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Abstract. We propose an algorithm for inferring membership functions
of fuzzy sets by exploiting a procedure originated in the realm of support
vector clustering. The available data set consists of points associated with
a quantitative evaluation of their membership degree to a fuzzy set. The
data are clustered in order to form a core gathering all points definitely
belonging to the set. This core is subsequently refined into a membership
function. The method is analyzed and applied to several real-world data
sets.

1 Introduction

Designing fuzzy sets has been one of the pivotal problems in the methodol-
ogy and practice of the technology of fuzzy sets. Fuzzy sets come with different
interpretations, cf. [1]. There are several general approaches ranging from expert-
driven methods to data-driven techniques and an entire spectrum of hybrid-like
strategies combining these two development modes, cf. [2]. Various shapes of
membership functions are proposed [3], sometimes being directly linked with
the ensuing computational facets of fuzzy sets; here we can refer to triangular
fuzzy sets and their role in fuzzy modeling and a degranulation process [2,4]. In-
tensive pursuits in the construction of membership functions are not surprising
at all: evidently fuzzy sets form a backbone of fuzzy models, fuzzy classifiers and
fuzzy reasoning schemes. Fuzzy sets used in these constructs directly impact their
performance as well as contribute to the interpretability (readability) of these
modeling constructs. Fuzzy sets formed through an expert-driven approach are
reflective of the perception of concepts captured by humans; however the esti-
mation process could exhibit some inconsistencies associated with the elicitation
process itself (bottleneck of knowledge acquisition). On the other hand, data-
driven approaches rely on available experimental data and fuzzy sets obtained
in this manner are reflective of the nature of the available experimental evidence
(which is going to be used intensively when forming fuzzy predictors or classi-
fiers). In this domain, we encounter techniques using which fuzzy sets (treated
as information granules) arise as a summarization of numeric data; one can refer
here to fuzzy clustering or other mechanisms of vector quantization [5]. With
this regard a prudent formulation of the optimization process and its relevance
vis-à-vis the semantics of fuzzy set(s) to be developed is of paramount relevance.
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Having this mind, we propose a modified support vector clustering in which we
take advantage of the formulation and the nonlinear nature of the optimization
problem falling within the realm of well-established methods of support vector
machines. This formulation supports a construction of diversified membership
functions.

A thorough parametric analysis of the resulting construct is presented. We
demonstrate how the parameters (and a tradeoff of their values) of the method
impact the shape (trapezoidal, quadratic, and bimodal) of membership function
of the fuzzy set being formed. A series of illustrative examples is provided to
visualize the flexibility of the construct considered here.

The paper is structured as follows: we start with a suitable modification of the
support vector clustering algorithm and elaborate on a selection of numeric val-
ues of the essential parameters of the method. Subsequently, we present a series
of experiments showing in detail on how membership functions are constructed.

2 Modifying the SV Clustering Algorithm

Let a sample {x1, . . . , xm} in a domain X be given, together with an associ-
ated set of membership grades {μ1, . . . , μm} to some unknown fuzzy set A. The
problem of inferring μA can be divided into two parts, namely: i) determining
the shape of A, and ii) inferring the parameters of the membership function μA.
These tasks are addressed by starting from the following hypothesis.

– Set A1 = {x ∈ X s. t. μA(x) = 1} contains all points in X whose images
through a mapping Φ belong to a sphere of unknown center a and radius R.

– The membership μA(x) only depends on the distance between Φ(x) and a.

It has been shown that the set A1 can be estimated through a modified
support-vector clustering procedure [6] provided with x1, . . . , xm and μ1, . . . , μm:
the problem is concerned with searching for the smallest sphere, having a and R
respectively as center and radius, enclosing the images of x1, . . . , xm produced
through a transformation Φ. More precisely, we use from a starting point the
typical relaxation of this problem based on slack variables ξ1, . . . , ξm. As our
target is that of learning a fuzzy set having as inputs some points x1, . . . , xm

and their membership values μ1, . . . , μm, we consider the constraints in the form:

μi||Φ(xi)− a||2 ≤ μiR
2 + ξi , (1)

(1− μi)||Φ(xi)− a||2 ≥ (1− μi)R
2 − τi , (2)

ξi ≥ 0, τi ≥ 0 . (3)

It is easy to see that when μi = 1 the constraints read in the same way as
those in the problem of support vector clustering. In other words, we try to
confine the images of xi through Φ within a sphere centered at a and having
radius R. On the other hand, when μi = 0, the same set of constraint model the
opposite target, i.e., exclusion of Φ(xi) from the sphere.
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Thus we can consider the following extension of the support vector cluster-
ing procedure: minimize R2 + C

∑
(ξi + τi) under constraints (1-3). Its Wolfe

dual formulation is concerned with the maximization of
∑m

i=1(αiμi − βi(1 −
μi))k(xi, xi)−

∑m
i,j=1(αiμi − βi(1− μi))(αjμj − βj(1 − μj))k(xi, xj) subject to

the constraints
∑m

i=1(αiμi−βi(1−μi)) = 1 and 0 ≤ αi, βi ≤ C, where k denotes
the kernel function associated to the dot product computation in the image of
Φ (that is, k(xi, xj) = Φ(xi) ·Φ(xj)). Denoting with a star the optimal value for
a variable, Karush-Kuhn-Tucker (KKT) conditions [7] read

α∗
i

(
R∗2μi + ξ∗i − μi||Φ(xi)− a∗||2

)
= 0 , (4)

β∗
i

(
(1 − μi)||Φ(xi)− a∗||2 −R∗2(1− μi) + τ∗i

)
= 0 , (5)

γ∗
i ξ

∗
i = 0, δ∗i τ

∗
i = 0 . (6)

It is easy to show that when either 0 < α∗
i < C or 0 < β∗

i < C it will necessary
hold both ξ∗i = 0 and ||Φ(xi) − a∗|| = R∗2. Thus the corresponding xi has an
image through Φ lying on the border of the learnt sphere S and will be called
support vector. KKT conditions show that:

– α∗
i = 0 implies ξ∗i = 0 and R2(x) ≤ R∗2, so Φ(xi) lies in S or in its surface,

– α∗
i = C implies R2(x) = R∗2 + ξ∗i

μi
, thus Φ(xi) doesn’t lie inside S,

– β∗
i = 0 implies τ∗i = 0, so that R2(x) ≥ R∗2, thus Φ(xi) doesn’t lie inside S,

– β∗
i = C implies R2(x) = R∗2 − τ∗

i

1−μi
, thus Φ(xi) doesn’t lie outside S,

where R2(x) = ||Φ(x) − a∗||2. Given any point x ∈ X , it can be shown that
R2(x) = k(x, x) − 2

∑m
i=1(α

∗
iμi − β∗

i (1 − μi))k(x, xi) +
∑m

i,j=1(α
∗
iμi − β∗

i (1 −
μi))(α

∗
jμj − β∗

j (1 − μj))k(xi, xj) so that it is possible to compute the distance
between the center of the learnt sphere and the image of the given point x.
In particular, all points x with membership μA(x) = 1 satisfy R2(x) ≤ R2

1,
where R2

1 = R2(xi) for any support vector xi. Moreover, as R2 spans between
a minimum and a maximum value when the membership value of its argument
decreases from 1 to 0, the membership function μA can then be reconstructed
in the following way:

– scaling R2 to R′(x) = M−R2(x)
M−R2

1
, where M = maxx R

2(x), so that R′ ap-
proaches 0 and 1, respectively, when R2 approaches its maximum and R2

1;
– approximating μA with the function

μ̂(x) =

{
1 if R′(x) ≥ 1 ,

R′(x) otherwise .
(7)

The proposed procedure can produce membership functions of different shape.
Figure 1 shows examples of the output for three different unidimensional mem-
bership functions, namely a trapezoidal, a quadratic and a bimodal one. In all
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Fig. 1. Output of the proposed procedure (dashed curves) for different unidimensional
membership functions (plain curves), inferred from samples of 50 item each (each sam-
ple point is drawn as a bullet colored according to its membership value, ranging from
gray to black)

experiments we used a sample of m = 50 points uniformly distributed across the
universe of discourse, associated with the corresponding membership value.

Inferring a membership function requires to strike the trade-off parameter
C, as well as additional kernel parameters, an operation which is known in the
literature as model selection [8]. In order to suitably select among the avail-
able methodologies it is worth studying the properties of parameters and their
relations with the problem under study.

Figure 2 shows the results of an experiment aimed at understanding the role
of involved parameters: having fixed: (i) a membership function (the dashed
trapezoid in all graphs), (ii) a labeled sample, and (iii) a Gaussian kernel of
parameter σ = 0.12 (see the beginning of Sect. 3), the learning procedure has
been run several times using different values for C. The graphs in Fig. 2(a)–(c)
highlight how an increase in C causes an enlargement of the inferred fuzzy set’s
core, intended as the subset of X whose elements are assigned unit membership.
In particular, as C reaches the unit value the fuzzy set tends to a regular set
enclosing all points in the labeled sample having non-zero membership values.

Similarly, we can start from the same membership function and labeled sam-
ple, set C to the best value found during the previous run, and change σ. The
results, summarized in Fig. 2(d)–(f), show how the role of this parameter is that
of modifying the shape of the membership function, which becomes more plastic
as σ decreases toward zero. This experiment suggests a three-phase procedure
for finding the optimal values for C and σ consisting in: 1. selecting a value C0

in order to include in the inferred fuzzy set’s core all points having unit mem-
bership; 2. selecting a value σ0 in order to reasonably fit the data; 3. performing
a fine-grained grid search centered around C0 and σ0.

3 Experiments

In all applications described in this paper the procedure relied on the Gaus-
sian kernel defined by k(x1, x2) = exp

(−||x1 − x2||2/(2σ2
)
). When using this

kind of kernel [9] the optimization problem simplifies to the minimization of∑m
i,j=1(αiμi−βi(1−μi))(αjμj −βj(1−μj))k(xi, xj); indeed, a Gaussian kernel
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Fig. 2. (a)–(c): Increasing C has the effect of enlarging the learnt membership function
core. (d)–(f): Increasing σ has the effect of changing the learnt membership function
shape. Each graph is labelled with the corresponding parameter value.

k satisfies k(x, x) = 1, so that the constraints insure the equivalence between
the original objective function and 1−∑m

i,j=1(αiμi − βi(1− μi))(αjμj − βj(1−
μj))k(xi, xj).

The computation of M was carried out used a Monte Carlo maximization and
choosing a suitable number of samples in each experiment.

3.1 Inferring Membership Functions from Real-World Data

As a first example consider the body mass index (BMI) defined as the ratio
between the weight and the squared height of a person, respectively measured in
kilograms and meters. The World Health organization uses this quantity as an
age- and gender-independent index for classification of weight categories in adult
people, according to Table 1 [10]. Focusing on the category of normal weight we
selected two mappings μ1 and μ2, shown in the table, associating each BMI
range to a membership value. Subsequently we drew samples of 150 BMI values
located uniformly in the interval [10, 45] and computed their membership value.

Table 1. Classification of weight in function of the BMI, according to the World
health organization [10]. Columns μ1 and μ2 show the values giving rise to the learnt
membership functions shown in Fig. 3(a) and (b), respectively.

Classification BMI range μ1 μ2 Classification BMI range μ1 μ2

Severe thinness BMI < 16 0 0 Pre-obese 25 ≤ BMI < 30 0.5 0.7
Moderate thinness 16 ≤ BMI < 17 0.2 0.4 Obese class I 30 ≤ BMI < 35 0.2 0.4
Mild thinness 17 ≤ BMI < 18.5 0.5 0.7 Obese class II 35 ≤ BMI < 40 0.1 0.2
Normal range 18.5 ≤ BMI < 25 1 1 Obese class III BMI ≥ 40 0 0
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Fig. 3. (a)–(b): Learnt membership functions for normal weight according to Table 1,
respectively referring to the values shown in columns μ1 and μ2 of the table. (c): Inferred
membership function for the fuzzy set expressing the notion of normal physique in adult
women in the US, in function of weight (X axis, measured in kilograms) and height (Y
axis, measured in centimeters).

This allowed us to infer the membership functions (one for each mapping)
shown in Fig. 3(a)–(b), setting σ = 4 and C = 0.05. Note how learnt membership
function’s shape is affected by the way categories are associated to numeric
values for memberships. This is a key aspect for accommodating available domain
knowledge coming from the experts in the field.

The proposed methodology is not confined to single-dimensional problems. In-
deed, the kernel trick allows the inference to consider fuzzy sets defined on any
space over which a kernel can be defined. Consider for instance the fuzzy notion
of normal physique defined in terms of weight and height of a person. Figure 3(c)
shows the results of a toy experiment aimed at capturing this notion, having as
a starting point the distribution of weight and height, respectively measured in
kilograms and centimeters, in adult women in the US [11]. Dividing the observa-
tion range in function of the data percentiles it is possible to obtain two functions
μweight and μheight approximating the corresponding memberships. Finally, con-
sidering a sample of 150 points uniformly drawn in [50, 114] × [150, 175] (the
Cartesian product of the operational ranges in observed data) and building the
membership value of each of its element (w, h) as μ(w, h) = μweight(w)μheight(h),
the proposed procedure learnt the membership function shown in Fig. 3(c).

3.2 Inferring Membership Functions in Absence of Membership
Values

The method is also applicable to datasets not explicitly mentioning member-
ship values. Consider for instance the Iris dataset [12], introduced by Fisher in
1936 and gathering 150 samples from three different species of the iris flower
(namely, Iris setosa, Iris virginica and Iris versicolor). The observations, de-
scribed through length and width of the petal and the sepal, are assigned to one
of the previously mentioned species. The proposed learning procedure can be ap-
plied as follows: focusing on a given class, say Iris setosa, denote {x1, . . . , x150}
the dataset observations and set μi = 1 if xi belongs to class Iris setosa, and 0



58 D. Malchiodi and W. Pedrycz

�4 �2 0 2 4

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

(a) (C = 10, σ = 0.5)

�4 �2 0 2 4

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

(b) (C = 100, σ = 0.225)

�4 �2 0 2 4

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

(c) (C = 10, σ = 0.5)

Fig. 4. Scatter plot of the Iris dataset and inferred membership functions for the cor-
responding classes. Bullets represent samples projected on their two first principal
components, and colored according to their classes (in blue, green and red respectively
for Iris virginica, Iris versicolor, and Iris setosa). Each graph also shows the density
plot of the inferred membership function.

otherwise. Apply subsequently the learning procedure in order to infer a mem-
bership function μsetosa. Idem for membership functions μvirginica and μversicolor.
Given an observation x, assign it to the class it belongs to with maximal member-
ship grade. Figure 4 shows a density plot of the membership functions inferred
after application of the PCA procedure [13] selecting the first two principal com-
ponents, for sake of visualization, and using a Gaussian kernel. Each plot shows
the class it refers to, as well as the used values for parameters C and σ, chosen
through a trial and error procedure.

We performed a more extensive experiment involving a repeated holdout
scheme, in which 70% of a random permutation of the sample was used in order
to infer the three membership functions, using the parameters highlighted in
Fig. 4; the latter were subsequently tested on the remaining 30% of the data.
Table 2 resumes average and standard deviation of the obtained error both in the
training and the testing phase of 500 such procedures, starting each time from a
different permutation and analyzing two, three and four principal components.
These results show how even a very simple learning strategy (no complex pro-
cedures for fine tuning the parameters’ choice such as a cross-validation) lead to
an average test performance around 95%.

Table 2. Results of 500 holdout procedures on the Iris dataset. Each row shows average
and standard deviation (columns Avg. and Stdev., respectively) of train and test error,
in function of the number of principal components extracted from the original sample.

N. of principal Train error Test error
components Avg. Stdev. Avg. Stdev.

2 0.00488 0.00653 0.04720 0.03143
3 0.00152 0.00349 0.06067 0.03128
4 0.00169 0.00374 0.05738 0.03347
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4 Conclusions

This paper introduced a method for inferring the membership function to a
fuzzy set on the basis of partial information, consisting in two finite sets: the
former containing a sample of points, and the latter gathering measurements
of the membership grades for points in the former set. The method relies on a
special support vector clustering for the provided points, which is subsequently
transformed into the inferred membership function.
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