GG_t>o (17.169)

where the maximum generation is denoted by G, and J denotes a positive
number.

17.51.2 Performance of SFS

To evaluate the proposed SFS, Zheng et al. (2009) employed a test suite of
benchmark functions collected from the literature. The testing function group
consists of a diverse set of problems such as functions 1-5 are unimodal, function
8—13 are multimodal function, and function 14-23 are low-dimensional function.
In comparison with other CI algorithms (e.g., DE, PSO), the experimental results
demonstrated that SFS posses a better global searching capability and faster
converging speed for most of the testing cases.

17.52 Swallow Swarm Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
social behaviour of swallow swarm.

17.52 Swallow Swarm Optimization Algorithm 295

17.52.1 Fundamentals of Swallow Swarm Optimization
Algorithm

Swallow swarm optimization (SSO) algorithm was originally proposed in Neshat
et al. (2013). The algorithm shares some similarities with other population-based
CI algorithms, e.g., PSO, but with several key differences. Basically, there are
three types of swallows in the proposed SSO algorithm (Neshat et al. 2013):

o Explorer swallow (e¢;): The major population of swallow colony is composed of
explorer swallows. Their main task is to search the target problem space. After
arriving at a potential solution point, an explorer swallow will use a special to
guide the group moving toward such place. If the place is indeed the best one
found in the problem space, this swallow will play a role of head leader (HL;).
However, if the place is a good but not the best position in comparison with
other locations, this swallow will be selected as a local leader (LL;). Otherwise,
each explorer swallow e¢; will make a random movement according to
Eqgs. 17.170-17.181, respectively (Neshat et al. 2013):

V.., = Var, + aurrand() (epess — €;) + Py rand() (HL; — e;), (17.170)
gL = {lf (ei = 0”61,35, = O) — 15}, (17171)

R rand() - e;

€i " €hest

oy = if (Ei <ehex1)&&(ei > HL,) — %(.L)ehm (Where e; 7& O) y

if (e; < epes)&&(e; < HL;) (where e;, €pess 7 0)

€hest

if (e; > €pest) - 1/(2 - rand())

(17.172)
B = {if (e; = Ol/epess = 0) — 1.5}, (17.173)
if (¢ < epes)&c&e (e <HL)) — L}L (where e;, HL; # 0)
By = { if (e; <epes)&&(e; > HL;) — %(L)HL‘ (where ¢; # 0) ,
if (e; > epest) — m
(17.174)
Vit = Vi, +ogprand() (epess — €i) + frprand() (LL; — e;), (17.175)

oz = {if (e; = Oflepess = 0) — 2}, (17.176)

296 17 Emerging Biology-based CI Algorithms

- rand() - e;

€ * Chpest

if (ei <ebes,)&&(e,- <LL,) (Where €, Chest # 0)

oL = if (Ei <ehest)&&(ei > LL,) — %()e;hm (where e; 7& O) s

€hest

if (e; > epest) - 1/(2 - rand())

(17.177)
B = {if (e; = Ol|epess = 0) — 2}, (17.178)
if (e; <epest)&&(e;<LL;)) — % (where e;, LL; # 0)
B = if (e <epes)&cle(e; > LL) — % (where ¢; £0) |
. LL;
if (e; > epesr) — @ rand())
(17.179)
Vigr = VHLI-H + VLL,.H, (17180)
€11 :€;+V[+1. (17181)

Vector Vy;, has an important impact on explorer swallow’s behaviour. Each
explorer swallow e; uses the nearest swallow LL; for the purpose of calculating the
vector of Vi,

o Aimless swallow (0;): When the search begins, these swallows doe not occupy a
good position. Their task is thus doing random search which means their
positions are not affected by HL; and LL;. The role of an aimless swallow is
more like a scout. If an aimless swallow o; gets a better solution during its
searching, it will replace its position with the nearest explorer swallow’s posi-
tion and then continue with search. This process is defined by Eq. 17.182
(Neshat et al. 2013):

rand(miny, max)

0iy1 = 0; + |rand((—1,1)) - T+ rand()

(17.182)

o Leader swallow (/;): Unlike the PSO which has only one leader particle, in SSO,
there may have n; leader swallows that are distributed or gathered in the problem
space. The best leader is called leader head, while the others are called local
leader. They are candidate desirable solutions that we are looking for.

17.52 Swallow Swarm Optimization Algorithm 297

17.52.2 Performance of SSO

In order to show how the SSO algorithm performs, Neshat et al. (2013) employed
16 benchmark test functions such as Sphere function, Rosenbrock function,
Quadric function, Rastrigin function, Rotated Rastrigin function, and Rotated
Ackley function. In comparison with other CI techniques (e.g., variant PSO, etc.),
the SSO algorithm is one of the best optimization approaches in the category of
swarm intelligence. It thus has the ability in solving optimization problems
encountered in different scenarios.

17.53 Termite-Hill Algorithm

In this section, we will introduce an emerging CI algorithm that is based on hill
building behaviour observed from real termites (Keller and Gordon 2009).

17.53.1 Fundamentals of Termite-Hill Algorithm

Termite-hill algorithm (ThA) was originally proposed (Zungeru et al. 2012) for
dealing with wireless sensor networks routing problem. The key components of
ThA are detailed as below (Zungeru et al. 2012):

e Component 1: Pheromone table. Pheromone plays an important role in lever-
aging an effective and efficient communication in real world (Touhara 2013).
Similarly in ThA, the pheromone is updated through Eq. 17.183 (Zungeru et al.
2012):

T;_’S =T s+, (17.183)
where y can be expressed as Eq. 17.184 (Zungeru et al. 2012):
N

)= s
E _ Emianj
Em'_lvj

(17.184)

where E denotes the initial energy of the nodes.

e Component 2: Route selection. In ThA, each of the routing tables carried by the
nodes is initialized with a uniform probability distribution defined as Eq. 17.185
(Zungeru et al. 2012):

(17.185)

where N; denotes the number of nodes in the network.

298 17 Emerging Biology-based CI Algorithms

17.53.2 Performance of ThA

To verify the proposed ThA, Zungeru et al. (2012) conducted a series of experi-
mental studies. The simulation results demonstrated that ThA is a very competitive
routing algorithm in terms of energy consumption, throughput, and network
lifetime.

17.54 Unconscious Search Algorithm

In this section, we will introduce an emerging CI algorithm that is based on some
findings from human brain and psychology studies (Irvine 2013; Chalmers 2010;
Miiller 2013; Gross 2014; Bhugra et al. 2013; Sen 2014).

17.54.1 Fundamentals of Unconscious Search Algorithm

Unconscious search (US) algorithm was recently proposed in Ardjmand and
Amin-Naseri (2012). The key concept of US is to use some common features
found between optimization and psychoanalysis to design search algorithm. To
implement US algorithm, the following steps need to be performed (Ardjmand and
Amin-Naseri 2012):

e Initially, a group of suitable solutions P = (Pl,Pz, .. .,P|MM‘) is created. |MM|
is the size of the measurement matrix (MM) where the assorted group of best
feasible solutions. In US, MM can be expressed as Eq. 17.186 (Ardjmand and
Amin-Naseri 2012):

MM = {P,|C(P,) <C(Py1), q=1.2,...,|MM|}, (17.186)

where a translation function is employed in US to map the value of the objective
function of any solution P, into a range of («, 1 — a) for o falls within (0, 1) and
P, € MM. In US, the translation function f;, is defined according to Eq. 17.187
(Ardjmand and Amin-Naseri 2012):

- 1
B 1 +ea(C(Pq))+b

where f;, is a sigmoid function, and a and b are variables of f;, which will be
updated in each iteration.

e In US, a displacement memory, II, is employed to remember the displace
pattern in the solutions which can be calculated through Eqs. 17.188 and 17.189,
respectively (Ardjmand and Amin-Naseri 2012):

fiu(C(Py)) , P,EMM, (17.187)

17.54 Unconscious Search Algorithm 299
= {(I;, M) |j=1,2,...,|X|}, (17.188)

jl_{njll‘l_lz n.]: 5)"7‘X|}

17.189
H_,E—{n]E,|l—1 2,..,nj=1,2,. |X|} ()

where the number of decision parameters is denoted by 7, and m;; and m;z; are
computed via Egs. 17.190 and 17.191, respectively (Ardjmand and Amin-Naseri
2012):

= (Satetw)

MS
P, e MM; P (i) € X;; j = 1,2,...,|X].
g=12,..,|MM|;i=1,2,..,n

njEi:<Zh>; J=12,..,0X]; i=1,2,...n (17.191)
MS

where MS € Z" — {0} represents the memory size.

e By using the displacement memory, I1, a new solution, S;, will be created. In
US, the ith solution component S; (i) will be allocated with a possible range X; in
solution space with a probability defined as Eq. 17.192 (Ardjmand and Amm—
Naseri 2012):

(17.190)

Tli

H—(n ')ﬁ
Prob{S()) € Xj} = 7 (17.192)

where the probability function is denoted by Prob, and f represents a prede-
termined constant.

e Once a displacement-free solution is reached, in order to remove the conden-
sational resistance pattern, a condensational memory, IT, is introduced in US
and it is defined as Eq. 17.193 (Ardjmand and Amin-Naseri 2012):

= {(I0},10;) | i=1,2,...,n}

7 = { (. m) | i = 1,2, n) (17.193)
Hl_ = {(HJJTJE)T": 1727...,11}
where 7 =305/ (C(Py))s mip = Yyshs 7y = Spsfy(C(Py)), and
o h

300 17 Emerging Biology-based CI Algorithms

17.54.2 Performance of US

Overall, US is a multi-start CI algorithm which contains three phases, namely,
construction, construction review, and local search. To test the performance of US
algorithm, Ardjmand and Amin-Naseri (2012) employed one bounded and six
unbounded benchmark test functions and engineering design optimization prob-
lems which include such as Rosenbrock function, Goldsten and Price function,
Wood function, and pressure vessel design problem. Compared with other CI
algorithms, the results obtained by US is very competitive. The parameter analysis
carried out in (Ardjmand and Amin-Naseri 2012) demonstrated that US is a robust
and easy-to-use approach in dealing with hard optimization problems.

17.55 Wisdom of Artificial Crowds Algorithm

In this section, we will introduce an emerging CI algorithm that is based on some
findings regarding the human collective intelligence (Irvine 2013; Chalmers 2010;
Miiller 2013; Gross 2014; Bhugra et al. 2013; Adair 2007; Chen and Lee 2008;
Savage 2012).

17.55.1 Fundamentals of Wisdom of Artificial Crowds
Algorithm

Wisdom of artificial crowds (WoAC) algorithm was recently proposed in Ashby
and Yampolskiy (2011), Port and Yampolskiy (2012) and Yampolskiy et al.
(2012). The WoAC is a post-processing algorithm in which independently deci-
sion-making artificial agents aggregate their personal solutions to reach an
agreement about which answer is superior to all other solutions presented in the
population (Yampolskiy et al. 2012). To implement WoAC algorithm, the fol-
lowing steps need to be performed (Yampolskiy et al. 2012):

e Setting up an automatic aggregation mechanism which collecting the individual
solutions and producing a common solution that reflects frequent local structures
of individual solutions.

e After establishing an agreement matrix, in order to transform agreements
between solutions and costs, a nonlinear monotonic transformation function is
applied as shown in Eq. 17.193 (Yampolskiy et al. 2012):

cj=1—1,"'(b1,b2), (17.194)

where]a_,-,l (b1, by) represents the inverse regularized beta function.

17.55 Wisdom of Artificial Crowds Algorithm 301

17.55.2 Performance of WoAC

To test the performance of WoAC algorithm, Yampolskiy et al. (2012) employed
the classic travelling salesman problem as a benchmark. Compared with other CI
algorithms (e.g., GA), the results obtained by WoAC is very competitive, in
particular with an average of 3—10 % solutions quality improvement.

17.56 Wolf Colony Algorithm

As one of the largest species of the genus Canis, Northern gray wolves exhibit
some of the most complex intra-specific social behaviour within the carnivores
(Macdonald et al. 2004). Such behaviours include such as living in social units
(i.e., packs), hunting socially, participating in group care of young offspring, and
group defences of food and territory (Muro et al. 2011). According to Fuller et al.
(2003) and Vucetich et al. (2004) in real world environment, living and foraging in
form of packs is commonly observed when the prey base is composed of large
ungulates, when the risk of losing food to scavengers is high, and when territorial
defence is critical. Wolves hunt large ungulates, e.g., moose (Sand et al. 2006), in
pack of two or more animals (Fuller et al. 2003) for the purpose of, e.g., reducing
foraging cost (Packer and Caro 1997). In Muro et al. (2011), the authors employed
two simple decentralized rules [via conventional CI approach, i.e., multi-agent
system (MAS)] to regenerate the main features of the wolf pack hunting behav-
iour. The rules developed in their study are (1) moving towards the prey until a
minimum safe distance to the prey is acquired, and (2) moving away from the
other wolves (under the situation of close enough to the prey) that are adjacent to
the safe distance to the prey. The detailed information regarding the wolf pack
hunting behaviour is out of the scope of present book. For the rest of this section,
we will introduce an emerging CI algorithm that is based on the hunting behav-
iours observed from a wolf colony.

17.56.1 Fundamentals of Wolf Colony Algorithm

Wolf colony algorithm (WCA) was originally proposed in Liu et al. (2011). Let D
represents the dimension of the search space, n denotes the individual number, X;
stands for the position of the ith artificial wolf, then we have Eq. 17.197 (Liu et al.
2011):

Xi = X, ... Xia, ... Xip), (17.195)

where 1 <i<n,and 1 <d<D.

302 17 Emerging Biology-based CI Algorithms

The WCA algorithm mimics several behaviours that are commonly found in a
wolf colony (Liu et al. 2011).

e Searching behaviour: ¢ artificial wolves are initialized to detect the possible
quarry activities for the purpose of increasing the probability of discovering the
quarry. Suppose that g scout wolves are the wolves that are closest to the quarry,
maxdh denotes the maximum searching number, XX; is the location of the ith
scout wolf (totally 4 locations are created around the candidate wolf), and the jth
searching position is denoted by Y;, then we have Eq. 17.195 (Liu et al. 2011):

Y; = XX; + randn - stepa, (17.196)

where a uniformly distributed random number (falling within [—1, 1]) is denoted
by randn, stepa represents the searching step. The searching behaviour will be
terminated under the following situations, i.e., the searching number is greater
than maxdh or the current location is better than the optimal searching location.

e Besieging behaviour: Once a quarry is discovered by scout wolves, howl is
normally used to notify other wolves about the position of the quarry. Let the
location of a quarry in the dth searching space after the kthiteration is denoted
by G%, and Xl’.‘d stands for the position of the ith artificial wolf, then we have
Eq. 17.197 (Liu et al. 2011):

X5 = X5 + rand - stepb - (G4 — XY), (17.197)

where rand represents a uniformly distributed random number (falling within
[0, 1]), stepb denotes the searching step, the iteration number is represented by &,
and the range of [XMIN,, XMAX,] is used to stand for the dth position.

e Food assignment behaviour: Assigning food to the strongest wolves first, and
then to other wolves is often observed in a colony of wolves. Based on this
observation, in WCA, the wolves (denoted bym) with the worst performances
will be replaced by newly generated m artificial wolves which are randomly
distributed within the wolf colony. This mechanism can assist the WCA algo-
rithm in avoiding the local optimum.

Taking into account the fundamental behaviours described above, the steps of
implementing WCA can be summarized as follows (Liu et al. 2011):

e Step 1: Initializing the following parameters such as n (the individual number),
maxk (the maximum iteration number), g (the number of the searching artificial
wolf), h (the searching direction), maxdh (the maximum searching number),
stepa (the searching step), stepb (the besieging step), m (the number of the worst
artificial wolves), and the ith (1 <i<n) artificial wolf’s (X;) position.

e Step 2: Forming the group of searching wolves (g optimal artificial wolves) and
each member of searching wolves moves according to Y; = XX; + randn - stepa.

e Step 3: Choosing the best location of the searching artificial wolves as the
quarry’s position. Updating each artificial wolf’s position based on Xi’i;rl =

17.56 Wolf Colony Algorithm 303

Xt + rand - stepb -(GY — X4). If Xiy<XMIN,, then set Xy = XMINy; if
Xig > XMAXy, set X;y = XMAX,.

e Step 4: Updating the wolf colony following the food assignment behaviour, i.e.,
replacing the worst m artificial wolves with m newly generated artificial wolves.

e Step 5: Evaluating the stopping criteria. If the circulation steps of WCA equals
the predetermined maximum iteration number, the algorithm stops and outputs
the current best position of artificial wolves; otherwise, WCA continues to run
(i.e., returning to Step 2).

17.56.2 Performance of WCA

In order to test the performance of WCA, Liu et al. (2011) employed 5 benchmark
test functions such as Sphere function, Rosenbrock function, Schwefel function,
and Rastrigin function. In comparison with other CI techniques (e.g., PSO and
GA), WCA showed a good convergence and a strong global searching capability.

17.57 Wolf Pack Search Algorithm

In this section, we will introduce another wolf (in particular, wolf pack search
behaviour) inspired CI algorithm (Cordoni 2009, Heylighen 1992).

17.57.1 Fundamentals of Wolf Pack Search Algorithm

Wolf pack search (WPS) algorithm was originally proposed by Yang et al. (2007).
Briefly, WPS works as follows (Yang et al. 2007):

Initializing step.

Initializing a pack of wolves in a random manner.

Comparing and determining the best wolf GBest and its fitness GBFit.
Circulating and updating the Eq. 17.198 (Yang et al. 2007):

Wolfyew = wolf + step - (GBest — wolf) /|GBest — wolf]|. (17.198)

o If the fitness of wolf,,, is better than GBFit, replacing GBest and GBFit with
wolf,.,, and its corresponding fitness value, respectively.

304 17 Emerging Biology-based CI Algorithms

17.57.2 Performance of WPS

In Yang et al. (2007), the WPS algorithm was hybridized with honeybee mating
optimization algorithm to form WPS-MBO. By testing it on classical travelling
salesman problem and a set of benchmark functions (e.g., Rosenbrock function,
Schwefel function, and generalized Rastrigin function), the WPS-MBO showed a
very attractive performance.

17.58 Conclusions

In this chapter, 56 emerging biology-based CI methodologies are discussed.
Although most of them are still in their infancy, their usefulness has been dem-
onstrated throughout the preliminary corresponding studies. Interested readers are
referred to them as a starting point for a further exploration and exploitation of
these innovative CI algorithms.

References

Abdullah, S., Turabieh, H., & Mccollum, B. (2009). A hybridization of electromagnetic-like
mechanism and great deluge for examination timetabling problems. Hybrid Metaheuristics,
LNCS (Vol. 5818, pp. 60-72). Berlin: Springer.

Abernethy, B., Kippers, V., Hanrahan, S. J., Pandy, M. G., Mcmanus, A. M., & Mackinnon, L.
(2013). Biophysical foundations of human movement,, Champaign: Human Kinetics. ISBN
978-1-4504-3165-1.

Acebo, E. D., & Rosa, J. L. D. L. (2008, April 1-4). Introducing bar systems: A class of swarm
intelligence optimization algorithms. In AISB 2008 Symposium on Swarm Intelligence
Algorithms and Applications, University of Aberdeen (pp. 18-23). The Society for the Study
of Artificial Intelligence and Simulation of Behaviour.

Acquaah, G. (2012). Principles of plant genetics and breeding. River Street: Wiley. ISBN 978-0-
470-66476-6.

Adair, J. (2007). Develop your leadership skills. London: Kogan Page Limited. ISBN 0-7494-
4919-5.

Adamatzky, A., & Oliveira, P. P. B. D. (2011). Brazilian highways from slime mold’s point of
view. Kybernetes, 40, 1373-1394.

Adams, S. (2004). World War I. London: Dorling Kindersley Limited. ISBN 1-4053-0298-4.

Ahrari, A., & Atai, A. A. (2010). Grenade explosion method: A novel tool for optimization of
multimodal functions. Applied Soft Computing, 10, 1132-1140.

Ahrari, A., Shariat-Panahi, M., & Atai, A. A. (2009). GEM: a novel evolutionary optimization
method with improved neighborhood search. Applied Mathematics and Computation, 210,
379-386.

Al-Milli, N. R. (2010). Hybrid genetic algorithms with great deluge for course timetabling.
International Journal of Computer Science and Network Security, 10, 283-288.

Alatas, B. (2011). Photosynthetic algorithm approaches for bioinformatics. Expert Systems with
Applications, 38, 10541-10546.

References 305

Aleksiev, A. S., Longdon, B., Christmas, M. J., Sendova-Franks, A. B., & Franks, N. R. (2008).
Individual and collective choice: Parallel prospecting and mining in ants. Naturwissenschaf-
ten, 95, 301-305.

Alexiou, A., & Vlamos, P. (2012). A cultural algorithm for the representation of mitochondrial
population. Advances in Artificial Intelligence, 2012, 1-7.

Alonso, C., Herrera, C. M., & Ashman, T.-L. (2012). A piece of the puzzle: A method for
comparing pollination quality and quantity across multiple species and reproductive events.
New Phytologist, 193, 532-542.

Aman, B. (2009). Spatial dynamic structures and mobility in computation. Unpublished Doctoral
Thesis, Romania Academy.

Anandaraman, C. (2011). An improved sheep flock heredity algorithm for job shop scheduling
and flow shop scheduling. International Journal of Industrial Engineering Computations, 2,
749-764.

Anandaraman, C., Sankar, A. M., & Natarajan, R. (2012). Evolutionary approaches for
scheduling a flexible manufacturing system with automated guided vehicles and robots.
International Journal of Industrial Engineering Computations, 3, 627-648.

Ardjmand, E., & Amin-naseri, M. R. (2012). Unconscious search: A new structured search
algorithm for solving continuous engineering optimization problems based on the theory of
psychoanalysis. In Y. Tan, Y. Shi, & Z. Ji (Eds.), ICSI 2012, Part I, LNCS (Vol. 7331,
pp. 233-242). Berlin: Springer.

Ashby, L. H. & Yampolskiy, R. V. (2011). Genetic algorithm and wisdom of artificial crowds
algorithm applied to light up. In 16th International Conference on Computer Games (GAMES
2011), (pp. 27-32). IEEE.

Badgerow, J. P., & Hainsworth, F. R. (1981). Energy savings through formation flight? A re-
examination of the vee formation. Journal of Theoretical Biology, 93, 41-52.

Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, L., et al. (2008).
Empirical investigation of starling flock: A benchmark study in collective animal behaviour.
Animal Behaviour, 76, 201-215.

Bater, L. (2007). Incredible insects: Answers to questions about miniature marvels. Vero Beach:
Rourke Publishing LLC. Post Office Box 3328. ISBN 978-1-60044-348-0.

Batista, L. D. S., Guimaraes, F. G., & Ramirez, J. A. (2009). A distributed clonal selection
algorithm for optimization in electromagnetics. I[EEE Transactions on Magnetics, 45,
1598-1601.

Bell, W. J,, Roth, L. M., & Nalepa, C. A. (2007). Cockroaches: Ecology, behavior, and natural
history. Maryland: The Johns Hopkins University Press. ISBN 978-0-8018-8616-4.

Bellaachia, A., & Bari, A. (2012). Flock by leader: A novel machine learning biologically
inspired clustering algorithm. In Y. Tan, Y. Shi, & Z. Ji (Eds.), ICSI 2012, Part I, LNCS (Vol.
7332, pp. 117-126). Berlin: Springer.

Bhugra, D., Ruiz, P., & Gupta, S. (2013). Leadership in psychiatry. Hoboken: Wiley. ISBN 978-
1-119-95291-6.

Bolstad, T. M. (2012). Brownian motion. Department of Physics and Technology, University of
Bergen.

Brierley, A. S., & Cox, M. J. (2010). Shapes of krill swarms and fish schools emerge as
aggregation members avoid predators and access oxygen. Current Biology, 20, 1758-1762.

Brownlee, J. (2007). Clonal selection algorithms. CIS Technical Report, 070209A, 1-13.

Burke, E., Bykov, Y., Newall, J., & Petrovic, S. (2004). A time-predefined local search approach
to exam timetabling problems. /I/E Transactions, 3, 509-528.

Campelo, F., Guimaraes, F. G., Igarashi, H., & Ramirez, J. A. (2005). A clonal selection
algorithm for optimization in electromagnetics. I[EEE Transactions on Magnetics, 41,
1736-1739.

Cao, C.-H., Wang, L.-M., Han, C.-Y., Zhao, D.-Z., & Zhang, B. (2012). Geese PSO optimization
in geometric constraint solving. Information Technology Journal, 11, 504.

Carlson, N. R. (2013). Physiology of behavior. New Jersey: Pearson Education, Inc. ISBN 978-0-
205-23948-1.

306 17 Emerging Biology-based CI Algorithms

Carpentier, R. (2011). Photosynthesis research protocols. New York: Springer. ISBN 978-1-
60671-924-6.

Castro, L. N. D., & Zuben, F. J. V. (2000, July). The clonal selecton algorithm with engineering
applications. In Workshop on Artificial Immune Systems and Their Applications, Las Vegas,
USA, pp. 1-7.

Castro, L. N. D., & Zuben, F. J. V. (2002). Learning and optimization using the clonal selection
principle. IEEE Transactions on Evolutionary Computation, 6, 239-251.

Chalmers, D. J. (2010). The character of consciousness. USA: Oxford University Press. ISBN
978-0-195-31111-2.

Chandrasekaran, M., Asokan, P., Kumanan, S., & Balamurugan, T. (2006). Sheep flocks heredity
model algorithm for solving job shop scheduling problems. International Journal of Applied
Management and Technology, 4, 79-100.

Chapman, R. F. (2013). The insects: structure and function. In S. J. Simpson & A.
E. Douglas (Eds.). New York: Cambridge University Press. ISBN 978-0-521-11389-2.

Chen, C.-C., & Lee, Y.-T. (Eds.). (2008). Leadership and management in China: Philosophies,
theories, and practices. Cambridge: Cambridge University Press. ISBN 978-0-511-40909-7.

Chen, K., Li, T., & Cao, T. (2006). Tribe-PSO: A novel global optimization algorithm and its
application in molecular docking. Chemometrics and Intelligent Laboratory Systems, 82,
248-259.

Chen, T. (2009). A simulative bionic intelligent optimization algorithm: Artificial searching
swarm algorithm and its performance analysis. In IEEE International Joint Conference on
Computational Sciences and Optimization (CSO) (pp. 864-866).

Chen, T., Liu, Z., Shu, Q., & Zhang, L. (2009a). On the analysis of performance of the improved
artificial searching swarm algorithm. In IEEE 2nd International Conference on Intelligent
Networks and Intelligent Systems (ICINIS) (pp. 502-506).

Chen, T., Pang, L., Du, J., Liu, Z., & Zhang, L. (2009b). Artificial searching swarm algorithm for
solving constrained optimization problems. In IEEE International Conference on Intelligent
Computing and Intelligent Systems (ICIS) (pp. 562-565) .

Chen, T., Wang, Y., & Li, J. (2012). Artificial tribe algorithm and its performance analysis.
Journal of Software, 7, 651-656.

Chen, T., Wang, Y., Pang, L., Liu, Z., & Zhang, L. (2010a). An improved artificial searching
swarm algortihm and its performance analysis. In /EEE 2nd International Conference on
Computer Modeling and Simulation (ICCMS) (pp. 260-263).

Chen, T., Zhang, L., Liu, Z., Pang, L., & Shu, Q. (2009c). On the analysis of performance of the
artificial searching swarm algorithm. In IEEE 5h International Conference on Natural
Computation (ICNC) (pp. 365-368).

Chen, Y., Cui, Z., & Zeng, J. (2010b, July 7-9). Structural optimization of lennard-jones clusters
by hybrid social cognitive optimization algorithm. In F. Sun, Y. Wang, J. Lu, B. Zhang, W.
Kinsner, & L. A. Zadeh (Eds.), In 9th International Conference on Cognitive Informatics
(ICCI) (pp. 204-208). IEEE. Beijing, China.

Chen, Z., & Tang, H. (2010). Cockroach swarm optimization. In IEEE 2nd International
Conference on Computer Engineering and Technology (ICCET) (pp. 652-655).

Chen, Z., & Tang, H. (2011). Cockroach swarm optimization for vehicle routing problems.
Energy Procedia, 13, 30-35.

Cheng, L., Xu, Y.-H., Zhang, H.-B., Qian, Z.-L., & Feng, G. (2010). New bionics optimization
algorithm: food truck-cockroach swarm optimization algorithm (in Chinese). Computer
Engineering, 36, 208-209.

Ciobanu, G., Desai, R., & Kumar, A. (2003). Membrane systems and distributed computing. In G.
Paun (Ed.), WMC-CdeA 2002, LNCS (Vol. 2597, pp. 187-202). Berlin: Springer.

Civicioglu, P. (2012). Transforming geocentric cartesian coordinates to geodetic coordinates by
using differential search algorithm. Computers and Geosciences, 46, 229-247.

Civicioglu, P. (2013). Backtracking search optimization algorithm for numerical optimization
problems. Applied Mathematics and Computation, 219, 8121-8144.

References 307

Coelho, L. D. S., & Bernert, D. L. D. A. (2009). PID control design for chaotic synchronization
using a tribes optimization approach. Chaos, Solitons and Fractals, 42, 634-640.

Conradt, L., & List, C. (2009). Group decisions in humans and animals: A survey. Philosophical
Transaction of the Royal Society B, 364, 719-742.

Cordoni, G. (2009). Social play in captive wolves (Canis lupus): Not only an immature affair.
Behaviour, 146, 1363-1385.

Couzin, I. D. (2009). Collective cognition in animal groups. Trends in Cognitive Sciences, 13,
36-43.

Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision-
making making in animal groups on the move. Nature, 434, 513-516.

Creel, S. (1997). Cooperative hunting and group size: Assumptions and currencies. Animal
Behaviour, 54, 1319-1324.

Cuevas, E., Cienfuegos, M., Zaldivar, D., & Pérez-Cisneros, M. (2013). A swarm optimization
algorithm inspired in the behavior of the social-spider. Expert Systems with Applications. doi:
http://dx.doi.org/10.1016/j.eswa.2013.05.041.

Cuevas, E., Zaldivar, D., & Pérez-Cisneros, M. (2013b). A swarm optimization algorithm for
multimodal functions and its application in multicircle detection. Mathematical Problems in
Engineering, 2013, 1-22.

Cui, X., Gao, J., & Potok, T. E. (2006). A flocking based algorithm for document clustering
analysis. Journal of Systems Architecture, 52, 505-515.

Cui, Y., Guo, R., & Guo, D. (2009). A naive five-element string algorithm. Journal of Software,
4, 925-934.

Cui, Y. H., Guo, R., Rao, R. V., & Savsani, V. J. (2008, December 15-17) Harmony element
algorithm: A naive initial searching range. In International Conference on Advances in
Mechanical Engineering, S.V. (pp. 1-6). National Institute of Technology, Gujarat, India.

Cui, Z., & Cai, X. (2010, July 7-9). Using social cognitive optimization algorithm to solve
nonlinear equations. In F. Sun, Y. Wang, J. Lu, B. Zhang, W. Kinsner & L. A. Zadeh (Eds.),
In 9th International Conference on Cognitive Informatics (ICCI) (pp. 199-203). Beijing,
China. IEEE.

Cui, Z., Cai, X., & Shi, Z. (2011). Social emotional optimization algorithm with group decision.
Scientific Research and Essays, 6, 4848-4855.

Cui, Z., Shi, Z., & Zeng, J. (2010). Using social emotional optimization algorithm to direct orbits
of chaotic systems. In B. K. Panigrahi, S. Das, P. N. Suganthan & S. S. Dash (Eds.), Swarm,
Evolutionary, and Memetic Computing, LNCS (Vol. 6466, pp. 389-395). Berlin: Springer.

Cui, Z., Xu, Y., & Zeng, J. (2012). Social emotional optimization algorithm with random
emotional selection strategy. In R. Parpinelli (Ed.), Theory and New Applications of Swarm
Intelligence, Chap. 3 (pp. 33-50). Croatia: InTech. ISBN 978-953-51-0364-6.

Cummins, B., Cortez, R., Foppa, I. M., Walbeck, J., & Hyman, J. M. (2012). A spatial model of
mosquito host-seeking behavior. PLoS Computational Biology, 8, 1-13.

Cutts, C. J., & Speakman, J. R. (1994). Energy savings in formation flight of pink-footed geese.
Journal of Experimental Biology, 189, 251-261.

Dai, C., Chen, W., & Zhu, Y. (2006, November). Seeker optimization algorithm. In [EEE
International Conference on Computational Intelligence and Security (pp. 225-229).
Guangzhou, China.

Dai, C., Chen, W., Song, Y., & Zhu, Y. (2010a). Seeker optimization algorithm: A novel
stochastic search algorithm for global numerical optimization. Journal of Systems Engineer-
ing and Electronics, 21, 300-311.

Dai, C., Chen, W., & Zhu, Y. (2010b). Seeker optimization algorithm for digital IIR filter design.
IEEE Transactions on Industrial Electronics, 57, 1710-1718.

Dai, C., Chen, W., Zhu, Y., & Zhang, X. (2009a). Reactive power dispatch considering voltage
stability with seeker optimization algorithm. Electric Power Systems Research, 79,
1462-1471.

Dai, C., Chen, W., Zhu, Y., & Zhang, X. (2009b). Seeker optimization algorithm for optimal
reactive power dispatch. IEEE Transactions on Power Systems, 24, 1218-1231.

http://dx.doi.org/10.1016/j.eswa.2013.05.041

308 17 Emerging Biology-based CI Algorithms

Dai, C., Zhu, Y., & Chen, W. (2007). Seeker optimization algorithm. In Y. Wang, Y. Cheung &
H. Liu (Eds.), CIS 2006, LNAI (Vol. 4456. pp. 167-176). Berlin: Springer.

Dai, S., Zhuang, P., & Xiang, W. (2013). GSO: An improved PSO based on geese flight theory. In
Y. Tan, Y. Shi, & H. Mo (Eds.), Advances in Swarm Intelligence, ICSI 2013, Part I, LNCS
(Vol. 7928, pp. 87-95). Berlin: Springer.

Daskin, A., & Kais, S. (2011). Group leaders optimization algorithm. Molecular Physics, 109,
761-772.

Davendra, D., & Zelinka, I. (2009). Optimization of quadratic assignment problem using self-
organinsing migrating algorithm. Computing and Informatics, 28, 169-180.

Davendra, D., Zelinka, 1., Bialic-Davendra, M., Senkerik, R., & Jasek, R. (2013). Discrete self-
organising migrating algorithm for flow-shop scheduling with no-wait makespan. Mathemat-
ical and Computer Modelling, 57, 100-110.

Digalakis, J. G., & Margaritis, K. G. (2002). A multipopulation cultural algorithm for the
electrical generator scheduling problem. Mathematics and Computers in Simulation, 60,
293-301.

Ding, S., & Li, S. (2009). Clonal selection algorithm for feature selection and parameters
optimization for support vector machines. In [EEE 2nd International Symposium on
Knowledge Acquisition and Modeling (pp. 17-20).

Du, Y., Li, H., Pei, Z., & Peng, H. (2005). Intelligent spider’s algorithm of search engine based on
keyword. ECTI Transactions on Computer and Information Theory, 1, 40—49.

Dubinsky, Z. (Ed.). (2013). Photosynthesis. InTech: Croatia. ISBN 978-953-51-1161-0.

Dueck, G. (1993). New optimization heuristics: The great deluge algorithm and the record-to-
record travel. Journal of Computational Physics, 104, 86-92.

Duman, E., Uysal, M., & Alkaya, A. F. (2012). Migrating birds optimization: A new
metaheuristic approach and its performance on quadratic assignment problem. Information
Sciences, 217, 65-717.

Durrett, R. (1984). Brownian motion and martingales in analysis. Belmont: Wadsworth
Advanced Books and Software, A Division of Wadsworth, Inc. ISBN 0-534-03065-3.

Ebensperger, L. A. (2001). A review of the evolutionary causes of rodent group-living. Acta
Theriologica, 46, 115-144.

Eckstein, M. P., Das, K., Pham, B. T., Peterson, M. F., Abbey, C. K., Sy, J. L., et al. (2012).
Neural decoding of collective wisdom with multi-brain computing. Neurolmage, 59, 94—108.

Feng, X., Lau, F. C. M., & Gao, D. (2009). A new bio-inspired approach to the traveling salesman
problem. In J. Zhou (Ed.), Complex 2009, Part II, LNICST, (Vol. 5, pp. 1310-1321). Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering.

Frank, S. A. (1998). Foundations of social evolution. New Jersey: Princeton University Press.
ISBN 0-691-05933-0.

Fuller, T. K., Mech, L. D., & Cockrane, J. F. (2003). Wolf population dynamics. In L. D. Mech &
L. Boitani (Eds.), Wolves: Behavior, Ecology and Conservation (pp. 161-191). Chicago:
University of Chicago Press.

Gamlin, L. (2009). Evolution. New York: Dorling Kindersley Limited. ISBN 978-0-7566-5028-5.

Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm.
Communications in Nonlinear Science and Numerical Simulation, 17, 4831-1845.

Gandomi, A. H., Yang, X.-S., Talatahari, S., & Deb, S. (2012). Coupled eagle strategy and
differential evolution for unconstrained and constrained global optimization. Computers and
Mathematics with Applications, 63, 191-200.

Gao, S., Chai, H., Chen, B., & Yang, G. (2013). Hybrid gravitational search and clonal selection
algorithm for global optimization. In Y. Tan, Y. Shi & H. Mo (Eds.), Advances in Swarm
Intelligence, LNCS (Vol. 7929, pp. 1-10). Hybrid gravitational search and clonal selection
algorithm for global optimization. Berlin: Springer.

Ghatei, S., Khajei, R. P., Maman, M. S., & Meybodi, M. R. (2012). A modified PSO using great
deluge algorithm for optimization. Journal of Basic and Applied Scientific Research, 2,
1362-1367.

References 309

Gheorghe, M., Paun, G., Rozenberg, G., Salomaa, A., & Verlan, S. (Eds.). (2012). Membrane
computing. Berlin: Springer. ISBN 978-3-642-28023-8.

Giraldeau, L.-A., Soos, C., & Beauchamp, G. (1994). A test of the producer-scrounger foraging
game in captive flocks of spice finches, Lonchura punctulata. Behavioral Ecology and
Sociobiology, 34, 251-256.

Goffredo, S., & Dubinsky, Z. (2014). The Mediterranean Sea: Its history and present challenges.
New York: Springer. ISBN 978-94-007-6703-4.

Gofman, Y. (2012). Computational studies of the interactions of biologically active peptides with
membrane. Unpublished Doctoral Thesis, Universitdt Hamburg.

Gross, R. (2014). Psychology: The science of mind and behaviour. London: Hodder Education.
ISBN 978-1-4441-0831-6.

Gusset, M., & Macdonald, D. W. (2010). Group size effects in cooperatively breeding African
wild dogs. Animal Behaviour, 79, 425-428.

Hagler, G. (2013). Modelinig ships and space craft. Berlin: Springer. ISBN 978-1-4614-4595-1.

Hasancebi, O., & Azad, S. K. (2012). An efficient metaheuristic algorithm for engineering
optimization: SPOT. International Journal of Optimization in Civil Engineering, 2, 479-487.

Havens, T. C., Spain, C. J., Salmon, N. G., & Keller, J. M. (2008, September 21-23). Roach
infestation optimization. In IEEE Swarm Intelligence Symposium (pp. 1-7). St. Louis MO,
USA.

Heylighen, F. (1992). Evolution, selfishness and cooperation. Journal of Ideas, 2, 70-76.

Hobbs, R. J., Higgs, E. S., & Hall, C. M. (2013). Novel ecosystems: Intervening in the new
ecological world order. Hoboken: Wiley. ISBN 978-1-118-35422-3.

Howell, D. C. (2014). Fundamental statistics for the behavioral sciences. Belmont: Cengage
Learning. ISBN 978-1-285-07691-1.

Irvine, E. (2013). Consciousness as a scientific concept: A philosophy of science perspective.
Dordrecht: Springer. ISBN 978-94-007-5172-9.

Ishdorj, T.-O. (2006). Membrane computing, neural inspirations, gene assembly in Ciliates.
Unpublished Doctoral Thesis, University of Seville.

Janecek, A., & Tan, Y. (2011). Swarm intelligence for non-negative matrix factorization.
International Journal of Swarm Intelligence Research, 2, 12-34.

Jelinek, R. (2013). Biomimetics: A molecular perspective. Berlin/Boston: Walter de Gruyter.
ISBN 978-3-11-028117-0.

Jonassen, T. M. (2006, June). Symbolic dynamics, the spider algorithm and finding certain real
zeros of polynomials of high degree. In 8th International Mathematica Symposium (pp. 1-16).
Avignon.

Karci, A. (2007a). Human being properties of saplings growing up algorithm. In International
Conference on Computational Cybernetics (ICCC) (pp. 227-232). IEEE.

Karci, A. (2007b). Natural inspired computational intelligence method: saplings growing up
algorithm. In International Conference on Computational Cybernetics (ICCC), pp. 221-226.
IEEE.

Karci, A. (2007c). Theory of saplings growing up algorithm. In Adaptive and Natural Computing
Algorithms, LNCS (Vol. 4431, pp. 450-460). Berlin: Springer.

Karci, A., & Alatas, B. (2006). Thinking capability of saplings growing up algorithm. In
Intelligent Data Engineering and Automated Learning (IDEAL 2006), LNCS (Vol. 4224,
pp- 386-393). Berlin: Springer.

Kashan, A. H. (2009). League championship algorithm: a new algorithm for numerical function
optimization. In IEEE International Conference of Soft Computing and Pattern Recognition
(SoCPAR) (pp. 43-48).

Kashan, A. H. (2011). An efficient algorithm for constrained global optimization and application
to mechanical engineering design: League championship algorithm (LCA). Computer-Aided
Design, 43, 1769-1792.

Kashan, A. H., & Karimi, B. (2010, 18-23 July). A new algorithm for constrained optimization
inspired by the sport league championships. In World Congress on Computational
Intelligence (WCCI) (pp. 487-494). CCIB, Barcelona, Spain.

310 17 Emerging Biology-based CI Algorithms

Keller, L., & Gordon, E. (2009). The lives of ants (translated by James Grieve). Oxford: Oxford
University Press Inc. ISBN 978-0-19-954186-7.

Kim, H., & Ahn, B. (2001). A new evolutionary algorithm based on sheep flocks heredity model.
In Conference on Communications, Computers and Signal Processing (pp. 514-517). IEEE.

Kim, Y.-B. (2012). Distributed algorithms in membrane systems. Unpublished Doctoral Thesis,
University of Auckland.

King, A. J., Sueur, C., Huchard, E., & Cowlishaw, G. (2011). A rule-of-thumb based on social
affiliation explains collective movements in desert baboons. Animal Behaviour, 82,
1337-1345.

Krishnanand, K. R., Hasani, S. M. F., & Panigrahi, B. K. (2013). Optimal power flow solution
using self-evolving brain—storming inclusive teaching-learning-based algorithm. In Y. Tan, Y.
Shi, & H. Mo (Eds.), ICSI 2013, Part I, LNCS (Vol. 7928, pp. 338-345). Berlin: Springer.

Kwasnicka, H., Markowska-Kaczmar, U., & Mikosik, M. (2011). Flocking behaviour in simple
ecosystems as a result of artificial evolution. Applied Soft Computing, 11, 982-990.

Lancaster, R., Butler, R. E. A., Lancaster, J. M., & Shimizu, T. (1998). Fireworks: Principles and
practice. New York: Chemical Publishing Co., Inc. ISBN 0-8206-0354-6.

Lee, D., & Quessy, S. (2003). Visual search is facilitated by scene and sequence familiarity in
rhesus monkeys. Vision Research, 43, 1455-1463.

Lemasson, B. H., Anderson, J. J., & Goodwin, R. A. (2009). Collective motion in animal groups
from a neurobiological perspective: The adaptive benefits of dynamic sensory loads and
selective attention. Journal of Theoretical Biology, 261, 501-510.

Levin, S. A. (2013a). Encyclopedia of biodiversity. Oxford: Academic Press, Elsevier Inc. ISBN
978-0-12-384719-5.

Levin, S. A. (2013b). Encyclopedia of biodiversity. Oxford: Academic Press, Elsevier Inc. ISBN
978-0-12-384719-5.

Levin, S. A. (2013c). Encyclopedia of biodiversity. Oxford: Academic Press, Elsevier Inc. ISBN
978-0-12-384719-5.

Levin, S. A. (2013d). Encyclopedia of biodiversity. Oxford: Academic Press, Elsevier Inc. ISBN
978-0-12-384719-5.

Levin, S. A. (2013e). Encyclopedia of biodiversity. Oxford: Academic Press, Elsevier Inc. ISBN
978-0-12-384719-5.

Levin, S. A. (2013f). Encyclopedia of biodiversity,. London: Academic Press, Elsevier Inc. ISBN
978-0-12-384719-5.

Li, K., Torres, C. E., Thomas, K., Rossi, L. F., & Shen, C.-C. (2011). Slime mold inspired routing
protocols for wireless sensor networks. Swarm Intelligence, 5, 183-223.

Li, Y. (2010, October 22-24). Solving TSP by an ACO-and-BOA-based hybrid algorithm. In
IEEE International Conference on Computer Application and System Modeling (ICCASM),
(Vol. 12, pp. 189-192).

Lihoreau, M., Costa, J. T., & Rivault, C. (2012). The social biology of domiciliary cockroaches:
colony structure, kin recognition and collective decisions. Insectes Sociaux. doi: 10.1007/
s00040-012-0234-x.

Lihoreau, M., Deneubourg, J.-L., & Rivault, C. (2010). Collective foraging decision in a
gregarious insect. Behavioral Ecology and Sociobiology, 64, 1577-1587.

Lissaman, P. B. S., & Shollenberger, C. A. (1970). Formation flight of birds. Science, 168,
1003-1005.

Liu, C,, Yan, X., Liu, C., & Wu, H. (2011). The wolf colony algorithm and its application.
Chinese Journal of Electronics, 20, 212-216.

Liu, J. Y., Guo, M. Z., & Deng, C. (2006). Geese PSO: An efficient improvement to particle
swarm optimization. Computer Science, 33, 166—168.

Lu, Y., & Liu, X. (2011). A new population migration algorithm based on the chaos theory. In
IEEE 2nd International Symposium on Intelligence Information Processing and Trusted
Computing (IPTC) (pp. 147-10).

Luo, X., Li, S., & Guan, X. (2010). Flocking algorithm with multi-target tracking for multi-agent
systems. Pattern Recognition Letters, 31, 800-805.

http://dx.doi.org/10.1007/s00040-012-0234-x
http://dx.doi.org/10.1007/s00040-012-0234-x

References 311

Maathuis, F. J. M. (2013). Plant mineral nutrients: Methods and protocols. New York: Springer.
ISBN 978-1-62703-151-6.

Macdonald, D. W., Creel, S., & Mills, M. G. L. (2004). Society: Canid society. In D.
W. Macdonald & C. Sillero-Zubiri (Eds.), Biology and Conservation of Wild Carnivores (pp.
85-106). Oxford: Oxford University Press.

Magstadt, T. M. (2013). Understanding politics: ideas, institutions, and issues. Cengage
Learning: Belmont. ISBN 978-1-111-83256-8.

Marcus, J. B. (2013). Culinary nutrition: The science and practice of healthy cooking. Waltham:
Elsevier. ISBN 978-0-12-391882-6.

Maroosi, A., & Muniyandi, R. C. (2013). Membrane computing inspired genetic algorithm on
multi-core processors. Journal of Computer Science, 9, 264-270.

Mayfield, J. E. (2013). The engine of complexity: Evolution as computation. New York:
Columbia University Press. ISBN 978-0-231-16304-0.

Mills, D. S., Marchant-Forde, J. N., McGreevy, P. D., Morton, D. B., Nicol, C. J., Phillips, C.
J. C., et al. (Eds.). (2010). The encyclopedia of applied animal behaviour and welfare.
Wallingford: CAB International. ISBN 978-0-85199-724-7.

Mosser, A., & Packer, C. (2009). Group territoriality and the benefits of sociality in the African
lion, Panthera leo. Animal Behaviour, 78, 359-370.

Mucherino, A., & Seref, O. (2007). Monkey search: A novel metaheuristic search for global
optimization. In AIP Conference Proceedings (Vol. 953, pp. 162—-173).

Mukherjee, R., Chakraborty, S., & Samanta, S. (2012). Selection of wire electrical discharge
machining process parameters using non-traditional optimization algorithms. Applied Soft
Computing, 12, 2506-2516.

Miiller, V. C. (Ed.). (2013). Philosophy and theory of artificial intelligence. Berlin: Springer.
ISBN 978-3-642-31673-9.

Muniyandi, R. C., & Zin, A. M. (2013). Membrane computing as the paradigm for modeling
system biology. Journal of Computer Science, 9, 122-127.

Murase, H. (2000). Finite element inverse analysis using a photosynthetic algorithm. Computers
and Electronics in Agriculture, 29, 115-123.

Muro, C., Escobedo, R., Spector, L., & Coppinger, R. P. (2011). Wolf-pack (Canis lupus) hunting
strategies emerge from simple rules in computational simulations. Behavioural Processes, 88,
192-197.

Murphy, N. (2010). Uniformity conditions for membrane system uncovering complexity below P.
Unpublished Doctoral Thesis, National University of Ireland Maynooth.

Nabil, E., Badr, A., & Farag, 1. (2012). A membrane-immune algorithm for solving the multiple 0-
1 knapsack problem (pp. 3-15). LVII: Informatica.

Nahas, N., Nourelfath, M., & Ait-Kadi, D. (2010). Iterated great deluge for the dynamic facility
layout problem. Canada: Interuniversity Research Centre on Enterprise Networks, Logistics
and Transportation, Report No.: CIRRELT-2010-20.

Nakagaki, T., Yamada, H., & T6th, A. (2000). Maze-solving by an amoeboid organism. Nature,
407, 470.

Nara, K., Takeyama, T., & Kim, H. (1999). A new evolutionary algorithm based on sheep flocks
heredity model and its application to scheduling problem. In IEEE International Conference
on Systems, Man, and Cybernetics (SMC) (pp. VI-503-VI-508).

Neshat, M., Sepidnam, G., & Sargolzaei, M. (2013). Swallow swarm optimization algorithm: A
new method to optimization. Neural Computing & Application, 23, 429-454. doi: 10.1007/
$00521-012-0939-9.

Newell, P. C. (1978). Genetics of the cellular slime molds. Annual Review of Genetics, 12, 69-93.

Nguyen, V., Kearney, D., & Gioiosa, G. (2008). An implementation of membrane computing
using reconfigurable hardware. Computing and Informatics, 27, 551-569.

Nicolis, S. C., Detrain, C., Demolin, D., & Deneubourg, J. L. (2003). Optimality of collective
choices: a stochastic approach. Bulletin of Mathematical Biology, 65, 795-808.

Niizato, T., & Gunji, Y.-P. (2011). Metric-topological interaction model of collective behavior.
Ecological Modelling, 222, 3041-3049.

http://dx.doi.org/10.1007/s00521-012-0939-9
http://dx.doi.org/10.1007/s00521-012-0939-9

312 17 Emerging Biology-based CI Algorithms

Nishida, T. Y. (2005, July 18-21). Membrane algorithm: An approximate algorithm for NP-
complete optimization problems exploiting P-systems. In R. Freund, G. Lojka, M. Oswald, &
G. Paun (Eds.), In 6th International workshop on membrane computing (WMC) (pp. 26-43).
Vienna, Austria. Institute of Computer Languages, Faculty of Informatics, Vienna University
of Technology.

Nolle, L., Zelinka, 1., Hopgood, A. A., & Goodyear, A. (2005). Comparison of an self-organizing
migration algorithm with simulated annealing and differential evolution for automated
waveform tuning. Advanced Engineering Software, 36, 645-653.

Oca, M. A. M. D,, Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., & Dorigo, M. (2011).
Majority-rule opinion dynamics with differential latency: A mechanism for self-organized
collective decision-making. Swarm Intelligence, 5, 305-327.

Ochoa-Zezzatti, A., Bustillos, S., Jaramillo, R., & Ruiz, V. (2012). Improving practice sports in a
largest city using a cultural algorithm. International Journal of Combinatorial Optimization
Problems and Informatics, 3, 14-20.

Oftadeh, R., Mahjoob, M. J., & Shariatpanahi, M. (2010). A novel meta-heuristic optimization
algorithm inspired by group hunting of animals: Hunting search. Computers and Mathematics
with Applications, 60, 2087-2098.

Onwubolu, G. C. (2006). Performance-based optimization of multi-pass face milling operations
using Tribes. International Journal of Machine Tools and Manufacture, 46, 717-727.

Packer, C., & Caro, T. M. (1997). Foraging costs in social carnivores. Animal Behaviour, 54,
1317-1318.

Paun, G. (2000). Computing with membranes. Journal of Computer and System Sciences, 61,
108-143.

Paun, G. (2002). A guide to membrane computing. Theoretical Computer Science, 287, 73—100.

Paun, G. (2007). Tracing some open problems in membrane computing. Romanian Journal of
Information Science and Technology, 10, 303-314.

Pei, Y., Zheng, S., Tan, Y., & Takagi, H. (2012, October 14—17). An empirical study on influence
of approximation approaches on enhancing fireworks algorithm. In IEEE International
Conference on Systems, Man, and Cybernetics (IEEE SMC 2012) (pp. 1322-1327). Seoul,
Korea.

Petit, O., & Bon, R. (2010). Decision-making processes: The case of collective movements.
Behavioural Processes, 84, 635-647.

Picarougne, F., Azzag, H., Venturini, G., & Guinot, C. (2007). A new approach of data clustering
using a flock of agents. Evolutionary Computation, 15, 345-367.

Port, A. C., & Yampolskiy, R. V. (2012). Using a GA and wisdom of artificial crowds to solve
solitaire battleship puzzles. In IEEE 17th International Conference on Computer Games
(CGAMES 2012) (pp. 25-29).

Premaratne, U., Samarabandu, J., & Sidhu, T. (2009, December 28-31). A new biologically
inspired optimization algorithm. In IEEE 4th International Conference on Industrial and
Information Systems (ICIIS) (pp. 279-284). Sri Lanka.

Ramachandran, V. S. (2012a). Encyclopedia of human behavior. London: Elsevier. ISBN 978-0-
12-375000-6.

Ramachandran, V. S. (2012b). Encyclopedia of human behavior. London: Elsevier. ISBN 978-0-
12-375000-6.

Ramachandran, V. S. (2012c¢). Encyclopedia of human behavior. London: Elsevier. ISBN 978-0-
12-375000-6.

Rao, R. V., Vakharia, D. P., & Savsani, V. J. (2009). Mechanical engineering design optimisation
using modified harmony elements algorithm. International Journal of Design Engineering, 2,
116-135.

Ravi, V. (2004). Optimization of complex system reliability by a modified great deluge
algorithm. Asia-Pacific Journal of Operational Research, 21, 487-497.

Ray, T., & Liew, K. M. (2003). Society and civilization: an optimization algorithm based on the
simulation of social behavior. IEEE Transactions on Evolutionary Computation, 7, 386-396.

References 313

Reece, J. B., Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., & Jackson, R. B.
(2011). Campbell biology. San Francisco: Pearson Education, Inc. ISBN 978-0-321-55823-7.

Resende, R. R., & Ulrich, H. (2013). Trends in stem cell proliferation and cancer research.
Dordrecht: Springer. ISBN 978-94-007-6210-7.

Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer
Graphics, 21, 25-34.

Reynolds, R. G. (1994). An introduction to cultural algorithms. In A. V. Sebald & L. J. Fogel
(Eds.) The 3rd Annual Conference on Evolutionary Programming (pp. 131-139). World
Scientific Publishing.

Reynolds, R. G. (1999). Cultural algorithms: theory and application In D. Corne, M. Dorigo &
Glover, F. (Eds.), New Ideas in Optimization. NY: McGraw-Hill.

Riff, M. C., Montero, E., & Neveu, B. (2013). Reducing calibration effort for clonal selection
based algorithms. Knowledge-Based Systems, 41, 54-67.

Rose, S. V. (2008). Volcano and earthquake. New York: Dorling Kindersley Limited. ISBN 978-
0-7566-3780-4.

Sacco, W. F., Oliveira, C. R. E. D., & Pereira, C. M. N. A. (2006). Two stochastic optimization
algorithms applied to nuclear reactor core design. Progress in Nuclear Energy, 48, 525-539.

Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2012). Mine blast algorithm for
optimization of truss structures with discrete variables. Computers and Structures, 102—103,
49-63.

Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2013). Mine blast algorithm: A new
population based algorithm for solving constrained engineering optimization problems.
Applied Soft Computing, 13, 2592-2612.

Samuels, P., Huntington, S., Allsop, W., & Harrop, J. (2009). Flood risk management: Research
and practice. London: Taylor & Francis Group. ISBN 978-0-415-48507-4.

Sand, H., Wikenros, C., Wabakken, P., & Liberg, O. (2006). Effects of hunting group size, snow
depth and age on the success of wolves hunting moose. Animal Behaviour, 72, 781-789.

Savage, N. (2012). Gaining wisdom from crowds. Communications of the ACM, 55, 13-15.

Schnell, R. J., & Priyadarshan, P. M. (2012). Genomics of tree crops. New York: Springer. ISBN
978-1-4614-0919-9.

Schutter, G. D., Theraulaz, G., & Deneubourg, J.-L. (2001). Animal-robots collective
intelligence. Annals of Mathematics and Artificial Intelligence, 31, 223-238.

Sedwards, S. (2009). A natural computation approach to biology: Modelling cellular processes
and populations of cells with stochastic models of P systems. Unpublished Doctoral Thesis,
University of Trento.

Sell, S. (2013). Stem cells handbook. New York: Springer. ISBN 978-1-4614-7695-5.

Sen, Z. (2014). Philosophical, logical and scientific perspectives in engineering. Heidelberg:
Springer. ISBN 978-3-319-01741-9.

Senkerik, R., Zelinka, I., Davendra, D., & Oplatkova, Z. (2010). Utilization of soma and
differential evolution for robust stabilization of chaotic logistic equation. Computers and
Mathematics with Applications, 60, 1026-1037.

Shann, M. (2008). Emergent behavior in a simulated robot inspired by the slime mold.
Unpublished Bachelor Thesis, University of Zurich.

Shaw, B., Banerjee, A., Ghoshal, S. P., & Mukherjee, V. (2011). Comparative seeker and bio-
inspired fuzzy logic controllers for power system stabilizers. Electrical Power and Energy
Systems, 33, 1728-1738.

Shettleworth, S. J. (2010). Cognition, evolution, and behavior. New York: Oxford University
Press. ISBN 978-0-19-531984-2.

Shi, Y. (2011a). Brain storm optimization algorithm. In Y. Tan, Y. Shi & G. Wang (Eds.), ICSI
2011, Pat I, LNCS (Vol. 6728, pp. 303-309). Berlin: Springer.

Shi, Y. (2011b). An optimization algorithm based on brainstorming process. International
Journal of Swarm Intelligence Research, 2, 35-62.

Shlesinger, M. F., Klafter, J., & Zumofen, G. (1999). Above, below and beyond Brownian
motion. American Journal of Physics, 67, 1253—-1259.

314 17 Emerging Biology-based CI Algorithms

Silva, D. J. A. D., Teixeira, O. N., & Oliveira, R. C. L. D. (2012). Performance study of cultural
algorithm based on genetic algorithm with single and multi population for the MKP. In S. Gao
(Ed.), Bio-inspired computational algorithms and their applications. Rijeka: InTech.

Sizer, F. S., & Whitney, E. (2014). Nutrition: Concepts and controversies. Belmont: Cengage
Learning. ISBN 978-1-133-60318-4.

Smolin, L. A., & Grosvenor, M. B. (2010). Healthy eathing_a guide to nutrition: Nutrition for
sports and exercise. New York: Infobase Publishing. ISBN 978-1-60413-804-7.

Song, M. X, Chen, K., He, Z. Y., & Zhang, X. (2013). Bionic optimization for micro-siting of
wind farm on complex terrain. Renewable Energy, 50, 551-557.

Srinivasan, S., & Ramakrishnan, S. (2012). Nugget discovery with a multi-objective cultural
algorithm. Computer Science and Engineering: An International Journal, 2, 11-25.

Steinbuch, R. (2011). Bionic optimisation of the earthquake resistance of high buildings by tuned
mass dampers. Journal of Bionic Engineering, 8, 335-344.

Steinitz, M. (2014). Human monoclonal antibodies: Methods and protocols. New York: Springer.
ISBN 978-1-62703-585-9.

Stradner, J., Thenius, R., Zahadat, P., Hamann, H., Crailsheim, K., & Schmickl, T. (2013).
Algorithmic requirements for swarm intelligence in differently coupled collective systems.
Chaos: Solitons and Fractals. 50.

Stukas, A. A., & Clary, E. G. (2012). Altruism and helping behavior. In V. S. Ramachandran,
(Ed.), Encyclopedia of human behavior (2" ed.). London: Elsevier, Inc. ISBN 978-0-12-
375000-6.

Su, M.-C., Su, S.-Y., & Zhao, Y.-X. (2009). A swarm-inspired projection algorithm. Pattern
Recognition, 42, 2764-2786.

Subbaiah, K. V., Rao, M. N., & Rao, K. N. (2009). Scheduling of AGVs and machines in FMS
with makespan criteria using sheep flock heredity algorithm. International Journal of
Physical Sciences, 4, 139-148.

Sueur, C., Deneubourg, J.-L., & Petit, O. (2010). Sequence of quorums during collective decision
making in macaques. Behavioral Ecology and Sociobiology, 64, 1875-1885.

Sulaiman, M. H. (2013, March 15-17). Differential search algorithm for economic dispatch with
valve-point effects. In 2nd International Conference on Engineering and Applied Science
(ICEAS) (pp. 111-117). Tokyo: Toshi Center Hotel.

Sulis, W. (1997). Fundamental concepts of collective intelligence. Nonlinear Dynamics,
Psychology, and Life Sciences, 1, 35-53.

Sun, J., & Lei, X. (2009). Geese-inspired hybrid particle swarm optimization algorithm. In
International Conference on Artificial Intelligence and Computational Intelligence (pp.
134-138). IEEE.

Taffe, M. A., & Taffe, W. J. (2011). Rhesus monkeys employ a procedural strategy to reduce
working memory load in a self-ordered spatial search task. Brain Research, 1413, 43-50.
Taherdangkoo, M., Shirzadi, M. H., & Bagheri, M. H. (2012a). A novel meta-heuristic algorithm
for numerical function optimization_blind, naked mole-rats (BNMR) algorithm. Scientific

Research and Essays, 7, 3566-3583.

Taherdangkoo, M., Yazdi, M., & Bagheri, M. H. (2011). Stem cells optimization algorithm. LNBI
(Vol. 6840, pp. 394-403). Berlin: Springer.

Taherdangkoo, M., Yazdi, M., & Bagheri, M. H. (2012b). A powerful and efficient evolutionary
optimization algorithm based on stem cells algorithm for data clustering. Central European
Journal of Computer Science, 2, 1-13.

Tan, Y., & Zhu, Y. (2010). Fireworks algorithm for optimization. In Y. Tan, Y. Shi & K. C. Tan
(Eds.), ICSI 2010, Part 1, LNCS (Vol. 6145, pp. 355-364). Berlin: Springer

Taylor, K. (2012). The brain supremacy: Notes from the frontiers of neuroscience. Oxford:
Oxford University Press. ISBN 978-0-19-960337-4.

Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D. P., Fricker, M. D., et al. (2010). Rules for
biologically inspired adaptive network design. Science, 237, 439-442.

Thammano, A., & Moolwong, J. (2010). A new computational intelligence technique based on
human group formation. Expert Systems with Applications, 37, 1628—1634.

References 315

Theiner, G., Allen, C., & Goldstone, R. L. (2010). Recognizing group cognition. Cognitive
Systems Research, 11, 378-395.

Tidball, K. G., & Krasny, M. E. (2014). Greening in the red zone: Disaster, resilience and
community greening. Heidelberg: Springer. ISBN 978-90-481-9946-4.

Tollefsen, D. P. (2006). From extended mind to collective mind. Cognitive Systems Research, 7,
140-150.

Touhara, K. (2013). Pheromone signaling: Methods and protocols. New York: Springer. ISBN
978-1-62703-618-4.

Ulutas, B. H., & Kulturel-Konak, S. (2011). A review of clonal selection algorithm and its
applications. Artificial Intelligence Review, 36, 117-138.

Umedachi, T., Takeda, K., Nakagaki, T., Kobayashi, R., & Ishiguro, A. (2010). Fully
decentralized control of a soft-bodied robot inspired by true slime mold. Biological
Cybernetics, 102, 261-269.

Venkumar, P., & Sekar, K. C. (2012). Design of cellular manufacturing system using non-
traditional optimization algorithms. In V. Modrdk & R. S. Pandian (Eds.), Operations
management research and cellular manufacturing systems: Innovative methods and
approaches, Chap. 6 (pp. 99-139). Hershey: I1GI Global.

Verdy, A., & Flierl, G. (2008). Evolution and social behavior in krill. Deep-Sea Research 1I, 55,
472-484.

Vucetich, J. A, Peterson, R. O., & Waite, T. A. (2004). Raven scavenging favours group foraging
in wolves. Animal Behaviour, 67, 1117-1126.

Wang, G., Guo, L., Gandomi, A. H., Cao, L., Alavi, A. H., Duan, H., et al. (2013). Lévy-flight
krill herd algorithm. Mathematical Problems in Engineering, 2013, 1-14.

Wang, P., & Cheng, Y. (2010). Relief supplies scheduling based on bean optimization algorithm.
Economic Research Guide, 8, 252-253.

Wang, S., Dai, D., Hu, H., Chen, Y.-L., & Wu, X. (2011). RBF neural network parameters
optimization based on paddy field algorithm. In International Conference on Information and
Automation (ICIA) (pp. 349-353). June, Shenzhen, China. IEEE.

Wang, W., Feng, Q., & Zheng, Y. (2008, November 19-21). A novel particle swarm optimization
algorithm with stochastic focusing search for real-parameter optimization. In /1th Singapore
International Conference on Communication Systems (ICCS) (pp. 583-587). Guangzhou,
China. IEEE.

Wang, X., Gao, X.-Z., & Ovaska, S. J. (2009). Fusion of clonal selection algorithm and harmony
search method in optimization of fuzzy classification systems. International Journal of Bio-
Inspired Computation, 1, 80-88.

Wang, Z.-R., Ma, F,, Ju, T., & Liu, C.-M. (2010). A niche genetic algorithm with population
migration strategy. In IEEE 2nd International Conference on Information Science and
Engineering (ICISE) (pp. 912-915).

Wei, G. (2011). Optimization of mine ventilation system based on bionics algorithm. Procedia
Engineering, 26, 1614-1619.

Wei, Z. H., Cui, Z. H., & Zeng, J. C. (2010, September 26-28). Social cognitive optimization
algorithm with reactive power optimization of power system. In 2010 International
Conference on Computational Aspects of Social Networks (CASoN) (pp. 11-14). Taiyuan,
China.

Weigert, G., Horn, S., & Werner, S. (2006). Optimization of manufacturing processes by
distributed simulation. International Journal of Production Research, 44, 3677-3692.

Whitehouse, M. E. A., & Lubin, Y. (1999). Competitive foraging in the social spider Stegodyphus
dumicola. Animal Behaviour, 58, 677-688.

Whitten, K. W., Davis, R. E., Peck, M. L., & Stanley, G. G. (2014). Chemistry. Belmont:
Cengage Learning. ISBN 13: 978-1-133-61066-3.

Wilson, C. (2013). Brainstroming and beyond: a user-centered design method. Waltham: Morgan
Kaufmann, Elsevier Inc. ISBN 978-0-12-407157-5.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. /[EEE
Transactions on Evolutionary Computation, 1, 67-82.

316 17 Emerging Biology-based CI Algorithms

Woodward, J. (2008). Climate change. New York: Dorling Kindersley Limited. ISBN 978-
07566-3771-2.

Woodworth, S. (2007). Computability limits in membrane computing. Unpublished Doctoral
Thesis, University of California, Santa Barbara.

Wu, J., Cui, Z., & Liu, J. (2011, August 18-20). Using hybrid social emotional optimization
algorithm with metropolis rule to solve nonlinear equations. In Y. Wang, A. Celikyilmaz, W.
Kinsner, W. Pedrycz, H. Leung & L. A. Zadeh (Eds.), 10th International Conference on
Cognitive Informatics and Cognitive Computing (ICCI & CC) (pp. 405-411). Banff, AB.
IEEE.

Xiao, J.-H., Huang, Y.-F., & Cheng, Z. (2013). A bio-inspired algorithm based on membrane
computing for engineering design problem. International Journal of Computer Science Issues,
10, 580-588.

Xu, Y. C., Cui, Z. H., & Zeng, J. C. (2010). Social emotional optimization algorithm for
nonlinear constrained optimization problems. In /st International Conference on Swarm,
Evolutionary and Memetic Computing (SEMCCO) (pp. 583-590).

Xue, J.,, Wu, Y., Shi, Y., & Cheng, S. (2012). Brain storm optimization algorithm for multi-
objective optimization problems. In Y. Tan, Y. Shi & Z. Ji (Eds.), ICSI 2012, Part I, LNCS
(Vol. 7331, pp. 513-519). Berlin: Springer.

Yampolskiy, R. V., Ashby, L., & Hassan, L. (2012). Wisdom of artificial crowds: A metaheuristic
algorithm for optimization. Journal of Intelligent Learning Systems and Applications, 4,
98-107.

Yang, C., Tu, X., & Chen, J. (2007). Algorithm of marriage in honey bees optimization based on
the wolf pack search. In [EEE International Conference on Intelligent Pervasive Computing
(IPC) (pp. 462-467).

Yang, X.-S. (2005). Biology-derived algorithms in engineering optimization. In S. Olarius & A.
Zomaya (Eds.), Handbook of Bioinspired Algorithms and Applications, Chap. 32 (pp.
585-596). Boca Raton: CRC Press.

Yang, X.-S. (2012). Flower pollination algorithm for global optimization. Unconventional
Computation and Natural Computation, LNCS (Vol. 7445, pp. 240-249). Berlin: Springer.

Yang, X.-S., & Deb, S. (2010). Eagle strategy using Lévy walk and firefly algorithms for
stochastic optimization. In J. R. Gonzalez (Ed.), Nature Inspired Cooperative Strategies for
Optimization (NISCO 2010), SCI (Vol. 284, pp. 101-111). Berlin: Springer.

Yang, X.-S., & Deb, S. (2012). Two-stage eagle strategy with differential evolution. International
Journal of Bio-Inspired Computation, 4, 1-5.

Yang, X.-S., Karamanoglu, M., & He, X. (2013). Multi-objective flower algorithm for
optimization. Procedia Computer Science, 18, 861-868.

Yeagle, P. L. (Ed.). (2005). The structure of biological membranes. Boca Raton: CRC Press.
ISBN 0-8493-1403-8.

You, S. K., Kwon, D. H,, Park, Y.-I., Kim, S. M., Chung, M.-H., & Kim, C. K. (2009). Collective
behaviors of two-component swarms. Journal of Theoretical Biology, 261, 494-500.

Zaharie, D., & Ciobanu, G. (2006). Distributed evolutionary algorithms inspired by membranes
in solving continuous optimization problems. In H. J. Hoogeboom (Ed.), WMC 7, LNCS (Vol.
4361, pp. 536-553). Berlin: Springer.

Zang, H., Zhang, S., & Hapeshi, K. (2010). A review of nature-inspired algorithms. Journal of
Bionic Engineering, 7, S232-S237.

Zelinka, 1., & Lampinen, J. (2000). Soma: Self-organizing migrating algorithm. In The 6th
International Conference on Soft Computing, Brno, Czech Republic.

Zelinka, 1., Senkerik, R., & Navratil, E. (2009). Investigation on evolutionary optimization of
chaos control. Chaos, Solitons and Fractals, 40, 111-129.

Zhan, Z.-H., Zhang, J., Shi, Y.-H., & Liu, H.-L. (2012, June 10-15) A modified brain storm
optimization. In World Congress on Computational Intelligence (WCCI) (pp. 1-8). Brisbane,
Australia. IEEE.

References 317

Zhang, G., Cheng, J., & Gheorghe, M. (2011). A membrane-inspired approximate algorithm for
traveling salesman problems. Romanian Journal of Information Science and Technology, 14,
3-19.

Zhang, G., Yang, H., & Liu, Z. (2007). Using watering algorithm to find the optimal paths of a
maze. Computer, 24, 171-173.

Zhang, W., Luo, Q. & Zhou, Y. (2009). A method for training RBF neural networks based on
population migration algorithm. In International Conference on Artificial Intelligence and
Computational Intelligence (AICI) (pp. 165-169). IEEE.

Zhang, W., & Zhou, Y. (2009). Description population migration algorithm based on framework
of swarm intelligence. In IEEE WASE International Conference on Information Engineering
(ICIE) (pp. 281-284).

Zhang, X., Chen, W., & Dai, C. (2008a, April 6-9) Application of oriented search algorithm in
reactive power optimization of power system. DRPT 2008 (pp. 2856-2861). Nanjing, China.
DRPT.

Zhang, X., Sun, B., Mei, T., & Wang, R. (2010, November 28-30). Post-disaster restoration
based on fuzzy preference relation and bean optimization algorithm. In Youth Conference on
Information Computing and Telecommunications (YC-ICT) (pp. 271-274). IEEE.

Zhang, X., Jiang, K., Wang, H., Li, W., & Sun, B. (2012a). An improved bean optimization
algorithm for solving TSP. In Y. Tan, Y. Shi & Z. Ji (Eds.), ICSI 2012, Part I, LNCS (Vol.
7331, pp. 261-267). Berlin: Springer.

Zhang, X., Huang, S., Hu, Y., Zhang, Y., Mahadevan, S., & Deng, Y. (2013a). Solving 0-1
knapsack problems based on amoeboid organism algorithm. Applied Mathematics and
Computation, 219, 9959-9970.

Zhang, X., Sun, B., Mei, T., & Wang, R. (2013b). A novel evolutionary algorithm inspired by
beans dispersal. International Journal of Computational Intelligence Systems, 6, 79-86.
Zhang, X., Wang, H., Sun, B., Li, W., & Wang, R. (2013c). The Markov model of bean
optimization algorithm and its convergence analysis. International Journal of Computational

Intelligence Systems, 6, 609-615.

Zhang, X., Wang, R., & Song, L. (2008b). A novel evolutionary algorithm: Seed optimization
algorithm. Pattern Recognition and Artificial Intelligence, 21, 677-681.

Zhang, Z.-W., Zhang, H., & Li, Y.-B. (2012b). Biologically inspired collective construction with
visual landmarks. Journal of Zhejiang University-SCIENCE C (Computers and Electronics),
13, 315-327.

Zhao, Q., & Liu, X. (2011). An improved multi-objective population migration optimization
algorithm. In 2nd International Symposium on Intelligence Information Processing and
Trusted Computing (IPTC) (pp. 143-146). IEEE.

Zheng, Y., Chen, W., Dai, C., & Wang, W. (2009). Stochastic focusing search: A novel
optimization algorithm for real-parameter optimization. Journal of Systems Engineering and
Electronics, 20, 869-876.

Zhou, D., Shi, Y., & Cheng, S. (2012). Brain storm optimization algorithm with modified step-
size and individual generation. In Y. Tan, Y. Shi & Z. Ji (Eds.), ICSI 2012, Part I, LNCS (Vol.
7331, pp. 243-252). Berlin: Springer.

Zhou, Y., & Liu, B. (2009). Two novel swarm intelligence clustering analysis methods. In /IEEE
Fifth International Conference on Natural Computation (ICNC) (pp. 497-501).

Zhou, Y., & Mao, Z. (2003). A new search algorithm for global optimization: Population
migration algorithm. Journal of South China University of Technology, A31, 1-5.

Zungeru, A. M., Ang, L.-M., & Seng, K. P. (2012). Termite-hill: Performance optimized swarm
intelligence based routing algorithm for wireless sensor networks. Journal of Network and
Computer Applications, 35, 1901-1917.

	17 Emerging Biology-based CI Algorithms
	Abstract
	17.1…Introduction
	17.2…Amoeboid Organism Algorithm
	17.2.1 Fundamentals of Amoeboid Organism Algorithm
	17.2.2 Performance of AOA

	17.3…Artificial Searching Swarm Algorithm
	17.3.1 Fundamentals of Artificial Searching Swarm Algorithm
	17.3.2 Performance of ASSA

	17.4…Artificial Tribe Algorithm
	17.4.1 Fundamentals of Artificial Tribe Algorithm
	17.4.2 Performance of ATA

	17.5…Backtracking Search Algorithm
	17.5.1 Fundamentals of Backtracking Search Algorithm
	17.5.2 Performance of BSA

	17.6…Bar Systems Algorithm
	17.6.1 Fundamentals of Bar Systems Algorithm
	17.6.2 Performance of BSs

	17.7…Bean Optimization Algorithm
	17.7.1 Fundamentals of Bean Optimization Algorithm
	17.7.2 Performance of BeOA

	17.8…Bionic Optimization Algorithm
	17.8.1 Fundamentals of Bionic Optimization Algorithm
	17.8.2 Performance of BO

	17.9…Blind, Naked Mole-Rats Algorithm
	17.9.1 Fundamentals of Blind, Naked Mole-Rats Algorithm
	17.9.2 Performance of BNMR

	17.10…Brain Storm Optimization Algorithm
	17.10.1 Fundamentals of Brain Storm Optimization Algorithm
	17.10.2 Performance of BSOA

	17.11…Clonal Selection Algorithm
	17.11.1 Fundamentals of Clonal Selection Algorithm
	17.11.2 Performance of CSA

	17.12…Cockroach Swarm Optimization Algorithm
	17.12.1 Fundamentals of Cockroach Swarm Optimization Algorithm
	17.12.2 Performance of CSOA

	17.13…Collective Animal Behaviour Algorithm
	17.13.1 Fundamentals of Collective Animal Behaviour Algorithm
	17.13.2 Performance of CAB

	17.14…Cultural Algorithm
	17.14.1 Fundamentals of Cultural Algorithm
	17.14.2 Performance of CA

	17.15…Differential Search Algorithm
	17.15.1 Fundamentals of Differential Search Algorithm
	17.15.2 Performance of DS

	17.16…Dove Swarm Optimization Algorithm
	17.16.1 Fundamentals of Dove Swarm Optimization Algorithm
	17.16.2 Performance of DSO

	17.17…Eagle Strategy
	17.17.1 Fundamentals of Eagle Strategy
	17.17.2 Performance of ES

	17.18…Fireworks Optimization Algorithm
	17.18.1 Fundamentals of Fireworks Optimization Algorithm
	17.18.2 Performance of FOA

	17.19…FlockbyLeader Algorithm
	17.19.1 Fundamentals of FlockbyLeader Algorithm
	17.19.2 Performance of FlockbyLeader

	17.20…Flocking-based Algorithm
	17.20.1 Fundamentals of Flocking-based Algorithm
	17.20.2 Performance of FBA

	17.21…Flower Pollinating Algorithm
	17.21.1 Fundamentals of Flower Pollinating Algorithm
	17.21.2 Performance of FPA

	17.22…Goose Optimization Algorithm
	17.22.1 Fundamentals of Goose Optimization Algorithm
	17.22.2 Performance of GOA

	17.23…Great Deluge Algorithm
	17.23.1 Fundamentals of Great Deluge Algorithm
	17.23.2 Performance of GDA

	17.24…Grenade Explosion Method
	17.24.1 Fundamentals of Grenade Explosion Method
	17.24.2 Performance of GEM

	17.25…Group Leaders Optimization Algorithm
	17.25.1 Fundamentals of Group Leaders Optimization Algorithm
	17.25.2 Performance of GLOA

	17.26…Harmony Elements Algorithm
	17.26.1 Fundamentals of Harmony Elements Algorithm
	17.26.2 Performance of HEA

	17.27…Human Group Formation Algorithm
	17.27.1 Fundamentals of Human Group Formation Algorithm
	17.27.2 Performance of HGF

	17.28…Hunting Search Algorithm
	17.28.1 Fundamentals of Hunting Search Algorithm
	17.28.2 Performance of HuS

	17.29…Krill Herd Algorithm
	17.29.1 Fundamentals of Krill Herd Algorithm
	17.29.2 Performance of KH

	17.30…League Championship Algorithm
	17.30.1 Fundamentals of League Championship Algorithm
	17.30.2 Performance of LCA

	17.31…Membrane Algorithm
	17.31.1 Fundamentals of Membrane Algorithm
	17.31.2 Performance of MA

	17.32…Migrating Birds Optimization Algorithm
	17.32.1 Fundamentals of Migrating Birds Optimization Algorithm
	17.32.2 Performance of MBO

	17.33…Mine Blast Algorithm
	17.33.1 Fundamentals of Mine Blast Algorithm
	17.33.2 Performance of MBA

	17.34…Monkey Search Algorithm
	17.34.1 Fundamentals of Monkey Search Algorithm
	17.34.2 Performance of MSA

	17.35…Mosquito Host-Seeking Algorithm
	17.35.1 Fundamentals of Mosquito Host-Seeking Algorithm
	17.35.2 Performance of MHSA

	17.36…Oriented Search Algorithm
	17.36.1 Fundamentals of Oriented Search Algorithm
	17.36.2 Performance of OSA

	17.37…Paddy Field Algorithm
	17.37.1 Fundamentals of Paddy Field Algorithm
	17.37.2 Performance of PFA

	17.38…Photosynthetic Algorithm
	17.38.1 Fundamentals of Photosynthetic Algorithm
	17.38.2 Performance of PA

	17.39…Population Migration Algorithm
	17.39.1 Fundamentals of Population Migration Algorithm
	17.39.2 Performance of PMA

	17.40…Roach Infestation Optimization
	17.40.1 Fundamentals of Roach Infestation Optimization Algorithm
	17.40.2 Performance of RIO

	17.41…Saplings Growing Up Algorithm
	17.41.1 Fundamentals of Saplings Growing Up Algorithm
	17.41.2 Performance of SGuA

	17.42…Seeker Optimization Algorithm
	17.42.1 Fundamentals of Seeker Optimization Algorithm
	17.42.2 Performance of SeOA

	17.43…Self-organising Migrating Algorithm
	17.43.1 Fundamentals of Self-organising Migrating Algorithm
	17.43.2 Performance of SOMA

	17.44…Sheep Flock Heredity Model Algorithm
	17.44.1 Fundamentals of Sheep Flock Heredity Model Algorithm
	17.44.2 Performance of SFHM

	17.45…Simple Optimization Algorithm
	17.45.1 Fundamentals of Simple Optimization Algorithm
	17.45.2 Performance of SPOT

	17.46…Slime Mold Algorithm
	17.46.1 Fundamentals of Slime Mold Algorithm
	17.46.2 Performance of SMA

	17.47…Social Emotional Optimization Algorithm
	17.47.1 Fundamentals of Social Emotional Optimization Algorithm
	17.47.2 Performance of SEOA

	17.48…Social Spider Optimization Algorithm
	17.48.1 Fundamentals of Social Spider Optimization Algorithm
	17.48.2 Performance of SSOA

	17.49…Society and Civilization Algorithm
	17.49.1 Fundamentals of Society and Civilization Algorithm
	17.49.2 Performance of SCA

	17.50…Stem Cells Optimization Algorithm
	17.50.1 Fundamentals of Stem Cells Optimization Algorithm
	17.50.2 Performance of SCOA

	17.51…Stochastic Focusing Search Algorithm
	17.51.1 Fundamentals of Stochastic Focusing Searching Algorithm
	17.51.2 Performance of SFS

	17.52…Swallow Swarm Optimization Algorithm
	17.52.1 Fundamentals of Swallow Swarm Optimization Algorithm
	17.52.2 Performance of SSO

	17.53…Termite-Hill Algorithm
	17.53.1 Fundamentals of Termite-Hill Algorithm
	17.53.2 Performance of ThA

	17.54…Unconscious Search Algorithm
	17.54.1 Fundamentals of Unconscious Search Algorithm
	17.54.2 Performance of US

	17.55…Wisdom of Artificial Crowds Algorithm
	17.55.1 Fundamentals of Wisdom of Artificial Crowds Algorithm
	17.55.2 Performance of WoAC

	17.56…Wolf Colony Algorithm
	17.56.1 Fundamentals of Wolf Colony Algorithm
	17.56.2 Performance of WCA

	17.57…Wolf Pack Search Algorithm
	17.57.1 Fundamentals of Wolf Pack Search Algorithm
	17.57.2 Performance of WPS

	17.58…Conclusions
	References

