
Intelligent Systems Reference Library 62

Bo Xing
Wen-Jing Gao

Innovative
Computational
Intelligence: A
Rough Guide to 134
Clever Algorithms

Intelligent Systems Reference Library

Volume 62

Series editors

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

Lakhmi C. Jain, University of Canberra, Canberra, Australia
e-mail: Lakhmi.Jain@unisa.edu.au

For further volumes:
http://www.springer.com/series/8578

http://www.springer.com/series/8578

About this Series

The aim of this series is to publish a Reference Library, including novel advances
and developments in all aspects of Intelligent Systems in an easily accessible and
well structured form. The series includes reference works, handbooks, compendia,
textbooks, well-structured monographs, dictionaries, and encyclopedias. It con-
tains well integrated knowledge and current information in the field of Intelligent
Systems. The series covers the theory, applications, and design methods of
Intelligent Systems. Virtually all disciplines such as engineering, computer sci-
ence, avionics, business, e-commerce, environment, healthcare, physics and life
science are included.

Bo Xing • Wen-Jing Gao

Innovative Computational
Intelligence: A Rough
Guide to 134 Clever
Algorithms

123

Bo Xing
Department of Mechanical and Aeronautical

Engineering
University of Pretoria
Pretoria
South Africa

Wen-Jing Gao
Department of New Product Development
Meiyuan Mould Design and Manufacturing

Co., Ltd
Xianghe
People’s Republic of China

ISSN 1868-4394 ISSN 1868-4408 (electronic)
ISBN 978-3-319-03403-4 ISBN 978-3-319-03404-1 (eBook)
DOI 10.1007/978-3-319-03404-1
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013953686

� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

Computational intelligence (CI) is a relatively new discipline, and accordingly,
there is little agreement about its precise definition. Nevertheless, most acade-
micians and practitioners would include techniques such as artificial neural
network, fuzzy systems, many versions of evolutionary algorithms (e.g. evolution
strategies, genetic algorithm, genetic programming, differential evolution), as
well as ant colony optimization, artificial immune systems, multi-agent systems,
particle swarm optimization, and the hybridization versions of these, under the
umbrella of CI.

In contrast to this common trend, Bo and Wen-Jing offer us a brand new
perspective in the field of CI research through their book entitled Innovative
Computational Intelligence: A Rough Guide to 134 Clever Algorithms. This book
is unique because it contains in one source an overview of a wide range of newly
developed CI algorithms that are normally found in scattered resources. The
authors succeed in identifying this vast amount of novel CI algorithms and
grouping them into four large classes, namely, biology-, physics-, chemistry-, and
mathematics-based CI algorithms. Furthermore, the organization of the book is
such that each algorithm covered in the book contains the corresponding core
working principles and some preliminary performance evaluations. This style
would, no doubt, lead to the further development of these fascinating algorithms.

This book will be beneficial to a broad audience: First, university students,
particularly those pursuing their postgraduate studies in advanced subjects; Sec-
ond, the algorithms introduced in this book can serve as foundations for
researchers to build bodies of knowledge in the fast growing area of CI research;
Finally, practitioners can also use the algorithms presented in this book to solve
and analyze specific real-world problems. Overall, this book makes a worthwhile
read and is a welcome edition to the CI literature.

Adelaide, Australia, September 2013 Zbigniew Michalewicz

v

Foreword

Computational intelligence (CI) is a fast evolving area in which many novel
algorithms, stemmed from various inspiring sources, were developed during the
past decade. Nevertheless, many of them are dispersed in different research
directions and their true potential is thus not fully utilized yet. Therefore, there is
an urgent need to have these newly developed CI algorithms compiled into one
single reference source.

Through over 1,630 non-repetitive supporting references, Bo and Wen-Jing
have made great efforts to respond to this requirement. In their book entitled
Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms,
the readers will enjoy their readings of a vast amount of novel CI algorithms which
have been carefully classified by Bo and Wen-Jing into four main groups, i.e.,
biology-, physics-, chemistry-, and mathematics-based CI algorithms. The four
parts of the book dedicated to these four groups of algorithms, respectively, are
independent of each other which also makes it an easy-to-use reference handbook.

The broad spectrum of articles collected in this monograph is a tribute to the
richness of the huge tree of CI research, which undoubtedly will continue to bear
fruit, develop offshoots, and shape new research directions in the near future. Thus
this book, to be published by Springer Intelligent Systems Reference Library Series,
should have a great appeal to graduate students, researchers, and practitioners.

Birmingham, UK October 2013 Xin Yao

vii

Preface

During the past decade, a number of new computational intelligence (CI) algo-
rithms have been proposed. Unfortunately, they spread in a number of unrelated
publishing directions which may hamper the use of such published resources.
These provide us with motivation to analyze the existing research for categorizing
and synthesizing it in a meaningful manner. The mission of this book is really
important since those algorithms are going to be a new revolution in computer
science. We hope it will stimulate the readers to make novel contributions or to
even start a new paradigm based on nature phenomena. This book introduces 134
innovative CI algorithms. The book consists of 28 chapters which are organized as
five parts. Each part can be reviewed in any order and a brief description of each
individual chapter is provided as follows:

Part I Introduction

Chapter 1: In this chapter, we introduce some general knowledge relative to the
realm of CI. The desirable merits of these intelligent algorithms and their initial
successes in many domains have inspired researchers (from various backgrounds)
to continuously develop their successors. Such truly interdisciplinary environment
of the research and development provides more and more rewarding opportunities
for scientific breakthrough and technology innovation. We first introduce some
historical information regarding CI in Sect. 1.1. Then, the organizational structures
are detailed in Sect. 1.2. Finally, Sect. 1.3 summarizes this chapter.

Part II Biology-based CI Algorithms

Chapter 2: In this chapter, we present a set of algorithms that are inspired by the
different bacteria behavioral patterns, i.e., bacterial foraging algorithm (BFA),
bacterial colony chemotaxis (BCC) algorithm, superbug algorithm (SuA), bacterial
colony optimization (BCO) algorithm, and viral system (VS) algorithm. We first

ix

http://dx.doi.org/10.1007/978-3-319-03404-1_1
http://dx.doi.org/10.1007/978-3-319-03404-1_1
http://dx.doi.org/10.1007/978-3-319-03404-1_1
http://dx.doi.org/10.1007/978-3-319-03404-1_1
http://dx.doi.org/10.1007/978-3-319-03404-1_2

describe the general knowledge of bacteria foraging behavior in Sect. 2.1. Then,
the fundamentals and performance of BFA, BCC algorithm, SuA, BCO algorithm,
and VS algorithm are introduced in Sects. 2.2 and 2.3, respectively. Finally,
Sect. 2.4 summarizes this chapter.

Chapter 3: In this chapter, we present two algorithms that are inspired by the
behaviors of bats, i.e., bat algorithm (BaA) and bat intelligence (BI) algorithm. We
first describe the general knowledge of the foraging behavior of bats in Sect. 3.1.
Then, the fundamentals and performance of the BaA and BI algorithm are intro-
duced in Sects. 3.2 and 3.3, respectively. Finally, Sect. 3.4 summarizes this
chapter.

Chapter 4: In this chapter, we present a set of algorithms that are inspired by
different honeybees behavioral patterns, i.e., artificial bee colony (ABC) algorithm,
honeybees mating optimization (HBMO) algorithm, artificial beehive algorithm
(ABHA), bee colony optimization (BCO) algorithm, bee colony inspired algorithm
(BCiA), bee swarm optimization (BSO) algorithm, bee system (BS) algorithm,
BeeHive algorithm, bees algorithm (BeA), bees life algorithm (BLA), bumblebees
algorithm, honeybee social foraging (HBSF) algorithm, OptBees algorithm,
simulated bee colony (SBC) algorithm, virtual bees algorithm (VBA), and wasp
swarm optimization (WSO) algorithm. We first describe the general knowledge
about honeybees in Sect. 4.1. Then, the fundamentals and performance of these
algorithms are introduced in Sects. 4.2–4.4, respectively. Finally, Sect. 4.5 sum-
marizes this chapter.

Chapter 5: In this chapter, we introduce a novel optimization algorithm called
biogeography-based optimization (BBO) which is inspired by the science of
biogeography. We first describe the general knowledge about the science of bio-
geography in Sect. 5.1. Then, the fundamentals and performance of BBO are
introduced in Sect. 5.2. Finally, Sect. 5.3 summarizes this chapter.

Chapter 6: In this chapter, we present a new population-based method, called
cat swarm optimization (CSO) algorithm, which imitates the natural behavior of
cats. We first describe the general knowledge about the behavior of cats in
Sect. 6.1. Then, the fundamentals and performance of CSO are introduced in
Sect. 6.2. Next, some selected variations of CSO are explained in Sect. 6.3. Right
after this, Sect. 6.4 presents a representative CSO application. Finally, Sect. 6.5
summarizes this chapter.

Chapter 7: In this chapter, a set of cuckoo-inspired optimization algorithms, i.e.,
cuckoo search (CA) algorithm and cuckoo optimization algorithm (COA) are
introduced. We first, in Sect. 7.1, describe the general knowledge about cuckoos.
Then, the fundamentals and performance of CS are introduced in Sect. 7.2. Next,
the selected variants of CS are outlined in Sect. 7.3 which is followed by a
presentation of representative CS application in Sect. 7.4. Right after this, Sect. 7.5
introduces an emerging algorithm, i.e., COA, which also falls within this category.
Finally, Sect. 7.6 draws the conclusions of this chapter.

Chapter 8: In this chapter, we present three algorithms that are inspired by the
flashing behavior of luminous insects, i.e., firefly algorithm (FA), glowworm
swarm optimization (GlSO) algorithm, and bioluminescent swarm optimization

x Preface

http://dx.doi.org/10.1007/978-3-319-03404-1_2
http://dx.doi.org/10.1007/978-3-319-03404-1_2
http://dx.doi.org/10.1007/978-3-319-03404-1_2
http://dx.doi.org/10.1007/978-3-319-03404-1_2
http://dx.doi.org/10.1007/978-3-319-03404-1_3
http://dx.doi.org/10.1007/978-3-319-03404-1_3
http://dx.doi.org/10.1007/978-3-319-03404-1_3
http://dx.doi.org/10.1007/978-3-319-03404-1_3
http://dx.doi.org/10.1007/978-3-319-03404-1_3
http://dx.doi.org/10.1007/978-3-319-03404-1_4
http://dx.doi.org/10.1007/978-3-319-03404-1_4
http://dx.doi.org/10.1007/978-3-319-03404-1_4
http://dx.doi.org/10.1007/978-3-319-03404-1_4
http://dx.doi.org/10.1007/978-3-319-03404-1_4
http://dx.doi.org/10.1007/978-3-319-03404-1_5
http://dx.doi.org/10.1007/978-3-319-03404-1_5
http://dx.doi.org/10.1007/978-3-319-03404-1_5
http://dx.doi.org/10.1007/978-3-319-03404-1_5
http://dx.doi.org/10.1007/978-3-319-03404-1_6
http://dx.doi.org/10.1007/978-3-319-03404-1_6
http://dx.doi.org/10.1007/978-3-319-03404-1_6
http://dx.doi.org/10.1007/978-3-319-03404-1_6
http://dx.doi.org/10.1007/978-3-319-03404-1_6
http://dx.doi.org/10.1007/978-3-319-03404-1_6
http://dx.doi.org/10.1007/978-3-319-03404-1_7
http://dx.doi.org/10.1007/978-3-319-03404-1_7
http://dx.doi.org/10.1007/978-3-319-03404-1_7
http://dx.doi.org/10.1007/978-3-319-03404-1_7
http://dx.doi.org/10.1007/978-3-319-03404-1_7
http://dx.doi.org/10.1007/978-3-319-03404-1_7
http://dx.doi.org/10.1007/978-3-319-03404-1_7
http://dx.doi.org/10.1007/978-3-319-03404-1_8

(BiSO) algorithm. We first describe the general knowledge of the luminous insects
in Sect. 8.1. Then, the fundamentals, performances, and selected applications of
FA, GlSO algorithm, and BiSO algorithm are introduced in Sects. 8.2–8.4,
respectively. Finally, Sect. 8.5 summarises this chapter.

Chapter 9: In this chapter, we present several fish algorithms that are inspired
by some key features of the fish school/swarm, namely, artificial fish school
algorithm (AFSA), fish school search (FSS), group escaping algorithm (GEA), and
shark-search algorithm (SSA). We first provide a short introduction in Sect. 9.1.
Then, the detailed descriptions regarding AFSA and FSS can be found in Sects. 9.2
and 9.3, respectively. Next, Sect. 9.4 briefs two emerging fish inspired algorithms,
i.e., GEA and SSA. Finally, Sect. 9.5 summarizes this chapter.

Chapter 10: In this chapter, we present two frog-inspired CI algorithms,
namely, shuffled frog leaping algorithm (SFLA) and frog calling algorithm (FCA).
We first provide a brief introduction in Sect. 10.1. Then, the fundamentals and
performance of SFLA are introduced in Sect. 10.2. Next, Sect. 10.3 outlines some
core working principles and preliminary experimental studies relative to FCA.
Finally, Sect. 10.4 summarizes this chapter.

Chapter 11: In this chapter, we present a novel optimization algorithm called
fruit fly optimization algorithm (FFOA) which is inspired by the behavior of fruit
flies. We first describe the general knowledge about the foraging behavior of fruit
flies in Sect. 11.1. Then, the fundamentals and performance of FFOA are intro-
duced in Sect. 11.2. Finally, Sect. 11.3 summarizes this chapter.

Chapter 12: In this chapter, we introduced a new optimization algorithm called
group search optimizer (GrSO) which is inspired from the relationship of group
foraging behaviors, i.e., producer-scrounger paradigm. We first describe the gen-
eral knowledge about the producer-scrounger model in Sect. 12.1. Then, the
fundamentals and performance of GrSO are introduced in Sect. 12.2. Finally,
Sect. 12.3 summarizes this chapter.

Chapter 13: In this chapter, we present an interesting algorithm called invasive
weed optimization (IWO) which is inspired from colonizing weeds. We first
describe the general knowledge of the biological invasion in Sect. 13.1. Then, the
fundamentals and performance of IWO are introduced in Sect. 13.2. Finally,
Sect. 13.3 summarises this chapter.

Chapter 14: In this chapter, we introduce a set of music inspired algorithms,
namely harmony search (HS), melody search (MeS) algorithm, and method of
musical composition (MMC) algorithm. We first describe the general knowledge
about harmony in Sect. 14.1. Then, the fundamentals and performances of HS,
MeS algorithm, and MMC algorithm are introduced in Sects. 14.2 and 14.3,
respectively. Finally, 14.4 summarizes this chapter.

Chapter 15: In this chapter, we present a new optimization algorithm called
imperialist competitive algorithm (ICA) which is inspired by the human socio-
political evolution process. We first describe the general knowledge about the
imperialism in Sect. 15.1. Then, the fundamentals and performance of ICA are
introduced in Sect. 15.2. Finally, Sect. 15.3 summarizes this chapter.

Preface xi

http://dx.doi.org/10.1007/978-3-319-03404-1_8
http://dx.doi.org/10.1007/978-3-319-03404-1_8
http://dx.doi.org/10.1007/978-3-319-03404-1_8
http://dx.doi.org/10.1007/978-3-319-03404-1_8
http://dx.doi.org/10.1007/978-3-319-03404-1_9
http://dx.doi.org/10.1007/978-3-319-03404-1_9
http://dx.doi.org/10.1007/978-3-319-03404-1_9
http://dx.doi.org/10.1007/978-3-319-03404-1_9
http://dx.doi.org/10.1007/978-3-319-03404-1_9
http://dx.doi.org/10.1007/978-3-319-03404-1_9
http://dx.doi.org/10.1007/978-3-319-03404-1_10
http://dx.doi.org/10.1007/978-3-319-03404-1_10
http://dx.doi.org/10.1007/978-3-319-03404-1_10
http://dx.doi.org/10.1007/978-3-319-03404-1_10
http://dx.doi.org/10.1007/978-3-319-03404-1_10
http://dx.doi.org/10.1007/978-3-319-03404-1_11
http://dx.doi.org/10.1007/978-3-319-03404-1_11
http://dx.doi.org/10.1007/978-3-319-03404-1_11
http://dx.doi.org/10.1007/978-3-319-03404-1_11
http://dx.doi.org/10.1007/978-3-319-03404-1_12
http://dx.doi.org/10.1007/978-3-319-03404-1_12
http://dx.doi.org/10.1007/978-3-319-03404-1_12
http://dx.doi.org/10.1007/978-3-319-03404-1_12
http://dx.doi.org/10.1007/978-3-319-03404-1_13
http://dx.doi.org/10.1007/978-3-319-03404-1_13
http://dx.doi.org/10.1007/978-3-319-03404-1_13
http://dx.doi.org/10.1007/978-3-319-03404-1_13
http://dx.doi.org/10.1007/978-3-319-03404-1_14
http://dx.doi.org/10.1007/978-3-319-03404-1_14
http://dx.doi.org/10.1007/978-3-319-03404-1_14
http://dx.doi.org/10.1007/978-3-319-03404-1_14
http://dx.doi.org/10.1007/978-3-319-03404-1_14
http://dx.doi.org/10.1007/978-3-319-03404-1_15
http://dx.doi.org/10.1007/978-3-319-03404-1_15
http://dx.doi.org/10.1007/978-3-319-03404-1_15
http://dx.doi.org/10.1007/978-3-319-03404-1_15

Chapter 16: In this chapter, we present an interesting algorithm called teaching–
learning-based optimization (TLBO) which is inspired by the teaching and
learning behavior. We first describe the general knowledge about the teacher-
student relationships in Sect. 16.1. Then, the fundamentals and performance of
TLBO algorithm are introduced in Sect. 16.2. Finally, Sect. 16.3 summarizes this
chapter.

Chapter 17: In this chapter, a group of (more specifically 56 in total) emerging
biology-based CI algorithms are introduced. We first, in Sect. 17.1, describe the
organizational structure of this chapter. Then, from Sect. 17.2 to 17.57, each
section is dedicated to a specific algorithm which falls within this category. The
fundamentals of each algorithm and their corresponding performances compared
with other CI algorithms can be found in each associated section. Finally, the
conclusions drawn in Sect. 17.58 closes this chapter.

Part III Physics-based CI Algorithms

Chapter 18: In this chapter, the big bang–big crunch (BB–BC), a global optimi-
zation method inspired from one of the cosmological theories known as closed
universe, is introduced. We first, in Sect. 18.1, describe the background knowledge
regarding the big bang and big crunch. Then, Sect. 18.2 details the fundamentals of
BB–BC, the selected variants of BB–BC, and the representative BB–BC appli-
cation, respectively. Finally, Sect. 18.3 draws the conclusions of this chapter.

Chapter 19: In this chapter, we introduce a new deterministic multidimensional
search algorithm called central force optimization (CFO), which is based on the
metaphor of gravitational kinematics. We first, in Sect. 19.1, describe the general
knowledge about the gravitational force. Then, in Sect. 19.2, the fundamentals and
performance of CFO are detailed. Finally, Sect. 19.3 draws the conclusions of this
chapter.

Chapter 20: In this chapter, we introduce a novel algorithm called charged
system search (CSS) algorithm which is inspired by the coulomb’s law and laws of
motion. We fist describe the general knowledge of the coulomb’s law and laws of
motion in Sect. 20.1. Then, the fundamentals and performance of CSS are intro-
duced in Sect. 20.2. Finally, Sect. 20.3 summarizes this chapter.

Chapter 21: In this chapter, we present an electromagnetism-like mechanism
(EM) algorithm which is inspired by the theory of electromagnetism. We first
describe the general knowledge about the electromagnetism field theory in
Sect. 21.1. Then, the fundamentals and performance of EM are introduced in
Sect. 21.2. Finally, Sect. 21.3 summarizes this chapter.

Chapter 22: In this chapter, we present a gravitational search algorithm (GSA)
which is based on the law of gravity. We first describe the general information
about the science of gravity and the definition of mass in Sect. 22.1, respectively.
Then, the fundamentals and performance of GSA are introduced in Sect. 22.2.
Finally, Sect. 22.3 summarizes this chapter.

xii Preface

http://dx.doi.org/10.1007/978-3-319-03404-1_16
http://dx.doi.org/10.1007/978-3-319-03404-1_16
http://dx.doi.org/10.1007/978-3-319-03404-1_16
http://dx.doi.org/10.1007/978-3-319-03404-1_16
http://dx.doi.org/10.1007/978-3-319-03404-1_17
http://dx.doi.org/10.1007/978-3-319-03404-1_17
http://dx.doi.org/10.1007/978-3-319-03404-1_17
http://dx.doi.org/10.1007/978-3-319-03404-1_17
http://dx.doi.org/10.1007/978-3-319-03404-1_17
http://dx.doi.org/10.1007/978-3-319-03404-1_18
http://dx.doi.org/10.1007/978-3-319-03404-1_18
http://dx.doi.org/10.1007/978-3-319-03404-1_18
http://dx.doi.org/10.1007/978-3-319-03404-1_18
http://dx.doi.org/10.1007/978-3-319-03404-1_19
http://dx.doi.org/10.1007/978-3-319-03404-1_19
http://dx.doi.org/10.1007/978-3-319-03404-1_19
http://dx.doi.org/10.1007/978-3-319-03404-1_19
http://dx.doi.org/10.1007/978-3-319-03404-1_20
http://dx.doi.org/10.1007/978-3-319-03404-1_20
http://dx.doi.org/10.1007/978-3-319-03404-1_20
http://dx.doi.org/10.1007/978-3-319-03404-1_20
http://dx.doi.org/10.1007/978-3-319-03404-1_21
http://dx.doi.org/10.1007/978-3-319-03404-1_21
http://dx.doi.org/10.1007/978-3-319-03404-1_21
http://dx.doi.org/10.1007/978-3-319-03404-1_21
http://dx.doi.org/10.1007/978-3-319-03404-1_22
http://dx.doi.org/10.1007/978-3-319-03404-1_22
http://dx.doi.org/10.1007/978-3-319-03404-1_22
http://dx.doi.org/10.1007/978-3-319-03404-1_22

Chapter 23: In this chapter, an intelligent water drops (IWD) algorithm is
introduced. We first, in Sect. 23.1, describe the general knowledge about nature
water drops and the Newton’s law of gravity, respectively. Then, the fundamentals
of IWD, the selected variant of IWD, and the representative IWD application are
detailed in Sect. 23.2, respectively. Finally, Sect. 23.3 draws the conclusions of
this chapter.

Chapter 24: In this chapter, a set of (more specifically 22 in total) emerging
physics-based CI algorithms are introduced. We first, in Sect. 24.1, describe the
organizational structure of this chapter. Then, from Sect. 24.2 to 24.23, each
section is dedicated to a specific algorithm which falls within this category. The
fundamentals of each algorithm and their corresponding performances compared
with other CI algorithms can be found in each associated section. Finally, the
conclusions drawn in Sect. 24.24 closes this chapter.

Part IV Chemistry-based CI Algorithms

Chapter 25: In this chapter, we present a novel optimization approach named
chemical-reaction optimization (CRO) algorithm. The main idea behind CRO is
that a simulation of the molecules’ movements and their resultant chemical
reactions. We first describe the general knowledge about the chemical reaction in
Sect. 25.1. Then, the fundamentals and performance of CRO are introduced in
Sect. 25.2. Next, a selected variation of CRO is explained in Sect. 25.3. Right after
this, Sect. 25.4 presents a representative CRO application. Finally, Sect. 25.5
summarizes this chapter.

Chapter 26: In this chapter, a set of emerging chemistry-based CI algorithms are
introduced. We first, in Sect. 26.1, describe the organizational structure of this
chapter. Then, from Sect. 26.2 to 26.5 , each section is dedicated to a specific
algorithm which falls within this category. The fundamentals of each algorithm
and their corresponding performances compared with other CI algorithms can be
found in each associated section. Finally, the conclusions drawn in Sect. 26.6
closes this chapter.

Part V Mathematics-based CI Algorithms

Chapter 27: In this chapter, the base optimization algorithm (BaOA), a global
optimization method inspired from mathematics research, is introduced. We first,
in Sect. 27.1, describe the background knowledge about mathematics. Then, the
fundamentals and performance of BaOA are detailed in Sect. 27.2. Finally,
Sect. 27.3 draws the conclusions of this chapter.

Chapter 28: In this chapter, an emerging mathematics-based CI category called
matheuristics is introduced. We first, in Sect. 28.1, describe the background

Preface xiii

http://dx.doi.org/10.1007/978-3-319-03404-1_23
http://dx.doi.org/10.1007/978-3-319-03404-1_23
http://dx.doi.org/10.1007/978-3-319-03404-1_23
http://dx.doi.org/10.1007/978-3-319-03404-1_23
http://dx.doi.org/10.1007/978-3-319-03404-1_24
http://dx.doi.org/10.1007/978-3-319-03404-1_24
http://dx.doi.org/10.1007/978-3-319-03404-1_24
http://dx.doi.org/10.1007/978-3-319-03404-1_24
http://dx.doi.org/10.1007/978-3-319-03404-1_24
http://dx.doi.org/10.1007/978-3-319-03404-1_25
http://dx.doi.org/10.1007/978-3-319-03404-1_25
http://dx.doi.org/10.1007/978-3-319-03404-1_25
http://dx.doi.org/10.1007/978-3-319-03404-1_25
http://dx.doi.org/10.1007/978-3-319-03404-1_25
http://dx.doi.org/10.1007/978-3-319-03404-1_25
http://dx.doi.org/10.1007/978-3-319-03404-1_26
http://dx.doi.org/10.1007/978-3-319-03404-1_26
http://dx.doi.org/10.1007/978-3-319-03404-1_26
http://dx.doi.org/10.1007/978-3-319-03404-1_26
http://dx.doi.org/10.1007/978-3-319-03404-1_26
http://dx.doi.org/10.1007/978-3-319-03404-1_27
http://dx.doi.org/10.1007/978-3-319-03404-1_27
http://dx.doi.org/10.1007/978-3-319-03404-1_27
http://dx.doi.org/10.1007/978-3-319-03404-1_27
http://dx.doi.org/10.1007/978-3-319-03404-1_28
http://dx.doi.org/10.1007/978-3-319-03404-1_28

knowledge regarding the metaheuritics. Then, the fundamentals and representative
application of matheuristics are briefed in Sect. 28.2. Finally, Sect. 28.3 draws the
conclusions of this chapter.

Target Audience of this Book

This book will be useful to multidisciplinary students including those in aeronautic
engineering, mechanical engineering, industrial engineering, electrical and elec-
tronic engineering, chemical engineering, computer science, applied mathematics,
physics, economy, biology, and social science, and particularly those pursuing
postgraduate studies in advanced subjects.

Moreover, the algorithms introduced in this book can motivate researchers to
further develop more efficient and effective algorithms in dealing with many
cutting-edge challenges that may sit on the periphery of their present fields of
interest.

Finally, practitioners can also use the models presented in this book as a starting
point to solve and analyze specific real-world problems. The book is carefully
written to achieve a good balance between the theoretical depth and the com-
prehensiveness of the innovative CI paradigms.

Pretoria, South Africa, September 2013 Bo Xing
Wen-Jing Gao

xiv Preface

http://dx.doi.org/10.1007/978-3-319-03404-1_28
http://dx.doi.org/10.1007/978-3-319-03404-1_28

Acknowledgments

The authors owe their gratitude to all colleagues and practitioners who have
collaborated directly or indirectly in writing this manuscript. In particular, the first
author of this book would like to thank the Department of Mechanical and
Aeronautical Engineering, University of Pretoria, for providing a joyful research
environment during the writing of this book; the second author of this book would
like to thank Mr. Chang-Song Liu, the president of the Mei Yuan Mould Design
and Manufacturing Co., Ltd, P. R. China, for his endless support during this
project.

Also, we would like to thank our supervisors from Tianjin, P. R. China; Kassel,
Germany; and Durban, Pretoria, and Johannesburg, South Africa, respectively,
who had played pivotal roles in our education.

In addition, we also want to thank Springer International Publishing for their
commitment to publish and stimulate innovative ideas.

Finally, this book is dedicated to both authors’ families: Mr. Tan Xing, Mrs.
Qiu-Lan Ma, Mr. Ming-Sheng Gao, and Mrs. Fan Wang, for their unconditional
love and support for making this book a reality.

Pretoria, South Africa Bo Xing
September 2013 Wen-Jing Gao

xv

Contents

Part I Introduction

1 Introduction to Computational Intelligence 3
1.1 Introduction . 3

1.1.1 Traditional CI. 4
1.1.2 Innovative CI . 4

1.2 Organization of the Book. 4
1.2.1 Biology-based CI Algorithms 4
1.2.2 Physics-based CI Algorithms 7
1.2.3 Chemistry-based CI Algorithms 8
1.2.4 Mathematics-based CI Algorithms. 9

1.3 Conclusions . 9
References . 9

Part II Biology-based CI Algorithms

2 Bacteria Inspired Algorithms . 21
2.1 Introduction . 21

2.1.1 Bacteria . 22
2.1.2 Bacterial Foraging Behaviour 22

2.2 Bacterial Foraging Algorithm . 22
2.2.1 Fundamentals of Bacterial Foraging Algorithm. . . . 22
2.2.2 Performance of BFA . 24

2.3 Emerging Bacterial Inspired Algorithms 24
2.3.1 Bacterial Colony Chemotaxis Algorithm 24
2.3.2 Superbug Algorithm . 27
2.3.3 Bacterial Colony Optimization Algorithm 28
2.3.4 Viral System Algorithm. 29

2.4 Conclusions . 32
References . 34

xvii

http://dx.doi.org/10.1007/978-3-319-03404-1_1
http://dx.doi.org/10.1007/978-3-319-03404-1_1
http://dx.doi.org/10.1007/978-3-319-03404-1_1#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_1#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_1#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_1#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_1#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_1#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_1#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_1#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_1#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_1#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_1#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_1#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_1#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_1#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_1#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_1#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_1#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_1#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_1#Bib1
http://dx.doi.org/10.1007/978-3-319-03404-1_2
http://dx.doi.org/10.1007/978-3-319-03404-1_2
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec11
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec11
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec14
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec14
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec17
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec17
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec20
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Sec20
http://dx.doi.org/10.1007/978-3-319-03404-1_2#Bib1

3 Bat Inspired Algorithms . 39
3.1 Introduction . 39

3.1.1 Foraging Behaviour of Bats 39
3.1.2 Characteristics of Echolocation 40

3.2 Bat Algorithm . 40
3.2.1 Fundamentals of Bat Algorithm 40
3.2.2 Performance of BaA . 42

3.3 Emerging Bat Inspired Algorithms 42
3.3.1 Bat Intelligence Algorithm 42

3.4 Conclusions . 43
References . 44

4 Bee Inspired Algorithms . 45
4.1 Introduction . 45

4.1.1 Foraging Behaviour of Bees 46
4.1.2 Marriage Behaviour of Bees. 47
4.1.3 Dancing and Communication

Behaviour of Bees. 47
4.2 Artificial Bee Colony Algorithm. 47

4.2.1 Fundamentals of Artificial Bee
Colony Algorithm . 47

4.2.2 Performance of ABC . 49
4.3 Honeybee Mating Optimization Algorithm. 49

4.3.1 Fundamentals of Honeybee Mating
Optimization Algorithm . 49

4.3.2 Performance of HBMO . 51
4.4 Emerging Bee Inspired Algorithms 51

4.4.1 Artificial Beehive Algorithm 51
4.4.2 Bee Colony Optimization. 53
4.4.3 Bee Colony-inspired Algorithm 54
4.4.4 Bee Swarm Optimization 55
4.4.5 Bee System . 57
4.4.6 BeeHive. 59
4.4.7 Bees Algorithm. 60
4.4.8 Bees Life Algorithm . 62
4.4.9 Bumblebees Algorithm . 63
4.4.10 Honeybee Social Foraging Algorithm 64
4.4.11 OptBees . 65
4.4.12 Simulated Bee Colony Algorithm 67
4.4.13 Virtual Bees Algorithm . 67
4.4.14 Wasp Swarm Optimization. 68

4.5 Conclusions . 70
References . 72

xviii Contents

http://dx.doi.org/10.1007/978-3-319-03404-1_3
http://dx.doi.org/10.1007/978-3-319-03404-1_3
http://dx.doi.org/10.1007/978-3-319-03404-1_3#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_3#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_3#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_3#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_3#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_3#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_3#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_3#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_3#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_3#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_3#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_3#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_3#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_3#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_3#Sec10
http://dx.doi.org/10.1007/978-3-319-03404-1_3#Sec10
http://dx.doi.org/10.1007/978-3-319-03404-1_3#Sec13
http://dx.doi.org/10.1007/978-3-319-03404-1_3#Sec13
http://dx.doi.org/10.1007/978-3-319-03404-1_3#Bib1
http://dx.doi.org/10.1007/978-3-319-03404-1_4
http://dx.doi.org/10.1007/978-3-319-03404-1_4
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec10
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec10
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec11
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec11
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec12
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec12
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec15
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec15
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec18
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec18
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec21
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec21
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec24
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec24
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec27
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec27
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec30
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec30
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec33
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec33
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec36
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec36
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec39
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec39
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec42
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec42
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec45
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec45
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec48
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec48
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec51
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec51
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec54
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Sec54
http://dx.doi.org/10.1007/978-3-319-03404-1_4#Bib1

5 Biogeography-based Optimization Algorithm. 81
5.1 Introduction . 81

5.1.1 Science of Biogeography 81
5.2 Biogeography-based Optimization Algorithm 82

5.2.1 Fundamentals of Biogeography-based
Optimization Algorithm . 82

5.2.2 Performance of BBO . 83
5.3 Conclusions . 84
References . 86

6 Cat Swarm Optimization Algorithm . 93
6.1 Introduction . 93

6.1.1 Behaviour of Cats . 93
6.2 Fundamentals of Cat Swarm Optimization Algorithm 94

6.2.1 Rest and Alert-Seeking Mode 95
6.2.2 Movement-Tracing Mode. 96
6.2.3 Performance of CSO . 97

6.3 Selected CSO Variants . 97
6.3.1 Parallel CSO Algorithm. 97
6.3.2 Multiobjective CSO Algorithm 99

6.4 Representative CSO Application. 101
6.4.1 Aircraft Schedule Recovery Problem 101

6.5 Conclusions . 103
References . 103

7 Cuckoo Inspired Algorithms . 105
7.1 Introduction . 105

7.1.1 Cuckoo: A Brood Parasite 105
7.2 Fundamentals of the Cuckoo Search Algorithm 106

7.2.1 Characteristics of Lévy Flight. 106
7.2.2 Standard CS Algorithm . 108
7.2.3 Performance of CS . 109

7.3 Selected CS Variants. 109
7.3.1 Modified CS (MOCS) Algorithm 109
7.3.2 Multiobjective CS (MCS) Algorithm 110

7.4 Representative CS Application . 113
7.4.1 Scheduling Optimization Problem 113

7.5 Emerging Cuckoo Inspired Algorithms 113
7.5.1 Fundamentals of the Cuckoo

Optimization Algorithm . 113
7.6 Conclusions . 117
References . 118

Contents xix

http://dx.doi.org/10.1007/978-3-319-03404-1_5
http://dx.doi.org/10.1007/978-3-319-03404-1_5
http://dx.doi.org/10.1007/978-3-319-03404-1_5#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_5#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_5#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_5#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_5#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_5#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_5#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_5#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_5#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_5#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_5#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_5#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_5#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_5#Bib1
http://dx.doi.org/10.1007/978-3-319-03404-1_6
http://dx.doi.org/10.1007/978-3-319-03404-1_6
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec10
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec10
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec12
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec12
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec16
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec16
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec17
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec17
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec18
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Sec18
http://dx.doi.org/10.1007/978-3-319-03404-1_6#Bib1
http://dx.doi.org/10.1007/978-3-319-03404-1_7
http://dx.doi.org/10.1007/978-3-319-03404-1_7
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec10
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec10
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec12
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec12
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec13
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec13
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec14
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec14
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec15
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec15
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec15
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec22
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Sec22
http://dx.doi.org/10.1007/978-3-319-03404-1_7#Bib1

8 Luminous Insect Inspired Algorithms . 123
8.1 Introduction . 123
8.2 Firefly Algorithm . 123

8.2.1 Fundamentals of Firefly Algorithm 123
8.2.2 Performance of FA . 126

8.3 Glowworm Swarm Optimization Algorithm 126
8.3.1 Fundamentals of Glowworm Swarm

Optimization Algorithm . 126
8.3.2 Performance of GlSO . 128
8.3.3 Selected GlSO Variants . 128
8.3.4 Representative GlSO Applications. 130

8.4 Emerging Luminous Insect Inspired Algorithms 131
8.4.1 Fundamentals of Bioluminescent Swarm

Optimization Algorithm . 131
8.4.2 Performance of BiSO . 133

8.5 Conclusions . 133
References . 135

9 Fish Inspired Algorithms . 139
9.1 Introduction . 139
9.2 Artificial Fish School Algorithm. 140

9.2.1 Fundamentals of Artificial Fish
School Algorithm . 140

9.2.2 Performance of AFSA . 142
9.3 Fish School Search Algorithm . 142

9.3.1 Fundamentals of Fish School Search Algorithm . . . 142
9.3.2 Performance of FSS . 145

9.4 Emerging Fish Inspired Algorithms. 145
9.4.1 Group Escaping Algorithm. 145
9.4.2 Shark-Search Algorithm. 147

9.5 Conclusions . 148
References . 149

10 Frog Inspired Algorithms . 157
10.1 Introduction . 157
10.2 Shuffled Frog Leaping Algorithm . 157

10.2.1 Fundamentals of Shuffled Frog
Leaping Algorithm . 157

10.2.2 Performance of SFLA . 159
10.3 Emerging Frog Inspired Algorithm 159

10.3.1 Frog Calling Algorithm . 159
10.4 Conclusions . 160
References . 161

xx Contents

http://dx.doi.org/10.1007/978-3-319-03404-1_8
http://dx.doi.org/10.1007/978-3-319-03404-1_8
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec11
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec11
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec13
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec13
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec14
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec14
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec14
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec20
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec20
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec21
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Sec21
http://dx.doi.org/10.1007/978-3-319-03404-1_8#Bib1
http://dx.doi.org/10.1007/978-3-319-03404-1_9
http://dx.doi.org/10.1007/978-3-319-03404-1_9
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec12
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec12
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec15
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Sec15
http://dx.doi.org/10.1007/978-3-319-03404-1_9#Bib1
http://dx.doi.org/10.1007/978-3-319-03404-1_10
http://dx.doi.org/10.1007/978-3-319-03404-1_10
http://dx.doi.org/10.1007/978-3-319-03404-1_10#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_10#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_10#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_10#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_10#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_10#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_10#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_10#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_10#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_10#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_10#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_10#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_10#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_10#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_10#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_10#Bib1

11 Fruit Fly Optimization Algorithm . 167
11.1 Introduction . 167

11.1.1 The Foraging Behaviour of Fruit Flies. 167
11.2 Fruit Fly Optimization Algorithm . 168

11.2.1 Fundamentals of Fruit Fly
Optimization Algorithm . 168

11.2.2 Performance of FFOA . 169
11.3 Conclusions . 169
References . 170

12 Group Search Optimizer Algorithm . 171
12.1 Introduction . 171

12.1.1 Producer-Scrounger Model 171
12.2 Group Search Optimizer Algorithm. 172

12.2.1 Fundamentals of Group Search
Optimizer Algorithm . 172

12.2.2 Performance of GrSO . 174
12.3 Conclusions . 174
References . 175

13 Invasive Weed Optimization Algorithm . 177
13.1 Introduction . 177

13.1.1 Biological Invasion . 177
13.2 Invasive Weed Optimization Algorithm. 178

13.2.1 Fundamentals of Invasive Weed
Optimization Algorithm . 178

13.2.2 Performance of IWO . 179
13.3 Conclusions . 179
References . 180

14 Music Inspired Algorithms . 183
14.1 Introduction . 183

14.1.1 Harmony . 183
14.2 Harmony Search Algorithm . 184

14.2.1 Fundamentals of Harmony Search Algorithm 184
14.2.2 Performance of HS . 185

14.3 Emerging Music Inspired Algorithms 186
14.3.1 Melody Search Algorithm 186
14.3.2 Method of Musical Composition Algorithm 188

14.4 Conclusions . 189
References . 192

Contents xxi

http://dx.doi.org/10.1007/978-3-319-03404-1_11
http://dx.doi.org/10.1007/978-3-319-03404-1_11
http://dx.doi.org/10.1007/978-3-319-03404-1_11#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_11#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_11#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_11#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_11#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_11#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_11#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_11#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_11#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_11#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_11#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_11#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_11#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_11#Bib1
http://dx.doi.org/10.1007/978-3-319-03404-1_12
http://dx.doi.org/10.1007/978-3-319-03404-1_12
http://dx.doi.org/10.1007/978-3-319-03404-1_12#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_12#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_12#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_12#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_12#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_12#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_12#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_12#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_12#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_12#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_12#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_12#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_12#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_12#Bib1
http://dx.doi.org/10.1007/978-3-319-03404-1_13
http://dx.doi.org/10.1007/978-3-319-03404-1_13
http://dx.doi.org/10.1007/978-3-319-03404-1_13#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_13#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_13#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_13#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_13#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_13#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_13#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_13#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_13#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_13#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_13#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_13#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_13#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_13#Bib1
http://dx.doi.org/10.1007/978-3-319-03404-1_14
http://dx.doi.org/10.1007/978-3-319-03404-1_14
http://dx.doi.org/10.1007/978-3-319-03404-1_14#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_14#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_14#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_14#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_14#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_14#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_14#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_14#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_14#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_14#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_14#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_14#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_14#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_14#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_14#Sec10
http://dx.doi.org/10.1007/978-3-319-03404-1_14#Sec10
http://dx.doi.org/10.1007/978-3-319-03404-1_14#Sec13
http://dx.doi.org/10.1007/978-3-319-03404-1_14#Sec13
http://dx.doi.org/10.1007/978-3-319-03404-1_14#Bib1

15 Imperialist Competitive Algorithm . 203
15.1 Introduction . 203

15.1.1 Imperialism . 203
15.2 Imperialist Competitive Algorithm 204

15.2.1 Fundamentals of Imperialist
Competitive Algorithm . 204

15.2.2 Performance of ICA . 207
15.3 Conclusions . 207
References . 208

16 Teaching–Learning-based Optimization Algorithm 211
16.1 Introduction . 211
16.2 Teaching–Learning-based Optimization 211

16.2.1 Fundamentals of Teaching–Learning-based
Optimization Algorithm . 211

16.2.2 Performance of TLBO . 214
16.3 Conclusions . 214
References . 215

17 Emerging Biology-based CI Algorithms . 217
17.1 Introduction . 217
17.2 Amoeboid Organism Algorithm . 219

17.2.1 Fundamentals of Amoeboid
Organism Algorithm . 219

17.2.2 Performance of AOA. 220
17.3 Artificial Searching Swarm Algorithm. 220

17.3.1 Fundamentals of Artificial Searching
Swarm Algorithm . 220

17.3.2 Performance of ASSA . 221
17.4 Artificial Tribe Algorithm . 221

17.4.1 Fundamentals of Artificial Tribe Algorithm 221
17.4.2 Performance of ATA . 222

17.5 Backtracking Search Algorithm . 222
17.5.1 Fundamentals of Backtracking

Search Algorithm . 222
17.5.2 Performance of BSA . 223

17.6 Bar Systems Algorithm . 223
17.6.1 Fundamentals of Bar Systems Algorithm 224
17.6.2 Performance of BSs . 225

17.7 Bean Optimization Algorithm. 225
17.7.1 Fundamentals of Bean Optimization Algorithm . . . 225
17.7.2 Performance of BeOA . 226

xxii Contents

http://dx.doi.org/10.1007/978-3-319-03404-1_15
http://dx.doi.org/10.1007/978-3-319-03404-1_15
http://dx.doi.org/10.1007/978-3-319-03404-1_15#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_15#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_15#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_15#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_15#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_15#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_15#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_15#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_15#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_15#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_15#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_15#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_15#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_15#Bib1
http://dx.doi.org/10.1007/978-3-319-03404-1_16
http://dx.doi.org/10.1007/978-3-319-03404-1_16
http://dx.doi.org/10.1007/978-3-319-03404-1_16#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_16#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_16#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_16#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_16#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_16#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_16#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_16#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_16#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_16#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_16#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_16#Bib1
http://dx.doi.org/10.1007/978-3-319-03404-1_17
http://dx.doi.org/10.1007/978-3-319-03404-1_17
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec10
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec10
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec11
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec11
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec12
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec12
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec12
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec13
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec13
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec14
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec14
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec15
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec15
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec16
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec16
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec17
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec17
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec18
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec18
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec19
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec19

17.8 Bionic Optimization Algorithm . 226
17.8.1 Fundamentals of Bionic Optimization

Algorithm . 226
17.8.2 Performance of BO . 227

17.9 Blind, Naked Mole-Rats Algorithm. 228
17.9.1 Fundamentals of Blind, Naked Mole-Rats

Algorithm . 228
17.9.2 Performance of BNMR . 229

17.10 Brain Storm Optimization Algorithm 229
17.10.1 Fundamentals of Brain Storm

Optimization Algorithm . 230
17.10.2 Performance of BSOA. 230

17.11 Clonal Selection Algorithm . 231
17.11.1 Fundamentals of Clonal Selection Algorithm 231
17.11.2 Performance of CSA . 231

17.12 Cockroach Swarm Optimization Algorithm 232
17.12.1 Fundamentals of Cockroach Swarm

Optimization Algorithm . 232
17.12.2 Performance of CSOA. 233

17.13 Collective Animal Behaviour Algorithm 234
17.13.1 Fundamentals of Collective Animal

Behaviour Algorithm. 234
17.13.2 Performance of CAB . 236

17.14 Cultural Algorithm . 236
17.14.1 Fundamentals of Cultural Algorithm 236
17.14.2 Performance of CA . 237

17.15 Differential Search Algorithm . 237
17.15.1 Fundamentals of Differential Search Algorithm . . . 237
17.15.2 Performance of DS . 238

17.16 Dove Swarm Optimization Algorithm 239
17.16.1 Fundamentals of Dove Swarm

Optimization Algorithm . 239
17.16.2 Performance of DSO . 240

17.17 Eagle Strategy . 241
17.17.1 Fundamentals of Eagle Strategy 241
17.17.2 Performance of ES . 242

17.18 Fireworks Optimization Algorithm 242
17.18.1 Fundamentals of Fireworks

Optimization Algorithm . 242
17.18.2 Performance of FOA . 244

17.19 FlockbyLeader Algorithm . 244
17.19.1 Fundamentals of FlockbyLeader Algorithm 244
17.19.2 Performance of FlockbyLeader 245

Contents xxiii

http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec20
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec20
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec21
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec21
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec21
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec22
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec22
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec23
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec23
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec24
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec24
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec24
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec25
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec25
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec26
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec26
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec27
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec27
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec27
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec28
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec28
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec29
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec29
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec30
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec30
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec31
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec31
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec32
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec32
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec33
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec33
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec33
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec34
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec34
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec35
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec35
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec36
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec36
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec36
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec37
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec37
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec38
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec38
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec39
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec39
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec40
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec40
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec41
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec41
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec42
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec42
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec43
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec43
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec44
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec44
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec45
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec45
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec45
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec46
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec46
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec47
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec47
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec48
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec48
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec49
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec49
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec50
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec50
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec51
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec51
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec51
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec52
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec52
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec53
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec53
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec54
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec54
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec55
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec55

17.20 Flocking-based Algorithm . 245
17.20.1 Fundamentals of Flocking-based Algorithm 245
17.20.2 Performance of FBA . 247

17.21 Flower Pollinating Algorithm . 247
17.21.1 Fundamentals of Flower Pollinating Algorithm. . . . 247
17.21.2 Performance of FPA . 248

17.22 Goose Optimization Algorithm. 248
17.22.1 Fundamentals of Goose Optimization Algorithm. . . 248
17.22.2 Performance of GOA. 249

17.23 Great Deluge Algorithm . 250
17.23.1 Fundamentals of Great Deluge Algorithm 250
17.23.2 Performance of GDA. 250

17.24 Grenade Explosion Method . 251
17.24.1 Fundamentals of Grenade Explosion Method 251
17.24.2 Performance of GEM . 252

17.25 Group Leaders Optimization Algorithm. 253
17.25.1 Fundamentals of Group Leaders

Optimization Algorithm . 253
17.25.2 Performance of GLOA . 253

17.26 Harmony Elements Algorithm . 253
17.26.1 Fundamentals of Harmony Elements Algorithm . . . 254
17.26.2 Performance of HEA . 254

17.27 Human Group Formation Algorithm 255
17.27.1 Fundamentals of Human Group

Formation Algorithm. 255
17.27.2 Performance of HGF . 257

17.28 Hunting Search Algorithm . 257
17.28.1 Fundamentals of Hunting Search Algorithm 257
17.28.2 Performance of HuS . 258

17.29 Krill Herd Algorithm . 259
17.29.1 Fundamentals of Krill Herd Algorithm 259
17.29.2 Performance of KH . 260

17.30 League Championship Algorithm . 260
17.30.1 Fundamentals of League

Championship Algorithm 261
17.30.2 Performance of LCA . 262

17.31 Membrane Algorithm . 262
17.31.1 Fundamentals of Membrane Algorithm 262
17.31.2 Performance of MA . 262

17.32 Migrating Birds Optimization Algorithm 263
17.32.1 Fundamentals of Migrating Birds

Optimization Algorithm . 264
17.32.2 Performance of MBO . 264

xxiv Contents

http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec56
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec56
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec57
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec57
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec58
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec58
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec59
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec59
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec60
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec60
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec61
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec61
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec62
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec62
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec63
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec63
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec64
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec64
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec65
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec65
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec66
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec66
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec67
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec67
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec68
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec68
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec69
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec69
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec70
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec70
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec71
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec71
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec72
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec72
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec72
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec73
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec73
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec74
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec74
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec75
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec75
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec76
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec76
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec77
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec77
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec78
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec78
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec78
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec79
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec79
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec80
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec80
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec81
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec81
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec82
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec82
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec83
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec83
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec84
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec84
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec85
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec85
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec86
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec86
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec87
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec87
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec87
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec88
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec88
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec89
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec89
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec90
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec90
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec91
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec91
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec92
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec92
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec93
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec93
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec93
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec94
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec94

17.33 Mine Blast Algorithm . 264
17.33.1 Fundamentals of Mine Blast Algorithm 264
17.33.2 Performance of MBA . 266

17.34 Monkey Search Algorithm . 266
17.34.1 Fundamentals of Monkey Search Algorithm. 266
17.34.2 Performance of MSA. 267

17.35 Mosquito Host-Seeking Algorithm 267
17.35.1 Fundamentals of Mosquito Host-Seeking

Algorithm . 267
17.35.2 Performance of MHSA . 270

17.36 Oriented Search Algorithm . 270
17.36.1 Fundamentals of Oriented Search Algorithm 270
17.36.2 Performance of OSA . 271

17.37 Paddy Field Algorithm . 271
17.37.1 Fundamentals of Paddy Field Algorithm 271
17.37.2 Performance of PFA . 273

17.38 Photosynthetic Algorithm. 273
17.38.1 Fundamentals of Photosynthetic Algorithm 274
17.38.2 Performance of PA . 275

17.39 Population Migration Algorithm . 276
17.39.1 Fundamentals of Population Migration

Algorithm . 276
17.39.2 Performance of PMA. 276

17.40 Roach Infestation Optimization . 276
17.40.1 Fundamentals of Roach Infestation

Optimization Algorithm . 277
17.40.2 Performance of RIO . 278

17.41 Saplings Growing Up Algorithm . 278
17.41.1 Fundamentals of Saplings Growing

Up Algorithm . 278
17.41.2 Performance of SGuA . 280

17.42 Seeker Optimization Algorithm . 281
17.42.1 Fundamentals of Seeker Optimization

Algorithm . 281
17.42.2 Performance of SeOA . 281

17.43 Self-Organising Migrating Algorithm 282
17.43.1 Fundamentals of Self-Organising

Migrating Algorithm . 282
17.43.2 Performance of SOMA . 283

17.44 Sheep Flock Heredity Model Algorithm 283
17.44.1 Fundamentals of Sheep Flock Heredity

Model Algorithm . 283
17.44.2 Performance of SFHM. 284

Contents xxv

http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec95
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec95
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec96
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec96
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec97
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec97
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec98
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec98
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec99
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec99
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec100
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec100
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec101
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec101
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec102
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec102
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec102
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec103
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec103
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec104
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec104
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec105
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec105
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec106
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec106
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec107
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec107
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec108
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec108
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec109
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec109
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec110
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec110
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec111
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec111
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec112
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec112
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec113
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec113
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec114
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec114
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec114
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec115
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec115
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec116
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec116
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec117
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec117
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec117
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec118
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec118
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec119
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec119
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec120
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec120
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec120
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec121
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec121
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec122
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec122
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec123
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec123
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec123
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec124
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec124
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec125
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec125
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec126
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec126
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec126
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec127
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec127
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec128
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec128
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec129
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec129
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec129
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec130
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec130

17.45 Simple Optimization Algorithm . 284
17.45.1 Fundamentals of Simple Optimization

Algorithm . 284
17.45.2 Performance of SPOT . 285

17.46 Slime Mold Algorithm . 285
17.46.1 Fundamentals of Slime Mold Algorithm 285
17.46.2 Performance of SMA. 286

17.47 Social Emotional Optimization Algorithm 286
17.47.1 Fundamentals of Social Emotional

Optimization Algorithm . 286
17.47.2 Performance of SEOA . 288

17.48 Social Spider Optimization Algorithm. 288
17.48.1 Fundamentals of Social Spider

Optimization Algorithm . 288
17.48.2 Performance of SSOA . 290

17.49 Society and Civilization Algorithm 290
17.49.1 Fundamentals of Society and Civilization

Algorithm . 290
17.49.2 Performance of SCA . 291

17.50 Stem Cells Optimization Algorithm 291
17.50.1 Fundamentals of Stem Cells Optimization

Algorithm . 292
17.50.2 Performance of SCOA. 293

17.51 Stochastic Focusing Search Algorithm. 293
17.51.1 Fundamentals of Stochastic Focusing

Searching Algorithm . 293
17.51.2 Performance of SFS . 294

17.52 Swallow Swarm Optimization Algorithm. 294
17.52.1 Fundamentals of Swallow Swarm

Optimization Algorithm . 295
17.52.2 Performance of SSO . 297

17.53 Termite-Hill Algorithm . 297
17.53.1 Fundamentals of Termite-Hill Algorithm 297
17.53.2 Performance of ThA . 298

17.54 Unconscious Search Algorithm. 298
17.54.1 Fundamentals of Unconscious Search Algorithm. . . 298
17.54.2 Performance of US . 300

17.55 Wisdom of Artificial Crowds Algorithm 300
17.55.1 Fundamentals of Wisdom of Artificial

Crowds Algorithm. 300
17.55.2 Performance of WoAC . 301

17.56 Wolf Colony Algorithm. 301
17.56.1 Fundamentals of Wolf Colony Algorithm 301
17.56.2 Performance of WCA . 303

xxvi Contents

http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec131
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec131
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec132
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec132
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec132
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec133
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec133
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec134
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec134
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec135
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec135
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec136
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec136
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec137
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec137
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec138
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec138
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec138
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec139
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec139
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec140
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec140
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec141
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec141
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec141
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec142
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec142
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec143
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec143
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec144
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec144
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec144
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec145
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec145
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec146
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec146
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec147
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec147
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec147
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec148
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec148
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec149
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec149
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec150
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec150
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec150
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec151
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec151
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec152
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec152
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec153
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec153
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec153
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec154
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec154
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec155
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec155
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec156
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec156
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec157
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec157
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec158
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec158
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec159
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec159
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec160
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec160
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec161
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec161
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec162
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec162
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec162
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec163
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec163
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec164
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec164
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec165
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec165
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec166
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec166

17.57 Wolf Pack Search Algorithm . 303
17.57.1 Fundamentals of Wolf Pack Search Algorithm 303
17.57.2 Performance of WPS . 304

17.58 Conclusions . 304
References . 304

Part III Physics-based CI Algorithms

18 Big Bang–Big Crunch Algorithm . 321
18.1 Introduction . 321

18.1.1 Big Bang . 322
18.1.2 Big Crunch . 322

18.2 Big Bang–Big Crunch Algorithm . 322
18.2.1 Fundamentals of the Big Bang–Big

Crunch Algorithm . 322
18.2.2 Performance of BB–BC . 324
18.2.3 Selected BB–BC Variants 324
18.2.4 Representative BB–BC Application. 328

18.3 Conclusions . 329
References . 330

19 Central Force Optimization Algorithm . 333
19.1 Introduction . 333

19.1.1 Gravitational Force . 333
19.2 Central Force Optimization Algorithm. 334

19.2.1 Fundamentals of Central Force
Optimization Algorithm . 334

19.2.2 Performance of CFO . 336
19.3 Conclusions . 336
References . 337

20 Charged System Search Algorithm . 339
20.1 Introduction . 339

20.1.1 Coulomb’s Law . 339
20.1.2 Laws of Motion . 340

20.2 Charged System Search Algorithm 341
20.2.1 Fundamentals of Charged System

Search Algorithm . 341
20.2.2 Performance of CSS . 344

20.3 Conclusions . 344
References . 345

Contents xxvii

http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec167
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec167
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec168
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec168
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec169
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec169
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec170
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Sec170
http://dx.doi.org/10.1007/978-3-319-03404-1_17#Bib1
http://dx.doi.org/10.1007/978-3-319-03404-1_18
http://dx.doi.org/10.1007/978-3-319-03404-1_18
http://dx.doi.org/10.1007/978-3-319-03404-1_18#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_18#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_18#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_18#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_18#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_18#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_18#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_18#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_18#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_18#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_18#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_18#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_18#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_18#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_18#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_18#Sec13
http://dx.doi.org/10.1007/978-3-319-03404-1_18#Sec13
http://dx.doi.org/10.1007/978-3-319-03404-1_18#Sec15
http://dx.doi.org/10.1007/978-3-319-03404-1_18#Sec15
http://dx.doi.org/10.1007/978-3-319-03404-1_18#Bib1
http://dx.doi.org/10.1007/978-3-319-03404-1_19
http://dx.doi.org/10.1007/978-3-319-03404-1_19
http://dx.doi.org/10.1007/978-3-319-03404-1_19#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_19#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_19#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_19#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_19#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_19#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_19#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_19#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_19#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_19#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_19#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_19#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_19#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_19#Bib1
http://dx.doi.org/10.1007/978-3-319-03404-1_20
http://dx.doi.org/10.1007/978-3-319-03404-1_20
http://dx.doi.org/10.1007/978-3-319-03404-1_20#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_20#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_20#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_20#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_20#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_20#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_20#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_20#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_20#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_20#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_20#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_20#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_20#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_20#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_20#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_20#Bib1

21 Electromagnetism-like Mechanism Algorithm 347
21.1 Introduction . 347

21.1.1 Electromagnetism Field Theory 347
21.2 Electromagnetism-like Algorithm . 348

21.2.1 Fundamentals of Electromagnetism-like
Algorithm . 348

21.2.2 Performance of EM. 350
21.3 Conclusions . 350
References . 352

22 Gravitational Search Algorithm . 355
22.1 Introduction . 355

22.1.1 The Science of Gravity . 355
22.1.2 The Definition of Mass . 356

22.2 Gravitational Search Algorithm . 357
22.2.1 Fundamentals of Gravitational

Search Algorithm . 357
22.2.2 Performance of GSA . 360

22.3 Conclusions . 360
References . 361

23 Intelligent Water Drops Algorithm . 365
23.1 Introduction . 365

23.1.1 Key Characteristics of Nature Water Drops 365
23.1.2 Newton’s Laws of Gravity 366

23.2 Intelligent Water Drops Algorithm 366
23.2.1 Fundamentals of Intelligent Water

Drops Algorithm. 366
23.2.2 Performance of IWD . 369
23.2.3 Selected IWD Variant . 369
23.2.4 Representative IWD Application. 371

23.3 Conclusions . 371
References . 372

24 Emerging Physics-based CI Algorithms . 375
24.1 Introduction . 375
24.2 Artificial Physics Optimization Algorithm 376

24.2.1 Fundamentals of Artificial Physics
Optimization Algorithm . 376

24.2.2 Performance of APO . 377
24.3 Atmosphere Clouds Model Optimization Algorithm 378

24.3.1 Fundamentals of Atmosphere Clouds
Model Optimization Algorithm. 378

24.3.2 Performance of ACMO . 379

xxviii Contents

http://dx.doi.org/10.1007/978-3-319-03404-1_21
http://dx.doi.org/10.1007/978-3-319-03404-1_21
http://dx.doi.org/10.1007/978-3-319-03404-1_21#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_21#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_21#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_21#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_21#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_21#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_21#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_21#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_21#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_21#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_21#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_21#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_21#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_21#Bib1
http://dx.doi.org/10.1007/978-3-319-03404-1_22
http://dx.doi.org/10.1007/978-3-319-03404-1_22
http://dx.doi.org/10.1007/978-3-319-03404-1_22#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_22#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_22#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_22#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_22#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_22#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_22#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_22#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_22#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_22#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_22#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_22#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_22#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_22#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_22#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_22#Bib1
http://dx.doi.org/10.1007/978-3-319-03404-1_23
http://dx.doi.org/10.1007/978-3-319-03404-1_23
http://dx.doi.org/10.1007/978-3-319-03404-1_23#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_23#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_23#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_23#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_23#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_23#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_23#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_23#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_23#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_23#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_23#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_23#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_23#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_23#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_23#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_23#Sec10
http://dx.doi.org/10.1007/978-3-319-03404-1_23#Sec10
http://dx.doi.org/10.1007/978-3-319-03404-1_23#Sec12
http://dx.doi.org/10.1007/978-3-319-03404-1_23#Sec12
http://dx.doi.org/10.1007/978-3-319-03404-1_23#Bib1
http://dx.doi.org/10.1007/978-3-319-03404-1_24
http://dx.doi.org/10.1007/978-3-319-03404-1_24
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec7

24.4 Chaos Optimization Algorithm . 379
24.4.1 Fundamentals of Chaos Optimization Algorithm. . . 379
24.4.2 Performance of ChOA . 380

24.5 Cloud Model-based Algorithm . 380
24.5.1 Fundamentals of Cloud Model-based Algorithm . . . 381
24.5.2 Performance of CMBA . 381

24.6 Extremal Optimization Algorithm . 382
24.6.1 Fundamentals of Extremal Optimization

Algorithm . 382
24.6.2 Performance of EO . 382

24.7 Galaxy-based Search Algorithm . 383
24.7.1 Fundamentals of Galaxy-based Search

Algorithm . 383
24.7.2 Performance of GbSA . 384

24.8 Gravitation Field Algorithm . 384
24.8.1 Fundamentals of Gravitation Field Algorithm. 384
24.8.2 Performance of GFA . 384

24.9 Gravitational Clustering Algorithm 385
24.9.1 Fundamentals of Gravitational Clustering

Algorithm . 385
24.9.2 Performance of GCA. 386

24.10 Gravitational Emulation Local Search Algorithm 386
24.10.1 Fundamentals of Gravitational Emulation

Local Search Algorithm. 386
24.10.2 Performance of GELS . 387

24.11 Gravitational Interactions Optimization Algorithm 387
24.11.1 Fundamentals of Gravitational Interactions

Optimization Algorithm . 387
24.11.2 Performance of GIO . 388

24.12 Hysteretic Optimization Algorithm 389
24.12.1 Fundamentals of Hysteretic Optimization

Algorithm . 389
24.12.2 Performance of HO . 389

24.13 Integrated Radiation Optimization Algorithm 389
24.13.1 Fundamentals of Integrated Radiation

Optimization Algorithm . 390
24.13.2 Performance of IRO . 391

24.14 Light Ray Optimization Algorithm 392
24.14.1 Fundamentals of Light Ray Optimization

Algorithm . 392
24.14.2 Performance of LRO . 393

Contents xxix

http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec10
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec10
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec11
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec11
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec12
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec12
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec13
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec13
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec14
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec14
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec15
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec15
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec15
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec16
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec16
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec17
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec17
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec18
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec18
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec18
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec19
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec19
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec20
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec20
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec21
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec21
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec22
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec22
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec23
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec23
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec24
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec24
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec24
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec25
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec25
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec26
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec26
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec27
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec27
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec27
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec28
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec28
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec29
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec29
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec30
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec30
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec30
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec31
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec31
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec32
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec32
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec33
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec33
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec33
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec34
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec34
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec35
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec35
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec36
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec36
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec36
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec37
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec37
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec38
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec38
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec39
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec39
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec39
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec40
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec40

24.15 Magnetic Optimization Algorithm. 393
24.15.1 Fundamentals of Magnetic Optimization

Algorithm . 393
24.15.2 Performance of MOA . 394

24.16 Particle Collision Algorithm. 395
24.16.1 Fundamentals of Particle Collision Algorithm 395
24.16.2 Performance of PCA . 396

24.17 Ray Optimization Algorithm . 396
24.17.1 Fundamentals of Ray Optimization Algorithm 396
24.17.2 Performance of RO . 397

24.18 River Formation Dynamics Algorithm. 397
24.18.1 Fundamentals of River Formation

Dynamics Algorithm . 397
24.18.2 Performance of RFD . 398

24.19 Space Gravitational Optimization Algorithm 398
24.19.1 Fundamentals of Space Gravitational

Optimization Algorithm . 399
24.19.2 Performance of SGO . 400

24.20 Spiral Optimization Algorithm . 400
24.20.1 Fundamentals of Spiral Optimization Algorithm . . . 400
24.20.2 Performance of SpOA . 401

24.21 Water Cycle Optimization Algorithm 401
24.21.1 Fundamentals of Water Cycle

Optimization Algorithm . 401
24.21.2 Performance of WCOA . 403

24.22 Water Flow Algorithm . 403
24.22.1 Fundamentals of Water Flow Algorithm 404
24.22.2 Performance of WFA . 405

24.23 Water Flow-like Algorithm . 405
24.23.1 Fundamentals of Water Flow-like Algorithm 405
24.23.2 Performance of WFlA . 407

24.24 Conclusions . 408
References . 408

Part IV Chemistry-based CI Algorithms

25 Chemical-Reaction Optimization Algorithm. 417
25.1 Introduction . 417

25.1.1 Chemical Reaction and Reaction Mechanism 418
25.1.2 Basic Components. 418
25.1.3 Basic Laws of Thermodynamics 419

xxx Contents

http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec41
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec41
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec42
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec42
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec42
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec43
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec43
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec44
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec44
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec45
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec45
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec46
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec46
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec47
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec47
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec48
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec48
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec49
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec49
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec50
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec50
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec51
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec51
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec51
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec52
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec52
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec53
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec53
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec54
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec54
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec54
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec55
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec55
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec56
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec56
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec57
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec57
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec58
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec58
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec59
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec59
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec60
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec60
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec60
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec61
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec61
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec62
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec62
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec63
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec63
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec64
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec64
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec65
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec65
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec66
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec66
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec67
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec67
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec68
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Sec68
http://dx.doi.org/10.1007/978-3-319-03404-1_24#Bib1
http://dx.doi.org/10.1007/978-3-319-03404-1_25
http://dx.doi.org/10.1007/978-3-319-03404-1_25
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec8

25.2 Fundamentals of the Chemical-Reaction
Optimization Algorithm. 419
25.2.1 Elementary Reactions . 421
25.2.2 Performance of CRO . 424

25.3 Selected CRO Variant . 424
25.3.1 Real-Coded CRO Algorithm. 424
25.3.2 Performance of RCCRO 425

25.4 Representative CRO Application . 426
25.4.1 Quadratic Assignment Problem. 426

25.5 Conclusions . 426
References . 427

26 Emerging Chemistry-based CI Algorithms 429
26.1 Introduction . 429
26.2 Artificial Chemical Process Algorithm 430

26.2.1 Fundamentals of Artificial Chemical
Process Algorithm. 430

26.2.2 Performance of ACPA. 432
26.3 Artificial Chemical Reaction Optimization Algorithm 432

26.3.1 Fundamentals of Artificial Chemical Reaction
Optimization Algorithm . 432

26.3.2 Performance of ACROA 433
26.4 Chemical Reaction Algorithm . 434

26.4.1 Fundamentals of Chemical Reaction Algorithm . . . 434
26.4.2 Performance of CRA . 434

26.5 Gases Brownian Motion Optimization Algorithm 434
26.5.1 Fundamentals of Gases Brownian Motion

Optimization Algorithm . 435
26.5.2 Performance of GBMO . 436

26.6 Conclusions . 436
References . 436

Part V Mathematics-based CI Algorithms

27 Base Optimization Algorithm . 441
27.1 Introduction . 441

27.1.1 Basic Arithmetic Operators 441
27.2 Base Optimization Algorithm . 442

27.2.1 Fundamentals of Base Optimization Algorithm. . . . 442
27.2.2 Performance of BaOA . 443

27.3 Conclusions . 443
References . 444

Contents xxxi

http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec10
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec10
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec15
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec15
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec16
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec16
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec17
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec17
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec18
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec18
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec19
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec19
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec20
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec20
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec21
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Sec21
http://dx.doi.org/10.1007/978-3-319-03404-1_25#Bib1
http://dx.doi.org/10.1007/978-3-319-03404-1_26
http://dx.doi.org/10.1007/978-3-319-03404-1_26
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec7
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec8
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec9
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec10
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec10
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec11
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec11
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec12
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec12
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec12
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec13
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec13
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec14
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Sec14
http://dx.doi.org/10.1007/978-3-319-03404-1_26#Bib1
http://dx.doi.org/10.1007/978-3-319-03404-1_27
http://dx.doi.org/10.1007/978-3-319-03404-1_27
http://dx.doi.org/10.1007/978-3-319-03404-1_27#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_27#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_27#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_27#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_27#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_27#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_27#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_27#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_27#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_27#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_27#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_27#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_27#Bib1

28 Emerging Mathematics-based CI Algorithms 445
28.1 Introduction . 445

28.1.1 Metaheuritics . 445
28.2 Matheuristics . 446

28.2.1 Fundamentals of Matheuristics 446
28.2.2 Performance of Matheuristics 447

28.3 Conclusions . 447
References . 448

Biographies . 449

xxxii Contents

http://dx.doi.org/10.1007/978-3-319-03404-1_28
http://dx.doi.org/10.1007/978-3-319-03404-1_28
http://dx.doi.org/10.1007/978-3-319-03404-1_28#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_28#Sec1
http://dx.doi.org/10.1007/978-3-319-03404-1_28#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_28#Sec2
http://dx.doi.org/10.1007/978-3-319-03404-1_28#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_28#Sec3
http://dx.doi.org/10.1007/978-3-319-03404-1_28#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_28#Sec4
http://dx.doi.org/10.1007/978-3-319-03404-1_28#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_28#Sec5
http://dx.doi.org/10.1007/978-3-319-03404-1_28#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_28#Sec6
http://dx.doi.org/10.1007/978-3-319-03404-1_28#Bib1

Abbreviations

ABC Artificial Bee Colony
ABHA Artificial Beehive Algorithm
ACMO Atmosphere Clouds Model Optimization
ACO Ant Colony Optimization
ACROA Artificial Chemical Reaction Optimization Algorithm
AFSA Artificial Fish School Algorithm
AOA Amoeboid Organism Algorithm
ASSA Artificial Searching Swarm Algorithm
BaA Bat Algorithm
BaOA Base Optimization Algorithm
BB–BC Big Bang–Big Crunch
BBO Biogeography-based Optimization
BCC Bacterial Colony Chemotaxis
BCiA Bee Colony-Inspired Algorithm
BCO Bee Colony Optimization
BEA Bats Echolocation Algorithm
BeA Bees Algorithm
BeOA Bean Optimization Algorithm
BeSO Bee Swarm Optimization
BFA Bacterial Foraging Algorithm
BI Bat Intelligence
BiSO Bioluminescent Swarm Optimization
BLA Bees Life Algorithm
BNMR Blind, Naked Mole-Rats
BO Bionic Optimization
BS Bee System
BSA Backtracking Search Algorithm
BSOA Brain Storm Optimization Algorithm
BSs Bar Systems
CA Culture Algorithm
CFO Central Force Optimization

xxxiii

ChOA Chaos Optimization Algorithm
CI Computational Intelligence
CMBA Cloud Model-based Algorithm
CMDE Cloud Model-based Differential Evolution
CRA Chemical Reaction Algorithm
CRO Chemical Reaction Optimization
CS Cuckoo Search
CSA Clonal Selection Algorithm
CSO Cat Swarm Optimization
CSOA Cockroach Swarm Optimization Algorithm
CSS Charged System Search
CuOA Cuckoo Optimization Algorithm
DE Differential Evolution
DS Differential Search
DSO Dove Swarm Optimization
EA Evolutionary Algorithm
EBB–BC Exponential Big Bang–Big Crunch
EM Electromagnetism-like Mechanism
EO Extremal Optimization
ES Eagle Strategy
FA Firefly Algorithm
FBA Flocking-based Algorithm
FCA Frog Calling Algorithm
FFOA Fruit Fly Optimization Algorithm
FOA Fireworks Optimization Algorithm
FPA Flower Pollinating Algorithm
FSA Fish Search Algorithm
FSS Fish School Search
GA Genetic Algorithm
GBMO Gases Brownian Motion Optimization
GbSA Galaxy-based Search Algorithm
GCA Gravitational Clustering Algorithm
GDA Great Deluge Algorithm
GEA Group Escaping Algorithm
GFA Gravitation Field Algorithm
GIO Gravitational Interactions Optimization
GLOA Group Leaders Optimization Algorithm
GlSO Glowworm Swarm Optimization
GOA Goose Optimization Algorithm
GrSO Group Search Optimizer
GSA Gravitational Search Algorithm
HBB–BC Hybrid Big Bang–Big Crunch

xxxiv Abbreviations

HBMOA Honey Bees Mating Optimization Algorithm
HBSF Honey Bee Social Foraging
HEA Harmony Elements Algorithm
HGF Human Group Formation
HO Hysteretic Optimization
HS Harmony Search
HuS Hunting Search
ICA Imperialist Competitive Algorithm
IRO Integrated Radiation Optimization
IWD Intelligent Water Drops
IWO Invasive Weed Optimization
KH Krill Herd
LCA League Championship Algorithm
LRO Light Ray Optimization
MA Membrane Algorithm
MBB–BC Modified Big Bang–Big Crunch
MBO Migrating Birds Optimization
MeS Melody Search
MMC Method of Musical Composition
MOA Magnetic Optimization Algorithm
MOCSO Multiobjective Cat Swarm Optimization
MSA Monkey Search Algorithm
OSA Oriented Search Algorithm
PA Photosynthetic Algorithm
PCA Particle Collision Algorithm
PCSO Parallel Cat Swarm Optimization
PFA Paddy Field Algorithm
PSO Particle Swarm Optimization
RFD River Formation Dynamics
RO Ray Optimization
SA Simulated Annealing
SBC Simulated Bee Colony
SCA Society and Civilization Algorithm
SCOA Stem Cells Optimization Algorithm
SEOA Social Emotion Optimization Algorithm
SeOA Seeker Optimization Algorithm
SFHM Sheep Flock Heredity Model
SFLA Shuffled Frog Leaping Algorithm
SFS Stochastic Focusing Search Algorithm
SGO Space Gravitational Optimization
SGuA Saplings Growing Up Algorithm
SMA Slime Mold Algorithm

Abbreviations xxxv

SOM Sub-Optimization Mechanism
SOMA Self-Organizing Migrating Algorithm
SpOA Spiral Optimization Algorithm
SPOT Simple Optimization
SSA Shark-Search Algorithm
SSO Swallow Swarm Optimization
SSOA Social Spider Optimization Algorithm
SuA Superbug Algorithm
ThA Termite-hill Algorithm
TS Tabu search
UBB–CBC Uniform Big Bang–Chaotic Big Crunch
UBS Upper Bound Strategy
US Unconscious Search
VBA Virtual Bees Algorithm
VS Viral System
WCA Wolf Colony Algorithm
WCOA Water Cycle Optimization Algorithm
WFA Water Flow Algorithm
WFlA Water Flow-like Algorithm
WoAC Wisdom of Artificial Crowds
WPS Wolf Pack Search
WSO Wasp Swarm Optimization

xxxvi Abbreviations

Objective and Mission

Introduction to the Subject Area

About 20 years ago, the term ‘‘Computational Intelligence’’ (CI), coined by
Bezdek, triggered the development of a new field dedicated to computer-based
intelligence which can be regarded as a timely intent to avoid some tough issues.
In principle, CI consists of any science-supported approaches and technologies for
analyzing, creating, and developing intelligent systems. The broad usage of this
term was formalized by the IEEE Neural Network Council and the IEEE World
Congress on Computational Intelligence in Orlando, Florida in the summer of
1994. With the advances of many advanced theories and methodologies, many
obstacles that may have previously hindered the development of CI research have
now been overcome. During the past two decades, as evidenced by the promising
results of numerous researches, CI has enjoyed a wide acceptance and an
unprecedented popularity. By applying it in various application settings, CI has
opened many brand new dimensions for scientific research.

Objective and Mission

Traditional CI primarily concentrates on artificial neural network (ANN), fuzzy
logic (FL), multi-agent system (MAS), evolutionary algorithms (EA) (e.g., genetic
algorithm (GA), genetic programming (GP), evolutionary programming (EP), and
evolutionary strategy (ES)), artificial immune systems (AIS), simulated annealing
(SA), Tabu search (TS), as well as two variants of swarm intelligence (SI), i.e., ant
colony optimization (ACO) and particle swarm optimization (PSO). In the
literature, there are thousands of (if not more) books, conference proceedings, and
edited monographs devoted to CI and its corresponding vast amount of
applications.

Innovative CI, unlike its counterparts, i.e., highly developed and refined
traditional CI, is a new CI category introduced by the authors of this book.
Although most innovative CI algorithms introduced in this book hold considerable
promise, a majority of them are still in their infancy. There are currently very few

xxxvii

books specifically dedicated to these novel CI paradigms. Therefore it is the
authors’ hope that this book will inspire other far better qualified researchers to
bring these new CI family members to their full potential. This serves as the main
objective and mission of this book.

Unique Characteristics

The first notable feature of this book is its innovation: Computational intelligence
(CI), a fast evolving area, is currently attracting a lot of researchers’ attention in
dealing with many complex problems. At present, there are quite a lot of
competing books existing in the market. Nevertheless, the present book is
markedly different from the existing books in that it presents new paradigms of
CI that have rarely mentioned before, as opposed to the traditional CI techniques
or methodologies employed in other books. During the past decade, a number of
new CI algorithms are proposed. Unfortunately, they spread in a number of
unrelated publishing directions which may hamper the use of such published
resources. These provide us with motivation to analyze the existing research for
categorizing and synthesizing it in a meaningful manner. The mission of this book
is really important since those algorithms are going to be a new revolution in
computer science. We hope it will stimulate the readers to make novel
contributions or even start a new paradigm based on nature phenomena. Although
structured as a textbook, the book’s straightforward, self-contained style will also
appeal to a wide audience of professionals, researchers, and independent learners.
We believe that the book will be instrumental in initiating an integrated approach
to complex problems by allowing cross-fertilization of design principles from
different design philosophies.

The second feature of this book is its comprehensiveness: Through an
extensive literature research, there are 134 innovative CI algorithms covered in
this book.

Prospective Audience

This book will be useful to multidisciplinary students including those in aeronautic
engineering, mechanical engineering, industrial engineering, electrical and elec-
tronic engineering, chemical engineering, computer science, applied mathematics,
physics, economy, biology, and social science, and particularly those pursuing
postgraduate studies in advanced subjects.

Moreover, the algorithms introduced in this book can motivate researchers to
further develop more efficient and effective algorithms in dealing with many
cutting-edge challenges that may sit on the periphery of their present fields of
interest.

xxxviii Objective and Mission

Finally, practitioners can also use the models presented in this book as a starting
point to solve and analyse specific real-world problems. The book is carefully
written to achieve a good balance between the theoretical depth and the
comprehensiveness of the innovative CI paradigms.

Bo Xing
Wen-Jing Gao

Objective and Mission xxxix

Part I
Introduction

Chapter 1
Introduction to Computational
Intelligence

Abstract In this chapter, we introduce some general knowledge relative to the
realm of computational intelligence (CI). The desirable merits of these intelligent
algorithms and their initial successes in many domains have inspired researchers
(from various backgrounds) to continuously develop their successors. Such truly
interdisciplinary environment of the research and development provides more and
more rewarding opportunities for scientific breakthrough and technology innova-
tion. We first introduce some historical information regarding CI in Sect. 1.1.
Then, the organizational structures are detailed in Sect. 1.2. Finally, Sect. 1.3
summarises in this chapter.

1.1 Introduction

About 20 years ago, the term ‘‘Computational Intelligence’’ (CI), coined by
Bezdek (1992, 1994), triggered the development of a new field dedicated to
computer-based intelligence which can be regarded as a timely intent to avoid
some of the tough issues. In principle, CI consists of any science-supported
approaches and technologies for analyzing, creating, and developing intelligent
systems. The broad usage of this term was formalized by the IEEE Neural Net-
work Council and the IEEE World Congress on Computational Intelligence in
Orlando, Florida in the summer of 1994. With the advances of many advanced
theories and methodologies, many obstacles that may previously hindered the
development of CI research have now been overcome. During the past two
decades, as evidenced by the promising results of numerous researches, CI has
enjoyed a widely acceptance and an unprecedented popularity. By applying it in
various application settings, CI has opened many brand new dimensions for
scientific research.

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_1, � Springer International Publishing Switzerland 2014

3

1.1.1 Traditional CI

Traditional CI primarily concentrates on artificial neural network (ANN), fuzzy
logic (FL), multi-agent system (MAS), evolutionary algorithms (EA) [e.g., genetic
algorithm (GA), genetic programming (GP), evolutionary programming (EP), and
evolutionary strategy (ES)], artificial immune systems (AIS), simulated annealing
(SA), Tabu search (TS), as well as two variants of swarm intelligence (SI), i.e., ant
colony optimization (ACO) and particle swarm optimization (PSO). In the liter-
ature, there are thousands of (if not more) books, conference proceedings, and
edited monographs are devoted to CI and its corresponding vast amount of
applications, e.g., (Wang and Kusiak 2001; Engelbrecht 2007; Fink and Rothlauf
2008; Marwala 2009, 2010, 2012; Rutkowski 2008; Sumathi and Paneerselvam
2010; Marwala and Lagazio 2011; Xing and Gao 2014; Chatterjee and Siarry
2013; Yang 2008, 2010a; Eberhart and Shi 2007; Fulcher and Jain 2008; Mumford
and Jain 2009; Michalewicz 1996), to name just a few.

1.1.2 Innovative CI

Innovative CI, unlike its counterparts, i.e., highly developed and refined traditional
CI, is a new CI category introduced by the authors of this book. Although most
innovative CI algorithms introduced in this book hold considerable promise,
majority of them are still in their infancy. There are currently very few books
specifically dedicated to these novel CI paradigms. Therefore it is the authors’
hope that this book will inspire other far better qualified researchers to bring these
new CI family members to their full potential.

1.2 Organization of the Book

In this book, we will cover a vast amount of innovative algorithms (more
specifically, 134 in total) that all involving some aspect of CI, but each one taking
a somewhat pragmatic view. In order to present a clear picture over these
approaches, we have organized them into four main classes, namely, biology-,
physics-, chemistry-, and mathematics-based CI algorithms.

1.2.1 Biology-based CI Algorithms

Briefly, biology can be defined as a comprehensive science concerning all func-
tions of living systems (Glaser 2012). From an evolutionary process point of view,

4 1 Introduction to Computational Intelligence

biological systems possess many appealing characteristics such as sophistication,
robustness, and adaptability (Floreano and Mattiussi 2008). These features rep-
resent a strong motivation for imitating the mechanisms of natural evolution in an
attempt to create CI algorithms with merits comparable to those of biological
systems.

In this class, we have covered 99 novel biology-based CI algorithms which are
outlined as follows. Each algorithm’s original reference has been attached for
readers’ convenience to trace their origination.

• Amoeboid Organism Algorithm (Zhang et al. 2013).
• Artificial Bee Colony (Karaboga and Basturk 2007).
• Artificial Beehive Algorithm (Muñoz et al. 2009).
• Artificial Fish Swarm Algorithm (Li 2003).
• Artificial Searching Swarm Algorithm (Chen 2009).
• Artificial Tribe Algorithm (Chen et al. 2012).
• Backtracking Search Algorithm (Civicioglu 2013).
• Bacterial Colony Chemotaxis (Müller et al. 2002).
• Bacterial Colony Optimization (Niu and Wang 2012).
• Bacterial Foraging Algorithm (Passino 2002).
• Bar Systems (Acebo and Rosa 2008).
• Bat Algorithm (Yang 2010b).
• Bat Intelligence (Malakooti et al. 2012).
• Bean Optimization Algorithm (Zhang et al. 2010).
• Bee Colony Optimization (Teodorović and Dell’Orco 2005).
• Bee Colony-inspired Algorithm (Häckel and Dippold 2009).
• Bee Swarm Optimization (Akbari et al. 2009).
• Bee System (Sato and Hagiwara 1997).
• BeeHive (Wedde et al. 2004).
• Bees Algorithm (Pham et al. 2006).
• Bees Life Algorithm (Bitam and Mellouk 2013).
• Biogeography-based optimization (Simon 2008).
• Bioluminescent Swarm Optimization (Oliveira et al. 2011).
• Bionic Optimization (Steinbuch 2011).
• Blind, Naked Mole-Rats (Taherdangkoo et al. 2012).
• Brain Storm Optimization (Shi 2011).
• Bumblebees Algorithm (Comellas and Martínez-Navarro 2009).
• Cat Swarm Optimization (Chu and Tsai 2007).
• Clonal Selection Algorithm (Castro and Zuben 2000).
• Cockroach Swarm Optimization (Chen and Tang 2010).
• Collective Animal Behaviour (Cuevas et al. 2013b).
• Cuckoo Optimization Algorithm (Rajabioun 2011).
• Cuckoo Search (Yang and Deb 2009).
• Cultural Algorithm (Reynolds 1994).
• Differential Search (Civicioglu 2012).
• Dove Swarm Optimization (Su et al. 2009).

1.2 Organization of the Book 5

• Eagle Strategy (Yang and Deb 2010).
• Firefly Algorithm (Łukasik and _Zak 2009).
• Fireworks Algorithm (Tan and Zhu 2010).
• Fish School Search (Bastos-Filho et al. 2008).
• FlockbyLeader (Bellaachia and Bari 2012).
• Flocking-based Algorithm (Cui et al. 2006).
• Flower Pollinating Algorithm (Yang 2012).
• Frog Calling Algorithm (Mutazono et al. 2012).
• Fruit Fly Optimization Algorithm (Pan 2012).
• Glowworm Swarm Optimization (Krishnanand and Ghose 2005).
• Goose Optimization Algorithm (Sun and Lei 2009).
• Great Deluge Algorithm (Dueck 1993).
• Grenade Explosion Algorithm (Ahrari et al. 2009).
• Group Escaping Algorithm (Min and Wang 2010).
• Group Leaders Optimization Algorithm (Daskin and Kais 2011).
• Group Search Optimizer (He et al. 2006).
• Harmony Elements Algorithm (Cui et al. 2008).
• Harmony Search (Geem et al. 2001).
• Honeybee Social Foraging (Quijano and Passino 2010).
• Honeybees Mating Optimization (Abbass 2001).
• Human Group Formation (Thammano and Moolwong 2010).
• Hunting Search (Oftadeh et al. 2010).
• Imperialist Competition Algorithm (Atashpaz-Gargari and Lucas 2007).
• Invasive Weed Optimization (Mehrabian and Lucas 2006).
• Krill Herd (Gandomi and Alavi 2012).
• League Championship Algorithm (Kashan 2009).
• Melody Search (Ashrafi and Dariane 2011).
• Membrane Algorithm (Nishida 2005).
• Method of Musical Composition (Mora-Gutiérrez et al. 2012).
• Migrating Birds Optimization (Duman et al. 2012).
• Mine Blast Algorithm (Sadollah et al. 2012).
• Monkey Search (Mucherino and Seref 2007).
• Mosquito Host-Seeking Algorithm (Feng et al. 2009).
• OptBees (Maia et al. 2012).
• Oriented Search Algorithm (Zhang et al. 2008).
• Paddy Field Algorithm (Premaratne et al. 2009).
• Photosynthetic Algorithm (Murase 2000).
• Population Migration Algorithm (Zhang et al. 2009).
• Roach Infestation Optimization (Havens et al. 2008).
• Saplings Growing Up Algorithm (Karci and Alatas 2006).
• Seeker Optimization Algorithm (Dai et al. 2007).
• Self-Organizing Migrating Algorithm (Davendra et al. 2013).
• Shark-Search Algorithm (Hersovici et al. 1998).
• Sheep Flock Heredity Model (Nara et al. 1999).

6 1 Introduction to Computational Intelligence

• Shuffled Frog Leaping Algorithm (Eusuff and Lansey 2003).
• Simple Optimization (Hasançebi and Azad 2012).
• Simulated Bee Colony (McCaffrey and Dierking 2009).
• Slime Mould Algorithm (Shann 2008).
• Social Emotional Optimization Algorithm (Wei et al. 2010).
• Social Spider Optimization Algorithm (Cuevas et al. 2013a).
• Society and Civilization Algorithm (Ray and Liew 2003).
• Stem Cells Algorithm (Taherdangkoo et al. 2011).
• Stochastic Focusing Search (Zheng et al. 2009)
• Superbug Algorithm (Anandaraman et al. 2012).
• Swallow Swarm Optimization (Neshat et al. 2013).
• Teaching–learning-based Optimization (Rao et al. 2011).
• Termite-hill Algorithm (Zungeru et al. 2012).
• Unconscious Search (Ardjmand and Amin-Naseri 2012).
• Viral System (Cortés et al. 2008).
• Virtual Bees Algorithm (Yang 2005).
• Wasp Swarm Optimization (Theraulaz et al. 1991).
• Wisdom of Artificial Crowds (Ashby and Yampolskiy 2011).
• Wolf Colony Algorithm (Liu et al. 2011).
• Wolf Pack Search (Yang et al. 2007).

1.2.2 Physics-based CI Algorithms

The word physics is derived from the Greek word physika, which means ‘‘natural
things’’ (Holzner 2011). As the most fundamental science, physics is concerned
with the basic principles of the universe. It is therefore the foundation of many
other sciences such as biology, chemistry, and geology. In physics, just a small
number of concepts and models can dramatically alter and expand our view of the
world around us. Typically, the research of physics can be classified into the
following areas such as classical mechanics, relativity, thermodynamics, electro-
magnetism, optics, and quantum mechanics (Serway and Jewett 2014). The sim-
plicity of all these fundamental principles is not only the real beauty of physics,
but also the main momentum in developing innovative CI algorithms.

In this class, we have included 28 novel physics-based CI algorithms which are
listed as follows. Each algorithm’s original reference has also been attached for
readers’ convenience to trace their origination.

• Artificial Physics Optimization (Xie and Zeng 2009).
• Atmosphere Clouds Model Optimization (Yan and Hao 2012).
• Big Bang-Big Crunch (Erol and Eksin 2006).
• Central Force Optimization (Formato 2007).
• Chaos Optimization Algorithm (Li and Jiang 1998).
• Charged System Search (Kaveh and Talatahari 2010).
• Cloud Model-based Algorithm (Zhu and Ni 2012).

1.2 Organization of the Book 7

• Electromagnetism-like Mechanism (Birbil and Fang 2003).
• Extremal Optimization (Boettcher and Percus 2000).
• Galaxy-based Search Algorithm (Shah-Hosseini 2011).
• Gravitation Field Algorithm (Zheng et al. 2010).
• Gravitational Clustering Algorithm (Kundu 1999).
• Gravitational Emulation Local Search (Barzegar et al. 2009).
• Gravitational Interactions Optimization (Flores et al. 2011).
• Gravitational Search Algorithm (Rashedi et al. 2009).
• Hysteretic Optimization (Zaránd et al. 2002).
• Integrated Radiation Optimization (Chuang and Jiang 2007).
• Intelligent Water Drops (Shah-Hosseini 2007).
• Light Ray Optimization (Shen and Li 2009).
• Magnetic Optimization Algorithm (Tayarani et al. 2008).
• Particle Collision Algorithm (Sacco and Oliveira 2005).
• Ray Optimization (Kaveh and Khayatazad 2012).
• River Formation Dynamics Algorithm (Rabanal et al. 2007).
• Space Gravitational Optimization (Hsiao et al. 2005).
• Spiral Optimization Algorithm (Jin and Tran 2010).
• Water Cycle Algorithm (Eskandar et al. 2012).
• Water Flow Algorithm (Basu et al. 2007).
• Water Flow-like Algorithm (Yang and Wang 2007).

1.2.3 Chemistry-based CI Algorithms

Chemistry can be usually viewed as a branch of physical science, but it is distinct
from physics. In fact, the chemistry can be defined as a molecular view of matter.
The major concern of chemistry is about the matters’ properties, the changes that
matter undergoes, and the energy changes that accompany those processes
(Whitten et al. 2014). In other words, to understand living systems fully, an
important question to consider at this point is which factors that control and affect
the chemical behaviours, such as photochemical reactions, oxidation–reduction
reactions, combination reactions, decomposition reactions, displacement reactions,
gas-formation reactions, and metathesis reactions. The analyzing of all these types
of chemical reactions is not only the real beauty of chemistry, but also the main
momentum in developing innovative CI algorithms.

In this class, we have included 5 novel chemistry-based CI algorithms which
are listed as follows. Each algorithm’s original reference has also been attached for
readers’ convenience to trace their origination.

• Artificial Chemical Process (Irizarry 2005).
• Artificial Chemical Reaction Optimization Algorithm (Alatas 2011).
• Chemical Reaction Algorithm (Melin et al. 2013).
• Chemical-Reaction Optimization Algorithm (Lam and Li 2010).
• Gases Brownian Motion Optimization (Abdechiri et al. 2013).

8 1 Introduction to Computational Intelligence

1.2.4 Mathematics-based CI Algorithms

During the past decades, we have witnessed a proliferation of personal computers,
smart phones, high-speed Internet, to name a few. The rapid development of
various technologies has reduce the necessity for human beings to perform manual
tasks which are either tedious or dangerous in nature, as computers may now
accomplish most of them. As one of the most important building blocks, mathe-
matics plays a crucial role in realizing all these technologies. The history of
mathematics is no doubt tremendous long. According to Anglin (1994), Aristotle
thought that is the priests in Egypt who actually started mathematics since the
priestly class was allowed leisure. Whereas, Herodotus, believed that geometry
was created to re-determine land boundaries due to the annual flooding of the Nile.
The accurate beginning of mathematics is of course out of the scope of this book,
but the widely employed mathematical modelling approaches indeed help us to
gain insight and make reasonable accurate predictions towards the targeted
problems (Yang 2013). Apart from that, the real beauty of mathematics also forms
the main thrust in developing innovative CI algorithms.

In this class, we have included 2 novel mathematics-based CI algorithms which
are listed as follows. Each algorithm’s original reference has also been attached for
readers’ convenience to trace their origination.

• Base Optimization Algorithm (Salem 2012).
• Matheuristics (Maniezzo et al. 2009).

1.3 Conclusions

Our natural world conceals many characteristics of different creatures, and all of
them have some unique behaviour or features to keep them survive. In this chapter,
a brief background of CI (both in terms of traditional and innovative perspectives)
has been discussed from an introductory perspective. The organizational structure
of this book has also been explained. Interested readers are referred to them as a
starting point for a further exploration and exploitation of any of these 134
algorithms that may draw their attention.

References

Abbass, H. A. (2001, May 27–30). MBO: marriage in honey bees optimization. A Haplometrosis
Polygynous swarming approach. In 2001 Congress on Evolutionary Computation (CEC),
Seoul, South Korea (pp. 207–214). IEEE.

Abdechiri, M., Meybodi, M. R. & Bahrami, H. (2013). Gases Brownian motion optimization: an
algorithm for optimization (GBMO). Applied Soft Computing. http://dx.doi.org/10.1016/
j.asoc.2012.03.068.

1.2 Organization of the Book 9

http://dx.doi.org/10.1016/j.asoc.2012.03.068
http://dx.doi.org/10.1016/j.asoc.2012.03.068

Acebo, E. D. & Rosa, J. L. D. L. (2008, April 1–4). Introducing bar systems: a class of swarm
intelligence optimization algorithms. In AISB 2008 Symposium on Swarm Intelligence
Algorithms and Applications, University of Aberdeen (pp. 18–23). The Society for the Study
of Artificial Intelligence and Simulation of Behaviour.

Ahrari, A., Shariat-Panahi, M., & Atai, A. A. (2009). GEM: a novel evolutionary optimization
method with improved neighborhood search. Applied Mathematics and Computation, 210,
379–386.

Akbari, R., Mohammadi, A. & Ziarati, K. (2009). A powerful bee swarm optimization algorithm.
In 13th International Multitopic Conference (INMIC), pp. 1–6. IEEE.

Alatas, B. (2011). ACROA: artificial chemical reaction optimization algorithm for global
optimization. Expert Systems with Applications, 38, 13170–13180.

Anandaraman, C., Sankar, A. V. M., & Natarajan, R. (2012). A new evolutionary algorithm based
on bacterial evolution and its applications for scheduling a flexible manufacturing system.
Jurnal Teknik Industri, 14, 1–12.

Anglin, W. S. (1994). Mathematics: a concise history and philosophy. New York: Springer. ISBN
0-378-94280-7.

Ardjmand, E. & Amin-Naseri, M. R. (2012). Unconscious search: A new structured search
algorithm for solving continuous engineering optimization problems based on the theory of
psychoanalysis. In Y. Tan, Y. Shi, & Z. Ji, (Eds.), ICSI 2012, Part I, LNCS (Vol. 7331,
pp. 233–242). Berlin: Springer.

Ashby, L. H., & Yampolskiy, R. V. (2011). Genetic algorithm and wisdom of artificial Crowds
algorithm applied to light up. In IEEE 16th International Conference on Computer Games
(CGAMES 2011) (pp. 27–32).

Ashrafi, S. M., & Dariane, A. B. (2011, December 5–8) A novel and effective algorithm for
numerical optimization: melody search (MS). In 11th International Conference on Hybrid
Intelligent Systems (HIS), Melacca (pp 109–114). IEEE.

Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: an algorithm for
optimization inspired by imperialistic competition. In IEEE Congress on Evolutionary
Computation (CEC 2007) (pp. 4661–4667). IEEE.

Barzegar, B., Rahmani, A. M., & Zamanifar, K. (2009). Gravitational emulation local search
algorithm for advanced reservation and scheduling in grid systems. In First Asian Himalayas
International Conference on Internet (AH-ICI) (pp. 1–5). IEEE.

Bastos-Filho, C. J. A., LIMA-NETO, F. B. D., LINS, A. J. C. C., Nascimento, A. I. S., & Lima,
M. P. (2008). A novel search algorithm based on fish school behavior. In IEEE International
Conference on Systems, Man and Cybernetics (SMC) (pp. 2646–2651). IEEE.

Basu, S., Chaudhuri, C., Kundu, M., Nasipuri, M., & Basu, D. K. (2007). Text line extraction
from multi-skewed handwritten documents. Pattern Recognition, 40, 1825–1839.

Bellaachia, A., & Bari, A. (2012). Flock by leader: a novel machine learning biologically inspired
clustering algorithm. In: Y. Tan, Y. Shi, & Z. Ji (Eds.). ICSI 2012, Part I, LNCS (Vol. 7332,
pp. 117–126). Berlin: Springer.

Bezdek, J. C. (1992). On the relationship between neural networks, pattern recognition and
intelligence. International Journal of Approximate Reasoning, 6, 85–107.

Bezdek, J. C. (1994). What is computational intelligence? In J. M. Zurada, R. J. Marks, & C.
J. Robinson (Eds.), Computational intelligence imitating life (pp. 1–12). Los Alamitos: IEEE
Press.

Birbil, S�_I., & Fang, S.-C. (2003). An electromagnetism-like mechanism for global optimization.
Journal of Global Optimization, 25, 263–282.

Bitam, S., & Mellouk, A. (2013). Bee life-based multi constraints multicast routing optimization
for vehicular ad hoc networks. Journal of Network and Computer Applications, 36, 981–991.

Boettcher, S., & Percus, A. (2000). Nature’s way of optimizing. Artificial Intelligence, 119,
275–286.

10 1 Introduction to Computational Intelligence

Castro, L. N. D., & Zuben, F. J. V. (2000, July). The clonal selecton algorithm with engineering
applications. Workshop on Artificial Immune Systems and Their Applications, Las Vegas,
USA (pp. 1–7).

Chatterjee, A., & Siarry, P. (Eds.). (2013). Computational intelligence in image processing.
Berlin: Springer. ISBN 978-3-642-30620-4.

Chen, T. (2009). A simulative bionic intelligent optimization algorithm: artificial searching
swarm algorithm and its performance analysis. In International Joint Conference on
Computational Sciences and Optimization (CSO) (pp. 864–866). IEEE.

Chen, T., Wang, Y., & Li, J. (2012). Artificial tribe algorithm and its performance analysis.
Journal of Software, 7, 651–656.

Chen, Z., & Tang, H. (2010). Cockroach swarm optimization. In 2nd International Conference on
Computer Engineering and Technology (ICCET) (pp. 652–655). IEEE.

Chu, S.-C., & Tsai, P.-W. (2007). Computational intelligence based on the behavior of cats.
International Journal of Innovative Computing, Information and Control, 3, 163–173.

Chuang, C.-L., & Jiang, J.-A. (2007, September 25–28). Integrated radiation optimization:
inspired by the gravitational radiation in the curvature of space-time. In IEEE Congress on
Evolutionary Computation (CEC), Singapore (pp. 3157–3164). IEEE.

Civicioglu, P. (2012). Transforming geocentric Cartesian coordinates to geodetic coordinates by
using differential search algorithm. Computers and Geosciences, 46, 229–247.

Civicioglu, P. (2013). Backtracking search optimization algorithm for numerical optimization
problems. Applied Mathematics and Computation, 219, 8121–8144.

Comellas, F., & Martínez-Navarro, J. (2009). Bumblebees: a multiagent combinatorial
optimization algorithm inspired by social insect behaviour. In: First ACM/SIGEVO Summit
on Genetic and Evolutionary Computation (GEC) (pp. 811–814). New york: ACM.

Cortés, P., García, J. M., Muñuzuri, J., & Onieva, L. (2008). Viral systems: a new bio-inspired
optimisation approach. Computers and Operations Research, 35, 2840–2860.

Cuevas, E., Cienfuegos, M., Zaldívar, D., & Pérez-Cisneros, M. (2013a). A swarm optimization
algorithm inspired in the behavior of the social-spider. Expert Systems with Applica-
tions.http://dx.doi.org/10.1016/j.eswa.2013.05.041.

Cuevas, E., Zaldívar, D., & Pérez-Cisneros, M. (2013b). A swarm optimization algorithm for
multimodal functions and its application in multicircle detection. Mathematical Problems in
Engineering, 2013, 1–22.

Cui, X., Gao, J., & Potok, T. E. (2006). A flocking based algorithm for document clustering
analysis. Journal of Systems Architecture, 52, 505–515.

Cui, Y. H., Guo, R., Rao, R. V., & Savsani, V. J. (2008, December 15–17). Harmony element
algorithm: A naive initial searching range. In International Conference on Advances in
Mechanical Engineering, (pp. 1–6). Gujarat: S. V. National Institute of Technology.

Dai, C., Zhu, Y., & Chen, W. (2007). Seeker optimization algorithm. In: Y. Wang, Cheung, Y., &
Liu, H. (Eds.). CIS 2006, LNAI. (Vol. 4456, pp. 167–176). Berlin: Springer.

Daskin, A., & Kais, S. (2011). Group leaders optimization algorithm. Molecular Physics, 109,
761–772.

Davendra, D., Zelinka, I., Bialic-Davendra, M., Senkerik, R., & Jasek, R. (2013). Discrete self-
organising migrating algorithm for flow-shop scheduling with no-wait makespan. Mathemat-
ical and Computer Modelling, 57, 100–110.

Dueck, G. (1993). New optimization heuristics: the great deluge algorithm and the record-to-
record travel. Journal of Computational Physics, 104, 86–92.

Duman, E., Uysal, M., & Alkaya, A. F. (2012). Migrating birds optimization: a new metaheuristic
approach and its performance on quadratic assignment problem. Information Sciences, 217,
65–77.

Eberhart, R. C., & Shi, Y. (2007). Computational intelligence: concepts to implementations. Los
Altos: Morgan Kaufmann. ISBN 1558607595.

Engelbrecht, A. P. (2007). Computational intelligence: an introduction. West Sussex: Wiley.
ISBN 978-0-470-03561-0.

References 11

http://dx.doi.org/10.1016/j.eswa.2013.05.041

Erol, O. K., & Eksin, I. (2006). A new optimization method: Big Bang–Big Crunch. Advances in
Engineering Software, 37, 106–111.

Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm: A
novel metaheuristic optimization for solving constrained engineering optimization problems.
Computers and Structures, 110–111, 151–166.

Eusuff, M. M., & Lansey, K. E. (2003). Optimization of water distribution network design using
the shuffled frog leaping algorithm. Journal of Water Resources Planning and Management,
129, 210–225.

Feng, X., Lau, F. C. M., & Gao, D. (2009). A new bio-inspired approach to the traveling salesman
problem. In: J. Zhou. (Ed.). Complex 2009, Part II, LNICST, (Vol. 5, pp. 1310–1321). Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering.

Fink, A., & Rothlauf, F. (Eds.). (2008). Advances in computational intelligence in transport,
logistics, and supply chain management. Berlin: Springer. ISBN 978-3-540-69024-5.

Floreano, D., & Mattiussi, C. (2008). Bio-inspired artificial intelligence: theories, methods, and
technologies. Cambridge: The MIT Press. ISBN 978-0-262-06271-8.

Flores, J. J., López, R., & Barrera, J. (2011). Gravitational interactions optimization. Learning
and Intelligent Optimization, (pp. 226–237). Berlin: Springer.

Formato, R. A. (2007). Central force optimization: a new metaheuristic with applications in
applied electromagnetics. Progress in Electromagnetics Research, PIER, 77, 425–491.

Fulcher, J., & Jain, L. C. (Eds.). (2008). Computational intelligence: a compendium. Berlin:
Springer. ISBN 978-3-540-78292-6.

Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: a new bio-inspired optimization algorithm.
Communications in Nonlinear Science and Numerical Simulation, 17, 4831–4845.

Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm:
harmony search. Simulation, 76, 60–68.

Glaser, R. (2012). Biophysics: an introduction. Berlin: Springer. ISBN 978-3-642-25211-2.
Häckel, S., & Dippold, P. (2009, July 8–12). The bee colony-inspired algorithm (BCiA): A two-

stage approach for solving the vehicle routing problem with time windows. GECCO’09 (pp.
25–32). Nontréal, Québec, Canada.

Hasançebi, O., & Azad, S. K. (2012). An efficient metaheuristic algorithm for engineering
optimization: SPOT. International Journal of Optimization in Civil Engineering, 2, 479–487.

Havens, T. C., Spain, C. J., Salmon, N. G., & Keller, J. M. (2008, September 21–23). Roach
infestation optimization. In IEEE Swarm Intelligence Symposium (pp. 1–7). St. Louis MO
USA. IEEE.

He, S., Wu, Q. H., & Saunders, J. R. (2006, July 16–21). A novel group search optimizer inspired
by animal behavioural ecology. In IEEE Congress on Evolutionary Computation (CEC) (pp.
1272–1278). Vancouver: Sheraton Vancouver Wall Centre Hotel. IEEE.

Hersovici, M., Jacovi, M., Maarek, Y. S., Pelleg, D., Shtalhaim, M., & Ur, S. (1998). The shark-
search algorithm. An application: tailored Web site mapping. Computer Networks and ISDN
Systems, 30, 317–326.

Holzner, S. (2011). Physics I for dummies. River Street: Wiley. ISBN 978-0-470-90324-7.
Hsiao, Y.-T., Chuang, C.-L., Jiang, J.-A., & Chien, C.-C. (2005, October 10–12). A novel

optimization algorithm: space gravitational optimization. IEEE International Conference on
Systems, Man and Cybernetics (SMC) (pp. 2323–2328). IEEE.

Irizarry, R. (2005). A generalized framework for solving dynamic optimization problems using
the artificial chemical process paradigm: applications to particulate processes and discrete
dynamic systems. Chemical Engineering Science, 60, 5663–5681.

Jin, G.-G., & Tran, T.-D. (2010, August 18–21). A nature-inspired evolutionary algorithm based
on spiral movements. In SICE Annual Conference (pp. 1643–1647). The Grand Hotel: Taipei.
IEEE.

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function
optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39,
459–471.

12 1 Introduction to Computational Intelligence

Karci, A., & Alatas, B. (2006). Thinking capability of saplings growing up algorithm. In
Intelligent Data Engineering and Automated Learning (IDEAL 2006), LNCS (Vol. 4224,
pp. 386–393). Berlin: Springer.

Kashan, A. H. (2009). League championship algorithm: a new algorithm for numerical function
optimization. In International Conference of Soft Computing and Pattern Recognition
(SoCPAR) (pp. 43–48). IEEE.

Kaveh, A., & Khayatazad, M. (2012). A new meta-heuristic method: ray optimization. Computers
and Structures, 112–113, 283–294.

Kaveh, A., & Talatahari, S. (2010). A novel heuristic optimization method: charged system
search. Acta Mechanica, 213, 267–289.

Krishnanand, K. N., & Ghose, D. (2005). Detection of multiple source locations using a
glowworm metaphor with applications to collective robotics. IEEE Swarm Intelligence
Symposium (SIS) (pp. 84–91). IEEE.

Kundu, S. (1999). Gravitational clustering: a new approach based on the spatial distribution of the
points. Pattern Recognition, 32, 1149–1160.

L.Mumford, C., & JAIN, L. C. (Eds.). (2009). Computational intelligence: collaboration, fusion
and emergence. Berlin: Springer. ISBN 978-3-642-01798-8.

Lam, A. Y. S., & Li, V. O. K. (2010). Chemical-reaction-inspired metaheuristic for optimization.
IEEE Transactions on Evolutionary Computation, 14, 381–399.

Li, B., & Jiang, W. (1998). Optimizing complex functions by chaos search. Cybernetics and
Systems: An International, 29, 409–419.

Li, X.-L. (2003). A new intelligent optimization method: Artificial fish school algorithm (in
Chinese with English abstract). Unpublished Doctoral Thesis, Zhejiang University.

Liu, C., Yan, X., Liu, C., & Wu, H. (2011). The wolf colony algorithm and its application.
Chinese Journal of Electronics, 20, 212–216.

Łukasik, S., & _Zak, S. (2009). Firefly algorithm for continuous constrained optimization tasks. In
Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent
Systems, LNCS, (Vol. 5796, pp. 97–106). Berlin: Spinger.

Maia, R. D., Castro, L. N. D., & Caminhas, W. M. (2012, June 10–15). Bee colonies as model for
multimodal continuous optimization: the OptBees algorithm. In IEEE World Congress on
Computational Intelligence (WCCI) (pp. 1–8). Brisbane, Australia. IEEE.

Malakooti, B., Sheikh, S., Al-Najjar, C., & Kim, H. (2013). Multi-objective energy aware
multiprocessor scheduling using bat intelligence. Journal of Intelligent Manufacturing, 24,
805–819. doi: 10.1007/s10845-012-0629-6.

Maniezzo, V., Stützle, T. & VOß, S. (Eds.). (2009). Matheuristics: hybridizing metaheuristics
and mathematical programming. New York: Springer. ISBN 978-1-4419-1305-0.

Marwala, T. (2009). Computational intelligence for missing data imputation, estimation and
management: knowledge optimization techniques. New York: IGI Global. ISBN 978-1-60566-
336-4.

Marwala, T. (2010). Finite-element-model updating using computational intelligence techniques:
applications to structural dynamics. London: Springer. ISBN 978-1-84996-322-0.

Marwala, T. (2012). Condition monitoring using computational intelligence methods: applica-
tions in mechanical and electrical systems. London: Springer. ISBN 978-1-4471-2379-8.

Marwala, T., & Lagazio, M. (2011). Militarized conflict modeling using computational
intelligence. London: Springer. ISBN 978-0-85729-789-1.

Mccaffrey, J. D., & Dierking, H. (2009). An empirical study of unsupervised rule set extraction of
clustered categorical data using a simulated bee colony algorithm. In G. Governatori, Hall, J.,
& Paschke, A. (Eds.). RuleML 2009, LNCS, (Vol. 5858, pp. 182–193). Berlin: Springer.

Mehrabian, A. R., & Lucas, C. (2006). A novel numerical optimization algorithm inspired from
weed colonization. Ecological Informatics, 1, 355–366.

Melin, P., Astudillo, L., Castillo, O., Valdez, F., & Valdez, F. (2013). Optimal design of type-2
and type-1 fuzzy tracking controllers for autonomous mobile robots under perturbed torques

References 13

http://dx.doi.org/10.1007/s10845-012-0629-6

using a new chemical optimization paradigm. Expert Systems with Applications, 40,
3185–3195.

Michalewicz, Z. (1996). Genetic algorithms ? data structures = evolution programs. Berlin:
Springer. ISBN 3-540-60676-9.

Min, H., & Wang, Z. (2010, December 14–18). Group escape behavior of multiple mobile robot
system by mimicking fish schools. In IEEE International Conference on Robotics and
Biomimetics (ROBIO) (pp. 320–326). Tianjin, China. IEEE.

Mora-Gutiérrez, R. A., Ramírez-Rodríguez, J., & Rincón-García, E. A. (2012). An optimization
algorithm inspired by musical composition. Artificial Intelligence Review. doi: 10.1007/
s10462-011-9309-8.

Mucherino, A., & Seref, O. (2007). Monkey search: a novel metaheuristic search for global
optimization. AIP Conference Proceedings, 953, 162–173.

Müller, S. D., Marchetto, J., Airaghi, S., & Koumoutsakos, P. (2002). Optimization based on
bacterial chemotaxis. IEEE Transactions on Evolutionary Computation, 6, 16–29.

Muñoz, M. A., López, J. A., & Caicedo, E. (2009). An artificial beehive algorithm for continuous
optimization. International Journal of Intelligent Systems, 24, 1080–1093.

Murase, H. (2000). Finite element inverse analysis using a photosynthetic algorithm. Computers
and Electronics in Agriculture, 29, 115–123.

Mutazono, A., Sugano, M., & Murata, M. (2012). Energy efficient self-organizing control for
wireless sensor networks inspired by calling behavior of frogs. Computer Communications,
35, 661–669.

Nara, K., Takeyama, T., & Kim, H. (1999). A new evolutionary algorithm based on sheep flocks
heredity model and its application to scheduling problem. In IEEE International Conference
on Systems, Man, and Cybernetics (SMC) (pp. VI-503–VI-508). IEEE.

Neshat, M., Sepidnam, G., & Sargolzaei, M. (2013). Swallow swarm optimization algorithm: a
new method to optimization. Neural Computing and Application. doi:10.1007/s00521-012-
0939-9.

Nishida, T. Y. (2005, 18–21 July). Membrane algorithm: an approximate algorithm for NP-
complete optimization problems exploiting P-systems. In: R. Freund, G. Lojka, M. Oswald, &
G. Păun, (Eds.). 6th International workshop on membrane computing (WMC) (pp. 26–43).
Vienna, Austria. Institute of Computer Languages, Faculty of Informatics, Vienna University
of Technology.

Niu, B., & Wang, H. (2012). Bacterial colony optimization. Discrete Dynamics in Nature and
Society, 2012, 1–28.

Oftadeh, R., Mahjoob, M. J., & Shariatpanahi, M. (2010). A novel meta-heuristic optimization
algorithm inspired by group hunting of animals: hunting search. Computers and Mathematics
with Applications, 60, 2087–2098.

Oliveira, D. R. D., Parpinelli, R. S., & Lopes, H. S. (2011). Bioluminescent swarm optimization
algorithm. In Evolutionary Algorithms, Chapter 5 (pp. 71–84). Eisuke Kita: InTech.

Pan, W.-T. (2012). A new fruit fly optimization algorithm: Taking the financial distress model as
an example. Knowledge-Based Systems, 26, 69–74.

Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed optimization and control.
IEEE Control System Management, 22, 52–67.

Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2006) The bees
algorithm: A novel tool for complex optimisation problems. In Second International Virtual
Conference on Intelligent production machines and systems (IPROMS) (pp. 454–459).
Oxford: Elsevier.

Premaratne, U., Samarabandu, J., & Sidhu, T. (2009, December 28–31). A new biologically
inspired optimization algorithm. In Fourth International Conference on Industrial and
Information Systems (ICIIS) (pp. 279–284). Sri Lanka. IEEE.

Quijano, N., & Passino, K. M. (2010). Honey bee social foraging algorithms for resource
allocation: theory and application. Engineering Applications of Artificial Intelligence, 23,
845–861.

14 1 Introduction to Computational Intelligence

http://dx.doi.org/10.1007/s10462-011-9309-8
http://dx.doi.org/10.1007/s10462-011-9309-8
http://dx.doi.org/10.1007/s00521-012-0939-9
http://dx.doi.org/10.1007/s00521-012-0939-9

Rabanal, P., Rodríguez, I., & Rubio, F. (2007. Using river formation dynamics to design heuristic
algorithms. In: S. G. Akl, C. S. C., M.J. Dinneen, G. Rozenber, H.T. Wareham (Eds.). UC
2007, LNCS, Vol. 4618, (pp. 163–177). Berlin: Springer.

Rajabioun, R. (2011). Cuckoo optimization algorithm. Applied Soft Computing, 11, 5508–5518.
Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: a

novel method for constrained mechanical design optimization problems. Computer-Aided
Design, 43, 303–315.

Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: a gravitational search algorithm.
Information Sciences, 179, 2232–2248.

Ray, T., & Liew, K. M. (2003). Society and civilization: an optimization algorithm based on the
simulation of social behavior. IEEE Transactions on Evolutionary Computation, 7, 386–396.

Reynolds, R. G. (1994). An introduction to cultural algorithms. In Sebald, A. V., & Fogel, L. J.,
(Eds.). The 3rd Annual Conference on Evolutionary Programming (pp. 131–139). World
Scientific Publishing.

Rutkowski, L. (2008). Computational intelligence: methods and techniques. Berlin: Springer.
ISBN 978-3-540-76287-4.

Sacco, W. F., & Oliveira, C. R. E. D. (2005, 30 May–03 June) A new stochastic optimization
algorithm based on a particle collision metaheuristic. In 6th World Congresses of Structural
and Multidisciplinary Optimization (pp. 1–6). Rio de Janeiro, Brazil.

Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2012). Mine blast algorithm for
optimization of truss structures with discrete variables. Computers and Structures, 102–103,
49–63.

Salem, S. A. Boa. (2012, October 10–11). A novel optimization algorithm. In International
Conference on Engineering and Technology (ICET) (pp. 1–5). Cairo, Egypt. IEEE.

Sato, T., & Hagiwara, M. (1997). Bee system: finding solution by a concentrated search. In IEEE
International Conference on Systems, Man, and Cybernetics (SMC) (pp. 3954–3959). IEEE.

Serway, R. A., & Jewett, J. W. (2014). Physics for scientists and engineers with modern physics.
Boston, MA, USA: Brooks/Cole CENAGE Learning. ISBN 978-1-133-95405-7.

Shah-Hosseini, H. (2007, September 25–28). Problem solving by intelligent water drops. In IEEE
Congress on Evolutionary Computation (CEC) (pp. 3226–3231). IEEE.

Shah-Hosseini, H. (2011). Otsu’s criterion-based multilevel thresholding by a nature-inspired
metaheuristic called galaxy-based search algorithm. Third World Congress on Nature and
Biologically Inspired Computing (NaBIC) (pp. 383–388). IEEE.

Shann, M. (2008). Emergent behavior in a simulated robot inspired by the slime mold.
Unpublished Bachelor Thesis, University of Zurich.

Shen, J., & Li, Y. (2009, April 24–26). Light ray optimization and its parameter analysis. In
International Joint Conference on Computational Sciences and Optimization (CSO) (pp.
918–922). Sanya, China. IEEE.

Shi, Y. (2011). Brain storm optimization algorithm. In Y. Tan, Y. Shi, & G. Wang, (Eds.). ICSI
2011, Pat I, LNCS (pp. 303–309). Berlin: Springer.

Simon, D. (2008). Biogeography-based optimization. IEEE Transactions on Evolutionary
Computation, 12, 702–713.

Steinbuch, R. (2011). Bionic optimisation of the earthquake resistance of high buildings by tuned
mass dampers. Journal of Bionic Engineering, 8, 335–344.

Su, M.-C., Su, S.-Y., & Zhao, Y.-X. (2009). A swarm-inspired projection algorithm. Pattern
Recognition, 42, 2764–2786.

Sumathi, S., & Paneerselvam, S. (2010). Computational intelligence paradigms: theory and
applications using MATLAB. Boca Raton: CRC Press, Taylor and Francis. ISBN 978-1-4398-
0902-0.

Sun, J., & Lei, X. (2009). Geese-inspired hybrid particle swarm optimization algorithm. In
International Conference on Artificial Intelligence and Computational Intelligence (pp.
134–138). IEEE.

References 15

Taherdangkoo, M., Shirzadi, M. H., & Bagheri, M. H. (2012). A novel meta-heuristic algorithm
for numerical function optimization_blind, naked mole-rats (BNMR) algorithm. Scientific
Research and Essays, 7, 3566–3583.

Taherdangkoo, M., Yazdi, M., & Bagheri, M. H. (2011). Stem cells optimization algorithm.
LNBI, (pp. 394–403). Berlin: Springer.

Tan, Y., & Zhu, Y. (2010). Fireworks algorithm for optimization. In: Y. Tan, Y. Shi, & Tan, K. C.
(Eds.). ICSI 2010, Part I, LNCS, (Vol. 6145, pp. 355–364). Berlin: Springer.

Tayarani, N. M. H., & Akbarzadeh, T. M. R. (2008). Magnetic optimization algorithms a new
synthesis. In IEEE Congress on Evolutionary Computation (CEC) (pp. 2659–2664). IEEE.

Teodorović, D., & Dell’orco, M. (2005). Bee colony optimization: a cooperative learning
approach to complex transportation problems. In 16th Mini-EURO Conference on Advanced
OR and AI Methods in Transportation (pp. 51–60).

Thammano, A., & Moolwong, J. (2010). A new computational intelligence technique based on
human group formation. Expert Systems with Applications, 37, 1628–1634.

Theraulaz, G., Goss, S., Gervet, J., & Deneubourg, J. L. (1991). Task differentiation in polistes
wasps colonies: a model for self-organizing groups of robots. In First International
Conference on Simulation of Adaptive Behavior (pp. 346–355). Cambridge: MIT Press.

Wang, J., & Kusiak, A. (Eds.). (2001). Computational intelligence in manufacturing handbook,
Boca Raton: CRC Press. ISBN 0-8493-0592-6.

Wedde, H. F., Farooq, M., & Zhang, Y. (2004). Beehive: an efficient fault-tolerant routing
algorithm inspired by honey bee behavior. In: Dorigo, M. (Ed.). ANTS 2004, LNCS, (Vol.
3172, pp. 83–94). Berlin: Springer.

Wei, Z. H., Cui, Z. H., & Zeng, J. C. (2010, September 26–28). Social cognitive optimization
algorithm with reactive power optimization of power system. In 2010 International
Conference on Computational Aspects of Social Networks (CASoN) (pp. 11–14). Taiyuan,
China.

Whitten, K. W., Davis, R. E., Peck, M. L., & Stanley, G. G. (2014). Chemistry, Belmont: Brooks/
Cole, Cengage Learning. ISBN-13: 978-1-133-61066-3.

Xie, L.-P. & Zeng, J.-C. (2009, June 12–14). A global optimization based on physicomimetics
framework. First ACM/SIGEVO Summit on Genetic and Evolutionary Computation (GEC)
(pp. 609–616). Shanghai, China. IEEE.

Xing, B., & Gao, W.-J. (2014). Computational intelligence in remanufacturing, Hershey: IGI
Global. ISBN 978-1-4666-4908-8.

Yan, G.-W., & Hao, Z. (2012, July 7–9). A novel atmosphere clouds model optimization
algorithm. In International Conference on Computing, Measurement, Control and Sensor
Network (CMCSN) (pp. 217–220). Taiyuan, China. IEEE.

Yang, X. S. (2005). Engineering optimizations via nature-inspired virtual bee algorithms. In
IWINAC 2005, lNCS, (Vol. 3562, pp. 317–323). Berlin: Springer.

Yang, C., Tu, X., & Chen, J. (2007). Algorithm of marriage in honey bees optimization based on
the wolf pack search. International Conference on Intelligent Pervasive Computing (IPC) (pp.
462–467). IEEE.

Yang, F.-C., & Wang, Y.-P. (2007). Water flow-like algorithm for object grouping problems.
Journal of the Chinese Institute of Industrial Engineers, 24, 475–488.

Yang, X.-S. (2008). Nature-inspired metaheuristic algorithms. Frome: Luniver Press. ISBN 978-
1-905986-28-6.

Yang, X.-S. (2010a). Engineering optimization: an introduction with metaheuristic applications.
Hoboken: Wiley. ISBN 978-0-470-58246-6.

Yang, X.-S. (2010b) A new metaheuristic bat-inspired clgorithm. Nature Inspired Cooperative
Strategies for Optimization (NISCO 2010). Studies in Computational Intelligence, SCI284
(pp. 65–74). Berlin: Springer.

Yang, X.-S. (2012). Flower pollination algorithm for global optimization. In Unconventional
Computation and Natural Computation, LNCS, (pp. 240–249). Berlin: Springer.

16 1 Introduction to Computational Intelligence

Yang, X.-S., & Deb, S. (2009, December 9–11). Cuckoo search via Lévy flights. In World
Congress on Nature and Biologically Inspired Computing (NaBIC) (pp. 210–214). India.
IEEE.

Yang, X.-S., & Deb, S. (2010). Eagle strategy using Lévy walk and firefly algorithms for
stochastic optimization. In: Gonzalez, J. R. (Ed.), Nature Inspired Cooperative Strategies for
Optimization (NISCO 2010), SCI 284, (pp. 101–111). Berlin: Springer.

Yang, X.-S., et al. (2013). Mathematical modeling with multidisciplinary applications. Hoboken:
Wiley. ISBN 978-1-118-29441-3.

Zaránd, G., Pázmándi, F., Pál, K. F., & Zimányi, G. T. (2002). Using hysteresis for optimization.
Physical Review Letters, 89, 1501–1502.

Zheng, M., Liu, G.-X., Zhou, C.-G., Liang, Y.-C., & Wang, Y. (2010). Gravitation field algorithm
and its application in gene cluster. Algorithms for Molecular Biology, 5, 1–11.

Zheng, Y., Chen, W., Dai, C., & Wang, W. (2009). Stochastic focusing search: a novel
optimization algorithm for real-parameter optimization. Journal of Systems Engineering and
Electronics, 20, 869–876.

Zhang, X., Chen, W., & Dai, C. (2008, April 6–9) Application of oriented search algorithm in
reactive power optimization of power system. DRPT2008 (pp. 2856–2861). Nanjing, China.
DRPT.

Zhang, W., Luo, Q.m & Zhou, Y. (2009). A method for training RBF neural networks based on
population migration algorithm. In International Conference on Artificial Intelligence and
Computational Intelligence (AICI) (pp. 165–169). IEEE.

Zhang, X., Sun, B., Mei, T., & Wang, R. (2010, November 28–30) Post-disaster restoration based
on fuzzy preference relation and bean optimization algorithm. IEEE Youth Conference on
Information Computing and Telecommunications (YC-ICT) (pp. 271–274). IEEE.

Zhang, X., Huang, S., Hu, Y., Zhang, Y., Mahadevan, S., & Deng, Y. (2013). Solving 0–1
knapsack problems based on amoeboid organism algorithm. Applied Mathematics and
Computation, 219, 9959–9970.

Zhu, C., & Ni, J. (2012, April 21–23). Cloud model-based differential evolution algorithm for
optimization problems. In Sixth International Conference on Internet Computing for Science
and Engineering (ICICSE) (pp. 55–59), Henan, China. IEEE.

Zungeru, A. M., Ang, L.-M., & Seng, K. P. (2012). Termite-hill: performance optimized swarm
intelligence based routing algorithm for wireless sensor networks. Journal of Network and
Computer Applications, 35, 1901–1917.

References 17

Part II
Biology-based CI Algorithms

Chapter 2
Bacteria Inspired Algorithms

Abstract In this chapter, we present a set of algorithms that are inspired by the
different bacteria behavioural patterns, i.e., bacterial foraging algorithm (BFA),
bacterial colony chemotaxis (BCC) algorithm, superbug algorithm (SuA), bacterial
colony optimization (BCO) algorithm, and viral system (VS) algorithm. We first
describe the general knowledge of bacteria foraging behaviour in Sect. 2.1. Then,
the fundamentals and performances of BFA, BCC algorithm, SuA, BCO algo-
rithm, and VS algorithm are introduced in Sects. 2.2 and 2.3, respectively. Finally,
Sect. 2.4 summarises this chapter.

2.1 Introduction

It is fair to say that bacteria can be observed almost everywhere, from the most
hospitable surroundings to the most hostile environment (Helden et al. 2012).
Some of them are harmful but majority of them are beneficial to the nature. They
comprise various attributes (e.g., shape, texture, and metabolism) and different
behavioural patterns (e.g., foraging, reproduction, and movement) (Modrow et al.
2013; Giguère et al. 2013). In addition to purely scientific aspects related to the
bacteria, those characteristics also initiate computer scientists to develop algo-
rithms for the solution of optimization problems. The first attempts appeared in the
late 1970s [e.g., bacterial chemotaxis algorithm that proposed by Bremermann
(1974)]. Since then, similar ideas have attracted a steadily increasing amount of
research. In this chapter, a set of bacteria inspired algorithms are collected and
introduced as follows:

• Section 2.2: Bacterial Foraging Algorithm.
• Section 2.3.1: Bacterial Colony Chemotaxis.
• Section 2.3.2: Superbug Algorithm.
• Section 2.3.3: Bacterial Colony Optimization.
• Section 2.3.4: Viral System.

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_2, � Springer International Publishing Switzerland 2014

21

The effectiveness of these newly developed algorithms are validated through
the testing on a wide range of benchmark functions and engineering design
problems, and also a detailed comparison with various traditional performance
leading computational intelligence (CI) algorithms, such as particle swarm opti-
mization (PSO), genetic algorithm (GA), differential evolution (DE), evolutionary
algorithm (EA), fuzzy system (FS), ant colony optimization (ACO), and simulated
annealing (SA).

2.1.1 Bacteria

Bacteria are micro-organisms that include a large domain. For example, there are
roughly 5,000 operational taxonomic unit of bacteria for every gram of soil
(Maheshwari 2012). In addition, they have a wide range of shapes, such as spheres,
spirals, and rods. Also, they live in everywhere, such as in plants, animals, and
human’s body. Due to their diverse ecology, they exhibit multifarious functional
characters beneficial in nature.

2.1.2 Bacterial Foraging Behaviour

The bacterial foraging behaviour (i.e., bacterial movement) has been studied by
biologists for many years, but there are very few reports until 70s (Berg and Brown
1972; Adler 1975). During foraging, there are two types of bacterial motility: i.e.,
flagellum-dependent and flagellum-independent. In addition, biologists found that
bacterial movement was not random and arbitrary. Instead, bacterial cells exhib-
ited directed movement toward certain stimuli and away from others (Adler 1975).
This behaviour is called bacterial chemotaxis in the literature. Since its discovery,
chemotactic behaviour has stimulated the curiosity of numerous investigators.
Nowadays, those research outcomes have been adopted by the models simulating
bacterial foraging patterns (Paton et al. 2004).

2.2 Bacterial Foraging Algorithm

2.2.1 Fundamentals of Bacterial Foraging Algorithm

Bacterial foraging algorithm (BFA) was originally proposed by Passino (2002) in
which the foraging strategy of E. Coli bacteria has been simulated. Typically, the
BFA consists of four main mechanisms: chemotaxis, swarming, reproduction, and
elimination-dispersal event. The main steps of BFA are outlined below (Passino
2002):

22 2 Bacteria Inspired Algorithms

• Chemotaxis: The movement of E. Coli bacteria can be performed through two
different ways: swimming which means the movement in the same direction,
and tumbling refers the movement in a random direction. The movement of the
ith bacterium after one step is given by Eqs. 2.1 and 2.2, respectively (Passino
2002):

hi jþ 1; k; lð Þ ¼ hi j; k; lð Þ þ C ið Þ/ jð Þ; ð2:1Þ

hi jþ 1; k; lð Þ[hi j; k; lð Þ; swimming in which / jð Þ ¼ / j� 1ð Þ
:

hi jþ 1; k; lð Þ\hi j; k; lð Þ; tumbling in which / jð Þ 2 0; 2p½ �

8
><

>:
ð2:2Þ

Where hi j; k; lð Þ denotes the location of ith bacterium at jth chemotactic, kth
reproductive and lth elimination and dispersal step, C ið Þ is the length of unit
walk, and / jð Þ is the direction angle of the jth step.

• Swarming: Under the stresses circumstances, the bacteria release attractants to
signal bacteria to swarm together, while they also release a repellant to signal
others to be at a minimum distance from it. The cell to cell signalling can be
represented by Eq. 2.3 (Passino 2002):

Jcc h;P j; k; lð Þð Þ ¼
XS

i¼1

Ji
cc h; hi j; k; lð Þ
� �

¼
XS

i¼1

�dattract exp �xattract

XP

m¼1

hm � hi
m

� �2

 !" #

þ
XS

i¼1

hrepellant exp �xrepellant

XP

m¼1

hm � hi
m

� �2

 !" #

:

ð2:3Þ

Where Jcc h;P j; k; lð Þð Þ is the objective function value to be added to the actual
objective function, S is the total number of bacteria, P is the number of variables

to be optimized which are present in each bacterium, h ¼ h1; h2; . . .; hP½ �T
denotes a point in the P-dimensional search domain, dattract is the depth of the
attractant released by the cell, xattract is a measure of the width of the attractant
signal, hrepellant is the height of the repellant effect (i.e., hrepellant ¼ dattract), and
xrepellant is the measure of the width of the repellant.

• Reproduction: After Nc chemotaxis steps, the reproduction step should be per-
formed. The fitness value of the bacteria is stored in an ascending order. The
working principle is the least health bacteria eventually die and the remaining
bacteria (i.e., healthiest bacteria) will be divided into two identical ones and
placed at the same location.

2.2 Bacterial Foraging Algorithm 23

• Dispersion and elimination: For the purpose to avoid local optima, dispersion
and elimination process is performed after a certain number of reproduction
steps. According to a present probability (ped), a bacterium is chosen to be
dispersed and moved to another position within the environment.

Taking into account the key phases described above, the steps of implementing
BFA can be summarized as follows (Passino 2002; Boussaïd et al. 2013; El-Abd
2012; Tang and Wu 2009):

• Step 1: Defining the optimization problem, and initializing the optimization
parameters.

• Step 2: Iterative algorithm for optimization. In this step the bacterial population,
chemotaxis loop (j ¼ jþ 1), reproduction loop (k ¼ k þ 1), and elimination and
dispersal operations loop (l ¼ lþ 1) are performed.

• Step 3: If j\Nc, go to the chemotaxis process.
• Step 4: Reproduction.
• Step 5: If k\Nre, go to reproduction process.
• Step 6: Elimination-dispersal.
• Step 7: If l\Ned, then go to elimination-dispersal process; otherwise end.

2.2.2 Performance of BFA

In order to show how the BFA performs, a set of experimental studies were
adopted in the literature (Passino 2002). Computational results showed that BFA
gives some promising results.

2.3 Emerging Bacterial Inspired Algorithms

In addition to the aforementioned BFA, the characteristics of this interesting
biological organisms also motivate researchers to develop other bacterial inspired
innovative CI algorithms.

2.3.1 Bacterial Colony Chemotaxis Algorithm

2.3.1.1 Fundamentals of Bacterial Colony Chemotaxis Algorithm

Bacterial colony chemotaxis (BCC) algorithm was originally proposed by Li et al.
(2005) that is based on bacterial chemotaxis algorithm (Bremermann and
Anderson 1991) and incorporated the communication mechanisms between the
colony members. There are several variants and applications relative to BCC can
be found in the literature (Li et al. 2009; Li and Li 2012; Sun et al. 2012; Lu et al.

24 2 Bacteria Inspired Algorithms

2013; Irizarry 2011). The basic steps of BCC are as follows (Lu et al. 2013; Müller
et al. 2002; Sun et al. 2012):

• Step 1: Initial Bacterial Positions.Generate N bacteria randomly in the search
space, the velocity is assumed constant by Eq. 2.4 (Lu et al. 2013; Müller et al.
2002):

v ¼ const: ð2:4Þ

• Step 2: Optimize by a single bacterium.

Compute the duration of the trajectory s from the distribution of a random
variable with an exponential probability density function via Eq. 2.5 (Lu et al.
2013; Müller et al. 2002):

P X ¼ sð Þ ¼ 1
T

e�s=T ; ð2:5Þ

where the expectation value l ¼ E Xð Þ ¼ T , and the variance r2 ¼ Var Xð Þ ¼ T2.
The time T is given by Eq. 2.6 (Müller et al. 2002):

T ¼
T0 for

fpr

lpr
� 0;

T0 1þ b � fpr

lpr

� �� �

for
fpr

lpr
\0;

8
>><

>>:

ð2:6Þ

where T0 is minimal mean time, fpr is the difference between the actual and the

previous function value, lpr is the length of the previous step and lpr ¼ x
*

pr

�
�
�
�; x

*

pr

denotes vector connecting the previous and the actual position in the parameter
space, and b is dimensionless parameter.

The position of a bacterium is defined by x with a radius and angles via Eq. 2.7
(Lu et al. 2013):

x1 ¼ c
Yn�1

s�1

cos /sð Þ;

xi ¼ c sin /i�1ð Þc
Yn�1

s�i

cos /sð Þ; for i ¼ 2; 3; . . .; n;

xn ¼ c sin cos /n�1ð Þð Þ;

ð2:7Þ

where c is the radius, and U ¼ /1;/2; . . .;/n�1f g denote angles. According to the
Gaussian distribution, the angel (/i) between the previous and the new direction
for turning left or right are defined by Eqs. 2.8 and 2.9, respectively (Lu et al.
2013):

P Xi ¼ /i; vi ¼ lið Þ ¼ 1

ri

ffiffiffiffiffiffi
2p
p exp � /i � við Þ2

2r2
i

" #

; ð2:8Þ

2.3 Emerging Bacterial Inspired Algorithms 25

P Xi ¼ /i; vi ¼ �lið Þ ¼ 1

ri

ffiffiffiffiffiffi
2p
p exp � /i � við Þ2

2r2
i

" #

; ð2:9Þ

where /i 2 0�; 180�½ �. The expectation value and the standard deviation are
defined by Eqs. 2.10 and 2.11, respectively (Lu et al. 2013):

l ¼ E Xið Þ ¼ 62� 1� cos hð Þð Þ;
ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xið Þ

p
¼ 26� 1� cos hð Þð Þ;

ð2:10Þ

cos hð Þ ¼
0 for

fpr

lpr
� 0;

exp �sc

spr

� �
for

fpr

lpr
\0;

8
>><

>>:

ð2:11Þ

where spr is the duration of the previous step, and sc is the correlation time.

Compute the new position (x
*

new) via Eqs. 2.12 and 2.13, respectively (Lu et al.
2013):

x
*

new ¼ x
*

old þ n
*

u � l; ð2:12Þ

l ¼ v � t; ð2:13Þ

where l is the length of the path, and n
*

u is the normalized new direction vector.

• Step 3: Optimize by the bacterial colony.

Initialize the number of bacteria colony and the parameters, such as the initial
starting precision (ebegin), the constant of updating precision (econs), and the target
precision (eend).

The best neighbour centre position of the ith bacterium is given via Eq. 2.14
(Sun et al. 2012):

center position ið Þ ¼ randðÞ � dis x
*

i;t;Center x
*

i;t

� �� �
; ð2:14Þ

where dis x
*

i;t;Center x
*

i;t

� �� �
: is the distance between the bacterium i and the

centre position, and randðÞ is a random number meeting the uniform distribution in
the interval of 0; 1ð Þ.

Based on the single bacterium movement process, the next position of ith
bacterium can be defined by Eqs. 2.15 and 2.16, respectively (Sun et al. 2012):

individual position ið Þ ¼ current position ið Þ þ next ið Þ; ð2:15Þ

next ið Þ ¼ v � d � n
*

u

�
�
�
�; ð2:16Þ

where v denotes the velocity, d is the duration, and n
*

u is the normalized new
direction vector.

26 2 Bacteria Inspired Algorithms

• Step 4: Bacterial colony move to the new location. Compare the objective
function fitness value between center position ið Þ and individual position ið Þ,
then ith bacterium chooses the better value position to move.

• Step 5: If the target precision (eend) is gained end, otherwise turn to Step 2.

2.3.1.2 Performance of BCC

To illustrate the performance of BCC, a set of experimental studies were adopted
in (Li and Li 2012; Sun et al. 2012). Computational results showed that the
proposed algorithm performs well.

2.3.2 Superbug Algorithm

2.3.2.1 Fundamentals of Superbug Algorithm

Superbug algorithm (SuA) was originally proposed in (Anandaraman et al. 2012)
that is based on the findings of epidemic and antiviral research (Lindsay and
Holden 2006; Low et al. 1999; Bisen and Raghuvanshi 2013; Gong 2013; Desai
and Meanwell 2013; Cook 2013; Morrow et al. 2012; Lahtinen et al. 2012; Helden
et al. 2012). To implement SuA, the following steps need to be performed
(Anandaraman et al. 2012):

• Step 1: Generating initial population.
• Step 2: Mutating the bacteria (two mechanisms are introduced in SuA, namely,

inverse and pairwise interchange mutation).
• Step 3: Transferring gene between bacteria for the purpose of enhancing the

fitness level.
• Step 4: Performing single point mutation on the modified bacteria.

2.3.2.2 Performance of SuA

The core concept underlying the SuA is the antibiotic resistance that a bacterium
has developed during the procedure of mutation. To illustrate the performance of
SuA, Anandaraman et al. (2012) applied it to the flexible manufacturing system
scheduling problem. In comparison with other CI techniques (e.g., GA), the SuA
showed a better performance in majority of the cases. At the end of their study,
Anandaraman et al. (2012) suggested that it is possible to apply SuA to other
multi-machine and dynamic job shop scheduling problems.

2.3 Emerging Bacterial Inspired Algorithms 27

2.3.3 Bacterial Colony Optimization Algorithm

2.3.3.1 Fundamentals of Bacterial Colony Optimization Algorithm

Bacterial colony optimization (BCO) algorithm was originally proposed by Niu
and Wang (2012) which is inspired by five basic behaviours of E. Coli bacteria in
their whole lifecycle, i.e., chemotaxis, communication, elimination, reproduction,
and migration. The main steps of BCO are outlined as follows (Niu and Wang
2012):

• Chemotaxis and communication model: In BCO, the movements of bacteria
(i.e., runs and tumbles) are accompanied with communication mechanism in
which three types of information (i.e., group information, personal previous
information, and a random direction) are exchanged to guide them in direction
and ways of movement. The bacterium runs or tumbles with communication
process can be formulated via Eqs. 2.17 and 2.18, respectively (Niu and Wang
2012):

Positioni Tð Þ ¼ Positioni T � 1ð Þ þ Ri � RunInfo

� �
þ RD ið Þ: ð2:17Þ

Positioni Tð Þ ¼ Positioni T � 1ð Þ þ Ri � TumbInfo

� �
þ RD ið Þ: ð2:18Þ

• Elimination and reproduction model: Based to the bacteria searching ability,
each bacterium is marked with an energy degree. According to this level, the
decisions of elimination and reproduction are defined via Eq. 2.19 (Niu and
Wang 2012):

if Li [Lgiven; and i 2 healthy; then i 2 Candidaterepr;
if Li\Lgiven; and i 2 healthy; then i 2 Candidateeli;
if i 2 unhealthy; then i 2 Candidateeli;

8
<

:
ð2:19Þ

where Li denotes the ith bacterium’s level of energy.
• Migration model: To avoid local optimum, the BCO’s migration model is

defined via Eq. 2.20 (Niu and Wang 2012):

Positioni Tð Þ ¼ rand � ub� lbð Þ þ lb; ð2:20Þ

where ub and lb are the upper and lower boundary, respectively, and rand 2 0; 1ð Þ.

In addition, in the process of tumbling, a stochastic direction are incorporated
into actually running process. Therefore, the position of each bacterium is updated
via Eqs. 2.21–2.23, respectively (Niu and Wang 2012):

28 2 Bacteria Inspired Algorithms

Positioni Tð Þ ¼ Positioni T � 1ð Þ þ C ið Þ
� fi � Gbest � Positioni T � 1ð Þð Þ þ 1� fið Þ½
� Pbesti � Positioni T � 1ð Þð Þ þ turbulenti�;

ð2:21Þ

Positioni Tð Þ ¼ Positioni T � 1ð Þ þ C ið Þ
� fi � Gbest � Positioni T � 1ð Þð Þ þ 1� fið Þ½
� Pbesti � Positioni T � 1ð Þð Þ�;

ð2:22Þ

C ið Þ ¼ Cmin þ
itermax � iterj

itermax

� �n

� Cmax � Cminð Þ; ð2:23Þ

where turbulenti is the turbulent direction variance of the ith bacterium, fi 2 0; 1ð Þ,
Gbest and Pbesti are the globe best and personal best position of the ith bacterium,
respectively, C ið Þ is the chemotaxis step size of the ith bacterium, itermax is the
maximal number of iterations, and iterj is the current number of iterations.

2.3.3.2 Performance of BCO

To test the effectiveness of BCO, a set of well-known test functions were adopted
in (Niu and Wang 2012). Compared with five other algorithms [i.e., PSO, GA,
BFA, bacterial foraging optimization with linear decreasing chemotaxis step
(BFO-LDC), and bacterial foraging optimization with nonlinear decreasing che-
motaxis step (BFO-NDC)], computational results showed that BCO performs
significantly better than four other algorithms (i.e., GA, BFA, BFO-LDC, and
BFO-NDC) in all test functions, and BCO obtains better results than PSO in most
of functions.

2.3.4 Viral System Algorithm

2.3.4.1 Fundamentals of Viral System Algorithm

Viral system (VS) algorithm was originally proposed by Cortés et al. (2008) which
is based on viral infection processes. Two mechanisms called replication and
infection are employed to the VS algorithm. The main steps of VS are as follows
(Cortés et al. 2008, 2012; Ituarte-Villarreal and Espiritu 2011):

• Step 1: Initialisation the VS components. Each VS is defined by three compo-
nents, i.e., a set of viruses, an organism, and an interaction between them. In
addition, each virus includes four components, i.e., state, input, output, and
process, and each organism includes two components, i.e., state and process.
Overall, the VS can be described via Eqs. 2.24–2.27, respectively (Cortés et al.
2008):

2.3 Emerging Bacterial Inspired Algorithms 29

VS ¼ Virus;Organism; Interactionh i; ð2:24Þ

Virus ¼ Virus1;Virus2; . . .;Virusnf g; ð2:25Þ

Virusi ¼ Statei; Inputi;Outputi; Pr ocessih i; ð2:26Þ

Organism ¼ State0; Pr ocess0h i; ð2:27Þ

where Statei denotes the characterises of the virus, Inputi identifies the information
that the virus can collect form the organism, Outputidenotes the actions that the
virus can take, Processi represents autonomous behaviour of the virus that
changing the Statei, State0 characterises the organism state in each instant, con-
sisting of clinical picture and the lowest healthy cell, and Process0 represents the
autonomous behaviour of the organism that tries to protect itself from the infection
threat, consisting of antigen liberation.

• Step 2: Population construction. The set of feasible solutions in a specific space
is given by Eq. 2.28 (Cortés et al. 2008):

K ¼ x : gi xð Þ� 0; 8i ¼ 1; 2; . . . nf g; ð2:28Þ

where x 2 K denotes the feasible solutions and has been called a cell.

• Step 3: Define type of virus infection: selective or massive infection.

In case of massive infection: Y � A cells of the neighbourhood are infected, and
must be incorporated into the clinical picture. If there is not enough free space in
the population, it will randomly erase the necessary cells from the Y � A selected
cells.

In case of selective infection: One only cell from the neighbourhood is selected
according to the selective selection. The antigenic response of such cell is eval-
uated as a Bernoulli process (A). In case of antigenic response a lysogenic repli-
cation is initiated.

• Step 4: Define type of evolution of the virus: i.e., the lytic replication and the
lysogenic replication.

In case of the lytic replication: This process starts only after a specific number
of nucleus-capsids haven been replicated.

Calculate the limit number of nucleus-capsids replication (LNR) in a cell x by
Eq. 2.29 (Cortés et al. 2008):

LNRcell�x ¼ LNR0 �
f xð Þ � f x

_
� �

f x
_
� �

0

@

1

A; ð2:29Þ

where x
_ is the cell that produces the best known result of the problem (in terms of

f xð Þ), x is the infected cell being analysed, and LNR0 is the initial value for LNR.

30 2 Bacteria Inspired Algorithms

In each iteration, a number of virus replications (NR) takes place. The number
of replications per iteration is calculated as function of a binomial variable (Z),
adding its value to the total NR. The probability of replicating exactly z nucleus-
capsids (P Z ¼ zð Þ), as well as the average (E Zð Þ), and variance (Var Zð Þ) are given
by Eqs. 2.30–2.32, respectively (Cortés et al. 2008):

P Z ¼ zð Þ ¼ LNR
z

� �

pz
r 1� prð ÞLNR�z; ð2:30Þ

E Zð Þ ¼ prLNR; ð2:31Þ

Var Zð Þ ¼ pr 1� prð ÞLNR; ð2:32Þ

where pr is the single probability of one replication, and Z is a binomial random
variable, i.e., Z ¼ Bin LNR; prð Þ.

Once the bacterium border is broken liberating the viruses, each one of the
viruses has a probability (pi) of infecting other new cells of the neighbourhood.
The probability of infecting exactly y nucleus-capsids (P Y ¼ yð Þ), as well as the
average (E Yð Þ), and variance (Var Yð Þ) are given via Eqs. 2.33–2.35, respectively
(Cortés et al. 2008):

P Y ¼ yð Þ ¼ V xð Þj j
y

� �

py
i 1� pið Þ V xð Þj j�y; ð2:33Þ

E Yð Þ ¼ pi V xð Þj j; ð2:34Þ

Var Yð Þ ¼ pi 1� pið Þ V xð Þj j; ð2:35Þ

where V xð Þj j is the feasible solution of the neighbourhood, Y is a binomial random
variable representing the cells infected by the virus in the neighbourhood, i.e.,
Y ¼ Bin V xð Þj j; pið Þ.

Each one of the infected cells in the clinical picture has a probability of
developing antibodies against the infection based on a Bernoulli probability dis-
tribution (pan : A xð Þ ¼ Ber panð Þ). So, the total population of infected cells gen-
erating antibodies is characterised by a binomial distribution
(pan : A populationð Þ ¼ Bin n; panð Þ). The probability of finding exactly a immune
cells (P A ¼ að Þ), as well as the average (E Að Þ), and variance (Var Að Þ) are given
by Eqs. 2.36–2.38, respectively (Cortés et al. 2008):

P A ¼ að Þ ¼ V xð Þj j
a

� �

pa
an 1� panð Þ V xð Þj j�a; ð2:36Þ

E Að Þ ¼ pan V xð Þj j; ð2:37Þ

Var Að Þ ¼ pan 1� panð Þ V xð Þj j; ð2:38Þ

where a denotes the immune cell, and x is an infected cell.

2.3 Emerging Bacterial Inspired Algorithms 31

In the case of the lysogenic replication, calculate the limit number of interaction
(LIT) in a cell x via Eq. 2.39 (Cortés et al. 2008):

LITcell�x ¼ LIT0 �
f xð Þ � f x

_
� �

f x
_
� �

0

@

1

A; ð2:39Þ

where LIT0 is the initial value for LIT.

• Step 5: Ending. The VS algorithm ended according to two criteria, i.e., the
collapse and death of the organism, or the isolation of the virus.

2.3.4.2 Performance of VS

To test the proposed algorithm, a well-known NP-Compete problem, i.e., the
Steiner problem, is adopted in (Cortés et al. 2008). Compared with TS and GA, VS
clearly improves the results from GA and for several cases VS obtains better
results than TS.

2.4 Conclusions

In this chapter, we introduced five bacteria inspired CI algorithms. They stem from
two background: BFA, BCC algorithm an BCO algorithm are currently bred by the
further understanding of bacterial foraging patterns, while SuA and VS algorithm
are mainly motivated by the viral research. Although they are newly introduced CI
method, we have witnessed the following rapid spreading of at least one of them,
i.e., BFA:

First, several enhanced versions of BFA can be found in the literature as out-
lined below:

• Adaptive BFA (Majhi et al. 2009; Sanyal et al. 2011; Sathya and Kayalvizhi
2011d; Panigrahi and Pandi 2009).

• Amended BFA (Sathya and Kayalvizhi 2011a).
• BFA with varying population (Li et al. 2010).
• Fuzzy adaptive BFA (Venkaiah and Kumar 2011).
• Fuzzy dominance based BFA (Panigrahi et al. 2010).
• Hybrid BFA and differential evolution (Pandi et al. 2010).
• Hybrid BFA and genetic algorithm (Nayak et al. 2012; Kim et al. 2007).
• Hybrid BFA and particle swarm optimization (Hooshmand and Mohkami 2011;

Saber 2012).
• Hybrid BFA, differential evolution, and particle swarm optimization (Vaisakh

et al. 2012).

32 2 Bacteria Inspired Algorithms

• Modified BFA (Verma et al. 2011; Sathya and Kayalvizhi 2011b; Hota et al.
2010; Deshpande et al. 2011; Biswas et al. 2010a, b).

• Multi-colony BFA (Chen et al. 2010).
• Multiobjective BFA (Panigrahi et al. 2011).
• Oppositional based BFA (Mai and Ling 2011).
• Other hybrid BFA (Lee and Lee 2012; Panda et al. 2011; Hooshmand et al.

2012; Rajni and Chana 2013).
• Quantum inspired bacterial swarming optimization (Cao and Gao 2012).
• Rule based BFA (Mishra et al. 2007).
• Self-adaptation BFA (Su et al. 2010).
• Simplified BFA (Muñoz et al. 2010).
• Synergetic bacterial swarming optimization (Chatzis and Koukas 2011).
• Velocity modulated BFA (Gollapudi et al. 2011).

Second, the BFA has also been successfully applied to a variety of optimization
problems as listed below:

• Circuit design optimization (Chatterjee et al. 2010).
• Communication optimization (Su et al. 2010; Chen et al. 2010).
• Data mining (Lee and Lee 2012).
• Fuzzy system design optimization (Kamyab and Bahrololoum 2012).
• Image processing (Verma et al. 2011, 2013; Maitra and Chatterjee 2008; Sanyal

et al. 2011; Panda et al. 2011; Sathya and Kayalvizhi 2011a, b, c, d).
• Inventory management (Deshpande et al. 2011).
• Manufacturing cell formation (Nouri et al. 2010; Nouri and Hong 2012).
• Motor control optimization (Bhushan and Singh 2011; Sakthivel and Subra-

manian 2012; Sakthivel et al. 2011).
• Nonlinear system identification (Majhi and Panda 2010).
• Power system optimization (Tang et al. 2006; Ulagammai et al. 2007; Mishra

et al. 2007; Panigrahi and Pandi 2009; Pandi et al. 2010; Hota et al. 2010;
Panigrahi et al. 2010; Ali and Abd-Elazim 2011; Tabatabaei and Vahidi 2011;
Venkaiah and Kumar 2011; Panigrahi et al. 2011; Hooshmand and Mohkami
2011; Abd-Elazim and Ali 2012; Saber 2012; Hooshmand et al. 2012; Kumar
and Jayabarathi 2012; Vaisakh et al. 2012).

• Robot control optimization (Turduev et al. 2010; Supriyono and Tokhi 2012).
• Scheduling optimization (Nayak et al. 2012; Vivekanandan and Ramyachitra

2012; Rajni and Chana 2013).
• Stock market prediction (Majhi et al. 2009).

Interested readers are referred to them, together with several excellent reviews
(e.g., Tang and Wu 2009; Boussaïd et al. 2013; Agrawal et al. 2011; Niu et al.
2010a, b), as a starting point for a further exploration and exploitation of these
bacteria inspired algorithms.

2.4 Conclusions 33

References

Abd-Elazim, S. M., & Ali, E. S. (2012). Coordinated design of PSSs and SVC via bacteria
foraging optimization algorithm in a multimachine power system. Electrical Power and
Energy Systems, 41, 44–53.

Adler, J. (1975). Chemotaxis in bacteria. Annual Reviews of Biochemistry, 44, 341–356.
Agrawal, V., Sharma, H. & Bansal, J. C. (2011, December 20–22). Bacterial foraging

optimization: A survey. In The International Conference on Soft Computing for Problem
Solving (SOCPROS) (pp. 227–242). Berlin: Springer.

Ali, E. S., & Abd-Elazim, S. M. (2011). Bacteria foraging optimization algorithm based load
frequency controller for interconnected power system. Electrical Power and Energy Systems,
33, 633–638.

Anandaraman, C., Sankar, A. V. M., & Natarajan, R. (2012). A new evolutionary algorithm based
on bacterial evolution and its applications for scheduling a flexible manufacturing system.
Jurnal Teknik Industri, 14, 1–12.

Berg, H. C., & Brown, D. A. (1972). Chemotaxis in Escherichia coli analyzed by three-
dimensional tracking. Nature, 239, 500–504.

Bhushan, B., & Singh, M. (2011). Adaptive control of DC motor using bacterial foraging
algorithm. Applied Soft Computing, 11, 4913–4920.

Bisen, P. S. & Raghuvanshi, R. (2013). Emerging epidemics: Management and control. Hoboken:
Wiley, ISBN 978-1-118-39323-9.

Biswas, A., Das, S., Abraham, A., & Dasgupta, S. (2010a). Analysis of the reproduction operator
in an artificial bacterial foraging system. Applied Mathematics and Computation, 215,
3343–3355.

Biswas, A., Das, S., Abraham, A., & Dasgupta, S. (2010b). Stability analysis of the reproduction
operator in bacterial foraging optimization. Theoretical Computer Science, 411, 2127–2139.

Boussaïd, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization metaheuristics.
Information Sciences, 237, 82–117.

Bremermann, H. J. (1974). Chemotaxis and optimization. Journal of Franklin Institute, 297,
397–404.

Bremermann, H. J. & Anderson, R. W. (1991). How the brain adjusts synapses-maybe. In: Boyer,
R. S. (Ed.) Automated reasoning: Essays in honor of Woody Bledsoe. Norwell: Kluwer.

Cao, J. & Gao, H. (2012). A quantum-inspired bacterial swarming optimization algorithm for
discrete optimization problems. In: Y. Tan, Y. Shi, & Z. Ji (Eds.), ICSI 2012, Part I, LNCS
7331 (pp. 29–36). Berlin: Springer.

Chatterjee, A., Fakhfakh, M., & Siarry, P. (2010). Design of second-generation current conveyors
employing bacterial foraging optimization. Microelectronics Journal, 41, 616–626.

Chatzis, S. P., & Koukas, S. (2011). Numerical optimization using synergetic swarms of foraging
bacterial populations. Expert Systems with Applications, 38, 15332–15343.

Chen, H., Zhu, Y., & Hu, K. (2010). Multi-colony bacteria foraging optimization with cell-to-cell
communication for RFID network planning. Applied Soft Computing, 10, 539–547.

Cook, N. (Ed.). (2013). Viruses in food and water: Risks, surveillance and control. Cambridge:
Woodhead Publishing Limited. ISBN 978-0-85709-430-8.

Cortés, P., García, J. M., Muñuzuri, J., & Onieva, L. (2008). Viral systems: A new bio-inspired
optimisation approach. Computers & Operations Research, 35, 2840–2860.

Cortés, P., García, J. M., Muñuzuri, J. & Guadix, J. (2012). Viral system algorithm: foundations
and comparison between selective and massive infections. Transactions of the Institute of
Measurement and Control. doi:10.1177/0142331211402897.

Desai, M. C., & Meanwell, N. A. (Eds.). (2013). Successful strategies for the discovery of
antiviral drugs. Cambridge: The Royal Society of Chemistry. ISBN 978-1-84973-657-2.

Deshpande, P., Shukla, D., & Tiwari, M. K. (2011). Fuzzy goal programming for inventory
management: A bacterial foraging approach. European Journal of Operational Research, 212,
325–336.

34 2 Bacteria Inspired Algorithms

http://dx.doi.org/10.1177/0142331211402897

El-Abd, M. (2012). Performance assessment of foraging algorithms vs. evolutionary algorithms.
Information Sciences, 182, 243–263.

Giguère, S., Prescott, J. F., & Dowling, P. M. (Eds.). (2013). Antimicrobial therapy in veterinary
medicine. Chichester: Wiley. ISBN 978-0-470-96302-9.

Gollapudi, S. V. R. S., Pattnaika, S. S., Bajpai, O. P., Devi, S., & Bakwad, K. M. (2011). Velocity
modulated bacterial foraging optimization technique (VMBFO). Applied Soft Computing, 11,
154–165.

Gong, E. Y., et al. (2013). Antiviral methods and protocols. New York: Springer. ISBN 978-1-
62703-483-8.

Helden, J. V., Toussaint, A., & Thieffry, D. (Eds.). (2012). Bacterial molecular networks:
Methods and protocols. New York: Springer. ISBN 978-1-61779-360-8.

Hooshmand, R. A., & Mohkami, H. (2011). New optimal placement of capacitors and dispersed
generators using bacterial foraging oriented by particle swarm optimization algorithm in
distribution systems. Electrical Engineering, 93, 43–53.

Hooshmand, R.-A., Parastegari, M., & Morshed, M. J. (2012). Emission, reserve and economic
load dispatch problem with non-smooth and non-convex cost functions using the hybrid
bacterial foraging-Nelder–Mead algorithm. Applied Energy, 89, 443–453.

Hota, P. K., Barisal, A. K., & Chakrabarti, R. (2010). Economic emission load dispatch through
fuzzy based bacterial foraging algorithm. Electrical Power and Energy Systems, 32, 794–803.

Irizarry, R. (2011). Global and dynamic optimization using the artificial chemical process
paradigm and fast Monte Carlo methods for the solution of population balance models. In:
Dritsas, I. (Ed.) Stochastic optimization—Seeing the optimal for the uncertain, (Chapter 16).
Rijeka: InTech, ISBN 978-953-307-829-8.

Ituarte-Villarreal, C. M. & Espiritu, J. F. (2011). Wind turbine placement in a wind farm using a
viral based optimization algorithm. In 41st International Conference on Computers &
Industrial Engineering (pp. 672–677). Los Angeles, CA, USA, 23–26 October 2011.

Kamyab, S., & Bahrololoum, A. (2012). Designing of rule base for a TSK-fuzzy system using
bacterial foraging optimization algorithm (BFOA). Procedia-Social and Behavioral Sciences,
32, 176–183.

Kim, D. H., Abraham, A., & Cho, J. H. (2007). A hybrid genetic algorithm and bacterial foraging
approach for global optimization. Information Sciences, 177, 3918–3937.

Kumar, K. S., & Jayabarathi, T. (2012). Power system reconfiguration and loss minimization for
an distribution systems using bacterial foraging optimization algorithm. Electrical Power and
Energy Systems, 36, 13–17.

Lahtinen, S., Salminen, S., Ouwehand, A., & Wright, A. V. (Eds.). (2012). Lactic acid bacteria:
Microbiological and functional aspects. Boca Raton: Taylor & Francis Group LLC. ISBN
978-1-4398-3678-1.

Lee, C.-Y. & Lee, Z.-J. (2012). A novel algorithm applied to classify unbalanced data. Applied
Soft Computing. doi:10.1016/j.asoc.2012.03.051.

Li, Y., & Li, G. (2012). A new mean shift algorithm based on bacterial colony chemotaxis.
International Journal of Fuzzy Systems, 14, 257–263.

Li, W–. W., Wang, H., & Zou, Z. J. (2005). Function optimization method based on bacterial
colony chemotaxis. Journal of Circuits and Systems, 10, 58–63.

Li, G.-Q., Liao, H.-L. & Chen, H.-H. (2009). Improved bacterial colony chemotaxis algorithm
and its application in available transfer capability. In Fifth International Conference on
Natural Computation (ICNC) (pp. 286–291), 14–16 August 2009, Tianjin, China, IEEE.

Li, M. S., Ji, T. Y., Tang, W. J., Wu, Q. H., & Saunders, J. R. (2010). Bacterial foraging algorithm
with varying population. BioSystems, 100, 185–197.

Lindsay, J. A., & Holden, M. T. G. (2006). Understanding the rise of the superbug: Investigation
of the evolution and genomic variation of Staphylococcus aureus. Functional & Integrative
Genomics, 6, 186–201.

Low, D. E., Kellner, J. D., & Wright, G. D. (1999). Superbugs: How they evolve and minimize
the cost of resistance. Current Infectious Disease Reports, 1, 464–469.

References 35

http://dx.doi.org/10.1016/j.asoc.2012.03.051

Lu, Z.-G., Feng, T., & Li, X.-P. (2013). Low-carbon emission/economic power dispatch using the
multi-objective bacterial colony chemotaxis optimization algorithm considering carbon
capture power plant. Electrical Power and Energy Systems, 53, 106–112.

Maheshwari, D. K. (Ed.). (2012). Bacteria in agrobiology: Plant probiotics. Berlin: Springer.
ISBN 978-3-642-27514-2.

Mai, X.-F., & Ling, L. (2011). Bacterial foraging optimization algorithm based on opposition-
based learning. Energy Procedia, 13, 5726–5732.

Maitra, M., & Chatterjee, A. (2008). A novel technique for multilevel optimal magnetic
resonance brain image thresholding using bacterial foraging. Measurement, 41, 1124–1134.

Majhi, B., & Panda, G. (2010). Development of efficient identification scheme for nonlinear
dynamic systems using swarm intelligence techniques. Expert Systems with Applications, 37,
556–566.

Majhi, R., Panda, G., Majhi, B., & Sahoo, G. (2009). Efficient prediction of stock market indices
using adaptive bacterial foraging optimization (ABFO) and BFO based techniques. Expert
Systems with Applications, 36, 10097–10104.

Mishra, S., Tripathy, M., & Nanda, J. (2007). Multi-machine power system stabilizer design by
rule based bacteria foraging. Electric Power Systems Research, 77, 1595–1607.

Modrow, S., Falke, D., Truyen, U., & Schätzl, H. (2013). Molecular virology. Berlin: Springer.
ISBN 978-3-642-20717-4.

Morrow, W. J. W., Sheikh, N. A., Schmidt, C. S., & Davies, D. H. (Eds.). (2012). Vaccinology:
Principles and practice. Chichester: Blackwell Publishing Ltd. ISBN 978-1-4051-8574-5.

Müller, S. D., Marchetto, J., Airaghi, S., & Koumoutsakos, P. (2002). Optimization based on
bacterial chemotaxis. IEEE Transactions on Evolutionary Computation, 6, 16–29.

Muñoz, M. A., Halgamuge, S. K., Alfonso, W. & Caicedo, E. F. (2010). Simplifying the bacteria
foraging optimization algorithm. In IEEE World Congress on Computational Intelligence
(WCCI) (pp. 4095–4101), 18–23 July 2010, CCIB, Barcelona, Spain, IEEE.

Nayak, S. K., Padhy, S. K., & Panigrahi, S. P. (2012). A novel algorithm for dynamic task
scheduling. Future Generation Computer Systems, 28, 709–717.

Niu, B., & Wang, H. (2012). Bacterial colony optimization. Discrete Dynamics in Nature and
Society, 2012, 1–28.

Niu, B., Fan, Y., Tan, L., Rao, J. & Li, L. (2010a). A review of bacterial foraging optimization
Part I: background and development. Advanced intelligent computing theories and
applications, communications in computer and information science (Vol. 93, Part 26,
pp. 535–543). Berlin: Springer.

Niu, B., Fan, Y., Tan, L., Rao, J. & Li, L. (2010b). A review of bacterial foraging optimization
Part II: Applications and challenges. Advanced intelligent computing theories and applica-
tions, communications in computer and information science (Vol. 93, Part 26, pp. 544–550).
Berlin: Springer.

Nouri, H. & Hong, T. S. (2012). A bacteria foraging algorithm based cell formation considering
operation time. Journal of Manufacturing Systems, http://dx.doi.org/10.1016/
j.jmsy.2012.03.001.

Nouri, H., Tang, S. H., Tuah, B. T. H., & Anuar, M. K. (2010). BASE: A bacteria foraging
algorithm for cell formation with sequence data. Journal of Manufacturing Systems, 29,
102–110.

Panda, R., Naik, M. K., & Panigrahi, B. K. (2011). Face recognition using bacterial foraging
strategy. Swarm and Evolutionary Computation, 1, 138–146.

Pandi, V. R., Biswas, A., Dasgupta, S., & Panigrahi, B. K. (2010). A hybrid bacterial foraging
and differential evolution algorithm for congestion management. European Transactions on
Electrical Power, 20, 862–871.

Panigrahi, B. K., & Pandi, V. R. (2009). Congestion management using adaptive bacterial
foraging algorithm. Energy Conversion and Management, 50, 1202–1209.

Panigrahi, B. K., Pandi, V. R., Das, S., & Das, S. (2010). Multiobjective fuzzy dominance based
bacterial foraging algorithm to solve economic emission dispatch problem. Energy, 35,
4761–4770.

36 2 Bacteria Inspired Algorithms

http://dx.doi.org/10.1016/j.jmsy.2012.03.001
http://dx.doi.org/10.1016/j.jmsy.2012.03.001

Panigrahi, B. K., Pandi, V. R., Sharma, R., Das, S., & Das, S. (2011). Multiobjective bacteria
foraging algorithm for electrical load dispatch problem. Energy Conversion and Management,
52, 1334–1342.

Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed optimization and control.
IEEE Control System Management, 22, 52–67.

Paton, R., Gregory, R., Vlachos, C., Palmer, J. W., Suanders, J., & Wu, Q. H. (2004). Evolvable
social agents for bacterial systems modelling. IEEE Transactions on Nanobioscience, 3,
208–216.

RAJNI, & CHANA, I. (2013). Bacterial foraging based hyper-heuristic for resource scheduling in
grid computing. Future Generation Computer Systems, 29, 751–762.

Saber, A. Y. (2012). Economic dispatch using particle swarm optimization with bacterial
foraging effect. Electrical Power and Energy Systems, 34, 38–46.

Sakthivel, V. P., & Subramanian, S. (2012). Bio-inspired optimization algorithms for parameter
determination of three-phase induction motor. COMPEL: The International Journal for
Computation and Mathematics in Electrical and Electronic Engineering, 31, 528–551.

Sakthivel, V. P., Bhuvaneswari, R., & Subramanian, S. (2011). An accurate and economical
approach for induction motor field efficiency estimation using bacterial foraging algorithm.
Measurement, 44, 674–684.

Sanyal, N., Chatterjee, A., & Munshi, S. (2011). An adaptive bacterial foraging algorithm for
fuzzy entropy based image segmentation. Expert Systems with Applications, 38,
15489–15498.

Sathya, P. D., & Kayalvizhi, R. (2011a). Amended bacterial foraging algorithm for multilevel
thresholding of magnetic resonance brain images. Measurement, 44, 1828–1848.

Sathya, P. D., & Kayalvizhi, R. (2011b). Modified bacterial foraging algorithm based multilevel
thresholding for image segmentation. Engineering Applications of Artificial Intelligence, 24,
595–615.

Sathya, P. D., & Kayalvizhi, R. (2011c). Optimal multilevel thresholding using bacterial foraging
algorithm. Expert Systems with Applications, 38, 15549–15564.

Sathya, P. D., & Kayalvizhi, R. (2011d). Optimal segmentation of brain MRI based on adaptive
bacterial foraging algorithm. Neurocomputing, 74, 2299–2313.

Su, T.-J., Cheng, J.-C., & Yu, C.-J. (2010). An adaptive channel equalizer using self-adaptation
bacterial foraging optimization. Optics Communications, 283, 3911–3916.

Sun, J.-Z., Geng, G.-H., Wang, S.-Y., & Zhou, M.-Q. (2012). Chaotic hybrid bacterial colony
chemotaxis algorithm based on tent map. Journal of Software, 7, 1030–1037.

Supriyono, H. & Tokhi, M. O. (2012). Parametric modelling approach using bacterial foraging
algorithms for modelling of flexible manipulator systems. Engineering Applications of
Artificial Intelligence, http://dx.doi.org/10.1016/j.engappai.2012.03.004.

Tabatabaei, S. M., & Vahidi, B. (2011). Bacterial foraging solution based fuzzy logic decision for
optimal capacitor allocation in radial distribution system. Electric Power Systems Research,
81, 1045–1050.

Tang, W. J., & Wu, Q. H. (2009). Biologically inspired optimization: A review. Transactions of
the Institute of Measurement and Control, 31, 495–515.

Tang, W. J., Li, M. S., He, S., Wu, Q. H. & Saunders, J. R. (2006). Optimal power flow with
dynamic loads using bacterial foraging algorithm. In International Conference on Power
System Technology (PowerCon) (pp. 1–5), 2006. IEEE.

Turduev, M., Kirtay, M., Sousa, P., Gazi, V. & Marques, L. Chemical concentration map building
through bacterial foraging optimization based search algorithm by mobile robots. In IEEE
International Conference on Systems, Man, and Cybernetics (IEEE SMC) (pp. 3242–3249),
10–13 October 2010, Istanbul, Turkey, IEEE.

Ulagammai, M., Venkatesh, P., Kannan, P. S., & Padhy, N. P. (2007). Application of bacterial
foraging technique trained artificial and wavelet neural networks in load forecasting.
Neurocomputing, 70, 2659–2667.

References 37

http://dx.doi.org/10.1016/j.engappai.2012.03.004

Vaisakh, K., Praveena, P., Rao, S. R. M., & Meah, K. (2012). Solving dynamic economic
dispatch problem with security constraints using bacterial foraging PSO-DE algorithm.
Electrical Power and Energy Systems, 39, 56–67.

Venkaiah, C., & Kumar, D. M. V. (2011). Fuzzy adaptive bacterial foraging congestion
management using sensitivity based optimal active power re-scheduling of generators.
Applied Soft Computing, 11, 4921–4930.

Verma, O. P., Hanmandlu, M., Kumar, P., Chhabra, S., & Jindal, A. (2011). A novel bacterial
foraging technique for edge detection. Pattern Recognition Letters, 32, 1187–1196.

Verma, O. P., Hanmandlu, M., Sultania, A. K. & Parihar, A. S. (2013). A novel fuzzy system for
edge detection in noisy image using bacterial foraging. Multidimensional Systems and Signal
Processing. doi: 10.1007/s11045-011-0164-1.

Vivekanandan, K., & Ramyachitra, D. (2012). Bacteria foraging optimization for protein
sequence analysis on the grid. Future Generation Computer Systems, 28, 647–656.

38 2 Bacteria Inspired Algorithms

http://dx.doi.org/10.1007/s11045-011-0164-1

Chapter 3
Bat Inspired Algorithms

Abstract In this chapter, we present two algorithms that are inspired by the
behaviours of bats, i.e., bat algorithm (BaA) and bat intelligence (BI) algorithm. We
first describe the general knowledge of the foraging behaviour of bats in Sect. 3.1.
Then, the fundamentals and performances of the BaA and BI algorithm are introduced
in Sects. 3.2 and 3.3, respectively. Finally, Sect. 3.4 summarises in this chapter.

3.1 Introduction

Bats exhibit mysterious behaviours that have long since attracted the attention of
human beings. Probably one of the most noticeable behaviours visible to us is they
are capable to orientate their environments and food acquisition without relying on
their eyesight (Merritt 2010). This is accomplished by bats continuously emit
echolocation signals (Yovel et al. 2008). Through analyzing the returning echoes
in the auditory system, bats can easily identify their surroundings and locate preys.
By continuously observing and studying the abilities of bats, recently, computer
scientists proposed several bat inspired algorithms (i.e., bat algorithm (BaA) and
bat intelligence (BI) algorithm) to solve well-known optimization problems such
as image processing, scheduling, clustering, and data mining.

3.1.1 Foraging Behaviour of Bats

Traditionally, families of bats are divided into two major groups, i.e., megabats and
microbats. Typically, bats have three habitats as they feed through the whole year,
i.e., roost, foraging habitats, and commuting habitats. The foraging habitats are
used to find food, while the commuting habitats are used to travel between roosts
and foraging habitats (Mills et al. 2010). In general, the foraging behaviour of bats
can be divided into three phase: search phase, pursuit phase, and capture phase

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_3, � Springer International Publishing Switzerland 2014

39

(Kalko 1995). Also, they are very flexible in their foraging behaviour, such as
feeding by aerial hawking (catching insects on the wing), gleaning (picking insets
from vegetation), and pouncing on prey close to the ground. At each phase, they
show different behaviours based on a perceptual system, i.e., bats echolocation.

3.1.2 Characteristics of Echolocation

One of the unique characteristics of bats from other animals is their echolocation
capacity, i.e., emitting ultrasonic pulses and listening the echoes (Mills et al.
2010). According to the different pulses, they can detect prey, avoid obstacles, and
even locate their roosting crevices in the dark (Yang 2010). For example, as bats
fly through the night, their echolocation calls bounce off the environment, helping
the bats find their way to and from their habitats. Typically, each bat emits about
10–20 pulse every second. Though each pulse lasts a few thousands of a second, it
has a constant frequencies which normally range from 25 to 150 kHz (Yang 2010).
Amazingly, when bats hunt for prey, the rate of pulse emission can reach roughly
200 pulses per second when they fly near their prey (Yang 2010). In contrast to the
microbats use vocalization to emit sonar signals, the megabats use their tongue to
emit very brief wideband echolocation (Yovel et al. 2011). Furthermore, although
echolocation was first identified in bats, it is also used by some other species, such
as dolphin and toothed whales.

3.2 Bat Algorithm

3.2.1 Fundamentals of Bat Algorithm

Bat algorithm (BaA) was originally proposed by Yang (2010) which is based on
the echolocation behaviour of bats. To implement the proposed algorithm, a set of
approximations or idealized rules are given as follows (Yang 2010):

• Based on the echolocation behaviour, the bats can detect the distance and the
differentiate between food and background barriers as well, even in the
darkness.

• Bats usually fly randomly to search for prey. According to that, some numerical
parameters associated with the bats’ foraging behaviour are defined first, such as
velocity (vi) at position (xi) with a fixed frequency (fmin), varying wavelength (k)
and loudness (Ao).

• The loudness can varies from a large positive (Ao) when searching for prey to a
minimum constant value (Amin) when homing towards the prey.

The basic steps of implementing BaA are described as follows.

40 3 Bat Inspired Algorithms

3.2.1.1 Movement of Virtual Bats

Just like the real bats, the virtual bats fly randomly by adjusting its frequency first
and updating its velocity and position next. The new locations/solutions (xt

i) and
velocities (vt

i) at time step t are given via Eqs. (3.1)–(3.3) respectively (Yang
2010):

fi ¼ fmin þ fmax � fminð Þ � b; ð3:1Þ

vt
i ¼ vt�1

i þ xt
i � x�

� �
� fi; ð3:2Þ

xt
i ¼ xt�1

i þ vt
i; ð3:3Þ

where b 2 0; 1½ � is a random vector drawn from a uniform distribution, fi is the
velocity increment, fmin and fmax are the lower and upper bounds imposed for the
frequency range of virtual bats, respectively, and x� is the current global best
location.

For the local search part, the random walks are used to generate a new solution
for each bat from the current population via Eq. 3.4 (Yang 2010):

xnew ¼ xold þ eAt; ð3:4Þ

where e 2 �1; 1½ � is a random number, while At ¼ At
i

� �
is the average loudness of

all the bats at this time step.

3.2.1.2 Loudness and Pulse Emission

The general rule is that the loudness decreases while the rate of pulse emission
increases, when a bat has found its prey. The loudness and the rate of pulse
emission are updated via Eqs. (3.5) and (3.6), respectively (Yang 2010):

Atþ1
i ¼ aAt

i; ð3:5Þ

rtþ1
i ¼ r0

i 1� exp �ctð Þ½ �; ð3:6Þ

where At
i and Atþ1

i are the previous and updated values of the loudness for the ith
bat, a and c are constants, and rtþ1

i is the pulse rate of the ith bat at iteration t þ 1.
For any 0\a\1 and c [0, we have Eq. (3.7) (Yang 2010):

At
i ! 0; rt

i ! r0
i ; as t!1: ð3:7Þ

Summarizing the steps in BaA yields to (Yang 2010; Carbas and Hasancebi
2013):

• Step 1: Initializing bat population [such as position (xi) and velocities (vi)].
• Step 2: Initializing parameters, such as pulse frequency (fi), pulse rates (ri), and

loudness parameters (Ai).

3.2 Bat Algorithm 41

• Step 3: Evaluating bats in the initial population according to the fitness function.
• Step 4: Generating candidate bats through random flying and local search.
• Step 5: Evaluating candidate bats according to the fitness function.
• Step 6: Echolocation parameters update.
• Step 7: Rank the bats and find the current best x�.
• Step 8: Termination. The steps 4–7 are employed in the same way until a

termination criterion is met.

3.2.2 Performance of BaA

To text the effectiveness of BaA, a set of well-known test functions were adopted
in (Yang 2010), namely, Rosenbrock’s function, De Jong’s standard sphere
function, Ackley’s function, Michalewica’s test function, Schewfer’s function,
Rastrigin’s function, Easom’s function, Griewangk’s function, and Shubert’s test
function. Compared with other algorithms [i.e., particle swarm optimization (PSO)
and genetic algorithm (GA)], computational results showed that BaA performs
significantly better than other algorithms in terms of accuracy and efficiency.

3.3 Emerging Bat Inspired Algorithms

In addition to the aforementioned BaA, the characteristics of this interesting
animal also motivate researchers to develop other bat inspired innovative com-
putational intelligence (CI) algorithms.

3.3.1 Bat Intelligence Algorithm

3.3.1.1 Fundamentals of Bat Intelligence (BI) Algorithm

Bat intelligence (BI) algorithm was originally proposed in (Malakooti et al. 2013b)
that mimics the prey hunting behaviours of bats. For BI, a set of signals are gen-
erated not only based on the echolocation characteristic, but also the constant
absolute target direction (CATD) technique, where the bat maintains same pursuit
angle to the prey, has been incorporated. Also, during the prey hunting process, after
seizing and consuming a prey, bats can proceed to capture other preys in the for-
aging area. The main steps of BI are described as follows (Malakooti et al. 2013b):

• Step 1: Initializing the parameters and population.
• Step 2: The fitness function value (i.e., signal strength) corresponding to each

candidate solution is calculated.

42 3 Bat Inspired Algorithms

• Step 3: Generating a set of solutions containing common elements.
• Step 4: Select the best solution.
• Step 5: Choosing a common element and include it in the common element list.
• Step 6: Checking the terminating condition. If it is reached, go to step 3 for new

beginning. If a specified termination criteria is satisfied, stop and return the best
solution.

3.3.1.2 Performance of BI

To illustrate the performance of BI, a multiple objective energy aware multipro-
cessor scheduling problem with three objectives (i.e., makespan, tardiness, and
energy consumption) are presented in (Malakooti et al. 2013a). Compared with
GA, the BI algorithm shows better performance to move towards the optimal
solution.

3.4 Conclusions

In this chapter, we introduced two bat inspired CI algorithms. Although they are
newly introduced CI method, we have witnessed the following rapid spreading of
at least one of them, i.e., BaA:

First, several enhanced versions of BaA can be found in literature as outlined
below:

• Differential operator and Lévy flight BaA (Xie et al. 2013).
• Modified BaA (Damodaram and Valarmathi 2012).

Second, the BaA has also been successfully applied to a variety of optimization
problems as listed below:

• Data mining (Damodaram and Valarmathi 2012).
• Gas turbine generator exergy analysis (Lemma and Hashim 2011).
• Motor control (Bora et al. 2012).
• Scheduling optimization (Musikapun and Pongcharoen 2012).
• Steel space frames design optimization (Carbas and Hasancebi 2013).

Interested readers are referred to them, together with several excellent reviews
[e.g., (Yang 2013; Schnitzer 2002; Sureja 2012)], as a starting point for a further
exploration and exploitation of bat inspired algorithms.

3.3 Emerging Bat Inspired Algorithms 43

References

Bora, T. C., Coelho, L. D. S., & Lebensztajn, L. (2012). Bat-inspired optimization approach for
the brushless DC wheel motor problem. IEEE Transactions on Magnetics, 48, 947–950.

Carbas, S., & Hasancebi, O. (2013, May 19–24). Optimum design of steel space frames via bat
inspired algorithm, 10th World Congress on Structural and Multidisciplinary Optimization
(pp. 1–10). Orlando, Florida, USA.

Damodaram, R., & Valarmathi, M. L. (2012). Phishing website detection and optimization using
modified bat algorithm. International Journal of Engineering Research and Applications, 2,
870–876.

Kalko, E. K. V. (1995). Insect pursuit, prey capture and echolocation in pipistrelle bats. Animal
Behaviour, 50, 861–880.

Lemma, T.A. & Hashim, F.B.M. (2011). Use of fuzzy systems and bat algorithm for exergy
modeling in a gas turbine generator. IEEE Colloquium on Humanities, Science and
Engineering Research (CHUSER) (pp. 305–310). IEEE, Penang, 5–6 December 2013.

Malakooti, B., Kim, H. & Sheikh, S. (2013a). Bat intelligence search with application to multi-
objective multiprocessor scheduling optimization. International Journal of Advanced
Manufacturing Technology, (Vol. 60, pp. 1071–1086). DOI 10.1007/s00170-011-3649-z.

Malakooti, B., Sheikh, S., Al-Najjar, C. & Kim, H. (2013b). Multi-objective energy aware
multiprocessor scheduling using bat intelligence. Journal of Intelligent Manufacturing, 24,
805–819. DOI 10.1007/s10845-012-0629-6.

Merritt, J. F. (2010). The biology of small mammals. Baltimore: John Hopkins University Press.
Mills, D. S., Marchant-Forde, J. N., McGreevy, P. D., Morton, D. B., Nicol, C. J., Phillips, C.

J. C., et al. (Eds.). (2010). The encyclopedia of applied animal behaviour and welfare.
Wallingford: CAB International. ISBN 978-0-85199-724-7.

Musikapun, P., & Pongcharoen, P. (2012). Solving multi-stage multi-machine multi-product
scheduling problem using bat algorithm. 2nd International Conference on Management and
Artificial Intelligence (pp. 98–102). IACSIT.

Schnitzer, M. J. (2002). Amazing algorithms. Nature, 416, 683.
Sureja, N. (2012). New inspirations in nature: a survey. International Journal of Computer

Applications and Information Technology, I, 21–24.
Xie, J., Zhou, Y., & Chen, H. (2013). A novel bat algorithm based on differential operator and

Lévy flights trajetory. Computational Intelligence and Neuroscience, 1–13.
Yang, X.-S. (2010). A new metaheuristic bat-inspired algorithm. Nature inspired cooperative

strategies for optimization (NISCO 2010), Studies in Computational Intelligence, SCI 284
(pp. 65–74). Berlin: Springer.

Yang, X.-S. (2013). Bat algroithm: literature review and applications. International Journal of
Bio-Inspired Computation, 5, 141–149.

Yovel, Y., Franz, M. O., Stilz, P., & Schnitzler, H.-U. (2008). Plant classification from bat-like
echolocation signals. PLoS Computational Biology, 4, 1–13.

Yovel, Y., Geva-Sagiv, M., & Ulanovsky, N. (2011). Click-based echolocation in bats: not so
primitive after all. Journal of Comparative Physiology A, 197, 515–530.

44 3 Bat Inspired Algorithms

http://dx.doi.org/10.1007/s00170-011-3649-z
http://dx.doi.org/10.1007/s10845-012-0629-6

Chapter 4
Bee Inspired Algorithms

Abstract In this chapter, we present a set of algorithms that are inspired by
different honeybees behavioural patterns, i.e., artificial bee colony (ABC) algo-
rithm, honeybees mating optimization (HBMO) algorithm, artificial beehive
algorithm (ABHA), bee colony optimization (BCO) algorithm, bee colony inspired
algorithm (BCiA), bee swarm optimization (BSO) algorithm, bee system (BS)
algorithm, BeeHive algorithm, bees algorithm (BeA), bees life algorithm (BLA),
bumblebees algorithm, honeybee social foraging (HBSF) algorithm, OptBees
algorithm, simulated bee colony (SBC) algorithm, virtual bees algorithm (VBA),
and wasp swarm optimization (WSO) algorithm. We first describe the general
knowledge of honeybees in Sect. 4.1. Then, the fundamentals and performances of
these algorithms are introduced in Sects. 4.2, 4.3, and 4.4, respectively. Finally,
Sect. 4.5 summarises in this chapter.

4.1 Introduction

Honeybee is a typical social insect that works together in a highly structured social
order to finish different kinds of jobs such as bee dance (communication), bee
foraging, queen bee, task selection, collective decision making, nest site selection,
mating, floral/pheromone laying, and navigation that have long since attracted the
attention of human beings (Janson et al. 2005; Latty et al. 2009; Slaa and Hughes
2009; Landa and Tullock 2003). Based on those features, many models have been
developed for intelligent systems and applied to solve combinatorial optimization
problems. In this chapter, a set of bee inspired algorithms are collected and
introduced as follows:

• Section 4.2: Artificial Bee Colony.
• Section 4.3: Honeybees Mating Optimization.
• Section 4.4.1: Artificial Beehive Algorithm.
• Section 4.4.2: Bee Colony Optimization.

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_4, � Springer International Publishing Switzerland 2014

45

• Section 4.4.3: Bee Colony-inspired Algorithm.
• Section 4.4.4: Bee Swarm Optimization.
• Section 4.4.5: Bee System.
• Section 4.4.6: BeeHive.
• Section 4.4.7: Bees Algorithm.
• Section 4.4.8: Bees Life Algorithm.
• Section 4.4.9: Bumblebees Algorithm.
• Section 4.4.10: Honeybee Social Foraging.
• Section 4.4.11: OptBees.
• Section 4.4.12: Simulated Bee Colony.
• Section 4.4.13: Virtual Bees Algorithm.
• Section 4.4.14: Wasp Swarm Optimization.

The effectiveness of these newly developed algorithms are validated through
the testing on a wide range of benchmark functions and engineering design
problems, and also a detailed comparison with various traditional performance
leading computational intelligence (CI) algorithms, such as particle swarm opti-
mization (PSO), genetic algorithm (GA), differential evolution (DE), evolutionary
algorithm (EA), fuzzy system (FS), ant colony optimization (ACO), and simulated
annealing (SA).

4.1.1 Foraging Behaviour of Bees

Among other algorithms inspired by honeybees, probably one of the most
noticeable behaviours visible to us is the foraging of each individual bee. Foraging
process includes two main modes of behaviour: recruitment of nectar source and
abandonment of a source (Tereshko and Lee 2002). It starts with some scout bees
leaving the hive in order to search food source to gather nectar. After finding food
(i.e., flowers), scout bees return to the hive and inform their hive-mates about the
richness of the flower (i.e., quantity and quality) and the distance of the flower to
the hive (i.e., location) through a special movements called ‘‘dance’’, such as round
dance, waggle dance, and tremble dance depending on the distance information of
the source. Typically, she dances on different areas in an attempt to ‘‘advertise’’
food locations (by touching her antennae) and encourage more remaining bees to
collect nectar from her source. After the dancing show, more foraging bees will
leave the hive to collect nectar follow one of the dancing scout bees. Upon arrive,
the foraging bee stores the nectar in her honey stomach and returns to the hive
unloading the nectar to empty honeycomb cells. The described process continues
repeatedly until the scout bees explore new areas with potential food sources.

46 4 Bee Inspired Algorithms

4.1.2 Marriage Behaviour of Bees

Another famous behaviour of bees is the marriage (i.e., mating) behaviour. In the
kingdom of honeybees, queens are specialized in egg-laying. A colony may
contain one queen or more during its life cycle. Typically, mating occur in flight
and 10–40 m above ground. It begins when the queen flights far away from the
nest performing the mating flight during which the drones follow the queen and
mate with her in the air. Normally, the queen mates with 12� 7 drones, and after
the mating process, the drones die.

4.1.3 Dancing and Communication Behaviour of Bees

In general, honeybees (i.e., scout bees) perform a series of movements (i.e.,
dancing) to exchange information (such as the location, quantity and quality of
food sources) and persuade their nestmates to follow them. There are two types of
dances, i.e., round dance when food is very close and waggle dance. In addition,
according to the speed of the dances, honeybees transmit the distance information,
i.e., if dance is faster, then the food distance is smaller (Bitam et al. 2010).

4.2 Artificial Bee Colony Algorithm

4.2.1 Fundamentals of Artificial Bee Colony Algorithm

Artificial bee colony (ABC) algorithm was recently proposed in Karaboga and
Basturk (2007), Karaboga (2005). The basic idea of designing ABC is to mimic the
foraging behaviour (such as exploration, exploitation, recruitment and abandon-
ment) of honeybees. Typically, ABC algorithm consists of two groups of bees:
employed artificial bees (i.e., current exploiting foragers) and unemployed artifi-
cial bees (i.e., looking for a food source to exploit). The latter will be classified
further in two groups: scouts who are searching the environment surrounding the
nest for new food sources, and onlookers that are waiting in the nest and finding a
food source through the information shared by employed artificial bees (Karaboga
and Basturk 2008). In ABC, it is assumed that each food source position corre-
sponds to a possible solution and the nectar amount of a food source corresponds
to the quality (fitness) of the associated solution. The main steps of the ABC
algorithm are listed as below (Karaboga and Basturk 2008; Karaboga and Akay
2009b; Senthilnath et al. 2011):

• Initialization: The initial population can be defined as PðG ¼ 0Þ of SN solutions
(food source positions), where SN denotes the size of employed bees or

4.1 Introduction 47

onlooker bees. Moreover, each solution xijði ¼ 1; 2; . . .; SN; j ¼ 1; 2; . . .;DÞ is a
D-dimensional vector. Here, D is the number of optimization parameters.

• Then, placing the employed bees on the food sources in the memory and
updating feasible food source. In order to produce a candidate food position
from the old one (xij) in memory, the memory by employed bees is updated via
Eq. 4.1 (Karaboga and Basturk 2008; Karaboga and Akay 2009b; Senthilnath
et al. 2011):

vij ¼ xij þ /ij xij � xkj

� �
; j 2 1; 2; . . .;Df g; k 2 1; 2; . . .; SNf g ^ k 6¼ i; ð4:1Þ

where vij is a new feasible dimension value of the food sources that is modified
from its previous food sources value (xij) based on a comparison with the
randomly selected neighbouring food source value (xkj), and /ij is a random
number between ½�1; 1� to adjust the production of neighbour food sources
around xij and represents the comparison of two food positions visually.

• Next, placing the onlooker bees on the food sources in the memory. The onlooker
bee chooses a probability value associated with that food source (pi) via Eq. 4.2
(Karaboga and Basturk 2008; Karaboga and Akay 2009b; Senthilnath et al. 2011):

pi ¼
fiti
PSN

n¼1
fitn

; ð4:2Þ

where fiti is the fitness value of the solution i which is proportional to the nectar
amount of the food source in the position; SN denotes the size of employed bees
or onlooker bees. Clearly, the higher fiti is, the greater the probability is of
selecting xij.

• Updating feasible food source, by onlooker bees using Eq. 4.1.
• Adjusting by sending the scout bees in order to discovering new food sources. The

operation of scout bees explore a new food source can be defined by Eq. 4.3
(Karaboga and Basturk 2008; Karaboga and Akay 2009b; Senthilnath et al. 2011):

x j
i ¼ x j

min þ rand 0; 1½ � x j
max � x j

min

� �
; ð4:3Þ

where xmin and xmax is the lower and upper limit respectively of the search
scope on each dimension. Here the value of each component in every xi vector
should be clamped to the range ½xmin; xmax� to reduce the likelihood of scout bees
leaving the search space.

• Memorizing the best food source found so far.
• Finally, checking whether the stopping criterion is met. If yes, terminating the

algorithm; otherwise, restarting the main procedure of the ABC.

Summarizing the steps in standard ABC yields to (Karaboga and Akay 2009a;
Karaboga and Akay 2009b; Karaboga and Basturk 2008; Senthilnath et al. 2011):

• Step 1: The employed bees will be randomly sent to the food sources and
evaluating their nectar amounts. If an employed bee finds a better solution, she

48 4 Bee Inspired Algorithms

will update her memory; otherwise, she counts the number of the searches
around the source in her memory.

• Step 2: If all employed bees complete the search process, the nectar and position
information of the food sources will be shared with the onlooker bees.

• Step 3: An onlooker bee does not have any source in her memory and thus she
will evaluate all the information from employed bees and choose a probably
profitable food source (recruitment).

• Step 4: After arriving at the selected area, the onlooker bee searches the
neighbourhood of the source and if she finds a better solution, she will update
the food source position just as an employed bee does. The criterion for
determination of a new food source is based on the comparison process of food
source positions visually.

• Step 5: Stopping the exploitation process of the sources abandoned by the
employed/onlooker bees if the new solution cannot be further improved through
a predetermined number of trials limit. At this moment, the employed/onlooker
bees become scout bees.

• Step 6: Sending the scouts into the search area for discovering new food sources
(exploration), randomly.

• Step 7: Memorizing the best food source found so far.

These seven steps are repeated until a termination criterion (e.g., maximum
cycle number) is satisfied.

4.2.2 Performance of ABC

In order to evaluate the ABC algorithm, Karaboga and Basturk (2007) employed
five high dimensional benchmark testing functions. In comparison with other CI
algorithms (e.g., EA, PSO, GA), the simulation results demonstrated that the ABC
algorithm has the capability of getting out of a local minimum trap which make it a
promising candidate in dealing with multivariable, multimodal function optimi-
zation tasks.

4.3 Honeybee Mating Optimization Algorithm

4.3.1 Fundamentals of Honeybee Mating Optimization
Algorithm

In general, a honeybee community consists of three types of members: the queen,
male honeybees (or drones), and neuter/undeveloped female honeybees (or
workers). The honeybees mating optimization (HBMO) algorithm was proposed in
Abbass (2001a, b) to simulate the social behaviour found among honeybees. In the

4.2 Artificial Bee Colony Algorithm 49

original HBMO, a drone mates with a queen probabilistically through the use of an
annealing function as stated via Eq. 4.4 (Niknam et al. 2011):

Pr Dð Þ ¼ exp
�D Fð Þ

Vqueen tð Þ

� �

; ð4:4Þ

where PrðDÞ denotes the probability for a drone D adding the sperm to the queen’s
spermatheca, DðFÞ represents the absolute difference between the fitness of the
drone and the queen, and VqueenðtÞ stands for the velocity of the queen at time t.
After each transition in space, the velocity and the energy of the queen decreases
based on Eq. 4.5 (Niknam et al. 2011; Marinakis et al. 2008):

Vqueen t þ 1ð Þ ¼ a� Vqueen tð Þ
Equeen t þ 1ð Þ ¼ a� Equeen tð Þ ; ð4:5Þ

where a denotes the decreasing factor which is a positive real number within the
interval of ½0; 1�. The amount of speed and energy reduction after each transition
and each step is controlled through this parameter.

In HBMO algorithm, the broods that are generated through the mating process
between the queen and a drone are calculated through Eq. 4.6 (Niknam et al.
2011):

XBrood; j ¼ Xqueen þ b� Xqueen � Di

� �

XBrood; j ¼ xbroodj; 1; xbroodj; 1; . . .; xbroodj;Ng

� �

1�Ng

; ð4:6Þ

where Di represents the ith drone stored in the spermatheca of the queen, and
b 2 0; 1½ � refers to the mating factor.

Summarizing the steps in HBMO yields to (Horng 2010; Haddad et al. 2006;
Afshar et al. 2007; Boussaïd et al. 2013):

• Step 1: Initializing parameters and population.
• Step 2: Mating flight process, where a queen (best solution) selects drones

probabilistically to form the spermatheca (list of drones). A drone then selected
from the list randomly for the creation of broods.

• Step 3: Creation of new broods by crossover the drone’s genotypes with the
queens.

• Step 4: Use of workers to conduct local search on broods (trial solutions).
• Step 5: Adaptation of worker’s fitness, based on the amount of improvement

achieved on broods.
• Step 6: Replacement of weaker queen by fitter broods.
• Step 7: Termination.

50 4 Bee Inspired Algorithms

4.3.2 Performance of HBMO

In Marinakis et al. (2008), by utilizing the HBMO algorithm, the authors made an
attempt to solve vehicle routing problem. Overall fourteen benchmark problems
from the literature were chosen to test the performance of HBMO. Each instance
of the problem set consists of between 51 and 200 nodes including the depot. The
location of the nodes is defined by their Cartesian coordinates and the travel cost
from node i to j is assumed to be associated with the corresponding Euclidean
distance. Each selected problem includes the capacity constraints while the
problems 6–10, 13, and 14 also have the restrictions of the maximum length of
travel route and non zero service times. For the first ten problems, nodes are
randomly placed over a square, while for the remaining four problems, nodes are
distributed in clusters and the depot is not located in the centre. The experimental
results obtained through the HBMO were compared with other twenty methods,
among them, half is the most efficient metaheuristic approaches, and the other half
is the most efficient nature inspired algorithms. Through the comparison, it can be
observed that the HBMO ranks the 2nd and the 1st place among the ten meta-
heuristic methods and ten nature inspired algorithms, respectively.

4.4 Emerging Bee Inspired Algorithms

In addition to the aforementioned two bee inspired algorithms, i.e., ABC and
HBMO, the characteristics of this interesting insect also motivate researchers to
develop several other bee inspired innovative CI algorithms.

4.4.1 Artificial Beehive Algorithm

4.4.1.1 Fundamentals of Artificial Beehive Algorithm

Artificial beehive algorithm (ABHA) was originally proposed by Muñoz et al.
(2009). Based on a set of behavioural rules of each individual bee (e.g., the
individual oriented model), the ABHA is used to solve continuous optimization
problem. In order to implement ABHA, the following procedures need to be
followed (Muñoz et al. 2009):

• Initializing parameters, such as the current position of the individual (hðtÞ), the
current cost value (JðhðtÞÞ), the past cost value (Jðhðt � 1ÞÞ), the abandon
tendency (0\pab\1), and the homing motivation (0\ph\1).

• Defining the bees’ states. Typically, there are four states for each individual, i.e.,
novice state, experimented state, search state, and food source state. The details
of each state are as follows (Muñoz et al. 2009):

4.3 Honeybee Mating Optimization Algorithm 51

State 1: Novice state. In this state, the bee is in the ‘‘nest’’ (i.e., an abstract
position represented only by the state of the bee, where the information is
exchanged) and does not have information about a source. It performs a random
search or follow a dance if it is available. The current position of each bee can be
defined via Eq. 4.7 (Muñoz et al. 2009):

hi tð Þ ¼ NaN tð Þ; ð4:7Þ

where NaN represents not a number.
State 2: Experimented state. In this state, the bee is still in the ‘‘nest’’ but it has

some information about a food source. If the information means high quality (i.e.,
a good food source), it can be transmitted to other individuals through a dancing
that denoted as a selection probability (psi) via Eq. 4.8 (Muñoz et al. 2009):

psi ¼ � 1
max Jj�min Jjð Þð Þ

� �

Ji �max Jið Þð Þ good information

random search or follow a dance bad information

8
<

:
; ð4:8Þ

where psi is a selection probability that i indicates one of the jth individuals with
available dances.

State 3: Search state. In this state, the bee leaves its nest and looks for a better
foraging source than the current. The bee’s position is updated via Eq. 4.9 (Muñoz
et al. 2009):

hi t þ 1ð Þ ¼ hi þ SS ið Þw tð Þ; ð4:9Þ

where SSðiÞ is the step size at the direction w tð Þ.
State 4: Food source state. Finally, the bee decides which source is the best.

• Calculating the probabilities that are used to balance the exploitation and
exploration characteristics of the algorithm.

4.4.1.2 Performance of ABHA

To test the effectiveness of ABHA, a set of well-known test functions were
adopted in Muñoz et al. (2009), namely, Grienwank function, Rastrigin function,
Ackley function, De Jong F2 function, Schewefel function, and Schaffer F6
function. Compared with other CI algorithms, such as PSO and its variants,
computational results showed that ABHA achieved good results. Also, in a few
cases it is capable with a better performance than the compared algorithms.

52 4 Bee Inspired Algorithms

4.4.2 Bee Colony Optimization

4.4.2.1 Fundamentals of Bee Colony Optimization Algorithm

Bee colony optimization (BCO) algorithm was originally proposed in Teodorović
and Dell’Orco (2005). In BCO, when the foragers return to the hive, a waggle
dance is performed by each forager, then the other bees based on a probability
follow the foragers. In order to implement BCO, the following procedures need to
be followed (Bonyadi et al. 2008; Teodorović 2009b; Teodorović and Dell’Orco
2005; Teodorović et al. 2011):

• Step 1: Initialization: Assigning an empty solution to each bee within the
colony.

• Step 2: For each bee, performing the forward pass mechanism, i.e., fulfilling the
following subtasks. (a) Setting k ¼ 1; (b) Evaluating all possible constructive
movements; (c) Selecting one movement using the roulette wheel strategy, (d)
Letting k ¼ k þ 1. If k�NC, redoing the subtask (b).

• Step 3: All bees return to the hive, i.e., starting the backward pass mechanism.
• Step 4: Evaluating (partial) objective function value carried by each bee.
• Step 5: For each bee, determining whether to carry on with its own exploration and

becoming a recruiter, or turning to a follower. In BCO, a loyalty decision strategy
is introduced at this step, i.e., at the beginning of each new round of forward pass,
the probability of the bth bee is loyal to its previously obtained partial solution.
This probability can be expressed via Eq. 4.10 (Teodorović et al. 2011):

puþ1
b ¼ e�

Omax�Ob
u ; b ¼ 1; 2; . . .;B; ð4:10Þ

where Ob denotes the normalized value of the objective function carried by the
bth bee, Ob represents the maximum over all normalized values of partial
solution to be evaluated, and the ordinary number of the forward pass is indi-
cated by u.

• Step 6: For each follower bee, selecting a new solution from its recruiters using
the roulette wheel strategy. In BCO, a recruiting mechanism is performed at this
step. For each unemployed bee, it will decided to follow which recruiter based
on a certain probability. The probability that b’s partial solution would be
selected by any unallocated bee is defined by Eq. 4.11 (Teodorović et al. 2011):

pb ¼
Ob

PR

k¼1
Ok

; b ¼ 1; 2; . . .;R; ð4:11Þ

where Ok denotes the normalized value for the objective function of the kth
announced partial solution, and the number of recruiters is represented by R.

• Step 7: If the solutions are not finished, returning to Step 2.
• Step 8: Evaluating all solutions and looking for the best one.

4.4 Emerging Bee Inspired Algorithms 53

• Step 9: Checking whether the termination criterion is met. If not, going back to
Step 2; otherwise, outputting the best available solution.

In addition to the standard BCO detailed in this section, several enhanced
versions of BCO can also be found in the literature as outlined below:

• Autonomous BCO (Zeng et al. 2010).
• Multiobjective BCO (Low et al. 2009).

4.4.2.2 Performance of BCO

In order to see how the BCO algorithm performs, Teodorović and Dell’Orco
(2005) tested it on a ride-matching problem in which the ridesharing is one of the
popular travel demand management methodologies. The preliminary experimental
results showed that the performance of BCO is very promising.

Apart from the original case study described above, the BCO algorithm has also
been successfully applied to a variety of optimization problems as listed below:

• p-Center problem (Davidović et al. 2011).
• Scheduling optimization (Chong et al. 2006; Wong et al. 2008).
• Software maintenance (Kaur and Goyal 2011).
• Transportation (Teodorović 2008; Teodorović and Dell’Orco 2005).
• Travelling salesman problem (Bonyadi et al. 2008).

Interested readers are referred to these selected variants and representative
applications, together with several excellent reviews [e.g., (Teodorović 2008; Bitam
et al. 2010; Teodorović et al. 2011; Goyal 2012; Figueira and Talbi 2013; Teodorović
2009a)], for a further exploration and exploitation of the BCO algorithm.

4.4.3 Bee Colony-inspired Algorithm

4.4.3.1 Fundamentals of Bee Colony-Inspired Algorithm

Bee colony inspired algorithm (BCiA) was originally proposed in Häckel and
Dippold (2009). In order to implement BCiA, the following control procedures
need to be followed (Häckel and Dippold 2009):

• First of all, initializing both populations P1 and P2 by scout bees.
• Stage 1: Once the bees in P1 finish the solution construction, they will com-

municate with their counterparts in P2. At this stage, if the quality of a solution
ueb in P1 is better than the worst one uworst0found in P2 and also if this solution
is not yet contained in P2, then the solution of uworst0 is replaced by ueb.

• Stage 2: If the algorithm reaches the second stage, in a similar way, the bees in
P2 will conduct the solution construction task with a subsequent feedback to

54 4 Bee Inspired Algorithms

their peers in P1. At this stage, if the quality of a solution ueb0 in P2 is better than
the worst one uworst on found in P1 and also in not yet included in P1, then the
solution of uworst is replaced by ueb0 .

• Afterwards, checking the solutions’ age. If, after the maximum iteration num-
bers, the quality of a solution does not improve, this solution is removed. An old
solution in P1 is replaced by the solution carried by a scout bee, while a solution
of P2 is replaced by the best solution found in P1, but not yet included in P2.

• Finally, checking whether the stopping criterion is met. If not, the above
mentioned procedure will be repeated; otherwise, the algorithm terminates.

4.4.3.2 Performance of BCiA

In order to see how the BCiA performs, Häckel and Dippold (2009) tested it on a
classic vehicle routing problem with time windows. The preliminary experimental
results showed that the performance of BCiA is very promising, in particular for
the smaller test entities of the benchmarks.

4.4.4 Bee Swarm Optimization

4.4.4.1 Fundamentals of Bee Swarm Optimization Algorithm

Bee swarm optimization (BSO) algorithm was originally proposed by Akbari et al.
(2009). Typically, the proposed algorithm includes three types of bees, i.e.,
experienced forager, onlooker, and scout bees. Each type of bees had a distinct
moving pattern which are used by the bees to adjust their flying trajectories. In
order to implement BSO, the following procedures need to be followed (Akbari
et al. 2009; Niknam and Golestaneh 2013; Sotelo-Figueroa et al. 2010):

• Initializing the population. The initial size of population (b) is determined
manually that involves three types of bees via Eq. 4.12 (Akbari et al. 2009):

b ¼ n [j [#; ð4:12Þ

where n represents the sets of experienced forager bees, j denotes the sets of
onlooker bees, and # is the sets of scout bees.

In addition, each bee (i) is associated with a position vector via Eq. 4.13 (Akbari
et al. 2009):

x
* b; ið Þ ¼ x b; i1ð Þ; x b; i2ð Þ; . . .; x b; iDð Þð Þ; ð4:13Þ

where x
* b; ið Þ denotes a feasible solution in an d-dimensional search space

(S � RD) that need to be optimized.

4.4 Emerging Bee Inspired Algorithms 55

• Initializing parameters. A set of parameters will be initialized at this phase, such
as the maximum number of iterations (Itermax), the number of the bees (n bð Þ),
and the initialization function via Eq. 4.14 (Akbari et al. 2009):

x
*

0 b; ið Þ ¼ Init i; Sð Þ;8i 2 b; ð4:14Þ

where Init i; Sð Þ represents the initialization function which associates a random
position to the ith bee in the search space S.

• Creating the fitness function. The fitness function is given via Eq. 4.15 (Akbari
et al. 2009):

x
*

b; ið Þ ¼ fit x
*

b; ið Þð Þ: ð4:15Þ

• Updating phase.

1. The position of an experienced forager bee (n) is updated via Eq. 4.16
(Akbari et al. 2009):

x
*

new n; ið Þ ¼ x
*

old n; ið Þ þ xbrb b
*

n; ið Þ � x
*

old n; ið Þ
� ffi

þ xere e
* n; �ð Þ � x

*

old n; ið Þ
� ffi

;
ð4:16Þ

where rb and re are random variables of uniform distribution in range of
0; 1½ �, xb and xe denote the best food source found by the ith bee and the elite

bee, respectively, and x
*

new n; ið Þ represents the position vector of the new food
source found by the experienced forager.
Overall, the whole equation can be divided into three parts, the first part in
the right side represents the position vectors of the old food sources found by
the experienced forager, the second parts in the right side represents the
cognitive knowledge that attract the experienced forager towards the best
position ever found by the bee, and the third parts in the right side represents
the social knowledge that attract the experienced forage towards the best

position (e* n; �ð Þ) which is found by the interesting elite bee.
2. The onlooker bees (j) use only the social knowledge provided by experi-

enced forager bees to adjust their moving trajectory in the next iteration.
Their positions are updated via Eq. 4.17 (Akbari et al. 2009):

x
*

new j; ið Þ ¼ x
*

old j; ið Þ þ xere e
* n; ið Þ � x

*

old j; ið Þ
� ffi

; ð4:17Þ

where x
*

new j; ið Þ represents the position of the new food source which is
selected by the onlooker bee (i), xere is the parameter that probabilistically
controls the attraction of the onlooker bees towards their interesting food

source area, and e
* n; ið Þ is the position vector of the interesting elite bee for

onlooker bees (pjd) that is determined through Eq. 4.18 (Akbari et al. 2009):

56 4 Bee Inspired Algorithms

pj ¼
fit x

* n; jð Þ
� ffi

Pn nð Þ

c¼1
fit x

* n; cð Þ
� ffi ; ð4:18Þ

where fit x
* n; ið Þ
� ffi

is the fitness value of the food source which is found by the

experienced forager bee (j), and n nð Þ is the number of experienced forager bees.
3. The positions of the scout bees (#) are updated via Eq. 4.19 (Akbari et al.

2009):

x
*

new #; ið Þ ¼ x
*

old #; ið Þ þ Rw s; xold #; ið Þð Þ; ð4:19Þ

where x
*

old #; ið Þ represents the position of the abandoned food source, and
Rw is a random walk function that depends on the current position of
the scout bee and the radius search s. Typically, the initial value of radius
s 2 smin\s\smaxð Þ is defined as a percentage of Xmax � Xminj j, where Xmax

and Xmin are the maximum and minimum value of the search space along a
dimension.

• Information selecting. It will be determined via Eq. 4.20 (Akbari et al. 2009):

if fit x
* n; ið Þ
� ffi

[fit b
*

n; ið Þ
� ffi

then b
*

n; ið Þ ¼ x
* n; ið Þ

if fit b
*

n; ið Þ
� ffi

[fit e
* n; �ð Þ
� ffi

then e
* n; �ð Þ ¼ b

*

n; ið Þ

8
<

:
; ð4:20Þ

where b
*

n; ið Þ denotes the position of the best food source that an experienced

forager (i) can remember, and e
* n; �ð Þ represents the position of the best food

source that the elite bee can find.

4.4.4.2 Performance of BSO

To evaluate the effectiveness of BSO, six analytical benchmark functions were
employed in Akbari et al. (2009). Compared with other bee inspired algorithms
(such as ABC), computational results showed that the proposed algorithm out-
performs the others investigated in this study.

4.4.5 Bee System

4.4.5.1 Fundamentals of Bee System Algorithm

Bee system (BS) algorithm was originally proposed in Sato and Hagiwara (1997).
In order to implement BS, the following procedures need to be followed (Lučić
2002; Sato and Hagiwara 1997; Lučić and Teodorović 2003):

4.4 Emerging Bee Inspired Algorithms 57

• In BS, the first global search is performed by pop G. The purpose of this
function is to find as broad as possible to escape from a local optimum. If, for
successive GSC generations, one chromosome is found to be the best, it will be
regarded as a very good solution point around which there may exist the global
best. In BS, this solution is call superior chromosome which will be kept for
local search.

• Concentrated crossover: All chromosomes in pop Lk are made couple with SCk

at the beginning of local search and the crossover mechanism is performed. This
concentrated crossover transfers information about the kth superior chromosome
to all other chromosomes in the kth population denoted by pop Lk.

• Migration: In BS, an individual bee is randomly selected per predetermined
generation Gmig for emigrating to its neighbourhood population. Through this
strategy, each population manages to search independently and cooperatively.

• Pseudo-simplex approach: In BS, for a more efficient and effective search, a
pseudo-simplex mechanism is employed.

First, picking up three best so far chromosomes and name them C1, C2, and C3

according to their corresponding fitness value.
Then, translating them into three vectors, i.e., X1, X2, and X3. Next, calculating

the middle point X0 of X1 and X2 according to Eq. 4.21 (Sato and Hagiwara
1997):

X0 ¼
X1 þ X2

2
: ð4:21Þ

Right after this, computing Xref and Xcont, respectively, based on Eqs. 4.22 and
4.23, respectively (Sato and Hagiwara 1997):

Xref ¼ 1þ að ÞX0 � aX3; ð4:22Þ

Xcont ¼ 1� bð ÞX0 þ bX3; ð4:23Þ

where the reflection ration and contraction ration are denoted by a and b,
respectively.

Next, exchanging Xref and Xcont into chromosomes and set them as Cref and
Ccont, respectively.

Finally introducing C1, Cref , and Ccont to the initial population where the
crossover and mutation have already applied.

• Turning back to global search: The local search will be terminated once the
predetermined number of generations is reached. If the best solution found so far
does not meet the stopping criterion, the algorithm will repeat.

58 4 Bee Inspired Algorithms

4.4.5.2 Performance of BS

In order to see how the BS algorithm performs, Sato and Hagiwara (1997) tested it
on nine benchmark test functions selected from the literature. Compared with other
CI approaches (e.g., GA), the preliminary experimental results showed that BS
outperforms GA in all cases which make it a very promising optimization algo-
rithms in dealing with highly complex multivariate functions.

4.4.6 BeeHive

4.4.6.1 Fundamentals of BeeHive Algorithm

BeeHive algorithm was originally proposed in Wedde et al. (2004) and Farooq
(2006) which is a novel network routing algorithm. It is inspired from the dance
language and foraging behaviour of honeybees. The main characteristics of Bee-
Hive algorithm can be concluded as follows: (Farooq 2009; Wedde and Farooq
2006; Farooq and Caro 2008):

• Step 1: During the start up stage, all nodes in the networks begin with a process
named foraging region formation. The first generation of short distance bee
agents are launched at this stage for propagating their nomination in their
neighbourhood.

• Step 2: By comparing the information received from a short distance bee agent,
a node will determined whether to resign as a representative node and join the
foraging region.

• Step 3: Once the former representative node quits, the other nodes will activate
an election mechanism

• Step 4: The nodes continues to announce the next generations of short distance
bee agents by following pre-described steps until the network is split into dis-
joint foraging regions, and overlapping with the foraging zones.

• Step 5: After the Step 4 is executed, the BeeHive algorithm gets into a normal
phase.

• Step 6: When a replica of a specific bee agent reaches a site, it will update the
local stored routing information, and then, except of being sent back to the node
where the replica comes from, it will be continuously flooded.

• Step 7: Representative nodes only generate long distance bee agents that could
be received by the neighbours.

• Step 8: In BeeHive algorithm, bee agents employ priority queues mechanism for
the purpose of a quick routing information dissemination.

• Step 9: Each node carries the current routing information not only for reaching
nodes within its foraging zone, but also for reaching the representative nodes of
foraging regions.

• Step 10: Choosing the next hop for a data packet in a stochastic manner.

4.4 Emerging Bee Inspired Algorithms 59

• Step 11: The goodness of a neighbour j of node i for arriving at a destination d,
denoted by gjd, is defined via Eq. 4.24 (Wedde and Farooq 2006):

gjd ¼
1

pjdþqjd

PN

k¼1

1
pkdþqkd

� ffi ; ð4:24Þ

where the propagation and queuing delays are denoted by pjd and qjd, respectively.
• Step 12: In BeeHive algorithm, three kinds of routing tables, namely, intra

foraging zone, inter foraging region, and foraging region membership are
allocated to each node i.

4.4.6.2 Performance of BeeHive Algorithm

In order to evaluate the BeeHive algorithm, the Japanese Internet backbone sce-
nario was employed in Wedde et al. (2004). Through an extensive comparison
with two other state of the art routing algorithms, BeeHive showed a quite
attractive overall performance. Interested readers are referred to Farooq (2009) for
a more detailed explanation about the working principles and applications of the
BeeHive algorithm.

4.4.7 Bees Algorithm

4.4.7.1 Fundamentals of Bees Algorithm

Bees algorithm (BeA) was originally proposed in Pham et al. (2006). The basic
working procedures of BeA are listed as follows (Pham et al. 2006; Karaboga and
Akay 2009a; Pham and Castellani 2009; El-Abd 2012b):

• Step 1: Initializing population with random solutions. At this stage, the BA
requires several parameters to be set such as number of scout bees (n), number
of sites selected out of n visited sites (m), number of the best sites out of m
selected sites (e), number of bees recruited for the best e sites (nep), number of
bees recruited for the other (m�e) selected sites (nsp), and initial size of patches
(ngh) which includes the site, its neighbourhood, and the stopping criterion.

• Step 2: Assessing the fitness of the population.
• Step 3: Forming new population while stopping criterion is not met.
• Step 4: Selecting sites for neighborhood search. The bees with the highest fitness

values are chosen as ‘‘selected bees’’ at Step 4, and accordingly, the sites visited
by them are chosen for neighborhood search.

• Step 5: Recruiting bees for selected sites (more bees for best s sites), and
evaluating the fitness value. In Step 5, the BeA conducts search in the

60 4 Bee Inspired Algorithms

neighborhood of the selected sites. More bees will be assigned to search around
the best e sites. The bees can either be selected directed based on the value of
fitness associated with the sites they are visiting, or the fitness values will be
used to determine the probability of the bees being selected. Exploration of the
surroundings of the best e sites represents more suitable solutions can be made
available through recruiting more bees to follow them than the other selected
bees. This differential recruitment mechanism, along with scouting strategy, is
the core operation of the BeA algorithm.

• Step 6: Choosing the fittest bee from each patch. Pham et al. (2006) introduced a
constraint at this stage that is for each patch, only the bees with the highest
fitness value can be selected to from the next bee population. The purpose of
introducing such restriction is to reduce the number of points that are going to be
explored.

• Step 7: Assigning the remaining bees to do random search, and evaluating their
fitness. In the bee population, the remaining bees are assigned randomly around
the search space looking for new possible solution candidates.

• Step 8: Terminating the loop when stopping criterion is met. All aforementioned
steps will be executed repeatedly until a stooping criterion is met. At the end of
each iteration, the population of bee colony consists of two parts: representatives
from each selected patch, and other scout bees performing random searches.

In addition to the standard BeA detailed in this section, several enhanced
versions of BeA can also be found in the literature as outlined below:

• Binary BeA (Xu et al. 2010b).
• Distributed BeA (Jevtić et al. 2012).
• Hybrid BeA (Shafia et al. 2011; Lien and Cheng 2012).
• Multi-objective BeA (Pham and Ghanbarzadeh 2007).
• Neighbourhood enhanced BeA (Ahmad 2012).

4.4.7.2 Performance of BeA

In order to see how BeA performs, Pham et al. (2006) first employed two standard
benchmark functions, namely, Shekel’s Foxholes function and inverted Schwefel’s
function with six dimensions, for testing purpose. Furthermore, eight other
benchmark functions selected from the literature were introduced for validating
BeA. Compared with other CI methods (e.g., GA and ACO), the overall perfor-
mance of BeA is quite competitive.

Recently, Xu et al. (2010b) utilized BeA to study a group of reconfigurable
mobile robots which are designed to provide daily service in hospital environments
for different kinds of tasks such as guidance, cleaning, delivery, and monitoring.
The fulfilment of each job requires an associated functional module that can be
installed onto various robot platforms via a standard connection interface.

Since the classic BeA focuses mainly on single-objective functional optimi-
zation problems, a variant called binary BeA was proposed in Xu et al. (2010b) to

4.4 Emerging Bee Inspired Algorithms 61

deal with the multi-objective multi-constraint combinatorial optimization task. In
binary BeA, a bee is describe as two binary matrixes MR and RH, standing for
how to assign the M tasks to the R robots and the R robots to the H homes,
respectively. The size of MR is M � R in which its R columns represent the R
robots, while the M missions is represented by the M rows. Xu et al. (2010b)
evaluated the proposed algorithm with an example problem (20 missions, 8 robots,
and 4 homes) with a size of 820 � 4008 ¼ 276 combinations. At first 12 stochastic
solutions are obtained by scout bees through global search in which six elite bees
survive after the non-dominated selection. The final experiments demonstrated that
the proposed algorithm is a suitable candidate tool in treating workload balancing
issue among a team of swarm robots.

Apart from the case study described above, the BeA has also been successfully
applied to a variety of optimization problems as listed below:

• Controller design optimization (Jones and Bouffet 2008).
• Construction site layout optimization (Lien and Cheng 2012).
• Data clustering (Shafia et al. 2011).
• File search optimization (Dhurandher et al. 2011).
• Filter design optimization (Pham and Koç 2010).
• Manufacturing system optimization (Pham et al. 2007a, Ramírez et al. 2010).
• Mechanical design optimization (Pham et al. 2009).
• Robot control optimization (Xu et al. 2010b; Jevtić et al. 2012).
• Scheduling optimization (Pham et al. 2007b).

4.4.8 Bees Life Algorithm

4.4.8.1 Fundamentals of Bees Life Algorithm

Bees life algorithm (BLA) was recently proposed by Bitam and Mellouk (2013) to
solve a vehicular ad hoc network (VANET) problem, in particular, the quality of
service multicast routing problem (QoS-MRP). Two bees’ behaviours are
employed in the proposed algorithm, i.e., reproduction and foraging behaviours. In
addition, the former incorporated the crossover and mutation operators, while the
latter used a neighbourhood search approach. In order to implement BLA, the
following procedures need to be followed (Bitam and Mellouk 2013):

• Initializing bees’ population.
• The fitness function value corresponding to each candidate solution is

calculated.
• Reproduction process. In this process, based on the crossover and mutation

operators, two new individuals (i.e., queen bee and drone bee) are selected. The
queen starts breeding broods, then those broods will be evaluated according to

62 4 Bee Inspired Algorithms

the fitness function, after that, the best fittest brood will be considered as the new
queen for next iteration. Also, the drone bees and worker bees are updated.

• Foraging process. In this process, the worker bees are looking for food sources.
Each worker will be mimicked as one region. During the recruitment process,
the best food source will be founded.

• Ranking and selecting. Only the highest fitness will be selected to form the next
bee population.

• Evaluating the fitness of population (i.e., queen, drone, and worker bees).
• Termination.

4.4.8.2 Performance of BLA

To evaluate the effectiveness of BLA, a series of tests based on VANET simu-
lation scenario are conducted in Bitam and Mellouk (2013). Compared with other
CI algorithms (such as GA, BeA, and HBMO), computational results showed that
the proposed algorithm outperforms the others in terms of the solution quality and
complexity.

4.4.9 Bumblebees Algorithm

4.4.9.1 Fundamentals of Bumblebees Algorithm

Bumblebees algorithm was originally proposed in Comellas and Martínez-Navarro
(2009). It is a more simple and efficient version than the one introduced in
Comellas and Gallegos (2005) as angels and mortals. In bumblebees algorithm, the
bumblebees are employed to play the role of the mortals, while the static food cells
are used to replace the angels. The food cells together with the fixed position of
nest creates a simulating environment which can influence the bumblebees’
behaviour and in turn helps to move the optimization process forward. In bum-
blebees algorithm, the following operators are defined (Comellas and Martínez-
Navarro 2009):

• The world: In the proposed algorithm, the habitat of the colony of bumblebees is
an artificial world consisting of a toroidal square grid with n� n cells. There are
four possible states assigned to each individual cell, namely, empty, with food,
with a bumblebee, or containing a nest.

• Movement: Initially, all bumblebees are located in the next. At each generation,
each single bumblebee will fly out of the nest one by one and randomly move to
any other positions around its current position.

• Bumblebees’ birth: During the algorithm initialization, all bumblebees are
positioned inside the nest and each bumblebee is associated with a randomly
generated solution. The record of some of the best solutions found so far is kept

4.4 Emerging Bee Inspired Algorithms 63

by the queen who will pass one of such solution to a newly born bumblebee
every few generation.

• Mutation: Similarly to GA, the mutation mechanism is also introduced in
bumblebees algorithm with a slightly modification of applying mutation on all
individual bumblebees at each generation.

• The reaper: In order to avoid the over- or de-population, a reaper mechanism is
employed in bumblebees algorithm, i.e., one unit of life is subtracted from a
bumblebee’s life at each generation. When the age of a bumblebee arrives at 0,
this individual will be removed from the current artificial world.

4.4.9.2 Performance of Bumblebees Algorithm

In order to test the performance of the bumblebees algorithm, Comellas and
Martínez-Navarro (2009) tested it on the classic graph colouring problem. In
comparison with other CI methods (e.g., GA), the bumblebees algorithm offered a
better solution quality.

4.4.10 Honeybee Social Foraging Algorithm

4.4.10.1 Fundamentals of Honeybee Social Foraging Algorithm

Honeybee social foraging (HBSF) algorithm was recently proposed in Quijano and
Passino (2010). In order to implement the HBSF algorithm, the following proce-
dures need to be followed (Quijano and Passino 2010; Nakrani and Tovey 2003;
Nakrani and Tovey 2004; Scholz-Reiter et al. 2008):

• Foraging profitability landscape: For i ¼ 1; 2; . . .;B, bee i is denoted by hi 2 <2,
a position expression within 2-dimensional space. The foraging profitability
landscape is represented by Jf hð Þ which has a value falling within the range of
0; 1½ �. It is proportional to the profitability of nectar at a location indicated by
h 2 <2.

• Bee roles and expeditions: Setting xj kð Þ as the number of bees at site j at k.
A normal option for expressing this is via Eq. 4.25 (Quijano and Passino 2010):

sj kð Þ ¼ aj

xj kð Þ ; ð4:25Þ

where the amount of nutrients per second at the jth site is denoted by aj.
Suppose that there are Bf kð Þ deployed forager bees. Initially letting Bf 0ð Þ ¼ 0
for the reason of no foraging sites are being discovered. Then the foraging
profitability assessment used by an individual deployed forager bee can be
expressed via Eq. 4.26 (Quijano and Passino 2010):

64 4 Bee Inspired Algorithms

Fi kð Þ ¼
1 if Jf hi kð Þ

� �
þ wi

f kð Þ	 1

Jf hi kð Þ
� �

þ wi
f kð Þ if 1 [Jf hi kð Þ

� �
þ wi

f kð Þ[en

0 if Jf hi kð Þ
� �

þ wi
f kð Þ� en

8
><

>:
; ð4:26Þ

where wi
f kð Þ stands for the profitability assessment noise.

• Dance strength determination: In HBSF, the dance strength is denoted by Li
f kð Þ,

i.e., the number of waggle runs of bee i at step k. Setting Fi
q kð Þ as the amount of

nectar gathered under the profitability assessment Fi kð Þ. Then the total quantity
of nectar influx to the hive at step k, denoted by Ftq kð Þ can be defined via
Eq. 4.27 (Quijano and Passino 2010):

Ftq kð Þ ¼
XB

i¼1

Fi
q kð Þ ¼ a

XB

i¼1

Fi kð Þ ¼ aFt kð Þ: ð4:27Þ

• Explorer allocation and forager recruitment: In HBSF, the explorer allocation
process is designed to simultaneously happen with the recruitment of observer
bees to forage sites. Then the probability that the dance of bee i will be followed
by an observer bee is defined via Eq. 4.28 (Quijano and Passino 2010):

pi kð Þ ¼
Li

f kð Þ
PBf kð Þ

i¼1
Li

f kð Þ
: ð4:28Þ

4.4.10.2 Performance of HBSF

To evaluate the effectiveness of the HBSF algorithm, an engineering application,
namely, dynamic resource allocation for multizone temperature control problem
was adopted by Quijano and Passino (2010). Computational results showed that
the proposed algorithm is able to achieve an ideal free distribution situation which
could maximize the uniform temperature allocation.

4.4.11 OptBees

4.4.11.1 Fundamentals of OptBees Algorithm

OptBees algorithm was originally proposed in Maia et al. (2012) that is based on
the processes of collective decision-making by bee colonies to solve multimodal
continuous optimization problem. In order to implement the OptBees algorithm,
the following procedures need to be followed (Maia et al. 2012):

4.4 Emerging Bee Inspired Algorithms 65

• Determination of the recruiter bees: Typically, the probability of being a
recruiter bee is associated with each bee in the swarm is given via Eq. 4.29
(Maia et al. 2012):

pi ¼
pmax � pmin

Qmax � Qmin

� �

� Qi � Qminð Þ þ pmin; ð4:29Þ

where pmin and pmax are the minimum and maximum probabilities of a bee be a
recruiter, respectively, Qi represents the quality of the site explored by bee i, and
Qmin and Qmax represent the minimum and maximum site qualities at the current
iteration. After these procedures, the number non-recruiter bees in the swarm is
defined via Eq. 4.30 (Maia et al. 2012):

M ¼ N � r; ð4:30Þ

where N is the total number of bees, r denotes the number of recruiter bees, and
M represents the number of non-recruiter bees.

• Determination of the recruited and scout bees: The number of recruited bees (n)
is calculated by Eq. 4.31 (Maia et al. 2012):

n ¼ prec �M½ �; ð4:31Þ

where prec is the percentage of non-recruiter bees that will be actually recruited,
M is the number of non-recruiter bees, and �½ � denotes the nearest integer function.
So, the number of scout bees (S) is given by Eq. 4.32 (Maia et al. 2012):

S ¼ M � n; ð4:32Þ

• Recruitment process: Due to two-dimensional search spaces, two equal proba-
bilities’ level are employed in this process via Eq. 4.33 (Maia et al. 2012):

xi ¼ xi þ a � U
 y� xið Þ
xi ¼ xi þ u � a � y� xið Þ

; ð4:33Þ

where a is the recruitment rate, is the recruited bee, xi is the recruiter bee, y is a
random number with uniform distribution in the interval 0; 1½ �, U is a vector
whose elements are random numbers with uniform distribution in the interval
0; 1½ �, and
 denotes the element-wise product.

• Exploration process: In this process, the scout bees are moved to a random point
(i.e., a new region in the search space).

4.4.11.2 Performance of OptBees

To evaluate the effectiveness of the OptBees algorithm, five minimization prob-
lems were adopted by Maia et al. (2012). Computational results showed that the

66 4 Bee Inspired Algorithms

proposed algorithm is capable of generating and maintaining the diversity and
consequently obtaining multiple local optima solutions without losing the ability
of global optimization.

4.4.12 Simulated Bee Colony Algorithm

4.4.12.1 Fundamentals of Simulated Bee Colony Algorithm

Simulated bee colony (SBC) algorithm was originally proposed in McCaffrey and
Dierking (2009) to extract rule sets from clustered categorical data. In SBC, each
bee is viewed as an object with a memory matrix and it is modelled as an array. In
order to implement the SBC algorithm, the following procedures need to be fol-
lowed (McCaffrey and Dierking 2009):

• Step 1: Initialization.
• Step 2: Repeating. First, placing the active bees on the food sources in the

memory. Then, putting the inactive bees on the food source in the memory.
Next, sending the scout bees to the search area for discovering new food
sources. Finally, memorizing the best food source found so far.

• Step 3: Termination.

4.4.12.2 Performance of SBC

To evaluate the effectiveness of SBC, the proposed algorithm was tested with six
benchmark data sets in McCaffrey and Dierking (2009). Computational results
showed that SBC can successfully discover the underlying rule set for all six test
data sets.

4.4.13 Virtual Bees Algorithm

4.4.13.1 Fundamentals of Virtual Bees Algorithm

Virtual bees algorithm (VBA) was originally proposed by Yang (2005) and
recently is used in Khan et al. (2010) for solving controller design problem. For
VBA, the population of bees is associated with a memory bank, a food source.
Also, all the memories communicate between bees with a waggle dance procedure.
In order to implement VBA, the following procedures need to be followed (Khan
et al. 2010; Yang 2005):

• Initializing the population.
• The fitness function value corresponding to each candidate solution is calculated.

4.4 Emerging Bee Inspired Algorithms 67

• Defining a criterion for communicating the direction and distance.
• Updating the new position of each individual. The new position is updated via

Eq. 4.34 (Khan et al. 2010; Yang 2005):

xiþ1
k ¼ xi

k � 1þ bð Þ þ xbest � bþ a � rand ið Þ � 0:5ð Þ
yiþ1

k ¼ yi
k � 1þ bð Þ þ ybest � bþ a � rand ið Þ � 0:5ð Þ

; ð4:34Þ

where a and b are two positive constants called randomness amplitude and
speed of convergence, respectively, xbest and ybest are best parameters in the ith
iteration, and rand ið Þ is a random number in the interval 0; 1½ �.

• Ranking the candidate solutions.
• Checking termination criterion.

4.4.13.2 Performance of VBA

To evaluate the effectiveness of VBA, De Jong’s test function and keane’s multi-
peaked bumpy function were adopted in Yang (2005). Compared with other CI
algorithms (such as GA), computational results showed that the proposed algo-
rithm is capable of solving multilevel optimization problems in which many local
minimums are involved.

4.4.14 Wasp Swarm Optimization

4.4.14.1 Fundamentals of Wasp Swarm Optimization Algorithm

Wasp swarm optimization (WSO) algorithm was originally proposed in Theraulaz
et al. (1991) that is based on some behaviours found in wasp colony (Karsai and
Wenzel 2000; Lucchetta et al. 2008).

The basic idea of WSO was to mimic a wasp colony behaviour, in particular
according to the importance of individual wasp to the whole colony, assigning the
resources to different wasp (Fan and Zhong 2012; Theraulaz et al. 1991). Therefore
in WSO algorithm, resources will be allocated to individual candidate solutions and
such allocation is completed in a randomly manner where the strength of each option
controls its chosen probability. In Cicirello and Smith (2004), a tournament process
was utilized to implement this stochastic selection process: the weakest option (for
example a) challenges the second weakest option (for instance b) and the winning
probability of a over b is determined through pab ¼ s2

a

�
s2

a þ s2
b

� �
. The winner of this

challenge (say a) will carry on to challenges the third weakest option (denoted by c),
and wins with a probability of pac ¼ s2

a

�
s2

a þ s2
c

� �
. The challenge will continue until

the final winner is selected. In some situations, it is more convenient to allocate costs
instead of strengths to the individual wasps, i.e., the lower the cost, the higher the

68 4 Bee Inspired Algorithms

strength of a wasp. In this case, the winning probability of wasp i over j can be
defined via Eq. 4.35 (Cicirello and Smith 2004):

pij ¼
s2

j

s2
i þ s2

j

; i; j ¼ 1; . . .; c: ð4:35Þ

4.4.14.2 Performance of WSO

In Song et al. (2005), the authors utilized WSO to find a trade-off between the
distribution cost and the service level in the context of dynamic vehicle routing
problem with time windows (DVRPTW for short). In real-world environment, a
real-time request impacts more on one vehicle route while less on the other vehicle
routes. In order to take the geographical location information and time window
information of the customers into account, a wasp-like agent strategy is employed
in their study to determine when to re-optimize the vehicle routes. The vehicle
considered in Song et al. (2005) is associated with a wasp named vehicle wasp
which is used to control the status of the vehicle and it has a set of response
thresholds as stated in Eq. 4.36 (Song et al. 2005):

hv ¼ hv;1; hv;2; . . .; hv;n

�
; ð4:36Þ

where hv;i denotes the response threshold value of the vehicle wasp to a new
demand i.

Based on the simulation data for static VRPTW found in the literature, the
authors re-constructed them for DVRPTW through producing request randomly.
The experimental results showed that when the dynamic property is less than
80 %, the WSO algorithm can generates a better solution. Nevertheless, when the
dynamic property is greater than 80 %, the WSO algorithm failed to provide a
suitable solution. At the end of the study, the authors claimed that WSO algorithm
could fit the practical distribution environment well as long as the route that needs
to be re-optimized does not deviate far from the original planned route.

Apart from the case study described above, the WSO algorithm has also been
successfully applied to a variety of optimization problems as listed below:

• Data clustering (Runkler 2008).
• Decentralized control optimization (Theraulaz and Bonabeau 1995; Baker 1998;

Karsai 1999; Anderson and Bartholdi 2000; Cicirello and Smith 2004; Wang
2009).

• Image processing (Fan and Zhong 2012).
• Logistics system optimization (Pinto et al. 2005).
• Scheduling optimization (Wang et al. 2006).
• Vehicle routing problem (Song et al. 2005).
• Maximum satisfiability problem (Pinto et al. 2006; Cao et al. 2009; Anonymous

2010).

4.4 Emerging Bee Inspired Algorithms 69

4.5 Conclusions

In this chapter, we introduced a set of CI algorithms which are based on the
behaviour of the honeybees. These algorithms are mainly divided into two cate-
gories, i.e., the foraging behaviour and the mating behaviour. Although they are
newly introduced CI methods, we have witnessed the following rapid spreading of
at least two of them, i.e., ABC and HBMO.

First, several enhanced versions of ABC can be found in the literature as
outlined below:

• ABC* (Forghany et al. 2012).
• Cauchy distribution-based ABC (Rajasekhar et al. 2011).
• Chaotic ABC (Xu et al. 2010a; Alatas 2010).
• Cooperative ABC (El-Abd 2010).
• DisABC (Kashan et al. 2012).
• Discrete ABC (Tasgetiren et al. 2011; Tasgetiren et al. 2010; Karabulut and

Tasgetiren 2012; Koc et al. 2012; Tasgetiren et al. 2013).
• Elitist ABC (Mezura-Montes and Velez-Koeppel 2012).
• Enhanced ABC (Tsai et al. 2009).
• Global best ABC (Gao et al. 2012; Li et al. 2012; Jadhav and Roy 2013).
• Hybrid ABC (Tien and Li 2012; Shi et al. 2010; Vitorino et al. 2012; Kang et al.

2013; Zhang et al. 2013).
• Improved ABC (Karaboğa and Çetinkaya 2011; Gao et al. 2011; Gao and Liu

2011; Cheng and Jiang 2012).
• Mean mutation operator based ABC (Sharma et al. 2012a).
• Memetic ABC (Fister et al. 2012).
• Micro ABC (Rajasekhar et al. 2012).
• Modified ABC (Anandhakumar et al. 2011; Mezura-Montes et al. 2010; Gao

and Liu 2012; Sharma et al. 2012a; Gao et al. 2013).
• Multi-hive ABC (Zhang et al. 2012).
• Multiobjective ABC (Akbari et al. 2012; Chaves-González et al. 2013).
• Mutable smart ABC (Gorji-Bandpy and Mozaffari 2012).
• Opposition-based ABC (El-Abd 2012a).
• Parallel ABC (Narasimhan 2009; Subotic et al. 2010).
• Penalty guided ABC (Hsieh and Yeh 2012).
• Rosenbrock ABC (Kang et al. 2011).
• Vector evaluated ABC (Omkar et al. 2011).
• Chaotic improved HBMO (Niknam et al. 2011).
• Hybrid HBMO (Niknam et al. 2008; Niknam 2009).
• Maximum entropy based HBMO (Horng 2010).
• Modified HBMO (Olamaei et al. 2012; Niknam et al. 2012).
• Multiobjective HBMO (Niknam 2011).

70 4 Bee Inspired Algorithms

Second, the ABC algorithm has also been successfully applied to a variety of
optimization problems as listed below:

• Artificial neural network training (Dhahri et al. 2012).
• Automated software refactoring (Koc et al. 2012).
• Circuit design optimization (Zhang and Ye 2012).
• Composite structures optimization (Omkar et al. 2011).
• Controller design optimization (Rajasekhar et al. 2012).
• Disassembly line balancing (Kalayci and Gupta 2013).
• Expert system design (Babu et al. 2011).
• Filter design optimization (Karaboğa and Çetinkaya 2011).
• Fuel cell research (Zhang et al. 2013).
• Gene research (Forghany et al. 2012; Chaves-González et al. 2013; lez-Álvarez

et al. 2013).
• Image processing (Ma et al. 2011; Akay 2013; Hancer et al. 2012; Akay and

Kirmizi 2012).
• Manufacturing optimization (Samanta and Chakraborty 2011; Yildiz 2013;

Ajorlou and Shams 2012).
• Portfolio optimization (Chen et al. 2012).
• Power system optimization (Hemamalini and Simon 2010; Hong 2011;

Subramanian et al. 2011; Anandhakumar et al. 2011; Ayan and Kılıç 2012;
Bommirani and Thenmalar 2013; Jadhav and Roy 2013).

• Redundancy allocation problem (Hsieh and Yeh 2012).
• Robot control (Xu et al. 2010a).
• Scheduling optimization (Tasgetiren et al. 2011; Sundar and Singh 2012;

Tasgetiren et al. 2010; Tasgetiren et al. 2013).
• Supply chain optimization (Kumar et al. 2010).
• Thermal engine optimization (Gorji-Bandpy and Mozaffari 2012).
• Travelling salesman problem (Karabulut and Tasgetiren 2012).
• Unstable periodic orbits detection (Gao et al. 2012).

Third, the relative HBMO algorithm applications can be found below:

• Image processing (Horng 2010).
• Power system optimization (Niknam et al. 2008; Niknam 2009; Niknam et al.

2011; Niknam 2011; Olamaei et al. 2012; Niknam et al. 2012).
• Travelling salesman problem (Marinakis et al. 2011).
• Vehicle routing problem (Marinakis et al. 2008; Marinakis et al. 2010).
• Water resource management (Haddad et al. 2006; Afshar et al. 2007; Haddad

et al. 2009; Haddad et al. 2010).

Interested readers are referred to them together with several excellent reviews
[e.g., (Karaboga and Akay 2009c; Karaboga et al. 2012; Teodorović 2009a;
Teodorović et al. 2011; Goyal 2012)] as a starting point for a further exploration
and exploitation of the honeybees inspired algorithms.

4.5 Conclusions 71

References

Abbass, H. A. (2001a, May 27–30). MBO: Marriage in honey bees optimization. A haplometrosis
polygynous swarming approach. In IEEE Proceedings of the Congress on Evolutionary
Computation (pp. 207–214). Seoul, South Korea.

Abbass, H. A. (2001b). A monogenous MBO approach to satisfiability. In Proceeding of the
International Conference on Computational Intelligence for Modelling, Control and
Automation (CIMCA). Las Vegas, NV, USA.

Afshar, A., Haddad, O. B., Mariño, M. A., & Adams, B. J. (2007). Honey-bee mating
optimization (HBMO) algorithm for optimal reservoir operation. Journal of the Franklin
Institute, 344, 452–462.

Ahmad, S. A. (2012). A study of search neighbourhood in the bees algorithm. Unpublished
doctoral thesis, Cardiff University.

Ajorlou, S., & Shams, I. (2013). Artificial bee colony algorithm for CONWIP production control
system in a multi-product multi-machine manufacturing environment. Journal of Intelligent
Manufacturing, 24, 1145–1156. doi:10.1007/s10845-012-0646-5.

Akay, B., (2013). A study on particle swarm optimization and artificial bee colony algorithms for
multilevel thresholding. Applied Soft Computing, 13, 3066–3091. (http://dx.doi.org/10.1016/
j.asoc.2012.03.072).

Akay, B., & Kirmizi, I. (2012, June 10–15). Structural optimization of wavelet packets using
swarm algorithms. In IEEE World Congress on Computational Intelligence (WCCI) (pp. 1–5).
Brisbane, Australia.

Akbari, R., Mohammadi, A., & Ziarati, K. (2009). A powerful bee swarm optimization algorithm.
In IEEE 13th International Multitopic Conference (INMIC) (pp. 1–6).

Akbari, R., Hedayatzadeh, R., Ziarati, K., & Hassanizadeh, B. (2012). A multi-objective artificial
bee colony algorithm. Swarm and Evolutionary Computation, 2, 39–52.

Alatas, B. (2010). Chaotic bee colony algorithms for global numerical optimization. Expert
Systems with Applications, 37, 5682–5687.

Anandhakumar, R., Subramanian, S., & Ganesan, S. (2011). Modified ABC algorithm for
generator maintenance scheduling. International Journal of Computer and Electrical
Engineering, 3, 812–819.

Anderson, C., & Bartholdi, J. J. (2000, September 19–20). Centralized versus decentralized
control in manufacturing: Lessons from social insects. In International Conference on
Complexity and Complex Systems in Industry (pp. 92–105). UK: University of Warwick.

Anonymous. (2010). WAIST: Wasp inspired scheduling for real-time strategy games. Especial
Videojogos, 11, 1–7.

Ayan, K., & KıLıÇ, U. (2012). Artificial bee colony algorithm solution for optimal reactive
power flow. Applied Soft Computing, 12, 1477–1482.

Babu, M. S. P., Ramjee, M., Narayana, S. S. V. N. L., & Murty, S. N. V. R. (2011). Sheep and
goat expert system using artificial bee colony (ABC) algorithm and particle swarm
optimization (PSO) algorithm. In IEEE 2nd International Conference on Software
Engineering and Service Science (ICSESS) (pp. 51–54).

Baker, A. D. (1998). A survey of factory control algorithms that can be implemented in a multi-
agent heterarchy: Dispatching, scheduling, and pull. Journal of Manufacturing Systems, 17,
297–320.

Bitam, S., & Mellouk, A. (2013). Bee life-based multi constraints multicast routing optimization
for vehicular ad hoc networks. Journal of Network and Computer Applications, 36, 981–991.

Bitam, S., Batouche, M., & Talbi, E.-G. (2010, April 19–23). A survey on bee colony algorithms.
In IEEE International Symposium on Parallel and Distributed Processing, Workshops and
Phd Forum (IPDPSW) (pp. 1–8). Atlanta, GA.

Bommirani, B., & Thenmalar, K. (2013). Optimization technique for the economic dispatch in
power system operation. International Journal of Computer and Information Technology, 2,
158–163.

72 4 Bee Inspired Algorithms

http://dx.doi.org/10.1007/s10845-012-0646-5
http://dx.doi.org/10.1016/j.asoc.2012.03.072
http://dx.doi.org/10.1016/j.asoc.2012.03.072

Bonyadi, M. R., Azghadi, M. R., & Shah-Hosseini, H. (2008). Population-based optimization
algorithms for solving the travelling salesman problem. In F. Greco (Ed.), Travelling
salesman problem, Chapter 1 (pp. 1–34). Vienna: In-Tech.

Boussaïd, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization metaheuristics.
Information Sciences, 237, 82–117.

Cao, Y., Yang, Y., & Wang, H. (2009). Intelligent job shop scheduling based on MAS and
integrated routing wasp algorithm and scheduling wasp algorithm. Journal of Software, 4,
487–494.

Chaves-González, J. M., Vega-Rodríguez, M. A., & Granado-Criado, J. M. (2013). A
multiobjective swarm intelligence approach based on artificial bee colony for reliable DNA
sequence design. Engineering Applications of Artificial Intelligence, 26, 2045–2057. (http://
dx.doi.org/10.1016/j.engappai.2013.04.011).

Chen, A. H. L., Liang, Y.-C., & Liu, C.-C. (2012, June 10–15). An artificial bee colony algorithm
for the cardinality-constrained portfolio optimization problems. In IEEE World Congress on
Computational Intelligence (WCCI) (pp. 1–8). Brisbane, Australia.

Cheng, X., & Jiang, M. (2012). An improved artificial bee colony algorithm based on Gussian
mutation and chaos disturbance. In Y. Tan, Y. Shi, & Z. Ji (Eds.), ICSI 2012, Part I (Vol.
7331, pp. 326–333)., LNCS Berlin, Heidelberg: Springer.

Chong, C. S., Low, M. Y. H., Sivakumar, A. I., & Gay, K. L. (2006). A bee colony optimization
algorithm to job shop scheduling. In IEEE Proceedings of 2006 Winter Simulation Conference
(pp. 1954–1961).

Cicirello, V. A., & Smith, S. F. (2004). Wasp-like agents for distributed factory coordination.
Autonomous Agents and Multi-Agent Systems, 8, 237–266.

Comellas, F., & Gallegos, R. (2005). Angels & mortals: A new combinatorial optimization
algorithm. Study on Fuzziness Soft Computing, 166, 397–405.

Comellas, F., & Martínez-Navarro, J. (2009). Bumblebees: A multiagent combinatorial
optimization algorithm inspired by social insect behaviour. In Proceedings of First ACM/
SIGEVO Summit on Genetic and Evolutionary Computation (GEC) (pp. 811–814).

Davidović, T., Ramljak, D., Šelmić, M., & Teodorović, D. (2011). Bee colony optimization for
the p-center problem. Computers and Operations Research, 38, 1367–1376.

Dhahri, H., Alimi, A. M., & Abraham, A. (2012, June 10–15). Designing beta basis function
neural network for optimization using artificial bee colony (ABC). In IEEE World Congress
on Computational Intelligence (WCCI) (pp. 1–7). Brisbane, Australia.

Dhurandher, S. K., Misra, S., Pruthi, P., Singhal, S., Aggarwal, S., & Woungang, I. (2011). Using
bee algorithm for peer-to-peer file searching in mobile ad hoc networks. Journal of Network
and Computer Applications, 34, 1498–1508.

El-Abd, M. (2010, July 18–23). A cooperative approach to the artificial bee colony algorithm. In
IEEE World Congress on Computational Intelligence (WCCI) (pp. 124–128). Barcelona,
Spain: CCIB.

El-Abd, M. (2012a, June 10–15). Generalized opposition-based artificial bee colony algorithm. In
IEEE World Congress on Computational Intelligence (WCCI) (pp. 1–4). Brisbane, Australia.

El-Abd, M. (2012b). Performance assessment of foraging algorithms vs. evolutionary algorithms.
Information Sciences, 182, 243–263.

Fan, H., & Zhong, Y. (2012). A rough set approach to feature selection based on wasp swarm
optimization. Journal of Computational Information Systems, 8, 1037–1045.

Farooq, M. (2006). From the wisdom of the hive to intelligent routing in telecommunication
networks: A step towards intelligent network management through natural engineering.
Unpublished doctoral thesis, Universität Dortmund.

Farooq, M. (2009). Bee-inspired protocol engineering: From nature to networks. Berlin,
Heidelberg: Springer. ISBN 978-3-540-85953-6.

Farooq, M., & Caro, G. A. D. (2008). Routing protocols for next-generation networks inspired by
collective behaviors of insect societies: An overview. In C. Blum & D. Merkle (Eds.), Swarm
intelligence: Introduction and application (pp. 101–160). Berlin, Heidelberg: Springer.

References 73

http://dx.doi.org/10.1016/j.engappai.2013.04.011
http://dx.doi.org/10.1016/j.engappai.2013.04.011

Figueira, J. R., & Talbi, E.-G. (2013). Emergent nature inspired algorithms for multi-objective
optimization. Computers and Operations Research, 40, 1521–1523.

Fister, I., Fister, I. J., Brest, J., & Žumer, V. (2012, June 10–15). Memetic artificial bee colony
algorithm for large-scale global optimization. In IEEE World Congress on Computational
Intelligence (WCCI) (pp. 1–8). Brisbane, Australia.

Forghany, Z., Davarynejad, M., & Snaar-Jagalska, B. E. (2012, June 10–15). Gene regulatory
network model identification using artificial bee colony and swarm intelligence. In IEEE
World Congress on Computational Intelligence (WCCI) (pp. 1–6). Brisbane, Australia.

Gao, W., & Liu, S. (2011). Improved artificial bee colony algorithm for global optimization.
Information Processing Letters, 111, 871–882.

Gao, W.-F., & Liu, S.-Y. (2012). A modified artificial bee colony algorithm. Computers and
Operations Research, 39, 687–697.

Gao, W.-F., Liu, S.-Y., & Jiang, F. (2011). An improved artificial bee colony algorithm for
directing orbits of chaotic systems. Applied Mathematics and Computation, 218, 3868–3879.

Gao, F., Fei, F.-X., Deng, Y.-F., Qi, Y.-B., & Balasingham, I. (2012). A novel non-Lyapunov
approach through artificial bee colony algorithm for detecting unstable periodic orbits with
high orders. Expert Systems with Applications, 39, 12389–12397. (http://dx.doi.org/10.1016/
j.eswa.2012.04.083).

Gao, W., Liu, S., & Huang, L. (2012). A global best artificial bee colony algorithm for global
optimization. Journal of Computational and Applied Mathematics, 236, 2741–2753.

Gao, W.-F., Liu, S.-Y., & Huang, L.-L. (2013). A novel artificial bee colony algorithm with
Powell’s method. Applied Soft Computing, 13, 3763–3775. (http://dx.doi.org/10.1016/
j.asoc.2013.05.012).

Gorji-Bandpy, M., & Mozaffari, A. (2012). Multiobjective optimization of irreversible thermal
engine using mutable smart bee algorithm. Applied Computational Intelligence and Soft
Computing, 12, 1–13.

Goyal, S. (2012). The applications survey: Bee colony. Engineering Science and Technology: An
International Journal, 2, 293–297.

Häckel, S., & Dippold, P. (2009, July 8–12). The bee colony-inspired algorithm (BCiA)–a two-
stage approach for solving the vehicle routing problem with time windows. In Proceedings of
GECCO’09 (pp. 25–32). Montréal, Québec, Canada.

Haddad, O. B., Afshar, A., & Mariño, M. A. (2006). Honey-bees mating optimization (HBMO)
algorithm: A new heuristic approach for water resources optimization. Water Resources
Management, 20, 661–680.

Haddad, O. B., Afshar, A., & Mariño, M. A. (2009). Optimization of non-convex water resource
problems by honey-bee mating optimization (HBMO) algorithm. Engineering Computations:
International Journal for Computer-Aided Engineering and Software: Practice and Expe-
rience, 26, 267–280.

Haddad, O. B., Mirmomeni, M., & Mariño, M. A. (2010). Optimal design of stepped spillways
using the HBMO algorithm. Civil Engineering and Environmental Systems, 27, 81–94.

Hancer, E., Ozturk, C., & Karaboga, D. (2012, June 10–15) Artificial bee colony based image
clustering method. In IEEE World Congress on Computational Intelligence (WCCI) (pp. 1–5).
Brisbane, Australia.

Hemamalini, S., & Simon, S. P. (2010). Artificial bee colony algorithm for economic load
dispatch problem with non-smooth cost functions. Electric Power Components and Systems,
38, 786–803.

Hong, W.-C. (2011). Electric load forecasting by seasonal recurrent SVR (support vector
regression) with chaotic artificial bee colony algorithm. Energy, 36, 5568–5578.

Horng, M.-H. (2010). A multilevel image thresholding using the honey bee mating optimization.
Applied Mathematics and Computation, 215, 3302–3310.

Hsieh, T.-J., & Yeh, W.-C. (2012). Penalty guided bees search for redundancy allocation
problems with a mix of components in series–parallel systems. Computers and Operations
Research, 39, 2688–2704.

74 4 Bee Inspired Algorithms

http://dx.doi.org/10.1016/j.eswa.2012.04.083
http://dx.doi.org/10.1016/j.eswa.2012.04.083
http://dx.doi.org/10.1016/j.asoc.2013.05.012
http://dx.doi.org/10.1016/j.asoc.2013.05.012

Jadhav, H. T., & Roy, R. (2013). Gbest guided artificial bee colony algorithm for environmental/
economic dispatch considering wind power. Expert Systems with Applications, 40,
6385–6399. (http://dx.doi.org/10.1016/j.eswa.2013.05.048).

Janson, S., Middendorf, M., & Beekman, M. (2005). Honeybee swarms: How do scouts guide a
swarm of uninformed bees. Animal Behaviour, 70, 349–358.

Jevtić, A., Gutiérrez, Á., Andina, D., & Jamshidi, M. (2012). Distributed bees algorithm for task
allocation in swarm of robots. IEEE Systems Journal, 6, 296–304. (http://dx.doi.org/10.1109/
JSYST.2011.2167820’’10.1109/JSYST.2011.2167820).

Jones, K. O., & Bouffet, A. (2008, June 12–13). Comparison of bees algorithm, ant colony
optimisation and particle swarm optimisation for PID controller tuning. In Proceedings of
International Conference on Computer Systems and Technologies (CompSysTech) (pp. IIIA.
9-1–IIIA.9-6). Gabrovo, Bulgaria.

Kalayci, C. B., & Gupta, S. M. (2013). Artificial bee colony algorithm for solving sequence-
dependent disassembly line balancing problem. Expert Systems with Applications, 40,
7231–7241. (http://dx.doi.org/10.1016/j.eswa.2013.06.067).

Kang, F., Li, J., & Ma, Z. (2011). Rosenbrock artificial bee colony algorithm for accurate global
optimization of numerical functions. Information Sciences, 181, 3508–3531.

Kang, F., Li, J., & Li, H. (2013). Artificial bee colony algorithm and pattern search hybridized for
global optimization. Applied Soft Computing, 13, 1781–1791.

Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical
Report TR06, Computer Engineering Department, Engineering Faculty, Erciyes University.

Karaboga, D., & Akay, B. (2009a) Artificial bee colony (ABC), harmony search and bees
algorithms on numerical optimization. In Proceedings of IPROMS Conference (pp. 1–6).

Karaboga, D., & Akay, B. (2009b). A comparative study of artificial bee colony algorithm.
Applied Mathematics and Computation, 214, 108–132.

Karaboga, D., & Akay, B. (2009c). A survey: Algorithms simulating bee swarm intelligence.
Artificial Intelligence Review, 31, 61–85.

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function
optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39,
459–471.

Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC)
algorithm. Applied Soft Computing, 8, 687–697.

Karaboğa, N., & Çetinkaya, M. B. (2011). A novel and efficient algorithm for adaptive filtering:
Artificial bee colony algorithm. Turkey Journal of Electrical Engineering and Computer
Science, 19, 175–190.

Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2012). A comprehensive survey:
Artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review. doi:
10.1007/s10462-012-9328-0.

Karabulut, K., & Tasgetiren, M. F. (2012, June 10–15). A discrete artificial bee colony algorithm
for the traveling salesman problem with time windows. In IEEE World Congress on
Computational Intelligence (WCCI) (pp. 1–7). Brisbane, Australia.

Karsai, I. (1999). Decentralized control of construction behavior in paper wasps: An overview of
the stigmergy approach. Artificial Life, 5, 117–136.

Karsai, I., & Wenzel, J. W. (2000). Organization and regulation of nest construction behavior in
Metapolybia wasps. Journal of Insect Behavior, 13, 111–140.

Kashan, M. H., Nahavandi, N., & Kashan, A. H. (2012). DisABC: A new artificial bee colony
algorithm for binary optimization. Applied Soft Computing, 12, 342–352.

Kaur, A., & Goyal, S. (2011). A bee colony optimization algorithm for fault coverage based
regression test suite prioritization. International Journal of Advanced Science and Technol-
ogy, 29, 17–29.

Khan, L., Ullah, I., Saeed, T., & Lo, K. L. (2010). Virtual bees algorithm based design of
damping control system for TCSC. Australian Journal of Basic and Applied Sciences, 4,
1–18.

References 75

http://dx.doi.org/10.1016/j.eswa.2013.05.048
http://dx.doi.org/10.1109/JSYST.2011.2167820%e2%80%9d10.1109/JSYST.2011.2167820
http://dx.doi.org/10.1109/JSYST.2011.2167820%e2%80%9d10.1109/JSYST.2011.2167820
http://dx.doi.org/10.1109/JSYST.2011.2167820%e2%80%9d10.1109/JSYST.2011.2167820
http://dx.doi.org/10.1016/j.eswa.2013.06.067
http://dx.doi.org/10.1007/s10462-012-9328-0

Koc, E., Ersoy, N., Camlidere, Z. S., & Kilic, H. (2012). A Web-service for automated software
refactoring using artificial bee colony optimization. In Y. Tan, Y. Shi, & Z. Ji (Eds.), ICSI
2012, Part I (Vol. 7331, pp. 318–328)., LNCS Berlin, Heidelberg: Springer.

Kumar, S. K., Tiwari, M. K., & Babiceanu, R. F. (2010). Minimisation of supply chain cost with
embedded risk using computational intelligence approaches. International Journal of
Production Research, 48, 3717–3739.

Landa, J. T., & Tullock, G. (2003). Why ants do but honeybees do not construct satellite nests.
Journal of Bioeconomics, 5, 151–164.

Latty, T., Duncan, M., & Beekman, M. (2009). High bee traffic disrupts transfer of directional
information in flying honeybee. Animal Behaviour, 78, 117–121.

Lez-Álvarez, D. L. G., Vega-Rodríguez, M. A., Gómez-Pulido, J. A., & Sánchez-Pérez, J. M.
(2013). Comparing multiobjective swarm intelligence metaheuristics for DNA motif
discovery. Engineering Applications of Artificial Intelligence, 26, 314–326.

Li, G., Niu, P., & Xiao, X. (2012). Development and investigation of efficient artificial bee colony
algorithm for numerical function optimization. Applied Soft Computing, 12, 320–332.

Lien, L.-C., & Cheng, M.-Y. (2012). A hybrid swarm intelligence based particle-bee algorithm
for construction site layout optimization. Expert Systems with Applications, 39, 9642–9650.

Low, M. Y. H., Chandramohan, M., & Choo, C. S. (2009). Application of multi-objective bee
colony optimization algorithm to automated red teaming. In Proceedings of IEEE 2009
Winter Simulation Conference (pp. 1798–1808).

Lucchetta, P., Bernstein, C., Théry, M., Lazzari, C., & Desouhant, E. (2008). Foraging and
associative learning of visual signals in a parasitic wasp. Animal Cognition, 11, 525–533.

Lučić, P. (2002). Modeling transportation problems using concepts of swarm intelligence and
soft computing. Unpublished doctoral thesis, Virginia Polytechnic Instituute and State
University.

Lučić, P., & Teodorović, D. (2003). Computing with bees: Attacking complex transportation
engineering problems. International Journal on Artificial Intelligence Tools, 12, 375–394.

Ma, M., Liang, J., Guo, M., Fan, Y., & Yin, Y. (2011). SAR image segmentation based on
artificial bee colony algorithm. Applied Soft Computing, 11, 5205–5214.

Maia, R. D., Castro, L. N. D., & Caminhas, W. M. (2012, June 10–15). Bee colonies as model for
multimodal continuous optimization: The OptBees algorithm. In IEEE World Congress on
Computational Intelligence (WCCI) (pp. 1–8). Brisbane, Australia.

Marinakis, Y., Marinaki, M., & Dounias, G. (2008). Honey bees mating optimization algorithm
for the vehicle routing problem. Studies in Computational Intelligence (SCI), 129, 139–148.
(Berlin, Heidelberg: Springer).

Marinakis, Y., Marinaki, M., & Dounias, G. (2010). Honey bees mating optimization algorithm
for large scale vehicle routing problems. Natural Computing, 9, 5–27.

Marinakis, Y., Marinaki, M., & Dounias, G. (2011). Honey bees mating optimization algorithm
for the Euclidean traveling salesman problem. Information Sciences, 181, 4684–4698.

Mccaffrey, J. D., & Dierking, H. (2009). An empirical study of unsupervised rule set extraction of
clustered categorical data using a simulated bee colony algorithm. In G. Governatori, J. Hall,
& A. Paschke (Eds.), RuleML 2009 (Vol. 5858, pp. 182–193)., LNCS Berlin, Heidelberg:
Springer.

Mezura-Montes, E., & Velez-Koeppel, R. E. (2012, July 18–23). Elitist artificial bee colony for
constrained real-parameter optimization. In IEEE World Congress on Computational
Intelligence (WCCI) (pp. 2068–2075). Barcelona, Spain: CCIB.

Mezura-Montes, E., Damián-Araoz, M., & Cetina-Domíngez, O. (2010, July 18–23). Smart flight
and dynamic tolerances in the artificial bee colony for constrained optimization. In IEEE
World Congress on Computational Intelligence (WCCI) (pp. 4118–4125). Barcelona, Spain:
CCIB.

Muñoz, M. A., López, J. A., & Caicedo, E. (2009). An artificial beehive algorithm for continuous
optimization. International Journal of Intelligent Systems, 24, 1080–1093.

76 4 Bee Inspired Algorithms

Nakrani, S., & Tovey, C. (2003, December 15–17). On honey bees and dynamic allocation in an
Internet server colony. In Proceedings of 2nd International Workshop on the Mathematics and
Algorithms of Social Insects (pp. 1–8). Atlanta, Georgia.

Nakrani, S., & Tovey, C. (2004). On honey bees and dynamic server allocation in internet hosting
centers. Adaptive Behavior, 12, 223–240.

Narasimhan, H. (2009). Parallel artificial bee colony (PABC) algorithm. In IEEE World Congress
on Nature and Biologically Inspired Computing (NaBIC) (pp. 306-311).

Niknam, T. (2009). An efficient hybrid evolutionary algorithm based on PSO and HBMO
algorithms for multi-objective distribution feeder reconfiguration. Energy Conversion and
Management, 50, 2074–2082.

Niknam, T. (2011). An efficient multi-objective HBMO algorithm for distribution feeder
reconfiguration. Expert Systems with Applications, 38, 2878–2887.

Niknam, T., & Golestaneh, F. (2013). Enhanced bee swarm optimization algorithm for dynamic
economic dispatch. IEEE Systems Journal, 7, 754–762. doi:10.1109/JSYST.2012.2191831.

Niknam, T., Olamaie, J., & Khorshidi, R. (2008). A hybrid algorithm based on HBMO and fuzzy
set for multi-objective distribution feeder reconfiguration. World Applied Sciences Journal, 4,
308–315.

Niknam, T., Mojarrad, H. D., Meymand, H. Z., & Firouzi, B. B. (2011). A new honey bee mating
optimization algorithm for non-smooth economic dispatch. Energy, 36, 896–908.

Niknam, T., Fard, A. K., & Seifi, A. (2012). Distribution feeder reconfiguration considering fuel
cell-wind-photovoltaic power plants. Renewable Energy, 37, 213–225.

Olamaei, J., Niknam, T., Badali, S., & Arefi, (2012). Distribution feeder reconfiguration for loss
minimization based on modified honey bee mating optimization algorithm. Energy Procedia,
14, 304–311.

Omkar, S. N., Senthilnath, J., Khandelwal, R., Naik, G. N., & Gopalakrishnan, S. (2011).
Artificial bee colony (ABC) for multi-objective design optimization of composite structures.
Applied Soft Computing, 11, 489–499.

Pham, D. T., & Castellani, M. (2009). The bees algorithm: Modelling foraging behaviour to solve
continuous optimization problems. Proceedings of the Institution of Mechanical Engineers,
Part C: Journal of Mechanical Engineering Science, 223, 2919–2938.

Pham, D. T., & Ghanbarzadeh, A. (2007). Multi-objective optimisation using the bees algorithm.
In Third International Virtual Conference on Intelligent Production Machines and Systems
(IPROMS) (pp. 1–5). Dunbeath, Scotland: Whittles.

Pham, D. T., & Koç, E. (2010). Design of a two-dimensional recursive filter using the bees
algorithm. International Journal of Automation and Computing, 7, 399–402.

Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The bees
algorithm—a novel tool for complex optimisation problems. In Proceedings of Second
International Virtual Conference on Intelligent production machines and systems (IPROMS)
(pp. 454–459). Oxford: Elsevier.

Pham, D. T., Afify, A. A., & Koç, E. (2007a). Manufacturing cell formation using the bees
algorithm. In Third International Virtual Conference on Intelligent Production Machines and
Systems (IPROMS) (pp. 1–6). Dunbeath, Scotland: Whittles.

Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2007b). Using the bees
algorithm to schedule jobs for a machine. In Proceedings of Eighth International Conference
on Laser metrology, CMM and machine tool performance (LAMDAMAP) (pp. 430–439).
Euspen, UK: Cardiff.

Pham, D. T., Ghanbarzadeh, A., Otri, S., & Koç, E. (2009). Optimal design of mechanical
components using the bees algorithm. Proceedings of the Institution of Mechanical Engineers,
Part C: Journal of Mechanical Engineering Science, 223, 1051–1056.

Pinto, P., Runkler, T. A., & Sousa, J. M. (2005). Wasp swarm optimization of logistic systems. In
B. Ribeiro, R. F. Albrecht, A. Dobnikar, D. W. Pearson, & N. C. Steele (Eds.), International
Conference on Adaptive and Natural Computing Algorithms, Coimbra, Portugal (pp.
264–267). Wien: Springer.

References 77

http://dx.doi.org/10.1109/JSYST.2012.2191831

Pinto, P. C., Runkler, T. A., & Sousa, J. M. C. (2006, September 11–13). Agent based
optimization of the MAX-SAT problem using wasp swarms. In 7th Portuguese Conference on
Automatic Control (CONTROLO) (pp. 1–6). Lisboa, Portugal: Instituto Superior Técnico.

Quijano, N., & Passino, K. M. (2010). Honey bee social foraging algorithms for resource
allocation: Theory and application. Engineering Applications of Artificial Intelligence, 23,
845–861.

Rajasekhar, A., Pant, M., & Abraham, A. (2011). Cauchy movements for artificial bees for
finding better food sources. In Third World Congress on Nature and Biologically Inspired
Computing (NaBIC) (pp. 279–284).

Rajasekhar, A., Das, S., & Suganthan, P. N. (2012, June 10–15). Design of fractional order
controller for a servohydraulic positioning system with micro artificial bee colony algorithm.
In IEEE World Congress on Computational Intelligence (WCCI) (pp. 1–8). Brisbane,
Australia.

Ramírez, F. J., Lee, J. Y., Packianather, M. S., & Pham, D. T. (2010, November 15–26).
Enhancing multi-stage deep-drawing processes through the novel use of the bees-algorithm.
In Proceedings of 6th IPROMS Virtual Conference (pp. 1–6).

Runkler, T. A. (2008). Wasp swarm optimization of the c-means clustering model. International
Journal of Intelligent Systems, 23, 269–285.

Samanta, S., & Chakraborty, S. (2011). Parametric optimization of some non-traditional
machining processes using artificial bee colony algorithm. Engineering Applications of
Artificial Intelligence, 24, 946–957.

Sato, T., & Hagiwara, M. (1997). Bee system: Finding solution by a concentrated search. In IEEE
International Conference on Systems, Man, and Cybernetics (SMC) (pp. 3954–3959).

Scholz-Reiter, B., Jagalski, T., & Bendul, J. C. (2008). Autonomous control of a shop floor based
on bee’s foraging behaviour. In H.-D. Haasis (Ed.), Dynamics in logistics (pp. 415–423).
Berlin: Springer.

Senthilnath, J., Omkar, S. N., Mani, V., Tejovanth, N., Diwakar, P. G., & Archana, S. B. (2011).
Multi-spectral satellite image classification using glowworm swarm optimization. In IEEE
International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 47–50).

Shafia, M. A., Moghaddam, M. R., & Tavakolian, R. (2011). A hybrid algorithm for data
clustering using honey bee algorithm, genetic algorithm and k-means method. Journal of
Advanced Computer Science and Technology Research, 1, 110–125.

Sharma, T. K., Pant, M., & Bansal, J. C. (2012a, June 10–15). Artificial bee colony with mean
mutation operator for better exploitation. In IEEE World Congress on Computational
Intelligence (WCCI) (pp. 1–7). Brisbane, Australia.

Sharma, T. K., Pant, M., & Bansal, J. C. (2012b, June 10–15). Some modifications to enhance the
performance of artificial bee colony. In IEEE World Congress on Computational Intelligence
(WCCI) (pp. 1–8). Brisbane, Australia.

Shi, X., Li, Y., Li, H., Guan, R., Wang, L., & Liang, Y. (2010). An integrated algorithm based on
artificial bee colony and particle swarm optimization. In Sixth International Conference on
Natural Computation (ICNC) (pp. 2586–2590).

Slaa, E. J., & Hughes, W. O. H. (2009). Local enhancement, local inhibition, ravesdropping, and
the parasitism of social insect communication. In S. Jarau & M. Hrncir (Eds.), Ecological,
behavioral, and theoretical approaches, Chapter 8 (pp. 147–164). Boca Raton, FL: CRC
Press, Taylor & Francis Group, LLC. ISBN ISBN 978-1-4200-7560-1.

Song, J., Hu, J., Tian, Y., & Xu, Y. (2005, September 13–16). Re-optimization in dynamic
vehicle routing problem based on wasp-like agent strategy. In Proceedings of 8th
International Conference on Intelligent Transportation Systems (pp. 688–693). Vienna,
Austria.

Sotelo-Figueroa, M. A., Baltazar-Flores, M. D. R., Carpio, J. M., & Zamudio, V. (2010). A
comparation between bee swarm optimization and greedy algorithm for the knapsack problem
with bee reallocation. In Ninth Mexican International Conference on Artificial Intelligence
(pp. 22–27).

78 4 Bee Inspired Algorithms

Subotic, M., Tuba, M., & Stanarevic, N. (2010). Parallelization of the artificial bee colony (ABC)
algorithm. In Recent Advances in Neural Networks, Fuzzy Systems and Evolutionary
Computing (191–196).

Subramanian, S., Anandhakumar, R., & Ganesan, S. (2011). Generator maintenance management
using bio-inspired search algorithm. International Journal of Energy Sector Management, 5,
522–544.

Sundar, S., & Singh, A. (2012). A swarm intelligence approach to the early/tardy scheduling
problem. Swarm and Evolutionary Computation, 4, 25–32.

Tasgetiren, M. F., Pan, Q.-K., Suganthan, P. N., & Chen, A. H.-L. (2010, July 18–23) A discrete
artificial bee colony algorithm for the permutation flow shop scheduling problem with total
flowtime criterion. In IEEE World Congress on Computational Intelligence (pp. 137–144).
Barcelona, Spain: CCIB.

Tasgetiren, M. F., Pan, Q.-K., Suganthan, P. N., & Chen, A. H.-L. (2011). A discrete artificial bee
colony algorithm for the total flowtime minimization in permutation flow shops. Information
Sciences, 181, 3459–3475.

Tasgetiren, M. F., Pan, Q.-K., Suganthan, P. N., & Oner, A. (2013). A discrete artificial bee
colony algorithm for the no-idle permutation flowshop scheduling problem with the total
tardiness criterion. Applied Mathematical Modelling, 37, 6758–6779.

Teodorović, D. (2008). Swarm intelligence systems for transportation engineering: Principles and
applications. Transportation Research Part C, 16, 651–667.

Teodorović, D. (2009a). Bee colony optimization (BCO). In C. P. Lim, L. C. Jain, & S. Dehuri
(Eds.), Innovations in swarm intelligence (Vol. 248, pp. 39–60)., SCI Berlin, Heidelberg:
Springer.

Teodorović, D. (2009b). Bee colony optimization (BCO). In C. P. Lim, L. C. Jain, & S. Dehuri
(Eds.), Innovations in swarm intelligence. Berlin, Heidelberg: Springer.

Teodorović, D., & Dell’Orco, M. (2005). Bee colony optimization: A cooperative learning
approach to complex transportation problems. In 16th Mini-EURO Conference on Advanced
OR and AI Methods in Transportation (pp. 51–60).

Teodorovic, D. U. Š. A. N., Davidovic, T., & Selmic, M. (2011). Bee colony optimization: The
applications survey. ACM Transactions on Computational Logic, 1529, 3785.

Tereshko, V., & Lee, T. (2002). How information mapping patterns determine foraging behaviour
of a honeybee colony. Open Systems and Information Dynamics, 9, 181–193.

Theraulaz, G., & Bonabeau, E. (1995). Coordination in distributed building. Science, 269,
686–688.

Theraulaz, G., Goss, S., Gervet, J., & Deneubourg, J. L. (1991). Task differentiation in polistes
wasps colonies: A model for self-organizing groups of robots. In First International
Conference on Simulation of Adaptive Behavior (pp. 346–355). Cambridge, MA: MIT Press.

Tien, J. P., & Li, T. H. S. (2012). Hybrid Taguchi-chaos of multilevel immune and the artificial
bee colony algorithm for parameter identification of chaotic systems. Computers and
Mathematics with Applications, 64(5), 1108–1119. doi:10.1016/j.camwa.2012.03.029.

Tsai, P.-W., Pan, J.-S., Liao, B.-Y., & Chu, S.-C. (2009). Enhanced artificial bee colony
optimization. International Journal of Innovative Computing, Information and Control, 5,
1–12.

Vitorino, L. N., Ribeiro, S. F., & Bastos-Filho, C. J. A. (2012, June 10–15). A hybrid swarm
intelligence optimizer based on particles and artificial bees for high-dimensional search
spaces. In IEEE World Congress on Computational Intelligence (WCCI) (pp. 1–6). Brisbane,
Australia.

Wang, Z. (2009). Cooperative construction. Unpublished master thesis, The Ohio State
University.

Wang, D.-Z., Zhang, J.-S., Wan, F., & Zhu, L. (2006, May 27–29). A dynamic task scheduling
algorithm in grid environment. In 5th WSEAS International Conference on Telecommuni-
cations and Informatics (pp. 273–275). Istanbul, Turkey.

References 79

http://dx.doi.org/10.1016/j.camwa.2012.03.029

Wedde, H. F., & Farooq, M. (2006). A comprehensive review of nature inspired routing
algorithms for fixed telecommunication networks. Journal of Systems Architecture, 52,
461–484.

Wedde, H. F., Farooq, M., & Zhang, Y. (2004). Beehive: An efficient fault-tolerant routing
algorithm inspired by honey bee behavior. In M. Dorigo (Ed.), ANTS 2004 (Vol. 3172,
pp. 83–94)., LNCS Berlin, Heidelberg: Springer.

Wong, L.-P., Puan, C. Y., Low, M. Y. H., & Chong, C. S. (2008) Bee colony optimization
algorithm with big valley landscape exploitation for job shop scheduling problems. In
Proceedings of IEEE 2008 Winter Simulation Conference (pp. 2050–2058).

Xu, C., Duan, H., & Liu, F. (2010a). Chaotic artificial bee colony approach to uninhabited combat
air vehicle (UCAV) path planning. Aerospace Science and Technology, 14, 535–541.

Xu, S., Ji, Z., Pham, D. T., & Yu, F. (2010b). Bio-inspired binary bees algorithm for a two-level
distribution optimisation problem. Journal of Bionic Engineering, 7, 161–167.

Yang, X. S. (2005). Engineering optimizations via nature-inspired virtual bee algorithms. In José
Mira José & R. Álvarez (Eds.), Artificial intelligence and knowledge engineering applica-
tions: A bioinspired approach. Berlin Heidelberg: Springer.

Yildiz, A. R. (2013). A new hybrid artificial bee colony algorithm for robust optimal design and
manufacturing. Applied Soft Computing, 13, 2906–2912. (http://dx.doi.org/10.1016/
j.asoc.2012.04.013).

Zeng, F., Decraene, J., Low, M. Y. H., Hingston, P., Cai, W., Zhou, S., & Chandramohan, M.
(2010, July 18–23). Autonomous bee colony optimization for multi-objective function. In
IEEE World Congress on Computational Intelligence (WCCI) (pp. 1279–1286). Barcelona,
Spain: CCIB.

Zhang, H., & Ye, D. (2012). An artificial bee colony algorithm approach for routing in VLSI. In
Y. Tan, Y. Shi, & Z. Ji (Eds.), ICSI 2012, Part I (Vol. 7331, pp. 334–341)., LNCS Berlin,
Heidelberg: Springer.

Zhang, W., Wang, N., & Yang, S. (2013). Hybrid artificial bee colony algorithm for parameter
estimation of proton exchange membrane fuel cell. International Journal of Hydrogen
Energy, 38, 5796–5806.

Zhang, H., Zhu, Y., & Yan, X. (2102, June 10–15). Multi-hive artificial bee colony algorithm for
constrained multi-objective optimization. In IEEE World Congress on Computational
Intelligence (WCCI) (pp. 1–8). Brisbane, Australia.

80 4 Bee Inspired Algorithms

http://dx.doi.org/10.1016/j.asoc.2012.04.013
http://dx.doi.org/10.1016/j.asoc.2012.04.013

Chapter 5
Biogeography-based Optimization
Algorithm

Abstract In this chapter, we introduce a novel optimization algorithm called
biogeography-based optimization (BBO) which is inspired by the science of
biogeography. We first describe the general knowledge of the science of bioge-
ography in Sect. 5.1. Then, the fundamentals and performance of BBO are
introduced in Sect. 5.2. Finally, Sect. 5.3 summarises this chapter.

5.1 Introduction

Biogeography is a branch of geography in which the past and present distribution of
the world’s species are studied. In the area of biogeography, two prominent biologist,
i.e., MacArthur and Wilson, in their book MacArthur and Wilson (1967) showed that
the patterns of species richness of and area can be explained through a combination of
historical factors, such as habitat area, immigration rate, and extinction rate. Inspired
by that, recently, Simon (2008) proposed a new computational intelligence (CI)
algorithm, called biogeography-based optimization (BBO) algorithm.

5.1.1 Science of Biogeography

The biogeography can be defined as a study of distribution of life forms (such as,
plant, human, and animal species) in nature over time and space, such as the
immigration and emigration of species between habitats. In general, it can be
divided into two areas: i.e., ecological biogeography and historical biogeography.
The former is used to deal with the current distribution patterns, while the latter is
used to concern with long-term and large-scale distributions (Hobbs et al. 2013). In
addition, some experimental studies showed that biogeography are closely linked
to the evolution and the ecology. In other words, based on the science of bioge-
ography, we can understand why the species are in their present locations and in
developing protecting the world’s natural habitats.

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_5, � Springer International Publishing Switzerland 2014

81

5.2 Biogeography-based Optimization Algorithm

5.2.1 Fundamentals of Biogeography-based Optimization
Algorithm

Biogeography-based optimization (BBO) algorithm was originally proposed in
(Simon 2008) which is based on the mathematical models of biogeography that is
studied by Robert MacArthur and Edward Wilson (MacArthur and Wilson 1967).
In principle, there are two main operators in BBO, i.e., migration and mutation.
Before optimizing, each individual of population is evaluated and then follows
migration and mutation step to reach global minima. In order to implement BBO,
the following components need to be taken into account (Simon 2008):

• In migration, the information is shared between habitats that depend on emi-
gration rates l and immigration rates k of each solution. The immigration rate k
and the emigration rate l are functions of the number of species in the habitat.
The equilibrium number of species is S0 at which point the immigration and
emigration rates are equal (Simon 2008). They can be calculated through
Eqs. 5.1 and 5.2, respectively (Simon 2008):

ks ¼ I 1� S

Smax

� �

; for 0� S� Smax; ð5:1Þ

ls ¼ E
S

Smax

; for 0� S� Smax; ð5:2Þ

where Smax denotes the largest possible number of species, S is the number of
species, I is the maximum immigration rate, and E is the maximum emigration
rate.

In addition, each solution is modified depending on probability that is a user
defined parameter. Each individual has its own k and l and are functions of the
number of species S in the habitat. Poor solutions accept more useful information
from good solution, which improve the exploitation ability of algorithm.

• Meanwhile, BBO takes the advantage of mutation. The mutation is used to
increase the diversity of the population to get the good solutions. The aim of this
scheme is to make an island with low habitat suitability index (HSI) more likely
to mutate its suitability index variables (SIVs). It can be defined by Eq. 5.3
(Simon 2008):

m Sð Þ ¼ mmax

1� Ps

Pmax

� �

; ð5:3Þ

82 5 Biogeography-based Optimization Algorithm

where mmax is a user defined parameter, m(S) is the mutation rate for a habitat
that contains S species, and Pmax is the maximum probability.

Taking into account two key operators described above, the steps of imple-
menting standard BBO algorithm can be summarized as follows (Simon 2008):

• Step1: Initializing the BBO parameters.
• Step 2: Initializing a stochastic set of habitats where each potential solution to

the target problem is linked to a corresponding habitat.
• Step 3: For each habitat, mapping the HSI to the number of species (denoted by S),

the immigration rate (indicated by k), and the emigration rate (represented by l).
• Step 4: Using immigration and emigration to adjust each non-elite habitat in a

probabilistic manner.
• Step 5: For each habitat, first updating the probability of its species amount

through Eq. 5.4 (Simon 2008), next mutating each non-elite habitat according to
its probability (see Eq. 5.3), and then recalculating each HSI.

Ps ¼
� ks þ lsð ÞPs þ lsþ1Psþ1 S ¼ 0

� ks þ lsð ÞPs þ ks�1Ps�1 þ lsþ1Psþ1 1� S� Smax � 1
� ks þ lsð ÞPs þ ks�1Ps�1 S ¼ Smax

8
<

:
; ð5:4Þ

where Ps is the probability of a habitat that contains exactly S species, Ps?1 is
the probability of a habitat that contains S ? 1 species, Ps-1 is the probability
of a habitat that contains S - 1 species, and ks and ls are the immigration and
emigration rates, respectively, for a habitat that contains S species.

• Step 6: Returning to Step 3 for the next iteration. This loop can be stopped based
on a predetermined termination criterion.

5.2.2 Performance of BBO

In order to show how the BBO algorithm performs, Simon (2008) first tested it on
a set of benchmark functions, such as Ackley function, Griewank function,
Rastrigin function and Rosenbrock function. In comparison with other CI tech-
niques (e.g., ant colony optimization (ACO), genetic algorithm (GA), particle
swarm optimization (PSO), etc.), the BBO was able to offer better results in most
cases. Then a real world aircraft engine health estimation problem was further
employed by Simon (2008). Again, BBO offered better results than other com-
peting algorithms in this case study.

5.2 Biogeography-based Optimization Algorithm 83

5.3 Conclusions

In this chapter, we introduced a newly developed CI algorithm, i.e., BBO. In BBO,
each candidate solution is represented by a vector variable of the optimization
problem. It is considered as a ‘‘habitat’’ or an ‘‘island’’ in biogeography and their
features (include vegetation, rainfall, topographic diversity, temperate, etc.) that
characterize habitability are called SIV. The fitness of each solution is called its
HSI and depends on many features of the habitat. A good solution indicates an
island with a high HSI, which are well suited as habitats for biological species.
Habitats with a high HSI tend to have a large number of species and more likely to
share their features (SIVs), while those with a low HSI have a small number of
species and tend to accept features of other solutions. Furthermore, habitats with a
high HSI have a low species immigration rate and have a high emigration rate,
because on one side they are already nearly saturated with species, but on the other
side they have many opportunities to emigrate to neighbouring habitats, as animals
ride flotsam, fly or swim to neighbouring islands. Through this kind of probabi-
listic evolution, BBO searches for a good solution to an optimization problem.
Although it is a newly introduced CI method, we have witnessed the following
rapid spreading of BBO:

First, several enhanced versions of BBO can be found in the literature as
outlined below:

• Accelerated BBO (Lohokare et al. 2010, 2012).
• BBO with elitism (Simon et al. 2009).
• BBO with ensemble of migration models (Ma et al. 2012b).
• Binary BBO (Zhao et al. 2012).
• Biogeography migration algorithm (Mo and Xu 2010a).
• Blended BBO (Ma and Simon 2011b).
• Constrained BBO (Boussaïd et al. 2012).
• Dynamic system model of BBO (Simon 2011a).
• Enhanced BBO (Pattnaik et al. 2010).
• Hybrid ant colony optimization and BBO (Goel et al. 2012).
• Hybrid BBO with bacterial foraging algorithm (Lohokare et al. 2009c).
• Hybrid BBO with differential evolution (Boussaïd et al. 2011a; Bhattacharya

and Chattopadhyay 2010d, 2011b; Mahdad and Srairi 2011; Wang and Xu 2011;
Gong et al. 2011; Boussaïd et al. 2011b).

• Hybrid BBO with differential mutation (Wang and Cai 2011).
• Hybrid BBO with evolutionary strategy (Rathi et al. 2011; Du et al. 2009).
• Hybrid particle swarm optimization and BBO (Kundra and Sood 2010; Goel

et al. 2011b).
• Improved BBO (Chatterjee et al. 2012).
• Markov chains of BBO (Ma and Simon 2011a; Simon et al. 2011a, b).
• Modified BBO (Lohokare et al. 2009b; Kanoongo and Jain 2012; Ma et al. 2009;

Ma 2010).

84 5 Biogeography-based Optimization Algorithm

• Modified BBO based on predator-prey concepts (Silva et al. 2010, 2012; Silva
and Coelho 2010).

• Multiobjective BBO (Jamuna and Swarup 2012; Ma et al. 2012a).
• Multi-operator BBO (Li and Yin 2012).
• Oppositional BBO (Bhattacharya and Chattopadhyay 2010e, f; Ergezer et al.

2009; Yang et al. 2011; Ergezer and Simon 2011; Ergezer and Sikder 2011).
• Perturb BBO (Li et al. 2011).
• Real-coded BBO (Gong et al. 2010).
• Simplified BBO (Simon 2011b).

Second, the BBO algorithm has also been successfully applied to a variety of
optimization problems as listed below:

• Antenna design optimization (Lohokare et al. 2009a, b; Singh et al. 2010;
Sharaqa and Dib 2011; Goudos et al. 2012; Panduro et al. 2006).

• Communication network optimization (Ashrafinia et al. 2011a, b, c; Boussaïd
et al. 2011a).

• Data mining (Nikumbh et al. 2012).
• Image processing (Panchal et al. 2009; Gupta and Panchal 2011; Goel et al.

2011a; Panchal et al. 2011; Sinha et al. 2012; Goel et al. 2011b, 2012).
• Knapsack problem (Zhao et al. 2012).
• Machining process optimization (Mukherjee and Chakraborty 2013; Mukherjee

et al. 2012).
• Motor design optimization (Silva et al. 2012).
• Parameter estimation (Wang and Xu 2011).
• Path planning (Silva et al. 2010; Huang et al. 2012; Kundra and Sood 2010).
• Power system optimization (Jamuna and Swarup 2011b; Roy et al. 2009a, b,

2010a, b, c, d, 2011; Bhattacharya and Chattopadhyay 2009a, b, c, 2010a, b, c,
d, e, f, g, 2011a, b, 2012; Rarick et al. 2009; Silva and Coelho 2010; Lohokare
et al. 2010; Rathi et al. 2011; Jamuna and Swarup 2011a, 2012; Pandit 2012;
Rabiee et al. 2012; Kankanala et al. 2012; Mohammed and Talaq 2012; Gupta
et al. 2012; Mahdad and Srairi 2011; Kanoongo and Jain 2012; Mandal et al.
2011).

• Remanufacturing (Gao et al. 2013).
• Scheduling (Rahmati and Zandieh 2012).
• Travelling salesman problem (Mo and Xu 2010a, b; Song et al. 2010).
• Virtual simulation optimization (Gardner and Simon 2009).

Interested readers are referred to them as a starting point for a further explo-
ration and exploitation of the BBO algorithm.

Overall, it is still too early to claim that BBO is one of the best CI algorithms,
but the preliminary studies proved that it is indeed very competitive tool for
solving optimization problems.

5.3 Conclusions 85

References

Ashrafinia, S., Naeem, M., & Lee, D. (2011a). A low complexity evolutionary algorithm for
multi-user MIMO detection. In IEEE Symposium on Computational Intelligence in
Multicriteria Decision-Making (MDCM) (pp. 8–13). IEEE.

Ashrafinia, S., Pareek, U., Naeem, M., & LEE, D. (2011b). Biogeography-based optimization for
joint relay assignment and power allocation in cognitive radio systems. In IEEE Symposium
on Swarm Intelligence (SIS) (pp. 1–8). IEEE.

Ashrafinia, S., Pareek, U., Naeem, M., & LEE, D. (2011c). Source and relay power selection
using biogeography-based optimization for cognitive radio systems. In IEEE Vehicular
Technology Conference (VTC Fall) (pp. 1–5). IEEE.

Bhattacharya, A. & Chattopadhyay, P. K. (2009a). Biogeography-based optimization and its
application to nonconvex economic emission load dispatch problems. In 8th International
Conference on Advances in Power System Control, Operation and Management (APSCOM)
(pp. 1–6). IEEE.

Bhattacharya, A. & Chattopadhyay, P. K. (2009b). Economic dispatch solution using
biogeography-based optimization. In Annual IEEE India Conference (INDICON) (pp. 1–4).
IEEE.

Bhattacharya, A. & Chattopadhyay, P. K. (2009c). Non convex economic load dispatch problem
solution using biogeography-based optimization. In 8th International Conference on
Advances in Power System Control, Operation and Management (APSCOM) (pp. 1–6). IEEE.

Bhattacharya, A., & Chattopadhyay, P. K. (2010a). Application of biogeography-based
optimization for solving multi-objective economic emission load dispatch problems. Electric
Power Components and Systems, 38, 340–365.

Bhattacharya, A., & Chattopadhyay, P. K. (2010b). Biogeography-based optimization for
different economic load dispatch problems. IEEE Transactions on Power Systems, 25,
1064–1077.

Bhattacharya, A. & Chattopadhyay, P. K. (2010c). Biogeography-based optimization for solution
of optimal power flow problem. In International Conference on Electrical Engineering/
Electronics Computer Telecommunications and Information Technology (ECTI-CON) (pp.
435–439). IEEE.

Bhattacharya, A., & Chattopadhyay, P. K. (2010d). Hybrid differential evolution with
biogeography-based optimization for solution of economic load dispatch. IEEE Transactions
on Power Systems, 25, 1955–1964.

Bhattacharya, A. & Chattopadhyay, P. K. (2010e). Oppositional biogeography-based optimiza-
tion for multi-objective economic emission load dispatch. In Annual IEEE India Conference
(INDICON) (pp. 1–6). IEEE.

Bhattacharya, A., & Chattopadhyay, P. K. (2010f). Solution of economic power dispatch
problems using oppositional biogeography-based optimization. Electric Power Components
and Systems, 38, 1139–1160.

Bhattacharya, A., & Chattopadhyay, P. K. (2010g). Solving complex economic load dispatch
problems using biogeography-based optimization. Expert Systems with Applications, 37,
3605–3615.

Bhattacharya, A., & Chattopadhyay, P. K. (2011a). Application of biogeography-based
optimisation to solve different optimal power flow problems. IET Generation, Transmission
and Distribution, 5, 70–80.

Bhattacharya, A., & Chattopadhyay, P. K. (2011b). Hybrid differential evolution with
biogeography-based optimization algorithm for solution of economic emission load dispatch
problems. Expert Systems with Applications, 38, 14001–14010.

Bhattacharya, A., & Chattopadhyay, P. K. (2012). Closure to discussion of ‘‘Hybrid differential
evolution with biogeography-based optimization for solution of economic load dispatch’’.
IEEE Transactions on Power Systems, 27, 575.

86 5 Biogeography-based Optimization Algorithm

Boussaïd, I., Chatterjee, A., Siarry, P., & Ahmed-Nacer, M. (2011a). Hybridizing biogeography-
based optimization with differential evolution for optimal power allocation in wireless sensor
networks. IEEE Transactions on Vehicular Technology, 60, 2347–2353.

Boussaïd, I., Chatterjee, A., Siarry, P., & Hmed-Nacer, M. (2011b). Two-stage update
biogeography-based optimization using differential evolution algorithm (DBBO). Computers
and Operations Research, 38, 1188–1198.

Boussaïd, I., Chatterjee, A., Siarry, P., & Ahmed-Nacer, M. (2012). Biogeography-based
optimization for constrained optimization problems. Computers and Operations Research,
http://dx.doi.org/10.1016/j.cor.2012.04.012.

Chatterjee, A., Siarry, P., Nakib, A., & Blanc, R. (2012). An improved biogeography based
optimization approach for segmentation of human head CT-scan images employing fuzzy
entropy. Engineering Applications of Artificial Intelligence, doi:10.1016/j.engappai.2012.02.007.

Du, D., Simon, D., & Ergezer, M. (2009, October). Biogeography-based optimization combined
with evolutionary strategy and immigration refusal. In IEEE International Conference on
Systems, Man, and Cybernetics (SMC) (pp. 997–1002). San Antonio, TX, USA: IEEE.

Ergezer, M. & Sikder, I. (2011, Dec 22–24). Survey of oppositional algorithms. In 14th
International Conference on Computer and Information Technology (ICCIT 2011), Dhaka,
Bangladesh (pp. 623–628). IEEE.

Ergezer, M. & Simon, D. (2011). Oppositional biogeography-based optimization for combina-
torial problems. In IEEE Congress on Evolutionary Computation (CEC) (pp. 1496–1503).
IEEE.

Ergezer, M., Simon, D., & Du, D. (2009). Oppositional biogeography-based optimization. In
IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 1009–1014).
San Antonio, TX, USA: IEEE.

Gao, W.-J., Xing, B., & Marwala, T. (2013). Computational intelligence in used products
retrieval and reproduction. International Journal of Swarm Intelligence Research, 4, 78–125.

Gardner, B. G. & Simon, D. (2009). Evolutionary algorithm Sandbox: A web-based graphical
user interface for evolutionary algorithms. In IEEE International Conference on Systems,
Man, and Cybernetics (SMC) (pp. 577–582). San Antonio, TX, USA: IEEE.

Goel, L., Gupta, D., & Panchal, V. K. (2011a). Performance governing factors of biogeography
based land cover feature extraction: An analytical study. In World Congress on Information
and Communication Technologies (WICT) (pp. 165–170). IEEE.

Goel, S., Sharma, A., & Goel, A. (2011b). Development of swarm based hybrid algorithm for
identification of natural terrain features. In Proceedings of the 2011 International
Computational Intelligence and Communication Networks (CICN) (pp. 293–296). IEEE.

Goel, L., Gupta, D., & Panchal, V. K. (2012). Hybrid bio-inspired techniques for land cover
feature extraction: A remote sensing perspective. Applied Soft Computing, 12, 832–849.

Gong, W., Cai, Z., Ling, C. X., & Li, H. (2010). A real-coded biogeography-based optimization
with mutation. Applied Mathematics and Computation, 216, 2749–2758.

Gong, W., Cai, Z., & Ling, C. X. (2011). DE/BBO: A hybrid differential evolution with
biogeography-based optimization for global numerical optimization. Soft Computing, 15,
645–665.

Goudos, S. K., Baltzis, K. B., Siakavara, K., Samaras, T., Vafiadis, E., & Sahalos, J. N. (2012).
Reducing the number of elements in linear arrays using biogeography-based optimization. In
6th European Conference on Antennas and Propagation (EUCAP) (pp. 1615–1618). IEEE.

Gupta, N. & Panchal, V. K. (2011). Artificial intelligence for mixed pixel resolution. In IEEE
International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 2801–2804). IEEE.

Gupta, M., Gupta, N., Swarnkar, A., & Niazi, K. R. (2012). Network constrained economic load
dispatch using biogeography based optimization. In Students Conference on Engineering and
Systems (SCES) (pp. 1–4). IEEE.

Hobbs, R. J., Higgs, E. S., & Hall, C. M. (Eds.). (2013). Novel ecosystems: Intervening in the new
ecological world order, River Street, Hoboken, NJ 07030-5774, USA: Wiley, ISBN 978-1-
118-35422-3.

References 87

http://dx.doi.org/10.1016/j.cor.2012.04.012
http://dx.doi.org/10.1016/j.engappai.2012.02.007

Huang, N., Liu, G., & He, B. (2012). Path planning based on Voronoi diagram and biogeography-
based optimization. In Y. Tan., Y. Shi. & Z. Ji (Eds.), ICSI 2012, Part I, LNCS 7331 (pp.
225–232). Berlin Heidelberg: Springer.

Jamuna, K., & Swarup, K. S. (2011a). Biogeography based optimization for optimal meter
placement for security constrained state estimation. Swarm and Evolutionary Computation, 1,
89–96.

Jamuna, K. & Swarup, K. S. (2011b, July 20–22). Power system observability using
biogeography based optimization. In Second International Conference on Sustainable Energy
and Intelligent System (SEISCON), Dr. M.G.R. University, Maduravoyal, Chennai, Tamil
Nadu, India (pp. 384–389). IEEE.

Jamuna, K., & Swarup, K. S. (2012). Multi-objective biogeography based optimization for
optimal PMU placement. Applied Soft Computing, 12, 1503–1510.

Kankanala, P., Srivastava, S. C., Srivastava, A. K., & Schulz, N. N. (2012). Optimal control of
voltage and power in a multi-zonal MVDC shipboard power system. IEEE Transactions on
Power Systems, 27, 642–650.

Kanoongo, S. & Jain, P. (2012). Biogeography based optimization for different economic load
dispatch problem with different migration models. In IEEE Students’ Conference on
Electrical, Electronics and Computer Science (SCEECS) (pp. 1–4). IEEE.

Kundra, H., & Sood, M. (2010). Cross-country path finding using hybrid approach of PSO and
BBO. International Journal of Computer Applications, 7, 15–19.

Li, X. & Yin, M. (2012). Multi-operator based biogeography based optimization with mutation
for global numerical optimization. Computers and Mathematics with Applications.
doi:10.1016/j.camwa.2012.04.015.

Li, X., Wang, J., Zhou, J., & Yin, M. (2011). A perturb biogeography based optimization with
mutation for global numerical optimization. Applied Mathematics and Computation, 218,
598–609.

Lohokare, M. R., Pattnaik, S. S., Devi, S., Bakwad, K. M., & Joshi, J. G. (2009a). Parameter
calculation of rectangular microstrip antenna using biogeography-based optimization. In
Applied Electromagnetics Conference (AEMC) (pp. 1–4). IEEE.

Lohokare, M. R., Pattnaik, S. S., Devi, S., Panigrahi, B. K., Bakwad, K. M., & Joshi, J. G.
(2009b). Modified BBO and calculation of resonant frequency of circular microstrip antenna.
In World Congress on Nature and Biologically Inspired Computing (NaBIC) (pp. 487–492).
IEEE.

Lohokare, M. R., Pattnaik, S. S., Devi, S., Panigrahi, B. K., Das, S., & Bakwad, K. M. (2009c).
Intelligent biogeography-based optimization for discrete variables. In World Congress on
Nature and Biologically Inspired Computing (NaBIC) (pp. 1088–1093). IEEE.

Lohokare, M., Panigrahi, B. K., Pattanaik, S. S., Devi, S., & Mohapatra, A. (2010). Optimal load
dispatch using accelerated biogeography-based optimization. In 2010 Joint International
Conference on Power Electronics, Drives and Energy Systems (PEDES) and 2010 Power
India (pp. 1–5). IEEE.

Lohokare, M. R., Panigrahi, B. K., Pattnaik, S. S., Devi, S., & Mohapatra, A. (2012).
Neighborhood search-driven accelerated biogeography-based optimization for optimal load
dispatch. IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and
Reviews, doi:10.1109/TSMCC.2012.2190401.

Ma, H. (2010). An analysis of the equilibrium of migration models for biogeography-based
optimization. Information Sciences, 180, 3444–3464.

Ma, H., & Simon, D. (2011a). Analysis of migration models of biogeography-based optimization
using Markov theory. Engineering Applications of Artificial Intelligence, 24, 1052–1060.

Ma, H., & Simon, D. (2011b). Blended biogeography-based optimization for constrained
optimization. Engineering Applications of Artificial Intelligence, 24, 517–525.

Ma, H., Ni, S., & Sun, M. (2009, Dec 16–18). Equilibrium species counts and migration model
tradeoffs for biogeography-based optimization. In 48th IEEE Conference on Decision and
Control and the 28th Chinese Control Conference, Shanghai, P.R.China, (pp. 3306–3310).
IEEE.

88 5 Biogeography-based Optimization Algorithm

http://dx.doi.org/10.1016/j.camwa.2012.04.015
http://dx.doi.org/10.1109/TSMCC.2012.2190401

Ma, H.-P., Ruan, X.-Y., & Pan, Z.-X. (2012a). Handling multiple objectives with biogeography-
based optimization. International Journal of Automation and Computing, 9, 30–36.

Ma, H., Fei, M., Ding, Z., & Jin, J. (2012b). Biogeography-based optimization with ensemble of
migration models for global numerical optimization. In IEEE World Congress on
Computational Intelligence (WCCI), 10–15 June, Brisbane, Australia (pp. 1–8). IEEE.

Macarthur, R. & Wilson, E. O. (1967). The theory of island biogeography. Princeton, NJ:
Princeton University Press.

Mahdad, B. & Srairi, K. (2011). Differential evolution based dynamic decomposed strategy for
solution of large practical economic dispatch. In 10th International Conference on
Environment and Electrical Engineering (EEEIC) (pp. 1–5). IEEE.

Mandal, K. K., Bhattacharya, B., Tudu, B., & Chakraborty, N. (2011). A novel population-based
optimization algorithm for optimal distribution capacitor planning. In International Confer-
ence on Energy, Automation, and Signal (ICEAS) (pp. 1–6). IEEE.

Mo, H. & Xu, L. (2010a). Biogeography based optimization for traveling salesman problem. In
Sixth International Conference on Natural Computation (ICNC) (pp. 3143–3147). IEEE.

Mo, H. & Xu, L. (2010b). Biogeography migration algorithm for traveling salesman problem. In
Y. Tan., Y. Shi., & K. C. Tan (Eds.), ICSI 2010, Part I, LNCS 6145 (pp. 405–414). Berlin
Heidelberg: Springer.

Mohammed, Z. & Talaq, J. (2012). Unit commitment by biogeography based optimization
method. In 16th IEEE Mediterranean Electrotechnical Conference (MELECON) (pp.
551–554). IEEE.

Mukherjee, R. & Chakraborty, S. (2013). Selection of the optimal electrochemical machining
process parameters using biogeography-based optimization algorithm. International Journal
of Advanced Manufacturing Technology, doi:10.1007/s00170-012-4060-0.

Mukherjee, R., Chakraborty, S., & Samanta, S. (2012). Selection of wire electrical discharge
machining process parameters using non-traditional optimization algorithms. Applied Soft
Computing, 12, 2506–2516.

Nikumbh, S., Ghosh, S., & Jayaraman, V. K. (2012). Biogeography-based informative gene
selection and cancer classification using SVM and random forests. In IEEE World Congress
on Computational Intelligence (WCCI), 10–15 June, Brisbane, Australia (pp. 187–192). IEEE.

Panchal, V. K., Goel, S., & Bhatnagar, M. (2009). Biogeography based land cover feature
extraction. In World Congress on Nature and Biologically Inspired Computing (NaBIC) (pp.
1588–1591). IEEE.

Panchal, V. K., Bhugra, D., Goel, S., & Singhania, V. (2011). Study on the behaviour of BBO
over natural terrain features. In 3rd International Conference on Electronics Computer
Technology (ICECT) (pp. 28–32). IEEE.

Pandit, M. (2012). Discussion of ‘‘Hybrid differential evolution with biogeography-based
optimization for solution of economic load dispatch’’. IEEE Transactions on Power Systems,
27, 574–575.

Panduro, M., Mendez, A., Dominguez, R., & Romero, G. (2006). Design of non-uniform circular
antenna arrays for side lobe reduction using the method of genetic algorithms. International
Journal of Electronic Communication, 60, 713–717.

Pattnaik, S. S., Lohokare, M. R., & Devi, S. (2010). Enhanced biogeography-based optimization
using modified clear duplicate operator. In Second World Congress on Nature and
Biologically Inspired Computing, 15–17 Dec, Kitakyushu, Fukuoka, Japan (pp. 715–720).
IEEE.

Rabiee, A., Mohammadi-Ivatloo, B., & Ehsan, M. (2012). Discussion of ‘‘Hybrid differential
evolution with biogeography-based optimization for solution of economic load dispatch’’.
IEEE Transactions on Power Systems, 27, 574.

Rahmati, S. H. A., & Zandieh, M. (2012). A new biogeography-based optimization (BBO)
algorithm for the flexible job shop scheduling problem. International Journal of Advanced
Manufacturing Technology, 58, 1115–1129.

References 89

http://dx.doi.org/10.1007/s00170-012-4060-0

Rarick, R., Simon, D., Villaseca, F. E., & Vyakaranam, B. (2009, October). Biogeography-based
optimization and the solution of the power flow problem. In IEEE International Conference
on Systems, Man, and Cybernetics (SMC), San Antonio, TX, USA, (pp. 1003–1008). IEEE.

Rathi, A., Agarwal, A., Sharma, A., & Jain, P. (2011). A new hybrid technique for solution of
economic load dispatch problems based on biogeography based optimization. In IEEE Region
10 Conference TENCON (pp. 19–24). IEEE.

Roy, P. K., Ghoshal, S. P., & Thakur, S. S. (2009a). Biogeography based optimization technique
applied to multi-constraints economic load dispatch problems. In Transmission and
Distribution Conference and Exposition: Asia and Pacific (pp. 1–4). IEEE.

Roy, P. K., Ghoshal, S. P., & Thakur, S. S. (2009b). Biogeography based optimization to solve
economic load dispatch considering valve point effects. In World Congress on Nature and
Biologically Inspired Computing (NaBIC) (pp. 1213–1218). IEEE.

Roy, P. K., Ghoshal, S. P., & Thakur, S. S. (2010a). Biogeography-based optimization for
economic load dispatch problems. Electric Power Components and Systems, 38, 166–181.

Roy, P. K., Ghoshal, S. P., & Thakur, S. S. (2010b). Biogeography based optimization for multi-
constraint optimal power flow with emission and non-smooth cost function. Expert Systems
with Applications, 37, 8221–8228.

Roy, P. K., Ghoshal, S. P., & Thakur, S. S. (2010c). Combined economic and emission dispatch
problems using biogeography-based optimization. Electrical Engineering, 92, 173–184.

Roy, P. K., Ghoshal, S. P., & Thakur, S. S. (2010d). Multi-objective optimal power flow using
biogeography-based optimization. Electric Power Components and Systems, 38, 1406–1426.

Roy, P. K., Ghoshal, S. P., & Thakur, S. S. (2011). Optimal reactive power dispatch considering
flexible AC transmission system devices using biogeography-based optimization. Electric
Power Components and Systems, 39, 733–750.

Sharaqa, A. & Dib, N. (2011). Design of linear and circular antenna arrays using biogeography
based optimization. In IEEE Jordan Conference on Applied Electrical Engineering and
Computing Technologies (AEECT) (pp. 1–6). IEEE.

Silva, M. D. A. C. E. & Coelho, L. D. S. (2010). Biogeography-based optimization combined
with predator-prey approach applied to economic load dispatch. In Eleventh Brazilian
Symposium on Neural Networks (SBRN) (pp. 164–169). IEEE.

Silva, M. A. C., Coelho, L. D. S., & Freire, R. Z. (2010). Biogeography-based optimization
approach based on predator-prey concepts applied to path planning of 3-DOF robot
manipulator. In IEEE Conference on Emerging Technologies and Factory Automation
(ETFA) (pp. 1–8). IEEE.

Silva, M. D. A. C. E., Coelho, L. D. S., & Lebensztajn, L. (2012). Multiobjective biogeography-
based optimization based on predator-prey approach. IEEE Transactions on Magnetics, 48,
951–954.

Simon, D. (2008). Biogeography-based optimization. IEEE Transactions on Evolutionary
Computation, 12, 702–713.

Simon, D. (2011a). A dynamic system model of biogeography-based optimization. Applied Soft
Computing, 11, 5652–5661.

Simon, D. (2011b). A probabilistic analysis of a simplified biogeography-based optimization
algorithm. Evolutionary Computation, 19, 167–188.

Simon, D., Ergezer, M., & Du, D. (2009). Population distributions in biogeography-based
optimization algorithms with elitism. In IEEE International Conference on Systems, Man, and
Cybernetics (SMC), San Antonio, TX, USA, (pp. 991–996). IEEE.

Simon, D., Ergezer, M., Du, D., & Rarick, R. (2011a). Markov models for biogeography-based
optimization. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics,
41, 299–306.

Simon, D., Rarick, R., Ergezer, M., & Du, D. (2011b). Analytical and numerical comparisons of
biogeography-based optimization and genetic algorithms. Information Sciences, 181,
1224–1248.

Singh, U., Kumar, H., & Kamal, T. S. (2010). Design of Yagi-Uda antenna using biogeography
based optimization. IEEE Transactions on Antennas and Propagation, 58, 3375–3379.

90 5 Biogeography-based Optimization Algorithm

Sinha, S., Bhola, A., Panchal, V. K., Singhal, S., & Abraham, A. (2012, June 10–15). Resolving
mixed pixels by hybridization of biogeography based optimization and ant colony
optimization. In IEEE World Congress on Computational Intelligence (WCCI), Brisbane,
Australia (pp. 1–6). IEEE.

Song, Y., Liu, M., & Wang, Z. (2010). Biogeography-based optimization for the traveling
salesman problems. In Third International Joint Conference on Computational Science and
Optimization (CSO) (pp. 295–299). IEEE.

Wang, Y. & Cai, Z. (2011, Aug 12–14). A novel hybrid biogeography-based optimization with
differential mutation. In International Conference on Electronic and Mechanical Engineering
and Information Technology (EMEIT) (pp. 2710–2714). IEEE.

Wang, L., & Xu, Y. (2011). An effective hybrid biogeography-based optimization algorithm for
parameter estimation of chaotic systems. Expert Systems with Applications, 38, 15103–15109.

Yang, X., Cao, J., Li, K., & Li, P. (2011, Oct 19–21). Improved opposition-based biogeography
optimization. In Fourth International Workshop on Advanced Computational Intelligence
(IWACI), Wuhan, Hubei, China (pp. 642–647). IEEE.

Zhao, B., Deng, C., Yang, Y., & Peng, H. (2012). Novel binary biogeography-based optimization
algorithm for the knapsack problem. In Y. Tan., Y. Shi., & Z. Ji (Eds.), ICSI 2012, Part I,
LNCS 7331 (pp. 217–224). Berlin Heidelberg: Springer.

References 91

Chapter 6
Cat Swarm Optimization Algorithm

Abstract In this chapter, we present a new population-based method, called cat
swarm optimization (CSO) algorithm, which imitates the natural behaviour of cats.
We first describe the general knowledge of the behaviour of cats in Sect. 6.1. Then,
the fundamentals and performance of CSO are introduced in Sect. 6.2. Next, some
selected variations of CSO are explained in Sect. 6.3. Right after this, Sect. 6.4
presents a representative CSO application. Finally, Sect. 6.5 summarises this
chapter.

6.1 Introduction

Cats exhibit fascinated social behaviours that have long since attracted the
attention of human beings. When we were young, we may have observed that cats
have a strong curiosity towards moving objects. We may have also discovered that
even though cats spend most of their time in resting, they always remain alert and
can possess a good hunting skill. Inspired by these behavioural pattern, Chu and
Tsai (2007) proposed a new optimization algorithm called cat swarm optimization
(CSO) that involves two modes (i.e., seeking and tracing) of operations for solving
complex optimization problems.

6.1.1 Behaviour of Cats

Nowadays, one of the most popular companion animals can be found in homes
throughout the world is the domestic cats. However, cat social behaviour is
complex and incompletely understood. Recently, researchers have focused their
attention on two categories, i.e., resting behaviour and chasing behaviour.

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_6, � Springer International Publishing Switzerland 2014

93

6.1.1.1 Cat Sleeping/Resting Behaviour

You may interesting about why the cats sleep so much? Several issues are involved
(Mills et al. 2010): first, this is because they have different daily sleep-wake cycle
that we do. That means, they may sleep too much during the day when we are
awake, and spend so much time awake at night when we need to sleep. Second,
cats rely strongly on ‘‘resting’’ behaviour to hunt (i.e., sleep time can help cats
increase the amount of energy required). Third, cat usually keep ‘‘one eye open’’
condition which means when the cat ‘‘sleeping’’, he still has a very high level of
alertness so that he can spring up and into action at a moment’s notice.

6.1.1.2 Cat Hunting/Chasing Behaviour

As we know, hunting is one of cats’ instinct characteristics and is always a big part
of their life. Once a cat is ready for hunting, he will slowly move his body into a
crouch and wait, eyes glues on the prey. At this moment, we can say that he is a
perfect example in exercising the art of patience. Just before the pounce, he sizes
up the distance between himself and the prey by shaking her head so this can better
judge his leap. He moves incredibly fast and finally catches his prey. Furthermore,
in the wild, the cat usually need to hunt a lot of smaller prey throughout the day to
keep himself nourished. To do that, he must be able to rest between each hunt in
order to pounce quickly when his target approaches.

6.2 Fundamentals of Cat Swarm Optimization Algorithm

Cat swarm optimization (CSO) algorithm is based on a swarm of N individuals,
each evolving in M dimensional space with its coordinates representing a potential
solution to a problem with M attributes. In general, there are two sub-modes
(i.e., seeking mode and tracing mode) are combined to define the flow of CSO. To
achieve an appropriate balance between the exploitation of the search position
gathered so far (i.e., seeking mode) and the exploration of untraced or relatively
unexplored search space regions (i.e., tracing mode), a mixed ration (MR) is
employed. Normally, due to the cats are resting most of the time, the value of MR
is very small. Furthermore, according to the memory structures which described in
the seeking mode and the velocities behaviour which involved in the tracing mode,
the positions of each cat is updated.

94 6 Cat Swarm Optimization Algorithm

6.2.1 Rest and Alert-Seeking Mode

Just like the resting behaviour of the real cats, the objective of the artificial cats in
the seeking mode is to observe their environment for the best place to move to
given its current position. It presents a higher exploitative capacity. The working
principle is very simple that involves two steps: i.e., improvement and update.
In general, the seeking behaviour is based on four essential factors, which are
described as follows (Chu and Tsai 2007):

• Seeking memory pool (SMP): It gives the size of memory of each cat in which
the cats should improve it.

• Seeking range of the selected dimension (SRD): By taking into account the
mutative range of cats’ positions which composed of M dimensions, SRD
guarantees that it not be out of range when a dimension is selected for mutation.

• Counts of dimension to change (CDC): It controls how many of the dimensions
will be varied.

• Self position consideration (SPC): It is a Boolean valued variable to decide
whether the present position is a candidate solution. Note that no matter the
value of SPC is true of false, the value of SMP will not be influenced.

The working procedure of seeking mode is as follows (Chu and Tsai 2007):

• Make j copies of the present position of catk, where j ¼ SMP. If the value of
SPC is true, let j ¼ SMP� 1ð Þ, then retain the present position as one of the
candidates.

• Whenever a candidate point enters, the position of each copy will be updated
according to CDC by randomly adding or subtracting SRD percents the present
position value.

• Calculate the fitness value (FS) of all candidate points.
• If all fitness values are equal, set all the selecting probability of each candidate

point be 1; otherwise, the selecting probability of each candidate point will be
calculated via Eq. 6.1 (Chu and Tsai 2007):

Pi ¼
FSi � FSbj j

FSmax � FSmin

; where 0 \ i \ j; ð6:1Þ

where FSb is the best solution so far, FSmaxis the largest FS in the candidates,
and FSmin is the smallest one.

If FSb ¼ FSmax, that means the goal of the fitness function is to find the min-
imum solution, otherwise, it will be set for FSb ¼ FSmin.

• Randomly pick a newly generated solution to move to and replaces the position
of catk.

6.2 Fundamentals of Cat Swarm Optimization Algorithm 95

6.2.2 Movement-Tracing Mode

The tracing mode can be seen as an exploration mechanism that avoids quick
convergence. (Chu and Tsai 2007) assumed that each cat chase a prey or any
moving object according to its velocity. The action of tracing mode can be
described as follows (Chu and Tsai 2007):

• Update the velocities for every dimension (vk; d) via Eq. 6.2 (Chu and Tsai
2007):

vk; d ¼ vk; d þ r1 � c1 � xbest; d � xk; d

� �
; d ¼ 1; 2; . . .; M; ð6:2Þ

where xbest; d is the position of the best solution found by the cat, xk; d is the
position of catk, c1 is a constant and r1 is a random value in the range of 0; 1½ �.

• Check if the velocities are in the range of maximum velocity. In case the new
velocity is over-range, it is set equal to the limit.

• Update the position of catk via Eq. 6.3 (Chu and Tsai 2007):

xk; d ¼ xk; d þ vk; d: ð6:3Þ

Overall, the CSO algorithm can be summarized as follows (Chu and Tsai 2007):

• Step 1: Create N cats. For each catk, define its positions and velocities via
Eqs. 6.4 and 6.5, respectively (Chu and Tsai 2007):

xk; d ¼ xk; 1; xk; 2; . . .; xk; d

� �
; ð6:4Þ

vk; d ¼ vk; 1; vk; 2; . . .; vk; d

� �
; ð6:5Þ

where d 1� d�Dð Þ represents the dimensions.
• Step 2: Initialize the flag of each cat. Randomly pick number of cats and set

them into tracing mode according to MR, and the others set into seeking mode.
• Step 3: Evaluate the fitness value of each cat and keep the best position (xbest; d)

into the memory.
• Step 4: Move the cats according to their flags, if catk is in seeking mode, apply

the cat to the seeking mode process, otherwise apply it to the tracing mode
process. Both process steps are presented above.

• Step 5: Reinitialize the flag of each cat.
• Step 6: Check the termination condition, if satisfied, terminate the program,

otherwise, repeat Step 3 to Step 5.

96 6 Cat Swarm Optimization Algorithm

6.2.3 Performance of CSO

To evaluate the performance of the CSO algorithm, Chu and Tsai (2007) proposed
six test functions. Compared with particle swarm optimization (PSO) and PSO
with weighting factor (PSO-WF), the CSO algorithm presented a better results of
finding the global best solution.

6.3 Selected CSO Variants

Although CSO algorithm is a new member of computational intelligence (CI)
family, a number of CSO variations have been proposed in the literature for the
purpose of further improving the performance of CSO. This section gives an
overview to some of these CSO variants which have been demonstrated to be very
efficient and robust.

6.3.1 Parallel CSO Algorithm

Tsai et al. (2008) and (2012) pointed out that one of the active research directions
in CSO would be to develop the effective parallelization of CSO. The reason for
that is due to the CSO algorithm includes many individual and local procedures.

In 2008, Tsai et al. (2008) proposed a parallel structure of the CSO algorithm,
called Parallel CSO (PCSO). In general, PCSO has the same operation as the CSO
method for the process of the seeking mode. The main difference between both
algorithms is reflected in tracing mode. In CSO, each cat move forward to the
global best solution directly, while in PCSO, at each construction step all the cats
first move forward to the local best solution of its own group. Furthermore, the
individuals of the PCSO algorithm is initially divided into several subpopulations
that occasionally exchange solutions through an information exchange process.
The main benefit of this procedure is that performs a cooperation mechanism
between subpopulations. By comparing the local best solutions collected from the
parallel groups, a global best solution can be discovered.

The parallel tracing mode process can be described as follows (Tsai et al.
2008):

• Update the velocities for every dimension (vk; d tð Þ) for the catk at the current
iteration via Eq. 6.6 (Tsai et al. 2008):

vk; d tð Þ ¼ vk; d t � 1ð Þ þ r1 � c1 � xlbest; d t � 1ð Þ � xk; d t � 1ð Þ
� �

; d ¼ 1; 2; . . .;M;

ð6:6Þ

6.2 Fundamentals of Cat Swarm Optimization Algorithm 97

where t denotes the iteration number, xlbest; d t � 1ð Þ denotes the position of the
cat who has the best fitness value at the previous iteration in the group that catk

belongs to, and M denotes the dimension of the solution space.
• Check if the velocities are in the range of maximum velocity. The new velocity

is bounded to the maximum velocity in case the new velocity is over-range.
• Update the position of catk via Eq. 6.7 (Tsai et al. 2008):

xk; d tð Þ ¼ xk; d t � 1ð Þ þ vk; d tð Þ: ð6:7Þ

Furthermore, in terms of the information exchanging process, Tsai et al. (2008)
employed a parameter called ECH to control the whole procedure. The process can
be performed through the following steps:

• Pick up a group of subpopulations sequentially and sort the individuals in this
group according to their fitness values.

• Randomly select a local best solution from an unrepeatable group.
• The individual whose fitness value is the worst in the group is replaced by the

selected local best solution.
• Repeatedly perform Step 1 to Step 3 G times (i.e., the number of subgroups) to

let every group receives a local best solution from the others.

Taking into account some basic rules described above, the procedures of the
PCSO algorithm can be summarized as follows (Tsai et al. 2008):

• Step 1: Create N cats, randomly sprinkle the cats into the M-dimensional
solution space within the constrain ranges of the initial value and randomly
collect them into G groups. Meanwhile, generate the velocities for each
dimension.

• Step 2: Initialize the flag of each cat. Randomly pick number of cats and set
them into tracing mode according to MR, where MR 2 0; 1½ �, and the others set
into seeking mode.

• Step 3: Evaluate the fitness value of each cat by taking the coordinates into the
fitness function which represents the benchmark and the characteristics of the
problem to be solved. After calculating, record the coordinate xbest; d and the
fitness value of the cat which has the best fitness value found so far.

• Step 4: Move the cats according to their flags, if catk is in seeking mode, apply
the cat to the seeking mode process, otherwise apply it to the parallel tracing
mode process. Both process steps are presented above.

• Step 5: Reinitialize the flag of each cat and separate them into statuses that
indicating the seeking or the tracing by re-pick N � 1�MRð Þ½ � cats to move in
the seeking mode and N �MRð Þ cats to move in the parallel tracing mode.

• Step 6: Check whether the number of iterations reaches a predefined iteration
number, if satisfied, apply the information exchanging process.

98 6 Cat Swarm Optimization Algorithm

• Step 7: Check the termination condition. If satisfied, output the coordinate
which represents the found best solution and stop; otherwise, go to Step 3.

6.3.1.1 Performance of PCSO

To test the performance of PCSO, three test functions (i.e., Rosenbrock function,
Rastrigrin function, and Griewank function) were adopted in (Tsai et al. 2008) and
compared with standard CSO, PSO, and PSO-WF. Computational results showed
that PCSO performs better then CSO and much better than PSO when the popu-
lation size is small and the iteration is less. Furthermore, the PCSO algorithm
revealed a good convergence and searching ability.

6.3.2 Multiobjective CSO Algorithm

Recently, in order to deal with multi-criteria optimization problems, Pradhan and
Panda (2012) developed a new multiobjective cat swarm optimization (called
MOCSO), in which the concept of external archive and Pareto dominance is
incorporated. The basic idea of the Multiobjective CSO (MOCSO) algorithm
utilized the major structure of the CSO method. That means, two modes of
operations (i.e., seeking mode and tracing mode) are mathematically modelled as
well.

6.3.2.1 Seeking Mode of MOCSO

A term used in this mode is SMP that representing the number of copies of a cat
produced in seeking mode. The main steps involved in this mode are as follows
(Pradhan and Panda 2012):

• Create T ¼ SMPð Þ copies of jth cat, i.e., Ykd where 1� k� Tð Þ and 1� d�Dð Þ.
D is the total number of dimensions.

• Apply a mutation operator to Yk.
• Evaluate the fitness of all mutated copies.
• Update the contents of the archive with the position of those mutated copies

which represent non-dominated solutions.
• Pick a candidate randomly from T copies and place it at the position of jth cat.

6.3.2.2 Tracing Mode of MOCSO

In this mode, the rapid chase of the cat is mathematically modelled as a large
change in its position. The global best position of the cat is represented as

6.3 Selected CSO Variants 99

Xg ¼ Xg1;Xg2; . . .;Xgd

� �
. The main steps involved in tracing mode are outlined as

follows (Pradhan and Panda 2012):

• Compute the new velocity of ith cat using Eq. 6.8 (Pradhan and Panda 2012):

Vid ¼ w� Vid þ c� r � Xgd � Xid

� �
; ð6:8Þ

where w is the inertia weight, c is the acceleration constant, and r is a random
number uniformly distributed in the range 0; 1½ �. The global best (Xg) is selected
randomly from the external archive.

• Compute the new position of ith cat using Eq. 6.9 (Pradhan and Panda 2012):

Xid ¼ Xid þ Vid: ð6:9Þ

• If the new position of ith cat corresponding to any dimension goes beyond the
search space, then the corresponding boundary value is assigned to that
dimension and the velocity corresponding to that dimension is multiplied by �1
to continue the search in the opposite direction.

• Evaluate the fitness of the cats.
• Update the contents of the archive with the position of those cats which rep-

resent non-dominated vectors.
• Overall, the procedures of the MOCSO algorithm are summarized as follows

(Pradhan and Panda 2012):
• Step 1: Randomly initialize the position of cats in D-dimensional space, i.e., Xid

representing position of ith cat in dth dimension.
• Step 2: Randomly initialize the velocity of cats, i.e., Vid.
• Step 3: According to MR, cats are randomly picked from the population and

their flag is set to seeking mode, and for others the flag is set to tracing mode.
• Step 4: Evaluate the fitness of each cat.
• Step 5: Store the position of the cats representing non-dominated solutions in the

archive.
• Step 6: If the ith cat is in seeking mode, apply the cat to the seeking mode

process, otherwise apply it to the tracing mode process.
• Step 7: Check the termination condition, if satisfied, terminate the program.

Otherwise, repeat Steps 3 to 5.

6.3.2.3 Performance of MOCSO

To quantify the efficient of MOCSO, some performance metrics, namely, set
coverage metric, generational distance, maximum Pareto-optimal front error,
Spacing, and Spread are tested in (Pradhan and Panda 2012). In addition, two
multiobjective tested function are proposed. The computational results are com-
pared with the multiobjective particle swarm optimization (MOPSO) and an
improved version of non-dominated sorting genetic algorithm (NSGA-II). After

100 6 Cat Swarm Optimization Algorithm

several experiments, the performance showed that the proposed algorithm has a
superior quality of solution that can cover the full Pareto front.

6.4 Representative CSO Application

In this section, we will introduce how the CSO algorithm can be adapted to solve
scheduling optimization problem.

6.4.1 Aircraft Schedule Recovery Problem

The studies relation to the airline problems can be classified into three groups:
fleeting-related problems, routing-related problems, and aircraft recovery prob-
lems (Sarac et al. 2006). The aircraft schedule recovery problem fell into the last
category and it is a typical NP-hard optimization problem. It is happened when the
established aircraft schedule has to be changed due to some inevitable reasons,
such as the weather or mechanical problems. The flight schedule can be described
via Eq. 6.10 (Tsai et al. 2012):

S ¼ sij sij ¼ dij; aij; p̂ij; �pij; t̂ij;�tij
� ��

�
ffi

subject to

1� i�M; 1� j�N

; ð6:10Þ

where S represents the flight schedule, sij denotes the assignment of the jth flight to
the ith airplane, dij stands for the duty name of sij, aij is the airplane code, p̂ij

indicates the origin of sij, �pij denotes the destination of sij, t̂ij is the departure time
from p̂ij, �tij represents the arrival time at airport �pij, M stands for the total number
of the airplanes, and the number of flights assigned to the airplane is denoted by N.

The recovered flight schedule is denoted by S0 with the same definition for all
the elements. The constrains and the objective of the flight schedule recovery are
defined by five formulas, shown as follows:

• The total flight delay time is defined by Eq. 6.11 (Liu et al. 2009):

/1 S; S0ð Þ ¼
XM

i¼1

XN

j¼1

xij; where xij ¼
0 if t̂0ij� t̂ij
t̂0ij � t̂ij otherwise

�

: ð6:11Þ

• The flight duty swap is expressed by Eq. 6.12 (Liu et al. 2009):

/2 S; S0ð Þ ¼
XM

i¼1

XN

j¼1

xij; ð6:12Þ

6.3 Selected CSO Variants 101

where xij ¼ 1 if j = 1ð Þ ^ a0ij 6¼ i
� h i

_ j 6¼ 1ð Þ ^ a0ij�1 6¼ a0ij

� h i

0 otherwise

(

.

• The delayed time variance is defined by Eq. 6.13 (Liu et al. 2009):

/3 S; S0ð Þ ¼ 1
MN

PM

i¼1

PN

j¼1
xij � x
� �2

;

where
x ¼ 1

MN

PM

i¼1

PN

j¼1
xij

xij ¼
0 if t̂0ij� t̂ij

t̂0ij � t̂ij otherwise

�

8
>>><

>>>:

: ð6:13Þ

• The delayed flight number objective is express in Eq. 6.14 (Liu et al. 2009):

/4 S; S0ð Þ ¼
XM

i¼1

XN

j¼1

xij; where xij ¼
0 if t̂0ij� t̂ij
1 otherwise

�

: ð6:14Þ

• The objective of the number of long-delayed flights over 30 min is defined by
Eq. 6.15 (Liu et al. 2009):

/5 S; S0ð Þ ¼
XM

i¼1

XN

j¼1

xij; where xij ¼ 1 if t̂0ij � t̂ij
�

� 30

0 otherwise

(

: ð6:15Þ

The integrated description of those five constraints and the objectives is shown
in Eq. 6.16 (Tsai et al. 2012):

Minimize: k S; S0ð Þ ¼
P5

x¼1
/x S; S0ð Þ

Subject to: sij 2 S; s0ij 2 S0; 1� i�M; 1� j�N
; ð6:16Þ

where S represents the flight schedule, S0 denotes the recovered flight schedule, sij

stands for the assignment of the jth flight to the ith airplane, s0ij is the recovered
assignment of the jth flight to the ith airplane, M stands for the total number of the
airplanes, and the number of flights assigned to the airplane is denoted by N.

To solve the problem, Tsai et al. (2012) proposed an enhanced version of
PCSO, called EPCSO, in which the orthogonal array of the Taguchi method is
integrated into the tracing mode process of the PCSO method. The computational
results showed that the EPCSO method gets higher accuracies with less running
time.

102 6 Cat Swarm Optimization Algorithm

6.5 Conclusions

The roots of the CSO algorithm lay in ethological metaphors of computing models.
In general, it can be generalized into two modes, i.e., resting behaviour (seeking
mode) and moving behaviour (tracing mode). In essence, the CSO algorithm
maintains a population of cats (the swarm), where each cat is defined by its own
position in a M dimensional search space and represents a potential solution to the
optimization problem (i.e., either minimum or maximum) at hand. The cats start at
random positions and move about the search space to look for the prey, i.e., the
objective function. The movements of the cats depend on their flags, i.e., if the cats
in the seeking mode, their movement according to the memory of the good
solutions in the past obtained; on the other hand, if the cats in the tracing mode,
their movement according to their velocities for each dimension. The final solution
would be the best position of one of the cats.

Although it is a newly introduced CI method, we have witnessed the CSO
algorithm being successfully applied to a variety of optimization problems as
listed below:

• Adaptive plant modelling (Panda et al. 2011a).
• Cclustering problem (Santosa and Ningrum 2009).
• Economic dispatch problem (Chen et al. 2011).
• Graph colouring problem (Bacarisas and Yusiong 2011).
• IIR system identification (Panda et al. 2011b).
• Image quality problem (Wang et al. 2012; Kalaiselvan et al. 2011; Cui et al.

2013).

Interested readers are referred to them as a starting point for a further explo-
ration and exploitation of cats inspired algorithm.

References

Bacarisas, N. D., & Yusiong, J. P. T. (2011). The effects of varying the fitness function on the
efficiency of the cat swarm optimization algorithm in solving the graph coloring problem.
Annals of Computer Science Series, 9, 17–38.

Chen, J. C., Hwang, J. C., & Pan, J. S. (2011). CSO algorithm for economic dispatch decision of
hybrid generation system. Journal of Energy and Power Engineering, 5, 73–749.

Chu, S.-C., & Tsai, P.-W. (2007). Computational intelligence based on the behavior of cats.
International Journal of Innovative Computing, Information and Control, 3, 163–173.

Cui, S.-Y., Wang, Z.-H., Tsai, P.-W., Chang, C.-C., & Yue, S. (2013). Single bitmap block
truncation coding of color images using cat swarm optimization. In J.-S. Pan, H.-C. Huang, L.
C. Jain, & Y. Zhao (Eds.), Recent advances in information hiding and applications. Berlin:
Springer.

Kalaiselvan, G., Lavanya, A., & Natrajan, V. (2011). Enhancing the performance of
watermarking based on cat swarm optimization method. International Conference on Recent
Trends in Information Technology (ICRTIT), MIT, Anna University, Chennai, 3–5 June,
pp. 1081–1086. IEEE.

6.5 Conclusions 103

Liu, T. K., Chen, C. H., & Chou, J. H. (2009). Optimization of short-haul aircraft schedule
recovery problems using a hybrid multiobjective genetic algorithm. Expert Systems with
Applications, 37, 2307–2315.

Mills, D. S., Marchant-Forde, J. N., Mcgreevy, P. D., Morton, D. B., Nicol, C. J., Phillips, C.
J. C., Sandøe, P. & Swaisgood, R. R. (Eds.). (2010). The encyclopedia of applied animal
behaviour and welfare. Nosworthy Way, Wallingford, Oxfordshire OX10 8DE, UK: CAB
International, ISBN 978-0-85199-724-7.

Panda, G., Pradhan, P. M., & Majhi, B. (2011a). Direct and inverse modeling of plants using cat
swarm optimization. In B. K. Panigrahi, Y. Shi, & M.-H. Lim (Eds.), Handbook of swarm
intelligence. Berlin: Springer.

Panda, G., Pradhan, P. M., & Majhi, B. (2011b). IIR system identification using cat swarm
optimization. Expert Systems with Applications, 38, 12671–12683.

Pradhan, P. M., & Panda, G. (2012). Solving multiobjective problems using cat swarm
optimization. Expert Systems with Applications, 39, 2956–2964.

Santosa, B. & Ningrum, M. K. (2009). Cat swarm optimization for clustering. IEEE International
Conference of Soft Computing and Pattern Recognition (SOCPAR), pp. 54–59.

Sarac, A., Batta, R., & Rump, C. M. (2006). A branch-and-price approach for operational aircraft
maintenance routing. European Journal of Operational Research, 175, 1850–1869.

Tsai, P.-W., Pan, J.-S., Chen, S.-M., & Liao, B.-Y. (2012). Enhanced parallel cat swarm
optimization based on the Taguchi method. Expert Systems with Applications, 39, 6309–6319.

Tsai, P.-W., Pan, J.-S., Chen, S.-M., Liao, B.-Y. & Hao, S.-P. (2008). Parallel cat swarm
optimization. Seventh International Conference on Machine Learning and Cybernetics, 12–15
July, Kunming, China, pp. 3328–3333. IEEE.

Wang, Z.-H., Chang, C.-C., & Li, M.-C. (2012). Optimizing least-significant-bit substitution
using cat swarm optimization strategy. Information Sciences, 192, 98–108.

104 6 Cat Swarm Optimization Algorithm

Chapter 7
Cuckoo Inspired Algorithms

Abstract In this chapter, a set of cuckoo inspired (CS) optimization algorithms
are introduced. We first, in Sect. 7.1, describe the general knowledge of cuckoos.
Then, the fundamentals and performance of CS are introduced in Sect. 7.2. Next,
the selected variants of CS are outlined in Sect. 7.3 which is followed by a
presentation of representative CS application in Sect. 7.4. Right after this, Sect. 7.5
introduces an emerging algorithm, i.e., cuckoo optimization algorithm (COA),
which also falls within this category. Finally, Sect. 7.6 draws the conclusions of
this chapter.

7.1 Introduction

Edward Jenner (1749–1823) is best remembered, by most of us, for experimentally
inoculating his patients with cowpox as an approach of stopping the smallpox and
for his subsequent promulgation of antigenic vaccination. Nevertheless, this
country doctor and natural historian’s first academic achievement, and the work
that earned him the fellowship of the Royal Society of London, was a research
regarding the common cuckoo (Winfree 1999). In this section, we will provide a
quick overview of some interesting lifestyle of cuckoo particularly focusing on its
brood parasitism.

7.1.1 Cuckoo: A Brood Parasite

One of the most surprising behavioural patterns exhibited by cuckoos is their host-
parasite evolution which normally called brood parasite, i.e., laying their eggs in
the nests of other species and depending on them to raise its offspring (Servedio
and Lande 2003; Planqué et al. 2002; Langmore et al. 2009). Ornithologists
Edward Jenner (1749–1823) discovered that brood parasitism in birds is

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_7, � Springer International Publishing Switzerland 2014

105

widespread and phylogenetically diverse (Winfree 1999). In addition, there is an
especially interesting pattern that most female cuckoos (such as Tapera) can
mimic their eggs in colour and pattern of their host species (Payne et al. 2005).
This evidence has been proved by (Davies and Brooke 1998). They have shown
experimentally that host species parasitized with mimetic eggs reject nonmimetic
eggs from their nests. Of course, some host birds can engage direct conflict with
the intruding cuckoos. For example, if a host bird discovers the eggs are not their
own, it will wither throw these alien eggs away or simply abandon its nest and
build a new nest elsewhere. However, biologists convinced that due to the inherent
characteristics (i.e., evolutionary lag), hosts might need to take longer to evolve
complete rejection (Davies and Brooke 1998). As a result, the mimic characteristic
by cuckoos reduces the probability of their eggs being abandoned and thus
increases their reproductively.

7.2 Fundamentals of the Cuckoo Search Algorithm

Cuckoo search (CS) is an optimization algorithm developed by Yang and Deb
(2009). It was inspired by cuckoos’ breeding behaviour of parasitic cuckoo
species, and in the meantime combining the Lévy flight behaviour discovered in
some birds and fruit flies. In addition, this algorithm uses a balanced combination
of a local random walk with permutation and the global explorative random walk,
controlled by a switching parameter which is related to similarity of the egg/
solution to the existing egg/solution (Gandomi et al. 2012). As a result, more
similar eggs will be more likely to be survive and be part of the next generation.

7.2.1 Characteristics of Lévy Flight

Broadly speaking, Lévy flights, named after the French mathematician Paul Lévy,
are a class of random walks whose step length occurs with a power-law frequency
in contrast to a conventional random walk for which larger steps are exponentially
rare (Viswanathan et al. 2002; Brown et al. 2007). Often, the step lengths are
chosen from a generalized Lévy probability density distribution with a power-law
tail by Eq. 7.1 (Yang and Deb 2011):

L sð Þ ¼ sj j�1�b; ð7:1Þ

where 0\b� 2 is an index.
Mathematically speaking, a simple version of Lévy distribution can be defined

via Eq. 7.2 (Yang 2010)

106 7 Cuckoo Inspired Algorithms

L s; c; lð Þ ¼

ffiffiffiffiffiffi
c

2p

r

exp � c
2 s� lð Þ

� �
1

s� lð Þ3=2
; if 0\l\s\1

0 if s� 0

8
<

:
; ð7:2Þ

where l[0 is a minimum step, c is a scale parameter.
Clearly, as s!1; we have a special case of the generalized Lévy distribution

as Eq. 7.3 (Yang and Deb 2011)

L s; c; lð Þ �
ffiffiffiffiffiffi
c

2p

r
1

s3=2
: ð7:3Þ

For general case, the Lévy distribution function should be defined in terms of
Fourier transform as Eq. 7.4 (Yang and Deb 2011):

F kð Þ ¼ exp �a kj jb
h i

; 0\b� 2; ð7:4Þ

where a is a scale parameter.
The inverse of this integral is given via Eq. 7.5 (Yang and Deb 2011):

L sð Þ ¼ 1
p

Z1

0

cos ksð Þ exp �a kj jb
h i

dk: ð7:5Þ

Obviously, the Eq. 7.5 can be estimated only when s!1. We have Eq. 7.6
(Yang and Deb 2011):

LðsÞ ! abCðbÞ sin pb=2ð Þ
pjsj1þb

; s!1: ð7:6Þ

Here C zð Þ is the Gamma function as Eq. 7.7 (Yang and Deb 2011):

C zð Þ ¼
Z1

0

tz�1e�tdt: ð7:7Þ

In the case when z ¼ n is an integer, we have C nð Þ ¼ n� 1ð Þ!.
The Lévy distribution has been observed in many systems, such as financial,

physical (Shlesinger et al. 1995; Figueiredo et al. 2004; Nakao 2000), and bio-
logical (Reynolds 2006; Viswanathan et al. 2002; Hanert 2012). In the context of
biological, Lévy flights concept has been broad studied due to there is evidence
that most biological organisms perform random walks by searching for the target
objects, such as predator–prey, mating partner, and pollinator-flower (Viswanathan
et al. 2002).

Inspired by that, a number of algorithmic approaches were developed. The
algorithmic examples which demonstrated the characteristics of Lévy flights
please refer to (Pavlyukevich 2007; Yang and Deb 2009, 2010a; Wang et al. 2013;
Xie et al. 2013). But, why this concept is so efficiency? One of the main reasons is

7.2 Fundamentals of the Cuckoo Search Algorithm 107

due to the fact that the variance of Lévy flights (r2 tð Þ� t3�b; 1� b� 2) increase
much faster than the linear relationship (r2 tð Þ� t) of Brownian random walks
(Yang and Deb 2011). In other words, it ensures diversification of solution space.

7.2.2 Standard CS Algorithm

To simplicity, in practice three idealized rules are utilized (Yang and Deb 2009):

• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest.
• The best nests with high quality of eggs (solutions) will be part of the next

generations.
• The number of available host nests remain fixed during the whole solution

process, and a host can discover an alien egg with a probability Pa 2 0; 1½ �. This
implies that the fraction Pa of n nests is replaced by new nests (with new random
solutions).

To implement a CS algorithm, the following steps have to be specified.

• First, an initial population of n host nests xi i ¼ 1; 2; . . .; nð Þ is generated
randomly.

• Second, to generate new solutions (x tþ1ð Þ
i) for the ith cuckoo, a Lévy flight is

performed using Eq. 7.8 (Yang and Deb 2009):

x tþ1ð Þ
i ¼ x tð Þ

i þ a� L�evy kð Þ; ð7:8Þ

where a a[0ð Þ is the step size which should be related to the scales of the
problem of interest. In most case, we can use a¼ 1. The product � means entry-
wise multiplications. The parameter Lévy kð Þ is the length of random walk and can
be drawn from a Lévy distribution for large steps via Eq. 7.9 (Yang and Deb
2009):

L�evy� l = t�k; ð1\k� 3Þ; ð7:9Þ

which has an infinite variance with an infinite mean. Here the consecutive jumps/
steps of a cuckoo essentially form a random walk process which obeys a power-
law step-length distribution with a heavy tail.

In addition, the fitness of the cuckoo is calculated using Eq. 7.10 (Yang and
Deb 2009):

f xð Þ; x ¼ x1; x2; . . . xuð ÞT : ð7:10Þ

Taking into account three basic rules described above, the steps of imple-
menting CS algorithm can be summarized as follows (Yang and Deb 2009):

108 7 Cuckoo Inspired Algorithms

• Step 1: Randomly generating the initial population of n host nests xi i ¼ 1; 2;ð
� � � ; nÞ.

• Step 2: Repeat till stopping criteria met. First, randomly select a cuckoo via
Lévy flight. Second, calculate its fitness function (Fi). Third, randomly select a
nest among n available nests (for example j). Fourth, if Fi [Fj

� �
, then replace

the j by the new solution. Fifth, a fraction Pað Þ of worse nests are abandoned and
new ones are built. Sixth, calculate fitness and keep the best solutions (or nests
with quality solutions). Seventh, rank the solutions and store the current best
nest as optimal fitness value.

• Step 3: Post process and visualize results.

7.2.3 Performance of CS

In order to show how the CS algorithm performs, Yang and Deb (2009) used a
series of test functions (i.e., both standard and stochastic), namely, De Jong’s first
function, Rosenbrock’s function, Schwefel’s function, Ackley’s function, Rastri-
gin’s function, Easom’s function, Griewangk’s function, and two stochastic test
functions which designed by Yang (2010). Compared with conventional compu-
tational intelligence (CI) techniques [such as genetic algorithm (GA) and particle
swarm optimization (PSO)], the CS algorithm is much more efficient in finding the
global optima with higher success rates.

7.3 Selected CS Variants

Although CS algorithm is a new member of CI family, a number of CS variations
have been proposed in the literature for the purpose of further improving the
performance of CS. This section gives an overview to some of these CS variants
which have been demonstrated to be very efficient and robust.

7.3.1 Modified CS (MCS) Algorithm

Yang and Deb (2009) pointed out as the cuckoo’s egg is very similar to a host’s
eggs, it is worth to do a random walk in a biased way with some random step sizes.
In the light of this statement, a modification of the standard CS (called MCS) was
made by Walton et al. (2011) with the aim to speed up convergence. The modi-
fication involves two parts (Walton et al. 2011):

• First, the size of the Lévy flight step size has been reset. In CS, a is constant and the
value a ¼ 1 is used (Yang and Deb 2009). In the MCS, the value of a is decreases as
the number of generations increases. The main reason for this choice is to
encourage more localised searching as the individuals (i.e., eggs) get closer to the

7.2 Fundamentals of the Cuckoo Search Algorithm 109

solution. It will be constructed by applying the following simple procedure: (1) an
initial value of the Lévy flight step size A ¼ 1 is chosen and, (2) at each generation,
a new Lévy flight step is calculated using Eq. 7.11 (Walton et al. 2011):

a ¼ A=
ffiffiffiffi
G
p

; ð7:11Þ

where G is the generation number. This exploratory search is only performed on
the fraction of nests to be abandoned.

• Second, an additional step of information exchange between the top eggs has
been added. Instead of the random walk with permutation, for the MCS, (Walton
et al. 2011) represented a sorted method, i.e., a fraction of the eggs with the best
fitness are put into a group of top eggs. At each of the top eggs, a second egg in
this group is picked at random and a new egg is then generated on the line
connecting these two top eggs. The new egg position is calculated using the
inverse of the golden ration (see Eq. 7.12), such that it is closer to the egg with
the best fitness (Walton et al. 2011):

u ¼ 1þ
ffiffiffi
5
p� �

=2; ð7:12Þ

where u is the inverse of the golden ration.

In the case that both eggs have the same fitness, the new egg is generated at the
midpoint. Furthermore, if the same egg is picked twice, a local Lévy flight step
size is performed by using Eq. 7.13 (Walton et al. 2011):

a ¼ A=G2: ð7:13Þ

7.3.1.1 Performance of MCS

To judge the performance of the MCS algorithm, (Walton et al. 2011) employed
seven functions (i.e., Rosenbrock’s function, De Jong’s function, Rastrigin’s
function, Schwefel’s function, Ackley’s function, Griewank’s function, and
Easom’s 2D function) as objective functions which have been used by (Yang and
Deb 2009) to test the CS algorithm. Experimental results showed that the MCS
algorithm outperform the CS algorithm for all of the standard test examples,
especially as the number of dimensions is increased.

7.3.2 Multiobjective CS (MOCS) Algorithm

To deal with multi-criteria optimization problems, in 2011 the CS algorithm’s
finder Yang and Deb (2011) proposed a new CS algorithm called MOCS for
multiobjective optimization. This approach used some weighted sum method to

110 7 Cuckoo Inspired Algorithms

combine multiple objectives to a single objective. In addition, Yang and Deb
(2011) employed many different solution points to increase the computational
efficient. The goal is to find a solution that gives the best compromise between the
various objectives.

For multiobjective optimization problems with k different objectives, Yang and
Deb (2011) modify the first and last rules to incorporate multiobjective needs:

• Each cuckoo lays k eggs at a time, and dumps them in a randomly chosen nest.
Egg k corresponds to the solution to the kth objective.

• The best nests with high quality of eggs (solutions) will be part of the next
generations.

• Each nest will be abandoned with a probability pa and a new nest with k eggs
will be built, according to the similarities/differences of the host eggs. Some
random mixing can be used to generate diversity. This implies that the fraction
Pa of n nests is replaced by new nests (with new random solutions).

Yang and Deb (2011) pointed out that based on the first rule, the MOCS algorithm
built new solutions by performing randomized walks or Lévy flight. At the same
time, a crossover operator is carried out over solutions through selective random
permutation and generates new solutions. For each nest, there can be k solutions
which are generated in the same way as Eq. 7.8. In addition, the second rule can be
seen as an elitist strategy allows the MOCS algorithm to find best solutions and
ensure the algorithm converge properly. Finally, as an additional means for diver-
sifying the search, the third rule introduced the mutation concept which borrowed
from evolutionary computation, so that the worst solutions are discarded with a
probability and new solutions are generated. For the MOCS, the mutation is a
vectorized operator that combines Lévy flight or differential quality of the solutions.

Based on these three rules, the following steps have to be specified.

• First, an initial population of n host nests xi i ¼ 1; 2; . . .; nð Þ and each with k eggs
are generated randomly.

• Second, to generate new solutions (x tþ1ð Þ
i) for the ith cuckoo, a Lévy flight is

performed using Eq. 7.14 (Yang and Deb 2011):

x tþ1ð Þ
i ¼ x tð Þ

i þ a� L�evy bð Þ; ð7:14Þ

where a a[0ð Þ is the step size which should be related to the scales of the problem
of interest. In most case, we can use a¼ 1. In order to accommodate the differ-
ence between solution quality, we can also use Eq. 7.15 (Yang and Deb 2011):

a ¼ a0 x tð Þ
j � x tð Þ

i

� �
; ð7:15Þ

where a0 is a constant, while x tð Þ
j � x tð Þ

i

� �
represents the difference of two ran-

domly solutions. The product�means entry-wise multiplications. The parameter
Lévy bð Þ is the length of random walk and can be drawn from a Lévy distribution
for large steps via Eq. 7.16 (Yang and Deb 2011):

7.3 Selected CS Variants 111

L�evy� l = t�1�b; ð0\b� 2Þ; ð7:16Þ

which has an infinite variance with an infinite mean. Here the consecutive
jumps/steps of a cuckoo essentially form a random walk process which obeys a
power-law step-length distribution with a heavy tail.

From the implementation point of view, obviously, the generation of steps (s) is
very important which obey the chosen Lévy distribution. In fact, there are a few
ways of achieving this. One of the most simple scheme is discussed in detail by
(Yang 2010; Yang and Deb 2010b) and can be summarized via Eq. 7.17 (Yang
and Deb 2011):

s ¼ a0 x tð Þ
j � x tð Þ

i

� �
� L�evy bð Þ� 0:01

l

mj j1=b
x tð Þ

j � x tð Þ
i

� �
; ð7:17Þ

where l and m are drawn from normal distribution via Eqs. 7.18 and 7.19,
respectively (Yang and Deb 2011):

l�N 0; r2
l

� �
; ð7:18Þ

m�N 0; r2
m

� �
; ð7:19Þ

where the parameters (i.e., r2
l and r2

m) can be defined by Eqs. 7.20 and 7.21,
respectively (Yang and Deb 2011):

r2
l ¼

C 1þ bð Þ sin pb=2ð Þ
C 1þ bð Þ=2½ �b2 b�1ð Þ=2

ffi
1=b

; ð7:20Þ

r2
m ¼ 1; ð7:21Þ

where C is the standard Gamma function.
Overall, it is worth mentioning that there are three unique features of the MOCS

algorithm (Yang and Deb 2011): exploration by Lévy flight, mutation by a com-
bination of Lévy flight and vectorized solution difference, crossover by selective
random permutation, and elitism.

7.3.2.1 Performance of MOCS

To validate the MOCS algorithm, Yang and Deb (2011) used a set of multi-
objective test functions, namely, Schaffer’s MIn-Min (SCH) function, ZDT1
function, ZDT2 function, ZDT3 function, and LZ function. Compared with con-
vention CI techniques (such as vector evaluated genetic algorithm (VEGA),
NSGA-II, multiobjective differential evolution (MODE), and differential evolution
for multiobjective optimization (DEMO)), the MOCS algorithm performed well
for almost all these test problems.

112 7 Cuckoo Inspired Algorithms

7.4 Representative CS Application

As we know, in real life most of the problems belong to a class of combinatorial
(discrete) or numerical optimization which can be further divided into the fol-
lowing categories: routing, assignment, scheduling, and subset problems. In this
section, we introduced how the CS algorithm can be adapted to solve those
problems, in particular, the scheduling optimization problem.

7.4.1 Scheduling Optimization Problem

Generally speaking, scheduling is concerned with the allocation of scarce
resources to tasks over time. It is an important decision-making task in the man-
ufacturing industries. Burnwal and Deb (2013) studied the scheduling problems
arising in five flexible manufacturing cells (FMCs). Each cell is serviced by one to
three robots for material handling inside the cell and thus also called a robotic cell.
The objective is to allocate the resource to the jobs so as to minimize the total
penalty cost and machine idle time.

To validate the performance of the CS algorithm, a comparison between the CS
algorithm and other conventional methods (i.e., GA, PSO) has been proposed by
Burnwal and Deb (2013). Computational results showed that the CS algorithm is
better than the aforementioned methods.

7.5 Emerging Cuckoo Inspired Algorithms

In addition to the aforementioned CS algorithm, the lifestyle of cuckoo also
motivates researchers to develop another cuckoo inspired innovative CI algorithm.

7.5.1 Fundamentals of the Cuckoo Optimization Algorithm

Cuckoo optimization algorithm (COA) was proposed by Rajabioun (2011). Similar
to conventional evolutionary CI algorithms, the proposed COA also starts with an
initial population of cuckoos which have some eggs to be laid in some host birds’
nest. The fate of these eggs can be roughly classified as follows (Rajabioun 2011):

• The similarity degree between the cuckoo eggs and the host bird’s own eggs is
high: This class of cuckoo eggs enjoys a higher chance of being hatched by the
host bird and thus growing up as an adult cuckoo;

7.4 Representative CS Application 113

• The similarity degree between the cuckoo eggs and the host bird’s own eggs is
low: This class of cuckoo eggs suffers a higher chance of being disposed by the
host bird.

Based on this rule, the number of hatched eggs reveals the suitability of the
nests in the chosen area. In other words, the more cuckoo eggs being hatched in an
area, the more gain (or profit) is linked to that area. Basically, COA works as
follows (Rajabioun 2011).

7.5.1.1 Initial Cuckoo Habitat Generation

When dealing with an optimization problem, the values of problem variables are
normally formed as an array. Unlike the terminologies such as ‘‘chromosome’’ and
‘‘particle position’’ commonly found in GA and PSO, in COA, ‘‘habitat’’ is used to
describe this array. In a Nvar-dimension optimization problem, a habitat can be
regarded as an array of 1	 Nvar, representing the present living location of a
cuckoo. The general form of this array can be expressed via Eq. 7.22 (Rajabioun
2011):

Habitat ¼ x1; x2; . . .; xNvar
½ �; ð7:22Þ

where a floating point number is used to represent the value of each variable
x1; x2; . . .; xNvar
ð Þ.

Through the evaluation of a profit function fp at a habitat of x1; x2; . . .; xNvar
ð Þ,

the profit of a habitat can be acquired via Eq. 7.23 (Rajabioun 2011):

Profit ¼ fp habitatð Þ ¼ fp x1; x2; . . .; xNvar
ð Þ: ð7:23Þ

As we can see that COA is an algorithm that can be used for profit maximi-
zation problems. In order to minimize a cost function via COA, we can simply
maximize the profit function by Eq. 7.24 (Rajabioun 2011):

Profit ¼ �Cost habitatð Þ ¼ �fc x1; x2; . . .; xNvar
ð Þ: ð7:24Þ

In COA, a matrix of candidate habitat with the size of Npop 	 Nvar is first
generated. Right after this, some amount of eggs (randomly selected numbers) are
supposed for each of these initial cuckoo habitats. The upper- and lower-boundary
of the egg numbers are set to 20 and 5, respectively. This setting is based on the
real world cuckoo breeding-style. Meanwhile Rajabioun (2011) also named a
variable which is called ‘‘Egg Laying Radius (ELR)’’. The ELR is introduced to
mimic the other habit of real cuckoo, i.e., laying eggs within a maximum distance
from its habitat. Mathematically, ELR is defined as Eq. 7.25 (Rajabioun 2011):

ELR ¼ a	 Number of current cuckoo’s eggs
Total number of eggs

	 varhi � varlowð Þ; ð7:25Þ

114 7 Cuckoo Inspired Algorithms

where varhi and varlow are upper- and lower-limit for variables; a is an integer
(designed to address the maximum value of ELR).

7.5.1.2 Cuckoo Eggs’ Placement

Within the range of ELR, each cuckoo begins laying eggs in some randomly
chosen host birds’ nest. Once this procedure is done, certain amount of cuckoo
eggs could not survive which means they will be spotted by host birds and thus
being discarded. Therefore, in COA, a variable of p% is designed to address this
issue, i.e., p% of all cuckoo eggs which have less profit values will be killed.

7.5.1.3 Adult Cuckoos’ Emigration

When young cuckoos become mature enough to have their own eggs, they often
emigrate to another habitat. The newly selected habitat which normally has more
desirable host birds and also sufficient food supply. In COA, when different cuckoo
groups are formed in various areas, the society with the best profit value is often
selected as the goal point where other cuckoos can move to. However, once the
adult cuckoos scatter in a broad area, it is often not easy to pinpoint the place
where a cuckoo comes from. To deal with this problem, Rajabioun (2011)
employed the K-means clustering method for the purpose of grouping cuckoos.
Once the cuckoo groups are classified, their corresponding mean value of profit
can be calculated. By comparing these results, the one with the maximum mean
value will be regarded as the goal group and thus the group’s habitat is selected as
the new target habitat for other ready-to-emigrate cuckoos.

In addition to abovementioned grouping problem, the inventor of COA also
took the following scenario into account: When flying toward goal habitat, the
cuckoos may stop at halfway or deviate from their original direction. Two
parameters, k and u are engineered to assist a cuckoo in looking for more can-
didate positions across the area. According to (Rajabioun 2011), their expression
can be found via Eq. 7.26:

k � U 0; 1ð Þ
u � U �x;xð Þ ; ð7:26Þ

where k�U 0; 1ð Þ represents an uniformly distributed random number between 0
and 1; x is a parameter which control the deviation degree from the target habitat.
Rajabioun (2011) suggested that an x of p=6 would be sufficient for leading to a
good convergence.

7.5 Emerging Cuckoo Inspired Algorithms 115

7.5.1.4 Cuckoo Population’s Control

It is normally unreasonable to assume that the population of cuckoo will grow
forever. Since there are many influencing factors such as being killed by predators
and the limitation of food which will limit the total number of cuckoos in a certain
territory. Being aware this fact, Rajabioun (2011) also introduced Nmax to express
the maximum amount of cuckoos that can live in an area.

7.5.1.5 Convergence

After certain round of iterations, a habitat with the maximum egg similarity to the
host birds’ and also the maximum food supply will be found by the majority of
cuckoo population. Under such situation, this habitat will generate the maximum
profit ever. In COA, a convergence criterion that is more than 95 % of all cuckoos
move to the same habitat will be used for terminating the algorithm (Rajabioun
2011).

Overall, taking into account some basic rules described above, the procedures
of COA can be summarized as follows (Rajabioun 2011):

• Step 1: Initializing cuckoo habitats with some random points on the profit
function.

• Step 2: Dedicating some eggs to each cuckoo.
• Step 3: Defining ELR for each cuckoo.
• Step 4: Letting cuckoos lay eggs within their corresponding ELR.
• Step 5: Killing those eggs that have been recognized by the host birds.
• Step 6: Letting the survived eggs hatch and chicks grow.
• Step 7: Evaluating the habitat of each newly grown cuckoo.
• Step 8: Limiting the total number of cuckoo population in the area and elimi-

nating those who live in worst habitats.
• Step 9: Clustering cuckoos, looking for best group, and choosing the goal

habitat.
• Step 10: Letting new cuckoo population emigrate toward goal habitat.
• Step 11: Evaluating if the stopping criterion is met, if not, go to Step 2.

7.5.1.6 Performance of COA

In order to test the performance of the COA algorithm, Rajabioun (2011)
employed the following problem set:

• Four Benchmark functions which are selected from the literature;
• One 10-dimensional Rastrigin function; and
• A real world case study, namely, multi-input multi-output (MIMO) distillation

column process.

116 7 Cuckoo Inspired Algorithms

For the first two problem sets, the comparison was made among COA, standard
PSO, and GA (equipped with roulette wheel selection and uniform cross-over).
The results indicated that COA outperform its competitive algorithms for all five
benchmark cost functions.

In terms of the MIMO process case study, the obtained results via COA are
compared with GA and a non-CI approach called decentralized relay feedback
(DRF). Considering all the parameter value found by these methods, the COA
algorithm is clear the best of all three.

7.6 Conclusions

In this chapter, two CI algorithms (i.e., CS and COA) inspired by the breeding
behaviour of real cuckoos were introduced. In terms of CS, like other population-
based algorithms, the algorithm use reproduction operators to explore the search
space. The working principle is that each individual (i.e., egg) in the algorithm
represents directly a solution to the problem under consideration. If the cuckoo egg
is very similar to the host’s, then this egg will survive and be part of the next
generation. The objective is to find the new and potentially better solutions (Yang
and Deb 2009). In addition, the unique characteristics of the CS over other con-
ventional methods lie in that it dependents only on a relatively small number of
parameters to define and determine the algorithm’s performance. Therefore, it is
very easy to implement. Although they are newly introduced CI methods, we have
witnessed the following rapid spreading of at least one of them, i.e., CS:

First, in addition to the selected variant, several enhanced versions of CS can
also be found in the literature as outlined below:

• Hybrid CS (Chandrasekaran and Simon 2012; Dhivya et al. 2011; Ghodrati and
Lotfi 2012a, b; Perumal et al. 2011).

• Enhanced CS (Li et al. 2013).
• Discrete CS (Ouaarab et al. 2013).
• Modified CS (Salimi et al. 2012; Tuba et al. 2011).
• Improved CS (Valian et al. 2011).

Second, apart from the representative application, the CS algorithm has also
been successfully applied to a variety of optimization problems as listed below:

• Chemical engineering problem (Bhargava et al. 2013).
• Clustering problem (Senthilnath et al. 2012).
• Data gathering problem (Dhivya and Sundarambal 2011).
• Image segmentation problem (Agrawal et al. 2013).
• Distributed generation allocation problem (Moravej and Akhlaghi 2013)
• Energy efficient computation of data fusion problem (Dhivya et al. 2011).
• Milling operation optimization problem (Yildiz 2013).

7.5 Emerging Cuckoo Inspired Algorithms 117

• Feedforward Neural network training problem (Valian et al. 2011).
• Scheduling problem (Chandrasekaran and Simon 2012; Rabiee and Sajedi

2013).
• Semantic web service composition problem (Chifu et al. 2012).
• Software implementation problem (Bacanin 2011, 2012; Kalpana and Jeyakumar

2011; Perumal et al. 2011).
• Structural optimization problems (Yang and Deb 2010a, b; Durgun and Yildiz

2012; Gandomi et al. 2013; Yang and Deb 2011; Kaveh and Bakhshpoori 2011;
Gandomi et al. 2012; Kaveh et al. 2012; Bulatović et al. 2013).

• System reliability optimization problem (Valian et al. 2013).
• Travelling salesman problem (Ouaarab et al. 2013).

Regarding the COA, the applications is still very limited at this stage. Interested
readers are referred to the studies mentioned in this chapter together with several
excellent reviews [e.g. (Yang and Deb 2013; Xing et al. 2013; Civicioglu and
Besdok 2013; Walton et al. 2013)] as a starting point for further exploration and
exploitation of the cuckoo inspired algorithms.

References

Agrawal, S., Panda, R., Bhuyan, S., & Panigrahi, B. K. (2013). Tsallis entropy based optimal
multilevel thresholding using cuckoo search algorithm. Swarm and Evolutionary Computa-
tion, 11, 16–30.

Bacanin, N. (2011, April 28–30). An object-oriented software implementation of a novel cuckoo
search algorithm. European Computing Conference (ECC ‘11), Paris (pp. 245–250). Paris:
WSEAS Press.

Bacanin, N. (2012). Implementation and performance of an object-oriented software system for
cuckoo search algorithm. International Journal of Mathematics and Computers in Simulation,
6, 185–193.

Bhargava, V., Fateen, S. E. K., & Bonilla-Petriciolet, A. (2013). Cuckoo search: A new nature-
inspired optimization method for phase equilibrium calculations. Fluid Phase Equilibria, 337,
191–200.

Brown, C. T., Liebovitch, L. S., & Glendon, R. (2007). Lévy flights in Dobe Ju/’hoansi foraging
patterns. Human Ecology, 35, 129–138.

Bulatović, R. R., Ðord̄ević, S. R., & Ðord̄ević, V. S. (2013). Cuckoo search algorithm: a
metaheuristic approach to solving the problem of optimum synthesis of a six-bar double dwell
linkage. Mechanism and Machine Theory, 61, 1–13.

Burnwal, S., & Deb, S. (2013). Scheduling optimization of flexible manufacturing system using
cuckoo search-based approach. International Journal of Advanced Manufacturing Technol-
ogy, 64, 951–959.

Chandrasekaran, K., & Simon, S. P. (2012). Multi-objective scheduling problem: Hybrid
approach using fuzzy assisted cuckoo search algorithm. Swarm and Evolutionary Compu-
tation. doi:10.1016/j.swevo.2012.01.001.

Chifu, V. R., Pop, C. B., Salomie, I., Suia, D. S., & Niculici, A. N. (2012). Optimizing the
semantic web service composition process using cuckoo search. In F. M. T. Brazier (Ed.),
Intelligent distributed computing V, SCI 382, Berlin (pp. 93–102). Berlin: Springer.

118 7 Cuckoo Inspired Algorithms

http://dx.doi.org/10.1016/j.swevo.2012.01.001

Civicioglu, P., & Besdok, E. (2013). A conceptual comparison of the cuckoo-search, particle
swarm optimization, differential evolution and artificial bee colony algorithms. Artificial
Intelligence Review, 39, 315–346.

Davies, N. B., & Brooke, M. D. L. (1998). Cuckoos versus hosts: Experimental evidence for
coevolution. In S. I. Rothstein & S. K. Robinson (Eds.), Parasitic birds and their hosts:
Studies in coevolution. Oxford: Oxford University Press.

Dhivya, M., & Sundarambal, M. (2011). Cuckoo search for data gathering in wireless sensor
networks. International Journal of Mobile Communications, 9, 642–656.

Dhivya, M., Sundarambal, M., & Anand, L. N. (2011). Energy efficient computation of data
fusion in wireless sensor networks using cuckoo based particle approach (CBPA).
International Journal of Communications, Network and System Sciences, 4, 249–255.

Durgun, _I., & Yildiz, A. R. (2012). Structural design optimization of vehicle components using
cuckoo search algorithm. Materials Testing, 54, 185–188.

Figueiredo, A., Gleria, I., Matsushita, R., & Silva, S. D. (2004). Lévy flights, autocorrelation, and
slow convergence. Physica A, 337, 369–383.

Gandomi, A. H., Talatahari, S., Yang, X.-S., & Deb, S. (2012). Design optimization of truss
structures using cuckoo search algorithm. The Structural Design of Tall and Special
Buildings. doi:10.1002/tal.1033.

Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2013). Cuckoo search algorithm: a metaheuristic
approach to solve structural optimization problems. Engineering with Computers.
doi:10.1007/s00366-011-0241-y.

Ghodrati, A., & Lotfi, S. (2012a). A hybrid CS/GA algorithm for global optimization. In: K. Deep
(Ed.), Proceedings of the International Conference on SocProS 2011, AISC 130, India (pp.
397–404). India: Springer.

Ghodrati, A., & Lotfi, S. (2012b). A hybrid CS/PSO algorithm for global optimization. In: J.-S.
Pan, S.-M. Chen & N. T. Nguyen (Eds.), ACIIDS 2012, Part III, LNAI 7198, Berlin (pp.
89–98). Berlin: Springer.

Hanert, E. (2012). Front dynamics in a two-species competition model driven by Lévy flights.
Journal of Theoretical Biology, 300, 134–142.

Kalpana, A. M., & Jeyakumar, A. E. (2011). An questionnaire based assessment method for
process improvement in Indian small scale software organizations. European Journal of
Scientific Research, 60, 379–395.

Kaveh, A., & Bakhshpoori, T. (2011). Optimum design of steel frames using cuckoo search
algorithm with lévy flights. The Structural Design of Tall and Special Buildings. doi:10.1002/
tal.754.

Kaveh, A., Bakhshpoori, T., & Ashoory, M. (2012). An efficient optimization procedure based on
cuckoo search algorithm for practical design of steel structures. International Journal of
Optimization in Civil Engineering, 2, 1–14.

Langmore, N. E., Stevens, M., Maurer, G., & Kilner, R. M. (2009). Are dark cuckoo eggs cryptic
in host nests? Animal Behaviour, 78, 461–468.

Li, X., Wang, J., & Yin, M. (2013). Enhancing the performance of cuckoo search algorithm using
orthogonal learning method. Neural Computing and Applications. doi:10.1007/s00521-013-
1354-6.

Moravej, Z., & Akhlaghi, A. (2013). A novel approach based on cuckoo search for DG allocation
in distribution network. Electrical Power and Energy Systems, 44, 672–679.

Nakao, H. (2000). Multi-scaling properties of truncated Lévy flights. Physics Letters A, 266,
282–289.

Ouaarab, A., Ahiod, B., & Yang, X.-S. (2013). Discrete cuckoo search algorithm for the
travelling salesman problem. Neural Computing and Applications. doi:10.1007/s00521-013-
1402-2.

Pavlyukevich, I. (2007). Lévy flights, non-local search and simulated annealing. Journal of
Computational Physics, 226, 1830–1844.

Payne, R. B., Sorenson, M. D., & Klitz, K. (2005). The cuckoos. Oxford: Oxford University Press.

References 119

http://dx.doi.org/10.1002/tal.1033
http://dx.doi.org/10.1007/s00366-011-0241-y
http://dx.doi.org/10.1002/tal.754
http://dx.doi.org/10.1002/tal.754
http://dx.doi.org/10.1007/s00521-013-1354-6
http://dx.doi.org/10.1007/s00521-013-1354-6
http://dx.doi.org/10.1007/s00521-013-1402-2
http://dx.doi.org/10.1007/s00521-013-1402-2

Perumal, K., Ungati, J. M., Kumar, G., Jain, N., Gaurav, R., & Srivastava, P. R. (2011). Test data
generation: a hybrid approach using cuckoo and tabu Search. In: B. K. Panigrahi (Ed.),
Swarm, Evolutionary, and Memetic Computing (SEMCCO), Part II, LNCS 7077, Berlin (pp.
46–54). Berlin: Springer.

Planqué, R., Britton, N. F., Franks, N. R., & Peletier, M. A. (2002). The adaptiveness of defence
strategies against cuckoo parasitism. Bulletin of Mathematical Biology, 64, 1045–1068.

Rabiee, M., & Sajedi, H. (2013). Job scheduling in grid computing with cuckoo optimization
algorithm. International Journal of Computer Applications, 62, 38–43.

Rajabioun, R. (2011). Cuckoo optimization algorithm. Applied Soft Computing, 11, 5508–5518.
Reynolds, A. M. (2006). Cooperative random Lévy flight searches and the flight patterns of

honeybees. Physics Letters A, 354, 384–388.
Salimi, H., Giveki, D., Soltanshahi, M. A., & Hatami, J. (2012). Extended mixture of MLP

experts by hybrid of conjugate gradient method and modified cuckoo search. International
Journal of Artificial Intelligence and Applications, 3, 1–13.

Senthilnath, J., Das, V., Omkar, S. N., & Mani, V. (2012). Clustering using levy flight cuckoo
search. In: J. C. Bansal (Ed.), Proceedings of Seventh International Conference on Bio-
Inspired Computing: Theories and Applications (BIC-TA), Advances in Intelligent Systems
and Computing, India (Vol. 202, pp. 65–75). India: Springer.

Servedio, M. R., & Lande, R. (2003). Coevolution of an avian host and its parasitic cuckoo.
Evolution, 57, 1164–1175.

Shlesinger, M. F., Zaslavsky, G. M., & Frisch, U. (Eds.). (1995). Lévy flights and related topics in
physics. Berlin: Springer.

Tuba, M., Subotic, M., & Stanarevic, N. (2011, April 28–30). Modified cuckoo search algorithm
for unconstrained optimization problems. European Computing Conference (ECC ‘11), Paris
(pp. 263–268). Paris: WSEAS Press.

Valian, E., Mohanna, S., & Tavakoli, S. (2011). Improved cuckoo search algorithm for
feedforward neural network training. International Journal of Artificial Intelligence and
Applications, 2, 36–43.

Valian, E., Tavakoli, S., Mohanna, S., & Haghi, A. (2013). Improved cuckoo search for reliability
optimization problems. Computers and Industrial Engineering, 64, 459–468.

Viswanathan, G. M., Bartumeus, F., Buldyrev, S. V., Catalan, J., Fulco, U. L., Havlin, S., et al.
(2002). Lévy flight random searches in biological phenomena. Physica A, 314, 208–213.

Walton, S., Hassan, O., & Morgan, K. (2013). Selected engineering applications of gradient free
optimisation using cuckoo search and proper orthogonal decomposition. Archives of
Computational Methods in Engineering, 20, 123–154.

Walton, S., Hassan, O., Morgan, K., & Brown, M. R. (2011). Modified cuckoo search: a new
gradient free optimisation algorithm. Chaos, Solitons and Fractals, 44, 710–718.

Wang, G., Guo, L., Gandomi, A. H., Cao, L., Alavi, A. H., Duan, H., et al. (2013). Lévy-flight
krill herd algorithm. Mathematical Problems in Engineering, 2013, 1–14.

Winfree, R. (1999). Cuckoos, cowbirds and the persistence of brood parasitism. Trends in
Ecology and Evolution, 14, 338–343.

Xie, J., Zhou, Y., & Chen, H. (2013). A novel bat algorithm based on differential operator and
Lévy flights trajectory. Computational Intelligence and Neuroscience, 2013, 1–13.

Xing, B., Gao, W.-J., & Marwala, T. (2013, April 15–19). An overview of cuckoo-inspired
intelligent algorithms and their applications. IEEE Symposium Series on Computational
Intelligence (IEEE SSCI), Singapore (pp. to appear). Singapore: IEEE.

Yang, X.-S. (2010). Engineering optimization: an introduction with metaheuristic applications,
Hoboken: Wiley, Inc. ISBN 978-0-470-58246-6.

Yang, X.-S., & Deb, S. (2009, December 9–11). Cuckoo search via Lévy flights. World Congress
on Nature and Biologically Inspired Computing (NaBIC), India (pp. 210–214). India: IEEE.

Yang, X.-S., & Deb, S. (2010a). Eagle strategy using Lévy walk and firefly algorithms for
stochastic optimization. In: J. R. Gonzalez (Ed.), Nature Inspired Cooperative Strategies for
Optimization (NISCO 2010), SCI 284, Berlin (pp. 101–111). Berlin: Springer.

120 7 Cuckoo Inspired Algorithms

Yang, X.-S., & Deb, S. (2010b). Engineering optimisation by cuckoo search. International
Journal of Mathematical Modelling and Numerical Optimisation, 1, 330–343.

Yang, X.-S., & Deb, S. (2011). Multiobjective cuckoo search for design optimization. Computers
and Operations Research. doi:10.1016/j.cor.2011.09.026.

Yang, X.-S., & Deb, S. (2013). Cuckoo search: recent advances and applications. Neural
Computing and Applications. doi:10.1007/s00521-013-1367-1.

Yildiz, A. R. (2013). Cuckoo search algorithm for the selection of optimal machining parameters
in milling operations. International Journal of Advanced Manufacturing Technology.
doi:10.1007/s00170-012-4013-7.

References 121

http://dx.doi.org/10.1016/j.cor.2011.09.026
http://dx.doi.org/10.1007/s00521-013-1367-1
http://dx.doi.org/10.1007/s00170-012-4013-7

Chapter 8
Luminous Insect Inspired Algorithms

Abstract In this chapter, we present three algorithms that are inspired by the
flashing behaviour of luminous insects, i.e., firefly algorithm (FA), glowworm
swarm optimization (GlSO) algorithm, and bioluminescent swarm optimization
(BiSO) algorithm. We first describe the general knowledge of the luminous insects
in Sect. 8.1. Then, the fundamentals, performances and selected applications of
FA, GlSO algorithm and BiSO algorithm are introduced in Sects. 8.2, 8.3 and 8.4,
respectively. Finally, Sect. 8.5 summarises this chapter.

8.1 Introduction

The flashing light of luminous insects is an amazing sight in the summer sky. More
information about firefly flash code evolution please refer to (Buck and Case
2002). In this chapter, we presented three algorithms that are inspired by the
flashing behaviour of luminous insects, i.e., firefly algorithm (FA), glowworm
swarm optimization (GlSO) algorithm, and bioluminescent swarm optimization
(BiSO) algorithm.

8.2 Firefly Algorithm

8.2.1 Fundamentals of Firefly Algorithm

Firefly algorithm (FA) is a nature-inspired, optimization algorithm which is based
on the social (flashing) behaviour of fireflies, or lighting bugs, in the summer sky in
the tropical temperature regions (Yang 2008, 2009, 2010b). In the FA, physical
entities (fireflies) are randomly distributed in the search space. They carry a bio-
luminescence quality, called luciferin, as a signal to communicate with other
fireflies, especially to prey attractions (Babu and Kannan 2002). In detail, each

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_8, � Springer International Publishing Switzerland 2014

123

firefly is attracted by the brighter glow of other neighbouring fireflies. The
attractiveness decreases as their distance increases. If there is no brighter one than
a particular firefly, it will move randomly. Its main merit is the fact that the FA
uses mainly real random numbers and is based on the global communication
among the swarming particles (i.e., the fireflies), and as a result, it seems more
effective in multi-objective optimization.

Normally, FA uses the following three idealized rules to simplify its search
process to achieve an optimal solution (Yang 2010b):

• Fireflies are unisex so that one firefly will be attracted to other fireflies regardless
of their sex, that means no mutation operation will be done to alter the attrac-
tiveness fireflies have for each other;

• The sharing of information or food between the fireflies is proportional to the
attractiveness that increases with a decreasing Cartesian or Euclidean distance
between them due to the fact that the air absorbs light. Thus for any two flashing
fireflies, the less bright one will move towards the brighter one. If there is no
brighter one than a particular firefly, it will move randomly; and

• The brightness of a firefly is determined by the landscape of the objective
function. For the maximization problems, the light intensity is proportional to
the value of the objective function.

Furthermore, there are two important issues in the FA that are the variation of
light intensity or brightness and formulation of attractiveness. Yang (2008) sim-
plifies a firefly’s attractiveness b (determined by its brightness I) which in turn is
associated with the encoded objective function. As light intensity and thus
attractiveness decreases as their distance from the source increases, the variations
of light intensity and attractiveness should be monotonically decreasing functions.

• Variation of light intensity: Suppose that there exists a swarm of n fireflies, and
xi; i ¼ 1; 2; . . .; n represents a solution for a firefly i initially positioned ran-
domly in the space, whereas f xið Þ denotes its fitness value. In the simplest form,
the light intensity IðrÞ varies with the distance r monotonically and exponen-
tially. That is determined by Eq. 8.1 (Yang 2008, 2009, 2010b):

I ¼ I0e�crij ; ð8:1Þ

where I0 is the original light intensity, c is the light absorption coefficient,
andr is the distance between firefly i and firefly j at xi and xj as Cartesian

distance rij ¼ xi � xj

�
�

�
� ¼

ffi
Pd

k¼1 xi;k � xj;k

� �2
q

or the ‘2-norm, where xi;k is the

kth
component of the spatial coordinate xi of the ith firefly and d is the number of

dimensions we have, for d ¼ 2, we have rij ¼
ffi

xi � xj

� �2þ yi � yj

� �2
q

.

• Movement toward attractive firefly: A firefly attractiveness is proportional to the
light intensity seen by adjacent fireflies (Yang 2008). Each firefly has its
distinctive attractiveness b which implies how strong it attracts other members

124 8 Luminous Insect Inspired Algorithms

of the swarm. However, the attractiveness is relative; it will vary with the
distance between two fireflies. The attractiveness function bðrÞ of the firefly is
determined via Eq. 8.2 (Yang 2008, 2009, 2010b):

b ¼ b0e�cr2
ij ; ð8:2Þ

where b0 is the attractiveness at r ¼ 0, and c is the light absorption coefficient
which controls the decrease of the light intensity.

The movement of a firefly i at location xi attracted to another more attractive
(brighter) firefly j at location xj is determined by Eq. 8.3 (Yang 2008, 2009, 2010a):

xi t þ 1ð Þ ¼ xi tð Þ þ b0e�cr2
ij xj � xi

� �
þ aei; ð8:3Þ

where the first term is the current position of a firefly, the second term is used for
considering a firefly’s attractiveness to light intensity seen by adjacent fireflies, and
the third term is randomization with the vector of random variables ei being drawn
from a Gaussian distribution, in case there are not any brighter ones. The coeffi-
cient a is a randomization parameter determined by the problem of interest.

• Special cases: From Eq. 8.3, it is easy to see that there exit two limit cases when
c is small or large, respectively (Yang 2008, 2009, 2010b). When c tends to
zero, the attractiveness and brightness are constant b ¼ b0 which means the
light intensity does not decrease as the distance r between two fireflies increases.
Therefore, a firefly can be seen by all other fireflies, a single local or global
optimum can be easily reached. This limiting case corresponds to the standard
particle swarm optimization algorithm.

On the other hand, when c is very large, then the attractiveness (and thus
brightness) decreases dramatically, and all fireflies are short-sighted or equiva-
lently fly in a deep foggy sky. This means that all fireflies move almost randomly,
which corresponds to a random search technique.

In general, the FA corresponds to the situation between these two limit cases,
and it is thus possible to fine-tune these parameters, so that FA can find the global
optima as well as all the local optima simultaneously in a very effective manner.
A further advantage of FA is that different fireflies will work almost independently,
it is thus particular suitable for parallel implementation. It is even better than
genetic algorithm and particle swarm optimization because fireflies aggregate
more closely around each optimum. It can be anticipated that the interactions
between different sub-regions are minimal in parallel implementation.

Overall, taking into account the basic information described above, the steps of
implementing FA can be summarized as follows (Yang 2009; Jones and Boizanté
2011):

• Step 1: Generate initial the population of fireflies placed at random positions
within the n-dimensional search space.

• Step 2: Initialize the parameters, such as the light absorption coefficient (c).

8.2 Firefly Algorithm 125

• Step 3: Define the light intensity (Ii) of each firefly (xi) as the value of the cost
function (f ðxiÞ).

• Step 4: For each firefly (xi), compare its light intensity with the light intensity of
every other firefly (i.e., xj).

• Step 5: If (Ij [Ii), then move firefly xi towards xj in n-dimensions.
• Step 6: Calculate the new values of the cost function for each firefly and update

the light intensity.
• Step 7: Rank the fireflies and determine the current best.
• Step 8: Repeat Steps 3–7 until the termination criteria is satisfied.

8.2.2 Performance of FA

To test the performance of FA, a set of benchmark functions are adopted in (Yang
2009), namely, Michalewicz function, Rosenbrock function, De Jong function,
Schwefel function, Ackley function, Rastrigin function, Easom function, Griewank
function, Shubert function, and Yang function. Compared with other computa-
tional intelligence (CI) algorithms [such as particle swarm optimization (PSO) and
genetic algorithm (GA)], computational results showed that FA is much more
efficient in finding the global optima with higher success rates.

8.3 Glowworm Swarm Optimization Algorithm

8.3.1 Fundamentals of Glowworm Swarm Optimization
Algorithm

Also inspired by luminous insect, the glowworm swarm optimization (GlSO)
algorithm was originally proposed by Krishnanand and Ghose (2005) to deal with
multimodal problems. Just like ants, elephants, mice, and snakes, glowworms also
use some chemical substances, called luciferin, as signals for indirect communi-
cation. By sensing luciferin, glowworms can be attracted by strongest luciferin
concentrations. In this way, the final optimization results can be found.

Typically, each iteration of the GlSO algorithm consists of two phases, namely,
a luciferin-update phase and a movement phase. In addition, for GlSO, there is a
dynamic decision range update rule that is used to adjust the glowworms’ adaptive
neighbourhoods. The details are listed as below (Krishnanand and Ghose 2009):

• Luciferin-update phase: It is the process by which the luciferin quantities are
modified. The quantities value can either increase, as glowworms deposit luciferin
on the current position, or decrease, due to luciferin decay. The luciferin update
rule is given via Eq. 8.4 (Krishnanand and Ghose 2009):

li t þ 1ð Þ ¼ 1� qð Þ � li tð Þ þ c � J � xi � t þ 1ð Þ½ �; ð8:4Þ

126 8 Luminous Insect Inspired Algorithms

where li tð Þ denotes the luciferin level associated with the glowworm i at time t,
q is the luciferin decay constant ð0\q\1Þ, c is the luciferin enhancement
constant, and J xi tð Þð Þ stands for the value of the objective function at glowworm
i0s location at time t.

• Movement phase: During this phase, glowworm i chooses the next position j to
move to using a bias (i.e., probabilistic decision rule) toward good-quality
individual which has higher luciferin value than its own. In addition, based on
their relative luciferin levels and availability of local information, the swarm of
glowworms can be partitioned into subgroups that converge on multiple optima
of a given multimodal function. The probability of moving toward a neighbour
is given by Eq. 8.5 (Krishnanand and Ghose 2009):

pij tð Þ ¼ lj tð Þ � li tð Þ
P

k2Ni tð Þ lk tð Þ � li tð Þ½ � ; ð8:5Þ

where j 2 NiðtÞ, Ni tð Þ ¼ j : dij tð Þ\ri
d tð Þ; li tð Þ\ljs tð Þ

� �
is the set of neighbours

of glowworm i at time t, dijðtÞ denotes the Euclidean distance between glow
worms i and j at time t, and ri

dðtÞ stands for the variable neighbourhood range
associated with glowworm i at time t.

Based on Eq. 8.5, the discrete-time model of the glowworm movements can be
stated via Eq. 8.6 (Krishnanand and Ghose 2009):

xi t þ 1ð Þ ¼ xi tð Þ þ s
xj tð Þ � xi tð Þ
xj tð Þ � xi tð Þ
�
�

�
�

" #

; ð8:6Þ

where xi tð Þ 2 Rm is the location of glowworm i at time t in the m-dimensional real
space, �k k denotes the Euclidean norm operator, and s ([0) is the step size.

• Neighbourhood range update rule: In addition to the luciferin value update rule
that is illustrated in the movement phase, in GlSO the glowworms use a radial
range [i.e., 0\ri

d � rs

� �
] update rule to explore an adaptive neighbourhood (i.e.,

to detect the presence of multiple peaks in a multimodal function landscape).
Let r0 be the initial neighbourhood range of each glowworm [i.e., ri

dð0Þ ¼ r0 8i],
then the updating rule is given via Eq. 8.7 (Krishnanand and Ghose 2009):

ri
d t þ 1ð Þ ¼ min rs; max 0; ri

d tð Þ þ b nt � Ni tð Þj jð Þ
� �� �

; ð8:7Þ

where b is a constant parameter, and nt 2 N is a parameter used to control the
number of neighbours.

Furthermore, in order to escape the dead-lock situation (i.e., all the glowworms
converge to suboptimal solutions), Krishnanand and Ghose (2009) employed a
local search mechanism.

The working principle is described as follows: during the movement phase,
each glowworm moves a distance of step size (s) toward a neighbour. Hence, when

8.3 Glowworm Swarm Optimization Algorithm 127

dij tð Þ\s, glowworm i leapfrogs over the position of a neighbour j and becomes a
leader to j. In the next iteration, glowworm i remains stationary and j overtakes the
position of glowworm i, thus regaining its leadership. In this way, the GlSO
algorithm converges to a state in which all the glowworms construct the optimal
solution over and over again.

Typically, by taking into account the basic rules described above, the steps of
implementing the GlSO algorithm can be summarized as follows (Krishnanand
and Ghose 2009):

• Step 1: Initialize the parameters.
• Step 2: Initiation population of N candidate solution is randomly generated all

over the search space.
• Step 3: The fitness function value corresponding to each candidate solution is

calculated.
• Step 4: Perform the iteration procedures that include luciferin update phase,

movement phase, and decision range update phase.
• Step 5: Check if maximum iteration is reached, go to step 3 for new beginning.

If a specified termination criteria is satisfied, stop and return the best solution.

8.3.2 Performance of GlSO

To evaluate the performance of the GlSO algorithm, a set of multimodal test
functions haven been proposed in Krishnanand and Ghose (2009), such as Peaks
function, Rastrigin’s function, Circles function, Plateaus function, Equal-peaks-A
function, Random-peaks function, Himmelblau’s function, Equal-peaks-B func-
tion, and Staircase function. Compared with niche particle swarm optimization
(NichePSO), the GlSO algorithm presented a better results in terms of the number
of peaks captured.

8.3.3 Selected GlSO Variants

Although GlSO is a new member of CI family, a number of GlSO variations have
been proposed in the literature for the purpose of further improving the perfor-
mance of GlSO. This section gives an overview to some of these GlSO variants
which have been demonstrated to be very efficient and robust.

8.3.3.1 Niching GlSO with Mating Behaviour (MNGSO)

As we know, GlSO is developed to solve multimodal function optimization
problem which is characterized by the existence of more than one global optimal

128 8 Luminous Insect Inspired Algorithms

solution. To increase the search robustness, speed up the convergence, and get
more precise solutions, Huang et al. (2011) proposed a new variant of GlSO, called
MNGSO, in which a niching strategy and mating behaviour are incorporated.

Generally speaking, niching is a concept developed in the genetic algorithm
(GA) community (Angus 2008). Some of the better known niching methods
include crowding (Mahfoud 1995), fitness sharing (Goldberg and Richardson
1987), and clearing (Petrowski 1996). Nowadays, Niching strategy has been used
extensively in the filed of CI to find multiple solutions at the same time, such as
niching for ant colony optimization (ACO) (Angus 2008, 2009), and NichePSO
(Engelbrecht 2007).

The basic operating principle of MNGSO is using restricted competition
selection (RCS) dynamic niching strategy (Lee et al. 1999), which is a variation of
crowding to search several local optimal synchronously. The detail procedures of
RCS are as follows (Huang et al. 2011):

• Initialize N subpopulations and mark the best individuals of every subpopulation
with pnbest.

• When the distance (dij) between pibest and pjbest (where pibest and pjbest are best
individuals of two different subpopulations) is shorter than Rniche (where Rniche is
the radius of niche), then compare their fitness, set 0 to the lower one and keep
the value of the other. The Rniche can be updated via Eq. 8.8 (Huang et al. 2011):

R tþ1ð Þ
niche ¼ Rt

niche � Rt
niche � c; ð8:8Þ

where c is a constant used for adjusting the decay rate.
• Randomly initialize the best individuals who are set to 0, and reset its local-

decision range rd to rs. In addition, reselect the best one in its niche, then return
to Step 1 until the distance (dij) of any two best individuals respectively belongs
to two different niches is lesser than the radius of niche.

In addition, Huang et al. (2011) added a mating behaviour to the MNGSO
algorithm in order to get more precise solutions. The formula of updating mate-
decision range (mate rs) is via Eq. 8.9 (Huang et al. 2011):

mate rs ¼ 1� constrapð Þmate rs; ð8:9Þ

where constrap denotes the contractibility rate.
The steps of implementing the MNGSO algorithm can be summarized as fol-

lows (Huang et al. 2011):

• Step 1: Initialize the parameters.
• Step 2: Update luciferin of all the glowworm.
• Step 3: Calculate the neighbours of each glowworm.
• Step 4: Select j j 2 NiðtÞð Þ as the movement direction of glowworm i by roulette,

and update the position of i.
• Step 5: Implement the RCS niching strategy, determine the best individuals of

every niching subgroups.

8.3 Glowworm Swarm Optimization Algorithm 129

• Step 6: Implement mating behaviour to the best individual of each niche.
• Step 7: When the predetermined iterations for eliminating reached, the worst

niching subgroup is eliminated and updated.
• Step 8: Check if maximum iteration is reached, go to step 2 for new beginning.

If a specified termination criteria is satisfied stop and return the best solution.

8.3.3.2 Performance of MNGSO

To verify the availability and feasibility of MNGSO, a set of standard functions are
tested in Huang et al. (2011). Compared with PSO, PSO with chaos (CPSO),
artificial fish swarm algorithm (AFSA), and AFSA with chaos (CAFSA), the
experimental results showed that MNGSO is an effective global algorithm for
finding optimal results.

8.3.4 Representative GlSO Applications

The applications of GlSO can be found in many areas, in this section, wireless
sensor networks (WSNs) is selected as an example and summarized in the fol-
lowing section. Recently, WSNs are becoming a rapidly developing area in both
research community and civilian applications, such as target acquisition, forest fire
prevention, structural health measurement, and surveillance. In general, a WSN
includes a large number of small wireless devices (i.e., sensor nodes) in which
each one has high precision to acquire some physical data (Benini et al. 2006).
Among others, one of the key features in a WSN is the coverage issue including
energy saving (Anastasi et al. 2009), connectivity (Raghavan and Kumara 2007),
and deployment of wireless sensor nodes (Pradhan and Panda 2012).

8.3.4.1 Sensor Deployment Approach Using GlSO

To ensure that the area of targets of interest can be covered, an optimized sensor
deployment scheme is an essential guide for anyone interested in wireless com-
munications. Recently, Liao et al. (2011) proposed a GlSO-based deployment
approach to enhance the coverage after an initial random placement of sensors. In
details, each sensor node is mimicked as a glowworm and emitted by luciferin.
The intensity of luciferin is based on the distance between a sensor and its
neighbours. By using the probabilistic mechanism, each sensor node selects its
neighbours which has lower intensity of lucifein and decides to move towards one
of them. In this way, the coverage of sparsely covered areas can be minimized.

To validate the performance of the GlSO algorithm, a comparison with the virtual
force algorithm (VFA) has been illustrated. Computational results showed that the
GlSO algorithm can improve the coverage rate with limited senor movement.

130 8 Luminous Insect Inspired Algorithms

8.4 Emerging Luminous Insect Inspired Algorithms

In addition to the aforementioned FA and GlSO algorithms, the characteristics of
this interesting insect also motivate researchers to develop another luminous insect
inspired innovative CI algorithm.

8.4.1 Fundamentals of Bioluminescent Swarm Optimization
Algorithm

Bioluminescent swarm optimization (BiSO) algorithm was proposed by Oliveira
et al. (2011). Although BiSO can be loosely regarded as a hybridization of PSO
and GlSO, several characteristics have made it unique. For example, apart from the
basic characteristics of GlSO (such as luciferin update rule and stochastic neigh-
bour movement rule), Oliveira et al. (2011) proposed a set of new features, namely
stochastic adaptive step sizing, global optimum attraction, leader movement, and
mass extinction. In addition, the BiSO algorithm is incorporated with two local
search techniques, i.e., local unimodal sampling (LUS) and single-dimension
perturbation search (SDPS). The following subsections give us a detailed
description about some of these unique features.

8.4.1.1 Luciferin-Update Phase

Instead of using fitness-based function J xiðtÞð Þð Þ to evaluate the luciferin value
between the glowworms as proposed by the GlSO, BiSO uses luciferin-based
attraction which is controlled by luciferin decay constant (q) and the luciferin
enhancement constant (c), respectively. The luciferin update rule is given by
Eq. 8.10 (Oliveira et al. 2011):

li t þ 1ð Þ ¼ 1� qð Þ � li tð Þ þ c � f xi tð Þð Þ; ð8:10Þ

where liðtÞ denotes the luciferin level associated with the glowworm i at time t, q is
the luciferin decay constant ð0\q\1Þ, c is the luciferin enhancement constant,
and f xiðtÞð Þ stands for the value of the objective function at glowworm i0s location
at time t.

8.4.1.2 Stochastic Adaptive Step Sizing

• In BiSO, the following equation is employed to calculated the next location of a
given artificial luminous insect via Eq. 8.11 (Oliveira et al. 2011).

8.4 Emerging Luminous Insect Inspired Algorithms 131

xi t þ 1ð Þ ¼ xiðtÞ þ rand � s � xjðtÞ � xiðtÞ
xjðtÞ � xiðtÞ
�
�

�
�

" #

þ cg � rand � s � g tð Þ � xi tð Þ
g tð Þ � xi tð Þk k

� ffi

;

ð8:11Þ

where the artificial luminous insect’s current position is denoted by xiðtÞ, rand
represents a random number which falls within 0; 1½ �, the artificial luminous
insect’s current step size is indicated by s, cg is a constant which is used to
express the global best attraction, and gðtÞ stands for the global best location.

• In GlSO, a fixed step size is normally used, whereas BiSO alters the step size in
a random manner which is similar to PSO. Apart from this, the maximum step in
BiSO is adaptive governed by Eq. 8.12 (Oliveira et al. 2011):

s ¼ s0 �
1

1þ cs � li tð Þ ; ð8:12Þ

where s0 stands for the maximum step, liðtÞ denotes the amount of luciferin of an
artificial luminous insect, and cs represents a slowing constant.

8.4.1.3 Global Optimum Attraction

Like PSO, BiSO employed a global optimum factor (cg) to enhance the neighbour
selection. In other words, the selecting of next location is governed by two factors:
the current step size and an attractive force. By using a combination of these two
factors, every node tries to maximize its value while maintaining the required
number of neighbours.

8.4.1.4 Mass Extinction

To prevent early stagnation, Oliveira et al. (2011) proposed a mechanism called
mass extinction to counteract this effect. It works by reinitializing all or part of the
particles, but keeping the best-so-far value (i.e., global optima). That means, in
BiSO, the Luciferin value is reinitialized each time when the system approaches
stagnation or no improved solution has been generated for a certain number of
iterations, except the global best location (g(t)). The parameter eT is used to
control this procedure.

8.4.1.5 Local Search Procedures

Local search is usually used to find high-quality solutions to combinatorial opti-
mization problems in reasonable time. In BiSO, Oliveira et al. (2011) applied two
local search method, i.e., LUS and SDPS. The former one is embedded at each
iteration meaning the default movement for the best particle, called weak one,

132 8 Luminous Insect Inspired Algorithms

while the latter one is embedded at each lR iterations for searching an improved
solution within the neighbourhood of the current solution, called strong one.

The steps of implementing the BiSO algorithm can be summarized as follows
(Oliveira et al. 2011):

• Step 1: Initialize the parameters.
• Step 2: Randomly generate the bioluminescent particle population.
• Step 3: Perform the iteration procedures that include luciferin update phase,

movement phase, step size update phase, and local search phase.
• Step 4: Check if maximum iteration is reached, go to Step 3 for new beginning.

If a specified termination criteria is satisfied stop and return the best solution.

8.4.2 Performance of BiSO

The BiSO algorithm has been tested by four well-known benchmark functions,
namely, Rastrigin function, Griewank function, Schaffer function, and Rosenbrock
function in (Oliveira et al. 2011). Compared with PSO, the BiSO algorithm pre-
sented a better results of finding the global best solution.

8.5 Conclusions

In this chapter, three CI methods are introduced, namely, FA, GlSO algorithm, and
BiSO algorithm. The general idea behind those algorithms is similar, such as all
algorithms are inspired by the luminous insects, and the updating rule is propor-
tional to the higher value of objective function. However, the actual procedures is
very different. For example, FA is proposed as a general optimization algorithm,
GlSO algorithm is designed to capture multiple peaks in mulitmodal functions
(i.e., without the aim of finding the global best), and BiSO can be loosely regarded
as a hybridization of PSO algorithm and GlSO algorithm. The main difference
between GlSO algorithm and BiSO algorithm lies in the finding of global opti-
mum. Although FA, GlSO algorithm, and BiSO algorithm are newly introduced CI
methods, we have witnessed the following rapid spreading of these luminous
insect inspired algorithms:

First, in addition to the selected variants detailed in this chapter, several
enhanced version of FA and GlSO algorithm can also be found in the literature are
outlined below:

• Chaos enhanced FA (Yang 2011).
• Discrete FA (Sayadi et al. 2010).
• Enhanced FA (Niknam et al. 2012).
• Lévy-flight FA (Yang 2010a).
• Multiobjective FA (Yang 2013).

8.4 Emerging Luminous Insect Inspired Algorithms 133

• Definite updating search domains based GlSO (Liu et al. 2011).
• Hierarchical multi-subgroups based GlSO (He et al. 2013).
• Hybrid GlSO (Zhou et al. 2013; Gong et al. 2011).
• Improved GlSO (Wu et al. 2012; He and Zhu 2011).
• Local search based GlSO (Zhao et al. 2012b).
• MapReduce based GlSO (Aljarah and Ludwig 2013a).
• Metropolis criterion based GlSO (Zhao et al. 2012a).
• Modified GlSO (Oramus 2010; Zhang et al. 2011).

Second, the FA has also been successfully applied to a variety of optimization
problems as listed below:

• Artificial neural network training (Horng et al. 2012).
• Continuous constrained optimization (Łukasik and _Zak 2009).
• Data clustering (Senthilnath et al. 2011a).
• Image processing (Horng and Liou 2011; Horng 2012).
• Linear array antenna design optimizaiton (Basu and Mahanti 2011).
• Multimodal optimization (Yang 2009).
• Multivariable proportional-integral-derivative control (Coelho and Mariani

2012).
• Power system (Apostolopoulos and Vlachos 2011; Niknam et al. 2012; Yang

et al. 2012).
• Scheuling optimization (Sayadi et al. 2010).
• Sematic Web service composition optimization (Pop et al. 2011a, 2011b).
• Stock market price forecasting (Kazem et al. 2013).
• Structure design optimization (Gomes 2011; Gandomi et al. 2011; Talatahari

et al. 2012; Miguel and Miguel 2012).
• Structure design optimization (Talatahari et al. 2012).

Third, apart from the representative GlSO applications, it has also been suc-
cessfully applied to a variety of optimization problems as arrayed below:

• Data clustering (Aljarah and Ludwig 2013b; Huang and Zhou 2011; Tseng
2008).

• Image processing (Senthilnath et al. 2011b).
• Injection mould water channel location optimization (Chiang 2012).
• Multi-dimensional knapsack problem (Gong et al. 2011).
• Robotics control (Krishnanand and Ghose 2005; Krishnanand et al. 2006).
• Wireless sensor networks (Krishnanand and Ghose 2005).

Interested readers please refer to them together with several excellent reviews
[e.g., (Fister et al. 2013)] as a starting point for a further exploration and
exploitation of luminous insect inspired algorithms.

134 8 Luminous Insect Inspired Algorithms

References

Aljarah, I., Ludwig, S. A. (2013a, April 15–19). A MapReduce based glowworm swarm
optimization approach for multimodal functions. In IEEE Symposium Series on Computa-
tional Intelligence (SSCI 2013), Singapore (pp. 22–31). IEEE.

Aljarah, I., Ludwig, S. A. (2013b, June 20–23) A new clustering approach based on glowworm
swarm optimization. In IEEE Congress on Evolutionary Computation, Cancún, México (pp.
2642–2649). IEEE.

Anastasi, G., Conti, M., Francesco, M. D., & Passarella, A. (2009). Energy conservation in
wireless sensor networks: a survey. Ad Hoc Networks, 7, 537–568.

Angus, D. (2009). Niching for ant colony optimisation. In A. Lewis (Ed.), Biologically-inspired
optimisation methods, SCI 210. Berlin Heidelberg: Springer.

Angus, D. J. (2008). Niching ant colony optimisation. Doctor of Philosophy, Swinburne
University of Technology.

Apostolopoulos, T., & Vlachos, A. (2011). Application of the firefly algorithm for solving the
economic emissions load dispatch problem. International Journal of Combinatorics, 523806,
1–23.

Babu, B. G., & Kannan, M. (2002). Lightning bugs. Resonance, 7, 49–55.
Basu, B., & Mahanti, G. K. (2011). Fire fly and artificial bees colony algorithm for synthesis of

scanned and broad-side linear array antenna. Progress In Electromagnetics Research B, 32,
169–190.

Benini, L., Farella, E., & Guiducci, C. (2006). Wireless sensor networks: enabling technology for
ambient intelligence. Microelectronics Journal, 37, 1639–1649.

Buck, J., & Case, J. (2002). Physiological links in firefly flash code evolution. Journal of Insect
Behavior, 15, 51–68.

Chiang, Y.-S. (2012). Water channel location optimization of injection molding using glowworm
swarm algorithm with variable step. Unpublished Master Thesis (in Chinese), Tatung
University.

Coelho, L. D. S., & Mariani, V. C. (2012). Firefly algorithm approach based on chaotic
Tinkerbell map applied to multivariable PID controller tuning. Computers and Mathematics
with Applications, 64, 2371–2382.

Engelbrecht, A. P. (2007). Computational intelligence: An introduction, West Sussex, England:
Wiley, ISBN 978-0-470-03561-0.

Fister, I., Jr Fister, I., Yang, X.-S. & Brest, J. (2013). A comprehensive review of firefly
algorithm. Swarm and Evolutionary Computation. http://dx.doi.org/10.1016/j.swevo.2013.
06.001i

Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2011). Mixed variable structural optimization
using firefly algorithm. Computers and Structures, 89, 2325–2336.

Goldberg, D. E. & Richardson, J. (1987). Genetic algorithms with sharing for multimodal
function optimization. In 2nd International Conference on Genetic Algorithm (pp. 41–49).

Gomes, H. M. (2011). A firely metaheuristic algorithm for structural size and shape optimization
with dynamic constraints. Mecánica Computacional, 30, 2059–2074.

Gong, Q., Zhou, Y., & Luo, Q. (2011). Hybrid artificial glowworm swarm optimization algorithm
for solving multi-dimensional knapsack problem. Procedia Engineering, 15, 2880–2884.

He, D.-X., & Zhu, H.-Z. (2011). An improved glowworm swarm optimization algorithm for high-
dimensional function optimization. Energy Procedia, 13, 5657–5664.

He, L., Tong, X., & Huang, S. (2013). Glowworm swarm optimization algorithm based on
hierarchical multi-subgroups. Journal of Information and Computational Science, 10,
1245–1251.

Horng, M.-H. (2012). Vector quantization using the firefly algorithm for image compression.
Expert Systems with Applications, 39, 1078–1091.

Horng, M.-H., Lee, Y.-X., Lee, M.-C. & Liou, R.-J. (2012). Firefly meta-heuristic algorithm for
training the radia basis function network for data classification and disease diagnosis. In: R.

References 135

http://dx.doi.org/10.1016/j.swevo.2013.06.001i
http://dx.doi.org/10.1016/j.swevo.2013.06.001i

Parpinelli (Ed.), Theory and new applications of swarm intelligence, Chap. 7 (pp. 115–132).
Rijeka, Croatia: In-Tech. ISBN 978-953-51-0364-6.

Horng, M.-H., & Liou, R.-J. (2011). Multilevel minimum cross entropy threshold selection based
on the firefly algorithm. Expert Systems with Applications, 38, 14805–14811.

Huang, K., Zhou, Y., & Wang, Y. (2011). Niching glowworm swarm optimization algorithm with
mating behavior. Journal of Information and Computational Science, 8, 4175–4184.

Huang, Z., & Zhou, Y. (2011). Using glowworm swarm optimization algorithm for clustering
analysis. Journal of Convergence Information Technology, 6, 78–85.

Jones, K. O., & Boizanté, G. (2011, June 16–17). Comparison of firefly algorithm optimisation,
particle swarm optimisation and differential evolution. International Conference on Computer
Systems and Technologies (CompSysTech), (pp. 191–197). Vienna, Austria.

Kazem, A., Sharifi, E., Hussain, F. K., Saberi, M. & Hussain, O. K. (2013). Support vector
regression with chaos-based firefly algorithm for stock market price forecasting. Applied Soft
Computing, 13, 947–958. http://dx.doi.org/10.1016/j.asoc.2012.09.024.

Krishnanand, K. N., Amruth, P., Guruprasad, M. H., Bidargaddi, S. V. & Ghose, D. (2006, May).
Glowworm-inspired robot swarm for simultaneous taxis towards multiple radiation sources.
In IEEE International Conference on Robotics and Automation (ICRA), Orlando, Florida,
USA, (pp. 958–963). IEEE.

Krishnanand, K. N. & Ghose, D. (2005). Detection of multiple source locations using a
glowworm metaphor with applications to collective robotics. In IEEE Swarm Intelligence
Symposium (SIS) (pp. 84–91). IEEE.

Krishnanand, K. N., & Ghose, D. (2009). Glowworm swarm optimization for simultaneous
capture of multiple local optima of multimodal functions. Swarm Intelligence, 3, 87–124.

Lee, C. G., Cho, D. H., & Jung, H. K. (1999). Niche genetic algorithm with restricted competition
selection for multimodal function optimization. IEEE transaction on Magnetics, 35,
1122–1125.

Liao, W.-H., Kao, Y., & Li, Y.-S. (2011). A sensor deployment approach using glowworm swarm
optimization algorithm in wireless sensor networks. Expert Systems with Applications, 38,
12180–12188.

Liu, J., Zhou, Y., Huang, K., Ouyang, Z., & Wang, Y. (2011). A glowworm swarm optimization
algorithm based on definite updating search domains. Journal of Computational Information
Systems, 7, 3698–3705.

Łukasik, S., & _Zak, S. (2009). Firefly algorithm for continuous constrained optimization tasks.
Computational collective intelligence. semantic web, social networks and multiagent systems
LNCS 5796, (pp. 97–106). Berlin: Spinger.

Mahfoud, S. W. (1995). Niching methods for genetic algorithms. Doctor of Philosophy,
University of Illinois.

Miguel, L. F. F., & Miguel, L. F. F. (2012). Shape and size optimization of truss structures
considering dynamic constraints through modern metaheuristic algorithms. Expert Systems
with Applications, 39, 9458–9467.

Niknam, T., Azizipanah-Abarghooee, R., Roosta, A., & Amiri, B. (2012). A new multi-objective
reserve constrained combined heat and power dynamic economic emission dispatch. Energy,
42, 530–545.

Oliveira, D. R. D., Parpinelli, R. S. & Lopes, H. S. (2011). Bioluminescent swarm optimization
algorithm. Evolutionary Algorithms, Chap. 5 (pp. 71–84). Eisuke Kita: InTech.

Oramus, P. (2010). Improvements to glowworm swarm optimization algorithm. Computer
Science, 11, 7–20.

Petrowski, A. (1996). A clearing procedure as a niching method for genetic algorithms. In IEEE
International Conference on Evolutionary Computation, (pp. 798–803).

Pop, C. B., Chifu, V. R., Salomie, I., Baico, R. B., Dinsoreanu, M., & Copil, G. (2011a). A hybrid
firefly-inspired approach for optimal semantic Web service composition. Scalable Computing
Practice and Experience, 12, 363–369.

136 8 Luminous Insect Inspired Algorithms

http://dx.doi.org/10.1016/j.asoc.2012.09.024

Pop, C. B., Chifu, V. R., Salomie, I., Baico, R. B., Dinsoreanu, M. & Copil, G. (2011b, 19–21
September). A hybrid firefly-inspired approach for optimal semantic Web service compo-
sition. 3rd Workshop on Software Services: Semantic-based software services, Szczecin,
Poland, (pp. 1–6).

Pradhan, P. M., & Panda, G. (2012). Connectivity constrained wireless sensor deployment using
multi objective evolutionary algorithms and fuzzy decision making. Ad Hoc Networks, 10,
1134–1145.

Raghavan, U. N., & Kumara, S. R. T. (2007). Decentralised topology control algorithms for
connectivity of distributed wireless sensor networks. International Journal of Sensor
Networks, 2, 201–210.

Sayadi, M. K., Ramezanian, R., & Ghaffari-Nasab, N. (2010). A discrete firefly meta-heuristic
with local search for makespan minimization in permutation flow shop scheduling problems.
International Journal of Industrial Engineering Computations, 1, 1–10.

Senthilnath, J., Omkar, S. N., & Mani, V. (2011a). Clustering using firefly algorithm:
Performance study. Swarm and Evolutionary Computation, 1, 164–171.

Senthilnath, J., Omkar, S. N., Mani, V., Tejovanth, N., Diwakar, P. G., & Archana, S. B. (2011b).
Multi-spectral satellite image classification using glowworm swarm optimization. In IEEE
International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 47–50). IEEE.

Talatahari, S., Gandomi, A. H. & Yun, G. J. (2012). Optimum design of tower structures using
firefly algorithm. The Structural Design of Tall and Special Buildings. (DOI:10.1002/tal.1043).

Tseng, K.-T. (2008). A glowworm algorithm for solving data clustering problems (in Chinese).
Unpublished Master Thesis, Tatung University.

Wu, B., Qian, C., Ni, W., & Fan, S. (2012). The improvement of glowworm swarm optimization
for continuous optimization problems. Expert Systems with Applications, 39, 6335–6342.

Yang, X.-S. (2008). Nature-inspired metaheuristic algorithms. UK: Luniver Press. ISBN 978-1-
905986-28-6.

Yang, X.-S. (2009). Firefly algorithms for multimodal optimization. In O. Watanabe, &
T. Zeugmann, (Eds.), SAGA 2009, LNCS 5792, (pp. 169–178). Berlin Heidelberg: Springer.

Yang, X.-S. (2010a). Firefly algorithm, Lévy flights and global optimization. In M. Bramer, (Ed.)
Research and development in intelligent systems. 26, 209–218. London, UK: Springer-Verlag.

Yang, X.-S. (2010b). Firefly algorithm, stochastic test functions and design optimisation.
International Journal of Bio-Inspired Computation, 2, 78–84.

Yang, X.-S. (2011). Chaos-enhanced firefly algorithm with automatic parameter tuning.
International Journal of Swarm Intelligence Research, 2, 1–11.

Yang, X.-S. (2013). Multiobjective firefly algorithm for continuous optimization. Engineering
with Computers, 29, 175–184. (DOI 10.1007/s00366-012-0254-1).

Yang, X.-S., Hosseini, S. S. S., & Gandomi, A. H. (2012). Firefly algorithm for solving non-
convex economic dispatch problems with valve loading effect. Applied Soft Computing, 12,
1180–1186.

Zhang, Y.-L., Ma, X.-P., Gu, Y., & Miao, Y.-Z. (2011) A modified glowworm swarm
optimization for multimodal functions. In Chinese Control and Decision Conference (CCDC),
(pp. 2070–2075). IEEE.

Zhao, G., Zhou, Y., Luo, Q., & Wang, Y. (2012a). A glowworm swarm optimization algorithm
based on metropolis criterion. International Journal of Advancements in Computing
Technology, 4, 149–155.

Zhao, G., Zhou, Y., & Wang, Y. (2012b). The glowworm swarm optimization algorithm with
local search operator. Journal of Information & Computational Science, 9, 1299–1308.

Zhou, Y., Zhou, G., & Zhang, J. (2013). A hybrid glowworm swarm optimization algorithm for
constrained engineering design problems. Applied Mathematics and Information Sciences, 7,
379–388.

References 137

http://dx.doi.org/10.1002/tal.1043
http://dx.doi.org/10.1007/s00366-012-0254-1

Chapter 9
Fish Inspired Algorithms

Abstract In this chapter, we present several fish algorithms that are inspired by
some key features of the fish school/swarm, namely, artificial fish school algorithm
(AFSA), fish school search (FSS), group escaping algorithm (GEA), and shark-
search algorithm (SSA). We first provide a short introduction in Sect. 9.1. Then,
the detailed descriptions regarding AFSA and FSS can be found in Sects. 9.2 and
9.3, respectively. Next, Sect. 9.4 briefs two emerging fish inspired algorithms, i.e.,
GEA and SSA. Finally, Sect. 9.5 summarises in this chapter.

9.1 Introduction

In a water area, fishes are most likely distributed around the region where foods are
most abundant and desire to stay close to the swarm. Biological research shows
that the position of individual fish in swarm will adjust at any time with the
external environment and its own state (Ban et al. 2009; Braithwaite 2006). In
addition, the fish try to complete their food foraging process and keep the balance
in such factors as momentum, hunger degree and fear degree, etc. According to
those instinctive behaviours, in this chapter, several fish behaviour inspired
algorithms are collected and introduced as follows:

• Section 9.2: Artificial Fish School Algorithm.
• Section 9.3: Fish School Search Algorithm.
• Section 9.4.1: Group Escaping Algorithm.
• Section 9.4.2: Shark-Search Algorithm.

The effectiveness of these newly developed algorithms are validated through the
testing on a wide range of benchmark functions and engineering design problems,
and also a detailed comparison with various traditional performance leading com-
putational intelligence (CI) algorithms, such as particle swarm optimization (PSO),
genetic algorithm (GA), differential evolution (DE), evolutionary algorithm (EA),
fuzzy system (FS), ant colony optimization (ACO), and simulated annealing (SA).

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_9, � Springer International Publishing Switzerland 2014

139

9.2 Artificial Fish School Algorithm

9.2.1 Fundamentals of Artificial Fish School Algorithm

Artificial fish swarm algorithm (AFSA), which was proposed in Li (2003), is a
stochastic search optimization algorithm inspired by the natural social behaviour
of fish schooling. In principle, AFSA is started first in a set of random generated
potential solutions, and then performs the search for the optimum one interactively
(Zhang et al. 2006a). The main steps of AFSA are outlined as follows (Li 2003;
Wang et al. 2005; Luo et al. 2007):

Assuming in an n-dimensional searching space, there is a group composed of K
articles of artificial fish (AF).

• Situation of each individual AF can be expressed as vector X ¼ x1; x2; . . .; xkð Þ is
denoted the current state of AF, where xk k ¼ 1; 2; . . .; kð Þ is control variable.

• Y ¼ f Xð Þ is the fitness or objective function of X, which can represent food
concentration (FC) of AF in the current position.

• dij ¼ Xi � Xj

�
�

�
� is denoted the Euclidean distance between fishes.

• Visual and Step are denoted respectively the visual distance of AF and the
distance that AF can move for each step.

• Xv ¼ xv
1; x

v
2; . . .; xv

k

� �
is the visual position at some moment. If the state at the

visual position is better than the current state, it goes forward ad step in this
direction, and arrives the Xnext state, otherwise, continues an inspecting tour in
the vision.

• try-number is attempt times in the behaviour of prey.
• d is the condition of jamming 0\d\1ð Þ.

The basic behaviours of AF inside water are defined as follows (Li 2003; Wang
et al. 2005; Luo et al. 2007):

• Chasing trail behaviour (AF_Follow): When a fish finds the food dangling
quickly after a fish, or a group of fishes, in the swarm that discovered food. If
Yj [Yi and nf

�
n\d, then the AF_Follow behaviour is defined by Eq. 9.1 (Li

2003; Wang et al. 2005; Luo et al. 2007; Neshat et al. 2012a, b):

X tþ1ð Þ
i ¼ X tð Þ

i þ
Xj � X tð Þ

i

Xj � X tð Þ
i

�
�
�

�
�
�
� Step � randð Þ: ð9:1Þ

• Gathering behaviour (AF_Swarm): In order to survive and avoid hazards, the
fish will naturally assemble in groups. There are three rules while fish gathering:
firstly, a fish will try to keep a certain distance with each other to avoid

140 9 Fish Inspired Algorithms

crowding (i.e., Compartmentation Rule); secondly, a fish will try to move in a
similar direction with its surrounding partners (i.e., Unification Rule); finally, a
fish will try to move to the centre of its surrounding partners (i.e., Cohesion
Rule). If Yc [Yi and nf

�
n\d, then the AF_Swarm behaviour is defined by Eq.

9.2 (Li 2003; Wang et al. 2005; Luo et al. 2007; Neshat et al. 2012a, b):

X tþ1ð Þ
i ¼ X tð Þ

i þ
Xc � X tð Þ

i

Xc � X tð Þ
i

�
�
�

�
�
�
� Step � randð Þ; ð9:2Þ

where Xc denotes the centre position of AF, Xi be the AF current state, nf be the
number of its companions in the current neighbourhood (dij\Visual), and n is
the total fish number.

• Random searching behaviour (AF_Random): This is a basic biological behav-
iour that tendts to the food. Generally the fish perceives the concentration of
food in water to determine the movement by vision or sense and then chooses
the tendency. The effect of this behaviour is similar to that of mutation operator
in genetic algorithm (GA). It is defined by Eq. 9.3 (Neshat et al. 2012a, b):

X tþ1ð Þ
i ¼ X tð Þ

i þ Visual � randð Þ: ð9:3Þ

• Leaping behaviour (AF_Leap): When a fish ‘stagnates’ in a region, it looks for
food in other regions defining the leaping behaviour. It can be defined by Eq. 9.4
(Neshat et al. 2012a, b):

if FCbest mð Þ � FCbest nð Þð Þ\eps

then X tþ1ð Þ
some ¼ X tð Þ

some þ b � Visual � randð Þ
;

(

ð9:4Þ

where b is a parameter or a function that can makes some fish have other
abnormal actions (values), eps is a smaller constant, and FC represents the food
concentration.

• Foraging behaviour (AF_Prey): As feeding the fish, they will gradually move to
the place where food is increasing. It is defined by Eqs. 9.5 and 9.6, respectively
(Li 2003; Wang et al. 2005; Luo et al. 2007; Neshat et al. 2012a, b):

Xj ¼ Xi þ Visual � randð Þ; ð9:5Þ

where Xi be the AF current state and select a state Xj randomly in its visual
distance, randð Þ is a random function in the range, and Visual represents the
visual distance.

9.2 Artificial Fish School Algorithm 141

if Yi\Yj; then X tþ1ð Þ
i ¼ X tð Þ

i þ
Xj�X tð Þ

i

Xj�X tð Þ
ik k � Step � randð Þ

if Yi [Yj; then
Xj ¼ Xi þ Visual � randð Þ
X tþ1ð Þ

i ¼ X tð Þ
i þ Visual � randð Þ

�

8
>><

>>:

; ð9:6Þ

where Y is the food concentration (objective function value), X tþ1ð Þ
i represents

the AF’s next state, and Step denotes the distance that AF can move for each
step.

Taking into account the above mentioned behaviours, the steps of implementing
AFSA can be summarized as follows (Neshat et al. 2012a, b):

• Step 1: Generate the initial fish swarm randomly in the search space.
• Step 2: Initialize the parameters.
• Step 3: Evaluate the fitness value of each AF.
• Step 4: Selecting behaviour. Each AF simulate the swarming and following

behaviour, respectively, and select the best behaviour to perform by comparing
the function values, the default is searching food behaviour.

• Step 5: Update the function value of the AF again.
• Step 6: Check the termination condition.

9.2.2 Performance of AFSA

In Li et al. (2012), the authors presented a real-world case study, i.e., transporting
dangerous goods for Zhengzhou Coal Material Supply and Marketing Company, to
test the performance of AFSA in solving vehicle routing problem. The comparison
was made between AFSA and other selected methods, e.g., GA. The experimental
results showed that the proposed algorithm performs well.

9.3 Fish School Search Algorithm

9.3.1 Fundamentals of Fish School Search Algorithm

Fish school search (FSS) algorithm was originally proposed in Bastos-Filho et al.
(2008, 2009a) based on the simulation of social behaviour of biologic fish. In FSS,
the search space is bounded and each possible position in the search space rep-
resents a possible solution for the problem. The success of a fish during the search
process is indicated by its weight, so promising areas can be inferred from regions
where bigger ensembles of fish are located (Janecek and Tan 2011a), and the
amount of food that a fish eats depends on the improvement in its fitness and the
largest improvement in the fitness of the entire school. Moreover, as any other
intelligent technique based on population, FSS greatly benefits from the collective

142 9 Fish Inspired Algorithms

emerging behaviour that increases mutual survivability and achieve synergy (e.g.,
finding locations with lots of food) (Bastos-Filho et al. 2009a). Briefly, FSS
consists of the following three operators, namely, feeding, swimming, and
breeding.

• Feeding operator: The feeding operator determines the variation of the fish
weight. All fish are born with the same weight and start with weight equal to 1.
That means fish can increase or decrease their weight depending, respectively,
on the success or failure of the individual movement. The fish weight variation
is proportional to the normalized difference between the evaluation of the fitness
function at current and new position which can be described by Eqs. 9.7 and 9.8,
respectively (Bastos-Filho et al. 2009a):

wi t þ 1ð Þ ¼ wi tð Þ þ Df ið Þ=max Dfð Þ; ð9:7Þ

Df ið Þ ¼ f xi t þ 1ð Þ � f xi tð Þ½ �½ �; ð9:8Þ

where wi tð Þ is the weight of the fish, xi tð Þ is the position of the fish, f xi tð Þ½ �
evaluates the fitness function (i.e., amount of food) in xi tð Þ, and Df ið Þ is the
fitness difference.

• Swimming operator: For fish, swimming is directly related to all important
individual and collective behaviours. In FSS, the swimming behaviour is con-
sidered to be an elaborate form of reaction regarding survivability. It aims at
mimicking the coordinated and only apparent collective contained movement
produced by all the fishes in the school. Normally, the swimming patterns of the
fish school are the result of a combination of three different causes:

(1) Individual movements occur for each fish at every cycle of the FSS algo-
rithm. In each iteration, each fish randomly chooses a new position in its
neighbourhood which is determined by the assessment of the food density
(Notice that food here is a metaphor for the evaluation of candidate solu-
tions in the search process). The next candidate position is determined by
adding to each dimension of the current position a random number gener-
ated by a uniform distribution in the interval �1; 1½ � multiplied by a pre-
determined step as shown via Eqs. 9.9 and 9.10, respectively (Bastos-Filho
et al. 2009a):

ni tð Þ ¼ xi tð Þ þ rand �1; 1ð Þ � stepind; ð9:9Þ

stepind t þ 1ð Þ ¼ stepind tð Þ �
stepind initial � stepind final

� �

iterations
; ð9:10Þ

where stepind denotes the predetermined step, ni tð Þ is the neighbour position
of the fish i, and stepind initial and stepind final are the initial and the final
individual movement step, respectively.

9.3 Fish School Search Algorithm 143

(2) After all fishes have moved individually, a weighted average of individual
movements based on the instantaneous success of all fishes of the school is
computed. This means that fishes that had successful individual movements
(i.e., to regions of the space search in which it was discovered the large
amounts of food) influence the resulting direction of movement more than
other ones. When the overall direction is computed, each fish is repositioned
according to Eqs. 9.11 and 9.12, respectively (Bastos-Filho et al. 2009a):

m tð Þ ¼
PN

i¼1 DxiDfi
PN

i¼1 Dfi

; ð9:11Þ

xi t þ 1ð Þ ¼ xi tð Þ þm tð Þ; ð9:12Þ

where Dxi is the displacement of the fish i due do the individual movement in
the FSS cycle, and m tð Þ is the resulting direction.

(3) The collective-volatile movement controls the granularity of the search
executed by the fish school based on the incremental weight variation of the
fish school. When the whole school is achieving better results, the move-
ment approximates the fish aiming to accelerate the convergence toward a
good region. On the contrary, the movement spreads the fish away from the
barycentre (i.e., inward drift) of the school and the school has more chances
to escape from a local optimum which can be expressed via Eqs. 9.13, 9.14
and 9.15, respectively (Bastos-Filho et al. 2009a):

x t þ 1ð Þ ¼ x tð Þ þ stepvol � rand 0; 1ð Þ x tð Þ � b tð Þð Þ
distance x tð Þ; b tð Þð Þ ; ð9:13Þ

x t þ 1ð Þ ¼ x tð Þ � stepvol � rand 0; 1ð Þ x tð Þ � b tð Þð Þ
distance x tð Þ; b tð Þð Þ ; ð9:14Þ

b tð Þ ¼
PN

i¼1 xiwi tð Þ
PN

i¼1 wi tð Þ
; ð9:15Þ

where stepvol is a parameter called volitive step, and distance(Þ is a function
which returns the Euclidean distance between the barycentre and the fish cur-
rent position.

• Breeding operator: The breeding operator is responsible for refining the search
performed. The selection of candidates for breeding considers all fishes that
have reached a predefined threshold. The winner is the fish that presents the
maximum ration of weight over distance in relation to the breeding candidate.
Furthermore, it was also conceived to allow automatic transitioning from
exploration to exploitation abilities.

144 9 Fish Inspired Algorithms

Taking into account the above mentioned behaviours, the steps of implementing
FSS can be summarized as follows (Bastos-Filho et al. 2008, 2009a):

• Step 1: Initializing locations (xi) randomly for all fish, setting all weights (wi) to
one.

• Step 2: Starting the repeat loop.
• Step 3: Performing swimming 1. Calculating random individual movement for

each individual fish.
• Step 4: Executing feeding operation. Updating weights for all fish based on new

locations.
• Step 5: Performing swimming 2. Collectively instinctive moving towards

overall direction.
• Step 6: Performing swimming 3. Collectively volitive moving dilation or

contraction.
• Step 7: Checking the termination condition.

9.3.2 Performance of FSS

In order to verify FSS, a set of benchmark testing functions, such as Rosenbrock
function, Rastrigin function, Griewank function, and Ackley function were
employed in Bastos-Filho et al. (2008) for testing purpose. The experimental
results demonstrated that FSS is very competitive in solving unstructured high
dimensional spaces.

9.4 Emerging Fish Inspired Algorithms

In addition to the aforementioned AFSA and FSS, the different behaviour patterns
of fish also motivates researchers to develop another fish inspired innovative CI
algorithm.

9.4.1 Group Escaping Algorithm

9.4.1.1 Fundamentals of Group Escaping Algorithm

Group escaping algorithm (GEA) was originally proposed in Min and Wang
(2010). It simulates the phenomenon of a school of fish changing their moving
directions without any explicit centralized communications. The algorithm was
proposed for solving robot swarm decentralized control issue. In order to imple-
ment GEA, the following components need to be taken into account (Min and
Wang 2010):

9.3 Fish School Search Algorithm 145

• Component 1: Escape mode. In this mode, the moment applied to change a
robot’s direction is defined by Eq. 9.16 (Min and Wang 2010):

Mre i ¼ SGN wið ÞFm cos
wi

2

� �

: ð9:16Þ

Accordingly, by adding a constant extra propulsion force (denoted by Fe) to the
system, dynamics equation of the ith robot in escape mode is shown in Eq. 9.17
(Min and Wang 2010):

mi
d~vi
dt ¼ Fp þ Fe

� �
~Hi þ

P

j;j 6¼i
eij~FKHij � c~v

Ii
d2ai
dt2 ¼

P

j;j6¼i
ec ijMc ij þ eijMd ij

� �
þMre i � Dm

dai
dt

8
><

>:
: ð9:17Þ

• Component 2: Local interaction for group escaping control. In case of emer-
gency, interaction moment Mc ij (normally used at the time of normal school-
ing) is not suitable to perform escape mode transition, and thus a strong
interaction moment Mesp ij is employed according to Eq. 9.18 (Min and Wang
2010):

Mecp i ¼ Keaij þ Ce
daij

dt
: ð9:18Þ

• Component 3: Group escaping states. In GEA, two particular states are designed
for group escaping control. Mathematically, these two states can be defined by
Eqs. 9.19 and 9.20, respectively (Min and Wang 2010):

Mode 1:
Mc ij ¼ 0:0

Mecp i ¼ Keaij þ Ce
daij

dt
Md ij ¼ 0:0

8
<

:
: ð9:19Þ

Mode 2:
Mc ij ¼ 0:0
Mecp i ¼ 0:0
Md ij ¼ 0:0

8
<

:
: ð9:20Þ

9.4.1.2 Performance of GEA

To evaluate the proposed GEA, a simulation of 50 robots in virtual environment
was first conducted by Min and Wang (2010), later on, the authors set up a real

146 9 Fish Inspired Algorithms

world testing environment consisting of four prototype robots. The overall results
demonstrated the effectiveness of the proposed GEA.

9.4.2 Shark-Search Algorithm

9.4.2.1 Fundamentals of Shark-Search Algorithm

Shark-search algorithm (SSA) was originally proposed in Hersovici et al. (1998)
for enhancing the Web browsing and search engine performance (Hillis et al.
2013; Cho et al. 1998; Jarvis 2009). There are several variants and applications of
SSA can be found in the literature Luo et al. (2005), Chen et al. (2007), Sun et al.
(2009). The SSA is built on its predecessor called ‘‘fish-search’’ algorithm and the
key principles underlying them are the following: The algorithm first takes an
input as a seed URL (standing for uniform resource locator) and search query.
Then it dynamically sets up a priority sequence for the next URLs to be explored.
At each step, the first node is popped from the list and attended. As each file’s text
becomes available, it will be analyzed by a scoring component and then evaluated
for its relevance or irrelevance to the search query. Putting it simply, in SSA, when
relevant information (standing for food) is discovered, searching agents (i.e., fish)
reproduce and keep looking for food. They will die when the food is in absent
condition or encountering polluted water (poor bandwidth situation). The original
fish-search algorithm suffers from the following limitations (Hersovici et al. 1998):

• First, the relevance score is assigned in a discrete way.
• Second, the differentiation degree of the priority of the pages in the list is very

low.
• Third, the number of addressed children is reduced by arbitrary using the width

parameter.

Bearing this in mind, there are several improvements provided in SSA
(Hersovici et al. 1998):

• Improvement 1: A similarity engine is introduced to rank the document rele-
vance degree.

• Improvement 2: Refining the computation of the potential score of the children
by taking the following two factors into account. First, propagating ancestral
relevance scores deeper down the hierarchical structure. Second, making use of
the meta-information carried by the links to the files.

9.4.2.2 Performance of SSA

To evaluate the efficacy of SSA, a measure called ‘‘getting as many relevant
documents with the shorted delays’’ was proposed in Hersovici et al. (1998). By

9.4 Emerging Fish Inspired Algorithms 147

testing SSA on four case studies, the significant improvements were experimen-
tally verified which offer SSA an advantage to replace original fish-search algo-
rithm in dealing with dynamic and precise searches within the limited time range.

9.5 Conclusions

In this chapter, several fish inspired CI algorithms are introduced. Although they
are newly joined members of the CI community, we have witnessed the following
rapid spreading of at least two of them, i.e., AFSA and FSS:

First, several enhanced versions of AFSA and FSS can be found in the literature
as outlined below:

• Adaptive meta-cognitive ASFA (Xu et al. 2009).
• Augmented Lagrangian ASFA (Rocha et al. 2011b).
• Chaotic ASFA (Nie et al. 2010; Huang and Lin 2008; Ma and Wang 2009; Zhu

and Jiang 2009; Chen and Tian 2010).
• Extended ASFA (Li and Qian 2003).
• Fuzzy adaptive ASFA (Yazdani et al. 2010b).
• Hybrid ASFA (Neshat et al. 2011; Zheng and Lin 2012; Wei et al. 2010; Huang

et al. 2009; Zhang et al. 2011; Wang and Ma 2011; Zhou and Huang 2009; Gao
et al. 2009; Yazdani et al. 2010a; Jiang and Cheng 2010; Wu et al. 2011b).

• Improved ASFA (Luo et al. 2010; He et al. 2009b; Cheng et al. 2009; Yu et al.
2012; Tian and Tian 2009; Li et al. 2008; Yuan et al. 2010; Peng 2011; Tian and
Liu 2009; Ma and Lei 2010; Bing and Wen 2010; Jiang et al. 2009).

• Knowledge-based ASFA (Gao et al. 2010; Wu et al. 2011a).
• Modified ASFA (Farzi 2009; Fernandes et al. 2009; Tsai and Lin 2011; Rocha

et al. 2011a; Yazdani et al. 2012).
• Multiobjective ASFA (Jiang and Zhu 2011).
• Mutation-based ASFA (Rocha and Fernandes 2011a, b).
• Niche ASFA (Zhu et al. 2010).
• Parallel ASFA (Hu et al. 2011).
• Quantum ASFA (Zhu and Jiang 2010).
• Tabu-based ASFA (Xu and Liu 2010; Yu and He 2011)
• Hybrid FSS (Cavalcanti-Júnior et al. 2011, 2012; Turabieh and Abdullah 2011).
• Improved FSS (Madeiro et al. 2011; Bastos-Filho et al. 2009b; Janecek and Tan

2011a; Lacerda and Neto 2013).

Second, the AFSA has also been successfully applied to a variety of optimi-
zation problems as listed below:

• Artificial neural network training (Wang et al. 2005; Zhang et al., 2006a).
• Control optimization (Luo et al. 2007; Chen et al. 2008; Tian et al. 2009a; Luo

et al. 2010; Cheng and Hong 2012).

148 9 Fish Inspired Algorithms

• Data mining (Zhang et al. 2006b; Wang et al. 2009; He et al. 2009b; Cheng et al.
2009; Zhou and Liu 2009; Xiao 2010; Huang and Wang 2010; Xu and Liu 2010;
Neshat et al. 2011; Sun et al. 2011; Yang et al. 2011; Zhu et al. 2012).

• Fault diagnosis (Wang and Xia 2010; Yu et al. 2012).
• Finance (Niu et al. 2010; Shen et al. 2011; Zheng and Lin 2012).
• Function optimization (He et al. 2009a; Hu et al. 2010; Wei et al. 2010; Shi and

Shang 2010; Rocha et al. 2011b; Jiang and Zhu 2011).
• Image processing (Song et al. 2008; Tian et al. 2009b).
• Network optimization (Yu et al. 2005; Jiang et al. 2007a; Tian and Tian 2009;

Liu et al. 2009a, b; Nie et al. 2010; Huang et al. 2009; Yu and He 2011; Song
et al. 2010; Zhang et al. 2011; Yu et al. 2011; Wang et al. 2012).

• Power system optimization (Li et al. 2008; Yuan et al. 2010; Peng 2011).
• Robot control optimization (Tian and Liu 2009; Ma and Lei 2010; Zheng and Li

2010; Feng et al. 2010).
• Scheduling optimization (Xue et al. 2004; Huang and Lin 2008; Wang et al.

2008; Farzi 2009; Cai 2010; Bing and Wen 2010; Gao and Chen 2010; Wang
and Ma 2011).

• Signal processing (Jiang and Yuan 2005; Jiang et al. 2007b; Qi et al. 2009).
• Steiner tree problem (Ma and Liu 2009).
• Vehicle routing problem (Li et al. 2012)

Third, the relative FSS algorithm applications can be found below:

• Graphic processing units testing (Lins et al. 2012).
• Non-negative matrix factorization (Janecek and Tan 2011b).
• Timetabling (Turabieh and Abdullah 2011).
• Turnround time improving (Banerjee and Caballé 2011)

Interested readers are referred to them together with several excellent reviews
[e.g., (Neshat et al. 2012a, b)], as a starting point for a further exploration and
exploitation of fish inspired algorithms.

References

Ban, X., Yang, Y., Ning, S., Lv, X. & Qin, J. (2009, August 20–24). A self-adaptive control
algorithm of the artificial fish formation. IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE) (pp. 1903–1908). Korea.

Banerjee, S. & Caballé, S. (2011) Exploring fish school algorithm for improving turnaround time:
an experience of content retrieval. Third International Conference on Intelligent Networking
and Collaborative Systems (INCoS), pp. 842–847.

Bastos-Filho, C.J.A., Lima-Neto, F.B.D., Lins, A.J.C.C., Nascimento, A.I.S. & Lima, M.P.
(2008). A novel search algorithm based on fish school behavior. IEEE International
Conference on Systems, Man and Cybernetics (SMC), pp. 2646–2651.

9.5 Conclusions 149

Bastos-Filho, C.J.A., Lima-Neto, F.B.D., Lins, A.J.C.C., Nascimento, A.I.S. & Lima, M.P.
(2009a). Fish school search. In Chiong, R. (ed.) Nature-Inspired Algorithms for Optimisation,
SCI 193, (pp. 261–277). Berlin: Springer.

Bastos-Filho, C.J.A., Lima-Neto, F.B.D., Sousa, M.F.C., Pontes, M.R. & Madeiro, S.S. (2009b).
On the influence of the swimming operators in the fish school search algorithm. IEEE
International Conference on Systems, Man, and Cybernetics (SMC), October, San Antonio,
TX, USA, pp. 5012–5017.

Bing, D. & Wen, D. (2010). Scheduling arrival aircrafts on multi-runway based on an improved
artificial fish swarm algorithm. International Conference on Computational and Information
Sciences (ICCIS), pp. 499–502.

Braithwaite, V. A. (2006). Cognitive ability in fish. Behaviour and Physiology of Fish, 24, 1–37.
Cai, Y. (2010). Artificial fish school algorithm applied in a combinatorial optimization problem.

International Journal of Intelligent Systems and Applications, 1, 37–43.
Cavalcanti-Júnior, G.M., Bastos-Filho, C.J.A., Lima-Neto, F.B. & Castro, R.M.C.S. (2011). A

hybrid algorithm based on fish school search and particle swarm optimization for dynamic
problems. In Tan, Y. (ed.) ICSI 2011, Part II, LNCS 6729, (pp. 543–552). Berlin: Springer.

Cavalcanti-Júnior, G.M., Bastos-Filho, C.J.A. & Lima-Neto, F.B.D. (2012). Volitive Clan PSO—
an approach for dynamic optimization combining particle swarm optimization and fish school
search. In Parpinelli, R. (ed.) Theory and New Applications of Swarm Intelligence, Chap. 5,
(pp. 69–86). 51000 Rijeka, Croatia: In-Tech, ISBN 978-953-51-0364-6.

Chen, Z., & Tian, X. (2010). Artificial fish-swarm algorithm with chaos and its application.
Second International Workshop on Education Technology and Computer Science (ETCS), 1,
226–229.

Chen, Z., Ma, J., Lei, J., Yuan, B. & Lian, L. (2007). An improved shark-search algorithm based
on multi-information. Fourth International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD), pp. 1–5.

Chen, X., Sun, D., Wang, J., & Liang, J. (2008). Time series forecasting based on novel support
vector machine using artificial fish swarm algorithm. Fourth International Conference on
Natural Computation (ICNC), 2, 206–211.

Cheng, Z. & Hong, X. (2012). PID controller parameters optimization based on artificial fish
swarm algorithm. Fifth International Conference on Intelligent Computation Technology and
Automation (ICICTA), pp. 265–268.

Cheng, Y., Jiang, M. & Yuan, D. (2009). Novel clustering algorithms based on improved artificial
fish swarm algorithm. Sixth International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD), pp. 141–145.

Cho, J., Garcia-Molina, H., & Page, L. (1998). Efficient crawling through URL ordering.
Computer Networks and ISDN Systems, 30, 161–172.

Farzi, S. (2009). Efficient job scheduling in grid computing with modified artificial fish swarm
algorithm. International Journal of Computer Theory and Engineering, 1, 13–18.

Feng, X., Yin, J., Xu, M., Zhao, X. & Wu, B. (2010). The algorithm optimization on artificial
fish-swarm for the target area on simulation robots. 2nd International Conference on Signal
Processing Systems (ICSPS), pp. V3-87–V3-89.

Fernandes, E.M.G.P., Martins, T.F.M.C., Maria, A. & Rocha, A.C. (2009, 30 June–3 July). Fish
swarm intelligent algorithm for bound constrained global optimization. International
Conference on Computational and Mathematical Methods in Science and Engineering
(CMMSE) (pp. 461–472).

Gao, Y. & Chen, Y. (2010). The optimization of water utilization based on artificial fish-swarm
algorithm. IEEE Sixth International Conference on Natural Computation (ICNC),
pp. 4415–4419.

Gao, W., Zhao, H., Song, C. & Xu, J. (2009). Mixed using artificial fish-particle swarm
optimization algorithm for hyperspace basing on local searching. IEEE 3rd International
Conference on Bioinformatics and Biomedical Engineering (ICBBE), pp. 1–4.

150 9 Fish Inspired Algorithms

Gao, X. Z., Wu, Y., Zenger, K. & Huang, X. (2010). A knowledge-based artificial fish-swarm
algorithm. IEEE 13th International Conference on Computational Science and Engineering
(CSE), pp. 327–332.

He, D., Qu, L. & Guo, X. (2009a). Artificial fish-school algorithm for integer programming.
International Conference on Information Engineering and Computer Science (ICIECS),
pp. 1–4.

He, S., Belacel, N., Hamam, H. & Bouslimani, Y. (2009b). Fuzzy clustering with improved
artificial fish swarm algorithm. IEEE International Joint Conference on Computational
Sciences and Optimization (CSO), pp. 317–321.

Hersovici, M., Jacovi, M., Maarek, Y. S., Pelleg, D., Shtalhaim, M., & Ur, S. (1998). The shark-
search algorithm. An application: tailored Web site mapping. Computer Networks and ISDN
Systems, 30, 317–326.

Hillis, K., Petit, M. & Jarrett, K. (2013). Google and the culture of search. Routledge: Taylor &
Francis. ISBN 978-0-415-88300-9.

Hu, J., Zeng, X. & Xiao, J. (2010). Artificial fish school algorithm for function optimization.
IEEE 2nd International Conference on Information Engineering and Computer Science
(ICIECS), pp. 1–4.

Hu, Y., Yu, B., Ma, J. & Chen, T. (2011). Parallel fish swarm algorithm based on GPU-
acceleration. IEEE 3rd International Workshop on Intelligent Systems and Applications
(ISA), pp. 1–4.

Huang, Y., & Lin, Y. (2008). Freight prediction based on BP neural network improved by chaos
artificial fish-swarm algorithm. International Conference on Computer Science and Software
Engineering, 5, 1287–1290.

Huang, Z.-J. & Wang, B.-Q. (2010). A novel swarm clustering algorithm and its application for
CBR retrieval. IEEE 2nd International Conference on Information Engineering and Computer
Science (ICIECS), pp. 1–5.

Huang, R., Tawfik, H., Nagar, A. & Abbas, G. (2009). A novel hybrid QoS multicast routing
based on clonal selection and artificial fish swarm algorithm. Second International Conference
on Developments in eSystems Engineering (DESE), pp. 47–52.

Janecek, A. & Tan, Y. (2011a). Feeding the fish—weight update strategies for the fish school
search algorithm. In Tan, Y. (Ed.) ICSI 2011, Part II, LNCS 6729, (pp. 553–562). Berlin:
Springer.

Janecek, A., & Tan, Y. (2011b). Swarm intelligence for non-negative matrix factorization.
International Journal of Swarm Intelligence Research, 2, 12–34.

Jarvis, J. (2009). What whould Google do?, 55 Avenue Road, Suite 2900, Toronto, ON, M5R,
3L2. Canada: HarperCollins Publishers Ltd., ISBN 978-0-06-176472-1.

Jiang, M. & Cheng, Y. (2010, July 6–9). Simulated annealing artificial fish swarm algorithm.
IEEE 8th World Congress on Intelligent Control and Automation (WCICA) (pp. 1590–1593).
Jinan, China.

Jiang, M. & Yuan, D. (2005). Wavelet threshold optimization with artificial fish swarm
algorithm. International Conference on Neural Networks and Brain (ICNN&B), vol. 1,
pp. 569–572.

Jiang, M. & Zhu, K. (2011). Multiobjective optimization by artificial fish swarm algorithm. IEEE
International Conference on Computer Science and Automation Engineering (CSAE),
pp. 506–511.

Jiang, M., Wang, Y., Pfletschinger, S., Lagunas, M.A. & Yuan, D. (2007a). Optimal multiuser
detection with artificial fish swarm algorithm. In Huang, D.-S., Heutte, L. & Loog, M. (Eds.)
ICIC 2007, CCIS 2, (pp. 1084–1093). Berlin: Springer.

Jiang, M., Wang, Y., Rubio, F. & Yuan, D. (2007b). Spread spectrum code estimation by artificial
fish swarm algorithm. IEEE International Symposium on Intelligent Signal Processing
(WISP), pp. 1–6.

Jiang, M., Yuan, D. & Cheng, Y. (2009). Improved artificial fish swarm algorithm. Fifth
International Conference on Natural Computation, pp. 281–285.

References 151

Lacerda, M.G.P.D. & Neto, F.B.D.L. (2013). A new heuristic of fish school segregation for multi-
solution optimization of multimodal problems. Second International Conference on Intelligent
Systems and Applications (INTELLI 2013), pp. 115–121. IARIA.

Li, X.-L. (2003). A new intelligent optimization method—artificial fish school algorithm (in
Chinese with English abstract). Unpublished Doctoral Thesis, Zhejiang University.

Li, X.-L., & Qian, J.-X. (2003). Studies on artificial fish swarm optimization algorithm based on
decomposition and coordination techniques. Journal of Circuits and Systems, 8, 1–6.

Li, G., Sun, H. & Lv, Z. (2008, April 6–9). Study of available transfer capability based on
improved artificial fish swarm algorithm. Third International Conference on Electric Utility
Deregulation and Restructuring and Power Technologies (DRPT) (pp. 999–1003), Nanjing,
China.

Li, Z., Guo, H., Liu, L., Yang, J. & Yuan, P. (2012). Resolving single depot vehicle routing
problem with artificial fish swarm algorithm. In Tan, Y., Shi, Y. & Ji, Z. (Eds.) ICSI 2012,
Part I, LNCS 7332 (pp. 422–430). Berlin: Springer.

Lins, A.J.C.C., Bastos-Filho, C.J.A., Nascimento, D.N.O., Junior, M.A.C.O. & Lima-Neto,
F.B.D. (2012). Analysis of the performance of the fish school search algorithm running in
graphic processing units. In Parpinelli, R. (Ed.) Theory and New Applications of Swarm
Intelligence, Chap. 2, (pp. 17–32). Janeza Trdine 9, 51000 Rijeka, Croatia: InTech, ISBN
978-953-51-0364-6.

Liu, C.-B., Wang, H.-J., Luo, Z.-P., Yu, X.-Q. & Liu, L.-H. (2009a). QoS multicast routing
problem based on artificial fish-swarm algorithm. IEEE First International Workshop on
Education Technology and Computer Science (ETCS), pp. 814–817.

Liu, T., Hou, Y.-B., Qi, A.-L. & Chang, X.-T. (2009b). Feature optimization based on artificial
fish-swarm algorithm in intrusion detections. IEEE International Conference on Networks
Security, Wireless Communications and Trusted Computing (NSWCTC), pp. 542–545.

Luo, F.-F., Chen, G.-L. & Guo, W.-Z. (2005). An improved fish-search algorithm for information
retrieval. IEEE International Conference on Natural Language Processing and Knowledge
Engineering (IEEE NLP-KE), pp. 523–528.

Luo, Y., Zhang, J. & Li, X. (2007, August 18–21). The optimization of PID controller parameters
based on artificial fish swarm algorithm. IEEE International Conference on Automation and
Logistics, (pp. 1058–1062). Jinan, China.

Luo, Y., Wei, W. & Wang, S.X. (2010, August 25–27). Optimization of PID controller
parameters based on an improved artificial fish swarm algorithm. IEEE Third International
Workshop on Advanced Computational Intelligence (IWACI) (pp. 328–332). Suzhou,
Jiangsu, China.

Ma, Q. & Lei, X. (2010). Application of artificial fish school algorithm in UCAV path planning.
IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications
(BIC-TA), pp. 555–559.

Ma, X. & Liu, Q. (2009, August 20–24). An artificial fish swarm algorithm for Steiner tree
problem. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). Korea, pp. 59–63.

Ma, H., & Wang, Y. (2009). An artificial fish swarm algorithm based on chaos search. Fifth
International Conference on Natural Computation, 4, 118–121.

Madeiro, S.S., Lima-Neto, F.B.D., Bastos-Filho, C.J.A. & Figueiredo, E.M.D.N. (2011). Density
as the segregation mechanism in fish school search for multimodal optimization problems. In
Tan, Y. (Ed.) ICSI 2011, Part II, LNCS 6729, (pp. 563–572). Berlin: Springer.

Min, H. & Wang, Z. (2010, December 14–18). Group escape behavior of multiple mobile robot
system by mimicking fish schools. IEEE International Conference on Robotics and
Biomimetics (ROBIO), Tianjin, China, pp. 320–326.

Neshat, M., Yazdani, D., Gholami, E., Masoumi, A., & Sargolzae, M. (2011). A new hybrid
algorithm based on artificial fishes swarm optimization and k-means for cluster analysis.
International Journal of Computer Science Issues, 8, 251–259.

Neshat, M., Adeli, A., Sepidnam, G., Sargolzaei, M., & Toosi, A. N. (2012a). A review of
artificial fish swarm optimization methods and applications. International Journal on Smart
Sensing and Intelligent Systems, 5, 107–148.

152 9 Fish Inspired Algorithms

Neshat, M., Sepidnam, G., Sargolzaei, M. & Toosi, A.N. (2012b). Artificial fish swarm algorithm:
a survey of the state-of-the-art, hybridization, combinatorial and indicative applications.
Artificial Intelligence Review, doi:10.1007/s10462-012-9342-2.

Nie, H., Wang, B., Zhang, D. & Bai, B. (2010). The multi-stage transmission network planning
based on chaotic artificial fish school algorithm. International Conference on E-Product E-
Service and E-Entertainment (ICEEE), pp. 1–5.

Niu, D., Shen, W. & Sun, Y. (2010). RBF and artificial fish swarm algorithm for short-term
forecast of stock indices. IEEE Second International Conference on Communication Systems,
Networks and Applications (ICCSNA), pp. 139–142.

Peng, Y. (2011). An improved artificial fish swarm algorithm for optimal operation of cascade
reservoirs. Journal of Computers, 6, 740–746.

Qi, A.-L., Ma, H.-W., & Liu, T. (2009). A weak signal detection method based on artificial fish
swarm optimized matching pursuit. World Congress on Computer Science and Information
Engineering, 6, 185–189.

Rocha, A.M.A.C. & Fernandes, E.M.G.P. (2011a). Mutation-based artificial fish swarm algorithm
for bound constrained global optimization. In Simos, T.E., (Ed.) ICNAAM 2011, Vol. 1389,
pp. 751–754.

Rocha, A.M.A.C. & Fernandes, E.M.G.P. (2011b, December 5–6). On hyperbolic penalty in the
mutated artificial fish swarm algorithm in engineering problems. 16th Online World
Conference on Soft Computing in Industrial Applications (WSC16). WWW, pp. 1–11.

Rocha, A.M.A.C., Fernandes, E.M.G.P. & Martins, T.F.M.C. (2011a). Novel fish swarm
heuristics for bound constrained global optimization problems. In Murgante, B., Gervasi, O.,
Iglesias, A., Taniar, D. & Apduhan, B. (Eds.) ICCSA 2011, Part III, LNCS 6784, (PP.
185–199). Berlin: Springer.

Rocha, A. M. A. C., Martins, T. F. M. C., & Fernandes, E. M. G. P. (2011b). An augmented
Lagrangian fish swarm based method for global optimization. Journal of Computational and
Applied Mathematics, 235, 4611–4620.

Shen, W., Guo, X., Wu, C., & Wu, D. (2011). Forecasting stock indices using radial basis
function neural networks optimized by artificial fish swarm algorithm. Knowledge-Based
Systems, 24, 378–385.

Shi, H.-Y. & Shang, Z.-Q. (2010). Study on a solution of pursuit-evasion differential game based
on artificial fish school algorithm. Chinese Control and Decision Conference (CCDC),
pp. 2092–2096. IEEE.

Song, J., Sun, R.-Y., Zhang, Y.-J., Li, N.-N. & Gu, J.-H. (2008). The splicing method of images
of rare point’s feature based on artificial fish-swarm algorithm. International Conference on
Advanced Computer Theory and Engineering (ICACTE), pp. 783–787.

Song, X., Wang, C., Wang, J. & Zhang, B. (2010). A hierarchical routing protocol based on
AFSO algorithm for WSN. IEEE International Conference On Computer Design and
Appliations (ICCDA), pp. V2-635–V2639.

Sun, T., Xie, X.-F., Sun, Y.-Q. & Li, S.-Y. (2009). Airplane route planning for plane-missile
cooperation using improved fish-search algorithm. International Joint Conference on Artificial
Intelligence (JCAI), pp. 853–856.

Sun, S., Zhang, J. & Liu, H. (2011, December 16–18). Key frame extraction based on artificial
fish swarm algorithm and k-means. IEEE International Conference on Transportation,
Mechanical, and Electrical Engineering (TMEE) (pp. 1650–1653). Changchun, China.

Tian, W., & Liu, J. (2009). An improved artificial fish swarm algorithm for multi robot task
scheduling. Fifth International Conference on Natural Computation, 4, 127–130.

Tian, W. & Tian, Y. (2009). An improved artificial fish swarm algorithm for resource leveling.
International Conference on Management and Service Science (MASS), pp. 1–4.

Tian, W., Ai, L., Tian, Y., & Liu, J. (2009a). A new optimization algorithm for fuzzy set design.
International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC),
2, 431–435.

References 153

http://dx.doi.org/10.1007/s10462-012-9342-2

Tian, W., Geng, Y., Liu, J. & Ai, L. (2009b). Optimal parameter algorithm for image
segmentation. IEEE Second International Conference on Future Information Technology and
Management Engineering (FITME), pp. 179–182.

Tsai, H.-C., & Lin, Y.-H. (2011). Modification of the fish swarm algorithm with particle swarm
optimization formulation and communication behavior. Applied Soft Computing, 11,
5367–5374.

Turabieh, H. & Abdullah, S. (2011). A hybrid fish swarm optimisation algorithm for solving
examination timetabling problems. In Coello, C.A.C. (Ed.) LION 5, LNCS 6683, (pp.
539–551). Berlin: Springer.

Wang, L. & Ma, L. (2011, August 12–14). A hybrid artificial fish swarm algorithm for bin-
packing problem. IEEE International Conference on Electronic and Mechanical Engineering
and Information Technology (EMEIT). pp. 27–29.

Wang, C.-J., & Xia, S.-X. (2010). Application of probabilistic causal-effect model based artificial
fish-swarm algorithm for fault diagnosis in mine hoist. Journal of Software, 5, 474–481.

Wang, C.-R., Zhou, C.-L., & Ma, J.-W. (2005). An improved artificial fish-swarm algorithm and
its application in feed-forward neural networks. Fourth International Conference on Machine
Learning and Cybernetics, Guangzhou, China, 18–21(August), 2890–2894.

Wang, F., Xu, X. & Zhang, J. (2008). Strategy for aircraft sequencing based on artificial fish
school algorithm. Control and Decision Conference (CCDC), pp. 861–864.

Wang, F., Xu, X. & Zhang, J. (2009). Application of artificial fish school and K-means clustering
algorithms for stochastic GHP. Control and Decision Conference (CCDC), pp. 4280–4283.

Wang, Y., Liao, H. & Hu, H. (2012). Wireless sensor network deployment using an optimized
artificial fish swarm algorithm. IEEE International Conference on Computer Science and
Electronics Engineering (ICCSEE), pp. 90–94.

Wei, X.-X., Zeng, H.-W. & Zhou, Y.-Q. (2010). Hybrid artificial fish school algorithm for solving
ill-conditioned linear systems of equations. IEEE International Conference on Intelligent
Computing and Intelligent Systems (ICIS), pp. 290–294.

Wu, Y., Gao, X.-Z. & Zenger, K. (2011a). Knowledge-based artificial fish-swarm algorithm. 8th
IFAC World Congress, 28 August–2 September, Milano, Italy, pp. 14705–14710. Interna-
tional Federation of Automatic Control (IFAC).

Wu, Y., Kiviluoto, S., Zenger, K., Gao, X. Z., & Huang, X. (2011b). Hybrid swarm algorithms for
parameter identification of an actuator model in an electrical machine. Advances in Acoustics
and Vibration, 2011, 1–12.

Xiao, L. (2010). A clustering algorithm based on artificial fish school. IEEE 2nd International
Conference on Computer Engineering and Technology (ICCET), pp. V7-766–V7-76.

Xu, L. & Liu, S. (2010). Case retrieval strategies of tabu-based artificial fish swarm algorithm.
IEEE Second International Conference on Computational Intelligence and Natural Computing
(CINC), pp. 365–369.

Xu, H., Li, R., Guo, J., & Wang, H. (2009). An adaptive meta-cognitive artificial fish school
algorithm. International Forum on Information Technology and Applications (IFITA), 1,
594–597.

Xue, Y., Du, H., & Jian, W. (2004). Optimum steelmaking charge plan using artificial fish swarm
optimization algorithm. IEEE International Conference on Systems, Man and Cybernetics, 5,
4360–4364.

Yang, F., Tang, G. & Jin, H. (2011). Knowledge mining of traditional Chinese medicine
constitution classification rules based on artificial fish school algorithm. IEEE 3rd
International Conference on Communication Software and Networks (ICCSN), pp. 462–466.

Yazdani, D., Golyari, S. & Meybodi, M. R. (2010a). A new hybrid algorithm for optimization
based on artificial fish swarm algorithm and cellular learning automata. IEEE 5th International
Symposium on Telecommunications (IST), pp. 932–937.

Yazdani, D., Toosi, A.N. & Meybodi, M.R. (2010b). Fuzzy adaptive artificial fish swarm
algorithm. Advances in Artificial Intelligence, LNCS 6464, (pp. 334–343). Berlin: Springer.

154 9 Fish Inspired Algorithms

Yazdani, D., Akbarzadeh-Totonchi, M.R., Nasiri, B. & Meybodi, M.R. (2012, June 10–15). vA
new artificial fish swarm algorithm for dynamic optimization problems. IEEE World Congress
on Computational lnteliigence (WCCI). Brisbane, Australia, pp. 1–8.

Yu, G., & He, D.-X. (2011). Based on AFSA-tabu search algorithm combined QoS multicast
routing algorithm. Energy Procedia, 13, 5746–5752.

Yu, Y., Tian, Y.-F. & Yin, Z.-F. (2005). Multiuser detector based on adaptive artificial fish school
algorithm. ISCIT, pp. 1433–1437.

Yu, S., Wang, R., Xu, H., Wan, W., Gao, Y. & Jin, Y. (2011). WSN nodes deployment based on
artificial fish school algorithm for traffic monitoring system. IEEE IET International
Conference on Smart and Sustainable City (ICSSC), pp. 1–5.

Yu, H., Wei, J. & Li, J. (2012). Transformer fault diagnosis based on improved artificial fish
swarm optimization algorithm and BP network. IEEE 2nd International Conference on
Industrial Mechatronics and Automation (ICIMA), pp. 99–104.

Yuan, Y., Zhu, H., Zhang, M., Zhu, H., Wang, X., Wang, H., Chen, J. & Zhang, J. (2010).
Reactive power optimization of distribution network based on improved artificial fish swarm
algorithm. IEEE China International Conference on Electricity Distribution (CICED),
pp. 1–5.

Zhang, M., Shao, C., Li, F., Gan, Y. & Sun, J. (2006a, June 25–28). Evolving neural network
classifiers and feature subset using artificial fish swarm. IEEE International Conference on
Mechatronics and Automation. Luoyang, China, pp. 1598–1602.

Zhang, M., Shao, C., Li, M. & Sun, J. (2006b, June 21–23). Mining classification rule with
artificial fish swarm. 6th World Congress on Intelligent Control and Automation (pp.
5877–5881). Dalian, China.

Zhang, B., Mao, J. & Li, H. (2011, March 20–23). A hybrid algorithm for sensing coverage
problem in wireless sensor netwoks. IEEE International Conference on Cyber Technology in
Automation, Control, and Intelligent Systems (CYBER) (pp. 162–165). Kunming, China.

Zheng, T. & Li, J. (2010, July 6–9). Multi-robot task allocation and scheduling based on fish
swarm algorithm. IEEE 8th World Congress on Intelligent Control and Automation (WCICA)
(pp. 6681–6685). Jinan, China.

Zheng, G., & Lin, Z. (2012). A winner determination algorithm for combinatorial auctions based
on hybrid artificial fish swarm algorithm. Physics Procedia, 25, 1666–1670.

Zhou, Y. & Huang, H. (2009). Hybrid artificial fish school algorithm based on mutation operator
for solving nonlinear equations. IEEE International Workshop on Intelligent Systems and
Applications (ISA), pp. 1–5.

Zhou, Y. & Liu, B. (2009). Two novel swarm intelligence clustering analysis methods. IEEE
Fifth International Conference on Natural Computation (ICNC), pp. 497–501.

Zhu, K. & Jiang, M. (2009). An improved artificial fish swarm algorithm based on chaotic search
and feedback strategy. International Conference on Computational Intelligence and Software
Engineering (CISE), pp. 1–4.

Zhu, K. & Jiang, M. (2010, July 6–9). Quantum artificial fish swarm algorithm. IEEE 8th World
Congress on Intelligent Control and Automation (WCICA) (pp. 1–5). Jinan, China.

Zhu, K., Jiang, M. & Cheng, Y. (2010). Niche artificial fish swarm algorithm based on quantum
theory. IEEE 10th International Conference on Signal Processing (ICSP), pp. 1425–1428.

Zhu, W., Jiang, J., Song, C., & Bao, L. (2012). Clustering algorithm based on fuzzy C-means and
artificial fish swarm. Procedia Engineering, 29, 3307–3311.

References 155

Chapter 10
Frog Inspired Algorithms

Abstract In this chapter, we present two frog inspired computational intelligence
(CI) algorithms, namely, shuffled frog leaping algorithm (SFLA) and frog calling
algorithm (FCA). We first provide a brief introduction in Sect. 10.1. Then, the
fundamentals and performance of SFLA are introduced in Sect. 10.2. Next, Sect.
10.3 outlines some core working principles and preliminary experimental studies
relative to FCA. Finally, Sect. 10.4 summarises this chapter.

10.1 Introduction

In this chapter, we will introduce two computational intelligence (CI) algorithms
that are inspired by some interesting behaviours exhibited by frogs (Wang et al.
2008; Mills et al. 2010; Rock et al. 2009; Reilly and Jorgensen 2011). These two
algorithms are called shuffled frog leaping algorithm (SFLA) and frog calling
algorithm (FCA), respectively.

10.2 Shuffled Frog Leaping Algorithm

10.2.1 Fundamentals of Shuffled Frog Leaping Algorithm

Shuffled frog leaping algorithm (SFLA) was recently proposed in (Eusuff and
Lansey 2003; Eusuff et al. 2006; Eusuff 2004) for solving problems with discrete
decision variables. Inspired by natural memetics, SFLA is a population-based
cooperative search metaphor combining the benefits of the genetic-based memetic
algorithm (MA) and the social behaviour based particle swarm optimization
(PSO). Such algorithms have been developed to arrive at near-optimum solutions
to complex and large-scale optimization problems which cannot be solved by
gradient-based mathematical programming techniques.

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_10, � Springer International Publishing Switzerland 2014

157

In SFLA, a population of randomly generated P solutions forms an initial
population, where each solution called a frog is represented by an n-dimensional
vector. SFLA starts with the whole population partitioned into a number of parallel
subsets referred to as memeplexes. Then each memeplex is considered as a dif-
ferent culture of frogs and permitted to evolve independently to search the space.
Within each memeplex, the individual frogs hold their own ideas, which can be
affected by the ideas of other frogs, and experience a memetic evolution. During
the evolution, the frogs may change their memes by using the information from the
memeplex best or the best individual of entire population. Incremental changes in
memo-types correspond to a leaping step size and the new meme corresponds to
the frog’s new position. In each cycle, only the frog with the worst fitness in the
current memeplex is improved by a process similar to PSO.

In order to implement SFLA, the following procedures need to be followed
(Eusuff and Lansey 2003; Eusuff et al. 2006; Eusuff 2004):

• Step 0: Setting im ¼ 0 and iN ¼ 0, where the number of memeplexes will be
counted by im, and the number of evolutionary steps is recorded by iN.

• Step 1: Setting im ¼ imþ 1.
• Step 2: Setting iN ¼ iN þ 1.
• Step 3: Constructing a submemeplex. The weights are allocated based on a

triangular probability distribution which is defined by Eq. 10.1 (Eusuff and
Lansey 2003):

pj ¼
2 nþ 1� jð Þ

n nþ 1ð Þ ; j ¼ 1; 2; . . .; n: ð10:1Þ

• Step 4: Improving the worst frog’s location. In SFLA, the new position can be
computed through Eq. 10.2 (Eusuff and Lansey 2003):

D iq¼qð Þ ¼ DW þ d: ð10:2Þ

If D iq¼qð Þ falls within the feasible space, then computing the new performance
value f iq¼qð Þ; otherwise going to Step 5. If the new f iq¼qð Þ is better than the previous
f iq¼qð Þ, then replacing the old D iq¼qð Þ with the new one and jumping to Step 7;
otherwise, going to Step 5.

• Step 5: If previous step (i.e., Step 4) could not generate a better solution, then
computing the step and the new position for frog based on the present global
optimal solution.

• Step 6: Censorship. If the frog’s new location is either unsuitable or no good
than the old one, the spread of defective meme is terminated by stochastically
generating a new frog at a suitable position to replace the frog whose new
position was not possible to move towards an optimum value.

• Step 7: Upgrading the memeplex.
• Step 8: If iN\N, returning to Step 2.

158 10 Frog Inspired Algorithms

• Step 9: If im\m, returning to Step 1; otherwise performing shuffling operation
to create new memeplex sets.

10.2.2 Performance of SFLA

To verify the efficacy of SFLA, the New York City Water Supply Tunnel System
case study was employed in (Eusuff and Lansey 2003). The simulation results
showed that SFLA was capable to find previous best solutions for two example
networks and a near optimal solution for the third case. In comparison with other
CI techniques (e.g., genetic algorithm (GA), simulated annealing (SA), etc.), the
SFLA converged within fewer iteration rounds which make it a versatile tool in
dealing with optimization problems.

10.3 Emerging Frog Inspired Algorithm

In addition to the aforementioned SFLA, the characteristics of this interesting
animal also motivate researchers to develop another frog inspired innovative CI
algorithm.

10.3.1 Frog Calling Algorithm

10.3.1.1 Fundamentals of Frog Calling Algorithm

Frog calling algorithm (FCA) was originally proposed in (Mutazono et al. 2012)
for dealing with power consumption issue in the context of wireless sensor net-
works. Inspired by Japanese tree frog calling (or satellite) behaviour, a self-
organizing scheduling scheme was presented in (Mutazono et al. 2012) to achieve
a energy-efficient data transmission. To fully utilize the FCA, the following three
factors have to be considered (Mutazono et al. 2012):

• Factor 1: Territory. A frog will first check that if there is any calling frog in its
own territory range, and then it will confirm that if the total number of calling
frogs existing in the paddy field is still within an acceptable range. Once it is
done with these, it will decide to produce calls or not.

• Factor 2: Number of competing frogs. A frog will evaluate its surroundings and
compare itself with other calling frogs according to some criteria. If the prob-
ability for the frog to win is high, it will begin to call anyway.

• Factor 3: Body size. Once the weak calling frog detects its current condition, it
will adopt sleep strategy to avoid competition.

10.2 Shuffled Frog Leaping Algorithm 159

10.3.1.2 Performance of FCA

Mutazono et al. (2012) tested the proposed FCA on a single-hop network. The
preliminary computer simulation results demonstrated that proposed FCA method
extends network lifetime by a factor of 6.7 in comparison with the method without
sleep control strategy for a coverage ratio of 80 %.

10.4 Conclusions

In this chapter, we presented two frog inspired CI algorithms, namely, SFLA and
FCA. Although they both are newly introduced CI methods, we have witnessed the
following rapid spreading of at least one of them, i.e., SFLA.

First, several enhanced versions of SFLA can be found in the literature as
outlined below:

• Binary SFLA (Gómez-González and Jurado 2011).
• Chaos-based SFLA (Li et al. 2008; Zhang et al. 2011).
• Clonal selection-based SFLA (Bhaduri 2009).
• Composite SFLA (Zhang et al. 2010).
• Discrete SFLA (Baghmisheh et al. 2011).
• Hybrid SFLA (Rahimi-Vahed and Mirzaei 2007; Rao and Lakshmi 2012;

Niknam and Farsani 2010; Luo et al. 2009a; Farahani et al. 2010; Khorsandi
et al. 2011; Niknam et al. 2012b).

• Improved SFLA (Malekpour et al. 2012; Zhang et al. 2008; Zhen et al. 2009;
Jahani et al. 2011c; Li et al. 2012b).

• Modified SFLA (Huynh 2008; Nejad et al. 2010a, b; Narimani 2011; Elbeltagi
et al. 2007; Jahani et al. 2010, 2011a ; Niknam et al. 2011b, c; Luo et al. 2009b;
Roy and Chakrabarti 2011; Pu et al. 2011; Ahandani et al. 2011; Zhang et al.
2012).

• Multiobjective SFLA (Rahimi-Vahed et al. 2009; Liu et al. 2011a, 2012; Wang
and Gong 2013; Li et al. 2010; Niknam et al. 2011a).

• Tribe-based SFLA (Niknam et al. 2012a).

Second, the SFLA has also been successfully applied to a variety of optimi-
zation problems as listed below:

• Bridge life cycle management (Elbehairy 2007; Elbehairy et al. 2006).
• Circuit design (Zhu and Zhi 2012).
• Controller design optimization (Huynh 2008).
• Data mining (Amiri et al. 2009; Liu et al. 2011a, 2012).
• Image processing (Bhaduri 2009; Wang et al. 2010).
• Laminate composite structures optimization (Rao and Lakshmi 2011).
• Manufacturing optimization (Rahimi-Vahed and Mirzaei 2007; Pakravesh and

Shojaei 2011).

160 10 Frog Inspired Algorithms

• Network virtualization (Liu et al. 2011b).
• Power system optimization (Rameshkhah et al. 2010a, b, 2011; Nejad et al.

2010a; Gómez-González and Jurado 2011; Narimani 2011; Sedighizadeh et al.
2011; Payam et al. 2011; Bijami et al. 2011; Jahani et al. 2010, Jahani et al.
2011a, b; Jalilzadeh et al. 2011; Ebrahimi et al. 2011; Yammani et al. 2012;
Malekpour et al. 2012; Niknam and Farsani 2010; Nejad et al. 2010b; Niknam
et al. 2011a, b, c, 2012b; Khorsandi et al. 2011; Roy and Chakrabarti 2011).

• Project management (Elbeltagi et al. 2007).
• Robot control (Pu et al. 2011).
• Scheduling optimization (Rahimi-Vahed et al. 2009; Tavakolan 2011; Rahimi-

Vahed and Mirzaei 2008; Pan et al. 2011; Fang and Wang 2012; Li et al. 2012a;
Wang and Fang 2011).

• Travelling salesman problem (Xue-Hui et al. 2008; Luo et al. 2009b).
• Water resource management (Eusuff and Lansey 2003; Eusuff 2004; Mora-

Meliá et al. 2010; Chung 2007; Chung and Lansey 2009; Pasha and Lansey
2009; Seifollahi-Aghmiuni et al. 2011; Li et al. 2010).

Interested readers are referred to them as a starting point for a further explo-
ration and exploitation of frog inspired algorithms.

References

Ahandani, M. A., Shirjoposh, N. P., & Banimahd, R. (2011). Three modified versions of
differential evolution algorithm for continuous optimization. Soft Computing, 15, 803–830.

Amiri, B., Fathian, M., & Maroosi, A. (2009). Application of shuffled frog-leaping algorithm on
clustering. International Journal of Advanced Manufacturing Technology, 45, 199–209.

Baghmisheh, M. T. V., Madani, K., & Navarbaf, A. (2011). A discrete shuffled frog optimization
algorithm. Artificial Intelligence Review, 36, 267–284.

Bhaduri, A. (2009). Color image segmentation using clonal selection-based shuffled frog leaping
algorithm. In Proceedings of the International Conference on Advances in Recent
Technologies in Communication and Computing (ARTCom). (pp. 517–520). IEEE.

Bijami, E., Abshari, R., Askari, J., Hosseinnia, S., & Farsangi, M. M. (2011). Optimal design of
damping controllers for multi-machine power systems using metaheuristic techniques.
International Review of Electrical Engineering, 6, 1883–1894.

Chung, G. (2007). Water supply system management design and optimization under uncertainty.
PhD Thesis, University of Arizona.

Chung, G., & Lansey, K. (2009). Application of the shuffled frog leaping algorithm for the
optimization of a general large-scale water supply system. Water Resources Management, 23,
797–823.

Ebrahimi, J., Hosseinian, S. H., & Gharehpetian, G. B. (2011). Unit commitment problem
solution using shuffled frog leaping algorithm. IEEE Transactions on Power Systems, 26,
573–581.

Elbehairy, H., Elbeltagi, E., Hegazy, T., & Soudki, K. (2006). Comparison of two evolutionary
algorithms for optimization of bridge deck repairs. Computer-Aided Civil and Infrastructure
Engineering, 21, 561–572.

Elbehairy, H. (2007). Ridge management system with integrated life cycle cost optimization. PhD
Thesis, University of Waterloo.

10.4 Conclusions 161

Elbeltagi, E., Hegazy, T., & Grierson, D. (2007). A modified shuffled frog-leaping optimization
algorithm: Applications to project management. Structure and Infrastructure Engineering, 3,
53–60.

Eusuff, M. M., & Lansey, K. E. (2003). Optimization of water distribution network design using
the shuffled frog leaping algorithm. Journal of Water Resources Planning and Management,
129, 210–225.

Eusuff, M. M. (2004). Water resources decision making using meta-heuristic optimization
methods. PhD Thesis, University of Arizona.

Eusuff, M., Lansey, K., & Pasha, F. (2006). Shuffled frog-leaping algorithm: A memetic meta-
heuristic for discrete optimization. Engineering Optimization, 38, 129–154.

Fang, C., & Wang, L. (2012). An effective shuffled frog-leaping algorithm for resource-
constrained project scheduling problem. Computers and Operations Research, 39, 890–901.

Farahani, M., Movahhed, S. B. & Ghaderi, S. F. (2010, September 6–9). A hybrid meta-heuristic
optimization algorithm based on SFLA. In Proceedings of the 2nd International Conference
on Engineering Optimization. (pp. 1–8). Lisbon, Portugal.

Gómez-González, M., & Jurado, F. (2011). A binary shuffled frog-leaping algorithm for the
optimal placement and sizing of photovoltaics grid-connected systems. International Review
of Electrical Engineering, 6, 452–458.

Huynh, T.-H. (2008). A modified shuffled frog leaping algorithm for optimal tuning of
multivariable PID controllers. In IEEE International Conference on Industrial Technology
(ICIT). (pp. 1–6). doi:10.1109/ICIT.2008.4608439.

Jahani, R., Nejad, H. C., Malekshah, A. S., & Shayanfar, H. A. (2010). A new advanced heuristic
method for optimal placement of unified power flow controllers in electrical power systems.
International Review of Electrical Engineering, 5, 2786–2794.

Jahani, R., Malekshah, A. S., Nejad, H. C., & Araskalaei, A. H. (2011a). Applying a new
advanced intelligent algorithm for optimal distributed generation location and sizing in radial
distribution systems. Australian Journal of Basic and Applied Sciences, 5, 642–649.

Jahani, R., Nejad, H. C., Araskalaei, A. H., & Hajinasiri, M. (2011b). Optimal DG allocation in
distribution network using a new heuristic method. Australian Journal of Basic and Applied
Sciences, 5, 635–641.

Jahani, R., Nejad, H. C., Khayat, O., Abadi, M. M., & Zadeh, H. G. (2011c). An improved
shuffled frog leaping algorithm approach for unit commitment problem. Australian Journal of
Basic and Applied Sciences, 5, 1379–1387.

Jalilzadeh, S., Noroozian, R., Sabouri, M., & Behzadpoor, S. (2011). PSS and SVC controller
design using chaos, PSO and SFL algorithms to enhancing the power system stability. Energy
and Power Engineering, 3, 87–95.

Khorsandi, A., Alimardani, A., Vahidi, B., & Hosseinian, S. H. (2011). Hybrid shuffled frog
leaping algorithm and Nelder—Mead simplex search for optimal reactive power dispatch. IET
Generation, Transmission and Distribution, 5, 249–256.

Li, Y., Zhou, J., Yang, J., Liu, L., Qin, H. & Yang, L. (2008). The chaos-based shuffled frog
leaping algorithm and its application. In Proceedings of the Fourth International Conference
on Natural Computation (ICNC). (pp. 481–485). doi:10.1109/ICNC.2008.242.

Li, Y., Zhou, J., Zhang, Y., Qin, H., & Liu, L. (2010). Novel multiobjective shuffled frog leaping
algorithm with application to reservoir flood control operation. Journal of Water Resources
Planning and Management, 136, 217–226.

Li, J., Pan, Q., & Xie, S. (2012a). An effective shuffled frog-leaping algorithm for multi-objective
flexible job shop scheduling problems. Applied Mathematics and Computation, 218,
9353–9371.

Li, X., Luo, J., Chen, M.-R., & Wang, N. (2012b). An improved shuffled frog-leaping algorithm
with extremal optimisation for continuous optimisation. Information Sciences, 192, 143–151.

Liu, J., Li, Z., Hu, X. & Chen, Y. (2011a). Multiobjective optimizaiton shuffled frog-leaping
biclustering. In Proceedings of the IEEE International Conference on Bioinformatics and
Biomedicine Workshop (BIBMW).

162 10 Frog Inspired Algorithms

http://dx.doi.org/10.1109/ICIT.2008.4608439
http://dx.doi.org/10.1109/ICNC.2008.242

Liu, W., Li, S., Xiang, Y., & Tang, X. (2011b). Virtual network embedding based on shuffled frog
leaping algorithm in TUNIE. International Journal of Advancements in Computing
Technology, 3, 402–409.

Liu, J., Li, Z., Hu, X., Chen, Y., & Liu, F. (2012). Multi-objective dynamic population shuffled
frog-leaping biclustering of microarray data. BMC Genomics, 13, 1–11.

Luo, J., Chen, M.-R. & Li, X. (2009a). A novel hybrid algorithm for global optimization based on
EO and SFLA. In Proceedings of the 4th IEEE Conference on Industrial Electronics and
Applications (ICIEA). (pp. 1935–1939). IEEE.

Luo, X.-H., Yang, Y., & Li, X. (2009b). Modified shuffled frog-leaping algorithm to solve
traveling salesman problem (in Chinese). Journal on Communications, 30, 130–135.

Malekpour, A. R., Tabatabaei, S., & Niknam, T. (2012). Probabilistic approach to multi-objective
Volt/Var control of distribution system considering hybrid fuel cell and wind energy sources
using improved shuffled frog leaping algorithm. Renewable Energy, 39, 228–240.

Mills, D. S., Marchant-Forde, J. N., McGreevy, P. D., Morton, D. B., Nicol, C. J., Phillips, C.
J. C., et al. (Eds.). (2010). The encyclopedia of applied animal behaviour and welfare. UK:
CAB International. ISBN 978-0-85199-724-7.

Mora-Meliá, D., Iglesias-Rey, P. L., Bosque-Chacón, G. & López-Jiménez, P. A. (2010, October
29–30) Statistical analysis of water distribution networks design using shuffled frog leaping
algorithm. Proceedings of the International Workshop on Environmental Hydraulics,
IWEH09. (pp. 327–331). Valencia, Spain.

Mutazono, A., Sugano, M., & Murata, M. (2012). Energy efficient self-organizing control for
wireless sensor networks inspired by calling behavior of frogs. Computer Communications,
35, 661–669.

Narimani, M. R. (2011). A new modified shuffle frog leaping algorithm for non-smooth economic
dispatch. World Applied Sciences Journal, 12, 803–814.

Nejad, H. C., Jahani, R. & Shayanfar, H. A. (2010a). Comparison of modified shuffled frog
leaping algorithm and other algorithms for optimal distributed generation location and sizing.
International Review of Electrical Engineering (I.R.E.E.), 5, 2286–2292.

Nejad, H. C., Jahani, R., Shayanfar, H. A., & Olamaei, J. (2010b). Comparison of novel heuristic
technique and other evolutionary methods for optimal unit commitment of power system.
International Review on Modelling and Simulations, 3, 1476–1482.

Niknam, T., & Farsani, E. A. (2010). A hybrid self-adaptive particle swarm optimization and
modified shuffled frog leaping algorithm for distribution feeder reconfiguration. Engineering
Applications of Artificial Intelligence, 23, 1340–1349.

Niknam, T., Farsani, E. A., & Nayeripour, M. (2011a). An efficient multi-objective modified
shuffled frog leaping algorithm for distribution feeder reconfiguration problem. European
Transactions on Electrical Power, 21, 721–739.

Niknam, T., Firouzi, B. B., & Mojarrad, H. D. (2011b). A new evolutionary algorithm for non-
linear economic dispatch. Expert Systems with Applications, 38, 13301–13309.

Niknam, T., Narimani, M. R., Jabbari, M., & Malekpour, A. R. (2011c). A modified shuffle frog
leaping algorithm for multi-objective optimal power flow. Energy, 36, 6420–6432.

Niknam, T., Farsani, E. A., Nayeripour, M., & Firouzi, B. B. (2012a). A new tribe modified
shuffled frog leaping algorithm for multi-objective distribution feeder reconfiguration
considering distributed generator units. European Transactions on Electrical Power, 22,
308–333.

Niknam, T., Narimani, M. R., & Azizipanah-Abarghooee, R. (2012b). A new hybrid algorithm
for optimal power flow considering prohibited zones and valve point effect. Energy
Conversion and Management, 58, 197–206.

Pakravesh, H., & Shojaei, A. (2011). Optimization of industrial CSTR for vinyl acetate
polymerization using novel shuffled frog leaping based hybrid algorithms and dynamic
modeling. Computers and Chemical Engineering, 35, 2351–2365.

Pan, Q.-K., Wang, L., Gao, L., & Li, J. (2011). An effective shuffled frog-leaping algorithm for
lot-streaming flow shop scheduling problem. International Journal of Advanced Manufac-
turing Technology, 52, 699–713.

References 163

Pasha, M. F. K., & Lansey, K. (2009). Water quality parameter estimation for water distribution
systems. Civil Engineering and Environmental Systems, 26, 231–248.

Payam, M. S., Bijami, E., Abdollahi, M., & Dehkordi, A. S. (2011). Optimal coordination of
directional overcurrent relay for power delivery system. Australian Journal of Basic and
Applied Sciences, 5, 1949–1957.

Pu, H., Zhen, Z., & Wang, D. (2011). Modified shuffled frog leaping algorithm for optimization
of UAV flight controller. International Journal of Intelligent Computing and Cybernetics, 4,
25–39.

Rahimi-Vahed, A., & Mirzaei, A. H. (2007). A hybrid multi-objective shuffled frog-leaping
algorithm for a mixed-model assembly line sequencing problem. Computers and Industrial
Engineering, 53, 642–666.

Rahimi-Vahed, A., & Mirzaei, A. H. (2008). Solving a bi-criteria permutation flow-shop problem
using shuffled frog-leaping algorithm. Soft Computing, 12, 435–452.

Rahimi-Vahed, A., Dangchi, M., Rafiei, H., & Salimi, E. (2009). A novel hybrid multi-objective
shuffled frog-leaping algorithm for a bi-criteria permutation flow shop scheduling problem.
International Journal of Advanced Manufacturing Technology, 41, 1227–1239.

Rameshkhah, F., Abedi, M. & Hosseinian, H. (2010a). Comparison and combination of shuffled
frog-leaping algorithm and k-means for clustering of VCAs in power system. International
Review of Electrical Engineering (I.R.E.E.), 5, 194–204.

Rameshkhah, F., Abedi, M., & Hosseinian, S. H. (2010b). Clustering of voltage control areas in
power system using shuffled frog-leaping algorithm. Electrical Engineering, 92, 269–282.

Rameshkhah, F., Abedi, M., & Hosseinian, S. H. (2011). Comparison of shuffled frog leaping
algorithm and PSO in data clustering with constraint for grouping voltage control areas in
power systems. European Transactions on Electrical Power, 21, 1763–1782.

Rao, A. R. M. & Lakshmi, K. (2012). Optimal design of stiffened laminate composite cylinder
using a hybrid SFL algorithm. Journal of Composite Materials. doi:10.1177/
0021998311435674.

Reilly, S. M., & Jorgensen, M. E. (2011). The evolution of jumping in frogs: Morphological
evidence for the basal anuran locomotor condition and the radiation of locomotor systems in
crown group anurans. Journal of Morphology, 272, 149–168.

Rock, M., Murphy, J. T., Rasiah, R., Seters, P. V., & Managi, S. (2009). A hard slog, not a leap
frog: globalization and sustainability transitions in developing Asia. Technological Fore-
casting and Social Change, 76, 241–254.

Roy, P., & Chakrabarti, A. (2011). Modified shuffled frog leaping algorithm for solving economic
load dispatch problem. Energy and Power Engineering, 3, 551–556.

Sedighizadeh, M., Sarvi, M., & Naderi, E. (2011). Multi objective optimal power flow with
FACTS devices using shuffled frog leaping algorithm. International Review of Electrical
Engineering, 6, 1794–1801.

Seifollahi-Aghmiuni, S., Haddad, O. B., Omid, M. H., & Mariño, M. A. (2011). Long-term
efficiency of water networks with demand uncertainty. Water Management, 164, 147–159.

Tavakolan, M. (2011). Development of construction projects scheduling with evolutionary
algorithms. PhD Thesis, Columbia University.

Wang, L., & Fang, C. (2011). An effective shuffled frog-leaping algorithm for multi-mode
resource-constrained project scheduling problem. Information Sciences, 181, 4804–4822.

Wang, L. & Gong, Y. (2013). Multi-objective dynamic population shuffled frog leaping
algorithm. In: Y. Tan, Y. Shi, & H. Mo (Eds.) Advances in swarm intelligence, LNCS 7982,
(pp. 24–31). Berlin: Springer.

Wang, M., Zang, X.-Z., Fan, J.-Z., & Zhao, J. (2008). Biological jumping mechanism analysis
and modeling for frog robot. Journal of Bionic Engineering, 5, 181–188.

Wang, N., Li, X., & Chen, X.-H. (2010). Fast three-dimensional Otsu thresholding with shuffled
frog-leaping algorithm. Pattern Recognition Letters, 31, 1809–1815.

Xue-Hui, L., Yang, Y. & Li, X. (2008). Solving TSP with shuffled frog-leaping algorithm. In
Eighth international conference on intelligent systems design and applications (ISDA). (pp.
228–232). doi:10.1109/ISDA.2008.346.

164 10 Frog Inspired Algorithms

http://dx.doi.org/10.1177/0021998311435674
http://dx.doi.org/10.1177/0021998311435674
http://dx.doi.org/10.1109/ISDA.2008.346

Yammani, C., Maheswarapu, S., & Matam, S. (2012). Multiobjective optimization for optimal
placement and size of DG using shuffled frog leaping algorithm. Energy Procedia, 14,
990–995.

Zhang, X., Hu, F., Tang, J., Zou, C. & Zhao, L. (2010). A kind of composite shuffled frog leaping
algorithm. In Sixth international conference on natural computation (ICNC). (vol. 5,
pp. 2232–2235). doi:10.1109/ICNC.2010.5584419.

Zhang, X., Hu, F., Zou, C., & Zhao, L. (2011). The research of swarm intelligence algorithm
based on chaotic frog behavior. Energy Procedia, 13, 1189–1196.

Zhang, X., Hu, X., Cui, G., Wang, Y., & Niu, Y. (2008, June 25–27). An improved shuffled frog
leaping algorithm with cognitive behavior. In The 7th World Congress on Intelligent Control
and Automation (WCICA). Chongqing, China. (pp. 6197–6202). doi:10.1109/
WCICA.2008.4592798.

Zhang, X., Zhang, Y., Shi, Y., Zhao, L., & Zou, C. (2012). Power control algorithm in cognitive
radio system based on modified shuffled frog leaping algorithm. International Journal of
Electronics and Communications, 66, 448–454.

Zhen, Z., Wang, D. & Liu, Y. (2009, May 18–21). Improved shuffled frog leaping algorithm for
continuous optimization problem. IEEE Congress on Evolutionary Computation. (pp.
992–2995). Trondheim, Norway.

Zhu, A., & Zhi, L. (2012). Automatic test pattern generation based on shuffled frog leaping
algorithm for sequential circuits. Procedia Engineering, 29, 856–860.

References 165

http://dx.doi.org/10.1109/ICNC.2010.5584419
http://dx.doi.org/10.1109/WCICA.2008.4592798
http://dx.doi.org/10.1109/WCICA.2008.4592798

Chapter 11
Fruit Fly Optimization Algorithm

Abstract In this chapter, we present a novel optimization algorithm called fruit
fly optimization algorithm (FFOA) which is inspired by the behaviour of fruit flies.
We first describe the general knowledge of the foraging behaviour of fruit flies in
Sect. 11.1. Then, the fundamentals and performance of FFOA are introduced in
Sect. 11.2. Finally, Sect. 11.3 summarises this chapter.

11.1 Introduction

If you have been seeing small flies in your kitchen, they’re probably fruit flies. In
fact, the fruit flies can be viewed as the second smallest member among the model
animals in the narrow sense which has only hundreds of neurons and has no brain
(Shimada et al. 2005). During the summer, they are attracted to ripened or fer-
menting food through their sensing and perception characteristics, especially in
osphresis and vision (Pan 2012; Touhara 2013). Inspired by the behaviour of real
fruit flies, recently Pan (2012) proposed a new algorithm called fruit flies opti-
mization algorithm (FFOA).

11.1.1 The Foraging Behaviour of Fruit Flies

Fruit flies are small flies and usually with red eyes. They are especially attracted to
ripened foods in the kitchen. They can even smell food source from 40 km away
(Pan 2012). In addition, the number of the fruit fly’s eye (i.e., compound eye) are
huge in which contains 760 unit eyes (Chapman 2013). Based on those character-
istics, the fruit fly can exploit an extraordinarily wide range of food sources. Gen-
erally speaking, the food finding process of fruit fly is as follows (Pan 2012): firstly,

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_11, � Springer International Publishing Switzerland 2014

167

it smells the food source by osphresis organ, and flies towards that location; then,
after it gets close to the food location, the sensitive vision is also used for finding
food and other fruit flies’ flocking location; finally, it flies towards that direction.

11.2 Fruit Fly Optimization Algorithm

11.2.1 Fundamentals of Fruit Fly Optimization Algorithm

Fruit fly optimization algorithm (FFOA) was originally proposed in Pan (2011,
2012) that is based on the food foraging behaviour of fruit fly. Generally, the
procedures of FFOA are described as follows (Pan 2012):

• Initialization phase: The fruit flies are randomly distributed in the search space
(InitX axis and InitY axis) via Eqs. 11.1 and 11.2, respectively (Pan 2012):

Xi ¼ X axisþ RandomValue; ð11:1Þ

Yi ¼ Y axisþ RandomValue; ð11:2Þ

where the term ‘‘RandomValue’’ is a random vector that were sampled from a
uniform distribution.

• Path construction phase: The distance and smell concentration value of each
fruit fly can be defined via Eqs. 11.3 and 11.4, respectively (Pan 2012):

Disti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
i þ Y2

i

q

; ð11:3Þ

Si ¼
1

Disti
; ð11:4Þ

where Disti is the distance between the ith individual and the food location, and
Si is the smell concentration judgment value which is the reciprocal of distance.

• Fitness function calculation phase. It can be defined via Eqs. 11.5 and 11.6,
respectively (Pan 2012):

Smelli ¼ Function Sið Þ; ð11:5Þ

bestSmell; bestIndex½ � ¼ max Smellið Þ; ð11:6Þ

where Smelli is the smell concentration of the individual fruit fly, bestSmell and
bestIndex represent the largest elements and its indices along different

168 11 Fruit Fly Optimization Algorithm

dimensions of smell vectors, and max Smellið Þ is the maximal smell concen-
tration among the fruit flies.

• Movement phase: The fruit fly keeps the best smell concentration value and
will use vision to fly towards that location via Eqs. 11.7–11.9, respectively
(Pan 2012):

Smellbest ¼ bestSmell: ð11:7Þ

X axis ¼ X bestIndexð Þ: ð11:8Þ

Y axis ¼ Y bestIndexð Þ: ð11:9Þ

Overall, taking into account the key phases described above, the steps of
implementing FFOA can be summarized as follows (Pan 2012):

• Step 1: Initialize the optimization problem and algorithm parameters.
• Step 2: Repeat till stopping criteria met. First, randomly select a location via

distance and smell concentration judgment value. Second, calculate its fitness
function Function Sið Þ. Third, find out the fruit fly with maximal smell con-
centration among the fruit fly swarm. Fourth, rank the solutions and move to the
best solution.

• Step 3: Post process and visualize results.

11.2.2 Performance of FFOA

In order to show how the FFOA performs, two functions (i.e., one minimum and
one maximum) are tested in Pan (2012). Computational results showed that FFOA
is capable to find the minimal value and the maximal value.

11.3 Conclusions

Nowadays, a number of algorithmic approaches based on the animals’ foraging
behaviour were developed and applied to variety of combinatorial optimization
problems. Among others, FFOA is a new member. Two characteristics of fruit flies
(osphresis and vision) are the building blocks of FFOA. The main advantages of
FFOA include simple computational process, ease understanding, and easy
implementation (Pan 2012). Although it is a newly introduced CI method, we have
witnessed the following rapid spreading of FFOA:

First, several enhanced versions of FFOA can be found in literature as outlined
below:

• Adaptive mutation FFOA (Han and Liu 2013).
• Binary FFOA (Wang et al. 2013).

11.2 Fruit Fly Optimization Algorithm 169

• Modified FFOA (Liu et al. 2012).

Second, the FFOA has also been successfully applied to a variety of optimi-
zation problems as listed below:

• Autonomous surface vessels control (Abidin et al. 2012).
• Control optimization (Liu et al. 2012).
• Data mining (Chen et al. 2013; Tu et al. 2012).
• Multidimensional knapsack problem (Wang et al. 2013).
• Power load forecasting (Li et al. 2012, 2013, 2012).
• Traffic flow control (Zhu et al. 2013).

Interested readers please refer to them as a starting point for a further explo-
ration and exploitation of FFOA.

References

Abidin, Z. Z., Hamzah, M. S. M., Arshad, M. R., & Ngah, U. K. (2012). A calibration framework
for swarming ASVs’ system design. Indian Journal of Geo-Marine Sciences, 41, 581–588.

Chapman, R. F. (2013). In S. J. Simpson, A. E. Douglas (Eds.) The insects: structure and
function. New York: Cambridge University Press. ISBN 978-0-521-11389-2.

Chen, P.-W., Lin, W.-Y., Huang, T.-H., & Pan, W.-T. (2013). Using fruit fly optimization
algorithm optimized grey model neural network to perform satisfaction analysis for e-business
service. Applied Mathematics and Information Sciences, 7, 459–465.

Han, J.-Y., & Liu, C.-Z. (2013). Fruit fly optimization algorithm with adaptive mutation (in
Chinese). Application Research of Computers, 30, 1–6. (in Chinese).

Li, H., Guo, S., Zhao, H., Su, C., & Wang, B. (2012). Annual electric load forecasting by a least
squares support vector machine with a fruit fly optimization algorithm. Energies, 5,
4430–4445.

Li, H.-Z., Guo, S., Li, C.-J., & Sun, J.-Q. (2013). A hybrid annual power load forecasting model
based on generalized regression neural network with fruit fly optimization algorithm.
Knowledge-Based Systems, 37, 378–387.

Liu, Y., Wang, X. & Li, Y. (2012, July 6–8). A modified fruit-fly optimization algorithm aided
PID controller designing. In IEEE 10th World Congress on Intelligent Control and
Automation. (pp. 233–238). Beijing, China.

Pan, W.-T. (2011). Fruit fly optimization algorithm . Taiwan: Tsang Hai Book Publishing Co.
ISBN 978-986-6184-70-3. (in Chinese).

Pan, W.-T. (2012). A new fruit fly optimization algorithm: Taking the financial distress model as
an example. Knowledge-Based Systems, 26, 69–74.

Shimada, T., Kato, K., Kamikouchi, A., & Ito, K. (2005). Analysis of the distribution of the brain
cells of the fruit fly by an automatic cell counting algorithm. Physica A, 350, 144–149.

Touhara, K. (Ed.) (2013). Pheromone signaling: Methods and protocols. London: Springer. ISBN
978-1-62703-618-4.

Tu, C.-S., Chang, C.-T., Chen, K–. K., & Lu, H.-A. (2012). A study on business performance with
the combination of Z-score and FOAGRNN hybrid model. African Journal of Business
Management, 6, 7788–7798.

Wang, L., Zheng, X.-L., & Wang, S.-Y. (2013). A novel binary fruit fly optimization algorithm
for solving the multidimensional knapsack problem. Knowledge-Based Systems, 48, 17–23.

Zhu, W., Li, N., Shi, C., & Chen, B. (2013). SVR based on FOA and its application in traffic flow
prediction. Open Journal of Transportation Technologies, 2, 6–9. (in Chinese).

170 11 Fruit Fly Optimization Algorithm

Chapter 12
Group Search Optimizer Algorithm

Abstract In this chapter, we introduce a new optimization algorithm called group
search optimizer (GrSO) which is inspired from the relationship of group foraging
behaviours, i.e., producer-scrounger paradigm. We first describe the general
knowledge of the producer-scrounger model in Sect. 12.1. Then, the fundamentals
and performance of GrSO are introduced in Sect. 12.2. Finally, Sect. 12.3 sum-
marises this chapter.

12.1 Introduction

The most easily recognized animals’ behaviour is the foraging behaviour, i.e.,
searching for and exploiting food resources (Mills et al. 2010). Nowadays, several
population-based algorithms are proposed based on the foraging theory, such as
ant colony optimization (ACO) and particle swarm optimization (PSO). Recently,
He et al. (2009) introduced a newly developed algorithm called group search
optimizer (GrSO) algorithm which is inspired from the relationship of group
foraging behaviours, i.e., producer-scrounger paradigm (Millor et al. 2006).

12.1.1 Producer-Scrounger Model

Generally speaking, the producer-scrounger (PS) model is a group-living foraging
strategy in which the food will be founded by the discoverers (producers) and
shared with others (scroungers) (Barnard and Sibly 1981; Brockmann and Barnard
1979). It assumed that individuals should specialize in either producing or
scrounging at any one time (Parker 1984). In fact, it is the novel behaviour and
adopted by many animals. To understand when and how such exploitative rela-
tionships will occur, several studies are made. For example Giraldeau and
Lefebvre (1987) studied the PS model in pigeons, and (Biondolillo et al. 1997)

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_12, � Springer International Publishing Switzerland 2014

171

tested the PS model between the zebra finches. In addition Vickery et al. (1991)
proposed a newly model in which an information sharing mechanism (i.e., a third
strategist: producer-scrounger opportunist) is incorporated.

12.2 Group Search Optimizer Algorithm

12.2.1 Fundamentals of Group Search Optimizer Algorithm

Group search optimizer (GrSO) algorithm was originally proposed in He et al.
(2006). The population of GrSO is called group and each one inside is called
member. Based on the PS model, the main steps of GrSO can be described as
follows (Chen et al. 2012; Shen et al. 2009):

• Initializing phase: In GrSO, ith member at the kth searching iteration has a

position Xk
i 2 Rn; a head angel uk

i ¼ uk
i;1; . . .;uk

i; n

� �
2 Rn�1; and a head

direction Dk
i uk

i

� �
¼ dk

i;1; . . .; dk
i; n

� �
2 Rn in an n� dimensional search space.

In general, the distance can be calculated from uk
i via a polar to Cartesian

coordinate transformation via Eqs. 12.1–12.3, respectively (Chen et al. 2012):

dk
i;1 ¼

Yn�1

p¼1

cos uk
i; p

� �
; ð12:1Þ

dk
i; j ¼ sin uk

i; j�1ð Þ

� �
�
Yn�1

p¼j

cos uk
i; p

� �
; for j ¼ 2; . . .; n� 1; ð12:2Þ

dk
i; n ¼ sin uk

i; n�1ð Þ

� �
: ð12:3Þ

• Producing phase: The searching process of producer Xp at the kth iteration
samples three points randomly via Eq. 12.4 (He et al. 2009):

Xz ¼ Xk
p þ r1 � lmax � Dk

p uk
� �

Xr ¼ Xk
p þ r1 � lmax � Dk

p uk þ r2 � hmax=2
� �

Xl ¼ Xk
p þ r1 � lmax � Dk

p uk � r2 � hmax=2
� �

8
>><

>>:

; ð12:4Þ

where Xk
p is the current position of pth individual in kth generation, Xz; Xr; and

Xl are the positions which the pth individual found in zero degree, right and left
direction of it, respectively, r1 2 R1 is a normally distributed random number
with mean 0 and standard deviation 1, r2 2 Rn�1 is a uniformly distributed
random sequence in the range 0; 1ð Þ; and hmax and lmax are the maximum pursuit
angle and distance, respectively.

172 12 Group Search Optimizer Algorithm

If the searching on three directions is ended, there are three states as follows
(He et al. 2009):

When the new position has a better fitness value, the producer will move to the
new point. The producer will keep its current position, however turn its head to a
new angle via Eq. 12.5 (He et al. 2009):

ukþ1 ¼ uk þ r2 � amax; ð12:5Þ

where amax 2 R1 is the maximum tuning angle.
When there is no better position can be found after a iterations, the producer

will turn its head back to zero degree via Eq. 12.6 (He et al. 2009):

ukþa ¼ uk; ð12:6Þ

where a 2 R1 is a pre-defined constant.

• Scrounging phase: After the determination of the producer, the scroungers will
perform random walks by searching the opportunities to join the resources found
by the producer via Eq. 12.7 (He et al. 2009):

Xkþ1
i ¼ Xk

i þ r3 � Xk
p þ Xk

i

� �
; ð12:7Þ

where r3 is an uniform random sequence in the range 0; 1ð Þ; Xk
i and Xkþ1

i are the
positions of ith scrounger in t and t þ 1 iterations, respectively.

• Ranging phase: The inefficiency foragers will be selected as rangers that will
perform a new searching process based on the random walks, i.e., generating a
new random head angle (ui), choosing a random distance (li), and moving to the
new position (Xkþ1

i), via Eqs. 12.8–12.10, respectively (He et al. 2009):

ukþ1 ¼ uk
i þ r2 � amax; ð12:8Þ

li ¼ a � r1 � lmax; ð12:9Þ

Xkþ1
i ¼ Xk

i þ li � Dk
i ukþ1
� �

; ð12:10Þ

where r1 2 R1 is a normally distributed random number with mean 0 and standard
deviation 1, r2 2 Rn�1 is a uniformly distributed random sequence in the range
0; 1ð Þ, lmax is the maximum pursuit distance, amax 2 R1 is the maximum tuning

angle.

Taking into account the key phases described above, the steps of implementing
the GrSO algorithm can be summarized as follows (He et al. 2006, 2009):

• Step 1: Defining the optimization problem, and initializing the optimization
parameters.

• Step 2: Repeat till stopping criteria met.
• Step 3: Choose a member as producer.

12.2 Group Search Optimizer Algorithm 173

• Step 4: The producer performs producing.
• Step 5: Choose scroungers.
• Step 6: Scroungers perform scrounging.
• Step 7: Dispersed the rest members to perform ranging.
• Step 8: Evaluate members.
• Step 9: Check if maximum iteration is reached, go to Step 2 for new beginning,

if a specified termination criteria is satisfied, stop and return the best solution.

12.2.2 Performance of GrSO

In order to show how the GrSO algorithm performs, the founders have conducted a
set of studies to convince us. First, in He et al. (2006), four benchmark functions
are studied. Second, in He et al. (2009), an intensive study based on a set of 23
benchmark functions are illustrated. For comparison purposes, several traditional
computational intelligence (CI) methods are employed, namely genetic algorithm
(GA), PSO, evolutionary programming (EP), fast EP (FEP), evolution strategies
(ES), and fast ES (FES). Experimental results showed that GrSO outperforms
others in solving multimodal functions, while performing a similar performance
for unimodal functions in terms of accuracy and convergence rate.

12.3 Conclusions

Based on the producer-scrounger model, we introduced an interesting algorithm
called GrSO in which three types of members are involved: producers (i.e.,
seeking food resources), scroungers (i.e., joining resources founded by the pro-
ducer), and rangers (i.e., performing random walks from their current positions).
For simplification, He et al. (2009) assumed that there is only one producer at each
searching iteration and the remaining members are divided into scroungers and
rangers, respectively. In addition, three mechanisms are employed to perform
better searching strategies, i.e., environment scanning (i.e., vision) for producers,
area copying for scroungers and random walks for rangers. Also, it is worth
mentioning that the GrSO algorithm is capable of handling a variety of optimi-
zation problems, especially for the large scale optimization problems. The dif-
ferences between GrSO and other algorithms (such as ACO, EA, and PSO) please
refer to He et al. (2009) for more details. Although it is a newly introduced CI
method, we have witnessed the following rapid spreading of GrSO:

First, several enhanced versions of GrSO can be found in the literature as
outlined below:

• Fast GrSO (Zhan et al. 2011; Qin et al. 2009).
• GrSO with multiple producers (Guo et al. 2012).
• Hybrid GrSO and extreme learning machine (Silva et al. 2011a).

174 12 Group Search Optimizer Algorithm

• Hybrid GrSO with metropolis rule (Fang et al. 2010).
• Improved GrSO (Xie et al. 2009; Shen et al. 2009; Silva et al. 2011b; Chen et al.

2012).
• Multiobjective GrSO (Wang et al. 2012).

Second, the GrSO algorithm has also been successfully applied to a variety of
optimization problems as listed below:

• Artificial neural network training (He and Li 2008; Silva et al. 2011a, b).
• Mechanical design optimization (Shen et al. 2009).
• Power system optimization (Wu et al. 2008; Zhan et al. 2011; Kang et al. 2011,

2012; Guo et al. 2012; Liao et al. 2012).
• Truss structure design optimization (Liu et al. 2008; Xie et al. 2009).

Interested readers are referred to them as a starting point for a further explo-
ration and exploitation of the GrSO algorithm.

References

Barnard, C. J., & Sibly, R. M. (1981). Producers and scroungers: a general model at its
application to captive flocks of house sparrows. Animal Behaviour, 29, 543–550.

Biondolillo, K., Stamp, C., Woods, J., & Smith, R. (1997). Working and scrounging by zebra
finches in an operant task. Behavioural Processes, 39, 263–269.

Brockmann, H. J., & Barnard, C. J. (1979). Kleptoparasitism in birds. Animal Behaviour, 27,
487–514.

Chen, D., Wang, J., Zou, F., Hou, W., & Zhao, C. (2012). An improved group search optimizer
with operation of quantum-behaved swarm and its application. Applied Soft Computing, 12,
712–725.

Fang, J., Cui, Z., Cai, X., & Zeng, J. A. (2010, July 17–19). Hybrid group search optimizer with
metropolis rule. The 2010 International Conference on Modelling, Identification and Control
(ICMIC) pp. (556–561). Japan: IEEE.

Giraldeau, L.-A., & Lefebvre, L. (1987). Scrounging prevents cultural transmission of food-
finding behaviour in pigeons. Animal Behaviour, 35, 387–394.

Guo, C. X., Zhan, J. P., & Wu, Q. H. (2012). Dynamic economic emission dispatch based on
group search optimizer with multiple producers. Electric Power Systems Research, 86, 8–16.

He, S., & Li, X. (2008). Application of a group search optimization based artificial neural
network to machine condition monitoring. IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA) (pp. 1260–1266). IEEE.

He, S., Wu, Q. H., & Saunders, J. R. A. (2006, July 16–21). Novel group search optimizer
inspired by animal behavioural ecology. IEEE Congress on Evolutionary Computation (CEC)
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, (pp. 1272–1278). Canada: IEEE.

He, S., Wu, Q. H., & Saunders, J. R. (2009). Group search optimizer: an optimization algorithm
inspired by animal searching behavior. IEEE Transactions on Evolutionary Computation, 13,
973–990.

Kang, Q., Lan, T., Yan, Y., An, J., & Wang, L. (2011). Swarm-based optimal power flow
considering generator fault in distribution systems. IEEE International Conference on
Systems, Man, and Cybernetics (SMC) (pp. 786–790). IEEE.

12.3 Conclusions 175

Kang, Q., Lan, T., Yan, Y., Wang, L., & Wu, Q. (2012). Group search optimizer based optimal
location and capacity of distributed generations. Neurocomputing, 78, 55–63.

Liao, H., Chen, H., Wu, Q., Bazargan, M., & Ji, Z. (2012). Group search optimizer for power
system economic dispatch. In: Y. Tan, Y. Shi, & Z. Ji. (Eds.), ICSI 2012, Part I, LNCS 7331,
(pp. 253–260). Berlin: Springer.

Liu, F., Xu, X.-T., Li, L.-J., & Wu, Q. H. (2008). The group search optimizer and its application
on truss structure design. Fourth International Conference on Natural Computation (ICNC)
(pp. 688–692). IEEE.

Millor, J., Amé, J. M., Halloy, J., & Deneubourg, J. L. (2006). Individual discrimination
capability and collective decision-making. Journal of Theoretical Biology, 239, 313–323.

Mills, D. S., Marchant-Forde, J. N., McGreevy, P. D., Morton, D. B., Nicol, C. J., Phillips, C.
J. C., et al. (Eds.). (2010). The encyclopedia of applied animal behaviour and welfare. UK:
CAB International. ISBN 978-0-85199-724-7.

Parker, G. A. (1984). Evolutionarily stable strategies. In: J. R. Krebs, & N. B. Davies, (Eds.),
Behavioural ecology: an evolutionary approach. Oxford: Blackwell Scientific.

Qin, G., Liu, F., & Li, L. (2009). A quick group search optimizer with passive congregation and
its convergence analysis. International Conference on Computational Intelligence and
Security (CIS) (pp. 249–253). IEEE.

Shen, H., Zhu, Y., Niu, B., & Wu, Q. H. (2009). An improved group search optimizer for
mechanical design optimization problems. Progress in Natural Science, 19, 91–97.

Silva, D. N. G., Pacifico, L. D. S., & Ludermir, T. B. (2011a). An evolutionary extreme learning
machine based on group search optimization IEEE Congress on Evolutionary Computation
(CEC) (pp. 574–580). IEEE.

Silva, D. N. G., Pacifico, L. D. S., & Ludermir, T. B. (2011b). Improved group search optimizer
based on cooperation among groups for feedforward networks training with weight decay.
IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 2133–2138).
IEEE.

Vickery, W. L., Giraldeau, L.-A., Templeton, J. J., Kramer, D. L., & Chapman, C. A. (1991).
Producer, scroungers, and group foraging. The American Naturalist, 137, 847–863.

Wang, L., Zhong, X., & Liu, M. (2012). A novel group search optimizer for multi-objective
optimization. Expert Systems with Applications, 39, 2939–2946.

Wu, Q. H., Lu, Z., Li, M. S., & Ji, T. Y. (2008). Optimal placement of FACTS devices by a group
search optimizer with multiple producer. IEEE World Congress on Computational
Intelligence (WCCI) (pp. 1033–1039). IEEE.

Xie, H., Liu, F., & Li, L. (2009). A topology optimization for truss based on improved group
search optimizer. International Conference on Computational Intelligence and Security (CIS)
(pp. 244–148). IEEE.

Zhan, J. P., Yin, Y. J., Guo, C. X., & Wu, Q. H. (2011). Integrated maintenance scheduling of
generators and transmission lines based on fast group searching optimizer. IEEE Power and
Energy Society General Meeting (pp. 1–6). IEEE.

176 12 Group Search Optimizer Algorithm

Chapter 13
Invasive Weed Optimization Algorithm

Abstract In this chapter, we present an interesting algorithm called invasive weed
optimization (IWO) which is inspired from colonizing weeds. We first describe the
general knowledge of the biological invasion in Sect. 13.1. Then, the fundamentals
and performance of IWO are introduced in Sect. 13.2. Finally, Sect. 13.3
summarises this chapter.

13.1 Introduction

Weeds are one of the most robust and troublous plants in agriculture. When we
were young, you may have heard that ‘‘the weeds always win’’. This is due to the
weeds have some strong properties, such as adaptation, robustness, vigorousness,
and invasion. Based on those properties, a novel numerical stochastic optimization
algorithm called invasive weed optimization (IWO) is proposed by Mehrabian and
Lucas (2006) which is based on the natural selection (survival of the fittest) in the
biological world.

13.1.1 Biological Invasion

Generally speaking, biological invasion is a phenomenon in which the groups of
individuals (such as weeds) migrate to new environments and compete with native
populations (Shigesada and Kawasaki 1997). In fact, it is not a novel phenomenon
however, it is one of the most important impacts on the earth’s ecosystems (Jose
et al. 2013). Also, it can be used as a fundamental framework in designing
effective optimization algorithms (Falco et al. 2012).

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_13, � Springer International Publishing Switzerland 2014

177

13.2 Invasive Weed Optimization Algorithm

13.2.1 Fundamentals of Invasive Weed Optimization
Algorithm

Invasive weed optimization (IWO) algorithm was originally proposed in
Mehrabian and Lucas (2006). To implement the IWO algorithm, the following
steps need to be performed (Mehrabian and Lucas 2006; Roshanaei et al. 2008):

• Initialization: a population of initial weeds W ¼ w1;w2; . . .;wmð Þ, each repre-
senting one trial solution of the optimization problem at hand, is being dispread
over the d-dimensional problem space with random positions.

• Reproduction: each member of the population is allowed to produce seeds
depending on its own, as well as the colony’s lowest and highest fitness to
simulate the natural survival of the fittest process. Such that, the number of seed
produced by a weed increases linearly from lowest possible seed for a weed with
worst fitness to the maximum number of seeds for a plant with best fitness
(which corresponds to the lowest objective function value for a minimization
problem).

• Spatial distribution: the generated seeds are being randomly distributed over the
d-dimensional search space by normally distributed random numbers with mean
equal to zero; but varying variance parameter decreasing over the number of
iteration. The reason for that is to guarantee that the produced seeds will be
generated in a distant area but around the parent weed and decreases nonlin-
early, which results in grouping the fitter plants are together and inappropriate
plants are eliminated over times. Here, the standard deviation (r) of the random
function is made to decrease over the iterations from a previously defined initial
value (rinitial), to a final value (rfinal), is calculated in every time step via
Eq. 13.1 (Mehrabian and Lucas 2006; Roshanaei et al. 2008):

riter ¼
itermax � iterð Þn

itermaxð Þn rinitial � rfinal

� �
þ rfinal; ð13:1Þ

where itermax is the maximum number of iterations, riter is the standard devi-
ation at the present time step and n is the non-linear modulation index usually
set as 2.

• Competitive exclusion: due to fast reproduction, after passing some iteration the
number of produced plants in a colony reaches to its maximum (Pmax). In this
step, a competitive mechanism is activated for eliminating undesirable plants
with poor fitness and allowing fitter plants to reproduce more sees as expected.
This process continues until maximum iterations or some other stopping criteria
are reached and the plant with the best fitness is selected as the optimal solution.

178 13 Invasive Weed Optimization Algorithm

Taking into account the key phases described above, the steps of implementing
the IWO algorithm can be summarized as follows (Ghosh et al. 2011; Roy et al.
2013; Li et al. 2011; Kundu et al. 2012; Mehrabian and Lucas 2006)

• Step 1: Initialize randomly generated weeds in the entire search space.
• Step 2: Evaluate fitness of the whole population members.
• Step 3: Allow each population member to produce a number of seeds with better

population members produce more seeds (i.e., reproduction).
• Step 4: The generated seeds are distributed over the search space by normally

distributed random numbers with mean equal to zero but varying variance (i.e.,
spatial dispersal).

• Step 5: When the weed population exceeds the upper limit, perform competitive
exclusion.

• Step 6: Check the termination criteria.

13.2.2 Performance of IWO

In order to test the performance of IWO, a set of benchmark multidimensional
functions are adopted in Mehrabian and Lucas (2006), such as Sphere function,
Griewank function and Rastrigin function. Compared with other CI algorithms
[such as genetic algorithm (GA), simulated annealing (SA), and particle swarm
optimization (PSO)], computational results showed that IWO is capable of finding
desired minima very fast.

13.3 Conclusions

Recently, there has been a considerable attention paid for employing nature
inspired algorithms to solve optimization problems. Among others, IWO is a new
member that motivated by a common phenomenon in agriculture, i.e., colonization
of invasive weeds. Although it is a newly introduced CI method, we have
witnessed the following rapid spreading of IWO:

First, several enhanced versions of IWO can be found in the literature as
outlined below:

• Cooperative coevolutionary IWO (Hajimirsadeghi et al. 2009).
• Differential IWO (Basak et al. 2013).
• Differential IWO (Basak et al. 2013).
• Discrete IWO (Ghalenoei et al. 2009).
• Foraging weed colony optimization (Roy et al. 2010).
• Hybrid IWO and differential evolution algorithm (Roy et al. 2013).
• IWO for multiobjective optimization (Kundu et al. 2012).
• Modified IWO (Giri et al. 2010; Ghosh et al. 2011; Pahlavani et al. 2012; Basak

et al. 2010).
• Non-dominated sorting IWO (Nikoofard et al. 2012).

13.2 Invasive Weed Optimization Algorithm 179

Second, the IWO algorithm has also been successfully applied to a variety of
optimization problems as listed below:

• Antenna design optimization (Roshanaei et al. 2008; Mallahzadeh et al. 2009;
Basak et al. 2010; Li et al. 2011; Mallahzadeh and Taghikhani 2013).

• Communication scheme optimization (Hung et al. 2010).
• Control optimization (Ghosh et al. 2011).
• Data clustering (Mehrabian and Lucas 2006).
• Electricity market optimization (Hajimirsadeghi et al. 2009; Nikoofard et al.

2012).
• Feed-forward neural network training (Giri et al. 2010).
• Multimodal optimization (Roy et al. 2013).
• Multiple task allocation problem (Ghalenoei et al. 2009).
• Recommender system optimization (Rad and Lucas 2007).
• Solving nonlinear equations (Pourjafari and Mojallali 2012).
• Travel path optimization (Pahlavani et al. 2012).

Interested readers please refer to them as a starting point for a further explo-
ration and exploitation of the IWO algorithm.

References

Basak, A., Pal, S., Das, S., Abraham, A., & Snasel, V. (2010, July 18–23). A modified invasive
weed optimization algorithm for time-modulated linear antenna array synthesis. In
Proceedings of the IEEE World Congress on Computational Intelligence (WCCI), Barcelona
(pp. 372–379). CCIB, Barcelona: IEEE.

Basak, A., Maity, D., & Das, S. (2013). A differential invasive weed optimization algorithm for
improved global numerical optimization. Applied Mathematics and Computation, 219,
6645–6668.

Falco, I. D., Cioppa, A. D., Maisto, D., Scafuri, U., & Tarantino, E. (2012). Biological
invasion–inspired migration in distributed evolutionary algorithms. Information Sciences,
207, 50–65. http://dx.doi.org/10.1016/j.ins.2012.04.027.

Ghalenoei, M. R., Hajimirsadeghi, H., & Lucas, C. (2009, December 16–18). Discrete invasive
weed optimization algorithm: Application to cooperative multiple task assignment of UAVs.
In Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control
Conference, Shanghai (pp. 1665–1670). Shanghai: IEEE.

Ghosh, A., Das, S., Chowdhury, A., & Giri, R. (2011). An ecologically inspired direct search
method for solving optimal control problems with Bézier parameterization. Engineering
Applications of Artificial Intelligence, 24, 1195–1203.

Giri, R., Chowdhury, A., Ghosh, A., Das, S., Abraham, A., & Snasel, V. (2010, October 10–13).
A modified invasive weed optimization algorithm for training of feed-forward neural
networks. In IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC),
Istanbul (pp. 3166–3173). Istanbul: IEEE.

Hajimirsadeghi, H., Ghazanfari, A., Rahimi-Kian, A., & Lucas, C. (2009). Cooperative
coevolutionary invasive weed optimization and its application to nash equilibrium search in
electricity markets. In World Congress on Nature and Biologically Inspired Computing
(NaBIC), (pp. 1532–1535). IEEE.

180 13 Invasive Weed Optimization Algorithm

http://dx.doi.org/10.1016/j.ins.2012.04.027

Hung, H.-L., Chao, C.-C., Cheng, C.-H., & Huang, Y.-F. (2010, October 10–13). Invasive weed
optimization method based blind multiuser detection for MC-CDMA interference suppression
over multipath fading channel. In IEEE International Conference on Systems, Man, and
Cybernetics (SMC), Istanbul (pp. 2145–2150). Istanbul: IEEE.

Jose, S., Singh, H. P., Batish, D. R., & Kohli, R. K. (Eds.). (2013). Invasive plant ecology. Boca
Raton: Taylor & Francis Group, LLC, ISBN 978-1-7398-8127-9.

Kundu, D., Suresh, K., Ghosh, S., Das, S., Panigrahi, B. K., & Das, S. (2012). Multi-objective
optimization with artificial weed colonies. Information Sciences, 181, 2441–2454.

Li, Y., Yang, F., Ouyang, J., & Zhou, H. (2011). Yagi-Uda antenna optimization based on
Invasive weed optimization method. Electromagnetics, 31, 571–577.

Mallahzadeh, A. R., & Taghikhani, P. (2013). Shaped elevation pattern synthesis for reflector
antenna. Electromagnetics, 33, 40–50.

Mallahzadeh, A. R., Es’Haghi, S., & Hassani, H. R. (2009). Compact U-array MIMO antenna
designs using IWO algorithm. International Journal of RF and Microwave Computer-Aided
Engineering, 19, 568–576.

Mehrabian, A. R., & Lucas, C. (2006). A novel numerical optimization algorithm inspired from
weed colonization. Ecological Informatics, 1, 355–366.

Nikoofard, A. H., Hajimirsadeghi, H., Rahimi-Kian, A., & Lucas, C. (2012). Multiobjective
invasive weed optimization: application to analysis of pareto improvement models in
electricity markets. Applied Soft Computing, 12, 100–112.

Pahlavani, P., Delavar, M. R., & Frank, A. U. (2012). Using a modified invasive weed
optimization algorithm for a personalized urban multi-criteria path optimization problem.
International Journal of Applied Earth Observation and Geoinformation, 18, 313–328.

Pourjafari, E., & Mojallali, H. (2012). Solving nonlinear equations systems with a new approach
based on invasive weed optimization algorithm and clustering. Swarm and Evolutionary
Computation, 4, 33–43.

Rad, H. S., & Lucas, C. (2007). A recommender system based on invasive weed optimization
algorithm. IEEE Congress on Evolutionary Computation (CEC), (pp. 4297–4304). IEEE.

Roshanaei, M. M., Lucas, C., & Mehrabian, A. R. (2008). Adaptive beamforming using a novel
numerical optimisation algorithm. IET Microwaves, Antennas and Propagation, 3, 765–773.

Roy, G. G., Chakroborty, P., Zhao, S.-Z., Das, S., & Suganthan, P. N. (2010, July 18–23).
Artificial foraging weeds for global numerical optimization over continuous spaces. In IEEE
World Congress on Computational Intelligence (WCCI), Barcelona (pp. 1189–1196). CCIB,
Barcelona: IEEE.

Roy, S., Islam, S. M., Das, S., Ghosh, S., & Vasilakos, A. V. (2013). A simulated weed colony
system with subregional differential evolution for multimodal optimization. Engineering
Optimization, 45(4), 459–481. http://dx.doi.org/10.1080/0305215X.2012.678494.

Shigesada, N., & Kawasaki, K. (1997). Biological invasions: Theory and practice. USA: Oxford
University Press.

References 181

http://dx.doi.org/10.1080/0305215X.2012.678494

Chapter 14
Music Inspired Algorithms

Abstract In this chapter, we introduce a set of music inspired algorithms, namely,
harmony search (HS), melody search (MeS) algorithm, and method of musical
composition (MMC) algorithm. We first describe the general knowledge of har-
mony in Sect. 14.1. Then, the fundamentals and performances of HS, MeS algo-
rithm, and MMC algorithm are introduced in Sects. 14.2 and 14.3, respectively.
Finally, Sect. 14.4 summarises this chapter.

14.1 Introduction

Everyone loves music. It is the one art form that is entirely defined by time. For
example, it can be broadly divided into three groups, namely, classical music, Jazz,
and rock (Jarrett and Day 2008). In addition, the fantastic thing of music is that it
can be improvisational played. For example, when you go to a concert, you will
find that two or three guitar players can improvise freely on the guitar based on
their own trained habits (French 2012). It just like act of grabbing a few seemingly
random notes, however, in the end you will admire to these excellent melodic
ideas. Inspired by that, several music based algorithms are proposed recently.

14.1.1 Harmony

Generally speaking, harmony is one of the major building blocks when you build a
musical bridge between your different melodic themes, the other two are rhythm
and melody, respectively. It can be defined as any combination of notes that can be
simultaneously played (Jarrett and Day 2008). The elementary study of harmony is
about chord progression in which a series of chord are played in order (Yi and
Goldsmith 2010). One good source for harmony is the melody itself. In fact, they
are interacted with each other. In addition, different harmonies can give you a
totally different feeling.

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_14, � Springer International Publishing Switzerland 2014

183

14.2 Harmony Search Algorithm

14.2.1 Fundamentals of Harmony Search Algorithm

Harmony search (HS) algorithm was originally proposed by Geem et al. (2001).
With the underlying fundamental of natural musical performance processes in
which the musicians improvise their instruments’ pitch by searching for the
pleasing harmony (a perfect state), HS find the solutions through the determination
of an objective function (i.e., the audience’s aesthetics) in which a set of values
(i.e., the musicians) assigned to each decision variable (i.e., the musical instru-
ment’s pitch). In general, the HS algorithm has three main operations: harmony
memory (HM) consideration, pitch adjustment, and randomization (Geem et al.
2001). The HS algorithm is performed in several steps, outlined below (Geem
et al. 2001):

• Preparation of harmony memory: The main building block of HS is the usage of
HM, because multiple randomized solution vectors are stored in HM via
Eq. 14.1 (Geem 2009):

HM ¼

D1
1 D1

2 � � � D1
n

D2
1 D2

2 � � � D2
n

..

. ..
.

� � � ..
.

DHMS
1 DHMS

2 � � � DHMS
n

�
�
�
�
�
�
�
�
�

f D1
� �

f D2
� �

..

.

f DHMS
� �

2

6
6
6
4

3

7
7
7
5
; ð14:1Þ

where Di
j is the ith decision variable in the jth solution vector that has one

discrete value out of a candidate set Di 1ð Þ;Di 2ð Þ; . . .;Di kð Þ; . . .;Di Kið Þf g, f D j
� �

is the objective function value for the jth solution vector, and HMS is the
harmony memory size (i.e., the number of multiple vectors stored in the HM).

• Improvisation of new harmony: A new harmony vector Dnew
i ¼

Dnew
1 ;Dnew

2 ; . . .;Dnew
n

� �
is improvised by the following three rules (Geem 2009):

(1) Random selection: Based on this rule, one value is chosen out of the candidate
set via Eq. 14.2 (Geem 2009):

Dnew
i Di kð Þ; Di kð Þ 2 Di 1ð Þ;Di 2ð Þ; . . .;Di Kið Þf g: ð14:2Þ

(2) HM consideration: In memory consideration, one value is chosen out of the
HM set with a probability of harmony memory consideration rate (HMCR) via
Eq. 14.3 (Geem 2009):

Dnew
i Di lð Þ; Di lð Þ 2 D1

i ;D
2
i ; . . .;DHMS

i

� �
: ð14:3Þ

184 14 Music Inspired Algorithms

(3) Pitch adjustment: According to this rule, the obtained vale as in Eq. 14.3 is
further changed into neighbouring values, with a probability of pitch adjusting
rate (PAR) via Eq. 14.4 (Geem 2009):

Dnew
i Di l� 1ð Þ; Di lð Þ 2 D1

i ;D
2
i ; . . .;DHMS

i

� �
: ð14:4Þ

Overall, these three rules are the core terms of the stochastic derivative of HS
and can be summarized via Eq. 14.5 (Geem 2009):

of

oDi

�
�
�
�
Di¼Di lð Þ

¼ 1
Ki
� 1� HMCRð Þ þ n Di lð Þð Þ

HMS
� HMCR � 1� PARð Þ

þ n Di l� 1ð Þð Þ
HMS

� HMCR � PAR;

ð14:5Þ

where 1
Ki
� 1� HMCRð Þ denotes for the rate to choose a value Di lð Þ for the decision

variable Di by random selection, n Di lð Þð Þ
HMS � HMCR � 1� PARð Þ chooses the rate by

HM consideration, and n Di l�1ð Þð Þ
HMS � HMCR � PAR chooses the rate by pitch

adjustment.

• Update of HM: Once the new vector Dnew
i ¼ Dnew

1 ;Dnew
2 ; . . .;Dnew

n

� �
is com-

pletely generated, it will be compared with the other vectors that stored in HM.
If it is better than the worst vector in HM with respect to the objective function,
it will be updated (i.e., the new harmony is included in the HM and the existing
worst harmony is excluded from the HM).

The optimization procedures of the HS algorithm are given as follows (Lee and
Geem 2009; Geem et al. 2001):

• Step 1: Initialize the optimization problem and algorithm parameters.
• Step 2: Initialization of HM.
• Step 3: Improvise a new harmony from the HM.
• Step 4: Update the HM.
• Step 5: Repeat Steps 3 and 4 until the termination criterion is satisfied.

14.2.2 Performance of HS

In order to show how the HS algorithm performs, three problems are presented to
demonstrate the searching ability of HS in Geem et al. (2001), i.e., travelling
salesman problem, relatively simple constrained minimization problem, and water
network design problem. The computational results showed that HS outperforms
other existing heuristic methods [such as genetic algorithm (GA)] in two specific
applications (i.e., relatively simple constrained minimization problem and water
network design problem).

14.2 Harmony Search Algorithm 185

14.3 Emerging Music Inspired Algorithms

Although music inspired algorithm is a new member of computational intelligence
(CI) family, a number of similar algorithms have been proposed in the literature.
This section gives an overview to some of these algorithms which have been
demonstrated to be very efficient and robust.

14.3.1 Melody Search Algorithm

14.3.1.1 Fundamentals of Melody Search Algorithm

Melody search (MeS) algorithm was originally proposed by Ashrafi and Dariane
(2011). It is inspired by the basic concepts applied in HS, but unless the HS
algorithm used a single HM, the MeS algorithm employed the procedure of the
group improvisation [i.e., several memories called player memory (PM)] simul-
taneously for finding the best succession of pitches in a melody. Main steps of
MeS are outlined as follows (Ashrafi and Dariane 2011):

• Step 1: Initializing the optimization problem and adopting algorithm parameters.
In general, there are six major parameters defined in MeS, namely number of
player memories (PMN), player memory size (PMS), maximum number of
iterations (NI), maximum number of iterations for the initial phase (NII),
bandwidth (bw), and player memory considering rate (PMCR).

• Step 2: Initial phase that includes two repeated procedures (i.e., improvise a new
melody from each PM and update each PM) until the criterion for stopping this
step (i.e., NII) is satisfied, is given as follows,

(1) Initialize PM is defined via Eq. 14.6 (Ashrafi and Dariane 2011):

MM ¼ PM1;PM2; . . .;PMPMN½ �; ð14:6Þ

where MM denotes the melody memory in which a set of player memories are
involved. The PM’s matrixes are generated via Eqs. 14.7 and 14.8, respec-
tively (Ashrafi and Dariane 2011):

PMi ¼

x1
i;1 x2

i;1 � � � xD
i;1

x1
i;2 x2

i;2 � � � xD
i;2

..

. ..
.

� � � ..
.

x1
i;PMS x2

i;PMS � � � xD
i;PMS

�
�
�
�
�
�
�
�
�
�

Fit1
i

Fit2
i

..

.

FitPMS
i

2

6
6
6
6
4

3

7
7
7
7
5
; ð14:7Þ

186 14 Music Inspired Algorithms

xk
i;j ¼ LBk þ r � UBk � LBkð Þ;

for

i ¼ 1; 2; . . .;PMN

j ¼ 1; 2; . . .;PMS

k ¼ 1; 2; . . .;D

8
><

>:
;

ð14:8Þ

where D is the number of pitches of melodic line (i.e., decision variables),
LBk;UBk½ � is the possible range of the searching dimension, and r is a real

number uniformly distributed in 0; 1½ �.
(2) Improvise a new melody Xi;new ¼ x1

i;new; x2
i;new; . . .; xn

i;new

� �
from each PM

according to three rules (Ashrafi and Dariane 2011):

Memory consideration: The value of each variable can be chosen from any
value in the specified PM.

Pitch adjustment: Based on this rule, the value can be determined by a constant
pitch bandwidth (bw) and a pitch adjusting rate (PAR) such as Eq. 14.9 (Ashrafi
and Dariane 2011):

PARt ¼ PARmin þ
PARmax � PARmin

NI
� t; ð14:9Þ

where PARt is the pitch adjusting rate of the ith iteration, PARmin and PARmax are
the minimum and maximum adjusting rates, respectively, and NI is the maximum
number of iterations.

Randomization: This rule is used to increase the diversity of the solutions.

(3) Update each PM.

• Step 3: Second phase that includes two repeated procedures until the NI is
satisfied, namely,

(1) Improvise a new melody from each PM according to the possible range of
pitches.

(2) Update each PM.
(3) Finally, determine the possible ranges of pitches for next improvisation (Just

for randomization).

14.3.1.2 Performance of MeS

To evaluate the performance of MeS, five classical benchmark functions are tested
in (Ashrafi and Dariane 2011). Compared with other CI methods [such as artificial
bee colony (ABC), GA, HS, particle swarm optimization (PSO), and particle
swarm and evolutionary algorithm (PS-EA)], the MeS is capable of finding better
solutions.

14.3 Emerging Music Inspired Algorithms 187

14.3.2 Method of Musical Composition Algorithm

14.3.2.1 Fundamentals of Method of Musical Composition Algorithm

Method of musical composition (MMC) algorithm was originally proposed by
Mora-Gutiérrez et al. (2012). The MMC algorithm used a dynamic creative system
which means the composers exchange information among themselves and their
environment to compose music. Normally, MMC involves four steps as follows
(Mora-Gutiérrez et al. 2012):

• Initialization: In this step, the scores (P�;�;i), which used as memory, are ran-
domly generated via Eqs. 14.10 and 14.11, respectively (Mora-Gutiérrez et al.
2012):

P�;�;i ¼

x1;1 x1;2 � � � x1;n

x2;1 x2;2 � � � x2;n

..

. ..
. ..

. ..
.

xNs;1 xNs;2
..
.

xNs;n

0

B
B
B
@

1

C
C
C
A
; ð14:10Þ

P�;�;i ¼ xL
l þ rand � xU

l � xL
l

� �� �
; ð14:11Þ

where P�;�;i is the score of the ith composer, xj;l is the lth decision variable of jth
tune, rand is a real number uniformly distributed in 0; 1½ �, and xU

l � xL
l

� �
is the

possible range of the searching dimension.
• Exchanging of information among agents: According to the interaction policy,

i.e., ‘‘composer i exchange a tune with composer k if and only if there is a link
between them and the worst tune of composer k is better than the worst tune of
composer i’’. Two sub-phases (i.e., update of links among composers and
exchange of information) are employed to exchange the information.

• Generating for each agent a new tune: Based on the composer’s background and
his innovative ideas, the new tune will be created. This phase includes two sub-
phases, i.e., building the background of each composer (KM�;�i) which includes
the knowledge of composer i and the environment information that he per-
ceived, and creating a new tune.

• The P�;�;i updating: Based on the value of objective function, the score will be
updated.

14.3.2.2 Performance of MMC

To show the performance of MMC, 13 benchmark continuous optimization
problems are performed in Mora-Gutiérrez et al. (2012). Compared with HS,
improved HS, global-best HS, and self-adaptive HS, the experimental results
showed that MMC improves the results obtained by the other methods, especially
in the domain of multimodal functions.

188 14 Music Inspired Algorithms

14.4 Conclusions

In this chapter, we introduced a set of music inspired algorithms, namely, HS,
MeS, and MMC. The former two are based on the idea of improvisation process by
a skilled musician, while the last algorithm is inspired by the creative process of
musical composition. Although the novelties of these music algorithms (e.g., HS)
are still under debate (see (Weyland 2010) for details), we have witnessed the
following rapid spreading of at least one of them, i.e., HS:

First, numerous enhanced versions of HS can be found in the literature as
outlined below:

• Box-Muller HS (Fetanat et al. 2011).
• Chaotic differential HS (Coelho et al. 2010).
• Chaotic HS (Pan et al. 2011b; Alatas 2010).
• Coevolutionary differential evolution with HS (Wang and Li 2012).
• Differential HS (Wang and Li 2013; Qin and Forbes 2011b).
• Discrete HS (Gandhi et al. 2012; Pan et al. 2010b; Tasgetiren et al. 2012).
• Effective global best HS (Zou et al. 2011a).
• Efficient HS (Degertekin 2012).
• Global-best HS (Omran and Mahdavi 2008).
• Grouping HS (Landa-Torres et al. 2012; Askarzadeh and Rezazadeh 2011).
• Guided variable neighborhood embedded HS (Huang et al. 2009).
• Harmony fuzzy search algorithm (Alia et al. 2009a).
• Highly reliable HS (Taherinejad 2009).
• HS with dual-memory (Gao et al. 2012b).
• Hybrid clonal selection algorithm and HS (Wang et al. 2009).
• Hybrid differential evolution and HS (Mirkhani et al. 2013; Li and Wang 2009;

Liao 2010; Duan et al. 2013; Gao et al. 2009).
• Hybrid global best HS and K-means algorithm (Cobos et al. 2010).
• Hybrid globalbest HS (Wang et al. 2010, 2011).
• Hybrid HS (Gao et al. 2012a; Gil-López et al. 2012; Wang et al. 2010).
• Hybrid HS and hill climbing (Al-Betar and Khader 2009).
• Hybrid HS and linear discriminate analysis (Moeinzadeh et al. 2009).
• Hybrid K-means and HS (Mahdavi and Abolhassani 2009; Forsati et al. 2008b).
• Hybrid modified subgradient and HS (Yas�ar and Özyön 2011).
• Hybrid probabilistic neural networks and HS (Ameli et al. 2012).
• Hybrid swarm intelligence and HS (Pandi and Panigrahi 2011; Pandi et al.

2011).
• Improved discrete HS (Shi et al. 2011).
• Improved HS based on exponential distribution (Coelho and Mariani 2009).
• Intelligent tuned HS (Yadav et al. 2012).
• Learning automata-based HS (Enayatifar et al. 2013).
• Local-best HS with dynamic sub-harmony memories (Pan et al. 2011a).
• Mixed-discrete HS (Jaberipour and Khorram 2011).

14.4 Conclusions 189

• Modified HS (Kaveh and Nasr 2011; Zinati and Razfar 2012; Al-Betar and
Khader 2012; Gao et al. 2008; Das et al. 2011; Mun and Cho 2012).

• Multiobjective HS (Sivasubramani and Swarup 2011a, b; Li et al. 2012).
• Novel global HS (Zou et al. 2010a, b, c, 2011b).
• Opposition-based HS (Chatterjee et al. 2012).
• Other hybrid HS (Jang et al. 2008; Yıldız 2008; Fesanghary et al. 2008; Zhao

and Suganthan 2010).
• Other improved HS (Afshari et al. 2011; Fourie et al. 2010; Sirjani et al. 2011;

Yadav et al. 2011; Kaveh and Abadi 2010; Geem and Williams 2008; Geem
2010, 2012; Mahdavi et al. 2007; Coelho and Bernert 2009; Chakraborty et al.
2009; Jaberipour and Khorram 2010b; Qin and Forbes 2011a; Al-Betar et al.
2012).

• Parallel HS (Lee and Zomaya 2009).
• Parameter-setting-free HS (Geem and Sim 2010).
• Particle-swarm enhanced HS (Geem 2009; Li et al. 2008; Zhao et al. 2011;

Cheng et al. 2012).
• Quantum inspired HS (Layeb 2013).
• Self-adaptive global best HS (Kulluk et al. 2011; Pan et al. 2010a).
• Self-adaptive HS (Degertekin 2012; Wang and Huang 2010; Chang and Gu

2012).
• Social HS (Kaveh and Ahangaran 2012).

Second, the HS algorithm has been successfully applied to a variety of opti-
mization problems as listed below:

• Adaptive parameter controlling (Nadi et al. 2010).
• Analog filter design optimization (Vural et al. 2013).
• Antenna design optimization (Guney and Onay 2011).
• Artificial neural network training (Kattan et al. 2010; Kattan and Abdullah

2011a, b; Kulluk et al. 2011, 2012).
• Communication networks optimization (Forsati et al. 2008a; Shi et al. 2011;

Landa-Torres et al. 2012; Ser et al. 2012).
• Data mining (Mahdavi and Abolhassani 2009; Mahdavi et al. 2008; Forsati et al.

2008b; Moeinzadeh et al. 2009; Wang et al. 2009; Venkatesh et al. 2010; Cobos
et al. 2010; Ramos et al. 2011).

• Engineering design optimization (Mohammadi et al. 2011; Gil-López et al.
2012; Lee and Geem 2005).

• Facility location optimization (Afshari et al. 2011; Kaveh and Nasr 2011).
• Fuel cell research (Askarzadeh and Rezazadeh 2011).
• Fuzzy-rough rule induction (Diao and Shen 2012).
• Ground motion records analysis (Kayhan et al. 2011).
• Image processing (Alia et al. 2009a, b, 2008, 2010; Fourie et al. 2010).
• Interaction parameter estimation problem (Merzougui et al. 2012).
• Knapsack problem (Zou et al. 2011b; Layeb 2013).
• Lot sizing problem (Piperagkas et al. 2012).

190 14 Music Inspired Algorithms

• Materials research (Mun and Geem 2009).
• Milling process optimization (Razfar et al. 2011; Zarei et al. 2009; Zinati and

Razfar 2012).
• Music composition (Geem and Choi 2007).
• Orienteering problem (Geem et al. 2005c).
• Parameter-setting-free technique enhanced HS (Geem and Sim 2010).
• Power system optimization (Vasebi et al. 2007; Mukhopadhyay et al. 2008;

Fesanghary and Ardehali 2009; Coelho and Mariani 2009; Coelho et al. 2010;
Yas�ar and Özyön 2011; Fetanat et al. 2011; Geem 2011; Pandi and Panigrahi
2011; Pandi et al. 2011; Sivasubramani and Swarup 2011a, b; Khorram and
Jaberipour 2011; Boroujeni et al. 2011a, b, c, d; Sirjani et al. 2011; Khazali and
Kalantar 2011; Shariatkhah et al. 2012; Ezhilarasi and Swarup 2012; Javadi
et al. 2012; Chatterjee et al. 2012; Ameli et al. 2012; Wang and Li 2013; Zhang
et al. 2013).

• Robot control optimization (Mirkhani et al. 2013).
• Scheduling optimization (Huang et al. 2009; Zou et al. 2010a; Wang et al. 2010,

2011; Pan et al. 2010b, 2011a, b; Yadav et al. 2011; Gao et al. 2012a; Ahmad
et al. 2012; Geem 2007; Tasgetiren et al. 2012).

• Signal processing (Gandhi et al. 2012; Guo et al. 2012).
• Software design optimization (Alsewari and Zamli 2012a, b).
• Structure design optimization (Geem et al. 2005b; Geem and Hwangbo 2006;

Degertekin 2008, 2012; Fesanghary et al. 2009, 2012; Kaveh and Talataha 2009;
Kaveh and Abadi 2010; Hasançebi et al. 2010; Khajehzadeh et al. 2011; Bekdas�
and Nigdeli 2011; Erdal et al. 2011; Lagaros and Papadrakakis 2012; Kaveh and
Ahangaran 2012; Shahrouzi and Sazjini 2012; Miguel and Miguel 2012; Lee
and Geem 2004; Ryu et al. 2007; Lee et al. 2011).

• Sudoku puzzle problem (Geem 2008a).
• Sum-of-ratios problem solving (Jaberipour and Khorram 2010a).
• Supply chain optimization (Wong and Guo 2010; Taleizadeh et al. 2011, 2012;

Purnomo et al. 2012).
• System reliability optimization (Zou et al. 2010c, 2011a; Wang and Li 2012).
• Timetabling (Al-Betar and Khader 2009, 2012; Al-Betar et al. 2008, 2010).
• Transportation system optimization (Ceylan et al. 2008).
• Vehicle routing problem (Geem et al. 2005b).
• Water network optimization (Geem 2006a, b, 2008b, 2009; Ayvaz 2007, 2009;

Mora-Meliá et al. 2009; Geem et al. 2011; Geem and Park 2006).

Interested readers please refer to them together with several excellent reviews
[e.g., (Alia and Mandava 2011; Manjarres et al. 2013; Geem et al. 2008)] as a
starting point for a further exploration and exploitation of these music inspired
algorithms.

14.4 Conclusions 191

References

Afshari, S., Aminshahidy, B., & Pishvaie, M. R. (2011). Application of an improved harmony
search algorithm in well placement optimization using streamline simulation. Journal of
Petroleum Science and Engineering, 78, 664–678.

Ahmad, I., Mohammad, M. G., Salman, A. A., & Hamdan, S. A. (2012). Broadcast scheduling in
packet radio networks using harmony search algorithm. Expert Systems with Applications, 39,
1526–1535.

Alatas, B. (2010). Chaotic harmony search algorithms. Applied Mathematics and Computation,
216, 2687–2699.

Al-Betar, M. A. & Khader, A. T. (2009, August 10–12). A hybrid harmony search for university
course timetabling. In Multidisciplinary International Conference on Scheduling: Theory and
Applications (MISTA), Dublin, Ireland (pp. 157–179).

Al-Betar, M. A., & Khader, A. T. (2012). A harmony search algorithm for university course
timetabling. Annals of Operations Research, 194, 3–31.

Al-Betar, M. A., Khader, A. T., & Gani, T. A. (2008). A harmony search algorithm for university
course timetabling. In 7th International Conference on the Practice and Theory of Automated
Timetabling, Montreal, Canada (pp. 1–12).

Al-Betar, M. A., Khader, A. T., & Nadi, F. (2010, July 7–11). Selection mechanisms in memory
consideration for examination timetabling with harmony search. In Annual Conference on
Genetic and Evolutionary Computation (GECCO), Portland, Oregon, USA (pp. 1203–1210).

Al-Betar, M. A., Doush, I. A., Khader, A. T., & Awadallah, M. A. (2012). Novel selection
schemes for harmony search. Applied Mathematics and Computation, 218, 6095–6117.

Alia, O. M. D., & Mandava, R. (2011). The variants of the harmony search algorithm: an
overview. Artificial Intelligence Review, 36, 49–68.

Alia, O. M. D., Mandava, R., Ramachandram, D., & Aziz, M. E. (2008). Dynamic fuzzy
clustering using harmony search with application to image segmentation. In IEEE
International Symposium on Signal Processing and Information Technology (ISSPIT) (pp.
538–543). IEEE.

Alia, O. M. D., Mandava, R., & Aziz, M. E. (2009a). A novel image segmentation algorithm
based on harmony fuzzy search algorithm. In International Conference of Soft Computing and
Pattern Recognition (SOCPAR) (pp. 335–340). IEEE.

Alia, O. M. D., Mandava, R., Ramachandram, D., & Aziz, M. E. (2009b). Harmony search-based
cluster initialization for fuzzy C-means segmentation of MR images. In IEEE Region 10
Conference TENCON (pp. 1–6). IEEE.

Alia, O. M. D., Mandava, R., & Aziz, M. E. (2010). A hybrid harmony search algorithm to MRI
brain segmentation. In 9th IEEE International Conference on Cognitive Informatics (ICCI)
(pp. 712–721). IEEE.

Alsewari, A. R. A., & Zamli, K. Z. (2012a). Design and implementation of a harmony-search-
based variable-strength t-way testing strategy with constraints support. Information and
Software Technology, 54, 553–568.

Alsewari, A. R. A., & Zamli, K. Z. (2012b). A harmony search based pairwise sampling strategy
for combinatorial testing. International Journal of the Physical Sciences, 7, 1062–1072.

Ameli, M. T., Shivaie, M., & Moslehpour, S. (2012). Transmission network expansion planning
based on hybridization model of neural networks and harmony search algorithm. International
Journal of Industrial Engineering Computations, 3, 71–80.

Ashrafi, S. M. & Dariane, A. B. (2011, December 5–8). A novel and effective algorithm for
numerical optimization: melody search (MS). In 11th International Conference on Hybrid
Intelligent Systems (HIS), Melacca (pp. 109–114). IEEE.

Askarzadeh, A., & Rezazadeh, A. (2011). A grouping-based global harmony search algorithm for
modeling of proton exchange membrane fuel cell. International Journal of Hydrogen Energy,
36, 5047–5053.

192 14 Music Inspired Algorithms

Ayvaz, M. T. (2007). Simultaneous determination of aquifer parameters and zone structures with
fuzzy C-means clustering and meta-heuristic harmony search algorithm. Advances in Water
Resources, 30, 2326–2338.

Ayvaz, M. T. (2009). Application of harmony search algorithm to the solution of groundwater
management models. Advances in Water Resources, 32, 916–924.

Bekdas�, G., & Nigdeli, S. M. (2011). Estimating optimum parameters of tuned mass dampers
using harmony search. Engineering Structures, 33, 2716–2723.

Boroujeni, S. M. S., Boroujeni, B. K., Abdollahi, M., & Delafkar, H. (2011a). Multi-area load
frequency control using IP controller tuned by harmony search. Australian Journal of Basic
and Applied Sciences, 5, 1224–1231.

Boroujeni, S. M. S., Boroujeni, B. K., Delafkar, H., Behzadipour, E., & Hemmati, R. (2011b).
Harmony search algorithm for power system stabilizer tuning. Indian Journal of Science and
Technology, 4, 1025–1030.

Boroujeni, S. M. S., Boroujeni, B. K., Delafkar, H., Behzadipour, E., & Hemmati, R. (2011c).
Harmony search algorithm for STATCOM controllers tuning in a multi machine environment.
Indian Journal of Science and Technology, 4, 1031–1035.

Boroujeni, S. M. S., Delafkar, H., Behzadipour, E., & Boro, A. S. (2011d). Reactive power
planning for loss minimization based on harmony search algorithm. International Journal of
Natural and Engineering Sciences, 5, 73–77.

Ceylan, H., Ceylan, H., Haldenbilen, S., & Baskan, O. (2008). Transport energy modeling with
meta-heuristic harmony search algorithm, an application to Turkey. Energy Policy, 36,
2527–2535.

Chakraborty, P., Roy, G. G., Das, S., & Jain, D. (2009). An improved harmony search algorithm
with differential mutation operator. Fundamenta Informaticae, 95, 1–26.

Chang, H., & Gu, X.-S. (2012). Multi-HM adaptive harmony search algorithm and its application
to continuous function optimization. Research Journal of Applied Sciences, Engineering and
Technology, 4, 100–103.

Chatterjee, A., Ghoshal, S. P., & Mukherjee, V. (2012). Solution of combined economic and
emission dispatch problems of power systems by an opposition-based harmony search
algorithm. Electrical Power and Energy Systems, 39, 9–20.

Cheng, Y. M., Li, L., Sun, Y. J., & Au, S. K. (2012). A coupled particle swarm and harmony
search optimization algorithm for difficult geotechnical problems. Structural and Multidis-
ciplinary Optimization, 45, 489–501.

Cobos, C., Andrade, J., Constain, W., Mendoza, M., & León, E. (2010, July 18–23). Web
document clustering based on global-best harmony search, k-means, frequent term sets and
Bayesian information criterion. In Proceedings of the IEEE World Congress on Computa-
tional Intelligence (WCCI), CCIB, Barcelona, Spain (pp. 4637–4644). IEEE.

Coelho, L. D. S., & Bernert, D. L. D. A. (2009). An improved harmony search algorithm for
synchronization of discrete-time chaotic systems. Chaos, Solitons and Fractals, 41,
2526–2532.

Coelho, L. D. S., & Mariani, V. C. (2009). An improved harmony search algorithm for power
economic load dispatch. Energy Conversion and Management, 50, 2522–2526.

Coelho, L. D. S., Bernert, D. L. D. A., & Mariani, V. C. (2010, July 18–23). Chaotic differential
harmony search algorithm applied to power economic dispatch of generators with multiple
fuel options. In IEEE World Congress on Computational Intelligence (WCCI), CCIB,
Barcelona, Spain (pp. 1416–1420). IEEE.

Das, S., Mukhopadhyay, A., Roy, A., Abraham, A., & Panigrahi, B. K. (2011). Exploratory
power of the harmony search algorithm: Analysis and improvements for global numerical
optimization. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics,
41, 89–106.

Degertekin, S. O. (2008). Optimum design of steel frames using harmony search algorithm.
Structural and Multidisciplinary Optimization, 36, 393–401.

Degertekin, S. O. (2012). Improved harmony search algorithms for sizing optimization of truss
structures. Computers and Structures, 92–93, 229–241.

References 193

Diao, R. & Shen, Q. (2012, June 10–15). A harmony search based approach to hybrid fuzzy-
rough rule induction. In IEEE World Congress on Computational Intelligence (WCCI),
Brisbane, Australia (pp. 1–8). IEEE.

Duan, Q., Liao, T. W., & Yi, H. Z. (2013). A comparative study of different local search
application strategies in hybrid metaheuristics. Applied Soft Computing, 13, 1464–1477.

Enayatifar, R., Yousefi, M., Abdullah, A. H., & Darus, A. N. (2013). LAHS: a novel harmony
search algorithm based on learning automata. In Communications in Nonlinear Science and
Numerical Simulation, 18, 3481–3497. http://dx.doi.org/10.1016/j.cnsns.2013.04.028.

Erdal, F., Doğan, E., & Saka, M. P. (2011). Optimum design of cellular beams using harmony
search and particle swarm optimizers. Journal of Constructional Steel Research, 67, 237–247.

Ezhilarasi, G. A. & Swarup, K. S. (2012). Network partitioning using harmony search and
equivalencing for distributed computing. Journal of Parallel and Distributed Computing, 72,
936–943. doi:10.1016/j.jpdc.2012.04.006.

Fesanghary, M., & Ardehali, M. M. (2009). A novel meta-heuristic optimization methodology for
solving various types of economic dispatch problem. Energy, 34, 757–766.

Fesanghary, M., Mahdavi, M., Minary-Jolandan, M., & Alizadeh, Y. (2008). Hybridizing
harmony search algorithm with sequential quadratic programming for engineering optimi-
zation problems. Computer Methods in Applied Mechanics and Engineering, 197, 3080–3091.

Fesanghary, M., Damangir, E., & Soleimani, I. (2009). Design optimization of shell and tube heat
exchangers using global sensitivity analysis and harmony search algorithm. Applied Thermal
Engineering, 29, 1026–1031.

Fesanghary, M., Asadi, S., & Geem, Z. W. (2012). Design of low-emission and energy-efficient
residential buildings using a multi-objective optimization algorithm. Building and Environ-
ment, 49, 245–250.

Fetanat, A., Shafipour, G., & Ghanatir, F. (2011). Box-Muller harmony search for optimal
coordination of directional overcurrent relays in power system. Scientific Research and
Essays, 6, 4079–4090.

Forsati, R., Haghighat, A. T., & Mahdavi, M. (2008a). Harmony search based algorithms for
bandwidth-delay-constrained least-cost multicast routing. Computer Communications, 31,
2505–2519.

Forsati, R., Mahdavi, M., Kangavari, M., & Safarkhani, B. (2008b). Web page clustering using
harmony search optimization. In Canadian Conference on Electrical and Computer
Engineering (CCECE) (pp. 001601–001604). IEEE.

Fourie, J., Mills, S., & Green, R. (2010). Harmony filter: a robust visual tracking system using the
improved harmony search algorithm. Image and Vision Computing, 28, 1702–1716.

French, R. M. (2012). Technology of the guitar. New York, Springer Science ? Business Media,
ISBN 978-1-4614-1920-4.

Gandhi, T. K., Chakraborty, P., Roy, G. G., & Panigrahi, B. K. (2012). Discrete harmony search
based expert model for epileptic seizure detection in electroencephalography. Expert Systems
with Applications, 39, 4062–4065.

Gao, X. Z., Wang, X., & Ovaska, S. J. (2008). Modified harmony search methods for uni-modal
and multi-modal optimization. In Eighth International Conference on Hybrid Intelligent
Systems (pp. 65–72).

Gao, X.-Z., Wang, X., & Ovaska, S. J. (2009). Uni-modal and multi-modal optimization using
modified harmony search methods. International Journal of Innovative Computing, Informa-
tion and Control, 5, 2985–2996.

Gao, K.-Z., Pan, Q.-K., Li, J.-Q., & Wang, Y.-T. (2012a). A hybrid harmony search algorithm for
the no-wait flow-shop scheduling problems. Asia-Pacific Journal of Operational Research,
29, 1–23.

Gao, X. Z., Wang, X., Zenger, K., & Wang, X. (2012b, October 14–17). A novel harmony search
method with dual memory. In IEEE International Conference on Systems, Man, and
Cybernetics (SMC), COEX, Seoul, Korea (pp. 177–183). IEEE.

Geem, Z. W. (2005, June 25–29). School bus routing using harmony search. GECCO 2005,
Washington, DC, USA (pp. 1–6). ACM.

194 14 Music Inspired Algorithms

http://dx.doi.org/10.1016/j.cnsns.2013.04.028
http://dx.doi.org/10.1016/j.jpdc.2012.04.006

Geem, Z. W. (2006a). Optimal cost design of water distribution networks using harmony search.
Engineering Optimization, 38, 259–280.

Geem, Z. W. (2006b). Parameter estimation for the nonlinear Muskingum model using BFGS
technique. Journal of Irrigation and Drainage Engineering, 132, 474–478.

Geem, Z. W. (2007). Optimal scheduling of multiple dam system using harmony search
algorithm. In Computational and Ambient Intelligence, LNCS 4507 (pp. 316–323). Berlin
Heidelberg: Springer.

Geem, Z. W. (2008a). Harmony search algorithm for solving Sudoku. In B. Apolloni., R.
J. Howlett., & L. Jain (Eds.), Knowledge-Based Intelligent Information and Engineering
Systems, LNCS 4692 (pp. 371–378). Berlin Heidelberg: Springer.

Geem, Z. W. (2008b). Novel derivative of harmony search algorithm for discrete design
variables. Applied Mathematics and Computation, 199, 223–230.

Geem, Z. W. (2009). Particle-swarm harmony search for water network design. Engineering
Optimization, 41, 297–311.

Geem, Z. W. (2010). State-of-the-art in the structure of harmony search algorithm. In Recent
Advances in Harmony Search Algorithm (pp. 1–10). Berlin: Springer.

Geem, Z. W. (2011). Discussion on ‘‘Combined heat and power economic dispatch by harmony
search algorithm’’ by A. Vasebi et al. International Journal of Electrical Power and Energy
Systems, 29(2007), 713–719. Electrical Power and Energy Systems, 33, 1348.

Geem, Z. W. (2012). Effects of initial memory and identical harmony in global optimization
using harmony search algorithm. Applied Mathematics and Computation, 218, 11337–11343.
http://dx.doi.org/10.1016/j.amc.2012.04.070.

Geem, Z. W. & Choi, J.-Y. (2007). Music composition using harmony search algorithm. In M.
Giacobini (Ed.), Applications of Evolutionary Computing (pp. 593–600). Berlin Heidelberg:
Springer.

Geem, Z. W. & Hwangbo, H. (2006). Application of harmony search to multi-objective
optimization for satellite heat pipe design. In US-Korea Conference on Science, Technology,
and Entrepreneurship (UKC). Teaneck, Nj, USA (pp. 1–3).

Geem, Z. W. & Park, Y. (2006, April 16–18). Optimal layout for branched networks using
harmony search. In 5th WSEAS International Conference on Applied Computer Science,
Hangzhou, China (pp. 364–367).

Geem, Z. W., & Sim, K.-B. (2010). Parameter-setting-free harmony search algorithm. Applied
Mathematics and Computation, 217, 3881–3889.

Geem, Z. W. & Williams, J. C. (2008, March 24–26). Ecological optimization using harmony
search. In American Conference on Applied Mathematics, Harvard, Massachusetts, USA (pp.
148–152). World Scientific and Engineering Academy and Society (WSEAS).

Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm:
Harmony search. Simulation, 76, 60–68.

Geem, Z. W., Lee, K. S., & Park, Y. (2005a). Application of harmony search to vehicle routing.
American Journal of Applied Sciences, 2, 1552–1557.

Geem, Z. W., Lee, K. S., & Tseng, C.-L. (2005b, June 25–29). Harmony search for structural
design. In GECCO’05, Washington, DC, USA (pp. 651–652). ACM.

Geem, Z. W., Tseng, C.-L., & Park, Y. (2005c). Harmony search for generalized orienteering
problem: best touring in China. In L. Wang., K. Chen K., & Y. Ong (Eds.), ICNC 2005, LNCS
3612 (pp. 741–750). Berlin Heidelberg: Springer.

Geem, Z. W., Fesanghary, M., Choi, J.-Y., Saka, M. P., Williams, J. C., Ayvaz, M. T., Li, L.,
Ryu, S., & Vasebi, A. (2008). Recent advances in harmony search. In W. Kosiński (Ed.),
Advances in Evolutionary Algorithms, ISBN 978-953-7619-11-4, Chapter 7 (pp. 127–142).
Vienna, Austria: I-Tech Education and Publishing.

Geem, Z. W., Kim, J.-H., & Jeong, S.-H. (2011). Cost efficient and practical design of water
supply network using harmony search. African Journal of Agricultural Research, 6,
3110–3116.

References 195

http://dx.doi.org/10.1016/j.amc.2012.04.070

Gil-López, S., Ser, J. D., Salcedo-Sanz, S., Pérez-Bellido, Á. M., Cabero, J. M. A., & Portilla-
Figueras, J. A. (2012). A hybrid harmony search algorithm for the spread spectrum radar
polyphase codes design problem. Expert Systems with Applications, 39, 11089–11093.

Guney, K., & Onay, M. (2011). Optimal synthesis of linear antenna arrays using a harmony
search algorithm. Expert Systems with Applications, 38, 15455–15462.

Guo, P., Wang, J., Gao, X. Z., & Tanskanen, J. M. A. (2012, October 14–17). Epileptic EEG
signal classification with marching pursuit based on harmony search method. In IEEE
International Conference on Systems, Man, and Cybernetics (SMC), COEX, Seoul, Korea (pp.
177–183). IEEE.

Hasançebi, O., Erdal, F., & Saka, M. P. (2010). Optimum design of geodesic steel domes under
code provisions using metaheuristic techniques. International Journal of Engineering and
Applied Sciences, 2, 88–103.

Huang, M., Dong, H.-Y., Wang, X.-W., Zheng, B.-L., & Ip, W. H. (2009, June 12–14). Guided
variable neighborhood harmony search for integrated charge planning in primary steelmaking
processes. In GEC’09, Shanghai, China (pp. 231–238). ACM.

Jaberipour, M., & Khorram, E. (2010a). Solving the sum-of-ratios problems by a harmony search
algorithm. Journal of Computational and Applied Mathematics, 234, 733–742.

Jaberipour, M., & Khorram, E. (2010b). Two improved harmony search algorithms for solving
engineering optimization problems. Communications in Nonlinear Science and Numerical
Simulation, 15, 3316–3331.

Jaberipour, M., & Khorram, E. (2011). A new harmony search algorithm for solving mixed–
discrete engineering optimization problems. Engineering Optimization, 43, 507–523.

Jang, W. S., Kang, H. I., & Lee, B. H. (2008). Hybrid simplex-harmony search method for
optimization problems. In IEEE Congress on Evolutionary Computation (CEC) (pp.
4157–4164). IEEE.

Jarrett, S. & Day, H. (2008). Music composition for dummies. 111 River St. Hoboken, NJ, USA:
Wiley Publishing, Inc., ISBN 978-0-470-22421-2.

Javadi, M. S., Sabramooz, S., & Javadinasab, A. (2012). Security constrained generation
scheduling using harmony search optimization case study: Day-ahead heat and power
scheduling. Indian Journal of Science and Technology, 5, 1812–1820.

Kattan, A. & Abdullah, R. (2011a). An enhanced parallel and distributed implementation of the
harmony search based supervised training of artificial neural networks. In Third International
Conference on Computational Intelligence, Communication Systems and Networks (CICSyN)
(pp. 275–280). IEEE.

Kattan, A. & Abdullah, R. (2011b). A parallel and distributed implementation of the harmony
search based supervised training of artificial neural networks. In Proceedings of the Second
International Conference on Intelligent Systems, Modelling and Simulation (ISMS) (pp.
277–283). IEEE.

Kattan, A., Abdullah, R., & Salam, R. A. (2010). Harmony search based supervised training of
artificial neural networks. In International Conference on Intelligent Systems, Modelling and
Simulation (ISMS) (pp. 105–110). IEEE.

Kaveh, A., & Abadi, A. S. M. (2010). Cost optimization of a composite floor system using an
improved harmony search algorithm. Journal of Constructional Steel Research, 66, 664–669.

Kaveh, A., & Ahangaran, M. (2012). Discrete cost optimization of composite floor system using
social harmony search model. Applied Soft Computing, 12, 372–381.

Kaveh, A., & Nasr, H. (2011). Solving the conditional and unconditional p-center problem with
modified harmony search: A real case study. Scientia Iranica A, 18, 867–877.

Kaveh, A., & Talataha, S. (2009). Particle swarm optimizer, ant colony strategy and harmony
search scheme hybridized for optimization of truss structures. Computers and Structures, 87,
267–283.

Kayhan, A. H., Korkmaz, K. A., & Irfanoglu, A. (2011). Selecting and scaling real ground motion
records using harmony search algorithm. Soil Dynamics and Earthquake Engineering, 31,
941–953.

196 14 Music Inspired Algorithms

Khajehzadeh, M., Taha, M. R., El-Shafie, A., & Eslami, M. (2011). Economic design of
foundation using harmony search algorithm. Australian Journal of Basic and Applied
Sciences, 5, 936–943.

Khazali, A. H., & Kalantar, M. (2011). Optimal reactive power dispatch based on harmony search
algorithm. Electrical Power and Energy Systems, 33, 684–692.

Khorram, E., & Jaberipour, M. (2011). Harmony search algorithm for solving combined heat and
power economic dispatch problems. Energy Conversion and Management, 52, 1550–1554.

Kulluk, S., Ozbakir, L., & Baykasoglu, A. (2011). Self-adaptive global best harmony search
algorithm for training neural networks. Procedia Computer Science, 3, 282–286.

Kulluk, S., Ozbakir, L., & Baykasoglu, A. (2012). Training neural networks with harmony search
algorithms for classification problems. Engineering Applications of Artificial Intelligence, 25,
11–19.

Lagaros, N. D., & Papadrakakis, M. (2012). Applied soft computing for optimum design of
structures. Structural and Multidisciplinary Optimization, 45, 787–799.

Landa-Torres, I., Gil-Lopez, S., Salcedo-Sanz, S., Ser, J. D., & Portilla-Figueras, J. A. (2012). A
novel grouping harmony search algorithm for the multiple-type access node location problem.
Expert Systems with Applications, 39, 5262–5270.

Layeb, A. (2013). A hybrid quantum inspired harmony search algorithm for 0–1 optimization
problems. Journal of Computational and Applied Mathematics, 253, 14–25.

Lee, K. S., & Geem, Z. W. (2004). A new structural optimization method based on the harmony
search algorithm. Computers and Structures, 82, 781–798.

Lee, K. S., & Geem, Z. W. (2005). A new meta-heuristic algorithm for continuous engineering
optimization: Harmony search theory and practice. Computer Methods in Applied Mechanics
and Engineering, 194, 3902–3933.

Lee, Y. C. & Zomaya, A. Y. (2009). Interweaving heterogeneous metaheuristics using harmony
search. In IEEE International Symposium on Parallel and Distributed Processing (IPDPS)
(pp. 1–8). IEEE.

Lee, K. S., Han, S. W., & Geem, Z. W. (2011). Discrete size and discrete-continuous
configuration optimization methods for truss structures using the harmony search algorithm.
International Journal of Optimization in Civil Engineering, 1, 107–126.

Li, L.-P. & Wang, L. (2009, June 12–14). Hybrid algorithms based on harmony search and
differential evolution for global optimization. In GEC, Shanghai, China (pp. 271–278).

Li, H.-Q., Li, L., Kim, T.-H., & Xie, S.-L. (2008). An improved PSO-based of harmony search for
complicated optimization problems. International Journal of Hybrid Information Technology,
1, 91–98.

Li, Y., Chen, J., Liu, R., & Wu, J. (2012, June 10–15). A spectral clustering-based adaptive
hybrid multi-objective harmony search algorithm for community detection. In IEEE World
Congress on Computational Intelligence (WCCI), Brisbane, Australia (pp. 1–8). IEEE.

Liao, T. W. (2010). Two hybrid differential evolution algorithms for engineering design
optimization. Applied Soft Computing, 10, 1188–1199.

Mahdavi, M., & Abolhassani, H. (2009). Harmony K-means algorithm for document clustering.
Data Mining and Knowledge Discovery, 18, 370–391.

Mahdavi, M., Fesanghary, M., & Damangir, E. (2007). An improved harmony search algorithm
for solving optimization problems. Applied Mathematics and Computation, 188, 1567–1579.

Mahdavi, M., Chehreghani, M. H., Abolhassani, H., & Forsati, R. (2008). Novel meta-heuristic
algorithms for clustering web documents. Applied Mathematics and Computation, 201,
441–451.

Manjarres, D., Landa-Torres, I., Gil-Lopez, S., Ser, J. D., Bilbao, M. N., Salcedo-Sanz, S., &
Geem, Z. W. (2013). A survey on applications of the harmony search algorithm. Engineering
Applications of Artificial Intelligence, 26, 1818–1831. http://dx.doi.org/10.1016/j.engappai.
2013.05.008.

Merzougui, A., Hasseine, A., & Laiadi, D. (2012). Application of the harmony search algorithm
to calculate the interaction parameters in liquid–liquid phase equilibrium modeling. Fluid
Phase Equilibria, 324, 94–101.

References 197

http://dx.doi.org/10.1016/j.engappai.2013.05.008
http://dx.doi.org/10.1016/j.engappai.2013.05.008

Miguel, L. F. F., & Miguel, L. F. F. (2012). Shape and size optimization of truss structures
considering dynamic constraints through modern metaheuristic algorithms. Expert Systems
with Applications, 39, 9458–9467.

Mirkhani, M., Forsati, R., Shahri, A. M., & Moayedikia, A. (2013). A novel efficient algorithm
for mobile robot localization. Robotics and Autonomous Systems, 61, 920–931. http://
dx.doi.org/10.1016/j.robot.2013.04.009.

Moeinzadeh, H., Asgarian, E., Zanjani, M., Rezaee, A., & Seidi, M. (2009). Combination of
harmony search and linear discriminate analysis to improve classification. In Proceedings of
the Third Asia International Conference on Modelling and Simulation (AMS) (pp. 131–135).
IEEE.

Mohammadi, M., Houshyar, A., Pahlavanhoseini, A., & Ghadimi, N. (2011). Using harmony
search algorithm for optimization the component sizing of plug-in hybrid electric vehicle.
International Review of Electrical Engineering, 6, 2990–2999.

Mora-Gutiérrez, R. A., Ramírez-Rodríguez, J., & Rincón-García, E. A. (2012). An optimization
algorithm inspired by musical composition. Artificial Intelligence Review. doi:10.1007/
s10462-011-9309-8.

Mora-Meliá, D., Iglesias-REY, P. L., Lopez-Patiño, G., & Fuertes-Miquel, V. S. (2009, October
29–30). Application of the harmony search algorithm to water distribution networks design. In
G. Palau-Salvador (Ed.), International Workshop on Environmental Hydraulics, IWEH09,
Valencia, Spain (pp. 265–271). CRC Press.

Mukhopadhyay, A., Roy, A., Das, S., Das, S., & Abraham, A. (2008). Population-variance and
explorative power of harmony search: an analysis. In Third International Conference on
Digital Information Management (ICDIM) (pp. 775–781). IEEE.

Mun, S., & Cho, Y.-H. (2012). Modified harmony search optimization for constrained design
problems. Expert Systems with Applications, 39, 419–423.

Mun, S., & Geem, Z. W. (2009). Determination of viscoelastic and damage properties of hot mix
asphalt concrete using a harmony search algorithm. Mechanics of Materials, 41, 339–353.

Nadi, F., Khader, A. T., & Al-Betar, M. A. (2010, July 7–11). Adaptive genetic algorithm using
harmony search. In Proceedings of the Annual Conference on Genetic and Evolutionary
Computation (GECCO), Portland, Oregon, USA (pp. 819–820).

Omran, M. G. H., & Mahdavi, M. (2008). Global-best harmony search. Applied Mathematics and
Computation, 198, 643–656.

Pan, Q.-K., Suganthan, P. N., Tasgetiren, M. F., & Liang, J. J. (2010a). A self-adaptive global
best harmony search algorithm for continuous optimization problems. Applied Mathematics
and Computation, 216, 830–848.

Pan, Q.-K., Tasgetiren, M. F., Suganthan, P. N., & Liang, Y.-C. (2010b, July 18–23). Solving lot-
streaming flow shop scheduling problems using a discrete harmony algorithm. In IEEE World
Congress on Computational Intelligence (WCCI), CCIB, Barcelona, Spain (pp. 4134–4139).
IEEE.

Pan, Q.-K., Suganthan, P. N., Liang, J. J., & Tasgetiren, M. F. (2011a). A local-best harmony
search algorithm with dynamic sub-harmony memories for lot-streaming flow shop
scheduling problem. Expert Systems with Applications, 38, 3252–3259.

Pan, Q.-K., Wang, L., & Gao, L. (2011b). A chaotic harmony search algorithm for the flow shop
scheduling problem with limited buffers. Applied Soft Computing, 11, 5270–5280.

Pandi, V. R., & Panigrahi, B. K. (2011). Dynamic economic load dispatch using hybrid swarm
intelligence based harmony search algorithm. Expert Systems with Applications, 38,
8509–8514.

Pandi, V. R., Panigrahi, B. K., Bansal, R. C., Das, S., & Mohapatra, A. (2011). Economic load
dispatch using hybrid swarm intelligence based harmony search algorithm. Electric Power
Components and Systems, 39, 751–767.

Piperagkas, G. S., Konstantaras, I., Skouri, K., & Parsopoulos, K. E. (2012). Solving the
stochastic dynamic lot-sizing problem through nature-inspired heuristics. Computers and
Operations Research, 39, 1555–1565.

198 14 Music Inspired Algorithms

http://dx.doi.org/10.1016/j.robot.2013.04.009
http://dx.doi.org/10.1016/j.robot.2013.04.009
http://dx.doi.org/10.1007/s10462-011-9309-8
http://dx.doi.org/10.1007/s10462-011-9309-8

Purnomo, H. D., Wee, H. M., & Praharsi, Y. (2012). Two inventory review policies on supply
chain configuration problem. Computers and Industrial Engineering, 63, 448–455.

Qin, A. K. & Forbes, F. (2011a, July 12–16). Dynamic regional harmony search with opposition
and local learning. In Annual Conference on Genetic and Evolutionary Computation
(GECCO), Dublin, Ireland (pp. 53–54).

Qin, A. K. & Forbes, F. (2011b, July 12–16). Harmony search with differential mutation based
pitch adjustment. In Annual Conference on Genetic and Evolutionary Computation (GECCO),
Dublin, Ireland (pp. 545–552).

Ramos, C. C. O., Souza, A. N., Chiachia, G., Falcão, A. X., & Papa, J. P. (2011). A novel
algorithm for feature selection using harmony search and its application for non-technical
losses detection. Computers and Electrical Engineering, 37, 886–894.

Razfar, M. R., Zinati, R. F., & Haghshenas, M. (2011). Optimum surface roughness prediction in
face milling by using neural network and harmony search algorithm. International Journal of
Advanced Manufacturing Technology, 52, 487–495.

Ryu, S., Heyl, C. N., Duggal, A. S., & Geem, Z. W. (2007, June 10–15). Mooring cost
optimization via harmony search. In 26th International Conference on Offshore Mechanics
and Arctic Engineering (EMAE), San Diego, California, USA (pp. 1–8). ASME.

Ser, J. D., Matinmikko, M., Gil-López, S., & Mustonen, M. (2012). Centralized and distributed
spectrum channel assignment in cognitive wireless networks: A harmony search approach.
Applied Soft Computing, 12, 921–930.

Shahrouzi, M., & Sazjini, M. (2012). Refined harmony search for optimal scaling and selection of
accelerograms. Scientia Iranica, Transactions A: Civil Engineering, 19, 218–224.

Shariatkhah, M.-H., Haghifam, M.-R., Salehi, J., & Moser, A. (2012). Duration based
reconfiguration of electric distribution networks using dynamic programming and harmony
search algorithm. Electrical Power and Energy Systems, 41, 1–10.

Shi, F., Xia, X., Chang, C., Xu, G., Qin, X., & Jia, Z. (2011). An application in frequency
assignment based on improved discrete harmony search algorithm. Procedia Engineering, 24,
247–251.

Sirjani, R., Mohamed, A., & Shareef, H. (2011). Optimal capacitor placement in three-phase
distribution systems using improved harmony search algorithm. International Review of
Electrical Engineering, 6, 1783–1793.

Sivasubramani, S., & Swarup, K. S. (2011a). Environmental/economic dispatch using multi-
objective harmony search algorithm. Electric Power Systems Research, 81, 1778–1785.

Sivasubramani, S., & Swarup, K. S. (2011b). Multi-objective harmony search algorithm for
optimal power flow problem. Electrical Power and Energy Systems, 33, 745–752.

Taherinejad, N. (2009). Highly reliable harmony search algorithm. In European Conference on
Circuit Theory and Design (ECCTD) (pp. 818–822). IEEE.

Taleizadeh, A. A., Niaki, S. T. A., & Barzinpour, F. (2011). Multiple-buyer multiple-vendor
multi-product multi-constraint supply chain problem with stochastic demand and variable
lead-time: A harmony search algorithm. Applied Mathematics and Computation, 217,
9234–9253.

Taleizadeh, A. A., Niaki, S. T. A., & Seyedjavadi, S. M. H. (2012). Multi-product multi-chance-
constraint stochastic inventory control problem with dynamic demand and partial back-
ordering a harmony search algorithm. Journal of Manufacturing Systems, 31, 204–213.

Tasgetiren, M. F., Bulut, O., & Fadiloglu, M. M. (2012, June 10–15). A discrete harmony search
algorithm for the economic lot scheduling problem with power of two policy. In IEEE World
Congress on Computational Intelligence (WCCI), Brisbane, Australia (pp. 1–8). IEEE.

Vasebi, A., Fesanghary, M., & Bathaee, S. M. T. (2007). Combined heat and power economic
dispatch by harmony search algorithm. Electrical Power and Energy Systems, 29, 713–719.

Venkatesh, S. K., Srikant, R., & Madhu, R. M. (2010, January 22–23). Feature selection and
dominant feature selection for product reviews using meta-heuristic algorithms. In Proceed-
ings of the Compute’10, Bangalore, Karnataka, India (pp. 1–4). ACM.

References 199

Vural, R. A., Bozkurt, U., & Yildirim, T. (2013). Analog active filter component selection with
nature inspired metaheuristics. International Journal of Electronics and Communications, 67,
197–205.

Wang, C.-M., & Huang, Y.-F. (2010). Self-adaptive harmony search algorithm for optimization.
Expert Systems with Applications, 37, 2826–2837.

Wang, L., & Li, L.-P. (2012). A coevolutionary differential evolution with harmony search for
reliability–redundancy optimization. Expert Systems with Applications, 39, 5271–5278.

Wang, L., & Li, L.-P. (2013). An effective differential harmony search algorithm for the solving
non-convex economic load dispatch problems. Electrical Power and Energy Systems, 44,
832–843.

Wang, X., Gao, X.-Z., & Ovaska, S. J. (2009). Fusion of clonal selection algorithm and harmony
search method in optimization of fuzzy classification systems. International Journal of Bio-
Inspired Computation, 1, 80–88.

Wang, L., Pan, Q.-K., & Tasgetiren, M. F. (2010). Minimizing the total flow time in a flow shop
with blocking by using hybrid harmony search algorithms. Expert Systems with Applications,
37, 7929–7936.

Wang, L., Pan, Q.-K., & Tasgetiren, M. F. (2011). A hybrid harmony search algorithm for the
blocking permutation flow shop scheduling problem. Computers and Industrial Engineering,
61, 76–83.

Weyland, D. (2010). A rigorous analysis of the harmony search algorithm: How the research
community can be misled by a ‘‘novel’’ methodology. International Journal of Applied
Metaheuristic Computing, 1–2, 50–60.

Wong, W. K., & Guo, Z. X. (2010). A hybrid intelligent model for medium-term sales forecasting
in fashion retail supply chains using extreme learning machine and harmony search algorithm.
International Journal of Production Economics, 128, 614–624.

Yadav, P., Kumar, R., Panda, S. K., & Chang, C. S. (2011). An improved harmony search
algorithm for optimal scheduling of the diesel generators in oil rig platforms. Energy
Conversion and Management, 52, 893–902.

Yadav, P., Kumar, R., Panda, S. K., & Chang, C. S. (2012). An intelligent tuned harmony search
algorithm for optimisation. Information Sciences, 196, 47–72.

Yas�ar, C., & Özyön, S. (2011). A new hybrid approach for nonconvex economic dispatch
problem with valve-point effect. Energy, 36, 5838–5845.

Yi, L., & Goldsmith, J. (2010). Decision-theoretic harmony: A first step. International Journal of
Approximate Reasoning, 51, 263–274.

Yildiz, A. R. (2008). Hybrid Taguchi-harmony search algorithm for solving engineering
optimization problems. International Journal of Industrial Engineering, 15, 286–293.

Zarei, O., Fesanghary, M., Farshi, B., Saffar, R. J., & Razfar, M. R. (2009). Optimization of
multi-pass face-milling via harmony search algorithm. Journal of Materials Processing
Technology, 209, 2386–2392.

Zhang, Z.-N., Liu, Z.-L., Chen, Y., & Xie, Y.-B. (2013). Knowledge flow in engineering design:
an ontological framework. Proceedings of the Institution of Mechanical Engineers, Part C:
Journal of Mechanical Engineering Science, 227, 760–770.

Zhao, S.-Z. & Suganthan, P. N. (2010, July 18–23). Dynamic multi-swarm particle swarm
optimizer with sub-regional harmony search. In IEEE World Congress on Computational
Intelligence (WCCI), CCIB, Barcelona, Spain (pp. 1983–1990). IEEE.

Zhao, S.-Z., Suganthan, P. N., Pan, Q.-K., & Tasgetiren, M. F. (2011). Dynamic multi-swarm
particle swarm optimizer with harmony search. Expert Systems with Applications, 38,
3735–3742.

Zinati, R. F., & Razfar, M. R. (2012). Constrained optimum surface roughness prediction in
turning of X20Cr13 by coupling novel modified harmony search-based neural network and
modified harmony search algorithm. International Journal of Advanced Manufacturing
Technology, 58, 93–107.

Zou, D., Gao, L., Li, S., Wu, J., & Wang, X. (2010a). A novel global harmony search algorithm
for task assignment problem. The Journal of Systems and Software, 83, 1678–1688.

200 14 Music Inspired Algorithms

Zou, D., Gao, L., Wu, J., & Li, S. (2010b). Novel global harmony search algorithm for
unconstrained problems. Neurocomputing, 73, 3308–3318.

Zou, D., Gao, L., Wu, J., Li, S., & Li, Y. (2010c). A novel global harmony search algorithm for
reliability problems. Computers and Industrial Engineering, 58, 307–316.

Zou, D., Gao, L., Li, S., & Wu, J. (2011a). An effective global harmony search algorithm for
reliability problems. Expert Systems with Applications, 38, 4642–4648.

Zou, D., Gao, L., Li, S., & Wu, J. (2011b). Solving 0–1 knapsack problem by a novel global
harmony search algorithm. Applied Soft Computing, 11, 1556–1564.

References 201

Chapter 15
Imperialist Competitive Algorithm

Abstract In this chapter, we present a new optimization algorithm called impe-
rialist competitive algorithm (ICA) which is inspired by the human socio-political
evolution process. We first describe the general knowledge of the imperialism in
Sect. 15.1. Then, the fundamentals and performance of ICA are introduced in Sect.
15.2. Finally, Sect. 15.3 summarises this chapter.

15.1 Introduction

In politics and history, in order to explain the extending control over weaker
people or areas, the term ‘‘empire’’ is appeared. One of the famous examples is the
Roman Empire from 27 BC to 476. The most powerful person is usually called
imperialist and different imperialists will extent their authority and control of one
state or people over another through the form of competition. Inspired by this
human socio-political evolution process, a newly developed evolutionary algo-
rithm called Imperialist competitive algorithm (ICA) is proposed by Atashpaz-
Gargari and Lucas (2007).

15.1.1 Imperialism

Imperialism was greatly influenced by an economic theory known as mercantilism
which inspired the government to extend their power and the rule beyond its own
boundaries (Atashpaz-Gargari and Lucas 2007). In its initial forms, due to the
limited supply of wealth, counties focused on building their empire with natural
resources, such as gold and silver. However, nowadays the new imperialism
focused on the new technological advances and developments. The ultimate goal is
to increase the number of their colonies and spreading their empires over the
world.

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_15, � Springer International Publishing Switzerland 2014

203

15.2 Imperialist Competitive Algorithm

15.2.1 Fundamentals of Imperialist Competitive Algorithm

Imperialist competitive algorithm (ICA) was originally proposed by Atashpaz-
Gargari and Lucas (2007). In ICA, the countries can be viewed as population
individuals and basically divided into two groups based on their power, i.e., col-
onies and imperialists. Also, one empire is formed by one imperialist with its
colonies. Furthermore, two operators called assimilation and revolution and one
strategy called imperialistic competition are the main building blocks that
employed in ICA. The implementation procedures are described as below
(Atashpaz-Gargari and Lucas 2007):

• Initializing phase:

1. Preparation of initial populations. Each solution (i.e., country) that in form of
an array can be defined via Eq. 15.1 (Atashpaz-Gargari and Lucas 2007):

country ¼ p1; p2; . . .; pNvar
½ �; ð15:1Þ

where pis represent different variables which based on various socio-political
characteristics (such as culture, language, and economical policy), and Nvar

denotes the total number of the characteristics (i.e., n–dimension of the prob-
lems) to be optimized.

2. Creating the cost function. In order to evaluate the cost of countries, the cost
function can be defined via Eq. 15.2 (Atashpaz-Gargari and Lucas 2007):

cos t ¼ f countryð Þ ¼ f p1; p2; . . .; pNvar
ð Þ: ð15:2Þ

3. Initializing the empires: In general, the initial size of populations (Npop)
involves two types of countries [i.e., colony (Ncol) and imperialist (Nimp)] which
together form the empires. To form the initial empires proportionally, the
normalized cost of an imperialist is defined via Eq. 15.3 (Atashpaz-Gargari and
Lucas 2007):

NCn ¼ cn �maxi cif g; ð15:3Þ

where cn is the cost of nth imperialist, NCn denotes its normalized cost.

Normally, two methods can be used to divide colonies among imperialist: (1)
from the imperialists’ point of view which based on the power of each imperialist;
(2) from the colonies’ point of view which based on the relationship with the
imperialist (i.e., the colonies should be possessed by the imperialist according to
the power). Both methods are given via Eqs. 15.4 and 15.5, respectively (Atash-
paz-Gargari and Lucas 2007):

204 15 Imperialist Competitive Algorithm

Powern ¼
NCn

PNimp

i¼1 NCi

�
�
�
�
�

�
�
�
�
�
; ð15:4Þ

NOCn ¼ round Powern;Ncolf g; ð15:5Þ

where Powern is the normalized power of each imperialist, Ncol and Nimp represent
the number of all colonies and imperialists, respectively, and NOCn is the initial
number of colonies of nth empire.

• Moving phase:

1. Assimilation strategy: According to this strategy, all colonies will move toward
their relevant imperialist with x units via Eq. 15.6 (Atashpaz-Gargari and Lucas
2007):

x�U 0; b� dð Þ; ð15:6Þ

where x is a random variable with uniform distribution, b is a number greater
than 1, and d is the distance between a colony and an imperialist.

2. Revolution strategy: According to this strategy, a random amount of deviation
to the direction of movement is incorporated via Eq. 15.7 (Atashpaz-Gargari
and Lucas 2007):

h�U �c; cð Þ; ð15:7Þ

where h is a random variable with uniform distribution, and c is a parameter
that adjusts the deviation from the original direction.

• Exchanging phase: Based on the cost function, when the new position of a
colony is better than that of the corresponding imperialist, the imperialist and
the colony change their positions and the new location with lower cost becomes
the imperialist.

• Imperialistic competition phase:

1. Calculating the total power of an empire: It is influenced by the power of
imperialist country and the colonies of an empire via Eq. 15.8 (Atashpaz-
Gargari and Lucas 2007):

TCn ¼ Cost imperialistnð Þ þ n mean Cost colonies of empirenð Þf g; ð15:8Þ

where TCn is the total cost of the nth empire, and n is a positive number which
is considered to be less than 1.

2. Imperialistic competition strategy: According to this strategy, all empires try to
take the possession of the colonies of other empires and control them. To

15.2 Imperialist Competitive Algorithm 205

modelled this strategy, the weakest colonies of the weakest empires will be
chose to competition among all other empires in order to possess this colony.
Based on TCn, the normalized total cost is simply obtained via Eq. 15.9
(Atashpaz-Gargari and Lucas 2007):

NTCn ¼ TCn �maxi TCif g; ð15:9Þ

where NTCn represents the total normalized cost of nth empire. Having NTCn,
the possession probability of each empire is evaluated via Eq. 15.10 (Atashpaz-
Gargari and Lucas 2007):

Ppn ¼
NTCn

PNimp

i¼1 NTCi

�
�
�
�
�

�
�
�
�
�
: ð15:10Þ

• Eliminating phase: When an empire loses all its colonies (i.e., their colonies will
be divided among other empires), it is assumed to be collapsed and will be
eliminated.

• Convergence phase: At the end, all the colonies will be under the control of the
most powerful empire, which means all the colonies have the same positions and
same costs and will be controlled by an imperialist with the same position and
cost as themselves. In other words, there are no difference not only among
colonies but also between colonies and imperialist.

Taking into account the key phases described above, the steps of implementing
ICA can be summarized as follows (Atashpaz-Gargari and Lucas 2007):

• Step 1: Defining the optimization problem.
• Step 2: Generating initial empires by pick some random points on the function.
• Step 3: Move the colonies towards imperialist states in different directions (i.e.,

assimilation).
• Step 4: Random changes occur in the characteristics of some countries (i.e.,

revolution).
• Step 5: Position exchange between a colony and imperialist.
• Step 6: Compute the total cost of all empires.
• Step 7: Use imperialistic competition and pick the weakest colony from the

weakest empire.
• Step 8: Eliminate the powerless empires.
• Step 9: Check if maximum iteration is reached, go to Step 3 for new beginning.

If a specified termination criteria is satisfied stop and return the best solution.

206 15 Imperialist Competitive Algorithm

15.2.2 Performance of ICA

In order to show how the ICA performs, four minimization problems are tested in
Atashpaz-Gargari and Lucas (2007). Compared with genetic algorithm (GA) and
particle swarm optimization (PSO), the results showed that ICA is capable of
reaching the global minimum.

15.3 Conclusions

In this chapter, an optimization algorithm motivated by one of the socio-politically
models (i.e., imperialistic competition) is introduced. The term ‘‘countries’’ are
designed as the initial populations and categorized into colony and imperialist
states, respectively. Both colonies and imperialist together form the empires. The
basic idea behind ICA is to lead the search process toward the powerful imperialist
or the optimum points based on their ‘‘power’’, i.e., the weakest empires will lost
their colonies until there will be no colony in that. The objective of ICA is to find
an ideal world in which there is no difference not only among colonies but also
between colonies and imperialist. Although it is a newly introduced computational
intelligence method, we have witnessed the following rapid spreading of ICA:

First, several enhanced versions of ICA can be found in the literature as out-
lined below:

• Bacterial foraging optimization based ICA (Acharya et al. 2010).
• Chaotic improved ICA (Talatahari et al. 2012a, b).
• Constrained genetic algorithm based ICA (Acharya et al. 2010).
• Fast ICA (Acharya et al. 2010).
• Hybrid artificial neural network and ICA (Taghavifar et al. 2013).
• Hybrid evolutionary algorithm and ICA (Ramezani et al. 2012).
• Modified ICA (Niknam et al. 2011).
• Multiobjective ICA (Bijami et al. 2011; Mohammadi et al. 2011).
• Quad countries algorithm (Soltani-Sarvestani et al. 2012).

Second, the ICA has also been successfully applied to a variety of optimization
problems as listed below:

• Artificial neural network training (Moadi et al. 2011).
• Assembly line balancing (Bagher et al. 2011).
• Data mining (Ghanavati et al. 2011; Niknam et al. 2011).
• Facility location optimization (Mohammadi et al. 2011; Moadi et al. 2011).
• Power system optimization (Nejad and Jahani 2011; Bijami et al. 2011).
• Product mix-outsourcing problem (Nazari-Shirkouhi et al. 2010).
• Scheduling optimization (Forouharfard and Zandieh 2010; Ayough et al. 2012;

Lian et al. 2012; Kayvanfar and Zandieh 2012).

15.2 Imperialist Competitive Algorithm 207

• Soil compaction prediction (Taghavifar et al. 2013).
• Structure design optimization (Talatahari et al. 2012b).

Interested readers please refer to them as a starting point for a further explo-
ration and exploitation of ICA.

References

Acharya, D. P., Panda, G., & Lakshmi, Y. V. S. (2010). Effects of finite register length on fast
ICA, bacterial foraging optimization based ICA and constrained genetic algorithm based ICA
algorithm. Digital Signal Processing, 20, 964–975.

Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: An algorithm for
optimization inspired by imperialistic competition. In IEEE Congress on Evolutionary
Computation (CEC 2007) (pp. 4661–4667). IEEE.

Ayough, A., Zandieh, M., & Farsijani, H. (2012). GA and ICA approaches to job rotation
scheduling problem: Considering employee’s boredom. International Journal of Advanced
Manufacturing Technology, 60, 651–666.

Bagher, M., Zandieh, M., & Farsijani, H. (2011). Balancing of stochastic U-type assembly lines:
An imperialist competitive algorithm. International Journal of Advanced Manufacturing
Technology, 54, 271–285.

Bijami, E., Abshari, R., Askari, J., Hosseinnia, S., & Farsangi, M. M. (2011). Optimal design of
damping controllers for multi-machine power systems using metaheuristic techniques.
International Review of Electrical Engineering, 6, 1883–1894.

Forouharfard, S., & Zandieh, M. (2010). An imperialist competitive algorithm to schedule of
receiving and shipping trucks in cross-docking systems. International Journal of Advanced
Manufacturing Technology, 51, 1179–1193.

Ghanavati, M., Gholamian, M. R., Minaei, B., & Davoudi, M. (2011). An efficient cost function
for imperialist competitive algorithm to find best clusters. Journal of Theoretical and Applied
Information Technology, 29, 22–31.

Kayvanfar, V., & Zandieh, M. (2012). The economic lot scheduling problem with deteriorating
items and shortage: An imperialist competitive algorithm. International Journal of Advanced
Manufacturing Technology. doi:10.1007/s00170-011-3820-6.

Lian, K., Zhang, C., Shao, X., & Gao, L. (2012). Optimization of process planning with various
flexibilities using an imperialist competitive algorithm. International Journal of Advanced
Manufacturing Technology, 59, 815–828.

Moadi, S., Mohaymany, A. S., & Babaei, M. (2011). Application of imperialist competitive
algorithm to the emergency medical services location problem. International Journal of
Artificial Intelligence and Applications (IJAIA), 2, 137–147.

Mohammadi, M., Tavakkoli-Moghaddam, R., & Rostami, H. (2011). A multi-objective
imperialist competitive algorithm for a capacitated hub covering location problem.
International Journal of Industrial Engineering Computations, 2, 671–688.

Nazari-Shirkouhi, S., Eivazy, H., Ghodsi, R., Rezaie, K., & Atashpaz-Gargari, E. (2010). Solving
the integrated product mix-outsourcing problem using the imperialist competitive algorithm.
Expert Systems with Applications, 37, 7615–7626.

Nejad, H. C., & Jahani, R. (2011). A new approach to economic load dispatch of power system
using imperialist competitive algorithm. Australian Journal of Basic and Applied Sciences, 5,
835–843.

Niknam, T., Fard, E. T., Ehrampoosh, S., & Rousta, A. (2011). A new hybrid imperialist
competitive algorithm on data clustering. Sādhanā, 36, 293–315.

208 15 Imperialist Competitive Algorithm

http://dx.doi.org/10.1007/s00170-011-3820-6

Ramezani, F., Lotfi, S., & Soltani-Sarvestani, M. A. (2012). A hybrid evolutionary imperialist
competitive algorithm (HEICA). In J.-S. Pan, S.-M. Chen & N. T. Nguyen (Eds.) ACIIDS
2012, Part I, LNAI 7196 (pp. 359–368). Berlin: Springer.

Soltani-Sarvestani, M. A., Lotfi, S., & Ramezani, F. (2012). Quad countries algorithm (QCA). In
J.-S. Pan, S.-M. Chen & N. T. Nguyen (Eds.) ACIIDS 2012, Part III, LNAI 7198 (pp.
119–129). Berlin: Springer.

Taghavifar, H., Mardani, A., & Taghavifar, L. (2013). A hybridized artificial neural network and
imperialist competitive algorithm optimization approach for prediction of soil compaction in
soil bin facility. Measurement, 46, 2288–2299.

Talatahari, S., Azar, B. F., Sheikholeslami, R., & Gandomi, A. H. (2012a). Imperialist
competitive algorithm combined with chaos for global optimization. Communications in
Nonlinear Science and Numerical Simulation, 17, 1312–1319.

Talatahari, S., Kaveh, A., & Sheikholeslami, R. (2012b). Chaotic imperialist competitive
algorithm for optimum design of truss structures. Structural and Multidisciplinary Optimi-
zation. doi:10.1007/s00158-011-0754-4.

References 209

http://dx.doi.org/10.1007/s00158-011-0754-4

Chapter 16
Teaching–Learning-based Optimization
Algorithm

Abstract In this chapter, we present an interesting algorithm called teaching–
learning-based optimization (TLBO) which is inspired by the teaching and
learning behaviour. We first describe the general knowledge of the teacher-student
relationships in Sect. 16.1. Then, the fundamentals and performance of TLBO
algorithm are introduced in Sect. 16.2. Finally, Sect. 16.3 summarises this chapter.

16.1 Introduction

Education is one of the most important things throughout our lifecycle. It would be
difficult to find a school or a university in which the ability of teachers is not of
significant relevance. The functions of the teachers may vary among cultures, such as
they may provide instruction in literacy and numeracy, craftsmanship or vocational
training, the arts, religion, civics, community roles, even the life skills. In addition,
some experimental studies showed that student motivation and learning ability are
closely linked to student–teacher relationships (Kaur et al. 2013). Inspired by this
phenomenon, recently, Rao et al. (2011) proposed a new computational intelligence
(CI) algorithm called teaching–learning-based optimization (TLBO) algorithm.

16.2 Teaching–Learning-based Optimization

16.2.1 Fundamentals of Teaching-Learning-based
Optimization Algorithm

Teaching–learning-based optimization (TLBO) was originally proposed by Rao
et al. (2011). The basic idea of TLBO is that the teacher is considered as the most
knowledgeable person in a class who shares his/her knowledge with the students to

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_16, � Springer International Publishing Switzerland 2014

211

improve the output (i.e., grades or marks) of the class. The quality of the learners is
evaluated by the mean value of the student’s grade in class. Furthermore, learners
also learn from interaction between themselves, which also helps in their results.

To perceive the function basis of the TLBO algorithm, suppose there are two
different teachers, T1 and T2. They both teach a subject with the same content to
the same merit level learners in two different classes. The distribution of marks
obtained by the learners of two different evaluated by the teachers is defined as the
means of class-1 (M1) and class-2 (M2) achieved scores, respectively. Assume that
curve-2 represents better mean for the results of the learners than curve-1 and so it
can be said that teacher T2 is better than teacher T1 in terms of teaching. In
addition, a normal distribution is assumed for the obtained grades after taking an
exam by the teachers, though in practice it may have skewness. Typically, a
normal distribution can be defined via Eq. 16.1 (Ross 1998):

f ðxÞ ¼ 1

r
ffiffiffiffiffiffi
2p
p e�ðx�lÞ2=ð2r2Þ; ð16:1Þ

where r2 is the variance, l is the mean, and x is any value for which the normal
distribution function is required.

Meanwhile, in terms of learner phase, for the marks obtained for learners in a
class, we assumed the means of marks is MA, and the best learner is mimicked as a
teacher defined as TA. His or her mission is trying to move mean MA towards their
own level according to his or her capability, thereby increasing the learners’ level to
new mean MB. Like above mentioned, the quality of the students is judged from the
mean value of the population. However, during the ‘‘leaner phase’’ the learners learn
by interaction between each other. When teacher TA convey knowledge among the
learners and those level increases toward his or her own level, at which stage the
students require a new teacher, of superior quality than themselves, i.e. in this case
the new teacher is TB. Hence, there will be a new curve-B with new teacher TB.

Based on above procedures, the main processes of TLBO can be divided into two
phases, i.e. the ‘‘teacher phase’’, where candidate solutions are randomly distributed
over the search space and the best solution is determined among those then it shares
the information with others; and the ‘‘learner phase’’, where the solutions put effort
into passing the own information through the interaction to each other. Working
principles of both phases are explained below (Rao et al. 2011):

• Teacher phase:

In the model, this phase produces a random ordered state of points called
learners within the search space. Then a point is considered as the teacher, who is
highly learned person and shares his or her knowledge with the learners, and others
learn significant group information from the teacher. It is the first part of the
algorithm where the mean of a class increases from MA to MB depending upon a
good teacher. At this point, Rao et al. (2011) assumed a good teacher is one who
brings his/her learners up to his/her level in terms of knowledge. However, in
practice this is not possible and a teacher can only move the mean of a class up to

212 16 Teaching–Learning-based Optimization Algorithm

some extent depending on the capability of the class. This follows a random
process depending on many factors (Rao et al. 2011).

Let Mi be the mean and Ti be the teacher at any iteration i. Ti will try to move
mean Mi towards its own level, so now the new mean will be Ti designated as
Mnew. The solution is updated according to the difference between the existing and
the new mean given via Eq. 16.2 (Rao et al. 2011):

Difference Meani ¼ ri Mnew � TFMið Þ; ð16:2Þ

where TF is a teaching factor that decides the value of mean to be changed, and ri

is a random number in the range [0,1]. The value of TF can be either 1 or 2, which
is again a heuristic step and decided randomly with equal probability via Eq. 16.3
(Rao et al. 2011):

TF ¼ round 1þ rand 0; 1ð Þ 2� 1f g½ �: ð16:3Þ

This difference modifies the existing solution via Eq. 16.4 (Rao et al. 2011):

Xnew; i ¼ Xold; i þ Difference Meani: ð16:4Þ

• Learner phase:

It is the second part of the algorithm where learners increase their knowledge by
interaction among themselves. So, a solution is randomly interacted to learn
something new with other solutions in the population. In the light of this statement,
a solution will learn new information if the other solutions have more knowledge
than him or her. Mathematically the learning phenomenon of this phase is
expressed by Eq. 16.5 (Rao et al. 2011):

Xnew; i ¼ Xold; i þ ri Xi � Xj

� �
; if f Xið Þ\ f Xj

� �

Xnew; i ¼ Xold; i þ ri Xj � Xi

� �
; if f Xj

� �
\ f Xj

� �
:

ð16:5Þ

At any iteration i, considering two different learners Xi and Xj, where i = j.
Consequently, accept Xnew, if it gives better function value. After a number of

sequential teaching–learning cycles, where the teacher convey knowledge among
the learners and those level increases toward his or her own level, the distribution
of the randomness within the search space becomes smaller and smaller about to
point considering as teacher. It means knowledge level of the whole class shows
smoothness and the algorithm converges to a solution. Also, a termination criterion
can be a predetermined maximum iteration number is reached.

Taking into account two key phases described above, the steps of implementing
the TLBO algorithm can be summarized as follows (Rao et al. 2011; Zou et al.
2013):

• Step 1: Defining the optimization problem, and initializing the optimization
parameters.

16.2 Teaching–Learning-based Optimization 213

• Step 2: Initializing the population.
• Step 3: Starting teacher phase where the main activity is learners learning from

their teacher.
• Step 4: Starting learner phase where the main activity is learners further tune

their knowledge through the interaction with their peers.
• Step 5: Evaluating stopping criteria. Terminate the algorithm in the maximum

generation number is reached; otherwise return to Step 3 and the algorithm
continues.

16.2.2 Performance of TLBO

In order to show how the TLBO algorithm performs, five different constrained
benchmark functions, four different benchmark mechanical design problems, and
six real world mechanical design applications are tested in Rao et al. (2011).
Computational results showed that TLBO is more effective and efficient compared
with other CI algorithms.

16.3 Conclusions

In this chapter, we introduced a new efficient population based optimization
method, i.e., TLBO, that is inspired by the effect of influence of a teacher on the
output of learners in a class, which learners first acquire knowledge from a teacher
(i.e., teacher phase) and then from classmates (i.e., learner phase).

In principle, population consists of learners in a class and design variables are
courses offered. The output in TLBO algorithm is measured according to the
results or grades of the learners which normally determined by the level of teacher.
That means, a high quality teacher is usually considered as a highly learned person
who trains learners so that they can have better results in terms of their marks or
grades. Moreover, learners also learn from the interaction among themselves
which also helps in improving their results. In many aspects, TLBO resembles
evolutionary algorithms (Michalewicz 1996). For example, Črepinšek et al. (2012)
pointed out three similarities:

• An initial population is randomly generated.
• Moving/learning towards teacher and classmates can be regarded as a special

mutation operator.
• Selection is deterministic (i.e., two solutions are compared and the better one

always survives), which is also used often in many other evolutionary algo-
rithms such as evolutionary strategies.

Although the effectiveness of TLBO is still under debate [see (Črepinšek et al.
2012; Waghmare 2013) for details], we have witnessed the following rapid
spreading of TLBO:

214 16 Teaching–Learning-based Optimization Algorithm

First, several enhanced version of TLBO can also be found in the literature as
outlined below:

• Elitist TLBO (Rao and Patel 2012);
• Improved TLBO (Niknam et al. 2012a; Rao and Patel 2013a).
• Modified TLBO (Rao and Patel 2013b, c).
• Multiobjective TLBO (Nayak et al. 2012; Niknam et al. 2012c; Zou et al. 2013).

Second, the TLBO algorithm has also been successfully applied to a variety of
optimization problems as listed below:

• Clustering method optimization (Naik et al. 2012).
• Continuous non-linear large scale optimization (Rao et al. 2012).
• Dynamic economic emission dispatch (Niknam et al. 2012c).
• Heat exchanger optimization (Rao and Patel 2013b).
• Machining process parameters’ optimization (Pawar and Rao 2012; Rao and

Kalyankar 2013a).
• Mechanical design optimization (Rao and Savsani 2012).
• Micro-grid operation (Niknam et al. 2012a).
• Multi-pass turning process parameter optimization (Rao and Kalyankar 2013b).
• Optimal location of automatic voltage regulators (Niknam et al. 2012b).
• Power flow optimization (Nayak et al. 2012).
• Truss structure optimization (Degertekin and Hayalioglu 2013).
• Two-stage thermoelectric cooler optimization (Rao and Patel 2013c).
• Unconstrained and constrained optimization (Rao et al. 2012).
• Used products pre-sorting system optimization (Xing and Gao 2014).

Interested readers please refer to them as a starting point for a further explo-
ration and exploitation of the TLBO algorithm.

References

Črepinšek, M., Liu, S.-H., & Mernik, L. (2012). A note on teaching–learning-based optimization
algorithm. Information Sciences, 212, 79–93.

Degertekin, S. O., & Hayalioglu, M. S. (2013). Sizing truss structures using teaching-learning-based
optimization. Computers and Structures, 119, 177–188. http://dx.doi.org/10.1016/j.compstruc.
2012.12.011.

Kaur, B., Anthony, G., Ohtani, M., & Clarke, D. (Eds.). (2013). Student voice in mathematics
classrooms around the world. P.O. Box 21858, 3001 AW Rotterdam, The Netherlands: Sense
Publishers. ISBN 978-94-6209-348-5.

Michalewicz, Z. (1996). Genetic algorithms ? data structures = evolution programs (3rd ed.).
Berlin, Heidelberg: Springer.

Naik, A., Satapathy, S. C., & Parvathi, K. (2012). Improvement of initial cluster center of C-
means using teaching learning based optimization. Procedia Technology, 6, 428–435.

Nayak, M. R., Nayak, C. K., & Rout, P. K. (2012). Application of multi-objective teaching
learning based optimization algorithm to optimal power flow problem. Procedia Technology,
6, 255–264.

16.3 Conclusions 215

http://dx.doi.org/10.1016/j.compstruc.2012.12.011
http://dx.doi.org/10.1016/j.compstruc.2012.12.011

Niknam, T., Azizipanah-Abarghooee, R., & Narimani, M. R. (2012a). An efficient scenario-based
stochastic programming framework for multi-objective optimal micro-grid operation. Applied
Energy, 99, 455–470.

Niknam, T., Azizipanah-Abarghooee, R., & Narimani, M. R. (2012b). A new multi objective
optimization approach based on TLBO for location of automatic voltage regulators in
distribution systems. Engineering Applications of Artificial Intelligence, 25, 1577–1588.

Niknam, T., Golestaneh, F., & Sadeghi, M. S. (2012c). h-Multiobjective teaching–learning-based
optimization for dynamic economic emission dispatch. IEEE Systems Journal, 6(2), 341–352.

Pawar, P. J., & Rao, R. V. (2013). Parameter optimization of machining processes using
teaching–learning-based optimization algorithm. International Journal of Advanced Manu-
facturing Technology, 67, 995–1006. doi:10.1007/s00170-012-4524-2.

Rao, R. V., & Kalyankar, V. D. (2013a). Parameter optimization of modern machining processes
using teaching–learning-based optimization algorithm. Engineering Applications of Artificial
Intelligence, 26, 524–531.

Rao, R. V., & Kalyankar, V. D. (2013b). Multi-pass turning process parameter optimization using
teaching–learning-based optimization algorithm. Scientia Iranica, Transactions D: Computer
SCience & Engineering and Electrical Engineering, 20, 967–974. doi:10.1016/j.scient.
2013.01.002.

Rao, R. V., & Patel, V. (2012). An elitist teaching–learning-based optimization algorithm for
solving complex constrained optimization problems. International Journal of Industrial
Engineering Computations, 3, 535–560.

Rao, R. V., & Patel, V. (2013a). An improved teaching-learning-based optimization algorithm for
solving unconstrained optimization problems. Scientia Iranica D, 20, 710–720. doi:10.1016/
j.scient.2012.12.005.

Rao, R. V., & Patel, V. (2013b). Multi-objective optimization of heat exchangers using a
modified teaching–learning-based optimization algorithm. Applied Mathematical Modelling,
37, 1147–1162.

Rao, R. V., & Patel, V. (2013c). Multi-objective optimization of two stage thermoelectric cooler
using a modified teaching–learning-based optimization algorithm. Engineering Applications
of Artificial Intelligence, 26, 430–445.

Rao, R. V., & Savsani, V. J. (2012). Mechanical design optimization using advanced optimization
techniques. London: Springer. ISBN 978-1-4471-2747-5.

Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: A
novel method for constrained mechanical design optimization problems. Computer-Aided
Design, 43, 303–315.

Rao, R. V., Savsani, V. J., & Balic, J. (2012a). Teaching–learning-based optimization algorithm
for unconstrained and constrained real-parameter optimization problems. Engineering
Optimization, 44(12), 1447–1462.

Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2012b). Teaching–learning-based optimization: An
optimization method for continuous non-linear large scale problems. Information Sciences,
183, 1–15.

Ross, S. (1998). A first course in probability (5th ed.). Upper Saddle River, New Jersey: Prentice-
Hall Inc.

Waghmare, G. (2013). Comments on ‘‘A note on teaching–learning-based optimization
algorithm’’. Information Sciences, 229, 159–169.

Xing, B., & Gao, W.-J. (2014). Computational intelligence in remanufacturing. 701 E. Chocolate
Avenue, Suite 200, Hershey PA 17033: IGI Global. ISBN 978-1-4666-4908-8.

Zou, F., Wang, L., Hei, X., Chen, D., & Wang, B. (2013). Multi-objective optimization using
teaching-learning-based optimization algorithm. Engineering Applications of Artificial
Intelligence, 26, 1291–1300. http://dx.doi.org/10.1016/j.engappai.2012.11.006.

216 16 Teaching–Learning-based Optimization Algorithm

http://dx.doi.org/10.1007/s00170-012-4524-2
http://dx.doi.org/10.1016/j.scient.2013.01.002
http://dx.doi.org/10.1016/j.scient.2013.01.002
http://dx.doi.org/10.1016/j.scient.2012.12.005
http://dx.doi.org/10.1016/j.scient.2012.12.005
http://dx.doi.org/10.1016/j.engappai.2012.11.006

Chapter 17
Emerging Biology-based CI Algorithms

Abstract In this chapter, a group of (more specifically 56 in total) emerging
biology-based computational intelligence (CI) algorithms are introduced. We first,
in Sect. 17.1, describe the organizational structure of this chapter. Then, from
Sects. 17.2 to 17.57, each section is dedicated to a specific algorithm which falls
within this category, respectively. The fundamentals of each algorithm and their
corresponding performances compared with other CI algorithms can be found in
each associated section. Finally, the conclusions drawn in Sect. 17.58 closes this
chapter.

17.1 Introduction

Several novel biology-based algorithms were detailed in previous chapters. In
particular, Chap. 2 detailed the bacteria inspired algorithms, Chap. 3 was dedicated
to the bat inspired algorithms, Chap. 4 discussed the bee inspired algorithms,
Chap. 5 introduced the biogeography-based optimization algorithm, Chap. 6 was
devoted to the cat swarm optimization algorithm, Chap. 7 explained the cuckoo
inspired algorithms, Chap. 8 focused on the luminous insect inspired algorithms,
Chap. 9 concentrated on the fish inspired algorithms, Chap. 10 targeted on the frog
inspired algorithms, Chap. 11 studied the fruit fly optimization algorithm, Chap. 12
addressed the group search optimizer algorithm, Chap. 13 worked on the invasive
weed optimization algorithm, Chap. 14 covered the music inspired algorithms,
Chap. 15 talked about the imperialist competition algorithm, and Chap. 16
described the teaching-learning-based optimization algorithm. Apart from those
quasi-mature biology principles inspired CI methods, there are some emerging
algorithms also fall within this category. This chapter collects 56 of them that are
currently scattered in the literature and organizes them as follows:

• Section 17.2: Amoeboid Organism Algorithm.
• Section 17.3: Artificial Searching Swarm Algorithm.

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_17, � Springer International Publishing Switzerland 2014

217

http://dx.doi.org/10.1007/978-3-319-03404-1_2
http://dx.doi.org/10.1007/978-3-319-03404-1_3
http://dx.doi.org/10.1007/978-3-319-03404-1_4
http://dx.doi.org/10.1007/978-3-319-03404-1_5
http://dx.doi.org/10.1007/978-3-319-03404-1_6
http://dx.doi.org/10.1007/978-3-319-03404-1_7
http://dx.doi.org/10.1007/978-3-319-03404-1_8
http://dx.doi.org/10.1007/978-3-319-03404-1_9
http://dx.doi.org/10.1007/978-3-319-03404-1_10
http://dx.doi.org/10.1007/978-3-319-03404-1_11
http://dx.doi.org/10.1007/978-3-319-03404-1_12
http://dx.doi.org/10.1007/978-3-319-03404-1_13
http://dx.doi.org/10.1007/978-3-319-03404-1_14
http://dx.doi.org/10.1007/978-3-319-03404-1_15
http://dx.doi.org/10.1007/978-3-319-03404-1_16

• Section 17.4: Artificial Tribe Algorithm.
• Section 17.5: Backtracking Search Algorithm.
• Section 17.6: Bar Systems.
• Section 17.7: Bean Optimization Algorithm.
• Section 17.8: Bionic Optimization.
• Section 17.9: Blind, Naked Mole-Rats.
• Section 17.10: Brain Storm Optimization Algorithm.
• Section 17.11: Clonal Selection Algorithm.
• Section 17.12: Cockroach Swarm Optimization Algorithm.
• Section 17.13: Collective Animal Behaviour.
• Section 17.14: Cultural Algorithm.
• Section 17.15: Differential Search.
• Section 17.16: Dove Swarm Optimization.
• Section 17.17: Eagle Strategy.
• Section 17.18: Fireworks Optimization Algorithm.
• Section 17.19: FlockbyLeader.
• Section 17.20: Flocking-based Algorithm.
• Section 17.21: Flower Pollinating Algorithm.
• Section 17.22: Goose Optimization Algorithm.
• Section 17.23: Great Deluge Algorithm.
• Section 17.24: Grenade Explosion Method.
• Section 17.25: Group Leaders Optimization Algorithm.
• Section 17.26: Harmony Elements Algorithm.
• Section 17.27: Human Group Formation.
• Section 17.28: Hunting Search.
• Section 17.29: Krill Herd.
• Section 17.30: League Championship Algorithm.
• Section 17.31: Membrane Algorithm.
• Section 17.32: Migrating Birds Optimization.
• Section 17.33: Mine Blast Algorithm.
• Section 17.34: Monkey Search Algorithm.
• Section 17.35: Mosquito Host-Seeking Algorithm.
• Section 17.36: Oriented Search Algorithm.
• Section 17.37: Paddy Field Algorithm.
• Section 17.38: Photosynthetic Algorithm.
• Section 17.39: Population Migration Algorithm.
• Section 17.40: Roach Infestation Optimization.
• Section 17.41: Saplings Growing Up Algorithm.
• Section 17.42: Seeker Optimization Algorithm.
• Section 17.43: Self-Organizing Migrating Algorithm.
• Section 17.44: Sheep Flock Heredity Model.
• Section 17.45: Simple Optimization.
• Section 17.46: Slime Mould Algorithm.
• Section 17.47: Social Emotional Optimization Algorithm.
• Section 17.48: Social Spider Optimization Algorithm.

218 17 Emerging Biology-based CI Algorithms

• Section 17.49: Society and Civilization Algorithm.
• Section 17.50: Stem Cells Optimization Algorithm.
• Section 17.51: Stochastic Focusing Search Algorithm.
• Section 17.52: Swallow Swarm Optimization.
• Section 17.53: Termite-hill Algorithm.
• Section 17.54: Unconscious Search.
• Section 17.55: Wisdom of Artificial Crowds.
• Section 17.56: Wolf Colony Algorithm.
• Section 17.57: Wolf Pack Search.

The effectiveness of theses newly developed algorithms are validated through
the testing on a wide range of benchmark functions and engineering design
problems, and also a detailed comparison with various traditional performance
leading CI algorithms such as particle swarm optimization (PSO), genetic algo-
rithm (GA), differential evolution (DE), evolutionary algorithm (EA), fuzzy sys-
tem (FS), ant colony optimization (ACO), and simulated annealing (SA).

17.2 Amoeboid Organism Algorithm

In this section, we will introduce an emerging CI algorithm that is derived from the
amoeboid related studies (Reece et al. 2011).

17.2.1 Fundamentals of Amoeboid Organism Algorithm

Amoeboid organism algorithm (AOA) was recently proposed in Zhang et al.
(2007, 2013a) and Nakagaki et al. (2000). To implement AOA for find the shortest
path problem, the following steps need to be performed (Zhang et al. 2007, 2013a;
Nakagaki et al. 2000):

• Step 1: Removing the edges with conductivity equals to zero.
• Step 2: Calculating the pressure of each node based on each node’s current

conductivity and length which can be obtained through Eq. 17.1 (Zhang et al.
2007, 2013a; Nakagaki et al. 2000):

X

i

Dij

Lij
pi � pj

� �
¼

�1 j ¼ 1
1 j ¼ 2
0 otherwise

8
<

:
: ð17:1Þ

• Step 3: Using the pressure of each node acquired via Step 2 to compute each node’s
conductivity based on Eq. 17.2 (Zhang et al. 2007, 2013a; Nakagaki et al. 2000:

17.1 Introduction 219

Qij ¼
Dij

Lij
pi � pj

� �
; ð17:2Þ

where pi represents the pressure at the node Ni, Dij denotes the conductivity of
the edge Mij, and Qij is used to express the flux through tube Mij from Ni to Nj.

• Step 4: Evaluating the value of each edge’s conductivity. If it equals to 1,
moving to Step 5; otherwise, jumping to Step 7.

• Step 5: Calculating the next time flux and conductivity based on the current flux
and conductivity value via Eq. 17.3 (Zhang et al. 2007, 2013a; Nakagaki et al.
2000):

P

i
Qi1 þ I0 ¼ 0

P

i
Qi1 � I0 ¼ 0

d
dt Dij ¼ f Qij

�
�
�
�

� �
� rDij

: ð17:3Þ

• Step 6: Returning to Step 1.
• Step 7: Outputting the solution and terminating the algorithm.

17.2.2 Performance of AOA

Six benchmark test problems with various dimensions were employed in Zhang
et al. (2013a) to test the performance of the proposed AOA. From the simulation
results it can be observed that AOA was able to find the optimal solutions for all
cases, in particular, AOA offers better results that are reported so far in the
literature.

17.3 Artificial Searching Swarm Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
simulation of the natural biology system.

17.3.1 Fundamentals of Artificial Searching Swarm
Algorithm

Artificial searching swarm algorithm (ASSA) was recently proposed in Chen
(2009), Chen et al. (2009a, b, c, 2010a). The procedures of implementing ASSA
are outlined as below (Chen 2009):

220 17 Emerging Biology-based CI Algorithms

• Step 1: Setting up the parameters, generating the initial population, and eval-
uating the fitness value.

• Step 2: Dealing with the individual swarm member in turn as follows: Moving
toward the calling peer by one step if a signal is received from such peer;
otherwise implementing the reconnaissance mechanism. Sending a signal to
other peers if a better is found; otherwise moving one step randomly.

• Step 3: Calculating the fitness value and comparing it with the best value found
so far.

• Step 4: Checking whether the terminating criterion is met. If yes, stopping the
algorithm; otherwise, going back to Step 2.

17.3.2 Performance of ASSA

Chen (2009) tested the ASSA on a typical optimal design optimization problem for
the purpose of verifying its effectiveness. The preliminary experimental results
showed that ASSA outperforms GA and offers better solution quality. Chen (2009)
claimed at the end of the study that the small swarm size will help ASSA to
achieve a good searching capability.

17.4 Artificial Tribe Algorithm

In this section, we will introduce an emerging CI algorithm that is inspired by the
natural tribe’s survival mechanism (Magstadt 2013).

17.4.1 Fundamentals of Artificial Tribe Algorithm

Artificial tribe algorithm (ATA) was recently proposed in Chen et al. (2012). The
basic inspiration of ATA is renewing the tribe through the strategies of propa-
gation and migration, and relocating the tribe by moving to a better living envi-
ronment if the current one is getting worse. The two unique characteristics of ATA
make it different to other popular swarm intelligence techniques: First, if the
present living condition is good, the tribe will tend to propagate, through propa-
gation strategy, the nest generation which is similar to the feature found in genetic
algorithm; Second, on the contrary, if the current living situation is bad, the tribe
will intend to relocate, by using migration strategy, to another place. Once they are
settled, the tribe will continue to propagate. This feature of ATA and the position
changing policy used in PSO are alike. Built upon the aforementioned concepts,
the running flow of ATA can be described as follows (Onwubolu 2006; Chen et al.
2006, 2012; Coelho and Bernert 2009):

17.3 Artificial Searching Swarm Algorithm 221

• Step 1: Setting parameters, initializing the tribe, and computing the fitness value.
• Step 2: Adding one to iteration counter, evaluating the current living condition

of the tribe, and making decisions according to a simple rule (i.e., if living
condition is good, then propagation; otherwise, migration).

• Step 3: Calculating the fitness value.
• Step 4: Determining whether the terminating criteria is met (if so, then stopping

the iteration; otherwise, returning to Step 2).

17.4.2 Performance of ATA

Seven benchmark test functions were employed in Chen et al. (2012) to test the
performance of the proposed ATA. From the simulation results it can be observed
that the tribe size is an important factor for a successful implementation of ATA.
In general, the larger size we set for a tribe, the better performance we can obtain
but with the cost of a reduced ATA’s efficiency. On the other hand, the ATA is
able to run fast with a small tribe size but which unfortunately results in low
population diversity.

17.5 Backtracking Search Algorithm

In this section, we will introduce an emerging CI algorithm that simulates the
movement exhibited by an migrating organism, namely, Brownian-like random-
walk (Bolstad 2012; Durrett 1984; Shlesinger et al. 1999).

17.5.1 Fundamentals of Backtracking Search Algorithm

Backtracking search algorithm (BSA) was originally proposed in Civicioglu
(2013). The motivation of developing BSA is to design simpler and more effective
search algorithms. Therefore, unlike many other optimization algorithms, BSA has
only one controlling variable and its initial value also does affect the BSA’s overall
problem-solving ability. To implement BSA, the following five processes need to
be performed (Civicioglu 2013):

• Process 1: Initialization. In BSA, the initial population P can be defined through
Eq. 17.4 (Civicioglu 2013):

Pi;j�U lowj; upj

� �
; i ¼ 1; 2; . . .;N and j ¼ 1; 2; . . .;D; ð17:4Þ

222 17 Emerging Biology-based CI Algorithms

where the population size and problem dimension are denoted by N and D,
respectively, U represents a uniform distribution, and Pi stands for a target
individual in the population P.

• Process 2: Selection-I. In BSA, the historical population oldP is determined at
this stage for computing the search direction. The initial historical population is
computed through Eq. 17.5 (Civicioglu 2013):

oldPi;j�U lowj; upj

� �
; i ¼ 1; 2; . . .;N and j ¼ 1; 2; . . .;D: ð17:5Þ

At the start of each iteration, an oldP redefining mechanism is introduced in
BSA through the if-then rule defined by Eq. 17.6 (Civicioglu 2013):

if a\b then oldp :¼ Pja; b�U 0; 1ð Þ; ð17:6Þ

where :¼ denotes the updating operation.
• Process 3: Mutation. At this stage, the initial form of the trial population Mutant

is created by Eq. 17.7 (Civicioglu 2013):

Mutant ¼ Pþ F � oldP� Pð Þ: ð17:7Þ

• Process 4: Crossover. The final form of the trial population T is generated at this
stage.

• Process 5: Selection-II. At this step, a set of TiS which have better fitness values
than the corresponding PiS are utilized to renew the PiS according to a greedy
selection mechanism.

17.5.2 Performance of BSA

To verify the proposed BSA, Civicioglu (2013) employed 3 test function sets in
which the Set-1 involves 50 widely recognized benchmark functions, the Set-2
contains 25 benchmark problems that used in CEC 2005, and the Set-3 consists of
three real-world cases used in CEC 2011. Through a detailed comparison and
analysis, the results showed that BSA can solve a greater number of benchmark
problems and can offer statistically better outcomes than its competitors.

17.6 Bar Systems Algorithm

In this section, we will introduce an emerging CI algorithm that is based on a
common phenomenon observed from human social life (Ramachandran 2012a, b, c;
Carlson 2013).

17.5 Backtracking Search Algorithm 223

17.6.1 Fundamentals of Bar Systems Algorithm

Bar systems (BSs) algorithm was recently proposed in Acebo and Rosa (2008).
The BSs algorithm was inspired by the social behaviour of the staffs or bartenders,
and can be enclosed in the broader class of swarm intelligence. In the bar, bar-
tenders have to act in a highly dynamic, asynchronous and time-critical environ-
ment, and no obvious greedy strategy (such as serving first the best customer,
serving first the nearest customer or serving first the customer who has arrived
first) gives good results (Acebo and Rosa 2008). Thus, the multi-agent system
provides a good framework to rise to the challenge of developing a new class of
adaptive and robustness systems.

In general, the crucial step in BSs algorithm is the choice of the task which the
agent has to execute for the next time step. In BSs, acting as bartenders, agents
operate concurrency into the environment in a synchronous manner; execute the
task where they should pour the drinks. After an initial phase, the ‘‘bartenders’’
make their decisions according to the different problem-dependent properties (e.g.,
weight, speed, location, response time, maximum load, etc.), instead of making
decisions randomly. Over time, if an agent is unable to adapt the environment to
the preconditions of the task (such as the cost for agent to execute the task in the
current state of the environment) or if it is unable to carry the task out by itself then
it will be eliminated. Briefly, the BSs algorithm can be defined as a quadruple
ðE; T; A; FÞ where (Acebo and Rosa 2008):

• E is a (physical or virtual) environment. The state of the environment at each
moment is determined by a set of state variables ðVEÞ. One of those variables is
usually the time, due to the major objective of bartenders is to keep the cus-
tomers waiting for a shorter time. The set of all possible states of the envi-
ronment is defined as S which is the set of all the possible simultaneous
instantiations of the set of state variables ðVEÞ.

• T ¼ t1; t2; . . .; tMf g is a set of tasks to be accomplished by the agents within the
environment. Each task ðtiÞ has associated: pre tið Þ denotes a set of preconditions
over VE which determine whether the task ðtiÞ can be done; imp tið Þ stands for a
non-negative real value which reflects the importance of the task ðtiÞ; and urg tið Þ
denotes a function of VE which indicates the urgency of task ðtiÞ in the current
state of the environment. It will usually be a non-decreasing function of time.

• A ¼ a1; a2; . . .; aNf g is a set of agents situated into the environment. Each agent
ðaiÞ can have different objective (e.g., weight, speed, location, response time,
maximum load, etc.). A cost, cost ai; tið Þ, is associated with each agent. If an
agent is unable to adapt the environment to the preconditions of the task or if it
is unable to carry the task out by itself, then the cost ai; tið Þ will be defined as
infinite. In general, this cost can be divided in two parts: the cost for ai to make
the environment fulfil the preconditions of task ðtiÞ, usually this can include the
cost of stop doing his current tasks; and the cost for ai to actually execute tj.

• F : S� A� T ! R is the function which reflects the degree to which agents are
‘‘attracted’’ by tasks. Overall, given a state of the environment, an agent and a

224 17 Emerging Biology-based CI Algorithms

task, F s; ai; tið Þ, must be defined in a way such that it increases with imp tið Þ and
urg tið Þ and it decreases with cost ai; tið Þ.

17.6.2 Performance of BSs

At the end of their work, Acebo and Rosa (2008) tested the applicability and
efficiency of the proposed BSs algorithm on a NP-hard problem in which a group
of loading robots in a commercial harbour has to be well scheduled so that all
required containers are transported to the targeted ship while keeping the trans-
portation cost as low as possible. The experiments results indicated that BSs can
provide much better results than other greedy algorithms.

17.7 Bean Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on some
studies of bean (Marcus 2013; Sizer and Whitney 2014; Maathuis 2013; Reece
et al. 2011).

17.7.1 Fundamentals of Bean Optimization Algorithm

Bean optimization algorithm (BeOA) was recently proposed in Zhang et al.
(2008b, 2013b, c). It has shown good performance in solving some difficult
optimization problems such as travelling salesman problem (Zhang et al. 2012a; Li
2010) and scheduling problem (Zhang et al. 2010; Wang and Cheng 2010).

Just like other CI algorithms, a potential solution of problem space is firstly
encoded into BeOA representation of search space. Situation of each individual
bean can thus be expressed as vector like X ¼ x1; x2; x3; . . .; xnf g indicating the
current state of each bean, where n is determined by the scale of problem to be
resolved. The environment in which the beans are sown is mainly the solution
space and the states of other beans. The basic equation of implementing BeOA is
shown in Eq. 17.8 (Zhang et al. 2012a):

X i½ � ¼ X i½ � if X i½ � is a father bean
Xmb þ Distribution Xmbð Þ � A if X i½ � is not a father bean

�

; ð17:8Þ

where X i½ � is the position of bean i, Xmb is the position of the father bean.
Distribution Xmbð Þ is the random variable with a certain distribution of father bean
in order to get the positions of its descendants. Parameter A can be set according to
the range of the problem to be resolved.

In addition, when the descendant beans finished locating, their fitness values are
to be evaluated. The beans with most optimal fitness value will be selected as the

17.6 Bar Systems Algorithm 225

candidates of father beans in the next generation. The candidates of father beans
should also satisfy the condition that the distance between every two father beans
should be larger than the distance threshold. This condition assures that the father
beans can have a fine distribution to avoid premature convergence and enhance the
performance of the BeOA for global optimization. If all the conditions can be
satisfied, the candidate can be set as the father bean for next generation.

17.7.2 Performance of BeOA

In general, the BeOA shares many common points inspired from models of the
natural evolution of species. For example, they are population-based algorithms
that use operators inspired by population genetics to explore the search space (the
most typical genetic operators are reproduction, mutation, and crossover). In
addition, they update the population and search for the optimum with random
techniques. Differences among the different biology-based CI algorithms concern
the particular representations chosen for the individuals and the way genetic
operators are implemented. For example, unlike GA, BeOA does not use genetic
operators like mutation, they update themselves with distance threshold.

17.8 Bionic Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on studies
related to the bionic research (Levin 2013a, b, c, d, e, f).

17.8.1 Fundamentals of Bionic Optimization Algorithm

Bionic optimization (BO) algorithm was recently proposed in Song et al. (2013)
for dealing with turbine layout optimization problem in a wind farm. The core
concept of BO is to treat each turbine as an individual bion, attempting to be
repositioned where its own power outcomes can be increased. There are several
BO related studies available in the literature (Zang et al. 2010; Steinbuch 2011;
Wei 2011). In Song et al. (2013), the authors defined the BO as a two-stage
optimization process in which the Steps 1–6 are included in the Stage 1 and the
Stage 2 contains the Steps 7–11. The detailed descriptions about each corre-
sponding step are provided as below (Song et al. 2013):

• Step 1: When a turbine is being added to an existing wind farm, an evaluation
function will be employed to assess each discretized points for the newly
introduced turbine. In Song et al. (2013), the evaluation function is defined by
Eq. 17.9:

226 17 Emerging Biology-based CI Algorithms

E xð Þ ¼ �P xð Þ
Pmax

þ
XN

i¼1

D x� xik kð Þ: ð17:9Þ

Calculating u xð Þ through Eq. 17.10 to obtain the flow field for empty layout
(Song et al. 2013).

P xð Þ ¼ F u0 xð Þð Þ ¼ F u xð Þ 1� bc xð Þ½ �ð Þ: ð17:10Þ

• Step 2: Computing the evaluation values for all the discretized points through
Eq. 17.11 (Song et al. 2013):

E xð Þ ¼ �P xð Þ
Pmax

þ
XN

i¼1

D x� xik kð Þ: ð17:11Þ

• Step 3: Adding a turbine at the point where the evaluation value is the least.

• Step 4: Terminating the Stage 1 if the turbine numbers pass a specified
boundary.

• Step 5: Through the particle model mechanism, simulating the wake flow for all
turbines and computing c xð Þ through Eq. 17.12 (Song et al. 2013):

P xð Þ ¼ F u0 xð Þð Þ ¼ F u xð Þ 1� bc xð Þ½ �ð Þ: ð17:12Þ

• Step 6: Going back to Step 2.

• Step 7: Since the wake flow created by the later added turbines could still
influence the former existing turbines, there is a necessity to further optimize the
layout. At this step, one turbine with the same order as in the adding process will
be removed.

• Step 8: Calculating the wake flow through the particle model mechanism.
• Step 9: Computing the evaluation values for all points.
• Step 10: Re-adding a turbine into the layout at the point with the least evaluation

value.
• Step 11: Going back to Step 7.

17.8.2 Performance of BO

In BO, the layout adjustment strategy within each step is controlled by the eval-
uation function without any randomness which make BO require much less
computational time in comparison with other CI algorithm, e.g., GA and PSO.
Through several case studies such as flat terrain scenario, complex terrain scenario,
and grid dependency of time cost context, Song et al. (2013) claimed at the end of
their study that, for the considered cases, the BO produced better solution quality,
in particular for complex terrain case.

17.8 Bionic Optimization Algorithm 227

17.9 Blind, Naked Mole-Rats Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
blind naked mole-rats’ social behaviour in looking for food resources and pre-
venting the whole colony from the potential invasions (Mills et al. 2010).

17.9.1 Fundamentals of Blind, Naked Mole-Rats Algorithm

Blind, naked mole-rats (BNMR) algorithm was recently proposed by Taherd-
angkoo et al. (2012a). For the purpose of simplification, the BNMR algorithm does
not distinguish the soldier moles from the employed moles, i.e., these two types of
moles are simply placed in one single group which is called employed moles in
BNMR. To implement BNMR algorithm, the following steps need to be performed
(Taherdangkoo et al. 2012a):

• First, randomly generating the initial population of the blind naked mole-rats
colony across the whole problem space. In BNMR, the number of the population
is designed twice as much as the food resources where each of the food
resources denotes a response for target problem space. According to Taherd-
angkoo et al. (2012a), some parameters can be defined by Eq. 17.13:

xi ¼ xmin
i þ b xmax

i � xmin
i

� �
; i ¼ 1; . . .; S; ð17:13Þ

where xi denotes the ith food source, b represents a random variable which falls
within 0; 1½ �, and S is the total number of food sources.

• In addition, the underground temperature is also taken into account as defined by
Eq. 17.14 (Taherdangkoo et al. 2012a):

H xð Þ ¼ q xð ÞC xð Þ DT x;tð Þ
Dt

qC ¼ fs qCð Þsþfa qCð Þaþfw qCð Þw
fs þ fa þ fw ¼ 1

; ð17:14Þ

where H xð Þ stands for the soil temperature which changes with the depth x, q xð Þ
and C xð Þ denotes the soil’s thermal properties (e.g., the density and the specific
heat capacity). Although q xð Þ and C xð Þ are variables vary with the changing of
environment, in BNMR, they are treated as constant which falls within 2; 4½ �,
DT x; tð Þ=Dt is the rate of the soil temperature varying with the time, f stands for
the volumetric contribution of each element in the compound, and the three
subscripts (i.e., s, a, and w) indicate the soil components (e.g., sand, air, and
water).

• During the search of neighbours for food sources, the attenuation coefficient A
has to be updated in each iteration. The Eq. 17.15 is used to express such fact
(Taherdangkoo et al. 2012a):

228 17 Emerging Biology-based CI Algorithms

At
i ¼ At�1

i 1� exp
�at

T

� �h i
; ð17:15Þ

where a denotes a random number which falls within 0; 1½ � (in BNMR, a fixed
value of a ¼ 0:95 is employed for simplicity), and t represents the iteration step.

• Then, for each food source, two employed moles will be dispatched. The
acquired food sources are grouped by queen mole according to the probability of
P which is calculated via Eq. 17.16 (Taherdangkoo et al. 2012a):

Pi ¼
Fitnessi ¼ FSi � Ri
PN

j¼1 Fitnessj

; ð17:16Þ

where Fitnessi is assessed by its employed moles, FSi is relative to the best food
sources, Ri represents the route to the food source, and N stands for the food
sources number.

• Finally, BNMR algorithm also takes the colony defence into account which is
calculated through Eq. 17.17 (Taherdangkoo et al. 2012a):

Bt
i ¼ f� Bt�1

i ; ð17:17Þ

where f is a user defined coefficient ðf� 1Þ, and Bt
i denotes the number of

eliminated points for the ith food source during the tth iteration.

17.9.2 Performance of BNMR

In order to show how the BNMR algorithm performs, Taherdangkoo et al. (2012a)
used 24 benchmark test functions such as Shifted Sphere function, Shifted Rotated
High Conditioned Elliptic Function, Shifted Rosenbrock’s Function, Shifted
Rotated Griewank’s Function without Bounds, and Shifted Rastrigin’s Function.
Compared with other CI techniques (e.g., GA, PSO, SA, etc.), the BNMR algo-
rithm has better convergence than its competitive algorithms which demonstrates
that BNMR is capable of getting out of local minimum in the problem space and
reaching the global minimum.

17.10 Brain Storm Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
outputs of human brain related research (Gross 2014; Wilson 2013; Taylor 2012).

17.9 Blind, Naked Mole-Rats Algorithm 229

17.10.1 Fundamentals of Brain Storm Optimization
Algorithm

Brain storm optimization algorithm (BSOA) was recently proposed by Shi
(2011a). Since the human beings are among on of the most intelligent social
animals on earth, the BSO was engineered to have the ability of both convergence
and divergence. The process of brainstorming (or brainwaving) is often utilized in
dealing with a set of complicated problems which are not always solvable for an
individual person. A detailed description about the natural human being brain
storm process can be found in Shi (2011b). A typical brain storm process generally
follows the eight steps (Shi 2011b; Xue et al. 2012; Zhan et al. 2012; Zhou et al.
2012; Krishnanand et al. 2013):

• Step 1: Getting together a brainstorming group of people with as diverse
background as possible.

• Step 2: Generating many ideas according to the four principles (i.e., suspend
judgment, anything goes, cross-fertilize, and go for quantity) of idea generation
guidance.

• Step 3: Having several customers act as the owners of the problem to pick up a
couple of ideas as better ideas for solving the targeted problem.

• Step 4: Using the fact that the ideas (selected in Step 3) enjoy a higher chosen
probability than their competitor ideas as an evidence to generate more ideas
based again on the four principles.

• Step 5: Having the customers to select several better ideas again as they did in
Step 3.

• Step 6: Picking up an object randomly and using the intrinsic characteristics of
the object as the indication to create more ideas (still based on the four prin-
ciples of idea generation guidance).

• Step 7: Letting the customers choose several better ideas as they did in Step 3.
• Step 8: Obtaining a fairly good enough problem solution at the end of the brain

storm process.

Although the three-round brain storm process, participated by a group of real
human beings, can not last for too long, in a computer simulation environment, we
can set the round of idea generation to a very large number as we desire.

17.10.2 Performance of BSOA

To test the performance of BSOA, Shi (2011b) chose ten benchmark functions
(among them, five are unimodal functions, while the other five are multimodal
functions). The simulation results indicated that BSOA algorithm performed rea-
sonably well.

230 17 Emerging Biology-based CI Algorithms

17.11 Clonal Selection Algorithm

In this section, we will introduce an emerging CI algorithm that is based on
Darwin’s evolutionary theory and clone related studies (Gamlin 2009; Mayfield
2013; Woodward 2008; Steinitz 2014).

17.11.1 Fundamentals of Clonal Selection Algorithm

Clonal selection algorithm (CSA) was recently proposed in Castro and Zuben
(2000). There are several CSA related variants and applications can be found in the
literature (Castro and Zuben 2002; Campelo et al. 2005; Gao et al. 2013; Wang
et al. 2009; Batista et al. 2009; Ding and Li 2009; Riff et al. 2013). Interested
readers are referred to two excellent reviews (Brownlee 2007; Ulutas and Kulturel-
Konak 2011) for updated information. To implement CSA, the following steps
need to be performed (Castro and Zuben 2000):

• Step 1: Creating a set of candidate solutions (denoted by P), composing of the
subset of memory cells (represented by M), and adding to the remaining pop-
ulation ðPrÞ, i.e., P ¼ Pr þM.

• Step 2: According to an affinity measure, choosing the n best individuals of the
population, named Pn.

• Step 3: Cloning the population of these n best individuals and giving rise to a
intermediate population clones, called C. The clone size is regarded as an
increasing function of the affinity with the antigen.

• Step 4: Submitting the population of clones to a hypermutation mechanism. A
maturated antibody population is then generated and denoted by C�.

• Step 5: Reselecting the improved individuals from C� to compose the memory
set, i.e., M.

• Step 6: Replacing d andibodies by novel ones (introduced through diversity
strategy). In CSA, the replacement probability of lower affinity cells is in
general high.

17.11.2 Performance of CSA

To verify the CSA, three problem sets are considered in Castro and Zuben (2000),
namely, binary character recognition task, multimodal optimization problem, and
the classic travelling salesman problem. In comparison with GA, the simulation
results demonstrated that CSA is a very promising CI algorithm which has showed
a fine tractability regarding the computational cost.

17.11 Clonal Selection Algorithm 231

17.12 Cockroach Swarm Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
behaviours observed through cockroach studies (Bell et al. 2007; Lihoreau et al.
2010; Lihoreau et al. 2012; Chapman 2013; Bater 2007; Reece et al. 2011).

17.12.1 Fundamentals of Cockroach Swarm Optimization
Algorithm

Cockroach swarm optimization algorithm (CSOA) was recently proposed in Chen
and Tang (2010, 2011; Cheng et al. 2010). The basic concept of CSOA is that
located in the D-dimensional search space RD, there is a swarm of cockroaches
which contains N cockroach individuals. The ith individual denotes a D-dimen-
sional vector X ið Þ ¼ xi1; xi2; . . .; xiDð Þ for i ¼ 1; 2; . . .;Nð Þ, the location of each
individual is a potential solution to the targeted problem. The model of CSOA
consists of three behaviours, namely, chase-swarming, dispersing, and ruthless
which are explained as below (Chen and Tang 2010, 2011; Cheng et al. 2010).

• Chase-swarm behaviour: Each individual cockroach X ið Þ will run after (within
its visual range) a cockroach P ið Þ which carries the local optimum. This
behaviour is modelled as Eq. 17.18 (Chen and Tang 2010, 2011; Cheng et al.
2010):

X0 ið Þ ¼ X ið Þ þ step � rand � P ið Þ � X ið Þ½ � if X ið Þ 6¼ P ið Þ
X ið Þ þ step � rand � Pg � X ið Þ

� ffi
if X ið Þ ¼ P ið Þ

�

; ð17:18Þ

where Pg ¼ Opti X ið Þ; i ¼ 1; . . .; Nf g denotes the global optimum individual
cockroach, P ið Þ ¼ Optj X jð Þ X ið Þ � X jð Þk k	 visual; i ¼ 1; . . .;N and j ¼ 1;f
. . .;Ng; step represents a fixed value, and rand stands for a random number within
the interval of 0; 1½ �:

• Dispersing behaviour: During a certain time interval, each individual cockroach
will be randomly dispersed for the purpose of keeping the diversity of the
current swarm. This behaviour is modelled through Eq. 17.19 (Chen and Tang
2010, 2011; Cheng et al. 2010):

X0 ið Þ ¼ X ið Þ þ rand 1; Dð Þ; i ¼ 1; . . .;N; ð17:19Þ

where rand 1; Dð Þ is a D-dimensional random vector which falls within a certain
interval.

• Ruthless behaviour: At a certain time interval, the cockroach which carries the
current best value substitute another cockroach in a randomly selection manner.

232 17 Emerging Biology-based CI Algorithms

This behaviour is modelled through Eq. 17.20 (Chen and Tang 2010, 2011;
Cheng et al. 2010):

X kð Þ ¼ Pg; ð17:20Þ

where k is a random integer within the interval of 1;N½ �:

Built on these three behaviours, the working procedure of the CSOA algorithm
can be classified into the following steps (Chen and Tang 2010, 2011; Cheng et al.
2010):

• Step 1: Setting parameters and initializing population;
• Step 2: Search P ið Þ and Pg;
• Step 3: Performing chase-swarming and updating Pg;
• Step 4: Executing dispersing behaviour and updating Pg;
• Step 5: Running ruthless behaviour;
• Step 6: Checking stopping criterion. If yes, generate output; otherwise, go back

to step 2.

17.12.2 Performance of CSOA

In Chen and Tang (2011), the authors made an attempt to employ CSOA to solve
vehicle routing problem (VRP), more specifically, the VRP with time windows
(VRPTW for short). In general the VRPTW can be stated as follows: Products are
to be delivered to a group of customers by a fleet of vehicles from a central depot.
The locations of the depot and the customers are known. The object is to find a
suitable route which minimizes the total travel distance or cost subject to the
constraints listed below.

• Each customer is visited only once by exactly one vehicle;
• Each vehicle has the fixed starting and ending point (i.e., the depot);
• The vehicles are capacitated which means the total demand of any route should

not exceed the maximum capacity of an assigned vehicle;
• The visit to a customer is time restrict, i.e., each customer can only be served

during a certain time period.

To test the effectiveness of the CSOA for focal problem, Chen and Tang (2011)
conducted a study on VRP and VRPTW separately. The experimental results were
compared with PSO and the improved PSO. Through the comparison, the authors
claimed that CSOA is able to explore the optimum with higher optimal rate and
shorter time.

17.12 Cockroach Swarm Optimization Algorithm 233

17.13 Collective Animal Behaviour Algorithm

In this section, we will introduce a new CI algorithm which inspired by the
collective decision-making mechanisms among the animal groups (Sulis 1997;
Tollefsen 2006; Nicolis et al. 2003; Schutter et al. 2001; You et al. 2009; Couzin
2009; Aleksiev et al. 2008; Stradner et al. 2013; Zhang et al. 2012b, Niizato and
Gunji 2011; Oca et al. 2011; Eckstein et al. 2012; Petit and Bon 2010).

17.13.1 Fundamentals of Collective Animal Behaviour
Algorithm

Collective animal behaviour (CAB) algorithm was originally proposed by Cuevas
et al. (2013). In CAB, each animal position is viewed as a solution within the
search space. Also, a set of rules that model the collective animal behaviours will
be employed in the proposed algorithm. The main steps of CAB are outlined below
(Cuevas et al. 2013):

• Initializing the population. Generate a set A of Np animal positions
(A ¼ fa1; a2; . . .; aNpg) randomly in the D-dimensional search space as defined
by Eq. 17.21 (Cuevas et al. 2013):

aj;i ¼ alow
j þ rand 0; 1ð Þ � ahigh

j � alow
j

� �

j ¼ 1; 2; . . .;D; i ¼ 1; 2; . . .;Np:
; ð17:21Þ

where alow
j and ahigh

j represent the lower bound and upper bound, respectively,
and aj;i is the jth parameter of the ith individual.

• Calculating and sorting the fitness value for each position. According to the
fitness function, the best position ðBÞ which is chosen from the new individual
set X ¼ x1; x2; . . .; xNp

 �
will be stored in a memory that includes two different

elements as expressed in Eq. 17.22 (Cuevas et al. 2013):

Mg :
for maintaining the best found positions
in each generation

Mh :
for storing the best history positions
during the complete evolutionary process

8
><

>:
: ð17:22Þ

• Keep the position of the best individuals. In this operation, the first B elements
of the new animal position set Aðfa1; a2; . . .; aBgÞ are generated. This behaviour
rule is modelled via Eq. 17.23 (Cuevas et al. 2013):

al ¼ ml
h þ v; ð17:23Þ

234 17 Emerging Biology-based CI Algorithms

where l 2 1; 2; . . .;Bf g while ml
h represents the historic memory Mh, and v is a

random vector holding an appropriate small length.
• Move from or to nearby neighbours. This operation can be defined by Eq. 17.24

(Cuevas et al. 2013):

ai ¼
xi
 r � mnearnest

h � xi

� �
with probability H

xi
 r � mnearnest
g � xi

� �
with probability 1� Hð Þ

(

; ð17:24Þ

where i 2 Bþ 1;Bþ 2; . . .;Np

 �
, mnearnest

h and mnearnest
g represent the nearest

elements of Mh and Mg to xi, respectively, and r is a random number between
�1; 1½ �:

• Move randomly. This rule is defined by Eq. 17.25 (Cuevas et al. 2013):

ai ¼
r with probability P
xi with probability 1� Pð Þ

�

; ð17:25Þ

where i 2 Bþ 1;Bþ 2; . . .;Np

 �
, and r is a random vector defined within the

search space.
• Updating the memory. The updating procedure is as follows (Cuevas et al.

2013):
Two memory elements are merged together as shown in Eq. 17.26 (Cuevas et al.
2013):

MU MU ¼Mh [Mg

� �
: ð17:26Þ

Based on the parameter ðqÞ, the elements of the memory MU is calculated. The
q value is computed via Eq. 17.27 (Cuevas et al. 2013):

q ¼
QD

j¼1 ahigh
j � alow

j

� �

10 � D ; ð17:27Þ

where alow
j and ahigh

j represent the pre-specified lower bound and the upper
bound, respectively, within a D-dimensional space.

• Optimal determination. It is defined by Eq. 17.28 (Cuevas et al. 2013):

Th ¼ Maxfitness Mhð Þ
6

; ð17:28Þ

where Th represents a threshold value that decide which elements will be
considered as a significant local minimum, and Maxfitness Mhð Þ represent the best
fitness value among Mh elements.

17.13 Collective Animal Behaviour Algorithm 235

17.13.2 Performance of CAB

In order to evaluate the performance of CAB, a set of multimodal benchmark
functions were adopted in Cuevas et al. (2013), namely, Deb’s function, Deb’s
decreasing function, Roots function, two dimensional multimodal function, Ras-
tringin’s function, Shubert function, Griewank function, and modified Griewank
function. Compared with other CI algorithms, computational results showed that
CAB outperforms the other algorithms in terms of the solution quality.

17.14 Cultural Algorithm

In this section, we will introduce an CI algorithm that is based on the human social
evolution (Mayfield 2013).

17.14.1 Fundamentals of Cultural Algorithm

Cultural algorithm (CA) was originally proposed in Reynolds (1994, 1999). There
are several variants and application can be found in the literature (Digalakis and
Margaritis 2002; Alexiou and Vlamos 2012; Ochoa-Zezzatti et al. 2012; Srini-
vasan and Ramakrishnan 2012; Silva et al. 2012). In CA, the evolution process can
be viewed as a dual-inheritance system in which two search spaces (i.e., the
population space and the belief space) are included.

In general, the population space is used to represent a set of behavioural traits
associated with each individual. On the other hand, the belief space is used to
describe different domains of knowledge that the population has of the search
space and it can be delivered into distinct categories, such as normative knowl-
edge, domain specific knowledge, situational knowledge, temporal knowledge,
and spatial knowledge. In other words, the belief space is used to store the
information on the solution of the problem.

Furthermore, at each iteration, two functions (i.e., acceptance function and
influence function) and two operators (i.e., crossover and mutation) are employed
to maintain the CA algorithm. The acceptance function is used to decide which
knowledge sources influence individuals. On the other hand, the influence function
is used to determine which individuals and their behaviours can impact the belief
space knowledge. Also, the crossover and mutation operators are used to support
the population space that control the beliefs’ changes in individuals.

236 17 Emerging Biology-based CI Algorithms

The main steps of CA can be outlined as follows (Reynolds 1994):

• Step 1: Generate the initial population.
• Step 2: Initialize the belief space. In CA, if only two knowledge components,

i.e., situational knowledge component and normative knowledge component are
employed, the belief space can be defined by Eq. 17.29 (Reynolds 1994, 1999):

B tð Þ ¼ S tð Þ;N tð Þð Þ; ð17:29Þ

where the situational knowledge component is represented by S tð Þ, and N tð Þ
denotes the normative knowledge component.

• Step 3: Evaluate the initial population.
• Step 4: Iterative procedure. First, update the belief space (with the individuals

accepted). Second, apply the variation operators (under the influence of the
belief space). Third, evaluate each child. Fourth, perform selection.

• Step 5: Check termination criteria.

17.14.2 Performance of CA

To verify CA, a set of studies are conducted in Reynolds (1994). The experiments
results demonstrated that CA is indeed a very promising solver for dealing with
optimization problems.

17.15 Differential Search Algorithm

In this section, we will introduce an emerging CI algorithm that simulates the
movement exhibited by an migrating organism, namely, Brownian-like random-
walk (Bolstad 2012; Durrett 1984; Shlesinger et al. 1999).

17.15.1 Fundamentals of Differential Search Algorithm

Differential search (DS) algorithm was originally proposed in Civicioglu (2012).
To implement DS, the following features need to be considered (Civicioglu 2012;
Sulaiman 2013):

• Feature 1: In DS, a set of artificial organisms making up a super-organism,
namely, Superorganismg, g ¼ 1; 2; . . .;maxgenerationf g in which the number of
organisms is equivalent to the size of the problem (i.e., xi;j, j ¼ 1; 2; . . .;Df g).

• Feature 2: In DS, a member of a super-organism (i.e., an artificial organism) in
its initial position can be defined through Eq. 17.30 (Civicioglu 2012):

17.14 Cultural Algorithm 237

xi;j ¼ rand � upj � lowj

� �
þ lowj; ð17:30Þ

where Xi ¼ xi;j

� ffi
represents a group of artificial organism, and the artificial

super-organism can thus be expressed by Superorganismg ¼ Xi½ �.
• Feature 3: In DS, the movement style for an artificial super-organism finding a

stopover site is modelled by Brownian-like random walk. Several randomly
chosen individuals within an artificial super-organism move forward to the
targets of donor which equals to ½Xrandom shuffling ið Þ� for the purpose of discov-
ering stopover sites which is generated through Eq. 17.31 (Civicioglu 2012):

StopoverSite ¼ Superorganismþ Scale � donor � Superorganismð Þ: ð17:31Þ

• Feature 4: In DS, in order to generate the scale value, a gamma-random number
creator (i.e., randg) controlled by an uniform-random number creator (i.e., rand)
and both falling within the range of 0; 1½ � are employed.

• Feature 5: In DS, the numbers of individual artificial organism to join the
stopover site search process are decided in an random manner.

• Feature 6: In DS, if a more fertile stopover site is discovered, a group of artificial
organisms will move to the newly founded place, while the artificial super-
organism will keep searching.

• Feature 7: There are only two controlling variables (i.e., p1 and p2) are used in
DS. Through conducting a set of detailed tests, Civicioglu (2012) suggested the
following values (see Eq. 17.32) can provide the best solutions for the respec-
tive problems.

p1 ¼ p2 ¼ 0:3 � rand: ð17:32Þ

17.15.2 Performance of DS

To verify the proposed DS, Civicioglu (2012) employed two test function sets in
which the Test Set-1 consists of 40 benchmark functions (e.g., Shubert function,
Stepint function, Trid function, etc.) and the Test Set-2 is composed of 12
benchmark test functions which include such as Shifted Sphere function, Shifted
Schwefel’s function, Shifted Rastrigin Function, and Shifted Rosenbrock function.
In comparison with other 8 widely used optimization algorithms through the use of
statistical approaches, the experimental results demonstrated that DS is a very
attractive solver for numerical optimization problems. At the end of the study,
Civicioglu (2012) further applied DS to the problem of transforming the geocentric
cartesian coordinates into geodetic coordinates. Compared with the other 9 clas-
sical methodologies and 8 CI algorithms which have been previously reported in
dealing with the same problem, the results also confirmed the practicability and
high level of accuracy of DS.

238 17 Emerging Biology-based CI Algorithms

17.16 Dove Swarm Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on
foraging behaviours observed from a dove swarm (Mills et al. 2010).

17.16.1 Fundamentals of Dove Swarm Optimization
Algorithm

Dove swarm optimization (DSO) algorithm was recently proposed in Su et al.
(2009). The basic working principles of DSO are listed as follows (Su et al. 2009):

• Step 1: Initializing the number of doves and deploying the doves on the 2-
dimensional artificial ground.

• Step 2: Setting the number of epochs ðe ¼ 0Þ, and the degree of satiety, f e
j ¼ 0

for j ¼ 1; . . .;M � N. Initializing the multi-dimensional sense organ vector, ~wj

for j ¼ 1; . . .;M � N.
• Step 3: Computing the total amount of the satiety degrees in the flock,

T eð Þ ¼
PM�N

j¼1 f e
j :

• Step 4: Presenting an input pattern (i.e., piece of artificial crumb) ~xk to the
M � N doves.

• Step 5: Locating the dove bf closest to the crumb~xk according to the minimum-
distance criterion shown in Eq. 17.33 (Su et al. 2009):

bf ¼ arg min
j

~xk �~wj kð Þ
�
�

�
�; for j ¼ 1; . . .;M � N; ð17:33Þ

The dove with the artificial sense organ vector which is the most similar to the
artificial crumb,~xk, is claimed to be the winner.

• Step 6: Updating each dove’s satiety degree through Eq. 17.34 (Su et al. 2009):

f e
j newð Þ ¼

~xk �~wbf kð Þ
�
�

�
�

~xk �~wj kð Þ
�
�

�
�
þ kf e

j oldð Þ; for j ¼ 1; . . .;M � N: ð17:34Þ

• Step 7: Selecting the dove, bf , with the highest satiety degree based on the
following criterion expressed as Eq. 17.35 (Su et al. 2009):

bs ¼ arg max
1	 j	M�N

f e
j : ð17:35Þ

• Step 8: Updating the sense organ vectors and the position vectors via Eqs. 17.36
and 17.37, respectively (Su et al. 2009):

17.16 Dove Swarm Optimization Algorithm 239

~wj k þ 1ð Þ ¼ ~wbf kð Þ þ gw ~xk �~wbf kð Þ
� �

for j ¼ bf

~wj kð Þ for j 6¼ bf

�

; ð17:36Þ

~pj k þ 1ð Þ ¼~pj kð Þ þ gpb ~pbs kð Þ �~pj kð Þ
� �

; for j ¼ 1; . . .;M � N: ð17:37Þ

• Step 9: Returning to Step 4 until all patterns are processes.
• Step 10: Stopping the whole training procedure if the following criterion (see

Eq. 17.38) is met (Su et al. 2009):

XM�N

j¼1

f e
j � T eð Þ

�
�
�
�
�

�
�
�
�
�
	 e: ð17:38Þ

Otherwise, increasing the number of epochs by one e ¼ eþ 1ð Þ, and go back to
Step 3 until the pre-defined limit for the number of epochs is met. The satisfaction
of the criterion given above means that the total amount of satiety degree has
converged to some extent.

17.16.2 Performance of DSO

In general there are two main obstacles encountered in data clustering: the geo-
metric shapes of the clusters are full of variability, and the cluster numbers are not
often known a priori. In order to determine the optimal number of clusters, Su et al.
(2009) employed DSO to perform data projection task, i.e., projecting high-
dimensional data onto a low-dimensional space to facilitate visual inspection of
the data. This process allows us to visualize high-dimensional data as a 2-
dimensional scatter plot. The basic idea in their work can be described as follows
(Su et al. 2009): In a data set, each data pattern, ~x, is regarded as a piece of
artificial crumb and these artificial crumbs (i.e., data patterns) will be sequentially
tossed to a flock of doves on a two-dimensional artificial ground. The flock of
doves adjusts its physical movements to seek these artificial crumbs. Individual
members of the flock can profit from discoveries of all of the other members of the
flock during the foraging procedure because an individual is usually influenced by
the success of the best individual of the flock and thus has a desire to imitate the
behaviour of the best individual. Gradually, the flock of the doves will be divided
into several groups based on the distributions of the artificial crumbs. Those
formed groups will naturally correspond to the hidden data structure in the data set.
By viewing the distributions of the doves on the 2-dimensional artificial ground,
we may quickly find out the number of clusters inherent in the data set. However,
many practical data sets have high-dimensional data points. Therefore, the
aforementioned idea has to be generalized so that it can process high-dimensional
data. In the real world, each dove has a pair of eyes to find out where crumbs are,
but in the artificial world, a virtual dove does not have the capability to perceive a

240 17 Emerging Biology-based CI Algorithms

piece of multi-dimensional artificial crumb that is located around it. In order to
cope with issue, Su et al. (2009) equipped each dove with functionalities, i.e., a
multi-dimensional artificial sense organ represented as a sense organ vector, ~w,
which has the same dimensionality as a data pattern, ~x, and a 2-dimensional
position vector, ~p, which represents its position on the 2-dimensional artificial
ground. In addition to these two vectors, ~w and ~p, a parameter called the satiety
parameter is also attached to each dove. This special parameter endows a dove
with the ability of expressing its present satiety status with respect to the food, that
is, a dove with a low degree of satiety will have a strong desire to change its
present foraging policy and be more willing to imitate the behaviour of the dove
which performs the best among the flock.

To test the performance of DSO, five (two artificial and three real) data sets
were selected in the study. These data sets include Two-Ellipse, Chromosomes,
Iris, Breast Cancer, and 20-Dimensional Non-Overlapping. The projection capa-
bility of DSO was compared with the other popular projection algorithms, e.g.,
Sammon’s algorithm. For DSO, the maximum number of epochs for every data set
(excluding Iris and 20-Dimensional data sets) were set to be 5, while for the Iris
and 20-Dimensional data sets, were set to be 10 and 20, respectively. The case
studies showed that DSO can fulfil the projection task. Meanwhile, the perfor-
mance of DSO is not so sensitive to the size of dove swarm.

17.17 Eagle Strategy

In this section, we will introduce an emerging strategy or search method that is
based on the eagle search (hunting) behaviour.

17.17.1 Fundamentals of Eagle Strategy

Eagle strategy (ES) algorithm was proposed in Yang and Deb (2010, 2012) and
Gandomi et al. (2012). It is a two-stage method, i.e., exploring the search space
globally using Lévy flight random walks and then employing an intensive local
search mechanism for optimization, such as hill-climbing and the downhill sim-
plex method. The main steps of ES can be described as follows (Yang and Deb
2010, 2012; Gandomi et al. 2012):

• Step 1: Initialize the population and parameters.
• Step 2: Iterative procedure. First, perform random search in the global search

space defined by Eq. 17.39 (Yang and Deb 2010):

L�evy� u ¼ t�k; 1 \k	 3ð Þ; ð17:39Þ

17.16 Dove Swarm Optimization Algorithm 241

where k ¼ 3 corresponds to Brownian motion, while k ¼ 1 has a characteristics
of stochastic tunnelling.

Second, evaluate the objective functions. Third, make an intensive local search
with a hypersphere via any optimization technique such as downhill simplex (i.e.,
Nelder-Mead) method. Fourth, calculate the fitness and keep the best solutions.
Fifth, increase the iteration counter. Sixth, calculate means and standard
deviations.

• Step 3: Post process results and visualization.

17.17.2 Performance of ES

To evaluate the efficiency of ES, the Ackley function is adopted in Yang and Deb
(2010). Compared with other CI algorithms (such as PSO and GA), the results
showed that ES outperforms the others in finding the global optima with the
success rates of 100 %. As all CI algorithms require a balance between the
exploration and exploitation, this strategy can be combined into any algorithms
[such as firefly algorithm (Yang and Deb 2010) and DE (Gandomi et al. 2012)] to
improve the computational results.

17.18 Fireworks Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is derived from the
explosion process offireworks, an explosive devices invented by our clever ancestor,
which can produce striking display of light and sound (Lancaster et al. 1998).

17.18.1 Fundamentals of Fireworks Optimization Algorithm

Fireworks optimization algorithm (FOA) was recently proposed in Tan and Zhu
(2010). The basic idea was when we need to find a point xj satisfying f xið Þ ¼ y, a set
of fireworks will be continuously fired in the potential search space until an agent
(i.e., a spark in fireworks context) gets to or reasonably close to the candidate point
xj. Based on this understanding, to implement FOA algorithm, the following steps
need to be performed (Janecek and Tan 2011; Pei et al. 2012; Tan and Zhu 2010):

• Step 1: Fireworks explosion process designing. Since the number of sparks and
their coverage in the sky determines whether an explosion is good or not, Tan
and Zhu (2010) first defined the number of sparks created by each firework xj

through Eq. 17.40:

242 17 Emerging Biology-based CI Algorithms

si ¼ m � ymax � f xið Þ þ n
Pn

i¼1 ymax � f xið Þ½ � þ n
; ð17:40Þ

where m is a parameter used to control the total number of sparks created by the
n fireworks, ymax ¼ max f xið Þð Þ (for i ¼ 1; 2; . . .; n) stands for the maximum value
of the objective function among the ymax fireworks, and n represents a small
constant which is used to avoid zero-division-error. Meanwhile, in order to get rid
of the overwhelming effects of the splendid fireworks, bounds si are also defined
by Eq. 17.41 (Tan and Zhu 2010):

ŝi ¼
round a � mð Þ if si\am
round b � mð Þ if si [bm; a\b\1
round sið Þ otherwise

8
<

:
; ð17:41Þ

where a and b are constant parameters.
Next, Tan and Zhu (2010) also designed the explosion amplitude via Eq. 17.42:

Ai ¼ Â � f xið Þ � ymin þ n
Pn

i¼1 f xið Þ � ymin½ � þ n
; ð17:42Þ

where Â represents the maximum amplitude of an explosion, and ymin ¼
min f xið Þð Þ (for i ¼ 1; 2; . . .; n) denotes the minimum value of the objective func-
tion among the n fireworks.

Finally, the directions of the generated sparks are computed using Eq. 17.43
(Tan and Zhu 2010):

z ¼ round d � rand 0; 1ð Þð Þ; ð17:43Þ

where d denotes the dimensionality of the location x, and rand 0; 1ð Þ represents an
uniformly distributed number within 0; 1½ �.

• Step 2: In order to obtain a good implementation of FOA, the locations of
where we want the fireworks to be fired need to be chosen properly. According
to Tan and Zhu (2010), the general distance between a location x and other
locations can be expressed as Eq. 17.44:

R xið Þ ¼
X

j2K

d xi; xj

� �
¼
X

j2K

xi � xj

�
�

�
�; ð17:44Þ

where K denotes a group of current locations of all fireworks and sparks. The
selection probability of a location xi is then defined via Eq. 17.45 (Tan and Zhu
2010):

p xið Þ ¼
R xið Þ

P
j2K R xj

� � : ð17:45Þ

17.18 Fireworks Optimization Algorithm 243

17.18.2 Performance of FOA

To validate the performance of the proposed FOA, 9 benchmark test functions
were chosen by Tan and Zhu (2010) and the comparisons were conducted among
the FOA, the standard PSO, and the clonal PSO. The experiment results indicated
that the FA clearly outperforms the other algorithms in both optimization accuracy
and convergence speed.

17.19 FlockbyLeader Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
leadership pattern found in flocks of pigeon birds (Couzin et al. 2005; Giraldeau
et al. 1994).

17.19.1 Fundamentals of FlockbyLeader Algorithm

The FlockbyLeader algorithm was proposed by Bellaachia and Bari (2012) in
which the recently discovered leadership dynamic mechanisms in pigeon flocks
are incorporated in the normal flocking model [i.e., Craig Reynolds’ Model
(Reynolds 1987)]. In every iteration, the algorithm starts by finding flock leaders.
The main steps are illustrated as follows (Bellaachia and Bari 2012):

• Calculating fitness value of each flock leader ðLiÞ according to the objective
function (i.e., dLi

max). It will be defined by Eq. 17.46 (Bellaachia and Bari 2012):

dLi
max ¼ max

o2kNBt xið Þ
q xi; oð Þf g; ð17:46Þ

where kNBt xið Þ is the k-neighbourhood of xi at iteration t, dLi
max as radius asso-

ciated with leader Li at iteration t, xi is a node in the feature graph, and q xi; oð Þ is
the given distance function between objects xi and o.

• Ranking the LeaderAgent ðAiÞ. This procedure is defined by Eqs. 17.47–17.49,
respectively (Bellaachia and Bari 2012):

Rankt Aið Þ ¼ Log
Ni;t

�
�

�
�

Ntj j
� 10

 �

� ARFt Aið Þ; ð17:47Þ

ARFt Aið Þ ¼
DR kNBt xið Þj j

DR kNBt xið Þj j þ D kNBt xið Þj j ; ð17:48Þ

if ARFt Aið Þ� 0:5; then xi is a flockleader
if ARFt Aið Þ\0:5; then xi is a follower

�

; ð17:49Þ

244 17 Emerging Biology-based CI Algorithms

where DR kNBt xið Þ represents the dynamic reverse k-neighbourhood of xi at
iteration t, ARFt Aið Þ is the dynamic agent role factor of the agent Ai at iteration
t, Ni;t

�
�

�
� is the number of the neighbours Ai at iteration t, and Ntj j is the number of

unvisited nodes at iteration t.
• Performing the flocking behaviour.
• Updating the FindFlockLeaders ðGf Þ.

17.19.2 Performance of FlockbyLeader

To test the efficiency of the proposed algorithm, two large datasets that one is
consists of 100 news articles collected from cyberspace, and the other one is the
iris plant dataset were adopted by Bellaachia and Bari (2012). Compared with
other CI algorithms, the proposed algorithm is significant improve the results.

17.20 Flocking-based Algorithm

In this section, we will introduce an emerging CI algorithm that is derived from the
emergent collective behaviour found in social animal or insects (Lemasson et al.
2009; Ballerini et al. 2008; Luo et al. 2010; Kwasnicka et al. 2011).

17.20.1 Fundamentals of Flocking-based Algorithm

Flocking-based algorithm (FBA) was originally proposed in Cui et al. (2006),
Picarougne et al. (2007) and Luo et al. (2010). The basic flocking model is
composed of three simple steering rules (see below) that need to be executed at
each instance over time, for each individual agent.

• Rule 1: Separation. Steering to avoid collision with other boids nearby.
• Rule 2: Alignment. Steering toward the average heading and speed of the

neighboring flock mates.
• Rule 3: Cohesion. Steering to the average position of the neighboring flock

mates.
• In the proposed algorithm, a fourth rule is added as below:
• Rule 4: Feature similarity and dissimilarity rule. Steering the motion of the boids

with the similarity among targeted objects.

All these four rules can be formally express by the following equations (Cui
et al. 2006):

17.19 FlockbyLeader Algorithm 245

• The function of separation rule is to act as an active boid trying to pull away
before crashing into each other. The mathematical implementation of this rule is
thus can be described by Eq. 17.50 (Cui et al. 2006):

d Px;Pbð Þ	 d2)~vsr ¼
Xn

x

~vx þ~vb

d Px;Pbð Þ; ð17:50Þ

where vsr is velocity driven by Rule 1, d2 is the distance pre-defined, vb and vx

are the velocities of boids B and X.
• The function of alignment rule is to act as the active boid trying to align its

velocity vector with the average velocity vector of the flock in its local
neighbourhood. The degree of locality of this rule is determined by the sensor
range of the active flock boid. This rule can be presented in a mathematical way
through Eq. 17.51 (Cui et al. 2006):

d Px;Pbð Þ	 d1 \ d Px;Pbð Þ� d2)~var ¼
1
n

Xn

x

~vx; ð17:51Þ

where vcr is velocity driven by Rule 3, d1 and d2 are pre-defined distance, and
Px � Pbð Þ calculates a directional vector point.

• The flock boid tries to stay with the other boids that share the similar features
with it. The strength of the attracting force is proportional to the distance
(between the boids) and the similarity (between the boids’ feature values) which
can be expressed as Eq. 17.52 (Cui et al. 2006):

vds ¼
Xn

x

S B;Xð Þ � d Px;Pbð Þð Þ; ð17:52Þ

where vds is the velocity driven by feature similarity, S B;Xð Þ is the similarity
value between the features of boids B and X.

• The flock boid attempts to stay away from other boids with dissimilar features.
The strength of the repulsion force is inversely proportional to the distance
(between the boids) and the similarity value (between the boids’ features) which
are defined by Eq. 17.53 (Cui et al. 2006):

vdd ¼
Xn

x

1
S B;Xð Þ � d Px;Pbð Þ; ð17:53Þ

where vdd is the velocity driven by feature dissimilarity. To get comprehensive
flocking behavior, the actions of all the rules are weighted and summed to obtain
a net velocity vector required for the active flock boid using Eq. 17.54 (Cui et al.
2006):

v ¼ wsrvsr þ warvar þ wcrvcr þ wdsvds þ wddvdd; ð17:54Þ

where v is the boid’s velocity in the virtual space, and wsr , war, wcr, wds, wdd are
pre-defined weight values.

246 17 Emerging Biology-based CI Algorithms

17.20.2 Performance of FBA

Document clustering is an essential operation used in unsupervised document
organization, automatic topic extraction, and information retrieval. It provides a
structure for organizing large bodies of data (in text form) for efficient browsing
and searching. Cui et al. (2006) utilized FBA for document clustering analysis. A
synthetic data set and a real document collection (including 100 news articles
collected from the Internet) were used in their study. In the synthesis data set, four
data types were included with each containing 200 2-dimensional x; yð Þ data
objects. Parameters x and y are distributed according to Normal distribution
N l; rð Þ; while for the real document collection data set, 100 news articles col-
lected from the Internet at different time stages were categorized by human experts
and manually clustered into 12 categories such as Airline safety, Iran Nuclear,
Storm Irene, Volcano, and Amphetamine. In order to reduce the impact of the
length variations of different documents, Cui et al. (2006) further normalized each
file vector to make it in unit length. Each term stands one dimension in the
document vector space. The total number of terms in the 100 stripped test files is
thus 4,790 (i.e., 4,790 dimensions). The experimental studies were carried out on
the synthetic and the real document collection data sets, respectively, among FBA
and other popular clustering algorithms such as ant clustering algorithm and K-
means algorithm. The final testing results illustrated that the FBA can have better
performance with fewer iterations in comparison with the K-means and ant
clustering algorithm. In the meantime, the clustering results generated by FBA
were easy to be visualized and recognized even by an untrained human user.

17.21 Flower Pollinating Algorithm

In this section, we will introduce an emerging CI algorithm that is derived from the
findings related to pollination studies (Acquaah 2012; Alonso et al. 2012)

17.21.1 Fundamentals of Flower Pollinating Algorithm

Flower pollinating algorithm (FPA) was originally proposed in Yang (2012). To
implement FPA, the following four rules need to be followed (Yang 2012; Yang
et al. 2013):

• Rule 1: Treating the biotic and cross-pollination as a global pollination process,
and pollen-carrying pollinators following Lévy flights. In FPA, this rule can be
defined by Eq. 17.55 (Yang 2012; Yang et al. 2013):

17.20 Flocking-based Algorithm 247

xtþ1
i ¼ xt

i þ cL kð Þ xt
i � g�

� �
; ð17:55Þ

where xt
i denotes the pollen i or solution vector xi at the tth iteration, g� stands

for the best solution found so far among all solutions at the current generation.
• Rule 2: For local pollination, abiotic and self-pollination are employed.
• Rule 3: Insects can play the role of pollinators for developing flower constancy.

In FPA, the value of flower constancy is set equivalent to a probability called
reproduction which is proportional to the similarity of two flowers involved.
For modelling the local pollination, both Rule 2 and Rule can be expressed as
Eq. 17.56 (Yang 2012; Yang et al. 2013):

xtþ1
i ¼ xt

i þ e xt
j � xt

k

� �
; ð17:56Þ

where the pollen from different flowers of the same plant species is denoted by
xt

j and xt
k, respectively.

• Rule 4: Controlling the interaction or switching between the local and global
pollination through a switch probability parameter p which falls within the range
of 0; 1½ �. In FPA, a slightly biased mechanism is added here for local pollination.

17.21.2 Performance of FPA

The FPA was originally developed in Yang (2012) for dealing with single
objective optimization problems. Ideally, it would be great that a new algorithm
can be verified on all available test function. Nevertheless, this is quite a time-
consuming job. Therefore, Yang (2012) selected a set of benchmark testing
functions to check the effectiveness of FPA. The preliminary experimental results
demonstrated that FPA is indeed a very effective optimization algorithm.

17.22 Goose Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
characteristics of Canada geese flight (Hagler 2013) and the PSO algorithm.

17.22.1 Fundamentals of Goose Optimization Algorithm

Goose optimization algorithm (GOA) was proposed by Liu et al. (2006). Since
then, this and similar ideas have attracted a steadily increasing amount of

248 17 Emerging Biology-based CI Algorithms

researchers, such as Sun and Lei (2009), Cao et al. (2012) and Dai et al. 2013). The
main steps of GOA are described as follows (Sun and Lei 2009):

• Step 1: Initialize the population.
• Step 2: Calculate each goose’s current fitness and ascertain each goose’s indi-

vidual optimum ðpfbestÞ and its corresponding position ðpbestÞ.
• Step 3: Update each goose’s local optimum ðpbestiÞ
• Step 4: Sort the population according to each goose’s historical individual

optimum ðpfbestiÞ in every generation and receive the sorted population ðspopÞ.
• Step 5: Replace the ith goose’s global optimal with the i� 1ð Þth goose’s indi-

vidual optimum of the sorted population.
• Step 6: Improve the velocity-location as defined by Eqs. 17.57 and 17.58,

respectively (Sun and Lei 2009):

vkþ1
id ¼ x � vk

id þ a spopk
id � xk

id

� �
þ b pbestk

i�1ð Þd � xk
id

� �
; ð17:57Þ

xkþ1
id ¼ xk

id þ vkþ1
id ; ð17:58Þ

where aðspopk
id � xk

idÞ can be regarded as a crossover operation between the ith
goose of the current population and the ith goose of the stored population,
bðpbestk

i�1ð Þd � xk
idÞ can be viewed as a crossover operation between the fore-

going acquired goose position and the i� 1ð Þth goose position of the stored
population, and x � vk

id can be perceived as a mutation operation by which the
crossed geese are disturbed randomly.

• Step 7: Rank the solutions and store the current best as optimal fitness value as
defined by Eq. 17.59 (Sun and Lei 2009):

if f xtemp

� �
� f xið Þ\0; then xtemp

if f xtemp

� �
� f xið Þ[0; then xi

�

; ð17:59Þ

where xtemp is the new goose position that is generated by mutation operator.
• Step 8: Check the termination criteria.

17.22.2 Performance of GOA

To test the efficiency of GOA, a set of travelling salesman benchmark problems
were adopted in Sun and Lei (2009). Compared with other CI algorithms (such as
GA, SA), computational results showed that GOA outperforms the others in terms
of convergence speed and the quality of the solutions.

17.22 Goose Optimization Algorithm 249

17.23 Great Deluge Algorithm

In this section, we will introduce a new CI algorithm that is based flood related
research (Samuels et al. 2009).

17.23.1 Fundamentals of Great Deluge Algorithm

Great deluge algorithm (GDA) was originally proposed by Dueck (1993). There
are several GDA related variants and applications can be found in the literature
(Burke et al. 2004; Ravi 2004; Weigert et al. 2006; Sacco et al. 2006; AL-Milli
2010; Nahas et al. 2010; Ghatei et al. 2012; Abdullah et al. 2009). In order to
implement GDA, the following facts need to be taken into account (Weigert et al.
2006; Dueck 1993):

• Normally, every place within in the search space can be reached at the begin-
ning of the GDA.

• With the time advances, the landscape of the search space will be divided into
several islands according to Eq. 17.60 (Weigert et al. 2006; Dueck 1993):

pi ¼ H Li � Cið Þ
Li ¼ Li�1 � DL

; ð17:60Þ

where the water level is denoted by L, and the rain quantity is represented by DL.
• When the GDA is used to deal with the minimization problem, it can be

renamed to great drought algorithm, through not technically necessary. In such
situation, DL will actually refer to the water evaporation quantity. The ‘‘walker’’
in the original GDA will have be replaced by an artificial ‘‘fish’’ which con-
tinuously search for a place with sufficient water.

• The water level and rain quantity are controlling variables which play a key role
in GDA. While the probability of satisfaction is independent of DC which
depends only on the absolute value of the objective function C.

17.23.2 Performance of GDA

In order to evaluate the performance of GDA, two typical travelling salesman
problems, i.e., the 442-city problem and the 532-city problem were selected in
Dueck (1993). The experimental results demonstrated that GDA has the ability of
finding the equally good results reported in the literature, but with much easier
implementation effort. By further testing GDA on much harder problem such as
chip placement case, the GDA generated better results than other known methods
(including the results obtained by SA).

250 17 Emerging Biology-based CI Algorithms

17.24 Grenade Explosion Method

In this section, we will introduce a new CI algorithm that is inspired by the
mechanism of grenade explosion. In general, there are three types of grenade, i.e.,
explosive grenades, chemical grenades, and gas grenades (Adams 2004). Although
it is a small bomb that is hurled by hand, it is particularly effective in knocking out
enemy positions.

17.24.1 Fundamentals of Grenade Explosion Method

Grenade explosion method (GEM) was proposed in Ahrari et al. (2009) and Ahrari
and Atai (2010). The core idea behind GEM is when grenade explodes, the thrown
pieces of shrapnel destruct the objects near the explosion location. The main pro-
cedures of GEM are listed as follows (Ahrari et al. 2009; Ahrari and Atai 2010):

• Initializing the population. The initial grenades ðNgÞ are generated in random

locations in an n-dimension search space X
*

i 2 �1; 1½ �n; i ¼ 1; . . .;Ng

� �
.

• Generate a point ðX0Þ around the jth grenade through Eq. 17.61 (Ahrari et al.
2009; Ahrari and Atai 2010):

X0j ¼ Xm þ sign rmð Þ � rmj jp� Lef g; j ¼ 1; 2; . . .;Nq; ð17:61Þ

where X ¼ Xmf g; m ¼ 1; 2; . . .; n is the current location in the n-dimension
search space, rm is a uniformly distributed random number in �1; 1½ �, Le is the
length of explosion along each coordinate, and p is a constant that defined as
Eq. 17.62 (Ahrari et al. 2009; Ahrari and Atai 2010):

p ¼ max 1; n � log Rt=Leð Þ
log Twð Þ

� �

; ð17:62Þ

where Tw is the probability that a produced piece of shrapnel collides an object
in n-dimension hyper-box which circumscribes the grenade’s territory, and Rt is
the territory radius.

If X0 is outside the feasible space, transport it to a new location inside the
feasible region (i.e., �1; 1½ �n) as defined by Eq. 17.63 (Ahrari et al. 2009; Ahrari
and Atai 2010):

17.24 Grenade Explosion Method 251

if X0j 62 �1; 1½ �n) B0j ¼
X0j

Largest component of X0j in valuej j

 �

! B00j ¼ r0j � B0j � X
� �

þ X

j ¼ 1 to Nq Shrapnel Numberð Þ
0\r0j\þ 1 Random Numberð Þ

(

;

ð17:63Þ

where X0j is the collision location outside the feasible space, B00j is the new
location inside the feasible space, and Nq is the number of shrapnel pieces.

• Evaluate the distance between each grenade based on the territory radius ðRtÞ. If
X0 is a distance of at least Rt apart from the location of grenades ð1; 2; . . .; i� 1Þ,
then X0 is accepted.

• Calculate the fitness of the new generated points around the jth grenade. If the
fitness of the best point is better than current location of the jth grenade, move
the grenade to the location of the best point.

• Reduce Rt. For increasing the ability of global investigation, the territory radius
will be reduced according to Eq. 17.64 (Ahrari et al. 2009; Ahrari and Atai
2010):

Rt ¼
Rt�initial

Rrdð Þ iteration No=total No of iterationsð Þ ; ð17:64Þ

where Rrd is user defined (set before the algorithm starts).

Also, the length of explosion ðLeÞ is reduced via Eq. 17.65 (Ahrari et al. 2009;
Ahrari and Atai 2010):

Le ¼ Le�initialð Þm Rtð Þ1�m; 0	m	 1; ð17:65Þ

where m can be constant during the algorithm, or reduced from a higher value to a
lower one.

17.24.2 Performance of GEM

To demonstrate the efficiency of GEM, a set of optimization benchmark functions
such as De Jong’s function, Goldstein and Price function, Branin function, Martin
and Gaddy function, Rosenbrock function, Schwefel function, and Hyper Sphere
function were employed in Ahrari and Atai (2010). Compared with other CI
methods (e.g., GA, ACO), computational results showed that GEM can perform
well in finding all global minima.

252 17 Emerging Biology-based CI Algorithms

17.25 Group Leaders Optimization Algorithm

In this section, we will introduce a new CI algorithm that inspired by the influence
of the leaders in social groups and cooperative co-evolutionary mechanism (Creel
1997; Theiner et al. 2010; Mosser and Packer 2009).

17.25.1 Fundamentals of Group Leaders Optimization
Algorithm

Group leaders optimization algorithm (GLOA) was proposed by Daskin and Kais
(2011). In order to implement GLOA, the following procedure need to be followed
(Daskin and Kais 2011):

• Step 1: Generate p number of population for each group randomly.
• Step 2: Calculate fitness values for all members in all groups.
• Step 3: Determine the leaders for each group.
• Step 4: Mutation and recombination.
• Step 5: Parameter transfer from other groups (one way crossover).
• Step 6: Repeat Steps 3–5 until a termination criterion is satisfied.

17.25.2 Performance of GLOA

To demonstrate the efficiency of GLOA, a set of single and multi-dimensional
optimization functions were adopted in Daskin and Kais (2011), namely Beale
function, Easom function, Goldstein-Price’s function, Shubert’s function, Rosen-
brock’s Banana function, Griewank’s function, Ackley’s function, Sphere func-
tion, and Rastrigin function. Computational results showed that GLOA is very
flexible and rarely gets trapped in local minima.

17.26 Harmony Elements Algorithm

In this section, we will introduce an emerging CI algorithm that is inspired by the
human life model in traditional Chinese medicine and graph theory.

17.25 Group Leaders Optimization Algorithm 253

17.26.1 Fundamentals of Harmony Elements Algorithm

Harmony elements algorithm (HEA) or five-element string algorithm was recently
proposed in Cui et al. (2008, 2009) and Rao et al. (2009). The five-elements theory
posits wood, fire, earth, metal, and water as the basic elements of the material
world, such as people, companies, games, plants, music, art and so on. In terms of
traditional Chinese medicine, this theory is used to interpret the relationship
between the physiology and pathology of the human body and the natural envi-
ronment. In other words, they are metaphors for describing how things interact and
relate with each other. To implement HEA, the following steps need to be fol-
lowed (Cui et al. 2008, 2009):

• Step 1: Random initialization: Stochastically creating 2N five-element strings as
candidate solutions, then grouping the candidate solutions into two string vec-
tors (two element matrices) where the first one is denoted by Qmin and the
second one is represented by Qmax. The searching range for the ith component of
the system state x is umin; umax½ �.

• Step 2: 2N string cycles generation. By applying k½ � to Qmin and Qmax,
respectively, ten string vectors can be created by Eq. 17.66 (Cui et al. 2009):

Qi ¼ k i�1ð Þ Qmin½ �; i ¼ 1; 2; 3; 4; 5

Qi ¼ k i�6ð Þ Qmax½ �; i ¼ 6; 7; 8; 9; 10:
ð17:66Þ

• Step 3: Ranking the strings. Fitness checking and best-worst string vectors
generation.

• Step 4: Best element selection and worst element removal. Performing packed-
rolling operation and worst elements excising operation.

• Step 5: Checking whether the stopping criterion is met. If yes, terminating the
HEA and outputting the results; otherwise, return to Step 1.

17.26.2 Performance of HEA

To verify the proposed HEA, Cui et al. (2009) employed 3 benchmark test
functions, namely, Rosenbrock function, Rastrigin function, and Griewank func-
tion. In comparison with other CI algorithms (e.g., GA), the experimental results
demonstrated that HEA’s excellent global searching ability with very attractive
speed and impressive solution quality. All these make HEA a quite promising
optimization algorithm.

254 17 Emerging Biology-based CI Algorithms

17.27 Human Group Formation Algorithm

In this section, we will introduce an emerging CI algorithm that is derived from a
common phenomenon of individuals classification observed from human society
(Frank 1998; Magstadt 2013; Ramachandran 2012a, b, c; Mayfield 2013; Howell
2014).

17.27.1 Fundamentals of Human Group Formation
Algorithm

Human group formation (HGF) algorithm was recently proposed in Thammano
and Moolwong (2010). The key concept of this algorithm is about the behaviour of
in-group members that try to unite with their own group as much as possible, and
at the same time maintain social distance from the out-group members. To
implement HGF algorithm, the following steps need to be performed (Thammano
and Moolwong 2010):

• Step 1: Cluster centres representation refers to the number of classes, number of
available input patterns, and number, type, and scale of the features available to
the clustering algorithm. At first, there are a total of Q clusters, which is equal to
the number of target output classes.

• Step 2: Accuracy selection is usually measured by a distance function defined on
pairs of patterns as shown in Eq. 17.67 (Thammano and Moolwong 2010):

Accuracy ¼
Pp

i¼1
Ai

P

Ai ¼
1; if J 2 Yi

0; otherwise

�

J ¼ argj minðdjðXiÞÞ; djðXiÞ ¼ Xi � zj

�
�

�
�

; ð17:67Þ

where P denotes the total number of patterns in the training data set; J represents
the index of a cluster whose reference pattern is the closest match to the
incoming input pattern Xi; Yi stands for the target output of the ith input pattern;
zj refers to the centre of the jth cluster; and djðXiÞ states the Euclidean distance
between the input pattern Xi and the centre of the jth cluster.

• Step 3: The grouping/formation step can be performed in a way that in-group
member try to unite with their own group and maintain social distance from the
non-members as much as possible, update the centre value of each cluster ðZjÞ
by using Eq. 17.68 (Thammano and Moolwong 2010):

Znew
jk ¼ Zold

jk þ DZjk

DZjk ¼
X

m2q

gjmbjdjmðZmk � ZjkÞ �
X

n 62q

gjnbjdjnðZnk � ZjkÞ; ð17:68Þ

17.27 Human Group Formation Algorithm 255

where k ðk ¼ 1; 2; 3; . . .; kÞ is the number of features in the input pattern; q is

the class to which the jth cluster belongs; gjm ¼ e� Zjk�Zmkð Þ=r½ �2 and gjn ¼

e� Zjk�Znkð Þ=r½ �2 have values between 0 and 1which determine the influence of
mth and nth clusters on the jth cluster. In general, the further apart mth and nth
clusters are from the jth cluster, the lower the values of gjm and gjn; bj is the
velocity of the jth cluster with respect to its own ability to move in the search
space; and djm is the parameter to prevent clusters of the same class from being
too close to one another and normally with respect to two factors: (1) the
distance between the jth cluster and the mth cluster, and (2) the territorial
boundary of the clusters ðTÞ. If the distance between the jth cluster and the mth
cluster is less than T , the value of djm will be decreased by a predefined amount.
After each centre is updated, if the accuracy is higher, save this new center value
and then continue updating the next cluster centre; if it is lower, discard the new
center value and return to the previous centre; and if it does not change, save the
new center value and decrease the value of bj by a predefined amount.

• Step 4: Cluster validity analysis is the assessment of clustering procedure’s
output. The cluster which satisfies the Eq. 17.69 will be deleted (Thammano and
Moolwong 2010):

� 1

2 log2
nj

p

� �
nq

j

nj

 � P
8X j

i 2q X j
i � zj

�
�

�
�

nj

 !

\q; ð17:69Þ

where nj is the number of input patterns in the jth cluster; nq
j is the number of

input patterns in the jth cluster whose target outputs ðYÞ are q; X j
i is the ith input

pattern in the jth cluster; and q is the vigilance parameter.

• Step 5: Recalculating the accuracy of the model according to Eq. 17.67
(Thammano and Moolwong 2010):

• Step 6: For each remaining cluster, if the distance between the new centre
updated in step 3 and the previous centre is less than 0.0001
ðkZnew

jk � Zold
jk k\0:0001Þ, randomly pick k small numbers between �0:1 and

0.1, and then add them to the centre value of the cluster. The purpose of this step
is to prevent the premature convergence of the proposed algorithm to sub-
optimal solutions.

• Step 7: Terminating process is to check the end condition, if it is satisfied, stop
the loop; if not, examine the following conditions: (1) if the accuracy of the
model improves over the previous iteration, randomly select one input pattern
from the training data set of each target output class that still has error. Then go
to step 2; and (2) if the accuracy does not improve, randomly select the input
patterns, a number equal to the number of clusters deleted in step 4, from the
training data set of each target output class. Then go to step 2.

256 17 Emerging Biology-based CI Algorithms

17.27.2 Performance of HGF

To test the performance of HGF, Thammano and Moolwong (2010) employed 16
data sets (4 artificial and 12 real-world). The experimental results were compared
with the fuzzy neural network, the radial basis function network, and the learning
vector quantization network. The performance comparisons demonstrated that the
validity of the proposed HGF algorithm.

17.28 Hunting Search Algorithm

In this section, we will introduce an emerging CI algorithm that is inspired by the
group hunting of animals, such as African wild dogs (Gusset and Macdonald
2010), rodents (Ebensperger 2001), and wolves (Muro et al. 2011). Although these
hunters have difference behavioural patterns during the hutting process, they are
share a natural phenomenon in which all of them look for a prey in a group.

17.28.1 Fundamentals of Hunting Search Algorithm

Hunting search (HuS) algorithm was recently proposed in Oftadeh et al. (2010). To
implement HuS algorithm, the following steps need to be performed (Oftadeh et al.
2010):

• Step 1: Initialize the optimization problem and algorithm parameters [such as
hunting group size ðHGSÞ, maximum movement toward the leader ðMMLÞ, and
hunting group consideration rate ðHGCRÞ].

• Step 2: Initialize the hunting group (HG) based on the number of hunters ðHGSÞ.
• Step 3: Moving toward the leader. The new hunters’ positions are generated via

Eq. 17.70 (Oftadeh et al. 2010):

x0i ¼ xi þ rand �MML � xL
i � xi

� �
; ð17:70Þ

where x0 ¼ x01; x
0
2; . . .; x0N

� �
represents the new hunters’ positions, MML is the

maximum movement toward the leader, rand is a uniform random number
which varies between 0 and 1, and xL

i is the position value of the leader for the
ith variable.

• Step 4: Position correction-cooperation between members. The updating rule of
the real value correction and digital value correction are given by Eqs. 17.71
and 17.72 respectively (Oftadeh et al. 2010):

17.27 Human Group Formation Algorithm 257

xj0

i
xj0

i 2 x1
i ; x

2
i ; . . .; xHGS

i

 �
with probability HGCR

xj0

i ¼ x j
i
 Ra with probability 1� HGCRð Þ

(

i ¼ 1; . . .;N;
i ¼ 1; . . .;N;

; ð17:71Þ

xdj0

ik
dj0

ik 2 d1
ik; d

2
ik; . . .; dHGS

ik

 �
with probability HGCR

dj0

ik ¼ d j
ik
 a with probability 1� HGCRð Þ

(

i ¼ 1; . . .;N;
j ¼ 1; . . .;HGS
k ¼ 1; . . .;M number of digits in each variableð Þ

; ð17:72Þ

where HGCR is the probability of choosing one value from the hunting group
stored in the HG, 1� HGCRð Þ is the probability of doing a position correction,
a can be any number between 1 and 9, and Ra is an arbitrary distance radius for
the continuous design variable as defined by Eq. 17.73 (Oftadeh et al. 2010):

Ra itð Þ ¼ Ramin
max xið Þ �min xið Þð Þ exp

Ln
Ramin

Ramax

� �
� it

itm

0

@

1

A; ð17:73Þ

where it is the iteration number, max xið Þ and min xið Þ are the maximum or
minimum possible value of variable xi, respectively, Ramax

and Ramin
are the

maximum and minimum of relative search radius of the hunter, respectively,
and itm is the maximum number of iterations in the optimization process.

• Step 5: Reorganizing the hunting group. The rule for members’ recognition is
defined by Eq. 17.74 (Oftadeh et al. 2010):

x0i ¼ xL
i
 rand � max xið Þ �min xið Þð Þ � a exp �b � ENð Þ; ð17:74Þ

where xL
i is the position value of the leader for the ith variable, rand is a uniform

random number which varies between 0 and 1, max xið Þ and min xið Þ are the
maximum and minimum possible values of variable xi, respectively, EN counts
the number of times that the group has been trapped until this step, and a and b
are positive real values.

• Step 6: Termination. Repeat Steps 3–5 until the termination criterion is satisfied.

17.28.2 Performance of HuS

In order to show how the HuS algorithm performs, different unconstrained and
constrained standard benchmark test functions were adopted in Oftadeh et al.
(2010). Compared with other CI techniques (e.g., EA, GA, PSO, ACO, etc.), the
performance of HuS algorithm is very competitive.

258 17 Emerging Biology-based CI Algorithms

17.29 Krill Herd Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
krill swarm related studies (Verdy and Flierl 2008; Brierley and Cox 2010;
Goffredo and Dubinsky 2014).

17.29.1 Fundamentals of Krill Herd Algorithm

Krill herd (KH) algorithm was recently proposed in Gandomi and Alavi (2012). In
order to implement the KH algorithm, the following steps need to be followed
(Gandomi and Alavi 2012; Wang et al. 2013):

• Step 1: Defining the simple boundaries, algorithm parameters, and so on.
• Step 2: Initialization. Stochastically creating the initial population within the

search space.
• Step 3: Fitness evaluation. Evaluating each individual krill based on its position.
• Step 4: Calculating motion conditions. In KH algorithm, the motion caused by

the presence of other individual krill is computed via Eq. 17.75 (Gandomi and
Alavi 2012):

Nnew
i ¼ Nmaxai þ xnNold

i ; ð17:75Þ

where ai equals to alocal
i þ atarget

i , and Nmax represents the maximum induced
speed, Nold

i denotes the last induced motion. Meanwhile, the foraging motion for
the ith krill individual is defined by Eq. 17.76 (Gandomi and Alavi 2012):

Fi ¼ Vf bi þ xf F
old
i ; ð17:76Þ

where bi is equivalent to bfood
i þ bbest

i , and the foraging speed is denoted by Vf .
Finally, the physical diffusion motion of the krill is treated as a random process.
This motion can be expressed in Eq. 17.77 (Gandomi and Alavi 2012):

Di ¼ Dmaxd; ð17:77Þ

where Dmax denotes the maximum diffusion speed, and d represents a random
direction vector. All three motions can be defined by using the following
Lagrangian model (see Eq. 17.78) (Gandomi and Alavi 2012):

dXi

dt
¼ Ni þ Fi þ Di; ð17:78Þ

where Ni denotes the motion induced by other individual krills.
• Step 5: Implementing the genetic operators.
• Step 6: Updating the position of each individual krill within the search space.

17.29 Krill Herd Algorithm 259

• Step 7: Checking whether the stopping condition is met. If not, returning to Step
3; otherwise, terminating the algorithm.

17.29.2 Performance of KH

In order to show how the KH algorithm performs, 20 benchmark test functions
such as Sphere function, Goldstein and Price function, Griewank function, and
Ackley function are employed in Gandomi and Alavi (2012). Compared with other
CI techniques, the performance of KH algorithm is very competitive.

17.30 League Championship Algorithm

In this section, we will introduce an emerging CI algorithm that is based on some
interesting findings relative to sports science (Smolin and Grosvenor 2010;
Abernethy et al. 2013).

17.30.1 Fundamentals of League Championship Algorithm

League championship algorithm (LCA) was recently proposed in Kashan (2009).
In order to model an artificial championship environment, there are the following 6
idealization rules employed in LCA (Kashan 2009, 2011; Kashan and Karimi
2010):

• Rule 1: In LCA, playing strength is defined as the capability of one team
defeating the other team.

• Rule 2: The game results is not predictable even if the team’s playing strength is
know perfectly.

• Rule 3: The winning probability of a team i over the other team j is assumed to
be the same, no matter from which team’s viewpoint.

• Rule 4: In the basic version of LCA, tie is not taken into account which means
win or loss will be the only game result option.

• Rule 5: Teams only concentrate on the forthcoming math and with no interest of
the other distant future game.

• Rule 6: When team i defeats the other team j, any strength of assisting team i in
winning will have a dual weakness in causing team j to lose.

In order to implement LCA algorithm, the following modules need to be well
designed (Kashan 2009, 2011; Kashan and Karimi 2010):

260 17 Emerging Biology-based CI Algorithms

• Module 1: Creating the league timetable. In LCA, an important step is to
simulate a real championship environment by establishing a schedule which
forms a ‘‘virtual season’’. For instance, a single round-robin schedule mecha-
nism can be employed for ensuring that each team plays against every other
team once in each virtual season.

• Module 2: Confirming the winner or loser. Using the playing strength criterion,
the winner or loser in LCA is identified in a random manner. Based on the
abovementioned Rule 1, the expected chance of winning for team i (or j) can be
defined as Eq. 17.79 (Kashan 2011):

pt
i ¼

f Xt
j

� �
� f̂

f Xt
j

� �
þ f Xt

ið Þ � 2f̂
: ð17:79Þ

• Module 3: Deploying a suitable mixture of team members. Since the strengths
and weaknesses of the each individual team member are not the same, it is often
important for coach to generate a good team members mixture by taking various
constraint into account. In LCA, a similar process is also performed through an
artificial analysis mechanism, more specifically, an artificial SWOT (denoting
strengths, weaknesses, opportunities, and threats) analysis is utilized for gen-
erating a suitable focus strategy. Based on a thorough analysis, in order to get a
new formation of team, the random number of changes made in Bt

i (i.e., best
team formation for team i at week t) can be computed through Eq. 17.80
(Kashan 2011):

qt
i ¼

ln 1� 1� 1� pcð Þn�q0þ1
� �

r
� �

ln 1� pcð Þ

2

6
6
6

3

7
7
7
þ q0 � 1; qt

i 2 q0; q0 þ 1; . . .; nf g;

ð17:80Þ

where r denotes a random number which falls within the range of 0; 1½ �, and
pc\1, pc 6¼ 0 represents a controlling variable.

17.30.2 Performance of LCA

To verify the capability of LCA, Kashan (2009) employed 5 benchmark test
functions which include such as Sphere function, Rosenbrock function, Rastrigin
function, Ackley function, and Schwefel function. In comparison with other CI
techniques (e.g., PSO), the simulation results proved that LCA is a dependable
method which can converge very fast to the global optimal.

17.30 League Championship Algorithm 261

17.31 Membrane Algorithm

In this section, we will introduce an emerging CI algorithm that is based on some
studies relative to biological membrane (Reece et al. 2011; Yeagle 2005) and some
of its basic features inspired membrane computing (Păun 2000, 2002; Gheorghe
et al. 2012; Xiao et al. 2013; Maroosi and Muniyandi 2013; Muniyandi and Zin
2013; Kim 2012; Gofman 2012; Nabil et al. 2012; Zhang et al. 2011; Murphy
2010; Aman 2009; Sedwards 2009; Păun 2007; Nguyen et al. 2008; Woodworth
2007; Ishdorj 2006; Zaharie and Ciobanu 2006; Ciobanu et al. 2003).

17.31.1 Fundamentals of Membrane Algorithm

Membrane algorithm (MA), an approach built on membrane system or P-system
diagram (Păun 2000, 2002), was initially proposed in Nishida (2005):

• Component 1: A set of regions which are normally divided by nested
membranes.

• Component 2: Each individual region contains a sub-algorithm and several
tentative solutions of the targeted optimization problem.

• Component 3: Solution transferring strategy between adjacent regions.

Once the initial settings are done, the following steps need to be performed for
implementing MA algorithm (Nishida 2005):

• Step 1: Simultaneously updating the solutions by using the sub-algorithm
existing in each individual region.

• Step 2: Sending the best and worst solutions to all the adjacent inner and outer
regions, respectively. This mechanism is performed for each region.

• Step 3: Repeating the solutions updating and transferring procedure until a
stopping criterion is met.

• Step 4: Outputting the best solution found in the innermost region.

17.31.2 Performance of MA

Nishida (2005) employed the classic travelling salesman problem as a benchmark
for verifying the performance of MA. The simulation results demonstrated that the
performance of MA is very attractive. As Nishida (2005) commented in the work:
On one hand, since other CI algorithms such as GA and SA can be used to play the
role of sub-algorithm, an MA is likely to be able to avoid the local optimal. On the
other hand, since different sub-algorithms are separated by membranes and the
communications happen only among adjacent regions, MA can be easily imple-
mented in other types of computing systems such as parallel, distributed, and grid

262 17 Emerging Biology-based CI Algorithms

computing. All these merits make MA a promising candidate in defeating ‘‘No
Free Lunch Theorem (Wolpert and Macready 1997)’’.

17.32 Migrating Birds Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is inspired by the
v-flight formation of the migrating birds. It gets this name because of the similarity
of the shape the birds that, through one bird leading the flock and two lines of other
birds following it, make to the letter ‘‘V’’ (Shettleworth 2010). In addition, the v-
formation is one example of the fluid dynamics at work (Hagler 2013). Also, it is
believed as a very efficient way for long distance flying due to it is possible to save
energy and it can help birds avoid collisions (Badgerow and Hainsworth 1981;
Cutts and Speakman 1994; Lissaman and Shollenberger 1970).

17.32.1 Fundamentals of Migrating Birds Optimization
Algorithm

Migrating birds optimization (MBO) algorithm was proposed by Duman et al.
(2012). In MBO, it is assumed that after flying fro some time, when the leader
birds gets tired, it goes to the end of the line and one of the birds following it takes
the leader position. As a result, MBO is capable of finding more areas of the
feasible solution space by looking at the neighbour solutions. The main steps of
MBO are outlined below (Duman et al. 2012):

• Step 1: Initializing the population and parameters.
• Step 2: Repeating the following procedure till stopping criteria met. First,

randomly select a leading bird ðiÞ. Second, calculate its fitness function. Third,
randomly select a neighbour bird among k available neighbour birds (e.g., j).
Fourth, if ðFi [FjÞ, then replace the j by the new solution. Fifth, improve each
solution ðsrÞ in the flock (except leader) by evaluating neighbours’ wing-tip
spacing (WTS) through Eq. 17.81 (Duman et al. 2012):

WTSopt ¼ �0:05b; ð17:81Þ

where WTSopt represents the optimum WTS, and b is the wing span. Sixth,
calculate fitness and keep the best solutions. Seventh, rank the solutions and
store the current best as optimal fitness value.

• Step 3: Posting process and visualizing results.

17.31 Membrane Algorithm 263

17.32.2 Performance of MBO

To test the performance of the MBO algorithm, a series of quadratic assignment
problems were taken as the benchmarks (Duman et al. 2012). Compared with other
CI algorithm (e.g., TS, SA, and GA), MBO obtained very successful results.

17.33 Mine Blast Algorithm

In this section, we will introduce a new CI algorithm that is based on the obser-
vation of the mine bombs (a notorious invention by human) explosion in real
world. Just like the volcano or earthquake (Rose 2008), with such force, the mine
bombs will be blasted into billions of tiny pieces. In addition, the thrown pieces of
shrapnel remain bore with other mine bombs near the explosion area resulting in
their explosion.

17.33.1 Fundamentals of Mine Blast Algorithm

Mine blast algorithm (MBA) was proposed by Sadollah et al. (2012, 2013). The
main steps of MBA are listed as follows (Sadollah et al. 2012, 2013):

• Step 0: Initializing the population. The initial population is generated by a first

shot ðXf
0Þ explosion producing a number of individuals. The first shot point

value is updated via Eq. 17.82 (Sadollah et al. 2012, 2013):

Xnew
0 ¼ LBþ rand � UB� LBð Þ; ð17:82Þ

where LB and UB are the lower and upper bonds of the problem, respectively,
and Xnew

0 is the new generated first shot point.
• Step 1: Initializing the parameters.
• Step 2: Check the condition of exploration constant ðlÞ.
• Step 3: If condition of exploration constant is satisfied, calculate the distance of

shrapnel pieces and their location, otherwise, go to Step 10. The calculating
equations are given by Eq. 17.83 (Sadollah et al. 2012, 2013):

df
nþ1 ¼ df

n � randnj jð Þ2; n ¼ 0; 1; 2; . . .

Xf
e nþ1ð Þ ¼ df

nþ1 � cos hð Þ; n ¼ 0; 1; 2; . . .
; ð17:83Þ

where Xf
e nþ1ð Þ is the location of exploding mine bomb, df

nþ1 is the distance of the
thrown shrapnel pieces in each iteration, and randn is normally distributed
pseudorandom number (obtained using randn function in MATLAB).

264 17 Emerging Biology-based CI Algorithms

• Step 4: Calculate the direction of shrapnel pieces through Eq. 17.84 (Sadollah
et al. 2012, 2013):

mf
nþ1 ¼

Ff
nþ1 � Ff

n

Xf
nþ1 � Xf

n

; n ¼ 0; 1; 2; 3; . . .; ð17:84Þ

where F is the function value of the X, and mf
nþ1 is the direction of shrapnel

pieces.
• Step 5: Generate the shrapnel pieces and compute their improved locations via

Eq. 17.85 (Sadollah et al. 2012, 2013):

Xf
nþ1 ¼ Xf

e nþ1ð Þ þ exp �

ffiffiffiffiffiffiffiffiffiffi

mf
nþ1

df
nþ1

v
u
u
t

0

@

1

A � Xf
n; n ¼ 0; 1; 2; 3; . . .; ð17:85Þ

where Xf
e nþ1ð Þ, df

nþ1, and mf
nþ1 are the location of exploding mine bomb collided

by shrapnel, the distance of shrapnel and the direction (slope) of the thrown
shrapnel in each iteration, respectively.

• Step 6: Check the constraints for generated shrapnel pieces.
• Step 7: Save the best shrapnel piece as the best temporal solution.
• Step 8: Does the shrapnel piece have the lower function value than the best

temporal solution?
• Step 9: If true, exchange the position of the shrapnel with the best temporal

solution. Otherwise, go to Step 10.
• Step 10: Calculate the distance of shrapnel pieces and their locations, then return

to Step 4. The calculating equations are given by Eq. 17.86 (Sadollah et al.
2012, 2013):

df
nþ1 ¼

ffi

Xf
nþ1 � Xf

n

� �2
þ Ff

nþ1 � Ff
n

� �2
r

; n ¼ 0; 1; 2; . . .

Xf
e nþ1ð Þ ¼ df

n � rand � cos hð Þ; n ¼ 0; 1; 2; . . .
; ð17:86Þ

where Xf
e nþ1ð Þ is the location of exploding mine bomb, rand is a uniformly

distributed random number, and h is the angle of the shrapnel which is calcu-
lated through Eq. 17.87 (Sadollah et al. 2012, 2013):

h ¼ 360=Ns; ð17:87Þ

where Ns is the number of shrapnel pieces which are produced by the mine
bomb explosion.

• Step 11: Reduce the distance of the shrapnel pieces according to Eq. 17.88
(Sadollah et al. 2012, 2013):

17.33 Mine Blast Algorithm 265

df
n ¼

df
nþ1

exp k=að Þ ; n ¼ 1; 2; 3; . . .; ð17:88Þ

where a and k are the reduction constant which is user parameter and depends on
the complexity of the problem and iteration number, respectively.

• Step 12: Check the convergence criteria. If the stopping criterion is satisfied, the
algorithm will be stopped. Otherwise, return to Step 2.

17.33.2 Performance of MBA

To test the efficiency of MBA, five well-known truss structures problems were
adopted in Sadollah et al. (2012), namely, 10-bar truss, 15-bar truss, 52-bar truss,
25-bar truss, and 72-bar truss. Compared with other CI algorithms (e.g., PSO),
computational results showed that MBA clearly outperforms the others in terms of
convergence speed and computational cost.

17.34 Monkey Search Algorithm

In this section, we will introduce an emerging CI algorithm that is inspired by the
monkey foraging behaviour (King et al. 2011; Mills et al. 2010; Sueur et al. 2010;
Lee and Quessy 2003; Taffe and Taffe 2011).

17.34.1 Fundamentals of Monkey Search Algorithm

Monkey search algorithm (MSA) was proposed by Mucherino and Seref (2007). In
MSA, the food is viewed as the desirable solutions and the branches of the trees
are illustrated as perturbations between two neighbouring feasible solutions. In
addition, at each iteration, the starting solution is viewed as the root of a branch
and the new neighbour solution is given at the tip of the same branch. The height
of the trees (i.e., the functional distance between the two solutions, ht) is deter-
mined by the random perturbation. Also, it is assumed that when the monkeys look
for food, they will also learn which branches lead to better food resources. The
main steps of MSA are described as follows (Mucherino and Seref 2007):

• Step 1: Initialize populations and parameters.
• Step 2: Repeat till stopping criteria met. First, randomly select a branch of a tree
ðnwÞ as root. Second, calculate its fitness function. Third, perform the pertur-
bations process to generate a new solution at the tip of the same branch as
follows (Mucherino and Seref 2007): (1) Random changes to Xcur, as in the SA
methods; (2) Crossover operator applied for generating a child solution from the

266 17 Emerging Biology-based CI Algorithms

parents Xcur and Xbest, as in GA; (3) The mean solution built from Xcur and Xbest,
inspired by ACO; (4) Directions that lead Xcur to Xbest, as in directional evo-
lution; (5) Creating solutions from Xcur and Xbest and introducing random notes,
as in harmony search.

• Step 3: Check the termination criteria.

In addition, for avoiding local optima, the predetermined number of nm best
solutions (i.e., the memory bank) are updated by each successive tree.

17.34.2 Performance of MSA

To test the performance of MSA, two global optimization problem of finding
stable conformations of clusters of atoms’ energy functions (i.e., Lennard Jones
potential energy and Morse potential energy) were adopted in Mucherino and
Seref (2007). In addition, a protein folding problem (i.e., the tube model) is also
considered as test function. Compared with other CI algorithms (such as SA),
computational results showed that the proposed algorithm outperforms others in
terms of the quality of solutions.

17.35 Mosquito Host-Seeking Algorithm

In this section, we will introduce an emerging CI algorithm that is inspired by the
host-seeking behaviour of mosquitoes (Levin 2013d).

17.35.1 Fundamentals of Mosquito Host-Seeking Algorithm

Mosquito host-seeking algorithm (MHSA) was proposed by Feng et al. (2009).
According to the observation of mosquito host-seeking behaviour, there is only
female mosquitoes search the host to attract (Woodward 2008). Recently, based on
mosquito host-seeking behaviour, Cummins et al. (2012) proposed a new mathe-
matical model to describe the effect of spatial heterogeneity. Furthermore, it is
possible to design artificial female mosquitoes that, by seeking towards the hosts
which emit an odor (e.g., CO2), find the shortest path between the two nodes
corresponding to the nest and to the food source. The following description, which
is developed using the travelling salesman problem as a running example, is
completed for implementing the proposed algorithm.

• Step 1: Initializing the population and parameters.

17.34 Monkey Search Algorithm 267

• Step 2: Calculate the distance between ðuij tð ÞÞ between an artificial mosquito
and the host at time t in parallel as defined by Eq. 17.89 (Feng et al. 2009):

uij tð Þ ¼ exp �cij tð Þrij tð Þxij tð Þ
� �

; ð17:89Þ

where xij is the sex value of each artificial mosquito ðmijÞ as defined by
Eq. 17.90 (Feng et al. 2009):

xij ¼ 1; mij is female
xij ¼ 0; mij is male

�

; ð17:90Þ

and cij represents the relative strength of the artificial mosquito. It can be defined
as Eq. 17.91 (Feng et al. 2009):

t ¼ 0; cij ¼ max
i;j

dij � dij

t [0; cij 2 0; 1½ �

(

; ð17:91Þ

where cij represents the distance between city pair Ci;Cj

� �
, and dij is defined by

Eq. 17.92 (Feng et al. 2009):

dij ¼
ffi

xi � xj

� �2þ yi � yj

� �2
q

: ð17:92Þ

The utility of all artificial mosquitoes will be summarized as Eq. 17.93 (Feng
et al. 2009):

J tð Þ ¼
Xn

i¼1

Xn

j¼1

uij tð Þ: ð17:93Þ

• Step 3: Calculating the motion of artificial mosquitoes via Eqs. 17.94–17.96,
respectively (Feng et al. 2009):

duij tð Þ
dt
¼ w1 tð Þ þ w2 tð Þ; ð17:94Þ

w1 tð Þ ¼ �uij tð Þ þ cvij tð Þ; ð17:95Þ

w2 tð Þ ¼ �k1 � k2
oJ tð Þ
ouij tð Þ � k3

oP tð Þ
ouij tð Þ � k4

oQ tð Þ
ouij tð Þ

� �

� ouij tð Þ
orij tð Þ

� �2

þ ouij tð Þ
ocij tð Þ

� �2
() ; ð17:96Þ

where c [1, and vij tð Þ is a piecewise linear function of uij tð Þ defined by
Eq. 17.97 (Feng et al. 2009):

268 17 Emerging Biology-based CI Algorithms

vij tð Þ ¼
0 if uij tð Þ\0
uij tð Þ if 0	 uij tð Þ\1
1 if uij tð Þ[1

8
<

:
; ð17:97Þ

and P tð Þ and Q tð Þ represent the attraction functions as defined by Eqs. 17.98 and
17.99, respectively (Feng et al. 2009):

P tð Þ ¼ e2 ln
Xn

i¼1

Xn

j¼1

exp �u2
ij tð Þ
.

2e2
h i

� e2 ln nn; ð17:98Þ

Q tð Þ ¼
Xn

i¼1

Xn

j¼1

rij tð Þxij tð Þ � 2 2�
�
�

�
�
�
�
�

X

i;j

Z uij

0
1þ exp �10xð Þ½ ��1� 0:5

n o
dx;

ð17:99Þ

where 0\e\1, and rij tð Þ is defined by Eq. 17.100 (Feng et al. 2009):

rij ¼ 1; Z pass pij

rij ¼ 0; Z not pass pij

�

; ð17:100Þ

where Z is the shortest path through n cities, and pij is the path between Ci and
Cj.
The general hybrid attraction function for artificial mosquito can be defined by
Eq. 17.101 (Feng et al. 2009):

Eij tð Þ ¼ �k1uij tð Þ � k2J tð Þ � k3P tð Þ � k4Q tð Þ; ð17:101Þ

where Eij tð Þ ¼ is the hybrid attrition function, and 0\k1; k2; k3; k4\1.
• Step 4: For each artificial mosquito, calculate the value of drij tð Þ and dcij tð Þ in

order to increase the problem’s dynamically according to Eqs. 17.102 and
17.103, respectively (Feng et al. 2009):

drij tð Þ
dt
¼ �k1

ouij tð Þ
orij tð Þ � k2

oJ tð Þ
orij tð Þ � k3

oP tð Þ
orij tð Þ � k4

oQ tð Þ
orij tð Þ ; ð17:102Þ

dcij tð Þ
dt
¼ �k1

ouij tð Þ
ocij tð Þ � k2

oJ tð Þ
ocij tð Þ � k3

oP tð Þ
ocij tð Þ � k4

oQ tð Þ
ocij tð Þ ; ð17:103Þ

where
oQ tð Þ
ouij tð Þ ¼ � 1þ exp �10 tð Þuij tð Þ

� �� ffi�1�0:5
n o

.

• Step 5: Updating the both value of ðrij tð ÞÞ and ðcij tð ÞÞ in parallel through
Eqs. 17.104 and 17.105 (Feng et al. 2009):

rij t þ 1ð Þ ¼ rij tð Þ þ drij tð Þ
dt

; ð17:104Þ

17.35 Mosquito Host-Seeking Algorithm 269

cij t þ 1ð Þ ¼ cij tð Þ þ dcij tð Þ
dt

: ð17:105Þ

• Step 6: If all duij tð Þ
dt ¼ 0, then finish successfully; otherwise, go to Step 2.

17.35.2 Performance of MHSA

The travelling salesman problem has attracted many researchers from different
fields. Recently, Feng et al. (2009) used MHSA for finding near-optimum solutions
to the travelling salesman problem. Computational results showed that the pro-
posed algorithm performs well and easy to jump into local optimal. Also, it is easy
to adapt to a wide range of the travelling salesman problem.

17.36 Oriented Search Algorithm

In this section, we will introduce an emerging algorithm that is inspired by the
human helping behaviour. Helping behaviours are activities where people intend
to assist other person to solve the problems, such as to relieve distress (Stukas and
Clary 2012).

17.36.1 Fundamentals of Oriented Search Algorithm

Oriented search algorithm (OSA) was proposed by Zhang et al. (2008a) that
mimics the helping behaviour of a little girl when she lost her way in deep forest.
In OSA, the optimal solution of the objective function is the lost girl who can
transmit information for help in order to be found immediately. The main steps of
OSA are illustrated as follows (Zhang et al. 2008a):

• Step 1: Initialization the population and parameters. For example, the objective
function for each search individuals ðf ðx0jiÞÞ and the position of search individuals
ðx0jiÞ are defined by Eqs. 17.106–17.108, respectively (Zhang et al. 2008a):

x0ji ¼ Xmini þ Xmaxi � Xminið Þ � randomji 0; 1ð Þ; ð17:106Þ

x0ji ¼ ci; where ci 2 Xmini;Xmaxi½ �; ð17:107Þ

x0ji ¼ ci; where ci 2 Xmini;Xmaxi½ �; ð17:108Þ

where aji and ci are constants.

270 17 Emerging Biology-based CI Algorithms

• Step 2: Exploration walks procedure. First, generate the strategy of updating
Dxtji via Eqs. 17.109 and 17.110, respectively (Zhang et al. 2008a):

xtji ¼ x0ji þ Dxtji; ð17:109Þ

Dxtji ¼ xtji global � 1þ w � randntji 0; 1ð Þ � xtji

� �
� random 0; 1ð Þ

� �
; ð17:110Þ

where xtji global denotes the current optimal position of the objective function,
and w is a variable which can adjust the variable trend of oriented-neighbour-
space.

Second, explore new position of the current search individual ðxtjiÞ. Third,
evaluate the quality of the objective function ðftj ¼ f xtji

� �
Þ. Fourth, if ftj	 f t�1ð Þj,

then x0ji ¼ xtji. Fifth, update the current position of the objective function optimal
solution ðxtji globalÞ. Sixth, check the termination criteria.

• Step 3: Posting process and visualizing results.

17.36.2 Performance of OSA

To test the performance of OSA, a reactive power optimization problem was
adopted in Zhang et al. (2008a). Compared with other algorithms, computational
results showed that OSA has better convergence property and precision. Also, it is
capable of escaping from the local optima.

17.37 Paddy Field Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
concept of sowing is carried out in accordance with individual fitness value and
neighbour numbers of seed so that they will grow towards the best environment
(optimal solution) (Maathuis 2013; Acquaah 2012).

17.37.1 Fundamentals of Paddy Field Algorithm

Paddy field algorithm (PFA) was recently proposed in Premaratne et al. (2009). In
general, situation of each individual seed or plant can be illustrated as vector
X ¼ x1; x2; . . .; xkð Þ and the fitness or objective function of X is denoted by
Y ¼ f Xð Þ. Depending on the nature of the parameter space each dimension of the
seed can be bonded such that Eq. 17.111 holds (Premaratne et al. 2009; Wang
et al. 2011):

17.36 Oriented Search Algorithm 271

xj 2 xj

� �

min
; xj

� �

max

� ffi
: ð17:111Þ

To implement PFA algorithm, the following steps need to be performed
(Premaratne et al. 2009):

• Sowing behaviour: The algorithm operates by initially scattering seeds (initial
population p0) at random in an uneven field. The values of seed dimensions are
uniformly distributed depending on the bounds of the parameter space.

• Selection behaviour: When the seeds produce plants, the best plants are selected
depending on a threshold ðytÞ, which can be used to determine the number of
seeds of a plant. The reason for having a threshold is to control the population of
the system. That means, a plant will be selected to the next iteration only if its
fitness value ðyÞ is greater than the threshold as defined by Eq. 17.112 (Pre-
maratne et al. 2009).

y� yt: ð17:112Þ

• Seeding behaviour: In this stage, each plant develops a number of seeds pro-
portional to its health. The total quantity of seeds ðsÞ produced by any plant
would be a function of the plant fitness function and the maximum number of
seeds ðqmaxÞ as defined by Eq. 17.113 (Premaratne et al. 2009):

s ¼ / f ðxÞ; qmax½ �; ð17:113Þ

In general, the fitness function is depending on its fitness in proportion to the
fittest plant of the population ðymaxÞ as shown in Eq. 17.114 (Premaratne et al.
2009):

s ¼ qmax

y� yt

ymax � yt

� �

: ð17:114Þ

• Pollination behaviour: In any paddy field, the strong ones (best solution) have
greater opportunity to pass their seeds to future generations via pollination
behaviour. This behaviour is a major factor either via animals or through wind.
High population density would increase the chance of pollination for pollen
carried by the wind. That means, the plant with more neighbours (i.e. neigh-
bourhood function N) will be better pollinated. The number of viable seeds ðsvÞ
produced by a plant can be expressed as Eq. 17.115 (Premaratne et al. 2009):

sv ¼ N/ f ðxÞ; qmax½ �; 0	N	 1: ð17:115Þ

In order to satisfy this condition, a sphere of radius ðaÞ is used. For two plants xj

and xk, the perimeter formula (see Eq. 17.116) (Premaratne et al. 2009)

n xj; xk

� �
¼ xj � xkk
�
� � a; ð17:116Þ

is used. If the two are within the sphere, then n\0. From this for a particular
plant, the number of neighbours ðvjÞ can be determined. Once this is done, the

272 17 Emerging Biology-based CI Algorithms

pollination factor for that plant can be obtained from Eq. 17.117 (Premaratne
et al. 2009),

Nj ¼ e
vj

vmax
�1½ �; ð17:117Þ

where vmax is maximum neighbour number of the plant.
• Dispersion behaviour: In order to prevent getting stuck in local minima, the

seeds of each plant are dispersed and then the cycle stars again from the
selection stage. In PFA, when dispersing, the dimension values take a Gaussian
distribution which could provide a faster convergence in local search. The new
seed will land on a location in the parameter space given by Eq. 17.118 (Pre-
maratne et al. 2009):

Xiþ1
seed ¼ F xi; r

� �
; ð17:118Þ

where r is the coefficient of dispersion, which can determine the dispersion
degree of produced seeds.

17.37.2 Performance of PFA

The difference between PFA and other nature-inspired algorithms (such as evo-
lutionary algorithms) is PFA uses pollination and dispersal between individuals as
mainly operators. In addition, unlike the basic version of PSO, in PFA, the random
numbers are not generated by applying the uniform distribution function. Instead,
the Gaussian probability distribution function is applied. This offers the advantage
of enhanced search capability while maintaining adequate exploitation capability
(Premaratne et al. 2009).

17.38 Photosynthetic Algorithm

The process of which the carbon atoms in CO2 are incorporated into glucose,
C6H12O6, in green plants is normally referred to as photosynthesis (Whitten et al.
2014). It is often regarded as one of the key biological process in the biosphere
(Dubinsky 2013; Carpentier 2011). Normally, oxygenic photosynthesis can be
found occurring in cyanobacteria, algae and land plants (Dubinsky 2013).
Although the actual process is quite complex, the following net equation (see
Eq. 17.119) can be used to simply describe the phenomenon of photosynthesis
(Whitten et al. 2014; Reece et al. 2011; Jelinek 2013; Hobbs et al. 2013):

6CO2 þ 6H2O ������!sunlight

chlorophyll
C6H12O6 þ 6O2; ð17:119Þ

17.37 Paddy Field Algorithm 273

where chlorophyll contains magnesium ions which are bond to porphyrin rings and
it is critical substance for photosynthesis.

In nature, ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco for short)
is the most abundant protein on Eearth, comprising almost the half of the protein in
leaves. Basically Rubisco catalyses the carboxylation of ribulose-1, 5-bishosphate
(RuBP), generating two molecules of 3-phosphoglycerate (3-PGA). Rubisco is a
vary useful bifunctional enzyme that fixes the liberated CO2 in the chloroplasts of
photosynthetic organism through its carboxylase activity (Dubinsky 2013). This
irreversible first step of photosynthesis is therefore the entering point for carbon
into the biosphere (Carpentier 2011).

On our planet, most of the energy required to develop and sustain life is
supplied by the capture of sunlight by photosynthetic organisms (Carpentier 2011).
Photosynthesis is thus often treated as the source of global food, feed, fibre, and
timber production as well as biomass-based bio-energy. The renewability is
the main characteristic of each of these products of photosynthesis. For instance
the main products photosynthesis are starch and sucrose where the latter is also the
main form of carbon translocated from leaves to other organs in plants (Dubinsky
2013). Since photosynthesis is, in itself, a multidisciplinary research area which
involves such as agriculture, environmental sciences, forestry, plant genetics,
photobiology, photophysics, plant physiology, and biochemistry, the detailed
explanation of many of its general and fundamental research methods and recent
advances is out of the scope of the present book, interested readers are referred to
the corresponding studies, e.g., (Acquaah 2012; Carpentier 2011; Dubinsky 2013;
Maathuis 2013), for more relative information.

For the rest of this section, we will introduce an emerging CI algorithm which is
based on the findings extracted from photosynthesis research.

17.38.1 Fundamentals of Photosynthetic Algorithm

Motivated by the principle of Benson-Calvin cycle Phase-1 and the reaction that
happens in the chloroplast subcellular compartment for photorespiration, photo-
synthetic algorithm (PA) was originally proposed in Murase (2000). To perform
the PA, the following calculation processes need to be followed (Murase 2000):

• First, randomly generating the intensity of light.
• Second, evaluating the fixation rate of CO2 via the following equation (also refer

to as the stimulation function in the PA algorithm) based on the light intensity
(Murase 2000). This is a unique characteristic of the PA algorithm. Such
stimulation often happens as a result of randomly changed light intensity which
in turn adjusts the influential degree on the elements of RuBP [i.e., ribulose-1, 5-
bishosphate (Carpentier 2011)] by photorespiration as shown in Eq. 17.120.

274 17 Emerging Biology-based CI Algorithms

C ¼ Vmax

1þ A=L
; ð17:120Þ

where the CO2 fixation rate is denoted by C, Vmax represents the maximum CO2

fixation rate, A stands for the affinity of CO2, and L is used to express the light
intensity.

• Third, based on the fixation rate obtained from the stage above, one of two
cycles, either Benson-Calvin or photorespiration will be selected at this stage.
For both cycles, Murase (2000) utilized 16-bit strings which shuffles based on
carbon molecules recombination rule in photosynthetic pathways.

• Then after certain rounds of iterations, an amount of GAPs, i.e., glyceraldehyde-
3-phosphate (Dubinsky 2013), are generated for representing intermediate
knowledge strings in the PA algorithm. Each GAP is composed of 16 bits. The
fitness of these GAPs will be evaluated at this stage. The best fit GAP will
remain as a DHAP [i.e., di-hydroxyacetone phosphate (Carpentier 2011)] which
is referred to as the current estimated value.

Taking into account the fundamental process described above, the steps of
implementing PA can be summarized as follows (Murase 2000; Alatas 2011; Yang
2005):

• Step 1: Initializing the following problem parameters such as f xð Þ (the object
function), xi (the decision variable), N (the number of decision variables), and
the boundary of constraints.

• Step 2: Initializing the following problem parameters such as DHAPs, and CO2

fixation parameters (e.g., affinity A, maximum fixation rate Vmax, and light
intensity L).

• Step 3: Calculating CO2 concentration, determining O2=CO2 concentration
ration, and setting Benson-Calvin/photorespiration frequency ratio.

• Step 4: Evaluating if the stopping criteria are met. If yes, the algorithm stops;
otherwise, go to the next step.

• Step 5: Depending the fixation rate of CO2, the 16-bit strings are shuffled in
either Benson-Calvin or photorespiration cycle.

• Step 6: Comparing the fitness value where the poor results will be removed and
the desired DHAP strings and results will be remained.

• Step 7: Updating the light intensity and the next round of iteration of the PA
algorithm starts.

17.38.2 Performance of PA

In order to verify the proposed PA, the finite element inverse analysis problem was
employed in Murase (2000). The prediction of the elastic moduli of the finite
element model via PA was quite satisfied. The overall performance demonstrated
by this preliminary application make PA a very attractive optimization algorithm.

17.38 Photosynthetic Algorithm 275

17.39 Population Migration Algorithm

In this section, we will introduce an emerging CI algorithm that is inspired by the
population migrating mechanism (Ramachandran 2012a, b, c).

17.39.1 Fundamentals of Population Migration Algorithm

Population migration algorithm (PMA) was originally proposed in Zhou and Mao
(2003). There are several variants and application can be found in the literature
(Zhang et al. 2009; Zhang and Zhou 2009; Wang et al. 2010; Lu and Liu 2011;
Zhao and Liu 2009, 2011). To implement PMA, the following components need to
be considered (Zhang and Zhou 2009; Zhou and Mao 2003):

• Component 1: In PMA, the social-cooperation strategy of PMA can be defined
by Eq. 17.121 (Zhang and Zhou 2009):

at ¼ xbest; 1; population migration; xbest½ �: ð17:121Þ

• Component 2: In PMA, the self-adaptation strategy can be divided into two
parts, namely, population flow and population proliferation. Mathematically, the
self-adaptation mechanism can be defined as Eq. 17.122 (Zhang and Zhou
2009):

bt ¼ popflow; popproliferation

� �
shrinkage the beneficial region

� ffi
: ð17:122Þ

• Component 3: Competition, i.e., population updating strategy can be described
as Eq. 17.123 (Zhang and Zhou 2009):

ct ¼ l ¼ k; l; kð Þ; record and update xbest and f xbestð Þ½ �: ð17:123Þ

17.39.2 Performance of PMA

To verify the proposed PMA, a set of experimental studies were conducted in
Zhou and Mao (2003). The simulation results demonstrated that PMA is a very
attractive optimization problem solver.

17.40 Roach Infestation Optimization

In this section, we will introduce an emerging CI algorithm that is based on the
collective behaviour of some insects, e.g., roach (Bater 2007; Chapman 2013).

276 17 Emerging Biology-based CI Algorithms

17.40.1 Fundamentals of Roach Infestation Optimization
Algorithm

Roach infestation optimization (RIO) algorithm was proposed by Havens et al.
(2008) that inspired by the recent observation of cockroaches’ social (both col-
lective and individual) behaviours. Typically, there are three types of behaviour
are employed in RIO, i.e., search behaviour, social behaviour, and hungry (for-
aging) behaviour. Each one is outlined as follows (Havens et al. 2008):

• Search behaviour ðFind DarknessÞ: As RIO is a cockroach-inspired PSO, this
behaviour is defined as Eq. 17.124 (Havens et al. 2008):

v
*

i ¼ C0v
*

i þ CmaxR
*

1� � p
*

i � x
*

i

� �
; ð17:124Þ

where v
*

i is the velocity of the ith agent (cockroach), x
*

i is the current location, p
*

i

is the best location found by the ith agent, C0;Cmaxf g are parameters, R
*

1 is a
vector of uniform random numbers and �� is element-by-element vector
multiplication.

• Social behaviour ðFind FriendsÞ: The agents will socialize and share their

information by setting the darkest local location ð l
*

Þ as shown in Eq. 17.125
(Havens et al. 2008):

l
*

i ¼ l
*

j ¼ arg min
k

F p
*

k

� �n o
; k ¼ i; jf g; ð17:125Þ

where l
*

i is the group best solution, i; jf g are the indices of the two socializing

cockroaches, and p
*

k is darkest known location for the individual cockroach
agent (i.e., the best personal location).

• Hunger behaviour ðFind FoodÞ: To model this behaviour, a parameter called
hunger counter ðhungeriÞ is employed. The main procedure deals with the
hungry degree checking of the agents which based on a threshed ðthungerÞ. If not
(i.e., hungeri\thunger), update the agent’s velocity as shown in Eq. 17.125
(Havens et al. 2008):

v
*

i ¼ C0v
*

i þ CmaxR
*

1� � p
*

i � x
*

i

� �
þ CmaxR

*

2� � l
*

i � x
*

i

� �

x
*

i ¼ x
*

i þ v
*

i;
ð17:126Þ

otherwise, the agent will be transported to other food location ðb
*

Þ randomly.
Also, this piece of food is randomly relocated.

17.40 Roach Infestation Optimization 277

17.40.2 Performance of RIO

To check the efficiency of RIO, a number of numerical examples were adopted in
Havens et al. (2008), such as Sphere function, Rastrigin function, Rosenbrock
function, Ackley function, Griewank function, Michalewicz function, Easom
function, and Hump function. Compared with other CI algorithms (e.g., PSO), the
proposed algorithm is more effective for optimizing highly-modal function.

17.41 Saplings Growing Up Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
behaviours observed from saplings (Schnell and Priyadarshan 2012; Tidball and
Krasny 2014; Reece et al. 2011).

17.41.1 Fundamentals of Saplings Growing Up Algorithm

Saplings growing up algorithm (SGuA) was originally proposed in Karci (2007a,
b, c) and Karci and Alatas (2006). To implement SGuA, the following steps need
to be performed (Karci 2007a, b, c; Karci and Alatas 2006):

• Sowing phase: In sowing phase, a uniform population method and divide-and-
generate paradigm was proposed for initial population generating. Initially, two
saplings are set where S0 ¼ u1; u2; . . .; unf g and S1 ¼ l1; l2; . . .; lnf g, n is the
length of sampling and this case the dividing factor ðkÞ is considered as k ¼ 1,
uiand li are upper and lower bounds for corresponding variables. Then the factor
k is determined. For k ¼ 2 and two extra S2 and S3 are divided from S0 and S1 as
shown in Eqs. 17.127 and 17.128, respectively (Karci 2007a, b, c; Karci and
Alatas 2006):

S2 ¼ r1; r2; . . .; rn=2; rn=2þ1; rn=2þ2; . . .; rn

 �
; ð17:127Þ

S3 ¼ r � l1; r � l2; . . .; r � ln=2; r � un=2þ1; r � un=2þ2; . . .; r � un

 �
; ð17:128Þ

where r is a random number such as 0	 r	 1. Let us consider the population P
size as Pj j and the number of elements in the set of generated saplings S as Sj j.
So if Sj j\ Pj j, then the value of k is increased by 1, and 23 � 2 ¼ 8� 2 ¼ 6
saplings can be derived from S0 and S1, which are not in S, since S0 and S1 are
divided into three parts. The remaining saplings in the garden will be obtained
by applying same method with increasing the value of k. This process goes on
until Sj j � Pj j. Hereafter, the first Pj j elements of the set S are taken as saplings’
population.

278 17 Emerging Biology-based CI Algorithms

• Growing up phase: This phase contains three operators: mating, branching, and
vaccinating operators.
The aim of mating to generate a new sapling from currently existing saplings
(global search) by interchanging current exist information between temporary
solutions. In general, the distance between two saplings affects the mating
process’ taking place or not, and it depends on the distance between current pair
(i.e., it has greater probability for near saplings and has small probability for
saplings far away to each other). Let Pm S1; S2ð Þ can be computed in the fol-
lowing two ways as shown in Eqs. 17.129 and 17.130, respectively (Karci
2007a, b, c; Karci and Alatas 2006):

Pm S1; S2ð Þ ¼ 1�
Pn

i¼1 s1;i � s2;i
� �2

� �1
2

R
; ð17:129Þ

Pm S1; S2ð Þ ¼
Pn

i¼1 s1;i � s2;i
� �2

� �1
2

R
1�

Pn
i¼1 s1;i � s2;i
� �2

� �1
2

R

0

B
@

1

C
A; ð17:130Þ

where R ¼
Pn

i¼1 ui � lið Þ2
� �1

2

, ui and li are upper and lower bounds for corre-
sponding variables.
Branching: each sapling consists of branches, and initially each sapling contains
no branches ðP s1;j

�
�s1;i

� �
¼ 1Þ and it is a body. In order to grow up a branch on

any point (i.e., a new sapling) from currently exist saplings, the author used
probabilistic method for determination of branch position depending on the
currently exist branches position. It aims at embedding/removing new knowl-
edge into/from the current solutions set. Let S1 ¼ s1;1s1;2. . .s1;i. . .s1;n be a sap-
ling. If a branch occurs in point s1;i, then the probability of this pint could be
calculated in two ways listed below (see Eqs. 17.131 and 17.132, respectively)
(Karci 2007a, b, c; Karci and Alatas 2006): linear and non-linear. The distance
between s1;i and s1;j (where i 6¼ j) can be considered as j� ij j or i� jj j.

linear case: P s1;j

�
�s1;i

� �
¼ 1� 1

j� ij jð Þ2
; i 6¼ j; ð17:131Þ

non-linear case: P s1;j

�
�s1;i

� �
¼ 1� 1

e j�ij jð Þ2
; i 6¼ j: ð17:132Þ

Vaccinating: aims to generate new saplings from currently exist saplings which
are similar; since the dissimilarity of saplings affects the success of vaccinating
process (i.e., vaccinating success is proportional to the dissimilarity of both
saplings). In SGuA, if Dis S1; S2ð Þ� threshold, the dissimilarity of saplings is
computed in the following two ways shown in Eqs. 17.133 and 17.134,
respectively (Karci 2007a, b, c; Karci and Alatas 2006):

17.41 Saplings Growing Up Algorithm 279

S1 ¼
s1;i if s1;i ¼ s2;i

random 1ð Þ if s1;i 6¼ s2;i

�

; ð17:133Þ

S2 ¼
s2;i if s2;i ¼ s1;i

random 1ð Þ if s2;i 6¼ s1;i

�

; ð17:134Þ

where S1 and S2 are obtained as consequence of applying vaccinating process to
S1 and S2; random 1ð Þ generates a random number which is 0 or 1.
The initial value of threshold depends on the problem solvers. For example, G
and H are saplings and the similarity of S1 and S2 is Dis ðS1; S2Þ ¼

Pn
i¼1

s1;i � s2;i

�
�

�
�=ui � li. If Dis ðS1; S2Þ� n � e, where e is a user-defined constant

ð0\e\1Þ, then S1 and S2 are vaccinated through Eqs. 17.135 and 17.136,
respectively (Karci 2007a, b, c; Karci and Alatas 2006):

S1 ¼
s1;i if

s1;i�s2;ij j
ui�li

	 e

s2;i if
s1;i�s2;ij j

ui�li
[e

8
<

:
; ð17:135Þ

S2 ¼
s2;i if

s1;i�s2;ij j
ui�li

	 e

s1;i if
s1;i�s2;ij j

ui�li
[e

8
<

:
: ð17:136Þ

In fact, the vaccinating process is opposite to mating process, since vaccinating
operator uses dissimilarity in the garden. Thus, the vaccinating operator can also
compute the distance between saplings and then compute the probability of
saplings as defined by Eq. 17.137 (Karci 2007a, b, c; Karci and Alatas 2006):

PvðS1; S2Þ ¼
Pn

i¼1 s1;i � s2;i
� �2

� �1=2

R
; ð17:137Þ

where PvðS1; S2Þ is the probability of S1 and S2 to be vaccinated.

17.41.2 Performance of SGuA

Compare with GA, the SGuA has some unique characteristics (Karci 2007b): (1) it
uses objective function for determination of quality of saplings in contrast to GA
due to the difficulty of defining fitness function; (2) the SGuA uses less parameter
determined by the user (only one for vaccinating operator) and obtained better
results with less time steps with respect to GA; (3) it uses similarity and dissim-
ilarity properties in to current solutions set with property of new information not
adding in neighbor points which GA did; (4) GA is a global search method but
SGuA contains both local and global search steps. Furthermore, one of the unique

280 17 Emerging Biology-based CI Algorithms

features of the PA is that the operator within SGuA can be applied in two different
ways: sequentially and separately. Those processes allow the SGuA more flexible
and faster than others.

17.42 Seeker Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is inspired by the
act of human searching behaviour.

17.42.1 Fundamentals of Seeker Optimization Algorithm

Seeker optimization algorithm (SeOA) was originally proposed in Dai et al. (2006,
2007). There are several variants and applications can be found in the literature
(Dai et al. 2009a, b, 2010a, b; Shaw et al. 2011)

• Step 1: Initialization. Creating S positions which are described as Eq. 17.138
(Dai et al. 2007):

xi tð Þjxi tð Þ ¼ xi1; xi2; . . .; xiDð Þ; i ¼ 1; 2; . . .; S; t ¼ 0f g: ð17:138Þ

The positions are randomly and uniformly distributed in the parametric space.

• Step 2: Computing and evaluating each seeker’s fitness value.
• Step 3: Performing searching strategy. Giving search variables which includes

centre position vector, searching direction, searching radius, and trust degree.
• Step 4: Updating position. The new position of each seeker can be computed

through Eq. 17.139 (Dai et al. 2007):

~x t þ 1ð Þ ¼~cþ~d �~r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� log ~lð Þ

p
: ð17:139Þ

• Step 5: Checking whether the stopping criterion is met. If yes, terminating the
algorithm; otherwise, return to Step 3.

17.42.2 Performance of SeOA

To verify the proposed SeOA, 6 typical testing functions with varying complex-
ities and number of variables were employed in Dai et al. (2007). These functions
included such as Goldstein and Price function, De Jong’s function 2, and
Griewangk’s function. In comparison with other CI algorithms (e.g., GA, PSO),
SeOA outperformed its competitors in all cases.

17.41 Saplings Growing Up Algorithm 281

17.43 Self-organising Migrating Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
competitive-cooperative behaviour of intelligent creatures.

17.43.1 Fundamentals of Self-organising Migrating
Algorithm

Self-organising migrating algorithm (SOMA) was first proposed in Zelinka and
Lampinen (2000). There are several variants and applications can be found in the
literature (Nolle et al. 2005; Senkerik et al. 2010; Zelinka et al. 2009; Davendra
and Zelinka 2009; Davendra et al. 2013). Two evolutionary operators (i.e.,
mutation and crossover) are employed in SOMA to maintain the perturbation of
individuals and movement of an element. The main steps of SOMA are outlined as
follows (Davendra et al. 2013):

• Step 1: Initializing the parameters.
• Step 2: Creation the populations. The population is generated via Eqs. 17.140

and 17.141, respectively (Davendra et al. 2013):

P ¼ Xt
1;X

t
2; . . .;Xt

b

n o
; ð17:140Þ

Xt
i ¼ xt

i;1; x
t
i;2; . . .; xt

i;n

� �
; where xt

i;j :
i ¼ 1; . . .; b
j ¼ 1; . . .;N

�

; ð17:141Þ

where b is the number of individuals, xt
i;j represents the element in each indi-

vidual, and N is the dimension of the problem.

• Step 3: Iterative procedure. First, Evaluate the cost function of each individual
as follows (Davendra et al. 2013):

Ct
i ¼ f Xt

i

� �
; i ¼ 1; . . .; b: ð17:142Þ

Second, create the perturbation matrix ðAi;j PRTð ÞÞ for each element ðxt
i;jÞ in an

individual ðXt
iÞ as defined by Eq. 17.143 (Davendra et al. 2013):

Ai;j ¼
1 if randð Þ\PRT
0 otherwise

�

;
i ¼ 1; 2; . . .; b
j ¼ 1; 2; . . .;N

�

; ð17:143Þ

where PRT 2 0; 1½ � is a parameter that to achieve perturbation.
Third, all individuals perform their run towards the selected individual (leader),

which has the best fitness for the migration as follows (Davendra et al. 2013):

282 17 Emerging Biology-based CI Algorithms

xt
i;j ¼ xt�1

i;j þ xt�1
L;j � xt�1

i;j

� �
sAi;j; ð17:144Þ

where xt
i;j is new candidate individual, xt�1

i;j is the original individual, xt�1
L;j is the

leader individual, s 2 0; path length½ �, and Ai;j is perturbation matrix.
Fourth, Calculate the cost function and keep the best solutions.

• Step 4: Post process and visualize results.

17.43.2 Performance of SOMA

To test the performance of SOMA, a set of experimental studies are conducted in
Zelinka and Lampinen (2000). Computational results showed that SOMA is very
competitive.

17.44 Sheep Flock Heredity Model Algorithm

In this section, we will introduce an emerging CI algorithm that is based on some
observations from sheep herd (Mills et al. 2010).

17.44.1 Fundamentals of Sheep Flock Heredity Model
Algorithm

Sheep flock heredity model (SFHM) algorithm was originally proposed in Nara
et al. (1999) and Kim and Ahn (2001). There are several applications can be found
in the literature (Chandrasekaran et al. 2006; Subbaiah et al. 2009; Anandaraman
2011; Venkumar and Sekar 2012; Anandaraman et al. 2012; Mukherjee et al.
2012). The natural evolution phenomenon of sheep flocks can be associated to the
genetic operations of string which we can define the following two kinds of genetic
operation: (1) Traditional genetic operations between two strings; and (2) Genetic
operations between sub-strings within one string. This kind of genetic operation is
referred to as the ‘‘multi-stage genetic operation’’. In summary, to implement
SFHM algorithm, the following steps need to be performed (Chandrasekaran et al.
2006; Nara et al. 1999; Mukherjee et al. 2012; Kim and Ahn 2001):

• Step 0: Initializing the population of artificial sheep herd.
• Step 1: Selecting the parent, setting the probability of sub-chromosome level

crossover, performing the sub-chromosome level of crossover.
• Step 2: Selecting two sequences from population, setting crossover probability,

performing chromosome level of crossover.
• Step 3: Checking the termination condition.

17.43 Self-organising Migrating Algorithm 283

17.44.2 Performance of SFHM

To verify the proposed SFHM, Kim and Ahn (2001) tested it on a 23 generators’
maintenance scheduling problem. It was assumed in the study that the system load
will increase by 2 % per annual. The simulation results showed that the proposed
SFHM outperform its competitor algorithm with a better solution quality and
almost twice of the calculation times’ reduction.

17.45 Simple Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on two
very simple mechanisms, namely, exploration and exploitation.

17.45.1 Fundamentals of Simple Optimization Algorithm

Simple optimization (SPOT) algorithm, a population-based approach, was recently
proposed in Hasançebi and Azad (2012). Briefly, the SPOT algorithm can be
summarized as follows (Hasançebi and Azad 2012):

• Step 1: Generating a population of stochastically proposed candidate solutions
and initiating the exploration procedure.

• Step 2: Evaluating the members of population according to an objective
function.

• Step 3: Determining the best candidate solution among the whole population
group.

• Step 4: Calculating the standard deviation of each column of population.
• Step 5: Starting the exploitation process and creating a set of new candidate

solutions through Eq. 17.145 (Hasançebi and Azad 2012):

xnew ið Þ ¼ xbest ið Þ þ k2 � R ið Þ; ð17:145Þ

where k2 ¼ 0:5k1, in comparison with the exploration stage.
• Step 6: Evaluating the newly created candidate solutions.
• Step 7: Replacing the worst population members with the better new ones.
• Step 8: Determining the best candidate solution within the population.
• Step 9: Calculating the standard deviation again for each column of population.
• Step 10: Activating the exploration procedure and creating a set of new can-

didate solutions through Eq. 17.146 (Hasançebi and Azad 2012):

xnew ið Þ ¼ xbest ið Þ þ k1 � R ið Þ; ð17:146Þ

284 17 Emerging Biology-based CI Algorithms

where k1 stands for a positive constant, and R ið Þ represents a normal distributed
random number with a mean zero and a stand deviation of rR ið Þ.

• Step 11: Evaluating the newly created candidate solutions.
• Step 12: Checking whether the stopping criterion is met. If not, repeating the

algorithm from Step 3; otherwise, terminates the algorithm.

17.45.2 Performance of SPOT

Hasançebi and Azad (2012) employed two well-known benchmark engineering
optimization problems, namely, welded beam and pressure vessel design optimi-
zation, to verify the proposed SPOT algorithm. Compared with the best available
methods found in the literature, the results obtained by SPOT is very attractive.

17.46 Slime Mold Algorithm

In this section, we will introduce an emerging CI algorithm that is based on slime
mold related studies (Newell 1978).

17.46.1 Fundamentals of Slime Mold Algorithm

Slime mold algorithm (SMA) was recently proposed in Li et al. (2011). There are
several slime mold related applications can be found in the literature (Umedachi
et al. 2010; Tero et al. 2010; Adamatzky and Oliveira 2011; Li et al. 2011; Shann
2008) To implement SSOA, the following steps need to be performed (Li et al.
2011):

• Step 1: Initializing slime mold around the one or more food sources.
• Step 2: The slime mold will stream towards a newly introduced food source

based on a gradient descent rule. The total field u is computed via Eq. 17.147
(Li et al. 2011):

u ¼
XN

i¼1
fi � �fð Þ � ln x� xij j2

� �
; ð17:147Þ

where the number of discovered food sources is denoted by N, fi is the remaining
nutrient amount found at the ith food source, and �f is the mean of all fi.

• Step 3: Once slime mold arrives at a newly discovered food resource, such food
resource will be linked to the network. Nutrient values of the new connected
food resources will gradually decay.

17.45 Simple Optimization Algorithm 285

• Step 4: Checking whether the stopping criterion is met. If yes, the algorithm
terminates; otherwise, i.e., unconnected food sources still existing, return to
Step 2.

17.46.2 Performance of SMA

Based on the proposed SMA, Li et al. (2011) presented two self-organizing routing
protocols for wireless sensor networks by considering both efficiency and
robustness. The simulation conducted in their study proved that the proposed
protocol is effective in building network connectivities, with a trade-off between
efficiency and robustness.

17.47 Social Emotional Optimization Algorithm

In this section, we will introduce an emerging CI algorithm which is inspired from
the human society. As we know, group decisions are very important for us and
they have been studied for millennia. They are range from small-scale decisions,
e.g., some advices taken by groups of relatives, friends or colleagues, to large-
scale decisions, e.g., nation-wide democratic electrons and international agree-
ments (Conradt and List 2009).

17.47.1 Fundamentals of Social Emotional Optimization
Algorithm

Social emotional optimization algorithm (SEOA) was originally proposed in Xu
et al. (2010), Wu et al. (2011), Wei et al. (2010), Cui and Cai (2010), Chen et al.
(2010b) and Cui et al. (2010, 2011). Each person is viewed as a solution. Through
cooperation and competition mechanisms, the personal social status will be
increased and the best one will win and output as the final solution. The main steps
of SEOA are outlined as follows:

• Step 1: Initializing all individuals randomly in the search space. In the fist step,
all individuals’ emotion indexes are set to 1 as shown in Eq. 17.148 (Cui et al.
2012):

x
*

j 1ð Þ ¼ x
*

j 0ð Þ �Manner1; ð17:148Þ

286 17 Emerging Biology-based CI Algorithms

where x
*

j 1ð Þ represents the social position of the jth individual in the initiali-
zation period, � means the operation. The movement phase of Manner1 is
defined by Eq. 17.149 (Cui et al. 2012):

Manner1 ¼ �k1 � rand1 �
XL

w¼1

x
*

w 0ð Þ � x
*

j 0ð Þ
� �

; ð17:149Þ

where k1 is a parameter used to control the emotion changing size, rand is a
random number with uniform distribution, L represents the worst individuals
that are selected to provide a remainder for the jth individual to avoid the wrong
behaviour.

• Step 2: Computing the fitness value of each individual according to the objective
function.

• Step 3: For the jth individual, determining the value X
*

j;bestð0Þ.
• Step 4: For all population, determining the value Status

*

best 0ð Þ.
• Step 5: Determining three emotional index via Eq. 17.150 (Cui et al. 2012):

x
*

j t þ 1ð Þ ¼ x
*

j tð Þ �Manner2 If BIj t þ 1ð Þ\TH1

x
*

j t þ 1ð Þ ¼ x
*

j tð Þ �Manner3 If TH1	BIj t þ 1ð Þ\TH2

x
*

j t þ 1ð Þ ¼ x
*

j tð Þ �Manner4 otherwise

8
<

:
; ð17:150Þ

where TH1 and TH2 are two thresholds aiming to restrict the different behaviour
manner.

• Step 6: Determining different decisions according to Eqs. 17.151–17.153,
respectively (Cui et al. 2012):

Manner2 ¼ k3 � rand3 � X
*

j;best tð Þ � x
*

j tð Þ
� �

þ k2 � rand2 � Status
*

best tð Þ � x
*

j tð Þ
� �

;

ð17:151Þ

Manner3 ¼ k3 � rand3 � X
*

j;best tð Þ � x
*

j tð Þ
� �

þ k2 � rand2 � Status
*

best tð Þ � x
*

j tð Þ
� �

� k1 � rand1 �
XL

w¼1

x
*

w 0ð Þ � x
*

j 0ð Þ
� �

;

ð17:152Þ

Manner4 ¼ k3 � rand3 � X
*

j;best tð Þ � x
*

j tð Þ
� �

� k1 � rand1 �
XL

w¼1

x
*

w 0ð Þ � x
*

j 0ð Þ
� �

;

ð17:153Þ

where Status
*

best tð Þ represents the best society status position obtained from all

people previously, and X
*

j;bestðtÞ denotes the best status value obtained by the jth

17.47 Social Emotional Optimization Algorithm 287

individual previously. Both can be defined by Eqs. 17.154 and 17.155,
respectively (Cui et al. 2012):

Status
*

best tð Þ ¼ arg min f x
*

w hð Þ 1	 h\tj
� �n o

; ð17:154Þ

X
*

j;best tð Þ ¼ arg min f x
*

j hð Þ 1	 h\tj
� �n o

: ð17:155Þ

• Step 7: Making mutation operation.
• Step 8: Checking termination criteria, if it is satisfied, output the best solution;

otherwise, go to Step 3.

17.47.2 Performance of SEOA

To test the performance of SEOA, a set of benchmark functions were adopted in
Cui et al. (2012). Compared with other CI algorithms, SEOA has a remarkable
superior performance in terms of accuracy and convergence speed.

17.48 Social Spider Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on some
findings regarding the spider colony (Bater 2007; Chapman 2013; Levin 2013a, b,
c, d, e, f).

17.48.1 Fundamentals of Social Spider Optimization
Algorithm

Spider algorithm has been around for a while for dealing with like search engine
optimization (Whitehouse and Lubin 1999; Jonassen 2006; Du et al. 2005). Social
spider optimization algorithm (SSOA) was recently proposed in Cuevas et al.
(2013). To implement SSOA, the following steps need to be performed (Cuevas
et al. 2013):

• Step 1: Setting the total number of n-dimensional colony members as N and
defining the number of male Nmale and female Nfemale spiders in the entire colony
S based on Eq. 17.156 (Cuevas et al. 2013):

Nmale ¼ N � Nfemale

Nfemale ¼ floor 0:9� rand � 0:25ð Þ � N½ �;
ð17:156Þ

288 17 Emerging Biology-based CI Algorithms

where rand stands for a random number which falls within the range of 0; 1½ �,
and floor �ð Þ indicates the mapping between a real and an integer numbers.

• Step 2: Initializing stochastically the female and male members and computing
the mating radius according to Eq. 17.157 (Cuevas et al. 2013):

r ¼
Pn

j¼1 phigh
j � plow

j

� �

2 � n : ð17:157Þ

• Step 3: Calculating the weight of each spider in colony S through Eq. 17.158
(Cuevas et al. 2013):

wi ¼
J sið Þ � worsts
bests � worsts

; ð17:158Þ

where J sið Þ denotes the fitness value acquired through the evaluation of the
spider position si with regard to the objective function J �ð Þ.

• Step 4: Moving female spiders according to the female cooperative operator
modelled as shown in Eq. 17.159 (Cuevas et al. 2013):

fkþ1
i ¼

fk
i þ a � Vibci � sc � fk

i

� �
þ b � Vibbi � sb � fk

i

� �

þd � rand � 1
2ð Þ with probability PF

fk
i � a � Vibci � sc � fk

i

� �
� b � Vibbi � sb � fk

i

� �

þd � rand � 1
2ð Þ with probability 1� PF

8
>><

>>:

; ð17:159Þ

where a, b, d, and rand are random numbers which fall within the range of 0; 1½ �.
• Step 5: Similarly moving male spiders according to the male cooperative

operator expressed as Eq. 17.160 (Cuevas et al. 2013):

mkþ1
i ¼

mk
i þ a � Vibfi � sf �mk

i

� �
þ d � rand � 1

2ð Þ if wNfemaleþi [wNfemaleþm

mk
i þ a �

PNmale

h¼1

mk
h�wNfemaleþh

PNmale

h¼1

wNfemaleþh

�mk
i

0

B
@

1

C
A if wNfemaleþi	wNfemaleþm

8
>>>><

>>>>:

;

ð17:160Þ

where sf indicates the nearest female spider to the male individual.
• Step 6: Performing the mating operation.
• Step 7: Checking whether the stopping criterion is satisfied. If yes, the algorithm

terminates; otherwise, return to Step 3.

17.48 Social Spider Optimization Algorithm 289

17.48.2 Performance of SSOA

Different to other evolutionary algorithms, in SSOA, each individual spider is
modelled by taking its gender into account. This design allows incorporating
computational mechanisms to avoid critical flaws and incorrect exploration-
exploitation trade-off. In order to show how the SSOA performs, Cuevas et al.
(2013) collected a comprehensive set of 19 benchmark test function from the
literature. In comparison with other CI algorithms (e.g., PSO), the experimental
results confirmed an acceptable performance of the SSOA in terms of the solution
quality.

17.49 Society and Civilization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on some
findings regarding the human social behaviour (Irvine 2013; Müller 2013; Gross
2014; Bhugra et al. 2013; Adair 2007; Chen and Lee 2008; Savage 2012; Magstadt
2013; Chalmers 2010).

17.49.1 Fundamentals of Society and Civilization Algorithm

Society and civilization algorithm (SCA) was recently proposed in Ray and Liew
(2003). To implement US algorithm, the following steps need to be performed
(Ray and Liew 2003):

• In SCA, for each individual, c indicates the constraint satisfaction vector
denoted by c ¼ c1; c2; . . .; cs½ � as shown in Eq. 17.161 (Ray and Liew 2003):

ci ¼

0
if ith constraint satisfied

i ¼ 1; 2; . . .; s

�gi xð Þ if ith constraint violated
i ¼ 1; 2; . . .; q

hi xð Þ � d
if ith constraint violated

i ¼ qþ 1; qþ 2; . . .; qþ r

d� hi xð Þ if ith constraint violated
i ¼ qþ r þ 1; qþ r þ 2; . . .; s

8
>>>>>>>>><

>>>>>>>>>:

: ð17:161Þ

• Creating N random individuals standing for a civilization.
• Evaluating each individual according to the computed objective function value

and constraints.

290 17 Emerging Biology-based CI Algorithms

• Building societies so that
SK tð Þ

i¼1 Soci tð Þ ¼ Civ tð Þ and Soci tð Þ \ Socj tð Þ ¼ /;
for i 6¼ j.

• Identifying society leaders so that Soc Li tð Þ � Soci tð Þ; i ¼ 1; 2; . . .;K tð Þ.
• Performing move function Moveð Þ.

17.49.2 Performance of SCA

In order to show how the SCA algorithm performs, Ray and Liew (2003)
employed 4 well-studied benchmark engineering design optimization problems
such as welded beam design, spring design, speed reducer design, and the three-bar
truss design. Compared with the best results obtained from the literature, the
proposed SCA performed consistently well on all cases. Meanwhile, the algorithm
exhibits a robust convergence for all selected problems which make it a very
attractive optimization algorithm.

17.50 Stem Cells Optimization Algorithm

During the past three decades, our understanding of embryonic cells has increased
dramatically. The humbling beginning started thirty years ago when embryonic
stem cells were first cultured from mouse embryos. It was only 15 years later, we
were able to derive human embryonic stem cells from human embryos that were
donated from early blastocysts which are no more need for in vitro fertilization
(Sell 2013). Throughout all creature’s life, the balance between cell birth and death
is largely regulated by complex genetic systems in response to various growth and
death signals. During this dynamic procedure, stem cells are present within most if
not all multicellular organisms and are crucial for developing, tissue repairing, as
well as aging and cancer (Resende and Ulrich 2013; Sell 2013). Briefly, stems cells
can be defined as biological cells which have the ability of self-renewal and the
capability in differentiating into various cell types (Sell 2013). They are thus
regarded as one of the most important biological components which is essential to
the proper growth and development in the process of embryogenesis. Since the
detailed information regarding the stem cells is out of the scope of the present
book, interested readers are referred to the corresponding studies, e.g., (Resende
and Ulrich 2013; Sell 2013), for more recent advancement in this field.

For the rest of this section, we will introduced an emerging CI algorithm which
is based on the findings of some important characteristics of stem cells.

17.49 Society and Civilization Algorithm 291

17.50.1 Fundamentals of Stem Cells Optimization Algorithm

Stem cells optimization algorithm (SCOA) was originally proposed in Taherd-
angkoo et al. (2011, 2012b). To perform the SCOA algorithm, the following
procedure needs to be followed (Taherdangkoo et al. 2012b):

• First, dividing the problem space into sections. The process can be accomplished
totally in a random manner;

• Second, generating the initial population randomly and uniformly distributed in
the whole search space of the target problem. At this stage, similar to most
optimization algorithms, a variable matrix needs to be established for the pur-
pose of obtaining a feedback with respect to problem variables. In SCOA, the
key stem cells features are used to form the initial variable matrix. Such features
may include liver cells, intestinal cells, blood cells, neurons, heart muscle cells,
pancreatic islets cells, etc. Basically, the initial matrix can be express as
Eq. 17.162 (Taherdangkoo et al. 2012b):

Population ¼

X1

X2

� � �
XN

2

6
6
4

3

7
7
5; ð17:162Þ

where Xi ¼ Stem Cells ¼ SC1; SC2; . . .; SCN½ �; i ¼ 1; 2; . . .;N.
In SCOA, some initialized parameters are defined as follows: M represents the
maximum of stem cells; P stands for population size ð10\P	MÞ; COptimum

indicates the best of stem cell in each iteration; v denotes the penalty parameter
which is used to stop the growth of stem cell; and sci is the ith stem cell in the
population.

• Third, the cost of each stem cell is obtained a criterion function which is
determined based on the nature of the target problem. In SCOA, two types of
memory, namely, local- and global-memory, are defined for each cell in which
the local-memory is used to store the cost of each stem cell, and the global-
memory stores the best cost among all locally stored cost values;

• Then, a self-renewal process will be performed which involves only the best
cells of each area. At this stage, the information of each area’s best cells will be
shared and the cell that possesses the best cost will thus be chosen. In SCOA,
such cell is designed to play a more important role than other cells. Briefly, the
stem cells’ self-renewal operation is computed through Eq. 17.163 (Taherd-
angkoo et al. 2012b):

SCOptimum t þ 1ð Þ ¼ fSCOptimum tð Þ; ð17:163Þ

where the iteration number is denoted by t, SCOptimum represents the best stem
cell found in each iteration, and f is a random number which falls within 0; 1½ �.

292 17 Emerging Biology-based CI Algorithms

• Next, the above mentioned procedure will continue until the SCOA arrives at
the goal of getting the best cell while keeping the value of cost function as low
as possible. This is acquired via Eq. 17.164 (Taherdangkoo et al. 2012b):

xij t þ 1ð Þ ¼ lij þ u lij tð Þ � lkj tð Þ
� �

; ð17:164Þ

where the ith stem cell position for the solution dimension j is represented by xij,
the iteration number is denoted by t, two randomly selected stem cells for the
solution dimension j are denoted by lij and lkj, respectively, and u sð Þ (if
lij tð Þ � lkj tð Þ ¼ s) generates a random variable falls within �1; 1½ �.

• Finally, the best stem cell is selected when it has the most power relative to
other cells. The comparative power can be computed via Eq. 17.165 (Taherd-
angkoo et al. 2012b):

1 ¼ SCOptimum
PN

i¼1 SCi

; ð17:165Þ

where 1 stands for stem cells’ comparative power, SCOptimum denotes the stem
cells selected in terms of cost, and N represents the final population size, i.e.,
when the best solution is obtained and the SCOA algorithm terminates.

17.50.2 Performance of SCOA

Similar to other optimization algorithms, SCOA is also a population-based algo-
rithm. But the difference between SCOA and other CI algorithms lies in that it
employs minimal constraints and thus has a simpler implementation. The con-
verging speed of SCOA is faster than other algorithms in virtue of its simplicity
and its capability of escaping from local minima (Taherdangkoo et al. 2012b).

17.51 Stochastic Focusing Search Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
behaviours observed from human randomized search.

17.51.1 Fundamentals of Stochastic Focusing Searching
Algorithm

Stochastic focusing searching (SFS) algorithm was recently proposed in Zheng
et al. (2009). In order to implement SFS, the following steps need to be considered
(Zheng et al. 2009; Wang et al. 2008):

17.50 Stem Cells Optimization Algorithm 293

• In SFS, the targeted optimization problems are regarded as minimization
problems, and the particles are controlled according to Eqs. 17.166–17.168,
respectively (Zheng et al. 2009).

~vi tð Þ ¼ Randð Þ � Rti �~xi t � 1ð Þ½ � if fun~xi t � 1ð Þ½ � � fun~xi t � 2ð Þ½ �
~vi t � 1ð Þ if fun~xi t � 1ð Þ½ �\ fun~xi t � 2ð Þ½ �

�

;

ð17:166Þ

~xi tð Þ ¼~vi tð Þ þ~xi t � 1ð Þ; ð17:167Þ

~xi tð Þ ¼~xi t � 1ð Þ if fun~xi tð Þ½ � � fun~xi t � 1ð Þ½ � ; ð17:168Þ

where fun~xi tð Þ½ � denotes the objective function value of~xi tð Þ, and Rti represents a
random chosen position in the neighbour space Rt of ~gbest.

• It can be observed that each individual particle search in a decreasing Rt.
Therefore, an appropriate selection of wis crucial not only to the convergence of
particles, but also to the avoidance of local optimal. Accordingly w can be
defined by Eq. 17.169 (Zheng et al. 2009):

w ¼ G� t

G

 �d

; ð17:169Þ

where the maximum generation is denoted by G, and d denotes a positive
number.

17.51.2 Performance of SFS

To evaluate the proposed SFS, Zheng et al. (2009) employed a test suite of
benchmark functions collected from the literature. The testing function group
consists of a diverse set of problems such as functions 1–5 are unimodal, function
8–13 are multimodal function, and function 14–23 are low-dimensional function.
In comparison with other CI algorithms (e.g., DE, PSO), the experimental results
demonstrated that SFS posses a better global searching capability and faster
converging speed for most of the testing cases.

17.52 Swallow Swarm Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
social behaviour of swallow swarm.

294 17 Emerging Biology-based CI Algorithms

17.52.1 Fundamentals of Swallow Swarm Optimization
Algorithm

Swallow swarm optimization (SSO) algorithm was originally proposed in Neshat
et al. (2013). The algorithm shares some similarities with other population-based
CI algorithms, e.g., PSO, but with several key differences. Basically, there are
three types of swallows in the proposed SSO algorithm (Neshat et al. 2013):

• Explorer swallow ðeiÞ: The major population of swallow colony is composed of
explorer swallows. Their main task is to search the target problem space. After
arriving at a potential solution point, an explorer swallow will use a special to
guide the group moving toward such place. If the place is indeed the best one
found in the problem space, this swallow will play a role of head leader ðHLiÞ.
However, if the place is a good but not the best position in comparison with
other locations, this swallow will be selected as a local leader ðLLiÞ. Otherwise,
each explorer swallow ei will make a random movement according to
Eqs. 17.170–17.181, respectively (Neshat et al. 2013):

VHLiþ1 ¼ VHLi þ aHLrandð Þ ebest � eið Þ þ bHLrandð Þ HLi � eið Þ; ð17:170Þ

aHL ¼ if ei ¼ 0 ebest ¼ 0kð Þ ! 1:5f g; ð17:171Þ

aHL ¼

if ei\ebestð Þ&& ei\HLið Þ ! randð Þ � ei

ei � ebest
where ei; ebest 6¼ 0ð Þ

if ei\ebestð Þ&& ei [HLið Þ ! 2 � randð Þ � ebest

1= 2 � eið Þ where ei 6¼ 0ð Þ

if ei [ebestð Þ ! ebest

1= 2 � randð Þð Þ

8
>>>>><

>>>>>:

;

ð17:172Þ

bHL ¼ if ei ¼ 0 ebest ¼ 0kð Þ ! 1:5f g; ð17:173Þ

bHL ¼

if ei\ebestð Þ&& ei\HLið Þ ! randð Þ � ei

ei � HLi
where ei;HLi 6¼ 0ð Þ

if ei\ebestð Þ&& ei [HLið Þ ! 2 � randð Þ � HLi

1= 2 � eið Þ where ei 6¼ 0ð Þ

if ei [ebestð Þ ! HLi

1= 2 � randð Þð Þ

8
>>>>><

>>>>>:

;

ð17:174Þ

VLLiþ1 ¼ VLLi þ aLLrandð Þ ebest � eið Þ þ bLLrandð Þ LLi � eið Þ; ð17:175Þ

aLL ¼ if ei ¼ 0 ebest ¼ 0kð Þ ! 2f g; ð17:176Þ

17.52 Swallow Swarm Optimization Algorithm 295

aLL ¼

if ei\ebestð Þ&& ei\LLið Þ ! randð Þ � ei

ei � ebest
where ei; ebest 6¼ 0ð Þ

if ei\ebestð Þ&& ei [LLið Þ ! 2 � randð Þ � ebest

1= 2 � eið Þ where ei 6¼ 0ð Þ

if ei [ebestð Þ ! ebest

1= 2 � randð Þð Þ

8
>>>>><

>>>>>:

;

ð17:177Þ

bLL ¼ if ei ¼ 0 ebest ¼ 0kð Þ ! 2f g; ð17:178Þ

bLL ¼

if ei\ebestð Þ&& ei\LLið Þ ! randð Þ � ei

ei � LLi
where ei; LLi 6¼ 0ð Þ

if ei\ebestð Þ&& ei [LLið Þ ! 2 � randð Þ � LLi

1= 2 � eið Þ where ei 6¼ 0ð Þ

if ei [ebestð Þ ! LLi

1= 2 � randð Þð Þ

8
>>>>><

>>>>>:

;

ð17:179Þ

Viþ1 ¼ VHLiþ1 þ VLLiþ1 ; ð17:180Þ

eiþ1 ¼ ei þ Viþ1: ð17:181Þ

Vector VHLi has an important impact on explorer swallow’s behaviour. Each
explorer swallow ei uses the nearest swallow LLi for the purpose of calculating the
vector of VLLi

.

• Aimless swallow ðoiÞ: When the search begins, these swallows doe not occupy a
good position. Their task is thus doing random search which means their
positions are not affected by HLi and LLi. The role of an aimless swallow is
more like a scout. If an aimless swallow oi gets a better solution during its
searching, it will replace its position with the nearest explorer swallow’s posi-
tion and then continue with search. This process is defined by Eq. 17.182
(Neshat et al. 2013):

oiþ1 ¼ oi þ rand �1; 1ð Þð Þ � rand mins;maxsð Þ
1þ randð Þ

� �

: ð17:182Þ

• Leader swallow ðliÞ: Unlike the PSO which has only one leader particle, in SSO,
there may have nl leader swallows that are distributed or gathered in the problem
space. The best leader is called leader head, while the others are called local
leader. They are candidate desirable solutions that we are looking for.

296 17 Emerging Biology-based CI Algorithms

17.52.2 Performance of SSO

In order to show how the SSO algorithm performs, Neshat et al. (2013) employed
16 benchmark test functions such as Sphere function, Rosenbrock function,
Quadric function, Rastrigin function, Rotated Rastrigin function, and Rotated
Ackley function. In comparison with other CI techniques (e.g., variant PSO, etc.),
the SSO algorithm is one of the best optimization approaches in the category of
swarm intelligence. It thus has the ability in solving optimization problems
encountered in different scenarios.

17.53 Termite-Hill Algorithm

In this section, we will introduce an emerging CI algorithm that is based on hill
building behaviour observed from real termites (Keller and Gordon 2009).

17.53.1 Fundamentals of Termite-Hill Algorithm

Termite-hill algorithm (ThA) was originally proposed (Zungeru et al. 2012) for
dealing with wireless sensor networks routing problem. The key components of
ThA are detailed as below (Zungeru et al. 2012):

• Component 1: Pheromone table. Pheromone plays an important role in lever-
aging an effective and efficient communication in real world (Touhara 2013).
Similarly in ThA, the pheromone is updated through Eq. 17.183 (Zungeru et al.
2012):

T 0r;s ¼ Tr;s þ c; ð17:183Þ

where c can be expressed as Eq. 17.184 (Zungeru et al. 2012):

c ¼ N

E � Emin�Nj

Eav�Nj

� � ; ð17:184Þ

where E denotes the initial energy of the nodes.
• Component 2: Route selection. In ThA, each of the routing tables carried by the

nodes is initialized with a uniform probability distribution defined as Eq. 17.185
(Zungeru et al. 2012):

Ps;d ¼
1

Nk
; ð17:185Þ

where Nk denotes the number of nodes in the network.

17.52 Swallow Swarm Optimization Algorithm 297

17.53.2 Performance of ThA

To verify the proposed ThA, Zungeru et al. (2012) conducted a series of experi-
mental studies. The simulation results demonstrated that ThA is a very competitive
routing algorithm in terms of energy consumption, throughput, and network
lifetime.

17.54 Unconscious Search Algorithm

In this section, we will introduce an emerging CI algorithm that is based on some
findings from human brain and psychology studies (Irvine 2013; Chalmers 2010;
Müller 2013; Gross 2014; Bhugra et al. 2013; S�en 2014).

17.54.1 Fundamentals of Unconscious Search Algorithm

Unconscious search (US) algorithm was recently proposed in Ardjmand and
Amin-Naseri (2012). The key concept of US is to use some common features
found between optimization and psychoanalysis to design search algorithm. To
implement US algorithm, the following steps need to be performed (Ardjmand and
Amin-Naseri 2012):

• Initially, a group of suitable solutions P ¼ P1;P2; . . .;P MMj j
� �

is created. MMj j
is the size of the measurement matrix ðMMÞ where the assorted group of best
feasible solutions. In US, MM can be expressed as Eq. 17.186 (Ardjmand and
Amin-Naseri 2012):

MM ¼ Pq

�
�C Pq

� �
\C Pqþ1

� �
; q ¼ 1; 2; . . .; MMj j

 �
; ð17:186Þ

where a translation function is employed in US to map the value of the objective
function of any solution Pq into a range of a; 1� að Þ for a falls within 0; 1ð Þ and
Pq 2 MM. In US, the translation function ftI is defined according to Eq. 17.187
(Ardjmand and Amin-Naseri 2012):

ftI C Pq

� �� �
¼ 1

1þ ea C Pqð Þð Þþb
; Pq 2 MM; ð17:187Þ

where ftI is a sigmoid function, and a and b are variables of ftI which will be
updated in each iteration.

• In US, a displacement memory, P, is employed to remember the displace
pattern in the solutions which can be calculated through Eqs. 17.188 and 17.189,
respectively (Ardjmand and Amin-Naseri 2012):

298 17 Emerging Biology-based CI Algorithms

P ¼ PjI ;PjE

� ��
� j ¼ 1; 2; . . .; Xj j

 �
; ð17:188Þ

PjI ¼ pjIi

�
� i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .; Xj j

 �

PjE ¼ pjEi

�
� i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .; Xj j

 � ; ð17:189Þ

where the number of decision parameters is denoted by n, and pjIi and pjEi are
computed via Eqs. 17.190 and 17.191, respectively (Ardjmand and Amin-Naseri
2012):

pjIi ¼
X

MS

ftI C Pq

� �� �
 !

Pq 2 MM; Pq ið Þ 2 Xj; j ¼ 1; 2; . . .; Xj j:
q ¼ 1; 2; . . .; MMj j; i ¼ 1; 2; . . .; n

ð17:190Þ

pjEi ¼
X

MS

h

 !

; j ¼ 1; 2; . . .; Xj j; i ¼ 1; 2; . . .; n; ð17:191Þ

where MS 2 Z
þ � 0f g represents the memory size.

• By using the displacement memory, P, a new solution, S1, will be created. In
US, the ith solution component S1 ið Þ will be allocated with a possible range Xj in
solution space with a probability defined as Eq. 17.192 (Ardjmand and Amin-
Naseri 2012):

Prob S1 ið Þ 2 Xj

 �
¼

pjIi

1þ pjEið Þb
P Xj j

j¼1
pjIi

1þ pjEið Þb
; ð17:192Þ

where the probability function is denoted by Prob, and b represents a prede-
termined constant.

• Once a displacement-free solution is reached, in order to remove the conden-
sational resistance pattern, a condensational memory, P0, is introduced in US
and it is defined as Eq. 17.193 (Ardjmand and Amin-Naseri 2012):

P0 ¼ Pþi ;P
�
i

� ��
� i ¼ 1; 2; . . .; n

 �

Pþi ¼ pþiI ;p
þ
iEð ÞT

�
�
� i ¼ 1; 2; . . .; n

n o

P�i ¼ p�iI ;p
�
iE

� �T
�
�
� i ¼ 1; 2; . . .; n

n o
; ð17:193Þ

where pþiI ¼
P

MS ftI C Pq

� �� �
, pþiE ¼

P
MS h, p�iI ¼

P
MS ftI C Pq

� �� �
, and

p�iE ¼
P

MS h

17.54 Unconscious Search Algorithm 299

17.54.2 Performance of US

Overall, US is a multi-start CI algorithm which contains three phases, namely,
construction, construction review, and local search. To test the performance of US
algorithm, Ardjmand and Amin-Naseri (2012) employed one bounded and six
unbounded benchmark test functions and engineering design optimization prob-
lems which include such as Rosenbrock function, Goldsten and Price function,
Wood function, and pressure vessel design problem. Compared with other CI
algorithms, the results obtained by US is very competitive. The parameter analysis
carried out in (Ardjmand and Amin-Naseri 2012) demonstrated that US is a robust
and easy-to-use approach in dealing with hard optimization problems.

17.55 Wisdom of Artificial Crowds Algorithm

In this section, we will introduce an emerging CI algorithm that is based on some
findings regarding the human collective intelligence (Irvine 2013; Chalmers 2010;
Müller 2013; Gross 2014; Bhugra et al. 2013; Adair 2007; Chen and Lee 2008;
Savage 2012).

17.55.1 Fundamentals of Wisdom of Artificial Crowds
Algorithm

Wisdom of artificial crowds (WoAC) algorithm was recently proposed in Ashby
and Yampolskiy (2011), Port and Yampolskiy (2012) and Yampolskiy et al.
(2012). The WoAC is a post-processing algorithm in which independently deci-
sion-making artificial agents aggregate their personal solutions to reach an
agreement about which answer is superior to all other solutions presented in the
population (Yampolskiy et al. 2012). To implement WoAC algorithm, the fol-
lowing steps need to be performed (Yampolskiy et al. 2012):

• Setting up an automatic aggregation mechanism which collecting the individual
solutions and producing a common solution that reflects frequent local structures
of individual solutions.

• After establishing an agreement matrix, in order to transform agreements
between solutions and costs, a nonlinear monotonic transformation function is
applied as shown in Eq. 17.193 (Yampolskiy et al. 2012):

cij ¼ 1� I�1
aij

b1; b2ð Þ; ð17:194Þ

where I�1
aij

b1; b2ð Þ represents the inverse regularized beta function.

300 17 Emerging Biology-based CI Algorithms

17.55.2 Performance of WoAC

To test the performance of WoAC algorithm, Yampolskiy et al. (2012) employed
the classic travelling salesman problem as a benchmark. Compared with other CI
algorithms (e.g., GA), the results obtained by WoAC is very competitive, in
particular with an average of 3–10 % solutions quality improvement.

17.56 Wolf Colony Algorithm

As one of the largest species of the genus Canis, Northern gray wolves exhibit
some of the most complex intra-specific social behaviour within the carnivores
(Macdonald et al. 2004). Such behaviours include such as living in social units
(i.e., packs), hunting socially, participating in group care of young offspring, and
group defences of food and territory (Muro et al. 2011). According to Fuller et al.
(2003) and Vucetich et al. (2004) in real world environment, living and foraging in
form of packs is commonly observed when the prey base is composed of large
ungulates, when the risk of losing food to scavengers is high, and when territorial
defence is critical. Wolves hunt large ungulates, e.g., moose (Sand et al. 2006), in
pack of two or more animals (Fuller et al. 2003) for the purpose of, e.g., reducing
foraging cost (Packer and Caro 1997). In Muro et al. (2011), the authors employed
two simple decentralized rules [via conventional CI approach, i.e., multi-agent
system (MAS)] to regenerate the main features of the wolf pack hunting behav-
iour. The rules developed in their study are (1) moving towards the prey until a
minimum safe distance to the prey is acquired, and (2) moving away from the
other wolves (under the situation of close enough to the prey) that are adjacent to
the safe distance to the prey. The detailed information regarding the wolf pack
hunting behaviour is out of the scope of present book. For the rest of this section,
we will introduce an emerging CI algorithm that is based on the hunting behav-
iours observed from a wolf colony.

17.56.1 Fundamentals of Wolf Colony Algorithm

Wolf colony algorithm (WCA) was originally proposed in Liu et al. (2011). Let D
represents the dimension of the search space, n denotes the individual number, Xi

stands for the position of the ith artificial wolf, then we have Eq. 17.197 (Liu et al.
2011):

Xi ¼ Xi1; . . .;Xid; . . .;XiDð Þ; ð17:195Þ

where 1	 i	 n, and 1	 d	D.

17.55 Wisdom of Artificial Crowds Algorithm 301

The WCA algorithm mimics several behaviours that are commonly found in a
wolf colony (Liu et al. 2011).

• Searching behaviour: q artificial wolves are initialized to detect the possible
quarry activities for the purpose of increasing the probability of discovering the
quarry. Suppose that q scout wolves are the wolves that are closest to the quarry,
maxdh denotes the maximum searching number, XXi is the location of the ith
scout wolf (totally h locations are created around the candidate wolf), and the jth
searching position is denoted by Yj, then we have Eq. 17.195 (Liu et al. 2011):

Yj ¼ XXi þ randn � stepa; ð17:196Þ

where a uniformly distributed random number (falling within �1; 1½ �) is denoted
by randn, stepa represents the searching step. The searching behaviour will be
terminated under the following situations, i.e., the searching number is greater
than maxdh or the current location is better than the optimal searching location.

• Besieging behaviour: Once a quarry is discovered by scout wolves, howl is
normally used to notify other wolves about the position of the quarry. Let the
location of a quarry in the dth searching space after the kthiteration is denoted
by Gk

d, and Xk
id stands for the position of the ith artificial wolf, then we have

Eq. 17.197 (Liu et al. 2011):

Xkþ1
id ¼ Xk

id þ rand � stepb � Gk
d � Xk

id

� �
; ð17:197Þ

where rand represents a uniformly distributed random number (falling within
0; 1½ �), stepb denotes the searching step, the iteration number is represented by k,

and the range of XMINd;XMAXd½ � is used to stand for the dth position.
• Food assignment behaviour: Assigning food to the strongest wolves first, and

then to other wolves is often observed in a colony of wolves. Based on this
observation, in WCA, the wolves (denoted bym) with the worst performances
will be replaced by newly generated m artificial wolves which are randomly
distributed within the wolf colony. This mechanism can assist the WCA algo-
rithm in avoiding the local optimum.

Taking into account the fundamental behaviours described above, the steps of
implementing WCA can be summarized as follows (Liu et al. 2011):

• Step 1: Initializing the following parameters such as n (the individual number),
maxk (the maximum iteration number), q (the number of the searching artificial
wolf), h (the searching direction), maxdh (the maximum searching number),
stepa (the searching step), stepb (the besieging step), m (the number of the worst
artificial wolves), and the ith ð1	 i	 nÞ artificial wolf’s ðXiÞ position.

• Step 2: Forming the group of searching wolves (q optimal artificial wolves) and
each member of searching wolves moves according to Yj ¼ XXi þ randn � stepa.

• Step 3: Choosing the best location of the searching artificial wolves as the
quarry’s position. Updating each artificial wolf’s position based on Xkþ1

id ¼

302 17 Emerging Biology-based CI Algorithms

Xk
id þ rand � stepb � Gk

d � Xk
id

� �
. If Xid\XMINd, then set Xid ¼ XMINd; if

Xid �XMAXd, set Xid ¼ XMAXd.
• Step 4: Updating the wolf colony following the food assignment behaviour, i.e.,

replacing the worst m artificial wolves with m newly generated artificial wolves.
• Step 5: Evaluating the stopping criteria. If the circulation steps of WCA equals

the predetermined maximum iteration number, the algorithm stops and outputs
the current best position of artificial wolves; otherwise, WCA continues to run
(i.e., returning to Step 2).

17.56.2 Performance of WCA

In order to test the performance of WCA, Liu et al. (2011) employed 5 benchmark
test functions such as Sphere function, Rosenbrock function, Schwefel function,
and Rastrigin function. In comparison with other CI techniques (e.g., PSO and
GA), WCA showed a good convergence and a strong global searching capability.

17.57 Wolf Pack Search Algorithm

In this section, we will introduce another wolf (in particular, wolf pack search
behaviour) inspired CI algorithm (Cordoni 2009, Heylighen 1992).

17.57.1 Fundamentals of Wolf Pack Search Algorithm

Wolf pack search (WPS) algorithm was originally proposed by Yang et al. (2007).
Briefly, WPS works as follows (Yang et al. 2007):

• Initializing step.
• Initializing a pack of wolves in a random manner.
• Comparing and determining the best wolf GBest and its fitness GBFit.
• Circulating and updating the Eq. 17.198 (Yang et al. 2007):

wolfnew ¼ wolf þ step � GBest � wolfð Þ= GBest � wolfj j: ð17:198Þ

• If the fitness of wolfnew is better than GBFit, replacing GBest and GBFit with
wolfnew and its corresponding fitness value, respectively.

17.56 Wolf Colony Algorithm 303

17.57.2 Performance of WPS

In Yang et al. (2007), the WPS algorithm was hybridized with honeybee mating
optimization algorithm to form WPS-MBO. By testing it on classical travelling
salesman problem and a set of benchmark functions (e.g., Rosenbrock function,
Schwefel function, and generalized Rastrigin function), the WPS-MBO showed a
very attractive performance.

17.58 Conclusions

In this chapter, 56 emerging biology-based CI methodologies are discussed.
Although most of them are still in their infancy, their usefulness has been dem-
onstrated throughout the preliminary corresponding studies. Interested readers are
referred to them as a starting point for a further exploration and exploitation of
these innovative CI algorithms.

References

Abdullah, S., Turabieh, H., & Mccollum, B. (2009). A hybridization of electromagnetic-like
mechanism and great deluge for examination timetabling problems. Hybrid Metaheuristics,
LNCS (Vol. 5818, pp. 60–72). Berlin: Springer.

Abernethy, B., Kippers, V., Hanrahan, S. J., Pandy, M. G., Mcmanus, A. M., & Mackinnon, L.
(2013). Biophysical foundations of human movement,, Champaign: Human Kinetics. ISBN
978-1-4504-3165-1.

Acebo, E. D., & Rosa, J. L. D. L. (2008, April 1–4). Introducing bar systems: A class of swarm
intelligence optimization algorithms. In AISB 2008 Symposium on Swarm Intelligence
Algorithms and Applications, University of Aberdeen (pp. 18–23). The Society for the Study
of Artificial Intelligence and Simulation of Behaviour.

Acquaah, G. (2012). Principles of plant genetics and breeding. River Street: Wiley. ISBN 978-0-
470-66476-6.

Adair, J. (2007). Develop your leadership skills. London: Kogan Page Limited. ISBN 0-7494-
4919-5.

Adamatzky, A., & Oliveira, P. P. B. D. (2011). Brazilian highways from slime mold’s point of
view. Kybernetes, 40, 1373–1394.

Adams, S. (2004). World War I. London: Dorling Kindersley Limited. ISBN 1-4053-0298-4.
Ahrari, A., & Atai, A. A. (2010). Grenade explosion method: A novel tool for optimization of

multimodal functions. Applied Soft Computing, 10, 1132–1140.
Ahrari, A., Shariat-Panahi, M., & Atai, A. A. (2009). GEM: a novel evolutionary optimization

method with improved neighborhood search. Applied Mathematics and Computation, 210,
379–386.

Al-Milli, N. R. (2010). Hybrid genetic algorithms with great deluge for course timetabling.
International Journal of Computer Science and Network Security, 10, 283–288.

Alatas, B. (2011). Photosynthetic algorithm approaches for bioinformatics. Expert Systems with
Applications, 38, 10541–10546.

304 17 Emerging Biology-based CI Algorithms

Aleksiev, A. S., Longdon, B., Christmas, M. J., Sendova-Franks, A. B., & Franks, N. R. (2008).
Individual and collective choice: Parallel prospecting and mining in ants. Naturwissenschaf-
ten, 95, 301–305.

Alexiou, A., & Vlamos, P. (2012). A cultural algorithm for the representation of mitochondrial
population. Advances in Artificial Intelligence, 2012, 1–7.

Alonso, C., Herrera, C. M., & Ashman, T.-L. (2012). A piece of the puzzle: A method for
comparing pollination quality and quantity across multiple species and reproductive events.
New Phytologist, 193, 532–542.

Aman, B. (2009). Spatial dynamic structures and mobility in computation. Unpublished Doctoral
Thesis, Romania Academy.

Anandaraman, C. (2011). An improved sheep flock heredity algorithm for job shop scheduling
and flow shop scheduling. International Journal of Industrial Engineering Computations, 2,
749–764.

Anandaraman, C., Sankar, A. M., & Natarajan, R. (2012). Evolutionary approaches for
scheduling a flexible manufacturing system with automated guided vehicles and robots.
International Journal of Industrial Engineering Computations, 3, 627–648.

Ardjmand, E., & Amin-naseri, M. R. (2012). Unconscious search: A new structured search
algorithm for solving continuous engineering optimization problems based on the theory of
psychoanalysis. In Y. Tan, Y. Shi, & Z. Ji (Eds.), ICSI 2012, Part I, LNCS (Vol. 7331,
pp. 233–242). Berlin: Springer.

Ashby, L. H. & Yampolskiy, R. V. (2011). Genetic algorithm and wisdom of artificial crowds
algorithm applied to light up. In 16th International Conference on Computer Games (GAMES
2011), (pp. 27–32). IEEE.

Badgerow, J. P., & Hainsworth, F. R. (1981). Energy savings through formation flight? A re-
examination of the vee formation. Journal of Theoretical Biology, 93, 41–52.

Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., et al. (2008).
Empirical investigation of starling flock: A benchmark study in collective animal behaviour.
Animal Behaviour, 76, 201–215.

Bater, L. (2007). Incredible insects: Answers to questions about miniature marvels. Vero Beach:
Rourke Publishing LLC. Post Office Box 3328. ISBN 978-1-60044-348-0.

Batista, L. D. S., Guimarães, F. G., & Ramírez, J. A. (2009). A distributed clonal selection
algorithm for optimization in electromagnetics. IEEE Transactions on Magnetics, 45,
1598–1601.

Bell, W. J., Roth, L. M., & Nalepa, C. A. (2007). Cockroaches: Ecology, behavior, and natural
history. Maryland: The Johns Hopkins University Press. ISBN 978-0-8018-8616-4.

Bellaachia, A., & Bari, A. (2012). Flock by leader: A novel machine learning biologically
inspired clustering algorithm. In Y. Tan, Y. Shi, & Z. Ji (Eds.), ICSI 2012, Part I, LNCS (Vol.
7332, pp. 117–126). Berlin: Springer.

Bhugra, D., Ruiz, P., & Gupta, S. (2013). Leadership in psychiatry. Hoboken: Wiley. ISBN 978-
1-119-95291-6.

Bolstad, T. M. (2012). Brownian motion. Department of Physics and Technology, University of
Bergen.

Brierley, A. S., & Cox, M. J. (2010). Shapes of krill swarms and fish schools emerge as
aggregation members avoid predators and access oxygen. Current Biology, 20, 1758–1762.

Brownlee, J. (2007). Clonal selection algorithms. CIS Technical Report, 070209A, 1–13.
Burke, E., Bykov, Y., Newall, J., & Petrovic, S. (2004). A time-predefined local search approach

to exam timetabling problems. IIE Transactions, 3, 509–528.
Campelo, F., Guimarães, F. G., Igarashi, H., & Ramírez, J. A. (2005). A clonal selection

algorithm for optimization in electromagnetics. IEEE Transactions on Magnetics, 41,
1736–1739.

Cao, C.-H., Wang, L.-M., Han, C.-Y., Zhao, D.-Z., & Zhang, B. (2012). Geese PSO optimization
in geometric constraint solving. Information Technology Journal, 11, 504.

Carlson, N. R. (2013). Physiology of behavior. New Jersey: Pearson Education, Inc. ISBN 978-0-
205-23948-1.

References 305

Carpentier, R. (2011). Photosynthesis research protocols. New York: Springer. ISBN 978-1-
60671-924-6.

Castro, L. N. D., & Zuben, F. J. V. (2000, July). The clonal selecton algorithm with engineering
applications. In Workshop on Artificial Immune Systems and Their Applications, Las Vegas,
USA, pp. 1–7.

Castro, L. N. D., & Zuben, F. J. V. (2002). Learning and optimization using the clonal selection
principle. IEEE Transactions on Evolutionary Computation, 6, 239–251.

Chalmers, D. J. (2010). The character of consciousness. USA: Oxford University Press. ISBN
978-0-195-31111-2.

Chandrasekaran, M., Asokan, P., Kumanan, S., & Balamurugan, T. (2006). Sheep flocks heredity
model algorithm for solving job shop scheduling problems. International Journal of Applied
Management and Technology, 4, 79–100.

Chapman, R. F. (2013). The insects: structure and function. In S. J. Simpson & A.
E. Douglas (Eds.). New York: Cambridge University Press. ISBN 978-0-521-11389-2.

Chen, C.-C., & Lee, Y.-T. (Eds.). (2008). Leadership and management in China: Philosophies,
theories, and practices. Cambridge: Cambridge University Press. ISBN 978-0-511-40909-7.

Chen, K., Li, T., & Cao, T. (2006). Tribe-PSO: A novel global optimization algorithm and its
application in molecular docking. Chemometrics and Intelligent Laboratory Systems, 82,
248–259.

Chen, T. (2009). A simulative bionic intelligent optimization algorithm: Artificial searching
swarm algorithm and its performance analysis. In IEEE International Joint Conference on
Computational Sciences and Optimization (CSO) (pp. 864–866).

Chen, T., Liu, Z., Shu, Q., & Zhang, L. (2009a). On the analysis of performance of the improved
artificial searching swarm algorithm. In IEEE 2nd International Conference on Intelligent
Networks and Intelligent Systems (ICINIS) (pp. 502–506).

Chen, T., Pang, L., Du, J., Liu, Z., & Zhang, L. (2009b). Artificial searching swarm algorithm for
solving constrained optimization problems. In IEEE International Conference on Intelligent
Computing and Intelligent Systems (ICIS) (pp. 562–565) .

Chen, T., Wang, Y., & Li, J. (2012). Artificial tribe algorithm and its performance analysis.
Journal of Software, 7, 651–656.

Chen, T., Wang, Y., Pang, L., Liu, Z., & Zhang, L. (2010a). An improved artificial searching
swarm algortihm and its performance analysis. In IEEE 2nd International Conference on
Computer Modeling and Simulation (ICCMS) (pp. 260–263).

Chen, T., Zhang, L., Liu, Z., Pang, L., & Shu, Q. (2009c). On the analysis of performance of the
artificial searching swarm algorithm. In IEEE 5h International Conference on Natural
Computation (ICNC) (pp. 365–368).

Chen, Y., Cui, Z., & Zeng, J. (2010b, July 7–9). Structural optimization of lennard-jones clusters
by hybrid social cognitive optimization algorithm. In F. Sun, Y. Wang, J. Lu, B. Zhang, W.
Kinsner, & L. A. Zadeh (Eds.), In 9th International Conference on Cognitive Informatics
(ICCI) (pp. 204–208). IEEE. Beijing, China.

Chen, Z., & Tang, H. (2010). Cockroach swarm optimization. In IEEE 2nd International
Conference on Computer Engineering and Technology (ICCET) (pp. 652–655).

Chen, Z., & Tang, H. (2011). Cockroach swarm optimization for vehicle routing problems.
Energy Procedia, 13, 30–35.

Cheng, L., Xu, Y.-H., Zhang, H.-B., Qian, Z.-L., & Feng, G. (2010). New bionics optimization
algorithm: food truck-cockroach swarm optimization algorithm (in Chinese). Computer
Engineering, 36, 208–209.

Ciobanu, G., Desai, R., & Kumar, A. (2003). Membrane systems and distributed computing. In G.
Păun (Ed.), WMC-CdeA 2002, LNCS (Vol. 2597, pp. 187–202). Berlin: Springer.

Civicioglu, P. (2012). Transforming geocentric cartesian coordinates to geodetic coordinates by
using differential search algorithm. Computers and Geosciences, 46, 229–247.

Civicioglu, P. (2013). Backtracking search optimization algorithm for numerical optimization
problems. Applied Mathematics and Computation, 219, 8121–8144.

306 17 Emerging Biology-based CI Algorithms

Coelho, L. D. S., & Bernert, D. L. D. A. (2009). PID control design for chaotic synchronization
using a tribes optimization approach. Chaos, Solitons and Fractals, 42, 634–640.

Conradt, L., & List, C. (2009). Group decisions in humans and animals: A survey. Philosophical
Transaction of the Royal Society B, 364, 719–742.

Cordoni, G. (2009). Social play in captive wolves (Canis lupus): Not only an immature affair.
Behaviour, 146, 1363–1385.

Couzin, I. D. (2009). Collective cognition in animal groups. Trends in Cognitive Sciences, 13,
36–43.

Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision-
making making in animal groups on the move. Nature, 434, 513–516.

Creel, S. (1997). Cooperative hunting and group size: Assumptions and currencies. Animal
Behaviour, 54, 1319–1324.

Cuevas, E., Cienfuegos, M., Zaldívar, D., & Pérez-Cisneros, M. (2013). A swarm optimization
algorithm inspired in the behavior of the social-spider. Expert Systems with Applications. doi:
http://dx.doi.org/10.1016/j.eswa.2013.05.041.

Cuevas, E., Zaldívar, D., & Pérez-Cisneros, M. (2013b). A swarm optimization algorithm for
multimodal functions and its application in multicircle detection. Mathematical Problems in
Engineering, 2013, 1–22.

Cui, X., Gao, J., & Potok, T. E. (2006). A flocking based algorithm for document clustering
analysis. Journal of Systems Architecture, 52, 505–515.

Cui, Y., Guo, R., & Guo, D. (2009). A naïve five-element string algorithm. Journal of Software,
4, 925–934.

Cui, Y. H., Guo, R., Rao, R. V., & Savsani, V. J. (2008, December 15–17) Harmony element
algorithm: A naive initial searching range. In International Conference on Advances in
Mechanical Engineering, S.V. (pp. 1–6). National Institute of Technology, Gujarat, India.

Cui, Z., & Cai, X. (2010, July 7–9). Using social cognitive optimization algorithm to solve
nonlinear equations. In F. Sun, Y. Wang, J. Lu, B. Zhang, W. Kinsner & L. A. Zadeh (Eds.),
In 9th International Conference on Cognitive Informatics (ICCI) (pp. 199–203). Beijing,
China. IEEE.

Cui, Z., Cai, X., & Shi, Z. (2011). Social emotional optimization algorithm with group decision.
Scientific Research and Essays, 6, 4848–4855.

Cui, Z., Shi, Z., & Zeng, J. (2010). Using social emotional optimization algorithm to direct orbits
of chaotic systems. In B. K. Panigrahi, S. Das, P. N. Suganthan & S. S. Dash (Eds.), Swarm,
Evolutionary, and Memetic Computing, LNCS (Vol. 6466, pp. 389–395). Berlin: Springer.

Cui, Z., Xu, Y., & Zeng, J. (2012). Social emotional optimization algorithm with random
emotional selection strategy. In R. Parpinelli (Ed.), Theory and New Applications of Swarm
Intelligence, Chap. 3 (pp. 33–50). Croatia: InTech. ISBN 978-953-51-0364-6.

Cummins, B., Cortez, R., Foppa, I. M., Walbeck, J., & Hyman, J. M. (2012). A spatial model of
mosquito host-seeking behavior. PLoS Computational Biology, 8, 1–13.

Cutts, C. J., & Speakman, J. R. (1994). Energy savings in formation flight of pink-footed geese.
Journal of Experimental Biology, 189, 251–261.

Dai, C., Chen, W., & Zhu, Y. (2006, November). Seeker optimization algorithm. In IEEE
International Conference on Computational Intelligence and Security (pp. 225–229).
Guangzhou, China.

Dai, C., Chen, W., Song, Y., & Zhu, Y. (2010a). Seeker optimization algorithm: A novel
stochastic search algorithm for global numerical optimization. Journal of Systems Engineer-
ing and Electronics, 21, 300–311.

Dai, C., Chen, W., & Zhu, Y. (2010b). Seeker optimization algorithm for digital IIR filter design.
IEEE Transactions on Industrial Electronics, 57, 1710–1718.

Dai, C., Chen, W., Zhu, Y., & Zhang, X. (2009a). Reactive power dispatch considering voltage
stability with seeker optimization algorithm. Electric Power Systems Research, 79,
1462–1471.

Dai, C., Chen, W., Zhu, Y., & Zhang, X. (2009b). Seeker optimization algorithm for optimal
reactive power dispatch. IEEE Transactions on Power Systems, 24, 1218–1231.

References 307

http://dx.doi.org/10.1016/j.eswa.2013.05.041

Dai, C., Zhu, Y., & Chen, W. (2007). Seeker optimization algorithm. In Y. Wang, Y. Cheung &
H. Liu (Eds.), CIS 2006, LNAI (Vol. 4456. pp. 167–176). Berlin: Springer.

Dai, S., Zhuang, P., & Xiang, W. (2013). GSO: An improved PSO based on geese flight theory. In
Y. Tan, Y. Shi, & H. Mo (Eds.), Advances in Swarm Intelligence, ICSI 2013, Part I, LNCS
(Vol. 7928, pp. 87–95). Berlin: Springer.

Daskin, A., & Kais, S. (2011). Group leaders optimization algorithm. Molecular Physics, 109,
761–772.

Davendra, D., & Zelinka, I. (2009). Optimization of quadratic assignment problem using self-
organinsing migrating algorithm. Computing and Informatics, 28, 169–180.

Davendra, D., Zelinka, I., Bialic-Davendra, M., Senkerik, R., & Jasek, R. (2013). Discrete self-
organising migrating algorithm for flow-shop scheduling with no-wait makespan. Mathemat-
ical and Computer Modelling, 57, 100–110.

Digalakis, J. G., & Margaritis, K. G. (2002). A multipopulation cultural algorithm for the
electrical generator scheduling problem. Mathematics and Computers in Simulation, 60,
293–301.

Ding, S., & Li, S. (2009). Clonal selection algorithm for feature selection and parameters
optimization for support vector machines. In IEEE 2nd International Symposium on
Knowledge Acquisition and Modeling (pp. 17–20).

Du, Y., Li, H., Pei, Z., & Peng, H. (2005). Intelligent spider’s algorithm of search engine based on
keyword. ECTI Transactions on Computer and Information Theory, 1, 40–49.

Dubinsky, Z. (Ed.). (2013). Photosynthesis. InTech: Croatia. ISBN 978-953-51-1161-0.
Dueck, G. (1993). New optimization heuristics: The great deluge algorithm and the record-to-

record travel. Journal of Computational Physics, 104, 86–92.
Duman, E., Uysal, M., & Alkaya, A. F. (2012). Migrating birds optimization: A new

metaheuristic approach and its performance on quadratic assignment problem. Information
Sciences, 217, 65–77.

Durrett, R. (1984). Brownian motion and martingales in analysis. Belmont: Wadsworth
Advanced Books and Software, A Division of Wadsworth, Inc. ISBN 0-534-03065-3.

Ebensperger, L. A. (2001). A review of the evolutionary causes of rodent group-living. Acta
Theriologica, 46, 115–144.

Eckstein, M. P., Das, K., Pham, B. T., Peterson, M. F., Abbey, C. K., Sy, J. L., et al. (2012).
Neural decoding of collective wisdom with multi-brain computing. NeuroImage, 59, 94–108.

Feng, X., Lau, F. C. M., & Gao, D. (2009). A new bio-inspired approach to the traveling salesman
problem. In J. Zhou (Ed.), Complex 2009, Part II, LNICST, (Vol. 5, pp. 1310–1321). Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering.

Frank, S. A. (1998). Foundations of social evolution. New Jersey: Princeton University Press.
ISBN 0-691-05933-0.

Fuller, T. K., Mech, L. D., & Cockrane, J. F. (2003). Wolf population dynamics. In L. D. Mech &
L. Boitani (Eds.), Wolves: Behavior, Ecology and Conservation (pp. 161–191). Chicago:
University of Chicago Press.

Gamlin, L. (2009). Evolution. New York: Dorling Kindersley Limited. ISBN 978-0-7566-5028-5.
Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm.

Communications in Nonlinear Science and Numerical Simulation, 17, 4831–1845.
Gandomi, A. H., Yang, X.-S., Talatahari, S., & Deb, S. (2012). Coupled eagle strategy and

differential evolution for unconstrained and constrained global optimization. Computers and
Mathematics with Applications, 63, 191–200.

Gao, S., Chai, H., Chen, B., & Yang, G. (2013). Hybrid gravitational search and clonal selection
algorithm for global optimization. In Y. Tan, Y. Shi & H. Mo (Eds.), Advances in Swarm
Intelligence, LNCS (Vol. 7929, pp. 1–10). Hybrid gravitational search and clonal selection
algorithm for global optimization. Berlin: Springer.

Ghatei, S., Khajei, R. P., Maman, M. S., & Meybodi, M. R. (2012). A modified PSO using great
deluge algorithm for optimization. Journal of Basic and Applied Scientific Research, 2,
1362–1367.

308 17 Emerging Biology-based CI Algorithms

Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., & Verlan, S. (Eds.). (2012). Membrane
computing. Berlin: Springer. ISBN 978-3-642-28023-8.

Giraldeau, L.-A., Soos, C., & Beauchamp, G. (1994). A test of the producer-scrounger foraging
game in captive flocks of spice finches, Lonchura punctulata. Behavioral Ecology and
Sociobiology, 34, 251–256.

Goffredo, S., & Dubinsky, Z. (2014). The Mediterranean Sea: Its history and present challenges.
New York: Springer. ISBN 978-94-007-6703-4.

Gofman, Y. (2012). Computational studies of the interactions of biologically active peptides with
membrane. Unpublished Doctoral Thesis, Universität Hamburg.

Gross, R. (2014). Psychology: The science of mind and behaviour. London: Hodder Education.
ISBN 978-1-4441-0831-6.

Gusset, M., & Macdonald, D. W. (2010). Group size effects in cooperatively breeding African
wild dogs. Animal Behaviour, 79, 425–428.

Hagler, G. (2013). Modelinig ships and space craft. Berlin: Springer. ISBN 978-1-4614-4595-1.
Hasançebi, O., & Azad, S. K. (2012). An efficient metaheuristic algorithm for engineering

optimization: SPOT. International Journal of Optimization in Civil Engineering, 2, 479–487.
Havens, T. C., Spain, C. J., Salmon, N. G., & Keller, J. M. (2008, September 21–23). Roach

infestation optimization. In IEEE Swarm Intelligence Symposium (pp. 1–7). St. Louis MO,
USA.

Heylighen, F. (1992). Evolution, selfishness and cooperation. Journal of Ideas, 2, 70–76.
Hobbs, R. J., Higgs, E. S., & Hall, C. M. (2013). Novel ecosystems: Intervening in the new

ecological world order. Hoboken: Wiley. ISBN 978-1-118-35422-3.
Howell, D. C. (2014). Fundamental statistics for the behavioral sciences. Belmont: Cengage

Learning. ISBN 978-1-285-07691-1.
Irvine, E. (2013). Consciousness as a scientific concept: A philosophy of science perspective.

Dordrecht: Springer. ISBN 978-94-007-5172-9.
Ishdorj, T.-O. (2006). Membrane computing, neural inspirations, gene assembly in Ciliates.

Unpublished Doctoral Thesis, University of Seville.
Janecek, A., & Tan, Y. (2011). Swarm intelligence for non-negative matrix factorization.

International Journal of Swarm Intelligence Research, 2, 12–34.
Jelinek, R. (2013). Biomimetics: A molecular perspective. Berlin/Boston: Walter de Gruyter.

ISBN 978-3-11-028117-0.
Jonassen, T. M. (2006, June). Symbolic dynamics, the spider algorithm and finding certain real

zeros of polynomials of high degree. In 8th International Mathematica Symposium (pp. 1–16).
Avignon.

Karci, A. (2007a). Human being properties of saplings growing up algorithm. In International
Conference on Computational Cybernetics (ICCC) (pp. 227–232). IEEE.

Karci, A. (2007b). Natural inspired computational intelligence method: saplings growing up
algorithm. In International Conference on Computational Cybernetics (ICCC), pp. 221–226.
IEEE.

Karci, A. (2007c). Theory of saplings growing up algorithm. In Adaptive and Natural Computing
Algorithms, LNCS (Vol. 4431, pp. 450–460). Berlin: Springer.

Karci, A., & Alatas, B. (2006). Thinking capability of saplings growing up algorithm. In
Intelligent Data Engineering and Automated Learning (IDEAL 2006), LNCS (Vol. 4224,
pp. 386–393). Berlin: Springer.

Kashan, A. H. (2009). League championship algorithm: a new algorithm for numerical function
optimization. In IEEE International Conference of Soft Computing and Pattern Recognition
(SoCPAR) (pp. 43–48).

Kashan, A. H. (2011). An efficient algorithm for constrained global optimization and application
to mechanical engineering design: League championship algorithm (LCA). Computer-Aided
Design, 43, 1769–1792.

Kashan, A. H., & Karimi, B. (2010, 18–23 July). A new algorithm for constrained optimization
inspired by the sport league championships. In World Congress on Computational
Intelligence (WCCI) (pp. 487–494). CCIB, Barcelona, Spain.

References 309

Keller, L., & Gordon, É. (2009). The lives of ants (translated by James Grieve). Oxford: Oxford
University Press Inc. ISBN 978–0–19–954186–7.

Kim, H., & Ahn, B. (2001). A new evolutionary algorithm based on sheep flocks heredity model.
In Conference on Communications, Computers and Signal Processing (pp. 514–517). IEEE.

Kim, Y.-B. (2012). Distributed algorithms in membrane systems. Unpublished Doctoral Thesis,
University of Auckland.

King, A. J., Sueur, C., Huchard, E., & Cowlishaw, G. (2011). A rule-of-thumb based on social
affiliation explains collective movements in desert baboons. Animal Behaviour, 82,
1337–1345.

Krishnanand, K. R., Hasani, S. M. F., & Panigrahi, B. K. (2013). Optimal power flow solution
using self-evolving brain–storming inclusive teaching-learning-based algorithm. In Y. Tan, Y.
Shi, & H. Mo (Eds.), ICSI 2013, Part I, LNCS (Vol. 7928, pp. 338–345). Berlin: Springer.

Kwasnicka, H., Markowska-Kaczmar, U., & Mikosik, M. (2011). Flocking behaviour in simple
ecosystems as a result of artificial evolution. Applied Soft Computing, 11, 982–990.

Lancaster, R., Butler, R. E. A., Lancaster, J. M., & Shimizu, T. (1998). Fireworks: Principles and
practice. New York: Chemical Publishing Co., Inc. ISBN 0-8206-0354-6.

Lee, D., & Quessy, S. (2003). Visual search is facilitated by scene and sequence familiarity in
rhesus monkeys. Vision Research, 43, 1455–1463.

Lemasson, B. H., Anderson, J. J., & Goodwin, R. A. (2009). Collective motion in animal groups
from a neurobiological perspective: The adaptive benefits of dynamic sensory loads and
selective attention. Journal of Theoretical Biology, 261, 501–510.

Levin, S. A. (2013a). Encyclopedia of biodiversity. Oxford: Academic Press, Elsevier Inc. ISBN
978-0-12-384719-5.

Levin, S. A. (2013b). Encyclopedia of biodiversity. Oxford: Academic Press, Elsevier Inc. ISBN
978-0-12-384719-5.

Levin, S. A. (2013c). Encyclopedia of biodiversity. Oxford: Academic Press, Elsevier Inc. ISBN
978-0-12-384719-5.

Levin, S. A. (2013d). Encyclopedia of biodiversity. Oxford: Academic Press, Elsevier Inc. ISBN
978-0-12-384719-5.

Levin, S. A. (2013e). Encyclopedia of biodiversity. Oxford: Academic Press, Elsevier Inc. ISBN
978-0-12-384719-5.

Levin, S. A. (2013f). Encyclopedia of biodiversity,. London: Academic Press, Elsevier Inc. ISBN
978-0-12-384719-5.

Li, K., Torres, C. E., Thomas, K., Rossi, L. F., & Shen, C.-C. (2011). Slime mold inspired routing
protocols for wireless sensor networks. Swarm Intelligence, 5, 183–223.

Li, Y. (2010, October 22–24). Solving TSP by an ACO-and-BOA-based hybrid algorithm. In
IEEE International Conference on Computer Application and System Modeling (ICCASM),
(Vol. 12, pp. 189–192).

Lihoreau, M., Costa, J. T., & Rivault, C. (2012). The social biology of domiciliary cockroaches:
colony structure, kin recognition and collective decisions. Insectes Sociaux. doi: 10.1007/
s00040-012-0234-x.

Lihoreau, M., Deneubourg, J.-L., & Rivault, C. (2010). Collective foraging decision in a
gregarious insect. Behavioral Ecology and Sociobiology, 64, 1577–1587.

Lissaman, P. B. S., & Shollenberger, C. A. (1970). Formation flight of birds. Science, 168,
1003–1005.

Liu, C., Yan, X., Liu, C., & Wu, H. (2011). The wolf colony algorithm and its application.
Chinese Journal of Electronics, 20, 212–216.

Liu, J. Y., Guo, M. Z., & Deng, C. (2006). Geese PSO: An efficient improvement to particle
swarm optimization. Computer Science, 33, 166–168.

Lu, Y., & Liu, X. (2011). A new population migration algorithm based on the chaos theory. In
IEEE 2nd International Symposium on Intelligence Information Processing and Trusted
Computing (IPTC) (pp. 147–10).

Luo, X., Li, S., & Guan, X. (2010). Flocking algorithm with multi-target tracking for multi-agent
systems. Pattern Recognition Letters, 31, 800–805.

310 17 Emerging Biology-based CI Algorithms

http://dx.doi.org/10.1007/s00040-012-0234-x
http://dx.doi.org/10.1007/s00040-012-0234-x

Maathuis, F. J. M. (2013). Plant mineral nutrients: Methods and protocols. New York: Springer.
ISBN 978-1-62703-151-6.

Macdonald, D. W., Creel, S., & Mills, M. G. L. (2004). Society: Canid society. In D.
W. Macdonald & C. Sillero-Zubiri (Eds.), Biology and Conservation of Wild Carnivores (pp.
85–106). Oxford: Oxford University Press.

Magstadt, T. M. (2013). Understanding politics: ideas, institutions, and issues. Cengage
Learning: Belmont. ISBN 978-1-111-83256-8.

Marcus, J. B. (2013). Culinary nutrition: The science and practice of healthy cooking. Waltham:
Elsevier. ISBN 978-0-12-391882-6.

Maroosi, A., & Muniyandi, R. C. (2013). Membrane computing inspired genetic algorithm on
multi-core processors. Journal of Computer Science, 9, 264–270.

Mayfield, J. E. (2013). The engine of complexity: Evolution as computation. New York:
Columbia University Press. ISBN 978-0-231-16304-0.

Mills, D. S., Marchant-Forde, J. N., McGreevy, P. D., Morton, D. B., Nicol, C. J., Phillips, C.
J. C., et al. (Eds.). (2010). The encyclopedia of applied animal behaviour and welfare.
Wallingford: CAB International. ISBN 978-0-85199-724-7.

Mosser, A., & Packer, C. (2009). Group territoriality and the benefits of sociality in the African
lion, Panthera leo. Animal Behaviour, 78, 359–370.

Mucherino, A., & Seref, O. (2007). Monkey search: A novel metaheuristic search for global
optimization. In AIP Conference Proceedings (Vol. 953, pp. 162–173).

Mukherjee, R., Chakraborty, S., & Samanta, S. (2012). Selection of wire electrical discharge
machining process parameters using non-traditional optimization algorithms. Applied Soft
Computing, 12, 2506–2516.

Müller, V. C. (Ed.). (2013). Philosophy and theory of artificial intelligence. Berlin: Springer.
ISBN 978-3-642-31673-9.

Muniyandi, R. C., & Zin, A. M. (2013). Membrane computing as the paradigm for modeling
system biology. Journal of Computer Science, 9, 122–127.

Murase, H. (2000). Finite element inverse analysis using a photosynthetic algorithm. Computers
and Electronics in Agriculture, 29, 115–123.

Muro, C., Escobedo, R., Spector, L., & Coppinger, R. P. (2011). Wolf-pack (Canis lupus) hunting
strategies emerge from simple rules in computational simulations. Behavioural Processes, 88,
192–197.

Murphy, N. (2010). Uniformity conditions for membrane system uncovering complexity below P.
Unpublished Doctoral Thesis, National University of Ireland Maynooth.

Nabil, E., Badr, A., & Farag, I. (2012). A membrane-immune algorithm for solving the multiple 0-
1 knapsack problem (pp. 3–15). LVII: Informatica.

Nahas, N., Nourelfath, M., & Aït-Kadi, D. (2010). Iterated great deluge for the dynamic facility
layout problem. Canada: Interuniversity Research Centre on Enterprise Networks, Logistics
and Transportation, Report No.: CIRRELT-2010-20.

Nakagaki, T., Yamada, H., & Tóth, Á. (2000). Maze-solving by an amoeboid organism. Nature,
407, 470.

Nara, K., Takeyama, T., & Kim, H. (1999). A new evolutionary algorithm based on sheep flocks
heredity model and its application to scheduling problem. In IEEE International Conference
on Systems, Man, and Cybernetics (SMC) (pp. VI-503–VI-508).

Neshat, M., Sepidnam, G., & Sargolzaei, M. (2013). Swallow swarm optimization algorithm: A
new method to optimization. Neural Computing & Application, 23, 429–454. doi: 10.1007/
s00521-012-0939-9.

Newell, P. C. (1978). Genetics of the cellular slime molds. Annual Review of Genetics, 12, 69–93.
Nguyen, V., Kearney, D., & Gioiosa, G. (2008). An implementation of membrane computing

using reconfigurable hardware. Computing and Informatics, 27, 551–569.
Nicolis, S. C., Detrain, C., Demolin, D., & Deneubourg, J. L. (2003). Optimality of collective

choices: a stochastic approach. Bulletin of Mathematical Biology, 65, 795–808.
Niizato, T., & Gunji, Y.-P. (2011). Metric–topological interaction model of collective behavior.

Ecological Modelling, 222, 3041–3049.

References 311

http://dx.doi.org/10.1007/s00521-012-0939-9
http://dx.doi.org/10.1007/s00521-012-0939-9

Nishida, T. Y. (2005, July 18–21). Membrane algorithm: An approximate algorithm for NP-
complete optimization problems exploiting P-systems. In R. Freund, G. Lojka, M. Oswald, &
G. Păun (Eds.), In 6th International workshop on membrane computing (WMC) (pp. 26–43).
Vienna, Austria. Institute of Computer Languages, Faculty of Informatics, Vienna University
of Technology.

Nolle, L., Zelinka, I., Hopgood, A. A., & Goodyear, A. (2005). Comparison of an self-organizing
migration algorithm with simulated annealing and differential evolution for automated
waveform tuning. Advanced Engineering Software, 36, 645–653.

Oca, M. A. M. D., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., & Dorigo, M. (2011).
Majority-rule opinion dynamics with differential latency: A mechanism for self-organized
collective decision-making. Swarm Intelligence, 5, 305–327.

Ochoa-Zezzatti, A., Bustillos, S., Jaramillo, R., & Ruíz, V. (2012). Improving practice sports in a
largest city using a cultural algorithm. International Journal of Combinatorial Optimization
Problems and Informatics, 3, 14–20.

Oftadeh, R., Mahjoob, M. J., & Shariatpanahi, M. (2010). A novel meta-heuristic optimization
algorithm inspired by group hunting of animals: Hunting search. Computers and Mathematics
with Applications, 60, 2087–2098.

Onwubolu, G. C. (2006). Performance-based optimization of multi-pass face milling operations
using Tribes. International Journal of Machine Tools and Manufacture, 46, 717–727.

Packer, C., & Caro, T. M. (1997). Foraging costs in social carnivores. Animal Behaviour, 54,
1317–1318.

Păun, G. (2000). Computing with membranes. Journal of Computer and System Sciences, 61,
108–143.

Păun, G. (2002). A guide to membrane computing. Theoretical Computer Science, 287, 73–100.
Păun, G. (2007). Tracing some open problems in membrane computing. Romanian Journal of

Information Science and Technology, 10, 303–314.
Pei, Y., Zheng, S., Tan, Y., & Takagi, H. (2012, October 14–17). An empirical study on influence

of approximation approaches on enhancing fireworks algorithm. In IEEE International
Conference on Systems, Man, and Cybernetics (IEEE SMC 2012) (pp. 1322–1327). Seoul,
Korea.

Petit, O., & Bon, R. (2010). Decision-making processes: The case of collective movements.
Behavioural Processes, 84, 635–647.

Picarougne, F., Azzag, H., Venturini, G., & Guinot, C. (2007). A new approach of data clustering
using a flock of agents. Evolutionary Computation, 15, 345–367.

Port, A. C., & Yampolskiy, R. V. (2012). Using a GA and wisdom of artificial crowds to solve
solitaire battleship puzzles. In IEEE 17th International Conference on Computer Games
(CGAMES 2012) (pp. 25–29).

Premaratne, U., Samarabandu, J., & Sidhu, T. (2009, December 28–31). A new biologically
inspired optimization algorithm. In IEEE 4th International Conference on Industrial and
Information Systems (ICIIS) (pp. 279–284). Sri Lanka.

Ramachandran, V. S. (2012a). Encyclopedia of human behavior. London: Elsevier. ISBN 978-0-
12-375000-6.

Ramachandran, V. S. (2012b). Encyclopedia of human behavior. London: Elsevier. ISBN 978-0-
12-375000-6.

Ramachandran, V. S. (2012c). Encyclopedia of human behavior. London: Elsevier. ISBN 978-0-
12-375000-6.

Rao, R. V., Vakharia, D. P., & Savsani, V. J. (2009). Mechanical engineering design optimisation
using modified harmony elements algorithm. International Journal of Design Engineering, 2,
116–135.

Ravi, V. (2004). Optimization of complex system reliability by a modified great deluge
algorithm. Asia-Pacific Journal of Operational Research, 21, 487–497.

Ray, T., & Liew, K. M. (2003). Society and civilization: an optimization algorithm based on the
simulation of social behavior. IEEE Transactions on Evolutionary Computation, 7, 386–396.

312 17 Emerging Biology-based CI Algorithms

Reece, J. B., Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., & Jackson, R. B.
(2011). Campbell biology. San Francisco: Pearson Education, Inc. ISBN 978-0-321-55823-7.

Resende, R. R., & Ulrich, H. (2013). Trends in stem cell proliferation and cancer research.
Dordrecht: Springer. ISBN 978-94-007-6210-7.

Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer
Graphics, 21, 25–34.

Reynolds, R. G. (1994). An introduction to cultural algorithms. In A. V. Sebald & L. J. Fogel
(Eds.) The 3rd Annual Conference on Evolutionary Programming (pp. 131–139). World
Scientific Publishing.

Reynolds, R. G. (1999). Cultural algorithms: theory and application In D. Corne, M. Dorigo &
Glover, F. (Eds.), New Ideas in Optimization. NY: McGraw-Hill.

Riff, M. C., Montero, E., & Neveu, B. (2013). Reducing calibration effort for clonal selection
based algorithms. Knowledge-Based Systems, 41, 54–67.

Rose, S. V. (2008). Volcano and earthquake. New York: Dorling Kindersley Limited. ISBN 978-
0-7566-3780-4.

Sacco, W. F., Oliveira, C. R. E. D., & Pereira, C. M. N. A. (2006). Two stochastic optimization
algorithms applied to nuclear reactor core design. Progress in Nuclear Energy, 48, 525–539.

Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2012). Mine blast algorithm for
optimization of truss structures with discrete variables. Computers and Structures, 102–103,
49–63.

Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2013). Mine blast algorithm: A new
population based algorithm for solving constrained engineering optimization problems.
Applied Soft Computing, 13, 2592–2612.

Samuels, P., Huntington, S., Allsop, W., & Harrop, J. (2009). Flood risk management: Research
and practice. London: Taylor & Francis Group. ISBN 978-0-415-48507-4.

Sand, H., Wikenros, C., Wabakken, P., & Liberg, O. (2006). Effects of hunting group size, snow
depth and age on the success of wolves hunting moose. Animal Behaviour, 72, 781–789.

Savage, N. (2012). Gaining wisdom from crowds. Communications of the ACM, 55, 13–15.
Schnell, R. J., & Priyadarshan, P. M. (2012). Genomics of tree crops. New York: Springer. ISBN

978-1-4614-0919-9.
Schutter, G. D., Theraulaz, G., & Deneubourg, J.-L. (2001). Animal–robots collective

intelligence. Annals of Mathematics and Artificial Intelligence, 31, 223–238.
Sedwards, S. (2009). A natural computation approach to biology: Modelling cellular processes

and populations of cells with stochastic models of P systems. Unpublished Doctoral Thesis,
University of Trento.

Sell, S. (2013). Stem cells handbook. New York: Springer. ISBN 978-1-4614-7695-5.
S�en, Z. (2014). Philosophical, logical and scientific perspectives in engineering. Heidelberg:

Springer. ISBN 978-3-319-01741-9.
Senkerik, R., Zelinka, I., Davendra, D., & Oplatkova, Z. (2010). Utilization of soma and

differential evolution for robust stabilization of chaotic logistic equation. Computers and
Mathematics with Applications, 60, 1026–1037.

Shann, M. (2008). Emergent behavior in a simulated robot inspired by the slime mold.
Unpublished Bachelor Thesis, University of Zurich.

Shaw, B., Banerjee, A., Ghoshal, S. P., & Mukherjee, V. (2011). Comparative seeker and bio-
inspired fuzzy logic controllers for power system stabilizers. Electrical Power and Energy
Systems, 33, 1728–1738.

Shettleworth, S. J. (2010). Cognition, evolution, and behavior. New York: Oxford University
Press. ISBN 978-0-19-531984-2.

Shi, Y. (2011a). Brain storm optimization algorithm. In Y. Tan, Y. Shi & G. Wang (Eds.), ICSI
2011, Pat I, LNCS (Vol. 6728, pp. 303–309). Berlin: Springer.

Shi, Y. (2011b). An optimization algorithm based on brainstorming process. International
Journal of Swarm Intelligence Research, 2, 35–62.

Shlesinger, M. F., Klafter, J., & Zumofen, G. (1999). Above, below and beyond Brownian
motion. American Journal of Physics, 67, 1253–1259.

References 313

Silva, D. J. A. D., Teixeira, O. N., & Oliveira, R. C. L. D. (2012). Performance study of cultural
algorithm based on genetic algorithm with single and multi population for the MKP. In S. Gao
(Ed.), Bio-inspired computational algorithms and their applications. Rijeka: InTech.

Sizer, F. S., & Whitney, E. (2014). Nutrition: Concepts and controversies. Belmont: Cengage
Learning. ISBN 978-1-133-60318-4.

Smolin, L. A., & Grosvenor, M. B. (2010). Healthy eathing_a guide to nutrition: Nutrition for
sports and exercise. New York: Infobase Publishing. ISBN 978-1-60413-804-7.

Song, M. X., Chen, K., He, Z. Y., & Zhang, X. (2013). Bionic optimization for micro-siting of
wind farm on complex terrain. Renewable Energy, 50, 551–557.

Srinivasan, S., & Ramakrishnan, S. (2012). Nugget discovery with a multi-objective cultural
algorithm. Computer Science and Engineering: An International Journal, 2, 11–25.

Steinbuch, R. (2011). Bionic optimisation of the earthquake resistance of high buildings by tuned
mass dampers. Journal of Bionic Engineering, 8, 335–344.

Steinitz, M. (2014). Human monoclonal antibodies: Methods and protocols. New York: Springer.
ISBN 978-1-62703-585-9.

Stradner, J., Thenius, R., Zahadat, P., Hamann, H., Crailsheim, K., & Schmickl, T. (2013).
Algorithmic requirements for swarm intelligence in differently coupled collective systems.
Chaos: Solitons and Fractals. 50.

Stukas, A. A., & Clary, E. G. (2012). Altruism and helping behavior. In V. S. Ramachandran,
(Ed.), Encyclopedia of human behavior (2nd ed.). London: Elsevier, Inc. ISBN 978-0-12-
375000-6.

Su, M.-C., Su, S.-Y., & Zhao, Y.-X. (2009). A swarm-inspired projection algorithm. Pattern
Recognition, 42, 2764–2786.

Subbaiah, K. V., Rao, M. N., & Rao, K. N. (2009). Scheduling of AGVs and machines in FMS
with makespan criteria using sheep flock heredity algorithm. International Journal of
Physical Sciences, 4, 139–148.

Sueur, C., Deneubourg, J.-L., & Petit, O. (2010). Sequence of quorums during collective decision
making in macaques. Behavioral Ecology and Sociobiology, 64, 1875–1885.

Sulaiman, M. H. (2013, March 15–17). Differential search algorithm for economic dispatch with
valve-point effects. In 2nd International Conference on Engineering and Applied Science
(ICEAS) (pp. 111–117). Tokyo: Toshi Center Hotel.

Sulis, W. (1997). Fundamental concepts of collective intelligence. Nonlinear Dynamics,
Psychology, and Life Sciences, 1, 35–53.

Sun, J., & Lei, X. (2009). Geese-inspired hybrid particle swarm optimization algorithm. In
International Conference on Artificial Intelligence and Computational Intelligence (pp.
134–138). IEEE.

Taffe, M. A., & Taffe, W. J. (2011). Rhesus monkeys employ a procedural strategy to reduce
working memory load in a self-ordered spatial search task. Brain Research, 1413, 43–50.

Taherdangkoo, M., Shirzadi, M. H., & Bagheri, M. H. (2012a). A novel meta-heuristic algorithm
for numerical function optimization_blind, naked mole-rats (BNMR) algorithm. Scientific
Research and Essays, 7, 3566–3583.

Taherdangkoo, M., Yazdi, M., & Bagheri, M. H. (2011). Stem cells optimization algorithm. LNBI
(Vol. 6840, pp. 394–403). Berlin: Springer.

Taherdangkoo, M., Yazdi, M., & Bagheri, M. H. (2012b). A powerful and efficient evolutionary
optimization algorithm based on stem cells algorithm for data clustering. Central European
Journal of Computer Science, 2, 1–13.

Tan, Y., & Zhu, Y. (2010). Fireworks algorithm for optimization. In Y. Tan, Y. Shi & K. C. Tan
(Eds.), ICSI 2010, Part I, LNCS (Vol. 6145, pp. 355–364). Berlin: Springer

Taylor, K. (2012). The brain supremacy: Notes from the frontiers of neuroscience. Oxford:
Oxford University Press. ISBN 978-0-19-960337-4.

Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D. P., Fricker, M. D., et al. (2010). Rules for
biologically inspired adaptive network design. Science, 237, 439–442.

Thammano, A., & Moolwong, J. (2010). A new computational intelligence technique based on
human group formation. Expert Systems with Applications, 37, 1628–1634.

314 17 Emerging Biology-based CI Algorithms

Theiner, G., Allen, C., & Goldstone, R. L. (2010). Recognizing group cognition. Cognitive
Systems Research, 11, 378–395.

Tidball, K. G., & Krasny, M. E. (2014). Greening in the red zone: Disaster, resilience and
community greening. Heidelberg: Springer. ISBN 978-90-481-9946-4.

Tollefsen, D. P. (2006). From extended mind to collective mind. Cognitive Systems Research, 7,
140–150.

Touhara, K. (2013). Pheromone signaling: Methods and protocols. New York: Springer. ISBN
978-1-62703-618-4.

Ulutas, B. H., & Kulturel-Konak, S. (2011). A review of clonal selection algorithm and its
applications. Artificial Intelligence Review, 36, 117–138.

Umedachi, T., Takeda, K., Nakagaki, T., Kobayashi, R., & Ishiguro, A. (2010). Fully
decentralized control of a soft-bodied robot inspired by true slime mold. Biological
Cybernetics, 102, 261–269.

Venkumar, P., & Sekar, K. C. (2012). Design of cellular manufacturing system using non-
traditional optimization algorithms. In V. Modrák & R. S. Pandian (Eds.), Operations
management research and cellular manufacturing systems: Innovative methods and
approaches, Chap. 6 (pp. 99–139). Hershey: IGI Global.

Verdy, A., & Flierl, G. (2008). Evolution and social behavior in krill. Deep-Sea Research II, 55,
472–484.

Vucetich, J. A., Peterson, R. O., & Waite, T. A. (2004). Raven scavenging favours group foraging
in wolves. Animal Behaviour, 67, 1117–1126.

Wang, G., Guo, L., Gandomi, A. H., Cao, L., Alavi, A. H., Duan, H., et al. (2013). Lévy-flight
krill herd algorithm. Mathematical Problems in Engineering, 2013, 1–14.

Wang, P., & Cheng, Y. (2010). Relief supplies scheduling based on bean optimization algorithm.
Economic Research Guide, 8, 252–253.

Wang, S., Dai, D., Hu, H., Chen, Y.-L., & Wu, X. (2011). RBF neural network parameters
optimization based on paddy field algorithm. In International Conference on Information and
Automation (ICIA) (pp. 349–353). June, Shenzhen, China. IEEE.

Wang, W., Feng, Q., & Zheng, Y. (2008, November 19–21). A novel particle swarm optimization
algorithm with stochastic focusing search for real-parameter optimization. In 11th Singapore
International Conference on Communication Systems (ICCS) (pp. 583–587). Guangzhou,
China. IEEE.

Wang, X., Gao, X.-Z., & Ovaska, S. J. (2009). Fusion of clonal selection algorithm and harmony
search method in optimization of fuzzy classification systems. International Journal of Bio-
Inspired Computation, 1, 80–88.

Wang, Z.-R., Ma, F., Ju, T., & Liu, C.-M. (2010). A niche genetic algorithm with population
migration strategy. In IEEE 2nd International Conference on Information Science and
Engineering (ICISE) (pp. 912–915).

Wei, G. (2011). Optimization of mine ventilation system based on bionics algorithm. Procedia
Engineering, 26, 1614–1619.

Wei, Z. H., Cui, Z. H., & Zeng, J. C. (2010, September 26–28). Social cognitive optimization
algorithm with reactive power optimization of power system. In 2010 International
Conference on Computational Aspects of Social Networks (CASoN) (pp. 11–14). Taiyuan,
China.

Weigert, G., Horn, S., & Werner, S. (2006). Optimization of manufacturing processes by
distributed simulation. International Journal of Production Research, 44, 3677–3692.

Whitehouse, M. E. A., & Lubin, Y. (1999). Competitive foraging in the social spider Stegodyphus
dumicola. Animal Behaviour, 58, 677–688.

Whitten, K. W., Davis, R. E., Peck, M. L., & Stanley, G. G. (2014). Chemistry. Belmont:
Cengage Learning. ISBN 13: 978-1-133-61066-3.

Wilson, C. (2013). Brainstroming and beyond: a user-centered design method. Waltham: Morgan
Kaufmann, Elsevier Inc. ISBN 978-0-12-407157-5.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1, 67–82.

References 315

Woodward, J. (2008). Climate change. New York: Dorling Kindersley Limited. ISBN 978-
07566-3771-2.

Woodworth, S. (2007). Computability limits in membrane computing. Unpublished Doctoral
Thesis, University of California, Santa Barbara.

Wu, J., Cui, Z., & Liu, J. (2011, August 18–20). Using hybrid social emotional optimization
algorithm with metropolis rule to solve nonlinear equations. In Y. Wang, A. Celikyilmaz, W.
Kinsner, W. Pedrycz, H. Leung & L. A. Zadeh (Eds.), 10th International Conference on
Cognitive Informatics and Cognitive Computing (ICCI & CC) (pp. 405–411). Banff, AB.
IEEE.

Xiao, J.-H., Huang, Y.-F., & Cheng, Z. (2013). A bio-inspired algorithm based on membrane
computing for engineering design problem. International Journal of Computer Science Issues,
10, 580–588.

Xu, Y. C., Cui, Z. H., & Zeng, J. C. (2010). Social emotional optimization algorithm for
nonlinear constrained optimization problems. In 1st International Conference on Swarm,
Evolutionary and Memetic Computing (SEMCCO) (pp. 583–590).

Xue, J., Wu, Y., Shi, Y., & Cheng, S. (2012). Brain storm optimization algorithm for multi-
objective optimization problems. In Y. Tan, Y. Shi & Z. Ji (Eds.), ICSI 2012, Part I, LNCS
(Vol. 7331, pp. 513–519). Berlin: Springer.

Yampolskiy, R. V., Ashby, L., & Hassan, L. (2012). Wisdom of artificial crowds: A metaheuristic
algorithm for optimization. Journal of Intelligent Learning Systems and Applications, 4,
98–107.

Yang, C., Tu, X., & Chen, J. (2007). Algorithm of marriage in honey bees optimization based on
the wolf pack search. In IEEE International Conference on Intelligent Pervasive Computing
(IPC) (pp. 462–467).

Yang, X.-S. (2005). Biology-derived algorithms in engineering optimization. In S. Olarius & A.
Zomaya (Eds.), Handbook of Bioinspired Algorithms and Applications, Chap. 32 (pp.
585–596). Boca Raton: CRC Press.

Yang, X.-S. (2012). Flower pollination algorithm for global optimization. Unconventional
Computation and Natural Computation, LNCS (Vol. 7445, pp. 240–249). Berlin: Springer.

Yang, X.-S., & Deb, S. (2010). Eagle strategy using Lévy walk and firefly algorithms for
stochastic optimization. In J. R. Gonzalez (Ed.), Nature Inspired Cooperative Strategies for
Optimization (NISCO 2010), SCI (Vol. 284, pp. 101–111). Berlin: Springer.

Yang, X.-S., & Deb, S. (2012). Two-stage eagle strategy with differential evolution. International
Journal of Bio-Inspired Computation, 4, 1–5.

Yang, X.-S., Karamanoglu, M., & He, X. (2013). Multi-objective flower algorithm for
optimization. Procedia Computer Science, 18, 861–868.

Yeagle, P. L. (Ed.). (2005). The structure of biological membranes. Boca Raton: CRC Press.
ISBN 0-8493-1403-8.

You, S. K., Kwon, D. H., Park, Y.-I., Kim, S. M., Chung, M.-H., & Kim, C. K. (2009). Collective
behaviors of two-component swarms. Journal of Theoretical Biology, 261, 494–500.

Zaharie, D., & Ciobanu, G. (2006). Distributed evolutionary algorithms inspired by membranes
in solving continuous optimization problems. In H. J. Hoogeboom (Ed.), WMC 7, LNCS (Vol.
4361, pp. 536–553). Berlin: Springer.

Zang, H., Zhang, S., & Hapeshi, K. (2010). A review of nature-inspired algorithms. Journal of
Bionic Engineering, 7, S232–S237.

Zelinka, I., & Lampinen, J. (2000). Soma: Self-organizing migrating algorithm. In The 6th
International Conference on Soft Computing, Brno, Czech Republic.

Zelinka, I., Senkerik, R., & Navratil, E. (2009). Investigation on evolutionary optimization of
chaos control. Chaos, Solitons and Fractals, 40, 111–129.

Zhan, Z.-H., Zhang, J., Shi, Y.-H., & Liu, H.-L. (2012, June 10–15) A modified brain storm
optimization. In World Congress on Computational Intelligence (WCCI) (pp. 1–8). Brisbane,
Australia. IEEE.

316 17 Emerging Biology-based CI Algorithms

Zhang, G., Cheng, J., & Gheorghe, M. (2011). A membrane-inspired approximate algorithm for
traveling salesman problems. Romanian Journal of Information Science and Technology, 14,
3–19.

Zhang, G., Yang, H., & Liu, Z. (2007). Using watering algorithm to find the optimal paths of a
maze. Computer, 24, 171–173.

Zhang, W., Luo, Q. & Zhou, Y. (2009). A method for training RBF neural networks based on
population migration algorithm. In International Conference on Artificial Intelligence and
Computational Intelligence (AICI) (pp. 165–169). IEEE.

Zhang, W., & Zhou, Y. (2009). Description population migration algorithm based on framework
of swarm intelligence. In IEEE WASE International Conference on Information Engineering
(ICIE) (pp. 281–284).

Zhang, X., Chen, W., & Dai, C. (2008a, April 6–9) Application of oriented search algorithm in
reactive power optimization of power system. DRPT 2008 (pp. 2856–2861). Nanjing, China.
DRPT.

Zhang, X., Sun, B., Mei, T., & Wang, R. (2010, November 28–30). Post-disaster restoration
based on fuzzy preference relation and bean optimization algorithm. In Youth Conference on
Information Computing and Telecommunications (YC-ICT) (pp. 271–274). IEEE.

Zhang, X., Jiang, K., Wang, H., Li, W., & Sun, B. (2012a). An improved bean optimization
algorithm for solving TSP. In Y. Tan, Y. Shi & Z. Ji (Eds.), ICSI 2012, Part I, LNCS (Vol.
7331, pp. 261–267). Berlin: Springer.

Zhang, X., Huang, S., Hu, Y., Zhang, Y., Mahadevan, S., & Deng, Y. (2013a). Solving 0-1
knapsack problems based on amoeboid organism algorithm. Applied Mathematics and
Computation, 219, 9959–9970.

Zhang, X., Sun, B., Mei, T., & Wang, R. (2013b). A novel evolutionary algorithm inspired by
beans dispersal. International Journal of Computational Intelligence Systems, 6, 79–86.

Zhang, X., Wang, H., Sun, B., Li, W., & Wang, R. (2013c). The Markov model of bean
optimization algorithm and its convergence analysis. International Journal of Computational
Intelligence Systems, 6, 609–615.

Zhang, X., Wang, R., & Song, L. (2008b). A novel evolutionary algorithm: Seed optimization
algorithm. Pattern Recognition and Artificial Intelligence, 21, 677–681.

Zhang, Z.-W., Zhang, H., & Li, Y.-B. (2012b). Biologically inspired collective construction with
visual landmarks. Journal of Zhejiang University-SCIENCE C (Computers and Electronics),
13, 315–327.

Zhao, Q., & Liu, X. (2011). An improved multi-objective population migration optimization
algorithm. In 2nd International Symposium on Intelligence Information Processing and
Trusted Computing (IPTC) (pp. 143–146). IEEE.

Zheng, Y., Chen, W., Dai, C., & Wang, W. (2009). Stochastic focusing search: A novel
optimization algorithm for real-parameter optimization. Journal of Systems Engineering and
Electronics, 20, 869–876.

Zhou, D., Shi, Y., & Cheng, S. (2012). Brain storm optimization algorithm with modified step-
size and individual generation. In Y. Tan, Y. Shi & Z. Ji (Eds.), ICSI 2012, Part I, LNCS (Vol.
7331, pp. 243–252). Berlin: Springer.

Zhou, Y., & Liu, B. (2009). Two novel swarm intelligence clustering analysis methods. In IEEE
Fifth International Conference on Natural Computation (ICNC) (pp. 497–501).

Zhou, Y., & Mao, Z. (2003). A new search algorithm for global optimization: Population
migration algorithm. Journal of South China University of Technology, A31, 1–5.

Zungeru, A. M., Ang, L.-M., & Seng, K. P. (2012). Termite-hill: Performance optimized swarm
intelligence based routing algorithm for wireless sensor networks. Journal of Network and
Computer Applications, 35, 1901–1917.

References 317

Part III
Physics-based CI Algorithms

Chapter 18
Big Bang–Big Crunch Algorithm

Abstract In this chapter, the big bang–big crunch (BB–BC), a global optimiza-
tion method inspired from one of the cosmological theories known as closed
universe, is introduced. We first, in Sect. 18.1, describe the background knowledge
regarding the big bang and big crunch. Then, Sect. 18.2 details the fundamentals of
BB–BC, the selected variants of BB–BC, and the representative BB–BC appli-
cation, respectively. Finally, Sect. 18.3 draws the conclusions of this chapter.

18.1 Introduction

Cosmological theory is an exciting subject, because it shows how the universe
happens, moves, and revolutions. One of the fascinating topics is where all of the
stars and galaxies came from (and how, and why)? This question has long been
explored by the physics. For example, two famous physics, i.e., Sir Isaac Newton
and Albert Einstein, believed that the universe is unchanging and introduced a
term, called cosmological constant. However, this would prove to be a mistake. In
1929, astronomer Edwin Hubble discovered that the universe was expanding. He
found that in the early universe, gravity was very strong, as a result of the con-
centration of matter in a very small space—so small, in fact, that it was com-
pressed down to a single point. Thus, it would suffer an incredible pressure and has
expanded ever since, known as the big bang. This event was controversial until
1965, when an accidental discovery supported the theory. Today, the most
advanced astronomical observations show that the big bang theory is likely true.

Scientists were originally very upset by the big bang theory, because they believed
in an eternal universe (i.e., the universe does not change over time). However, they
concerned soon with another question of what is the ultimate fate of the universe?
One idea that was popular was that the universe would expand until gravity began to
pull it back, resulting in a big crunch, where all matter returned to a single unified
point—and then the cycle of expansion would start all over again. This hypothesis is
known as closed universe. What happens after that? We cannot exactly tell for now.

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_18, � Springer International Publishing Switzerland 2014

321

18.1.1 Big Bang

Literally, every bit of matter and energy in our universe was created through a
singular event (i.e., the unimaginable crucible of heat and light) that we call the big
bang (Bauer and Westfall 2011). Just for the record, it was neither big (in fact, it
was very small and fit onto the head of a pin), nor was there a bang. This event
happened 13:73� 0:12ð Þ � 109 years ago. Although this theory is not perfect, and
over time physics made efforts in order to make it more consistent. One thing is
true that the universe was well on its way to becoming what we observe today:
filled with galaxies, stars, planets, and all other sorts of strange and exotic things.

18.1.2 Big Crunch

One hypothesis that the future of the universe is called big crunch model, which
means that the universe contracts back into a point of mass. This will proceed
almost exactly like the big bang, except in reverse. Whether the expansion of the
universe will take place forever or will stop some day, it depends on the quantity of
matter it has (Scalzi 2008).

18.2 Big Bang–Big Crunch Algorithm

18.2.1 Fundamentals of the Big Bang–Big Crunch
Algorithm

Inspired from one of the cosmological theories that universe was ‘‘born’’ in the big
bang and might ‘‘die’’ in the big crunch, Erol and Eksin (2006) proposed a new
algorithm, namely, the big bang–big crunch (BB–BC) algorithm. In general, the
proposed algorithm includes two successive phases. In the big bang phase (cor-
responding to the disorder caused by the energy dissipation in nature), random
points are generated; whereas, in the big crunch phase (corresponding to the order
due to gravitational attraction), those points shrank to a single representative point
via a centre of mass or minimal cost approach.

18.2.1.1 Big Bang Phase

Just like the expansion of the universe, the main purpose of the big bang phase in
BB–BC is to create initial populations. The initial position of each input is gen-
erated randomly over the entire search space. Once the population pool is created,
fitness values of the individuals are calculated (Genç et al. 2010).

322 18 Big Bang–Big Crunch Algorithm

18.2.1.2 Big Crunch Phase

If enough mass and energy (i.e., inputs) is in the universe (i.e., search space), then
that mass and energy may cause enough attraction to halt the expansion of the
universe and reverse it—bringing the entire universe back to a single point.
Similarly, in the big crunch phase, a contraction procedure is applied to form a
centre or a representative point for further big bang operations. In other words, the
big crunch phase is a convergence operator that has many inputs but only one
output, which called ‘‘centre of mass’’. Here, the term mass refers to the inverse of
the fitness function value (f i). The point representing the centre of mass that is
denoted by xc and calculated according to Eq. 18.1 (Erol and Eksin 2006):

~xc ¼
PN

i¼1
1
f i~xi

PN
i¼1

1
f i

; ð18:1Þ

where xi is a point within an n-dimensional search space generated, f i is fitness
function value of this point (such as cost function), N is the population size in big
bang phase.

Instead of the centre of mass, the best fit individual (i.e., the lowest f i value) can
also be chosen as the starting point in the big bang phase.

The new generation for the next iteration in the big bang phase is normally
distributed around the centre of mass, using Eq. 18.2 (Erol and Eksin 2006):

xnew ¼ xc þ lr

k
; ð18:2Þ

where xc stands for centre of mass, l is the upper limit of the parameter, r [or N(0,
1)] is a normal random number generated according to a standard normal distri-
bution with mean (l) zero and standard deviation (r) equal to one, and k is the
iteration step. Then new point (xnew) is upper and lower bounded.

Summarizing the steps in the standard BB–BC algorithm yields to Erol and
Eksin (2006):

• Step 1: Initiation population of N candidate solution is randomly generated all
over the search space.

• Step 2: The fitness function value f ið Þ corresponding to each candidate solution
is calculated.

• Step 3: The N candidate solutions are contracted into the centre of mass xcð Þ,
either by using the Eq. (18.1) or by choosing the point that has lowest value after
the calculation in Step 2.

• Step 4: New population of solutions is generated around xc by adding or sub-
tracting a random number whose value decreases by increasing the iterations
elapsed.

• Step 5: Check if maximum iteration is reached; go to Step 2 for new beginning.
If a specified termination criteria is satisfied stop and return the best solution.

18.2 Big Bang–Big Crunch Algorithm 323

18.2.2 Performance of BB–BC

To evaluate the performance of the BB–BC algorithm, (Erol and Eksin 2006)
proposed six test functions, namely, Sphere function, Rosenbrock function, Step
function, Ellipsoid function, Rastrigin function, and Ackley function. Compared
with combat genetic algorithm (CGA), the BB–BC algorithm presented a better
results of finding the global best solution.

18.2.3 Selected BB–BC Variants

Although BB–BC algorithm is a new member of computational intelligence (CI)
family, a number of BB–BC variations have been proposed in the literature for the
purpose of further improving the performance of BB–BC. This section gives an
overview to some of these BB–BC variants which have been demonstrated to be
very efficient and robust.

18.2.3.1 Hybrid BB–BC Algorithm

In Kaveh and Talatahari (2009, 2010b), the authors developed one of the first
BB–BC hybrids, called hybrid BB–BC (HBB–BC). Overall, the HBB–BC intro-
duced two improvements: using the particle swarm optimization (PSO) capacities
to improve the exploration ability of BB–BC algorithm, and using sub-optimiza-
tion mechanism (SOM) to update the search-space of BB–BC algorithm. Com-
pared with the standard BB–BC and other conventional CI optimization methods
such as genetic algorithm (GA), ant colony optimization (ACO), PSO, and har-
mony search (HS), the HBB–BC performed better.

In general, there are also two phases involved in HBB–BC: a big bang phase
where candidate solutions are randomly distributed over the search space, and a
big crunch phase working as a convergence operator where the centre of mass is
generated. Compared with standard BB–BC algorithm, the main difference is that
the HBB–BC employed the PSO capacities to improve the exploration ability.
Kaveh and Talatahari (2009) pointed out that the reason to select PSO as the first
reformation due to at each iteration, the particle moves towards both local best
(i.e., a direction computed from the best visited position), and global best (i.e., the
best visited position of all particles in its neighbourhood). Inspired by that, the
HBB–BC approach not only uses the centre of mass but also utilizes the best
position of each candidate and the best global position to generate a new solution.
The calculation formulas in big crunch phase are as follows:

324 18 Big Bang–Big Crunch Algorithm

• The centre of mass can be computed via Eq. 18.3 (Kaveh and Talatahari 2009):

xcðkÞ
i ¼

PN
j¼1

1
f i x k;jð Þ

i
PN

j¼1
1
f i

; i ¼ 1; 2; . . .; ng; ð18:3Þ

where xcðkÞ
i is the ith component of the jth solution generated in the kth iteration;

f i is fitness function value of this point (such as cost function); N is the pop-
ulation size in big bang phase.

• The new generation for the next iteration in the big bang phase is normally

distributed around xcðkÞ
i and can be computed via Eq. 18.4 (Kaveh and Talatahari

2009):

x kþ1;jð Þ
i ¼ a2xcðkÞ

i þ 1� a2ð Þ a3xgbestðkÞ
i þ 1� a3ð Þxlbest k;jð Þ

i

� �
þ rja1 xmax�xminð Þ

kþ1 ;

i ¼ 1; 2; . . .; ng

j ¼ 1; 2; . . .;N;

ð18:4Þ

where rj is a random number from a standard normal distribution which
changes for each candidate; xmax and xmin are the upper and lower limits; a1 is a

parameter for limiting the size of the search space; xlbest k;jð Þ
i is the best position

of the jth particle up to the iteration k; xgbestðkÞ
i is the best position among all

candidates up to the iteration k; a2 and a3 are adjustable parameters controlling
the influence of the global best and local best on the new position of the
candidates, respectively.

Another reformation in the HBB–BC is that the SOM has been employed as an
auxiliary tool to update the search space. Based on the principle of finite element
method, SOM was introduced by Kaveh et al. (2008). The work principle of SOM
is repetitive dividing the search space into sub-domains and employing optimi-
zation process into these sub-domains until a specified termination criteria (such as
required accuracy) is satisfied and return the best solution.

The SOM mechanism can be calculated as the repetition of the following steps
for definite times, nc, (in the stage k of the repetition):

• Calculating cross-sectional area bounds for each group.

If xgbest kSOM�1ð Þ
i is the global best solution obtained from the previous stage for

design variable i, then we have Eq. 18.5 (Kaveh and Talatahari 2009):

x kSOMð Þ
min;i ¼ xgbest kSOM�1ð Þ

i � b1 � x kSOM�1ð Þ
max;i � x kSOM�1ð Þ

min;i

� �
� x kSOM�1ð Þ

min;i

x kSOMð Þ
max;i ¼ xgbest kSOM�1ð Þ

i þ b1 � x kSOM�1ð Þ
max;i � x kSOM�1ð Þ

min;i

� �
� x kSOM�1ð Þ

max;i

8
><

>:
;

i ¼ 1; 2; . . .; ng

kSOM ¼ 2; . . .; nc;

ð18:5Þ

18.2 Big Bang–Big Crunch Algorithm 325

where is an adjustable factor which determines the amount of the remaining

search space; and x kSOMð Þ
min;i , x kSOMð Þ

max;i are the minimum and the maximum allowable

cross-sectional areas at the stage, respectively. In stage 1, the amounts of xð1Þmin;i

and xð1Þmax;i are set according to Eq. 18.6 (Kaveh and Talatahari 2009):

xð1Þmin;i ¼ xmin; xð1Þmax;i ¼ xmax; i ¼ 1; 2; . . .; ng; ð18:6Þ

where xmin; i1 and xmax; i1 are the minimum and the maximum allowable cross-
sectional areas at the stage 1.

• Determining the amount of increase in allowable cross-sectional areas via
Eq. 18.7 (Kaveh and Talatahari 2009).

x� kSOMð Þ
i ¼

x kSOMð Þ
max;i � x kSOMð Þ

min;i

� �

b2 � 1
; i ¼ 1; 2; . . .; ng; ð18:7Þ

where x� kSOMð Þ
i is the amount of increase in allowable cross-sectional area; and

b2 is the number of permissible value of each group.

• Creating the series of the allowable cross-sectional areas.
The set of allowable cross-sectional areas for group i can be defined as Eq. 18.8
(Kaveh and Talatahari 2009):

x kSOMð Þ
min;i ; x kSOMð Þ

min;i þ x� kSOMð Þ
i ; . . .; x kSOMð Þ

min;i þ b2 � 1ð Þ � x� kSOMð Þ
i ¼ x kSOMð Þ

max;i ;

i ¼ 1; 2; . . .; ng:
ð18:8Þ

• Determining the optimum solution of the stage kSOM .
This is the last step and the stopping creation for SOM can be defined as
Eq. 18.9 (Kaveh and Talatahari 2009):

x�ðncÞ
i � x�; i ¼ 1; 2; . . .; ng; ð18:9Þ

where x�ðncÞ
i ¼ the amount of accuracy rate of the last stage; and x� ¼ the

amount of accuracy rate of the primary problem.

In addition to HBB–BC, another hybridization between the BB–BC algorithm
and simulated annealing (SA) technique was recently proposed in Altomare et al.
(2013). In this approach, the value of fitness function is further submitted to a local
optimization by SA with a fast annealing schedule. This new hybrid method has
been implemented to solve crystal structure problems. Compared with traditional
SA algorithm, the hybridized algorithm showed better results in terms of com-
putation time.

326 18 Big Bang–Big Crunch Algorithm

18.2.3.2 Improved BB–BC Algorithm

To improve the BB–BC performance, Hasançebi and Azad (2012) proposed two
enhanced variants of the BB–BC algorithm, called modified BB–BC (MBB–BC)
and exponential BB–BC algorithm (EBB–BC), respectively. In the new formu-
lation, the normal random number (r) is changed by using any appropriate sta-
tistical distribution in order to eliminate the shortcomings of the standard
formulation (e.g., big search dimensionality). Furthermore, to meet the discrete
data requirements, the improved BB–BC algorithm employed the way of round-off
instead of the real values to nearest integers representing the sequence number. As
a result, the new generation for the next iteration in the big bang phase can be
formulated as Eq. 18.10 (Hasançebi and Azad 2012):

xnew ¼ xc þ round a � N 0; 1ð Þ3i
xmax � xminð Þ

k

� �

; ð18:10Þ

where xc is the value of discrete design variable, xmax and xmin are its lower and
upper bounds, respectively. In addition, the power of random number is set to 3
based on extensive numerical experiments. This reformulation is referred to as
MBB–BC.

In a similar vein, Hasançebi and Azad (2012) also proposed an alternative
approach called EBB–BC to deal with the discrete design problem where the use
of an exponential distribution (E) in conjunction with the third power of random
number as shown in Eq. 18.11.

xnew ¼ xc þ round a � E k ¼ 1ð Þ3i
xmax � xminð Þ

k

� �

: ð18:11Þ

The probability density function for an exponential distribution is given as
Eq. 18.12 (Hasançebi and Azad 2012):

f ðxÞ ¼ ke�kx x� 0
0 x\0

�

; ð18:12Þ

where k is a real, positive constant. The mean and variance of the exponential
distribution are given as 1=k and 1=k2, respectively.

Accordingly, if all the design variables in a new solution remain unchanged
after applying Eq. 18.11, i.e., xnew ¼ xc, the generation process is iterated in the
same way by decreasing the k parameter of the exponential distribution by half
each time, and this is repeated until a different solution is produced, i.e., xnew 6¼ xc.

Hasançebi and Azad (2012) presented two numerical examples to investigate the
performance of EBB–BC and MBB–BC. Compared with standard BB–BC, the
improved variants gave the better results in terms of balancing between the explo-
ration and exploitation characteristics of the algorithms. More recently, an upper
bound strategy (UBS) with MBB–BC and EBB–BC was further integrated in Azad
et al. (2013) for optimum design of steel frame structures. Computational results
showed that the new effort significantly reduced the number of structural analyses.

18.2 Big Bang–Big Crunch Algorithm 327

Furthermore, to improve the convergence properties of the BB–BC, Alatas
(2011) proposed a new methods called uniform big bang–chaotic big crunch
(UBB–CBC) algorithm which involves two improved reformulation, i.e., an uni-
form population method to generate uniformly distributed random points in the big
bang phase (called UBB), and the chaotic maps property to rapidly shrink those
points to a single representative point in the big crunch phase (called CBC).
Compared with benchmark functions, the performance of UBB–CBC showed
superiority over the standard BB–BC algorithm.

18.2.3.3 Local Search-Based BB–BC Algorithm

As Kaveh and Talatahari (2009) concluded at the end of their study, the HBB–BC
is worse than improved algorithms which have the extra local search ability. To
fulfil this gap, Genç et al. (2010) introduced a local search move mechanism to
BB–BC algorithm based on defining a possible improving direction to check
neighbouring points.

In details, Genç et al. (2010) put the local search methods (i.e., expansion and
contraction) between the original ‘‘banging’’ and ‘‘crunching’’ phases. The main
objective is to modify the representative point with local directional moves, in
order to easily attack the path going to optima and decrease the process time fro
reaching the global minima. The direction vector can be formulated as Eq. 18.13
(Genç et al. 2010):

IV1 ¼ P nð Þ � P n� 1ð Þ; ð18:13Þ

where IV1 stands for the improvement vector of single step regression BB–BC; PðnÞ
is the current best or fittest point; and P n� 1ð Þ is the last stored best or fittest point.

To test the performance of the new algorithm, Genç et al. (2010) implemented it
on the target tracking problem. The simulation results showed that the local
search-based BB–BC algorithm outperformed the standard BB–BC algorithm in
terms of data accuracy.

18.2.4 Representative BB–BC Application

According to the literature review, the main application of the BB–BC algorithm is
in structural optimization. In general, there are three main groups of structural
optimization applications (Sadollah et al. 2012; Hasançebi and Azad 2012):
(1) sizing optimization; (2) shape optimization; and (3) topology optimization. In
sizing optimization, it can further be divided into two subcategories: discrete and
continuous. Hasançebi and Azad (2012) used MBB–BC and EBB–BC to solve the
discrete sizing optimization, whereas Kaveh and Talatahari (2009) and (2010a)
proposed the HBB–BC algorithm to solve problems with continuous domains.

328 18 Big Bang–Big Crunch Algorithm

18.2.4.1 Truss Optimization

Truss optimization is one of the most active branches of the continuous sizing
optimization. The main objective for designing truss structures is to determine the
optimum values for member cross-sectional areas (Ai) in order to minimize the
structural weight (W), meanwhile, satisfy the inequality constraints that limit
design variable sizes and structural responses.

In Kaveh and Talatahari (2009), the authors employed the HBB–BC method to
address the above mentioned truss optimization problem. In their work, five truss
structures optimization examples were presented, namely, a 25-bar spatial truss
structure, a 72-bar spatial truss structure, a 120-bar dome shaped truss, a square on
diagonal double-layer grid, and a 26-story-tower spatial truss. Compared with
other CI techniques (e.g., GA, ACO, and PSO), the HBB–BC performed well in
large size structures characterized by converging difficulty or easily getting trap-
ped at a local optimum.

18.3 Conclusions

In summary, the BB–BC algorithm is a population-based CI algorithm that shares
some similarities with evolutionary algorithms (Erol and Eksin 2006), such as
randomly selected initialization and refinement of the value of fitness function
according to the best fitted answers of the previous loop or loops (Kaveh and
Farhoudi 2011). The core working principle of BB–BC is to transform a con-
vergent solution to a chaotic state which is a new set of solutions (Erol and Eksin
2006). The leading advantages of BB–BC are its high convergence speed and the
low computation time, together with its simplicity and capability of easy-to-
implement (Desai and Prasad 2013).

With the rapid spreading of BB–BC, in addition to the representative appli-
cations detailed in this chapter, the BB–BC has also been successfully applied to a
variety of optimization problems as outlined below:

• Automatic target tracking (Genç et al. 2010; Genç and Hocaoğlu 2008).
• Fuzzy system control (Kumbasar et al. 2008, 2011; Aliasghary et al. 2011).
• Layout optimization (Kaveh and Farhoudi 2011).
• Linear time invariant systems (Desai and Prasad 2013).
• Course timetabling (Jaradat and Ayob 2010).
• Power system (Sedighizadeh and Arzaghi-Haris 2011; Dincel and Genc 2012;

Kucuktezcan and Gen 2012; Zandi et al. 2012).
• Structural engineering (Altomare et al. 2013; Azad et al. 2013; Tang et al. 2010;

Camp 2007; Camp and Huq 2013).

Interested readers are referred to them as a starting point for a further explo-
ration and exploitation of the BB–BC algorithm.

18.2 Big Bang–Big Crunch Algorithm 329

References

Alatas, B. (2011). Uniform big bang–chaotic big crunch optimization. Communications in
Nonlinear Science and Numerical Simulation, 16, 3696–3703.

Aliasghary, M., Eksin, I., & Guzelkaya, M. (2011). Fuzzy-sliding model reference learning
control of inverted pendulum with big bang–big crunch optimization method. In 11th
International Conference on Intelligent Systems Design and Applications (ISDA) (pp.
380–384). IEEE.

Altomare, A., Corriero, N., Cuocci, C., Moliterni, A., & Rizzi, R. (2013). The hybrid big bang–
big crunch method for solving crystal structure from powder diffraction data. Journal of
Applied Crystallography, 46, 779–787.

Azad, S. K., Hasançebi, O., & Azad, S. K. (2013). Upper bound strategy for metaheuristic based
design optimization of steel frames. Advances in Engineering Software, 57, 19–32.

Bauer, W., & Westfall, G. D. (2011). University physics with modern physics. New York, USA:
McGraw-Hill. ISBN 978-0-07-285736-8.

Camp, C. V. (2007). Design of space trusses using big bang–big crunch optimization. Journal of
Structural Engineering, 133, 999–1008.

Camp, C. V., & Huq, F. (2013). CO2 and cost optimization of reinforced concrete frames using a
big bang–big crunch algorithm. Engineering Structures, 48, 363–372.

Desai, S. R., & Prasad, R. (2013). A novel order diminution of LTI systems using big bang–big
crunch optimization and routh approximation. Applied Mathematical Modelling, 37,
8016–8028. http://dx.doi.org/10.1016/j.apm.2013.02.052.

Dincel, E., & Genc, V. M. I. (2012, November 23–25). A power system stabilizer design by big
bang–big crunch algorithm. In IEEE International Conference on Control System, Computing
and Engineering, Penang, Malaysia (pp. 307–312). IEEE.

Erol, O. K., & Eksin, I. (2006). A new optimization method: Big bang–big crunch. Advances in
Engineering Software, 37, 106–111.

Genç, H. M., & Hocaoğlu, A. K. (2008). Bearing-only target tracking based on big bang–big
crunch algorithm. In The Third International Multi-Conference on Information Technology
(pp. 229–233). IEEE.

Genç, H. M., Eksin, _I., & Erol, O. K. (2010, October 10–13). Big bang–big crunch optimization
algorithm hybridized with local directional moves and application to target motion analysis
problem. In IEEE International Conference on Systems, Man, and Cybernetics (SMC),
Istanbul, Turkey (pp. 881–887). IEEE.

Hasançebi, O., & Azad, S. K. (2012). An exponential big bang–big crunch algorithm for discrete
design optimization of steel frames. Computers and Structures, 110–111, 167–179.

Jaradat, G. M., & Ayob, M. (2010). Big bang–big crunch optimization algorithm to solve the
course timetabling problem. In 10th International Conference on Intelligent Systems Design
and Applications (ISDA) (pp. 1448–1452). IEEE.

Kaveh, A., & Farhoudi, N. (2011). A unified approach to parameter selection in meta-heuristic
algorithms for layout optimization. Journal of Constructional Steel Research, 67, 1453–1462.

Kaveh, A., & Talatahari, S. (2009). Size optimization of space trusses using big bang–big crunch
algorithm. Computers and Structures, 87, 1129–1140.

Kaveh, A., & Talatahari, S. (2010a). A discrete big bang–big crunch algorithm for optimal design
of skeletal structures. Asian Journal of Civil Engineering (Building and Housing), 11,
103–122.

Kaveh, A., & Talatahari, S. (2010b). Optimal design of Schwedler and ribbed domes via hybrid
big bang–big crunch algorithm. Journal of Constructional Steel Research, 66, 412–419.

Kaveh, A., Farahmand, B. A., & Talatahari, S. (2008). Ant colony optimization for design of
space trusses. International Journal of Space Structure, 23, 167–181.

Kucuktezcan, C. F., & Genc, V. M. I. (2012). Big bang–big crunch based optimal preventive
control action on power systems. In 3rd IEEE PES International Conference and Exhibition
on Innovative Smart Grid Technologies (ISGT Europe), Berlin, Germany (pp. 1–4). IEEE.

330 18 Big Bang–Big Crunch Algorithm

http://dx.doi.org/10.1016/j.apm.2013.02.052

Kumbasar, T., Yes�il, E., Eksin, _I., & Güzelkaya, M. (2008, March 12–14). Inverse fuzzy model
control with online adaptation via big bang–big crunch optimization. In 3rd International
Symposium on Communications, Control and Signal Processing, Malta (pp. 697–702). IEEE.

Kumbasar, T., Eksin, I., Guzelkaya, M., & Yesil, E. (2011). Adaptive fuzzy model based inverse
controller design using BB–BC optimization algorithm. Expert Systems with Applications, 38,
12356–12364.

Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2012). Mine blast algorithm for
optimization of truss structures with discrete variables. Computers and Structures, 102–103,
49–63.

Scalzi, J. (2008). The rough guide to the universe. New York, USA: Rough Guides Ltd. ISBN
9781-84353-800-4.

Sedighizadeh, M., & Arzaghi-Haris, D. (2011). Optimal allocation and sizing of capacitors to
minimize the distribution line loss and to improve the voltage profile using big bang–big
crunch optimization. International Review of Electrical Engineering, 6, 2013–2019.

Tang, H., Zhou, J., Xue, S., & Xie, L. (2010). Big bang–big crunch optimization for parameter
estimation in structural systems. Mechanical Systems and Signal Processing, 24, 2888–2897.

Zandi, Z., Afjei, E., & Sedighizadeh, M. (2012, Dec 2–5). Reactive power dispatch using big
bang–big crunch optimization algorithm for voltage stability enhancement. In IEEE
International Conference on Power and Energy (PECon), Kota Kinabalu Sabah, Malaysia
(pp. 239–244). IEEE.

References 331

Chapter 19
Central Force Optimization Algorithm

Abstract In this chapter, we introduce a new deterministic multi-dimensional
search algorithm called central force optimization (CFO), which is based on the
metaphor of gravitational kinematics. We first, in Sect. 19.1, describe the general
knowledge of the gravitational force. Then, in Sect. 19.2, the fundamentals and
performance of CFO are detailed. Finally, Sect. 19.3 draws the conclusions of this
chapter.

19.1 Introduction

Nowadays, there are a lot of interactions between physicists and computer sci-
entists that often provide new insights in both fields. On one hand, some physics
phenomena can be used as general purpose optimization tools to solve the com-
binatorial problems, such as simulated annealing. On the other hand, algorithms in
linear, nonlinear, and discrete optimization sometimes have the potential to be
useful tools in physics, such as Monte Carlo simulations. In the light of these
statements, recently, Formato (2007) proposed a new optimization algorithm
called central force optimization (CFO) algorithm which is inspired by the theory
of particle kinematics in gravitational field.

19.1.1 Gravitational Force

The gravitational force, often simply called gravity, operates over all distances and
is always a force of attraction between objects with mass (Bauer and Westfall
2011). For example, if you hold an object in your hand and let go of it, it falls
downward. We know what causes this effect: the gravitational attraction between
the earth and the object. Despite that, gravitational force is also responsible for
holding the moon in orbit around the earth and the earth in orbit around the sun.

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_19, � Springer International Publishing Switzerland 2014

333

The magnitude of the gravitational force between two point masses is given via
Eq. 19.1 (Bauer and Westfall 2011):

F rð Þ ¼ G
m1m2

r2
; ð19:1Þ

where m1 and m2 are two point masses, the coefficient G is the ‘‘universal grav-

itational constant’’, and r ¼ r
*

2 � r
*

1

�
�

�
� is a distance from each other.

Each mass is accelerated toward the other. The vector acceleration experienced
by mass m1 due to mass m2 is given by Eq. 19.2 (Formato 2007):

a
*

1 ¼ �G
m2r̂

r2
; ð19:2Þ

where r̂ is a unit vector, and the minus sign is taken into account in the order in
which the differences in the acceleration expressions are taken.

The position vector a particle subject to constant acceleration during the
interval t to t þ Dt is given by Eq. 19.3 (Formato 2007):

R
*

t þ Dtð Þ ¼ R
*

0 þ V
*

0Dt þ 1
2

a
*Dt2; ð19:3Þ

where R
*

0 and V
*

0 are the position and velocity vectors at time t, respectively.

19.2 Central Force Optimization Algorithm

19.2.1 Fundamentals of Central Force Optimization
Algorithm

Central force optimization (CFO) algorithm was originally proposed in (Formato
2007, 2009). In CFO, each probe which has a position vector (R), an acceleration
vector (A), and a fitness value (M) referred to as population. The working principle
is CFO ‘‘flies’’ a set of ‘‘probes’’ through the space over a set of discrete ‘‘time’’
steps. With these idea in mind, two simple equations, one for a probe’s ‘‘accel-

eration’’ (a*
p

j) and another for its position vector (R
*p

j) in CFO space, are proposed.

• The total acceleration experienced by p as it ‘‘flies’’ from position R
*p

j�1 to

R
*p

j ¼
PNd

k¼1 xp;j
k êk, where xp;j

k are the probe p0s coordinates at step j, Nd is deci-
sion space’s dimensionality, and êk is the unit vector along the xk axis, is given
by summing over all other probes as Eq. 19.4 (Formato 2007):

334 19 Central Force Optimization Algorithm

a
*p

j�1 ¼ G
XNp

k¼1;k 6¼p

U Mk
j�1 �Mp

j�1

� �
� Mk

j�1 �Mp
j�1

� �a
�

R
*k

j�1 � R
*p

j�1

� �

R
*k

j�1 � R
*p

j�1

�
�
�
�

�
�
�
�

b
; ð19:4Þ

where Np 1� p�Np

� �
is the total number of probes, Nt 0� j�Ntð Þ is the total

‘‘time’’ step (iteration) number, G is the gravitational constant, p is the current
probe, j is the current time step, a and b are constants that would be one and
three in the real world, Mk is the fitness of probe k, U is unit step function in

which U zð Þ ¼ 1; z� 0
0; otherwise

ffi

, and U Mk
j�1 �Mp

j�1

� �
� Mk

j�1 �Mp
j�1

� �a
is

defined as the ‘‘mass’’, where Mp
j�1 ¼ f xp;j�1

1 ; xp;j�1
2 ; . . .; xp;j�1

Nd

� �
and every other

probe also has a fitness given by Mk
j�1; where k ¼ 1; . . .; p� 1; pþ 1; . . .;Np:

• The new position vector for probe p at time step j is computed via Eq. 19.5
(Formato 2007):

R
*p

j ¼ R
*p

j�1 þ
1
2

a
*p

j�1Dt2; j� 1; ð19:5Þ

where Dt is the ‘‘time’’ interval between steps during which the acceleration is
constant.

Furthermore, probe retrieval is another interesting topic with regards to CFO
due to probes may fly outside the decision space and should be returned. There are
many possible probe retrieval methods. A useful one is the reposition factor (Frep),
which plays an important role in CFO’s convergence. It is described in Eqs. 19.6
and 19.7, respectively (Formato 2007):

R p; i; jð Þ ¼ Xmin ið Þ þ Frep � R p; i; j� 1ð Þ � Xmin ið Þð Þ; ð19:6Þ

R p; i; jð Þ ¼ Xmax ið Þ � Frep � XmaxðiÞ � R p; i; j� 1ð Þð Þ; ð19:7Þ

where i is the current dimension, j is the current time step, p is the current probe
number, and Frep is a value chosen by the user, typically 0.5.

CFO uses Eq. 19.6 to reposition dimensions of probes that have exceeded their
minimum value, while Eq. 19.7 is used to reposition dimensions of probes that
have exceeded their maximum value.

Taking into account the above mentioned phases, the steps of implementing
standard CFO algorithm can be summarized as follows (Formato 2007):

• Step 1: Initialize position and acceleration vector of each probe to zero.
• Step 2: Compute initial probe distribution.
• Step 3: Calculate initial fitness values.
• Step 4: Evaluate earlier termination criterion or less than Nt, if reach Nt, return

to Step 2; if fulfil stop criterion, return Step 5. This step includes several tasks
such as Computing the new probe position vectors, retrieving errant particles,

19.2 Central Force Optimization Algorithm 335

updating fitness matrix for this time step, calculating accelerations for next time
step, and increasing Frep, and repeating from Step 4.

• Step 5: Stop and putout best solution have reached so far.

19.2.2 Performance of CFO

In order to show how the CFO algorithm performs, four benchmark functions,
namely, Schwefel function, Rastrigin’s function, Ackley’s function, and Gold-
stein-Price function, have been tested in (Formato 2007). Results showed that CFO
has been very encouraging.

19.3 Conclusions

In this chapter, a gravitational force inspired algorithm was introduced. Each
solution candidate is described as a probe herein and it is particularly sensitive to
the initial probe distribution. The main concept behind CFO is the small objects
(i.e., probes) in space (i.e., search/or decision space) can be dragged by bigger ones
(i.e., global optimum of the problem). Although it is a newly introduced CI
method, we have witnessed the following rapid spreading of CFO:

First, several enhanced versions of CFO can be found in the literature as out-
lined below:

• Hybrid CFO Nelder-Mead algorithm (Mahmoud 2011).
• Improved CFO (Formato 2010a).
• Modified CFO (Qubati and Dib 2010).
• Simplified CFO (Formato 2010b).
• Variable initial probe distribution and decision space adaptation integrated CFO

(Formato 2011).
• Extended CFO (Ding et al. 2012).
• Pseodurandomness enhanced CFO (Formato 2013).

Second, the CFO algorithm has also been successfully applied to a variety of
optimization problems as listed below:

• Antenna design optimization (Mahmoud 2011; Formato 2010a; Qubati et al.
2010; Qubati and Dib 2010).

• Artificial neural network training (Green et al. 2012).
• Electronic circuit optimization (Roa et al. 2012).
• Graphics processing unit computing (Green et al. 2011).
• Piping system monitoring (Haghighi and Ramos 2012).
• Planar steel frames design optimizations (Toğan 2012).

336 19 Central Force Optimization Algorithm

Interested readers are referred to them as a starting point for a further explo-
ration and exploitation of the CFO algorithm.

References

Bauer, W., & Westfall, G. D. (2011). University physics with modern physics. New York:
McGraw-Hill. ISBN 978-0-07-285736-8.

Ding, D., Qi, D., Luo, X., Chen, J., Wang, X., & Du, P. (2012). Convergence analysis and
performance of an extended central force optimization algorithm. Applied Mathematics and
Computation, 219, 2246–2259.

Formato, R. A. (2007). Central force optimization: A new metaheuristic with applications in
applied electromagnetics. Progress in Electromagnetics Research, PIER, 77, 425–491.

Formato, R. A. (2009). Central force optimization: A new deterministic gradient-like
optimization metaheuristic. OPSEARCH, 46, 25–51.

Formato, R. A. (2010a). Improved CFO algorithm for antenna optimization. Progress in
Electromagnetics Research B, 19, 405–425.

Formato, R. A. (2010b). Parameter-free deterministic global search with simplified central force
optimization. In D.-S. Huang (Ed.), ICIC 2010, LNCS 6215 (pp. 309–318). Berlin: Springer.

Formato, R. A. (2011). Central force optimization with variable initial probes and adaptive
decision space. Applied Mathematics and Computation, 217, 8866–8872.

Formato, R. A. (2013). Pseudorandomness in central force optimization. British Journal of
Mathematics and Computer Science, 3, 241–264.

Green, R. C., Wang, L., Alam, M., & Formato, R. A. (2011). Central force optimization on a
GPU: A case study in high performance metaheuristics using multiple topologies. In IEEE
Congress on Evolutionary Computation (CEC) (pp. 550–557). IEEE.

Green, R. C., Wang, L., & Alam, M. (2012). Training neural networks using central force
optimization and particle swarm optimization: Insights and comparisons. Expert Systems with
Applications, 39, 555–563.

Haghighi, A., & Ramos, H. M. (2012). Detection of leakage freshwater and friction factor
calibration in drinking networks using central force optimization. Water Resources
Management, 26, 2347–2363.

Mahmoud, K. R. (2011). Central force optimization: Nelder-Mead hybrid algorithm for
rectangular microstrip antenna design. Electromagnetics, 31, 578–592.

Qubati, G. M., & Dib, N. I. (2010). Microstrip patch antenna optimization using modified central
force optimization. Progress in Electromagnetics Research B, 21, 281–298.

Qubati, G. M., Formato, R. A., & Dib, N. I. (2010). Antenna benchmark performance and array
synthesis using central force optimisation. IET Microwaves, Antennas and Propagation, 4,
583–892.

Roa, O., Ramírez, F., Amaya, I., & Correa, R. (2012). Solution of nonlinear circuits with the
central force optimization algorithm. In IEEE 4th Colombian Workshop on Circuits and
Systems (CWCAS) (pp. 1–6). IEEE.

Toğan, V. (2012). Design of planar steel frames using teaching–learning based optimization.
Engineering Structures, 34, 225–232.

19.3 Conclusions 337

Chapter 20
Charged System Search Algorithm

Abstract In this chapter, we introduce a novel algorithm called charged system
search (CSS) algorithm which is inspired by the coulomb’s law and laws of
motion. We fist describe the general knowledge of the coulomb’s law and laws of
motion in Sect. 20.1. Then, the fundamentals and performance of CSS are intro-
duced in Sect. 20.2. Finally, Sect. 20.3 summarises this chapter.

20.1 Introduction

When we were young, several of us may discovered after rubbing a balloon on your
hair on a dry day, the balloon can attract bits of paper. When materials behave in this
way, they are said to be electrified or to have become electrically charge (Serway and
Jewett 2014). As we grow older, we have learned more and known that this physic
property of some object is essential to the development of the theory for magnetism,
gravity, and objects’ motion in response to forces. Based on those famous laws,
recently, Kaveh and Talatahari (2010c) proposed a new method, called charged
system search (CSS), to deal with combinatorial optimization problems.

20.1.1 Coulomb’s Law

Coulomb’s law, developed by Charles-Augustin de Coulomb (1736–1806), is the
fundamental law governing the electric force between any two charge particles
(Holzner 2011). As a scientist, Coulomb is famous for his work in electrostatics.
He measured the magnitudes of the electric forces between charged objects using
the torsion balance. Based on the observations, he discovered that the electrostatic
attraction and repulsion varied inversely as the square of the distance from the
charges. The magnitude of the electric force (Fij) can be defined as Eq. 20.1
(Kaveh and Talatahari 2010c):

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_20, � Springer International Publishing Switzerland 2014

339

Fij ¼ ke
qiqj

r2
ij

; ð20:1Þ

where ke is a constant called the Coulomb constant, rij is the separation of the
centre of the sphere and the selected point, qi and qj are the charges on the two
objects, respectively.

In general, the object with charge (i.e., source charge) establishes an electric
field through out space. The electric filed (Eij) for charge (qi) can be defined as
Eq. 20.2 (Kaveh and Talatahari 2010c):

Eij ¼
ke

qi

a3 rij if rij\a

ke
qi

r2
ij

if rij [a;

8
<

:
ð20:2Þ

where Eij is the magnitude of the electric field at a point inside and outside a
charged insulating solid sphere, respectively, ke is a constant called the Coulomb
constant, rij is the distance from the ith source charge (qi) to the centre of the
sphere, qi is the magnitude of the charge, and a is the radius of the charged sphere.

Using the principle of superposition, the resulting electric force (Fj) for mul-
tiple charged particles is calculated via Eq. 20.3 (Kaveh and Talatahari 2010c):

Fj ¼ keqj

X

i; i6¼j

qi

a3
rij � i1 þ

qi

r2
ij

� i2

 !
ri � rj

ri � rj

�
�

�
�
;

i1 ¼ 1; i2 ¼ 0 , rij\a
i1 ¼ 0; i2 ¼ 1 , rij� a

�

;

ð20:3Þ

where ri and rj are the positions of the ith and jth objects.

20.1.2 Laws of Motion

The classical mechanics are focusing on the motion of objects. Important contri-
butions in this area were provided by Sir Isaac Newton (1642–1727), who pro-
posed three basic laws of motion that deal with forces and masses.

Imagine an object that can be modelled as a particle. When it is moving along a
coordinate line (say an s-axis) so that we know its position (s) on that line as a
function of time (t) is given by Eq. 20.4 (Serway and Jewett 2014):

s ¼ f tð Þ: ð20:4Þ

The displacement of the particle over the time interval form t to Dt is given by
Eq. 20.5 (Serway and Jewett 2014):

Ds ¼ f t þ Dtð Þ � f tð Þ: ð20:5Þ

where f tð Þ is the initial position, and f t þ Dtð Þ is the final position.

340 20 Charged System Search Algorithm

Also, the average velocity of the particle over that time interval is given by
Eq. 20.6 (Serway and Jewett 2014):

v ¼ displacement
travel time

¼ Ds

Dt
¼ f t þ Dtð Þ � f tð Þ

Dt
; ð20:6Þ

where v is the velocity of the particle.
In addition, if the particle has one or more forces acting on it (such as a charged

particle in an electric field) so that there is a net force on the particle, it will
accelerate in the direction of the net force. The relationship between the net force
(F) and the acceleration (a) is given by Eq. 20.7 (Serway and Jewett 2014):

F ¼ m � a; ð20:7Þ

where m is the mass of the object.
The acceleration of the particle (a) is defined as Eq. 20.8 (Kaveh and Talatahari

2010c):

a ¼ vnew � vold

Dt
; ð20:8Þ

where a is the acceleration of the particle.
Combining the above equations, the displacement of any object is defined as

Eq. 20.9 (Kaveh and Talatahari 2010c):

f t þ Dtð Þ ¼ 1
2
� F
m
� Dt2 þ vold � Dt þ f tð Þ: ð20:9Þ

20.2 Charged System Search Algorithm

20.2.1 Fundamentals of Charged System Search Algorithm

Charged system search (CSS) algorithm was originally proposed in Kaveh and
Talatahari (2010c) and Kaveh and Talatahari (2011b). The quantity of the resultant
force and the quality of the movement of the CSS algorithm are based on two
physics laws, i.e., Coulomb’s law and laws of motion, respectively. In order to
apply CSS, the following rules are developed (Kaveh and Talatahari 2010c):

• Rule 1: In CSS, each solution candidate (Xi) is described as a charged particle
(CP), in which a number of decision variables (Xi ¼ xi; j

� �
) are involved. The

magnitude of each CP (i.e., qi) is defined as Eq. 20.10:

qi ¼
fit ið Þ � fitworst

fitbest � fitworst
; i ¼ 1; 2; . . .;N; ð20:10Þ

20.1 Introduction 341

where fit ið Þ denotes the fitness of agent i, fitbest and fitworst are the best and worst
fitness of all particles, respectively, and N is the total number of CPs. The
separation distance (rij) between two charged particles is defined as Eq. 20.11
(Kaveh and Talatahari 2010c):

rij ¼
Xi � Xj

�
�

�
�

Xi þ Xj

� ��
2� Xbest

�
�

�
�þ e

; ð20:11Þ

where Xi and Xj are the positions of the ith and jth CPs, Xbest is the position of
the best current CP, and e is a small positive number to avoid singularities.

• Rule 2: The initial positions and velocities of CPs can be defined as Eqs. 20.12
and 20.13, respectively (Kaveh and Talatahari 2010c):

x 0ð Þ
i; j ¼ xi;min þ rand � xi;max � xi;min

� �
; i ¼ 1; 2; . . .; n; ð20:12Þ

v 0ð Þ
i; j ¼ 0; i ¼ 1; 2; . . .; n; ð20:13Þ

where x 0ð Þ
i; j denotes the initial value of the ith variable for the jth CP, xi;min and

xi;max are the minimum and the maximum allowable values for the variable,
rand is a random number in the interval 0; 1½ �, and n is the number of variables.

• Rule 3: The probabilities of moving each CP toward the others can be defined as
Eq. 20.14 (Kaveh and Talatahari 2010c):

pij ¼ 1 fit ið Þ�fitbest

fit jð Þ�fit ið Þ [rand _ fit jð Þ[fit ið Þ
0 otherwise

�

: ð20:14Þ

• Rule 4: The resulting electric force for each CP is determined as Eq. 20.15
(Kaveh and Talatahari 2010c):

Fj ¼ qj

X

i; i 6¼j

qi

a3
rij � i1 þ

qi

r2
ij

� i2

 !

pij Xi � Xj

� �
;

j ¼ 1; 2; � � � ;N
i1 ¼ 1; i2 ¼ 0, rij\a
i1 ¼ 0; i2 ¼ 1, rij� a

8
<

:
:

ð20:15Þ

where Fj is the resultant force affecting the jth CP.
• Rule 5: The new position and velocity of each CP are determined as Eqs. 20.16

and 20.17, respectively (Kaveh and Talatahari 2010c):

Xj; new ¼ randj1 � ka �
Fj

mj
� Dt2 þ randj2 � kv � Vj; old � Dt þ Xj; old; ð20:16Þ

342 20 Charged System Search Algorithm

Vj; new ¼
Xj; new � Xj; old

Dt
; ð20:17Þ

where randj1 and randj2 are two random numbers uniformly distributed in the
range of 0; 1ð Þ, mj is the mass of the jth CP which is equal to qj, Dt is the time
step and is set to unity, ka is the acceleration coefficient, and kv is the velocity
coefficient to control the influence of the previous velocity. Both can be defined
as Eqs. 20.18 and 20.19, respectively (Kaveh and Talatahari 2010c):

kv ¼ 0:5
1� iter

itermax

ffi

; ð20:18Þ

ka ¼ 0:5
1þ iter

itermax

ffi

; ð20:19Þ

where iter is the actual iteration number, and itermax is the maximum number of
iterations.

• Rule 6: Defining the rule for charged memory (CM) which is used to save the
best CP.

• Rule 7: Defining the search space for each CP as Eq. 20.20 (Kaveh and Tala-
tahari 2010c):

xi;j ¼

w:p: CMCR) select a new value for a variable from CM
) w:p: 1� PARð Þ do nothing
) w:p: PAR choose a neighbouring value

w:p: 1� CMCRð Þ) select a new value randomly

8
>><

>>:

;

ð20:20Þ

where ‘‘w:p:’’ is the abbreviation for ‘‘with the probability’’, xi; j is the ith
component of the CP j, CMCRis the charged memory considering rate varying
between 0 and 1, it denotes the rate of choosing a value in the new vector from
the historic values stored in the CM, 1� CMCRð Þ sets the rate of randomly
choosing one value from the possible range of value, 1� PARð Þ represents the
rate of doing nothing, and PAR sets the rate of choosing a value from
neighbouring the best CP.

• Rule 8: The terminating criterion can be defined as Eq. 20.21 (Kaveh and Ta-
latahari 2010c):

Terminating Criterion ¼

Maximum number of iterations
Number of iterations without improvement
Minimum objective function error
Difference between the best and the worst CPs
Maximum distance of CPs

8
>>>><

>>>>:

:

ð20:21Þ

20.2 Charged System Search Algorithm 343

Taking into account a set of rules described above, the steps of implementing
CSS algorithm can be summarized as follows (Kaveh and Talatahari 2010c):

• Level-1, Step 1: Initialization. Initialize CSS algorithm parameters (see Rules 1
and 2).

• Level-1, Step 2: CP ranking. Evaluate the values of the fitness function for the
CPs.

• Level-2, Step 1: Attracting force determination (see Rules 3 and 4).
• Level-2, Step 2: Solution construction (see Rule 5).
• Level-2, Step 3: CP position correction (see Rule 7).
• Level-2, Step 4: CP ranking. Evaluate the values of the fitness function for the

new CPs.
• Level-2, Step 5: CM updating (see Rule 6).
• Level-3, Repeat search level steps until a terminating criterion is satisfied (see

Rule 8).

20.2.2 Performance of CSS

In order to show how the CSS algorithm performs, 18 unimodal and multimodal
functions are considered in (Kaveh and Talatahari 2010c). In addition, three well-
studied engineering design problems are used to illustrate the CSS algorithm’s
working principles, i.e., a tension/compression spring design problem, a welded
beam design problem, and a pressure vessel design problem. Compared with other
evolutionary algorithms, the computational results showed that the proposed
algorithm outperforms others.

20.3 Conclusions

In this chapter, we introduced a novel computational intelligence (CI) method,
called CSS, in which a number of CPs (i.e., agents) cooperate in finding good
solutions to difficult optimization problems. The working principle is that on the
one hand, each CP emerges an electrical field around its space and exerts an
electrical force (i.e., attraction or repulsion) to the other CPs, while on the other
hand, the new position of each CP is affected by its previous position, velocity, and
acceleration in the space. Overall, it can say that CSS based on two physics
theories, i.e., Coulomb law from electrostatics and the Newtonian law from
mechanics. The former is used to determine the quantity of the resultant force,
while the latter is the quality determination of moved objects. In addition, it is
worth to note that CPs act concurrently and independently. In other words, even
though each CP can find a solution to the problem, good-quality solutions can only

344 20 Charged System Search Algorithm

be find as the result of the cooperation among the CPs. Although it is a newly
introduced CI method, we have witnessed the following rapid spreading of CSS:

First, several enhanced versions of CSS can be found in the literature as out-
lined below:

• Adaptive CSS (Talatahari et al. 2012a; Niknam et al. 2013).
• Chaoic CSS (Talatahari et al. 2011; Nouhi et al. 2013; Talatahari et al. 2012b).
• Discrete CSS (Kaveh and Talatahari 2010b).
• Enhanced CSS (Kaveh and Talatahari 2011a).
• Hybrid CSS (Kaveh and Laknejadi 2011).
• Hybridized CSS with big bang-big crunch (BB–BC) algorithm (Kaveh and

Zolghadr 2012).
• Magnetic CSS (Kaveh et al. 2013).

Second, the CSS algorithm has also been successfully applied to a variety of
optimization problems as listed below:

• Composite slab design optimization (Kaveh and Behnam 2012).
• Concrete retaining wall design optimization (Kaveh and Behnam 2013).
• Dome structure design optimization (Kaveh and Talatahari 2011c).
• Frame structure design optimization (Kaveh and Talatahari 2012).
• Grillage system design optimization (Kaveh and Talatahari 2010a).
• Parameter identification for Bouc-Wen model (Talatahari et al. 2012a).
• Power system optimization (Niknam et al. 2013).
• Skeletal structures design optimization (Kaveh and Talatahari 2010d).
• Truss optimization with discrete variables (Kaveh and Talatahari 2010b).
• Truss optimization with natural frequency constraints (Kaveh and Zolghadr

2012).

Interested readers are referred to them as a starting point for a further explo-
ration and exploitation of the CSS algorithm.

References

Holzner, S. (2011). Physics I for dummies. Hoboken: Wiley Publishing, Inc. ISBN 978-0-470-
90324-7.

Kaveh, A. & Zolghadr, A. (2012). Truss optimization with natural frequency constraints using a
hybridized CSS-BBBC algorithm with trap recognition capability. Computers and Structures.
http://dx.doi.org/10.1016/j.compstruc.2012.03.016.

Kaveh, A., & Behnam, A. F. (2013). Charged system search algorithm for the optimum cost
design of reinforced concrete cantilever retaining walls. Arabian Journal for Science and
Engineering, 38, 563–570.

Kaveh, A. & Behnam, A. F. (2012). Cost optimization of a composite floor system, one-way
waffle slab, and concrete slab formwork using a charged system search algorithm. Scientia
Iranica A, doi:10.1016/j.scient.2012.04.001.

20.3 Conclusions 345

http://dx.doi.org/10.1016/j.compstruc.2012.03.016
http://dx.doi.org/10.1016/j.scient.2012.04.001

Kaveh, A., & Laknejadi, K. (2011). A novel hybrid charge system search and particle swarm
optimization method for multi-objective optimization. Expert Systems with Applications, 38,
15475–15488.

Kaveh, A., & Talatahari, S. (2010a). Charged system search for optimum grillage system design
using the LRFD-AISC code. Journal of Constructional Steel Research, 66, 767–771.

Kaveh, A., & Talatahari, S. (2010b). A charged system search with a fly to boundary method for
discrete optimum design of truss structures. Asian Journal of Civil Engineering (Building and
Housing), 11, 277–293.

Kaveh, A., & Talatahari, S. (2010c). A novel heuristic optimization method: charged system
search. Acta Mechanica, 213, 267–289.

Kaveh, A., & Talatahari, S. (2010d). Optimal design of skeletal structures via the charged system
search algorithm. Structural and Multidisciplinary Optimization, 41, 893–911.

Kaveh, A., & Talatahari, S. (2011a). An enhanced charged system search for configuration
optimization using the concept of fields of forces. Structural and Multidisciplinary
Optimization, 43, 339–351.

Kaveh, A., & Talatahari, S. (2011b). A general model for meta-heuristic algorithms using the
concept of fields of forces. Acta Mechanica, 221, 99–118.

Kaveh, A., & Talatahari, S. (2011c). Geometry and topology optimization of geodesic domes
using charged system search. Structural and Multidisciplinary Optimization, 43, 215–229.

Kaveh, A., & Talatahari, S. (2012). Charged system search for optimal design of frame structures.
Applied Soft Computing, 12, 382–393.

Kaveh, A., Share, M. A. M., & MoslehI, M. (2013). Magnetic charged system search: A new
meta-heuristic algorithm for optimization. Acta Mechanica, 224(1), 85–107.

Niknam, T., Golestaneh, F., & Shafiei, M. (2013). Probabilistic energy management of a
renewable microgrid with hydrogen storage using self-adaptive charge search algorithm.
Energy, 49, 252–267.

Nouhi, B., Talatahari, S., Kheiri, H., & Cattani, C. (2013). Chaotic charged system search with a
feasible-based method for constraint optimization problems. Mathematical Problems in
Engineering, 2013, 1–8.

Serway, R. A., & Jewett, J. W. (2014). Physics for scientists and engineers with modern physics.
Boston: Brooks/Cole CENAGE Learning. ISBN 978-1-133-95405-7.

Talatahari, S., Kaveh, A., & Sheikholeslami, R. (2011). An efficient charged system search using
chaps for global optimization problems. International Journal of Optimization in Civil
Engineering, 2, 305–325.

Talatahari, S., Kaveh, A., & Rahbari, N. M. (2012a). Parameter identification of Bouc–Wen
model for MR fluid dampers using adaptive charged system search optimization. Journal of
Mechanical Science and Technology, 26, 2523–2534.

Talatahari, S., Kaveh, A., & Sheikholeslami, R. (2012b). Engineering design optimization using
chaotic enhanced charged system search algorithms. Acta Mechanica, 223, 2269–2285.

346 20 Charged System Search Algorithm

Chapter 21
Electromagnetism-like Mechanism
Algorithm

Abstract In this chapter, we present an electromagnetism-like mechanism (EM)
algorithm which is inspired by the theory of electromagnetism. We first describe
the general knowledge of the electromagnetism field theory in Sect. 21.1. Then,
the fundamentals and performance of EM are introduced in Sect. 21.2. Finally,
Sect. 21.3 summarises in this chapter.

21.1 Introduction

Every day modern life is pervaded by electromagnetic phenomena, such as tele-
vision, radio, internet, microwave oven, and Smartphone. One important aspect of
electromagnetism is the distribution of charged particles and the motion of charged
particles from one place to another, i.e., attraction–repulsion mechanism. Based on
this aspect, Birbil and Fang (2003) proposed a new population based algorithm
called electromagnetism-like (EM) method. The principles behind the algorithm
are that inferior particles prevent a move in their direction by repelling other
particles in the population, and that superior particles facilitate moves in their
direction.

21.1.1 Electromagnetism Field Theory

The understanding of electromagnetic phenomena is usually treated by electro-
magnetic field theory which is one of the four fundamental interactions in nature.
The concept of a field is at the heart of the particle in a field analysis model. In
other words, a particle resides in a area of space in which a field exists. In the
electromagnetic version of the particle in a field model, the property of a particle
that results in a electromagnetic force (i.e., Lorentz force) which is a relation
between electric and magnetic forces, i.e., the interaction of electrically charged

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_21, � Springer International Publishing Switzerland 2014

347

particles and the interaction of uncharged magnetic force fields with electrical
conductors (Serway and Jewett 2014). Both phenomena were long thought to be
separate forces, however, in 1861 the Scottish physicist James Clerk Maxwell
(1831–1879) showed that electric and magnetic fields travel together through
space as waves of electromagnetic radiation.

21.2 Electromagnetism-like Algorithm

21.2.1 Fundamentals of Electromagnetism-like Algorithm

Electromagnetism-like mechanism (EM) algorithm was originally proposed by
Birbil and Fang (2003). Typically, the EM algorithm consists of four phases,
namely, population construction, objective function evaluation, total force calcu-
lation, and the movement. In addition, the EM algorithm used a local search
procedure to find an improved solution within the neighbourhood of the current
solution. For the rest of this section, we will explain them in detail.

• Population construction: A population of m points is randomly generated from
the feasible set which is a N-dimensional hyper-cube as described in Eq. 21.1
(Birbil and Fang 2003):

X ¼ x 2 Rn xi
k ¼ lk þ k uk � lkð Þ; i ¼ 1; 2; . . .;m; k ¼ 1; 2; . . . N
�
�

� �
; ð21:1Þ

where X is the search space, k�Unif 0; 1ð Þ for each coordinates of xi
k, and uk

and lk are upper bound and lower bound of each point, respectively.
• Objective function evaluation: After a point is chosen from the space, its

objective function ðffxigÞ is calculated and the best function value is identified
as Eq. 21.2 (Birbil and Fang 2003):

xbest ¼ arg min f xi
� �

; 8i
� �

: ð21:2Þ

• Total force calculation: In this step, the charge of each point (qi) is calculated
via Eq. 21.3 (Birbil and Fang 2003):

qi ¼ exp �n
f xið Þ � f xbest

� �

PN
k¼1 f xkð Þ � f xbestð Þ½ �

()

; 8i: ð21:3Þ

Then, the total force (Fi) between two points x j and xi is given by Eq. 21.4
(Birbil and Fang 2003):

Fi ¼
Xm

j6¼i

x j � xið Þ qi�q j

x j�xik k2 if f x jð Þ\f xið Þ
xi � x jð Þ qi�q j

x j�xik k2 if f x jð Þ� f xið Þ

8
<

:

9
=

;
; 8i: ð21:4Þ

348 21 Electromagnetism-like Mechanism Algorithm

• Movement according to the total force: After calculating the total force, the
point xi can move in the direction of the force by a random step length as defined
by Eq. 21.5 (Birbil and Fang 2003):

xi ¼ xi þ k
Fi

Fik k RNGð Þ; i ¼ 1; 2; . . .;m; ð21:5Þ

where k denotes the random step length and is assumed to e uniformly dis-
tributed k�Unif 0; 1ð Þ, RNG is a vector whose components represent the
allowed feasible movement toward the upper bound or the lower bound,
respectively, for the corresponding dimension.

• Local search: A local search is used to find high-quality solutions. It is based on the
iterative exploration of neighbourhoods of solutions trying to improve the current
solution by local changes. The maximum feasible step length is determined by the
parameter d 2 0; 1½ � and is given by Eq. 21.6 (Birbil and Fang 2003):

smax ¼ d max
k

uk � lkð Þ
� �

: ð21:6Þ

For EM, the local search procedure includes four process:

1. Searching one potential adjacent point that its objective function value is better
than original one and storing its value into a temporal point y;

2. Choosing a random number k1 as the mechanism to put the candidate points
closer to the optimum that described as Eq. 21.7 (Birbil and Fang 2003):

if k1� 0:5; y is selected
if k1\0:5; y is not selected

ffi

: ð21:7Þ

3. Calculating the objective function of y;
4. Updating the current best point.

Taking into account the key phases described above, the steps of implementing
standard EM algorithm can be summarized as follows (Birbil and Fang 2003):

• Step 1: Randomly selecting m points.
• Step 2: Computing the objective function value of each point.
• Step 3: Implementing the local search procedure.
• Step 4: Calculating the total force (attraction or repulsion) based on the

objective function value and summing up them for each point.
• Step 5: Moving each point based on the gotten force.
• Step 6: Check if maximum iteration is reached, go to step 3 for new beginning.

If a specified termination criteria is satisfied stop and return the best solution.

21.2 Electromagnetism-like Algorithm 349

21.2.2 Performance of EM

In order to show how the EM algorithm performs, a set of test functions are
selected in (Birbil and Fang 2003), namely, Complex function, Davis function,
Epistacity (4) function, Epistacity (5) function, Griewank function, Himmelblau
function, Kearfott function, Levy function, Rastrigin function, Sine Envelope
function, Stenger function, Step funciton, Spiky function, Trid (5) function, and
Trid (20) function. Computational results showed that EM rapidly converges to the
objective function (i.e., optimal status).

21.3 Conclusions

In this chapter, we introduced an EM algorithm that based on the electromagnetism
theory. In EM, each sample point (i.e., a solution) creates an electrical field around
its space and exerts an electrical force (i.e., attraction or repulsion) to the other
points. The magnitude of attraction or repulsion of each point is determined by the
charge of each point. Also, it is the building block of the objective function value,
i.e., the better the objective function value, the higher the magnitude of attraction. In
this way, we can finally find a direction for each point to move. Although it is a
newly introduced computational intelligence (CI) method, we have witnessed the
following rapid spreading of EM:

First, several enhanced versions of EM can be found in the literature as outlined
below:

• Constrained EM (Rocha and Fernandes 2008b; Ali and Golalikhani 2010).
• Discrete EM (Javadian and Golalikhani 2009; Liu and Gao 2010; Chao and Liao

2012).
• Hybrid data envelopment analysis and EM (Guo et al. 2011).
• Hybrid EM (Yurtkuran and Emel 2010; Latifi and Bonyadi 2009).
• Hybrid EM and chaos optimization algorithm (Wang et al. 2010a).
• Hybrid EM and descent search (Rocha and Fernandes 2009).
• Hybrid EM and genetic algorithm (Javadi et al. 2013; Chang and Lee 2008; Lee

and Chang 2010).
• Hybrid EM and great deluge algorithm (Abdullah et al. 2009).
• Hybrid EM and modified Davidon-Fletcher-Power algorithm (Yin et al. 2011).
• Hybrid EM and restarted Arnoldi algorithm (Taheri et al. 2007).
• Hybrid EM and simulated annealing (Jamili et al. 2011; Naderi et al. 2010b).
• Hybrid EM with back-propagation technique (Lee et al. 2012).
• Hybrid EM with genetic operators (Chang et al. 2009).
• Hybrid Hopfield neural networks with EM (Hung et al. 2011).
• Hybrid local search and EM (Gilak and Rashidi 2009; Vahdani et al. 2010).
• Hybrid scatter search and EM (Debels et al. 2006).
• Improved EM (Shang et al. 2010).

350 21 Electromagnetism-like Mechanism Algorithm

• Modified EM (Wu et al. 2007; Yi and Ming-Lu 2011; Rocha and Fernandes
2008c, Han and Han 2010).

• Modified EM based on feasibility and dominance rules (Rocha and Fernandes
2008a; Wu et al. 2013).

• Multiobjective EM (Khalili and Tavakkoli-Moghaddam 2012).
• Quantum-inspired EM (Chou et al. 2010; Chang et al. 2010).
• Revised EM and k-opt method (Wu et al. 2006).
• Species-based improved EM (Lee et al. 2010, 2011).

Second, the EM algorithm has also been successfully applied to a variety of
optimization problems as listed below:

• Antenna design optimization (Lee and Jhang 2008; Jhang and Lee 2009).
• Artificial neural network training (Wu et al. 2010; Lee et al. 2011).
• Control optimization (Chang and Lee 2008; Lee and Chang 2010).
• Flexible manufacturing system optimization (Souier and Sari 2011).
• Fuzzy system design optimization (Lee et al. 2010, 2012).
• Image processing (Su and Lin 2011).
• knapsack problem (Chou et al. 2010; Chang et al. 2010; Latifi and Bonyadi

2009).
• Lagrangian algorithm optimization (Rocha and Fernandes 2010).
• Layout design optimization (Guan et al. 2012; Jolai et al. 2012; Javadi et al.

2013).
• Matrix optimization (Taheri et al. 2007).
• Milling process optimization (Wu et al. 2013).
• Mixture design optimization (Chang and Huang 2007).
• Robot control optimization (Wang et al. 2010b; Yin et al. 2011).
• Scheduling optimization (Debels et al. 2006; Chang et al. 2009; Gilak and

Rashidi 2009; Javadian and Golalikhani 2009; Liu and Gao 2010; Naderi et al.
2010a, b; Vahdani et al. 2010; Jamili et al. 2011; Guo et al. 2011; Chao and Liao
2012; Khalili and Tavakkoli-Moghaddam 2012).

• Set covering problem (Naji-Azimi et al. 2010).
• Timebabling problem (Abdullah et al. 2009).
• Travelling salesman problem (Wu et al. 2006; Bonyadi et al. 2008).
• Vehicle routing problem (Wu et al. 2007; Yurtkuran and Emel 2010).
• Wireless communication networks optimization (Tsai et al. 2010; Hung et al.

2011).

Interested readers are referred to them as a starting point for a further explo-
ration and exploitation of the EM algorithm.

21.3 Conclusions 351

References

Abdullah, S., Turabieh, H., & Mccollum, B. (2009). A hybridization of electromagnetic-like
mechanism and great deluge for examination timetabling problems. Hybrid Metaheuristics,
LNCS 5818, (pp. 60–72). Berlin: Springer.

Ali, M. M., & Golalikhani, M. (2010). An electromagnetism-like method for nonlinearly
constrained global optimization. Computers and Mathematics with Applications, 60,
2279–2285.

Birbil, S�_I., & Fang, S.-C. (2003). An electromagnetism-like mechanism for global optimization.
Journal of Global Optimization, 25, 263–282.

Bonyadi, M. R., Azghadi, M. R., & Shah-Hosseini, H. (2008). Population-based optimization
algorithms for solving the travelling salesman problem. In F. Greco (Ed.), Travelling
salesman problem (Chap. 1, pp. 1–34). Vienna, Austria: In-Tech.

Chang, H.-H., & Huang, T.-Y. (2007). Mixture experiment design using artificial neural networks
and electromagnetism-like mechanism algorithm. Second International Conference on
Innovative Computing, Information and Control (ICICIC) (pp. 1–4). IEEE.

Chang, F.-K., & Lee, C.-H. (2008). Design of fractional PID control via hybrid of
electromagnetism-like and genetic algorithms. Eighth International Conference on Intelligent
Systems Design and Applications (ISDA) (pp. 525–530). IEEE.

Chang, P.-C., Chen, S.-H., & Fan, C.-Y. (2009). A hybrid electromagnetism-like algorithm for
single machine scheduling problem. Expert Systems with Applications, 36, 1259–1267.

Chang, C.-C., Chen, C.-Y., Fan, C.-W., Chao, H.-C., & Chou, Y.-H. (2010). Quantum-inspired
electromagnetism-like mechanism for solving 0/1 knapsack problem. Second International
Conference on Information Technology Convergence and Services (ITCS) (pp. 1–6). IEEE.

Chao, C.-W., & Liao, C.-J. (2012). A discrete electromagnetism-like mechanism for single
machine total weighted tardiness problem with sequence-dependent setup times. Applied Soft
Computing, 12, 3079–3089. http://dx.doi.org/10.1016/j.asoc.2012.05.017.

Chou, Y.-H., Chang, C.-C., Chiu, C.-H., Lin, F.-J., Yang, Y.-J., & Peng, Z.-V. (2010). Classical
and quantum-inspired electromagnetism-like mechanism for solving 0/1 knapsack problems.
IEEE International Conference on Systems Man and Cybernetics (SMC) (pp. 3211–3218).
IEEE.

Debels, D., Reyck, B. D., Leus, R., & Vanhoucke, M. (2006). A hybrid scatter search/
electromagnetism meta-heuristic for project scheduling. European Journal of Operational
Research, 169, 638–653.

Gilak, E., & Rashidi, H. (2009). A new hybrid electromagnetism algorithm for job shop
scheduling. Third UKSim European Symposium on Computer Modeling and Simulation (pp.
327–332). IEEE.

Guan, X., Dai, X., Qiu, B., & Li, J. (2012). A revised electromagnetism-like mechanism for
layout design of reconfigurable manufacturing system. Computers & Industrial Engineering,
63, 98–108.

Guo, Z., Hang, N., & Wu, J. (2011). DEA and EM based multi-objective short-term hydrothermal
economic scheduling. International Conference on Information Technology, Computer
Engineering and Management Sciences (ICM) (pp. 159–162). IEEE.

Han, L., & Han, Z. (2010). Electromagnetism-like method for constrained optimization problems.
International Conference on Measuring Technology and Mechatronics Automation (IC-
MTMA) (pp. 87–90). IEEE.

Hung, H.-L., Huang, Y.-F., & Cheng, C.-H. (2011). Performance of hybrid Hopfield neural
networks with EM algorithms for multiuser detection in ultra-wide-band communication
systems. IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp.
1423–1429). IEEE.

Jamili, A., Shafia, M. A., & Tavakkoli-Moghaddam, R. (2011). A hybridization of simulated
annealing and electromagnetism-like mechanism for a periodic job shop scheduling problem.
Expert Systems with Applications, 38, 5895–5901.

352 21 Electromagnetism-like Mechanism Algorithm

http://dx.doi.org/10.1016/j.asoc.2012.05.017

Javadi, B., Jolai, F., Slomp, J., Rabbani, M., & Tavakkoli-Moghaddam, R. (2013). A hybrid
electromagnetism-like algorithm for dynamic inter/intra cell layout problem. International
Journal of Computer Integrated Manufacturing, http://dx.doi.org/10.1080/0951192X.
2013.814167.

Javadian, N., & Golalikhani, M. (2009). Solving a single machine scheduling problem by a
discrete version of electromagnetism-like method. Journal of Circuits, Systems, and
Computers, 18, 1597–1608.

Jhang, J.-Y., & Lee, K.-C. (2009). Array pattern optimization using electromagnetism-like
algorithm. International Journal of Electronics and Communications, 63, 491–496.

Jolai, F., Tavakkoli-Moghaddam, R., Golmohammadi, A., & Javadi, B. (2012). An electromag-
netism-like algorithm for cell formation and layout problem. Expert Systems with
Applications, 39, 2172–2182.

Khalili, M., & Tavakkoli-Moghaddam, R. (2012). A multi-objective electromagnetism algorithm
for a bi-objective flowshop scheduling problem. Journal of Manufacturing Systems, 31,
232–239.

Latifi, O. A., & Bonyadi, M. R. (2009). DEM: A discrete electromagnetism-like mechanism for
solving discrete problems. IEEE International Symposium on Computational Intelligence in
Robotics and Automation (CIRA) (pp. 120–125). IEEE.

Lee, C.-H., & Chang, F.-K. (2010). Fractional-order PID controller optimization via improved
electromagnetism-like algorithm. Expert Systems with Applications, 37, 8871–8878.

Lee, K. C., & Jhang, J. Y. (2008). Application of electromagnetism-like algorithm to phase-only
syntheses of antenna arrays. Progress in Electromagnetics Research, PIER, 83, 279–291.

Lee, C.-H., Chang, F.-Y., & Lee, C.-T. (2010). Species-based hybrid of electromagnetism-like
mechanism and back-propagation algorithms for an interval type-2 fuzzy system design.
International Multi Conference of Engineers and Computer Scientists (IMECS) (Vol. I,
pp. 1–6) 17–19 March, Hong Kong. IEEE.

Lee, C.-H., Li, C.-T., & Chang, F.-Y. (2011). A species-based improved electromagnetism-like
mechanism algorithm for TSK-type interval-valued neural fuzzy system optimization. Fuzzy
Sets and Systems, 171, 22–43.

Lee, C.-H., Chang, F.-K., Kuo, C.-T., & Chang, H–. H. (2012). A hybrid of electromagnetism-
like mechanism and back-propagation algorithms for recurrent neural fuzzy systems design.
International Journal of Systems Science, 43, 231–247.

Liu, H., & Gao, L. (2010). A discrete electromagnetism-like mechanism algorithm for solving
distributed permutation flowshop scheduling problem. International Conference on Manu-
facturing Automation (ICMA) (pp. 156–163). IEEE.

Naderi, B., Jenabi, M., Ghomi, S. M. T. F., & Talebi, D. (2010a). An electromagnetism-like
metaheuristic for sequence dependent open shop scheduling. IEEE Fifth Bio-Inspired
Computing: Theories and Applications (BIC-TA) (pp. 489–497). IEEE.

Naderi, B., Tavakkoli-Moghaddam, R., & Khalili, M. (2010b). Electromagnetism-like mecha-
nism and simulated annealing algorithms for flowshop scheduling problems minimizing the
total weighted tardiness and makespan. Knowledge-Based Systems, 23, 77–85.

Naji-Azimi, Z., Toth, P., & Galli, L. (2010). An electromagnetism metaheuristic for the unicost
set covering problem. European Journal of Operational Research, 205, 290–300.

Rocha, A. M. A. C., & Fernandes, E. M. G. P. (2008a). Feasibility and dominance rules in the
electromagnetism-like algorithm for constrained global optimization. Second International
Conference on Signals, Systems and Automation (ICSSA) (pp 1–10).

Rocha, A. M. A. C., & Fernandes, E. M. G. P. (2008b). Implementation of the electromagnetism-
like algorithm with a constraint-handling technique for engineering optimization problems.
Eighth International Conference on Hybrid Intelligent Systems (HIS) (pp. 690–695). IEEE.

Rocha, A. M. A. C., & Fernandes, E. M. G. P. (2008c). On charge effects to the
electromagnetism-like algorithm. The 20th International Conference EURO Mini Conference
Continuous Optimization and Knowledge-Based Technologies (EurOPT-2008) (pp. 198–203).
Vilnius Gediminas Technical University Publishing House, Technika.

References 353

http://dx.doi.org/10.1080/0951192X.2013.814167
http://dx.doi.org/10.1080/0951192X.2013.814167

Rocha, A. M. A. C., & Fernandes, E. M. G. P. (2009). Hybridizing the electromagnetism-like
algorithm with descent search for solving engineering design problems. International journal
of Computer Mathematics, 86, 1932–1946.

Rocha, A. M. A. C., & Fernandes, E. M. G. P. (2010). A stochastic augmented Lagrangian
equality constrained-based algorithm for global optimization. In T. E. Simos, G. Psihoyios &
C. Tsitouras (Eds.), Proceedings of the International Conference on Numerical Analysis and
Applied Mathematics (ICNAAM) (Vol. II, pp. 967–970). American Institute of Physics.

Serway, R. A., & Jewett, J. W. (2014). Physics for scientists and engineers with modern physics.
Boston: Brooks/Cole CENAGE Learning. ISBN 978-1-133-95405-7.

Shang, Y., Chen, J., & Wang, Q. (2010). Improved electromagnetism-like mechanism algorithm
for constrained optimization problem. International Conference on Computational Intelli-
gence and Security (CIS) (pp. 165–169). IEEE.

Souier, M., & Sari, Z. (2011). A software tool for performance metaheuristics evaluation in real
time alternative routing selection in random FMSs. International Conference on Communi-
cations, Computing and Control Applications (CCCA) (pp. 1–6). IEEE.

Su, C.-T., & Lin, H.-C. (2011). Applying electromagnetism-like mechanism for feature selection.
Information Sciences, 181, 972–986.

Taheri, S. H., Ghazvini, H., Saberi-Nadjafi, J., & Biazar, J. (2007). A hybrid of the restarted
Arnoldi and electromagnetism meta-heuristic methods for calculating eigenvalues and
eigenvectors of a non-symmetric matrix. Applied Mathematics and Computation, 191, 79–88.

Tsai, C.-Y., Hung, H.-L., & Lee, S.-H. (2010). Electromagnetism-like method based blind
multiuser detection for MC-CDMA interference suppression over multipath fading channel.
International Symposium on Computer Communication Control and Automation (3CA) (pp.
470–475). IEEE.

Vahdani, B., Soltani, R., & Zandieh, M. (2010). Scheduling the truck holdover recurrent dock
cross-dock problem using robust meta-heuristics. International Journal of Advanced
Manufacturing Technology, 46, 769–783.

Wang, Q., Zeng, J., & Song, W. (2010a) A new electromagnetism-like algorithm with chaos
optimization. International Conference on Computational Aspects of Social Networks
(CASoN) (pp. 535–538). IEEE.

Wang, Y., Yang, Y., Yuan, X., Yin, F., & Wei, S. (2010b) A model predictive control strategy for
path-tracking of autonomous mobile robot using electromagnetism-like mechanism. Interna-
tional Conference on Electrical and Control Engineering (ICECE) (pp. 96–100). IEEE.

Wu, P., Yang, K.-J., & Fang, H.-C. (2006). A revised EM-like algorithm ? K-OPT method for
solving the traveling salesman problem. First International Conference on Innovative
Computing, Information and Control (ICICIC) (pp. 546–549). IEEE.

Wu, P., Yang, K.-J., & Huang, B.-Y. (2007). A revised EM-like mechanism for solving the
vehicle routing problems. Proceedings of the Second International Conference on Innovative
Computing, Information and Control (ICICIC) (pp. 1–4). IEEE.

Wu, Q., Zhang, C.-J., Gao, L., & Li, X. (2010). Training neural networks by electromagnetism-
like mechanism algorithm for tourism arrivals forecasting. IEEE Fifth International
Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA) (pp.
679–688). IEEE.

Wu, Q., Gao, L., Li, X., Zhang, C., & Rong, Y. (2013). Applying an electromagnetism-like
mechanism algorithm on parameter optimisation of a multi-pass milling process. Interna-
tional Journal of Production Research, 51, 1777–1788.

Yi, X., & Ming-Lu, J. (2011). Electromagnetism-like algorithm without local search on PAPR
reduction for OFDM. Third International Conference on Awareness Science and Technology
(iCAST) (pp. 51–56). IEEE.

Yin, F., Wang, Y.-N., & Wei, S.-I. (2011). Inverse kinematic solution for robot manipulator based
on electromagnetism-like and modified DFP algorithms. ACTA Automatica Sinica, 37, 74–82.

Yurtkuran, A., & Emel, E. (2010). A new hybrid electromagnetism-like algorithm for capacitated
vehicle routing problems. Expert Systems with Applications, 37, 3427–3433.

354 21 Electromagnetism-like Mechanism Algorithm

Chapter 22
Gravitational Search Algorithm

Abstract In this chapter, we present a gravitational search algorithm (GSA)
which is based on the low of gravity. We first describe the general information of
the science of gravity and the definition of mass in Sect. 22.1, respectively. Then,
the fundamentals and performance of GSA are introduced in Sect. 22.2. Finally,
Sect. 22.3 summarises in this chapter.

22.1 Introduction

Physics is present in every action around you. As we were young, you may have
heard a famous story about Sir Isaac Newton watched apples which drop off trees.
That is the most widely recognized example about gravity. In fact, gravity is one of
the nature forces that operates everywhere. As we grow older, this fundamental
theory may become less urgent for most of us. However, there are a considerable
number of researchers have an interest in it. Recently, based on the law of gravity,
Rashedi et al. (2009) developed a new algorithm, called gravitational search
algorithm (GSA).

22.1.1 The Science of Gravity

As we know, the central theme of the story of the universe turns out to be gravity.
It can be defined as the tendency of masses to accelerate toward each other (Schutz
2003; Ricci 1998). This famous physics fundamental theory can be go right back
to Galileo (1564–1642), who founded the science of gravity. In addition, to explain
gravity required two other greatest scientists: Isaac Newton and Albert Einstein.
Newton’s gravity theory discovered the laws of motion, while Einstein’s theory of
gravitation led to the erratic motion, known today as Brownian motion.

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_22, � Springer International Publishing Switzerland 2014

355

The Newton’s law of universal gravitation states as follows (Serway and Jewett
2014):

every particle in the universe attracts every other particle with a force that is directly
proportional to the product of their masses and inversely proportional to the square of the
distance between them.

If the particles have masses m1 and m2, they are separated by a distance r, then
the magnitude of this gravitational force is defined by Eq. 22.1 (Serway and Jewett
2014):

Fg ¼ G
m1m2

r2
; ð22:1Þ

where G is a constant, called the universal gravitational constant and its value is
G ¼ 6:674� 10�11 N�m2

�
kg2:

In fact, the universal gravitational constant (G) was first evaluated in the late
nineteenth century. It depends on the actual age of the universe due to the effect of
decreasing gravity as defined by Eq. 22.2 (Rashedi et al. 2009):

G tð Þ ¼ G t0ð Þ �
t0

t

� �b
; b\1; ð22:2Þ

where G tð Þ is the value of the gravitational constant at time t, is the value of the
gravitational constant at the first cosmic quantum-interval of time t0.

In addition, Newton made an important law (i.e., Newton’s second law) when
combined with Galileo’s discovery. It says that (Schutz 2003):

when a force is applied to a body, the resulting acceleration depends only on the force and
on the mass of the body: the larger the force, the larger the acceleration; and the larger the
mass of a body, the smaller its acceleration.

The acceleration of an object (a) depends on the force (F) and its mass (M) is
given by Eq. 22.3 (Schutz 2003):

a ¼ F

M
: ð22:3Þ

22.1.2 The Definition of Mass

In physics, mass is a amount of matter in an object, giving rise to the phenomena
of the object’s resistance of being accelerated by a force and the strength of its
mutual gravitational attraction with other objects (Serway and Jewett 2014).

In general, there are three kinds of mass that are defined in classical physics
(Schutz 2003):

• Active gravitational mass (Ma): It is a static measurement that is proportional to
the magnitude of the gravitational force which is exerted by an object.

356 22 Gravitational Search Algorithm

• Passive gravitational mass (Mp): It is a static measurement that is proportional to
the magnitude of the gravitational force which is experienced by an object when
interacting with a second object.

• Inertial mass (Mi): It is a dynamic measurement of how much inertia must be
accelerated.

Both active and passive gravitational mass are defined by the force of gravi-
tation, which states there is a gravitational force between any pair of objects, while
the inertial mass is mainly defined by Newton’s law, which states that when a force
is applied to an object, it will accelerate proportionally, and the constant of pro-
portion is the mass of that object. Based on those properties, the Eqs. 22.1 and 22.3
can be rewrote as Eqs. 22.4 and 22.5, respectively (Serway and Jewett 2014):

Fij ¼ G
maj � mpi

R2
; ð22:4Þ

ai ¼
Fij

Mii
; ð22:5Þ

where Fij denotes the gravitational force, Maj is the active gravitational mass of
particle j, Mpi is the passive gravitational mass of particle i, and Mii represents the
inertia mass of particle i.

22.2 Gravitational Search Algorithm

22.2.1 Fundamentals of Gravitational Search Algorithm

Gravitational search algorithm (GSA) was originally proposed by Rashedi et al.
(2009). In GSA, all the individuals can be mimicked as objects with masses. Based
on the Newton’s law of universal gravitation, the objects attract each other by the
gravity force, and the force makes all of them move towards the ones with heavier
masses. In addition, each mass of GSA has four characteristics: position, inertial
mass, active gravitational mass, and passive gravitational mass. The first one
corresponds to a solution of the problem, while the other three are determined by
fitness function. The details of GSA can be summarized as follows.

• First, considering a system with N masses (agents) where the ith mass’s position
is defined by Eq. 22.6 (Rashedi et al. 2009):

Xi ¼ x1
i ; . . .; xd

i ; . . .; xn
i

� �
; i ¼ 1; 2; . . .;N; ð22:6Þ

where xd
i is the position of the ith agent in the dth dimension, and n is the search

space’s dimension.
• Second, the gravitational force (Fd

ij tð Þ) that acting on mass i from mass j at time
t can be defined by Eq. 22.7 (Rashedi et al. 2009):

22.1 Introduction 357

Fd
ij tð Þ ¼ G tð ÞMpi tð Þ �Maj tð Þ

Rij tð Þ þ e
xd

j tð Þ � xd
i tð Þ

� �
; ð22:7Þ

where Maj is the active gravitational mass related to agent j, Mpi is the passive
gravitational mass related to agent i, G tð Þ is gravitational constant at time t, e is
a small constant, and Rij tð Þ is the Euclidian distance between two agents i and j
defined by Eq. 22.8 (Rashedi et al. 2009):

Rij tð Þ ¼ Xi tð Þ;Xj tð Þ
�
�

�
�

2
: ð22:8Þ

• Third, for the purpose of computing acceleration of an agent i, total forces (from
a group of heavier masses) can be defined by Eq. 22.9 (Rashedi et al. 2009):

Fd
i tð Þ ¼

XN

j¼1;j6¼i

randjF
d
ij tð Þ; ð22:9Þ

where randj is random number in the interval 0; 1½ �.
• Fourth, based on the total forces, the acceleration of the agent i at time t, and in

direction dth, is given by Eq. 22.10 (Rashedi et al. 2009):

ad
i tð Þ ¼ Fd

i tð Þ
Mii tð Þ ; ð22:10Þ

where Mii is the inertial mass of ith agent.
• Fifth, an agent’s next velocity can be computed as a fraction of its present

velocity added to its acceleration. Both agent i’s new velocity and position are
given by Eqs. 22.11 and 22.12, respectively (Rashedi et al. 2009):

vd
i t þ 1ð Þ ¼ randi � vd

i tð Þ þ ad
i tð Þ; ð22:11Þ

xd
i t þ 1ð Þ ¼ xd

i tð Þ þ vd
i t þ 1ð Þ; ð22:12Þ

where vd
i tð Þ and xd

i tð Þ are the velocity and the position in dth dimension of agent
i at time t, respectively, and randi is an uniform random variable in the interval
0; 1½ � which adds a randomized characteristic to the search.

• Finally, after computing current population’s fitness, the gravitational and
inertial masses can be updated via Eqs. 22.13 and 22.14, respectively (Rashedi
et al. 2009):

mi tð Þ ¼ fiti tð Þ � worst tð Þ
best tð Þ � worst tð Þ ; ð22:13Þ

Mi tð Þ ¼ mi tð Þ
PN

j¼1 mj tð Þ
; ð22:14Þ

358 22 Gravitational Search Algorithm

where fiti tð Þ denotes the fitness value of the agent i at time t, best tð Þ and
worst tð Þ are defined by Eqs. 22.15 and 22.16, respectively (Rashedi et al.
2009):

For a minimization problem:
best tð Þ ¼ min

j2 1;...;Nf g
fitj tð Þ

worst tð Þ ¼ max
j2 1;...;Nf g

fitj tð Þ

8
<

:
: ð22:15Þ

For a maximization problem:
best tð Þ ¼ max

j2 1;...;Nf g
fitj tð Þ

worst tð Þ ¼ min
j2 1;...;Nf g

fitj tð Þ

8
<

:
: ð22:16Þ

Furthermore, to balance the exploration and exploitation of GSA, an agent
called kbest is employed. It is a function of time which with the initial value k0 at
the beginning and decreasing with time. In GSA, k0 is normally set to N (i.e., the
total number of agents), and kbest is decreased linearly. Finally, there will be just
one agent applying force to the others. Therefore, the Eq. 22.9 can be modified as
Eq. 22.17 (Rashedi et al. 2009):

Fd
i tð Þ ¼

XN

j2kbest ;j6¼i

randjF
d
ij tð Þ; ð22:17Þ

where kbest is the set of first k agents with the best fitness value and biggest mass.
Meanwhile, an initial value of G0 is always allocated to the gravitational

constant, G, which will be reduced with time as defined by Eq. 22.18 (Rashedi
et al. 2009):

G tð Þ ¼ G G0; tð Þ: ð22:18Þ

The steps of implementing GSA can be summarized as follows (Rashedi et al.
2009):

• Step 1: Determining the system environment.
• Step 2: Randomized initialization.
• Step 3: Fitness evaluation of agents.
• Step 4: Updating the parameters, i.e., G tð Þ, best tð Þ, worst tð Þ, and Mi tð Þ for

i ¼ 1; 2; . . .;N.
• Step 5: Calculation of the total force in different directions.
• Step 6: Calculation of acceleration and velocity.
• Step 7: Updating the position of agents.
• Step 8: Repeat Steps 3–7 until the stop criteria is reached. If a specified ter-

mination criteria is satisfied stop and return the best solution.

22.2 Gravitational Search Algorithm 359

22.2.2 Performance of GSA

In order to show how the GSA algorithm performs, 23 standard benchmark
functions are tested in (Rashedi et al. 2009). Compare with central force optimi-
zation (CFO) algorithm, real genetic algorithm (RGA), and particle swarm opti-
mization (PSO) algorithm, the simulation report obtained by GSA in most cases
provide superior results.

22.3 Conclusions

In this chapter, a new optimization algorithm called GSA is introduced. It is based
on the law of gravity and the gravitational and inertial mass in Newton’s princi-
ples. The working principle is each agent can be considered as object with different
masses. The entire agents move due to the gravitational attraction force acting
between them and the progress of the algorithm directs the movements of all
agents globally towards the agents with heavier masses. Although the effectiveness
of GSA is still under debate (see Gauci et al. (2012) for details), we have witnessed
the following rapid spreading of GSA:

First, several enhanced versions of GSA can also be found in the literature as
outlined below:

• Binary GSA (Rashedi et al. 2010).
• Chaotic GSA (Li et al. 2012, 2013; Ju and Hong 2013).
• Discrete local search operator enhanced GSA (Doraghinejad et al. 2013).
• Disruption operator enhanced GSA (Sarafrazi et al. 2011).
• Fuzzy GSA (Ghasemi et al. 2013).
• Hybrid GSA with clonal selection algorithm (Gao et al. 2013).
• Hybrid GSA with K-means (Hatamlou et al. 2011).
• Hybrid genetic algorithm with GSA (Seljanko 2011).
• Hybrid K-harmonic means with improved GSA (Yin et al. 2011).
• Hybrid neural network and GSA (Ghalambaz et al. 2011).
• Hybrid particle swarm optimization and GSA (Mallick et al. 2013).
• Hybrid random-key GSA (Chen et al. 2011).
• Improved GSA (Li and Zhou 2011; Li and Duan 2012).
• Modified GSA (Khajehzadeh et al. 2012; Han and Chang 2012a).
• Multiobjective GSA (lez-Álvarez et al. 2013).
• Non-dominated sorting GSA (Nobahari et al. 2011).
• Opposition-based GSA (Shaw et al. 2012).

Second, the GSA has also been successfully applied to a variety of optimization
problems as listed below:

• Antenna design optimization (Chatterjee et al. 2010).
• Chaotic system parameters identification (Li et al. 2012).

360 22 Gravitational Search Algorithm

• Communication system security optimization (Han and Chang 2012a, b).
• Control system optimization (David et al. 2013; Precup et al. 2013).
• Data clustering (Yin et al. 2011; Papa et al. 2011; Hatamlou et al. 2011, 2012;

Bahrololoum et al. 2012).
• Drug design optimization (Bababdani and Mousavi 2013).
• Image processing (Zhao 2011).
• Motif discovery problem (lez-Álvarez et al. 2013).
• Oil demand prediction (Behrang et al. 2011).
• Path planning for uninhabited aerial vehicle (Li and Duan 2012).
• Power system optimization (Güvenç et al. 2012; Eslami et al. 2012a, b; Duman

et al. 2012; Niknam et al. 2012; Ghasemi et al. 2013; Roy 2013; Chatterjee et al.
2012; Mallick et al. 2013; Zhang et al. 2013; Roy et al. 2012; Li and Zhou 2011;
Shaw et al. 2012; Ju and Hong 2013; Li et al. 2013; Mondal et al. 2013; Kumar
et al. 2013; Barisal et al. 2012).

• Quality of service optimization (Zibanezhad et al. 2011).
• Retaining wall structure optimization (Khajehzadeh and Eslami 2012).
• Robot control optimization (Seljanko 2011).
• Signal filter optimization (Rashedi et al. 2011).
• Slope stability analysis (Khajehzadeh et al. 2012).
• Travelling salesman problem (Afaq and Saini 2011; Chen et al. 2011).
• Wireless mesh networks optimization (Doraghinejad et al. 2013).

Interested readers please refer to them as a starting point for a further explo-
ration and exploitation of GSA.

References

Afaq, H., & Saini, S. (2011). On the solutions to the travelling salesman problem using nature
inspired computing techniques. International Journal of Computer Science Issues, 8,
326–334.

Bababdani, B. M., & Mousavi, M. (2013). Gravitational search algorithm: a new feature selection
method for QSAR study of anticancer potency of imidazo[4,5-b]pyridine derivatives.
Chemometrics and Intelligent Laboratory Systems, 122, 1–11.

Bahrololoum, A., Nezamabadi-Pour, H., Bahrololoum, H., & Saeed, M. (2012). A prototype
classifier based on gravitational search algorithm. Applied Soft Computing, 12, 819–825.

Barisal, A. K., Sahu, N. C., Prusty, R. C., & Hota, P. K. (2012). Short-term hydrothermal
scheduling using gravitational search algorithm. IEEE 2nd International Conference on
Power, Control and Embedded Systems, pp. 1–6.

Behrang, M. A., Assareh, E., Ghalambaz, M., Assari, M. R., & Noghrehabadi, A. R. (2011).
Forecasting future oil demand in Iran using GSA (gravitational search algorithm). Energy, 36,
5649–5654.

Chatterjee, A., Mahanti, G. K., & Pathak, N. (2010). Comparative performance of gravitational
search algorithm and modified particle swarm optimization algorithm for synthesis of thinned
scanned concentric ring array antenna. Progress in Electromagnetics Research B, 25,
331–348.

22.3 Conclusions 361

Chatterjee, A., Ghoshal, S. P., & Mukherjee, V. (2012). A maiden application of gravitational
search algorithm with wavelet mutation for the solution of economic load dispatch problems.
International Journal of Bio-Inspired Computation, 4, 33–46.

Chen, H., Li, S., & Tang, Z. (2011). Hybrid gravitational search algorithm with random-key
encoding scheme combined with simulated annealing. International Journal of Computer
Science and Network Security, 11, 208–217.

David, R.-C., Precup, R.-E., Petriu, E. M., Rădac, M.-B., & Preitl, S. (2013). Gravitational search
algorithm-based design of fuzzy control systems with a reduced parametric sensitivity.
Information Sciences, 247, 154–173. doi:http://dx.doi.org/10.1016/j.ins.2013.05.035.

Doraghinejad, M., Nezamabadi-pour, H., & Mahani, A. (2013). Channel assignment in multi-
radio wireless mesh networks using an improved gravitational search algorithm. Journal of
Network and Computer Applications. doi:http://dx.doi.org/10.1016/j.jnca.2013.04.007.

Duman, S., Güvenç, U., Sönmez, Y., & Yörükeren, N. (2012). Optimal power flow using
gravitational search algorithm. Energy Conversion and Management, 59, 86–95.

Eslami, M., Shareef, H., Mohamed, A., & Khajehzadeh, M. (2012a). Gravitational search
algorithm for coordinated design of PSS and TCSC as damping controller. Journal of Central
South University of Technology, 19, 923–932.

Eslami, M., Shareef, H., Mohamed, A., & Khajehzadeh, M. (2012b). PSS and TCSC damping
controller coordinated design using GSA. Energy Procedia, 14, 763–769.

Gao, S., Chai, H., Chen, B., & Yang, G. (2013). Hybrid gravitational search and clonal selection
algorithm for global optimization. In Tan, Y., Shi, Y. & Mo, H. (Eds.), Advances in Swarm
Intelligence, LNCS 7929, (pp. 1–10). Hybrid gravitational search and clonal selection
algorithm for global optimization: Springer.

Gauci, M., Dodd, T. J., & Groß, R. (2012). Why ‘GSA: a gravitational search algorithm’ is not
genuinely based on the law of gravity. Natural Computing, 11, 719–720. doi:10.1007/s11047-
012-9322-0.

Ghalambaz, M., Noghrehabadi, A. R., Behrang, M. A., Assareh, E., Ghanbarzadeh, A., &
Hedayat, N. (2011). A hybrid neural network and gravitational search algorithm (HNNGSA)
method to solve well known Wessinger’s equation. World Academy of Science, Engineering
and Technology, 73, 803–807.

Ghasemi, A., Shayeghi, H., & Alkhatib, H. (2013). Robust design of multimachine power system
stabilizers using fuzzy gravitational search algorithm. Electrical Power and Energy Systems,
51, 190–200.

Güvenç, U., Sönmez, Y., Duman, S., & Yörükeren, N. (2012). Combined economic and emission
dispatch solution using gravitational search algorithm. Scientia Iranica D, 19, 1754–1762.

Han, X., & Chang, X. (2012a). A chaotic digital secure communication based on a modified
gravitational search algorithm filter. Information Sciences, 208, 14–27.

Han, X., & Chang, X. (2012b). Chaotic secure communication based on a gravitational search
algorithm filter. Engineering Applications of Artificial Intelligence, 25, 766–774.

Hatamlou, A., Abdullah, S., & Nezamabadi-Pour, H. (2011). Application of gravitational search
algorithm on data clustering. Rough Sets and Knowledge Technology, LNCS 6954, (pp.
337–346). Berlin: Springer.

Hatamlou, A., Abdullah, S., & Nezamabadi-Pour, H. (2012). A combined approach for clustering
based on K-means and gravitational search algorithms. Swarm and Evolutionary Computa-
tion, 6, 47–52. doi:10.1016/j.swevo.2012.02.003.

Ju, F.-Y., & Hong, W.-C. (2013). Application of seasonal SVR with chaotic gravitational search
algorithm in electricity forecasting. Applied Mathematical Modelling, 37, p. 23. doi:http://
dx.doi.org/10.1016/j.apm.2013.05.016.

Khajehzadeh, M., & Eslami, M. (2012). Gravitational search algorithm for optimization of
retaining structures. Indian Journal of Science and Technology, 5, 1821–1827.

Khajehzadeh, M., Taha, M. R., El-Shafie, A., & Eslami, M. (2012). A modified gravitational
search algorithm for slope stability analysis. Engineering Applications of Artificial
Intelligence, 25, 1589–1597. doi:10.1016/j.engappai.2012.01.011.

362 22 Gravitational Search Algorithm

http://dx.doi.org/10.1016/j.ins.2013.05.035
http://dx.doi.org/10.1016/j.jnca.2013.04.007
http://dx.doi.org/10.1007/s11047-012-9322-0
http://dx.doi.org/10.1007/s11047-012-9322-0
http://dx.doi.org/10.1016/j.swevo.2012.02.003
http://dx.doi.org/10.1016/j.apm.2013.05.016
http://dx.doi.org/10.1016/j.apm.2013.05.016
http://dx.doi.org/10.1016/j.engappai.2012.01.011

Kumar, J. V., Kumar, D. M. V., & Edukondalu, K. (2013). Strategic bidding using fuzzy adaptive
gravitational search algorithm in a pool based electricity market. Applied Soft Computing, 13,
2445–2455.

Lez-Álvarez, D. L. G., Vega-Rodríguez, M. A., Gómez-Pulido, J. A., & Sánchez-Pérez, J. M.
(2013). Comparing multiobjective swarm intelligence metaheuristics for DNA motif
discovery. Engineering Applications of Artificial Intelligence, 26, 314–326.

Li, P., & Duan, H. (2012). Path planning of unmanned aerial vehicle based on improved
gravitational search algorithm. Science China Technological Sciences, 55, 2712–2719.
doi:10.1007/s11431-012-4890-x.

Li, C., & Zhou, J. (2011). Parameters identification of hydraulic turbine governing system using
improved gravitational search algorithm. Energy Conversion and Management, 52, 374–381.

Li, C., Zhou, J., Xiao, J., & Xiao, H. (2012). Parameters identification of chaotic system by
chaotic gravitational search algorithm. Chaos, Solitons & Fractals, 45, 539–547.

Li, C., Zhou, J., Xiao, J., & Xiao, H. (2013). Hydraulic turbine governing system identification
using T–S fuzzy model optimized by chaotic gravitational search algorithm. Engineering
Applications of Artificial Intelligence, 26, 2073–2082. doi:http://dx.doi.org/10.1016/
j.engappai.2013.04.002.

Mallick, S., Ghoshal, S. P., Acharjee, P., & Thakur, S. S. (2013). Optimal static state estimation
using improved particle swarm optimization and gravitational search algorithm. Electrical
Power and Energy Systems, 52, 254–265.

Mondal, S., Bhattacharya, A., & Dey, S. H. N. (2013). Multi-objective economic emission load
dispatch solution using gravitational search algorithm and considering wind power
penetration. Electrical Power and Energy Systems, 44, 282–292.

Niknam, T., Golestaneh, F., & Malekpour, A. (2012). Probabilistic energy and operation
management of a microgrid containing wind/photovoltaic/fuel cell generation and energy
storage devices based on point estimate method and self-adaptive gravitational search
algorithm. Energy, 43, 427–437.

Nobahari, H., Nikusokhan, M., & Siarry, P. (2011, June 14–15). Non-dominated sorting
gravitational search algorithm. International conference on swarm intelligence (ICSI) (pp.
1–10). Cergy, France.

Papa, J. P., Pagnin, A., Schellini, S. A., Spadotto, A., Guido, R. C., Ponti, M., Chiachia, G., &
Falcão, A. X. (2011). Feature selection through gravitational search algorithm. IEEE
International Conference on Acoustics, Speech (ICASSP), pp. 2052–2055.

Precup, R.-E., David, R.-C., Petriu, E. M., Rădac, M.-B., Preitl, S., & Fodor, J. (2013).
Evolutionary optimization-based tuning of low-cost fuzzy controllers for servo systems.
Knowledge-Based Systems, 38, 74–84. doi:10.1016/j.knosys.2011.07.006.

Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm.
Information Sciences, 179, 2232–2248.

Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2010). BGSA: Binary gravitational search
algorithm. Natural Computing, 9, 727–745.

Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2011). Filter modeling using gravitational
search algorithm. Engineering Applications of Artificial Intelligence, 24, 117–122.

Ricci, F. (1998). The search for gravitational waves: an experimental physics challenge.
Contemporary Physics, 39, 107–135.

Roy, P. K. (2013). Solution of unit commitment problem using gravitational search algorithm.
Electrical Power and Energy Systems, 53, 85–94.

Roy, P. K., Mandal, B., & Bhattacharya, K. (2012). Gravitational search algorithm based optimal
reactive power dispatch for voltage stability enhancement. Electric Power Components and
Systems, 40, 956–976.

Sarafrazi, S., Nezamabadi-Pour, H., & Saryazdi, S. (2011). Disruption: A new operator in
gravitational search algorithm. Scientia Iranica D, 18, 539–548.

Schutz, B. (2003). Gravity from the ground up, The Edinburgh Building, Cambridge CB2 8RU.
UK: Cambridge University Press. ISBN 13 978-0-511-33696-6.

References 363

http://dx.doi.org/10.1007/s11431-012-4890-x
http://dx.doi.org/10.1016/j.engappai.2013.04.002
http://dx.doi.org/10.1016/j.engappai.2013.04.002
http://dx.doi.org/10.1016/j.knosys.2011.07.006

Seljanko, F. (2011, June 20–23). Hexapod walking robot gait generation using genetic-
gravitational hybrid algorithm. IEEE 15th International Conference on Advanced Robotics
(pp. 253–258), Tallinn University of Technology, Tallinn, Estonia.

Serway, R. A., & Jewett, J. W. (2014). Physics for scientists and engineers with modern physics.
Boston: Brooks/Cole CENAGE Learning. ISBN 978-1-133-95405-7.

Shaw, B., Mukherjee, V., & Ghoshal, S. P. (2012). A novel opposition-based gravitational search
algorithm for combined economic and emission dispatch problems of power systems.
Electrical Power and Energy Systems, 35, 21–33.

Yin, M., Hu, Y., Yang, F., Li, X., & Gu, W. (2011). A novel hybrid K-harmonic means and
gravitational search algorithm approach for clustering. Expert Systems with Applications, 38,
9319–9324.

Zhang, W., Niu, P., Li, G., & Li, P. (2013). Forecasting of turbine heat rate with online least
squares support vector machine based on gravitational search algorithm. Knowledge-Based
Systems, 39, 34–44.

Zhao, W. (2011). Adaptive image enhancement based on gravitational search algorithm.
Procedia Engineering, 15, 3288–3292.

Zibanezhad, B., Yamanifar, K., Sadjady, R. S., & Rastegari, Y. (2011). Applying gravitational
search algorithm in the QoS-based Web service selection problem. Journal of Zhejiang
University —Science C (Computers & Electronics), 12, 730–742.

364 22 Gravitational Search Algorithm

Chapter 23
Intelligent Water Drops Algorithm

Abstract In this chapter, an intelligent water drops (IWD) algorithm is introduced.
We first, in Sect. 23.1, describe the general knowledge of nature water drops and
the Newton’s law of gravity, respectively. Then, the fundamentals of IWD, the
selected variant of IWD, and the representative IWD application are detailed in
Sect. 23.2, respectively. Finally, Sect. 23.3 draws the conclusions of this chapter.

23.1 Introduction

The river which flows freely through our land has always played an important part
in our lives. Without it we could not make a living. The main building block of the
flowing river is the water drops, which is impacted by the gravity. Through its
long-rang force, it pulls everything toward the centre of the earth in a straight line.
Inspired by this nature phenomenon, Shah-Hosseini (2007) proposed a new
problem solving algorithm called intelligent water drops (IWP) algorithm.

23.1.1 Key Characteristics of Nature Water Drops

A river is a natural stream of water drops (such as rainwater or melting snow) with
significant volume. It begins high in mountains and flows downhill because of
gravity. As the water flows down, it may pick up more water from other small
streams, and the whole journey is not smooth, i.e., there are barriers and obstacles
(such as rocks, pebbles, and soil) on the path. The speed of water moving mainly
depends on the slop gradient, the roughness of the channel, and the tides. In
addition, river can move soil directly. This is known as ‘‘erosion’’. Typically, the
speed and erosion have a direct relationship. That means, faster water gathers more
amount of soil than stationary or slow water and can carry them quite a distance.
Over time, as the river flows, it deposit all of the stuff it carries and change the land
by carving new paths for themselves.

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_23, � Springer International Publishing Switzerland 2014

365

23.1.2 Newton’s Laws of Gravity

As we know, gravity is one of the fundamental force that operates everywhere. For
example, together with the density difference between water and air, gravity serves
to keep the water molecules in the cup and the air above the water’s surface, for all
relevant purposes. In the 17th century, Sir Isaac Newton was the first to propose
the consequent mathematical expression of gravity. He expressed his model by
using three assertions, which have come to be known as Newton’s laws (Holzner
2011):

• First law explains what happens with forces and motion. His first law states ‘‘An
object continues in a state of rest or in a state of motion at a constant velocity
along a straight line, unless compelled to change that state by a net force’’.

• Second law says that an object remains in uniform motion unless acted on by a
net force. That means, it details the relationship among net force, the mass, and
the acceleration.

• Third law tells us ‘‘Whenever one body exerts a force on a second body, the
second body exerts an oppositely directed force of equal magnitude on the first
body’’.

Nowadays, observations and theory agree that the gravity explains the working
principle of the universe, such as the fluids move. In addition, it even laid the path
toward the evolution of life itself, such as how the liquid is changed to the gas.

23.2 Intelligent Water Drops Algorithm

23.2.1 Fundamentals of Intelligent Water Drops Algorithm

Intelligent water drops (IWD) algorithm was originally proposed in (Shah-Hosseini
2007, 2008, 2009a, b). Two attributes are proposed for the IWD algorithm, namely,
the amount of soil denoted by soil (IWD) and the velocity of the IWDs denoted by
velocity (IWD). In the following, we will discuss the algorithm rules in details.

• Path selecting rule: For each IWD, the probability p i; j; IWDð Þð Þ of choosing the
next location is given by Eqs. 23.1 and 23.2, respectively (Shah-Hosseini
2009b):

p i; j; IWDð Þ ¼ f soil i; jð Þð Þ
P

k 62vc IWDð Þ
f soil i; kð Þð Þ ; ð23:1Þ

366 23 Intelligent Water Drops Algorithm

f soil i; jð Þð Þ ¼ 1
es þ g soil i; jð Þð Þ ; ð23:2Þ

where the set vc IWDð Þ denotes the locations that the IWD should not visit to
keep satisfied the constraints of the problem, es is a small positive number to
prevent a possible division by zero in the function f :ð Þð Þ, and g soil i; jð Þð Þ is used
to shift the soil i; jð Þ of the path joining location i and j toward positive values
and is computed by Eq. 23.3 (Shah-Hosseini 2009b):

g soil i; jð Þð Þ ¼
soil i; jð Þ if min

l 62vc IWDð Þ
soil i; lð Þð Þ� 0

soil i; jð Þ � min
l 62vc IWDð Þ

soil i; lð Þð Þ otherwise

8
<

:
;

ð23:3Þ

where the function min :ð Þ returns the minimum value of its arguments.
• Velocity updating rule: For each IWD that moves from current location i to next

location j, updates its velocity ðvelIWDÞ via Eqs. 23.4 and 23.5, respectively
(Shah-Hosseini 2009b):

velIWD t þ 1ð Þ ¼ velIWD tð Þ þ DvelIWD tð Þ; ð23:4Þ

DvelIWD tð Þ ¼ av

bv þ cv � soilb i; jð Þ ; ð23:5Þ

where velIWD t þ 1ð Þ stands for the updated velocity of an IWD at the node j,
soil i; jð Þ is the soil on the path joining the current location and the new location,
av, bv, and cv are constant velocity parameters which are adjustable according to
focal problems, and b is user-selected positive parameters.

• Local soil updating rule: For each IWDs moving, the amount of the soil
soil i; jð Þð Þ and the soil that each IWD carries ðsoilIWDÞ are updated via

Eqs. 23.6–23.8, respectively (Shah-Hosseini 2009b):

soil i; jð Þ ¼ q0 � soil� qn � Dsoil i; jð Þ; ð23:6Þ

soilIWD ¼ soilIWD þ Dsoil i; jð Þ; ð23:7Þ

Dsoil i; jð Þ ¼ as

bs þ cs � time2 i; j; velIWD t þ 1ð Þð Þ ; ð23:8Þ

where Dsoil i; jð Þ is the soil which the velIWD removes from the path between
location i and j, q0 and qn are often positive number generated from the interval
[0,1], as, bs, and cs are user-selected positive numbers that depending on the
given problem, and time i; j; velIWDð Þ is the time value that required for the velIWD

and defined by Eq. 23.9 (Shah-Hosseini 2009b):

23.2 Intelligent Water Drops Algorithm 367

time i; j; velIWD t þ 1ð Þ
� �

¼ HUD i; jð Þ
velIWD t þ 1ð Þ ; ð23:9Þ

where a local heuristic HUD :; :ð Þ denotes the heuristic undesirability of moving
between two locations.

• Global soil updating rule: At the end of each iteration, the amount of the soil on
the arc of the iteration-best solution ðTIBÞ is reduced based on the quality of the
iteration-best solution q TIWDð Þð Þ as defined by Eq. 23.10 (Shah-Hosseini
2009b):

soil i; jð Þ ¼ 1þ qIWDð Þ � soil i; jð Þ � qIWD �
soilIWD

IB

NIB � 1ð Þ ; 8 i; jð Þ 2 TIB; ð23:10Þ

where soilIWD
IB denotes the soil of the iterations-best IWD, NIB represents the

number of locations in the solution TIB, and qIWD is the global soil updating
parameter generated from the interval [0,1].

In addition, in IWD, every created IWD is designed to move from its initial
location to the next ones until it finds a solution. At the end of each iteration, the
best solution ðTIBÞ found by the IWDs within such iteration is obtained via
Eq. 23.11 (Shah-Hosseini 2009b):

TIB ¼ arg max
8TIWD

q TIWD
� �

; ð23:11Þ

where q :ð Þ is the objective of quality function, and q TIWDð Þ is the quality of a
solution ðTIWDÞ found by the IWD. It means that the iteration-best solution TIB is
the dominant solution over all other solutions TIWD.

At the end of each iteration of the IWD algorithm, the current iteration-best
solution ðTIBÞ is used to update the total best solution TIB via Eq. 23.12
(Shah-Hosseini 2009b):

TTB ¼ TTB if q TTBð Þ� q TIBð Þ
TIB otherwise

�

; ð23:12Þ

Taking into account four key rules described above, the steps of implementing
standard IWD algorithm can be summarized as follows (Shah-Hosseini 2009b):

• Step 1: Initialization of both static and dynamic parameters.
• Step 2: Spread the IWDs randomly on the locations and then update the visited

nodes.
• Step 3: Repeat the following processes path selecting process, velocity updating

process, and local Soil updating process till stopping criteria met.
• Step 4: Find the iteration-best solution ðTIBÞ from all the solutions ðTIWDÞ found

by the IWDs.
• Step 5: Global soil updating process.

368 23 Intelligent Water Drops Algorithm

• Step 6: Update the total best solution ðTTBÞ.
• Step 7: Increment the iteration number by Itercount ¼ Itercount þ 1. Then, go to

Step 2 if Itercount\Itermax.
• Step 8: The algorithm stops such that the best solution is kept in TTB.

23.2.2 Performance of IWD

In order to show how the IWD algorithm performs, several researchers have
conducted a set of studies, such as the travelling salesman problem, the n-queen
puzzle, the multidimensional k006Eapsack problem, and the image segmentation
problem. Experimental results showed that the IWD algorithm performs well in
finding optimal or near optimal solutions.

23.2.3 Selected IWD Variant

Although IWD algorithm is a new member of computational intelligence (CI)
family, a number of IWD variations have been proposed in the literature for the
purpose of further improving the performance of IWD. This section gives an
overview to one of these IWD variants which has been demonstrated to be very
efficient and robust.

23.2.3.1 IWD for Continuous Optimization

Optimization problems can broadly be described as either continuous or discrete.
The main feature of continuous problem is the variables are allowed to take on any
values permitted by the constraints. Due to the IWD algorithm is inspired by the
nature water drops, it can be easily represented for solving continuous optimiza-
tion problems. In 2012, Shah-Hosseini (2012a) proposed a variant of IWD called
IWD-CO (i.e., the IWD algorithm for continuous optimization). In details, IWD-
CO uses binary valued variables to represent information in individuals and puts
more emphasis on the mutation operator.

• Edge selecting: Let an IWD is at node i and select the edge ei;iþ1 kð Þ
� �

to visit

the next node iþ 1. The probability PIWD ei;iþ1 kð Þ
� �� �

for such a selection is
described via Eqs. 23.13–23.15, respectively (Shah-Hosseini 2012a):

PIWD ei;iþ1 kð Þ
� �

¼
f soil ei;iþ1 kð Þ

� �� �

P1

l¼0
f soil ei;iþ1 lð Þ

� �� �
; ð23:13Þ

23.2 Intelligent Water Drops Algorithm 369

f soil ei;iþ1 kð Þ
� �� �

¼ 1

0:0001þ g soil ei;iþ1 kð Þ
� �� � ; ð23:14Þ

g soil ei;iþ1 kð Þ
� �� �

¼
soil ei;iþ1 kð Þ
� �

if min
l¼0:1

soil ei;iþ1 lð Þ
� �� �

� 0

soil ei;iþ1 kð Þ
� �

� min
l¼0:1

soil ei;iþ1 lð Þ
� �� �

otherwise

8
<

:
;

ð23:15Þ

where ei;iþ1 kð Þ is a directed edge that connects node i to node iþ 1.

• Local soil updating: When an IWD leaves node i by using edge ei;iþ1 kð Þ to
arrive at node iþ 1, the soil of the IWD ðsoilIWDÞ and the soil of the used edge
soil ei;iþ1 kð Þ
� �� �

are updated via Eqs. 23.16–23.18, respectively (Shah-Hosseini
2012a):

soil ei;iþ1 kð Þ
� �

¼ 1:1 � soil ei;iþ1 kð Þ
� �

� 0:01 � Dsoil ei;iþ1 kð Þ
� �

; ð23:16Þ

soilIWD ¼ soilIWD þ Dsoil ei;iþ1 kð Þ
� �

; ð23:17Þ

Dsoil ei;iþ1 kð Þ
� �

¼ 0:001: ð23:18Þ

• Mutation-based local search: This process is repeated until the fitness value of
the solution is improved. It is noted that this process is applied to all the
solutions created in the current iteration by the IWDs.

• Global soil updating: The soils of the edges with the iteration-best solution are
updated via Eqs. 23.19 and 23.20, respectively (Shah-Hosseini 2012a):

soil ei;iþ1 kð Þ
� �

¼ min max Tempsoil ei;iþ1 kð Þ
� �

;MinSoil
� �

;MaxSoil
� �

;

8ei;iþ1 kð Þ 2 TIB
ð23:19Þ

Tempsoil ei;iþ1 kð Þ
� �

¼ 1:1 � soil ei;iþ1 kð Þ
� �

� 0:01 � soilIWD
IB

M � Pð Þ ; 8ei;iþ1 kð Þ 2 TIB

ð23:20Þ

where MinSoil;MaxSoil½ � is the boundary for the global soil updating, soilIWD
IB

denote the quality of the IWD with TIB, and M � Pð Þ represents the graph which
has M � P nodes.

23.2.3.2 Performance of IWD-CO

To evaluate the performance of the IWD-CO algorithm, a set of benchmark
functions are selected in (Shah-Hosseini 2012a). Computational results showed
that the proposed algorithm converges to optimal values of the all six functions.

370 23 Intelligent Water Drops Algorithm

23.2.4 Representative IWD Application

The first application of the IWD algorithm is tested on the TSP, due to: (1) it is an
important NP-hard optimization problem (Johnson and Papadimitriou 1985) that
arises in several applications; (2) the IWD algorithm can be easily employed in
TSP; (3) it is a standard test bed for new algorithmic idea.

23.2.4.1 Travelling Salesman Problem

The main objective of Travelling Salesman Problem (TSP) is to find the shortest
tour through all the cities that a salesman has to visit. For such a TSP with

n cities, there is an immense number of possible tours: n�1ð Þ!
2 . Mathematically we

may define the TSP as follow (Bellmore and Nemhauser 1968): suppose we are
given a complete digraph G ¼ N;Eð Þ, where the cities correspond to the node set
N ¼ 1; 2; � � � ; nf g .

The key steps of applying IWD to TSP problem are listed as below (Bonyadi
et al. 2008):

• Step 1: Initialization of both static and dynamic parameters.
• Step 2: For every water drop, randomly choosing a city and placing that water

drop on the city.
• Step 3: Updating the list of visited cities.
• Step 4: Choosing the next visiting city using probability equation.
• Step 5: Updating water drop’s velocity.
• Step 6: Calculating the amount of the soil that a water drop is carrying.
• Step 7: Updating the soil amount of the path flowed by a water drop.
• Step 8: For every water drop, completing its tour by repeatedly using Steps 3–7.

The proposed IWD algorithm was tested on some artificial and benchmark TSP
instance. Computational results showed that IWD can obtain a set of promising
solutions in terms of fast converging speed.

23.3 Conclusions

In this chapter, we focused on the IWD algorithm, which is inspired by the nature
water drops. Based on the observations on the behaviour of water drops, there are
three intimations that served as basic principle of the developing of IWD: (1) the
velocity enables the water drops to transfer soil from one place to another in the
front; (2) a high speed water drop gathers more soil than a slower water drop; and
(3) a water drop prefers a path with less soil than a path with more soil.

23.2 Intelligent Water Drops Algorithm 371

Interestingly, by taking inspiration from those principles, it is possible to design
IWDs that, by moving on a graph modelling in which the water drops flowing
process is mimicked, find the easier path between the two locations. For IWD, it is
assumed that each water drop carries an amount of soil and every two locations are
linked by an arc which also holds an amount of soil. In fact, some amount of soil of
the river bed is removed by the water drop and is added to the soil of the water drop.
That means, each IWD holds soil in itself and removes soil from its path during
movement in the environment. In addition, a water drop has also a velocity that
impacts the amount of the soil during the water drops process. Although it is a newly
introduced CI method, we have witnessed the following rapid spreading of IWD:

First, in addition to the selected variants detailed in this chapter, several
enhanced versions of IWD can also be found in the literature as outlined below:

• Adaptive IWD (Msallam and Hamdan 2011).
• Improved IWD (Duan et al. 2009).
• Modified IWD (Kesavamoorthy et al. 2011).
• Neural IWD (Hendrawan and Murase 2011).

Second, apart from the representative applications, the IWD algorithm has also
been successfully applied to a variety of optimization problems as listed below:

• Distributed Denial of Service Attacks Mitigation (Lua and Yow 2011).
• Image processing (Hendrawan and Murase 2011, Shah-Hosseini 2012b).
• Job shop scheduling problem (Niu et al. 2012).
• Multiple knapsack problem (Shah-Hosseini 2008, 2009a).
• Power system optimization (Rayapudi 2011, Nagalakshmi et al. 2011).
• Quality of service optimization (Palanikkumar et al. 2012).
• Robotics path planning (Duan et al. 2008, 2009).
• Single UCAV smooth trajectory planning (Duan et al. 2009).
• Travelling salesman problem (Shah-Hosseini 2009a, b, Afaq and Saini 2011,

Bonyadi et al. 2008, Kesavamoorthy et al. 2011, Msallam and Hamdan 2011).
• Vehicle routing problem (Kamkar et al. 2010).

Interested readers are referred to them as a starting point for a further explo-
ration and exploitation of the IWD algorithm.

References

Afaq, H., & Saini, S. (2011). On the solutions to the travelling salesman problem using nature
inspired computing techniques. International Journal of Computer Science Issues, 8,
326–334.

Bellmore, M., & Nemhauser, G. L. (1968). The traveling salesman problem: A survey.
Operations Research, 16, 538–558.

Bonyadi, M. R., Azghadi, M. R. & Shah-Hosseini, H. (2008). Population-based optimization
algorithms for solving the travelling salesman problem. In F. Greco (Ed.) Travelling salesman
problem, Chap. 1 (pp. 1–34). Vienna, Austria: In-Tech.

372 23 Intelligent Water Drops Algorithm

Duan, H., Liu, S. & Lei, X. (2008). Air robot path planning based on intelligent water drops
optimization. In IEEE International Joint Conference on Neural Networks (IJCNN) (pp.
1397–1401).

Duan, H., Liu, S., & Wu, J. (2009). Novel intelligent water drops optimization approach to single
UCAV smooth trajectory planning. Aerospace Science and Technology, 13, 442–449.

Hendrawan, Y., & Murase, H. (2011). Neural-intelligent water drops algorithm to select relevant
textural features for developing precision irrigation system using machine vision. Computers
and Electronics in Agriculture, 77, 214–228.

Holzner, S. (2011). Physics I for dummies. River Street, Hoboken, NJ, USA: Wiley Publishing,
Inc. ISBN 978-0-470-90324-7.

Johnson, D. S. & Papadimitriou, C. H. (1985). Computational complexity. In E. L. Lawer, J.
K. Lenstra, A. H. D. R. Kan, & D. B. Shmoys (Eds.), The Traveling Salesman Problem: A
Guided Tour of Combinatorial Optimization. Wiley.

Kamkar, I., Akbarzadeh-T, M.-R. & Yaghoobi, M. (2010). Intelligent water drops a new
optimization algorithm for solving the vehicle routing problem. In IEEE International
Conference on Systems, Man, and Cybernetics (IEEE SMC), Istanbul, Turkey, (pp.
4142–4146, October 10–13).

Kesavamoorthy, R., Shunmugam, D. A. & Mariappan, L. T. (2011). Solving traveling salesman
problem by modified intelligent water drop algorithm. International Journal of Computer
Applications. In International Conference on Emerging Technology Trends (ICETT) (pp.
18–23).

Lua, R., & Yow, K. C. (2011). Mitigating DDoS attacks with transparent and intelligent fast-flux
swarm network. IEEE Network, 25, 28–33.

Msallam, M. M., & Hamdan, M. (2011). Improved intelligent water drops algorithm using
adaptive schema. International Journal of Bio-Inspired Computation, 3, 103–111.

Nagalakshmi, P., Harish, Y., Kumar, R. K. & Jada, C. (2011). Combined economic and emission
dispatch using intelligent water drops-continuous optimization algorithm. In IEEE Interna-
tional Conference on Recent Advancements in Electrical, Electronics and Control Engineer-
ing (ICONRAEeCE) (pp. 168–173).

Niu, S. H., Ong, S. K., & Nee, A. Y. C. (2012). An improved intelligent water drops algorithm for
achieving optimal job-shop scheduling solutions. International Journal of Production
Research, 50, 4192–4205.

Palanikkumar, D., Elangovan, G., Rithu, B., & Anbusel, P. (2012). An intelligent water drops
algorithm based service selection and composition in service oriented architecture. Journal of
Theoretical and Applied Information Technology, 39, 45–51.

Rayapudi, S. R. (2011). An intelligent water drop algorithm for solving economic load dispatch
problem. International Journal of Electrical and Electronics Engineering, 5, 43–49.

Shah-Hosseini, H. (2007). Problem solving by intelligent water drops. In IEEE Congress on
Evolutionary Computation (CEC) (pp. 3226–3231, September 25–28).

Shah-Hosseini, H. (2008). Intelligent water drops algorithm: a new optimization method for
solving the multiple knapsack problem. International Journal of Intelligent Computing and
Cybernetics, 1, 193–212.

Shah-Hosseini, H. (2009a). The intelligent water drops algorithm: a nature-inspired swarm-based
optimization algorithm. International Journal of Bio-Inspired Computation, 1.

Shah-Hosseini, H. (2009b). Optimization with the nature-inspired intelligent water drops
algorithm. In W. P. D. Santos (Ed.) Evolutionary Computation, Chap. 16 (pp. 297–320).
Vienna, Austria.

Shah-Hosseini, H. (2012a). An approach to continuous optimization by the intelligent water drops
algorithm. Procedia—Social and Behavioral Sciences, 32, 224–229.

Shah-Hosseini, H. (2012b). Intelligent water drops algorithm for automatic multilevel
thresholding of grey–level images using a modified Otsu’s criterion. International Journal
of Modelling, Identification and Control, 15, 241–249.

References 373

Chapter 24
Emerging Physics-based CI Algorithms

Abstract In this chapter, a set of (more specifically 22 in total) emerging physics-
based computational intelligence (CI) algorithms are introduced. We first, in
Sect. 24.1, describe the organizational structure of this chapter. Then, from
Sects. 24.2 to 24.23, each section is dedicated to a specific algorithm which falls
within this category. The fundamentals of each algorithm and their corresponding
performances compared with other CI algorithms can be found in each associated
section. Finally, the conclusions drawn in Sect. 24.24 closes this chapter.

24.1 Introduction

Several novel physics-based algorithms were detailed in previous chapters. In
particular, Chap. 18 detailed the big bang-big crunch algorithm, Chap. 19 was
dedicated to central force optimization algorithm, Chap. 20 discussed the charged
system search algorithm, Chap. 21 introduced the electromagnetism-like mecha-
nism algorithm, Chap. 22 was devoted to the gravitational search algorithm, and
Chap. 23 described the intelligent water drops algorithm. Apart from this quasi-
mature physics principles inspired CI methods, there are some emerging algo-
rithms also fall within this category. This chapter collects 22 of them that are
currently scattered in the literature and organizes them as follows:

• Section 24.2: Artificial Physics Optimization
• Section 24.3: Atmosphere Clouds Model Optimization
• Section 24.4: Chaos Optimization Algorithm
• Section 24.5: Cloud Model-based Algorithm
• Section 24.6: Extremal Optimization
• Section 24.7: Galaxy-based Search Algorithm
• Section 24.8: Gravitation Field Algorithm
• Section 24.9: Gravitational Clustering Algorithm
• Section 24.10: Gravitational Emulation Local Search

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_24, � Springer International Publishing Switzerland 2014

375

http://dx.doi.org/10.1007/978-3-319-03404-1_18
http://dx.doi.org/10.1007/978-3-319-03404-1_19
http://dx.doi.org/10.1007/978-3-319-03404-1_20
http://dx.doi.org/10.1007/978-3-319-03404-1_21
http://dx.doi.org/10.1007/978-3-319-03404-1_22
http://dx.doi.org/10.1007/978-3-319-03404-1_23

• Section 24.11: Gravitational Interactions Optimization
• Section 24.12: Hysteretic Optimization
• Section 24.13: Integrated Radiation Optimization
• Section 24.14: Light Ray Optimization
• Section 24.15: Magnetic Optimization Algorithm
• Section 24.16: Particle Collision Algorithm
• Section 24.17: Ray Optimization
• Section 24.18: River Formation Dynamics Algorithm
• Section 24.19: Space Gravitational Optimization
• Section 24.20: Spiral Optimization Algorithm
• Section 24.21: Water Cycle Optimization Algorithm
• Section 24.22: Water Flow Algorithm
• Section 24.23: Water Flow-like Algorithm

The effectiveness of these newly developed algorithms are validated through
the testing on a wide range of benchmark functions and engineering design
problems, and also a detailed comparison with various traditional performance
leading CI algorithms, such as particle swarm optimization (PSO), genetic algo-
rithm (GA), differential evolution (DE), evolutionary algorithm (EA), fuzzy
system (FS), ant colony optimization (ACO), and simulated annealing (SA).

24.2 Artificial Physics Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on
artificial physics or physicomimetics, a concept which was introduced in Spears
et al. (2004a, b); Spears and Gordon (1999); Spears and Spears (2012).

24.2.1 Fundamentals of Artificial Physics Optimization
Algorithm

Artificial physics optimization (APO) algorithm was recently proposed in Xie
et al. (2009a, b, 2010a, b, 2011a, b), Xie and Zeng (2009a). Several APO appli-
cations and variants can also be found in the literature (Gorbenko and Popov 2012,
2013; Xie and Zeng 2009b, 2011; Mo and Zeng 2009; Wang and Zeng 2010a, b;
Yang et al. 2010; Yin et al. 2010; Xie et al. 2011c, d; Wang et al. 2011). To
implement the APO algorithm, the following steps need to be performed (Xie et al.
2009a; Biswas et al. 2013):

• Initialization step: At this step, a swarm of individuals is randomly generated in
the n-dimensional decision space.

376 24 Emerging Physics-based CI Algorithms

• Force calculation step: At this step, according to the masses and distances
between individual particles, the total force exerted on each particle is com-
puted. In APO, the mass is defined via Eq. 24.1 (Xie et al. 2009a; Biswas et al.
2013):

massi ¼ e

f xbestð Þ � f xið Þ
f xworstð Þ � f xbestð Þ: ð24:1Þ

The force is then calculated through Eq. 24.2 (Xie et al. 2009a; Biswas et al.
2013):

Fij;k ¼
G � mi � mj xj;k � xi;k

� �
if f Xj

� �
\f Xið Þ

�G � mi � mj xj;k � xi;k

� �
if f Xj

� �
� f Xið Þ

�

; 8 i 6¼ j and i 6¼ best:

ð24:2Þ

The kth component of the total force Fi;k exerted on individual i by all other
individuals is acquired via Eq. 24.3 (Xie et al. 2009a; Biswas et al. 2013):

Fi;k ¼
XNpop

j¼1

Fij;k 8 i 6¼ best: ð24:3Þ

• Motion step: In APO, motion is used to indicate the movement of individuals
across the decision space. The velocity and coordinates of an individual i at time
t þ 1 are calculated via Eq. 24.3 (Xie et al. 2009a; Biswas et al. 2013):

vi;k t þ 1ð Þ ¼ wvi;k tð Þ þ k
Fi;k

mi
; 8 i 6¼ best

xi;k t þ 1ð Þ ¼ xi;k tð Þ þ vi;k t þ 1ð Þ; 8 i 6¼ best
ð24:4Þ

where the kth components of individual i’s velocity and coordinates at t iteration
is denoted by vi;k tð Þ and xi;k tð Þ, respectively.

24.2.2 Performance of APO

In order to show how the APO algorithm performs, Xie et al. (2009a) used 8
benchmark test functions, such as Quadric function, Sphere function, Rastrigin
function, and Rosenbrock function. Compared with other CI techniques (e.g., PSO,
DE, EA, etc.), the performance of APO is very competitive.

24.2 Artificial Physics Optimization Algorithm 377

24.3 Atmosphere Clouds Model Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
behaviour of cloud in nature (Wang 2013).

24.3.1 Fundamentals of Atmosphere Clouds Model
Optimization Algorithm

Atmosphere clouds model optimization (ACMO) algorithm was originally
proposed in Yan and Hao (2012). To implement the ACMO algorithm, the fol-
lowing steps need to be performed (Yan and Hao 2012, 2013):

• Initialization phase: At this stage, the whole search space U is split into
M disjoint regions according to Eq. 24.5 (Yan and Hao 2012, 2013):

Ii ¼
ui � li

M
; i ¼ 1; 2; . . .; D; ð24:5Þ

where Ii denotes the length of interval in the ith dimension, and the upper- and
lower-boundary of the ith dimension is indicated by ui and li, respectively.

• Cloud generation phase: In ACMO, the normal could model is adopted to
describe the concept of cloud. In order to generate the cloud, three parameters,
namely, region, entropy, and the number of droplets need to be determined by
Eqs. 24.6–24.8, respectively (Yan and Hao 2012, 2013):

Ht ¼ Hmin þ k Hmax � Hminð Þ; ð24:6Þ

EnMi ¼
Ii=M

A
; ð24:7Þ

nMax ¼ N �
XCm

i¼1

ni; ð24:8Þ

where the minimum and maximum humidity values of the whole search space is
expressed by Hmin and Hmax, respectively, Cm stands for the existing cloud
number, and the number of droplets found in cloud Ci is denoted by ni:

• Cloud movement phase: The moving speed of cloud is calculate through
Eqs. 24.9–24.11, respectively (Yan and Hao 2012, 2013):

VCi ¼ e � 6 � EnCi ; ð24:9Þ

e ¼
1� bð Þ � VCi þ b � x�B � CentreCi

� �

1� bð Þ � VCi þ b � x�B � CentreCið Þk k ; ð24:10Þ

378 24 Emerging Physics-based CI Algorithms

b ¼ Dp

pMax� pMin
; ð24:11Þ

where b stands for the air pressure factor, and the minimum and maximum air
pressure differences of the search space are expressed by pMax and pMin,
respectively, and the location with the best fit value in region B is indicated by x�B:

• Cloud spreading behaviour: The spreading velocity of cloud is computed via
Eqs. 24.12 and 24.13, respectively (Yan and Hao 2012, 2013):

EnCi ¼ EnCi þ aEnCi ; ð24:12Þ

a ¼ Dp

pMax
; ð24:13Þ

where a stands for a spreading factor.

24.3.2 Performance of ACMO

In order to show how the ACMO algorithm performs (Yan and Hao 2012), used 4
benchmark test functions, namely, Schaffer function, Rastrigin function, and
Needle in a haystack function. Compared with other CI techniques (e.g., PSO and
GA), the ACMO algorithm can avoid premature convergence and the performance
is thus very comparable.

24.4 Chaos Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on some
properties of chaos.

24.4.1 Fundamentals of Chaos Optimization Algorithm

Chaos optimization algorithm (ChOA) was originally proposed by Li and Jiang
(1998). Several ChOA applications and variants can also be found in the literature
(Lu et al. 2006; Tavazoei and Haeri 2007a, b; Yang et al. 2007, 2012; Han and Lu
2008; Cheshomi et al. 2010; Henao 2011; Jiang et al. 2012; Hamaizia et al. 2012;
Yuan et al. 2012; Bouras and Syam 2013; Shayeghi et al. 2009). To implement the
ChOA algorithm, the following steps need to be performed (Li and Jiang 1998;
Cheshomi et al. 2010):

24.3 Atmosphere Clouds Model Optimization Algorithm 379

• Step 1: Generation i chaos variables where the i chaotic states can be calculated
by Eq. 24.14 (Li and Jiang 1998; Cheshomi et al. 2010):

xnþ1 ¼ 4xn 1� xnð Þ: ð24:14Þ

• Step 2: By using the carrier wave approach, changing i optimization variables to
chaos variables. Then, amplifying the i chaotic variables’ the ergodic areas to
the variance ranges of optimization variables through Eq. 24.15 (Li and Jiang
1998; Cheshomi et al. 2010):

x0i nþ 1ð Þ ¼ ci þ dixi nþ 1ð Þ; ð24:15Þ

where xi nþ 1ð Þ indicates the i chaotic states obtained through previous step.
• Step 3: Performing rough search and calculate the value of the objective

function.
• Step 4: Starting the second round of carrier wave through Eq. 24.16 (Li and

Jiang 1998; Cheshomi et al. 2010):

x00i nþ 1ð Þ ¼ x�i þ axi nþ 1ð Þ; ð24:16Þ

where the best solution found so far is denoted by x�i , and axi nþ 1ð Þ is used to
generate i chaotic states with small ergodic ranges around x�i

• Step 5: Fining search procedure in which let xi ¼ x00i nþ 1ð Þ, and calculate the
objective function value.

• Step 6: Terminating the search process if the stopping criterion is met, and use
x� and f � as the best solution.

24.4.2 Performance of ChOA

In order to show how the ChOA performs, Li and Jiang (1998) used 5 benchmark
test functions, such as Quadric function, Sphere function, Rastrigin function, and
Rosenbrock function. Compared with other CI techniques (e.g., SA, GA, etc.), the
performance of ChOA is very competitive. Through the use of come innovative
concepts such as ergodicity, stochastic properties, and regularity of chaos states,
COA is a powerful stochastic optimization algorithm candidate which make it a
new and efficient method in dealing with complex optimization problems.

24.5 Cloud Model-based Algorithm

In this section, we will introduce an emerging CI algorithm that is used to simulate
the model of could observed in nature (Wang 2013).

380 24 Emerging Physics-based CI Algorithms

24.5.1 Fundamentals of Cloud Model-based Algorithm

Cloud model-based algorithm (CMBA) was recently proposed in Wang et al.
(2012); Zhu and Ni (2012); Sun et al. (2012); Zhang et al. (2008). To implement
the CMBA algorithm, the following steps need to be performed (Sun et al. 2012;
Zhu and Ni 2012):

• Cloud model and cloud drop: In CMBA, the distribution of x in domain is
referred to as cloud model (or cloud in short) and each x is thus called a cloud
drop which can be expresses via Eq. 24.17 (Sun et al. 2012; Zhu and Ni 2012):

l : U ! 0; 1½ �; 8x 2 U; x! l xð Þ; ð24:17Þ

where U stands for a quantity domain expressed with accurate numbers,
x denotes a random realization of the quality concept, and l xð Þ indicates the
membership degree of x.

• Cloud model’s numerical characteristics: In CMBA, the variables of expectation
ðExÞ, entropy ðEnÞ, and hyper-entropy ðHeÞ are used to express the cloud
model’s numerical characteristics. By setting up these variables according to the
actual situation, the cloud drops of x and membership are given through
Eqs. 24.18–24.20, respectively (Sun et al. 2012; Zhu and Ni 2012):

E0n ¼ G En;Heð Þ; ð24:18Þ

xi ¼ G Ex;E
0
n

� �
; ð24:19Þ

li ¼ e
�

xi � Exð Þ2

2 E0nið Þ2 ; ð24:20Þ

where Ex indicates the cloud drops’ distribution in domain, En denotes not only
the fuzziness of the concept but also the randomness and their relationships, and
He represents the coagulation of uncertainty of all points.

• Cloud generator: In CMBA, two sub-generators, namely, backward cloud
generator and forward cloud generator are designed based on the cloud pro-
duction and direction computing mechanism. According the values of three
variables (i.e., Ex, En, and He), the forward cloud generator can create the cloud
drops x; lð Þ, and the backward cloud generator can convert quantity values to a
quality concept.

24.5.2 Performance of CMBA

In order to show how the CMBA performs, Zhu and Ni (2012) hybridized CMBA
with DE algorithm (referred to as CMDE) and used 9 benchmark test functions, such
as Sphere function, Griewangk’s function, Rosenbrock function, and Rastrigin

24.5 Cloud Model-based Algorithm 381

function. Compared with other DE variants (e.g., opposition-based DE, Self-
adapting DE, etc.), the performance of CMDE algorithm is very competitive. The
results showed that CMDE shows better convergence in terms of the rate and the
reliability on both unimodal and multimodal benchmark test functions.

24.6 Extremal Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on
Bak-Sneppen model and simulating far-from equilibrium dynamics in statistical
physics (Serway and Jewett 2014; Holzner 2010, 2011; Bauer and Westfall 2011).

24.6.1 Fundamentals of Extremal Optimization Algorithm

Extremal optimization (EO) algorithm was originally proposed in Boettcher
(2005), Boettcher and Percus (2000, 2004), Hartmann and Rieger (2004). To
implement the EO algorithm, the following steps need to be performed (Boettcher
2004, 2005; Boettcher and Percus 2000, 2004; Chen and Lu 2008):

• Creating a solution S ¼ x1; x2; . . .; xnð Þ in a random manner and letting the
optimal solution Sbest ¼ S.

• For the current solution S: First, evaluating the fitness degree for each component,
i 2 1; 2; . . .; nð Þ; Second, ranking all the components according to their fitness
values and finding the component with the ‘‘worst fitness’’, i.e., kj � ki for all i;
Third, selecting one solution S0 in the neighbourhood of S; Fourth, setting S ¼ S0

unconditionally; Fifth, if C Sð Þ\C Sbestð Þ, i.e., the value of current cost function is
less than the value of so-far minimum cost function, then let Sbest ¼ S.

• Repeating previous step for user-defined times.
• Outputting Sbest and C Sbestð Þ, respectively.

24.6.2 Performance of EO

In order to show how the EO algorithm performs, several benchmark test graphs,
such as Hammond, Barth5, Brack2, and Ocean were employed in Boettcher and
Percus (2000) Compared with other CI algorithms (e.g., SA, GA), the experi-
mental results demonstrated the competitiveness of EO algorithm over a large
variety of graphs.

382 24 Emerging Physics-based CI Algorithms

24.7 Galaxy-based Search Algorithm

In this section, we will introduce an emerging CI algorithm that resembles some
features of galaxy (e.g., spiral arms) (Vakoch 2014). Informally, the galaxy is an
island of stars and gas that swirl in spiral arms around a centre. The galaxy that we
are living in is called Milky Way and all stars that can be seen with our naked eyes
belong to this galaxy. The universe, as observed via telescopes, is full of galaxies
(the estimated number can go up to 200 billion of them) (Sasselov 2012; Brekke
2012).

24.7.1 Fundamentals of Galaxy-based Search Algorithm

Galaxy-based search algorithm (GbSA) was originally proposed by Shah-Hosseini
(2011a). To implement the GbSA algorithm, the following steps need to be
performed (Shah-Hosseini 2011a, b):

• Generating initial solution: In GbSA, the minimum and the maximum gray-level
is assumed to be 0 and 255, respectively. The initial solution can be computed
via Eq. 24.21 (Shah-Hosseini 2011a, b):

Si ¼ 1þ i � 253
L

� �

; i ¼ 1; 2; . . .; Lð Þ; ð24:21Þ

where the number of thresholds is denoted by L, and Si represents the value of
threshold i.

• Local search procedure: In GbSA, a modified hill-climbing mechanism is
introduced to search the space around the given solution S with small step sizes.

• Spiral chaotic move phase: In GbSA, the spiral chaotic move is used to do
global searching. At this stage, each component Si of S is revised by Eq. 24.22
(Shah-Hosseini 2011a, b):

SNexti Si � NextChaosðÞ � r � cos hið Þ; ð24:22Þ

where SNexti stands for the ith component of the next solution SNext; which is
on the arm of the spiral galaxy having core S, and NextChaosðÞ generates a
chaotic number between [0,1], which is obtained through the logistic map
according to Eq. 24.23 (Shah-Hosseini 2011a, b):

xnþ1 ¼ kxn 1� xnð Þ; n ¼ 0; 1; 2; . . .: ð24:23Þ

24.7 Galaxy-based Search Algorithm 383

24.7.2 Performance of GbSA

In order to show how the GbSA algorithm performs, several benchmark image
processing problems, namely, Lena, peppers, and baboon, were employed in Shah-
Hosseini (2011a) Compared with exhaustive search methods, the experimental
results demonstrated the competitiveness of GbSA.

24.8 Gravitation Field Algorithm

In this section, we will introduce an emerging CI algorithm that is derived from a
famous astronomy theory regarding planet formation (Sasselov 2012; Brekke
2012; Schutz 2003).

24.8.1 Fundamentals of Gravitation Field Algorithm

Gravitation field algorithm (GFA) was recently proposed in Zheng et al. (2010).
To implement the GFA algorithm, the following steps need to be performed
(Zheng et al. 2010, 2012; Rong et al. 2013):

• First, generating n dusts di i ¼ 1; 2; . . .; nð Þ randomly distributed in the mass
function domain [a, b] to establish the initial solution space.

• Second, decomposing the solution space, and each subspace (called group in
GFA) containing a centre dust which has the largest mass value, and surrounding
dust.

• Third, moving dusts. The movement strategy is determined via Eq. 24.24
(Zheng et al. 2010, 2012; Rong et al. 2013):

Pacei ¼ M � disi; ð24:24Þ

where the distance between the surrounding dust and the centre dust is denoted
by disi, and M stands for the weight value of the distance.

• Fourth, absorbing dusts according to an absorption strategy where the sur-
rounding dust is eliminated from the initial solution space for increasing the
GFA’s speed.

• Fifth, checking the termination criterion. If the algorithm does not meet the
stopping condition, GFA will go to the second step, otherwise, the algorithm stops.

24.8.2 Performance of GFA

In order to show how the GFA algorithm performs, Zheng et al. (2010) used 5
benchmark test functions, such as Ackley function, Griewangk function, and
Rastrigin function. Compared with other CI techniques (e.g., SA, GA, etc.), the

384 24 Emerging Physics-based CI Algorithms

performance of GFA algorithm is very competitive. The initial application case
studies (Zheng et al. 2010, 2012; Rong et al. 2013) demonstrated that GFA can
handle unimodal and multimodal functions optimization effectively.

24.9 Gravitational Clustering Algorithm

In this section, we will introduce an emerging CI algorithm that is on the studies
related to gravity research (Schutz 2003; Serway and Jewett 2014; Holzner
2010, 2011; Bauer and Westfall 2011).

24.9.1 Fundamentals of Gravitational Clustering Algorithm

The concept of gravitational clustering was originally proposed in Wright (1977)
and the gravitational clustering algorithm (GCA) was recently proposed in Kundu
(1999). In the literature, there are several variants and applications of GCA can be
found (Gomez et al. 2003; Zhang and Qu 2010; Sanchez et al. 2012). To imple-
ment GCA, the following steps need to be performed (Kundu 1999):

• Step 1: Initializing the matrix M ¼ I which is an identity matrix.
• Step 2: For each Pi, performing the following tasks. First, finding a point Pj; j 6¼ i,

which is located at the closest distance from it; Second, if d Pi;Pj

� �
� d, then

determining the total force Fi exerted on Pi; Third, setting M i; j½ � ¼ M j; i½ � ¼ 1,
given the conditions expressed by Eq. 24.25 hold (Kundu 1999).

Pj is a nearest neighbour of Pi; and d Pi;Pj

� �
\d

or
there is crossing between Pi and Pj

8
<

:
: ð24:25Þ

• Step 3: If ðM 6¼ IÞ, computing the transitive closure M� and performing merging
mechanism according to the equivalence classes of M� and returning to Step 2.

• Step 4: Otherwise, each point Pi (the resultant of merging two or more points
during the iterations of Step 2) corresponding to a new cluster in the cluster
hierarchy. In such case, h Pið Þ is simply the height of any of the points in the cluster.
Calculating gi for each Pi and gcurr based on Eqs. 24.26 and 24.27, respectively
(Kundu 1999):

gsafe ¼ min gif g over all ið Þ: ð24:26Þ

24.8 Gravitation Field Algorithm 385

gcurr ¼ min gsafe; gmax

� �
: ð24:27Þ

• Step 5: For each point Pi, calculating its new location Pi þ gcurrFi and setting
h Pið Þ ¼ h Pið Þ þ gcurr.

24.9.2 Performance of GCA

In order to show how the GCA performs, Kundu (1999) employed several
benchmark test functions. Compared with other CI techniques (e.g., fuzzy
C-means), the performance of GCA algorithm is very competitive, in particular, it
produced a compete cluster-hierarchy in O N3ð Þ time for N points.

24.10 Gravitational Emulation Local Search Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
studies related to gravity research (Schutz 2003; Serway and Jewett 2014; Holzner
2010, 2011; Bauer and Westfall 2011).

24.10.1 Fundamentals of Gravitational Emulation Local
Search Algorithm

Gravitational emulation local search (GELS) algorithm was originally proposed in
Webster (2004). In the literature, there are several variants and applications of
GELS can be found (Balachandar and Kannan 2007, 2009, 2010; Barzegar et al.
2009; Pooranian et al. 2011). To implement the GELS algorithm, the following
steps need to be performed (Webster 2004; Balachandar and Kannan 2007):

• Defining key parameters used in GELS algorithm: Max velocity; Radius;
Iterations; and Pointer.

• Calculating gravitational force: In GELS, the gravitational force between two
candidate solution is computed based on Eq. 24.28 (Webster 2004; Balachandar
and Kannan 2007):

F ¼ G CU � CAð Þ
R2

; ð24:28Þ

where G is a universal gravitation constant and normally equals to 6.672, CU
and CA denotes the current and candidate solutions’ objective function value,
respectively, and the value of radius parameter is represented by R.

• Webster (2004) also introduced two methods and two stepping modes which are
named as GELS 11, GELS 12, GELS 21, and GELS 22, respectively.

386 24 Emerging Physics-based CI Algorithms

24.10.2 Performance of GELS

In order to show how the GELS algorithm performs, Webster (2004) employed
several benchmark test problems, such as travelling salesman problem, bin
packing problem, and file assignment problem. Compared with other CI tech-
niques (e.g., SA, GA), the performance of the GELS algorithm is very competitive
in terms of reliability and usability.

24.11 Gravitational Interactions Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is derived from
Newton’s gravity theory (Schutz 2003; Serway and Jewett 2014; Holzner 2010,
2011; Bauer and Westfall 2011).

24.11.1 Fundamentals of Gravitational Interactions
Optimization Algorithm

Gravitational interactions optimization (GIO) algorithm was recently proposed in
(Flores et al. 2011) in which the interactions exhibited by a set of bodies were used
to guide the search for the global optimum in an optimization problem. To
implement the GIO algorithm, the following steps need to be performed (Flores
et al. 2011):

• In GIO, the fitness function is regarded as a mapping which transforms a vector
X ¼ x1; x2; . . .; xnð Þ to a scalar f Xð Þ. The fitness value f Xð Þ is associated by this
mapping to each location X ¼ x1; x2; . . .; xnð Þ of the search space. A body B is
then allocated to each location X in the search space where an individual of the
population is discovered. The attracting force that exists between two bodies
with masses is thus calculate through Eq. 24.29 (Flores et al. 2011):

Fij ¼
M f Bið Þð Þ �M f Bj

� �� �

Bi � Bj

ffi
ffi

ffi
ffi2

B̂ij; ð24:29Þ

where Bi stands for the ith body’s position, Bj denotes the jth body that con-
tributes causing a force on the mass Bi, and M is the mapping function which
can be calculate via Eq. 24.30 (Flores et al. 2011):

M f Bið Þð Þ ¼ f Bið Þ �min f Bð Þ
max f Bð Þ �min f Bð Þ 1� mapMinð Þ þ mapMin

 �2

; ð24:30Þ

24.10 Gravitational Emulation Local Search Algorithm 387

where the minimum and maximum fitness value of the positions of the bodies at
present are denoted by min f Bð Þ and max f Bð Þ, respectively, and mapMin rep-
resents a small positive constant whose value is near zero.

• One feature of GIO lies in its full interaction mechanism which means each
body Bi interacts with every other body Bj through their masses. Bearing this in
mind, the resulting force exerted on body Bi by bodies Bj is thus calculated by
Eq. 24.31 (Flores et al. 2011):

Fi ¼
Xn

j¼1

M f Bið Þð Þ �M f Bb
j

� �

Bi � Bb
j

ffi
ffi
ffi

ffi
ffi
ffi
2 BiB̂

b
j ; ð24:31Þ

where the resulting force of the sum of all vector forces is denoted by Fi, and the
Euclidean distance between Bi’s current positions and the best position so far of

the body Bj is represented by Bi � Bb
j

ffi
ffi
ffi

ffi
ffi
ffi. Suppose that we are willing to find a

location of the body B with M f Bð Þð Þ ¼ 1, B can be computed through Eq. 24.32
(Flores et al. 2011):

B ¼

ffi
M f Bið Þð Þ

Fij j
F̂i

s

: ð24:32Þ

• To updating the position of the bodies, we can use the Eq. 24.33 (Flores et al.
2011):

Vtþ1 ¼ v V þ R � C � Bð Þ;
Btþ1 ¼ Bþ Vtþ1;

ð24:33Þ

where the present speed of Bi is denoted by V, R represents a random real
number which falls within [0, 1), and C stands for the gravitational interaction
coefficient.

24.11.2 Performance of GIO

In order to show how the GIO algorithm performs, Flores et al. (2011) used 3
unimodal and 4 multimodal benchmark test functions, such as Goldstein and Price
function, booth function, four-variable Colville function, Deb’s function, Him-
melblau’s function, and six-hump camelback function. Compared with other CI
techniques (e.g., PSO, GSA), the performance of GIO is very competitive in terms
of reliability and usability.

388 24 Emerging Physics-based CI Algorithms

24.12 Hysteretic Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
findings derived from the magnetism research (Schutz 2003; Serway and Jewett
2014; Holzner 2011; Bauer and Westfall 2011).

24.12.1 Fundamentals of Hysteretic Optimization Algorithm

Hysteretic optimization (HO) algorithm was originally proposed in Zaránd et al.
(2002), Pál (2003, 2004, 2006a, b). To implement the HO algorithm, the following
steps need to be performed (Zaránd et al. 2002; Gonçalves and Boettcher 2008; Pál
2004):

• Step 1: Setting H ¼ H1 large enough so that Si ¼ ni8i and letting E minf g ¼
H ¼ HHOjH¼0

� �
.

• Step 2: Reducing H until one spin turns to unstable and then allowing the system
to relax. If H\E minf g, let E minf g ¼ H.

• Step 3: In HO, this is an optional step in which when H passes zero, randomizing
ni and leaving the current configuration stable.

• Step 4: At each turning point H ¼ Hn ¼ �cn�1
Hn�1; for 0\cn\1, changing the

direction of H oppositely.
• Step 5: Terminating the algorithm when the amplitude Hnj j\H minf g.
• Step 6: Restarting the algorithm from Step 1 for Nrun times with a new and

stochastic set of ni’s.
• Step 7: Outputting the best E minf g over all runs.

24.12.2 Performance of HO

Zaránd et al. (2002) tested the proposed HO algorithm on two benchmark
problems, namely, frustrated magnetic models and the travelling salesman
problem. In comparison with other CI techniques (e.g., SA), the HO algorithm
showed a very promising performance.

24.13 Integrated Radiation Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is derived from
Einstein’s general theory of relativity (Schutz 2003; Serway and Jewett 2014;
Holzner 2011; Bauer and Westfall 2011; Gourgoulhon 2013).

24.12 Hysteretic Optimization Algorithm 389

24.13.1 Fundamentals of Integrated Radiation Optimization
Algorithm

Integrated radiation optimization (IRO) algorithm was originally proposed in
Chuang and Jiang (2007). To implement the IRO algorithm, the following steps
need to be performed (Chuang and Jiang 2007):

• In IRO, the massive binary star systems which shifts moving through the
universe is used to model the role of search agents in search space. Based on this
model, the solution qualities of a population of search agents can be further
accumulated to form a stronger source of gravitational radiation. This procedure
can be expressed by Eq. 24.34 (Chuang and Jiang 2007):

PGR ¼
dE

dt
¼ � 32

p
� G

4

c5
� m1m2ð Þ2� m1 þ m2ð Þ

R5
; ð24:34Þ

where the power emitted by two nearby massive binary star systems is denoted
by PGR, c represents the light speed, R stands for the distance between two
closing binary star systems, and the total masses of two binary systems are
indicated by m1 and m2, respectively.

• Initialization: Suppose that there are m variables need to be optimized in a given
optimization problem, a section of memory space is thus has be allocated. The
desired size of memory can be computed through Eq. 24.35 (Chuang and Jiang
2007):

Memory ¼ size SSð Þ ¼
Ym

i¼1

resmð Þ; ð24:35Þ

where Memory denotes the total amount of memory required to be allocated for
building the search space which is represented by SS, and resm stands for the
grid numbers in mth dimension of the search space. In IRO, the costs of all
search agents are treated as the spatial parameters. The search agents are then
planted into the corresponding location in search space according to Eq. 24.36
(Chuang and Jiang 2007):

SS idx Pið Þð Þ ¼ F Pið Þ; ð24:36Þ

where F is used to refer the cost function of a target problem, Pi denotes the
position of a search agent, and such location in the search space is represented
by idx Pið Þ:

• Reprocessing: The geometry of gravity field and the strength of gravitational
radiation are estimated at this stage according to Eq. 24.37 (Chuang and Jiang
2007):

390 24 Emerging Physics-based CI Algorithms

GR ¼ SS � Gauss

¼ �
X1

k1¼�1
� � �

X1

km¼�1
Gauss x1 � k1ð Þ; . . .; xm � kmð Þ½ � � SS k1; . . .; kmð Þ

ð24:37Þ

where GR stands for the approximated power of gravitational radiation, and
Gauss represent a Gaussian distribution which can be calculated via Eq. 24.38
(Chuang and Jiang 2007):

Gauss x1; . . .; xmð Þ ¼ A � e
�
Pm

i¼1

xi�x0
rð Þ2

 �

; ð24:38Þ

where A denotes the amplitude, the centre of the distribution is represented by
x0, and the blob spreading in every dimension is indicated by r:

• Ranking and movement: In IRO, the percentiles of each search agent in
SS idx Pið Þð Þ and GR idx Pið Þð Þ are computed via Eq. 24.39 (Chuang and Jiang
2007):

SSPcti ¼ percentile SS idx Pið Þð Þ½ �
GRPcti ¼ percentile GR idx Pið Þð Þ½ �;

ð24:39Þ

where SSPcti and GRPcti are used to denote the percentiles of Pi in SS idx Pið Þð Þ
and GR idx Pið Þð Þ, respectively. The displacement of a search agent is dominated
by the gravitational radiation emitted from other search agents which can be
calculated through Eq. 24.40 (Chuang and Jiang 2007):

Disp Pið Þ ¼
Xm

8j; j 6¼i

SSPctj

uij

�
�

�
�2 �

GRPctj

uij

�
�

�
�2 � rndj �~uij

� �
; ð24:40Þ

where Disp Pið Þ denotes the displacement of the ith search agent during an
iteration, ~uij represents the unit vector of the geometric vector, and rndj indi-
cates a 1	 j random vector with each element usually falling within [0, 1]. At
this stage, each search agent renew its location Pi according to Eq. 24.41
(Chuang and Jiang 2007):

Pi ¼ Pi þ Disp Pið Þ: ð24:41Þ

24.13.2 Performance of IRO

Chuang and Jiang (2007) employed 2D fixed static polynomials function and
controller design optimization problem as benchmarks to test the performance of
the IRO algorithm. In comparison with other CI techniques (e.g., FS, ACO), the
IRO algorithm showed a very promising performance. Overall, through the

24.13 Integrated Radiation Optimization Algorithm 391

introduction of random vectors into IRO, a stochastic exploration capability is thus
enabled which can help IRO getting out of the trap of local optimum.

24.14 Light Ray Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is derived from ray
optics research, in particular the famous Fermat’s principle that is whenever a
beam of light travels from one position to another, its actually selected path is the
path that needs the shortest time interval (Serway and Jewett 2014; Bauer and
Westfall 2011).

24.14.1 Fundamentals of Light Ray Optimization Algorithm

Light ray optimization (LRO) algorithm was recently proposed in Shen and Li
(2008, 2009, 2010, 2012); Shen et al. (2012). To implement the IRO algorithm, the
following steps need to be performed (Shen and Li 2010; Shen et al. 2012):

• Step 1: Dividing the search space by selecting a vertical and a horizontal grid
length, respectively.

• Step 2: Setting the objective function value at some point in the division as the
speed of light rays that travel through such division.

• Step 3: Initializing the value of initial point X 0ð Þ and initial vector P 0ð Þ.
• Step 4: Calculating the next iteration point.
• Step 5: Evaluating if the termination criterion is met. If yes, goes to Step 7;

otherwise, goes to next step, i.e., Step 6.
• Step 6: Computing the refraction and reflection condition according to Eq. 24.42

(Shen and Li 2010; Shen et al. 2012):

Refraction: if
viþ1

vi
sin ai� 1

Reflection: if
viþ1

vi
sin ai [1

8
><

>:
; ð24:42Þ

where ai denotes the angle of incidence in Di, vi represents the propagation
velocity of light in Di. If the condition of total reflection is met, calculating the
next searching direction based on reflection law; otherwise computing the next
searching direction based on refraction law and goes to Step 4.

• Step 7: Terminating the optimal search and generating the extreme value.

392 24 Emerging Physics-based CI Algorithms

24.14.2 Performance of LRO

In order to show how the LRO algorithm performs, Shen et al. (2012) used 7
benchmark test functions, such as Sphere function, Rosenbrock function, Goldstein
and Price function, and six-hump camelback function. The experimental results
showed that LRO is very effective. The theoretical analysis also proved that it is a
competitive global optimization algorithm.

24.15 Magnetic Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
studies related to magnetic research (Serway and Jewett 2014; Bauer and Westfall
2011; Placidi 2012; Holzner 2010; Arfken et al. 2013).

24.15.1 Fundamentals of Magnetic Optimization Algorithm

Magnetic optimization algorithm (MOA) was originally proposed in Tayarani
et al. (2008). To implement the MOA algorithm, the following steps need to be
performed (Tayarani et al. 2008):

• Initializing the population of particles according to Eq. 24.43 (Tayarani et al.
2008):

xt
ij;k ¼ R lk; ukð Þ; ð24:43Þ

where i and j denotes the particle location in the lattice, t represents the number
of iterations, and the lower bound and the upper bound of the kth dimension of
search space are indicated by lk and uk, respectively.

• Terminating the while loop when the stopping criterion is met.
• Calculating the objective of each particles xt

ij in Xt. The values are then kept in
the magnetic field denoted by Bt

ij.
• Performing normalization mechanism on Bt which is defined by Eq. 24.44

(Tayarani et al. 2008):

Bij ¼
Bij �min

max�min
; ð24:44Þ

where min ¼ minimum
S

i; j¼1
Bt

ij

�
, and max ¼ maximum

S

i; j¼1
Bt

ij

�
:

• Computing the mass of all particles and keep the values in Mt based on
Eq. 24.45 (Tayarani et al. 2008):

Mt
ij ¼ aþ q � Bt

ij; ð24:45Þ

24.14 Light Ray Optimization Algorithm 393

where a and q denotes the constant values.
• Calculating the resultant force of all forces exerted on each particle.
• Setting the initial value of the resultant force that is applied to particle xt

ij Fij

� �
to

zero.
• In MOA, each particle interact only with its neighbours in the lattice-like

environment. The set of neighbours for particle xij is thus defined by Eq. 24.46
(Tayarani et al. 2008):

Nij ¼ xi0j; xij0 ; xi00j; xij00
� �

: ð24:46Þ

• Computing the force that is applied to a particle xt
ij by its neighbour, xt

uv.
• Since the force exerted on xt

ij by xt
uv is related to the distance between two

particles, it is thus can be computed according to Eq. 24.47 (Tayarani et al.
2008):

Fij;k ¼
xt

uv;k � xt
ij;k

�
� Bt

uv

D xt
ij;k; x

t
uv;k

� : ð24:47Þ

• Calculating the speed and the movement of each particle through Eqs. 24.48 and
24.49, respectively (Tayarani et al. 2008):

vtþ1
ij;k ¼

Fij;k

Mij;k
� R lk; ukð Þ; ð24:48Þ

xtþ1
ij;k ¼ xt

ij;k þ vtþ1
ij;k : ð24:49Þ

• Taking into account of acceleration for particle defined by Eqs. 24.50–24.52,
respectively (Tayarani et al. 2008):

atþ1
ij;k ¼

Fij;k

Mij;k
� R lk; ukð Þ; ð24:50Þ

vtþ1
ij;k ¼ vt

ij;k þ atþ1
ij;k ; ð24:51Þ

xtþ1
ij;k ¼ xt

ij;k þ vtþ1
ij;k : ð24:52Þ

24.15.2 Performance of MOA

Tayarani et al. (2008) employed a set benchmark functions to test the performance
of MOA, such as Schwefel function, Rastrigin function, Michalewicz function,
Goldberg function, De Jong function, Rosenbrock function, Kennedy function,
Ackley function, and Griewank function. In comparison with other CI techniques

394 24 Emerging Physics-based CI Algorithms

(e.g., PSO and GA), MOA showed a better performance. MOA is viewed as
similar to PSO, however, Tayarani et al. (2008) pointed out that the main differ-
ence between both is the interaction of the particles, i.e., the interaction between
the particles in MOA is higher then PSO. In other words, MOA has a better swarm
intelligence then PSO.

24.16 Particle Collision Algorithm

In this section, we will introduce an emerging CI algorithm that is on some
findings related to nuclear physics research (Serway and Jewett 2014; Bauer and
Westfall 2011; Holzner 2010; Particle_Data_Group 1998; Klafter et al. 2012;
Bruce et al. 2014; Cacuci 2010; National_Research_Council 2012; Ahmed 2012;
Waltar et al. 2012; Tsvetkov 2011; Shifman 2012; Bes 2007; Philips 2003).

24.16.1 Fundamentals of Particle Collision Algorithm

Particle collision algorithm (PCA) was recently proposed in Sacco and Oliveira
(2005). In the literature, there are several variants and applications of PCA can be
found (Luz et al. 2008, 2011; Abuhamdah and Ayob 2009a, b, 2011; Sacco et al.
2006). To implement the PCA algorithm, the following steps need to be performed
(Sacco and Oliveira 2005):

• First, generating an initial solution Old Config and creating a random pertur-
bation of the solution according to Eq. 24.53 (Sacco and Oliveira 2005):

if fitness New Configð Þ[fitness Old Configð Þ
then Old Config :¼ New Config; and exploringðÞ

otherwise scatteringðÞ
: ð24:53Þ

• Second, performing exploring function exploringðÞ: Generating a small random
perturbation of the solution according to Eq. 24.54 (Sacco and Oliveira 2005):

if fitness New Configð Þ[fitness Old Configð Þ
then Old Config :¼ New Config

: ð24:54Þ

• Third, performing scattering function scatteringðÞ based on Eq. 24.55 (Sacco
and Oliveira 2005):

pscattering ¼ 1� fitness New Configð Þ
best fitness

if pscattering [random 0; 1ð Þ
then Old Config :¼ random solution

otherwise exploring ðÞ

; ð24:55Þ

where the scattering probability, pscattering, is inversely proportional to it quality.

24.15 Magnetic Optimization Algorithm 395

24.16.2 Performance of PCA

In order to test the performance of PCA, some benchmark test functions, such as
Easom function, Rosenbrock function, and De Jong function were employed in
Sacco and Oliveira (2005). Furthermore, Sacco and Oliveira (2005) also applied
PCA to nuclear reactor design optimization problem. In comparison with other CI
techniques (e.g., GA), the results obtained by PCA is very promising. One of the
unique characteristics of PCA lies in that it does not require user-determined
variables, similarly to the annealing scheduling in SA, which make it very suitable
for solving continuous or discrete optimization problems.

24.17 Ray Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is also derived
from ray optics research, in particular the famous Snell’s law of refraction that is
the light of different wavelengths is refracted at different angles when incident on a
material (Serway and Jewett 2014; Bauer and Westfall 2011; Holzner 2010).

24.17.1 Fundamentals of Ray Optimization Algorithm

Ray optimization (RO) algorithm was recently proposed in (Kaveh and Khayatazad
2012). To implement the RO algorithm, the following steps need to be performed
(Kaveh and Khayatazad 2012):

• Step 1: scattering and evaluating. At this step, the agents have to be randomly
distributed in the search space according to Eq. 24.56 (Kaveh and Khayatazad
2012):

Xij ¼ Xj;min þ rand � Xj;max � Xj;min

� �
; ð24:56Þ

where Xij denotes the jth variable of the ith agent, Xj;min and Xj;max are used to
represent the minimum and maximum limits of the jth variable, and rand stands
for a random number which falls within the range of [0, 1].

• Step 2: movement vector and motion refinement. For each agent in RO, a group
of movement vectors will be allocated to it according to its division. In order to
deal with the possibility of boundary violation scenario, the motion refinement
mechanism is also introduced in RO.

• Step 3: making origin and converging. In RO, a point called origin is defined by
Eq. 24.57 (Kaveh and Khayatazad 2012):

396 24 Emerging Physics-based CI Algorithms

Ok
i ¼

iteþ kð Þ �GBþ ite� kð Þ � LBi

2 � ite ; ð24:57Þ

where the origin of the ith agent for the kth iteration is represented by Ok
i , ite

denotes the total iteration number for the optimization process, and the global
best and local best of the ith agent is indicated by GB and LBi respectively.

• Step 4: completing or redoing. In RO, different stopping criterion are considered
for ceasing the searching procedure. Some of these criterion include such as
maximum iteration number, number of ineffective iteration, and approaching to
a minimum goal function error.

24.17.2 Performance of RO

In order to validate the goodness of RO, some benchmark test functions, such as
Rastrigin function, De Joung function, Branin function, and Griewank function
were employed in Kaveh and Khayatazad (2012). Furthermore, Kaveh and
Khayatazad (2012) also included some benchmark engineering design problems in
their study. In comparison with other CI techniques (e.g., PSO, GA), the RO
algorithm showed a very good efficiency which make it a very competitive
optimization algorithm.

24.18 River Formation Dynamics Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
observation on the behaviour of water forming rivers by eroding the ground and
depositing sediments (Samuels et al. 2009; Rahman 2011).

24.18.1 Fundamentals of River Formation Dynamics
Algorithm

River formation dynamics (RFD) algorithm was originally proposed in Rabanal
et al. (2007). Several RFD applications and variants can also be found in the
literature (Rabanal and Rodríguez 2011; Rabanal et al. 2007, 2008a, b, 2009, 2010,
2011, 2013; Gupta et al. 2011; Afaq and Saini 2011). To implement the RFD
algorithm, the following steps need to be performed (Rabanal et al. 2007, 2011,
2008a, b, 2009, 2010, 2013; Rabanal and Rodríguez 2011):

• At the beginning, a flat environment is provided (i.e., there is the same altitude).

24.17 Ray Optimization Algorithm 397

• In the main loop, gradients are modified, which in turn affects movements of
subsequent drops and reinforce the best ones. The following transition rule (See
Eq. 24.58) defines the probability that a drop k at a node i chooses the node j to
move next (Rabanal et al. 2007, 2008a, b, 2009, 2010, 2011, 2013; Rabanal and
Rodríguez 2011):

Pk i; jð Þ ¼
decreasingGradient i; jð Þ

P
l2Vk ið Þ decreasingGradient i; lð Þ if j 2 Vk ið Þ

0 if j 62 Vk ið Þ

8
<

:
; ð24:58Þ

where Vk ið Þ is the set of nodes that are neighbours of node i that can be visited
by the drop k and have a negative gradient ðdecreasingGradientÞ between nodes
i and j, which is defined by Eq. 24.59 (Rabanal et al. 2007, 2008a, b, 2009,
2010, 2011, 2013; Rabanal and Rodríguez 2011):

decreasingGradient i; jð Þ ¼ altitude ið Þ � altitude jð Þ
distance i; jð Þ ; ð24:59Þ

where altitude xð Þ stands for the altitude of the node x and distance i; jð Þ denotes
the length of the edge connecting node i and j.

• Finally, after drops transform the landscape by increasing or decreasing the
altitude of places; solutions are given in the form of paths of decreasing altitudes
(i.e., either all drops find the same solution, or another alternative finishing
condition is satisfied).

24.18.2 Performance of RFD

Rabanal et al. (2007) employed travelling salesman problem as a benchmark to test
the performance of the RFD algorithm. In comparison with other CI techniques
(e.g., ACO), the RFD algorithm showed a better performance. Overall, the main
merit of RFD algorithm is threefold (Rabanal et al. 2013): First, to avoid following
a local cycle; second, to quick reinforce the new paths; and third, to provide a
focused way to punish wrong paths through the sediment process.

24.19 Space Gravitational Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is also derived
from Einstein’s general theory of relativity (Schutz 2003; Serway and Jewett 2014;
Holzner 2011; Bauer and Westfall 2011).

398 24 Emerging Physics-based CI Algorithms

24.19.1 Fundamentals of Space Gravitational Optimization
Algorithm

Space gravitational optimization (SGO) algorithm was recently proposed in Hsiao
et al. (2005). To implement the SGO algorithm, the following steps need to be
performed (Hsiao et al. 2005):

• Initialization: At this stage, a group of n asteroids was stochastically generated
with a position x½ � and y½ �. The velocities on both x and y axes are denoted by
vx½ � and vy½ �.

• Searching spacetime variation: In SGO, the summation of the variations in
geometry of spacetime on directions of x- and y-axis is the acceleration rate for
the asteroids which is defined by Eqs. 24.60 and 24.61, respectively (Hsiao et al.
2005):

ax n½ � ¼ G �
f x n½ �; y n½ �ð Þ � f x n½ � þ rd; y n½ �ð Þ½ �

þ
f x n½ � � rd; y n½ �ð Þ � f x n½ �; y n½ �ð Þ½ �

8
<

:

9
=

;
; ð24:60Þ

ay n½ � ¼ G �
f x n½ �; y n½ �ð Þ � f x n½ �; y n½ � þ rdð Þ½ �

þ
f x n½ �; y n½ � � rdð Þ � f x n½ �; y n½ �ð Þ½ �

8
<

:

9
=

;
; ð24:61Þ

where the acceleration rate on x- and y-axis of asteroid n are denoted by ax n½ �
and ay n½ �, respectively, and f x n½ �; y n½ �ð Þ represents the cost function that is
employed to assess the goodness of the solution.

• Speeding up or slowing down: Once the acceleration rate of each axis is
obtained, the velocity of the asteroid n can be updated based on Eq. 24.62
(Hsiao et al. 2005):

vx n½ � ¼ vx n½ � þ ax n½ �
vy n½ � ¼ vy n½ � þ ay n½ �:

ð24:62Þ

And the position of the asteroid n in the solution space is then renewed through
Eq. 24.63 (Hsiao et al. 2005):

x n½ � ¼ x n½ � þ vx n½ �
y n½ � ¼ y n½ � þ vy n½ �:

ð24:63Þ

• Updating optimal solution and checking for termination criterion: In SGO, if the
solution acquired by asteroid n is better than the global optimal solution
(denoted by Gbest), the updating Gbest according to Eq. 24.64 (Hsiao et al. 2005):

24.19 Space Gravitational Optimization Algorithm 399

if f x n½ �; y n½ �ð Þ\Gbest; then
Gbest ¼ f x n½ �; y n½ �ð Þ

Gbest x ¼ x n½ �
Gbest y ¼ y n½ �

8
<

:
; ð24:64Þ

where Gbest x and Gbest y denotes the optimal solution on x- and y-axis at that
time, respectively.

24.19.2 Performance of SGO

Hsiao et al. (2005) applied the SGO algorithm to the optimal controller design
problem to test its performance. In comparison with other CI techniques (e.g., FS,
ACO), the results obtained by SGO algorithm is very competitive Since a sim-
plified model for asteroids shifting in a curved spacetime was introduced in SGO,
the computational complexity is considerably small and thus the possibility of a
searching agent being trapped in a local minimal is largely reduced.

24.20 Spiral Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on spiral
dynamics phenomenon found in nature (Serway and Jewett 2014; Bauer and
Westfall 2011; Reece et al. 2011; Abel 2013).

24.20.1 Fundamentals of Spiral Optimization Algorithm

Spiral optimization algorithm (SpOA) was recently proposed in Jin and Tran
(2010); Tamura and Yasuda (2011a, b, c). To implement the SpOA algorithm, the
following steps need to be performed (Jin and Tran 2010, Tamura and Yasuda
2011a, b, c):

• Step 0: Preparation. Selecting the number of searching point m [2, setting the

parameters of ai and bi for Aspirali as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
i þ b2

i

q

\1, and defining the maximum

number of iterations Tmax.
• Step 1: Initialization. Randomly setting the original points x0

i 2 R
2 i ¼ 1;ð

2; . . .;mÞ in the feasibility region and letting the centre x� as defined by
Eq. 24.65 (Tamura and Yasuda 2011a):

x� ¼ x0
ig
; ig ¼ arg mini f x0

i

� �
: ð24:65Þ

• Step 2: Updating xi according to Eq. 24.66 (Tamura and Yasuda 2011a):

400 24 Emerging Physics-based CI Algorithms

xkþ1
i ¼ Aspiralix

k
i � Aspirali � I2

� �
x�; i ¼ 1; 2; . . .;m: ð24:66Þ

• Step 3: Updating x� based on Eq. 24.67 (Tamura and Yasuda 2011a):

x� ¼ xkþ1
ig
; ig ¼ arg min

i
f xkþ1

i

� �
: ð24:67Þ

• Step 4: Checking whether the stopping criterion is met. If yes (i.e., k ¼ Tmax),
the algorithm stops; otherwise, let k ¼ k þ 1 and go back to Step 2.

24.20.2 Performance of SpOA

Tamura and Yasuda (2011a) employed 3 benchmark functions (including
Rosenbrock function, 2n minima function, and Rastrigin function) to test the
performance of SpOA. In comparison with other CI techniques (e.g., PSO), the
results obtained by SpOA is very competitive At the end of their study, Tamura
and Yasuda (2011a) suggested that although SpOA was proposed to solve only
two-dimensional problems, it could be improved from many perspectives such as
x�, ai, and bi tuning, introducing randomness, and extension to deal with
n-dimensional problems.

24.21 Water Cycle Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
observation of water cycle process in nature (Carey et al. 2008; Samuels et al.
2009; Rahman 2011; Davis 2010; Day 2007; Reece et al. 2011; Whitten et al.
2014; Zumdahl and Zumdahl 2014).

24.21.1 Fundamentals of Water Cycle Optimization
Algorithm

Water cycle optimization algorithm (WCOA) was originally proposed in Eskandar
et al. (2012). To implement the WCOA algorithm, the following steps need to be
performed (Eskandar et al. 2012):

• Step 1: Selecting the initial parameters of WCOA: Nsr, dmax, Npop, max
iteration.

• Step 2: Creating initial population in a random manner and forming the initial
streams, rivers, and sea using the Eqs. 24.68–24.70, respectively (Eskandar et al.
2012):

24.20 Spiral Optimization Algorithm 401

Raindrops population ¼

Raindrop1
Raindrop2
Raindrop3

..

.

RaindropNpop

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼

x1
1 x1

2 x1
3 � � � x1

Nvar

x2
1 x2

2 x2
3 � � � x2

Nvar

..

. ..
. ..

. . .
. ..

.

x
Npop

1 x
Npop

2 x
Npop

3 � � � x
Npop

Nvar

2

6
6
6
4

3

7
7
7
5
;

ð24:68Þ

Nsr ¼ Number of riversþ 1|{z}
Sea

; ð24:69Þ

NRaindrops ¼ Npop � Nsr; ð24:70Þ

where Raindrop represents a single solution. In a Nvar dimensional search space, an
raindrop is denoted by an array of 1 � Nvar which can be defined as Raindrop
¼ x1; x2; x3; . . .; xN½ �. Nsr stands for the summation of Number of rivers.

• Step 3: Computing the cost of each raindrops via Eq. 24.71 (Eskandar et al.
2012):

Ci ¼ Costi ¼ f xi
1; x

i
2; . . .; xi

Nvar

�
; i ¼ 1; 2; . . .;Npop; ð24:71Þ

where Npop indicates the number of raindrops.
• Step 4: Determining the flow intensity for rivers and sea through Eq. 24.72

(Eskandar et al. 2012):

NSn ¼ round
Costn

PNsr
i¼1 Costi

ffi
ffi
ffi
ffi
ffi

ffi
ffi
ffi
ffi
ffi
� NRaindrops

()

; i ¼ 1; 2; . . .;Nsr; ð24:72Þ

where NSn denotes the number of streams that flowing into the specific rivers or
sea.

• Step 5: The streams flow into the rivers according to Eq. 24.73 (Eskandar et al.
2012):

Xiþ1
Stream ¼ Xi

Stream þ rand � C � Xi
River � Xi

Stream

� �
; ð24:73Þ

where rand denotes a uniformly distributed random number which falls within
the range of [0, 1].

• Step 6: The rivers flow into the sea according to Eq. 24.74 (Eskandar et al.
2012):

Xiþ1
River ¼ Xi

River þ rand � C � Xi
Sea � Xi

River

� �
; ð24:74Þ

where rand denotes a uniformly distributed random number which falls within
the range of [0, 1].

• Step 7: Exchanging positions of river with a stream for the purpose of generating
the best solution.

402 24 Emerging Physics-based CI Algorithms

• Step 8: Exchanging the positions of rivers with the sea given that a river gets a
better solution than the sea.

• Step 9: Checking the evaporation situation.
• Step 10: The rain process occurs (if the evaporation situation is met) based on

Eqs. 24.75 and 24.76, respectively (Eskandar et al. 2012):

Xnew
Stream ¼ LBþ rand � UB� LBð Þ; ð24:75Þ

Xnew
Stream ¼ XSea þ

ffiffiffi
l
p � randn 1;Nvarð Þ; ð24:76Þ

where the lower and upper boundaries are denoted by LB and UB, respectively
and l represents a coefficient showing the range of searching region around the
sea.

• Step 11: Reducing the value of user determined parameter dmax according to
Eq. 24.77 (Eskandar et al. 2012):

diþ1
max ¼ di

max �
di

max

max iteration
: ð24:77Þ

• Step 12: Checking the converging criterion. If yes, WCOA will be terminated;
otherwise, it will go back to Step 5.

24.21.2 Performance of WCOA

Eskandar et al. (2012) employed a set of benchmark functions and engineering
design optimization problems to test the performance of WCOA. In comparison
with other CI techniques (e.g., PSO, DE), WCOA generally showed a better
performance. At the end of their study, Eskandar et al. (2012) suggested that
WCOA may be suitable for dealing with real world optimization problems which
need significant computational efforts efficiently, and at the same time, with
acceptable solutions accuracy degree.

24.22 Water Flow Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
phenomenon of hydrological cycle in meteorology and the erosion result found in
nature (Carey et al. 2008; Samuels et al. 2009; Rahman 2011; Davis 2010; Day
2007; Reece et al. 2011; Whitten et al. 2014; Zumdahl and Zumdahl 2014).

24.21 Water Cycle Optimization Algorithm 403

24.22.1 Fundamentals of Water Flow Algorithm

Water flow algorithm (WFA) was recently proposed in (Brodić 2011, 2012; Brodić
and Milivojević 2010, 2011; Tran and Ng 2011; Basu et al. 2007) for solving text
recognition problem. It has been applied to test line segmentation (Brodić 2011,
2012; Brodić and Milivojević 2010, 2011; Basu et al. 2007) and flow shop
scheduling (Tran and Ng 2011). The core idea underlying the WFA is hypothet-
ically assuming a flow of water moving towards a particular direction and crossing
the image frame in a way that it faces obstruction from the characters of the text
lines (Basu et al. 2007). In other words, the artificial water flow across the targeted
image frame is anticipated to fill up the gaps existing between consecutive text
lines. Accordingly, the un-wetted areas left on the image frame will ideally lie
under the text lines. To implement the WFA algorithm, the following components
need to be well-designed (Brodić 2011, 2012; Brodić and Milivojević 2010, 2011;
Tran and Ng 2011; Basu et al. 2007):

• Component 1: Labelling line spacing. Technically, recognizing the wetted
stripes in a document image is not enough to extract the text lines from the
same. All un-wetted stripes in the targeted image file have to be labelled dis-
tinctly before text line extraction.

• Component 2: Erosion of the dark stripes. In practice, some isolated parts (e.g.,
dots) from the text written in Roman may sometimes appear outside the white
stripes, i.e., in the dark stripes. Such elements are often neglected when text
lines are extracted from the document images after marking all white stripes
therein separately. In order to prevent such issues, the dark stripes in document
images have to be eroded morphologically.

• Component 3: Extraction of the text lines. To do so, one can simply extract all
white stripes from the image one by one.

• Component 4: Detecting the skew angle. To filter out certain upper envelope
pixels, a difference vector has to be computed. For each column i, di is calcu-
lated through Eq. 24.78 (Basu et al. 2007):

di ¼ ei � ei�1; i ¼ 1; 2; . . .; n� 1: ð24:78Þ

Thus, the slope of the upper envelope within the jth interval Sj, is computed via
Eq. 24.79 (Basu et al. 2007):

Sj ¼

P

i
di

width of the jth interval
: ð24:79Þ

• Component 5: Separating touching text lines. To do this, a straight line making
an angle of as with a horizontal line across the targeted image frame and passing
through either the right most pixel point or the left most pixel point of the upper
envelope of the top most touching line will be drawn.

404 24 Emerging Physics-based CI Algorithms

24.22.2 Performance of WFA

To verify the proposed WFA, different samples of English and Bengali documents
collected from various sources were employed in (Basu et al. 2007). The selected
documents are scanned at a resolution of 300 dpi. The experimental results
demonstrated that WFA is very promising in dealing with the targeted problems.

24.23 Water Flow-Like Algorithm

In this section, we will introduce an emerging CI algorithm that is also based on
the phenomenon of hydrological cycle in meteorology and the erosion result found
in nature (Carey et al. 2008; Samuels et al. 2009; Rahman 2011; Davis 2010; Day
2007; Reece et al. 2011; Whitten et al. 2014; Zumdahl and Zumdahl 2014).

24.23.1 Fundamentals of Water Flow-Like Algorithm

Water flow-like algorithm (WFlA) was recently proposed in Yang and Wang
(2007). To implement the WFA algorithm, the following four major operations
need to be performed (Yang and Wang 2007):

• Flow splitting and moving: A main characteristic of WFlA is its solution agents
forking mechanism. To fulfil this design, the number of subflow split from main
flow i is defined via Eq. 24.80 (Yang and Wang 2007):

ni ¼ min max 1; int
MiVi

T

 �� �

; �n

� �

; ð24:80Þ

where �n represents an imposed upper limit for the number of subflows forked
from a main flow, and MiVi denotes the subflows’ momentum. In WFlA, the
flow movements from one location to other new locations are not computed
from Euclidean distance. Instead, neighbouring locations are assigned to move
or split the flow. For instance, two neighbouring solutions obtained from one
step movement of coordinate h are defined by Eqs. 24.81 and 24.82, respectively
(Yang and Wang 2007):

A
þð Þ

i ¼ A þð Þi1 ;A þð Þi2 ; . . .;A þð Þiq

n o
; ð24:81Þ

A
�ð Þ

i ¼ A �ð Þi1 ;A �ð Þi2 ; . . .;A �ð Þiq

n o
: ð24:82Þ

24.22 Water Flow Algorithm 405

Therefore, the set of all one-step neighbouring solutions for flow i is defined by
Eq. 24.83 (Yang and Wang 2007):

Ai ¼ A
þð Þ

i [A
�ð Þ

i : ð24:83Þ

Meanwhile, the mass of flow i is discriminately distributed among subflows
according to their ranks. In MFlA, the mass distributed from Mi to the subflow Uik

is expressed by Eq. 24.84 (Yang and Wang 2007):

wik ¼
ni þ 1� k
Pni

r¼1
r

0

B
B
@

1

C
C
A; k ¼ 1; 2; . . .; ni: ð24:84Þ

And the velocity of subflow Uik split from flow i can be computed according to
Eq. 24.85 (Yang and Wang 2007):

lik ¼
ffi
V2

i þ 2gdik

p
if V2

i þ 2gdik [0
0 otherwise

;

�

ð24:85Þ

where the gravitational acceleration is denoted by g.

• Flow merging: In MFlA, water flows will emerge into a single flow when more
than two flows of water move to the same position. Therefore, the mass of flow
j is added to flow i based on Eq. 24.86 (Yang and Wang 2007):

Mi Mi þMj: ð24:86Þ

And the aggregated speed for flow i is obtained through Eq. 24.87 (Yang and
Wang 2007):

Vi
MiVi þMjVj

Mi þMj
: ð24:87Þ

• Water evaporation: A water evaporating operation is also introduced in WFlA
for a better simulating the natural water evaporation phenomenon. During the
water evaporation process, the masses of all water flows are renewed based on
Eq. 24.88 (Yang and Wang 2007):

Mi 1� 1
t

 �

�Mi; i ¼ 1; 2; . . .;N; ð24:88Þ

where �Mi denotes the mass when flow i was originally created or merged with
others.

• Precipitation: In order to mimic the natural life cycle of water, two kinds of
precipitation mechanisms are performed in WFlA, namely, enforced and regular
precipitation. In enforced precipitation, each component x0ih is created randomly
from the original coordinate xih based on Eq. 24.89 (Yang and Wang 2007):

406 24 Emerging Physics-based CI Algorithms

x0ih ¼
xih þ dþh if
U 0; 1ð Þ[0:5
xih � d�h otherwise

�

: ð24:89Þ

And the mass of M0 is proportionally distributed among the flows according to
their original mass. Accordingly, in enforced precipitation, the mass allocated
to flow i is calculated via Eq. 24.90 (Yang and Wang 2007):

M0i ¼
Mi
P

k
Mk

0

@

1

AM0; i ¼ 1; 2; . . .;N: ð24:90Þ

On the other hand, regular precipitation mechanism is applied periodically to let
the evaporated water return the ground. Similarly, the location �Xi of a drop down
flow i is randomly derived from the ground flow i’s location and it is calculated via
Eqs. 24.91 and 24.92, respectively (Yang and Wang 2007):

�Xi ¼ �xi1;�xi2; . . .;�xiq

� �
; ð24:91Þ

�xih ¼
xih þ dþh if
U 0; 1ð Þ[0:5
xih � d�h otherwise

�

: ð24:92Þ

And the masses of the drop down flows are proportionally allocated according
to Eq. 24.93 (Yang and Wang 2007):

�Mi ¼ M0 �
X

k

Mk

 !
Mi
P

k
Mk

0

@

1

A ¼ M0
P

k
Mk
� 1

0

@

1

A; i ¼ 1; 2; . . .; N: ð24:93Þ

24.23.2 Performance of WFlA

The famous bin packing problem was employed in (Yang and Wang 2007) for the
purpose of testing the performance of WFlA. In comparison with other CI tech-
niques (e.g., GA, PSO), the WFlA performed well on the target problem. Overall,
through adopting several unique characteristics observed from water flows, this
novice CI approach showed a steady and persistent solution search performance.

24.23 Water Flow-Like Algorithm 407

24.24 Conclusions

In this chapter, 22 emerging physics-based CI methodologies are discussed.
Although most of them are still in their infancy, their usefulness has been dem-
onstrated throughout the preliminary corresponding studies. Interested readers are
referred to them as a starting point for a further exploration and exploitation of
these innovative CI algorithms.

References

Abel, P. G. (2013). Visual lunar and planetary astronomy. New York: Springer Science ? Business
Media. ISBN 978-1-4614-7018-2.

Abuhamdah, A., & Ayob, M. (2009a, October 27–28). Hybridization multi-neighbourhood
particle collision algorithm and great deluge for solving course timetabling problems. In IEEE
2nd Conference on Data Mining and Optimization, Selangor, Malaysia (pp. 108–114).

Abuhamdah, A., & Ayob, M. (2009b, October 27–28). Multi-neighbourhood particle collision
algorithm for solving course timetabling problems. In IEEE 2nd Conference on Data Mining
and Optimization, Selangor, Malaysia (pp. 21–27).

Abuhamdah, A., & Ayob, M. (2011, June 28–29). MPCA-ARDA for solving course timetabling
problems. In IEEE 3rd Conference on Data Mining and Optimization (DMO), Selangor,
Malaysia (pp. 171–177).

Afaq, H., & Saini, S. (2011). On the solutions to the travelling salesman problem using nature
inspired computing techniques. International Journal of Computer Science Issues, 8,
326–334.

Ahmed, W. (Ed.). (2012). Nuclear power: Practical aspects. Janeza Trdine 9, 51000 Rijeka,
Croatia: InTech. ISBN 978-953-51-0778-1.

Arfken, G. B., Weber, H. J., & Harris, F. E. (2013). Mathematical methods for physicists: a
comprehensive guide. The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK:
Elsevier Inc. ISBN 978-0-12-384654-9.

Balachandar, S. R., & Kannan, K. (2007). Randomized gravitational emulation search algorithm
for symmetric traveling salesman problem. Applied Mathematics and Computation, 192,
413–421.

Balachandar, S. R., & Kannan, K. (2009). A meta-heuristic algorithm for vertex covering
problem based on gravity. International Journal of Computational and Mathematical
Sciences, 3, 324–330.

Balachandar, S. R., & Kannan, K. (2010). A meta-heuristic algorithm for set covering problem
based on gravity. International Journal of Computational and Mathematical Sciences, 4,
223–228.

Barzegar, B., Rahmani, A. M., & Zamanifar, K. (2009). Gravitational emulation local search
algorithm for advanced reservation and scheduling in grid systems. In IEEE 1st Asian
Himalayas International Conference on Internet (AH-ICI) (pp. 1–5).

Basu, S., Chaudhuri, C., Kundu, M., Nasipuri, M., & Basu, D. K. (2007). Text line extraction
from multi-skewed handwritten documents. Pattern Recognition, 40, 1825–1839.

Bauer, W., & Westfall, G. D. (2011). University physics with modern physics. New York, NY,
USA: McGraw-Hill. ISBN 978-0-07-285736-8.

Bes, D. R. (2007). Quantum mechanics: A modern and concise introductory course. Berlin
Heidelberg: Springer. ISBN 978-3-540-46215-6.

Biswas, A., Mishra, K. K., Tiwari, S., & Misra, A. K. (2013). Physics-inspired optimization
algorithms: A survey. Journal of Optimization, 2013, 1–16.

408 24 Emerging Physics-based CI Algorithms

Boettcher, S. (2004). Extremal optimization. In A. K. Hartmann & H. Rieger (Eds.) New
optimization algorithms in physics, Chap. 11 (pp. 227–252). Strauss GmbH, Mörlenbach:
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. ISBN 3-527-40406.

Boettcher, S. (2005). Extremal optimization for Sherrington-Kirkpatrick spin glasses. The
European Physical Journal B, 46, 501–505.

Boettcher, S., & Percus, A. (2000). Nature’s way of optimizing. Artificial Intelligence, 119,
275–286.

Boettcher, S., & Percus, A. G. (2004). Extremal optimization at the phase transition of the 3-
coloring problem. Physical Review E, 69, 066–703.

Bouras, A., & Syam, W. P. (2013). Hybrid chaos optimization and affine scaling search algorithm
for solving linear programming problems. Applied Soft Computing, 13, 2703–2710.

Brekke, P. (2012). Our explosive sun: a visual feast of our source of light and life. New York
Dordrecht Heidelberg London: Springer Science ? Business Media, LLC. ISBN 978-1-4614-
0570-2.

Brodić, D. (2011). Advantages of the extended water flow algorithm for handwritten text
segmentation. In Pattern recognition and machine intelligence, LNCS 6744 (pp. 418–423).
Berlin: Springer.

Brodić, D. (2012). Extended approach to water flow algorithm for text line segmentation. Journal
of Computer Science and Technology, 27, 187–194.

Brodić, D., & Milivojević, Z. (2010). An approach to modification of water flow algorithm for
segmentation and text parameters extraction. In Emerging trends in technological innovation,
IFIP advances in information and communication technology (pp. 324–331). Berlin: Springer.

Brodić, D., & Milivojević, Z. (2011). A new approach to water flow algorithm for text line
segmentation. Journal of Universal Computer Science, 17, 30–47.

Bruce, D. W., O’hare, D., & Walton, R. I. (2014). Local structural characterisation. West
Sussex, PO19 8SQ, UK: Wiley. ISBN 978-1-119-95320-3.

Cacuci, D. G. (2010). Handbook of nuclear engineering. New York, NY, USA: Springer
Science ? BusinessMedia LLC. ISBN 978-0-387-98130-7.

Carey, V. P., Chen, G., Grigoropoulos, C., Kaviany, M., & Majumdar, A. (2008). A review of
heat transfer physics. Nanoscale and Microscale Thermophysical Engineering, 12, 1–60.

Chen, M.-R., & Lu, Y.-Z. (2008). A novel elitist multiobjective optimization algorithm:
Multiobjective extremal optimization. European Journal of Operational Research, 188,
637–651.

Cheshomi, S., Rahati-Q, S., & Akbarzadeh-T, M.-R. (2010, August 13–15). Hybrid of chaos
optimization and Baum-Welch algorithms for HMM training in continuous speech
recognition. In IEEE International Conference on Intelligent Control and Information
Processing, Dalian, China.

Chuang, C.-L., & Jiang, J.-A. (2007, September 25–28). Integrated radiation optimization:
Inspired by the gravitational radiation in the curvature of space-time. In IEEE Congress on
Evolutionary Computation (CEC), Singapore (pp. 3157–3164).

Davis, M. L. (2010). Water and wastewater engineering: Design principles and practice. New
York, USA: The McGraw-Hill Companies, Inc. ISBN 978-0-07-171385-6.

Day, T. (2007). Water. London, UK: Dorling Kindersley Limited. ISBN 978-1-40531-874-7.
Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm: A

novel meta-heuristic optimization for solving constrained engineering optimization problems.
Computers & Structures, 110–111, 151–166.

Flores, J. J., López, R., & Barrera, J. (2011). Gravitational interactions optimization. In Learning
and intelligent optimization (pp. 226–237). Berlin Heidelberg: Springer.

Gomez, J., Dasgupta, D., & Nasraoui, O. (2003, May 1–3). A new gravitational clustering
algorithm. In 3rd Siam International Conference on Data Mining, San Francisco, CA, USA
(pp. 83–94).

Gonçalves, B., & Boettcher, S. (2008). Hysteretic optimization for spin glasses. Journal of
Statistical Mechanics: Theory and Experiment. doi:10.1088/1742-5468/2008/01/P01003.

References 409

http://dx.doi.org/10.1088/1742-5468/2008/01/P01003

Gorbenko, A., & Popov, V. (2012). The force law design of artificial physics optimization for
robot anticipation of motion. Advanced Studies in Theoretical Physics, 6, 625–628.

Gorbenko, A., & Popov, V. (2013). The force law design of APO for starting population selection
for GSAT. Advanced Studies in Theoretical Physics, 7, 131–134.

Gourgoulhon, É. (2013). Special relativity in general frames: from particles to astrophysics.
Berlin Heidelberg: Springer. ISBN 978-3-642-37275-9.

Gupta, S., Bhardwaj, S., & Bhatia, P. K. (2011). A reminiscent study of nature inspired
computation. International Journal of Advances in Engineering & Technology, 1, 117–125.

Hamaizia, T., Lozi, R., & Hamri, N.-E. (2012). Fast chaotic optimization algorithm based on
locally averaged strategy and multifold chaotic attractor. Applied Mathematics and
Computation, 219, 188–196.

Han, F., & Lu, Q.-S. (2008). An improved chaos optimization algorithm and its application in the
economic load dispatch problem. International Journal of Computer Mathematics, 85,
969–982.

Hartmann, A. K., & Rieger, H. (Eds.). (2004). New optimization algorithms in physics, Strauss
GmbH, Mörlenbach: WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. ISBN 3-527-
40406.

Henao, J. D. V. (2011). An introduction to chaos based algorithms for numerical optimization.
Revista Avances en Sistemas e Informática, 8, 51–60.

Holzner, S. (2011). Physics I for dummies. River Street, Hoboken, NJ, USA: Wiley Inc. ISBN
978-0-470-90324-7.

HOLZNER, S. (2010). Physics II for dummies. River Street, Hoboken, NJ, USA: Wiley Inc.
ISBN 978-0-470-53806-7.

Hsiao, Y.-T., Chuang, C.-L., Jiang, J.-A., & Chien, C.-C. (2005, October 10–12). A novel
optimization algorithm: Space gravitational optimization. In IEEE International Conference
on Systems, Man and Cybernetics (SMC) (pp. 2323–2328).

Jiang, H., Kwong, C. K., Chen, Z., & Ysim, Y. C. (2012). Chaos particle swarm optimization and
T-S fuzzy modeling approaches to constrained predictive control. Expert Systems with
Applications, 39, 194–201.

Jin, G.-G., & Tran, T.-D. (2010, August 18–21). A nature-inspired evolutionary algorithm based
on spiral movements. In IEEE Sice Annual Conference, The Grand Hotel, Taipei, Taiwan (pp.
1643–1647).

Kaveh, A., & Khayatazad, M. (2012). A new meta-heuristic method: Ray optimization.
Computers & Structures, 112–113, 283–294.

Klafter, J., Lim, S. C., & Metzler, R. (2012). Fractional dynamics: Recent advances. 5 Toh Tuck
Link, Singapore: World Scientific Publishing Co. Pte. Ltd. ISBN 978-981-4340-58-8.

Kundu, S. (1999). Gravitational clustering: A new approach based on the spatial distribution of
the points. Pattern Recognition, 32, 1149–1160.

Li, B., & Jiang, W. (1998). Optimizing complex functions by chaos search. Cybernetics and
Systems: An International, 29, 409–419.

Lu, H.-J., Zhang, H.-M., & Ma, L.-H. (2006). A new optimization algorithm based on chaos.
Journal of Zhejiang University SCIENCE A, 7, 539–542.

Luz, E. F. P. D., Becceneri, J. C., & Velho, H. F. D. C. (2008). A new multi-particle collision
algorithm for optimization in a high performance environment. Journal of Computational
Interdisciplinary Sciences, 1, 3–10.

Luz, E. F. P. D., Becceneri, J. C., & Velho, H. F. D. C. (2011). Multiple particle collision
algorithm applied to radiative transference and pollutant localization inverse problems. In
IEEE International Symposium on Parallel and Distributed Processing Workshops and PhD
Forum (IPDPSW) (pp. 347–351).

Mo, S., & Zeng, J. (2009). Performance analysis of the artificial physics optimization algorithm
with simple neighborhood topologies. In IEEE International Conference on Computational
Intelligence and Security (CIS) (pp. 155–160).

410 24 Emerging Physics-based CI Algorithms

National_Research_Council (Ed.). (2012). Nuclear physics: Exploring the heart of matter. 500
Fifth Street, NW Washington, DC, USA: The National Academies Press. ISBN 978-0-309-
26040-4.

Pál, K. F. (2003). Hysteretic optimization for the traveling salesman problem. Physica A, 329,
287–297.

Pál, K. F. (2004). Hysteretic optimization. In A. K. Hartmann & H. Rieger (Eds.) New
optimization algorithms in physics, Chap. 10 (pp. 205–226). Strauss GmbH, Mörlenbach:
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. ISBN 3-527-40406.

Pál, K. F. (2006a). Hysteretic optimization for the Sherrington–Kirkpatrick spin glass. Physica A,
367, 261–268.

Pál, K. F. (2006b). Hysteretic optimization, faster and simpler. Physica A, 360, 525–533.
Particle_Data_Group. (1998). Review of particle physics. The European Physical Journal C, 3,

1–794.
Philips, A. C. (2003). Introduction to quantum mechanics. The Atrium, Southern Gate,

Chichester, West Sussex, PO19 8SQ, England: Wiley. ISBN 0-470-85323-9.
Placidi, G. (2012). MRI: essentials for innovative technologies. Broken Sound Parkway NW,

Suite 300, Boca Raton, FL, USA: CRC Press, Taylor & Francis Group, LLC. ISBN 978-1-
4398-4062-7.

Pooranian, Z., Harounabadi, A., Shojafar, M., & Hedayat, N. (2011). New hybrid algorithm for
task scheduling in grid computing to decrease missed task. World Academy of Science,
Engineering and Technology, 79, 5–9.

Rabanal, P., & Rodríguez, I. (2011). Hybridizing river formation dynamics and ant colony
optimization. In Advances in artificial life, Darwin LNCS 5778 (pp. 424–431). Berlin: Springer.

Rabanal, P., Rodríguez, I., & Rubio, F. (2007). Using river formation dynamics to design
heuristic algorithms. In: S. G. Akl, C. S. C., M. J. Dinneen, G. Rozenber, H. T. Wareham
(Eds.), UC 2007, LNCS (Vol. 4618, pp. 163–177). Heidelberg: Springer.

Rabanal, P., Rodríguez, I., & Rubio, F. (2008a). Finding minimum spanning/distances trees by
using river formation dynamics. In M. Dorigo (Ed.), ANTS 2008, LNCS 5217 (pp. 60–71).
Berlin Heidelberg: Springer.

Rabanal, P., Rodríguez, I., & Rubio, F. (2008b). Solving dynamic TSP by using river formation
dynamics. In IEEE 4th International Conference on Natural Computation (ICNC) (pp.
246–250).

Rabanal, P., Rodríguez, I., & Rubio, F. (2009). Applying river formation dynamics to solve NP-
complete problems. In Nature-inspired algorithms for optimization, studies in computational
intelligence (Vol. 193, pp. 333–368). Berlin Heidelberg: Springer.

Rabanal, P., Rodríguez, I., & Rubio, F. (2010). Applying river formation dynamics to the Steiner
tree problem. In F. Sun, Y. Wang, J. Lu, B. Zhang, W. Kinsner & L. A. Zadeh (Eds.), 9th
IEEE International Conference on Cognitive Informatics (ICCI) (pp. 704–711).

Rabanal, P., Rodríguez, I., & Rubio, F. (2011). Studying the application of ant colony optimization
and river formation dynamics to the Steiner tree problem. Evolution Intelligence, 4, 51–65.

Rabanal, P., Rodríguez, I., & Rubio, F. (2013). Testing restorable systems: Formal definition and
heuristic solution based on river formation dynamic. Formal Aspects of Computing, 25,
743–768. doi:10.1007/s00165-011-0206-3.

Rahman, M. (2011). Mechanics of real fluids. Ashurst Lodge, Ashurst, Southampton, SO40 7AA,
UK: WIT Press. ISBN 978-1-84564-502-1.

Reece, J. B., Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., & Jackson, R. B.
(2011). Campbell biology. Sansome St., San Francisco, CA: Pearson Education, Inc. ISBN
978-0-321-55823-7.

Rong, G., Liu, G., Zheng, M., Sun, A., Tian, Y., & Wang, H. (2013). Parallel gravitation field
algorithm based on the CUDA platform. Journal of Information & Computational Science,
10, 3635–3644.

Sacco, W. F. & Oliveira, C. R. E. D. (2005). A new stochastic optimization algorithm based on a
particle collision meta-heuristic. In 6th World Congresses of Structural and Multidisciplinary
Optimization, Rio de Janeiro, Brazil, 30 May-03 June (pp. 1–6).

References 411

http://dx.doi.org/10.1007/s00165-011-0206-3

Sacco, W. F., Oliveira, C. R. E. D., & Pereira, C. M. N. A. (2006). Two stochastic optimization
algorithms applied to nuclear reactor core design. Progress in Nuclear Energy, 48, 525–539.

Samuels, P., Huntington, S., Allsop, W., & Harrop, J. (2009). Flood risk management: research
and practice. London, UK: Taylor & Francis Group. ISBN 978-0-415-48507-4.

Sanchez, M. A., Castillo, O., Castro, J. R., & Rodriguez-Diaz, A. (2012, August 6–8). Fuzzy
granular gravitational clustering algorithm. IEEE Annual Meeting of the North American
Fuzzy Information Processing Society (NAFIPS), Berkeley, CA, USA (pp. 1–6).

Sasselov, D. (2012). The life of super-earths: how the hunt for alien worlds and artificial cells
will revolutionize life on our planet. Park Avenue South, New York, NY, USA: Basic Books.
ISBN 978-0-465-02193-2.

Schutz, B. (2003). Gravity: From the ground up. The Edinburgh Building, Cambridge CB2 8RU,
UK: Cambridge University Press. ISBN 978-0-511-33696-6.

Serway, R. A., & Jewett, J. W. (2014). Physics for scientists and engineers with modern physics.
Boston, MA, USA: Brooks/Cole CENAGE Learning. ISBN 978-1-133-95405-7.

Shah-Hosseini, H. (2011a). Otsu’s criterion-based multilevel thresholding by a nature-inspired
meta-heuristic called galaxy-based search algorithm. In IEEE 3rd World Congress on Nature
and Biologically Inspired Computing (NaBIC) (pp. 383–388).

Shah-Hosseini, H. (2011b). Principal components analysis by the galaxy-based search algorithm:
a novel metaheuristic for continuous optimisation. International Journal of Computational
Science and Engineering, 6, 132–140.

Shayeghi, H., Jalilzadeh, S., Shayanfar, H. A., & Safari, A. (2009, May 6–9). Robust PSS design
using chaotic optimization algorithm for a multimachine power system. In IEEE 6th
International Conference on Electrical Engineering/Electronics, Computer, Telecommunica-
tions and Information Technology (ECTI-CON), Pattaya, Chonburi (pp. 40–43).

Shen, J., & Li, Y. (2008). An optimization algorithm based on optical principles. Advances in
Systems Science and Applications, 5, 1–8.

Shen, J., & Li, Y. (2009, April 24–26). Light ray optimization and its parameter analysis. In IEEE
International Joint Conference on Computational Sciences and Optimization (CSO), Sanya,
China (pp. 918–922).

Shen, J., & Li, J. (2010, September 13–14). The principle analysis of light ray optimization
algorithm. In IEEE 2nd Second International Conference on Computational Intelligence and
Natural Computing (CINC), Wuhan, China (pp. 154–157).

Shen, J., & Li, J. (2012). Light ray optimization algorithm and convergence analysis for one
dimensional problems. In ASME International Conference on Electronics, Information and
Communication Engineering (EICE) (pp. 1–4).

Shen, J., Li, J., & Wei, B. (2012). Optimal search mechanism analysis of light ray optimization
algorithm. Journal of Mathematical Research with Applications, 32, 530–542.

Shifman, M. (2012). Advanced topics in quantum field theory: A lecture course. The Edinburgh
Building, Cambridge CB2 8RU, UK: Cambridge University Press. ISBN 978-0-521-19084-8.

Spears, W. M., & Gordon, D. F. (1999). Using artificial physics to control agents. In IEEE
International Conference on Information Intelligence and Systems (pp. 281–288).

Spears, W. M., & Spears, D. F. (2012). Physicomimetics: Physics-based swarm intelligence.
Berlin: Springer.

Spears, W. M., Spears, D. F., Hamann, J. C., & Heil, R. (2004a). Distributed, physics-based
control of swarms of vehicles. Autonomous Robots, 17, 137–162.

Spears, W. M., Spears, D. F., Heil, R., Kerr, W., & Hettiarachchi, S. (2004b). An overview of
physicomimetics, LNCS 3324 (pp. 84–97). Berlin: Springer.

Sun, J., Dong, H., & Pan, Y. (2012). A self-adaptive differential evolution algorithm based on
cloud model. In International Conference on Network and Computational Intelligence
(ICNCI) (Vol. 46, pp. 59–64). IACSIT Press.

Tamura, K., & Yasuda, K. (2011a). Primary study of spiral dynamics inspired optimization. IEEJ
Transactions on Electrical and Electronic Engineering, 6, S98–S100.

Tamura, K., & Yasuda, K. (2011b). Spiral dynamics inspired optimization. Journal of Advanced
Computational Intelligence and Intelligent Informatics, 15, 1116.

412 24 Emerging Physics-based CI Algorithms

Tamura, K., & Yasuda, K. (2011c). Spiral multipoint search for global optimization. In IEEE
10th International Conference on Machine Learning and Applications (ICMLA) (pp.
470–475).

Tavazoei, M. S., & Haeri, M. (2007a). Comparison of different one-dimensional maps as chaotic
search pattern in chaos optimization algorithms. Applied Mathematics and Computation, 187,
1076–1085.

Tavazoei, M. S., & Haeri, M. (2007b). An optimization algorithm based on chaotic behavior and
fractal nature. Journal of Computational and Applied Mathematics, 206, 1070–1081.

Tayarani-N, M. H., & Akbarzadeh-T, M. R. (2008). Magnetic optimization algorithms a new
synthesis. In IEEE Congress on Evolutionary Computation (CEC) (pp. 2659–2664).

Tran, T. H., & Ng, K. M. (2011). A water-flow algorithm for flexible flow shop scheduling with
intermediate buffers. Journal of Scheduling, 14, 483–500.

Tsvetkov, P. V. (Ed.). (2011). Nuclear power: Control, reliability and human factors. Janeza
Trdine 9, 51000 Rijeka, Croatia: InTech. ISBN 978-953-307-599-0.

Vakoch, D. A. (Ed.). (2014). Extraterrestrial altruism: Evolution and ethics in the cosmos. Berlin
Heidelberg: Springer. ISBN 978-3-642-37749-5.

Waltar, A. E., Todd, D. R., & Tsvetkov, P. V. (2012). Fast spectrum reactors. New York,
Dordrecht, Heidelberg, London: Springer Science ? Business Media LLC. ISBN 978-1-
4419-9571-1.

Wang, P. K. (2013). Physics and dynamics of clouds and precipitation. Cambridge: UK,
Cambridge University Press.

Wang, Y., & Zeng, J.-C. (2010a). A constraint multi-objective artificial physics optimization
algorithm. In IEEE Second International Conference on Computational Intelligence and
Natural Computing (CINC) (pp. 107–112).

Wang, Y., & Zeng, J.-C. (2010b). Multi-objective optimization algorithm based on artificial
physics optimization (in Chinese). Control and Decision, 25, 1040–1044.

Wang, Y., Zeng, J.-C., Cui, Z.-H., & He, X.-J. (2011). A novel constraint multi-objective artificial
physics optimisation algorithm and its convergence. International Journal of Innovative
Computing and Applications, 3, 61–70.

Wang, L., Li, W., Fei, R., & Hei, X. (2012). Cloud droplets evolutionary algorithm on reciprocity
mechanism for function optimization. In Y. Tan, Y. Shi & Z. Ji (Eds.), ICSI 2012, Part I,
LNCS 7331 (pp. 268–275). Berlin Heidelberg: Springer.

Webster, B. L. (2004). Solving combinatorial optimization problems using a new algorithm based
on gravitational attraction. Unpublished doctoral thesis, Florida Institute of Technology.

Whitten, K. W., Davis, R. E., Peck, M. L., & Stanley, G. G. (2014). Chemistry. 20 Davis Drive,
Belmont, CA 94002-3098USA: Brooks/Cole, Cengage Learning. ISBN 13: 978-1-133-61066-3.

Wright, W. E. (1977). Gravitational clustering. Pattern Recognition, 9, 151–166.
Xie, L.-P., & Zeng, J.-C. (2009a, June 12–14). A global optimization based on physicomimetics

framework. In IEEE First ACM/SIGEVO Summit on Genetic and Evolutionary Computation
(GEC), Shanghai, China (pp. 609–616).

Xie, L., & Zeng, J. (2009b, December 7–9). An extended artificial physics optimization algorithm
for global optimization. In IEEE 4th International Conference on Innovative Computing,
Information and Control (ICICIC), Kaohsiung Taiwan (pp. 881–884).

Xie, L., & Zeng, J. (2011). A hybrid vector artificial physics optimization for constrained
optimization problems. In IEEE 1st International Conference on Robot, Vision and Signal
Processing (RVSP) (pp. 145–148).

Xie, L., Zeng, J., & Cui, Z. (2009a, December). General framework of artificial physics
optimization algorithm. In IEEE World Congress on Nature and Biologically Inspired
Computing (NaBIC), Coimbatore, India (pp. 1321–1326).

Xie, L., Zeng, J., & Cui, Z. (2009b). Using artificial physics to solve global optimization
problems. In 8th IEEE International Conference on Cognitive Informatics (ICCI), June,
Hongkong (pp. 502–508).

References 413

Xie, L., Tan, Y., & Zeng, J. (2010a, July 17–19). The convergence analysis and parameter
selection of artificial physics optimization algorithm. In IEEE International Conference on
Modelling, Identification and Control, Okayama, Japan (pp. 562–567).

Xie, L., Tan, Y., Zeng, J., & Cui, Z. (2010b). Artificial physics optimisation: A brief survey.
International Journal of Bio-Inspired Computation, 2, 291–302.

Xie, L., Tan, Y., & Zeng, J. (2011a). A study on the effect of Vmax in artificial physics
optimization algorithm with high dimension. In IEEE International Conference of Soft
Computing and Pattern Recognition (SoCPaR) (pp. 550–555).

Xie, L., Tan, Y., Zeng, J., & Cui, Z. (2011b). The convergence analysis of artificial physics
optimisation algorithm. International Journal of Intelligent Information and Database
Systems, 5, 536–554.

Xie, L., Zeng, J., & Formato, R. A. (2011c). Convergence analysis and performance of the
extended artificial physics optimization algorithm. Applied Mathematics and Computation,
218, 4000–4011.

Xie, L., Zeng, J., & Cai, X. (2011c). A hybrid vector artificial physics optimization with multi-
dimensional search method. In IEEE 2nd International Conference on Innovations in Bio-
inspired Computing and Applications (IBICA) (pp. 116–119).

Yan, G.-W., & Hao, Z. (2012, July 7–9). A novel atmosphere clouds model optimization
algorithm. In IEEE International Conference on Computing, Measurement, Control and
Sensor Network (CMCSN), Taiyuan, China (pp. 217–220).

Yan, G.-W., & Hao, Z. (2013). A novel optimization algorithm based on atmosphere clouds
model. International Journal of Computational Intelligence and Applications, 12, 1–16.

Yang, F.-C., & Wang, Y.-P. (2007). Water flow-like algorithm for object grouping problems.
Journal of the Chinese Institute of Industrial Engineers, 24, 475–488.

Yang, D., Li, G., & Cheng, G. (2007). On the efficiency of chaos optimization algorithms for
global optimization. Chaos, Solitons & Fractals, 34, 1366–1375.

Yang, G., Xie, L., Tan, Y., & Zeng, J. (2010). A hybrid vector artificial physics optimization with
one-dimensional search method. In IEEE International Conference on Computational Aspects
of Social Networks (CASoN) (pp. 19–22).

Yang, Y., Wang, Y., Yuan, X., & Yin, F. (2012). Hybrid chaos optimization algorithm with
artificial emotion. Applied Mathematics and Computation, 218, 6585–6611.

Yin, J., Xie, L., Zeng, J., & Tan, Y. (2010). Artificial physics optimization algorithm with a
feasibility-based rule for constrained optimization problems. In IEEE International Confer-
ence on Intelligent Computing and Intelligent Systems (ICIS) (pp. 488-492).

Yuan, X., Yang, Y., & Wang, H. (2012). Improved parallel chaos optimization algorithm.
Applied Mathematics and Computation, 219, 3590–3599.

Zaránd, G., Pázmándi, F., Pál, K. F., & Zimányi, G. T. (2002). Using hysteresis for optimization.
Physical Review Letters, 89, 150201-1-150201-4.

Zhang, T., & Qu, H. (2010, August 14–15). An improved clustering algorithm. In 3rd
International Symposium on Computer Science and Computational Technology (ISCSCT),
Jiaozuo, China (pp. 112–115).

Zhang, G.-W., He, R., Liu, Y., Li, D.-Y., & Chen, G.-S. (2008). An evolutionary algorithm based
on cloud model. Chinese Journal of Computers, 31, 1082–1091.

Zheng, M., Liu, G.-X., Zhou, C.-G., Liang, Y.-C., & Wang, Y. (2010). Gravitation field algorithm
and its application in gene cluster. Algorithms for Molecular Biology, 5, 1–11.

Zheng, M., Sun, Y., Liu, G.-X., Zhou, Y., & Zhou, C.-G. (2012). Improved gravitation field
algorithm and its application in hierarchical clustering. PLoS ONE, 7, 1–10.

Zhu, C., & Ni, J. (2012, April 21–23). Cloud model-based differential evolution algorithm for
optimization problems. In IEEE 6th International Conference on Internet Computing for
Science and Engineering (ICICSE), Henan, China (pp. 55–59).

Zumdahl, S. S., & Zumdahl, S. A. (2014). Chemistry. 20 Davis Drive, Belmont, CA 94002-3098,
USA: Brooks/Cole, Cengage Learning. ISBN 13: 978-1-133-61109-7.

414 24 Emerging Physics-based CI Algorithms

Part IV
Chemistry-based CI Algorithms

Chapter 25
Chemical-Reaction Optimization
Algorithm

Abstract In this chapter, we present a novel optimization approach named
chemical-reaction optimization (CRO) algorithm. The main idea behind CRO is
that a simulation of the molecules’ movements and their resultant chemical
reactions. We first describe the general knowledge of the chemical-reaction in
Sect. 25.1. Then, the fundamentals and performance of CRO are introduced in
Sect. 25.2. Next, a selected variation of CRO is explained in Sect. 25.3. Right after
this, Sect. 25.4 presents a representative CRO application. Finally, Sect. 25.5
summarises in this chapter.

25.1 Introduction

Chemistry touches almost every aspect of our lives (e.g., the food we eat), our
culture (e.g., the beliefs we believe), and our environments (e.g., the fuel supplies
we use). From a chemist’s viewpoint, the most interesting things is the concepts of
chemical change or chemical reactions which including combustion reactions,
oxidation-reduction reactions, gas-formation reactions, acid–base reactions etc.
One of the main objectives is to identify ‘‘equal’’ at the molecular level in an
equilibrium reaction (i.e., how far does the reaction go in order to reach its lowest
energy state?) (Whitten et al. 2014).

Recently, realizing that interaction of substances in a chemical reaction were
consistent with the objective of combinatorial optimization problems (e.g., both
aim to seek the global equilibrium and experience in a stepwise fashion), Lam and
Li (2010a) developed a new computation intelligence (CI) method, called chem-
ical reaction optimization (CRO) for the solution of optimization problems. The
basic idea is to mimic the interactions of molecules in a chemical reaction in order
to reach the equilibrium with their environment (Lam and Li 2010a).

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_25, � Springer International Publishing Switzerland 2014

417

25.1.1 Chemical Reaction and Reaction Mechanism

Even before alchemy became a subject of study, many chemical reactions were
used and their products applied to daily life. General speaking, a chemical reaction
or just reaction is a natural process in which one of more substances are transformed
from the unstable substances to the stable ones through the step by step sequence of
elementary reactions (Lam and Li 2012). It is usually accompanied by the release of
large amounts of energy in the form of heat and light. Based on the experimental
studies, Whitten et al. (2014) pointed out that some reactions change in a single
step, but most reactions occur in a series of elementary or fundamental steps. The
step-by-step pathway by which a reaction occurs is called the reaction mechanism.

25.1.2 Basic Components

To understand the mechanism of chemical reactions, several basic concepts should
be known firstly.

25.1.2.1 Molecules (Molecular Structure)

The chemical view of nature is that everything in the world around us is made up
of small units called molecules. It is the smallest particle of an element that can
have a stable independent existence (Zumdahl and Zumdahl 2014). It is usually
composed of more than one kind of atom in a definite ration. For example, a water
molecule consists of two atoms of hydrogen and one atom of oxygen. In terms of
molecular structure (i.e., the order in which molecules are connected) chemists
found that molecules are close together in a solid and a liquid but far apart in a gas.

25.1.2.2 Kinetic and Potential Energy

Energy is defined as the capacity to do work or to transfer heat (Zumdahl and
Zumdahl 2014). Some literatures also described the energy as released (exother-
mic) or absorbed (endothermic) mechanism. We usually classify it into two gen-
eral types: kinetic and potential.

The term ‘‘kinetic’’ comes from the Greek word kinein, meaning ‘‘to move’’
(Whitten et al. 2014). Kinetic energy represents the capacity for doing work
directly. On the other hand, potential energy means that the energy an object
possesses because of its position, condition, or composition. In nature environ-
ments, both energy can be converted. For instance, if we drop a hammer, its
potential energy which is stored in the hammer is converted into kinetic energy as
it falls, and it could do work on something it hits such as drive a nail or break a
piece of glass.

418 25 Chemical-Reaction Optimization Algorithm

25.1.2.3 Collision Mechanism

The term collision is defined as an event during which two molecules come close
to each other and interact by means of forces (Serway and Jewett 2014). In general,
collisions involve two broad categories: elastic and inelastic collisions, depending
on whether or not kinetic energy is conserved.

25.1.2.4 Chemical Equilibrium

From a chemist’s point of view, chemical equilibrium (or stability) means ther-
modynamic stability of a chemical system (Zumdahl and Zumdahl 2014). It occurs
when a system is in its lowest energy state. In addition, this state can be reached by
identifying various reaction conditions such as temperature, pressure, and con-
centrations of reactants used. It plays an important role in the operation of
chemical plants due to it aims for optimizing the amount of different substances.

25.1.3 Basic Laws of Thermodynamics

In this section, we direct our attention to the study of two basic laws of thermo-
dynamics, which provides explanations for the molecules’ energy transfer pro-
cesses: (1) the change in energy, and (2) the change in disorder (called entropy
change). The former is based on the first law of thermodynamics. It explains that
there is no change in the quantity of matter or energy during a chemical reaction; it
can only be converted from one form to other. The latter is based on the second
law of thermodynamics. It is a thermodynamic state function that plays an
important role in the energy transfer.

25.2 Fundamentals of the Chemical-Reaction Optimization
Algorithm

Chemical-reaction optimization (CRO) algorithm is a population-based algorithm
that inspired by chemical reaction where a swarm of molecules through interacting
with each other and finally reach a steady condition. The basic building blocks of
CRO is molecules which are composed of several atoms and characterized by bond
length, angle, and torsion (Lam and Li 2010a). In addition, each molecule pos-
sesses two kinds of energies, i.e., potential energy and kinetic energy. Also (Lam
and Li 2010a) assumed that the chemical reaction of molecules is to take place in a
closed container. As a result, the chemical change of each molecule is triggered by
a collision that either on the walls of the container or with each other.

25.1 Introduction 419

Furthermore, there are two fundamental assumptions of CRO: first, the con-
servation of energy, which means the total amount of energy in the system always
remains constant as defined by Eq. 25.1 (Lam and Li 2010a):

XPopSize tð Þ

i¼1

PExi tð Þ þ KExi tð Þ
� �

þ Buffer tð Þ ¼ C; ð25:1Þ

where PExi tð Þ is the PE of molecule i, KExi tð Þ is the KE of molecule i, PopSize tð Þ is
the number of molecule i, Buffer tð Þ is the energy in the central buffer at time t, and
C is a constant.

Second, the conversation of elementary reactions, which means after an ele-
mentary reaction, the total energy remains equilibrium as expressed in Eq. 25.2
(Lam and Li 2010a):

Xk

i¼1

PExi þ KExið Þ�
Xl

i¼1

PEx0i
;

Xk

i¼1

PExi þ KExið Þ þ Buffer�
Xl

i¼1

PEx0i
;

ð25:2Þ

where k and l are the number of molecules involved before and after a particular
elementary reaction, x and x0 are the molecular structures of an existing molecule
and the one to be generated from the elementary reaction, respectively.

More precisely, the general attributes that adopted in the CRO algorithm are
described as follows:

• Molecular Structure (x): In CRO, the term ‘‘molecular structure’’ is used to
summarize all the characteristics of the molecules (i.e., bond length, angle, and
torsion) and it corresponds to a solution in the mathematical domain. The
presentation of a molecular structure depends on the problem we are solving. It
can be a number, a vector, or even a matrix.

• Potential Energy (PE): In CRO, PE is defined as the objective function value of
the corresponding solution (represented by x) which is expressed as Eq. 25.3
(Lam and Li 2010a):

PEx ¼ f xð Þ; ð25:3Þ

where f denotes the objective function.
• Kinetic Energy (KE): In CRO, KE can be interpreted as a measure of tolerance

for the molecule changing to a less favourable structure (i.e., a solution with
higher functional value). For example, Number of hits (NumHit): The NumHit is
a record of the total number of hits (i.e., collisions) a molecule has taken.
Minimum Structure (MinStruct): The MinStruct is the x with the minimum
corresponding PE which a molecule has attained so far. Minimum Potential

420 25 Chemical-Reaction Optimization Algorithm

Energy (MinPE): MinPE is the lowest value that corresponds to the MinStruct.
Minimum Hit Number (MinHit): In a similar vein, MinHit is the number of hits
when a molecule realizes MinStruct.

• Central Energy Buffer (Buffer): In CRO, Buffer has two functions: first, it can
used to store the lost kinetic energy; second, it can support the decomposition
reaction. Through this transformation, Lam and Li (2010a) attempted to push
the molecular structures with lower and lower PE in the subsequent changes.
This phenomenon is the driving force in CRO to ensure convergence to lower
energy state.

25.2.1 Elementary Reactions

In CRO, Lam and Li (2010a) defined four types of elementary reactions, namely
on-wall ineffective collision, decomposition, inter-molecular ineffective collision,
and synthesis. In the following sections, we will discuss those reactions in details.

25.2.1.1 On-Wall Ineffective Collision

As the name implies, this reaction process happens when a molecule bounces back
after hitting the wall of the reaction container. As the collision is not so vigorous,
the resultant molecular structure should not be too different from the original one,
only some molecular attributes has been changed. Support the current molecular
structure is x, and it is changed in his own neighbourhood as defined by Eq. 25.4
(Lam and Li 2010a):

x! x0; ð25:4Þ

where x0 ¼ Neighbor xð Þ and it is problem-dependent.
The change is allowed only if Eq. 25.5 holds (Lam and Li 2010a):

PEx þ KEx�PEx0 ; ð25:5Þ

where PEx0 ¼ f x0ð Þ.
If Eq. 25.5 does not hold, the change is prohibited and the molecule retains its

original attributes (i.e., x, PE, and KE).
After the collision, a certain portion of molecule’s KE will be extracted by this

reaction and stored in the Buffer when the transformation is complete. The volume
of KE loss depends on a random number q. Its KE is updated via Eq. 25.6 (Lam
and Li 2010a):

KEx0 ¼ PEx þ KEx � PEx0ð Þ � q; ð25:6Þ

25.2 Fundamentals of the Chemical-Reaction Optimization Algorithm 421

where q 2 KELossRate; 1½ �, KELossRate is a parameter of CRO that limits the
maximum percentage of KE lost at a time.

In addition, 1� qð Þ is defined as the fraction of KE lost to the environment
when the molecule hits the wall. This transformation can improve the molecule’s
local search ability and enhance the convergence ability. The update of the buffer
is defined as Eq. 25.7 (Lam and Li 2010a):

Buffer ¼ Buffer þ PEx þ KEx � PEx0ð Þ � 1� qð Þ: ð25:7Þ

25.2.1.2 Decomposition

In this type of reaction, a molecule will strike the wall and then decompose into
small pieces (e.g., two or more). For simplicity, there are only two parts, i.e., x01
and x02 are considered as expressed in Eq. 25.8 (Lam and Li 2010a):

x! x01 þ x02: ð25:8Þ

The newly generated molecular structures will be very much different from
their original one. This transformation implies that other regions (i.e., x01 and x02)
of the solution space can be explored after enough local search by the ineffective
collisions (Lam and Li 2012).

In general, there are two situations should be taken into account for the
decomposition reaction:

• The molecules have enough energy (i.e., PE and KE) to complete the decom-
position. They are expressed as Eq. 25.9 (Lam and Li 2010a):

KEx01
¼ PEx þ KEx � PEx01

� PEx02

� �
� k;

KEx02
¼ PEx þ KEx � PEx01

� PEx02

� �
� 1� kð Þ;

ð25:9Þ

where k is a random number uniformly generated from the interval 0; 1½ �.
The condition to allow the decomposition is defined by Eq. 25.10 (Lam and Li

2010a):

PEx þ KEx�PEx01
þ PEx02

: ð25:10Þ

• The molecules need to get energy from the Buffer. They are expressed as
Eq. 25.11 (Lam and Li 2010a):

KEx01
¼ PEx þ KEx � PEx01

� PEx02
þ Buffer

� �
� m1 � m2;

KEx02
¼ PEx þ KEx � PEx01

� PEx02
þ Buffer � KEx01

� �
� m3 � m4;

ð25:11Þ

422 25 Chemical-Reaction Optimization Algorithm

where m1;m2;m3; and m4 are random numbers independently uniformly
generated from the interval 0; 1½ �.

The condition to allow the decomposition is defined by Eq. 25.12 (Lam and Li
2010a):

PEx þ KEx þ Buffer�PEx01
þ PEx02

: ð25:12Þ

If Eq. 25.12 does not hold, the change is prohibited and the molecule retains its
original attributes (i.e., x, PE, and KE).

The update of the buffer is defined by Eq. 25.13 (Lam and Li 2010a):

Buffer ¼ Buffer þ PEx þ KEx � PEx01
� PEx02

� �
� KEx01

� KEx02
: ð25:13Þ

25.2.1.3 Inter-Molecular Ineffective Collision

When two molecules clash together, instead of combining to form new mole-
cule(s), they bounce away from each other. This type of reaction allows the
molecular structure to change in a larger extent but no KE is drawn to the Buffer
(Lam and Li 2010a). Furthermore, due to two molecules are involved, the sum of
the possessed KE is will larger than that of the on-wall ineffective collision.

Suppose x1 and x2 represent the original two molecular structures, then we
obtain two new molecular (i.e., x01 and x02) from the neighbourhoods as defined by
Eq. 25.14 (Lam and Li 2010a):

x1 ! x01;

x2 ! x02:
ð25:14Þ

The condition to allow the inter-molecular ineffective collision is defined by
Eq. 25.15 (Lam and Li 2010a):

PEx1 þ PEx2 þ KEx1 þ KEx2 �PEx01
þ PEx02

: ð25:15Þ

If Eq. 25.15 does not hold, the change is prohibited and the molecule retains its
original attributes (i.e., x, PE, and KE).

Then, the kinetic energy (KE) of the two new molecules are expressed by
Eq. 25.16 (Lam and Li 2010a):

KEx01
¼ PEx1 þ PEx2 þ KEx1 þ KEx2 � PEx01

� PEx02

� �
� p;

KEx02
¼ PEx1 þ PEx2 þ KEx1 þ KEx2 � PEx01

� PEx02

� �
� 1� pð Þ;

ð25:16Þ

where p is a random number uniformly generated from the interval 0; 1½ �.

25.2 Fundamentals of the Chemical-Reaction Optimization Algorithm 423

25.2.1.4 Synthesis

Synthesis does the opposite of decomposition. In the process of synthesis reaction,
a new molecule (x0) can be generated through the collision. This process implies
that the search regions are expanded, i.e., diversification of solutions.

The combination of these two existing molecular structures is represented by
Eq. 25.17 (Lam and Li 2010a):

x1 þ x2 ! x0: ð25:17Þ

The condition to allow the synthesis collision is defined by Eq. 25.18 (Lam and
Li 2010a):

PEx1 þ PEx2 þ KEx1 þ KEx2 �PEx0 : ð25:18Þ

If Eq. 25.18 does not hold, the change is prohibited and the molecule retains its
original attributes (i.e., x, PE, and KE).

Then, the kinetic energy (KE) of the new molecule is defined by Eq. 25.19
(Lam and Li 2010a):

KEx0 ¼ PEx1 þ PEx2 þ KEx1 þ KEx1ð Þ � PEx0ð Þ: ð25:19Þ

25.2.2 Performance of CRO

To evaluate the performance of the CRO algorithm, Lam and Li (2010a) used
quadratic assignment problem, which is a fundamental combinatorial problem in
operations research, as a running example. Compared with the variants of some
popular evolutionary algorithms, CRO resulted a superior performance in many
test instances.

25.3 Selected CRO Variant

Although CRO algorithm is a new member of computational intelligence (CI)
family, a number of CRO variations have been proposed in the literature for the
purpose of further improving the performance of CRO. This section gives an
overview to some of these CRO variants which have been demonstrated to be very
efficient and robust.

25.3.1 Real-Coded CRO Algorithm

In 2012, Lam et al. (2012) proposed a variant of CRO, called real-coded chemical
reaction optimization (RCCRO) algorithm to solve continuous optimization

424 25 Chemical-Reaction Optimization Algorithm

problems. The main difference between CRO and RCCRO is that RCCRO utilized
the Gaussian distribution function as the perturbation function and some real-
coded-based mechanisms have been developed to implement RCCRO.

More precisely, there are three modifications that adopted in the RCCRO
algorithm are described as follows (Lam et al. 2012):

• Solution Representation: Every solution (s) and its molecular structure (x) in a
continuous search space is a real number vector as defined by Eq. 25.20 (Lam
et al. 2012):

s ¼ s 1ð Þ; . . .; s ið Þ; . . .; s nð Þ½ �;
x ¼ x 1ð Þ; . . .;x ið Þ; . . .;x nð Þ½ �;

ð25:20Þ

where n is the dimension of the problem, s ið Þ and x ið Þ is usually a floating-point
number in the range of l ið Þ; u ið Þ½ �, where l ið Þ and u ið Þ are the lower and upper
bounds of the dimension, respectively.

• Neighbourhood Search Operator: For RCCRO, Lam et al. (2012) utilized the
Gaussian distribution function as the perturbation function to search the con-
tinuous neighbourhoods as defined by Eq. 25.21 (Lam et al. 2012):

x0 ið Þ ¼ x ið Þ þ N 0; r2
� �

: ð25:21Þ

• Boundary Constraint Handling: For RCCRO, Lam et al. (2012) adopted two
schemes (i.e., reflecting scheme and hybrid schem) to handle the boundary
constraints as expressed by Eqs. 25.22 and 25.23, respectively (Lam et al.
2012):

x0 ið Þ ¼ 2� l ið Þ � x ið Þ; if x ið Þ\l ið Þ
2� u ið Þ � x ið Þ; if x ið Þ[u ið Þ

�

; ð25:22Þ

x0 ið Þ ¼

l ið Þ; if t� 0:5ð Þ and x ið Þ\l ið Þð Þ
u ið Þ; if t� 0:5ð Þ and x ið Þ[u ið Þð Þ

2� l ið Þ � x ið Þ; if t [0:5ð Þ and x ið Þ\l ið Þð Þ
2� u ið Þ � x ið Þ if t [0:5ð Þ and x ið Þ[u ið Þð Þ

8
>><

>>:

; ð25:23Þ

where t is a random number drawn from 0; 1½ �, and l ið Þ and u ið Þ are the lower
and upper bounds of the dimension, respectively.

25.3.2 Performance of RCCRO

To implement the efficient of RCCRO, a large set of standard benchmark functions
have been tested and compared with classical evolutionary programming (CFP),
conventional evolutionary strategy (CES), covariance matrix adaptation evolution

25.3 Selected CRO Variant 425

strategy (CMAES), differential evolution (DE), fast evolutionary programming
(FEP), fast evolutionary strategy (FES), generalized generation gap model with
generic parent-centric recombination operator (G3PCX), group search optimizer
(GSO), real-coded biogeography-based optimization (RCBBO), standard genetic
algorithm (GA), and particle swarm optimization (PSO). Computational results
showed that RCCRO has a higher ability to work well in the continuous domain.

25.4 Representative CRO Application

In this section, we introduced how the CRO algorithm can be adapted to solve
quadratic assignment problem.

25.4.1 Quadratic Assignment Problem

Quadratic assignment problem (QAP) is one of the most difficult problems in the
NP-hard class that arises in real-world applications, such as facilities location,
parallel and distributed computing, and combinatorial data analysis. The main
objective of QAP is to find the optimal assignment of n facilities to n locations
(Loiola et al. 2007).

Compared with traditional CI methods [such as fast ant system (FAS), an
improved simulated annealing (ISA), and Tabu search (TS)], CRO resulted a
superior performance in many test instances. In addition, for solving QAP, Xu
et al. (2010b) proposed a parallel version of CRO, in which a synchronous com-
munication strategy is integrated. The computational results showed that the
parallel CRO method gets better solutions’ quality and less running time with
those of the sequential version of CRO.

25.5 Conclusions

The CRO algorithm is a newly developed evolutionary CI approach that motivated
by the molecules’ energy exchange in a chemical reaction. The basic building
block of CRO is the molecules. Each of them has a molecular structure (i.e., a
solution of a given problem), and possesses two kinds of energies: (1) potential
energy (i.e., the objective function value of a given problem), (2) kinetic energy
(i.e., the ability of escaping from a local minimum). In addition, four elementary
reactions, which are occurred either with the walls of the container or with each
other, have been implemented to balance the exploitation and the exploration
process, namely on-wall ineffective collision, inter-molecular ineffective collision,
decomposition and synthesis. Also, CRO enjoys the advantages of both SA and

426 25 Chemical-Reaction Optimization Algorithm

GA in terms of the law of energy conservation in SA and the utilization of
recombination operator (i.e., crossover) and the mutation operator in GA,
respectively. Although CRO is a newly CI methods, we have witnessed the fol-
lowing rapid spreading of CRO:

First, in addition to the selected variant detailed in this chapter, several
enhanced version of CRO can also be found in the literature as outlined below:

• Canonical CRO (Xu et al. 2011b).
• CRO with greedy strategy (Truong et al. 2013).
• CRO with Lin-Kernighan local search (Sun et al. 2011).
• Discrete CRO (Li and Pan 2012).
• Double molecular structure-based CRO (Xu et al. 2013).
• Parallel version of CRO (Xu et al. 2010b).
• Simplified version of CRO (Khavari et al. 2011).
• Super molecule-based CRO (Xu et al. 2011b).

Second, apart from the representative application, the CRO algorithm has also
been successfully applied to a variety of optimization problems as listed below:

• Artificial neural network training (Yu et al. 2011).
• Channel assignment problem in wireless mesh networks (Lam and Li 2010a).
• Cognitive radio spectrum allocation problem (Lam and Li 2010b; Lam et al.

2013).
• Flexible job-shop scheduling problem (Li and Pan 2012).
• Fuzzy job-shop scheduling problem (Li and Pan 2013).
• Grid scheduling problem (Xu et al. 2010a, 2011a).
• Network coding optimization problem (Pan et al. 2011).
• Population transition problem in peer-to-peer live streaming (Lam et al. 2010).
• Resource-constrained project scheduling problem (Lam and Li 2010a).
• Standard continuous benchmark functions (Lam et al. 2012).
• Stock portfolio selection problem (Xu et al. 2011b).
• Travelling salesman problem (Sun et al. 2011).

Interested readers are referred to them, together with an excellent tutorial
regarding CRO introduced by Lam and Li (2012), as a starting point for a further
exploration and exploitation of the CRO algorithm.

References

Khavari, F., Naseri, V., & Naghshbandy, A. H. (2011). Optimal PMUs placement for power
system observability using grenade explosion algorithm. International Review of Electrical
Engineering, 6.

Lam, A. Y. S., & Li, V. O. K. (2010a). Chemical-reaction-inspired metaheuristic for
optimization. IEEE Transactions on Evolutionary Computation, 14, 381–399.

Lam, A. Y. S., & Li, V. O. K. (2010b). Chemical reaction optimization for cognitive radio
spectrum allocation. IEEE Global Communication Conference (IEEE GLOBECOM 2010)
(pp. 1–5), December. Miami, FL, USA.

25.5 Conclusions 427

Lam, A. Y. S., & Li, V. O. K. (2012). Chemical reaction optimization: a tutorial. Memetic
Computing, 4, 3–17.

Lam, A. Y. S., Xu, J., & Li, V. O. K. (2010, July 18–23). Chemical reaction optimization for
population transition in peer-to-peer live streaming. IEEE World Congress on Computational
Intelligence, CCIB (pp. 1429–1436). Barcelona, Spain.

Lam, A. Y. S., Li, V. O. K., & Yu, J. J. Q. (2012). Real-coded chemical reaction optimization.
IEEE Transactions on Evolutionary Computation, 16, 339–353.

Lam, A. Y. S., Li, V. O. K., & Yu, J. J. Q. (2013). Power-controlled cognitive radio spectrum
allocation with chemical reaction optimization. IEEE Transactions on Wireless Communi-
cations, 12, 3180–3190. doi:10.1109/TWC.2013.061713.120255.

Li, J.-Q., & Pan, Q.-K. (2012). Chemical-reaction optimization for flexible job-shop scheduling
problems with maintenance activity. Applied Soft Computing, 12, 2896–2912. http://dx.doi.
org/10.1016/j.asoc.2012.04.012.

Li, J.-Q., & Pan, Q.-K. (2013). Chemical-reaction optimization for solving fuzzy job-shop
scheduling problem with flexible maintenance activities. International Journal of Production
Economics, 145, 4–17. doi:http://dx.doi.org/10.1016/j.ijpe.2012.11.005.

Loiola, E. M., Abreu, N. M. M. D., Boaventura-Netto, P. O., Hahn, P., & Querido, T. (2007). A
survey for the quadratic assignment problem. European Journal of Operational Research,
176, 657–690.

Pan, B., Lam, A. Y. S., & Li, V. O. K. (2011). Network coding optimization based on chemical
reaction optimization. IEEE Global Communications Conference (GLOBECOM), December.
Houston, TX, USA.

Serway, R. A., & Jewett, J. W. (2014). Physics for scientists and engineers with modern physics.
Boston: MA, USA, Brooks/Cole CENAGE Learning. ISBN 978-1-133-95405-7.

Sun, J., Wang, Y., Li, J., & Gao, K. (2011). Hybrid algorithm based on chemical reaction
optimization and Lin-Kernighan local search for the traveling salesman problem. IEEE
Seventh International Conference on Natural Computation (ICNC), pp. 1518–1521.

Truong, T. K., Li, K., & Xu, Y. (2013). Chemical reaction optimization with greedy strategy for
the 0–1 knapsack problem. Applied Soft Computing, 13, 1774–1780.

Whitten, K. W., Davis, R. E., Peck, M. L., & Stanley, G. G. (2014). Chemistry. Brooks/Cole,
Cengage Learning: USA. ISBN 13: 978-1-133-61066-3.

Xu, J., Lam, A. Y. S., & Li, V. O. K. (2010a). Chemical reaction optimization for the grid
scheduling problem. IEEE International Conference on Communications (ICC), May, pp. 1–5.

Xu, J., Lam, A. Y. S., & Li, V. O. K. (2010b). Parallel chemical reaction optimization for the
quadratic assignment problem. Internatimonal Conference of Genetic Evolutionary Methods
(GEM), part of 2010 World Congress on Computer Science, Computer Engineering, and
Applied Computing (WORLDCOMP) (pp. 1–7). July, Las Vegas, NV, USA.

Xu, J., Lam, A. Y. S., & Li, V. O. K. (2011a). Chemical reaction optimization for task scheduling
in grid computing. IEEE Transactions on Parallel and Distributed Systems, 22, 1624–1631.

Xu, J., Lam, A. Y. S., & Li, V. O. K. (2011b). Stock portfolio selection using chemical reaction
optimization. World Academy of Science, Engineering and Technology, 77, 458–463.

Xu, Y., Li, K., He, L., & Truong, T. K. (2013). A DAG scheduling scheme on heterogeneous
computing systems using double molecular structure-based chemical reaction optimization.
Journal of Parallel and Distributed Computing, 73, 1306–1322.

Yu, J. J. Q., Lam, A. Y. S., & Li, V. O. K. (2011). Evolutionary artificial neural network based on
chemical reaction optimization. Proceedings of the IEEE Congress on Evolutionary
Computation (CEC) (pp. 2083–2090), June, New Orleans, LA, USA.

Zumdahl, S. S., & Zumdahl, S. A. (2014). Chemistry, 20 Davis Drive, Belmont, CA 94002-3098.
Brooks/Cole, Cengage Learning: USA. ISBN 13: 978-1-133-61109-7.

428 25 Chemical-Reaction Optimization Algorithm

http://dx.doi.org/10.1109/TWC.2013.061713.120255
http://dx.doi.org/10.1016/j.asoc.2012.04.012
http://dx.doi.org/10.1016/j.asoc.2012.04.012
http://dx.doi.org/10.1016/j.ijpe.2012.11.005

Chapter 26
Emerging Chemistry-based CI Algorithms

Abstract In this chapter, a set of emerging chemistry-based computational
intelligence (CI) algorithms are introduced. We first, in Sect. 26.1, describe the
organizational structure of this chapter. Then, from Sect. 26.2 to Sect. 26.5, each
section is dedicated to a specific algorithm which falls within this category. The
fundamentals of each algorithm and their corresponding performances compared
with other CI algorithms can be found in each associated section. Finally, the
conclusions drawn in Sect. 26.6 closes this chapter.

26.1 Introduction

A novel chemistry-based algorithm (i.e., chemical-reaction optimization algo-
rithm) was detailed in the previous chapter. Apart from this quasi-mature chem-
istry principle inspired computational intelligence (CI) methods, there are some
emerging algorithms also fall within this category. This chapter collects four of
them that are currently scattered in the literature and organizes them as follows:

• Section 26.2: Artificial Chemical Process Algorithm.
• Section 26.3: Artificial Chemical Reaction Optimization Algorithm.
• Section 26.4: Chemical Reaction Algorithm.
• Section 26.5: Gases Brownian Motion Optimization Algorithm.

The effectiveness of these newly developed algorithms are validated through
the testing on a wide range of benchmark functions and engineering design
problems, and also a detailed comparison with various traditional performance
leading CI algorithms, such as particle swarm optimization (PSO), genetic algo-
rithm (GA), differential evolution (DE), evolutionary algorithm (EA), fuzzy sys-
tem (FS), ant colony optimization (ACO), and simulated annealing (SA).

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_26, � Springer International Publishing Switzerland 2014

429

26.2 Artificial Chemical Process Algorithm

In this section, we will introduce an emerging CI algorithm that is based on an
artificial chemical process.

26.2.1 Fundamentals of Artificial Chemical Process
Algorithm

Artificial chemical process algorithm (ACPA) was proposed in Irizarry (2004,
2005a, b, 2011). In ACPA, each solution is viewed as a vector and encoded into a
set of independent discrete variables (xj; j ¼ 1; . . .;V), called molecules. The
major feature of ACPA is the use of multiple encoding and the application of
certain kinds of constraints. The main steps of ACPA are outlined as follows
(Irizarry 2004, 2005a, b, 2011):

• Initialization: The algorithm starts by initializing xg (the value of the best
solution found so far, xg ¼ xg

1; . . .; xg
V

� �
) randomly and placing all variables in

L (set AR ¼ E ¼ S ¼ ;, L ¼ x1; . . .; xVf g). Let L (load unit), AR (activation-
reactor), E (extraction unit), and S (separation unit) be four disjunctive sets
whose elements are the molecule variables.

• Outer loop: Perturbation to form AR.
First, select a random number Trxj j Trxj j � Lj jð Þ, from a uniform probability
distribution function (PDF) by using Eq. 26.1 (Irizarry 2004, 2005a, b, 2011):

Trxj j ¼ min int q V � c0½ � þ 1ð Þ; Lj jf g; ð26:1Þ

where q is uniformly distributed in (0,1), and c0 is an adjustable parameter used
to select the average fraction of elements to be selected from V, which is the
total number of molecules representing the possible solutions to the problem.
Second, select Trxj j elements randomly from L to form the subset Trx Trx � Lð Þ.
Third, transfer the subset to AR: L ¼ LnTrx; AR ¼ AR [Trx.
Fourth, select a random new value for each molecule variable in Trx: xa

j 6¼
xg

j ; 8j 2 Trx:

Fifth, the new trial vector (xt ¼ xt
1; . . .; xt

V

� �
) is generated using Eq. 26.2 (I-

rizarry 2004, 2005a, b, 2011):

xt
j ¼

xg
j if xj 62 AR

xa
j if xj 2 AR

�

: ð26:2Þ

Sixth, if F xtð Þ\F xgð Þ, the trial vector is accepted as a new best solution found,
i.e., xg ¼ xt. In this case, all of the elements in AR are set to the set
S: S ¼ S [AR; AR ¼ ø. If the algorithm termination criterion is achieved, exit
the algorithm and return xg as the solution to the optimization problem.

430 26 Emerging Chemistry-based CI Algorithms

Seventh, if a better solution was found in Sixth, skip the inner loop and perform
another outer loop iteration: go to check the algorithm termination criterion;
otherwise, continue with Eighth.
Eighth, initialize the parameter RP (reactor performance): RP ¼ F xtð Þ. This
parameter is used and modified in the ‘‘goodness’’ test in the inner loop. Also set
ARj j0 ¼ ARj j, which is the initial number of molecules in AR before starting the

next inner loop.
• Inner loop: Iterative improvement of AR.

First, select a random number Ej j, from a prescribed PDF, Ej j � ARj j. It can be
defined by Eq. 26.3 (Irizarry 2004, 2005a, b, 2011):

Ej j ¼ min int q ARj j0 � ci

� �
þ 1

� �
; ARj j

� �
; ð26:3Þ

where ARj j0 is defined in the outer loop (i.e., Eighth), and ci is another
adjustable parameter.
Second, select Ej j elements randomly from AR to form the subset E.
Third, extract the subset E from AR : AR ¼ ARnE.
Fourth, the new trial vector (xt ¼ xt

1; � � � ; xt
V

� �
) is generated using Eq. 26.2.

Fifth, if F xtð Þ\F xgð Þ, the trial vector is accepted as a new best solution found,
i.e., xg = xt. In this case, all of the elements in AR are set to the set
S : S ¼ S [AR; AR ¼ ø. If the algorithm termination criterion is achieved, exit
the algorithm and return xg as the solution to the optimization problem.
Sixth, if F xtð Þ�RP, the hypothesis is that there is a high probability that most
elements in E will prefer to stay in their ground stat ðxj ¼ xg

j Þ to generate better
solutions. In this case, the elements in E are transferred to S : S ¼ S [E; E ¼ ø;
and the metric RP is updated, RP ¼ F xtð Þ. If F(xt) [RP, the hypothesis is that
there is a high probability that most elements in E will induce a better solution if
they are in a different state from their ground state. In this case, a new activated

state is generated for all elements in E xj ¼ xa
j 6¼ xg

j ; 8j 2 E
� �

, and all of the

elements in E are transferred back to AR AR ¼ AR [E; E ¼ øð Þ:
• Check conditions to exit or continue the inner loop.
• Check the number of elements in L and AR using Eq. 26.4 (Irizarry 2004, 2005a,

b, 2011):

Lj j\LT; L ¼ L [S; S ¼ ø

ARj j ¼ V or Lj j � LT ; L ¼ L [AR; AR ¼ ø

�

: ð26:4Þ

• Check the termination criteria.

26.2 Artificial Chemical Process Algorithm 431

26.2.2 Performance of ACPA

To test the performance of ACPA, a set of benchmark functions are conducted in
Irizarry (2004). Compared with other CI algorithms (such as GA), computational
results showed that the proposed algorithm outperforms GA in terms of conver-
gence speed and the solutions’ quality.

26.3 Artificial Chemical Reaction Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
studies of chemical reaction (Koretsky 2013; Miessler et al. 2014; Skoog et al.
2014; Whitten et al. 2014; Zumdahl and Zumdahl 2014; Finlayson 2012; Duncan
2009; Waltar et al. 2012; Weinhold and Landis 2012; Borgnakke and Sonntag
2013; Tadmor et al. 2012).

26.3.1 Fundamentals of Artificial Chemical Reaction
Optimization Algorithm

Artificial chemical reaction optimization algorithm (ACROA) was recently pro-
posed in Alatas (2011, 2012). The working principles are described as follows:
suppose there is a vessel which has a fixed volume and holds a number of
N reactants. These chemical substances are spatially and uniformly mixed and
interact with each other via particular ways of chemical reaction. Let Ri (for
1� i�N) be the list of chemical substances, and the authors also make an
assumption that these reactants an interact through N specified chemical reaction
pipelines. Based on the targeted problem, the reactants involved in ACROA can be
encoded in different manners, such as binary, real, and string. A new reactant can
be created as a result of the interaction between one of more reactants by following
different reaction rules which depends on the previously defined encoding
schemes.

Typically, ACROA starts with a group of initial populations (i.e., reactants),
then it proceeds with the process of these initial substances being consumed and
new substances being reproduced, and finally, the ACROA stops at an inert sit-
uation, namely, no more chemical reactions could happen. Built on this simple
concept, the following steps need to be performed for implementing ACROA
(Alatas 2011, 2012; Yang et al. 2011):

• Stage 1: Initializing the parameters of focal problem and algorithm.
• Stage 2: Determining the initial population of reactants and evaluation.

432 26 Emerging Chemistry-based CI Algorithms

• Stage 3: Performing different chemical reactions mechanisms such as synthesis,
decomposition, single/double displacement, combustion, redox, and reversible
reactions.

• Stage 4: Updating chemical reaction reactants.
• Stage 5: Checking the stopping criterion.

26.3.2 Performance of ACROA

In order to show how the ACROA performs, Alatas (2012) employed ACROA to
find comprehensible IF–THEN rules within two real-world data sets, namely, Zoo
and Nursery by following two procedures listed below (Alatas 2012):

• Rule representation: For each focal data set, let us first suppose the number of
predictable attributes is denoted by na; then, in ACROA, each participated
reactant is assumed to have na atoms with each atoms corresponding to one
potential attribute.

• Rule evaluation: Normally, the objective function for rule extraction is com-
posed of two objectives (i.e., comprehensibility and predictive accuracy). The
mathematical expressions of comprehensibility and predictive accuracy can be
obtained via Eqs. 26.5 and 26.6, respectively (Alatas 2012):

Comprehensibility ¼ 1� No: of attributes in the reactant
No: of predicting attribute

; ð26:5Þ

Predictive Accuracy ¼
Aþ Cj j � 1

2

Aj j ; ð26:6Þ

where Aþ Cj j denotes the number of cases satisfying both the antecedent and
consequent rules, and Aj j represents the number of cases satisfying the ante-
cedent rule only. Built on this, the final objective function can be expressed
using Eq. 26.7 (Alatas 2012):

Objective Function ¼w1 � Comprehensibilityð Þ
þ w2 � Predictive Accuracyð Þ

; ð26:7Þ

where w1 and w2 are weights that usually defined by user.

The number of the initial population was set as 50 and the stopping criterion
was defined as when the best value of objective function has no changes after 10
continuous generations. The rules obtained by using ACROA were compared with
the other competitor algorithm called genetic algorithm. At the end of the study,
Alatas (2012), claimed that, when taking into account of predictive accuracy, the
performance of ACROA is slightly better than GA on the chosen data sets. It
seems like the ACROA can be treated as a potential effective search approach in
dealing with different types optimization problems.

26.3 Artificial Chemical Reaction Optimization Algorithm 433

26.4 Chemical Reaction Algorithm

In this section, we will introduce an emerging CI algorithm that is also derived
from the observations of chemical reaction process (Koretsky 2013; Miessler et al.
2014; Skoog et al. 2014; Whitten et al. 2014; Zumdahl and Zumdahl 2014; Fin-
layson 2012; Duncan 2009).

26.4.1 Fundamentals of Chemical Reaction Algorithm

Chemical reaction algorithm (CRA) was recently proposed in Melin et al. (2013).
In CRA, each element (or compound) is viewed as a solution. Like other algo-
rithms, the fitness of the elements will be evaluated in accordance with the
objective function. The main difference between CRA and other CI algorithms is
that no external parameters are taken into account to evaluate the results. As a
result, it is a very straight forward methodology that only takes the basic char-
acterises of chemical reactions (i.e., synthesis, decomposition, single-substitution,
and double-substitution) into account to find the optimal solutions. The main steps
of CRA can be described as follows (Melin et al. 2013):

• Step 1: Defining the optimization problem and initializing the optimization
parameters.

• Step 2: Generating the initial population pool randomly.
• Step 3: Evaluate the initial pool.
• Step 4: Identify the best_solution.
• Step 5: Select elements to react. This is an iterative process that includes four

parts: (1) Perform the elements reactions, i.e., synthesis, decomposition, single-
substitution, and double-substitution; (2) Evaluate those reactions; (3) Apply
elitist_reinsertion and get improved_pool; (4) Update the best_solution.

• Step 6: Post process and visualize results.

26.4.2 Performance of CRA

Melin et al. (2013) applied CRA to solve the tracking control problem, specially
for the dynamic model of a unicycle mobile robot. Simulation results showed that
CRA outperforms the results previously obtained from GA.

26.5 Gases Brownian Motion Optimization Algorithm

In this section, we will introduce an emerging CI algorithm that is based on the
behaviour of molecule motion (Tian 2013; Durrett 1984; Shlesinger et al. 1999;
Bolstad 2012; Lyshevski 2007; Yin 2013).

434 26 Emerging Chemistry-based CI Algorithms

26.5.1 Fundamentals of Gases Brownian Motion
Optimization Algorithm

Gases Brownian motion optimization (GBMO) algorithm was originally proposed
in Abdechiri et al. (2013). In GBMO, the agents are a swarm of molecules and
their corresponding positions are normally used to measure each molecule’s per-
formance. Since each position is treated as a part of the candidate solution, the
GBMO algorithm thus proceeds through an appropriate adjustment of two types of
motions, namely, gases Brownian motion and turbulent rotational motion. Typi-
cally, the molecule agents involved in GBMO have four specifications (i.e.,
position, mass, velocity, and turbulent radius). To implement the GBMO algo-
rithm, the following steps need to be performed (Abdechiri et al. 2013):

• Stage 1: Initializing initial population (i.e., number of molecules and their rel-
ative locations). In original GBMO, the molecules’ positions are randomly
distributed in an array manner.

• Stage 2: Taking into account of a random radius of turbulence for each involved
molecule and such radius usually falls within the range of [0, 1].

• Stage 3: Assigning a temperature to the system. Since in real-world temperature
can affect molecules’ moving velocity, the user defined temperature plays an
important role in balancing the GBMO’s capability of exploitation and explo-
ration which in turn will have a great influence on the converging speed of the
algorithm.

• Stage 4: Updating molecules’ velocity and position via Eqs. 26.8 and 26.9,
respectively (Abdechiri et al. 2013):

vd
i t þ 1ð Þ ¼ vd

i tð Þ þ
ffiffiffiffiffiffiffiffi
3kT

m

r

; ð26:8Þ

xd
i t þ 1ð Þ ¼ xd

i tð Þ þ vd
i tð Þ; ð26:9Þ

where the ith molecule’s velocity and position are denoted by Xi ¼
x1

i ; x
2
i ; . . .; xn

i

� �
and Vi ¼ v1

i ; v2
i ; . . .; vn

i

� �
, respectively.

• Stage 5: Evaluating the fitness values of molecules.
• Stage 6: Performing turbulent rotational motion according to Eq. 26.10 (Abd-

echiri et al. 2013):

xd
i t þ 1ð Þ ¼ xd

i tð Þ þ b� a

2p

� �
� sin 2pxd

i tð Þ
� �

�mod 1ð Þ; ð26:10Þ

where, under the settings of a = 0.5 and b = 0.2, a chaotic sequence within (0, 1)
could be created, and xd

i denotes the present location of a molecule during a
turbulent rotational motion.

• Stage 7: Comparing the values of the objective function with molecules’ new
positions.

26.5 Gases Brownian Motion Optimization Algorithm 435

• Stage 8: Updating the values of mass and temperature. A lighter mass of a
molecule normally results in a higher velocity which is often linked with a more
efficient searching ability. In GBMO, the mass of a molecule is updated by
Eq. 26.11 (Abdechiri et al. 2013):

mi tð Þ ¼ fiti tð Þ � worst tð Þ
best tð Þ � worst tð Þ ; ð26:11Þ

where fiti tð Þ stands for the fitness value of the ith molecule at time t. Meanwhile,
the temperature parameter is updated through Eq. 26.12 (Abdechiri et al. 2013):

T ¼ T � 1
mean fiti tð Þð Þ

 �

: ð26:12Þ

• Stage 9: Checking whether the stopping criterion is met. If yes, terminating the
algorithm; otherwise, repeating the iterations of Stages 3–7.

26.5.2 Performance of GBMO

In order to show how the GBMO algorithm performs, Abdechiri et al. (2013) used
seven benchmark test functions, such as Sphere function, Rastrigin function, and
Rosenbrock function. Compared with other CI techniques (e.g., PSO, GA), The
experimental results demonstrated that GBMO outperforms the other methods
when dealing with the high dimensionality optimization problems. In terms of
computational complexity, the GBMO is O(n) which is less than GA but slightly
higher than PSO.

26.6 Conclusions

In this chapter, four emerging chemistry-based CI methodologies are discussed.
Although most of them are still in their infancy, their usefulness has been dem-
onstrated throughout the preliminary corresponding studies. Interested readers are
referred to them as a starting point for a further exploration and exploitation of
these innovative CI algorithms.

References

Abdechiri, M., Meybodi, M.R., Bahrami, H., (2013). Gases Brownian motion optimization: An
algorithm for optimization (GBMO). Applied Soft Computing, 13, 2932–2946. (http://
dx.doi.org/10.1016/j.asoc.2012.03.068).

Alatas, B. (2011). ACROA: Artificial chemical reaction optimization algorithm for global
optimization. Expert Systems with Applications, 38, 13170–13180.

436 26 Emerging Chemistry-based CI Algorithms

http://dx.doi.org/10.1016/j.asoc.2012.03.068
http://dx.doi.org/10.1016/j.asoc.2012.03.068

Alatas, B. (2012). A novel chemistry based metaheuristic optimization method for mining of
classification rules. Expert Systems with Applications, 39, 11080–11088.

Bolstad, T. M. (2012). Brownian motion. Department of Physics and Technology, University of
Bergen.

Borgnakke, C., & Sonntag, R. E. (2013). Fundamentals of thermodynamics. Hoboken: Wiley.
ISBN 978-1-118-13199-2.

Duncan, A. (2009). Introduction to chemical engineering processes. Chandni Chowk: Global
Media. ISBN 978-93-80168-32-6.

Durrett, R. (1984). Brownian motion and martingales in analysis. Belmont: Wadsworth
Advanced Books & Software, A Division of Wadsworth, Inc. ISBN 0-534-03065-3.

Finlayson, B. A. (2012). Introduction to chemical engineering computing. Hoboken: Wiley.
ISBN 978-0-470-93295-7.

Irizarry, R. (2004). LARES: An artificial chemical process approach for optimization.
Evolutionary Computation Journal, 12, 1–8.

Irizarry, R. (2005a). Fuzzy classification with an artificial chemical process. Chemical
Engineering Science, 60, 399–412.

Irizarry, R. (2005b). A generalized framework for solving dynamic optimization problems using
the artificial chemical process paradigm: Applications to particulate processes and discrete
dynamic systems. Chemical Engineering Science, 60, 5663–5681.

Irizarry, R. (2011). Global and dynamic optimization using the artificial chemical process
paradigm and fast Monte Carlo methods for the solution of population balance models. In I.
Dritsas (Ed.), Stochastic optimization—seeing the optimal for the uncertain, Chapter 16.
Rijeka: InTech. ISBN 978-953-307-829-8.

Koretsky, M. D. (2013). Engineering and chemical thermodynamics. Hoboken: Wiley.
Lyshevski, S. E. (Ed.). (2007). Nano and molecular electronics handbook. Boca Raton: CRC

Press, Taylor & Francis Group. ISBN 978-0-8493-8528-5.
Melin, P., Astudillo, L., Castillo, O., Valdez, F., & Valdez, F. (2013). Optimal design of type-2 and

type-1 fuzzy tracking controllers for autonomous mobile robots under perturbed torques using
a new chemical optimization paradigm. Expert Systems with Applications, 40, 3185–3195.

Miessler, G. L., Fischer, P. J., & Tarr, D. A. (2014). Inorganic chemistry. Upper Saddle River:
Pearson Education, Inc. ISBN 978-0-321-81105-9.

Shlesinger, M. F., Klafter, J., & Zumofen, G. (1999). Above, below and beyond Brownian
motion. American Journal of Physics, 67, 1253–1259.

Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2014). Fundamentals of analytical
chemistry. Belmont: Brooks/Cole, Cengage Learning. ISBN 13: 978-0-495-55828-6.

Tadmor, E. B., Miller, R. E., & Elliott, R. S. (2012). Continuum mechanics and thermodynamics:
From fundamental concepts to governing equations. Cambridge: Cambridge University Press.
ISBN 978-1-107-00826-7.

Tian, J. (Ed.). (2013). Molecular imaging: Fundamentals and applications. Hangzhou,
Heidelberg and New York: Zhejiang University Press and Springer. ISBN 978-7-308-
08271-6; 978-3-642-34302-5.

Waltar, A. E., Todd, D. R., & Tsvetkov, P. V. (Eds.). (2012). Fast spectrum reactors. New York
and Heidelberg: Springer Science + Business Media LLC. ISBN 978-1-4419-9571-1.

Weinhold, F., & Landis, C. R. (2012). Discovering chemistry with natural bond orbitals.
Hoboken: Wiley. ISBN 978-1-118-11996-9.

Whitten, K. W., Davis, R. E., Peck, M. L., & Stanley, G. G. (2014). Chemistry. Belmont: Brooks/
Cole, Cengage Learning. ISBN 13: 978-1-133-61066-3.

Yang, S.-D., YI, Y.-L., & Shan, Z.-Y. (2011). Gbest-guided artificial chemical reaction algorithm
for global numerical optimization. Procedia Engineering, 24, 197–201.

Yin, Y. (Ed.). (2013). Responsive photonic nanostructures: Smart nanoscale optical materials.
Cambridge: The Royal Society of Chemistry. ISBN 978-1-84973-653-4.

Zumdahl, SS., Zumdahl, SA. (2014). Chemistry. Belmont: Brooks/Cole, Cengage Learning. 978-
1-133-61109-7

References 437

Part V
Mathematics-based CI Algorithms

Chapter 27
Base Optimization Algorithm

Abstract In this chapter, the base optimization algorithm (BaOA), a global
optimization method inspired from mathematics research, is introduced. We first,
in Sect. 27.1, describe the background knowledge of mathematics. Then, the
fundamentals and performance of BaOA are detailed in Sect. 27.2. Finally,
Sect. 27.3 draws the conclusions of this chapter.

27.1 Introduction

It is hard to imagine our human society today without vast amount of advanced
technologies. In particular during the past decades, we have witnessed a prolifera-
tion of personal computers, smart phones, high-speed Internet, to name a few. The
rapid development of various technologies has reduce the necessity for human
beings to perform manual tasks which are either tedious or dangerous in nature, as
computers may now accomplish most of them. As one of the most important
building blocks, mathematics plays a crucial role in realizing all these technologies.
The history of mathematics is no doubt tremendous long. According to (Anglin
1994), Aristotle thought that is the priests in Egypt who actually started mathematics
since the priestly class was allowed leisure. Whereas, Herodotus, believed that
geometry was created to re-determine land boundaries due to the annual flooding of
the Nile. The accurate beginning of mathematics is of course out of the scope of this
book. For the rest of this section, we just want to give readers a quick refreshment
about several basic arithmetic operators that form the base of mathematics.

27.1.1 Basic Arithmetic Operators

In mathematics, the four basic arithmetic operators are (Bird 2005): addition (þ),
subtraction (�), multiplication (�), and division (�).

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_27, � Springer International Publishing Switzerland 2014

441

• For addition and subtraction, when unlike signs are together in a calculation, the
overall sign is negative. Therefore, adding minus 5 to 6 is 6þ �5ð Þ and turns
out to be 6� 5 ¼ 1. Like signs together give an overall positive sign. Thus
subtracting minus 5 from 6 is 6� �5ð Þ and becomes 6þ 5 ¼ 11.

• For multiplication and division, when the numbers have unlike signs, the answer
will be negative; nevertheless, when the numbers have like signs, the answer is
positive. As a result, 6� �5ð Þ ¼ �30, and �6ð Þ � �5ð Þ ¼ þ30. Similarly, the
following expressions also hold:

�5
6
¼ � 5

6
and

�5
6
¼ þ 5

6
:

27.2 Base Optimization Algorithm

27.2.1 Fundamentals of Base Optimization Algorithm

Inspired from mathematical studies, Salem (2012) recently proposed a novel
computational intelligence (CI) technique, namely, the base optimization algorithm
(BaOA). The main characteristics of BaOA lies in that the standard arithmetic
operators are used in combination with a displacement parameter for leading the
solutions to reach the optimum position.

Briefly, the BaOA works as follows (Salem 2012):

• First, a set of the solution points (S1 . . . Sn) are randomly created, each with
d dimensions;

• Second, each solution point is examined in such a way that each dimension is
updated whenever an arithmetic operator move the solution point to a new
position with a better value. This process is executed on all solution points so
that the search for optimum solution can be continued;

• Third, the algorithm terminates when the current solution points do not give
better value or no improvement is acquired after a certain round of iterations.
Under this situation, it is concluded that the optimum solution has been located.

For the purpose of simplicity, the arithmetic operators used in BaOA are limited
to addition (þ), subtraction (�), multiplication (�), and division (�) for now.
These operators can, of course, be extended to any other operators according to
users’ requirements.

Summarizing the steps in BaOA yields to (Salem 2012):

• Step 1: Randomly generate n solution point S1; . . .; Snð Þ, each with
d � dimensions.

• Step 2: Initializing the parameters.
• Step 3: For each solution point Si, calculate its fitness value f Sið Þ.

442 27 Base Optimization Algorithm

• Step 4: For each dimension of Si, update the jth dimension with basic arithmetic
operators via Eq. 27.1 (Salem 2012):

Sþi j½ � ¼ Si j½ � þ d

S�i j½ � ¼ Si j½ � � d

S�i j½ � ¼ Si j½ � � d

S%
i j½ � ¼ Si j½ �=d

9
>>>>=

>>>>;

Rmin� S�i j½ � �Rmax : ð27:1Þ

• Step 5: Re-compute the fitness values fþ; f�; f�; and f %:
• Step 6: Update the fitness value f Sið Þ with the best value via Eq. 27.2 (Salem

2012):

f Sið Þ ¼ min fjþ; fj�; fj�; fj%
� �

: ð27:2Þ

• Step 7: Check the termination criteria.

27.2.2 Performance of BaOA

In (Salem 2012), three benchmark function sets (i.e., unimodal functions, functions
with many or few local maxima) were used to test the performance of the proposed
BaOA. These functions include sphere model function, generalized Rosenbrock’s
function, generalized Schwefel’s function, generalized Rastrigin’s function,
Ackley’s function, generalized Griewank’s function, six-hump camel back func-
tion, and the Goldstein-Price function. Compared with convention CI techniques,
the BaOA reaches a 100 % success rate along with the minimum number of
iterations.

27.3 Conclusions

In summary, the BaOA used the basic arithmetic operators (i.e., þ, �, �, �)
combining a displacement parameter to guide and redirect the solutions toward the
optimum point. One of the main features of BaOA is, unlike the standard particle
swarm optimization (PSO), the search process of BaOA can be performed with a
single search which has the capability of learning how to find its way to the desired
optimum point. Therefore, the BaOA does not necessarily need the cooperation
among a group of particles. The leading advantages of BaOA are its conceptual
simplicity and the capability of easy-to-implement. Interested readers please refer
to (Salem 2012) as a starting point for a further exploration and exploitation of
BaOA.

27.2 Base Optimization Algorithm 443

References

Anglin, W. S. (1994). Mathematics: A concise history and philosophy. New York: Springer Inc.
ISBN 0-378-94280-7.

Bird, J. (2005). Basic engineering mathematics. Jordan Hill: Linacre House. ISBN 0-7506-6575-0.
Salem, S. A. (2012, October 10–11). BOA: A novel optimization algorithm. In International

Conference on Engineering and Technology (ICET) (pp. 1–5). Egypt: IEEE.

444 27 Base Optimization Algorithm

Chapter 28
Emerging Mathematics-based CI
Algorithms

Abstract In this chapter, an emerging mathematics-based CI category called
matheuristics is introduced. We first, in Sect. 28.1, describe the background
knowledge regarding the metaheuritics. Then, the fundamentals and representative
application of matheuristics are briefed in Sect. 28.2. Finally, Sect. 28.3 draws the
conclusions of this chapter.

28.1 Introduction

In this chapter, we will introduce an emerging computational intelligence (CI)
category which has its root in mathematics. In the literature, there is a name specially
coined for this class of algorithms, i.e., matheuristics. An essential feature for the
algorithms belonging to this group is that some parts of the algorithms exploiting the
characteristics derived from the fundamental mathematical model of the targeted
problems. And thus, we may also find the model-based metaheuristics appearing in
the list of topics-of-interest. Accordingly, before we move on to matheuristics, a
quick overview of ‘‘What is metaheuristics?’’ is provided in this section.

28.1.1 Metaheuritics

Metaheuristics, a term often mixed used with CI, represent a set of solution
methodologies that harmonize an interaction between local enhancement proce-
dures and higher level strategies for the purpose of creating a process which is
capable of running away from local optimal and thus completing a robust search
throughout the solution space. Slowly, the range of these approaches has also
become wide enough to cover any procedures that utilize strategies for conquering
the countless traps of local optimality existing in the focal complex solution
spaces, in particular those procedures that employ one or more neighbourhood

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1_28, � Springer International Publishing Switzerland 2014

445

structures as a way of defining acceptable movements to shift from one solution to
another, or to establish or remove solutions during the constructive and destructive
process (Glover and Kochenberger 2003; Talbi 2009; Yang 2010; Gonzalez 2007;
Xhafa and Abraham 2008; Alba 2005; Birattari 2009). Throughout this book, we
can see that, no matter which name you would like to use, CI or metaheuristics, all
tools and mechanisms within this category share one key feature, i.e., they can not
guarantee to find the global optimal solutions. Nevertheless, exact approaches,
although theoretically being proved to be able to provide such a warranty if
allowed to operate long enough, are often fail to find the answers whose quality is
competitive compared with those obtained by leading CI algorithms, in particular
for various real world problems.

28.2 Matheuristics

28.2.1 Fundamentals of Matheuristics

In general, matheuristics (Maniezzo et al. 2009; Pirkwieser 2012; Archetti et al.
2013) can be viewed as the combination or interoperation of various CI approaches
(or metaheuristics) and mathematical programming techniques (e.g., integer pro-
gramming). Traditionally, the field of CI has always been very hospitable to new
proposals about how to construct algorithms to achieve a better solvability for
optimization problems which often have remarkably high levels of complexity.
Innovation of solution methods has thus long been one of the major features of the
CI field. Inspirations from various sources such as animal, plant, human being,
physics, and chemistry have made the well-engineered algorithms a great success.
In the context of this trend, the paradigm put forth in this chapter, i.e., matheu-
ristics, represents a ‘‘back to the roots’’ fashion for CI: using mathematics.

Since the heart of mathematics is hybridization, an intent to cover all aspects of
matheuristics within single chapter would be too ambitious. Here we use an
recently proposed corridor method as an example to showcase the power of
matheuristics. Corridor method was originally proposed in (Sniedovich and Voß
2005) as a hybrid metaheuristic. The core idea of corridor method is the utilization
of a (possibly exact) method to deal with the smaller ‘‘instances’’ of the original
optimization problem. In other words, looking for an optimal solution on a limited
part of the solution space is the first stage target of corridor approach. In (Caserta
and Voß 2012), the authors made an attempt to investigate how the corridor
method concept can be used to solve the deoxyribonucleic acid (DNA) sequencing
problem. The authors proposed a set of corridor selection strategies as detailed
below (Caserta and Voß 2012):

• Fixed corridor. The position of the oligo with the minimum total overlapping
degree is denoted by k which can be expressed via Eq. 28.1 (Caserta and Voß
2012):

446 28 Emerging Mathematics-based CI Algorithms

k arg min
w¼1; 2; ...;m

rwf g; ð28:1Þ

where the total overlapping degree score of an oligo ow is defined by Eq. 28.2
(Caserta and Voß 2012):

k arg min
w¼1; 2; ...;m

rwf g;

rw ¼ od ow�1; owð Þ þ od ow; owþ1ð Þ:
ð28:2Þ

• Dynamic corridor. The dynamic programming scheme is applied over the set of
oligos in Od. The scheme is then initialized with the following state vector s ¼

O; f ; l; pi; if g:

Bearing the above description in mind, the overall algorithm employed in
(Caserta and Voß 2012) can be outlined as below:

• Require: spectrum S, total length n.
• Ensure permutation p�.
• Initialization of transition probability matrix P0.
• Corridor phase.
• Dynamic programming phase.
• Adding pDP to quantile of cross entropy population.

28.2.2 Performance of Matheuristics

To evaluate the proposed matheuristics approach, Caserta and Voß (2012) tested it
on two sets of benchmark sequencing problems in which the first set consists of
320 cases found from the literature and the second set is characterized by its
repeated oligonucleotides nature. Through an intensive study, all experimental
results demonstrated the efficacy of the proposed matheuristics method, both in
terms of the solution quality and the total running time.

28.3 Conclusions

In this chapter, we briefly introduced a new trend emerged in the CI community
that is matheuristics. An illustrative study was presented to illustrate the usefulness
of mathematics. Interested readers are referred to the literature mentioned in this
chapter as a starting point for a further exploration and exploitation of these
hybridized CI algorithms.

28.2 Matheuristics 447

References

Alba, E. (Ed.). (2005). Parallel metaheuristics: A new class of algorithms. New Jeresy: Wiley.
ISBN 978-0-471 -67806-9.

Archetti, C., Corberán, Á., Plana, I., Sanchis, J. M., & Speranza, M. G. (2013). A matheuristic for
the team orienteering arc routing problem. Report No.: WPDEM 2013/9. Italy: Department of
Economics and Management, University of Brescia.

BIRATTARI, M. 2009. Tuning metaheuristics: A machine learning perspective. Berlin: Springer.
Caserta, M., & Voß, S. (2012). A hybrid algorithm for the DNA sequencing problem. Discrete

Applied Mathematics. doi:10.1016/j.dam.2012.08.025.
Glover, F., & Kochenberger, G. A. (Eds.). (2003). Handbook of metaheuristics. Dordrecht:

Kluwer Academic Publishers. ISBN 1-4020-7263-5.
Gonzalez, T. F. (2007). Handbook of approximation algorithms and metaheuristics. Boca Raton:

Taylor & Francis Group, LLC. ISBN 978-1-58488-550-4.
Maniezzo, V., Stützle, T., & VOß, S. (eds.). (2009). Matheuristics: Hybridizing metaheuristics

and mathematical programming. New York: Springer Science ? Business Media LLC. ISBN
978-1-4419-1305-0.

Pirkwieser, S. (2012). Hybrid metaheuristics and matheuristics for problems in bioinformatics
and transportation. Unpublished Doctoral Thesis, Vienna University of Technology, Vienna.

Sniedovich, M., & Voß, S. (2005). The corridor method: A dynamic programming inspired
metaheuristic. Control and Cybernetics, 35, 551–578.

Talbi, E.-G. (2009). Metaheuristics: From design to implementation. New Jersey: Wiley. ISBN
978-0-470-27858-1.

Xhafa, F., & Abraham, A. (2008). Metaheuristics for scheduling in industrial and manufacturing
applications. Berlin: Springer. ISBN 978-3-540-78984-0.

Yang, X.-S. (2010). Engineering optimization: An introduction with metaheuristic applications.
New Jersey: Wiley. ISBN 978-0-470-58246-6.

448 28 Emerging Mathematics-based CI Algorithms

http://dx.doi.org/10.1016/j.dam.2012.08.025

Biographies

Bo Xing, is a senior lecturer under the division of Asset Integrity Management
Centre at the Department of Mechanical and Aeronautic Engineering, Faculty of
Engineering, Built Environment and Information Technology, University of
Pretoria, South Africa. Dr. Xing earned his DIng degree (Doctorate in Engineering
with a focus on remanufacturing) in the early 2013 from the University of
Johannesburg, South Africa. He also obtained his BSc and MSc degree in
Mechanical Engineering from the Tianjin University of Science and Technology,
P.R. China, and the University of KwaZulu-Natal, South Africa, respectively. He
was a scientific researcher at the Council for Scientific and Industrial Research
(CSIR), South Africa. He has published more than 50 research papers in books,
international journals, and international conference proceedings. His current
research interests lie in applying various nature-inspired computational
intelligence methodologies towards miniature robot design and analysis,
advanced mechatronics system, reconfigurable manufacturing system, e-
maintenance, production planning and scheduling, routing and network design
in remanufacturing and closed-loop supply chain. Dr. Xing’s latest publications
include a book entitled ‘‘Computational Intelligence in Remanufacturing’’.

Wen-Jing Gao, is a senior sales representative affiliated to the Department of New
Product Development, Mei Yuan Mould Design and Manufacturing Co., Ltd, P.R.
China. Mrs. Gao holds a BCom (Honors in Economics) degree from the University
of Kassel, Germany. Since 2005, she has been working closely with Dr. Xing in
various academic- or industrial-oriented projects. She has published more than 40
technical articles in books, international journals, and international conference
proceedings. Her research interests include computational intelligence, new
product development, the Internet of things, information management,
recommender system design, customer oriented business model, product service
system, ambient intelligence, mechatronics, miniature robot design and analysis,
remanufacturing, reconfigurable manufacturing system, cellular manufacturing
system, flexible manufacturing system, and closed-loop supply chain management.
Mrs. Gao has presented her work at various international level of conferences such
as IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC),
Annual IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Annual

B. Xing and W.-J. Gao, Innovative Computational Intelligence:
A Rough Guide to 134 Clever Algorithms, Intelligent Systems Reference Library 62,
DOI: 10.1007/978-3-319-03404-1, � Springer International Publishing Switzerland 2014

449

IEEE Congress on Evolutionary Computation (IEEE CEC), IEEE World Congress
on Computational Intelligence (IEEE WCCI), IEEE Symposium Series on
Computational Intelligence (IEEE SSCI), IEEE/ASME International Conference
on Mechatronic and Embedded Systems and Application, International Conference
on Industrial Engineering and Systems Management (IESM), International
Symposium on Neural Networks (ISNN), and International Conference on
Swarm Intelligence (ICSI). Mrs. Gao’s latest publications include a book
entitled ‘‘Computational Intelligence in Remanufacturing’’.

Zbigniew Michalewicz, is an internationally renowned new technologies expert.
Dr. Zbigniew Michalewicz has published over 260 articles and 37 books on the
subject of predictive data mining and logistics optimization. He is Emeritus
Professor at the University of Adelaide, Australia. Prof. Michalewicz received his
PhD from the Institute of Computer Science, Polish Academy of Sciences, in 1981.
He also holds a Doctor of Science degree in Computer Science from the Polish
Academy of Science, and in 2002 he received the title of ‘‘Professor’’ from the
President of Poland, Mr. Alexander Kwasniewski. Meanwhile, he holds Professor
positions at several other institutions such as the Institute of Computer Science,
Polish Academy of Sciences, the Polish–Japanese Institute of Information
Technology, and the State Key Laboratory of Software Engineering of Wuhan
University, China. He is also associated with the Structural Complexity Laboratory
at Seoul National University, South Korea. Zbigniew Michalewicz has also served
as the Chairman of the IEEE Technical Committee on Evolutionary Computation,
and later as the Executive Vice President of the IEEE Neural Network Council.
Apart from this, Zbigniew Michalewicz serves as Chief Scientist for SolveIT
Software Pty. Ltd. (recently acquired by Schneider Electronic), a company
specializing in custom software solutions for demand forecasting, scheduling,
supply chain optimization and mine optimization solutions. He has over 25 years
of industry experience, and possesses expert knowledge of many artificial
intelligence methods and modern heuristics. He has led numerous data mining and
optimization projects for major corporations and also for several government
agencies in the United States of America and Poland, and his scientific and
business achievements have been recognized by publications such as TIME
Magazine, Newsweek, The New York Times, Forbes, and the Associated Press.
Dr. Michalewicz’s latest publications include a book entitled ‘‘A Guide to
Teaching Puzzle-Based Learning’’.

Xin Yao, is a Chair (Professor) of Computer Science and the Director of CERCIA
(the Centre of Excellence for Research in Computational Intelligence and
Applications), University of Birmingham, UK. Prof. Yao received his BSc in
1982, MSc in 1985 and PhD in 1990, and worked in Australian National
University, Commonwealth Scientific and Industrial Research Organisation
(CSIRO) Division of Building, Construction and Engineering, and University
College, the University of New South Wales (UNSW), Australian Defence Force
Academy (ADFA), before taking up his professorship at Birmingham in April

450 Biographies

1999. He is an IEEE Fellow and a Distinguished Lecturer of IEEE Computational
Intelligence Society (CIS). He is also a Director of USTC-Birmingham Joint
Research Institute in Intelligent Computation and Its Applications (UBRI) at the
University of Science and Technology of China (USTC), Hefei, China. His work
won the 2001 IEEE Donald G. Fink Prize Paper Award, 2010 IEEE Transactions
on Evolutionary Computation Outstanding Paper Award, 2010 BT Gordon Radley
Award for Best Author of Innovation (Finalist), 2011 IEEE Transactions on Neural
Networks Outstanding Paper Award, and other best paper awards at conferences.
He won a prestigious Royal Society Wolfson Research Merit Award in 2012. He
was the Editor-in-Chief (2003–2008) of IEEE Transactions on Evolutionary
Computation. His major research interests include evolutionary computation and
ensemble learning. He has more than 400 refereed publications in international
journals and conferences. Prof. Yao recently received the 2013 Evolutionary
Computation Pioneer Award for his outstanding contributions to the theory and
applications of evolutionary computation. The award was presented during the
2013 IEEE Congress on Evolutionary computation (IEEE CEC), held from 20–23
June 2013 at Canćun, México.

Biographies 451

	Foreword
	Foreword
	Preface	
	Acknowledgments
	Contents
	Abbreviations
	Objective and Mission
	Part IIntroduction
	1 Introduction to Computational Intelligence
	Abstract
	1.1…Introduction
	1.1.1 Traditional CI
	1.1.2 Innovative CI

	1.2…Organization of the Book
	1.2.1 Biology-based CI Algorithms
	1.2.2 Physics-based CI Algorithms
	1.2.3 Chemistry-based CI Algorithms
	1.2.4 Mathematics-based CI Algorithms

	1.3…Conclusions
	References

	Part IIBiology-based CI Algorithms
	2 Bacteria Inspired Algorithms
	Abstract
	2.1…Introduction
	2.1.1 Bacteria
	2.1.2 Bacterial Foraging Behaviour

	2.2…Bacterial Foraging Algorithm
	2.2.1 Fundamentals of Bacterial Foraging Algorithm
	2.2.2 Performance of BFA

	2.3…Emerging Bacterial Inspired Algorithms
	2.3.1 Bacterial Colony Chemotaxis Algorithm
	2.3.1.1 Fundamentals of Bacterial Colony Chemotaxis Algorithm
	2.3.1.2 Performance of BCC

	2.3.2 Superbug Algorithm
	2.3.2.1 Fundamentals of Superbug Algorithm
	2.3.2.2 Performance of SuA

	2.3.3 Bacterial Colony Optimization Algorithm
	2.3.3.1 Fundamentals of Bacterial Colony Optimization Algorithm
	2.3.3.2 Performance of BCO

	2.3.4 Viral System Algorithm
	2.3.4.1 Fundamentals of Viral System Algorithm
	2.3.4.2 Performance of VS

	2.4…Conclusions
	References

	3 Bat Inspired Algorithms
	Abstract
	3.1…Introduction
	3.1.1 Foraging Behaviour of Bats
	3.1.2 Characteristics of Echolocation

	3.2…Bat Algorithm
	3.2.1 Fundamentals of Bat Algorithm
	3.2.1.1 Movement of Virtual Bats
	3.2.1.2 Loudness and Pulse Emission

	3.2.2 Performance of BaA

	3.3…Emerging Bat Inspired Algorithms
	3.3.1 Bat Intelligence Algorithm
	3.3.1.1 Fundamentals of Bat Intelligence (BI) Algorithm
	3.3.1.2 Performance of BI

	3.4…Conclusions
	References

	4 Bee Inspired Algorithms
	Abstract
	4.1…Introduction
	4.1.1 Foraging Behaviour of Bees
	4.1.2 Marriage Behaviour of Bees
	4.1.3 Dancing and Communication Behaviour of Bees

	4.2…Artificial Bee Colony Algorithm
	4.2.1 Fundamentals of Artificial Bee Colony Algorithm
	4.2.2 Performance of ABC

	4.3…Honeybee Mating Optimization Algorithm
	4.3.1 Fundamentals of Honeybee Mating Optimization Algorithm
	4.3.2 Performance of HBMO

	4.4…Emerging Bee Inspired Algorithms
	4.4.1 Artificial Beehive Algorithm
	4.4.1.1 Fundamentals of Artificial Beehive Algorithm
	4.4.1.2 Performance of ABHA

	4.4.2 Bee Colony Optimization
	4.4.2.1 Fundamentals of Bee Colony Optimization Algorithm
	4.4.2.2 Performance of BCO

	4.4.3 Bee Colony-inspired Algorithm
	4.4.3.1 Fundamentals of Bee Colony-Inspired Algorithm
	4.4.3.2 Performance of BCiA

	4.4.4 Bee Swarm Optimization
	4.4.4.1 Fundamentals of Bee Swarm Optimization Algorithm
	4.4.4.2 Performance of BSO

	4.4.5 Bee System
	4.4.5.1 Fundamentals of Bee System Algorithm
	4.4.5.2 Performance of BS

	4.4.6 BeeHive
	4.4.6.1 Fundamentals of BeeHive Algorithm
	4.4.6.2 Performance of BeeHive Algorithm

	4.4.7 Bees Algorithm
	4.4.7.1 Fundamentals of Bees Algorithm
	4.4.7.2 Performance of BeA

	4.4.8 Bees Life Algorithm
	4.4.8.1 Fundamentals of Bees Life Algorithm
	4.4.8.2 Performance of BLA

	4.4.9 Bumblebees Algorithm
	4.4.9.1 Fundamentals of Bumblebees Algorithm
	4.4.9.2 Performance of Bumblebees Algorithm

	4.4.10 Honeybee Social Foraging Algorithm
	4.4.10.1 Fundamentals of Honeybee Social Foraging Algorithm
	4.4.10.2 Performance of HBSF

	4.4.11 OptBees
	4.4.11.1 Fundamentals of OptBees Algorithm
	4.4.11.2 Performance of OptBees

	4.4.12 Simulated Bee Colony Algorithm
	4.4.12.1 Fundamentals of Simulated Bee Colony Algorithm
	4.4.12.2 Performance of SBC

	4.4.13 Virtual Bees Algorithm
	4.4.13.1 Fundamentals of Virtual Bees Algorithm
	4.4.13.2 Performance of VBA

	4.4.14 Wasp Swarm Optimization
	4.4.14.1 Fundamentals of Wasp Swarm Optimization Algorithm
	4.4.14.2 Performance of WSO

	4.5…Conclusions
	References

	5 Biogeography-based Optimization Algorithm
	Abstract
	5.1…Introduction
	5.1.1 Science of Biogeography

	5.2…Biogeography-based Optimization Algorithm
	5.2.1 Fundamentals of Biogeography-based Optimization Algorithm
	5.2.2 Performance of BBO

	5.3…Conclusions
	References

	6 Cat Swarm Optimization Algorithm
	Abstract
	6.1…Introduction
	6.1.1 Behaviour of Cats
	6.1.1.1 Cat Sleeping/Resting Behaviour
	6.1.1.2 Cat Hunting/Chasing Behaviour

	6.2…Fundamentals of Cat Swarm Optimization Algorithm
	6.2.1 Rest and Alert-Seeking Mode
	6.2.2 Movement-Tracing Mode
	6.2.3 Performance of CSO

	6.3…Selected CSO Variants
	6.3.1 Parallel CSO Algorithm
	6.3.1.1 Performance of PCSO

	6.3.2 Multiobjective CSO Algorithm
	6.3.2.1 Seeking Mode of MOCSO
	6.3.2.2 Tracing Mode of MOCSO
	6.3.2.3 Performance of MOCSO

	6.4…Representative CSO Application
	6.4.1 Aircraft Schedule Recovery Problem

	6.5…Conclusions
	References

	7 Cuckoo Inspired Algorithms
	Abstract
	7.1…Introduction
	7.1.1 Cuckoo: A Brood Parasite

	7.2…Fundamentals of the Cuckoo Search Algorithm
	7.2.1 Characteristics of Lévy Flight
	7.2.2 Standard CS Algorithm
	7.2.3 Performance of CS

	7.3…Selected CS Variants
	7.3.1 Modified CS (MCS) Algorithm
	7.3.1.1 Performance of MCS

	7.3.2 Multiobjective CS (MOCS) Algorithm
	7.3.2.1 Performance of MOCS

	7.4…Representative CS Application
	7.4.1 Scheduling Optimization Problem

	7.5…Emerging Cuckoo Inspired Algorithms
	7.5.1 Fundamentals of the Cuckoo Optimization Algorithm
	7.5.1.1 Initial Cuckoo Habitat Generation
	7.5.1.2 Cuckoo Eggs’ Placement
	7.5.1.3 Adult Cuckoos’ Emigration
	7.5.1.4 Cuckoo Population’s Control
	7.5.1.5 Convergence
	7.5.1.6 Performance of COA

	7.6…Conclusions
	References

	8 Luminous Insect Inspired Algorithms
	Abstract
	8.1…Introduction
	8.2…Firefly Algorithm
	8.2.1 Fundamentals of Firefly Algorithm
	8.2.2 Performance of FA

	8.3…Glowworm Swarm Optimization Algorithm
	8.3.1 Fundamentals of Glowworm Swarm Optimization Algorithm
	8.3.2 Performance of GlSO
	8.3.3 Selected GlSO Variants
	8.3.3.1 Niching GlSO with Mating Behaviour (MNGSO)
	8.3.3.2 Performance of MNGSO

	8.3.4 Representative GlSO Applications
	8.3.4.1 Sensor Deployment Approach Using GlSO

	8.4…Emerging Luminous Insect Inspired Algorithms
	8.4.1 Fundamentals of Bioluminescent Swarm Optimization Algorithm
	8.4.1.1 Luciferin-Update Phase
	8.4.1.2 Stochastic Adaptive Step Sizing
	8.4.1.3 Global Optimum Attraction
	8.4.1.4 Mass Extinction
	8.4.1.5 Local Search Procedures

	8.4.2 Performance of BiSO

	8.5…Conclusions
	References

	9 Fish Inspired Algorithms
	Abstract
	9.1…Introduction
	9.2…Artificial Fish School Algorithm
	9.2.1 Fundamentals of Artificial Fish School Algorithm
	9.2.2 Performance of AFSA

	9.3…Fish School Search Algorithm
	9.3.1 Fundamentals of Fish School Search Algorithm
	9.3.2 Performance of FSS

	9.4…Emerging Fish Inspired Algorithms
	9.4.1 Group Escaping Algorithm
	9.4.1.1 Fundamentals of Group Escaping Algorithm
	9.4.1.2 Performance of GEA

	9.4.2 Shark-Search Algorithm
	9.4.2.1 Fundamentals of Shark-Search Algorithm
	9.4.2.2 Performance of SSA

	9.5…Conclusions
	References

	10 Frog Inspired Algorithms
	Abstract
	10.1…Introduction
	10.2…Shuffled Frog Leaping Algorithm
	10.2.1 Fundamentals of Shuffled Frog Leaping Algorithm
	10.2.2 Performance of SFLA

	10.3…Emerging Frog Inspired Algorithm
	10.3.1 Frog Calling Algorithm
	10.3.1.1 Fundamentals of Frog Calling Algorithm
	10.3.1.2 Performance of FCA

	10.4…Conclusions
	References

	11 Fruit Fly Optimization Algorithm
	Abstract
	11.1…Introduction
	11.1.1 The Foraging Behaviour of Fruit Flies

	11.2…Fruit Fly Optimization Algorithm
	11.2.1 Fundamentals of Fruit Fly Optimization Algorithm
	11.2.2 Performance of FFOA

	11.3…Conclusions
	References

	12 Group Search Optimizer Algorithm
	Abstract
	12.1…Introduction
	12.1.1 Producer-Scrounger Model

	12.2…Group Search Optimizer Algorithm
	12.2.1 Fundamentals of Group Search Optimizer Algorithm
	12.2.2 Performance of GrSO

	12.3…Conclusions
	References

	13 Invasive Weed Optimization Algorithm
	Abstract
	13.1…Introduction
	13.1.1 Biological Invasion

	13.2…Invasive Weed Optimization Algorithm
	13.2.1 Fundamentals of Invasive Weed Optimization Algorithm
	13.2.2 Performance of IWO

	13.3…Conclusions
	References

	14 Music Inspired Algorithms
	Abstract
	14.1…Introduction
	14.1.1 Harmony

	14.2…Harmony Search Algorithm
	14.2.1 Fundamentals of Harmony Search Algorithm
	14.2.2 Performance of HS

	14.3…Emerging Music Inspired Algorithms
	14.3.1 Melody Search Algorithm
	14.3.1.1 Fundamentals of Melody Search Algorithm
	14.3.1.2 Performance of MeS

	14.3.2 Method of Musical Composition Algorithm
	14.3.2.1 Fundamentals of Method of Musical Composition Algorithm
	14.3.2.2 Performance of MMC

	14.4…Conclusions
	References

	15 Imperialist Competitive Algorithm
	Abstract
	15.1…Introduction
	15.1.1 Imperialism

	15.2…Imperialist Competitive Algorithm
	15.2.1 Fundamentals of Imperialist Competitive Algorithm
	15.2.2 Performance of ICA

	15.3…Conclusions
	References

	16 Teaching--Learning-based Optimization Algorithm
	Abstract
	16.1…Introduction
	16.2…Teaching--Learning-based Optimization
	16.2.1 Fundamentals of Teaching-Learning-based Optimization Algorithm
	16.2.2 Performance of TLBO

	16.3…Conclusions
	References

	17 Emerging Biology-based CI Algorithms
	Abstract
	17.1…Introduction
	17.2…Amoeboid Organism Algorithm
	17.2.1 Fundamentals of Amoeboid Organism Algorithm
	17.2.2 Performance of AOA

	17.3…Artificial Searching Swarm Algorithm
	17.3.1 Fundamentals of Artificial Searching Swarm Algorithm
	17.3.2 Performance of ASSA

	17.4…Artificial Tribe Algorithm
	17.4.1 Fundamentals of Artificial Tribe Algorithm
	17.4.2 Performance of ATA

	17.5…Backtracking Search Algorithm
	17.5.1 Fundamentals of Backtracking Search Algorithm
	17.5.2 Performance of BSA

	17.6…Bar Systems Algorithm
	17.6.1 Fundamentals of Bar Systems Algorithm
	17.6.2 Performance of BSs

	17.7…Bean Optimization Algorithm
	17.7.1 Fundamentals of Bean Optimization Algorithm
	17.7.2 Performance of BeOA

	17.8…Bionic Optimization Algorithm
	17.8.1 Fundamentals of Bionic Optimization Algorithm
	17.8.2 Performance of BO

	17.9…Blind, Naked Mole-Rats Algorithm
	17.9.1 Fundamentals of Blind, Naked Mole-Rats Algorithm
	17.9.2 Performance of BNMR

	17.10…Brain Storm Optimization Algorithm
	17.10.1 Fundamentals of Brain Storm Optimization Algorithm
	17.10.2 Performance of BSOA

	17.11…Clonal Selection Algorithm
	17.11.1 Fundamentals of Clonal Selection Algorithm
	17.11.2 Performance of CSA

	17.12…Cockroach Swarm Optimization Algorithm
	17.12.1 Fundamentals of Cockroach Swarm Optimization Algorithm
	17.12.2 Performance of CSOA

	17.13…Collective Animal Behaviour Algorithm
	17.13.1 Fundamentals of Collective Animal Behaviour Algorithm
	17.13.2 Performance of CAB

	17.14…Cultural Algorithm
	17.14.1 Fundamentals of Cultural Algorithm
	17.14.2 Performance of CA

	17.15…Differential Search Algorithm
	17.15.1 Fundamentals of Differential Search Algorithm
	17.15.2 Performance of DS

	17.16…Dove Swarm Optimization Algorithm
	17.16.1 Fundamentals of Dove Swarm Optimization Algorithm
	17.16.2 Performance of DSO

	17.17…Eagle Strategy
	17.17.1 Fundamentals of Eagle Strategy
	17.17.2 Performance of ES

	17.18…Fireworks Optimization Algorithm
	17.18.1 Fundamentals of Fireworks Optimization Algorithm
	17.18.2 Performance of FOA

	17.19…FlockbyLeader Algorithm
	17.19.1 Fundamentals of FlockbyLeader Algorithm
	17.19.2 Performance of FlockbyLeader

	17.20…Flocking-based Algorithm
	17.20.1 Fundamentals of Flocking-based Algorithm
	17.20.2 Performance of FBA

	17.21…Flower Pollinating Algorithm
	17.21.1 Fundamentals of Flower Pollinating Algorithm
	17.21.2 Performance of FPA

	17.22…Goose Optimization Algorithm
	17.22.1 Fundamentals of Goose Optimization Algorithm
	17.22.2 Performance of GOA

	17.23…Great Deluge Algorithm
	17.23.1 Fundamentals of Great Deluge Algorithm
	17.23.2 Performance of GDA

	17.24…Grenade Explosion Method
	17.24.1 Fundamentals of Grenade Explosion Method
	17.24.2 Performance of GEM

	17.25…Group Leaders Optimization Algorithm
	17.25.1 Fundamentals of Group Leaders Optimization Algorithm
	17.25.2 Performance of GLOA

	17.26…Harmony Elements Algorithm
	17.26.1 Fundamentals of Harmony Elements Algorithm
	17.26.2 Performance of HEA

	17.27…Human Group Formation Algorithm
	17.27.1 Fundamentals of Human Group Formation Algorithm
	17.27.2 Performance of HGF

	17.28…Hunting Search Algorithm
	17.28.1 Fundamentals of Hunting Search Algorithm
	17.28.2 Performance of HuS

	17.29…Krill Herd Algorithm
	17.29.1 Fundamentals of Krill Herd Algorithm
	17.29.2 Performance of KH

	17.30…League Championship Algorithm
	17.30.1 Fundamentals of League Championship Algorithm
	17.30.2 Performance of LCA

	17.31…Membrane Algorithm
	17.31.1 Fundamentals of Membrane Algorithm
	17.31.2 Performance of MA

	17.32…Migrating Birds Optimization Algorithm
	17.32.1 Fundamentals of Migrating Birds Optimization Algorithm
	17.32.2 Performance of MBO

	17.33…Mine Blast Algorithm
	17.33.1 Fundamentals of Mine Blast Algorithm
	17.33.2 Performance of MBA

	17.34…Monkey Search Algorithm
	17.34.1 Fundamentals of Monkey Search Algorithm
	17.34.2 Performance of MSA

	17.35…Mosquito Host-Seeking Algorithm
	17.35.1 Fundamentals of Mosquito Host-Seeking Algorithm
	17.35.2 Performance of MHSA

	17.36…Oriented Search Algorithm
	17.36.1 Fundamentals of Oriented Search Algorithm
	17.36.2 Performance of OSA

	17.37…Paddy Field Algorithm
	17.37.1 Fundamentals of Paddy Field Algorithm
	17.37.2 Performance of PFA

	17.38…Photosynthetic Algorithm
	17.38.1 Fundamentals of Photosynthetic Algorithm
	17.38.2 Performance of PA

	17.39…Population Migration Algorithm
	17.39.1 Fundamentals of Population Migration Algorithm
	17.39.2 Performance of PMA

	17.40…Roach Infestation Optimization
	17.40.1 Fundamentals of Roach Infestation Optimization Algorithm
	17.40.2 Performance of RIO

	17.41…Saplings Growing Up Algorithm
	17.41.1 Fundamentals of Saplings Growing Up Algorithm
	17.41.2 Performance of SGuA

	17.42…Seeker Optimization Algorithm
	17.42.1 Fundamentals of Seeker Optimization Algorithm
	17.42.2 Performance of SeOA

	17.43…Self-organising Migrating Algorithm
	17.43.1 Fundamentals of Self-organising Migrating Algorithm
	17.43.2 Performance of SOMA

	17.44…Sheep Flock Heredity Model Algorithm
	17.44.1 Fundamentals of Sheep Flock Heredity Model Algorithm
	17.44.2 Performance of SFHM

	17.45…Simple Optimization Algorithm
	17.45.1 Fundamentals of Simple Optimization Algorithm
	17.45.2 Performance of SPOT

	17.46…Slime Mold Algorithm
	17.46.1 Fundamentals of Slime Mold Algorithm
	17.46.2 Performance of SMA

	17.47…Social Emotional Optimization Algorithm
	17.47.1 Fundamentals of Social Emotional Optimization Algorithm
	17.47.2 Performance of SEOA

	17.48…Social Spider Optimization Algorithm
	17.48.1 Fundamentals of Social Spider Optimization Algorithm
	17.48.2 Performance of SSOA

	17.49…Society and Civilization Algorithm
	17.49.1 Fundamentals of Society and Civilization Algorithm
	17.49.2 Performance of SCA

	17.50…Stem Cells Optimization Algorithm
	17.50.1 Fundamentals of Stem Cells Optimization Algorithm
	17.50.2 Performance of SCOA

	17.51…Stochastic Focusing Search Algorithm
	17.51.1 Fundamentals of Stochastic Focusing Searching Algorithm
	17.51.2 Performance of SFS

	17.52…Swallow Swarm Optimization Algorithm
	17.52.1 Fundamentals of Swallow Swarm Optimization Algorithm
	17.52.2 Performance of SSO

	17.53…Termite-Hill Algorithm
	17.53.1 Fundamentals of Termite-Hill Algorithm
	17.53.2 Performance of ThA

	17.54…Unconscious Search Algorithm
	17.54.1 Fundamentals of Unconscious Search Algorithm
	17.54.2 Performance of US

	17.55…Wisdom of Artificial Crowds Algorithm
	17.55.1 Fundamentals of Wisdom of Artificial Crowds Algorithm
	17.55.2 Performance of WoAC

	17.56…Wolf Colony Algorithm
	17.56.1 Fundamentals of Wolf Colony Algorithm
	17.56.2 Performance of WCA

	17.57…Wolf Pack Search Algorithm
	17.57.1 Fundamentals of Wolf Pack Search Algorithm
	17.57.2 Performance of WPS

	17.58…Conclusions
	References

	Part IIIPhysics-based CI Algorithms
	18 Big Bang--Big Crunch Algorithm
	Abstract
	18.1…Introduction
	18.1.1 Big Bang
	18.1.2 Big Crunch

	18.2…Big Bang--Big Crunch Algorithm
	18.2.1 Fundamentals of the Big Bang--Big Crunch Algorithm
	18.2.1.1 Big Bang Phase
	18.2.1.2 Big Crunch Phase

	18.2.2 Performance of BB--BC
	18.2.3 Selected BB--BC Variants
	18.2.3.1 Hybrid BB--BC Algorithm
	18.2.3.2 Improved BB--BC Algorithm
	18.2.3.3 Local Search-Based BB--BC Algorithm

	18.2.4 Representative BB--BC Application
	18.2.4.1 Truss Optimization

	18.3…Conclusions
	References

	19 Central Force Optimization Algorithm
	Abstract
	19.1…Introduction
	19.1.1 Gravitational Force

	19.2…Central Force Optimization Algorithm
	19.2.1 Fundamentals of Central Force Optimization Algorithm
	19.2.2 Performance of CFO

	19.3…Conclusions
	References

	20 Charged System Search Algorithm
	Abstract
	20.1…Introduction
	20.1.1 Coulomb’s Law
	20.1.2 Laws of Motion

	20.2…Charged System Search Algorithm
	20.2.1 Fundamentals of Charged System Search Algorithm
	20.2.2 Performance of CSS

	20.3…Conclusions
	References

	21 Electromagnetism-like Mechanism Algorithm
	Abstract
	21.1…Introduction
	21.1.1 Electromagnetism Field Theory

	21.2…Electromagnetism-like Algorithm
	21.2.1 Fundamentals of Electromagnetism-like Algorithm
	21.2.2 Performance of EM

	21.3…Conclusions
	References

	22 Gravitational Search Algorithm
	Abstract
	22.1…Introduction
	22.1.1 The Science of Gravity
	22.1.2 The Definition of Mass

	22.2…Gravitational Search Algorithm
	22.2.1 Fundamentals of Gravitational Search Algorithm
	22.2.2 Performance of GSA

	22.3…Conclusions
	References

	23 Intelligent Water Drops Algorithm
	Abstract
	23.1…Introduction
	23.1.1 Key Characteristics of Nature Water Drops
	23.1.2 Newton’s Laws of Gravity

	23.2…Intelligent Water Drops Algorithm
	23.2.1 Fundamentals of Intelligent Water Drops Algorithm
	23.2.2 Performance of IWD
	23.2.3 Selected IWD Variant
	23.2.3.1 IWD for Continuous Optimization
	23.2.3.2 Performance of IWD-CO

	23.2.4 Representative IWD Application
	23.2.4.1 Travelling Salesman Problem

	23.3…Conclusions
	References

	24 Emerging Physics-based CI Algorithms
	Abstract
	24.1…Introduction
	24.2…Artificial Physics Optimization Algorithm
	24.2.1 Fundamentals of Artificial Physics Optimization Algorithm
	24.2.2 Performance of APO

	24.3…Atmosphere Clouds Model Optimization Algorithm
	24.3.1 Fundamentals of Atmosphere Clouds Model Optimization Algorithm
	24.3.2 Performance of ACMO

	24.4…Chaos Optimization Algorithm
	24.4.1 Fundamentals of Chaos Optimization Algorithm
	24.4.2 Performance of ChOA

	24.5…Cloud Model-based Algorithm
	24.5.1 Fundamentals of Cloud Model-based Algorithm
	24.5.2 Performance of CMBA

	24.6…Extremal Optimization Algorithm
	24.6.1 Fundamentals of Extremal Optimization Algorithm
	24.6.2 Performance of EO

	24.7…Galaxy-based Search Algorithm
	24.7.1 Fundamentals of Galaxy-based Search Algorithm
	24.7.2 Performance of GbSA

	24.8…Gravitation Field Algorithm
	24.8.1 Fundamentals of Gravitation Field Algorithm
	24.8.2 Performance of GFA

	24.9…Gravitational Clustering Algorithm
	24.9.1 Fundamentals of Gravitational Clustering Algorithm
	24.9.2 Performance of GCA

	24.10…Gravitational Emulation Local Search Algorithm
	24.10.1 Fundamentals of Gravitational Emulation Local Search Algorithm
	24.10.2 Performance of GELS

	24.11…Gravitational Interactions Optimization Algorithm
	24.11.1 Fundamentals of Gravitational Interactions Optimization Algorithm
	24.11.2 Performance of GIO

	24.12…Hysteretic Optimization Algorithm
	24.12.1 Fundamentals of Hysteretic Optimization Algorithm
	24.12.2 Performance of HO

	24.13…Integrated Radiation Optimization Algorithm
	24.13.1 Fundamentals of Integrated Radiation Optimization Algorithm
	24.13.2 Performance of IRO

	24.14…Light Ray Optimization Algorithm
	24.14.1 Fundamentals of Light Ray Optimization Algorithm
	24.14.2 Performance of LRO

	24.15…Magnetic Optimization Algorithm
	24.15.1 Fundamentals of Magnetic Optimization Algorithm
	24.15.2 Performance of MOA

	24.16…Particle Collision Algorithm
	24.16.1 Fundamentals of Particle Collision Algorithm
	24.16.2 Performance of PCA

	24.17…Ray Optimization Algorithm
	24.17.1 Fundamentals of Ray Optimization Algorithm
	24.17.2 Performance of RO

	24.18…River Formation Dynamics Algorithm
	24.18.1 Fundamentals of River Formation Dynamics Algorithm
	24.18.2 Performance of RFD

	24.19…Space Gravitational Optimization Algorithm
	24.19.1 Fundamentals of Space Gravitational Optimization Algorithm
	24.19.2 Performance of SGO

	24.20…Spiral Optimization Algorithm
	24.20.1 Fundamentals of Spiral Optimization Algorithm
	24.20.2 Performance of SpOA

	24.21…Water Cycle Optimization Algorithm
	24.21.1 Fundamentals of Water Cycle Optimization Algorithm
	24.21.2 Performance of WCOA

	24.22…Water Flow Algorithm
	24.22.1 Fundamentals of Water Flow Algorithm
	24.22.2 Performance of WFA

	24.23…Water Flow-Like Algorithm
	24.23.1 Fundamentals of Water Flow-Like Algorithm
	24.23.2 Performance of WFlA

	24.24…Conclusions
	References

	Part IVChemistry-based CI Algorithms
	25 Chemical-Reaction Optimization Algorithm
	Abstract
	25.1…Introduction
	25.1.1 Chemical Reaction and Reaction Mechanism
	25.1.2 Basic Components
	25.1.2.1 Molecules (Molecular Structure)
	25.1.2.2 Kinetic and Potential Energy
	25.1.2.3 Collision Mechanism
	25.1.2.4 Chemical Equilibrium

	25.1.3 Basic Laws of Thermodynamics

	25.2…Fundamentals of the Chemical-Reaction Optimization Algorithm
	25.2.1 Elementary Reactions
	25.2.1.1 On-Wall Ineffective Collision
	25.2.1.2 Decomposition
	25.2.1.3 Inter-Molecular Ineffective Collision
	25.2.1.4 Synthesis

	25.2.2 Performance of CRO

	25.3…Selected CRO Variant
	25.3.1 Real-Coded CRO Algorithm
	25.3.2 Performance of RCCRO

	25.4…Representative CRO Application
	25.4.1 Quadratic Assignment Problem

	25.5…Conclusions
	References

	26 Emerging Chemistry-based CI Algorithms
	Abstract
	26.1…Introduction
	26.2…Artificial Chemical Process Algorithm
	26.2.1 Fundamentals of Artificial Chemical Process Algorithm
	26.2.2 Performance of ACPA

	26.3…Artificial Chemical Reaction Optimization Algorithm
	26.3.1 Fundamentals of Artificial Chemical Reaction Optimization Algorithm
	26.3.2 Performance of ACROA

	26.4…Chemical Reaction Algorithm
	26.4.1 Fundamentals of Chemical Reaction Algorithm
	26.4.2 Performance of CRA

	26.5…Gases Brownian Motion Optimization Algorithm
	26.5.1 Fundamentals of Gases Brownian Motion Optimization Algorithm
	26.5.2 Performance of GBMO

	26.6…Conclusions
	References

	Part VMathematics-based CI Algorithms
	27 Base Optimization Algorithm
	Abstract
	27.1…Introduction
	27.1.1 Basic Arithmetic Operators

	27.2…Base Optimization Algorithm
	27.2.1 Fundamentals of Base Optimization Algorithm
	27.2.2 Performance of BaOA

	27.3…Conclusions
	References

	28 Emerging Mathematics-based CI Algorithms
	Abstract
	28.1…Introduction
	28.1.1 Metaheuritics

	28.2…Matheuristics
	28.2.1 Fundamentals of Matheuristics
	28.2.2 Performance of Matheuristics

	28.3…Conclusions
	References

	Biographies

