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Abstract This chapter presents the application of a particle swarm optimization
(PSO) to a controller tuning in selected power electronic and drive systems. The
chapter starts with a relatively simple tuning of a cascaded PI speed and position
control system for a BLDC servo drive. This example serves as the background for
a discussion on selecting the objective function for the PSO. Then the PSO is used
in two challenging controller tuning tasks. This includes optimizing selected
learning parameters in the adaptive artificial neural network (ANN) based online
trained speed controller for an urban vehicle (3D problem) and selecting penalty
factors in the LQR with augmented state (i.e. with oscillatory terms) for a three-
phase four-leg sine wave inverter (15D problem). It is demonstrated with the help
of these case studies why and where the PSO, or any other similar population
based stochastic search algorithm, can be beneficial. Engineers encounter many
non-straightforward controller tuning problems in power electronic systems and
this chapter illustrates that in some cases it is relatively easy to reduce these tasks
into the objective function selection problem. The relevant controller parameters
are then determined automatically by the PSO.
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1 Particle Swarm Optimization

Particle swarm optimization is attributed to Kennedy, Eberhart and Shi [1]. It is an
iterative gradient-free search algorithm inspired by biological swarming such as
bird flocking, fish schooling, herding of land animals or collective behavior of
insects. The search starts with a random set (here called swarm) of solutions (here
called particles). The particles travel through a search space and are rated
according to a user defined objective function. Their movements are a function of
the individual experience and information acquired from other particles. However,
the velocity vectors are not deterministic. The instantaneous strength of social and
individual behavior varies randomly for each particle in each iteration. In a basic
version of the algorithm the only piece of information shared among the particles
is the global best solution found so far. Each particle stores also its best solution
found so far. The velocity and position update rules are as follows

vj iþ 1ð Þ ¼ c1vj ið Þ þ c2 randðÞ ppbest
j � pj ið Þ

� �

þ c3randðÞ pgbest
j � pj ið Þ

� � ð1Þ

pj iþ 1ð Þ ¼ pj ið Þ þ vj iþ 1ð Þ; ð2Þ

where: j is the particle identification number, i denotes the iteration number, vj and

pj are speed and position of the j-th particle, ppbest
j stores the best solution proposed

so far by the j-th particle (pbest), pgbest denotes the best solution found so far by the
swarm (gbest), c1, c2 and c3 are the explorative factor (inertia weight), the indi-
viduality factor and the social factor, respectively. It is to note that the speed
vj iþ 1ð Þ in the rule (2) should be multiplied by time to represent physical velocity.
However, it is common practice to set the time increment to 1 and thereafter
neglect it in (2). An introduction of a different time increment does not influence a
behavior of the swarm because coefficients present in (1) have to be divided by this
increment. The search path is not deterministic because of the last two terms in
(1) that include multiplication by the random numbers rand() generated for each
particle in each iteration. The random numbers are uniformly distributed in the unit
interval. In all experiments described in this chapter, the c1, c2 and c3 factors have
been calculated using the constricted PSO formula [1] and are 0:73 ; 0:73 � 2:05
and 0:73 � 2:05, respectively. If the basic velocity update rule does not manifest
satisfactory search abilities, numerous refinements are available. A fairly repre-
sentative survey can be found in [2, 3]. Taking into account the no free lunch
theorem for optimization [4] one can conclude that there is no ultimate version of
the PSO. The set of modifications should be selected individually, usually by trials
and errors, to suit a given optimization problem. These modifications range from
simple velocity clamping to substantial adjustments of particle communication
principles like, e.g., in the fully-informed PSO [5]. Additionally, there are certain
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modifications dedicated to online optimization in non-stationary environments [6].
The rules of swarm movements can be rearranged to handle multi-objective [7]
and/or multi-modal [8] problems. Various neighborhood topologies are proposed
to serve these purposes [9]. Our main goal is to keep the swarm as simple as
possible and still effective in the controller tuning tasks encountered in power
electronic or drive systems. This chapter deals with offline optimization in such
systems, hence the environment is assumed to be stationary even if a measurement
noise is included in the model. Moreover, all optimizations are performed on
numerical models of the plants, therefore the search space does not need to be
bounded to specific territory resulting from safety requirements for the given plant.
The numerical model should include all nonlinearities, noises and other parasitic
effects crucial from control point of view. No information on gradient is harnessed
by the PSO. This gives a lot of freedom to the designer at problem formulation
stage—the mathematical model of the system being optimized can include, e.g.,
discontinuities. From the same reason, the objective function chosen by the
designer can be of any type and one can focus on formulating this function to be
aligned with the desired behavior of the system without bothering about its
mathematical properties in terms of complexity and differentiability.

In the case of all discussed problems no special measures have been taken
regarding swarm movements. The very basic formula (1) tends to produce
implementable solutions. All problems have been handled as single-modal and no
explicit multi-objectivity has been introduced. It is common among control
practitioners to reduce problems with contradictory objectives to single-objective
ones with the help of weighted terms in the objective function. This methodology
has been employed also here. The simplest communication topology has been
used, i.e. the gbest attracts all particles and no neighborhood operator is present.
However, it has been decided to introduce absorbing walls [10] if clear physical or
theoretical constraints are identifiable. This means that the speed of a particle is
reset to zero if known boundaries are crossed. No other modifications to the
standard PSO have been identified as necessary to effectively tune the below
discussed controllers.

2 Objective Function

The objective function (also called cost function, energy function, performance
index or fitness function) determines the behavior of the optimal controller. There
are some commonly used performance measures as the integral of squared error
(ISE)

JISE ¼
Z1

0

e2 tð Þdt; ð3Þ
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where e tð Þ denotes control error, or the generalized ISE

JIGSE ¼
Z1

0

e2 tð Þ þ a _e2 tð Þ
� �

dt; ð4Þ

where a is a subjective weighting factor, or the integral of squared error and
derivative of control effort

JISEDCE ¼
Z1

0

e2 tð Þ þ b _u2 tð Þ
� �

dt; ð5Þ

where u tð Þ denotes control effort (control signal) and b is again a subjective
weighting factor. Especially (3) earns its popularity by producing problems that
are easy to approach analytically for some classes of control systems ([11] might
serve as the example). However, in a gradient free optimization the performance
index can be chosen freely to reflect in the best possible way the desired behavior
of the system. It has been decided that for all studied cases the performance indices
will be positive definite and the optimization problem will be of the minimization
type. The philosophy of signals contributing to the performance index its mean
squared value has been kept in all discussed tuning procedures. Nevertheless, to
promote sometimes contradictory behaviors like fast transients and no chattering at
steady state, additional functions are introduced into the performance index defi-
nition allowing for selective contribution to the overall value. For example, the
dynamics of the control effort is not penalized during the specific time interval
after the change in the reference signal whereas this penalty is non-zero at the
steady state. These time windows have to be carefully chosen for each term in the
performance index according to physical limitations of the plant. Also, it is
common practice to add terms that take into account overshooting or crossing
acceptable levels for control signal. The nature of the PSO enables the designer to
work with any form of performance index. However, our main goal is to keep this
stage simple without sacrificing the performance of the resulting system. All
proposed here performance measures have the form of

Jc ¼
Ts

tstop

Xtstop
Ts

k¼1

ðf1 kð ÞeT
y kð Þey kð Þ þ f2 kð ÞDuT kð ÞDu kð Þ

þ f3 kð ÞuT
aux kð Þuaux kð Þ þ f4 kð ÞyT

aux kð Þyaux kð ÞÞ;

ð6Þ

where ey, u, uaux and yaux are vectors (in the MIMO case, e.g. as in three-phase
converters) containing control errors, control signals, auxiliary signals from the
controller and auxiliary signals from the plant, respectively (as depicted in Fig. 1).
The discrete representation of the performance measure has been chosen to cor-
respond to the assumed digital implementation of a control system. All signals are
sampled at the rate of Ts. The tstop denotes the assessment test time for the particle
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(equal for all particles). It is to note that the infinite integration limit commonly
used in the analytical approach has to be changed to finite test time if the per-
formance evaluation is done by using signal samples recorded during a numerical
simulation or a physical experiment. The functions f1, f2, f3 and f4 are bivalent
functions with zero value for intervals with no penalty for a given behavior and
positive value, usually different for each function with one of them set to 1, for
intervals with a penalty for this behavior. These intervals are correlated with the
reference test signal(s) and the test disturbance(s). In some designs they depend on
states of a system when, e.g., additional penalty for overshooting is needed. It
should be stressed that the bivalency is assumed here to make the design process
more intuitive. From now onward the bivalent functions will be referred to as
switching functions. The resulting system is optimal for a given shape of the
reference and disturbance signals. That is why it is crucial to design the test
scenario that includes representative set of anticipated system states. The scaling
by the reciprocal of the number of samples present in (6) does not influence the
optimization process and is introduced solely to make the value of the performance
index easier in interpretation as the mean value of the sum of squares. The test
reference signal(s) should take into account physical limits of a plant, e.g. the
available acceleration. Otherwise, a dominant contribution to the cost function
value coming from demanded behavior outside the physical limits makes deter-
mining upper values for switching functions significantly more difficult. It is
common practice to implement ramps and s-ramps as reference models for speed
or position in electric drive systems. This limits first and second derivative of the
reference signal, respectively. It is also practical to use first and second order lag
elements if these derivatives are expected to be limited. An example is shown in
Figs. 2 and 3. The step reference signal should be avoided in such performance
index based assessment tests because this does not reflect most real-life applica-
tions. For example, the s-ramp speed reference model is frequently used in
drivetrain systems to limit the jerk which is important for a lifetime of a
mechanical part of the system and for a comfort of its users, e.g. passengers of a
vehicle.

It is common that in the early stage of the search many particles cannot be rated
using (6) because the simulation stops before reaching the assumed tstop due to
numerical problems. The simulation is also stopped intentionally before tstop if
states of a plant reach unacceptable levels from the physical implementation point
of view. For some search problems the particles do not carry directly values of
parameters of the model but those values are calculated using the values stored in

PlantController

d

-

yu

uaux yaux

yref ey

Performance index   calculation

Fig. 1 Selected signals for
performance calculation
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the particle (see Sect. 6). It is possible then that the identification of poor solutions
may takes place even before running the numerical model of the system. It has
been tested that rating all such particles as equally poor may impair swarm’s
capability to keep a good balance between exploration and exploitation. Any
functions can be used to rate particles in the event that (6) is not applicable as far
as they preserve logical order and their codomains do not overlap. The idea is
illustrated in Fig. 4.

The PSO itself puts a minor computational burden on the optimization proce-
dure. The time needed to complete the optimization is dictated by the wall clock
time required by the numerical model of the system to be simulated. Non sur-
prisingly, the number of needed simulations depends highly on the form of the
objective function. Some guidelines on choosing a good number of particles and
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Fig. 2 Reference signal shaped by using rate limiter (a) and first order lag element G sð Þ ¼ 1
ssþ1

with s ¼ 1 s fed by the step signal (b)
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Fig. 3 Reference signal shaped directly as a quadratic spline (a) and generated using second
order lag element G sð Þ ¼ 1

ss1þ1ð Þ ss2þ1ð Þ with s1 ¼ s2 ¼ 1 s fed by the step signal (b)

308 B. Ufnalski et al.



iterations are given in [12]. It has been verified that 50 particles and 100 swarm
iterations would suffice in most of the discussed here problems. However, this
implies up to 5,000 runs of the model. It could be problematic if the performance
of, e.g., a drive with a pulse width modulated (PWM) converter is to be assessed.
Usually, a simulation step size two orders of magnitude lower than the controller
sampling time is required to obtain trustworthy numerical results. In order to tackle
such problems in a reasonable wall clock time, one will need processing capacity
extending far beyond the one offered by today’s personal computers. On the other
hand, many controller tuning tasks encountered in power electronics and drives
deal with plant natural frequencies significantly lower than the used PWM fre-
quencies. In such cases it is reasonable to neglect discontinuities introduced by the
modulator and simplify the converter to a linear amplifier with a delay. Obtained
model usually produces reliable numerical results for a simulation step size equal
to the controller sample time. This has helped to reduce computational complexity
of the below presented experiments to levels resulting in several-hour-long tuning
procedures. The number of swarm iterations is always a subjective choice. Even
though there are various indices elaborated for assessing a search progress, none of
them is free from subjective choice of thresholds. A fairly representative set of
stopping criteria has been described in [13]. The thresholds are usually determined
using the guess and check method. For all following optimization problems the
number of swarm iterations has been set arbitrary to meet assumed wall-clock time
constraints. However, it is advisable to monitor swarm diversity variations which
can be helpful in detection of ill-posed problems. A well-established measure of
diversity incorporates Euclidean distance of particles to the mean and is defined,
see e.g. [14], as follows

Ddist ¼
1

Np
ffiffiffiffiffiffi
Nd
p

XNp

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNd

n¼1

pjn � pn

� �2

vuut ; ð7Þ

where Np is the swarm size, Nd is the dimensionality of the problem and p is the
average point. Originally this diversity measure uses the length of the longest
diagonal in the search space instead of

ffiffiffiffiffiffi
Nd
p

. However, the original definition

Fig. 4 The methodology of distinguishing particles’ performance outside the area covered by the
definition of Jc
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cannot be applied to swarms with at least one unbounded search direction which is
the case in all discussed here systems. If more insight into separate dimensions is
needed, a slightly different diversity measure could be used. It contains standard
deviations of proposed solutions that can also be merged into a single formula by
calculating their mean value per dimension

Dstd ¼
1

Nd

XNd

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Np

XNp

j¼1

pjn � pn

� �2

vuut : ð8Þ

By monitoring the evolution of inner sums in (8) one can detect dimensions
with poor convergence. If the swarm does not calm down in selected dimensions, it
could suggest that the problem is ill-posed for these dimensions. Such a lack of
convergence in selected dimensions can also be intensified by measurement and
system noises. Possible solutions are rethinking parameters to be optimized and/or
redefining the fitness function.

3 Simultaneous Tuning of Cascaded PI Position and Speed
Controllers

There exist numerous analytical and experimental methods for effective PID
tuning in a cascaded position, speed and torque control system frequently used in
servo drives. Just to mention some of them: modulus and symmetrical optimum
methods (Kessler’s criteria) [15], Ziegler-Nichols method [16] with different
tuning charts, e.g. Pessen recipe, Seborg et al. recipes (some-overshoot rule,
no-overshoot rule), Tyreus-Luyben tuning chart. In most cases the resulting con-
trol quality is sufficient and there is no need for more elaborated tuning procedures.
The example of PSO for a BLDC servo drive serves here only illustrative
purposes. However, some easily identifiable advantages of the evolutionary gra-
dientless optimization are present in contrast to the abovementioned methods: the
optimizer can work with any user-defined performance index and simultaneous
tuning of more than one out of the cascaded controllers is possible. These prin-
ciples have already been used in [17] for optimizing a cascaded PI control
structure with respect to the H1 norm. Moreover, the process and the control
system can be modeled in any drag-and-drop environment and can include all
crucial nonlinearities, i.e. controller saturation and anti-windup, and parasitic
effects as the measurement noise.

The dynamics of a three-phase brushless DC machine can be numerically
modeled using following mathematical description
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uaðtÞ ¼ L diaðtÞ
dt þ RiaðtÞ þ ea aeðtÞ;xmðtÞð Þ

ubðtÞ ¼ L dibðtÞ
dt þ RibðtÞ þ eb aeðtÞ;xmðtÞð Þ

ucðtÞ ¼ L dicðtÞ
dt þ RicðtÞ þ ec aeðtÞ;xmðtÞð Þ;

8>><
>>:

ð9Þ

where

ex aeðtÞ;xmðtÞð Þ ¼ KBLDCkex aeðtÞð ÞxmðtÞjx¼a;b;c: ð10Þ

The electromagnetic torque produced in the machine can be calculated using
formula

Te tð Þ ¼

P
x¼a;b;c

ex ae tð Þ;xm tð Þð Þix tð Þ

xm tð Þ ; ð11Þ

where ex x ¼ a; b; cð Þ is the phase back-EMF voltage, KBLDC is the back-EMF
constant, kex x ¼ a; b; cð Þ is the ideal trapezoidal shape function, L and R denote the
stator inductance and resistance, ae ¼ pam is the electrical rotor angle equal to the
mechanical rotor angle am multiplied by the number of pole pairs, xm is the rotor
angular speed. If the motor is electronically commutated in such a way that the
current flows only through two phases, its dynamics can be modeled using
equations similar to the ones describing a brushed DC machine

uBLDCðtÞ ¼ 2L
diBLDC tð Þ

dt
þ 2RiBLDC tð Þ þ 2KBLDCxm tð Þ ð12Þ

Te tð Þ ¼ 2KBLDCiBLDC tð Þ ð13Þ

accompanied by the Newton’s law for rotation

Te tð Þ ¼ J
dx tð Þ

dt
þ Tload tð Þ þ Fvxm tð Þ; ð14Þ

where Tload is the load torque and Fv is the viscous friction coefficient. The BLDC
servo drive considered here consists of a hypothetical converter-fed motor
equipped with a torque/current PI control loop, tuned with the help of the modulus
optimum method, and a cascaded speed and position PI controllers. Parameters of
the drive are given in Table 1. All controllers include standard anti-windup
algorithm depicted in Fig. 5. Input signals of the speed and torque controllers have
per-unit values with the motor nominal values as the base ones. The input of the
position controller is left unscaled. The model of the servo drive is then connected
to the PSO (Fig. 6) and a performance index is defined as follows

JBLDC
c ¼ Ts

tstop

Xtstop
Ts

k¼1

ðf BLDC
1 kð Þe2

a kð Þ þ f BLDC
2 kð Þ DT ref

e kð Þ
� �2

þ f BLDC
3 kð Þe2

a kð ÞÞ;

ð15Þ
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where the function f BLDC
1 introduces penalty for position control error after the

time equal to a theoretical time needed to travel a test angle under assumption that
the only physical limits are these related to maximal absolute values of electro-
magnetic torque and angular speed, the function f BLDC

2 switches off the penalty for
reference torque variations during transients forced by the test reference speed and
test disturbance torque, and the function f BLDC

3 penalizes for an overshoot.
For the discussed PI controllers tuning task, each particle is a vector of can-

didate settings for both controllers. These settings can be explicitly stored as the
vector components. However, it has been tested that in some tuning problems it is
easier and sometimes also more effective to perform the search in an exponential
scale. For the purpose of this search, the particle is a vector

pBLDC ¼ log10kPx; log10kIx; log10kPa; log10kIa½ �; ð16Þ

Table 1 Parameters of the torque controlled BLDC drive

Parameter Value Units

Nominal angular speed 15 rad � s�1

Nominal voltage 24.6 V
Nominal current 3.33 A
Nominal torque 4 N �m
Back-EMF constant KBLDC 0.6 Wb
Resistance R 1 X
Inductance L 2.5 mH
Moment of inertia J 0:0075a kg �m2

Viscous friction Fv 0:0133b N �m � s � rad�1

Converter gain 32 V
Switching frequency 2 kHz
Delay introduced by the modulator 250c ls
Controller sampling time 500c ls
Current acquisition delay 125c ls
a including some hypothetical driven machine
b 20 % of the nominal torque at the nominal speed (incl. some hypothetical driven machine)
c delays discussed in [18] and taken into account when applying the modulus optimum method

Fig. 5 Discrete implementation of a PI controller with saturation and anti-windup (conditional
integration algorithm): kP—proportional path gain, kI—integral path gain, Ts—controller
sampling time, umin and umax are minimal and maximal control signal levels
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where kPx, kIx, kPa and kIa are the controllers’ gains. The swarm consists of 30
particles and is stopped arbitrary after 100 iterations. The diversity (7) and stan-
dard deviations present in (8) are inspected visually. In the case of any stochastic
search algorithm each search attempt is unique due to the presence of random
variables in the speed update rule (1). It is recommended to repeat several times
the search, to be able to assess how conditioned the problem is. If the search
process is repeatable in terms of a final position of the swarm, the optimization
task is well-posed. For illustrative purposes selected iterations are shown in
Figs. 7, 8, 9. The evolution of the performance index JBLDC

c for the gbest solution
is depicted in Fig. 10. However, the most informative are standard deviations
shown in Fig. 11. They clearly indicate that the solutions proposed by the swarm

Fig. 6 The BLDC servo drive connected to the PSO system
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for the quadruple of controller gains are convergent except the gain kIa in the
integral path of the position controller. The reason for this is that in the test
scenario used for assessing a particle the dominant term comes from a steady state
error for a constant reference. A physical integration present in the plant, since the
angular position controlled in the outer loop is the integral of the speed controlled
in the inner loop, is then sufficient to accomplish the objective. It should be noted
that the proposed gbest for kIa is near zero (see Fig. 9). The dynamics of the system
for the gbest after 100 search iterations is illustrated in Fig. 12. The swarm has
identified that the assumed controller topology is excessive for this task. The
behavior of the swarm illustrates its ability to prompt to the designer potential
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further refinements of the assumed topology. This can be especially helpful when a
controller for a gray-boxed or a black-boxed plant has to be designed. Obviously,
there is a possibility to extend such a random search into simultaneous topology
selection and gain tuning. Two typical situations could be addressed: optimization
of a semi-fixed-structure controller or selecting the best fixed-structure controller
from a set of predefined structures. The former refers, e.g., to determining the
number of neurons in a neurocontroller. The control structure is fixed—the type of
artificial neural network is assumed to be fixed—the only decision variable related
to the structure is the number of hidden neurons. On the other hand, the latter
refers to a situation where a set of structurally different controllers is tested by the
particles, i.e. one entry of the particle vector is a pointer to a set of predefined
structures. This is especially useful for black-boxed plants when little or no
information about the dynamics of the process is available. The designer can then
define a set of potentially applicable control structures: cascaded PIs, augmented-
state feedback controllers, various neurocontrollers, iterative learning controllers,
repetitive controllers, etc. The PSO will then find the most suitable one for a given
black-boxed process.

4 Adaptive Online Trained Speed Neurocontroller

Nonlinear and adaptive speed controllers are often used to cope with inertia
variations present in many applications. A robotic arm or an electric vehicle
carrying various loads can serve as the examples. A direct method assumes
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introduction of an inertia estimator into the system (see e.g. [19]). In indirect
methods no inertia is estimated explicitly. These methods usually take advantage
of introducing nonlinearity into the controller with the intention to reduce sensi-
tivity to variations of plant parameters. Fuzzy logic (FL), artificial neural networks
(ANN) and their combinations are commonly used for implementation of non-
linear controllers. This nonlinearity can be static, i.e. determined in an offline
optimization procedure, or can be tuned continuously during the regular operation
of a drive. A fairy representative examples of online and offline trained neuro-
controllers can be found in [20–28]. The online trained neurocontrollers offer
natural capability of adaptation. A learning algorithm is kept active during regular
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Fig. 12 Response of the BLDC servo drive tuned by the PSO
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operation of the drive [29, 30]. It has been already identified that the resilient
backpropagation Rprop algorithm possesses properties that are especially useful
if real-time training is considered. The algorithm is less sensitive to noise in
comparison to the original backpropagation algorithm because it takes into account
only a sign of the gradient. In many tests the Rprop outperforms other first-order
training algorithms in terms of convergence [31]. An Rprop modification known
as the Rprop with weight-backtracking [31] has been selected in this study. Its
pseudocode is as follows:

where E is the cost function (usually MSE), wij is the weight of a neural
connection, dmin and dmax are allowable minimal and maximal absolute values of
Dwij, dij is the current weight change, g� and gþ are decrease and increase factors
for dij.

If a speed control task is considered and no repetitiveness of this process is
assumed (see [32] for more details), the cost function is as follows

ESPEED
ANN kð Þ ¼ 1

2
xref

m kð Þ � xm kð Þ
� �2

: ð17Þ

It has been tested in several different systems that the most crucial settings are
dmax, g� and gþ as far as the training process is equivalent to the control task.
Other parameters as the number of neurons, the length of the tapped delay line
(TDL) or dmin are easy to tune using the guess and check method. The latter can
usually be set to zero or to a very small positive value. Some recommendations on
dmax; g� and gþ potentially working settings are available in the literature (e.g.
[31]). They are reported as suitable for selected offline benchmarks. It was verified
that these recommendations cannot be easily extended to online tasks. This only
shows that any optimization task is always problem specific (see Sect. 2) and
parameters of the Rprop have to be adjusted for a given drive system. Some level
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of automatism can be easily achieved by employing the swarm-based optimization
as reported in [33].

For illustrative purposes the controller shown in Fig. 13 has been implemented
in a hypothetical drive (Fig. 14) suitable for a passenger city car (of assumed total
mass variations equal to 1; 500 � 300 kg) and then has been optimized using a
user defined performance index. Each particle is a vector

pSPEED ¼ g�; gþ; dmax½ � ð18Þ

of candidate settings for the Rprop adaptation rule. There exist clear search
boundaries resulting from the Rprop itself. Absorbing walls have been introduced
to limit the search to acceptable regions and they are as follows

Fig. 13 Topology of the speed neurocontroller for normalized signals with xmN and TeN

denoting nominal speed and torque values

Fig. 14 Adaptive neurocontroller as a part of a vehicle’s control system (FFNN stands for the
feed-forward neural network)
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0\g�\1
gþ[ 1
dmax [ 0

8<
: ð19Þ

The swarm consists of 27 particles rated according to the following perfor-
mance index

JSPEED
c ¼ Ts

tstop

Xtstop
Ts

k¼1

f SPEED
1 kð Þe2

x kð Þ
�

þ f SPEED
2 kð Þ DT ref

e kð Þ
� �2

þ f SPEED
3 kð Þe2

x kð Þ
�
;

ð20Þ

where f SPEED
3 detects overshooting. The performance index has been changed in

comparison to the one proposed in [33] so as to test whether a performance index
similar to the one used in Sect. 4 can produce satisfactory results. In the previous
work, an expert knowledge about the controller has been incorporated into the
performance index definition. Here this knowledge is neglected, i.e. no special
measures during the rating related to random initial weights of ANN are taken. The
system is assumed to be black-boxed. Variations of the vehicle inertia have been
included in the test scenario to optimize the controller for anticipated operating
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conditions. The evolution of the swarm is illustrated in Fig. 15. The performance
of the drive along with the switching functions used in (20) is shown in Fig. 16.
The speed overshoot visible in Fig. 16 during the first acceleration is the result of a
random initial weights of the neurocontroller. The training procedure needs some
transients on speed to be able to identify the dynamics of the plant. After one
vehicle braking no subsequent significant overshoots occur.

5 Augmented Full-State Feedback Controller
for a Three-Phase Inverter

Oscillatory controllers have proven to be one of the highest performance alter-
natives for AC voltage control in many applications, including grid converters,
active power filters and sine wave inverters. Examples of such solutions are
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Fig. 16 Response of the drive with the speed neurocontroller tuned by the PSO—moment of
inertia drops 20 % at 60 s and rises 20 % at 100 s in comparison to the value set for the first 60 s
(assumed total mass variations 1; 500 � 300 kg)
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described in [34–38]. The solution considered here relies solely on the LQR design
method and has been proposed in [39]. A full-state feedback controller with a state
vector augmented to include integral plus multiple oscillatory actions has been
implemented in the dq0 rotating reference frame with all its gains calculated in one
pass using the LQR approach. The LQR design method is known to deliver good
performance in practical systems. The resulting system is inherently stable and the
controller is relatively simple in coding. The procedure comes down to preparation
of a state-space description of an augmented system (plant plus auxiliary controller
states), setting weighting matrices in the quadratic cost function and calling the
function that solves analytically the optimization problem, known as the discrete-
time algebraic Riccati equation (DARE). A three-phase four-leg inverter with an
output LC filter depicted in Fig. 17 is considered as the plant to be controlled.
Therefore, its mathematical model in the dq0 rotating reference frame is as follows

d
dt

xf tð Þ ¼ Acont
f xf tð Þ þ Bcont

f u tð Þ þ Econt
f z tð Þ; ð21Þ

Fig. 17 Three-phase four-leg inverter with LC filter and augmented full state feedback controller
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where

Acont
f ¼

� Rf

Lf
x1 0 � ki

kuLf
0 0

�x1 � Rf

Lf
0 0 � ki

kuLf
0

0 0 � Rfþ3Rn

Lfþ3Ln
0 0 � ki

kuðLfþ3LnÞ
ku

kiCf
0 0 0 x1 0

0 ku
kiCf

0 �x1 0 0

0 0 ku
kiCf

0 0 0

2
66666666664

3
77777777775

ð22Þ

Bcont
f ¼

kdcki
Lf

0 0

0 kdcki
Lf

0

0 0 kdcki
Lfþ3Ln

0 0 0
0 0 0
0 0 0

2
66666664

3
77777775

ð23Þ

Econt
f ¼

0 0 0
0 0 0
0 0 0
� ku

Cf
0 0

0 � ku
Cf

0

0 0 � ku
Cf

2
66666664

3
77777775

ð24Þ

and

xf ðtÞ ¼ imsrd
Ld tð Þ; imsrd

Lq tð Þ; imsrd
L0 tð Þ; umsrd

Cd tð Þ; umsrd
Cq tð Þ; umsrd

C0 tð Þ
h iT

ð25Þ

u tð Þ ¼ ud tð Þ; uq tð Þ; u0 tð Þ
� �T ð26Þ

z tð Þ ¼ iod tð Þ; ioq tð Þ; io0 tð Þ
� �T

; ð27Þ

where Lf ;Rf ; Ln;Rn;Cf and x1 denote respectively inductances and resistances of
phase and neutral filter legs, capacitance of the filter, and angular speed of the
reference frame dq0 equal to the fundamental angular frequency of the desired
output voltage. The load current vector z tð Þ represents the unmeasured disturbance.
This description already accommodates ku, ki, kdc gains that model current and
voltage transducers, and the voltage source inverter, respectively. The superscript
�msrd denotes the output signal of a measurement transducer. Thereafter, auxiliary
states are introduced to achieve control objectives, i.e. zero steady-state error for
the reference frequency and good disturbance rejection for the anticipated load
current dominant harmonics. Thus, the auxiliary state variables are as follows
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d
dt

x0 tð Þ ¼ e tð Þ ð28Þ

with

e tð Þ ¼ ½umsrd
Cd tð Þ � uref

d tð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
edðtÞ

; umsrd
Cq tð Þ � uref

q tð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
eqðtÞ

; umsrd
C0 tð Þ � uref

0 tð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
e0ðtÞ

�T ð29Þ

and

d
dt

x1 tð Þ ¼ x2 tð Þ
d
dt

x2 tð Þ ¼ �x2 x1 tð Þ þ e tð Þ;

8><
>:

ð30Þ

where x is the desired resonant angular frequency and e tð Þ denotes a selected
control error component from (29). The number and the value of resonant angular
frequencies x are selected individually for each voltage component and have to
reflect anticipated load current harmonics seen in the dq0 reference frame. The
integral term can be regarded as the special case of the oscillatory term with zero
resonant frequency. As a result, the auxiliary subsystem can be categorized as a
sole multi-oscillatory (MOSC) subsystem

d
dt

xx tð Þ ¼ Acont
x xx tð Þ þ Bcont

x e tð Þ; ð31Þ

where the auxiliary state vector xx refers to all three voltage components and
accommodates any desired frequency from available bandwidth. The auxiliary
states are merged with the plant states and the augmented state matrix and the
input matrix are composed as follows

Acont ¼ Acont
f 0

0 Bcont
x

� �
Acont

x


 �
ð32Þ

Bcont ¼ Bcont
f ; 0

h iT
: ð33Þ

This description is then transformed into the discrete-time domain using ZOH
method and weighting matrices Q and R have to be determined in the quadratic
cost function

JLQ ¼
X1
k¼1

xT kð ÞQx kð Þ þ uT kð ÞRu kð Þ
� �

ð34Þ

being the part of the LQR definition. The dynamics of the non-disturbed aug-
mented full-state feedback system

x k þ 1ð Þ ¼ A� BKð Þx kð Þ ð35Þ
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for the zero reference signals is then shaped by K designed using the LQR method.
Selecting Q and R is the crucial step and in the most common approach of
guessing and checking this step involves an expert knowledge combined with
usually numerous trials. Moreover, the resulting controller though optimal
according to (34) is not optimal according to commonly used control performance
indices as (3), (4) or (5). On the other hand, with the help of a population based
optimizer, a full-state feedback controller can be tuned according to a user defined
cost function [40–42]. It has been verified that in the case of the discussed con-
troller the performance index

JLQR
c ¼ Ts

tstop

Xtstop
Ts

k¼1

eT kð Þe kð Þ þ bDuT kð ÞDu kð Þ
� �

; ð36Þ

where b is the weighting factor that directly influences dynamics of the control
signal by penalizing this dynamics, is able to produce practical controller gains
applicable in the real system in the presence of a measurement noise. In the
discussed system the LQR design approach has been kept. However, it should be
noticed that a swarm could also perform direct search for K entries [40] or closed-
loop poles [41]. If no presumptions concerning the poles or the gains are available,
the LQR approach seems to be the most effective if the convergence rate of the
stochastic search is taken into account. This conclusion is similar if the augmented
state feedback controller is tuned by the human using a trial and error method.

The optimization takes place in offline mode on numerical model of the
physical converter with parameters as in Table 2. The method has been verified for
the case of the auxiliary states covering 2nd, 3rd, 4th, 6th, 8th, 9th, 10th and 12th
harmonic in the dq paths and 1st, 3rd, 5th, 6th, 7th, 9th, 11th and 12th harmonic for

Table 2 Selected parameters of the laboratory setup

Symbol Value and units Description

DSC TMS320F28335 Digital signal controller (150 MHz)
Un 325 V Nominal output voltage amplitude
x1 2p�50 s-1 Output reference angular frequency
fPWM , Ts 10 kHz, 100 ls Switching frequency, sampling time
Dead-time 1.3 ls Dead-time for IGBT gate signals
UDC 620 V DC-link voltage
Lf 250 lH Inductance of the phase leg
Rf 165 mX Series resistance of the phase leg
Cf 85 lF Capacitance of the output filter
Ln 250 lH Inductance of the neutral leg
Rn 165 mX Series resistance of the neutral leg
ku 1=Un Voltage transducer gain
ki 0.01 A-1 Current transducer gain
kdc UDC Voltage source inverter gain
Noise 1 % Measurement noise level
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the 0-component. The auxiliary states related to integral actions for all error
components are also included. This produces the 59-dimensional optimization
problem: 3 entries of R and 57 entries of Q with one entry set arbitrary to 1 as
scaling of (34) does not influence the result. The entries in Q are related to: 6
measured state variables, 3 integral actions and 2 � 3 � 8 oscillatory state variables.
It has been decided to merge selected search dimensions to get less challenging
problem from wall-clock time perspective. First of all, the Bryson’s rule [43] has
been applied to normalize the weighting entries of Q and R. Next, penalties are not
varied for a given harmonic (regardless to its occurrence in the different axis).
Moreover, it has been tested that the search performed in an exponential scale is
more effective in comparison to the search in a linear scale. This gives entries with
the decision variables as exponents, e.g. for 3rd harmonic of the form of 32x2

110q3

and 10q3 for the two auxiliary states introduced by the oscillatory term. The
optimization can then be run in 15D space. The particle is a vector

Fig. 18 The order of performance regions for the LQR

Fig. 19 PSO connected to the numerical model of the three-phase four-leg inverter with the
output LC filter
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Fig. 20 Initial position of the swarm—the bigger in diameter black dot denotes gbest
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Fig. 25 The test load current (phase a)
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Fig. 24 The evolution of gbest (curved line) and the swarm position (dots) over optimization
iterations for qC
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pLQR ¼ qL; qC; q0; q1; . . .; q12½ � ð37Þ

of candidate exponents determining weighting coefficients for the LQR cost
function (34). All search directions could have been left unconstrained because of
lack of clear physical boundaries. The entries of Q are positive for any real-valued
particle (37). However, the absorbing walls have been introduced at -15 and 15 to
turn the particles back to practical search regions. The walls have been set with
considerable surplus according to the experience gathered during previously used
trial and error tuning method. Particles that cannot be rated using (36) are handled
as in Fig. 18. The swarm of 50 particles is connected to the numerical model of the
system as in Fig. 19. Envelopes of the reference voltages seen in natural reference
frame are shaped using a first order lag element (see Fig. 2) with a time constant of
0.05 s to avoid excessive contribution to the performance index due to zero initial
conditions for the LC filter. Alternatively, a switching function could be intro-
duced in (36) as discussed in Sect. 1.

Position and speed graphs have been broken into 3D plots. An illustrative
selection of such graphs is shown in Figs. 20, 21, 22 and 23. The evolution of the
swarm in one selected dimension is shown in Fig. 24. The performance of
the resulting system under the load current from Fig. 25 is shown in Fig. 26. The
obtained matrix K is transferred to the physical controller without any further
alterations. Selected parameters of the laboratory setup are given in Table 2. The
tuning procedure from the designer side is only one-dimensional and finding a
good b for (36) that produces desired behavior of the physical system usually takes
less than five trials. The performance of the physical system under nonlinear loads
is illustrated in Figs. 27 and 28. The transient state caused by the step resistive
load in one phase (and no-load operation of other phases) is shown in Fig. 29. The
harmonic contents are compared in Table 3.
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Fig. 27 Output voltage uCa; uCb ; uCcð Þ and output current ioað Þ waveforms under the three-pulse
diode rectifier load: UCa ¼ 230 Vrms, Ioa ¼ 14:14 Arms, THDUCa

¼ 1:58 %, THDIoa
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6 Conclusions

Nowadays, control systems become more and more elaborated and related tuning
procedures often require theoretical insight into the system. And even then, ana-
lytical tuning procedures available for these systems usually forces a designer to
guess some parameters that are needed as their input arguments. Also often these
arguments do not directly shape the dynamics of the closed-loop system, and
consequently achieving the desired behavior of the system is not a straightforward
task. That is why still cascaded PI controllers are dominant in the industrial
practice. They earn their popularity because of relatively simple tuning methods
and low computational complexity. Theoretically, any controller tuning task can
be redefined into a performance index optimization problem. Relevant controller
settings turn into decision variables. Such an optimization problem can be solved
with little or no insight into the system by using gradientless population-based
optimizers. This approach can be applied to problems that do not have yet an
analytical solution as well as to problems that do have one. In the case of the latter
this can result in much more straightforward procedure from the designer point of
view in comparison to the original analytical solution. It has been illustrated that a
swarm of particles can support control engineers in a simultaneous tuning of

Table 3 Harmonic spectra of the output voltage uCað Þ and the load current ioað Þ

Open loop
operation under
3-pulse diode
rectifier load

Closed loop
operation under
3-pulse diode
rectifier load

Closed loop
operation under
6-pulse diode
rectifier load

Urms ¼ 227 Vrms Urms ¼ 230 Vrms Urms ¼ 230 Vrms
Irms ¼ 12:24 Arms Irms ¼ 14:14 Arms Irms ¼ 15:11 Arms

THDU ¼ 4:38 % THDU ¼ 1:58 % THDU ¼ 1:68 %

THDI ¼ 152 % THDI ¼ 179 % THDI ¼ 105 %

U1 ¼ 227 Vrms U1 ¼ 230 Vrms U1 ¼ 230 Vrms
I1 ¼ 6:14 Arms I1 ¼ 6:42 Arms I1 ¼ 10:38 Arms

h U (%) I (%) U (%) I (%) U (%) I (%)

1 100 100 100 10 100 100
2 0.574 92 0.410 95 0.313 14
3 3.149 80 0.226 86 0.339 5
4 0.612 64 0.128 76 0.139 13
5 0.697 48 0.534 64 0.484 79
6 2.054 32 0.063 52 0.129 2
7 0.190 19 0.276 38 0.558 58
8 0.064 10 0.152 27 0.125 4
9 0.728 7 0.121 17 0.037 3

10 0.081 8 0.110 11 0.092 3
11 0.218 8 0.102 8 0.114 27
12 1.488 7 0.031 8 0.094 1
13 0.163 5 0.163 9 0.212 12
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cascaded controllers, in identifying potential excessiveness of a control structure
(as in Sect. 4), in reducing dimensionality of the problem in terms of number of
parameters that have to be passed to the function by the user (as in Sect. 6).
Moreover, swarms are extremely useful when a user-defined performance index
should be addressed in the system and analytical solution has not been yet
developed. It has been shown that swarms can help to tune adaptive neurocon-
trollers (as in Sect. 5) that otherwise would have to be tuned by using a time-
consuming trial and error method accompanied by an expert knowledge. It should
be noted that the PSO is itself a trial-and-error-like method. However, points that
are to be visited in the solution space are determined by the swarm itself in the
iterative manner. The visual inspection of a performance often used during human
made trials is replaced by rating solutions according to a user defined real-valued
performance index. In most practical engineering problems no analytical solution
is expected as far as stochastic search is able to deliver good suboptimal solution
and this turns out to be achievable if some basic expert knowledge is incorporated
into the performance index definition.
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