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Abstract. In this paper, dependence concepts such as affiliation, left-tail decreas-
ing, right-tail increasing, positively regression dependent, and positively quadrant
dependent are studied in terms of copulas. Relationships among these dependent
concepts are obtained. An affiliation is a notion of dependence between two posi-
tively dependent random variables and some measures of it are provided. It has been
shown that the affiliation property is preserved using bilinear extensions of subcop-
ula. As an application, the affiliation property of skew-normal copula is investigated.
For illustration of dependent concepts and their relationships, several examples are
given.

1 Introduction

With the rapid development of mathematical finance and risk management in the
last two decades, more and more attention has been paid to creating some practi-
cal statistical models beyond normal settings to improve competitive performance
in finance and insurance fields. The copula is one of the most important models
used in mathematical finance. Specifically, copulas, introduced in [25], are used to
model multivariate data as they account for the dependence structure and provide
a flexible representation of the multivariate distribution. Copulas are multivariate

Zheng Wei
Department of Mathematical Sciences, New Mexico State University, USA
e-mail: weizheng@nmsu.edu

Tonghui Wang
Department of Mathematical Sciences, New Mexico State University, USA,
and College of Science, Northwest A & F University, China
e-mail: twang@nmsu.edu

Wararit Panichkitkosolkul
Department of Mathematics and Statistics, Thammasat University, Thailand
e-mail: wararit@mathstat.sci.tu.ac.th

� Corresponding author.

V.-N. Huynh et al. (eds.), Modeling Dependence in Econometrics, 113
Advances in Intelligent Systems and Computing 251,
DOI: 10.1007/978-3-319-03395-2_7, c© Springer International Publishing Switzerland 2014



114 Z. Wei, T. Wang, and W. Panichkitkosolkul

distributions with [0,1]-uniform marginal, which contain the most multivariate de-
pendence structure properties and do not depend on the marginals. For references,
see [10], [7], [20], and [22].

In analysis of auction theory, valuations of different bidders (modeled as random
variables) could be affiliated. In similar situations in econometrics, when depen-
dence of random variables is a concern, the theory of affiliated copulas, which will
be defined in next section, offers an appropriate approach. Recently, Rinotta and
Scarsini studied the total positivity order for multivariate normal distributions in
[20]. The importance of the affiliation properties in application of auction theory
can be found in [14], [4], [19], [24] and [21].

As an extension of normal settings, multivariate skew normal distributions are
widely used in almost all fields for almost three decades. For references on skew
normal distributions, see [1], [2], [8], and many other papers listed in the website
of Azzalini [3]. The concept of affiliation on the class of multivariate skew normal
family has not been investigated in the literature.

This paper is organized as follows. Dependence and association concepts as well
as their relationships are obtained in Section 2. Bilinear extension method of a two
dimensional subcopula together with their affiliation property is studied in Section
3. Average and local measures of affiliation are provided with several examples in
Section 4. Conditions under which the bivariate skew-normal copulas are affiliated
are discussed in Section 5.

2 Basic Concepts

Following the notions of [25], we have definition of affiliation.

Definition 1. The random variables X and Y are said to be affiliated (or positively
likelihood ratio dependent(PLRD)) if

h(x,y∗)h(x∗,y)≤ h(x,y)h(x∗,y∗) (1)

holds for all x∗ ≤ x and y∗ ≤ y, where h(·, ·) is the joint density function of (X ,Y ).

Recall that a copula C is a function C(·, ·) : [0,1]2 → [0,1] satisfying
(i) C(u,0) =C(0,v) = 0, for u,v ∈ [0,1],
(ii) C(u,1) = u,C(1,v) = v, for u,v ∈ [0,1], and
(iii) For any (u,v)≤ (u′,v′), C(u′,v′)−C(u,v′)−C(u′,v)+C(u,v)≥ 0.

Sklar’s theorem states that if H is the joint distribution of (X ,Y ), then there is
a copula C such that H(x,y) = C(F(x),G(y)) for (x,y) ∈ R2. Copula character-
izes dependence structures and dependence measures which is also independent
of marginal distributions. It can be viewed as a joint distribution of two random
variables U and V located on [0,1]. Motivated by this, we give the corresponding
affiliation definition for a copula as follows.

Definition 2. A copula C(u,v) is said to be affiliated if

c(u,v∗)c(u∗,v)≤ c(u,v)c(u∗,v∗) (2)
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holds for all u∗ ≤ u and v∗ ≤ v, where c(·, ·) is the joint density corresponding to

copula C(u,v) with c(u,v) = ∂ 2C(u,v)
∂u∂v .

Remark. It is true that the random variables X and Y are affiliated if and only if
their corresponding copula is affiliated. Indeed, suppose X and Y are affiliated. Let
h(x,y) and c(u,v) be the corresponding density function and copula density, respec-
tively. Then h(x,y) = c(F(x),G(y)) f (x)g(y), where F(x) and G(y) are cumulative
distribution functions (CDF) of X and Y , respectively. Since X and Y are affiliated,
by definition,

h(x,y∗)h(x∗,y)≤ h(x∗,y∗)h(x,y), x∗ ≤ x,y∗ ≤ y,

which is equivalent to

c(F(x),G(y∗)) f (x)g(y∗)c(F(x∗),G(y)) f (x∗)g(y)
≤ c(F(x∗),G(y∗)) f (x∗)g(y∗)c(F(x),G(y)) f (x)g(y),

which is reduced to

c(F(x),G(y∗))c(F(x∗),G(y))≤ c(F(x∗),G(y∗))c(F(x),G(y)).

Since both F and G are distribution functions and therefore non-decreasing, for any
u∗ ≤ u,v∗ ≤ v, let x∗ = F−1(u∗),x = F−1(u) and y∗ = G−1(v∗),y = G−1(v), where
F−1(u) = inf{x ∈ R|F(x)≥ u}. Therefore

c(u,v∗)c(u∗,v)≤ c(u∗,v∗)c(u,v).

The converse relation can be proved similarly. �

For the connection between affiliation property and positively quadrant depen-
dence (PQD), let us recall the definition of PQD given below.

Definition 3. A copula C : [0,1]× [0,1] �→ [0,1] is said to be positively quadrant
dependent if C(u,v)≥ uv holds for all u,v.

The following Lemma of [10] will be used in the proof of our next result.

Lemma 1. Let H(x,y), F(x), and G(y) be the joint, and marginal CDFs of X and
Y , respectively. If X and Y are positively quadrant dependent, then

H(x,y) = F(x)G(y)+w(x,y) x,y ∈R (3)

with w(x,y) satisfying the following conditions:
(i) w(x,y) ≥ 0 for all x and y,
(ii) w(x,∞) = w(∞,y) = w(x,−∞) = w(−∞,y) = 0, for all x and y, and

(iii) ∂ 2w(x,y)
∂x∂y ≥ 0.

Recall that a function w(u,v) is totally positive of order-2 (TP2) if
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w(u′,v)w(u,v′)≤ w(u′,v′)w(u,v) for all u′ ≤ u,v′ ≤ v.

Also w(u,v) is said to be 2-increasing if

w(u′,v′)+w(u,v)−w(u′,v)−w(u,v′)≥ 0 for all u′ ≤ u,v′ ≤ v.

Using above lemma, it is easy to prove the similar result given below.

Proposition 1. If a copula C(u,v) can be written as

C(u,v) = uv+W(u,v) for all u and u,

where W (u,v) satisfying the following conditions:
(i) W (u,v)≥ 0,
(ii) W (u,1) =W (1,v) =W (u,0) =W (0,v) = 0,

(iii) ∂ 2W (u,v)
∂v∂u ≥−1,

(iv) ∂ 2W (u,v)
∂v∂u is a function with TP2 property and is 2-increasing, then the copula C

is affiliated.

Note that if we let W (u,v) = C(u,v)− uv, then by Theorem 1 below, we know
that C(u,v) is affiliated implies it is PQD, then by Lemma 1, conditions (i), (ii), and
(iii) hold for W , but (iv) does not necessarily hold.

Example 2.1. For the CDF of Farlie-Gumbel-Morgenstern bivariate distribution [8]:

F(x,y) = FX(x)FY (y)[1+ρ(1−FX(x))(1−FY (y))], −1≤ ρ ≤ 1,

the corresponding copula is C(u,v) = uv[1+ρ(1− u)(1− v)],−1≤ ρ ≤ 1. By the
remark after Definition 2, it is easy to see Farlie-Gumbel-Morgenstern family is
affiliated for 0≤ ρ ≤ 1. �

In order to show that affiliation implies PQD, we need the following definition.

Definition 4. The random variable Y is said to be positively regression dependent
in X , denoted by PRD(Y |X), if P(Y ≤ y|X = x) is non-increasing in x for all y. Y
is said to be left-tail decreasing in X , denoted by LT D(Y |X), if P(Y ≤ y|X ≤ x) is
non-increasing in x for all y.

Corresponding to copulas, we have the following definition.

Definition 5. The random variable V in C is said to be positively regression de-
pendent in U, denoted by PRD(V |U), if pu(u,v) is non-increasing in u for all v,

where pu(u,v) =
∂C(u,v)
∂u . V in C is said to be left-tail decreasing in U, denoted by

LTD(V |U), if C(u,v)
u is non-increasing in u for all v.

Proposition 2. The following result gives the relationship between X and Y and
their corresponding U and V .

(i) The random variables X and Y are positively regression dependent in X if and
only if V in the corresponding copula C(u,v) is positively regression dependent in
U.
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(ii) The random variables X and Y are left-tail decreasing in X if and only if V
in the corresponding copula C(u,v) is left-tail decreasing in U.

(iii) The random variables X and Y are PQD if and only if U and V in the corre-
sponding copula C(u,v) are PQD.

Proof. We prove (i) and (ii) only, and the proof of (iii) is trivial. For (i), suppose Y
is Positively regression dependent in X . Let Hy|x(y|x) be the conditional CDF of Y
given X = x. By definition, it is non-increasing in x. Also

Hy|x(y|x) =
y∫

−∞
hy|x(t|x)dt =

y∫
−∞

h(x, t)
f (x)

dt =

y∫
−∞

∂
∂ t

(
∂C(F(x),G(t))

∂x

)
1

f (x)
dt

=

y∫
−∞

∂
∂ t

pu(F(x),G(t))dt = pu(F(x),F(y))− pu(F(x),0)

= pu(F(x),G(y)).

Since both F,G are distribution functions and therefore non-decreasing, so that,
Hy|x(y|x) is non-increasing in x if and only if pu(u,v) is non-increasing in u.

(ii) Let Y is Left-tail decreasing in X , by definition, P(Y ≤ y|X ≤ x) = H(x,y)
F(x) is

non-increasing in x. Since both F,G are distribution functions and therefore non-
decreasing, so that, LT D(Y |X) if and only if LTD(V |U). �

Theorem 1. Let C : [0,1]× [0,1] �→ [0,1] be a copula, then the following implica-
tions are true.

Affiliation ⇒ PRD(V |U) ⇒ LTD(V |U) ⇒ PQD.

Proof. Suppose that U and V are affiliated.
To show it implies PRD(V |U), for any u∗ < u,v∗ < v, we have, by definition,

c(u,v∗)c(u∗,v)≤ c(u,v)c(u∗,v∗) ⇒ C(v|u)
c(u|v) ≤

C(v|u∗)
c(u|v∗) .

Let G(v|u) = c(v|u)
C(v|u) , then we have G(v|u)≥G(v|u∗) for all u∗ < u,v∗ < v. Note that

G(u|v) = ∂ ln(C(v|u))
∂v . We obtain

1− ln(C(v|u)) =
1∫

v

G(t|u)dt ≥
1∫

v

G(t|u∗)dt = 1− ln(C(v|u∗)).

Thus, C(v|u∗)≥C(v|u) for u∗ < u, which implies PRD(V |U).
For PRD(V |U)⇒ LTD(V |U), we need the fact that for any interval I ⊆ [0,1],
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P(V > v|U ∈ I) =

∫
I

P(V > v|U = u)dP(U ≤ u)

P(U ∈ I)
.

LTD(V |U) is equivalent to the Pr(V > v|U ≤ u) is non-decreasing in u for all v,
which, in turn, is equivalent to

P(V > v|U ≤ u)≥ P(V > v|U ≤ u∗)

for u∗ < u and all v. This is also equivalent to P(V > v|u∗ <U ≤ u)≥ P(V > v|U ≤
u∗), for all u > u∗. Note that,

P(V > v|u∗ <U ≤ u) =

u∫
u∗

P(V > v|U = u)dP(U ≤ u)

P(u∗ <U ≤ u)

≥
P(V > v|U = u∗)

u∫
u∗

dP(U ≤ u)

P(u∗ <U ≤ u)
= P(V > v|U = u∗)

≥

u∗∫
−∞

P(V > v|U = u)dPr(U ≤ u)

P(−∞<U ≤ u∗)
= P(V > v|U ≤ u∗),

which implies LTD(V |U).
For LT D(V |U)⇒ PQD, note that

P(V ≤ v|U ≤ u)≥ P(V ≤ v|U ≤ 1) = P(V ≤ v) = v, (4)

which is equivalent to C(u,v)≥ uv.
Note that the FGM-copula has properties PRD,LTD,PQD for 0≤ ρ ≤ 1. Several

counterexamples of the converse relations of Theorem 2.1 can be found in [25] and
[15].

3 Invariance of Affiliation of Subcopula through Bilinear
Interpolation

In this section, we are going to discuss the affiliation property of copula, which is
obtained from a subcopula through the method of bilinear interpolation.

Definition 6. A two-dimensional subcopula is a function C′ with the following
properties:

(a) Domain of C′ is S1×S2, where S1 and S2 are subsets of [0,1] containing 0 and
1,

(b) C′ is 2-increasing and C′(u,0) =C′(0,v) = 0,
(c) For every u in S1 and every v in S2, and

C′(u,1) = u and C′(1,v) = v.
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Also, any sub-copula can be extended to a copula, but the extension is generally
non-unique. Here we introduce one popular method called bilinear interpolation
[20]:

Definition 7. Let C′ be a sub-copula with domain S1 × S2, now for any (a,b) ∈
[0,1]2, let a1 and a2 be, respectively, the greatest and least elements of S1 that satisfy
a1 ≤ a≤ a2; and let b1 and b2 be, respectively, the greatest and least elements of S2

that satisfy b1 ≤ b ≤ b2, where S is the closure of set S . Note that if a is in S1, then
a1 = a = a2; and if b is in S2, then b1 = b = b2. Now let

λ =

{
a−a1
a2−a1

if a1 < a2

1 if a1 = a2

and

μ =

{
b−b1
b2−b1

if b1 < b2

1 if b1 = b2.

The copula C given by

C(a,b) = (1−λ )(1− μ)C′(a1,b1)+ (1−λ )μC′(a1,b2)+λ (1− μ)C′(a2,b1)

+λμC′(a2,b2),

is a well defined copula.

The following result shows that the invariance between a subcopula and its bilin-
ear interpolation of affiliation property.

Theorem 2. Let C′ be a sub-copula over S1 × S2, and C : [0,1]2 → [0,1] be the
copula, which is constructed by bilinear interpolation from C′.

(i) If C′ is affiliated, then C is also affiliated. Furthermore, if C′ is not affiliated,
then C is also not affiliated.

(ii) If C′ is PQD, then C is also PQD. Furthermore, if C′ is not PQD, then C is
also not PQD.

Proof. Let a < c,b < d. Suppose a1,a2,b1,b2,c1,c2,d1,d2 and λ1,μ1,λ2 and μ2 are
defined according to the method of bilinear interpolation.

Then

C(a,b) =
a2−a
a2−a1

b2−b
b2−b1

C′(a1,b1)+
a2−a
a2−a1

b−b2

b2−b1
C′(a1,b2)+

a−a2

a2−a1

b2−b
b2−b1

C′(a2,b1)

+
a−a2

a2−a1

b−b2

b2−b1
C′(a1,b1).

Then

c(a,b) =
∂ 2C(a,b)
∂a∂b

=
C′(a1,b1)−C′(a1,b2)−C′(a2,b1)+C′(a2,b2)

(a2− a1)(b2− b1)
.

To show (i), we shall consider the following cases,



120 Z. Wei, T. Wang, and W. Panichkitkosolkul

Case 1. suppose a1 = c1, a2 = c2, b1 = d1 and b2 = d2, in this case, c(a,b) =
c(c,d) = c(a,d) = c(c,b). Thus c(a,b)c(c,d)≥ c(a,d)c(c,b) holds.

Case 2. suppose a1 < c1, a2 < c2, b1 = d1 and b2 = d2. then we have c(a,b)= c(c,b)
and c(a,d) = c(c,d). Thus c(a,b)c(c,d)≥ c(a,d)c(c,b) holds.

Case 3. suppose a1 = c1, a2 = c2, b1 < d1 and b2 < d2, the proof follows from Case
1 and Case 2.

Case 4. suppose a1 < c1, a2 < c2, b1 < d1 and b2 < d2, then,

c(a,b)c(c,d) =
C′(a1,b1)−C′(a1,b2)−C′(a2,b1)+C′(a2,b2)

(a2− a1)(b2− b1)

×C′(c1,d1)−C′(c1,d2)−C′(c2,d1)+C′(c2,d2)

(c2− c1)(d2− d1)

=
c′(a2,b2)

(a2− a1)(b2− b1)

c′(c2,d2)

(c2− c1)(d2− d1)

≥ c′(a2,d2)

(a2− a1)(b2− b1)

c′(c2,b2)

(c2− c1)(d2− d1)

=
C′(a1,d1)−C′(a1,d2)−C′(a2,d1)+C′(a2,d2)

(a2− a1)(b2− b1)

×C′(c1,b1)−C′(c1,b2)−C′(c2,b1)+C′(c2,b2)

(c2− c1)(d2− d1)
= c(a,d)c(c,b),

Note that the inequality above holds because affiliation property of c′(u,v). There-
fore, c(a,b)c(c,d)≥ c(a,d)c(c,b) holds. This completes the proof of (i).

For (ii), assume that C′ is PQD, and for any a,b ∈ [0,1],

C(a,b) = (1−λ )(1−μ)C′(a1,b1)+(1−λ )μC′(a1,b2)+λ (1−μ)C′(a2,b1)+λμC′(a2,b2)

≥ (1−λ )(1−μ)a1b1 +(1−λ )μa1b2 +λ (1−μ)a2b1 +λμa2b2

= ab,

The last equality hold since (1−λ )a1+λa2 = a and (1−μ)b1+μb2 = b, therefore,
C is PQD as desired. �

Example 1. For the subcopula C and its mass function c given below:

�
��U

V 1/3 2/3 1

1/3 1/3 1/3 1/3
2/3 1/3 2/3 2/3
1 1/3 2/3 1

�
��U

V 1/3 2/3 1

1/3 1/3 0 0
2/3 0 1/3 0
1 0 0 1/3

it is easy to see that C is affiliated so that the corresponding copula constructed by
the bilinear extension is also affiliated.
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4 Average and Local Measures of Affiliations

Copula characterizes dependence structures and dependence measures. For exam-
ple, random variables X and Y are independent if and only if their corresponding
copula C(u,v) = uv. A measure of dependence indicates in some particular manner
how closely the random variables X and Y are related; Hence a variety of measures
are needed to reveal the nature of affiliation dependence. We review measures of an
affiliation discussed in [11]. Let T denote the average measure of the affiliation for
−∞< x1 < x2 < ∞ and −∞< y1 < y2 < ∞, that is,

T =

∞∫
−∞

∞∫
−∞

y2∫
−∞

x2∫
−∞

[h(x2,y2)h(x1,y1)− h(x1,y2)h(x2,y1)]dx1dy1dx2dy2.

Also, it could be defined as average measure for affiliation of copula,

TC =

1∫
0

1∫
0

v2∫
0

u2∫
0

[c(u2,v2)c(u1,v1)− c(u1,v2)c(u2,v1)]du1dv1du2dv2.

After some calculation, we can get 1
2τ = T , where τ is Kendall’s τ(See [17]).

For discrete copula, we give the following discrete average measure,

TC =
n

∑
i=0

m

∑
j=0

i

∑
k=0

j

∑
l=0

[c(uk,vl)c(ui,v j)− c(ui,vl)c(uk,v j)]. (5)

Holland and Wang[5, 6] defined the local dependence index for affiliation as

γ(x,y) =
∂ 2 logh(x,y)

∂x∂y
.

Also, it can be defined for copula

γ(u,v) =
∂ 2 logc(u,v)

∂u∂v
.

We list several properties of this local measure of affiliation:

(i) −∞< γ(u,v)< ∞.
(ii) γ(u,v) = 0 for all u,v if and only if U and V are independent.
(iii) If X and Y have a bivariate normal distribution with correlation coefficient

ρ , then γ(x,y) = ρ
1−ρ2 , a constant.

Example 2. Consider the experiment of tossing an unbalanced coin 3 times with
success rate p. Let X be the total number of heads observed and Y be the number of
heads on the second toss. Then the joint density of X and Y is given by
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�
��Y

X 0 1 2 3

0 (1− p)3 2(1− p)2 p (1− p)p2 0
1 0 (1− p)2 p 2p2(1− p) p3

The corresponding copula density of U and V is

�
��V

U (1− p)3 (1− p)2(1+2p) 1− p3 1

1− p (1− p)3 2(1− p)2 p (1− p)p2 0
1 0 (1− p)2 p 2p2(1− p) p3

Note that U and V are affiliated, its bilinear interpolation is also affiliation. By (5),
the average measure for this discrete copula is T = (1− p)5p+8p3(1− p)3+2(1−
p)2 p4 +(1− p)p5. Note that if the coin is balanced then T = 3/16.

Example 3. Consider the experiment of tossing a unbalanced coin with success rate
p. Let X be value 2K , where K is number of tosses until the first head occurs, and Y
be the number of heads in the first toss. Note that E(X) does not exists for p < 1/2.
For p ∈ [0,1], the joint distribution of X and Y is

�
��Y

X 20 21 ... 2n ...

0 0 p(1− p) ... p(1− p)n−1 ...
1 p 0 ... 0 ...

and its corresponding copula is,

�
��V

U p, p(1− p)+ p, ..., (1− p)(1− (1− p)n−1)+ p, ..., 1

p 0, p(1− p), ..., p(1− p)n−1, ..., p
1 p, p(1− p)+ p, ..., p(1− p)n−1 + p, ..., 1

This is a discrete copula which is not PQD. The average measure for this discrete
copula T =−p2(1− p)− p2(1− p)2−·· ·− p2(1− p)n−·· ·=−p(1− p)< 0.
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5 Conditions on Affiliation in the Bivariate Skew Normal
Family

We first recall the definition of the multivariate skew-normal distribution which are
given in [2]. A k-dimensional random variable Z is said to have a multivariate skew-
normal distribution if it is continuous with density function

2φk(z;Σ)Φ(αT z), z ∈ R
k,

where φk(z;Σ) is the k-dimensional normal density with zero mean and correlation
matrix Σ , Φ(·) is the CDF of N(0,1), and α is a k-dimensional vector. Here we only
consider the case where k = 2. The density of (X ,Y ) is given by

h(x,y) = 2φρ(x,y)Φ(α1x+α2y), (6)

where

φρ(x,y) = (2π)−1(1−ρ2)−1/2 exp

{
1

2(1−ρ2)
(x2− 2ρxy+ y2)

}
,

and α1 and α2 ∈ R are skewness parameters.

Theorem 3. Consider the bivariate skew normal random vector (X ,Y ) with density
given by (6). Then X and Y are affiliated if and only if ρ ≥ 0 and α1α2 ≤ 0.

Proof. For the “i f ” part, assume that ρ ≥ 0 and α1α2 ≤ 0. By Lemma 3.5 of Rinott
and Scarsini [20], we know that ρ ≥ 0 implies that bivariate normal density is affil-
iated. That is

φρ(x′,y)φρ(x,y′)≤ φρ(x′,y′)φρ(x,y) for all x′ < x and y′ < y. (7)

Now it is sufficient to show that X and Y in Φ(α1x+α2y) are affiliated. Without
loss of generality, we assume that α1 < 0,α2 > 0. For any x′ < x,y′ < y, we have

α1x+α2y′ ≤ α1x′+α2y′ ≤ α1x′+α2y

and
α1x+α2y′ ≤ α1x+α2y≤ α1x′+α2y.

Since Φ is log concave, we have

logΦ(α1x′+α2y)− logΦ(α1x′+α2y′)
α2(y− y′)

≤ logΦ(α1x+α2y)− logΦ(α1x+α2y′)
α2(y− y′)

,

which implies

logΦ(α1x′+α2y)− logΦ(α1x′+α2y′)≤ logΦ(α1x+α2y)− logΦ(α1x+α2y′).
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Thus

log
[
Φ(α1x′+α2y)Φ(α1x+α2y′)

] ≤ log
[
Φ(α1x+α2y)Φ(α1x′+α2y′)

]
,

which is reduced to

Φ(α1x′+α2y)Φ(α1x+α2y′)≤Φ(α1x+α2y)Φ(α1x′+α2y′). (8)

Combining (7) and (8), we obtain

φρ (x′,y)Φ(α1x′+α2y)φρ (x,y′)Φ(α1x+α2y′)≤ φρ (x,y)Φ(α1x+α2y)φρ (x′,y′)Φ(α1x′+α2y′),

so that X and Y are affiliated.
For the “only i f ” part, assume that X and Y are affiliated. It is suffices to show

that if conditions ρ ≥ 0 and α1α2 < 0 are not satisfied, then there exist x′ < x, y′ < y
such that

φρ (x,y)Φ(α1x+α2y)φρ (x′,y′)Φ(α1x′+α2y′)< φρ (x′,y)Φ(α1x′+α2y)φρ (x,y′)Φ(α1x+α2y′)

which is equivalent to

ρ
1−ρ2 (x− x′)(y− y′)+ log

[
Φ(α1x+α2y)Φ(α1x′+α2y′)
Φ(α1x′+α2y)Φ(α1x+α2y′)

]
< 0. (9)

Now consider the following cases.

Case 1. For ρ < 0 and α1α2 ≤ 0, without loss of generality, we assume that α1 ≤
0,α2 ≥ 0, if we pick x′ = y′ = 0, and y = exp(x), then (9) is reduced to

ρ
1−ρ2 xexp(x)+ log

[
1
2Φ(α1x+α2 exp(x))

Φ(α2 exp(x))Φ(α1x)

]

=
ρ

1−ρ2 xexp(x)− log(Φ(α1x))+ log

[
1
2Φ(α1x+α2 exp(x))

Φ(α2 exp(x))

]
,

which goes to −∞ as x tends to ∞.

Case 2. For ρ > 0 and α1α2 > 0, without loss of generality, we assume that α1 >
0,α2 > 0, if we pick x′ = y′ = 0, and y = 1, then (9) is reduced to

ρ
1−ρ2 x+ log

[
1
2Φ(α1x+α2)

Φ(α2)Φ(α1x)

]
,

which goes to −∞ as x tends to ∞.

Case 3. For ρ < 0 and α1α2 > 0, then the first part and second part of (9) are all
strictly negative, therefore, the desired result follows. �
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